GNU Octave

Become a proficient Octave user by learning
this high-level scientific numerical tool from

the ground up

Beginner’s Guide

Jesper Schmidt Hansen [] epen source

PUBLISHING

Become a proficient Octave user by learning this high-level
scientific numerical tool from the ground up

Jesper Schmidt Hansen

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, its dealers, and
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Production Reference: 2150611

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849513-32-6
www . packtpub.com

Cover Image by John Quick (johnejohnmquick . com)

Author

Jesper Schmidt Hansen

Reviewers

Piotr Gawron
Kenneth Geisshirt

Jordi Gutiérrez Hermoso

Acquisition Editor
Usha lyer

Development Editor

Roger D'souza

Technical Editor

Dayan Hyames

Project Coordinator

Joel Goveya

Proofreaders

Lesley Harrison
Clyde Jenkins
Lynda Sliwoski

Indexers

Hemangini Bari
Tejal Daruwale

Monica Ajmera Mehta

Graphics
Nilesh R. Mohite

Production Coordinator

Kruthika Bangera

Cover Work

Kruthika Bangera

Jesper Schmidt Hansen holds a Ph.D. in soft material science and is currently doing
research in the field of nanofluidics and dynamics at Roskilde University, Denmark. He
has been using GNU Octave on a daily basis for many years, both as a student and later
as a researcher. The applications have varied from solving partial and ordinary differential
equations, simple data plotting, data generation for other applications, dynamical system
investigations, and advanced data analysis.

Firstly, | wish to thank the reviewers. They have been a great help and their
many (at times overwhelmingly many) comments and hints have improved
the manuscript considerably.

| have received encouragement and good ideas from everyone at the
Department of Science, Systems and Models, Roskilde University.
Especially, | want to thank Professor Jeppe Dyre from the Danish
National Research Foundation centre "Glass and Time" for giving me the
opportunity to finish the book in the last phase of the writing.

Also, | have found Octave's official mailing list very useful. Unlike many
other user groups, there is a very constructive and helpful atmosphere
here. | thank everyone who has submitted questions and all those that
have replied.

I now realize that having a one year old child, a full time job, as well as
writing a book is not really an ideal cocktail. | must thank Signe Anthon
for her tremendous support and patience during the writing of this book.
When | signed the contract with Packt Publishing, | was happy finally to
be able to make a contribution to the open source community—Signe's
contribution is just as big as mine!

Piotr Gawron is a researcher in the field of quantum information processing. His main
research topics are quantum programming languages, quantum game theory, and numerical
and geometrical methods in quantum information. He works in the Quantum Computer
Systems Group of the Institute of Theoretical and Applied Informatics of the Polish Academy
of Sciences in Gliwice, Poland. Apart from research in theoretical aspects of computer
science, he has gained practical experience in FPGA development and real-time image
processing for applications in UAVs working closely with the industry. He is administrator of
www.quantiki.org, a portal for the quantum information community. He is a user and
strong supporter of free software. He likes hard science-fiction literature, live-action role-
playing, and French rock music.

Kenneth Geisshirt is a chemist by education and a geek by nature. He has been
programming for more than 25 years—the last 6 years as a subcontractor. In 1990, Kenneth
first met free software, and in 1992 turned to Linux as his primary operating system (officially
Linux user no. 573 at the Linux Counter). He has written books about Linux, PAM, and
JavaScript—and many articles on open source software for computer magazines. Moreover,
Kenneth has been a technical reviewer of books on Linux network administration, the Vim
editor, and JavaScript testing.

Jordi Gutiérrez Hermoso studied mathematics in Canada and Mexico, both pure and
applied respectively. He has been programming since the age of seven, when he started

to learn about computers while writing silly programs in BASIC. He has been a Debian user
since 2001, his first and still preferred GNU/Linux distribution, to which he now occasionally
contributes with GNU Octave packaging. Since 2005, he has been an enthusiastic Octave user
and started getting more involved with its development in 2010. As of 2011, he resides in
Mexico and works in BlueMessaging, where he's responsible for natural language processing
and artificial intelligence. An Emacs user at heart, Jordi feels at home in a GNU environment
and will gladly share .emacs configurations with anyone who asks.

| would like to thank my close friends and family for helping me get through
difficult times and for celebrating the good ones with me. John W. Eaton,
Octave's creator, deserves much recognition for starting and leading the
project on which this book is based.

support files, eBooks, discount offers and more

You might want to visit www . PacktPub . com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . Packt Pub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

[[ﬁ PACKT! 5"

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscrihe?

¢ Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content

¢ On demand and accessible via web browser

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Tahle of Contents

Preface 1
Chapter 1: Introducing GNU Octave 7
So what is GNU Octave? 7
Applications 9
Limitations of Octave 9
Octave and MATLAB 10
The Octave community 10
Installing Octave 11
Windows 11
GNU/Linux 12
Building Octave from the source under GNU/Linux 14

Time for action — building Octave from source 14
Checking your installation with peaks 15
Time for action — testing with peaks 15
Customizing Octave 17
Time for action — creating an Octave home directory under Windows 18
Creating your first .octaverc file 19
Time for action — editing the .octaverc file 19
More on .octaverc 20
Installing additional packages 21
Time for action — installing additional packages 21
Uninstalling a package 23
Getting help 23
The behaviour of the Octave command prompt 24
Summary 24
Chapter 2: Interacting with Octave: Variables and Operators 25
Simple numerical variables 26
Accessing and changing array elements 28
More examples 29

Table of Contents

Time for action — manipulating arrays
Complex variables
Text variables
Higher-dimensional arrays
Structures and cell arrays
Structures
Time for action — instantiating a structure
Accessing structure fields
Cell arrays
Time for action — instantiating a cell array
Getting information
Time for action — using whos
Size, rows, columns, and length
Identifying the variable type
Deleting variables from the workspace
A few things that make life easier
Basic arithmetic
Addition and subtraction
Time for action — doing addition and subtraction operations
Matrix multiplication
Time for action — doing multiplication operations
Element-by-element, power, and transpose operations
Operators for structures and cell arrays
Solving linear equation systems: left and right division
Time for action — doing left and right division
Basic arithmetic for complex variables
Summary of arithmetic operators
Comparison operators and precedence rules
Precedence rules
Time for action — working with precedence rules
A few hints
Summary

Chapter 3: Working with Octave: Functions and Plotting

30
31
32
34
35
35
36
37
39
39
41
41
42
43
44
45
47
47
47
49
49
50
52
52
53
55
57
58
60
60
61
63

65

Octave functions
Mathematical functions
Time for action — using the cos function
Polynomials in Octave
More complicated mathematical functions
Time for action — putting together mathematical functions
Helper functions

Generating random numbers
min and max

65
66

66
68
69

70

71
72
72

Table of Contents

Sorting arrays 73
find, any, and all 74
floor, ceil, round, and fix 75
Time for action — trying out floor, ceil, round, and fix 75
sum and prod 76
Absolute values 77
Complex input arguments 77
Operator functions 78
Linear algebra 78
Time for action — using Octave for advanced linear algebra 78
Polynomials 80
Two-dimensional plotting 82
Time for action — making your first plot 83
plot and set 83
Time for action — changing the figure properties 84
Adding lines and text to your plot 86

