

GNU Octave
Beginner's Guide

Become a proficient Octave user by learning this high-level
scientific numerical tool from the ground up

Jesper Schmidt Hansen

 BIRMINGHAM - MUMBAI

GNU Octave
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, its dealers, and
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Production Reference: 2150611

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-32-6

www.packtpub.com

Cover Image by John Quick (john@johnmquick.com)

Credits

Author

Jesper Schmidt Hansen

Reviewers

 Piotr Gawron

Kenneth Geisshirt

Jordi Gutiérrez Hermoso

Acquisition Editor

Usha Iyer

Development Editor

Roger D'souza

Technical Editor

Dayan Hyames

Project Coordinator

Joel Goveya

Proofreaders

Lesley Harrison

Clyde Jenkins

Lynda Sliwoski

Indexers

Hemangini Bari

Tejal Daruwale

Monica Ajmera Mehta

Graphics

Nilesh R. Mohite

Production Coordinator

Kruthika Bangera

Cover Work

Kruthika Bangera

About the Author

Jesper Schmidt Hansen holds a Ph.D. in soft material science and is currently doing
research in the field of nanofluidics and dynamics at Roskilde University, Denmark. He
has been using GNU Octave on a daily basis for many years, both as a student and later
as a researcher. The applications have varied from solving partial and ordinary differential
equations, simple data plotting, data generation for other applications, dynamical system
investigations, and advanced data analysis.

Firstly, I wish to thank the reviewers. They have been a great help and their
many (at times overwhelmingly many) comments and hints have improved
the manuscript considerably.

I have received encouragement and good ideas from everyone at the
Department of Science, Systems and Models, Roskilde University.
Especially, I want to thank Professor Jeppe Dyre from the Danish
National Research Foundation centre "Glass and Time" for giving me the
opportunity to finish the book in the last phase of the writing.

Also, I have found Octave's official mailing list very useful. Unlike many
other user groups, there is a very constructive and helpful atmosphere
here. I thank everyone who has submitted questions and all those that
have replied.

I now realize that having a one year old child, a full time job, as well as
writing a book is not really an ideal cocktail. I must thank Signe Anthon
for her tremendous support and patience during the writing of this book.
When I signed the contract with Packt Publishing, I was happy finally to
be able to make a contribution to the open source community—Signe's
contribution is just as big as mine!

About the Reviewers

Piotr Gawron is a researcher in the field of quantum information processing. His main
research topics are quantum programming languages, quantum game theory, and numerical
and geometrical methods in quantum information. He works in the Quantum Computer
Systems Group of the Institute of Theoretical and Applied Informatics of the Polish Academy
of Sciences in Gliwice, Poland. Apart from research in theoretical aspects of computer
science, he has gained practical experience in FPGA development and real-time image
processing for applications in UAVs working closely with the industry. He is administrator of
www.quantiki.org , a portal for the quantum information community. He is a user and
strong supporter of free software. He likes hard science-fiction literature, live-action role-
playing, and French rock music.

Kenneth Geisshirt is a chemist by education and a geek by nature. He has been
programming for more than 25 years—the last 6 years as a subcontractor. In 1990, Kenneth
first met free software, and in 1992 turned to Linux as his primary operating system (officially
Linux user no. 573 at the Linux Counter). He has written books about Linux, PAM, and
JavaScript—and many articles on open source software for computer magazines. Moreover,
Kenneth has been a technical reviewer of books on Linux network administration, the Vim
editor, and JavaScript testing.

Jordi Gutiérrez Hermoso studied mathematics in Canada and Mexico, both pure and
applied respectively. He has been programming since the age of seven, when he started
to learn about computers while writing silly programs in BASIC. He has been a Debian user
since 2001, his first and still preferred GNU/Linux distribution, to which he now occasionally
contributes with GNU Octave packaging. Since 2005, he has been an enthusiastic Octave user
and started getting more involved with its development in 2010. As of 2011, he resides in
Mexico and works in BlueMessaging, where he's responsible for natural language processing
and artificial intelligence. An Emacs user at heart, Jordi feels at home in a GNU environment
and will gladly share .emacs configurations with anyone who asks.

I would like to thank my close friends and family for helping me get through
difficult times and for celebrating the good ones with me. John W. Eaton,
Octave's creator, deserves much recognition for starting and leading the
project on which this book is based.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
� Fully searchable across every book published by Packt

� Copy and paste, print, and bookmark content

� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1

Chapter 1: Introducing GNU Octave 7
So what is GNU Octave? 7

Applications 9
Limitations of Octave 9
Octave and MATLAB 10
The Octave community 10

Installing Octave 11
Windows 11
GNU/Linux 12

Building Octave from the source under GNU/Linux 14

Time for action – building Octave from source 14
Checking your installation with peaks 15
Time for action – testing with peaks 15
Customizing Octave 17
Time for action – creating an Octave home directory under Windows 18

Creating your first .octaverc file 19
Time for action – editing the .octaverc file 19

More on .octaverc 20
Installing additional packages 21
Time for action – installing additional packages 21

Uninstalling a package 23
Getting help 23
The behaviour of the Octave command prompt 24
Summary 24

Chapter 2: Interacting with Octave: Variables and Operators 25
Simple numerical variables 26

Accessing and changing array elements 28
More examples 29

Table of Contents

[ii]

Time for action – manipulating arrays 30
Complex variables 31
Text variables 32
Higher-dimensional arrays 34

Structures and cell arrays 35
Structures 35

Time for action – instantiating a structure 36
Accessing structure fields 37
Cell arrays 39

Time for action – instantiating a cell array 39
Getting information 41
Time for action – using whos 41

Size, rows, columns, and length 42
Identifying the variable type 43
Deleting variables from the workspace 44

A few things that make life easier 45
Basic arithmetic 47

Addition and subtraction 47
Time for action – doing addition and subtraction operations 47

Matrix multiplication 49
Time for action – doing multiplication operations 49

Element-by-element, power, and transpose operations 50
Operators for structures and cell arrays 52
Solving linear equation systems: left and right division 52

Time for action – doing left and right division 53
Basic arithmetic for complex variables 55
Summary of arithmetic operators 57

Comparison operators and precedence rules 58
Precedence rules 60

Time for action – working with precedence rules 60
A few hints 61
Summary 63

Chapter 3: Working with Octave: Functions and Plotting 65
Octave functions 65

Mathematical functions 66
Time for action – using the cos function 66

Polynomials in Octave 68
More complicated mathematical functions 69

Time for action – putting together mathematical functions 70
Helper functions 71

Generating random numbers 72
min and max 72

Table of Contents

[iii]

Sorting arrays 73
find, any, and all 74
floor, ceil, round, and fix 75

Time for action – trying out floor, ceil, round, and fix 75
sum and prod 76
Absolute values 77
Complex input arguments 77

Operator functions 78
Linear algebra 78

Time for action – using Octave for advanced linear algebra 78
Polynomials 80

Two-dimensional plotting 82
Time for action – making your first plot 83

plot and set 83

Time for action – changing the figure properties 84
Adding lines and text to your plot 86
Plot styles and colors 86
Title and legends 87
Ticks 87
Grids 88
fplot 88
Clear the figure window 89

Moving on 89
Time for action – having multiple graphs in the same figure 89

Multiple figure windows 90
Subplots 91

Time for action – making an inset 92
Saving your plot 94

Three-dimensional plotting 96
Surface plot 96

Time for action – making a surface plot 96
view and colormap 98
Contour plots 99
Three-dimensional parametric plots 99

Time for action – plotting parametric curves 100
Summary 101

Chapter 4: Rationalizing: Octave Scripts 103
Writing and executing your first script 104
Time for action – making your first script 104

Improving your script: input and disp 105
Time for action – interacting with the user 106

Flush please 107
Comments 107
Very long commands 108
Workspace 109
For GNU/Linux and MacOS X users 110

Table of Contents

[iv]

Statements 111
Prime numbers 111
Decision making – the if statement 112
Interlude: Boolean operators 113

Element-wise Boolean operators 113
Short-circuit Boolean operators 115
Using Boolean operators with an if statement 115
Nested statements 116

The switch statement 116
Loops 117

The for statement 117
The while and do statements 118
Nested loops 120

Putting it all together 121
Exception handling 124

Added flexibility – C style input and output functions 127
printf 128

Saving your work 130
Loading your work 131

Functional forms 132
Summary 133

Chapter 5: Extensions: Write Your Own Octave Functions 135
Your first Octave function 135
Time for action – programming the minmax function 136

Scripts versus functions 138
Defining functions at the command prompt 138
Writing a function help text 139
Checking the function call 140

The usage, warning, and error functions 141
nargin and nargout 142

Writing and applying user-supplied functions 145
Using fsolve 147

Providing the Jacobian 148

Using lsode – dynamical analysis of the Sel'kov model 149
Time for action – using lsode for numerical integration 150

Inline functions 151
More advanced function programming: Monte Carlo
integration 152

The feval function 155
Validating the user-supplied function 155
Using quad and trapz for numerical integration 159
Vectorized programming 159

Table of Contents

[v]

Time for action – vectorizing the Monte Carlo integrator 160
Simple debugging 161
Multiple function file 164

Summary 167

Chapter 6: Making Your Own Package: A Poisson Equation Solver 169
The Poisson equation – two examples of heat conduction 170

One-dimensional heat conduction 170
Two-dimensional heat conduction 172
The Poisson equation 173
The Dirichlet boundary condition 173

Finite differencing 174
From finite difference to a linear equation system 175
Interlude: Sparse matrices 177

Time for action – instantiating a sparse matrix 177
Memory usage 179

Implementation and package functions 179
The coefficient matrix for one dimension 180
The coefficient matrix for two dimensions 181

The conversion function 182

Testing the functions 183
The coefficient matrices 183

Time for action – using imagesc 184
Comparison with analytical solution 185

Time for action – comparing with analytical solution 185
Two dimensions 186

Time for action – solving a two-dimensional Laplace equation 187
More examples 188
Wrapping everything into one function 189

The pois-solv package 193
Organizing files into the package directory 193

The DESCRIPTION file 194
The COPYING file 194
The INDEX file 195

Building the package 195
Limitations and possible extensions to the package 196

Summary 197

Chapter 7: More Examples: Data Analysis 199
Loading data files 199
Simple descriptive statistics 201

Histogram and moments 202
Sample moments 204

Table of Contents

[vi]

Comparing data sets 204
The correlation coefficient 205
The student t-test 206

Function fitting 207
Polynomial fitting 207

Time for action – using polyfit 208
Goodness of the fit 210

Time for action – calculating the correlation coefficient 210
Residual plot 211

Non-polynomial fits 211
Transforms 211
General least squares fitting 212

Time for action – using leasqr 213
Fourier analysis 215

The Fourier transform 215
Time for action – using the fft function 216

Fourier analysis of currency exchange rate 219

Time for action – analysing the exchange rate 219
Inverse Fourier transform and data smoothing 221

The Butterworth filter 222

Time for action – applying a low pass filter 223
Summary 224

Chapter 8: Need for Speed: Optimization and Dynamically Linked Functions 225
A few optimization techniques 226

tic, toc 227
Time for action – using tic and toc 227

Vectorization 228
Initialization of variables 228
Looping row-wise versus looping column-wise 229

Dynamically linked functions 229
The DEFUN_DLD function macro 230

Time for action – writing a "Hello World" program 230
Managing input arguments and outputs 231

Time for action – checking user inputs and outputs 232
Retrieving the inputs 234
Class types 236

Functions as input argument 237
Optimization with oct-files 240

Time for action – revisiting the Sel'kov model 241
Summary 244

Table of Contents

[vii]

Pop Quiz Answers 245
Chapter 2: Interacting with Octave: Variables and Operators 245

Working with arrays 245
Understanding arrays 245
Understanding simple operations 246
Understanding precedence rules 246

Chapter 3: Working with Octave: Functions and Plotting 246
Using simple mathematical functions 246
Understanding the plotting options 246

Chapter 4: Rationalizing: Octave Scripts 246
Understanding disp and input 246
Understanding statements and Boolean operators 247
Printing with printf 247

Chapter 5: Extensions: Write Your Own Octave Functions 247
Understanding functions 247
Implementing mathematical functions as Octave functions 248
Understanding vectorization 248

Chapter 6: Making Your Own Package: A Poisson Equation Solver 248
Identifying the Poisson equation 248

Index 249

Preface
Using a range of very different examples, this beginner's guide will take you through the
most important aspects of GNU Octave. The book starts by introducing how you work with
mathematical objects like vectors and matrices, demonstrating how to perform simple
arithmetic operations on these objects and explaining how to use some of the simple
functionality that comes with GNU Octave, including plotting. It then goes on to show you
how to extend and implement new functionality into GNU Octave, how to make a toolbox
package to solve your specific problem, and how to use GNU Octave for complicated data
analysis. Finally, it demonstrates how to optimize your code and link GNU Octave with C++
code enabling you to solve even the most computational demanding tasks. After reading
GNU Octave Beginner's Guide, you will be able to use and tailor GNU Octave to solve most
numerical problems and perform complicated data analysis with ease.

What this book covers
Chapter 1, Introducing GNU Octave briefly introduces you to GNU Octave. It explains how
you can install GNU Octave and test your installation. This first chapter also discusses how
to customize the appearance and the behavior of GNU Octave as well as how you install
additional packages.

Chapter 2, Interacting with Octave: Variables and Operators shows you how to interact with
GNU Octave through the interactive environment. Learn to instantiate objects of different
types, control their values, and perform simple operations on and between them.

Chapter 3, Working with Octave: Functions and Plotting explains GNU Octave functions and
shows several examples of the very useful functionalities that come with GNU Octave. In this
chapter, you will see how you can perform two- and three-dimensional plotting, control the
graph appearance, how to have multiple plots in the same figure window, and much more.

Chapter 4, Rationalizing: Octave Scripts looks at how you can rationalize your work using
scripts. It will teach you how to control the programming flow in your script and how to
perform loops using different statements. At the end of the chapter, you are shown how you
can save your work and load it back into GNU Octave's workspace.

Preface

[2]

Chapter 5, Extensions: Write Your Own Octave Functions takes a closer look at functions and
teaches how you can write your own GNU Octave functions. You will learn how to control
and validate user input to the function. The important concept of vectorization is discussed
and an example of this is given in the last part of the chapter.

Chapter 6, Making Your Own Package: A Poisson Equation Solver teaches you how to make
your own GNU Octave package from a collection of related functions. The package will be
able to solve one- and two-dimensional Poisson equations and is therefore relevant for many
problems encountered in science and engineering. In this chapter, you will also learn how to
work with sparse matrices in GNU Octave.

Chapter 7, More Examples: Data Analysis shows you examples of how GNU Octave can be
used for data analysis. These examples range from simple statistics, through data fitting, to
Fourier analysis and data smoothing.

Chapter 8, Need for Speed: Optimization and Dynamically Linked Functions discusses how
you can optimize your code. This includes vectorization, partial looping, pre-instantiation of
variables, and dynamically linked functions. The main part of the chapter shows how to use
GNU Octave's C++ library and how to link this to the GNU Octave interactive environment.
Special attention is paid to explaining when and when not to consider using dynamically
linked functions.

What you need for this book
If you use Windows, you basically only need to have a full version of GNU Octave installed on
your computer. For GNU/Linux, you may need a plotting program like gnuplot, a Fortran and
C/C++ compiler like gcc, and the GNU make utility; fortunately these are standard packages
on almost all GNU/Linux distributions. In Chapter 1, it will be shown how you install GNU
Octave under Windows and GNU/Linux.

Who this book is for
This book is intended for anyone interested in scientific computing and data analysis. The
reader should have a good knowledge of mathematics and also a basic understanding of
programming will be useful, although it is not a prerequisite.

Preface

[3]

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you have
learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "For example, the inverse of sine is called asin and
the inverse hyperbolic of sine is asinh."

A block of code is set as follows:

flush the output stream
fflush(stdout);

Get the number of rows and columns from the user
nr = input("Enter the number of rows in the matrix: ");
nc = input("Enter the number of columns in the matrix: ");

Preface

[4]

Any command-line input or output is written as follows:

octave:35> projectile = struct("mass", 10.1, "velocity", [1 0 0],
"type", "Cannonball");

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Now go to the Octave-Forge
web page, find the msh package, and click on Details (to the right of the package name)."

Specific commands entered in Octave are referred to using the relevant command numbers:

octave:5 > A = [1 2 3; 4 5 6]

A =

 1 2 3

 4 5 6

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we
would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/support, selecting your book, clicking
on the errata submission form link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata will be uploaded on our website,
or added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Introducing GNU Octave

This chapter will introduce you to GNU Octave. We shall briefly discuss what
GNU Octave is, its strengths and its weaknesses. You will also see GNU Octave
in action; however, before this it must, of course, be installed on your computer,
and we will quickly go through the installation procedure.

More specifically, in this chapter you will:

� Get a quick introduction to GNU Octave.

� Learn how to install GNU Octave on Windows and GNU/Linux.

� Give GNU Octave a few commands to see it in action.

� Customize GNU Octave.

� Install additional packages.

� Learn a few tricks of the trade.

GNU Octave exists for Mac/OS X, Solaris, and OS/2, but we will limit ourselves to go through
the installation procedures for Windows and GNU/Linux. I strongly recommend that you
install the most recent version of GNU Octave (which will be version 3.2.4 or higher). Many
features described in this book are not supported in the version 2-series, especially, as the
plotting facilities improved significantly in recent versions.

So what is GNU Octave?
In brief, GNU Octave is a multi-functional tool for sophisticated numerical analysis. GNU
Octave provides you with:

Introducing GNU Octave

[8]

1. A large set of build-in functionalities to solve many different problems.

2. A complete programming language that enables you to extend GNU Octave.

3. Plotting facilities.

This book will cover these features.

GNU Octave uses an interpreter to compile and execute a sequence of instructions given by
the user at run-time. This is also how, for example, PHP and Python work. This is in contrast to
pre-compiled programming languages such as C where the program is first compiled and then
executed manually. Just like Python, you can give GNU Octave instructions in a prompt-like
environment. We shall see many examples of this later. The following image shows a screenshot
of GNU Octave in action—do not worry about what the plots are, for the time being.

GNU Octave is named after the chemist Octave Levenspiel and has nothing to do with music
and harmonic waves. The project was started by James B. Rawlings and John G. Ekerdt, but
it has mainly been developed by John W. Eaton, who has put a lot of effort into the project.
GNU Octave is an official GNU project (hence, the GNU prefix), and the source code is
released under the GNU General Public License (GPL).

Chapter 1

[9]

In simple terms, this means that you are allowed to use the software for any purpose, copy,
and distribute it, and make any changes you want to it. You may then release this new
software under GPL. If you use GNU Octave's own programming language to extend the
functionality, you are free to choose another license. I recommend you to have a look at the
license agreement that comes with GNU Octave at http://www.gnu.org/software/
octave/license.html.

In the remainder of the book, GNU Octave will simply be referred to as Octave for
convenience. However, if you wish to sound like an Octave guru, use the "GNU" prefix!

Applications
As mentioned previously, Octave can be used to solve many different scientific problems.
For example, a Copenhagen-based commercial software and consulting company specializes
in optimization problems, especially for packing containers on large cargo ships. This can
be formulated in terms of linear programming which involves solving large linear equation
systems and to this end, the company uses Octave. Pittsburgh supercomputing center also
used Octave to study social security number vulnerability. Here Octave ran on a massive
parallel computer named Pople with 768 cores and 1.5 TB memory and enabled researches
to carry out sophisticated analysis of different strategies before trying out new ones.

In the research community, Octave is used for data analysis, image processing, econometrics,
advanced statistical analysis, and much more. We shall see quite a few examples of this
throughout the book.

Limitations of Octave
Octave is mainly designed to perform numerical computations and is not meant to be
a general purpose programming language such as C or C++. As it is always the case, you
should choose your programming language depending on the problem you wish to solve.
Nevertheless, Octave has a lot of functionality that can help you with, for example, reading
from and writing to files, and you can even use a package named sockets for accessing a
network directly.

The fact that Octave uses an interpreter means that Octave first has to convert the
instructions into machine readable code before executing it. This has its advantages as
well as drawbacks. The main advantage is that the instructions are easy to implement
and change, without having to go through the edit, compile, and run phase and gives the
programmer or user a very high degree of control. The major drawback is that the program
executes relatively slowly compared to pre-compiled programs written in languages such
as C or Fortran. Octave is therefore perhaps not the first choice if you want to do extremely
large scale parallelized computations, such as state-of-art weather forecasting.

Introducing GNU Octave

[10]

However, as you will experience later in the book, Octave will enable you solve very
advanced and computationally demanding problems with only a few instructions or
commands and with satisfactory speed. The last chapter of this book teaches you some
optimization techniques and how you can use C++ together with Octave to speed things up
considerably in some situations.

Octave is not designed to do analytical (or symbolic) mathematics. For example, it is not
the best choice if you wish to find the derivative of a function, say f (x) = x2. Here software
packages such as Maxima and Sage can be very helpful. It should be mentioned that there
exists a package (a package is also referred to as a toolbox) for Octave which can do some
basic analytical mathematics.

Octave and MATLAB
It is in place to mention MATLAB. Often Octave is referred to as a MATLAB-clone (MATLAB
is a product from MathWorksTM). In my opinion, this is wrong! Rather, Octave seeks to be
compatible with MATLAB. However, be aware, in some cases you cannot simply execute your
Octave programs with MATLAB and vice-versa. Throughout the book, it will be pointed out
where compatibility problems can occur, but we shall stick with Octave and make no special
effort to be compatible with MATLAB.

The Octave community
The newest version of Octave can be found on the web page http://www.octave.org.
Here you will also find the official manual, a Wiki page with tricks and tips, latest news, a
bit of history, and other exciting stuff. From this web page, you can join Octave's mailing
lists (the help-list is especially relevant), which only require a valid email address. The user
community is very active and helpful, and even the developers will answer "simple" user
questions. You can also learn quite a lot from browsing through the older thread archives.

There also exists an Usenet discussion group http://groups.google.com/group/
comp.soft-sys.octave/topics?lnk. Unfortunately, this group seems quite inactive, so
it could take a while for help to arrive.

There exist a very large number of additional packages that do not come with the standard
Octave distribution. Many of these can be downloaded from the Octave-Forge
http://octave.sourceforge.net. Here you will find specially designed packages for
imaging processing, econometrics, information theory, analytical mathematics, and so on.
After reading this book and solving the problems at the end of each chapter, you will be able
to write your own Octave package. You can then share your work with others, and the entire
Octave community can benefit from your efforts. Someone might even extend and improve
what you started!

http://groups.google.com/group/comp.soft-sys.octave/topics?lnk
http://groups.google.com/group/comp.soft-sys.octave/topics?lnk

Chapter 1

[11]

Installing Octave
Octave is primarily designed to run under GNU/Linux. However, you can also run Octave
under Windows with only a few glitches here and there. The installation procedure, runs
very smoothly under Windows. Let us start with this.

Windows
Installing Octave on Windows is straightforward. The steps are as follows:

1. Go to the Octave-Forge web site. Here there is a hyper link to a Windows installer.
Download this installer onto your desktop or any other destination you may prefer.

2. Double-click on the installer icon.

3. You will see a greeting window. Click on the Next button.

4. The next window shows you the license agreement, which I recommend that you
read. Click the Next button.

5. Now, you will have the opportunity to choose where Octave will be installed. The
default path is usually fine. When you are happy with the installation path, click on
Next.

6. The following window asks you to choose between different versions of the FFTW3
and ATLAS numerical libraries that Octave uses for Fourier transforms and linear
algebra computations. These different versions are specially designed for different
CPU architectures. You can also choose any additional packages you want to install, as
shown in the following screenshot. Let us not worry about the details of the FFTW3
and ATLAS libraries at the moment, and just choose the generic versions for now.

7. Choose to install all additional packages by ticking the Octave-Forge box. Click on
Next and Octave will get installed.

8. After the installation, you can change the menu folder if you wish. If you want, you
can also check the README file, and if not, simply uncheck the box to the left of
where you are asked whether you want to see the README file. Click Next, and you
are done!

This installation guide has been tested on 32-bit Windows 2000, Windows XP,
and Windows 7.

Introducing GNU Octave

[12]

Notice that Octave's interactive environment (the Octave prompt) may be launched when
the installer exits. To close this, simply type:

octave:1> exit

or press the Ctrl key and the D key at the same time. We shall write this combination as Ctrl
+ D. By the way, Ctrl + D is a UNIX end-of-file indicator and is often used as a shortcut for
quitting programs in UNIX-type systems like GNU/Linux.

Alternatively, you can run Octave under Windows through Cygwin, which is similar to the
GNU/Linux environment in Windows. I will not go through the installation of Cygwin here,
but you may simply refer to the Cygwin web page http://www.cygwin.com.

If you install Octave version 3.2.4 under Windows, I strongly recommend that
you leave out the oct2mat package. This package may prevent the plotting
window to update properly. For instance, when you plot a graph, it will not
appear in the plotting window. This is not an issue under GNU/Linux.

GNU/Linux
On many GNU/Linux distributions, Octave is a part of the standard software. Therefore,
before installing Octave, check if it already exists on your computer. To do so, open a
terminal, and type the following in the terminal shell:

$ octave

http://www.cygwin.com/

Chapter 1

[13]

If Octave is installed (properly), you should now see Octave's command prompt. Now just
exit by typing the following:

octave:1> exit

Alternatively, you may use CTRL + D, that is, press the control key and the D key at the
same time.

If Octave is not installed, you can often use the distribution's package management system.
For example, for Ubuntu, you can use the Synaptic Package Manager, which is a graphical
tool to install and remove software on the computer. Please refer the following screenshot.
In case of Fedora and CentOS, you can use YUM.

Make sure that your package manager also installs a
plotting program with Octave, for example, gnuplot.

Introducing GNU Octave

[14]

Building Octave from the source under GNU/Linux
If you wish, you can also build Octave directly from the source code. However, I only
recommend this if Octave is not available through the system's package manager. In order to
build Octave from source, you will need (at least) the following:

� The GNU make utility

� Fortran and C/C++ compilers (GNU Compiler Collection (known as GCC) version 4.1
or later suffice)

� gnuplot (to be on the safe side)

Fortunately, these software packages usually come with most GNU/Linux distributions. If
not, you should be able use the package manager to install them.

Time for action – building Octave from source
Perform the following actions step-by-step:

1. Download the latest stable release of Octave from http://www.gnu.org/
software/octave/download.htm and save it to any directory. The file will be a
compressed and archived file with extension .tar.gz.

2. Open a terminal and enter the directory where the source was downloaded. To
unpack the file, type the following:

$ tar zxf octave-version.tar.gz

3. Here version will be the version number. This command will create a directory
named octave-version.

4. To enter that directory type the following:

$ cd octave-version

5. We can now configure the building and compiling processes by typing the following:

$./configure

6. If the configuration process is successful, then we can compile the Octave source
with the following command(this will take a while):

$ make

7. Before doing the actual installation, you should test whether the build was done
properly. To do so, type the following:

$ make check

8. Some of the tests may fail. However, this does not mean that the build was
unsuccessful. The test is not mandatory.

Chapter 1

[15]

9. To install Octave on the computer, you need to have root privileges. For example,
you can use the following:

$ sudo make install

10. Now type in the root password when prompted. That is it!

What just happened?
As you can see, we just performed the standard UNIX installation procedure: configure,
make, make install. If you do not have root privileges, you cannot install Octave on
the computer. However, you can still launch Octave from the bin/ sub-directory in the
installation directory.

Again, the preceding installation will only install Octave and not the plotting program. You
will need to have this installed separately for Octave to work properly.

I recommend that you have Emacs installed under GNU/Linux, because Octave
uses this as the default editor. You will learn how to change the default editor later.

Checking your installation with peaks
It is time to take Octave for a spin! There are different ways to start Octave's interpreter.
One way is to execute an Octave script, and another way is to enter Octave's interactive
environment, which is what we will do here.

Time for action – testing with peaks
1. You can enter the interactive environment by typing octave in your shell under

GNU/Linux, or by double-clicking the Octave icon in Windows. You should now see
the Octave prompt:

octave:1>

2. You have already learned how to exit the interactive environment. Simply give
Octave the command exit or press Ctrl + D, but we do not want to exit just yet!

3. At the prompt, type as follows:

octave:1> surf(peaks)

Introducing GNU Octave

[16]

4. You should now see a three-dimensional surface plot as depicted on the left-hand
side figure shown next. If not, your installation has not been successful. Now, put
your mouse pointer over the figure window, hold the left mouse button down, and
move the pointer. If the plotting program supports it, the figure should now rotate
in the direction you move the pointer. If you click on the figure window using mouse
button three (or the scroll wheel) you can zoom by moving the pointer side to side
or up and down.

5. Let us try a contour plot. Type as follows:

octave:2> contourf(peaks)

6. Does it look like the following figure on the right? If not, it can be because you are
using Octave version 3.2.4 and have the package oct2mat loaded. Try typing

octave:3> pkg unload oct2mat

7. Now retype the previous command.

8. Click somewhere on the window of the right-hand side figure with button three. A
cross and two numbers appear in the window if you are using gnuplot with Octave.
The cross is just the point where you clicked. The two numbers show the x axis and y
axis values.

Octave can use different plotting program, for example, gnuplot or its own native
plotting program. Therefore, your figures may look a bit different, depending on
that program.

What just happened?
The figure to the left shows a graph of a mathematical function, which is a scalar function of
two variables y and x given by:

Chapter 1

[17]

(1.1)

The function value (range) is evaluated in Octave by the command peaks, which is the
nick name for the function f. The graph is then plotted using the Octave function surf. As a
default, Octave calculates the range of f using 50 x and y values in the interval [–3; 3]. As you
might have guessed already, the contourf Octave function plots the contours of f. Later we
will learn how to label the axis, add text to the figures, and much more.

Did you notice the phrase "Octave function" previously? An Octave function is not
necessarily a mathematical function as Equation (1.1), but can perform many different types
of operations and have many different functionalities. Do not worry about this for now. We
will discuss Octave functions later in the book.

Notice that the interpreter keeps track of the number of commands that have been entered
and shows this at the prompt.

Customizing Octave
When the Octave interpreter starts, it reads several configuration files. These files can be
changed in order to add system paths, the appearance of the Octave command prompt, how
the editor behaves, and much more. The changes can be global and affect all users of Octave
that run on a particular computer. They can be targeted to work with a specific version of
Octave, a specific project, or a user. This is especially useful on multi-user platforms, such as
GNU/Linux.

The configuration files are named either octaverc or .octaverc, depending on where
they are located and how the configurations affect Octave. They basically consist of a
sequence of Octave commands, so you can also give the same commands to the interpreter
from the Octave prompt. This can be a good way to test new configurations before
implementing them in your octaverc or .octaverc files.

The names octaverc and .octaverc are, of course, not supported by MATLAB. However,
most commands are. It is therefore just a matter of copying the content of the octave
configuration files into MATLAB's startup.m file.

Under Windows, the user does not have a home directory equivalent to the home directory
under GNU/Linux. I therefore recommend that you create a home directory for Octave. You
can then command Octave to go to this directory and look for your configuration file here,
whenever you start the interpreter.

If you are using GNU/Linux you can skip the following "Time for action" section.

Introducing GNU Octave

[18]

Time for action – creating an Octave home directory
under Windows

Let us assume that the Octave home directory is going to be C:\Documents and
Settings\GNU Octave\. We can actually create this directory directly from Octave; so let
us go ahead.

1. Start Octave and give it the following commands:

octave:1> cd C:

octave:2> cd "Documents and Settings"

octave:3> mkdir "GNU Octave"

ans = 1

2. The response ans = 1 after the last command means that the directory was
successfully created. If Octave returns a zero value, then some error occurred, and
Octave will also print an error message. Instead of creating the directory through
Octave, you can use, for example, Windows Explorer.

3. We still need to tell the interpreter that this is now the Octave home directory. Let
us do this from Octave as well:

octave:4> edit

4. You should now see an editor popping up. The default editor under Windows is
Notepad++. Open the file c:\octave-home\share\octave\site\m\startup\
octaverc, where octave-home is the path where Octave was installed, for
example, Octave\3.2.4_gcc-4.4.0. Add the following lines at the end of the file.

setenv('HOME', 'C:\Document and Settings\GNU Octave\');
cd ~/

Be sure that no typos sneaked in!

5. Save the file, exit the editor, and restart Octave. That is it.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Chapter 1

[19]

What just happened?
The first three Octave commands should be clear: we changed the directory to C:\
Documents and Settings\ and created the directory GNU Octave. After this, we
opened the global configuration file and added two commands. The next time Octave starts
it will then execute these commands. The first instructed the interpreter to set the home
directory to C:\Document and Settings\GNU Octave\, and the second made it enter
that directory.

Creating your first .octaverc file
Having created the Octave home directory under Windows, we can customize Octave under
GNU/Linux and Windows the same way.

Time for action – editing the .octaverc file
1. Start Octave if you have not already done so, and open the default editor:

octave:1> edit

2. Copy the following lines into the file and save the file as .octaverc under the
Octave home directory if you use Windows, or under the user home directory if you
use GNU/Linux. (Without the line numbers, of course.) Alternatively, just use your
favorite editor to create the file.

PS1 (">> ");
edit mode "async"

Exit the editor and restart Octave. Did the appearance of the Octave prompt
change? It should look like this

>>

Instead of restarting Octave every time you make changes to your setup files,
you can type, for example, octave:1> source(".octaverc"). This will
read the commands in the .octaverc file.

What just happened?
PS1(">> ") sets the primary prompt string in Octave to the string given. You can set it to
anything you may like. To extend the preceding example given previously, PS1("\\#>> ")
will keep the command counter before the >> string. You can test which prompt string is
your favorite directly from the command prompt, that is, without editing .octaverc. Try,
for example, to use \\d and Hello give a command, \\u. In this book, we will stick
with the default prompt string, which is \\s:\\#>.

Introducing GNU Octave

[20]

The command edit mode "async" will ensure that when the edit command is given,
you can use the Octave prompt without having to close the editor first. This is not default in
GNU/Linux.

Finally, note that under Windows, the behavior will be global because we instructed Octave
to look for this particular .octaverc file every time Octave is started. Under GNU/Linux,
the .octaverc is saved in the user's home directory and will therefore only affect that
particular user.

More on .octaverc
The default editor can be set in .octaverc. This can be done by adding the following line
into your .octaverc file

edit editor name of the editor

where name of the editor is the editor. You may prefer a notepad if you use Windows,
or gedit in GNU/Linux. Again, before adding this change to your .octaverc file, you should
test whether it works directly from the Octave prompt.

Later in the book, we will write script and function files. Octave will have to be instructed
where to look for these files in order to read them. Octave uses a path hierarchy when
searching for files, and it is important to learn how to instruct Octave to look for the files
in certain directories. I recommend that you create a new directory in your home directory
(Octave home directory in Windows) named octave. You can then place your Octave files in
this directory and let the interpreter search for them here.

Let us first create the directory. It is easiest simply to enter Octave and type the following:

octave1:> cd ~/

octave2:> mkdir octave

It should be clear what these commands do. Now type this:

octave3:> edit .octaverc

Add the following line into the .octaverc file:

addpath("~/octave");

Save the file, exit the editor, and restart Octave, or use source(".octaverc"). At the
Octave prompt, type the following:

octave1:> path

Chapter 1

[21]

You should now see that the path ~/octave/ is added to the search path. Under Windows,
this path will be added for all users. The path list can be long, so you may need to scroll
down (using the arrow key) to see the whole list. When you reach the end of the list, you can
hit the Q key to return to Octave's command prompt.

Installing additional packages
As mentioned earlier, there exists a large number of additional packages for Octave, many
of which can be downloaded from the Octave-Forge web page. Octave has a superb way
of installing, removing, and building these packages. Let us try to install the msh package,
which is used to create meshes for partial differential solvers.

Time for action – installing additional packages
1. Before installing a new package, you should check which packages exist already and

what their version numbers are. Start Octave, if you have not done so. Type the
following:

octave:1> pkg list

2. You should now see a table with package names, version numbers, and installation
directories. For example:

Package Name | Version | Installation directory
--------------------+-----------+------------------------------------
combinatorics | 1.0.6 | /octave/packages/combinatorics-1.0.6

3. If you have chosen to install all packages in your Windows installation, the list is
long. Scroll down and see if the msh package is installed already, and if so, what the
version number is. Again, you can press the Q key to return to the prompt.

4. Now go to the Octave-Forge web page, find the msh package, and click on Details
(to the right of the package name). You will now see a window with the package
description, as shown in the following figure. Is the package version number higher
than the one already installed? (If not, sit back, relax, and read the following just for
the fun of it.) The package description also shows that the msh package dependents
on the spline package and Octave version higher than 3.0.0. Naturally, you need
Octave. However, the spline package may not be installed on your system. Did you
see the spline package when you typed pkg list previously? If not, we will need
to install this before installing msh. Go back to the main package list and download
the msh and the spline packages to your Octave home directory. (By the way, does
the spline package have any dependencies?) The downloaded files will be archived
and compressed and have extensions .tar.gz. To install the packages, make sure
you are in your Octave home directory and type the following:
octave:2> pkg install splines-version-number.tar.gz

Introducing GNU Octave

[22]

(If you need it.)

octave:3> pkg install msh-version-number.tar.gz

5. Make sure that you have downloaded the package files into the Octave home
directory.

6. To check your new package list, type the following:

octave:4> pkg list

Package Name | Version | Installation directory
---------------------+------------+-----------------------------
combinatorics | 1.0.6 | /octave/packages/combinatorics-1.0.6
msh | 1.0.1 | /home/jesper/octave/msh-1.0.1
splines * | 1.0.7 | /home/jesper/octave/splines-1.0.7

7. You can get a description of the msh package by typing the following:

octave5:> pkg describe msh

Package name:

msh

Short description:

 Create and manage triangular and tetrahedral meshes for Finite

 Element or Finite Volume PDE solvers. Use a mesh data structure

 compatible with PDEtool. Rely on gmsh for unstructured mesh

 generation.

Status:

Not loaded

Chapter 1

[23]

8. From the status, you can see that the package has not been loaded, which means
we cannot use the functionality that comes with the package. To load it, simply type
the following:

octave:6> pkg load msh

9. You should check that it actually has been loaded using pkg describe msh.
Naturally, you can also unload the msh package by using the following command:

octave:7> pkg unload msh

If you are using a multi-user system, consult your system administrator before
you install your own local packages.

What just happened?
The important points have already been explained in detail. Note that you need to install
splines before msh because of the dependencies.

You may find it a bit strange that you must first load the package into Octave in order to use
it. The package can load automatically if you install it with the –auto option. For example,
command 3 can be replaced with the following:

octave:3> pkg install –auto msh-version-number.tar.gz

Some packages will automatically load even though you do not explicitly instruct it to do so
when you install it. You can force packages not to load using –noauto.

octave:3> pkg install –noauto msh-version-number.tar.gz

Uninstalling a package
Unistalling a package is just as easy:

octave:8> pkg uninstall msh

Note that you will get an error message if you try to uninstall splines before msh because
msh depends on splines.

Getting help
The pkg command is very flexible and can be called with a number of options. You can see
all these options by typing the following:

octave:9> help pkg

Introducing GNU Octave

[24]

The help documentation is rather long for pkg. You can scroll up and down in the text using
the arrow keys or the F and B keys. You can quit the help anytime by pressing the Q key. The
previous example illustrates the help text for pkg. Help is also available for other Octave
commands. You may try, for example, help PS1.

The behaviour of the Octave command prompt
Often you will use the same commands in an Octave session. Sometimes, you may have
forgotten a certain command's name or you only remember the first few letters of the
command name. Octave can help you with this. For example, you can see your previous
commands by using the up and down arrow keys (Try it out!). Octave even saves your
commands from previous sessions.

For example, if you wish to change the appearance of your primary prompt string, then type
the following:

octave:10> PS <up arrow key>

Now only the previous commands starting with PS show up. Instead of using the arrow key,
try to hit the tabulator key twice:

octave:11> PS

(Now press TAB key twice)

PS1 PS2 PS4

This shows all commands (and functions) available having PS prefixed.

Summary
In this chapter, you have learned the following:

� About Octave, it's strengths, and weaknesses.

� How to install Octave on Windows and GNU/Linux.

� To test your installation with peaks.

� How to use and change the default editor.

� To customized Octave. For example, we saw how to change the prompt appearance
and how to add search paths.

� To use the pkg command to install and remove additional packages.

� About the help utility.

We are now ready to move on and learn the basics about Octave's data types and operators.

2
Interacting with Octave: Variables

and Operators

Octave is specifically designed to work with vectors and matrices. In this
chapter, you will learn how to instantiate such objects (or variables), how to
compare them, and how to perform simple arithmetic with them. Octave also
supports more advanced variable types, namely, structures and cell arrays,
which we will learn about. With Octave, you have an arsenal of functionalities
that enable you to retrieve information about the variables. These tools
are important to know later in the book, and we will go through the most
important ones.

In detail, we will learn how to:

� Instantiate simple numerical variables i.e. scalars, vectors, and matrices.

� Instantiate text string variables.

� Instantiate complex variables.

� Retrieve variable elements through simple vectorized expressions.

� Instantiate structures, cell arrays, and multidimensional arrays.

� Get information about the variables.

� Add and subtract numerical variables.

� Perform matrix products.

� Solve systems of linear equations.

� Compare variables.

Let us dive in without further ado!

Interacting with Octave: Variables and Operators

[26]

Simple numerical variables
In the following, we shall see how to instantiate simple variables. By simple variables, we
mean scalars, vectors, and matrices. First, a scalar variable with name a is assigned the value
1 by the command:

octave:1> a=1

a = 1

That is, you write the variable name, in this case a, and then you assign a value to the
variable using the equal sign. Note that in Octave, variables are not instantiated with a type
specifier as it is known from C and other lower-level languages. Octave interprets a number
as a real number unless you explicitly tell it otherwise1.

You can display the value of a variable simply by typing the variable name:

octave:2>a

a = 1

Let us move on and instantiate an array of numbers:

octave:3 > b = [1 2 3]

b =

 1 2 3

Octave interprets this as the row vector:

 (2.1)

rather than a simple one-dimensional array. The elements (or the entries) in a row vector can
also be separated by commas, so the command above could have been:

octave:3> b = [1, 2, 3]

b =

 1 2 3

To instantiate a column vector:

1In Octave, a real number is a double-precision, floating-point number,which means that the number is
accurate within the first 15 digits. Single precision is accurate within the first 6 digits.

Chapter 2

[27]

(2.2)

you can use:

octave:4 > c = [1;2;3]

c =

 1

 2

 3

Notice how each row is separated by a semicolon.

We now move on and instantiate a matrix with two rows and three columns (a 2 x 3 matrix):

(2.3)

using the following command:

octave:5 > A = [1 2 3; 4 5 6]

A =

 1 2 3

 4 5 6

Notice that I use uppercase letters for matrix variables and lowercase letters for scalars and
vectors, but this is, of course, a matter of preference, and Octave has no guidelines in this
respect. It is important to note, however, that in Octave there is a difference between upper
and lowercase letters. If we had used a lowercase a in Command 5 above, Octave would
have overwritten the already existing variable instantiated in Command 1. Whenever you
assign a new value to an existing variable, the old value is no longer accessible, so be very
careful whenever reassigning new values to variables.

Variable names can be composed of characters, underscores, and numbers. A
variable name cannot begin with a number. For example, a_1 is accepted as a
valid variable name, but 1_a is not.

In this book, we shall use the more general term array when referring to a vector or a matrix
variable.

Interacting with Octave: Variables and Operators

[28]

Accessing and changing array elements
To access the second element in the row vector b, we use parenthesis:

octave:6 > b(2)

ans = 2

That is, the array indices start from 1. We saw this ans response in Chapter 1, but it was not
explained. This is an abbreviation for "answer" and is a variable in itself with a value, which is
2 in the above example.

For the matrix variable A, we use, for example:

octave:7> A(2,3)

ans = 6

to access the element in the second row and the third column. You can access entire rows
and columns by using a colon:

octave:8> A(:,2)

ans =

 2

 5

octave:9 > A(1,:)

ans =

 1 2 3

Now that we know how to access the elements in vectors and matrices, we can change the
values of these elements as well. To try to set the element A(2,3)to -10.1:

octave:10 > A(2,3) = -10.1

A =

 1.0000 2.0000 3.0000

 4.0000 5.0000 -10.1000

Since one of the elements in A is now a non-integer number, all elements are shown in
floating point format. The number of displayed digits can change depending on the default
value, but for Octave's interpreter there is no difference—it always uses double precision for
all calculations unless you explicitly tell it not to.

Chapter 2

[29]

You can change the displayed format using format short or format long.
The default is format short.

It is also possible to change the values of all the elements in an entire row by using the colon
operator. For example, to substitute the second row in the matrix A with the vector b (from
Command 3 above), we use:

octave:11 > A(2,:) = b

A =

 1 2 3

 1 2 3

This substitution is valid because the vector b has the same number of elements as the rows
in A. Let us try to mess things up on purpose and replace the second column in A with b:

octave:12 > A(:,2) = b

error: A(I,J,...) = X: dimension mismatch

Here Octave prints an error message telling us that the dimensions do not match because we
wanted to substitute three numbers into an array with just two elements. Furthermore, b is
a row vector, and we cannot replace a column with a row.

Always read the error messages that Octave
prints out. Usually they are very helpful.

There is an exception to the dimension mismatch shown above. You can always replace
elements, entire rows, and columns with a scalar like this:

octave:13> A(:,2) = 42

A =

 1 42 3

 1 42 3

More examples
It is possible to delete elements, entire rows, and columns, extend existing arrays, and much
more.

Interacting with Octave: Variables and Operators

[30]

Time for action – manipulating arrays
1. To delete the second column in A, we use:

octave:14> A(:,2) = []

A =

 1 3

 1 3

2. We can extend an existing array, for example:

octave:15 > b = [b 4 5]

b =

 1 2 3 4 5

3. Finally, try the following commands:

octave:16> d = [2 4 6 8 10 12 14 16 18 20]

d =

 2 4 6 8 10 12 14 16 18 20

octave:17> d(1:2:9)

ans =

 2 6 10 14 18

octave:18> d(3:3:12) = -1

d =

 2 4 -1 8 10 -1 14 16 -1 20 0 -1

What just happened?
In Command 14, Octave interprets [] as an empty column vector and column 2 in A is then
deleted in the command. Instead of deleting a column, we could have deleted a row, for
example as an empty column vector and column 2 in A is then deleted in the command.

octave:14> A(2,:)=[]

On the right-hand side of the equal sign in Command 15, we have constructed a new vector
given by [b 4 5], that is, if we write out b, we get [1 2 3 4 5] since b=[1 2 3].
Because of the equal sign, we assign the variable b to this vector and delete the existing
value of b. Of course, we cannot extend b using b=[b; 4; 5] since this attempts to
augment a column vector onto a row vector.

Chapter 2

[31]

Octave first evaluates the right-hand side of the equal sign
and then assigns that result to the variable on the left-hand
side. The right-hand side is named an expression.

In Command 16, we instantiated a row vector d, and in Command 17, we accessed the
elements with indices 1,3,5,7, and 9, that is, every second element starting from 1.
Command 18 could have made you a bit concerned! d is a row vector with 10 elements, but
the command instructs Octave to enter the value -1 into elements 3, 6, 9 and 12, that is,
into an element that does not exist. In such cases, Octave automatically extends the vector
(or array in general) and sets the value of the added elements to zero unless you instruct it to
set a specific value. In Command 18, we only instructed Octave to set element 12 to -1, and
the value of element 11 will therefore be given the default value 0 as seen from the output.
In low-level programming languages, accessing non-existing or non-allocated array elements
may result in a program crash the first time it is running2.

As you can see, Octave is designed to work in a vectorized manner. It is therefore
often referred to as a vectorized programming language.

Complex variables
Octave also supports calculations with complex numbers. As you may recall, a complex
number can be written as z = a + bi, where a is the real part, b is the imaginary part, and i is
the imaginary unit defined from i2 = –1.

To instantiate a complex variable, say z = 1 + 2i, you can type:

octave:19> z = 1 + 2I

z = 1 + 2i

When Octave starts, the variables i, j, I, and J are all imaginary units, so you can use
either one of them. I prefer using I for the imaginary unit, since i and j are often used as
indices and J is not usually used to symbolize i.

2This will be the best case scenario. In a worse scenario, the program will work for years, but then
crash all of a sudden, which is rather unfortunate if it controls a nuclear power plant or a space shuttle.

Interacting with Octave: Variables and Operators

[32]

To retrieve the real and imaginary parts of a complex number, you use:

octave:20> real(z)

ans = 1

octave:21>imag(z)

ans = 2

You can also instantiate complex vectors and matrices, for example:

octave:22> Z = [1 -2.3I; 4I 5+6.7I]

Z =

 1.0000 + 0.0000i 0.0000 – 2.3000i

 0.0000 + 4.0000i 5.0000 + 6.7000i

Be careful! If an array element has non-zero real and imaginary parts, do leave any blanks
(space characters) between the two parts. For example, had we used Z=[1 -2.3I;
4I 5 + 6.7I] in Command 22, the last element would be interpreted as two separate
elements (5 and 6.7i). This would lead to dimension mismatch.

The elements in complex arrays can be accessed in the same way as we have done for
arrays composed of real numbers. You can use real(Z) and imag(Z) to print the real and
imaginary parts of the complex array Z. (Try it out!)

Text variables
Even though Octave is primarily a computational tool, you can also work with text variables.
In later chapters, you will see why this is very convenient. A letter (or character), a word, a
sentence, a paragraph, and so on, are all named text strings.

To instantiate a text string variable you can use:

octave:23 > t = "Hello"

t = Hello

Instead of the double quotation marks, you can use single quotation marks. I prefer
double quotation marks for strings, because this follows the syntax used by most other
programming languages, and differs from the transpose operator we shall learn about later
in this chapter.

You can think of a text string variable as an array of characters, just like a vector is an array of
numbers. To access the characters in the string, we simply write:

Chapter 2

[33]

octave:24> t(2)

ans = e

octave:25> t(2:4)

ans = ell

just as we did for numerical arrays. We can also extend existing strings (notice the blank
space after the first quotation mark):

octave:26> t = [t " World"]

t = Hello World

You can instantiate a variable with string elements as follows:

octave:27> T= ["Hello" ; "George"]

T =

 Hello

 George

The string variable T behaves just like a matrix (a two dimensional array) with character
elements. You can now access these characters just like elements in a numerical matrix:

octave:28> T(2,1)

ans = G

But wait! The number of characters in the string "Hello" is 5, while the string "George"
has 6 characters. Should Octave not complain about the different number of characters?
The answer is no. In a situation where the two string lengths do not match, Octave simply
adds space characters to the end of the strings. In the example above, the string "Hello"
is changed to "Hello ". It is important to stress that this procedure only works for strings.
The command:

octave:29 > A = [1 2; 3 4 5]

error: number of columns must match (3 != 2)

leads to an error with a clear message stating the problem.

Interacting with Octave: Variables and Operators

[34]

Higher-dimensional arrays
Octave also supports higher-dimensional arrays. These can be instantiated like any other

array, for example:

octave:30> B(2,2,2)=1

B =

ans(:,:,1) =

 0 0

 0 0

ans(:,:,2) =

 0 0

 0 1

The previous command instantiates a three-dimensional array B with size 2 x 2 x 2, that is,
23 = 8 elements, by assigning the element B(2,2,2) the value 1. Recall that Octave assigns
all non-specified elements the value 0. Octave displays the three dimensional array as two
two-dimensional arrays (or slices). We can now access the individual elements and assigned
values like we would expect:

octave:31 B(1,2,1) = 42

B =

ans(:,:,1) =

 0 42

 0 0

ans(:,:,2) =

 0 0

 0 1

Pop Quiz – working with arrays
1. Which of the following variable instantiations are not valid

a) a=[1, 2, 3] b) a=[1 2 3] c) a=[1 2+I 3]

d) A=[1 2 3; 3 4 5] e) A=[1 2; 3; 4] f) A=[1 2; 3 4 5]

g) A=ones(10,10) + 5.8 h) A=zeros(10,1) + 1 i) A=eye(2) + [1 2 3;4 5 6]

Chapter 2

[35]

2. A matrix A is given by

(P.1)

What are the outputs from the following commands?

a) A(3,1) b) A(1,3) c) A(:,4)

d) A(1,:) e) A(1,1:3) f) A(1:4,5)

g) A(1:3,1:3) h) A(1:2:5,1:2:5) i) A(1:3,:)=[]

Structures and cell arrays
In many real life applications, we have to work with objects that are described by many
different types of variables. For example, if we wish to describe the motion of a projectile, it
would be useful to know its mass (a scalar), current velocity (a vector), type (a string), and so
forth. In Octave, you can instantiate a single variable that contains all this information. These
types of variables are named structures and cell arrays.

Structures
A structure in Octave is like a structure in C—it has a name, for example projectile, and
contains a set of fields3 that each has a name, as shown in the following figure:

We can refer to the individual structure field using the.character:

structurename.fieldname

where structurename is the name of the structure variable, and fieldname is (as you
may have guessed) the field's name.

3or members in C terminology

Interacting with Octave: Variables and Operators

[36]

To show an example of a structure, we can use the projectile described above. Let us
therefore name the structure variable projectile, and set the field names to mass,
velocity, and type. You can, of course, choose other names if you wish—whatever you
find best.

Time for action – instantiating a structure
1. To set the projectile mass, we can use:

octave:32>projectile.mass = 10.1

projectile =

{

mass = 10.100

}

2. The velocity field is set in a similar fashion:

octave:33>projectile.velocity = [1 0 0]

projectile =

{

mass = 10.100

velocity =

 0 0

}

3. We can also set the text field as usual:

octave:34>projectile.type = "Cannonball"

projectile =

{

mass = 10.100

velocity =

1 0 0

type = Cannonball

}

and so on for position and whatever else could be relevant.

Chapter 2

[37]

What just happened?
Command 32 instantiates a structure variable with the name projectile by assigning a
field named mass the value 10.100. At this point, the structure variable only contains this
one field.

In Commands 33 and 34, we then add two new fields to the structure variable. These fields
are named velocity and type. It is, of course, possible to keep adding new fields to the
structure.

Instead of typing in one structure field at a time, you can use the struct function. (In the
next chapter, we will learn what an Octave function actually is):

octave:35> projectile = struct("mass", 10.1, "velocity", [1 0 0],
"type", "Cannonball");

The input (called arguments) to the struct function is the first structure field name
followed by its value, the second field's name and its value, and so on. Actually, it is not
meaningful to talk about a structure's first and second field, and so you can change the order
of the arguments to struct and it would not matter.

Did you notice that appending a semi-colon after the command suppresses the response (or
output) from Octave?

You can suppress the output that Octave prints after each
command by appending a semi-colon to the command.

Accessing structure fields
You can access and change the different fields in a structure by, for example:

octave:36>projectile.velocity(2) = -0.1

projectile =

{

mass = 10.100

velocity =

 1 -0.1 0

type = Cannonball

}

Interacting with Octave: Variables and Operators

[38]

In case you have many cannonballs flying around4, it will be practical to have an array of
projectile structures. To instantiate an array of two such projectile structures, you can simply
copy the entire projectile structure to each array element by:

octave:37> s(1) = projectile;

octave:38> s(2) = projectile;

Notice that to copy a structure you just use the equal sign, so you need not copy each
structure field. For accessing the structure elements, you use:

octave:39 s(2).type

ans = Cannonball

Octave has two functions—one to set the structure fields, and one to retrieve them. These
are named setfield and getfield:

octave:40> s(2) = setfield(s(2), "type", "Cartridge");

octave:41>getfield(s(2), "type")

ans = Cartridge

You need to assign the output from setfield to the structure. Why that is so will
be explained in Chapter 5. The above example only showed how to instantiate a one
dimensional array of structures, but you can also work withmultidimensional arrays if you
wish.

You can instantiate nested structures, which are structures where one or more fields are
structures themselves. Let us illustrate this via the basic projectile structure:

octave:42 > projectiles = struct("type1", s(1), "type2", s(2));

octave:43 > projectiles.type1.type

ans = Cartridge

Here projectiles has two fields named type1 and type2. Each of these fields is a
structure, given by s(1) and s(2) (Commands 37-41).

As you can probably imagine, the complexity and variety of extended structures can become
quite overwhelming and we will stop here.

4A rather undesirable situation, of course.

Chapter 2

[39]

Cell arrays
In Octave, you can work with cell arrays. A cell array is a data container-like structure, in that
it can contain both numerical and string variables, but unlike structures it does not have
fields. Each cell (or element) in the cell array can be a scalar, vector, text string, and so forth. I
like to think about a cell array as a sort of spreadsheetas shown in the figure below:

Time for action – instantiating a cell array
1. To instantiate a cell array with the same data as the projectile structure above,

we can use:

octave:44> projectile = {10.1, [1 0 0], "Cannonball"}

projectile =

{

 [1,1] = 10.1

 [1,2] =

1 0 0

 [1,3] = Cannonball

}

The numbers in the square brackets are then the row indices and column indices,
respectively.

2. To access a cell, you must use curly brackets:

octave:45> projectile{2}

ans =

 1 0 0

3. You can have two-dimensional cell arrays as well. For example:

octave:46> projectiles = {10.1, [1 0 0], "Cannonball"; 1.0, [0 0
0], "Cartridge"}

projectile =

Interacting with Octave: Variables and Operators

[40]

{

 [1, 1] = 10.100

 [2, 1] = 1

 [1, 2] =

 1 0 0

 [2, 2] =

 0 0 0

 [1, 3] = Cannonball

 [2, 3] = Cartridge

}

4. To access the values stored in the cell array, simply use:

octave:47> projectiles{2,3}

ans = Cartridge

What just happened?
Command 44 instantiates a cell array with one row and three columns. The first cell contains
the mass, the second cell the velocity, and the third cell the string "Cannonball", analogous
to the structure we discussed above. Notice that the cells in the array can contain different
variable types, and the cell array is therefore different from a normal array.

To access the value in a cell, you use curly brackets rather than the usual parenthesis, as
shown in Command 45.

You can also work with two-dimensional cell arrays. Commands 46 and 47 show an example
of this. Note that to insert an additional row into the cell array, you use semi-colons—just
like a numerical array.

Have a go hero – working with structures
Instantiate a structure with the variable name train that contains the following field names
and values:

Field Value

type "Freight"

weight 60.0

wagon_index_array 1 to 10

Chapter 2

[41]

Use the setfield function to change the weight to 90.0. Set the second element in the
wagon_index_array field to 23.

Getting information
In this section, we will learn how to obtain information about the variables that have been
instantiated. This is particularly useful when you have forgotten the names, sizes, or when
you have loaded data from files (more on the latter in Chapter 4).

Time for action – using whos
We are working with quite a few variables now. We can list them all with whos:

octave:48>whos

Variables in the current scope:

Attr Name Size Bytes Class

==== ==== ==== ===== =====

A 2x2 32 double

B 2x2x2 128 double

T 2x6 12 char

Z 2x2 64 double

a 1x1 8 double

ans 1x9 9 char

b 1x5 40 double

c 3x1 24 double

d 1x12 96 double

projectile 1x3 42 cell

projectiles 2x3 83 cell

s 1x2 83 struct

t 1x11 11 char

z 1x1 16 double

Total is 81 elements using 648 bytes

Interacting with Octave: Variables and Operators

[42]

What just happened?
As seen above, whos prints out five columns. The first column can have values g or p, which
means that the variable is global or persistent. We shall return to what these qualifiers
mean in Chapter 5. In our case, all the variables are what are named local, which is not
stated explicitly by the command whos. A local variable is characterized by being visible and
therefore accessible to a given workspace (or scope). In the example above, we have just a
single workspace—the top-level workspace—wherein all our variables can be accessed. In
fact, we can say that the local variables above define our current top-level workspace.

The second column simply lists the variable names. The sizes of the variables are given in
column three in the form: number of rows times number of columns. For example, the scalar
variable a (from Command 1) has size 1 x 1, meaning that it has one row and one column.
The projectile cell array has one row and three columns, as we know from Command 44.

It is seen from column four that the scalar variable a takes up 8 bytes of memory and is of
class double (column five). The fact that the class is a double means that Octave uses double
precision for the variables, as mentioned earlier. Recall from Command 26 that the variable
t is the text string "Hello World". This string is composed of 11 characters including the
blank space, which can be seen from the output above.This is unlike C, where the end of the
string is indicated with '\0' and is a part of the character array.

The variable s is a two dimensional array of structures (Commands 37-41) and the variable
projectiles is a cell array with same basic "building blocks" as the structure array s. From
the table, we observe that it takes up the same memory, so we do not save memory space
using one or the other. By the way, does the number of bytes in the structure array s agree
with the sum of bytes of the fields?

Below the table, we can see that we use a total of 648 bytes of memory for the variables.

You can call whos with an argument, for example, whos("A"), if you only wish to retrieve
information about A. Also, whos has a little brother who. who lists the local variables, but
does not list other information.

Size, rows, columns, and length
Rather than listing all available information about a variable, you can get information about
its number of rows and columns. We will use this extensively throughout the book. The size
of A is retrieved by:

octave:49> size(A)

ans =

 2 2

Chapter 2

[43]

since A is a 2 x 2 matrix. In general, size returns the number of rows and columns. You can
retrieve these individually if you prefer:

octave:50> rows(A)

ans = 2

octave:51> columns(A)

ans = 2

What happened here should be straightforward to understand.

In Octave, you can also retrieve the length of a variable. We need to understand what that
means exactly. If the variable is a vector or text string, the length is the number of elements
in the array. If the variable is a higher-dimension array, the length is defined as the maximum
number of elements in any of the dimensions. Let us see two examples:

octave:52> length(c)

ans = 3

octave:53> length(T)

ans = 6

The output from Command 53 is the number of columns in the text array. This is returned
rather than the number of rows since the variable T has 6 columns but only 2 rows.

Identifying the variable type
Octave can tell you whether a variable is interpreted as a vector, matrix, string, complex
number, cell array, and much more. Let us check if Octave actually agrees that the variable a
is a scalar:

octave:54>isscalar(a)

ans = 1

Octave returns 1, meaning true (or yes). What about the row vector b?

octave:55>isvector(b)

ans = 1

octave:56>ismatrix(b)

ans = 1

Interacting with Octave: Variables and Operators

[44]

That is a bit strange! b is a (row) vector which is recognized by Octave as seen from
Command 55, but why does it interpret b as a matrix as well? A matrix is just an array of
elements (a way of organizing numbers).Thus b can be thought of as a matrix with one row
and three columns. What will the command ismatrix(a) return? Try it out!

You can check the type of any variable with the istype family. Simply use:

octave:1>is <Tab><Tab>

at the command prompt to see the complete list.

Instead of using the istype, you can use typeinfo. For example, instead of Command 56 we
could use:

octave:56>typeinfo(b)

ans = matrix

Deleting variables from the workspace
You can delete variables using the clear command. For example, if you wish to delete the
variable A:

octave:58> clear A

You can also use the wildcard *, for example, to delete the variables projectile and
projectiles, and any other variable name beginning with p, you can use:

octave:59> clear p*

If you do not specify any variables, the clear,command will delete all the variables, so be
very cautious when using the command, because there is no way to retrieve the variables
once you have cleared them from the memory (unless you have saved them somewhere
else, of course). Try to use whos (or who) to see if the variables were cleared by Commands
58 and 59.

Warning: the command

octave:59> clear

will clear all variables in the workspace.

Pop Quiz – understanding arrays
What are the outputs from the following commands when A, x, and y are given in Equation
(P.2)?

Chapter 2

[45]

.

(P.2)

a) size(A) b) row(A) c) columns(A)

d) ismatrix(x) e) isscalar(A) f) length(A)

g) length(x)

A few things that make life easier
Imagine that you wish to generate a sequence of numbers in the interval -2.1 to 0.5
(including -2.1 and 0.5) with an incremental spacing of 0.2. This is rather tedious to do by
hand and is very error prone, because it involves typing a lot of digits. Fortunately, Octave
provides you with a very convenient way to do this (note that we now assign the variable b a
new value):

octave:60> b = [-2.1:0.2:0.5]

b =

 Columns 1 through 7

 -2.1000 -1.9000 -1.7000 -1.5000 -1.3000 -1.1000 -0.9000

Columns 8 through 14

 -0.7000 -0.5000 -0.3000 -0.1000 0.1000 0.3000 0.5000

If we had done this by hand instead, we should have typed in:

octave:61> size(b)

ans =

 1 14

14 numbers. You can also use negative increments if the interval starting value is larger than
the end value. If you do not provide an incremental value, Octave assumes 1.

An important point is that if we have chosen an increment of, say 0.4, in Command 60,
Octave will give us a number sequence starting from -2.1, but ending at 0.4.

Often you will find yourself in situations where you need to generate a certain sequence of
numbers in a given interval without knowing the increment. You can of course calculate this,
but Octave has a functionality to do just that. Let us generate a sequence of 7 numbers in
the interval above (that is, from -2.1 to 0.5):

Interacting with Octave: Variables and Operators

[46]

octave:62 > b = linspace(-2.1, 0.5, 7)

b =

 -2.1000 -1.6667 -1.2333 -0.8000 -0.3667 0.0667 0.5000

Octave calculates the increment needed, also ensuring that both points in the interval are
included.

As we shall see later, the functions ones and zeros are very helpful in cases where you
want to generate an array composed of elements with a certain value. For example, to create
a 2 x 3 matrix with elements all equal to 1, use:

octave63:> ones(2,3)

ans =

 1 1 1

 1 1 1

Likewise, to create an array (row vector in this case) with zero elements:

octave64:> zeros(1, 4)

ans = 0 0 0 0

ones and zeros also work with multi-dimensional arrays.

You can just as easily create a diagonal matrix with eye:

octave65:> eye(4)

ans =

Diagonal Matrix

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

Notice that we need not specify both the number of rows and the number of columns in
Command 65, because a diagonal matrix is only defined for square matrices.

Chapter 2

[47]

Basic arithmetic
Octave offers easy ways to perform different arithmetic operations. This ranges from simple
addition and multiplication to very complicated linear algebra. In this section, we will go
through the most basic arithmetic operations, such as addition, subtraction, multiplication,
and left and right division. In general, we should think of these operations in the framework
of linear algebra and not in terms of arithmetic of simple scalars.

Addition and subtraction
We begin with addition.

Time for action – doing addition and subtraction operations
1. I have lost track of the variables! Let us start afresh and clear all variables first:

octave:66> clear

(Check with whos to see if we cleared everything).

2. Now, we define four variables in a single command line(!)

octave:67> a = 2; b=[1 2 3]; c=[1; 2; 3]; A=[1 2 3; 4 5 6];

Note that there is an important difference between the variables b and c; namely, b
is a row vector, whereas c is a column vector.

3. Let us jump into it and try to add the different variables. This is done using the +
character:

octave:68>a+a

ans = 4

octave:69>a+b

ans =

 3 4 5

octave:70>b+b

ans =

 2 4 6

octave:71>b+c

error: operator +: nonconformant arguments (op1 is 1x3, op2 is
3x1)

Interacting with Octave: Variables and Operators

[48]

It is often convenient to enter multiple commands on the same line. Try to test
the difference in separating the commands with commas and semicolons.

What just happened?
The output from Command 68 should be clear; we add the scalar a with itself. In Command
69, we see that the + operator simply adds the scalar a to each element in the b row vector.
This is named element-wise addition. It also works if we add a scalar to a matrix or a higher
dimensional array.

Now, if + is applied between two vectors, it will add the elements together element-wise if
and only if the two vectors have the same size, that is, they have same number of rows or
columns. This is also what we would expect from basic linear algebra.

From Command 70 and 71, we see that b+b is valid, but b+c is not, because b is a row
vector and c is a column vector—they do not have the same size. In the last case, Octave
produces an error message stating the problem. This would also be a problem if we tried to
add, say b with A:

octave:72>b+A

error: operator +: nonconformant arguments (op1 is 1x3, op2 is 2x3)

From the above examples, we see that adding a scalar to a vector or a matrix is a special
case. It is allowed even though the dimensions do not match! When adding and subtracting
vectors and matrices, the sizes must be the same. Not surprisingly, subtraction is done using
the - operator. The same rules apply here, for example:

octave:73> b-b

ans =

 0 0 0

is fine, but:

octave:74> b-c

error: operator -: nonconformant arguments (op1 is 1x3, op2 is 2x3)

produces an error.

Chapter 2

[49]

Matrix multiplication
The * operator is used for matrix multiplication. Recall from linear algebra that we cannot
multiply any two matrices. Furthermore, matrix multiplication is not commutative. For
example, consider the two matrices:

.

(2.4)

The matrix product AB is defined, but BA is not. If A is size n x k and B has size
k x m, the matrix product AB will be a matrix with size n x m. From this, we know
that the number of columns of the "left" matrix must match the number of rows of the
"right" matrix. We may think of this as (n x k)(k x m) = n x m. In the example above,
the matrix product AB therefore results in a 2 x 3 matrix:

.

(2.5)

Time for action – doing multiplication operations
Let us try to perform some of the same operations for multiplication as we did for addition:

octave:75> a*a

ans = 4

octave:76> a*b

ans =

 2 4 6

octave:77> b*b

error: operator *: nonconformant arguments (op1 is 1x3, op2 is 1x3)

octave:78> b*c

ans = 14

Interacting with Octave: Variables and Operators

[50]

What just happened?
From Command 75, we see that * multiplies two scalar variables just like standard
multiplication. In agreement with linear algebra, we can also multiply a scalar by each
element in a vector as shown by the output from Command 76. Command 77 produces an
error—recall that b is a row vector which Octave also interprets as a 1 x 3 matrix, so we try
to perform the matrix multiplication (1 x 3)(1 x 3), which is not valid. In Command 78, on the
other hand, we have (1 x 3)(3 x 1) since c is a column vector yielding a matrix with size
1 x 1, that is, a scalar. This is, of course, just the dot product between b and c.

Let us try an additional example and perform the matrix multiplication between A and B
discussed above. First, we need to instantiate the two matrices, and then we multiply them:

octave:79> A=[1 2; 3 4]; B=[1 2 3; 4 5 6];

octave:80> A*B

ans =

 9 12 15

 19 26 33

octave:81> B*A

error: operator *: nonconformant arguments (op1 is 2x3, op2 is 2x2)

Seems like Octave knows linear algebra!

Element-by-element, power, and transpose operations
If the sizes of two arrays are the same, Octave provides a convenient way to multiply the
elements element-wise. For example, for B:

octave:82> B.*B

ans =

 1 4 9

 16 25 36

Notice that the period (full stop) character precedes the multiplication operator. The period
character can also be used in connection with other operators. For example:

octave:83> B.+B

ans =

 2 4 6

 8 10 12

Chapter 2

[51]

which is the same as the command B+B.

If we wish to raise each element in B to the power 2.1, we use the element-wise power
operator.^:

octave:84> B.^2.1

ans =

 1.0000 4.2871 10.0451

 18.3792 29.3655 43.0643

You can perform element-wise power operation on two matrices as well (if they are of the
same size, of course):

octave:85> B.^B

ans =

 1 4 27

 256 3125 46656

If the power is a real number, you can use ^ instead of .^; that is, instead of
Command 84 above, you can use:

octave:84>B^2.1

Transposing a vector or matrix is done via the 'operator. To transpose B, we simply type:

octave:86> B'

ans =

 1 4

 2 5

 3 6

Strictly, the ' operator is a complex conjugate transpose operator. We can see this in the
following examples:

octave:87> B = [1 2; 3 4] + I.*eye(2)

B =

 1 + 1i 2 + 0i

 3 + 0i 4 + 1i

octave:88> B'

ans =

Interacting with Octave: Variables and Operators

[52]

 1 - 1i 3 - 0i

 2 - 0i 4 - 1i

Note that in Command 87, we have used the .* operator to multiply the imaginary unit with
all the elements in the diagonal matrix produced by eye(2). Finally, note that the command
transpose(B)or the operator .' will transpose the matrix, but not complex conjugate the
elements.

Operators for structures and cell arrays
Arithmetic on structure fields and cells array elements is straightforward. First, let us see an
example of a structure field operation:

octave:89> s = struct("A", [1 2; 3 4], "x", [1; 2]);

octave:90>s.A*s.x

ans =

 5

 11

and the equivalent cell array operation:

octave:91> c = {[1 2; 3 4], [1;2]};

octave:92> c{1}*c{2}

ans =

 5

 11

Arithmetic operations on entire structures and cell arrays are not defined in Octave.

Solving linear equation systems: left and right division
You may have wondered why division was not included above. We know what it means
to divide two scalars, but it makes no sense to talk about division in the context of linear
algebra. Nevertheless, Octave defines two different operators, namely, right and left division,
which need to be explained in some detail. It is probably easiest to discuss this via a specific
example. Consider a system of linear equations:

(2.6)

Chapter 2

[53]

We can write this in matrix notation as:

, (2.7)

where:

.

(2.8)

If the coefficient matrix A is invertible (in fact it is), we can solve this linear equation system
by multiplying both sides of Equation (2.7) with the inverse of A, denoted A–1:

. (2.9)

In Octave, the command A\y is equivalent to A–1y. Notice the backslash. This is named left
division, and you can probably guess why.

The right division (forward slash) command, A/y, is equivalent to yA–1, which is of course
not defined in this case because the vector y has size 3 x 1 and A has size 3 x 3; that is, the
matrix product cannot be carried out.

Time for action – doing left and right division
1. We need to instantiate the coefficient matrix A and vector y first:

octave:93> A=[2 1 -3; 4 -2 -2; -1 0.5 -0.5]; y = [1; 3; 1.5];

2. The solution to the linear equation system, Equation (2.6), is then found directly via
the command:

octave:94> A\y

ans =

 -1.6250

 -2.5000

 -2.2500

Easy!

Interacting with Octave: Variables and Operators

[54]

What just happened?
It should be clear what happened. In Command 93, we instantiated the matrix A and the
vector y that define the linear equation system in Equation (2.6). We then solve this system
using the left division operator. Later in Chapter 6, we will investigate how the left division
operator performs for very large systems.

Let us try the right division operator, even though we know that it will cause problems:

octave:95> A/y

error: operator /: nonconformant arguments (op1 is 3x3, op2 is 3x1)

We see the expected error message. The right division operator will, however, work in the
following command:

octave:96> A/A

ans =

 1.0000 -0.0000 -0.0000

 0.0000 1.0000 -0.0000

 0.0000 0.0000 1.0000

This is the 3 x 3 identity matrix I. This result is easily understood because A/A is equivalent
to AA–1. Notice that due to numerical round-off errors and finite precision, the elements in
this matrix are not exactly 1 on the diagonal and not exactly 0 for the off-diagonal elements,
and Octave therefore displays the elements in floating point format.

What is the result for the command A\A? Try it out to check your answer.

The definitions of the left and right division operators also apply for scalar variables. Recall
that the variable a has the value 2:

octave:97> 1/a

ans = 0.5000

This is just the fraction 1/2 with a in the denominator. Now, the left division operator:

octave:98> 1\a

ans = 2

which is equivalent to the fraction 2/1; that is, a is in the nominator. We can say that a\1 is
equivalent to 1/a.

Above we learned that the .operator can be used in connection with other operators. This is
also true for the left and right division operators:

Chapter 2

[55]

octave:99> a./A

ans =

 1.0000 2.0000 -0.6667

 0.5000 -1.0000 -1.0000

 -2.0000 4.0000 -4.0000

octave:100> a.\A

ans =

 1.0000 0.5000 -1.5000

 2.0000 -1.0000 -1.0000

 -0.5000 0.2500 -0.2500

It is very important to stress that when performing element-wise left and right division
with a scalar, you must use the .operator. This is different from addition, subtraction, and
multiplication.

For element-wise matrix division, we can use:

octave:101> A./A

ans =

 1 1 1

 1 1 1

 1 1 1

Basic arithmetic for complex variables
It is also possible to perform arithmetic operations on complex variables. In fact, we can
regard the operations above for real numbers as special cases of more general operations for
complex variables.

When adding two complex numbers, we add the real parts and imaginary parts. In Octave,
we simply use the + operator:

octave:102> z = 1 + 2I; w = 2 -3I;

octave:103> z + w

ans = 3 – 1i

Interacting with Octave: Variables and Operators

[56]

The same goes for subtraction:

octave:104> z – w

ans = -1 + 5i

Multiplication of z and w is simply:

 (2.10)

Let us see if Octave agrees:

octave105:> z*w

ans = 8 + 1i

Now, you may recall that when dividing two complex numbers, you multiply the nominator
and denominator with the complex conjugate of the denominator. In the case of z/w, we get:

(2.11)

To perform this division in Octave, we can simply use the left or right division operator:

octave:106> z/w

ans = -0.30769 + 0.53846i

octave:107> w\z

ans = -0.30769 + 0.53846i

just as we did for real numbers.

You can also perform addition, subtraction, and multiplication with complex vectors and
matrices. You can even solve complex linear equation systems with the left division operator
like it was done above for a real equation system.

Chapter 2

[57]

Summary of arithmetic operators
Let us summarize the operators we have discussed above:

Operator Example Description

+

octave:1 > [1 2; 3 4] + [1 0; 0 1]

ans =

2 2

3 5

Element-wise addition. Array sizes (dimensions)
must match, except for scalar variables. Works for
multidimensional arrays.

-

octave:1> [1 2; 3 4] - [1 0; 0 1]

ans =

 0 2

 3 3

Element-wise subtraction. Array sizes (dimensions)
must match, except for scalar variables. Works for
multidimensional arrays.

*

octave:1> [1 2; 3 4]*[1 0; 0 1]

ans =

0 2

34

Matrix multiplication. Number of columns of the left-
most matrix must match the number of rows of the
right-most matrix, except for scalar variables. Only
works for scalars, vectors, and matrices.

/

octave:1> [1 2; 3 4]/[1 0; 0 1]

ans =

 1 2

 3 4

Right division. For the example, it is equivalent to:
Only works for scalars, vectors, and matrices.

\

octave:1> [1 2; 3 4]\[1 0; 0 1]

ans =

 -2.0000 1.0000

 1.5000 0.5000

Left division. Same as:
Only works for scalars, vectors, and matrices.

.

octave:1>[1 2; 3 4].*[1 0; 0 1]

ans =

 1 0

 0 4

Element-wise operator. .+ and .- is equivalent to +
and -, which are also element-wise operators.

.^

octave:1> [1 2; 3 4].^2

ans =

 0 4

 9 16

Element-wise power operator. Currently this
operator only works for scalars, vectors, and
matrices.

'and.'

octave:1> [1 +1*I 2+2*I; 3 4]'

ans =

1 - 1i 3 – 0i

2 – 2i 4 - 0i

The complex conjugate transpose operator and the
transpose operator. Only works for scalars, vectors,
and matrices.

Interacting with Octave: Variables and Operators

[58]

Pop Quiz – understanding simple operations
1. Which of the following operations are valid if A, x, and y are given by Equation (P.2)?

a) x + x b) x + y c) x – y'

d) A*x e) x*y f) x*A

g) A\x h) A\y i) x\y

 Have a go hero – doing the dot product
From the vectors x and y given in Equation (P.2), use Octave to calculate the dot product
(also called scalar product) of:

a) x and x

b) x and y

Comparison operators and precedence rules
In the previous section, we discussed the basic arithmetic operations. In this section, we will
learn how to compare different variables. Octave (like many other programming languages)
uses very intuitive operator characters for this. They are:

x==y Evaluates to true if x equals y
x>y Evaluates to true if x is larger than y
x<y Evaluates to true if x is smaller than y
x>=y Evaluates to true if x is greater than or equal to y
x<=y Evaluates to true if x is smaller than or equal to y
x!=y Evaluates to true if x is not equal to y

For Octave's comparison operators, true is equivalent to a non-zero value and false is
equivalent to 0. Let us see a few examples—recall the matrix A from Command 93:

octave:108> A(2,1) == 1

ans = 1

octave:109>A(2,1) == 2

ans = 0

octave:110> A(2,1) > 0

Chapter 2

[59]

ans = 1

octave:111> A(2,1) != 4

ans = 1

Instead of using != for "not equal to", you can use ~=.

You may be familiar with these operators from another programming language. However, in
Octave you can compare vectors and matrices. To compare the first column in A with another
column vector, we use:

octave:112> A(:,1) >= [2; 2; 0]

ans =

 1

 1

 0

Octave:113> A > ones(3,3)

ans =

 1 0 0

 1 0 0

 0 0 0

that is, the comparison is performed element-wise. This, of course, means that the array
dimensions must match except if one of the variables is a scalar.

You can also compare characters using the comparison operators above. However, they
cannot be used to compare entire strings. For example:

octave:114> "a"=="a"

ans = 1

compare the character a witha, and:

octave:115> "hello"=="henno"

ans = 1 1 0 0 1

compare all character elements in the string hello with the characters in henno (element-
wise). However, the command "hello"=="helloo" is not valid, because the two strings do
not have the same dimensions. If you wish to compare the two strings, use strcmp (which is
an abbreviation for string compare):

Interacting with Octave: Variables and Operators

[60]

octave:116>strcmp("hello", "helloo")

ans = 0

meaning false, because the two strings are not the same.

As mentioned above, the result of a comparison operation is either true (value 1) or
false (value 0). In computer science, we refer to this as a Boolean type, after the English
mathematician George Boole. Note that because Octave is a vectorized programming
language, the resulting Boolean can be an array with elements that are both true and false.

Octave interprets all non-zero values as true.

Precedence rules
You can do many operations in a single command line, and it is important to know how such
a command is interpreted in Octave.

Time for action – working with precedence rules
1. Let us see an example:

octave:117> A*y + a

ans =

 2.5000

 -3.0000

 1.7500

Here, Octave first performs the matrix multiplication between A and y, and then
adds a to that result. We say that multiplication has higher precedence than
addition.

2. Let us try two other examples:

octave:118> A*y.^2

ans =

 4.2500

-18.5000

 2.3750

octave:119> (A*y).^2

Chapter 2

[61]

ans =

 0.2500

 25.0000

 0.0625

What just happened?
In command 118, because the .^ operator has higher precedence than *, Octave
first calculates element-wise power operation y.^2, and then performs the matrix
multiplication. In command 190, by applying parenthesis, we can perform the matrix
multiplication first, and then do the power operation on the resulting vector.

The precedence rules are given below for the operators that we
have discussed in this chapter:

When in doubt, you should always use parenthesis to ensure that
Octave performs the computations in the order that you want.

Pop Quiz – understanding precedence rules
Let x and y be given by Equation (P.2). What are the outputs from the following commands?
(Note that one of them produces an error!)

a) 2.0./x + y' b) 2.0./(x + 2*y') c) 2.0/x + y'

d) 2.0./x' + y e) 2.0./(x.^2)' + y

A few hints
Instead of using the left division operator to solve a linear equation system, you can do it "by
hand". Let us try this using the equation system given by Equation (2.6) with the solution
given in Equation (2.9). First we need to calculate the inverse of A (which exists). This is done
via the inv function:

octave:120>inverse_A = inv(A)

inverse_A =

 0.2500 -0.1250 -1.0000

 0.5000 -0.5000 -1.0000

 0.0000 -0.2500 -1.0000

Interacting with Octave: Variables and Operators

[62]

We can now simply perform the matrix multiplication A–1y to get the solution:

octave:121>inverse_A*y

ans =

 -1.6250

 -2.5000

 -2.2500

This output is similar to the output from Command 94. Now, when Octave performs the left
division operation, it does not first invert A and then multiply that result with y. Octave has
many different algorithms it can use for this operation, depending on the specific nature of
the matrix. The results from these algorithms are usually more precise and much quicker
than performing the individual steps. In this particular example, it does not really make a big
difference, because the problem is so simple.

In general, do not break your calculations up into individual steps if Octave
already has an in-built operator or functionality that does the same in one single
step. It is highly likely that the single operation is faster and more precise.

If we replace the coefficient matrix A in Equation (2.8) with the following matrix:

(2.12)

and try to solve the corresponding linear equation system, Octave will display a warning
message:

octave:122:> A=[2 1 -3; 4 -2 -2; -2 1 1]; A\y

warning: dgelsd : rank deficient 3x3 matrix, rank = 2

ans =

 0.3000

 -0.1250

 -0.1750

Chapter 2

[63]

The result in this case is the minimum norm solution to the improperly defined equation
system, which we will not discuss here. What is important is the warning message because
this tells us that the matrix does not have full rank, that is, the rows (or columns) in the
matrix are not linearly independent. This in turn means that no unique solution to the
linear equation system exists. If you inspect the matrix, you will quickly see that the third
row is just the second row multiplied with minus one half, so these two rows are linearly
dependent. You can check the rank of a matrix by:

octave:123> rank(A)

ans = 2

This calculation is already done for you in Command 122, and shows up in the warning
message. You should, of course, always perform this check if you are not absolutely sure
about the rank of a matrix.