Plot styles and colors 86

Title and legends 87
Ticks 87
Grids 88
fplot 88
Clear the figure window 89
Moving on 89
Time for action — having multiple graphs in the same figure 89
Multiple figure windows 90
Subplots 91
Time for action — making an inset 92
Saving your plot 94
Three-dimensional plotting 96
Surface plot 96
Time for action — making a surface plot 96
view and colormap 98
Contour plots 99
Three-dimensional parametric plots 99
Time for action - plotting parametric curves 100
Summary 101
Chapter 4: Rationalizing: Octave Scripts 103
Writing and executing your first script 104
Time for action — making your first script 104
Improving your script: input and disp 105
Time for action — interacting with the user 106
Flush please 107
Comments 107
Very long commands 108
Workspace 109

For GNU/Linux and MacOS X users 110
Liiil

Table of Contents

Statements 111
Prime numbers 111
Decision making — the if statement 112
Interlude: Boolean operators 113

Element-wise Boolean operators 113
Short-circuit Boolean operators 115
Using Boolean operators with an if statement 115
Nested statements 116
The switch statement 116
Loops 117
The for statement 117
The while and do statements 118
Nested loops 120
Putting it all together 121
Exception handling 124

Added flexibility — C style input and output functions 127
printf 128

Saving your work 130

Loading your work 131
Functional forms 132

Summary 133

Chapter 5: Extensions: Write Your Own Octave Functions 135

Your first Octave function 135

Time for action — programming the minmax function 136
Scripts versus functions 138
Defining functions at the command prompt 138
Writing a function help text 139
Checking the function call 140

The usage, warning, and error functions 141
nargin and nargout 142

Writing and applying user-supplied functions 145

Using fsolve 147
Providing the Jacobian 148
Using Isode — dynamical analysis of the Sel'kov model 149

Time for action — using Isode for numerical integration 150
Inline functions 151

More advanced function programming: Monte Carlo

integration 152
The feval function 155
Validating the user-supplied function 155
Using quad and trapz for numerical integration 159
Vectorized programming 159

Table of Contents

Time for action — vectorizing the Monte Carlo integrator 160
Simple debugging 161
Multiple function file 164

Summary 167

Chapter 6: Making Your Own Package: A Poisson Equation Solver 169

The Poisson equation — two examples of heat conduction 170
One-dimensional heat conduction 170
Two-dimensional heat conduction 172
The Poisson equation 173
The Dirichlet boundary condition 173

Finite differencing 174
From finite difference to a linear equation system 175
Interlude: Sparse matrices 177

Time for action — instantiating a sparse matrix 177
Memory usage 179

Implementation and package functions 179
The coefficient matrix for one dimension 180
The coefficient matrix for two dimensions 181

The conversion function 182
Testing the functions 183
The coefficient matrices 183
Time for action — using imagesc 184
Comparison with analytical solution 185
Time for action — comparing with analytical solution 185
Two dimensions 186

Time for action — solving a two-dimensional Laplace equation 187
More examples 188
Wrapping everything into one function 189

The pois-solv package 193
Organizing files into the package directory 193

The DESCRIPTION file 194

The COPYING file 194

The INDEX file 195
Building the package 195
Limitations and possible extensions to the package 196
Summary 197
Chapter 7: More Examples: Data Analysis 199

Loading data files 199

Simple descriptive statistics 201
Histogram and moments 202
Sample moments 204

Table of Contents

Comparing data sets 204
The correlation coefficient 205

The student t-test 206
Function fitting 207
Polynomial fitting 207
Time for action — using polyfit 208
Goodness of the fit 210
Time for action — calculating the correlation coefficient 210
Residual plot 211
Non-polynomial fits 211
Transforms 211
General least squares fitting 212
Time for action — using leasqr 213
Fourier analysis 215
The Fourier transform 215
Time for action — using the fft function 216
Fourier analysis of currency exchange rate 219
Time for action — analysing the exchange rate 219
Inverse Fourier transform and data smoothing 221
The Butterworth filter 222
Time for action — applying a low pass filter 223
Summary 224
Chapter 8: Need for Speed: Optimization and Dynamically Linked Functions 225
A few optimization techniques 226
tic, toc 227
Time for action — using tic and toc 227
Vectorization 228
Initialization of variables 228
Looping row-wise versus looping column-wise 229
Dynamically linked functions 229
The DEFUN_DLD function macro 230
Time for action — writing a "Hello World" program 230
Managing input arguments and outputs 231
Time for action — checking user inputs and outputs 232
Retrieving the inputs 234
Class types 236
Functions as input argument 237
Optimization with oct-files 240
Time for action — revisiting the Sel'kov model 241

Summary 244

Table of Contents

Pop Quiz Answers 245
Chapter 2: Interacting with Octave: Variables and Operators 245
Working with arrays 245
Understanding arrays 245
Understanding simple operations 246
Understanding precedence rules 246
Chapter 3: Working with Octave: Functions and Plotting 246
Using simple mathematical functions 246
Understanding the plotting options 246
Chapter 4: Rationalizing: Octave Scripts 246
Understanding disp and input 246
Understanding statements and Boolean operators 247
Printing with printf 247
Chapter 5: Extensions: Write Your Own Octave Functions 247
Understanding functions 247
Implementing mathematical functions as Octave functions 248
Understanding vectorization 248
Chapter 6: Making Your Own Package: A Poisson Equation Solver 248
Identifying the Poisson equation 248

Index

249

Using a range of very different examples, this beginner's guide will take you through the
most important aspects of GNU Octave. The book starts by introducing how you work with
mathematical objects like vectors and matrices, demonstrating how to perform simple
arithmetic operations on these objects and explaining how to use some of the simple
functionality that comes with GNU Octave, including plotting. It then goes on to show you
how to extend and implement new functionality into GNU Octave, how to make a toolbox
package to solve your specific problem, and how to use GNU Octave for complicated data
analysis. Finally, it demonstrates how to optimize your code and link GNU Octave with C++
code enabling you to solve even the most computational demanding tasks. After reading
GNU Octave Beginner's Guide, you will be able to use and tailor GNU Octave to solve most
numerical problems and perform complicated data analysis with ease.

Chapter 1, Introducing GNU Octave briefly introduces you to GNU Octave. It explains how
you can install GNU Octave and test your installation. This first chapter also discusses how
to customize the appearance and the behavior of GNU Octave as well as how you install
additional packages.

Chapter 2, Interacting with Octave: Variables and Operators shows you how to interact with
GNU Octave through the interactive environment. Learn to instantiate objects of different
types, control their values, and perform simple operations on and between them.

Chapter 3, Working with Octave: Functions and Plotting explains GNU Octave functions and
shows several examples of the very useful functionalities that come with GNU Octave. In this
chapter, you will see how you can perform two- and three-dimensional plotting, control the
graph appearance, how to have multiple plots in the same figure window, and much more.

Chapter 4, Rationalizing: Octave Scripts looks at how you can rationalize your work using
scripts. It will teach you how to control the programming flow in your script and how to
perform loops using different statements. At the end of the chapter, you are shown how you
can save your work and load it back into GNU Octave's workspace.

Preface

Chapter 5, Extensions: Write Your Own Octave Functions takes a closer look at functions and
teaches how you can write your own GNU Octave functions. You will learn how to control
and validate user input to the function. The important concept of vectorization is discussed
and an example of this is given in the last part of the chapter.

Chapter 6, Making Your Own Package: A Poisson Equation Solver teaches you how to make
your own GNU Octave package from a collection of related functions. The package will be
able to solve one- and two-dimensional Poisson equations and is therefore relevant for many
problems encountered in science and engineering. In this chapter, you will also learn how to
work with sparse matrices in GNU Octave.

Chapter 7, More Examples: Data Analysis shows you examples of how GNU Octave can be
used for data analysis. These examples range from simple statistics, through data fitting, to
Fourier analysis and data smoothing.

Chapter 8, Need for Speed: Optimization and Dynamically Linked Functions discusses how
you can optimize your code. This includes vectorization, partial looping, pre-instantiation of
variables, and dynamically linked functions. The main part of the chapter shows how to use
GNU Octave's C++ library and how to link this to the GNU Octave interactive environment.
Special attention is paid to explaining when and when not to consider using dynamically
linked functions.

If you use Windows, you basically only need to have a full version of GNU Octave installed on
your computer. For GNU/Linux, you may need a plotting program like gnuplot, a Fortran and
C/C++ compiler like gcc, and the GNU make utility; fortunately these are standard packages
on almost all GNU/Linux distributions. In Chapter 1, it will be shown how you install GNU
Octave under Windows and GNU/Linux.

This book is intended for anyone interested in scientific computing and data analysis. The
reader should have a good knowledge of mathematics and also a basic understanding of
programming will be useful, although it is not a prerequisite.

[2]

Preface

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action - heading

1. Action1
2. Action?2
3. Action3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These are short multiple-choice questions intended to help you test your own understanding.

These set practical challenges and give you ideas for experimenting with what you have
learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "For example, the inverse of sine is called asin and
the inverse hyperbolic of sine is asinh."

A block of code is set as follows:

flush the output stream
fflush (stdout) ;

Get the number of rows and columns from the user
nr = input ("Enter the number of rows in the matrix: ");
nc = input ("Enter the number of columns in the matrix: ");

[31]

Preface

Any command-line input or output is written as follows:

octave:35> projectile = struct("mass", 10.1, "velocity", [1 0 0],
"type", "Cannonball");

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Now go to the Octave-Forge
web page, find the msh package, and click on Details (to the right of the package name)."

Specific commands entered in Octave are referred to using the relevant command numbers:

octave:5 > A = [1 2 3; 4 5 6]

A =

[N

% Warnings or important notes appear in a box like this.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

[4]

Preface

You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub. com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we

would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http: //www.packtpub.com/support, selecting your book, clicking
on the errata submission form link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata will be uploaded on our website,
or added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http: //www.packtpub.com/support.

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[51]

This chapter will introduce you to GNU Octave. We shall briefly discuss what
GNU Octave is, its strengths and its weaknesses. You will also see GNU Octave
in action; however, before this it must, of course, be installed on your computer,
and we will quickly go through the installation procedure.

More specifically, in this chapter you will:

Get a quick introduction to GNU Octave.

Learn how to install GNU Octave on Windows and GNU/Linux.
Give GNU Octave a few commands to see it in action.
Customize GNU Octave.

Install additional packages.

* 6 ¢ 6 o o

Learn a few tricks of the trade.

GNU Octave exists for Mac/OS X, Solaris, and 0S/2, but we will limit ourselves to go through
the installation procedures for Windows and GNU/Linux. | strongly recommend that you
install the most recent version of GNU Octave (which will be version 3.2.4 or higher). Many
features described in this book are not supported in the version 2-series, especially, as the
plotting facilities improved significantly in recent versions.

In brief, GNU Octave is a multi-functional tool for sophisticated numerical analysis. GNU
Octave provides you with:

Introducing GNU Octave

1. Alarge set of build-in functionalities to solve many different problems.
2. A complete programming language that enables you to extend GNU Octave.

3. Plotting facilities.
This book will cover these features.

GNU Octave uses an interpreter to compile and execute a sequence of instructions given by

the user at run-time. This is also how, for example, PHP and Python work. This is in contrast to
pre-compiled programming languages such as C where the program is first compiled and then
executed manually. Just like Python, you can give GNU Octave instructions in a prompt-like
environment. We shall see many examples of this later. The following image shows a screenshot
of GNU Octave in action—do not worry about what the plots are, for the time being.

<3 Applications Places System |- [STa?] © sun May 9, 22:34 - [N g) [e NNV DD -
emacs22-gtk@mirage =]
File Edit Options Buffers Tools Octave Help

DEE>BE Y s aBREXE

#H 30 plot
Figure (D)

Power spectra
Figure(2);

load x.dats
IFHPI =

plotiH,*1000,P, '

axisild. 0.61)

xLabel {

ylabel ¢

texti0,4, 0,0L, - 'FontSize')
text10.31, 0,021, . FDntSst
texti0.1, 0.023. . "Fontst 203

hold on
Terminal
Figure 2

First band

e for copying conditions.
for MERCHANTIBILITY or Second band
FITNE:: FOR A PARTI(ULAR PURPOSE . s, type ‘warranty'.

octave was configured for "i486-pc-linux-g

Additional information about Octave is available at http://www.octal
ve.org.

Please contribute if you fJnd rh twa ul.
For more information, visi . .org/help-wanted. htr X i Third band

For information about changes from previous versions, t

un_fig

0.3
Freg. x 10%

Terminal @ emacs22-gtk@mirage | = gplt | 3 gpit
——

GNU Octave is named after the chemist Octave Levenspiel and has nothing to do with music
and harmonic waves. The project was started by James B. Rawlings and John G. Ekerdt, but
it has mainly been developed by John W. Eaton, who has put a lot of effort into the project.
GNU Octave is an official GNU project (hence, the GNU prefix), and the source code is
released under the GNU General Public License (GPL).

Chapter 1

In simple terms, this means that you are allowed to use the software for any purpose, copy,
and distribute it, and make any changes you want to it. You may then release this new
software under GPL. If you use GNU Octave's own programming language to extend the
functionality, you are free to choose another license. | recommend you to have a look at the
license agreement that comes with GNU Octave at http://www.gnu.org/software/
octave/license.html.

In the remainder of the book, GNU Octave will simply be referred to as Octave for
convenience. However, if you wish to sound like an Octave guru, use the "GNU" prefix!

As mentioned previously, Octave can be used to solve many different scientific problems.
For example, a Copenhagen-based commercial software and consulting company specializes
in optimization problems, especially for packing containers on large cargo ships. This can

be formulated in terms of linear programming which involves solving large linear equation
systems and to this end, the company uses Octave. Pittsburgh supercomputing center also
used Octave to study social security number vulnerability. Here Octave ran on a massive
parallel computer named Pople with 768 cores and 1.5 TB memory and enabled researches
to carry out sophisticated analysis of different strategies before trying out new ones.

In the research community, Octave is used for data analysis, image processing, econometrics,
advanced statistical analysis, and much more. We shall see quite a few examples of this
throughout the book.

Limitations of Octave

Octave is mainly designed to perform numerical computations and is not meant to be

a general purpose programming language such as C or C++. As it is always the case, you
should choose your programming language depending on the problem you wish to solve.
Nevertheless, Octave has a lot of functionality that can help you with, for example, reading
from and writing to files, and you can even use a package named sockets for accessing a
network directly.