Summary
We went through a lot of the basics in this chapter! Specifically, we learned:

� How to instantiate scalar, vector, and matrix variables.

� How to instantiate complex variables.

� How to instantiate a text string.

� How to access and change the values of array elements.

� About structures, cell arrays, and multidimensional arrays.

� How to retrieve important information about the variables.

� How to add and subtract vectors and matrices.

� About matrix multiplication.

� Solving linear equation systems.

� How to compare scalars, vectors, and matrices.

� Some additional helpful functionality.

� Precedence rules.

In the next chapter, we will learn about Octave functions and how to do plotting. We shall
make use of many of the things that we have just learned in this chapter.

3
Working with Octave:

Functions and Plotting

As promised in Chapter 2, we will now discuss Octave functions in greater
detail. The first part of the chapter is devoted to this and will give an intro-
duction to and an overview of some of the most useful functions that Octave
provides. In the second part we shall see how to use Octave functions to do
two and three dimensional plotting.

Specifically, we will cover:

� Basic mathematical functions.

� Miscellaneous helper functions that can initialize variable elements and perform
simple analysis of variables.

� Functions for linear algebra and polynomials.

 The second part will take you through the plotting facilities, where you will learn:

� How to make two- and three-dimensional plots.

� About multi-plot and multi-graph plotting.

� How to change the properties of the graph and the figure window.

Octave functions
You can think of an Octave function as a kind of general mathematical function—it takes
inputs, does something with them and returns outputs. For example, in Command 20 in
Chapter 2, we used Octave's real function. We gave it the complex scalar input variable z
and it returned the real part of z.

Working with Octave: Functions and Plotting

[66]

Octave functions can in general take multiple inputs (also called arguments or input
arguments) and return multiple outputs. The general syntax for a function is:

[output 1, output 2, ...] = function name(input 1, input 2, ...)

The inputs to and the outputs from a function can be scalars, multidimensional arrays,
structures, and so on. Note that the outputs need not to be separated with commas. Since
Octave does not operate with type specifiers, the functions must be able to deal with all kind
of inputs, either by performing the operations differently (and thereby likely also to return
different outputs), or by reporting an error. Sometimes we will use function interface instead
of function syntax, but it refers to the same thing.

I prefer to divide Octave functions into three categories:

1. Mathematical functions (for example,exponential and trigonometric functions).

2. Helper functions (for example, the real function).

3. Operational functions (for example,the inv function from Command 120 in
Chapter 2).

In Octave, there is no such categorization of course. Hopefully, they are all helper functions
in some sense. However, it may help to understand what the differences between them
are. It is probably easiest to illustrate how to use Octave functions via the mathematical
functions, so let us start with them.

Mathematical functions
Octave provides you with all elementary mathematical functions. Let us go through a few
examples.

Time for action – using the cos function
1. In order to calculate cosine of a number, say π, we simply type:

octave:1>cos(pi)

ans = -1

pi is the input argument, cos is the Octave function and -1 is the output from cos.
When we use a function we often say that we call that function

2. What if we use a vector as input? Well, why not just try. We know how to instantiate
a vector:

octave:2> x = [0:pi/2:2*pi]

ans =

 0.0000 1.5708 3.1416 4.7124 6.2832

Cosine of x is then:

Chapter 3

[67]

octave:3>cos(x)

ans =

 1.0000e+000 6.1230e-017 -1.0000e+000 -1.8369e-016
1.0000e+000

that is, Octave calculates the cosine of each element in the vector.

3. In Command 2, we created a row vector, and the result of Command 3 is therefore
also a row vector. If we use a column vector as input to cos:

octave:4>cos(x')

ans =

 1.0000e+000

 6.1230e-017

 -1.0000e+000

 -1.8369e-016

 1.0000e+000

it returns a column vector.

What just happened?
In Command 1, we use pi as the input argument to the cos function. Now, strictly speaking,
pi is a function itself. If we call pi without any arguments or no parenthesis, it simply
returns the number π.

The output from Command 3 is not exactly zero at cos (π/2) and cos (3π/2) as we might expect.
This is due to the finite numerical precision of a computer calculation. However, from the
result, we see that the values are very close to zero. From Command 3, we see that cos returns
a row vector, because the argument was a row vector. In general, if we had called cos with an
n x m matrix (or higher dimensional array), it would simply take the cosine of each element in
the matrix and return the output with that same size. That is, it will work in an element-wise
manner. This is true for most of Octave's mathematical functions and is worth noting.

Octave's mathematical functions will
work in an element-wise manner.

Commands 1 and 4 highlight another important point—any operations or function acting on
the input argument(s) will be carried out before the function is called. In Command 1, the
function pi is called, and the output from that function is used as input to cos. In Command
4, the vector x is first transposed, and that result is used as input to the function cos. This is
true for all Octave functions.

Working with Octave: Functions and Plotting

[68]

The table below lists the basic mathematical functions that come with Octave. They are all
called in the same manner as cos:

Function Description Function Description

sin Sine cos Cosine

tan Tangent sec Secant

cot Cotangent csc Cosecant

log Logarithm base e log10 Logarithm base 10

exp The exponential function sqrt Square root

power Power function

In addition to the table above, all the trigonometric functions have their inverse and
hyperbolic cousins defined. For example, the inverse of sine is called asin and the inverse
hyperbolic of sine is asinh.

The following commands yield the same result:

octave:5>exp(I*pi)

ans = -1.0000e+000 - 1.2246e-016i

octave:6> power(e,I*pi)

ans = -1.0000e+000 - 1.2246e-016i

octave:7> e.^(I*pi)

ans = -1.0000e+000 - 1.2246e-016i

So Octave is also able to handle complex input arguments to mathematical functions!

Polynomials in Octave
Octave has a special way of handling polynomials. As an example, consider the third order
polynomial f which is a function of x

. (3.1)

Chapter 3

[69]

We can represent this polynomial via a vector containing the coefficients:

 (3.2)

such that the first element is the coefficient for the term with the highest exponent and
the last element is the constant term. There is no first order term in the polynomial, which
is indicated by the 0 in the coefficient vector c. We can now evaluate the function range or
value for x = 0 by using polyval:

octave:8> c=[2 10.1 0 6];

octave:9>polyval(c, 0)

ans = 6

Also, we can calculate the range using a vector as input, for example, the vector variable x,
defined in Command 2:

octave:10>polyval(c, x)

ans =

 6.0000 38.6723 167.6959 439.5791 900.8324

In Chapter 2, you learned about operators in Octave, so you could alternatively use:

octave:11> 2*x.^3 + 10.1*x.^2 + 6

ans =

 6.0000 38.6723 167.6959 439.5791 900.8324

More complicated mathematical functions
Octave provides you with much more than the basic mathematical functions, for example,
Bessel functions of different kinds1. Since you know about the different arithmetic operators
from Chapter 2, you can also put together your own mathematical functions using the simple
functions as building blocks.

1We will not cover these special functions here. Check out the official Octave manual should you be
interested in these types of functions.

Working with Octave: Functions and Plotting

[70]

Time for action – putting together mathematical functions
1. Let us try to calculate the range of the function:

. (3.3)

octave:12> x = 0.5;

octave:13> f = exp(-5*sqrt(x))*sin(2*pi*x)

f = 3.5689e-018

2. In a more useful vector form:

octave:14> x = [0:0.1:1];

octave:15> f = exp(-5*sqrt(x)).*sin(2*pi*x)

f =

 Columns 1 through 7:

0.00000 0.12093 0.10165 0.01650 0.02488 0.00000 -0.01222

 Columns 8 through 11:

-0.01450 -0.01086 -0.00512 -0.00000

What just happened?
It should be clear what Commands 12 and 13 do. In Command 15, we must use the element-
wise .* operator. Had we not done so, Octave would try to perform a matrix multiplication
between the vectors given by exp(-5*sqrt(x)) and sin(2*pi*x), which is not defined,
and not what we want either.

We could also have used the element-wise operator in Command 13 when x is a scalar; that is,
Command 14 is a generalized version that works for both scalars and vector and matrix arrays.

Whenever possible, always make generalized versions of your
commands such that they work on both array and scalar variables.

The function in Equation (3.3) is a scalar function that maps a real number into a real
number. Functions can also map two real numbers into a real number. Equation (1.1) in
Chapter 1 is an example of such a function. Let us try something a bit simpler, namely:

 (3.4)

Chapter 3

[71]

and "build" that in Octave's interpreter:

octave:16> x = 1; y = sqrt(pi);

octave:17> f = x.^2 – y.^2

f = -2.1416

The mathematical functions given in Equations (3.3) and (3.4) are examples of scalar
functions. You can, of course, also calculate the range of vector-valued functions. Take, for
example, the function:

. (3.5)

In Octave we may find the range like this:

octave:18> x = pi;

octave:19> f = [cos(x), sin(x), exp(-0.5*x)]

f =

 1 0 4.8105

We will return to Equations (3.4) and (3.5) when we learn how to plot graphs of these types
of functions.

Helper functions
In Chapter 2, we used quite a few helper functions.ismatrix, real, eye, ones are some
examples. Helper functions work differently from Octave's mathematical functions; for
example, it is not meaningful to call eye with a non-integer number—try to see what
happens if you do.

Rather than embarking on a very long road explaining the entire set of helper functions, we
will go through what I think are some of the most important ones, and from these examples,
explain the general behaviour.

Working with Octave: Functions and Plotting

[72]

Generating random numbers
Recall that the ones and zero functions could help us in creating arrays where all elements
had the values 1 or 0, respectively. The function rand does the same, except that the
elements are uniformly distributed random numbers between 0 and 1 (both excluded). To
instantiate a 3 x 5 matrix array with random distributed elements, we can use:

octave:20> A = rand(3,5)

A =

 0.72106 0.97880 0.28600 0.92375 0.10514

 0.91879 0.43847 0.30922 0.03529 0.84677

 0.15474 0.43170 0.47812 0.04455 0.04975

just as we did with the function zeros and ones. If rand is called without any arguments
(same as having no parenthesis at all), it returns a single random number.

Often you will need random numbers from a different distribution. Beside uniformly
distributed numbers, Octave can generate:

1. randn: normal distribution with 0 mean and variance 1 (from here you can generate
normal distributed numbers with arbitrary mean and variance).

2. randg: gamma distribution.

3. rande: exponential distribution.

4. randp: Poisson distribution.

randn, randq, and rande are called with the same arguments as rand; that is, the output
array dimensions. For randp, you will need to specify the mean as the first argument. Type
helprandp if you have any doubts.

The pi function we used above is also a helper function. It works pretty
much like rand, for example:

octave:1>pi(2,2)

ans =

 3.1416 3.1416

 3.1416 3.1416

generates a 2 x 2 two-dimensional array with elements having value π.

min and max
Octave provides you with a function that returns the minimum of a one dimensional array.
However it can also be called using A above as argument, for example:

Chapter 3

[73]

octave:21> min(A)

ans =

 0.15474 0.43170 0.28600 0.03529 0.04975

That is,min calculates the minimum of each column in A. If we apply min to a vector array,
for example, using the output we get from Command 21:

octave:22> min(ans)

ans = 0.03529

Thus,the minimum of the array is given by ans.This is the same as the minimum of A. We
could combine Commands 21 and 22 to find the minimum of A directly:

octave:23> min(min(A))

ans = 0.03529

The max function finds the maximum of an array and works just like min.

Octave functions that perform vector operations work (as
default) in a column-wise manner if the argument is a matrix.

Sorting arrays
Let us see another example of a useful Octave function, namely, sort. This function will sort
array elements for you. sort is an example of an Octave function that can be called with
different number of input and output arguments, depending on what exactly you want sort
to do and what information you wish to retrieve from it2. The simplest way to call sort is to
give the function a single variable, say the matrix A, as input. Each column in A will then be
sorted according to the rule above:

octave:24> sort(A)

ans =

 0.15474 0.43170 0.28600 0.03529 0.04975

 0.72106 0.43847 0.30922 0.04455 0.10514

 0.91879 0.97880 0.47812 0.92375 0.84677

2min and max above are other examples of functions that can be called with a different number of input
and output arguments. See the help text for these functions if you are curious.

Working with Octave: Functions and Plotting

[74]

Rather than sorting A in ascending order, we can sort the elements in a descending order
using the mode input argument "descend"(or 'descend'). You can also sort the array
elements row-wise, and you can even ask sort to return an array with the original indices in
the new sorted array. Let us see an example of this:

octave:25> [S i] = sort(A, 2, "descending")

 S =

 0.97880 0.92375 0.72107 0.28600 0.10514

 0.91879 0.84677 0.43847 0.30922 0.03529

 0.47812 0.43170 0.15474 0.15474 0.04455

 i =

 2 4 1 3 5

 1 5 2 3 4

 3 2 1 5 4

The second input argument tells sort to sort the elements in A row-wise. If you wish to sort
column-wise, you can leave out the second argument or use the value 1.

In total sort can be called in 12 different ways—many of which are practically the same. In
general sort is called as:

[S i] = sort(A, dir, opt)

If we compare that with the general syntax format, we see that S and i are outputs and A,
dir, and opt are input arguments. If sort is called with zero or one output argument, it will
always return the first in the list, in this case the sorted array. This is true for most Octave
functions, but not all as we shall see later. Again, you can see how to call a function by using
the help command.

find, any, and all
I use find quite often and believe it is worth showing you this helper function as well. It is
particularly powerful when used together with the different operators we learned about in
Chapter 2. find returns the indices of non-zero elements in an array. For example:

octave:26> [i j] = find([0 0; 1 0])

i = 2

j = 1

that is, the element in the second row (indicated via i) and the first column (as indicated via
j) is a non-zero element. Let us try to use find for something useful—what elements in A
are less than 0.5?

Chapter 3

[75]

octave:27> [i, j] = find(A<0.5);

Notice that I have stored the output in the variable i and j and suppressed the output to
the screen to save space. Now, from Chapter 2, we know that the argument to find, A<0.5,
returns a matrix with 0 (for false) and 1 (for true). find then simply returns the matrix indices
for the elements with value of 1. Let us check if we get what we would expect, for example:

octave:28> i(1), j(1)

ans = 3

ans = 1

Inspecting the matrix variable A in Command 20, we see that the element in row 3, column 1
is less than 0.5, as found from Command 28. Like sort above, find can be called in different
ways. Type help find to see how.

The functions any and all are related to find. The difference is that any returns true if any
element in an array is non-zero, and all returns true if all elements are non-zero. The two
functions work in a column-wise manner if the argument is a matrix. Let us illustrate this:

octave:29> any([0 0; 1 0])

ans =

 1 0

octave:30> all([0 0; 1 0])

ans =

 0 0

In Command 29, the input matrix is composed of two columns. The first column has a
nonzero element, but the other does not. any therefore returns a 1 and a 0. On the other
hand, all returns two zeros, because both columns have at least one zero element.

floor, ceil, round, and fix
It is perhaps easiest to illustrate these four functions by a few simple examples.

Time for action – trying out floor, ceil, round, and fix
1. The floor function: oc-

tave:31> floor(1.9)

ans = 1

Working with Octave: Functions and Plotting

[76]

2. The ceil function:

octave:32> ceil(1.1)

ans = 2

3. The round function:

octave:33> round(1.9)

ans = 2

4. The fix function:

octave:34> fix(pi)

ans = 3

What just happened?
From Command 31, we see that floor returns the largest integer which is smaller than the
input argument, ceil the smallest integer that is larger than the input, round simply rounds
towards to the nearest integer, and fix returns the integer part of a real number. With
these definitions, we have:

octave:35> floor(-1.9)

ans = -2

The four functions will work in an element-wise fashion if the input is an array with arbitrary
dimensions.

sum and prod
The functions sum and prod are also very useful. Basically they sum or multiply the elements
in an array. Let us see two simple examples:

octave:36> sum([1 2; 3 4])

ans =

4 6

octave:37> prod([1 2 3 4])

ans = 24

Chapter 3

[77]

You can also perform accumulated sum and product calculations with cumsum and cumprod:

octave:38>cumsum([1 2; 3 4])

ans =

 1 2

 4 6

octave:39>cumprod([1 2 3 4])

ans = 1 2 6 24

Absolute values
Octave has a function called abs that can calculate the absolute value. Recall that for
a complex number z = x + iy the absolute value is given by according to
Pythagoras' theorem. Let us see a few examples of calculating the absolute value:

octave:40> abs(2.3)

ans = 2.3

octave:41> abs(-2.3)

ans = 2.3

octave:42> abs(2 + 2i)

ans = 2.8284

octave:43> abs(-2-2i)

ans = 2.8284

abs will work in an element-wise manner if the input argument is an array.

Complex input arguments
Except for the abs function above, we have not considered how complex numbers are
treated in helper functions. Now that we know how to calculate absolute values, we can
include a few examples of how functions work when complex numbers are used as input
arguments. For example, let us try to find the maximum of a complex array:

octave:44>max([1+2i, 2+2i, 2–0.1i])

ans = 2+2i

Working with Octave: Functions and Plotting

[78]

You could imagine that max would return the maximum of the real parts and the maximum
of the imaginary parts, but it does not. max returns the element with the largest absolute
value. min, of course, returns the element with minimum absolute value.

If sort is given an array of complex numbers, it will sort according to the elements absolute
value. For example:

octave:45> sort([1+2i 2+2i 2–0.1i])

ans =

 2.0000 – 0.1000i 1.0000 + 2.0000i 2.0000 + 2.0000i

Try to call other functions with complex input arguments.

Operator functions
Operator functions carry out more complex operations on its arguments. To do this, Octave
uses highly optimized algorithms and existing libraries like LAPACK or FFTW. Of course, the
helper function sort is also based on rather complicated algorithms, but the operation itself
(sorting an array) is relatively simple.

Linear algebra
In Chapter 2, we learned how to solve linear equation systems using the left division
operator. Also, we learned how to calculate the inverse of a matrix. Octave can do much
more linear algebra some of which we will discuss in the following.

Time for action – using Octave for advanced linear algebra
1. It is easy to calculate the determinant of a 2 x 2 matrix, but for a 3 x 3 matrix, the

calculation becomes tedious, not to mention larger size matrices. Octave has a
function det that can do this for you:

octave:46> A=[2 1 -3; 4 -2 -2; -1 0.5 -0.5];

octave:47>det(A)

ans = 8

Recall from linear algebra that the determinant is only defined for a square
n x n matrix. Octave will issue an error message if you pass a non-square
matrix input argument.

2. Let us change A a bit:

octave:48> A=[2 1 -3; 4 -2 -2; -2 1 1];

octave:49>det(A)

Chapter 3

[79]

ans = 0

This result is consistent with the result from Chapter 2. A does not have full rank,
that is, the determinant is 0.

3. The eigenvalues of an n x n matrix are given by the equation:

.
 (3.6)

To calculate the eigenvalues in Octave, we can use the eig function:

octave:50> A = [1 2; 3 4];

octave:51>eig(A)

ans =

 -0.3722

 5.3722

4. eig can also return the eigenvectors. However, given two outputs, the output
sequence changes such that the first output is the eigenvectors and the second is
the eigenvalues. In Octave, you type:

octave:52> [V, L] = eig(A)

V =

 -0.8245 -0.4159

 0.5657 -0.9093

L =

Diagonal Matrix

 -0.3722 0

 0 5.3722

The eigenvectors are given by the columns in V, and the eigenvalues are the
diagonal elements in L.

What just happened?
We have already discussed Commands 46-51. In Command 52, we include the calculation
of the eigenvectors. Notice that the output changes when we call eig with two outputs,
which is not the usual behavior that we expect from an Octave function. This is to maintain
compatibility with MATLAB.

Working with Octave: Functions and Plotting

[80]

Now, recall that the eigenvector v to a corresponding eigenvalue λ is given by the linear
equation system:

. (3.7)

We can write Equation (3.7) as Bv = 0, where B = A – λI, that is, the eigenvector, is the null
space (or kernel) of the matrix B. In Octave, we can calculate the null space directly:

octave:53> lambda = L(1, 1);

octave:54> B = A – lambda*eye(2);

octave:55> null(B)

ans =

 0.8245

 -0.5657

which is the eigenvector corresponding to the eigenvalue -0.3722 in agreement with the
output from Command 523. By the way, what is the rank of B? Since you can calculate the
null space, you can also calculate the range of matrices. This function is named orth and
works in the same way as null. The following table lists the linear algebra functions that we
have covered here and in Chapter 2:

Function Description Function Description

det The determinate eig Eigenvectors and eigenvalues

inv/inverse Matrix inverse null Orthonormal null space

orth Orthonormal range space rank Matrix rank

Polynomials
Above, we learned how to represent polynomials in Octave by the polynomial coefficients.
Here, we will go through three functions that can help us to find the roots and the
coefficients of the polynomial's integral and derivative.

In Command 8, we instantiate an array c with elements [2 10.1 0 6], representing the
polynomial given in Equation (3.1). To find the roots of this polynomial we use:

3If you wish to calculate the eigenvectors, you should of course use eig.

Chapter 3

[81]

octave:56> roots(c)

ans =

 -5.1625 + 0.0000i

 0.0563 + 0.7602i

 0.0563 - 0.7602i

that is, the graph crosses the axis once.

The indefinite integral (or antiderivative) of f is given by:

(3.8)

plus a constant of integration. The derivative is:

.

(3.9)

Notice that Equations (3.8) and (3.9) are themselves polynomials which is represented via
their coefficient. In Octave, we can easily find the indefinite integral and derivative:

octave:57> polyinteg(c)

ans =

 0.5000 3.3667 0.0000 6.0000 0.0000

octave:58> polyderive(c)

ans =

 6.0000 20.2000 0.0000

which agree with the calculus above.

Pop Quiz – using simple mathematical functions
1. Let the variable A be given by the command:

octave:1> A = rand(2,3);

2. What are the sizes of the output from the following commands?

a) log(A) b) log(A') c) max(A)

d) sort(A') e) sum(A) f) cumsum(A)

Working with Octave: Functions and Plotting

[82]

3. Which of the following commands are not valid?

a) rand(3,3,2) b) polyval([i, 2+i], 3i) c) f=[cos(x), sin(x); x]

d) sort(A, 10) e) [I, j] = find(A=0.5)

Have a go hero – understanding the find function
Let the variable A be instantiated by:

octave:1> A = [3 3 3; 4 5 1];

What is the output from the following command?

octave:2> [i,j]=find(A>3); sum(i), sum(j)

Two-dimensional plotting
In the second part of this chapter, we will discuss how you can make plots with Octave. Since
version 3.0.0, the Octave development team has done a lot to improve the plotting interface
in order to obtain larger compatibility with MATLAB. At the same time, the plotting programs
have improved significantly, and the plotting facilities have now become quite impressive.
Depending on the Octave version you are using, the plotting program may not support all the
plotting commands and facilities that we will go through here. Also, the graphical output may
be different.

From version 3.4.0, Octave has a built-in native plotting program based on the
Fast Light Toolkit4 (FLTK), but the default plotting program will likely be gnuplot.
Therefore, if you have Octave version 3.4.0 or higher installed with the FLTK
plotting backend, you can load and change the default plotting toolkit to FLTK by
using:

octave:1>graphics_toolkit("fltk")

To change back to gnuplot:

octave:2>graphics_toolkit("gnuplot")

You can see what graphical toolkits are loaded and available with the function
available_graphics_toolkits.

4See http://www.fltk.org

Chapter 3

[83]

Time for action – making your first plot
Let us try to plot the polynomial, f, given in Equation (3.1) in the interval x ∈ [–5.5; 1]:

octave:59> x = [-5.5:0.1:1]; f = polyval(c,x);

octave:60> plot(x, f)

You should now see a plot looking somewhat like the one below:

What just happened?
The first input argument to plot is the x variable which is used as the x axis values. The
second is f and is used as the y axis values. Note that these two variables must have the
same length. If they do not, Octave will issue an error. You can also call plot with a single
input argument. In this case, the input variable is plotted against its indices.

When we plot the graph of f, we actually connect the discrete values given by the vector
f with straight lines. Thus, you need enough points in order for the figure to represent the
graph well.

plot and set
There are some things that do not look quite satisfactory in the figure above:

1. The axes are not right, for example, the x axis starts from -6, not -5.5.

2. The graph and the window box lines are too thin.

3. The axes are not labelled.

4. The numbers on the axes are too small.

Working with Octave: Functions and Plotting

[84]

We can fix all that! In fact, there are different ways of doing this, and we will use the most
flexible approach.

To do so, we need to:

1. Know more about the function plot.

2. Learn about the function set.

The general syntax for plot is:

plot(x, y,fmt, property, value, ...)

We have already discussed the two first input arguments. The input argument fmt is the
plotting format or style. If you leave this out, Octave will use the default blue line. The fourth
argument propertyis a property of the graph (for example, the color or linewidth) and
value is the property value. The dots indicate that you can specify several property and
property value pairs.

In general, set is called as:

set(handle, property, value, ...)

where handle is a graphic object handle (for example, a handle to an axis), property is a
property of the graphical object (say range of an axis) and value is its value (for example,
the interval from -5.5 to 1).

Time for action – changing the figure properties
1. Let us try to change the plot of the graph above. First:

octave:61> plot(x, f, "linewidth", 5);

This command will create the same plot as above, but here we specify the graph
property linewidth to have the value 5 rather than 1.

2. To set the correct limits on the axis, we use set:

octave:62> set(gca, "xlim", [-5.5 1])

3. We can also use set to set the line width of the window box and the font size of the
numbers on the axes:

octave:63> set(gca, "linewidth", 2)

octave:64> set(gca, "fontsize", 25)

4. The axes labels are also set by the set function. Here the properties are "xlabel"
and "ylabel", and the property value is set using the text function:

Chapter 3

[85]

octave:65> set(gca, "xlabel", text("string", "x", "fontsize", 25))

octave:66> set(gca, "ylabel", text("string", "f(x)",

"fontsize", 25))

5. The figure should now look something like the figure below:

Many prefer to use single quotation marks around the property
label, for example,'xlim'. Use whatever you prefer.

What just happened?
In Command 62, the handle input argument gca is actually a function and is an abbreviation
for 'get current axis'. The property "xlim" stands for x axis limits, which we set to values -5.5
and 1.

You can also set and change the axes labels by using the functions xlabel and ylabel, and
you can specify the axes limits with the axis function. However, set is more flexible and
once you get used to it, you will find it easy with which to work.

 As you can see from the interface, set can be called with a series of properties and property
value pairs. Thus, Commands 62-66 can be merged into a single call to set

octave:67> set(gca, "xlim", [-5.5 1], "linewidth", 2, "fontsize", 25,
 "xlabel", text("string", "x", "fontsize", 25), "ylabel",
 text("string", "f(x)", "fontsize", 25))

Working with Octave: Functions and Plotting

[86]

Note: The figures in this text may look different from the screen output you see
(especially the font size will likely appear much larger). In general, printed plots
look different from the screen plots: what you see is not necessary what you get.

Adding lines and text to your plot
You can also add lines and text to your figure in order to highlight things.For example, you
may want to point to the root of the polynomial. To add lines, we use the line function:

octave:68> line([-5.16 -4], [-2 -20], "linewidth", 2)

Here, the line will go from the point (x, y)=(-5.16, -2) to (x, y)=(-4, -20) and have a width of 2.
It would also be informative to have a text string stating to what the line actually points. For
this we can use the function text we saw above:

octave:69> text(-3.9, -23, "root", "fontsize", 20);

The two numbers (x, y) give the point where the string "root" begins. Let us add a bit more
information, namely:

octave:70> line([0 0], [5 -20], "linewidth", 2)

octave:71> text(-1.0, -22, "local minimum", "fontsize", 20)

The figure below shows how the plot looks after adding lines and text:

Plot styles and colors
Recall from the function syntax that you can specify to plot the format with which the graph
should be plotted. For example, to plot Equation (3.1) using circles instead of lines, you can use:

Chapter 3

[87]

octave:72> plot(x, f, "o")

The existing graph is deleted just as the axes limits and axes labels can change or disappear.
You may find the points too large or too small. The property markersize can help you to
set the size of the points:

octave:73> plot(x,f, "o", "markersize", 4);

You can experiment with the marker size value. Other point formats are *, +, x, ., and ^,
which can be combined with - to connect the points with a line.

You can also specify to Octave the color you want the graph to be plotted with via the
property color. Let us re-plot the graph of the polynomial, using points connected with
lines in the color red:

octave:74> plot(x, f, "o-", "markersize", 4, "linewidth", 2, "color",
"red")

octave:75> set(gca, "xlim", [-5.5 1], "ylim", [-40 60], "linewidth", 2,
"fontsize", 25, "xlabel", text("string", "x", "fontsize", 25),
"ylabel", text("string", "f(x)", "fontsize", 25))

Notice, that because we re-plot the graph, we need to specify the axes properties again,
which we do in Command 75. The next figure below shows how the graph looks with this
plotting style and color.

Title and legends
The figure can also be fitted with a title and the graph with a legend. The latter is especially
relevant when you have several graphs in the same figure. To add a legend stating that the
graph is the range of f you use:

octave:76> legend("f(x)")

and to add a title you can use the set function:

octave:77> set(gca, "title", text("string",
"My favorite polynomial","fontsize", 30))

Notice that title is a valid property of the axes object handle, but legend is not.

Ticks
You can control the axes tick marks. For example, you may want the numbers -40, -20, … 60
to be displayed on the y axis. Again, we can use set:

octave:78> set(gca, "ytick", [-40:20:60])

Working with Octave: Functions and Plotting

[88]

ytick is the property and the array is the corresponding value. You can also set the x axis
ticks with the property xtick. It is important to note that the array need not be evenly
spaced. You could also use [-40 -30 40 55 60]. Try it out!

Grids
Sometimes it can be helpful to have a grid to guide the eye. To turn on the grid, use:

octave:79> grid on

To turn the grid off again, simply type:

octave:80> grid off

The grid will connect the tick marks, so if you have unevenly spaced tick marks, the grid will
also be unevenly spaced. The figure below show the final plot after title, legend, ticks and
grid have been set.

fplot
Many Octave users also use fplot. This function can be used to plot graphs of mathematical
functions, hence the prefix f. This is different from plot that plots two data arrays against each
other. To plot a sine function in the interval from 0 to 2π with fplot using 50 points, you type:

octave:81>fplot("sin", [0 2*pi], 50)

Notice that we need not to specify what to plot on
the x and y axes. fplot figures that out.

Chapter 3

[89]

Clear the figure window
Just as you can delete or clear variables from the workspace, you can also delete figures. The
command:

octave:82>clf

will do so. Notice that the graphic window remains, but that the content is deleted.

Moving on
Octave enables you to do much more than simply plot a single graph. In this section, you will
learn how you can plot multiple graphs in single figure window, how you can have several
plotting windows, and how to use subplots.

To show how you can plot multiple graphs in a single window, we plot two polynomials:

 (3.10)

in the same figure window. Notice that f1 is the same polynomial as the one given
in Equation (3.1).

Time for action – having multiple graphs in the same figure
1. We start by defining the domain and the coefficients representing the polynomial:

octave:83> x = [-5.5:0.1:2]; c_1 = [2 10.1 0 6];

c_2 = [2 10.1 -10.1 6];

2. We then calculate the ranges of f1 and f2:

octave:84> f_1 = polyval(c_1, x); f_2=polyval(c_2, x);

3. And plot the graphs:

octave:85> plot(x, f_1, "linewidth", 5, x, f_2,

"linewidth", 5, "color", "red")

After setting the axes limits, font sizes, and so forth, the figure window looks like the
next figure below.

What just happened?
From Command 85, we see that plot can plot many graphs in a single call, and that you can
even specify the properties and values of each graph.

Working with Octave: Functions and Plotting

[90]

Alternatively, you can use the command hold on to force Octave to not delete the existing
graph(s); that is, instead of Command 85, you can use:

octave:86> plot(x, f_1, "linewidth", 5);

octave:87> hold on

octave:88> plot(x, f_2, "linewidth", 5, "color", "red")

When you want Octave to stop "holding on", you simply type:

octave:89> hold off

You may wonder how the subscripts are made. Easy! Just use an underscore to indicate that
the next character is a subscript. For example, in the figure below, you use:

octave:90> text(-3.9, -23, "f_1(x)")

If you want more than one character to be a subscript, you can use curly brackets around
the characters, for example,"f_{123}(x)". For superscript, you can use ^ (hat) instead of
underscore. This feature, however, may not be supported by your plotting toolkit.

Multiple figure windows
In Octave, you can also work with several figure windows at once. To change to or to create a
figure window 2, for example, you type:

octave:91> figure(2)

The next time you use plot, the graph will be shown in window 2. You can go back and work
with figure 1 by:

octave:92> figure(1)

Chapter 3

[91]

If you have opened many figure windows and have lost track of which figure is the current
one, you can use gcf:

octave:93>gcf

ans = 1

This answer means that the current figure is 1.

Subplots
Rather than opening several figure windows, you can have multiple subplots in the same
window. If you want to make subplots, you need to instruct Octave to divide the window
into a two-dimensional array of n rows and m columns. For example, to start a figure window
with dimensions 2 x 3, that is, with six plots, you use the command:

octave:94> subplot(2,3,1)

The first two arguments to subplot set the window dimensions, and the third tells Octave
to plot in the subplot window with index 1. The indices run in a row-wise manner, as
illustrated in the figure below. The figure shows an example of a window with six subplots
arranged on a 2 by 3 grid where each subplot is plotting something random.

Working with Octave: Functions and Plotting

[92]

You can now use the plot, set, line, and text commands that we have learned earlier in
this subplot. To change to subplot 2, you simply type:

octave:95> subplot(2,3,2)

The subplot functionality becomes particular useful whenever you want to have insets; for
example, if you want to zoom in on a particular part of the graph. Let us say you want to plot
the graphs of the two functions f1 and f2, from Equation (3.10). Instead of plotting them in
the same window, we can plot f2 as an inset.

Time for action – making an inset
1. First we type the command:

octave:96> subplot(1,1,1)

which will open the main plotting window and allow you to make subplots.

2. Now, to plot the graph of f1 with line width 5, we use:

octave:97>plot(x,f_1, "linewidth", 5)

3. Set the axis limits to ensure space for the inset:

octave:98> set(gca, "xlim", [-6 2.5], "ylim", [-50 70])

4. When we insert the smaller inset window, we specify the location of the lower-left
corner of the inset and the length and height. We do so in fractions of the main
plotting window (including the axis ticks). For example:

octave:99> axes("position",[0.3 0.2 0.3 0.3])

5. To plot in the inset, we simply use the basic plot function:

octave:100> plot(x, f_2, "red", "linewidth", 5)

What just happened?
In Command 99, the function axes is used to control the axes properties. The first argument
is the axes property "position", and the second argument is the corresponding value.
Unfortunately, you cannot (currently) control this via set. Now, the value specifies that the
lower-left corner of the inset window is located a fraction 0.3 inside the main window in the
x direction and a fraction 0.2 inside the main window in the y direction. The size of the inset
is given by the last two elements in the array.

You can now change the axes and text property of the inset as you wish using set. The figure
below shows the final outcome of our efforts:

Chapter 3

[93]

You can add more insets via axes. However, you cannot go back to the main window or
other insets and make changes. It can therefore take a bit of trial and error before the figure
looks just like you want it to.

We end this section by summarizing the different properties and corresponding values
discussed here for plot and set:

plot Property Property value

linewidth Numerical value that sets the graph line width (or thickness).

makersize Size of point styles.A numerical value.

color Color of graph: "black","red","green","blue","mag
enta","cyan","white"

fmt (not given explicitly)
"*", "o", "+", "x", "-", "^"[Note: your plotting toolkit
may support more formats].

Working with Octave: Functions and Plotting

[94]

set Property Property value

xlim and ylim x and y range on plot. Numerical array with two elements.

fontsize Size of tick marks. Numerical value.

xlabel and ylabel
The axis labels. String object which can be set via the text
function.

linewidth Line width (or thickness) of the figure boundaries.
Numerical value.

xticks and yticks Array giving the tick marks.

title A text string specified using the text function.

Saving your plot
You can save (or rather print) your plot to a file via the print function. For example:

octave:101> print("polynom.png", "-dpng");

will print the current window to the file "polynom.png" in png (Portable Network Graphics)
format. Notice the -d before the format specification. This is an abbreviation for "device".

You can also use print in a non-functional form, for
example, Command 101 could be replaced with:

octave:101> print polynom.png –dpng

print supports most of the common formats:

eps Encapsulated PostScript (I recommend this format if your text program or printer
supports it).

ps PostScript.

pdf Portable Document Format.

jpg/jpeg Joint Photographic Experts Group image.

gif Graphics Interchange Format image.

tex TeX picture (to be included in a TeX document).

pslatex LaTex picture file for labels and PostScript for the graphics. This enables you to edit
the labels later.

png Portable Network Graphics image.

Type help print to see the extensive list of options.

Chapter 3

[95]

When using the eps and ps format, I prefer to add the –solid and –color
options:

octave:1> print("polynom.eps", "-deps", "-solid", "-color");

This prevents the printed graphs from being shown with dashed or dotted lines
and is printed in color.

Pop Quiz – understanding the plotting options
Which of the following properties do not have a correct value associated with it?

a) "linewidth" 6 b) "ylabel" 34 c) "fontsize" Times Roman

d) "xlim" [1:10] e) "xticks" [1:10] f) "color" red

g) "title""42"

Have a go hero – making inserts
In this exercise, you will make two plots of the graph of the function given by Equation (3.3).
In the main plotting window, the graph is plotted over the interval x ∈ [0; 10] and in an inset,
it is plotted over the interval x ∈ [0; 2]. Follow the guidelines:

1. Give Octave the command: subplot(1,1,1).

2. Instantiate the vector variable xlarge with elements in the interval [0;10]. (Make
sure that the vector has sufficient elements.)

3. Calculate the range of the function over this interval and plot the graph.

4. Set any property you wish.

5. Instantiate the vector variable xsmall with elements in the interval [0;2].

6. Calculate the range of the function over this interval.

7. Use the axes function to set the position of the inset at 0.4, 0.4 and with size 0.4
and 0.4.

8. Plot the inset and change any property you wish.

9. Print the figure window to a pdf file named complex.pdf.

Compare the printed figure with the screen output.

Working with Octave: Functions and Plotting

[96]

Three-dimensional plotting
Equations (3.4) and (3.5) define two mathematical functions that are more complicated to
visualize and plot compared to the simple polynomials in the previous section. Equation
(3.4) is a scalar function that depends on two variables. The graph of such a function can be
visualized via a surface plot. Equation (3.5) is a vector valued function and can be plotted as a
parametric curve in a three-dimensional space. In this section, we shall see how to do this.

Surface plot
Let us start by making a surface plot of the graph of Equation (3.4) in the interval x ∈ [–2; 2]
and y ∈ [–2; 2]. Since we work with discrete points,we need to evaluate the range of f for all
different combinations (x1y1), (x2y1),...(xnyn). To do this in an easy way in Octave, we generate
two mesh grids such that all combinations can be included when we calculate the graph of f.

Time for action – making a surface plot
1. First we define the domain:

octave:102> x = [-2:0.1:2]; y = x;

2. Then we generate the mesh grids:

octave:103> [X Y] = meshgrid(x,y);

3. We can now calculate the range of f for all combinations of x and y values in
accordance with Equation (3.4):

octave:104> Z = X.^2 – Y.^2;

4. To make a surface plot of the graph we use:

octave:105> surface(X,Y, Z)

The result is shown below:

Chapter 3

[97]

What just happened?
In Command 103, X is simply a matrix, where the rows are copies of x, and Y is a matrix
where the columns are copies of the elements in y. From X and Y, we can then calculate the
range as done in Command 104. We see that Z is a matrix. Also, notice that surface uses
the mesh grids and the resulting Z matrix as inputs.

You can, of course, change the different properties—just like we did for two-dimensional
plotting. For example:

octave:106> surface(X,Y,Z, "linwidth", 4)

octave:107> set(gca, "linewidth", 2, "fontsize", 20, "xlim", [-2 2])

octave:108> set(gca, "xlabel", text("string", "x", "fontsize", 30)

octave:109> set(gca, "ylabel", text("string", "y", "fontsize", 30)

You can also add text strings and lines to your three-dimensional plot:

octave:110> text(-3.2, 1, 3, "f(x,y)", "fontsize", 30)

octave:111> line([0 0], [0 1], [0 2], "linewidth", 5, "color", "red")

octave:112> text(-0.5, 1.5, 1.8, "Saddle point", "fontsize", 25)

Notice that you need to specify three coordinate points to text and line because we work in a
three dimensional space. The result is shown above in the previous figure.

Working with Octave: Functions and Plotting

[98]

view and colormap
You can change the position of the viewer looking at the plot. This is done by the view
function. The arguments to view are the azimuth and elevation angles φ and θ. See the
illustration below:

To set the view to (φ, θ)=(35,30), use:

octave:113> view(35,30)

The result is shown in the surface plot above.

You can change the surface color using colormap. Commands 114 and 115 show a few
examples of this and with different views:

octave:114>colormap("gray"); view(-35, 30);

octave:115>colormap("summer"); view(0,0);

The results are shown below:

Chapter 3

[99]

Valid color maps are:

jet (default) summer copper

hsv spring gray

hot autumn bone

cool winter pink

You can also use the function mesh. This works just like surface, except that it does not fill
out the mesh grid with a color. Try it out!

Contour plots
It can be difficult to see the fine details in a surface plot. Here contour plots may help. In Octave,
you can use one of three functions to do contour plots: contour, contourf, and contour3.
They are called like surface, for example, contourf(X,Y,Z) and contour3(X,Y,Z). You
can specify to the functions how many contour levels you want (fourth argument). The default is
10. Also, you can control the properties. Let us see two examples:

octave:116>contourf(X,Y,Z, 20);

octave:117> contour3(X,Y,Z, "linewidth", 6);

The results from Commands 116 and 117 are shown below:

Three-dimensional parametric plots
Finally, let us plot the graph of the function given by Equation (3.5). As mentioned above,
this is a parameterized curve in space.