The fact that Octave uses an interpreter means that Octave first has to convert the
instructions into machine readable code before executing it. This has its advantages as

well as drawbacks. The main advantage is that the instructions are easy to implement

and change, without having to go through the edit, compile, and run phase and gives the
programmer or user a very high degree of control. The major drawback is that the program
executes relatively slowly compared to pre-compiled programs written in languages such
as C or Fortran. Octave is therefore perhaps not the first choice if you want to do extremely
large scale parallelized computations, such as state-of-art weather forecasting.

Introducing GNU Octave

However, as you will experience later in the book, Octave will enable you solve very
advanced and computationally demanding problems with only a few instructions or
commands and with satisfactory speed. The last chapter of this book teaches you some
optimization techniques and how you can use C++ together with Octave to speed things up
considerably in some situations.

Octave is not designed to do analytical (or symbolic) mathematics. For example, it is not
the best choice if you wish to find the derivative of a function, say /'(x) = x%. Here software
packages such as Maxima and Sage can be very helpful. It should be mentioned that there
exists a package (a package is also referred to as a toolbox) for Octave which can do some
basic analytical mathematics.

Octave and MATLAB

It is in place to mention MATLAB. Often Octave is referred to as a MATLAB-clone (MATLAB

is a product from MathWorks™). In my opinion, this is wrong! Rather, Octave seeks to be
compatible with MATLAB. However, be aware, in some cases you cannot simply execute your
Octave programs with MATLAB and vice-versa. Throughout the book, it will be pointed out
where compatibility problems can occur, but we shall stick with Octave and make no special
effort to be compatible with MATLAB.

The Octave community

The newest version of Octave can be found on the web page http://www.octave.org.
Here you will also find the official manual, a Wiki page with tricks and tips, latest news, a
bit of history, and other exciting stuff. From this web page, you can join Octave's mailing
lists (the help-list is especially relevant), which only require a valid email address. The user
community is very active and helpful, and even the developers will answer "simple" user
questions. You can also learn quite a lot from browsing through the older thread archives.

There also exists an Usenet discussion group http://groups.google.com/group/
comp.soft-sys.octave/topics?1lnk. Unfortunately, this group seems quite inactive, so
it could take a while for help to arrive.

There exist a very large number of additional packages that do not come with the standard
Octave distribution. Many of these can be downloaded from the Octave-Forge
http://octave.sourceforge.net. Here you will find specially designed packages for
imaging processing, econometrics, information theory, analytical mathematics, and so on.
After reading this book and solving the problems at the end of each chapter, you will be able
to write your own Octave package. You can then share your work with others, and the entire
Octave community can benefit from your efforts. Someone might even extend and improve
what you started!

[101

http://groups.google.com/group/comp.soft-sys.octave/topics?lnk
http://groups.google.com/group/comp.soft-sys.octave/topics?lnk

Chapter 1

Installing Octave

Octave is primarily designed to run under GNU/Linux. However, you can also run Octave
under Windows with only a few glitches here and there. The installation procedure, runs
very smoothly under Windows. Let us start with this.

Installing Octave on Windows is straightforward. The steps are as follows:

1.

Go to the Octave-Forge web site. Here there is a hyper link to a Windows installer.
Download this installer onto your desktop or any other destination you may prefer.

Double-click on the installer icon.
You will see a greeting window. Click on the Next button.

The next window shows you the license agreement, which | recommend that you
read. Click the Next button.

Now, you will have the opportunity to choose where Octave will be installed. The
default path is usually fine. When you are happy with the installation path, click on
Next.

The following window asks you to choose between different versions of the FFTW3
and ATLAS numerical libraries that Octave uses for Fourier transforms and linear
algebra computations. These different versions are specially designed for different
CPU architectures. You can also choose any additional packages you want to install, as
shown in the following screenshot. Let us not worry about the details of the FFTW3
and ATLAS libraries at the moment, and just choose the generic versions for now.

Choose to install all additional packages by ticking the Octave-Forge box. Click on
Next and Octave will get installed.

After the installation, you can change the menu folder if you wish. If you want, you
can also check the README file, and if not, simply uncheck the box to the left of
where you are asked whether you want to see the README file. Click Next, and you
are done!

[This installation guide has been tested on 32-bit Windows 2000, Windows XP,]
Vs

and Windows 7.

nl

Introducing GNU Octave

Notice that Octave's interactive environment (the Octave prompt) may be launched when
the installer exits. To close this, simply type:

octave:1> exit

or press the Ctrl key and the D key at the same time. We shall write this combination as Ctr/
+ D. By the way, Ctrl + D is a UNIX end-of-file indicator and is often used as a shortcut for
quitting programs in UNIX-type systems like GNU/Linux.

5 GNU Octave 3.2.4 Setup o o= e S
Choose (4)“1 »onents i’
Choose which features of GNU Octave 3.2.4 you want to install. \ 9)

Review the components that will be installed. Click Install to start the installation.

Review the components that | 5. [ATLAS Libraries = g

will be installed.

MIMD: The appropriate _
ATLAS Libraries for this O mmax o)
machine have already been [ssE (P1D)
selected by the installer. [1ssE2 (P4)
CHANGE OMNLY WITH]

CAUTION [Octave Forge

actuarial

Space required: 329, 2MB

< Back | MNext = | Cancel |

Alternatively, you can run Octave under Windows through Cygwin, which is similar to the
GNU/Linux environment in Windows. | will not go through the installation of Cygwin here,
but you may simply refer to the Cygwin web page http://www.cygwin.com.

R If you install Octave version 3.2.4 under Windows, | strongly recommend that
% you leave out the oct2mat package. This package may prevent the plotting
s window to update properly. For instance, when you plot a graph, it will not
appear in the plotting window. This is not an issue under GNU/Linux.

GNU/Linux

On many GNU/Linux distributions, Octave is a part of the standard software. Therefore,
before installing Octave, check if it already exists on your computer. To do so, open a
terminal, and type the following in the terminal shell:

$ octave

121

http://www.cygwin.com/

Chapter 1

If Octave is installed (properly), you should now see Octave's command prompt. Now just
exit by typing the following:

octave:1l> exit

Alternatively, you may use CTRL + D, that is, press the control key and the D key at the
same time.

If Octave is not installed, you can often use the distribution's package management system.
For example, for Ubuntu, you can use the Synaptic Package Manager, which is a graphical
tool to install and remove software on the computer. Please refer the following screenshot.
In case of Fedora and CentQS, you can use YUM.

% Make sure that your package manager also installs a
S plotting program with Octave, for example, gnuplot.

File Edit Package Settings Help
v o e &
Reload Mark All Upgrades Apply Properties Search
All s Package Installed Version | Latest Version Description
Amateur Radio (universe) _||0 - octave2.9 1:3.0.1-6ubuntu2 GNU Octave language for num
Base System 1 [:qgtoctave 0.7.4+dfsg-3 A Qt front-end to Octave L
Base System (restricted) octave3.0 1:3.0.1-6ubuntu2 GNU Octave language for num |
Communication : octave2.9-headers 1:3.0.1-6ubuntu2 : header files for the GNU Octa
Communication (multiverse) [0 octave2.9-doc 1:3.0.1-6ubuntu2 PDF documentation on the GN
Communication (restricted) [0 - octave2.9-emacsen 1:3.0.1-6ubuntu2 Emacs support for the GNU O¢
Communication (universe) [octave2.9-htmidoc 1:3.0.1-6ubuntu2 HTML documentation on the G
Cross Platform [:octave2.9-info 1:3.0.1-6ubuntu2 ' GNU Info documentation on th
Cross Platform (multiverse) O octave-graceplot 1.0.5-2 Plotting function of GNU Octay
Cross Platform (universe) [0 octave3.0-doc 1:3.0.1-6ubuntu2 PDF documentation on the GN
Development [0 - octave3.o-dbg 1:3.0.1-6ubuntu2 Debug symbols for octave3.0
Development (multiverse) [0 octave3.0-htmidoc 1:3.0.1-6ubuntu2 HTML documentation on the G
Development (universe) [octave3.o-info 1:3.0.1-6ubuntu2 ' GNU Info documentation on th
Documentation [J :octave3.0-emacsen 1:3.0.1-6ubuntu2 ' Emacs support for the GNU Oc
Documentation (multiverse) octave3.0-headers 1:3.0.1-6ubuntu2 header files for the GNU Octa
Documentation (universe) [0 octave-control 1.0.6-1 control functions for Octave fr¢
lEditors _|[] O octave-ga 0.9.2~svn2008082: genetic optimization code for
-) [:octave-vrml 1.0.6-3 VRML functions for Octave
‘ Sections ‘ [0 :octave-plot 1.0.5-2 additional plotting tools for Oc
= ne= . I - A R [~
‘ Status ‘ i] B}
‘ origin ‘ header files for the GNU Octave language (dummy package)
- | Get Screenshot [
‘ Custom Filters ‘ S
This is a dummy package for easying the transition from octave2.9 to
‘ Search Results ‘ octave3.0. Once octave3.0-headers is installed in the system, this package ~
76 packages listed, 1769 installed, 0 broken. 6 to install/upgrade, 0 to remove; 34,9 MB will be used

1131

Introducing GNU Octave

Building Octave from the source under GNU/Linux

If you wish, you can also build Octave directly from the source code. However, | only
recommend this if Octave is not available through the system's package manager. In order to
build Octave from source, you will need (at least) the following:

The GNU make utility

Fortran and C/C++ compilers (GNU Compiler Collection (known as GCC) version 4.1
or later suffice)

¢ gnuplot (to be on the safe side)

Fortunately, these software packages usually come with most GNU/Linux distributions. If
not, you should be able use the package manager to install them.

Time for action - building Octave from source

Perform the following actions step-by-step:

1. Download the latest stable release of Octave from http: //www.gnu.org/
software/octave/download.htmand save it to any directory. The file will be a
compressed and archived file with extension . tar.gz.

2. Open aterminal and enter the directory where the source was downloaded. To
unpack the file, type the following:
$ tar zxf octave-version.tar.gz

3. Here version will be the version number. This command will create a directory
named octave-version.

4. To enter that directory type the following:

$ cd octave-version

5. We can now configure the building and compiling processes by typing the following:
$./configure

6. If the configuration process is successful, then we can compile the Octave source
with the following command(this will take a while):
$ make

7. Before doing the actual installation, you should test whether the build was done
properly. To do so, type the following:
$ make check

8. Some of the tests may fail. However, this does not mean that the build was
unsuccessful. The test is not mandatory.

(1]

Chapter 1

9. Toinstall Octave on the computer, you need to have root privileges. For example,
you can use the following:

$ sudo make install

10. Now type in the root password when prompted. That is it!

What just happened?

As you can see, we just performed the standard UNIX installation procedure: configure,
make, make install. If you do not have root privileges, you cannot install Octave on
the computer. However, you can still launch Octave from the bin/ sub-directory in the
installation directory.

Again, the preceding installation will only install Octave and not the plotting program. You
will need to have this installed separately for Octave to work properly.

. I recommend that you have Emacs installed under GNU/Linux, because Octave
% uses this as the default editor. You will learn how to change the default editor later.
i

Checking your installation with peaks

It is time to take Octave for a spin! There are different ways to start Octave's interpreter.
One way is to execute an Octave script, and another way is to enter Octave's interactive
environment, which is what we will do here.

Time for action - testing with peaks

1. You can enter the interactive environment by typing octave in your shell under
GNU/Linux, or by double-clicking the Octave icon in Windows. You should now see
the Octave prompt:

octave:1>

2. You have already learned how to exit the interactive environment. Simply give
Octave the command exit or press Ctrl + D, but we do not want to exit just yet!

3. At the prompt, type as follows:

octave:1> surf (peaks)

151

Introducing GNU Octave

4.

You should now see a three-dimensional surface plot as depicted on the left-hand
side figure shown next. If not, your installation has not been successful. Now, put
your mouse pointer over the figure window, hold the left mouse button down, and
move the pointer. If the plotting program supports it, the figure should now rotate
in the direction you move the pointer. If you click on the figure window using mouse
button three (or the scroll wheel) you can zoom by moving the pointer side to side
or up and down.

Let us try a contour plot. Type as follows:

octave:2> contourf (peaks)

Does it look like the following figure on the right? If not, it can be because you are
using Octave version 3.2.4 and have the package oct2mat loaded. Try typing

octave:3> pkg unload oct2mat
Now retype the previous command.

Click somewhere on the window of the right-hand side figure with button three. A
cross and two numbers appear in the window if you are using gnuplot with Octave.
The cross is just the point where you clicked. The two numbers show the x axis and y
axis values.

Octave can use different plotting program, for example, gnuplot or its own native
plotting program. Therefore, your figures may look a bit different, depending on
that program.

What just happened?

The figure to the left shows a graph of a mathematical function, which is a scalar function of

two variables y and x given by:

1161

Chapter 1

S(y) =3(1=x) exp(-x = + 1)) = 10 (5 —x =5") exp(=x" ~)

1.1
g exp(- (1) -). (D

The function value (range) is evaluated in Octave by the command peaks, which is the

nick name for the function f. The graph is then plotted using the Octave function surf. As a
default, Octave calculates the range of fusing 50 x and y values in the interval [-3; 3]. As you
might have guessed already, the contourf Octave function plots the contours of f. Later we
will learn how to label the axis, add text to the figures, and much more.

Did you notice the phrase "Octave function" previously? An Octave function is not
necessarily a mathematical function as Equation (1.1), but can perform many different types
of operations and have many different functionalities. Do not worry about this for now. We
will discuss Octave functions later in the book.

Notice that the interpreter keeps track of the number of commands that have been entered
and shows this at the prompt.

When the Octave interpreter starts, it reads several configuration files. These files can be
changed in order to add system paths, the appearance of the Octave command prompt, how
the editor behaves, and much more. The changes can be global and affect all users of Octave
that run on a particular computer. They can be targeted to work with a specific version of
Octave, a specific project, or a user. This is especially useful on multi-user platforms, such as
GNU/Linux.

The configuration files are named either octaverc or .octaverc, depending on where
they are located and how the configurations affect Octave. They basically consist of a
sequence of Octave commands, so you can also give the same commands to the interpreter
from the Octave prompt. This can be a good way to test new configurations before
implementing them in your octaverc or .octaverc files.

The names octaverc and .octaverc are, of course, not supported by MATLAB. However,
most commands are. It is therefore just a matter of copying the content of the octave
configuration files into MATLAB's startup . mfile.