Working with Octave: Functions and Plotting

[100]

Time for action – plotting parametric curves
1. First, we need to instantiate the variable x, for example:

octave:118> x = linspace(0, 10*pi)';

2. Then, we calculate the range of f:
octave:119> f = [cos(x), sin(x), exp(-0.5*x)];

3. Just check that we got the right size:

octave:120> size(f)

ans =

100 3

4. We can now plot the curve using plot3:

octave:121> plot3(f(:,1), f(:,2), f(:,3), "linewidth", 4)

5. To set the right properties, we can use:

octave:122> set(gca, "linewidth", 2, "fontsize", 20);

octave:123> set(gca, "xlabel", text("string", "x","fontsize", 30);

octave:124> set(gca, "ylabel", text("string", "y","fontsize", 30);

octave:125> set(gca, "zlabel", text("string", "z","fontsize", 30);

octave:126> set(gca, "zlim", [0 1.2])

octave:127> text(0.9, -0.25, 0.9, "t=0", "fontsize", 30)

octave:128> view(20,30)

Phew! The final figure is shown below:

Chapter 3

[101]

What just happened?
In Command 119, we calculated the range of the interval—notice the transpose operator
in Command 118! In Command 120, we checked the size of the variable f and in Command
121, we used plot3 to plot the curve. After that, we just changed the figure properties in
order to make it a bit nicer.

Have a go hero – revisiting peaks
Recall Equation (1.1) in Chapter 1. Use meshgrid and surface to reproduce the figure that
the command peaks creates.

Summary
We learned a lot in this chapter about Octave functions and plotting.

Specifically, we covered:

� Octave functions in general.

� Mathematical functions including how polynomials are represented in Octave.

� Helper functions.

� Operator functions.

� How to calculate the range of more complicated mathematical functions.

� Two dimensional plotting.

� How to plot several graphs in the same figure window, subplots, and how to
navigate between multiple figure windows.

Working with Octave: Functions and Plotting

[102]

� Three-dimensional plotting including contour plots

� How to change the figure and axis properties

In the next chapter, we will see how scripts can be used to execute a sequence of commands
so that you do not need to retype the same commands over and over.

4
Rationalizing: Octave Scripts

Often you will need to execute a sequence of commands. Instead of typing
these commands directly into Octave's command prompt,you can write them in
a text file and then execute that file from the prompt. This enables you to make
any necessary changes later and then execute (or run) the file again without
having to go through the tedious labour of rewriting every single command. A
file composed of a single command or a sequence of commands is referred to
as a script file or just a script. In this chapter, you will learn how to write both
simple scripts and scripts that include more complicated program flows.

Sometimes it is useful to save your work, that is, to save the variables that
contain the main results of your efforts. This chapter will also go through how
you can do this in Octave, and show how you can load the variables back into
Octave's workspace.

To summarize, in this chapter you will learn:

� What a script is and how to execute it.

� How to control the execution of commands in a script using the if and switch
statements.

� To use for, while, and do statements.

� Control exception handling.

� How to save and load your work.

� About printing text to the screen and how to retrieve inputs from the user.

Rationalizing: Octave Scripts

[104]

Writing and executing your first script
We will start with something very simple. In Chapter 3, we discussed how to retrieve the
minimum value of an array (Commands 20-23). Let us try to do the same thing, but this time
using a script.

Time for action – making your first script
1. Start the Octave interactive environment and open the editor:

octave:1> edit

2. Write the following commands in the editor, but leave out the hash marks (#) and
the code line numbers to the right. They are used only for reference:

Code Listing 4.1
A = rand(3,5); #1

#2
min(min(A)) #3

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

3. Save the file as script41.m (notice the extension .m) under the current directory
or anywhere in the Octave search path directory.

4. Now executing the commands in the script file is done by simply typing:

octave:2> script41

ans = 0.1201

What just happened?
In Command 1, we opened the editor and we then wrote two Octave commands. When we
ask Octave to execute the text file in Command 2, it will execute each command in the file.

Since we did not add a semicolon at the end of line 3 in Code Listing 4.1, the command
returns the result in ans which is then displayed.

The file extension .m is needed for compatibility with MATLAB. However, you do not actually
need it in order to execute the script. To ensure that the script is executed no matter what
the extension is, you can use source("file name"), where file name is replaced with
the actual name of the file.

Chapter 4

[105]

Scripts may not begin with the keyword function since this makes Octave
interpret the file as a function file rather than a script. We will come back to the
function keyword and its meaning in the next chapter.

Improving your script: input and disp
It is possible to interact with the user. This can be done by using the input and disp
functions. input is in general called using:

a = input(prompt string, "s")

where prompt string is a text string and "s"is an optional argument that must be
included if the input is a string. Following are a few examples using the Octave command
prompt as testing ground:

octave:3> a = input("Enter a number: ");

Enter a number: 42

octave:4 > a

a = 42

octave:5> s = input("Enter a string: ");

Enter a string: Hello World

error: 'Hello' undefined near line 4 column 1

octave:6> s = input("Enter a string: " , "s");

Enter a string: Hello World

octave:7> ischar(s)

ans = 1

Notice that ischar returns true (1) if the argument is a character or character array. In
Command 5, Octave issues an error because it tries to assign s the value of a variable named
Hello. In order to specify that s should be assigned the string Hello World, we need to
include the optional argument "s"in the input function as shown in Command 6.

Rationalizing: Octave Scripts

[106]

input can only assign a value to a single variable, and it is not particularly useful to fill large
cell arrays or structures. input does, however, accept array inputs, for example:

octave:8> A = input("Enter matrix elements: ")

[1 2; 3 4]

 A =

 1 2

 3 4

You can print text and variable values to the screen using disp:

octave:9> disp("a has the value"), disp(a)

a has the value

42

Notice that when given a variable as input, disp works as if you had typed the variable
name without a trailing semicolon. disp can also display structures and cell arrays.

We can use input and disp to interact with the user of the script.

Time for action – interacting with the user
1. Open a new file and write the following commands in the editor:

Code Listing 4.2
nr = input("Enter the number of rows in the matrix: "); #1
nc = input("Enter the number of columns in the matrix: "); #2

 #3
A = rand(nr,nc); #4

 #5
minA = min(min(A)); #6

 #7
disp("The minimum of A is"); #8
disp(minA); #9

Save it as script42.m.

Chapter 4

[107]

2. Executing Code Listing 4.2, we get:

octave:10>script42

Enter the number of rows in the matrix: 12

Enter the number of columns in the matrix: 20

The minimum of A is

0.00511

What just happened?
Code Listing 4.2 allows the user to specify the size of the array (lines 1 and 2). Just like Code
Listing 4.1, the script then finds the minimum of the array. The result is printed using the
disp function.

Flush please
On some systems, the text that you want to print to the screen may be buffered. Basically,
this means that the text can sit in a queue and wait to be displayed and can potentially be
an annoying problem. To be sure to avoid this, you can flush the buffer before you prompt
the user for input. This is done via the command fflush(stdout), where stdout is the
output buffer (or stream). For example, to ensure that the stdout stream is flushed before
input is called in Command 3, we use:

octave:11> fflush(stdout);

octave:12> a = input("Enter a number: ");

Enter a number: 42

Comments
When your script becomes larger and more complicated, it is useful to have comments
explaining what the commands do. This is particularly useful if you or any other person will
use or make changes to the script later. Any line beginning with a hash mark # or percentage
sign % will be ignored by the interpreter, for example:

octave:13> a

a = 42

octave:14> # a

octave:15> % a

Rationalizing: Octave Scripts

[108]

From the above commands, you can see that if you omit the hash mark or percentage
characters, Octave prints the value of a (which is 42 as seen by the output from Command
13). Starting the line with # or % simply makes Octave ignore that line.

Let us add a few comments to Code Listing 4.2 above and flush the stdout stream:

Code Listing 4.3
flush the output stream #1
fflush(stdout); #2

#3
Get the number of rows and columns from the user #4
nr = input("Enter the number of rows in the matrix: "); #5
nc = input("Enter the number of columns in the matrix: "); #6

#7
Instantiate A and assign the elements random numbers #8
A = rand(nr,nc); #9

#10
Evaluate the minimum value #11
minA = min(min(A)); #12

#13
Print the result to the screen #14
disp("The minimum of A is"); #15
disp(minA); #16

I use hash mark when writing comments, but this is not compatible with MATLAB, which
uses the percentage sign.

If you want to be able to execute your scripts in MATLAB,
use the % character when you write comments.

Very long commands
Sometimes you need to write a very long command. For example, we saw in Chapter 3 that
the function set can be called with many arguments. To break a command into several lines,
you can use three full stops (periods) ... or back slash\. For example, line 5 in Code Listing
4.3 can be broken into two lines by:

nr = input("Enter the number of rows ...

 in the matrix: ");

Chapter 4

[109]

or:

nr = input("Enter the number of rows \

 in the matrix: ");

The backslash is traditionally used in Unix type systems to indicate that the line continues.
The three full stops are used for compatibility with MATLAB.

If you want to be able to execute your scripts in MATLAB use ... to indicate
that the command line continues.

Workspace
Whenever you execute an Octave script from the Octave command prompt, the variable
instantiated in the script is stored in the current workspace and is accessible after the script
has finished executing. Let us illustrate this with an example:

octave:16> clear

octave:17> who

octave:18> script41

ans = 0.62299

octave:19> who

Variables in the current scope:

A ans

It is important to keep track of what variables you have instantiated, including variables
instantiated in the scripts. Assume that we have happily forgotten that A was instantiated
through Command 18 and we now type the following command:

octave:20> A(:,1) = [0:10]

error: A(I,J,...) = X: dimension mismatch.

Now Octave complains about the dimension mismatch because we cannot change the length
of one of the columns in A. Had A not been instantiated previously, this command would be
perfectly valid. To avoid this (as well as other problems), I often call clear at the beginning
of the script. This will clear all variables you have instatiated, so be careful when doing this!

Rationalizing: Octave Scripts

[110]

For GNU/Linux and MacOS X users
Under GNU/Linux and MacOS X, you can call an Octave script directly from the shell, so you
do not need to start Octave's interactive environment first. To do this we simply need to:

1. Find out where Octave is installed. Typically the executable will be at:/usr/bin/
octave.

2. Add the following line at the very start of your script file, say script43.m:

#! /usr/bin/octave –qf

3. Save the file and exit Octave.

4. Make sure that you are in the directory where the file is saved. At the shell prompt,
write:

$ chmod u+x script43.m

to allow the file to be executed.

5. Now type:

$./script43.m

You should see the script being executed, just as it would be from the Octave
prompt.

Pop Quiz – understanding disp and input
Which of the following commands will issue an error or warning?

a) disp(32) b) disp(3,2) c) s=input("Enter textstring: ");

d) disp("Min.ofA is:",min(A)) e) fflush

Have a go hero – using scripts for plotting
In Chapter 3, we plotted a parameterized curve in three dimensions using plot3. Use
plot3 inside a script to plot the graph of the following vector valued function:

(P.1)

for x ∈ [0;8 π]. Make changes to the axes label font size, text, and the line width by editing
the script. When you are satisfied with the figure, print it to a file in any format you find
appropriate.

Chapter 4

[111]

Statements
In the previous section, we learned how to write a very simple script and we saw that a script
is just a sequence of commands. In this section, you will learn how to use statements in
order to control the behaviour of a script. This enables you to code scripts that can perform
different and much more complicated tasks.

Prime numbers
We will discuss the different type of statements: if, for, while, and so on by evaluating
whether a number is a prime number or not. As you know, a prime number (or just a prime)
x is a natural positive number that has exactly two divisors—1 and itself. Adivisor y is a
natural positive number larger than 1 such that the division x/y has no remainder. From the
definition of a prime, we may write a simple program flow chart as shown below. Notice
that if 2 is a divisor, then we need not check for any other even number. The algorithm is
of course extremely naïve and there are much more efficient ways of evaluating whether a
number is a prime number or not.

Rationalizing: Octave Scripts

[112]

Decision making – the if statement
From the program flow chart, it is seen that we can decide if a number is not a prime by
evaluating whether the number is smaller than 2 or if the remainder of the division x/2 is
zero. To do so in Octave, you can use the if and elseif statements. In general the syntax is:

if condition 1

 do something (body)

elseif condition 2

 do something else (body)

...

else

 do something if no conditions are met (body)

endif

If condition 1 is true (nonzero), the if statement body is executed. If condition 1
is false and condition 2 is true, the elseif body is executed. The elseif and else
statements are optional. Let us illustrate the usage by a small code snippet that checks if the
two first conditions in the flow chart are met:

if (x<2)
 disp("x not a prime");
elseif (rem(x,2)==0)
 disp("x not a prime");
else
 disp("x could be a prime number");
endif

The rem function returns the remainder of x/2. It is important to underline that if the first
if statement body is executed, meaning that if the comparison operation x < 2 evaluates
to true, the elseif and else statements are not evaluated. The Octave interpreter simply
jumps to the line after the endif statement. Likewise, if rem(x,2)==0 is true, the else
statement is not executed. This happens only if both the conditions to if and elseif are
false.

You can have statements in Octave's command prompt as well. It is always a good idea to do
simple tests here. To actually see what the code snippet above does, we use:

octave:21> x=9;

octave:22> if (x<2)

>disp("x not a prime");

Chapter 4

[113]

>elseif (rem(x,2)==0)

>disp("x not a prime");

>else

>disp("x could be a prime number");

>endif

x could be a prime number

but it is not. If you have made a coding error or typo anywhere, Octave will tell you so.

If the condition is an array, the if and elseif statement
body is only executed if all elements in the array are true.

Interlude: Boolean operators
In the code snippet above, we wrote two lines that were identical. Every line of code is error-
prone and repeating code should be avoided if possible unless there is a particular reason
not to. Octave provides you with a set of so-called Boolean operators (the third type of
operator that you will learn in this book). They enable you to include several comparisons
within a single statement such that you can avoid repeating code.

Octave's Boolean operators are divided into element-wise and short-circuit operators.

Element-wise Boolean operators
There are three element-wise Boolean operators, namely, &, |, and !. Perhaps it is easiest to
discuss how they are used through a couple of examples from the Octave prompt:

octave:23> A=eye(2); B=[1 2;3 4];

octave:24> A==eye(2) & B==eye(2)

ans =

 1 0

 0 0

Rationalizing: Octave Scripts

[114]

Command 23 is trivial. In Command 24, we use the & operator between two Booleans given
via the comparison operators A==eye(2) (left Boolean) and B==eye(2) (right Boolean).
Recall from Chapter 2 that the comparison operators == evaluates to Boolean types. Now,
the left Boolean is a 2 x 2 matrix where all the elements are true because == compares
element-wise and evaluates to true for all matrix elements. For the same reason, the right
Boolean gives a 2 x 2 matrix where all the elements have value false except for the element
at row 1 column 1. The & operator then simply evaluates if the elements in the left Boolean
and the right Boolean are both true. If so, the result of the Boolean operation is true. This is
illustrated in the below figure. Note if both values are false, the & operator evaluates to false:

Unlike the & operator, the |operator evaluates to true if the left Boolean is true or if the right
Boolean is true. For example:

octave:25> A==eye(2) | B=eye(2)

ans =

 1 1

 1 1

since A is simply equal to eye(2).

The Boolean operator !negates. This means that if a Boolean a is true,!a is false. For
example, since A is the 2 x 2 identity matrix, it can be thought of as a Boolean, where the
diagonal components have values true and off-diagonal components have value false. The
negation of A is:

octave:26> !A

ans =

 0 1

 1 0

Chapter 4

[115]

Boolean operators have lower precedence than comparison operators.

Short-circuit Boolean operators
The & and | operators go through the Booleans element-wise, meaning that the operator
evaluates the Boolean value for all pairs in the variables. Sometimes you may just want
to know if, say A is equal to eye(2)and if B is equal to eye(2), without caring about the
individual elements. For this purpose you can use short-circuit Boolean operator &&

octave:27> A==eye(2) && B==eye(2)

ans = 0

This tells you that this is not the case. Likewise we can use the the short-circuit operator ||
to check if A or B is equal to eye(2):

octave:28> A==eye(2) || B==eye(2)

ans = 1

This is because when A was instantiated, it was set to eye(2).

The table below summarizes the output from the Boolean operators &, &&, | and ||:

Operators Boolean 1 Boolean 2 Result

& and && true true true

true false false

false false false

| and || true true true

true false true

false false false

The Boolean operators are commutative; such that true& false is equivalent to false & true.

Using Boolean operators with an if statement
Instead of using the if and elseif statement construction in the previous code snippet, we
can now apply both conditions to the same if statement:

if (x<2 | rem(x,2)==0)
 disp("x is not a prime");
else
 disp("x could be a prime");
endif

Rationalizing: Octave Scripts

[116]

If x is, for example, 2, then the comparison operation x<2 evaluates to false and
rem(x,2)==0 evaluates to true, so the | Boolean operator evaluates to true according to
the table and the condition in the if statement is met. On the other hand, if x is 9, then
the comparison operationsx<2 and rem(x,2)==0 evaluate to false and the if statement
body is not executed. In this example, you could also use the short-circuit Boolean operator
||because x is a simple scalar.

Nested statements
Like other programming languages, you can have if statement constructions within an if,
elseif, or else statement. For example:

if (x<2 | rem(x,2)==0)
 disp("x is not a prime");
else
 if (x>3 & rem(x,3)==0)
 disp("x not a prime");
 else
 disp("x could be a prime");
 endif
endif

The switch statement
Some programmers prefer to use the switch statement construction over if statements.
This is often possible and can help to significantly improve the readability of the code. The
general syntax is:

switch option

case option

 do something (body)

case option

 do something else (body)

...

otherwise

 do something default (body)

endswitch

The use of the switch statement can be illustrated by rewriting the previous code snippet:

switch (x<2 | rem(x,2)== 0)
 case 1
 disp("x not a prime");

Chapter 4

[117]

 otherwise
 disp("x could be a prime");
endswitch

It should be clear what the program flow is.

Loops
From the program flow chart shown above, it can be seen that we need to calculate the
remainder of the division x/y for all values of y that are smaller than x, so if x is large,
we need to call rem many times. In Octave, we can do so using the for, while, or do
statements.

The for statement
The syntax is simple:

for condition

 do something (body)

endfor

The for statement and the corresponding endforconstruct a so-called for-loop. A for-loop
is executed as long as condition is true. Let us see a code snippet:

for y=3:x-1
 if (rem(x, y)==0)
 disp("x not a prime");
 endif
endfor

The first time Octave executes the for loop, y is set to 3 before the rest of the loop is
executed. The second time,y is set to 4, and so on. We say that y is incremented with 1.
When y equals x, the condition is not met because y runs from 3 to and including x-1, as
specified in line 1 and the loop stops executing.

From our definition of prime numbers, we know that we need not calculate the remainder
of all the even numbers. We can skip the even numbers by letting y have the values 3, 5, 7,
and so on. This is done by starting at y=3 and then incrementing y by 2, which is done by
replacing line 1 in the code snippet with the following:

for y=3:2:x-1

In this way, we carry out only half the computations.

Rationalizing: Octave Scripts

[118]

Also, in the code snippet above, the remainder is calculated for all y<x, even though
we know that if it equals 0 for just one single y, x is not a prime. It would therefore be
convenient to break out of the loop whenever this condition is met—not only do we
decrease the number of computations, but we also get rid of a text string repeatedly telling
us that x is not a prime. To this end, Octave has a break command (or keyword) which will
make Octave to break out of the loop, but continue executing any code after the loop. The
updated version of the code is:

for y=3:2:x-1
 if (rem(x,y)==0)
 disp("x is not a prime");
 break;
 endif
endfor

Instead of breaking out of a loop if some condition is met, you may want the loop to
continue. You can tell Octave to continue looping via the continue keyword. In a moment,
you will also see that this keyword should be used with some care.

The while and do statements
As an alternative to for loops, you can use while and do statements. The syntax for the
while construction is:

while condition

 do something (body)

endwhile

The reimplementation of the code snippet above is straight forward:

y=3;
while y < x
 if (rem(x,y)==0)
 disp("x is not a prime");
 break;
 endif
 y = y + 2;
endwhile

In line 1, we initialise the value of y to 3 before we enter the while loop. Code lines 3-6
check if x is not a prime, and in line 7, y is incremented with 2.

Note that break can also be used to break out of a while loop.

Chapter 4

[119]

Instead of ending the statement bodies with endif, endfor, and so forth, you
can simply use end. This is compatible with MATLAB's syntax.

We could perhaps be tempted to use the continue keyword instead, for example:

(Leads to an infinite loop)

y=3;
while y<x
 if (rem(x,y)!=0)
 continue;
 else
 disp("x is not a prime");
 endif
 y = y + 2;
endwhile

However, this leads to an infinite loop because continue will make the interpreter skip all
the commands inside the loop body including the line y = y + 2, meaning that y is never
incremented and the comparison operation y<x is always true.

You can force Octave to execute a loop once and then continue that loop if a certain
condition is met. The syntax is:

do

 something (body)

until condition

Again, the code snippet can be changed to illustrate this construction:

y=3;
do
 if (rem(x,y)==0)
 disp("x is not a prime");
 break;
 endif
 y = y + 2;
until y>=x

Note that we have to use the comparison y>=x (and not y<x) here.

Rationalizing: Octave Scripts

[120]

Incremental operators
In the previous three code snippets, the variable y is incremented. Octave supports the C
style incremental and decremental operators (which is the last operation type in this book).
For example, to increment a variable y with 1, we can use y += 1 or y++ which are both
equivalent to y = y+1. In general you can increment y by any number, x, using y += x. To
decrement, we simply use y-- or in general y-= x.

Since Octave is a vectorized programming language, the incremental operators also work on
multidimensional arrays, incrementing element-wise.

Strictly speaking, the incremental operation y++ will return the old value of y before
incrementing it. For example:

octave:29> y=0; y++

ans = 0

octave: 30> y

ans = 1

Therefore, be aware of any side effects when you use Boolean operators. Take for example
the two commands:

octave:31> x=0; y=0; a=(x++ & y++)

ans = 0

and

octave:32> x=0; y=0; a=(y++ & x++)

ans = 0

After the Command 31 x=1 and y=0, but after the Command 32 y=1 and x=0. This is
because the incremental operation x++ increment x with one but returns the old value 0.
This means that the left Boolean is false, hence the Boolean x++ &y++ is false no matter
what y++ evaluates to according to the table above. y++ is therefore not evaluated. The
same argument holds for Command 32.

Nested loops
Like the if statement, you can have nested loops. For example, if you wish to sum up all
elements in a matrix variable A with nr rows and nc columns, you can use the code snippet:

Chapter 4

[121]

sum=0;
for n=1:nr
 for m=1:nc
 sum += A(n,m);
 endfor
endfor

I strongly recommend that you use the function sum (Chapter 3) to compute the sum of an
array because this function executes much quicker than the nested loop construction above.

If you use nested loops, break will
break out of the inner-most loop.

Putting it all together
In the previous sections, we learned how to control program flow using different statements.
In this section, we will put the code snippets together and make a script that follows the
programming flow chart for computing whether a number is a prime or not. In the last part
of this section, we will expand the code and make the necessary changes to the script such
that it can calculate an entire sequence of primes.

The approach that we will use here (and there are quite a few different ones) is to assume
that the number x entered by the user is a prime. This is done by setting a Boolean
variable is_x_prime to true. The script then checks this assumption using the if and for
statements discussed above and if it is found that x is not a prime, the script will set is_x_
prime to false and break out of the for-loop. At the end, the script then writes whether x is
a prime or not depending on the value of is_x_prime:

Code Listing 4.4
Script that evaluates whether a number is a prime or not #1

#2
Retrieve input #3
fflush(stdout); #4
x = input("Enter a number: "); #5

#6
Assume x is a prime #7
is_x_prime = 1; #8

#8
Go through the steps in the programming flow chart #10
Based on the code snippets in the text #11
if (x!=2 & (x<2 | rem(x,2)==0)) #12
 is_x_prime = 0; #13
else #14
 for y=3:2:x-1 #15

Rationalizing: Octave Scripts

[122]

 if (rem(x,y)==0) #16
 is_x_prime = 0; #17
 break; #18
 endif #19
 endfor #20
endif #21

#22
if (is_x_prime) #23
 disp("x is a prime"); #24
else #25
 disp("x is not a prime"); #26
endif #27

Line 12 needs some explanation. If we had used the code snippet from above:

x<2 | rem(x,2)==0

directly, the number 2 would have been evaluated as not being a prime. By using the &
Boolean operator, we exclude this special case. Had we not included the parenthesis, Octave
would have evaluated the line from left to right, or equivalently as:

(x!=2 & x<2) | rem(x,2)==0

which evaluates to false |true, which in turn gives true according to the above Boolean
table. If the condition is true, the body of the if statement is executed telling you that 2
is not a prime. The parenthesis force Octave to first evaluate (x<2 | rem(x,2)==0)
giving true and since false & true yields false, the if statement body is not executed.

Let us test the script. Save the file as script44.m, for example, and execute it at the Octave
prompt:

octave:33> script44

Enter a number: 2

x is a prime

octave:34> script44

Enter a number: 109221

x is not a prime

octave:35> script44

Enter a number: 109211

x is a prime

Chapter 4

[123]

I bet you did not know that! As mentioned earlier, Octave has a true arsenal of helpful
functionalities, so it also has its own built-in function, isprime, that can tell you if a
number is a prime or not. Check if your script agrees with Octave's function and notice the
difference in execution speed for large input values.

If you want to calculate a whole sequence of primes, then it is not practical to use the script
from Code Listing 4.4. However, we can easily modify it to meet our needs. The strategy is
the same, but instead of prompting the user for a specific number, she will have to enter the
number of primes she wants to retrieve starting from 2. The primes are stored in the array
prime_sequence:

Code Listing 4.5
Script that calculates a sequence of primes #1

#2
Clear the prime array #3
clear prime_sequence; #4

#5
Retrieve user input #6
fflush(stdout); #7
nprimes = input("Enter number of primes (>0): "); #8

#9
Initializing x to 2 - gets rid of a comparison #10
operation inside the loop #11
x = 2; #12

#13
Initialize counter to 1 since 2 is a prime #14
prime_counter = 1; #15
prime_sequence(prime_counter) = x; #16

#17
while prime_counter<nprimes #18
 # Assume x is a prime number #19
 is_x_prime = 1; #20

#21
 # if the remainder of x/2 or x/y for y<x is zero then #22
 #x is not a prime. #23
 if (rem(x,2)==0) #24
 is_x_prime = 0; #25
 else #26
 for y=3:2:x-1 #27
 if (rem(x,y)==0) #28
 is_x_prime = 0; #29
 break; #30
 endif #31
 endfor #32

Rationalizing: Octave Scripts

[124]

 endif #33
#34

 # if is_x_prime is true (1) then save the value of #35
 # x in an array #36
 if (is_x_prime) #37
 prime_counter++; #38
 prime_sequence(prime_counter) = x; #39
 endif #40

#41
 x++; #42
endwhile #43

It should be clear how the program flows. However, two points should be made:

� Since we need not allocate memory in advance, the length of the array prime_
sequence increases as the script finds more and more prime numbers (line 39).

� Also, we can clear prime_sequence in line 4 even if it is not instantiated, which is
the situation the first time we execute the script.

Now, save the script as script45.m and execute it:

octave:36> script45

Enter number of primes (>0): 10

octave:37> prime_sequence

prime_sequence

 2 3 5 7 11 13 17 19 23 29

Try to increase the number of primes in the sequence, say enter 20, 100, and 1000. Notice
how long it takes to compute the primes as you increase the length of the sequence.
According to the World Wide Web, the largest prime computed is today (August 2010)
2243112609–1, so you probably do not want enter the competition using Code Listing 4.5!
Computing the first 1000 prime numbers using Code Listing 4.5 took my computer 213.64
seconds. Octave's own function primes could do the same in 0.02 seconds—a speedup of
around a 106 %1.

Exception handling
In the situation where an error occurs in a script, Octave will print an error message and
normally (that is, hopefully) return to the command prompt. The values of the variables will
then be whatever they were assigned before the error occurred.

1Note that the input to primes is not the number of primes you want to find!

Chapter 4

[125]

With the try and unwind_protect statements, you can force Octave to execute
commands in a script even after an error has occurred. The general syntaxes are:

try

 something (body)

catch

 cleanup if an error has occurred (body)

end_try_catch

and

unwind_protect

 do something (body)

unwind_protect_cleanup

 cleanup whether an error has occurred or not (body)

end_unwind_protect

As you can see, the difference between the two constructions is that the try-catch only
executes the body after catch if the body in try produces an error, whereas the unwind_
protect-unwind_protect_cleanup construction always executes the cleanup part. If an
error occurs outside the construction, the cleanup part will of course not be executed.

In Code Listing 4.4, we store the user input in a variable x. Assume that you use the script
as a part of a larger project where x stores a value of something important that you wish to
keep. Of course, you could rename x in script44.m to something different, but you can
also use the unwind_project_cleanup statement as seen in the following code snippet:

Stores the original value of x
original_x = x;

unwind_project
 fflush(stdout)
 x = input("Enter a number: ");
 ..# As in Code Listing 4.4
unwind_protect_cleanup
 disp("Recovering the original value of x");
 x = original_x;
end_unwind_protect

Rationalizing: Octave Scripts

[126]

After executing the script, x will always be assigned the original value even if an error occurs
in the body of the unwind_project. For example, if we deliberately make an error by giving
a string input rather than a number, then the following error message will occur:

octave:38>x.a = 1.0; x.b = "Hello World";

octave:39> x

x=

{

a = 1

b = Hello World

}

octave:40>script46

Enter a number (>0): Hello World

error: evaluating assignment near line...

Recovering the original value of x

octave:41> x

x=

{

a = 1

b = Hello World

}

In this particular example, x is never assigned a new value because input fails, but you can
see, the interpreter enters the body of the unwind_protect_cleanup statement.

Pop Quiz – understanding statements and Boolean operators
1. Which of the following Boolean operations return true?

a) true | false b) true & false c) true && false

d) false & false e) (true | false) & false f) true | (false & false)

g) 1 | 0

Chapter 4

[127]

2. What text is printed to the screen if the following code snippet is executed?

for n=1:3
 for m=1:2:5
 printf("%d %d", n, m);
 if (m==2)
 break;
 endif
 endfor
endfor

3. What is wrong with the following code (find at least three mistakes)?

for n=1:10
 m=1;
 while m<=10
 printf("n is %d, m is %d \n", m, n);
 endfor
endwhile

4. What is wrong with the following code (find at least three mistakes)?

s=input("Enter a text string: ");

if (s=="Hi")
 disp("You entered Hi");
elseif
 disp("You did not enter Hi");
end

Added flexibility – C style input and output functions
The function disp is easy to use. However, it has limitations. For example, we can display
only a single variable with disp and it always prints a newline character after displaying the
variable value

Octave has implemented most of the very flexible input and output functionality that you
may know from C. If not, do not worry, we will go through the most important one here,
namely the printf function. Functions that can write and read to and from files, such as
fprintf, fgets, and fscanf, are also supported in Octave: if you want to know more
about these functions, I strongly recommend you to look in the Octave manual.

Rationalizing: Octave Scripts

[128]

printf
printf is an acronym for print formatted text. The general syntax is:

printf(template, ...)

Here, template is a text string and can also include text format specifiers and/or escape
sequences. The ... indicates optional arguments. For example:

octave:42>for n=1:5

>printf("n is %d\n", n);

>endfor

n is 1

n is 2

n is 3

n is 4

n is 5

Here the template includes a text n is, a format specifier %d, and the escape sequence \n.
%d instructs printf to print the value of n as an integer and the sequence \n means new
line. Since we specify a format, there must be an argument with a value to print. This is given
by the value of n. The commonly used format specifiers and escape sequences are listed in
the below table:

Format specifiers Escape sequence

%d Integer format \n Newline

%f Floating point format \t Horizontal tab

%e or %E Scientific floating point format \b Backspace

%c Character format \r Carriage return

%s String format

Try to change the format specifier and escape sequence characters. For example:

octave:43> for n=1:5

>printf("n is %f \t", n);

>endfor

n is 1.0000 n is 2.0000 n is 3.0000 n is 4.0000 n is 5.0000

Chapter 4

[129]

When we calculated the first 1000 primes, it took some time and it would be nice to
somehow know how far in the computation the script has come. The below code listing
shows an example of how we can extend Code Listing 4.5 such that the script prints a
message whenever it finds a prime:

While prime_counter<nprimes
...
 if (is_x_prime)
 prime_counter++;
 prime_sequence(prime_counter) = x;
 printf("\r");
 printf("Found prime: %d - %d to go ", \
 x, nprimes-prime_counter);
 fflush(stdout);
endif

 x++;
endwhile
printf("\n");

The following points should be made: in the first call to printf we just print an escape
character, \r, which means that the next output will be printed at the beginning of the
line. In the second call to printf, we perform a computation inside the optional argument
list. This is perfectly legal since, as we know, these operations are performed before calling
the function2. Finally, we must flush stdout in order to ensure that the template is actually
printed to the screen when we call printf. Try to comment out the fflush(stdout)
command and see how the script behaves. You may not see any difference!

Pop Quiz – printing with printf
What is printed to the screen if the following commands are executed?

a) printf("Hello World\r"); b) printf("Hello World\b \n");

c) printf("Hello World\b \t\n"); d) printf("%d\n", 2);

e) printf("%f\n", 2); f) printf("%e\n", 2);

2As discussed above, incremental operators have side effects, so they should always be used with care.

Rationalizing: Octave Scripts

[130]

Saving your work
If you use script45.m to compute a very long sequence of primes, it would probably be a
good idea to save the variable prime_sequence to avoid calculating the sequence again.
Saving variables in Octave is easy. Simply use:

octave:44> save primes.mat prime_sequence

to save prime_sequence in a file called primes.mat. If you want to save more than one
variable, you just write all the variable names after the file name. The general syntax is:

save –option1 –option2 filename variable1 variable2 ...

where –option1 –option2 specifies the file format, filename is the name of the file
(for example, primes.mat in Command 44) and variable1 variable2 ... is the list
of variables that you wish to save. You can use wildcards to save all variables with a specific
pattern, for example, if variable1 is given as primes*, all variables with prefix primes will
be saved. If you do not specify any variables, all variables in the current workspace are saved.

In Command 44, I have used the extension .mat, but you can use any filename
you wish with or without the file extension.

From your editor, try to open the file primes.mat. You will see something like this:

Created by Octave 3.2.4, Sun Aug 29 12:30:20 2010 ...
name: prime_sequence
type: matrix
rows: 1
columns: 1385
 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89
...

Here you can see that Octave has added five lines beginning with a hash mark, #.This is
referred to as the heading. Here various information is stored, like who created the file
(in the case Octave, it could also be a username) and the name of the variable. If you load
the file into Octave's workspace, the interpreter will go through the heading and create a
variable called prime_sequence (overwriting any existing one) with the rows, columns, and
values listed. Of course, the heading and therefore the file cannot be read by other programs
unless they are specially designed to do so. If you save more than one variable, a header will
be written for each one.

You can tell Octave to change the output format such that it can be read by other programs.
This is specified via the options listed below.

Chapter 4

[131]

Option Description

-text Saves the variables in readable text format with information about the variables
(names, dimensions, and so on.) Also, Octave prints a small file header about
who created the file and when. This option is set as default.

-ascii Saves the variables in ASCII format. This format will not include variable
information. This is not recommended if you save more than one variable and
wish to load them into Octave at a later stage. This is useful when data is read by
other programs.

-binary Saves the variables in Octave's own binary format. This could speed up things.

-hdf5 Portable binary format.

-vx or –Vx Saves the variables in MATLAB format. Currently, x can have values 4, 6, or 7 and
indicates the MATLAB version number.

-zip or -z Compressed output format (for saving hard disk space). This option can be used
together with any format option above.

For example, to save primes_sequence in simple ascii format, use:

octave:45> save –ascii primes.dat prime_sequence

Take a look at the output file. You can, of course, type help save to see all the available
options.

Loading your work
Let us see how one can load the variable(s) stored in a file. First, we clear the workspace to
be sure that we actually load the variable prime_sequence stored in the file primes.mat:

octave:46> clear; whos

octave:47> load primes.mat

octave:48> whos

Variables in the current scope:

Attr Name size Bytes Class

==== ==== ==== ===== =====

prime_sequence 1x1385 11080 double

Rationalizing: Octave Scripts

[132]

Notice that Octave treats the numbers as doubles, since we have not explicitly told it otherwise.

The general syntax for load is:

load –option1 –option2 filename

where the options are the same as above for the save command. For example, to load the
data stored in the ascii file primes.dat, we can use:

octave:49> load –ascii primes.dat

octave:50> whos

Variables in the current scope:

Attr Name size Bytes Class

==== ==== ==== ===== =====

prime_sequence 1x1385 11080 double

primes 1x1385 11080 double

Notice that when loading an ascii file like we did in Command 49, Octave will create a
variable called primes that contains the prime sequence. It is infortunate that we chose to
load data into a variable called prime in this example, since this stops you from using
the built-in function of the same name.

In general, if the file does not contain a heading, Octave will create a variable
having the name of the data file, excluding the extension, overwriting any
existing variable or function with that name.

Functional forms
To avoid the problem of overwriting existing variables and function names, you can use the
functional form of load. For example, to load data stored in an ASCII file named primes.
dat into a variable, say prime_sequence you can use:

octave:51>prime_sequence = load("primes.dat", "ascii");

This will also work if you have saved the data in other formats, if and only if the data file
contains a single simple variable and not a structure or cell array. I therefore recommend
that you use the default text format when you save and load your data files, unless there is a
specific reason not to.

save also has a corresponding functional form, for example, Command 40 could be replaced
with:

octave:40> save("prime.mat", "prime_sequence");

Chapter 4

[133]

Have a go hero – investigating the prime gab
In this exercise, we will analyse the prime sequence a bit. The so-called prime gap gn is
defined as the difference between a prime pn and the next one pn+1, that is:

 (P.2)

1. Use script45.m to calculate the first 1000 primes.

2. Save the prime sequence in a file named primes_1000.mat.

3. Write a script that loads the prime sequence and calculates the prime gap using a
for loop.

4. Plot the first 100 prime gaps.

5. Optional: Instead of using a for-loop you can use Octave's diff function. Check out
diff's help text and replace the for-loop with diff.

Summary
In this chapter, we have learned how to:

� Write a simple script and execute it.

� Use the control statements if and switch.

� Use for, while, and dostatements.

� Perform exception handling with the unwind_protect and try statements.

� Put everything together in order to write a script with complicated program flow.

� Save and load our work using the save and load commands.

� Use the printf function.

In the next chapter you will use the statements learned here when you code your own
Octave functions.

5
Extensions: Write Your Own Octave

Functions

In this chapter, you will learn how to write your own Octave functions. This
will not only enable you to utilize more of Octave's built-in functionality, it also
makes it possible to extend Octave to do pretty much anything you want it to in
a highly reusable and modular manner.

After reading this chapter, you will be able to:

� Write your own Octave functions.

� Check and validate user inputs to the functions.

� Write function help text.

� Define mathematical functions that can be used by Octave to solve different
numerical problems.

� Perform simple debugging of your functions.

� Vectorize your code.

Your first Octave function
In general, the syntax for a function is:

function [output1, output2, ...] = functionname(input1,input2,...)

 do something (body)

endfunction

Extensions: Write Your Own Octave Functions

[136]

where output1, output2, ... are the output variables generated by the function
and input1, input2, ... are inputs to the function and are also referred to as input
arguments. The function has a name specified by functioname. The commas separating
the outputs are optional. Both output and input arguments are optional and can be scalars,
matrices, cell arrays, text strings, and so forth.

Let us first discuss a simple example. Our first function will perform a simple task; it will
evaluate the minimum and maximum values of a vector array. We design the function such
that the user enters an array and the function then returns the minimum and maximum
values. Recall that the maximum and minimum values of an array can be obtained through
the Octave functions max and min.

Time for action – programming the minmax function
1. Open your text editor and write the following code

Code Listing 5.1
function [minx, maxx] = minmax(x) #1

#2
 maxx = max(x); #3
 minx = min(x); #4

#5
endfunction #6

2. Save the code as minmax.m under the current directory or anywhere in the Octave
search path.

3. To execute the function type the following commands at the Octave command
prompt:

octave:1> a = rand(1, 5)

a =

 0.573584 0.588720 0.112184 0.052960 0.555401

octave:2> [mina, maxa] = minmax(a)

mina = 0.052960

maxa = 0.588720

as we would expect.

Chapter 5

[137]

What just happened?
From line 1 in Code Listing 5.1, we see that the function name is minmax, the function
takes the input x, and returns two outputs minx and maxx. It should be clear what code
lines 3 and 4 do. The endfunction keyword ends the function body. We will adopt the C
term "function definition" to refer to the function code, so Code Listing 5.1 is the function
definition of minmax.

Instead of endfunction, you can use end for compatibility with MATLAB.

In Command 1, we instantiated a random vector array, a, with 5 elements. We then used a
as input to the function in Command 2. It is important to understand that when we do this,
Octave copies the values stored in a into the array x which is instantiated inside the function
(line 1 in Code Listing 5.1). Octave then performs the commands given in lines 3 and 4 in
the code listing. When Octave returns from the function to the command prompt, it copies
the values stored in the variables minx and maxx to mina and maxa, respectively. See the
diagram below. In this way, Octave instantiates local copies of the inputs and outputs. We say
that Octave functions follow a "call-by-value" strategy.

Another very important point is that the variables instantiated inside the function body
(for example maxx and minx) are not a part of the workspace. In general, the variables
instantiated inside the function scope are hidden from the calling scope. Let us check that:

octave:3> who

Variables in the current scope:

a maxa mina

Extensions: Write Your Own Octave Functions

[138]

These variables are instantiated in Commands 1 and 2 and are a part of the workspace
scope. The variables instantiated inside the function minmax are not visible. In fact, after we
return from the function, we have lost any chance to retrieve the values from the function
scope.

In Chapter 2, we learned about the function setfield; see Command 40. When we called
this function, we had to use the structure variable s as both input and output. We can now
understand why; setting the structure field inside the function scope will not affect the
structure field's value in the workspace scope. We therefore have to copy the structure back
to the workspace after setting the field inside setfield.

The filename must be the same as the function name, for example, minmax, and must have
the extension .m. In the case where the function name and the filename do not match,
Octave may try to execute the function defined in the file, but it will issue a warning.

A function filename must be the same as the function name that it defines and
have the postfix .m. A function file must start with the function keyword.

Scripts versus functions
For this particular simple example, you may as well have used a script. However, there are at
least three reasons to make functions rather than scripts:

1. If you try to solve a complex problem, your script often becomes very large and the
program flow becomes hard to follow. Here it can be useful to break the script up
into one or more functions that are called from a script composed of just a few lines.

2. In large scripts you may accidentally use the same variable names for different
things. This is error prone and can be avoided using functions.

3. Your functions may be reused to solve other problems, so you need not copy parts
of one script into another. Not only is this more work, it is also error prone to copy
code from script to script.

Defining functions at the command prompt
You can define functions directly from the command prompt. For example:

octave:4> function [minx, maxx] = minmax(x)

>minx = min(x);

>maxx = max(x);

>endfunction

Chapter 5

[139]

The same function scope rules apply, meaning that minx and maxx are still not a part of the
workspace even though the function is defined via the command prompt. Unless you are
testing a function or you only need a small one time helper function, I recommend that you
define functions through a function file because it is then easily edited and recycled later. A
function defined from the prompt is, of course, deleted when you exit Octave.

Writing a function help text
It is always useful to have help text (or documentation) describing the usage and purpose of
a function. For example, if you type help plot, Octave will print a help text describing the
purpose and usage of plot.

It is straightforward to write help text. Octave interprets the first comment section in
a function file as the help text, that is, the first lines that begin with a hash mark, #, or
percentage sign, %. In the code listing below, it is shown how such help text can be created
for the minmax function:

Code Listing 5.2
#1
Usage: #2
[minx, maxx] = minmax(x) #3
#4
Returns the minimum and maximum values of a vector #5
array x #6
#7

#8
function [minx, maxx] = minmax(x) #9

#10
Using the Octave build-in max and min functions #11
 maxx = max(x); #12
 minx = min(x); #13

#14
endfunction #15

This will produce the help text:

octave:5> help minmax

usage:

[minx, maxx] = minmax(x)

Returns the minimum and maximum values of a vector

array x

Extensions: Write Your Own Octave Functions

[140]

Note that in line 11, we have made a comment line which is not printed as a help text.
Octave only uses the first continuous comment section as a help text. This means that if we
leave out the help text in lines 1-7, the comment line is printed as help. It also means that
you can put the help text anywhere in the function file as long as it is placed before any
comments.

To save space, I will write no or very limited help texts, but you can add as much as you wish
including version number, license, copyrights, authors, and much more. Depending on your
settings (see Chapter 1), the editor may write a default heading with this information when
you open a new file.

Checking the function call
Octave functions should be able to handle many different user inputs. For example, what
if the user enters a string or a matrix array as input to minimax? Or what if she assigns the
output to three variables instead of two? Let us see what happens when we do that:

octave:6> [mina maxa] = minmax("Hello World")

error: max: wrong type argument 'string'

error:...

octave:7> [mina maxa] = minmax([1 2; 3 4])

mina =

 1 2

maxa =

 1 4

octave:8> [a b c] = minmax([1 2 3 4])

mina = 1

maxa = 4

error: element number 3 undefined in return list

In Command 6, minmax is called with a string input argument. This string is passed to max
(line 12 in Code Listing 5.2), which then issues an error. It would be desirable to catch this
error before calling max, because the user could easily be confused if she gets an error
message from max and not from minmax, which is the function she called.

Chapter 5

[141]

In Command 7, minmax is called with a matrix input. Even though the function is not intended
to be able to handle matrix arrays, the function returns the minimum and maximum values of
each column in the matrix. This is of course due to the fact that max and min work in a column-
wise manner as discussed in Chapter 3. Nevertheless, since minmax was originally designed to
work on vector arrays only, we need to handle matrix input somehow.

Finally, we receive a generic error message if we call minmax with three or more output
variables. We should present an informative error message to the user if the function is not
called with the correct number of input and output arguments.

The usage, warning, and error functions
In Octave, you can print usage and warning messages to the user through the functions
of the same name: usage and warning. In their simplest form, they print a text message
to the user with the prefix usage: and warning: The difference between usage and
warning is that usage forces the interpreter to exit the function after printing the usage
message, but warning will continue to execute the commands in the function body after the
message has been printed.

We can easily check if the input to minmax is a matrix array or a character array and apply
usage and warning to print appropriate messages to the user:

Code Listing 5.3
function [minx, maxx] = minmax(x) #1

#2
 [nr nc] = size(x); #3
 if (nr>1 &nc>1) #4
 warning("Input to minmax is a matrix array: \ #5
 output will be vectors"); #6
 elseif (ischar(x)) #7
 usage("Input to minmax cannot be a character array"); #8
 endif #9

#10
 maxx = max(x); #11
 minx = min(x); #12

#13
endfunction #14

In line 3, we use the built-in function size to obtain the number of rows and columns in the
input variable. If both are larger than 1, the variable is a matrix array. Now, since the function
actually works with matrices, we will just warn the user that the output will be vector arrays
rather than scalars.

Extensions: Write Your Own Octave Functions

[142]

You should only use warning if the function
will execute properly after the message.

If the input is a character array, the message usage: Input cannot be a character
array is displayed (line 8) using usage and the function stops executing.

Instead of usage you can use error, which prints an error message with prefix error: and
then breaks out of the function. Line 8 in Code Listing 5.3 can, for example, be replaced with:

error("Input to minmax cannot be a character");

error is usually used when an unexpected error occurs somewhere in the function, whereas
usage is used when checking user input.

It is always a good idea to write the name of the function that prints the message. You can
have a script with many function calls where only one of them fails. If you do not write the
name of that function in the error message, it can be tedious to go through every single call.

nargin and nargout
In Command 8, minmax was called with three output arguments, which led to an error
message stating that the third output in the return list was undefined. Whenever an Octave
function is called, the variables nargin and nargout are automatically assigned the number
of inputs and number of outputs the function was called with. Let us see an example:

octave:9> function fun()

>printf("Number of inputs: %d Number of outputs: %d \n", \

>nargin, nargout);

>endfor

octave:10> fun(2,3,4)

Number of inputs: 3 Number of outputs: 0

octave:11> [a,b,c]=fun()

Number of inputs: 0 Number of outputs: 3

error: value on right hand side of assignment is undefined

Octave will print an error message in Command 11 because it cannot assign any values to the
variables in the return list. Think of nargin as "Number of ARGuments IN" and nargout as
"Number of ARGuments OUT".

Chapter 5

[143]

We can now deal with the error produced in Command 8:

Code Listing 5.4
function [minx, maxx] = minmax(x) #1

#2
 if (nargin!=1) #3
 usage("Number of inputs to minmax must be 1"); #4
 elseif (nargout>2) #5
 usage("Number of outputs from minmax cannot exceed 2"); #6
 endif #7

#8
 [nr nc] = size(x); #9
 if (nr>1 &nc>1) #10
 warning("Input to minmax is a matrix array:\ #11
 output will be vectors"); #12
 elseif (ischar(x)) #13
 usage("Input to minmax cannot be a character array"); #14
 endif #15

#16
 maxx = max(x); #17
 minx = min(x); #18

#19
endfunction #20

In line 6, we only print a usage message if nargout is larger than 2. In this way, the user is
also allowed to call minmax with just 1 or no output and thereby only retrieve the minimum
of the vector array. We also check in line 3 if the number of inputs is correct before checking
whether the input has the right size and is of the right type. If we had not done this and
called minmax without any inputs, the call to size would be invalid, and Octave prints a
generic error message that can be hard to trace back.

With these improvements, let us now retype Commands 6-8:

octave:10> [mina maxa] = minmax("Hello World")

usage: Input to minmax cannot be a character array

error:...

octave:11> [mina maxa] = minmax([1 2; 3 4])

warning: Input to minmax is a matrix: outputs will be vector arrays

mina =

 1 2

Extensions: Write Your Own Octave Functions

[144]

maxa =

 3 4

octave:12> [a b c] = minmax([1 2 3 4])

usage: Number of outputs to minmax cannot exceed 2

error:...

In Commands 10 and 12, you see a usage message (that you wrote) and an error message
printing where the error happened. Sometimes you may get a quite long series of error
messages, because the function that you called, called a second function that called a third
function where some error occurred. When this happens, the error messages may trace
backwards, printing a lot of information to the screen. Usually you can figure out what
happened by studying the first and last error messages.

When tracing errors, it is a good idea to begin
by checking the first and last error messages.

In Code Listing 5.4, the main part of the function body is dealing with checking whether the
function call was done correctly—and we did not catch all possible mistakes! It may seem a
bit tedious to perform these checks, but it can be useful if another person will make use of
your code.

Pop Quiz – understanding functions
1 Which of the following function definitions are erroneous?

a) a = fun(x)
 a = sin(x);
 endfunction

b) function a = fun(x y z)
 a = x + y + z;
 endfunction

c) function fun()
 printf("Hello World\n");
 end

d) # my sine function
 function a = fun(x)
 # Usage: a = fun(x)
 a = sin(x);
 endfunction

e) function [a, b] = fun(x)
 a = sin(x);
 endfunction

f) function a = fun(x, y)
 b = sqrt(x);
 c = sqrt(y)*b;
 end

2. What are the variables nargin and nargout ?

Chapter 5

[145]

Have a go hero – converting scripts into functions
Convert the script in Code Listing 4.15 to a function. Let the function name be myprimes.

Writing and applying user-supplied functions
In Chapter 3, we saw how to "build" mathematical functions directly via the Octave
command prompt. Here we will do the same thing, but we will do it properly this time
and use Octave functions.

Consider the following vector valued function which we will call the Sel'kov function (an
explanation follows later):

(5.1)

b is some positive real number that we can vary as we like. We can write Equation (5.1) in a
slightly different way by letting (x,y)=(x1,x2)=x:

.
(5.2)

When we write an Octave function for Equation (5.2), we can specify the value of b in at least
three different ways:

1. We can simply set the value of b inside the function (inside the function scope)

2. We can let b be input to the function

3. We can let b be a global variable such that its value is accessible from both the
workspace and inside the function scope

The first option is a bad choice, because we then have to change the value of b inside inside
the function every time we need to change it. As we shall see later, option 2 is not a good
choice either because it will prevent us from performing numerical analysis of the function.
So we here we will use the third option. To specify a variable as global, we use the global
qualifier:

Code Listing 5.5
function f = selkov(x) #1
 global global_b; #2

#3
 f(1) = -x(1) + 0.1*x(2) + x(1).^2*x(2); #4
 f(2) = global_b – 0.1*x(2) – x(1).^2*x(2); #5

#6
endfunction #7

Extensions: Write Your Own Octave Functions

[146]

I use the prefix global_ to underline the fact that the variable is global, but it is not
mandatory. In Code Listing 5.5, global_b has no value and we need to set this before we
call selkov. For example, from the Octave command prompt:

octave:13> global global_b = 12;

octave:14>selkov([0 0])

ans =

 0 12

octave:15>global_b = 23;

octave:16>selkov([0 0])

ans

 0 23

Note that the function in Code Listing 5.5 should check how the user calls it. For
example, the input x must be a vector array with length 2.

We can check if global_b is a global variable via isglobal:

octave:17>isglobal("global_b")

ans = 1

A variable can also be specified as persistent. This means that the value of the function
variable is not change between calls to the function. The following commands illustrate this:

octave:18> function fun()

>persistent a = 0;

>disp(a); a++;

>endfunction

octave:19> fun(), fun(), fun()

0

1

2

Chapter 5

[147]

Notice that we assigned a the value zero. a will only have this value the first time that fun
is called.Had we not used the persistent specifier, a would be zero in every function call.
Persistent variables can be very handy if you need to increment a variable after each function
call. They are not accessible from the workspace.

Using fsolve
You may wonder when a global variable can be useful: we could just pass the parameter b as an
input to the function. Suppose we wish to solve (numerically!) the nonlinear equation system:

,

(5.3)

where f is given in Equation (5.2). From Chapter 2, we know how to do this if f is a linear
function, but not if it is nonlinear as in the Sel'kov function. To find one solution near a
certain point (or an initial guess), we can use Octave's built-in function fsolve. In its
simplest form, the syntax for this function is:

x=fsolve(fun, xguess, option)

where fun is a user-supplied function that can have the syntax:

f = fun(x),

xguess is the starting guess of the solution to Equation (5.3) and option is a structure
containing optional input arguments. In the input argument list of fun, you cannot specify
any parameter list, only the free varying variable x, so here the global variable global_b
comes in handy.

The user-supplied function fun can have another syntax which we will discuss later. Let us
first try with the simple form.

As an example, we first specify an initial guess and set the parameter b using the command:

octave:20>global_b = 0.25; guess = [1 1];

We then find one solution to the corresponding nonlinear equation system:

octave:21>fsolve("selkov", guess)

ans =

 0.25000 1.53846

Extensions: Write Your Own Octave Functions

[148]

Changing b, we get:

octave:22>global_b = 0.6;

octave:23>fsolve("selkov", guess)

ans =

 0.60000 1.30435

Nonlinear equations can have many solutions. In the best case, fsolve finds one—which
one depends on the initial guess.

Of course, you can not be sure that fsolve will find a solution to any arbitrary initial guess.
How "good" the guess must be to ensure that fsolve converges to a solution depends on
the function.

Providing the Jacobian
To improve the convergence, you can provide the Jacobian matrix to fsolve, such that
this matrix is returned as a second output from the user-supplied function. For the Sel'kov
function, the Jacobian reads:

,

(5.4)

where f1 and f2 is given via Equation (5.2) above. The revised function that includes the
Jacobian is then written as:

Code Listing 5.6
function [f, J]= selkovjac(x) #1
 global global_b; #2

#3
 f(1) = -x(1) + x(2) + x(1).^2*x(2); #4
 f(2) = global_b - x(2) - x(1).^2*x(2); #5

#6
 J(1,1) = -1 + 2*x(1)*x(2); #7
 J(1,2) = 0.1 + x(1)^2; #8
 J(2,1) = -2*x(1)*x(2); #9
 J(2,2) = -J(1,2); #10
endfunction #11

Chapter 5

[149]

We need to specify to fsolve that the user-supplied function now returns the Jacobian.
We can do this via the optional structure input argument to fsolve, which can be created
through Octave's optimization structure building function optimset:

octave:24> opt = optimset("Jacobian", "on")

opt =

{

Jacobian = on

}

Check if opt really is a structure via isstruct. We now call fsolve with the optional
structure argument , making a random starting guess of the solution:

octave:25>fsolve("selkovjac", [0.1 -2], opt)

ans =

 0.60000 1.30435

which gives the same solution to Equation (5.3) as Command 23 even with a very different
initial guess.

Using lsode – dynamical analysis of the Sel'kov model
The Sel'kov function is actually a model for a particular part of glycolysis. It is the
metabolic pathway that produces adenosine tri-phosphate (ATP) from sugar and adenosine
di-phosphate (ADP). In fact, the variable x1 and x2 represent the concentrations of the
molecules fructose-6-phosphat (F6P) and ADP in this pathway1. The dynamics of the Sel'kov
model for the glycolysis is given via:

(5.5)

1For the interested reader, I recommend the text book "Mathematical Biology: I. An Introduction,
3rd edition", J.D. Murray, Springer-Verlag(2002).

Extensions: Write Your Own Octave Functions

[150]

We can write this in a vector form:

(5.6)

where f(x) is given in Equation (5.2). Equation (5.6) is a system of autonomous coupled
ordinary differential equations. The term autonomous refers to the fact that the right-hand
side does not explicitly depend on time. If we wish to know how x1 and x2 evolve (that is,
how the concentrations of the molecules vary with time), we need to solve the differential
equation system given some initial conditions.

Octave has a powerful function that can solve ordinary differential equation system
numerically. This is referred to as a numerical solution to Equation (5.6). The syntax is in its
simplest form:

x = lsode(fun, xinit, t)

where fun is a user-supplied function describing the right-hand side of Equation (5.6),
xinit is the initial condition, and t is a vector array specifying the times at which the
solution to the differential equation system is printed2. The user-supplied function has the
following syntax:

f = fun(x,t)

The second argument is optional and only makes sense if the differential equation system is
non-autonomous.

Time for action – using lsode for numerical integration
1. Since we have an autonomous system, we can simply use the function given in Code

Listing 5.5 as input to lsode. First,we specify the time vector array to contain 200
elements equally spaced from 0 to 50 as well as the initial condition:

octave:26>global_b = 1; t = linespace(0,50,200); init = [0.4 0.2];

2. Next we call lsode to obtain a numerical solution to the Sel'kov model:

octave:27> x = lsode("selkov", init, t);

3. Now, the output variable x contains the solutions to x1 and x2 in a column-wise
manner, meaning column one is the solution for x1 and column two for x2. We can
then plot the columns versus the time vector array, for example:

2See http://www.netlib.org/alliant/ode/prog/lsode.f for details.

Chapter 5

[151]

octave:28> plot(t, x(:,1), "-r", "linewidth", 5, t, x(:,2), "-b",
 "linewidth", 5);

4. The result (or something close to it, depending on your plotting program) is shown
in the left-hand side window in the figure below.
If we repeat Commands 26-28, where we set the variable global_b to 0.6, the
result is very interesting. See the right-hand side window:

What just happened?
In Command 26, we define the value of b through the global variable global_b. We also
specify the times at which lsode should print out the solution to the differential equation
system and what the initial condition is. In Command 27, we then solve the Sel'kov model
using lsode and the solution is plotted as x1 and x2 versus time. Notice that the differential
equation system has two independent variables and we plot both.

The two chemical compounds go from relaxing to a steady state where they do not change
with respect to time to a continuous oscillatory behavior. You should check this statement
by increasing the time span. This behavior is due to the fact the system undergoes a Hopf-
bifurcation which means that the dynamical behavior changes qualitatively.

Inline functions
In Octave, you can define inline functions. An inline function can be quite useful when you
want to define simple functions. For example:

octave:29> f = inline("x + exp(-x)")

f =

f(x) = x + exp(x)

octave:30> f(0)

ans = 1

Extensions: Write Your Own Octave Functions

[152]

It is not possible to do much validation and error checking in inline functions and I will not
use this function type in the book.

Pop Quiz – implementing mathematical functions as Octave functions
Implement the following mathematical functions as Octave functions:

a) f (x) = x + sin (x) b) f (t) = [sin(t), t2, cos(t)]

c) f (x, y, z) = x + y/z, z > 0 d) f (t) = exp (–iwt)

Have a go hero – bifurcation in the Sel'kov model
As mentioned in the text, the Sel'kov model changes qualitative behaviour when b is varied.
This is called a bifurcation. Mathematically, a bifurcation occurs when the real part of at least
one of the eigenvalues of the corresponding linear system changes sign. Therefore, we can
locate the bifurcation point by studying the eigenvalues of the Jacobian as a function of b. In
this exercise, we shall use selkovjac, fsolve, and eig to locate one bifurcation point. In
order to do so, we go through the following steps:

1. Set global_b to 0.35.

2. Find the solution to Equation (5.3) for this value of global_b using fsolve. This
solution is referred to as a fixed point.

3. Find the Jacobian for this point using selkovjac.

4. Use eig to calculate the eigenvalues of the Jacobian.

5. Is the real part of the eigenvalues positive or negative?

6. If the real part has changed sign, you have found the bifurcation point. If not,
increment global_bwith 0.01 and go back to step 2.

Hint: write a script that performs a loop through item 2-5.

More advanced function programming: Monte Carlo
integration
Many scientific problems involve computations of integrals. If f is a scalar function of one
variable and integratable, we can write the integral as:

(5.7)

Chapter 5

[153]

where F(x) is the anti-derivative of f. Calculating the integral of most functions analytically
can be a daunting and often impossible task, which is why we turn to the numerical
alternative.

There are different ways to compute the integral numerically. Here we will write a function that
uses the Monte Carlo method. Later we discuss the other integration methods that come with
Octave. Now, assume that f is positive in the interval x ∈ [a;b] and has a maximum M here. We
can then form a rectangle with area given by (b – a) x M. This is illustrated in the figure below.
Here random points lie inside the rectangle with area (b – a) x M, where b = 2, a = 0.5 and
M = 0.4356. The blue curve represents the graph of a function f which integral we seek to
compute.

If we randomly set points (or shoot darts) inside the rectangle, the fraction of points/darts
located under the graph of f is the same as the ratio between the area under f and the area
of the entire rectangle. This means that we can approximate the integral to:

,

(5.8)

where Nunder is the number of random points located under the graph and Ntotal is the total
number of random points set in the entire rectangle.

Extensions: Write Your Own Octave Functions

[154]

This idea is relatively easy to implement in a program flow chart as done in the figure below.
Note that the inequalities should include equalities as well, for example a x ≤ ≤ b, rather than
a < x < b. However, since we use Ocatve's rand function, the end-points are not included in
the interval.

From the flow chart, we see that we need to generate random numbers. To this end, we
can use Octave's rand function that picks out a random number between 0 and 1 from a
uniform distribution.

The program flow chart suggests the following syntax for the function which we will call
mcintgr:

I = mcintgr(fun, a, b, mcloops)

where I is the computed value of the integral, fun is the user-supplied function, aandb are
the limits, and mcloops is the number of Monte Carlo loops we wish to perform. Before
programming the integrator, we need to address a few things.

Chapter 5

[155]

The feval function
When we write an Octave function that calls a user-supplied function, we must call the latter
using Octave's feval function. The reason for this is that Octave functions work via the call-
by-value strategy as discussed above. This means that when you pass a function, it is the
function name (a string) and not a function object that is copied into the executing function.

The syntax for feval is:

[output1, output2, ...] = feval(function name, input1, input2, ...)

where output1, output2,... are outputs from the function with name function
name that takes input1, input2, ...as inputs. feval can also be called from the
command prompt , so let us illustrate its usage here by using feval to call minmax:

octave:31> [mina maxa] = feval("minmax", rand(10,1))

mina = 0.02174

maxa = 0.72132

Here feval calls minmax with one argument, namely, a random vector. The output from
minmax is then returned to the user through feval.

You need not use feval from the command prompt or in your scripts, only when you call a
user-supplied function inside the scope of a function.

You can also let the function accept so-called function handles as input arguments rather than
the function name, but here we will stick to the more traditional way of calling user-supplied
functions. If you want to know about function handles, check out the Octave manual.

Validating the user-supplied function
There are two potential problems we should address. Firstly, what if the user passes a
function that does not exist? This problem can be dealt with using exist. This function
takes as input a string and returns a non-zero value if there exists a variable, function, file, or
directory by that name. The exact return value specifies what the string is associated with.
Unfortunately, under the current version (Octave 3.2.4), exist does not distinguish between
variable names and user-supplied functions in Windows, so in order to keep compatibility,
we will only check if exist returns a non-zero value or not.

Secondly, we should check if the function returns a scalar and if this return value is positive,
since our algorithm only computes the integral for functions that are positive in the interval
from a to b. Fortunately, we can check this by functions we have learned already, namely,
min and length.

Extensions: Write Your Own Octave Functions

[156]

We are now ready to program the Monte Carlo integrator. Once again to limit the space, I
have omitted the help text:

Code Listing 5.7
function I = mcintgr(fun, a, b, mcloops) #1

#2
 # Check input args #3
 if (nargin != 4 | nargout> 1) #4
 usage("mcintgr is called with 4 inputs and 1 output"); #5
 endif #6

#7
 # Check if user supplied function exists #8
 if !exist(fun) #9
 usage("mcintgr: Sure about the function name?"); #10
 elseif (length(feval(fun,a)) != 1) #11
 usage("Function passed to mcintgr must be a scalar\ #12
 function"); #13
 endif #14

#15
 # Find maximum value of f #16
 x = linspace(a,b); #17
 y = feval(fun,x); #18

#19
 # Check if f is positive #20
 if (min(y) < 0) #21
 usage("mcintgr: the function must be positive in \ #22
 the interval"); #23
 endif #24

#25
 # Set max of m #26
 maxy = max(y); #27

#28
 # Calculate the interval #29
 l = b - a; #30

#31
 # Initialize the counters #32
 counter = 0; #33
 nloops = 0; #34

#35
 # Main mc loop #36
 while (nloops<= mcloops) #37
 r1 = a + l*rand; #38
 r2 = maxy*rand; #39

#40
 fr1 = feval(fun,r1); #41

Chapter 5

[157]

 if (r2<fr1) #42
 counter++; #43
 endif #44

#45
 nloops++; #46
 endwhile #47

#48
 # The integral #49
 I = counter/mcloops*maxy*l; #50

#51
endfunction #52

As with minmax, the main part of the function code deals with checking the inputs: there are
many more things we could check, for example, if b is smaller than a, and if they are scalars.
The actual Monte Carlo loop consists of only 9 lines of code.

Three points should be made. The if statement in lines 21-24 checks if the function is
positive in the interval specified via the variables a and b. This is done using 100 evenly
spaced points in the interval (line 17 and 18). If the function varies rapidly or if the interval is
large, this check may not suffice. We have used the symbol I as the integral. This is also used
as the symbol for the imaginary unit. Is this a problem? Not really, since I is only used inside
the function scope and will not affect the workspace variables. Finally, since the numerical
method is based on random numbers, the value of the integral will be different from one
function call to the next even if we try to evaluate the same integral. It is therefore a good
idea to present the result as a statistical mean with an uncertainty associated. In Chapter 7
we will see how this is done in Octave.

It is time to test the function. It is a good idea to test things using a problem where you
already know the result. For example, the integral of sine in the interval [0; π] is:

.

(5.9)

Using mcintgr with 100 Monte Carlo loops, we get:

octave:32>mcintgr("sin", 0, pi, 100)

ans = 1.9790

With 10000 Monte Carlo loops:

octave:33>mcintgr("sin", 0, pi, 10000)

ans = 2.0063

Extensions: Write Your Own Octave Functions

[158]

As expected, this is a better approximation for the integral. We can also define our own
function in a file or directly from the command prompt and then use the Monte Carlo
integrator to compute the integral:

octave:34> function y = fun(x); y = x.^(4/3).*log(x)./cosh(x.^2 + x);
endfunction

octave:35>mcintgr("fun", 1, 3, 10000)

0.029267

This one is hard to do by hand!

We must also check the user interface, whether the usage messages are printed as we
intended. First, let us enter an invalid function name:

octave:36>mcintgr("notvalid function", 0, 1, 1000)

usage: mcintgr: Sure about the function name?

error:...

To see if we have checked correctly for a scalar function, we first define a vector valued
function, for example:

octave:37> function y=fun(x); y(1) = sin(x); y(2)=1; endfor

octave:38> fun(pi)

ans =

 1.2246e-16 1.0000e+000

Let us use this function when calling mcintgr:

octave:39>mcintgr("fun", 0, pi, 10000)

usage: Function passed to mcintgr must be a scalar function

error:...

Finally, if we pass a function that has negative values in the interval we integrate over:

octave:40>mcintgr("sin", 0, 2*pi, 10000)

usage: mcintgr: the function must be positive in the interval

error: ...

Things work as expected.

Chapter 5

[159]

Using quad and trapz for numerical integration
Octave has a built-in function quad that can perform the same task as mcintgr. The
function is named after the algorithm it is based on, namely, quadrature, which is basically
just a weighted sum of the function values3. In a simple form, quad can be called as:

octave:41> quad("sin", 0, pi)

ans = 2

where "sin" is Octave's sine function and 0 and pi are the lower and upper limits. As you
see, quad is very precise and perhaps you also noted that it executes very quickly. Use help
quad to see all possible usages of quad.

Sometimes you may not have a well-defined mathematical function, but a series of points
from a data file. In this situation you can use trapz, which integrates a data set using the
trapezoidal rule. This algorithm is not as accurate as quadrature. To illustrate trapz, let us
first generate a data set from a sine function and then use the data as input to trapz:

octave:42> x= linspace(0,pi); y = sin(x);

octave:43>trapz(x, y)

ans = 1.9998

Using 100 data points, trapz is slightly more inaccurate as compared to quad, but you can
increase the number of points to obtain a better result.

A final note: you may wonder why anyone would want to use the Monte Carlo method. It is
apparently slow and inaccurate compared to other methods. We have only treated simple
functions that depend on a single variable and here the Monte Carlo method is relatively
slow and not the method of choice. In the case of functions that depend on several variables,
we end up with multiple integrals and this method may be advantageous compared to the
quadrature and trapezoidal schemes, especially in higher dimensions.

Vectorized programming
The Monte Carlo loop in Code Listing 5.7 is programmed like we would do it if we used C or
another low-level programming language. This is really not how we should do it in Octave! As
you know, Octave is a vectorized language and is specially designed to perform operations on
arrays. For example, if we want to find the element-wise sum of two vectors we would use:

c = a + b;

3You can read more in "Numerical Recipes: The Art of Scientific Computing, 3rd Edition", Press et al.,
Cambridge University Press (2007).

Extensions: Write Your Own Octave Functions

[160]

and not:

for n=1:length(a)

 c(n) = a(n) + b(n);

endfor

There are at least three reasons why you want to use the first option in Octave:

1. The code executes much faster. In Chapter 8, we shall see how we measure
executing speeds and study how much faster vectorization really is.

2. The number of code lines that you have to write is reduced significantly, reducing
the potential coding errors.

3. Any dimension mismatch can easily be picked out by the Octave interpreter and a
meaningful error message is printed.

Let us see how we can vectorize mcintgr.m.

The Monte Carlo loop consists of generating a series of random numbers and then
comparing those random numbers with the function value. Instead of doing this inside a
loop, we can generate all the random numbers at once, find the corresponding function
values and then compare the entire arrays.

Time for action – vectorizing the Monte Carlo integrator
Using the method above, the vectorized version of mcintgr is:

Code Listing 5.8
function I = mcintgrv(fun, a, b, mcloops) #1
 #2
 # Find maximum value of f #3
 x = linspace(a,b); #4
 f = feval(fun,x); #5
 maxf = max(f); #6
 #7
 # Generating random arrays #8
 r1 = rand(mcloops,1); #9
 r2 = rand(mcloops,1); #10
 #11
 # Get random x and y values #12
 l = b - a; #13
 x = a + l.*r1; #14
 y = maxf.*r2; #15
 fx = feval(fun, x); #16
 #17

Chapter 5

[161]

 # Counts the number of points that lie under the graph #18
 counter = length(find(y<fx)); #19
 #20
 # The integral #21
 I = counter/mcloops*maxf*l; #22

#23
endfunction #24

What just happened?
The vectorized function is called with the exact same inputs and outputs as mcintgr. The
code should be straightforward to understand, perhaps except line 19. Here we first perform
a comparison between the value of the function and the random points. This comparison
operation results in a Boolean array which is passed to find, that returns the indices of all
true elements in the array. By retrieving the number of indices using length, we can then
simply count the number of points that lie under the graph of the function.

On my machine, the vectorized version of the Monte Carlo integrator executes around 300
times faster than the "conventional" method. Using vectorized programming, you can also
avoid many loops that perform trivial tasks and clutter the code. In fact, once you get used to
it, vectorized code is much easier to read and coding errors easier to spot. Therefore, always
think about the possibility of vectorizing your code.

Scripts should also be vectorized whenever possible

Simple debugging
In earlier versions of Octave, you had to add printf or disp function calls whenever
you were tracking down bugs in your code. This is quite annoying and you find yourself
"polluting" your code with statements and function calls just to track down a silly typo.
Octave now comes with a simple, but very useful debugger. A debugger is basically a tool
that lets you monitor, and to a certain extent control, the variables inside a function. These
are usually hidden from the workspace, that is, the user cannot easily track down what and
where things went wrong without the debugger.

Code Listing 5.9 shows a modified version of Code Listing 5.8. Only one line has been
changed and the function will now produce nonsense. For example:

octave:44>mcintgrdb("sin", 0, pi, 1000)

ans = -0

Extensions: Write Your Own Octave Functions

[162]

This we know is not right.

Code Listing 5.9
function I = mcintgrdb(fun, a, b, mcloops) #1

#2
 x = linspace(a,b); #3
 f = feval(fun,x); #4
 maxf = max(f); #5

#6
 r1 = rand(mcloops,1); #7
 r2 = rand(mcloops,1); #8

#9
 l = a - b; #10
 x = a + l.*r1; #11
 y = maxf.*r2; #12
 fx = feval(fun, x); #13

#14
 counter = length(find(y<fx)); #15

#16
 I = counter/mcloops*maxf*l; #17

#18
endfunction #19

Let us not try to find the coding error by simply comparing the two functions line-by-line.
Let us instead use the debugger.

First, we need to instruct the debugger to stop somewhere in the code. When we have done
so, we can monitor the values of each variable as we step through the code. We have no clue
yet as to what went wrong, so we should just start our monitoring from the beginning. With
dbstop, we can achieve this:

octave:45>dbstop("mcintgrdb", 1)

ans = 3

The first input to dbstop is the function name and the second is the line where we want
Octave's interpreter to stop. This is also referred to as a break point. Now, in line 1 we have
no commands, just the function name and input and output variable declarations. dbstop
is smart enough to recognize this and will stop at line 3, where the first command is. This
information is given to you via the output, ans=3.

dbstop will not call the function for you, so we need to do this:

octave:46>mcintgrdb("sin", 0, pi, 1000)

mcintgrdb: line 3, column 4

Chapter 5

[163]

keyboard: stopped …

3: x=linspace(a,b)

As you can see, Octave stops executing the function mcintgrdb at line 3 as we expected.
Once we have entered the debugging mode, you will see the debug prompt

debug>

This prompt works like the usual Octave prompt, but you can now access the variables that
are in the function scope:

debug> b

b = 3.1416

which means that the variable b was assigned the value of π as intended. You can even give
commands and assign values to variables. For example:

debug> c = sin(b)

ans = 1.2246e-16

This will instantiate a new variable c with a value close to zero.

Let us step through the code. Moving one line down to line 4 we use:

debug>dbnext

mcintgrdb: line 4, column 4

keyboard: stopped …

4: f=feval(fun, x)

We are now at line 4. In this manner, we can go through the code line by line carefully
checking that the variables have the values that we expect them to have. If you are
absolutely certain that a part of your code is bug-free, you do not have to step through every
single line, but simply skip the next, say 6 lines, using:

debug>dbnext 6

mcintgrdb: line 11, column 4

keyboard: stopped …

11: x = a + l.*r1;

Extensions: Write Your Own Octave Functions

[164]

We know that the variable x should be a random array with elements in the interval from 0
to π. We can check this:

debug> min(x)

ans = -3.1391

so something has gone wrong here. x is given by a, l, and r1, and we can check the values
of these variables:

debug> a

ans = 0

debug> l

l = -3.1416

This is not right because l should be a (positive) length. Line 10, is of course,where the error
is—it should be l=b-a.

To leave the debugging mode you type:

debug>dbquit

and you are back at the Octave prompt (and can no longer access variables inside the
function scope). If we call mcintgrdb, we will go back into debug mode, because we have
not cleared or deleted the break point. To do so, we call dbclear:

octave:47>dbclear("mcintgrdb")

You can set multiple break points with dbstop and jump directly to the next break point via
the dbcont command instead of stepping through the code as we did above. If there are no
more break points, the function simply executes normally and exits the debug mode after it
finishes.

Debugging mode cannot be used for built-in functions like sin or length. You
can, however, debug scripts.

Multiple function file
Above we have defined one function in one function file. The function file had to have
the same name as the function plus the added postfix .m. There is a way to have multiple
functions defined in one file. This can be quite useful if you want to reduce the number of
function files. The trick is to let Octave treat the file as a script file, that is, to avoid using the
keyword function at the beginning of the file. In principle you can use anything you want4,
but I prefer something harmless like 1;.

4well, except function.

Chapter 5

[165]

For example, we can write the following function definitions in any file, say funcollect.m:

Code Listing 5.10
1; #1

#2
function fun1() #3

#4
 printf("Hello from fun1\n"); #5

#6
endfunction #7

#8
function fun2() #9

#10
 printf("Hello from fun2\n"); #11

#12
endfunction #13

#14
function printall() #15

#16
 printf("Hello from everyone:\n"); #17
 fun1(); #18
 fun2(); #19

#20
endfunction #21

and then execute the file from the Octave prompt as if it was a script:

octave:49>funcollect

The functions defined in funcollect.m can now be called:

octave:50> fun1()

Hello from fun1

octave:51>printall()

Hello from everyone:

Hello from fun1

Hello from fun2

Since Octave treats the file as a script file, you can have plotting commands and so forth
anywhere inside the file. However, you must first define the functions before you use them
in the script part or in any other functions.

Extensions: Write Your Own Octave Functions

[166]

Pop Quiz – understanding vectorization
Vectorize the following code snippets:

a) for n=1:rows(A)
 b(n) = A(n,1) + 1.0;
 endfor

b) s=0;
 for n=1:length(a)
 if (a(n) > 1.0) s += a(n);
 endfor

c) m=1;
 for n=1:2:length(a)
 b(m) = a(n);
 m++;
 endfor

 d) for n=2:length(a)
 c(n-1) = 0.5*(a(n) - a(n-1));
 endfor

Have a go hero – using the debugger
The listing below shows a new version of mcintgrb. Unfortunately, there is still a bug. Copy
the code into an editor and save it under the current directory. Then use the debugger to
track down the bug:

Code Listing 5.11
function I = mcintgrdb(fun, a, b, mcloops) #1

#2
 x = linspace(a,b); #3
 f = feval(fun,x); #4
 maxf = max(f); #5

#6
 r1 = rand(mcloops,1); #7
 r2 = rand(mcloops,1); #8

#9
 l = a - b; #10
 x = a + l.*r1; #11
 y = maxf.*r2; #12
 fx = feval(fun, x); #13

#14
 counter = length(find(y>fx)); #15

#16
 I = counter/mcloops*maxf*l; #17

#18
endfunction #19

Chapter 5

[167]

Summary
In this chapter, you learned:

� To write your own Octave function.

� To check for user input and write warning and usage messages if needed.

� How to write a help text .

� How to define Octave functions that can be used by Octave to solve different
numerical problems.

� About inline functions.

� To write your own functions that take user-supplied functions as input.

� More about the importance of vectorization.

� How to perform simple debugging of your function.

You are now ready to move on to the second part of the book and use your skills to write
your own Octave package.

6
Making Your Own Package: A Poisson

Equation Solver

In Chapter 1. we learned where to find and how to install Octave packages.
Packages are basically a collection of functions (and possibly scripts) that are
related to some particular scientific field or programming area. For example,
the finance package has functionality that can help you to solve different
financial problems and multi-core is a package that provides support for multi-
core CPUs.

In this chapter, you will learn how to make your own Octave package. The
package will be able to solve the one and two-dimensional Poisson equation.
The reason to choose this classical example is that the mathematics is relatively
simple, the programming part is not too complicated, and more importantly,
the package can be used to solve a range of interesting problems encountered
in engineering, fluid dynamics, electrostatics, biological population dynamics,
and much more.

This chapter is divided into three parts. In part one, the application of the
Poisson equation is discussed in relation to heat conduction problems. If you
are familiar with the Poisson equation, you can skip this part of the chapter.
Part two is concerned with the algorithm that we will use to solve the Poisson
equation, and in part three we implement the solver and build the package.

After reading this chapter, you will know:

� How to build an Octave package.

� About the one and two-dimensional Poisson equation subjected to Dirichlet
boundary conditions.

Making Your Own Package: A Poisson Equation Solver

[170]

� The finite difference scheme.

� How to use sparse matrices in Octave.

� How to solve the Poisson equation numerically using Octave.

The main purpose of this chapter is to illustrate how you can build an Octave package
and therefore we shall not go into many details with the finite differencing scheme, the
applications, and so on. There are an impressive amount of introductory and advanced
textbooks that deal with all these issues in great detail. For the interested reader, I
recommend:

1. "Computational Fluid Dynamics – the basics with applications", J. Anderson Jr.,
McGraw-Hill (1995).

2. "Numerical Recipes: The Art of Scientific Computing, 3rd Edition", Press et al.,
Cambridge University Press (2007).

3. "Computational Methods for Fluid Dynamics", J. H. Ferziger and M. Peric, Springer-
Verlag (1999)

4. "Partial Differential Equations for Scientists and Engineers", S. J. Farlow, Dover
Publications (1993).

The Poisson equation – two examples of heat conduction
We all have an intuitive idea about heat and temperature, so the easiest way to illustrate the
Poisson equation is probably through the heat conduction equation.

One-dimensional heat conduction
Consider a gold rod of length L suspended between two wires both having some
temperature T0 that we will specify later. The rod is covered by a heater that transfers heat
into the rod at some rate Q given in units of Watts per volume (W m-3). See the figure below:

This means that we have heat flowing into the rod at every point along its axial direction,
the x direction, and heat flowing out at the ends. One obvious question is: what is the
temperature inside the gold rod? Before we answer this question, we must specify that we
are only interested in the final temperature, not what happens when we switch the heater
on and off. This is called the steady state temperature profile.

http://www.cfd-online.com/Books/list_books.php?author=Ferziger%2C+Joel+H.
http://www.cfd-online.com/Books/list_books.php?author=+Peric%2C+Milovan

Chapter 6

[171]

The Poisson equation is used to describe steady state situations.

To answer the question, we first need to write up the relevant heat conduction equation. If we
let the gold rod's axial direction be in the x direction as shown in the figure, and if we assume
that the temperature does not vary in any other directions (or in time), this equation reads:

,

(6.1)

where T(x) is the temperature profile and k is the thermal conductance. For gold, k is around
319 Watts per Kelvin per meter (W K-1 m-1) at room temperature. The right-hand side is
sometimes denoted the source (or production) term for obvious reasons and often we shall
call the x variable a spatial coordinate.

Now, Equation (6.1) is a differential equation and is an example of a one-dimensional Poisson
equation. To solve the differential equation, we must specify the boundary conditions—here
they are simply given by the temperature of wires (heat sinks) at the ends of the rod, namely:

. (6.2)

It is, in fact, possible to solve Equation (6.1) subjected to the boundary conditions, Equation
(6.2), by direct integration. This gives:

(6.3)

that is, the temperature profile is a parabola with a maximum at x = L/2. Equation (6.3) is
thus the solution to the Poisson equation above. You can easily check if this statement is true
by simply differentiating Equation (6.3) twice with respect to x.

The Poisson equation is an example of an elliptic partial differential equation and is also
referred to as a boundary value problem.

Making Your Own Package: A Poisson Equation Solver

[172]

Two-dimensional heat conduction
The one-dimensional problem of heat conduction can be extended to two dimensions. For
example, a plate (of some given material) may be connected to a hot wire at some point as
shown in the figure below. The plate is sandwiched between isolating material such that
heat can only flow to and from the plate through the sides. If the plate is sufficiently "flat" as
illustrated in the figure, we can safely assume that the temperature does not vary with the
plate height.

In this situation there is no source term because everything happens on the boundaries. The
heat conduction equation reads:

.