Under Windows, the user does not have a home directory equivalent to the home directory
under GNU/Linux. | therefore recommend that you create a home directory for Octave. You
can then command Octave to go to this directory and look for your configuration file here,
whenever you start the interpreter.

If you are using GNU/Linux you can skip the following "Time for action" section.

[l

Introducing GNU Octave

Time for action - creating an Octave home directory

Let us assume that the Octave home directory is going to be C: \Documents and
Settings\GNU Octave\. We can actually create this directory directly from Octave; so let
us go ahead.

1. Sstart Octave and give it the following commands:
octave:1> cd C:
octave:2> cd "Documents and Settings"
octave:3> mkdir "GNU Octave™"

ans = 1

2. Theresponse ans = 1 after the last command means that the directory was
successfully created. If Octave returns a zero value, then some error occurred, and
Octave will also print an error message. Instead of creating the directory through
Octave, you can use, for example, Windows Explorer.

3. Westill need to tell the interpreter that this is now the Octave home directory. Let
us do this from Octave as well:

octave:4> edit

4. You should now see an editor popping up. The default editor under Windows is
Notepad++. Open the file c: \octave-home\share\octave\site\m\startup\
octaverc, where octave-home is the path where Octave was installed, for
example, Octave\3.2.4 gcc-4.4.0. Add the following lines at the end of the file.
setenv ('HOME', 'C:\Document and Settings\GNU Octave\');
cd ~/

Be sure that no typos sneaked in!

5. Save the file, exit the editor, and restart Octave. That is it.
Downloading the example code

from your account at http: //www. PacktPub. com. If you purchased this
book elsewhere, you can visit http: //www.PacktPub.com/support and
register to have the files e-mailed directly to you.

~\‘Q You can download the example code files for all Packt books you have purchased

[181

http://www.PacktPub.com
http://www.PacktPub.com/support

Chapter 1

What just happened?

The first three Octave commands should be clear: we changed the directory to C:\
Documents and Settings\ and created the directory GNU Octave. After this, we
opened the global configuration file and added two commands. The next time Octave starts
it will then execute these commands. The first instructed the interpreter to set the home
directory to C: \Document and Settings\GNU Octave\, and the second made it enter
that directory.

Having created the Octave home directory under Windows, we can customize Octave under
GNU/Linux and Windows the same way.

Time for action - editing the .octaverc file

1. Sstart Octave if you have not already done so, and open the default editor:

octave:1> edit

2. Copy the following lines into the file and save the file as . octaverc under the
Octave home directory if you use Windows, or under the user home directory if you
use GNU/Linux. (Without the line numbers, of course.) Alternatively, just use your
favorite editor to create the file.

PS1 (">> ");
edit mode "async"

Exit the editor and restart Octave. Did the appearance of the Octave prompt
change? It should look like this

>>

Instead of restarting Octave every time you make changes to your setup files,
you can type, for example, octave:1> source (".octaverc"). This will
read the commands in the . octaverc file.

What just happened?

PS1(">> ") setsthe primary prompt string in Octave to the string given. You can set it to
anything you may like. To extend the preceding example given previously, PS1 ("\\#>> ")
will keep the command counter before the >> string. You can test which prompt string is
your favorite directly from the command prompt, that is, without editing .octaverc. Try,
for example, to use \\d and Hello give a command, \\u. In this book, we will stick
with the default prompt string, which is \\s: \ \#>.

1191

Introducing GNU Octave

The command edit mode "async" will ensure that when the edit command is given,
you can use the Octave prompt without having to close the editor first. This is not default in
GNU/Linux.

Finally, note that under Windows, the behavior will be global because we instructed Octave
to look for this particular . octaverc file every time Octave is started. Under GNU/Linux,
the .octaverc issaved in the user's home directory and will therefore only affect that
particular user.

The default editor can be set in .octaverc. This can be done by adding the following line
into your .octaverc file

edit editor name of the editor

where name of the editor isthe editor. You may prefer a notepad if you use Windows,
or gedit in GNU/Linux. Again, before adding this change to your .octaverc file, you should
test whether it works directly from the Octave prompt.

Later in the book, we will write script and function files. Octave will have to be instructed
where to look for these files in order to read them. Octave uses a path hierarchy when
searching for files, and it is important to learn how to instruct Octave to look for the files

in certain directories. | recommend that you create a new directory in your home directory
(Octave home directory in Windows) named octave. You can then place your Octave files in
this directory and let the interpreter search for them here.

Let us first create the directory. It is easiest simply to enter Octave and type the following:

octavel:> cd ~/

octave2:> mkdir octave

It should be clear what these commands do. Now type this:
octave3:> edit .octaverc

Add the following line into the . octaverc file:
addpath("~/octave") ;

Save the file, exit the editor, and restart Octave, or use source (" .octaverc"). At the
Octave prompt, type the following:

octavel:> path

[201

Chapter 1

You should now see that the path ~/octave/ is added to the search path. Under Windows,
this path will be added for all users. The path list can be long, so you may need to scroll
down (using the arrow key) to see the whole list. When you reach the end of the list, you can
hit the Q key to return to Octave's command prompt.

As mentioned earlier, there exists a large number of additional packages for Octave, many
of which can be downloaded from the Octave-Forge web page. Octave has a superb way
of installing, removing, and building these packages. Let us try to install the msh package,
which is used to create meshes for partial differential solvers.

Time for action - installing additional packages

Before installing a new package, you should check which packages exist already and
what their version numbers are. Start Octave, if you have not done so. Type the
following:

octave:1> pkg list
You should now see a table with package names, version numbers, and installation
directories. For example:

Package Name | Version | Installation directory

+ +
T T

combinatorics | 1.0.6 | /octave/packages/combinatorics-1.0.6

If you have chosen to install all packages in your Windows installation, the list is
long. Scroll down and see if the msh package is installed already, and if so, what the
version number is. Again, you can press the Q key to return to the prompt.

Now go to the Octave-Forge web page, find the msh package, and click on Details
(to the right of the package name). You will now see a window with the package
description, as shown in the following figure. Is the package version number higher
than the one already installed? (If not, sit back, relax, and read the following just for
the fun of it.) The package description also shows that the msh package dependents
on the spline package and Octave version higher than 3.0.0. Naturally, you need
Octave. However, the spline package may not be installed on your system. Did you
see the spline package when you typed pkg 1list previously? If not, we will need
to install this before installing msh. Go back to the main package list and download
the msh and the spline packages to your Octave home directory. (By the way, does
the spline package have any dependencies?) The downloaded files will be archived
and compressed and have extensions . tar.gz. To install the packages, make sure
you are in your Octave home directory and type the following:

octave:2> pkg install splines-version-number.tar.gz

21

Introducing GNU Octave

(If you need it.)

octave:3> pkg install msh-version-number.tar.gz

Make sure that you have downloaded the package files into the Octave home
directory.

msh
D load Pack

Package Version: 1.0.1 4 (::m - ———
Last Release Date: 2010-03-30
Package Author: Carlo de Falco, Massimiliano Culpo
Package Maintainer: Carlo de Falco, Massimiliano Culpo @ Function Ref e
License: GPL version 2 or later

Description

Create and manage triangular and tetrahedral meshes for Finite Element or Finite Volume PDE solvers.
Use a mesh data structure compatible with PDEtool. Rely on gmsh for unstructured mesh generation.