(6.4)

We can compare this equation with Equation (6.1) and we see that there is an additional
second order derivative term on the left hand side. This is simply due to the fact that we
now consider a two dimensional problem, that is, heat is conducted in both the x and y
directions. Equation (6.4) is a special type of Poisson equation because the source term is
zero and is often called a Laplace equation.

Since the plate has four sides, we need to specify the boundary conditions on each one of
them in order to complete our mathematical description of the problem. The boundary
condition at T (0, y) is in principle given by some step function since the heat flow given by
the wire is discontinuous. However, we will approximate it with a continuous function, say a
sine function, giving:

, (6.5)

where A indicates the maximum temperature difference between the heat source, that
is, the hot wire, and the surrounding medium which has temperature T0. Lx and Ly are the
length of the plate in the x and y directions, respectively.

Chapter 6

[173]

It is actually also possible to obtain an analytical solution to this boundary value problem,
that is, to find the temperature in the plate at every point (x, y). However, this is quite
cumbersome especially if we had not made the assumption about the boundary condition.
If we had included a complex source term, the problem may not be solvable by any known
analytical method, which is why the numerical solutions become useful.

The Poisson equation
From the two examples above, we see that we can write the Poisson equation for some
variable ϕ (the temperature for example) as:

(6.6)

in one dimension, or:

(6.7)

in two dimensions. In short notation, we write this:

, (6.8)

where ∇2 is the Laplace operator. We emphasize that ϕ is a function of one or two variables
by using ϕ(x) and ϕ(x, y), respectively. Note that we assume that ϕ is twice differentiable with
respect to the spatial coordinates x and y and that the source term f in general is a function
of these coordinates as well.

The Dirichlet boundary condition
In the examples above, we have only dealt with problems where the variable has certain
specified values at the system boundaries. This type of boundary condition is called the
Dirichlet boundary condition (or boundary condition of the first type). One can also have other
types of boundary conditions; however we shall limit ourselves to the simple Dirichlet type.

It is the partial differential equation given by Equation (6.8) subjected to the Dirichlet
boundary condition that we seek to solve numerically using Octave.

Making Your Own Package: A Poisson Equation Solver

[174]

Pop Quiz – identifying the Poisson equation
Which of the following equations are Poisson equations?

a)
 b)

c)

d)

e)

f)

Finite differencing
The first step in our numerical implementation of the solver is to discretize the spatial
coordinates into grid points (or nodes). The one-dimensional case is shown in the figure
below, where the x coordinate is discretized into Ngrid grid points:

If the distance between the grid points Δ x is constant, it can easily be seen that it is given by
L/(Ngrid – 1). With this arrangement, the second order derivative of ϕ at x = x0 can then be
approximated by an algebraic equation:

,

(6.9)

where i is then the grid point located at x0. This approximation is said to be of second
order accuracy and is considered to be a good approximation for sufficiently small Δ x, or
equivalently, for a large number of grid points. Equation (6.9) is called the finite difference
approximation to the second order derivative ∂2ϕ/∂x2. It comes from the basic definition of
the derivative of a function, so no magic here. See the references listed in the beginning of
this chapter, if you are curious.

If we substitute Equation (6.9) into Equation (6.6), the discretized one-dimensional Poisson
equation reads:

.

(6.10)

Chapter 6

[175]

Since we only treat Dirichlet boundary conditions here, we let ϕ1 = ϕ(0) and ϕNgrid = ϕ(L). In
the example of the gold rod, we then simply set the end grid points to the same temperature
as the two metal wires, T0.

With only little effort, we can extend the one-dimensional case to two dimensions. We
have two spatial directions and the domain must then be discretized with respect to both
coordinates, as shown in the figure below:

Following the same idea as for the one dimensional case, the left-hand side of Equation (6.7)
can be approximated to:

,

(6.11)

that is, the discretized two-dimensional Poisson equation is:

(6.12)

if the number of grid points are the same in the x and y directions. Our numerical solver will
use Equations (6.10) and (6.12) to solve the one and two-dimensional Poisson equation.

From finite difference to a linear equation system
By applying the finite difference approximation, we have transformed the partial differential
equations into algebraic equations. This is a crucial point. If we inspect Equation (6.10)
carefully, we realize that we simply have a system of linear equations:

(6.13)

Making Your Own Package: A Poisson Equation Solver

[176]

such that the value of ϕ at each grid point is the unknown that we seek to find. In matrix
notation, we can write this as (of course, you should check that this is correct):

(6.14)

Notice that the coefficient matrix is an Ngrid x Ngrid matrix. This is an important result since we
know from Chapter2 how to solve such linear equation systems using Octave.

Equation (6.14) is perhaps a bit surprising the first time you see it. Solving something as
complicated as a partial differential equation suddenly reduces to the task of solving a
linear equation system. As mentioned above, this is simply due to the finite difference
approximation where the derivative is reduced to a simple algebraic equation system.

We can use the same basic strategy for the two-dimensional equation. In order to be able to
write the problem in a proper matrix form, it is convenient to rearrange the grid points into a
one-dimensional array (a vector) rather than using the two-dimensional array depicted in the
figure. Thus, if a grid point has indices (i, j) on the two-dimensional grid, the corresponding
one-dimensional vector index is given as:

,

(6.15)

where Ngrid is the number of grid points in the x direction. For simplicity, from now on, we
shall only consider two-dimensional grids with size Ngrid x Ngrid, that is, with the same number
of grid points in x and y directions. Furthermore, if we let the grid point spacing be the same
in both these directions, that is, Δ x2 = Δ y2 = Δ2, Equation (6.12) can now finally be rewritten
as:

. (6.16)

From this equation, we can write up the coefficient matrix for the two-dimensional Poisson
problem (some boundary points for i = 1 and i = Ngrid are not shown):

Chapter 6

[177]

(6.17)

This matrix has dimensions Ngrid x Ngrid, so that if the initial two-dimensional grid had
dimensions 100 x 100, Equation (6.17) represents the coefficient matrix for a system of
10,000 linear equations with 10,000 unknowns!

The coefficient matrices, Equations (6.14) and (6.17), include the boundary points and can be
left out without losing any information. However, I prefer to keep them here for convenience.

Interlude: Sparse matrices
One thing that you may have noticed from the coefficient matrices is that the vast
majority of the matrix elements are zeros. For example, for a two-dimensional problem
with Ngrid = 100 the coefficient matrix has 100 million elements, but only 48416 of the
elements will be non-zero (and out of these, only 0.8% will be boundary points). Such
matrices are called sparse matrices. If we store all the elements in the matrix (zeros and
non-zeros), we will need 800MB, which is not the way we want to go. Fortunately, we can tell
Octave that a matrix is sparse and Octave will only use memory for the non-zero elements.

Time for action – instantiating a sparse matrix
1. In Octave, we can define a matrix to be sparse using the sparse function. The

simplest way to instantiate a sparse matrix with, say 5 rows and 6 columns, is:

octave:1 > A=sparse(5,6)

A=

 Compressed Column Sparse (rows=5, cols=6, nnz=0, [0%])

2. To assign non-zero values to elements in the matrix, you simply use normal
assignments, for example:

octave:2> A(1,2) = 42; A(3,:)=3;

octave:3> A

A =

Making Your Own Package: A Poisson Equation Solver

[178]

 Compressed Column Sparse (rows=5, cols=6, nnz=7, [23%])

 (3,1) ->1

 (1,2) -> 42

 (3,2) -> 1

 (3,3) -> 1

 (3,4) -> 1

 (3,5) -> 1

 (3,6) -> 1

3. It is possible to extract the full matrix (and include all the zeros) from sparse matrix
by using the full function:

octave:4> B=full(A)

B =

 0 42 0 0 0 0

 0 0 0 0 0 0

 3 3 3 3 3 3

 0 0 0 0 0 0

 0 0 0 0 0 0

What just happened?
The message returned in Command 1 tells us that Octave interprets the variable as a sparse
matrix with 5 rows and 6 columns. The nnz variable indicates the number of non-zero
elements in the matrix. Here none of the elements has been initialized, so nnz equals 0.
After Command 2, we see that we have 7 non-zero elements corresponding to 23 % of all
matrix elements. Note that the elements in a sparse matrix are printed in a different manner
than what we are used to. The parentheses indicate the row and the column indices of all
non-zero elements and are printed column-wise.

You can perform operations on a sparse matrix, just as you do on normal matrix arrays, and
sparse matrices can also have complex elements.

The current version of Octave (version 3.2.4) only supports sparse two-dimensional
arrays. Higher dimensional sparse arrays may be supported in future versions.

Chapter 6

[179]

This way of creating a sparse matrix is not very efficient because every time we assign a
value to the array, Octave has to reallocate memory (and therefore communicate with the
operating system). This significantly increases the execution time if you fill in many elements.
If you know the number of non-zero elements in the matrix, you can use an alternative way
to create the sparse matrix. In the Have a go hero exercise later in this chapter, you will
see how to do this. In order not to get lost in details here, we will use the simple method
described above since this suffices for our purpose.

Memory usage
You can see how much memory Octave uses for the variables A (Commands 1-2) and B
(Command 4) with whos. A takes up 112 bytes, whereas B uses 240 bytes (corresponding to
30 doubles of 8 bytes each). You might expect A to use 56 bytes and not 112. The reason for
the additional memory usage is that Octave needs to keep track (and therefore use memory
storage) of where the non-zero elements are located. Therefore, only instantiate a matrix as
sparse if it has sufficiently many zeros.

We are now ready to implement the Poisson solver.

Implementation and package functions
Above, it was shown that we need to solve the equation:

, (6.18)

where A is the coefficient matrix, given in Equations (6.14) and (6.17), φ is the vector that we
are trying to find and represents, for example, the temperature at the grid points. The vector
b has elements given by the source term and grid distance for interior grid point, as well as
the boundary conditions for boundary points. We may write this as:

(6.19)

To solve the Poisson equation, we basically need to:

1. Specify the source term and the boundary values.

2. Generate the coefficient matrix.

3. Solve the linear equation system.

In addition, we need to convert between the vector and matrix arrays for the
two-dimensional case.

Making Your Own Package: A Poisson Equation Solver

[180]

Since b is given by the problem, we only need to create the coefficient matrix. We will choose
here to program one Octave function that generates the matrix for the one-dimensional
Poisson equation and another function that generates the matrix for the two-dimensional case.

The coefficient matrix for one dimension
The function cmat_1d generates the coefficient matrix for Equation (6.14) and is given
below in Code Listing 6.1:

Code Listing 6.1
#1
Usage: #2
A = cmat_1d(ngrids) #3
#4
Coefficient matrix for the one-dimensional #5
Poisson equation. #6
The return matrix is a sparse type. #7
#8

#9
function A = cmat_1d(ngrids) #10

#11
 if (nargin!=1 | nargout>1) #12
 usage("Invalid call"); #13
 elseif (ngrids< 1) #14
 usage("Input argument not valid"); #15
 endif #16

#17
 A = sparse(ngrids, ngrids); #18

#19
 A(1,1)=A(ngrids,ngrids)=1; #20

#21
 for n=2:ngrids-1 #22
 A(n,[n-1 n n+1])= [1 -2 1]; #23
 endfor #24

#25
endfunction #26

From Code Listing 6.1, we see that the user calls the function with one single argument,
the number of grid points. Lines 1-16 deal with documentation and function call validation.
In line 18, we instantiate the output as a sparse matrix with dimensions Ngrid x Ngrid. The
boundary points (first and last grid points) are set in line 20.

From the coefficient matrix, we see that each row has three elements with values 1, -2, 1. If
the row represents an interior grid point, we assign these three values to the correct matrix
elements inside the for loop (lines 22-24) with a single vectorized command in order to
avoid a nested loop.

Chapter 6

[181]

Once again, I stress that this way of declaring a sparse matrix is not appropriate for very large
matrices, because we have to reallocate memory every time we assign a value to the matrix.
In the exercise at the end of the chapter, you will be asked to instantiate the matrix in a
different manner and implement this into an optimized version of cmat_1d.

This is all the coding we need to do in order to solve the one dimensional Poisson equation.

The coefficient matrix for two dimensions
The coefficient matrix for the two-dimensional Poisson problem is a bit more complicated to
program because of the boundary points, but it follows the same basic idea as Code Listing
6.1 and the interface is the same. I will omit the documentation section and the function call
checks in the code:

Code Listing 6.2
function A = cmat_2d(ngrids) #1

#2
 ngrids2 = ngrids^2; #3
 A = sparse(ngrids2, ngrids2); #4

#5
 for n=1:ngrids2 #6

#7
 if (n<ngrids | n>ngrids2-ngrids | #8
 rem(n-1,ngrids)==0 | rem(n, ngrids)==0) #9
 A(n,n) = 1; #10
 else #11
 c_indices = [n-ngrids, n-1, n, n+1, n+ngrids]; #12
 A(n, c_indices) = [1 1 -4 1 1]; #13
 endif #14
 endfor #15

#16
endfunction #17

Here the boundary points are extracted in code lines 8-9. The first and second statements
pick out the upper and lower boundary points where i = 1 and i = Ngrid and the third and
fourth statement pick out the boundary points on the 'side' of the domain, where j = 1 and
j = Ngrid. See the figure above. It should be clear what lines 12-13 do. c_indices is just an
auxiliary array.

Making Your Own Package: A Poisson Equation Solver

[182]

The conversion function
Recall that whenever we are dealing with two-dimensional domains, we rearrange the two-
dimensional grid points into a one-dimensional array using Equation (6.15). The motivation
for this rearrangement was that we can formulate the problem as a linear equation
system. From the user's point of view, it would be intuitive to visualize the solution in two
dimensions rather than in one dimension (it is a two-dimensional problem after all). Also,
it is much easier for the user to provide the source term and boundary conditions through
the two-dimensional array rather than setting up the vector b herself. The package should
therefore provide the user with some functionality that can do the transformation between
the one and two-dimensional arrays. Code Listing 6.3 shows one such function that can
perform the transformation both ways, that is, from a two-dimensional array to a one-
dimensional array and vice versa according to Equation (6.15):

Code Listing 6.3
Usage: #1
b = vecmat_convert(a) #2
#3
If a is a vector returns corresponding matrix.If a is a matrix #4
returns corresponding vector according to n=(i-1)*Ngrids + j #5
#6
Notices #7
1) the matrix must be square #8
2) if a is vector sqrt(length(a)) must be a whole number #9
3) and that if vecmat_convert returns a vector it #10
is a column vector #11
#12

 #13
function b = vecmat_convert(a) #14

 #15
 type = isvector(a); #16
 switch type #17

 #18
 case 0 #19

 #20
 if (!issquare(a)) #21
 usage("Input not a square matrix"); #22
 endif #23

 #24
 ngrids = rows(a); #25
 for i=1:ngrids #26
 for j=1:ngrids #27
 n=(i-1)*ngrids + j; #28
 b(n)=a(i,j); #29
 endfor #30

Chapter 6

[183]

 endfor #31
 b = b'; #32

 #33
 case 1 #34

 #35
 ngrids = sqrt(length(a)); #36
 if (ngrids != floor(ngrids)) #37
 usage("sqrt(length(a)) must be a whole number"); #38
 endif #39

 #40
 for i=1:ngrids #41
 for j=1:ngrids #42
 n=(i-1)*ngrids + j; #43
 b(i,j) = a(n); #44
 endfor #45
 endfor #46

 #47
 otherwise #48
 error("Something is wrong with the input variable"); #49
 endswitch #50

 #51

endfunction #52

The code should be straightforward. One thing to notice however, is that in line 29, we fill up
the return vector which will be a row vector. In line 32, we transpose the vector such that the
function returns the vector as a column vector.

Testing the functions
Before we begin to solve interesting physics problems, we must check that the three
functions work as intended.

The coefficient matrices
In cmat_1d and cmat_2d, the coefficient matrices for one and two-dimensional systems are
generated. We could check the output from each function manually by printing the elements
one-by-one, but this is a tedious task and you are likely to miss some of the mistakes (well, I
know I am). We should instead make a graphical representation of the matrices. To this end,
the imagesc function comes in handy.

Making Your Own Package: A Poisson Equation Solver

[184]

Basically, the imagesc function displays matrix elements with a colour depending on their
values. If we choose a gray colour map, black elements indicate the minimum value in the
matrix and white indicates maximum values. All the other elements are then toned gray
depending on their value—the higher value the lighter the gray. This is ideal for our purpose
since our matrices follow a certain pattern and contain only three different values, -2, 0, and 1
for the one-dimensional Poisson problem and -4, 0, and 1 for the two-dimensional problem.

Let us go ahead and try it out.

Time for action – using imagesc
1. Let us first consider a one dimensional problem with 20 grid points. The coefficient

matrix is generated by calling cmat_1d:

octave:5> A=cmat_1d(20);

2. To set the gray colour map, use (also see Chapter 3):

octave:6> colormap("gray");

3. To make a scaled image of the matrix, we use:

octave:7> imagesc(full(A))

The result is shown in the left-hand side figure below.

What just happened?
Notice that in Command 7, we use the full matrix of A because imagesc does not currently
support sparse matrices. It is easy to see that matrix elements indeed follow the matrix given
by Equation (6.14).

Chapter 6

[185]

For the two-dimensional problem, we can do the same. The result is shown in the right
figure for a domain discretized into a 5 x 5 grid. For this grid size, we have 16 boundary
points which are given by ones (white) on the matrix diagonal and only 9 interior points
given by -4 (black)—see Equation (6.17). The so-called "fringes" on each side of the diagonal
represent the finite differencing between the different rows in the two-dimensional grid. By
the way, why are the zero elements in the right figure brighter than in the left figure?

Instead of imagesc, you can use the spy function. This will show all non-zero
elements in the matrix array, but it does not indicate the values.

The figure also illustrates the sparseness of the problem. For the one-dimensional case, only
14 % of the matrix elements are non-zero and for the two-dimensional problem, it is only 9.8
%. As mentioned above, for larger arrays this is even more extreme!

Comparison with analytical solution
In the example of the gold rod, we could actually find the analytical solution given in
Equation (6.3). We should always check against analytical solutions when possible!

Time for action – comparing with analytical solution
1. First we type in the physical constants given by the problem. Let us use Q = 10

kiloWatts per meter cubed (kW m-3), k = 319 Watts per Kelvin per meter (W K-1 m-1),
L = 0.5 meter and T0 = 273 Kelvin:

octave:8> Q=10000; k = 319; L=0.5; T_0=273;

2. We then need to specify the number of grid points (including the boundary grid
points):

octave:9>N_grids = 20;

This gives a grid spacing of :

octave:10> delta = L/(N_grid-1);

3. From this, we can set the source term and boundary values:

octave:11> b = -Q/k*delta^2*ones(N_grids,1);

octave:12> b(1)=b(N_grids)=T_0;

4. Next, we need the coefficient matrix which we obtain from cmat_1d:

octave:13> A=cmat_1d(ngrids);

Making Your Own Package: A Poisson Equation Solver

[186]

5. We have now specified everything that we need in order to calculate the
temperature profile: the vector b and the matrix A. The temperature profile is then
found by solving the linear equation system. In Octave, we use the left division
operator:

octave;14> T=A\b;

That's it!

What just happened?
The commands were explained above, but we should of course display the result somehow.
We know how we can do this from Chapter 3:

octave:15> x=linspace(0,L,ngrids); plot(x,T);

The result is shown in the figure below, where the numerical solution is given by the red
squares and the analytical solution, Equation (6.3), is plotted with a blue line.

We see a perfect agreement which indicates that our implementation is correct.

Two dimensions
We formulated a two-dimensional heat problem in Equations (6.4) and (6.5). Since the
source term is zero, this is an example of a Laplace equation, a special case of the Poisson
equation. Let us find a numerical solution to this using our functions.

Chapter 6

[187]

Time for action – solving a two-dimensional Laplace equation
1. We start by specifying the temperature at the edges of the plate, the number of

grid points, and the spatial coordinate (recall that the package only supports square
domains such that y = x):

octave:16> T_0 = 300; N_grids = 50; L = 0.1; x = linspace(0, L,
 N_grids);

2. The source term is zero:

octave:17> B = zeros(N_grids, N_grids);

3. The boundary conditions can be specified as:

octave:18> B(:,1) = sin(pi*x/L) + T0; B(1,:) = T0; (N_grids,:)=T0;
 B(:,N_grids)=T0;

4. To convert B into the appropriate vector format, we use the vecmat_convert
function(Code Listing 6.3):

octave:19> b = vecmat_convert(B);

5. The coefficient matrix is generated via the command:

Octave:20> A = cmat_2d(N_grids);

6. The solution is therefore:

octave:21> t = A\b;

7. Now t is a vector and contains the numerical solution to the problem. This is not
really what we want to end up with since the problem is two-dimensional. We call
vecmat_convert again to convert the vector into a matrix:

octave:22> T = vecmat_convert(t);

8. We can visualize the solution through the following command:

octave:23> [X Y] = meshgrid(x,x); surf(X,Y,T); view(50,30);

Making Your Own Package: A Poisson Equation Solver

[188]

9. The output is shown in the figure below:

What just happened?
Again, the commands were explained above. Did you notice how fast Octave was able
to solve the equation system in Command 21? On my workstation, it took around 0.09
seconds—and we are dealing with 2500 equations and unknowns! Surprisingly perhaps, it is
generating the coefficient matrix that takes up most of the time (around 0.3 seconds).

Octave chooses the fastest method to solve the linear equation system. This choice depends
on the coefficient matrix. In our case it is a weak diagonally dominant matrix, because the
sum of the off-diagonal elements in the matrix is equal to the absolute value of the diagonal
element for each row.

If you study the Poisson equation on the same grid, but for different boundary
conditions and source terms, you need only generate the coefficient matrix once.

I will leave it up to you to compare the result with the analytical solution.

More examples
Once we start feeling comfortable with the functions, we can find the solution to more
complicated problems, for example, the two dimensional Laplace equation:

 (6.20)

Chapter 6

[189]

subjected to boundary conditions:

. (6.21)

Something even more exotic, the Poisson equation:

, (6.22)

with boundary conditions:

,

(6.23)

where the source term f is given by randomly positioned spikes with some amplitude, say 3.
Solutions to these two problems are shown in the figure below using a grid size 80 x 80:

Wrapping everything into one function
We can easily wrap everything into a single function. This function then simply takes the
source term and the boundary values as input. If the input is a vector, we have a one
dimensional Poisson equation, otherwise, if it is a matrix, we a have two- dimensional
Poisson equation. The number of grid points will also be specified via the source input array.

In Command 11, we multiply the interior source term with Δ2 in accordance with Equation
(6.19). It would be a nice feature if the function can take care of this as well. We can let
an optional second argument be the domain length (again, recall that we only support
square domains). If this argument is given to the function, the interior source term will be
multiplied with Δ2.

Making Your Own Package: A Poisson Equation Solver

[190]

A programming flow chart of a wrapping function as shown below, and the corresponding
function pois_fd is given in Code Listing 6.4. To save some space, validation of the inputs
and outputs are omitted.

Code Listing 6.4
#1
Usage: #2
phi = pois_fd(b, L) #3
#4
Solves the one and two dimensional Poisson equation using #5
finite difference. #6
#7
b can be a vector (one dimension) or matrix (two dimensions) #8
and specifies the source term and boundary conditions. #9
#10

Chapter 6

[191]

L is the length of the simulation domain and is optional. #11
If provided the source term is updated to b=delta^2*b. #12
#13

 #14
function phi = pois_fd(b, L) #15

 #16
 type = isvector(b); #17

 #18
 switch type #19
 case 0 #20
 if (!issquare(b)) #21
 usage("Input matrix must be square"); #22
 endif #23

 #24
 ngrids = rows(b); #25
 if (nargin==2) #26
 delta = L/(ngrids-1); #27
 b(2:ngrids-1, 2:ngrids-1) = ... #28
 delta^2*b(2:ngrids-1, 2:ngrids-1); #29
 endif #30

 #31
 b = feval("vecmat_convert",b); #32
 A = feval("cmat_2d", ngrids); #33
 phi = A\b; #34
 phi = feval("vecmat_convert", phi); #35

 #36
 case 1 #37
 ngrids = length(b); #38
 if (nargin==2) #39
 delta = L/(ngrids-1); #40
 b(2:ngrids-1) = delta^2*b(2:ngrids-1); #41
 endif #42

 #43
 A = feval("cmat_1d", ngrids); #44
 phi = A\b; #45

 #46
 otherwise #47
 error("Something is wrong with the input argument"); #48
 endswitch #49

 #50
endfunction #51

Whenever we call cmat_1d, cmat_2d, or vecmat_convert, we use the feval function.
You can also call the functions directly.

Making Your Own Package: A Poisson Equation Solver

[192]

Let us reuse the problem of the temperature profile in the gold rod to make an example of
how to use this function:

octave:24> b=-10000/319*ones(20,1); b(1)=b(20)=273;

octave:25> T = pois_fd(b, 0.5);

which produces the same values of T as seen above.

Note that pois_fd will have to generate the coefficient matrix every time it is called. This
means that it may not be a good choice to use this function if you have to study the Poisson
equation on the same grid dimensions, but for different boundary conditions and source terms.

Have a go hero – optimizing the usage of the sparse function
To optimize the cmat_1d and cmat_2d, we must instantiate the sparse array differently. The
sparse function also supports the following syntax:

A= sparse(i, j, values, n, m);

where I and j are the row and column indices for the non-zero elements, values is an
array with the element values, and n and m give the size of the matrix.

For example, to instantiate the sparse matrix from Commands 1 and 2, we could use:

octave:34> A = sparse([1 3 3 3 3 3 3], [2 1 2 3 4 5 6],\

[42 3 3 3 3 3 3], 5, 6);

In this way, Octave knows the number of non-zero elements and can allocate the needed
memory using one single communication with the operating system.

Of course, you can use auxiliary arrays to hold the indices and values:

octave:35>r_indices = [1 3 3 3 3 3 3]; c_indices = [2 1 2 3 4 5 6];
values = [42 3 3 3 3 3 3];

octave:36> A = sparse(r_indices, c_indices, values, 5,6);

From this information, optimize cmat_1d such that it contains no loops and no need for
memory reallocation at all. Check your implementation with imagesc (or spy).

Try to estimate the speed-up you gained from this optimization using 10000 grid points. (On
my machine the speed-up is around 110.)

Chapter 6

[193]

The pois-solv package
We can now gather the four functions cmat_1d, cmat_2d, vecmat_convert, and pois_
fd into an Octave package. There are a few advantages of packing the functions together
rather than just copying the individual m-files:

� The files are archived into single standard file format.

� You can install the package easily with the pkg command, load and unload the
functions, and not be concerned with where the functions are located (that is, if
they are in the Octave search path).

� With the package, you can add any relevant information about the functionality.

� You can upload the package to Octave-Forge.

There are a few things we need to do in order to package the functions properly.

Organizing files into the package directory
First you will need a package directory—we will call this directory poissolv1, but you can call
it whatever you want. Inside the package directory, we have the following files and directory:

1. The DESCRIPTION file: this text file contains a description of the package, for
example, the version number and author. This file is mandatory.

2. The COPYING file: contains the license under which the package is released. We
shall use GNU General Public License version 3 or later. This file is also mandatory.
Note that this license will affect any application using the package. See the full
license agreement (link is given below).

3. The INDEX file: a text file that lists the package functions in different categories. The
INDEX file is optional.

4. The inst directory: a directory containing all the package m-files. It is not
mandatory, but the inst directory must be included if the package consists of any
m-files, which it usually will.

Let us see examples of the files one-by-one.

1Not to be confused with the package name pois-solv

Making Your Own Package: A Poisson Equation Solver

[194]

The DESCRIPTION file
An example of the DESCRIPTION file is shown below:

DESCRIPTION file for the pois-solv package #1
Name: pois-solv #2
Version: 0.1.0 #3
Date: 6-12-2010 #4
Title: pois-solv #5
Author: Jesper Hansen, nomail@somedomain.org #6
Maintainer: Jesper Hansen #7
Description: Solver for the one and #8
 two-dimensional Poisson equation #9
using finite differencing. #10
License: GPL version 3 or later #11

Line 1 begins with a hash mark and is a comment line—just like comment lines in scripts and
functions. In lines 2-11, we list the package name, version number, date, and so forth. Each
of these lines begins with a keyword, for example, Version. The keywords are recognized
by the packaging program and many of them must be included in the DESCRIPTION file.
The ones listed above are the mandatory ones. You can also provide a link to a web page if
additional information can be found there using the keyword Url.

A new line plus a space (lines 8-10) is interpreted by the package manager as a line continuation.

The COPYING file
 The user must be informed about the package license. Is it legal to make copies of the
package and give it to your friends? Can you modify the code and distribute that? All this
information is provided in the license agreement in the COPYING file.

As mentioned above, we shall use GNU General Public License version 3 or later versions.
From the web page, http://www.gnu.org/licenses/gpl.html, you can read more
about this license and download a text file with a generic license agreement that needs
only little editing for most purposes. In a modified and very short form (again to save some
space), the pois-solv package license reads:

The pois-solv package is free software: you can redistribute #1
it and/or modify it under the terms of the GNU General #2
Public License as published by the Free Software Foundation, #3
either version 3 ofthe License, or any later version. #4

 #5
pois-solv is distributed in the hope that it will be useful, #6
but WITHOUT ANY WARRANTY; without even the implied warranty #7
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See #8
<http://www.gnu.org/licenses/> for more information. #9

Usually you would also include a license agreement in each m-file.

Chapter 6

[195]

The INDEX file
The package contains three basic functions, namely, cmat_1d,cmat_2d, and vecmat_
convert, as well as the wrapper function pois_fd. We can specify this to the packaging
program with the INDEX file:

Index file for pois-solv #1
#2

toolbox >>pois-solv #3
Basic functions #4
 cmat_1d.m cmat_2d.m vecmat_convert.m #5
Wrapper function #6
pois_fd.m #7

Line 2 is mandatory and specifies the package name to the package manager.

Building the package
I assume that we have saved all thepackage files (m-files and INDEX, COPYING, and
DESCRIPTION files) in the same directory. To build the package, we go through the
following steps:

1. Make the package directory:

octave:26> mkdir"poissolv"

Note: On Windows systems, you may need to provide the
full path, for example, the above command should be

octave:27>mkdir"C:/Document and Settings/
GNU Octave/poissolv"

2. Make the inst subdirectory:

octave:28> mkdir"poissolv/inst";

Again, you may need to provide the full path on Windows.

3. Copy the files DESCRIPTION, COPYING, and INDEX to the package directory, for
example:

octave:29> copyfile("DESCRIPTION", "poissolv");

4. Copy the m files into the inst sub directory:

octave:30> copyfile("cmat_1d.m", "poissolv/inst/");

and so forth for cmat_2d.m, vecmat_convert.m and pois_fd.m.

Making Your Own Package: A Poisson Equation Solver

[196]

5. Archive and compress the package directory:

octave:31> tar("pois-solv.tar", "poissolv");

octave:32> gzip("pois-solv.tar");

6. Finally, build the Octave package:

octave:33> pkg build ./ pois-solv.tar.gz

We used the package manager command pkg in Chapter 1, when we discussed how to install
Octave packages—it can also be used to build them. Command 31 will produce a file called
pois-solv-0.1.0.tar.gz which is your Octave package.

You can, of course, do steps 1-5 in a terminal under GNU/Linux or via Explorer
in Windows. Windows may not have the programs tar and gzip installed, but it
comes with the Octave Windows distribution.

You should now try to install your package. How to do this was explained in Chapter 1. Also,
use the package manager to get a description of the package.

Here, we have only gone through the very basics of how to build packages. There are many
other features that can be helpful when you want to do something more sophisticated.For
example, a package can be dependent on certain versions of other packages, or have C++ or
Fortran code associated with it, which may need to be compiled. Consult the Octave manual
if you want to do more advanced package building.

Limitations and possible extensions to the package
There is of course room for improvement and extensions to the package, for example:

1. cmat_1d and cmat_2d are not optimized in that they instantiate the sparse arrays
in a way that forces Octave to reallocate memory. The functions are therefore slow
for very large grid sizes. In the exercise above, it was shown how this can be fixed.

2. We use Octave's built-in linear equation solver. While fast, we could possibly reduce
the execution time by using a different method. For example, a so-called relaxation
method may be relevant for large system sizes.

3. We could improve the accuracy by using higher order finite difference schemes.

4. By implementing coordinate transformation methods, the package can support
different geometries.

5. We have completely ignored the three-dimensional Poisson equation. A natural
extension of the package would be including a solver for this problem.

6. We could implement other types of boundary conditions.

Chapter 6

[197]

7. Make implementations of more advanced and precise numerical techniques like
finite elements.

You probably have some things to add to the list yourself. If we wish to improve the package,
we should first think about where to start. For example, if the time spent on solving the
linear equation system is much smaller than it is for generating the coefficient matrix, we
should first try to optimize cmat_1d and cmat_2d before we move on and implement a new
linear equation solver. We saw that this was actually the case: Octave's linear equation solver
spends 0.09 seconds on solving an equation system of 2500 unknowns (it is very unlikely
that we can do better than that even if we tried to use a specialized algorithm), whereas our
current implementation of the cmat_2d took 0.3 seconds.

If we increase the grid size, this difference becomes even more pronounced: for a two
dimensional problem with size Ngrid x Ngrid = 200 x 200, we have 40 thousand linear equations
that need to be solved. Octave's solver is capable of doing this in around 1.1 second on my
PC, but it takes 149 seconds to generate the coefficient matrix. This means that we can gain
a lot from focusing on ways to optimize cmat_2d (and cmat_1d), especially if we need to
solve large systems.

Summary
The main purpose of this chapter was to introduce you to making your own Octave package.
Specifically, we learned about:

� The one and two-dimensional Poisson equation.

� The finite difference scheme for second order derivatives.

� How sparse matrices can be used in Octave.

� The imagesc function.

� Wrapper functions.

� The DESCRIPTION, COPYING, and INDEX package files.

� The Octave package manager pkg, and how to use this to build your own Octave
package.

There is much more to know about Octave packages, but hopefully you can use this chapter
as a starting point when you build your first package.

7
More Examples: Data Analysis

Octave is an ideal tool to perform many different types of data analysis. The data
can be generated by other programs or be collected from a database and then
loaded into Octave's workspace. The data analysis tools in Octave are based on a
truly impressive arsenal of different functions. We will only discuss a few of them
here, namely, how to perform the simplest statistical analysis, function fitting,
and Fourier (or spectral) analysis using the fast Fourier transform.

In brief terms, upon reading this chapter, you will learn:

� More about the ASCII file formats that can be loaded into Octave's workspace.

� How you can use Octave to perform simple descriptive statistics.

� About fitting different functions to data.

� How to use Octave to perform Fourier analysis.

Loading data files
When performing a statistical analysis of a particular problem, you often have some data
stored in a file. In Chapter 4, it was shown how you can save your variables (or the entire
workspace) using different file formats and then load them back in again. Octave can, of
course, also load data from files generated by other programs. There are certain restrictions
when you do this which we will discuss here. In the following matter, we will only consider
ASCII files, that is, readable text files.

More Examples: Data Analysis

[200]

When you load data from an ASCII file using the load command (see Chapter 4), the data is
treated as a two-dimensional array. We can then think of the data as a matrix where lines
represent the matrix rows and columns the matrix columns. For this matrix to be well defined,
the data must be organized such that all the rows have the same number of columns (and
therefore the columns the same number of rows). For example, the content of a file called
series.dat can be:

1 232.1 334

2 245.2 334

3 456.23 342

4 555.6 321

In Chapter 4, we learned how to load this into Octave's workspace:

octave:1> load –ascii series.dat;

whereby the data is stored in the variable named series. In fact, Octave is capable of
loading the data even if you do not specify the ASCII format. The number of rows and
columns are then:

octave:2> size(series)

ans =

 4 3

I prefer the file extension .dat, but again this is optional and can be anything you wish,
say .txt, .ascii, .data, or nothing at all.

In the data files you can have:

� Octave comments

� Data blocks separated by blank lines (or equivalent empty rows)

� Tabs or single and multi-space for number separation

Thus, the following data file will successfully load into Octave:

First block

1 232 334

2 245 334

3 456 342

4 555 321

Chapter 7

[201]

Second block

1 231 334

2 244 334

3 450 341

4 557 327

The resulting variable is a matrix with 8 rows and 3 columns. If you know the number of
blocks or the block sizes, you can then separate the blocked-data.

Now, the following data stored in the file bad.dat will not load into Octave's workspace:

1 232.1 334

2 245.2

3 456.23

4 555.6

because line 1 has three columns whereas lines 2-4 have two columns. If you try to load this
file, Octave will complain:

octave:3> load –ascii bad.dat

error: load: bad.dat: inconsisitent number of columns near line 2

error:load: unable to extract matrix size from file 'bad.dat'

Simple descriptive statistics
In Chapter 5, we implemented an Octave function mcintgr and its vectorized version
mcintgrv. This function can evaluate the integral for a mathematical function f in some
interval [a; b] where the function is positive. The Octave function is based on the Monte
Carlo method and the return value, that is, the integral, is therefore a stochastic variable.
When we calculate a given integral, we should as a minimum present the result as a mean
or another appropriate measure of a central value together with an associated statistical
uncertainty. This is true for any other stochastic variable, whether it is the height of the
pupils in class, length of a plant's leaves, and so on.

In this section, we will use Octave for the most simple statistical description of stochastic
variables.

More Examples: Data Analysis

[202]

Histogram and moments
Let us calculate the integral given in Equation (5.9) one thousand times using the vectorized
version of the Monte Carlo integrator:

octave:4> for i=1:1000

> s(i) = mcintgrv("sin", 0, pi, 1000);

> endfor

The array s now contains a sequence of numbers which we know are approximately 2.
Before we make any quantitative statistical description, it is always a good idea to first plot
a histogram of the data as this gives an approximation to the true underlying probability
distribution of the variable s. The easiest way to do this is by using Octave's hist function
which can be called using:

octave:5> hist(s, 30, 1)

The first argument, s, to hist is the stochastic variable, the second is the number of bins
that s should be grouped into (here we have used 30), and the third argument gives the sum
of the heights of the histogram (here we set it to 1). The histogram is shown in the figure
below. If hist is called via the command hist(s), s is grouped into ten bins and the sum
of the heights of the histogram is equal to sum(s).

From the figure, we see that mcintgrv produces a sequence of random numbers that
appear to be normal (or Gaussian) distributed with a mean of 2. This is what we expected. It
then makes good sense to describe the variable via the sample mean defined as:

Chapter 7

[203]

,

(7.1)

where N is the number of samples (here 1000) and si the i'th data point, as well as the
sample variance given by:

.

(7.2)

The variance is a measure of the distribution width and therefore an estimate of the statistical
uncertainty of the mean value. Sometimes, one uses the standard deviation instead of the
variance. The standard deviation is simply the square root of the variance .

To calculate the sample mean, sample variance, and the standard deviation in Octave, you use:

octave:6> mean(s)

ans = 1.9999

octave:7> var(s)

ans = 0.002028

octave:8> std(s)

ans = 0.044976

In the statistical description of the data, we can also include the skewness which measures
the symmetry of the underlying distribution around the mean. If it is positive, it is an
indication that the distribution has a long tail stretching towards positive values with respect
to the mean. If it is negative, it has a long negative tail. The skewness is often defined as:

.

(7.3)

We can calculate this in Octave via:

octave:9> skewness(s)

ans = -0.15495

This result is a bit surprising because we would assume from the histogram that the data set
represents numbers picked from a normal distribution which is symmetric around the mean
and therefore has zero skewness. It illustrates an important point—be careful to use the
skewness as a direct measure of the distributions symmetry—you need a very large data set
to get a good estimate.1

1Also see discussion in "Numerical Recipes: The Art of Scientific Computing, 3rd Edition", Press et al.,
Cambridge University Press (2007).

More Examples: Data Analysis

[204]

You can also calculate the kurtosis which measures the flatness of the sample distribution
compared to a normal distribution. Negative kurtosis indicates a relative flatter distribution
around the mean and a positive kurtosis that the sample distribution has a sharp peak
around the mean. The kurtosis is defined by the following:

.

(7.4)

It can be calculated by the kurtosis function.

octave:10> kurtosis(s)

ans = -0.02310

The kurtosis has the same problem as the skewness—you need a very large sample size to
obtain a good estimate.

Sample moments
As you may know, the sample mean, variance, skewness, and kurtosis are examples of
sample moments. The mean is related to the first moment, the variance the second
moment, and so forth. Now, the moments are not uniquely defined. One can, for example,
define the k' th absolute sample moment pa and k' th central sample moment pc as:

.

(7.5)

Notice that the first absolute moment is simply the sample mean, but the first central sample
moment is zero. In Octave, you can easily retrieve the sample moments using the moment
function, for example, to calculate the second central sample moment you use:

octave:11> moment(s, 2, 'c')

ans = 0.002022

Here the first input argument is the sample data, the second defines the order of the
moment, and the third argument specifies whether we want the central moment 'c' or
absolute moment 'a' which is the default. Compare the output with the output from
Command 7—why is it not the same?

Comparing data sets
Above, it was shown how you can use Octave to perform the very simplest statistical
description of a single data set. In this section, we shall see how to statistically compare two
data sets. What do we exactly mean by a statistical comparison? For example, we could test
if two data sets statistically have the same means (this is known as the student's t-test), or if
they have the same underlying probability distribution (the χ2 – test).

Chapter 7

[205]

In Octave, you can perform almost all known statistical tests: the student's t-test, z-test, the
Kolmogorov-Smirnov test, and many more. Here I will only show you how to perform one
variance of the t-test and how to compute the Pearson correlation coefficient.

The correlation coefficient
The following table shows the height and weight of boys from age 2 to 15:

Age

(Years)

Weight

(Kilograms)

Height

(Centi-metres)

Age

(Years)

Weight

(Kilograms)

Height

(Centi-metres)

2 12.5 85.5 9 24.9 129.0

3 13.2 93.2 10 27.3 134.6

4 15.2 102.3 11 31.3 139.8

5 17.8 102.4 12 35.0 146.3

6 19.7 113.9 13 39.6 152.1

7 20.9 119.8 14 43.8 158.1

8 22.5 123.7 15 53.0 162.8

One can easily see that both height and weight are increasing with respect to age. To see
if the two data sets are actually correlated, we need to be a bit more careful. Usually the
correlation between two data sets is quantified by using the Pearson's correlation coefficient
which is given by:

,

(7.6)

where σx is the standard deviation of the data set xi and σy is the standard deviation of
yi. Values of rp around one indicates good correlation between the two data sets. The Peason
correlation coefficient is easily calculated in Octave using cor (or corrcoef). This function has
the syntax:

r = cor(x, y)

No need to explain, I guess.