Details

Dependencies: Octave (>= 3.0.0) splines (>= 0.0.0)
Autoload: Yes

To check your new package list, type the following:

octave:4> pkg list

Package Name | Version | Installation directory

4
T

msh 1.0.1 | /home/jesper/octave/msh-1.0.1

combinatorics | 1.0.6 | /octave/packages/combinatorics-1.0.6
|
splines * | 1.0.7 | /home/jesper/octave/splines-1.0.7

You can get a description of the msh package by typing the following:

octave5:> pkg describe msh
Package name:
msh

Short description:
Create and manage triangular and tetrahedral meshes for Finite
Element or Finite Volume PDE solvers. Use a mesh data structure
compatible with PDEtool. Rely on gmsh for unstructured mesh
generation.

Status:
Not loaded

[22]

Chapter 1

8. From the status, you can see that the package has not been loaded, which means
we cannot use the functionality that comes with the package. To load it, simply type
the following:

octave: 6> pkg load msh

9. You should check that it actually has been loaded using pkg describe msh.
Naturally, you can also unload the msh package by using the following command:

octave:7> pkg unload msh

% If you are using a multi-user system, consult your system administrator before
A you install your own local packages.

What just happened?

The important points have already been explained in detail. Note that you need to install
splines before msh because of the dependencies.

You may find it a bit strange that you must first load the package into Octave in order to use
it. The package can load automatically if you install it with the —auto option. For example,
command 3 can be replaced with the following:

octave:3> pkg install -auto msh-version-number.tar.gz

Some packages will automatically load even though you do not explicitly instruct it to do so
when you install it. You can force packages not to load using -noauto.

octave:3> pkg install -noauto msh-version-number.tar.gz

Unistalling a package is just as easy:

octave:8> pkg uninstall msh

Note that you will get an error message if you try to uninstall splines before msh because
msh depends on splines.

Getting help

The pkg command is very flexible and can be called with a number of options. You can see
all these options by typing the following:

octave:9> help pkg

1231

Introducing GNU Octave

The help documentation is rather long for pkg. You can scroll up and down in the text using
the arrow keys or the F and B keys. You can quit the help anytime by pressing the Q key. The
previous example illustrates the help text for pkg. Help is also available for other Octave
commands. You may try, for example, help PS1.

The hehaviour of the Octave command prompt

Often you will use the same commands in an Octave session. Sometimes, you may have
forgotten a certain command's name or you only remember the first few letters of the
command name. Octave can help you with this. For example, you can see your previous
commands by using the up and down arrow keys (Try it out!). Octave even saves your
commands from previous sessions.

For example, if you wish to change the appearance of your primary prompt string, then type
the following:

octave:10> PS <up arrow key>

Now only the previous commands starting with PS show up. Instead of using the arrow key,
try to hit the tabulator key twice:

octave:11> PS
(Now press TAB key twice)
PS1 PS2 PS4

This shows all commands (and functions) available having ps prefixed.

In this chapter, you have learned the following:

About Octave, it's strengths, and weaknesses.
How to install Octave on Windows and GNU/Linux.
To test your installation with peaks.

How to use and change the default editor.

* 6 6 o o

To customized Octave. For example, we saw how to change the prompt appearance
and how to add search paths.

To use the pkg command to install and remove additional packages.

About the help utility.

We are now ready to move on and learn the basics about Octave's data types and operators.

[21]

Octave is specifically designed to work with vectors and matrices. In this
chapter, you will learn how to instantiate such objects (or variables), how to
compare them, and how to perform simple arithmetic with them. Octave also
supports more advanced variable types, namely, structures and cell arrays,
which we will learn about. With Octave, you have an arsenal of functionalities
that enable you to retrieve information about the variables. These tools

are important to know later in the book, and we will go through the most
important ones.

In detail, we will learn how to:

Instantiate simple numerical variables i.e. scalars, vectors, and matrices.
Instantiate text string variables.

Instantiate complex variables.

Retrieve variable elements through simple vectorized expressions.
Instantiate structures, cell arrays, and multidimensional arrays.

Get information about the variables.

Add and subtract numerical variables.

Perform matrix products.

Solve systems of linear equations.

L R R R R 2R 2 JER R R 4

Compare variables.

Let us dive in without further ado!

Interacting with Octave: Variables and Operators

In the following, we shall see how to instantiate simple variables. By simple variables, we
mean scalars, vectors, and matrices. First, a scalar variable with name a is assigned the value
1 by the command:

octave:1> a=1
a=1

That is, you write the variable name, in this case a, and then you assign a value to the
variable using the equal sign. Note that in Octave, variables are not instantiated with a type
specifier as it is known from C and other lower-level languages. Octave interprets a number
as a real number unless you explicitly tell it otherwise?.

You can display the value of a variable simply by typing the variable name:

octave:2>a

a=1

Let us move on and instantiate an array of numbers:
octave:3 > b = [1 2 3]

b =
1 2 3

Octave interprets this as the row vector:

b=[123] 2.1)

rather than a simple one-dimensional array. The elements (or the entries) in a row vector can
also be separated by commas, so the command above could have been:

octave:3> b = [1, 2, 3]

To instantiate a column vector:

in Octave, a real number is a double-precision, floating-point number,which means that the number is
accurate within the first 15 digits. Single precision is accurate within the first 6 digits.

1261

Chapter 2

1
c=|{2 (2.2)
3
you can use:
octave:4 > ¢ = [1;2;3]
C =
1
2
3

Notice how each row is separated by a semicolon.

We now move on and instantiate a matrix with two rows and three columns (a 2 x 3 matrix):

A<y 5 dl ey

using the following command:

octave:5 > A = [1 2 3; 4 5 6]

A =
2 3

1
4 5 6

Notice that | use uppercase letters for matrix variables and lowercase letters for scalars and
vectors, but this is, of course, a matter of preference, and Octave has no guidelines in this
respect. It is important to note, however, that in Octave there is a difference between upper
and lowercase letters. If we had used a lowercase a in Command 5 above, Octave would
have overwritten the already existing variable instantiated in Command 1. Whenever you
assign a new value to an existing variable, the old value is no longer accessible, so be very
careful whenever reassigning new values to variables.

Variable names can be composed of characters, underscores, and numbers. A

variable name cannot begin with a number. For example, a_1 is accepted as a
’ valid variable name, but 1_a is not.

In this book, we shall use the more general term array when referring to a vector or a matrix
variable.

[21]

Interacting with Octave: Variables and Operators

Accessing and changing array elements

To access the second element in the row vector b, we use parenthesis:
octave:6 > b(2)
ans = 2

That is, the array indices start from 1. We saw this ans response in Chapter 1, but it was not
explained. This is an abbreviation for "answer" and is a variable in itself with a value, which is
2 in the above example.

For the matrix variable 2, we use, for example:
octave:7> A(2,3)
ans = 6

to access the element in the second row and the third column. You can access entire rows
and columns by using a colon:

octave:8> A(:,2)

octave:9 > A(1,:)

Now that we know how to access the elements in vectors and matrices, we can change the
values of these elements as well. To try to set the element A (2,3)to -10. 1:

octave:10 > A(2,3) = -10.1
A =
1.0000 2.0000 3.0000
4.0000 5.0000 -10.1000

Since one of the elements in A is now a non-integer number, all elements are shown in
floating point format. The number of displayed digits can change depending on the default
value, but for Octave's interpreter there is no difference—it always uses double precision for
all calculations unless you explicitly tell it not to.