Assume that we have stored the data in an ASCII file called boys.dat like this:

Age weight Height

 2 12.5 85.5

 3 13.2 93.2

More Examples: Data Analysis

[206]

...

octave:12> load –ascii boys.dat;

We then need to find the correlation between the second and the third column:

octave:13> cor(boys(:,2), boys(:,3))

ans = 0.97066

That is, the two data sets are indeed correlated, which we would expect.

The student t-test
The following sequence of numbers shows the height of the pupils in a class of 21 children
(in centimetres):

156.92 140.00 163.20 167.24 149.84 149.21 166.86 152.01 147.53 157.56 154.48 170.33 155.82
162.24 161.43 174.94 146.30 151.08 150.82 154.49 165.98

The mean is 157.07 centimetres. The national average height is 161.11 centimetres. Under
the assumption that the height of the pupils is normal distributed around the mean, can we
show that the mean is statistically the same as the national average? Octave's t_test can
help. A simple version of the syntax is:

pvalue = t_test(x, m)

Here pvalue is the probability that the null hypothesis (that the two means are the same) is
true, x is the data, and m is the mean that we test against.

Suppose we have the heights stored in an array called heights. To perform the test, we use:

octave:14> t_test(heights, 161.11)

ans = 0.0508369

which means that we cannot definitely conclude that the mean height in the class is the
same as the national average height assuming no variance in the latter. Usually one accepts
the null hypothesis for pvalue > 0.05, so here we have a border-line situation.

The table below lists some of the most common statistical test functions:

Function name Description

t_test(x, m, opt) Tests the null-hypothesis that the normal
distributed sample data x has mean m.

t_test2(x, y, opt) Tests the null-hypothesis that the normal
distributed sample data x and y has same mean.

Chapter 7

[207]

Function name Description

kolmogorov_smirnov_test(x, dist) Tests the null-hypothesis that the sample data x
comes from the continuous distribution dist.

kolmogorov_smirnov_test_2(x, y,
opt)

Tests the null-hypothesis that the sample
data x and y come from the same continuous
distribution.

var_test (x, y, opt)
Tests the null-hypothesis that the normal
distributed sample data x and y have same
variance (F-test).

chisquare_test_homogeneity(x,y,c)
Tests the null-hypothesis that x and y come
from the same probability distribution using the
bins given via c.

Function fitting
In many areas of science, you want to fit a function to data. This function can represent
either an empirical or a theoretical model. There are many reasons to do this, for example,
if the theoretical model agrees with the observed data values, the theory is likely to be right
and hopefully you have gained new insight into the phenomenon you are studying.

In this section, we will discuss some of Octave's fitting functionality. I will not go into details
with the algorithms that are behind the fitting functions—this will simply take up too much
space and not be of much relevance for the points.

Polynomial fitting
Suppose we want to investigate the length of the leaves in two different families of trees at
different heights. Normally the leaves are largest near the ground, in order to increase the
photosynthesis. The figure below shows fabricated data of the leaf length as a function of height
from the ground for two imaginary families of trees called tree A (red squares) and tree B (blue
triangles). For some reason, we have the idea that the leaf length for tree A, we denote this by
y A, is a linear function with respect to height x, but for tree B, the leaf length y B follows a third
order polynomial with respect to height. That is, we should test if the models:

(7.7)

More Examples: Data Analysis

[208]

can fit the data well if we use the polynomial coefficients as fitting parameters.

In Octave this is straightforward using polyfit. This function can be called via the following
syntax:

[cfit s] = polyfit(x, y, n)

where x is the independent/free variable (in this case the height), y is the measured data
(leaf length), and n is the degree of the polynomial. The first output is an array with the
polynomial coefficients and therefore has length n+1, and the second is a structure that
contains information about the fit. We shall study some the important structure fields below.

Time for action – using polyfit
1. Assume that we have loaded the relevant data into Octave and stored the leaf

lengths of tree A and B in variables yA and yB. The corresponding heights are stored
in xA and xB.

2. To fit the linear model to the data in yA, we do the following:

octave:15> [cA sA] = polyfit(xA, yA, 1);

3. We must check if the fit made any sense at all. First, we can plot the resulting linear
fit together with the data:

octave:16> plot(xA, yA, 'rs', xA, sA.yf, 'r');

and is shown in the figure below with red squares and a red line.

Chapter 7

[209]

4. The fit of y B to the third order polynomial follows the same procedure:

octave:17> [cB sB] = polyfit(xB, yB, 3);

octave:18> hold on; plot(xB, yB, 'bv', xB, sB.yf, 'b');

The plot is shown in the figure below:

Notice that I have used the plotting style format 'rs' and 'bv'. Depending
on your plotting backend, this may not be supported. You can change it to, for
example, 'ro' and 'b+'

What just happened?
polyfit finds the polynomial coefficients cn, cn–1,...,c1, c0 such that the difference between
the polynomial (our statistical model) y = y (xi, cn, cn–1,...,c1, c0) and the data points yi is
minimized by some measure. This measure is the sum of the residuals, ri = yi – y, that is:

,

where N is the number of fitting points. This fitting procedure is called a least squares fit.

More Examples: Data Analysis

[210]

As mentioned above, polyfit returns a structure that stores information about the fit.
In Command 16, we use one of the structure fields yf that contains the fitted values
y (xi, cn, cn–1,...,c1,c0) to plot the resulting fit. We could alternatively have used the
polynomial coefficients returned in cA:

octave:19> cA

cA =

 -0.75172 10.52164

Using polyval (from Chapter 3):

octave:20> plot(xA, yA, 'rs', xA, polyval(cA, xA), 'r');

Goodness of the fit
From the figure above, it looks as if the fits represent the data quite well, that is, the
polynomials seem to be good models of the leaf length variation. A visual verification of
the fits and models in general is not really enough. Scientists often prefer some objective
quantity to indicate whether the fit is satisfactory or not.

polyfit stores a quantity in the structure field normr, namely the 2-norm of the residuals.
This is given by:

.

(7.8)

This is however not of much help here because this quantity depends on the absolute values
of the residuals. One can instead use the correlation coefficient:

.

(7.9)

You can see that for small residuals (and possibly a good fit), the correlation coefficient
is close to 1; if the fit is poor, it is close to 0. Unfortunately, polyfit won't calculate the
quantity for you, but you can easily do it yourself.

Time for action – calculating the correlation coefficient
Let us try to calculate the correlation coefficient for the fit of the leaf length for tree A. We
just need to follow Equation (7.9):

octave:21> denom = (length(yA) - 1)*var(yA);

octave:22> rcor = 1 – sA.normr^2/denom

rcor = 0.96801

Chapter 7

[211]

This gives an indication that the fit is good as we expected.

What just happened?
In Command 21, we calculated the denominator in Equation (7.9). Notice that instead of
calculating the square of the standard deviation, we simply use the variance found with var.
From Equation (7.9), we see that the 2-norm of the residuals enters the nominator. This is
already calculated in polyfit and stored in the structure field normr, so we use this in the
evaluation of the correlation coefficient.

Residual plot
If there is a systematic deviation between the fit and the data, the model may have to
be rejected. These deviations can be sufficiently small and are therefore not captured by
the correlation coefficient. They can, however, be seen via residual plots. In Octave, it is
straightforward to do, and I leave this to you to do as an exercise.

Non-polynomial fits
Of course, not everything can be described via simple polynomial models. Phenomena
related to growth are for example often described via an exponential function or a power
law. These two examples are trivial to solve with the polynomial fitting technique discussed
above, but you may have particular fitting models that need a more general fitting
procedure. Octave can help you with this as well.

Transforms
Before we discuss how to fit more general functions to data, it is worthwhile to see if we can
transform the fitting function into a different form that allows us to use the polynomial fitting
procedure above.

A very simple example of such a transform is if the data set follows a power law function, say:

. (7.10)

We can transform this into a linear equation by taking the logarithm on both sides:

. (7.11)

In this way, the new variable y' = ln (y), is a linear function of x' = ln (x), that is, we can write
y' = ax' + b' with b' = ln (b) . We then fit Equation (7.11) to the transformed data using the
polyfit function. Remember to transform the fitted parameter b back using the inverse
transform, b = eb'.

More Examples: Data Analysis

[212]

In the example above, the transform is trivial. You could consider other possible ways of
transforming your model. For example, if it is possible to Fourier transform the data and the
model it could perhaps be a better choice to perform the fit in Fourier space. We will discuss
the Fourier transform later in this chapter.

General least squares fitting
In case you cannot transform the model into a proper form that allows you to use polyfit,
you can use leasqr. This function comes with the optimization package optim which can
be downloaded from the Octave-Forge web page. See Chapter 1 on how to install and load
packages. leasqr is a really powerful function that allows you to perform even the most
complicated fits—if I must choose my favorite Octave function, I think this would be it.

The syntax is as follows:

[yfit pfit cvg iter ...] = leasqr(x, y, p, fun, opt)

Describing all the inputs and outputs in sufficient detail would take a great deal of effort, so
we shall only discuss a limited number of features, but these will take us quite far. If you are
interested in knowing more about the function simply type: help leasqr.

The inputs are:

x: the independent variable

y: the measured/observed data

p: an initial parameter guess

fun: the model (fitting function)

opt: up to six optional arguments specifying the weights of each data point,
maximum number of iterations the algorithm can perform, and so on

leasqr can return 10 outputs, the first four are:

yfit: the fitted function values

pfit: the fitted parameter values

cvg: is 1 if the fit converged (likely to be successful), 0 if not

iter: number of iterations done

The crucial point when using leasqr is that you must provide the model in the form of an
Octave function that can be fitted to the data set. This function must be dependent on at
least one parameter and follow the syntax:

y = fun(x,p)

Again, x is the free variable, and p is the parameter list.

Chapter 7

[213]

Let us illustrate leasqr by fitting the following two parameter model:

(7.12)

to some data that we simply generate ourselves. Note, α and β are the fitting parameters.

Time for action – using leasqr
1. Let us generate data with normally distributed random noise:

octave:23> x=linspace(0, 5); y = 1./(1 + 1.2*x.^1.8) + \
 > randn(1,100)*0.03;

2. Then we specify the model using the following function definition:

octave:24> function y = ffun(x, p)

> y = 1./(1+p(1)*x.^p(2));

> endfunction

3. Give an initial guess of the parameters α and β:

octave:25> p = [0.5 0.0];

4. We can now fit the model to data:

octave:26> [yfit pfit cvg iter] = leasqr(x, y, p, "ffun");

Easy!

5. We can check whether the fitting algorithm converged or not, and how many
iterations it used:

octave:27> cvg, iter

cvg = 1

iter = 6

6. The values of the fitted parameters are of course important:

octave:28> pfit

p =

 1.1962

 1.7955

This is very close to the values that we would expect from Command 24. The fit is
plotted together with the data in the figure below.

More Examples: Data Analysis

[214]

What just happened?
In Command 23, we instantiated the free variable x, and set it to be a vector with element
values between 0 and 5 and consisting of one hundred elements. The variable y then plays
the role of the dependent data set. We added a little noise with low amplitude to make it
more realistic, hence the call to randn. In Command 24, we defined the model through an
Octave function and we then set our initial guess in Command 25. This guess needs to be
reasonable—how far from the true parameter value it can be depends on the model and the
data. Sometimes the algorithm may not converge, and you must then use another (a better)
initial guess. It should be clear what Commands 26 to 28 do.

Always have a valid reason to use a specific functional form as a model. A fit of a
model with too many or too few free parameters will fail to converge to the data
set even though the function has the correct form.

Note that if you follow the commands above, your fitted parameters may be a bit different
and the number of iterations may be six plus or minus one depending on what random
numbers your machine generated.

Have a go hero – calculating the deviation of the Monte Carlo integrator
In Command 4, we calculated the standard deviation of the Monte Carlo integration scheme
for the integral . Here we used 1000 Monte Carlo loops. Calculate the standard
deviation when the number of loops is, say 50, 70, … , 1990, 2010. You can still use 1000
samples as the sample size. Determine the functional form of the standard deviation as a
function of Monte Carlo loops.

Chapter 7

[215]

Fourier analysis
The figure below shows the monthly average exchange rate between the Australian dollar
and Danish kroner starting from January 1, 1991, and ending on March 2010. The y axis is
the price in kroners for 100 dollars and the x axis is the month index after Janary 1, 1991.
It is clearly seen that there exists an underlying oscillatory behavior. This could motivate
us to buy dollars paying with kroners whenever the exchange rate is low, and then make
an exchange back to kroners whenever the rate is high, thereby making a net earning. The
exchange rate data are a bit hard to read because of the superimposed noise and by the fact
that the periodicity is not strictly a constant. It would therefore be desirable to have a way
to extract the main periods or frequencies before we make large investments. A Fourier (or
spectral) analysis can help you with this.

Before we analyse the exchange rate data, however, we should try to get an understanding
of how the Fourier transform works in Octave using a simple example.

The Fourier transform
The fundamental principle behind Fourier analysis is the Fourier transform. If the function f is
dependent on time t and is integrable, the Fourier transform of f is defined as:

.

(7.13)

More Examples: Data Analysis

[216]

Note that the function F is a function of the angular frequency, ω, and that it is in general
a complex valued function. In general, f is also a complex valued function, but we shall not
consider this case here.

Now, suppose we have a set of N discrete data points f1, f2, ... ,fN that are sampled at constant
sampling interval Δ t at times t1, t2, ... ,tN. In this situation, the integral form of the Fourier
transform given above can be approximated by the discrete Fourier transform (DFT):

.

(7.14)

I will explain the index n in the following matter. According to the sampling theorem (or
Nyquist-Shannon theorem), we cannot choose the frequencies ωn at random in order to
perform a correct Fourier analysis, but they are given by:

.

(7.15)

This means that to retrieve large frequency modes, we must have sufficient frequent
sampling which makes good sense. Substituting Equation (7.15) into Equation (7.14) and
assuming tk = (k – 1) Δt such that t1 = 0, we arrive at:

.

(7.16)

In principle we could just code Equation (7.16) directly. Octave even supports complex
numbers, so it could be done in a few lines. As it stands, however, this will lead to what
is called an order N 2 algorithm which means that the number of operations we need to
perform is proportional to N 2 and thus the execution time increases dramatically for large
sample sizes2. For a large data set, it would therefore not be a clever approach. Out of pure
curiosity, we will try it out later in an exercise.

Time for action – using the fft function
1. Let us try to Fourier transform the function:

, (7.17)

where t ∈ [0; 2π] using 150 data points. This function is characterized by two
different frequencies (or modes) that will show in the Fourier transformation as two
distinct peaks.

2This is also referred to as an O(N2) algorithm. O is pronounced 'big-O'.

Chapter 7

[217]

2. To generate the data we use:

octave:29> N=150; t = linspace(0,2*pi, N);

octave:30> f = sin(2*t) + 2*sin(5*t);

3. Then we simply transform those data via:

octave:31> F = fft(f);

4. The complex vector F is not really of much information itself, so we often display the
absolute value (or magnitude) of the elements in the array:

octave:32> plot(abs(F), "o-")

which produces the plot seen in the figure below:

What just happened?
In Commands 29 and 30, we generated the data set. I strongly recommend that you try to
plot f versus t to see the function that we are transforming. We then call fft and plot the
absolute value of the transformed data.

Things look a bit odd though. We expected two peaks representing the two different modes
in Equation (7.17), but the figure above shows four peaks that seem like mirror images of
each other. This actually makes sense. From Equation (7.15), we see that the frequencies go
from:

.

(7.18)

This explains that there is a mirroring taking place because |F (–ω)| = |F (ω)|. Note, the
maximum frequency π / Δt is denoted the Nyquist frequency ωN.

More Examples: Data Analysis

[218]

fft organizes the output in two halves. The first half corresponds to the frequencies from 0
to π /Δt, the second half from – π /Δt to 0. This is easily fixed with fftshift such that the
values of F correspond to frequencies in the interval – π /Δt ≤ ωn ≤ π /Δt.

octave:35> F = fftshift(F);

Before we plot the magnitude of F again, we should also generate the frequencies we plot
against. First, the sampling interval:

octave:34> dt = t(2);

then we define n in Equation (7.15) via:

octave:35> n=[-N/2:1:N/2];

But hold on, this array has length N + 1! To fix this problem, we can simply remove the last
and highest frequency point:

octave:36> n(N+1)=[];

According to Equation (7.15), the frequency is calculated as:

octave:37> freq = 2*pi*n./(N*dt);

We are now ready to plot the magnitude of F as a function of frequency—this is sometimes
referred to as the magnitude spectrum:

octave:38> plot(freq, abs(F), 'o-')

The result from Command 38 is shown in the left-hand side figure below. In the right-hand
side figure, only positive frequencies are shown. We now see that the two frequencies
appear where we expect. The fact that the higher frequency component also has larger
amplitude is also captured in the magnitude spectrum.

Chapter 7

[219]

In the example above, we transformed a data set composed of 150 points. If you change
this number, you will see that the magnitude of F will change too: the more the points, the
larger the magnitude. The reason for this is that fft excludes the multiplication with Δ t, see
Equation (7.16). Thus to get a spectrum that is independent of the number of data points,
we can simply multiply the output from fft with Δ t.

Changing the number of data points also means changing the Nyquist frequency, ωN, according
to Equation (7.18). It is very important to remember when you perform fast Fourier transforms
that the frequency is not a freely variable parameter, but is determined by the sample size
and sampling interval. Also, the Nyquist frequency must be sufficiently large for the Fourier
transform to capture all the frequencies embedded in the data. In fact, if ωN is not large
enough (that is, if the sampling interval is too large), the high-end frequencies will not show up
correctly in the spectrum. This is known as aliasing. To be sure that there is no aliasing problem,
the spectrum for the largest frequencies should be zero. We shall soon see that it is not always
possible to have the necessary sample rate.

Fourier analysis of currency exchange rate
Let us return to the problem of the currency investment. We now know how to perform a
Fourier analysis of data using Octave's fft function, so should we just dive into it? Well, we
are not quite there yet. If we simply made a Fourier transform of the data, there will be a
large peak at very low frequencies. This peak comes from the fact that the average exchange
rate is not zero and that there exists an overall trend of increasing price. If we want to make
shorter term investments, we are mainly interested in knowing about the higher frequency
behavior and we should therefore remove these trends.

Time for action – analysing the exchange rate
1. Assume that we have loaded the currency exchange rate data into a variable curr

and that we have 230 data points. The month index is given by:

octave:39> m_index = [0:229];

2. The increasing trend is given by the end-points in the data:

octave:40> a = (curr(230)-curr(1))/229; b = curr(1);

3. Subtracting the trend from the data:

octave:41> curr1 = curr – a*m_index – b;

4. To ensure a data set with zero-mean, we use:

octave:42> curr2 = curr1-mean(curr1);

More Examples: Data Analysis

[220]

5. We can then perform a Fourier analysis on the "trend-free" data using the ordinary
frequency f = ω / 2π:

octave:43> N=230; n=[-N/2:N/2]; n(N+1) = []; freq = n./N;

octave:44> acurr = abs(fftshift(fft(curr2)));

6. To plot the result, we use:

octave:45> plot(freq, acurr)

The result is shown below for positive frequencies. Note that we may have an
aliasing problem!

7. Now the ordinary frequency of the main mode is:

octave:46> i = find(acurr==max(accur)); freq(i)

ans = 0.030434

What just happened?
In Command 39, we define the month index to go from zero (first month of 1991) to 229 (the
second month in 2010). To remove the overall increasing trend, we simply subtract the line
that goes through the end-points in the data set, here represented via the linear function
y = ax + b, where x is the month index. a is calculated to 0.096. This will lead to a new data
set where the end points are zero, but all others will be negative, which is also unwanted
since this gives a non-zero mean which also shows in the Fourier spectrum. This bias is then
removed in Command 42. It should be clear what Commands 43 to 45 do, but note that we
use the ordinary frequency rather than the angular frequency.

Chapter 7

[221]

The main frequency mode is computed in Command 46 by using the find function. This
frequency corresponds to a period T = 1/ f, that is, if we sell and reinvest every sixteen and a
half months we could expect a net earning.

It is worth noting that since we have a possible aliasing problem, we cannot make any
conclusions about the high frequency modes.

To sum up, the Fourier analysis using fft can be done in the following six steps:

1. Consider if you should remove any trends in the data set and do so if needed.

2. Fourier transform your data using fft.

3. Rearrange the output via fftshift.

4. Generate the sample frequency. Remember to remove the last high-end frequency
component.

5. Plot the spectrum for positive frequencies.

6. Is the spectrum for high frequencies zero? If not, be aware of any aliasing problems.

Inverse Fourier transform and data smoothing
It would be very useful to somehow remove the "noise" that we see in the currency
plot because it hides the underlying characteristics of the data and it brings no useful
information. Such noise shows up in the high frequency end in the spectrum. Can we use
this for anything? The answer is yes and the idea goes as follows: if we can somehow set
the high frequencies to zero and then make an inverse Fourier transform, we should still
see all the slowly varying modes, but no high frequency ones. The only thing we should be
careful about is how we remove the unwanted frequencies—Octave takes care of the inverse
Fourier transform.

Analogous to Equation (7.14), the discrete inverse Fourier transform is given as:

.

(7.19)

Octave's inverse fast Fourier transform function ifft has the same syntax as fft. In its
simplest form:

f = ifft(F)

Before we try it out, we should briefly discuss how to pick out the low frequencies in the
spectrum.

More Examples: Data Analysis

[222]

The Butterworth filter
The following function is called a Butterworth function of order n:

,

(7.20)

where ωc is called the critical frequency. A fifth order Butterworth function is plotted below
for different critical frequencies in the range from 1 to 5: the leftmost graph with the
steepest descent is for ωc = 1, and the rightmost is for ωc = 5. Note that the Butterworth
function is 1 for ω = 0 and goes smoothly to zero for large ω. Now, if we multiply the
Butterworth function with the Fourier transform of the data, we can pick out all the low
frequencies and set the high frequencies to zero. This is exactly what we want. This is called
a low pass filtering.

You can apply any other type of filter, however, you should be extremely careful with the
particular choice. The Butterworth filter is a smooth varying function that prevents so-called
edge effects, effects that show up in step-type filters.

You can also apply the Butterworth filter for medium and high band filtering by
simple function shifts.

In Octave you can also perform smoothing directly in the time
domain using piecewise polynomial fits – this will usually be a
low pass filter. Type help spline to see how.

Chapter 7

[223]

Time for action – applying a low pass filter
1. Continuing from Commands 39-46, let us apply a tenth order Butterworth filter with

ωc = 0.1 to smooth the "trend-less" data set stored in curr2, see Command 42:

octave:47> b_order = 10; w_c = 0.1;

2. The Butterworth function is simply given as:

octave:48> w = sqrt(1./(1 + (freq./wc).^(2*b_order)));

3. We can choose to rearrange either the Butterworth window function or the data
before multiplying them together —we will rearrange the window function:

octave:49> w = fftshift(w);

4. In order to apply the filter to the Fourier transform of curr2 and then perform the
inverse Fourier transform, we use:

octave:50> plot(m_index, ifft(fft(curr2).*w), 'r', \

> m_index, curr2, 'b')

5. The result is given below, where the smoothed data is given by the red curve:

More Examples: Data Analysis

[224]

What just happened?
In Command 47, we specified the critical frequency and the Butterworth order parameter.
There is no recipe on how to choose the particular parameters, but it is always a good idea
to plot the resulting Butterworth filter to see if it actually picks out the frequencies we are
after and removes the ones we wish to suppress. It is also important to be sure that the
Butterworth function is arranged in the same manner as the output from fft. We do this
in Command 49. In Command 50, we then apply the filter to the Fourier transformed data,
inverse Fourier transform the filtered data back into the time domain, and plot it together
with the unfiltered data.

Notice that the Butterworth filter and many other types of filters are available from the
signal toolbox.

Have a go hero – implementing your own Fourier transform function
In this exercise, you are to code your own Fourier transform function. The syntax should be:

[F freq] = sft(f, dt)

where F is the Fourier transformed data, freq is a vector with the corresponding
frequencies, f is the input data, and dt is the constant sampling interval. The function must
use Equations (7.14) and (7.15) and not fft. sft should be vectorized to some degree.

Test sft with the function given in Equation (7.17) and compare with the corresponding
figures in the section. By the way, why the name sft?

Summary
In this chapter we learned:

� About the file formats that Octave can load.

� How to calculate different sample moments in Octave for simple descriptive
statistics.

� How to compare data sets using cor and t_test.

� How to use polyfit and leasqr to fit different functions to data.

� About the fast Fourier transform function fft.

� How to use the inverse Fourier transform function ifft.

We will now proceed with the last chapter where you will learn about optimization
techniques and dynamically linked functions.

8
Need for Speed: Optimization and

Dynamically Linked Functions

As we have seen a few times already, as long as you vectorize your code1 and
use Octave's built-in functionality, there is little you can do to make your code
run significantly faster. This is the way it should be. Octave is primarily designed
for scientists and engineers, and they should worry about the science, not how
to tweak the code for it to perform better. Sometimes, however, you can end
up with numerical problems that are not easy or even impossible to vectorize
or where no built-in functionality exists. In this chapter, you will see what
possibilities you have in these situations.

The chapter is divided into two parts explaining the two main approaches you can consider,
namely:

1. Optimizing the Octave code.

2. Implementing the code in a lower level programming language like C or C++ and
linking this to Octave's workspace using Octave's C++ library and interface.

It should be mentioned that Octave has no profiler yet. (A profiler is a tool that can detect
the parts of the code that perform poorly). There are some indications that a profiler may
be available in future versions of Octave, but until then we have to rely on experience and
simpler profiling strategies.

In detail, we will discuss:

� How you can time your functions and scripts using the function pair tic and toc.

1In the Octave sense of vectorization

Need for Speed: Optimization and Dynamically Linked Functions

[226]

� A few techniques that you can apply to your Octave code in order to improve
performance.

� How to use the Octave C++ library and interface with the Octave C++ functions,
rather than in Octave's own programming language.

� How to compile the C++ code and how to call the function from the Octave
command prompt.

� Different C++ classes that come with the library.

� A few ways to optimize the C++ code.

Most importantly, however, we shall see that the built-in functionality and operators that
come with Octave are very fast and usually perform much better than what we (well at least
what I) can manage with simple algorithms and C++ code.

For the second part of the chapter, I assume you have working knowledge of C++.

A few optimization techniques
There are a few things you should consider when you wish to optimize your Octave code.
Some of these are:

1. Avoid loops, especially nested loops, whenever possible. Always try to vectorize your
code!

2. Use Octave's built-in functionality. For example, do not try to implement your own
linear equation solver because it is unlikely that you can do better than Octave.

3. Instantiate your array variables before entering a loop in order to minimize memory
reallocation and therefore communication overhead with the operating system.

4. If you do partial vectorization, loop column-wise.

5. Clear large arrays whenever you are finished using them. In this way, you avoid using
the slower parts of the chip memory.

6. In some situations, functions can execute faster than scripts. So it can be helpful
to convert a large script to a function if it is called many times. This is because
functions are read only once per Octave session (when they are called for the first
time), whereas scripts are read every time they are called.

Item 6 is really only for the desperate ones. Let us illustrate the more important points above
through a simple matrix addition, that is:

. (8.1)

Chapter 8

[227]

Before we jump into it, we need some sort of timer that can actually time the commands or
blocks of code for us. Naturally, this is also implemented in Octave.

tic, toc
The functions tic and toc usually come in pairs and give you the time elapsed between
the call to tic and the call to toc. This is also referred to as a wall-time. Basically, tic starts
or restarts a timer and toc then returns the wall-time. You can therefore have several calls
to toc using the same timer start. If you have many processes running on your computer
at the same time, this will slow down the execution speed of your commands and increase
the wall-time. You can measure the actual time spent by the CPU to execute the commands
using the cputime function. In this chapter we will simply use the wall-time since this is a
good approximation to the actual CPU-time.

Time for action – using tic and toc
Let us first use tic and toc to get the wall-time for adding two matrices together the usual
vectorized way:

octave:1> A=rand(1000,1000); B=rand(1000,1000);

octave:2> tic(); C=A+B; toc()

Elapsed time is 0.015 seconds.

It took 15 milliseconds to add two 1000 x 1000 matrices together, that is, to perform 1
million addition operations.

What just happened?
In Command 1, we declared two 1000 x 1000 matrices with elements picked from a uniform
distribution having values between 0 and 1. In Command 2, we started the timer using tic,
added the two matrices, and returned the elapsed time. We can assign the output from toc
to a variable for later use. For example, Command 2 could have been:

octave:2> tic(); C=A+B; add_time = toc()

add_time = 0.015

toc returns the wall-time in resolution of milliseconds.

Need for Speed: Optimization and Dynamically Linked Functions

[228]

Vectorization
Let us, once more, illustrate the importance of vectorization. Instead of using the + operator
between the two matrices, we can add the elements together in nested loops in the
"traditional" manner:

octave:3>tic(), for i=1:1000, j=1:1000, C(i,j) = A(i,j)+B(i,j); end,
 end, toc()

Elapsed time is 26.53069

This is around 2000 times slower compared to the analogous vectorized addition! Also, in
Command 3, you need to do much more coding which is always more error prone2.

Initialization of variables
Let us add the matrices together again like in Command 3, but now we first delete the
variable C from the workspace:

octave:4> clear C

octave:5>tic(), for i=1:1000, j=1:1000, C(i,j) = A(i,j)+B(i,j); end,
 end, toc()

elapsed time is 30.2649 seconds

Command 5 was executed around 4 seconds slower than Command 3, even though these
two commands are exactly the same. Why is that? In Command 5, the variable C is not
defined in the workspace contrary to Command 2. This means that when we loop through
the elements in A and B, Octave will have to allocate memory at runtime in order to store the
sums in the elements of C. This means that Octave has to communicate with the operating
system (perhaps one million times) during the command. This of course, takes time.

If you work with large arrays and know the sizes in advance, it is therefore a good idea to
initialize the arrays using the function zero before entering the loop. For example, assuming
that C is not declared, we can use:

octave:6> C = zeros(1000,1000);

octave:7> tic(), for i=1:1000, j=1:1000, C(i,j) = A(i,j)+B(i,j); end,
 end, toc()

Elapsed time is 27.1714 seconds

In this case, only one memory allocation is needed.

2It is not always true that vectorized code is less error prone that non-vectorized code!

Chapter 8

[229]

Looping row-wise versus looping column-wise
In the case of matrix addition, we can also find the matrix sum using row-wise or a column-
wise looping. This is sometimes referred to as partial vectorization. Code Listings 6.1 and
6.2 are examples of partial vectorization using row-wise looping. In Octave, there is a
performance difference when we use row-wise or column-wise loops. The following two
examples illustrate this.

First, we loop over the rows (thereby performing a column-wise vectorization):

octave:8> tic(), for i=1:1000, C(i,:) = A(i,:)+B(i,:); end, toc()

elapsed time is 0.109201 seconds

We then loop column-wise:

octave:9> tic(), for i=1:1000, C(:,i) = A(:,i)+B(:,i); end, toc()

elapsed time is 0.0400001 seconds

That is, looping column-wise is about twice as fast as the row-wise looping for this particular
example. The reason for this time difference is related to the way the arrays are stored in
the chip memory. Commands 8 and 9 highlight the rule of thumb—if you do for or while
loops, consider doing it column-wise if possible.

Have a go hero – revision of cmat_1d
In Code Listing 6.1, coefficient matrix is generated by looping row-wise. Re-implement the
function by using column-wise looping. Do you observe any difference in execution speed?

Dynamically linked functions
In some situations, you may not be able to avoid heavy looping. For example, you may wish
to use a particular numerical differential equation solver which does the job better than
Octave's lsode. First, have a very good argument why lsode does not fulfil your criterion.
Secondly, there already exists a differential equation solver package called odepkg that
includes many different solvers. In the situation where you must implement your own
function, you can do this in lower level programming languages like C or C++ and then link
this to Octave. The linking enables you to use other libraries in your C/C++ code thereby
making the possible extensions to Octave almost infinite.

There must be an interface between the lower level code and the Octave interpreter.
Octave's native interface is based on C++, but you can also use MATLAB's MEX (MATLAB
EXecutable) interface. We shall limit the discussion to the former. As mentioned in the
introduction to the chapter, I expect that you have basic knowledge of C++.

Need for Speed: Optimization and Dynamically Linked Functions

[230]

The DEFUN_DLD function macro
The C++ interface is based on a function macro with name DEFUN_DLD (the name comes
from the GNU dynamic linker dld). DEFUN_DLD has the interface:

DEFUN_DLD(function name, input argument list, number of ouputs,
 help string)

where the arguments are:

function name Simply states the name of the function. The name must be the
same as the filename without the extension.

input argument
list

Variable containing the input arguments. This variable type is
octave_value_list, which is a C++ class. We can think of it as
an array of type octave_value, which is also a class. We shall
discuss this in greater detail soon.

number of
outputs

Contains the number of outputs the function is called with. This
is an optional argument and can be left out.

help string A string containing a simple help text.

The function macro always returns a variable of type octave_value_list even though
this is not specified explicitly in the interface.

Time for action – writing a "Hello World" program
1. Let us try to implement the classical "Hello World" program. Open your editor and

type in the following lines of code:

Code Listing 8.1
#include <octave/oct.h> #1

#2
DEFUN_DLD(hello, argv, , “Usage: hello()"){ #3
 octave_value_list retval; #4
 #5
 octave_stdout << "Hello World\n"; #6

#7
 return retval; #8
} #9

2. Save the file as hello.cc in your working directory. At the Octave prompt, type in
the following command:

octave:10> mkoctfile hello.cc

This compiles the C++ code.

Chapter 8

[231]

3. Make a call to the function, which is then dynamically linked to the Octave
environment:

octave:11> hello()

Hello World

What just happened?
To use the C++ interface and library, we need to include the header oct.h, which is done in
line 1 in Code Listing 8.1. In line 3, we set the function name to hello and name the input
argument list argv. We do not specify the number of outputs as this is not used and write a
small help text string. The help text is shown if we use the usual help command:

octave:12> help hello

Usage: hello()

In line 4, we instantiate an object of type octave_value_list with the generic name
retval. As mentioned above, DEFUN_DLD must always return a variable of this type. In line
5, we pipe the string Hello World to the Octave standard output and in line 8 we return
retval and exit the function.

Per default, the filename must be the same as the function name, so here we save the file as
hello.cc. Command 8 compiles the file and generates a binary object file called hello.
oct, hence, the command name mkoctfile, which is an abbreviation for "make oct file". It
is this object file that links to the Octave interpreter.

Often, the dynamically linked object file is referred to as an oct-file or an oct-
function. Functions written in Octave's own programming language are referred
to as m-functions.

Managing input arguments and outputs
Just like an m-function, you should be able to call the oct-function with a different number
of arguments and these can be of any type. In the function, we should then check how it is
called and if it is not called correctly, we should issue a warning or error.

Fortunately, this is rather simple using Octave's C++ library. As we saw above, the arguments
to the function are passed to the function via the class octave_value_list. This is
practically an array octave_values. An object of type octave_value can be, for example,
a matrix, a vector, or a scalar.

Need for Speed: Optimization and Dynamically Linked Functions

[232]

Time for action – checking user inputs and outputs
1. Code Listing 8.2 shows an example of a function called args. This function takes

any number of inputs, checks what type they are, and writes this to the Octave
command prompt. It returns a sequence of numbers going from 1 to the number of
input arguments:

Code Listing 8.2

#include <octave/oct.h> #1
 #2

#define HELP_TEXT "Usage:[out1,out2,...]=args(in1,in2,...)" #3
 #4

DEFUN_DLD(args, argv, nargout, HELP_TEXT){ #5
 octave_value_list retval; #6

 #7
 int nargs = argv.length(); #8
 octave_stdout<<"You've entered "<< nargs << " argument(s)\n";#9

 #10
 if (nargout > nargs){ #11
 error("Number of output variables is too large"); #12
 return retval; #13
 } #14

 #15
 for (int n=0; n<nargs; n++){ #16
 octave_stdout << "Argument " << n+1 << " is "; #17
 if (argv(n).is_string()) #18
 octave_stdout << "a text string "; #19
 if (argv(n).is_real_scalar()) #20
 octave_stdout << "a real scalar "; #21
 if (argv(n).is_real_matrix()) #22
 octave_stdout << "a real matrix "; #23
 if (argv(n).is_complex_matrix()) #24
 octave_stdout << "a complex matrix "; #25

 #26
 octave_std << "\n"; #27
 retval.append(octave_value(n+1)); #28
 } #29
 #30
 return retval; #31
} #32

2. We, of course, compile this with mkoctfile. After compiling, try out the command:

octave:13> [a b c] = args([1 1], "string", zeros(10) + I*ones(10))

Chapter 8

[233]

You've entered 3 arguments

Argument 1 is a real matrix

Argument 2 is a text string a real matrix

Argument 3 is a complex matrix

a = 1

b = 2

c = 3

3. We can try a complex scalar input argument:

octave:14> args(I)

You've entered 1 argument(s)

Argument 1 is

ans = 1

What just happened?
The first 7 lines in Code Listing 8.2 should be straightforward. In line 8, we call the method
length which returns the length of the argument list, that is, the number of input
arguments that the user called the function with. We print this to the command prompt.

In lines 11-14, we check if the number of output variables is larger than the number of
inputs. If this is the case, we print an error message and return from the function. Such a
check is necessary if you want to avoid a warning message in calls like [a b] = args(1).

In the loop in lines 16-29, we then check the type of each argument. You may have been
puzzled; one accesses the array elements in the variable argv via parenthesis! This is
different from the usual square brackets []. The parentheses are operators in the C++ sense
and do additional checking for you when called. Also notice, the interface follows the usual
C++ convention, so the first index in an array is 0.

The list of possible types is exhausting and here we only check for 4 different types: strings,
real scalars, real matrices, and complex matrices. These checks are done through the
methods is_string, is_real_scalar, is_real_matrix, and is_complex_matrix.
All these methods return Booleans (true or false) depending on the type of the variable.

In line 28, we append the argument number to the return value which is of type octave_
value_list. We use the append method for this. It's argument is an octave_value and
we therefore convert the integer n+1 into the appropriate type using octave_value(n+1).

Need for Speed: Optimization and Dynamically Linked Functions

[234]

The output from Command 13 may surprise you:

� The function claims that the first argument is a real matrix, but the input is a row
vector. This is, of course, because Octave does distinguish between a 1xN matrix and
a row vector.

� The second argument is recognized as a string, which is fine, but also as a matrix.
Octave simply interprets the string array as a matrix of characters.

In Command 14, we call args with a complex scalar. Since we do not check for this with the
method is_complex_scalar, the type is not printed to the screen.

Retrieving the inputs
We still need to retrieve the inputs somehow in order to perform actual computations. To
illustrate how this is done, let us implement a matrix addition function, doing what the +
operator does already.

Code Listing 8.3

#include <octave/oct.h> #1
#define HELP_TEXT "Usage C = madd(A, B)" #2

#3
DEFUN_DLD(madd, argv, nargout, HELP_TEXT){ #4
 octave_value_list retval; #5
 #6
 int nargs = argv.length(); #7
 if (nargs>2 || nargout>1){ #8
 error(HELP_TEXT); #9
 return retval; #10
 } #11
 #12
 Matrix A(argv(0).matrix_value()); #13
 Matrix B(argv(1).matrix_value()); #14
 #15
 size_t nr = A.rows(); #16
 size_t nc = A.columns(); #17
 #18
 Matrix C(nr, nc); #19
 #20
 for (size_t i=0; i<nr; i++) #21
 for (size_t j=0; j<nc; j++) C(i,j) = A(i,j)+B(i,j); #22
 #23
 retval.append(C); #24

#25
 return retval; #26
 } #27

Chapter 8

[235]

In lines 13 and 14, we instantiate two objects of type Matrix, which is a class defined in the
Octave C++ library. The constructor can be called with a Matrix type argument, for example,
line 13 instantiates the object A of type Matrix with the same number of rows, columns,
and element values as the first input argument. The constructor can also be called with two
input arguments specifying the dimensions of the matrix leaving the value of the elements
uninitialized as seen in line 19.

The Matrix class has two very useful methods, namely, rows and columns, that return the
number of rows and columns in the matrix. We call these two methods in lines 16 and 17.

In lines 21-22, we perform the actual matrix addition and we then return the values through
the matrix object C.

We would expect this function to be almost as fast as the usual + operator. Let's check that.
After compiling (recall that A and B are two 1000 x 1000 matrices with random numbers).

octave:13> tic(), C=madd(A,B); toc()

Elapsed time is 0.0825 seconds.

This is around 5 times slower than Command 2, where the + operator is used.

One reason for this is that accessing the matrix elements through the parenthesis operator,
(), results in substantial overhead. In fact, rather than performing element-wise operations
inside the C++ function, you should use the functions and operators available in the C++
library. For example, lines 21 and 22 can be replaced with one single line, namely,

C = A + B;

If you use this operator instead of adding the matrix elements individually, you will see that
the madd function performs just as well as the ordinary Octave + operator.

As for m-functions, the rule of thumb for oct-functions is: use the vectorized
operators and built-in functions in the code whenever possible.

If you are in a situation where you must access the array elements, you can let a simple
pointer to doubles point to the memory location of the array, and thereby access these the
usual way. The way to declare this pointer is through the fortran_vec method. In the
matrix addition example above, lines 21-22 can be replaced with:

const double *Aval = A.fortran_vec();
const double *Bval = B.fortran_vec();
double *Cval = C.fortran_vec();

for (size_t i=0; i<nr*nc; i ++)
 Cval[i] = Aval[i] + Bval[i];

Need for Speed: Optimization and Dynamically Linked Functions

[236]

Class types
Code Listing 8.3 shows how you can access and work with real matrices, that is, with
matrices where each element is a real scalar. If you try to add two complex matrices using
madd, you will see that only the real part is added together and returned. You can also add
complex matrices—here you will have to use the ComplexMatrix class. Likewise, if you
work with vectors, you should specify the type as row or column vector and if it is complex.
Below are listed a few of the most important (and high-level) classes that come with Octave's
C++ interface:

RowVector ColumnVector Matrix

ComplexRowVector ComplexColumnVector ComplexMatrix

SparseMatrix SparseComplexMatrix

As we saw above, you can instantiate an object of any of these classes in many different
ways. The most common ones are:

Constructor Examples

classname A(dim1, dim2); RowVector a(length);

Matrix A(nrows, ncols);

classname A(dim1, dim2,
value);

RowVector a(length, 42.0);

Matrix A(nrows, ncols, 0);

classname A(classname); RowVector a(argv(0).vector_value());

Matrix A(argv(0).matrix_value());

classname A; RowVector a;

Matrix A;

The last type of instantiation will not allocate memory to the array elements, so this must be
done at a later stage.

An object of SparseMatrix or SparseComplexMatrix type can also be instantiated with
the following constructor:

Constructor Example

classname A(dim1, dim2, nz) SparseMatrix A(nrows,ncols, 20)

Here, nz is the number of non-zero elements in the matrix. I strongly recommend you use
this whenever you know the number of non-zero elements in advance in order to reduce the
memory reallocation overhead.

Chapter 8

[237]

In Code Listing 8.3, we saw how to access the input arguments via the method matrix_
value. The table below summarizes what you can use in order to access the arguments to
DEFUN_DLD:

Method Return type
Corresponding check
method (returns a Boolean)

string_value
std::string
(standard string)

is_string

int_value int is_integer_type

long_value long int is_integer_type

scalar_value double
is_real_scalar /
is_scalar_type /
is_double_type

row_vector_value RowVector is_matrix_type

column_vector_value ColumnVector is_matrix_type

matrix_value Matrix
is_matrix_type /
is_real_matrix

complex_row_vector_value ComplexRowVector is_complex_matrix

complex_column_vector_
value

ComplexColumnVector is_complex_matrix

complex_matrix_value ComplexMatrix is_complex_matrix

sparse_matrix_value SparseMatrix is_sparse_type

sparse_complex_matrix_
value

SparseComplexMatrix
is_sparse_type /

is_complex_matrix

If you wish to work with Octave's C++ library and interface, I recommend that you browse
through the Application Programming Interface (API), which is available via the Octave-
Forge: http://octave.sourceforge.net/doxygen/html/index.html.

Functions as input argument
In Chapter 5, we saw how to write an Octave m-function that calls a user-supplied function.
You can also do this in oct-functions of course. As is the case for m-functions, you need to
call the user-supplied function via a C++ version of the feval function.

Need for Speed: Optimization and Dynamically Linked Functions

[238]

The first argument to feval is the name (a string) specifying the user-supplied function, the
second argument is of type octave_value_list, and the third argument gives the number
of outputs from the function. feval returns a variable of type octave_value_list. For
example, to create a 2 x 2 a matrix with random numbers picked from a uniform distribution
we can use:

#include <octave/oct.h>
#include <octave/parse.h>

...

octave_value_list r = feval("rand", octave_value(2), 1);

...

Note that we need to include the parse.h header where feval is declared. The first
argument to feval is a string giving the function name rand, which is the built-in random
number generator and the second argument is the number 2 (since we want a 2 x 2 matrix).
This integer is converted into the appropriate octave_value_list or equivalent octave_
value class type using octave_value(2). The third argument states the number of
outputs from rand. Here it is 1.

Let us try something more advanced. In Chapter 5, we programmed a Monte Carlo integrator
to evaluate the integral of a scalar function f in some interval [a; b], where f is positive. We
made two versions of the integrator: (i) One that followed the programming flowchart called
mcintgr and (ii) A much faster vectorized version called mcintgrv. Let us try to implement
this integrator using the C++ interface and see if we can get an improved performance
compared to the vectorized m-function version.

As noted above, we should make an effort to vectorize the C++ code as well. When we do
this we can actually follow the method used in mcintgrv. Before we go ahead though, we
need to find the maximum value of f in the interval. We will do this in a separate function
called findmax as shown in Code Listing 8.4 together with the rest of the code.

The oct-function is called in the exact same way as mcintgr and mcintgrv, that is:

I = mcintgro(fun, a, b, mcloops)

where fun is the user-supplied function, a and b give the interval, and mcloops is the
number of Monte Carlo loops the function should perform.

Code Listing 8.4

#include <octave/oct.h> #1
#include <octave/parse.h> #2

#3
#define NINTERVAL 100 #4
#define HELPTEXT "Usage s = mcintgro(fun, a, b, mcloops)" #5

#6

Chapter 8

[239]

double findmax(std::string fun, double a, double b){ #7
#8

 double dx = (b - a)/(NINTERVAL-1); #9
 ColumnVector v(NINTERVAL); #10
 for (int n=0; n<NINTERVAL; n++) v(n) = n*dx + a; #11
 #12
 octave_value_list f = feval(fun, octave_value(v), 1); #13
 #14
 return ColumnVector(f(0).vector_value()).max(); #15

#16
} #17

#18
DEFUN_DLD(mcintgro, args, , HELPTEXT){ #19
 octave_value_list retval; #20
 #21
 std::string fun = args(0).string_value(); #22
 double a = args(1).double_value(); #23
 double b = args(2).double_value(); #24
 long int mcloops = args(3).long_value(); #25

#26
 double maxy = findmax(fun, a, b); #27
 double l = b-a; #28
 #29
 long int counter = 0, nloops = 0; #30
 #31
 octave_value_list rargs; #32
 rargs.append(octave_value(mcloops)); #33
 rargs.append(octave_value(1)); #34
 #35
 octave_value_list tmp = feval("rand", rargs, 1); #36
 ColumnVector r1(tmp(0).vector_value()); #37
 #38
 tmp = feval("rand", rargs, 1); #39
 ColumnVector r2(tmp(0).vector_value()); #40
 #41
 ColumnVector x(a+r1*l) #42
 ColumnVector y(maxy*r2); #43
 #44
 tmp = feval(fun, octave_value(x), 1); #45
 ColumnVector fx(tmp(0).vector_value()); #46

#47
 while (nloops < mcloops){ #48
 if (y(nloops)<fx(nloops)) counter ++; #49
 nloops ++; #50

Need for Speed: Optimization and Dynamically Linked Functions

[240]

 } #51
 #52
 double s = (double)counter/mcloops*maxy*l; #53
 retval.append(octave_value(s)); #54

#55
 return retval; #56
} #57

To save space, I have left out any checking and validation of the input arguments.

Let us go through the DEFUN_DLD function macro first. In line 22-25, we extract the input
arguments. For example, the first argument is a string containing the name of the user-
supplied function. There should be a check whether the argument really is a string—one
can use the is_string method here. See the table that lists the methods above. Let us
jump down to line 32. We need to generate two sequences of random numbers, r1 and
r2. To do this, we use Octave's built-in rand function. We must call this function with two
arguments—the corresponding Octave command is rand(mcloops, 1). In our C++ code,
these two arguments are provided through the variable rargs of type octave_value_
list, where the first element has value mcloops and the second element has value 1.

In line 36, we then call rand with the arguments stored in rargs using feval. The return
value is stored in the variable tmp and finally the random number sequence is stored in a
column vector in line 37. The second sequence is generated in the same manner.

Lines 42 and 43 make use of the vectorized operators + and *. Of course, we could have
carried out these arithmetic operations in a loop, but since Octave provides this nice and fast
functionality we should use it. It should be clear what happens in lines 45-57.

Returning to the function findmax, in lines 9-11 we generate a vector with points equally
spaced in the interval between a and b. The number of points is given by the macro
NINTERVAL. The vector v is used as the argument for the user-supplied function from which
we can then find the maximum in the interval. Note that we have used the method max in
the ColumnVector class to calculate the maximum of the function output.

If we compile this code and test it against mcintgrv, we will see it does not perform any
better. Again this illustrates the important point that you can do little to optimize vectorized
Octave code.

Optimization with oct-files
You may start to wonder if one can use the C++ interface for optimization at all. There are at
least two good reasons why you will want to use oct-files for optimization:

Chapter 8

[241]

1. If you need to implement a new algorithm which cannot be vectorized, you
can gain a significant speed-up by implementing the algorithm using a lower-
level programming language and using Octave's C++ interface to link to Octave's
interpreter. You may even have access to a library that does the job for you, so you
only need to make an Octave interface.

2. If your problem involves a user-supplied function, you can program this function via
Octave's C++ library and interface potentially gaining a significant speed-up.

Item 1 is discussed in the exercises, so let us move on to item 2.

Time for action – revisiting the Sel'kov model
1. In Chapter 5, we discussed how to solve a differential equation system using lsode.

Specifically, we used lsode to solve the Sel'kov model. There the differential
equation system was specified in an m-function, but we can also implement it using
the C++ interface. Recall that in the original function, we used the global variable
global_b in the function, so the C++ implementation needs to retrieve this variable
from the Octave workspace as well.

Code Listing 8.5

#include <octave/oct.h> #1
#2

DEFUN_DLD(selkovo, argv, , “Usage: y = selkovo(x)"){ #3
 octave_value_list retval; #4
 #5
 octave_value boct = get_global_value("global_b"); #6
 double b = boct.scalar_value(); #7
 #8
 ColumnVector x(argv(0).vector_value()); #9
 ColumnVector f(2); #10
 #11
 const double *xval = x.fortran_vec(); #12
 double *fval = f.fortran_vec(); #13
 #14
 double xt = 0.1*xval[1] + xval[0]*xval[0]*xval[1]; #15
 #16
 fval[0] = -xval[0] + xt; #17
 fval[1] = b - xt; #18
 #19
 retval.append(octave_value(f)); #20
 #21
 return retval; #22
} #23

Need for Speed: Optimization and Dynamically Linked Functions

[242]

2. If we compile the code with mkoctfile, we can compare the execution speed
with the m-function implementation selkov.m. Be sure that both functions can be
found by Octave. For example, copy selkov.m to the current working directory:

octave:16> global global_b = 0.5;

octave:17> t=linspace(0, 10000, 500); init=[0.4 0.2];

octave:18> tic(), x=lsode("selkov", init, t); toc()

Elapsed time is 7.40625 seconds.

octave:19> tic(), x=lsode("selkovo", init, t); toc()

Elapsed time is 1.25 seconds.

This shows a significant speed-up3.

3. Let us try with a different value of global_b:

octave:20> global_b = 1.0;

octave:21> tic(), x=lsode("selkov", init, t); toc()

Elapsed time is 0.07816 seconds.

octave:22> tic(), x=lsode("selkovo", init, t); toc()

Elapsed time is 0.03125 seconds.

What just happened
The value of the global_b variable is copied to the function using get_global_value in
line 6. This function returns an octave_value type, and we can retrieve the value by calling
the method scalar_value defined in the octave_value class.

In order to optimize the code as much as possible, we access the values in the vectors x and
f directly through the pointers xval and fval, rather than using the () operator. In this
particular case, however, there is hardly any measurable performance difference.

From the outputs in Commands 18 and 19, we observe a speed-up of around 6, which makes
the extra effort all worth it. You may think that you can wait 7 seconds. But what if you have
a very large differential equation system that you need to solve for many different parameter
values? Then it matters if you have to wait 1 day or 6 days for the results.

3Again, it is to be noted that my computer is not running any other programs, so the wall-time from toc
is a good estimation of the true cpu-time.

Chapter 8

[243]

In Commands 21 and 22, the speed-up is reduced to around a factor of 2. The reason for
this is that the system falls into the steady state with this value of global_b, that is, the
elements in the vector x do not change. lsode is capable of changing its time step such
that if the system is steady, it can take arbitrary long steps and reduce the calls to the user-
supplied function significantly. The point here is that the actual seed-up you can gain from
the C++ implementation depends on the specific problem at hand.

Have a go hero – implementing the Euler integrator
In this exercise, you are to implement an Euler integrator. In general, we can write an
ordinary differential equation as:

.

(P.1)

The derivative on the left-hand side can be approximated by a first order finite difference
scheme:

.

(P.2)

Substituting Equation (P.2) into Equation (P.1) and rearranging a bit, we obtain a simple
difference equation:

.
 (P.3)

This is called the Euler integration scheme. The scheme is an iterative and approximate
solution to the differential equation system, for sufficiently small time steps, Δt.

1. Implement the Euler scheme in an m-function. The syntax should be:

x = euler(fun, x0, dt, nsteps)

where fun defines the right hand of Equation (P.1), x0 is the initial condition, dt
the time step, and nsteps is the number of steps the integrator should perform.
The solution is returned in x. Test your implementation against the Sel'kov model
and compare the result with the solution from lsode. Use maybe 1000-10000 time
steps. Change the size of the time step and number of time steps—when is the
agreement between the two numerical solutions satisfactory?

2. Implement the Euler scheme using Octave's C++ interface. You can name the
function eulero, for example. Compare the performance with the corresponding
m-function and with lsode.

Need for Speed: Optimization and Dynamically Linked Functions

[244]

3. Use your Euler integrator to solve the Lotka-Volterra differential equation system:

(P.4)

(Use, for example, the initial condition x1 = 0.1 and x2 = 0.4). Compare the output
with the result from lsode. Why is there a persistent difference even though you
reduce the time step? ? (Hint: The Lotka-Volterra equation describes a conservative
system, whereas the Sel'kov model is a dissipative system.)

Summary
In this chapter we learned:

� About tic and toc.

� How you can optimize your Octave code.

� To use the function macro DEFUN_DLD.

� About the most common high-level classes in the Octave C++ library like Matrix,
ColumnVector, and SparseMatrix.

� To use the feval C++ function in order to call user-supplied functions.

� How to access global variables (defined in the Octave work space) inside your C++
function.

� That you should use the C++ functionality that comes with the library, that is, you
should also vectorize your C++ code.

� How you can optimize your C++ code by accessing the data stored in the classes
directly.

This chapter concludes the book. The book is meant to give you an introduction to Octave
and you should now be able to move on and exploit the more advanced features of Octave.
I recommend that you look through the official Octave manual where most of Octave's
functionality is described in detail. If you have questions or problems, browse through the
posts listed on the usergroup web page to see if it has been discussed earlier—if not, ask all
the experts in the group.

Pop Quiz Answers

Chapter 2: Interacting with Octave: Variables
and Operators

Working with arrays
1 e) f) i)

2 a) 11 b) 3 c) 4
 9
 14
 19
 24

d) 1 2 3 4 5 e) 1 2 3 f) 5
 10
 15
 20

g) 1 2 3
 6 7 8
 11 12 13

h) 1 3 5
 11 13 15
 21 23 25

i) 16 17 18 19 20
 21 22 23 24 25

Understanding arrays
a) 3 3 b) 3 c) 3 d) 1 e) 0 f) 3 g) 3

Pop Quiz Answers

[246]

Understanding simple operations
a) b) d) e) g)

Understanding precedence rules
a) -1.000
 1.000
 4.667

b) 2.0000
 1.0000
 0.18182

c) Non-conformant
 arguments

d) -1.000 1.0000 4.667

e) 3.0000 2.5000 4.2222

Chapter 3: Working with Octave: Functions and Plotting

Using simple mathematical functions
1 a) b) c) d) e) f)

2 c) d) Note that while e) is valid, it is not really
meaningful—why is that?

Understanding the plotting options
b) c) d) f)

Chapter 4: Rationalizing: Octave Scripts

Understanding disp and input
b) d) e) Note that c) will likely give an error later.

Appendix

[247]

Understanding statements and Boolean operators
1 a) f) g)

2 1 1 1 3 1 5 2 1 2 3 2 5

3 Line 5 does not match the while statement

Line 6 does not match the for statement

m is not incremented which will lead to an infinite loop

4 Line 1: input must have the optional argument 's' for string inputs

Line 3: is not a valid expression (use strcmp instead)

Line 5: the elseif statement evaluates a Boolean

Printing with printf
1 a) blank b) Hello Worl c) Hello Worl

d) 2 e) 2.000000 f) 2.000000e+000

Chapter 5: Extensions: Write Your Own Octave Functions

Understanding functions
1 a) Missing function keyword b) Missing commas in the argument list

e) The second output is undefined f) The output variable not defined.

Note that in d) the help text is misplaced

2 Number of input arguments, (Number of
ARGuments IN)

Number of output arguments (Number of
ARGuments OUT)

Pop Quiz Answers

[248]

Implementing mathematical functions as Octave functions
a) function f = fun(x)

 f = x + sin(x);

 endfunction

b) function f = fun(t)

 f = [sin(t), t.^2, cos(t)];

 endfunction

c) function f = fun(x)

 f = x + y./z;

 endfunction

d) function f = fun(t)

 global global_o;

 f =exp(-I.*global_o.* t);

 endfunction

Notice that the functions are vectorized

Understanding vectorization
a) b = A(:,1) + 1.0; b) i=find(a>1.0); s=sum(a(i));

c) n=length(a); b = a(1:2:n); d) n=length(a);

 c = 0.5.*(a(2:n) – a(1:n-1));

Chapter 6: Making Your Own Package: A Poisson Equation
Solver

Identifying the Poisson equation
b) c) e) f) e) is also a Laplace equation

Index
Symbols
.octaverc file

about 20
creating 19
editing 19

! operator 114
* operator 49
& operator 114
&& operator 115
+ operator 228
|operator 114

A
abs function 77
additional packages

installing 21-23
addition operations

performing 47, 48
advanced linear algebra

Octave, using for 78
all function 75
analytical solution

comparing with 185, 186
any function 75
append method 233
applications, Octave 9
args function 232
arguments 66
argv input argument 231
arithmetic operations

about 47
addition 47, 48
matrix multiplication 49, 50
multiplication 49, 50
subtraction 47, 48

array elements
accessing 28, 29
modifying 28, 29

array, of numbers
instantiating 26

arrays
manipulating 30, 31
sorting 73

asin function 68
asinh function 68
available_graphics_toolkits function 82
axes function 92, 93
axes tick marks

controlling 87
axis function 85

B
bad.dat file 201
Bessel functions 69
bifurcation 152
Boolean operators

about 113
element-wise Boolean operators 113
short-circuit Boolean operators 115
using, with if statement 115

boundary value problem. See Poisson equation
Butterworth filter

about 222-224
low pass filter, applying 223, 224

C
C 9
C++ 9
call-by-value strategy 137
ceil function 76

[250]

cell array
about 39
instantiating 39, 40
operations 52

CentOS 13
chisquare_test_homogeneity() function 207
clear command 44
cmat_1d function 180, 181
coefficient matrix, for one dimension 180, 181
coefficient matrix, for two dimension 181
colormap function 98
color maps 99
color property 87, 93
column vector

instantiating 26
ColumnVector class 240
column_vector_value method 237
column-wise looping

versus row-wise looping 229
command prompt

functions, defining at 138
comments, Octave script 107, 108
comparison operators, Octave 58, 59
complex_column_vector_value method 237
complex input arguments 77
ComplexMatrix class 236
complex_matrix_value method 237
complex number

imaginary part, retrieving from 32
real part, retrieving from 32

complex_row_vector_value method 237
complex variables

general operations 55, 56
instantiating 31, 32

complex vectors
instantiating 32

complicated mathematical functions,
Octave 69, 70

contour plots 99
conversion function 182, 183
COPYING file 193, 194
cor function 205
correlation coefficient

calculating 210
example 205, 206

cos function
using 66, 67

cot function 68
cputime function 227
cumprod function 77
cumsum function 77
currency exchange rate, Fourier analysis 219-221
customization, Octave 17, 19
Cygwin 12

D
data

functions, fitting to 207
data files

contents 200
loading 199-201

data sets
comparing 204

data smoothing 221
debugger

about 161
using 162, 163, 166

debugging 161
decremental operators 120
DEFUN_DLD function macro 230-240
descend argument 74
DESCRIPTION file

about 193
example 194

descriptive statistics 201
det function 78, 80
deviation

calculating, of Monte Carlo integrator 214
Dirichlet boundary condition 173
disp function

about 106
limitations 127

dot product
performing 58

dynamical analysis, of Sel’kov model 149, 150

E
eigenvalues

calculating, in Octave 79
eig function 79
element-wise Boolean operators

& 113
! 113

[251]

| 113
about 113

elseif statement 112
endfunction keyword 137
endif statement 112
error function 142
Euler integration scheme 243
Euler integrator

implementing 243, 244
exception handling

about 124
exchange rate

analysing 219-221
exist function 155
exit command 15
exp function 68
eye function 71

F
Fast Light Toolkit. See FLTK
Fedora 13
feval function

about 155, 191, 238
syntax 155

fflush(stdout) command 107
fft function

using 216-221
FFTW 78
fgets function 127
figure properties

modifying 84, 85
files

organizing, into package directory 193
finance package 169
find function 74, 82, 221
findmax function 238, 240
finite differencing

about 174
one dimensional example 174, 175

fix function 76
floor function 75
FLTK 82
fmt property 93
fontsize property 94
for loop 180, 229
for statement 117

Fortran 9
fortran_vec method 235
Fourier analysis

about 215
Fourier transform 215-218

Fourier analysis, of currency exchange
rate 219-221

Fourier transform 215-218
Fourier transform function

implementing 224
fplot function 88
fprintf function 127
fscanf function 127
fsolve function

Jacobian matrix, providing to 148, 149
using 147

full function 178
functional forms 132
function call

verifying 140
function fitting

about 207
polynomial fitting 207-210

function help text
writing 139, 140

function keyword 138
functions

comparing 162-164
defining, at command prompt 138
example 136-138
fitting, to data 207
scripts, converting into 145
syntax 135, 136
testing 183, 185
versus scripts 138

functions, as input arguments 237-240

G
gca function 85
general least squares fitting 212-214
general operations, complex variables 55, 56
get current axis. See gca function
getfield function 38
global_b variable 151, 241
global qualifier 145
glycolysis 149

[252]

GNU General Public License (GPL) 8
GNU/Linux

about 12
Octave, building from source 14

GNU Octave
about 7
community 10
facilities 8
first script, executing 104
first script, writing 104
license agreement 9
overview 8

graph
legend, adding to 87

grid
turning off 88
turning on 88

H
Hello World program

writing 230, 231
help command 74, 231
helper functions, Octave

about 66, 71
abs 77
all 75
any 75
ceil 76
cumprod 77
cumsum 77
eye 71
find 74, 75
fix 76
floor 75
ismatrix 71
max 73
min 73
ones 71
prod 76
rand 72
real 71
round 76
sort 73, 74
sum 76
zero 72

helprandp function 72
help utility 23

higher-dimensional arrays 34
hist command 202
hold on command 90
Hopf-bifurcation 151

I
if statement 112, 157
imagesc function

about 183
using 184, 185

imaginary part
retrieving, of complex number 32

incremental operators 120
INDEX file 193, 195
information

retrieving, for variables 42, 43
inline function 151
input arguments

about 136
managing 231-234

input function 105
inset

plotting 92, 93
installation, Octave

on Windows 11, 12
installing

additional packages 21-23
Octave, on Windows 11, 12

inst directory 193
integrals

computing, Monte Carlo method used 153, 154
int_value method 237
inverse

calculating 61, 62
Inverse Fourier transform

about 221
Butterworth filter 222-224

inverse function 66, 80
inv function 61, 80
is_complex_matrix method 233
is_complex_scalar method 234
isglobal function 146
ismatrix function 71
is_real_matrix method 233
is_real_scalar method 233
is_string method 233, 240

[253]

J
Jacobian matrix

providing, to fsolve function 148, 149

K
Kolmogorov-Smirnov test 205
kolmogorov_smirnov_test_2() function 207
kolmogorov_smirnov_test() function 207
kurtosis function 204

L
LAPACK 78
Laplace equation 172
Laplace operator 173
leasqr function

about 212
syntax 212
using 212-214

least squares fit 209
left division operator 54
legend

adding, to graph 87
length method 233
limitations, Octave 9, 10
linear algebra 78
linear equation systems

about 175-177
solving 52, 53

line function 86, 92
lines

adding, to plot 86
linewidth property 84, 93, 94
load command 200
local variable 42
log function 68
long_value method 237
low pass filter

applying 223, 224
low pass filtering 222
lsode

about 229
used, for numerical integration 150, 151

M
madd function 235, 236
makersize property 93
markersize property 87
mathematical functions, Octave

about 66
cos 66, 67
cot 68
exp 68
log 68
power 68
sin 68
tan 68

MathWorksTM 10
MATLAB 10, 79, 82
MATLAB EXecutable. See MATLAB’s

MEX interface
MATLAB’s MEX interface 229
matrix

instantiating 27
matrix addition function

implementing 234, 235
Matrix class 235
matrix multiplication

performing 49, 50
matrix_value method 237
max function 73, 136
maxx argument 137, 139
mcintgr 154, 238
mcintgrv 238
mesh function 99
m-function 231
min function 73, 136
minimax function 137
minmax function 139
minx argument 137, 139
mkoctfile command 232
moment function 204
Monte Carlo integrator

deviation, calculating of 214
vectorized version, using 202-204
vectorizing 160, 161

Monte Carlo loop 159
Monte Carlo method

about 201
integrals, computing 153, 154

[254]

msh package 21
multi-core package 169
multidimensional arrays 66
multiple figure windows 90
multiple function file 164
multiple graphs

plotting, in single window 89
multiplication operations

performing 49, 50

N
nargin variable 142
nargout variable 142, 143
nested loops 120
nested statements 116
nested structures

instantiating 38
nnz variable 178
non-polynomial fits

about 211
general least squares fitting 212-214
transforms 211

Number of ARGuments IN. See nargin variable
Number of ARGuments OUT. See nargout

variable
number sequence

generating 45, 46
numerical integration

lsode, using for 150, 151
Nyquist-Shannon theorem 216

O
oct2mat package 12, 16
Octave. See also GNU Octave
Octave

.octaverc file, creating 19

.octaverc file, editing 19
about 25, 159, 199
additional packages, installing 21-23
applications 9
arithmetic operations 47, 57
Boolean operators 113
building, from source 14
cell arrays 39, 40
comparison operators 58, 59
compatible, with MATLAB 10

complicated mathematical functions 69, 70
customizing 17, 19
data files, loading 199-201
data sets, comparing 204
descriptive statistics 201
eigenvalues, calculating in 79
help utility 23
higher-dimensional arrays 34
inline functions, defining 151
installation, checking with peaks 15, 16
installing, on Windows 11, 12
limitations 9, 10
optimization techniques 226, 227
package, uninstalling 23
polynomials, handling 68, 69
polynomials, plotting 83
precedence rules 60, 61
sample moments, retrieving 204
sparse matrix, using in 177-179
structures 35
three-dimensional plotting 96, 97
two-dimensional plotting 82-85
using, for advanced linear algebra 78

Octave code
optimizing techniques 226, 227

Octave command prompt 24
Octave community 10
Octave-Forge

URL 10
Octave functions

about 65
complicated mathematical functions 69, 70
example 136-138
helper 66, 71-77
mathematical 66-68
operational 66, 78-80
syntax 135, 136

Octave script
behaviour, controlling with statements 111
commands, breaking 108
comments 107
exception handling 124
executing 104
fflush(stdout) command 107
for GNU/Linux users 110
for MacOS X users 110
improving, input and disp functions used 105

[255]

prime_sequence variable, loading 131, 132
prime_sequence variable, saving 130, 131
statements, implementing 121-124
storing, in workplace 109
used, for plotting 110
user, interacting with 106, 107
writing 104

octave_value_list 230-233
oct-files

optimizing with 240, 241
odepkg package 229
one-dimensional heat conduction

example 170, 171
ones function 46, 71
operator functions, Octave

about 66, 78
det 78, 80
eig 79
inv 80
inverse 80
orth 80

optimization techniques 226, 227
orth function 80
outputs

managing 231-234
output variables 136

P
package directory

files, organizing into 193
packages 169
parametric curves

plotting 100
partial vectorization 229
Pearson correlation coefficient 205
Peason correlation coefficient 205
pi argument 66, 67
pkg command 23, 193
plot

lines, adding to 86
saving 94
text, adding to 86

plot function
about 83, 92
interface 84

pois_fd function 190, 192

pois-solv package
about 193
building 195, 196
limitations 196, 197

Poisson equation
about 170
one-dimensional heat conduction

example 170, 171
requisites, for solving 179
two-dimensional heat conduction example 172

Poisson solver
implementing 179

polyfit function
about 208, 210
using 208, 209

polynomial fitting 207-210
polynomials

handling, in Octave 68, 69
plotting 83
roots, finding for 80

polyval function
about 69
using 210

power function 68
precedence rules, for Octave operators 60, 61
prime gab

investigating 133
prime_sequence variable 130

loading 131, 132
saving 130

printf function
about 127-129
format specifiers 128

print function
about 94
supported formats 94

prod function 76
properties

modifying, for plot 84, 85

Q
quad function 159

R
rande function 72
rand function 72, 154, 240

[256]

randg function 72
randn function 72
random numbers

generating 72
randp function 72
real function 65, 66, 71
real part

retrieving, of complex number 32
rem function 112
residual plot 211
right division operator 54
roots

finding, for polynomials 80
round function 76
row vector 26, 67
row_vector_value method 237
row-wise looping

versus column-wise looping 229

S
sample mean

cxalculating 203
sample moments

retrieving 204
sample variance

cxalculating 203
sampling theorem 216
scalar function 70
scalars 66
scalar_value method 237
scalar variable 26
script. See Octave script
scripts

converting, into functions 145
versus functions 138

Sel’kov function
about 148, 149

Sel’kov model
about 241
revisiting 242, 243

series.dat file 200
series variable 200
setfield function 38, 41, 138
set function 84, 87, 92
short-circuit Boolean operators

&& 115
about 115

signal toolbox 224
simple variables

about 26
instantiating 26, 27

sin function 68
single window

multiple graphs, plotting in 89
sockets 9
sort function 73, 74
sparse_complex_matrix_value method 237
sparse function

about 177
usage, optimizing 192

sparse matrix
instantiating 177-179
using, in Octave 177-179

sparse_matrix_value method 237
spline package 21
spy function 185
standard deviation

cxalculating 203
statements

about 111
Boolean operators 113
elseif statement 112
endif statement 112
for statement 117
if statement 112
implementing 121-124
loops 117
nested loops 120
nested statements 116
switch statement 116
try statement 125
unwind_protect statement 125
using 111
while statement 118

statistical analysis
performing 199

statistical test functions 206, 207
steady state temperature profile 170
stochastic variable 201
strcmp function 59
string_value method 237
struct function 37
structure fields

accessing 37, 38
operations 52

[257]

structures
about 35, 66
instantiating 36, 37
working with 40

subplot function 91
subplots 91
subtraction operations

performing 47, 48
sum function 76
supported formats, print function

eps 94
gif 94
jpg 94
pdf 94
png 94
ps 94
pslatex 94
tex 94

surface color
modifying 98

surface plot
creating 96, 97

switch statement 116

T
tan function 68
temperature profile 171
text

adding, to plot 86
text function 84, 86, 92, 94
text string variables

instantiating 32, 33
thermal conductance 171
three-dimensional parametric plots 100
three-dimensional plotting 96, 97
tic function

about 227
using 227

title property 87, 94
toc function

about 227
using 227

transform
example 211

transpose operator 51
trapz function 159

trigonometric functions 68
t_test2() function 206
t_test() function 206
two-dimensional array 200
two-dimensional heat conduction equation 172
two-dimensional Laplace equation

solving 187, 188
two-dimensional plotting, Octave 82

U
Ubuntu 13
unwind_project_cleanup statement 125
usage function

about 141
versus warning function 141

user-supplied function
about 237
validating 155-158

user-supplied functions
applying 145-147
writing 145-147

V
variable names 27
variables

about 146
deleting 44
information, retrieving for 42, 43
initializing 228
listing 41, 42

variable type
identifying 43, 44

var_test() function 207
vecmat_convert function 187
vector

about 66
tranposing 51

vectorization 226, 228
vectorized language 159
vectorized programming 159, 160
vectorized version

using 202-204
viewer position

modifying 98
view function 98

[258]

W
wall-time 227
warning function

about 141, 142
versus usage function 141

while and do statements
about 118
using 118, 119

while loop 229
whos command

about 179
using 41, 42

Windows
Octave, installing on 11, 12

X
Xlabel property 94
xlim property 85
Xlim property 94
xtick property 88
xticks property 94

Y
ylabel property 94
ylim property 94
ytick property 88
yticks property 94
YUM 13

Z
zero function 72, 228
zeros function 46

Thank you for buying
GNU Octave Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Science Teaching with Moodle 2.0
ISBN: 978-1-849511-48-3 Paperback: 296 pages

Create interactive lessons and activities in Moodle
to enhance your students' understanding and
enjoyment of science

1. Follow a sample course to see how lessons, groups,
and forums are created

2. Make your student's homework more exciting by
enabling them to watch videos, participate in group
discussions, and complete quizzes from home

3. Simplify the teaching of difficult scientific notation
using animations

Matplotlib for Python Developers
ISBN: 978-1-847197-90-0 Paperback: 308 pages

Build remarkable publication-quality plots the easy
way

1. Create high quality 2D plots by using Matplotlib
productively

2. Incremental introduction to Matplotlib, from the
ground up to advanced levels

3. Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them in
Python applications

4. Deploy Matplotlib in web applications and expose it
on the Web using popular web frameworks such as
Pylons and Django

Please check www.PacktPub.com for information on our titles

Sage ACT! 2011 Dashboard and Report Cookbook
ISBN: 978-1-849681-92-6 Paperback: 216 pages

Over 65 simple and incredibly effective recipes for
creating and customizing exciting dashboards and
reports from your ACT! data

1. Immediately access and fully understand the
out-of-the-box ACT! reports and dashboards

2. Get to grips with filtering dashboard information

3. Customize existing reports and dashboards to make
permanent changes

GlassFish Administration
ISBN: 978-1-847196-50-7 Paperback: 284 pages

Administer and configure the GlassFish v2
application server

1. Get GlassFish installed and configured ready for use

2. Integrate GlassFish with popular Open Source
products such as Open MQ, Open DS, and Apache
Active MQ, and get them working together in a
loosely-coupled manner

3. Configure resource types like JDBC, Java Connector
Architecture (JCA), JavaMail Sessions, and Custom
JNDI supported in GlassFish to simplify resource
access and integration

Please check www.PacktPub.com for information on our titles

Sage Beginner's Guide
ISBN: 978-1-849514-46-0 Paperback: 364 pages

Unlock the full potential of Sage for simplifying and
automating mathematical computing

1. The best way to learn Sage which is a open source
alternative to Magma, Maple, Mathematica, and
Matlab

2. Learn to use symbolic and numerical computation
to simplify your work and produce publication-
quality graphics

3. Numerically solve systems of equations, find roots,
and analyze data from experiments or simulations

WCF 4.0 Multi-tier Services Development with LINQ
to Entities
ISBN: 978-1-849681-14-8 Paperback: 348 pages

Master WCF and LINQ to Entities concepts by
completing practical examples and applying them to
your real-world assignments

1. Master WCF and LINQ to Entities concepts by
completing practical examples and applying them to
your real-world assignments

2. The first and only book to combine WCF and LINQ
to Entities in a multi-tier real-world WCF service

3. Ideal for beginners who want to build scalable,
powerful, easy-to-maintain WCF services

Please check www.PacktPub.com for information on our titles

phpBB: A User Guide
ISBN: 978-1-904811-91-6 Paperback: 176 pages

Set up and run your own discussion forum

1. Simple, practical steps to create and manage your
own phpBB-powered online community

2. Learn from experienced phpBB administrators and
enthusiasts to get the most from phpBB

WCF Multi-tier Services Development with LINQ
ISBN: 978-1-847196-62-0 Paperback: 384 pages

Build SOA applications on the Microsoft platform in
this hands-on guide

1. Master WCF and LINQ concepts by completing
practical examples and apply them to your real-
world assignments

2. First book to combine WCF and LINQ in a multi-tier
real-world WCF service

3. Ideal for beginners who want to build scalable,
powerful, easy-to-maintain WCF services

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Introducing GNU Octave
	So what is GNU Octave?
	Applications
	Limitations of Octave
	Octave and MATLAB
	The Octave community

	Installing Octave
	Windows

	GNU/Linux
	Building Octave from the source under GNU/Linux

	Time for action – building Octave from source
	Checking your installation with peaks
	Time for action – testing with peaks
	Customizing Octave
	Time for action – creating an Octave home directory under Windows.
	Creating your first .octaverc file

	Time for action – editing the .octaverc file
	More on .octaverc

	Installing additional packages
	Time for action – installing additional packages
	Uninstalling a package

	Getting help
	The behaviour of the Octave command prompt
	Summary

	Chapter 2:Interacting with Octave: Variables and Operators
	Simple numerical variables
	Accessing and changing array elements
	More examples

	Time for action – manipulating arrays
	Complex variables
	Text variables
	Higher-dimensional arrays

	Structures and cell arrays
	Structures

	Time for action – instantiating a structure
	Accessing structure fields
	Cell arrays

	Time for action – instantiating a cell array
	Getting information
	Time for action – using whos
	Size, rows, columns, and length
	Identifying the variable type
	Deleting variables from the workspace

	A few things that make life easier
	Basic arithmetic
	Addition and subtraction

	Time for action – doing addition and subtraction operations
	Matrix multiplication

	Time for action – doing multiplication operations
	Element-by-element, power, and transpose operations
	Operators for structures and cell arrays
	Solving linear equation systems: left and right division

	Time for action – doing left and right division
	Basic arithmetic for complex variables
	Summary of arithmetic operators

	Comparison operators and precedence rules
	Precedence rules

	Time for action – working with precedence rules
	A few hints
	Summary

	Chapter 3:Working with Octave: Functions and Plotting
	Octave functions
	Mathematical functions

	Time for action – using the cos function
	Polynomials in Octave
	More complicated mathematical functions

	Time for action – putting together mathematical functions
	Helper functions
	Generating random numbers
	min and max
	Sorting arrays
	find, any, and all
	floor, ceil, round, and fix

	Time for action – trying out floor, ceil, round, and fix
	sum and prod
	Absolute values
	Complex input arguments

	Operator functions
	Linear algebra

	Time for action – using Octave for advanced linear algebra
	Polynomials

	Two-dimensional plotting
	Time for action – making your first plot
	plot and set

	Time for action – changing the figure properties
	Adding lines and text to your plot
	Plot styles and colors
	Title and legends
	Ticks
	Grids
	fplot
	Clear the figure window

	Moving on

	Time for action – having multiple graphs in the same figure
	Multiple figure windows
	Subplots

	Time for action – making an inset
	Saving your plot

	Three-dimensional plotting
	Surface plot

	Time for action – making a surface plot
	view and colormap
	Contour plots
	Three-dimensional parametric plots

	Time for action – plotting parametric curves
	Summary

	Chapter 4:Rationalizing: Octave Scripts
	Writing and executing your first script
	Time for action – making your first script
	Improving your script: input and disp

	Time for action – interacting with the user
	Flush please
	Comments
	Very long commands
	Workspace
	For GNU/Linux and MacOS X users

	Statements
	Prime numbers
	Decision making – the if statement
	Interlude: Boolean operators
	Element-wise Boolean operators
	Short-circuit Boolean operators
	Using Boolean operators with an if statement
	Nested statements

	The switch statement
	Loops
	The for statement
	The while and do statements
	Nested loops

	Putting it all together
	Exception handling

	Added flexibility – C style input and output functions
	printf

	Saving your work
	Loading your work
	Functional forms

	Summary

	Chapter 5:Extensions: Write Your Own Octave Functions
	Your first Octave function
	Time for action – programming the minmax function
	Scripts versus functions
	Defining functions at the command prompt
	Writing a function help text
	Checking the function call
	The usage, warning, and error functions
	nargin and nargout

	Writing and applying user-supplied functions
	Using fsolve
	Providing the Jacobian

	Using lsode – dynamical analysis of the Sel'kov model

	Time for action – using lsode for numerical integration
	Inline functions

	More advanced function programming: Monte Carlo
integration
	The feval function
	Validating the user-supplied function
	Using quad and trapz for numerical integration
	Vectorized programming

	Time for action – vectorizing the Monte Carlo integrator
	Simple debugging
	Multiple function file

	Summary

	Chapter 6:Making Your Own Package: A Poisson Equation Solver
	The Poisson equation – two examples of heat conduction
	One-dimensional heat conduction
	Two-dimensional heat conduction
	The Poisson equation
	The Dirichlet boundary condition

	Finite differencing
	From finite difference to a linear equation system
	Interlude: Sparse matrices

	Time for action – instantiating a sparse matrix
	Memory usage

	Implementation and package functions
	The coefficient matrix for one dimension
	The coefficient matrix for two dimensions
	The conversion function

	Testing the functions
	The coefficient matrices

	Time for action – using imagesc
	Comparison with analytical solution

	Time for action – comparing with analytical solution
	Two dimensions

	Time for action – solving a two-dimensional Laplace equation
	More examples
	Wrapping everything into one function

	The pois-solv package
	Organizing files into the package directory
	The DESCRIPTION file
	The COPYING file
	The INDEX file

	Building the package
	Limitations and possible extensions to the package

	Summary

	Chapter 7:More Examples: Data Analysis
	Loading data files
	Simple descriptive statistics
	Histogram and moments
	Sample moments
	Comparing data sets
	The correlation coefficient
	The student t-test

	Function fitting
	Polynomial fitting

	Time for action – using polyfit
	Goodness of the fit

	Time for action – calculating the correlation coefficient
	Residual plot
	Non-polynomial fits
	Transforms
	General least squares fitting

	Time for action – using leasqr
	Fourier analysis
	The Fourier transform

	Time for action – using the fft function
	Fourier analysis of currency exchange rate

	Time for action – analysing the exchange rate
	Inverse Fourier transform and data smoothing
	The Butterworth filter

	Time for action – applying a low pass filter
	Summary

	Chapter 7:Need for Speed: Optimization and Dynamically Linked Functions
	A few optimization techniques
	tic, toc

	Time for action – using tic and toc
	Vectorization
	Initialization of variables
	Looping row-wise versus looping column-wise

	Dynamically linked functions
	The DEFUN_DLD function macro

	Time for action – writing a "Hello World" program
	Managing input arguments and outputs

	Time for action – checking user inputs and outputs
	Retrieving the inputs
	Class types

	Functions as input argument
	Optimization with oct-files

	Time for action – revisiting the Sel'kov model
	Summary

	Pop Quiz Answers
	Chapter 2: Interacting with Octave: Variables and Operators
	Working with arrays
	Understanding arrays
	Understanding simple operations
	Understanding precedence rules

	Chapter 3: Working with Octave: Functions and Plotting
	Using simple mathematical functions
	Understanding the plotting options

	Chapter 4: Rationalizing: Octave Scripts
	Understanding disp and input
	Understanding statements and Boolean operators
	Printing with printf

	Chapter 5: Extensions: Write Your Own Octave Functions
	Understanding functions
	Implementing mathematical functions as Octave functions
	Understanding vectorization

	Chapter 6: Making Your Own Package: A Poisson Equation Solver
	Identifying the Poisson equation

	Index