[281

Chapter 2

% You can change the displayed format using format short or format long.
A The default is format short.

It is also possible to change the values of all the elements in an entire row by using the colon
operator. For example, to substitute the second row in the matrix A with the vector b (from
Command 3 above), we use:

octave:11 > A(2,:) = b
A:

1 2 3

1 2 3

This substitution is valid because the vector b has the same number of elements as the rows
in A. Let us try to mess things up on purpose and replace the second column in A with b:

octave:12 > A(:,2) =Db
error: A(I,J,...) = X: dimension mismatch

Here Octave prints an error message telling us that the dimensions do not match because we
wanted to substitute three numbers into an array with just two elements. Furthermore, b is
a row vector, and we cannot replace a column with a row.

% Always read the error messages that Octave
S prints out. Usually they are very helpful.

There is an exception to the dimension mismatch shown above. You can always replace
elements, entire rows, and columns with a scalar like this:

octave:13> A(:,2) = 42

A =

1 42 3

1 42 3
More examples

It is possible to delete elements, entire rows, and columns, extend existing arrays, and much
more.

1291

Interacting with Octave: Variables and Operators

Time for action — manipulating arrays

1. To delete the second column in &, we use:

octave:14> A(:,2) = []

A =

1

1

2. We can extend an existing array, for example:
octave:15 > b = [b 4 5]

b =
12345

3. Finally, try the following commands:
octave:16> d = [2 4 6 8 10 12 14 16 18 20]

ans =
2 6 10 14 18
octave:18> d(3:3:12) = -1
d =
2 4 -1 8 10 -1 14 16 -1 20 0 -1
What just happened?

In Command 14, Octave interprets []1 as an empty column vector and column 2 in A is then
deleted in the command. Instead of deleting a column, we could have deleted a row, for
example as an empty column vector and column 2 in A is then deleted in the command.

octave:14> A(2,:)=I[]

On the right-hand side of the equal sign in Command 15, we have constructed a new vector
given by [b 4 5], thatis, if we write outb, weget [1 2 3 4 5] sinceb=[1 2 3].
Because of the equal sign, we assign the variable b to this vector and delete the existing
value of b. Of course, we cannot extend b using b=[b; 4; 5] since this attempts to
augment a column vector onto a row vector.

Chapter 2

Octave first evaluates the right-hand side of the equal sign

and then assigns that result to the variable on the left-hand

side. The right-hand side is named an expression.

In Command 16, we instantiated a row vector d, and in Command 17, we accessed the
elements with indices 1,3,5,7, and 9, that is, every second element starting from 1.
Command 18 could have made you a bit concerned! d is a row vector with 10 elements, but
the command instructs Octave to enter the value -1 into elements 3, 6, 9 and 12, that is,
into an element that does not exist. In such cases, Octave automatically extends the vector
(or array in general) and sets the value of the added elements to zero unless you instruct it to
set a specific value. In Command 18, we only instructed Octave to set element 12 to -1, and
the value of element 11 will therefore be given the default value 0 as seen from the output.
In low-level programming languages, accessing non-existing or non-allocated array elements
may result in a program crash the first time it is running?.

% As you can see, Octave is designed to work in a vectorized manner. It is therefore
s often referred to as a vectorized programming language.

Octave also supports calculations with complex numbers. As you may recall, a complex
number can be written as z = a + bi, where a is the real part, b is the imaginary part, and i is
the imaginary unit defined from 2 = —1.

To instantiate a complex variable, say z =1 + 2i, you can type:
octave:19> z = 1 + 2I
z =1 + 21

When Octave starts, the variables i, j, I, and J are all imaginary units, so you can use
either one of them. | prefer using I for the imaginary unit, since i and j are often used as
indices and J is not usually used to symbolize i.

This will be the best case scenario. In a worse scenario, the program will work for years, but then
crash all of a sudden, which is rather unfortunate if it controls a nuclear power plant or a space shuttle.

[311

Interacting with Octave: Variables and Operators

To retrieve the real and imaginary parts of a complex number, you use:

octave:20> real(z)
ans = 1
octave:21>imag(z)
ans = 2

You can also instantiate complex vectors and matrices, for example:

octave:22> Z = [1 -2.3I; 4TI 5+6.71I]

Z =
1.0000 + 0.0000i1 0.0000 - 2.30001
0.0000 + 4.00001 5.0000 + 6.70001

Be careful! If an array element has non-zero real and imaginary parts, do leave any blanks
(space characters) between the two parts. For example, had we used z=[1 -2.31;

41 5 + 6.71] in Command 22, the last element would be interpreted as two separate
elements (5 and 6.7i). This would lead to dimension mismatch.

The elements in complex arrays can be accessed in the same way as we have done for
arrays composed of real numbers. You can use real (Z) and imag (Z) to print the real and
imaginary parts of the complex array z. (Try it out!)

Textvariables

Even though Octave is primarily a computational tool, you can also work with text variables.
In later chapters, you will see why this is very convenient. A letter (or character), a word, a
sentence, a paragraph, and so on, are all named text strings.

To instantiate a text string variable you can use:
octave:23 > t = "Hello"
t = Hello

Instead of the double quotation marks, you can use single quotation marks. | prefer
double quotation marks for strings, because this follows the syntax used by most other
programming languages, and differs from the transpose operator we shall learn about later
in this chapter.

You can think of a text string variable as an array of characters, just like a vector is an array of
numbers. To access the characters in the string, we simply write:

[321

Chapter 2

octave:24> t(2)
ans = e
octave:25> t(2:4)
ans = ell

just as we did for numerical arrays. We can also extend existing strings (notice the blank
space after the first quotation mark):

octave:26> t = [t " World"]

t = Hello World

You can instantiate a variable with string elements as follows:
octave:27> T= ["Hello" ; "George"]

T =
Hello

George

The string variable T behaves just like a matrix (a two dimensional array) with character
elements. You can now access these characters just like elements in a numerical matrix:

octave:28> T(2,1)
ans = G

But wait! The number of characters in the string "Hello" is 5, while the string "George"
has 6 characters. Should Octave not complain about the different number of characters?
The answer is no. In a situation where the two string lengths do not match, Octave simply
adds space characters to the end of the strings. In the example above, the string "Hello"
is changed to "Hello ". It is important to stress that this procedure only works for strings.
The command:

octave:29 > A = [1 2; 3 4 5]
error: number of columns must match (3 != 2)

leads to an error with a clear message stating the problem.

Interacting with Octave: Variables and Operators

Higher-dimensional arrays

Octave also supports higher-dimensional arrays. These can be instantiated like any other
array, for example:

octave:30> B(2,2,2)=1

B =
ans(:,:,1) =
0 0
0 0
ans(:,:,2) =
0 0
0 1

The previous command instantiates a three-dimensional array B with size 2 x 2 x 2, that is,
23 = 8 elements, by assigning the element B (2,2,2) the value 1. Recall that Octave assigns
all non-specified elements the value 0. Octave displays the three dimensional array as two
two-dimensional arrays (or slices). We can now access the individual elements and assigned
values like we would expect:

octave:31 B(1,2,1) = 42

ans(:,:,1) =

0 42

ans(:,:,2)

1. Which of the following variable instantiations are not valid
a)a=1[1, 2, 3] b)a=[1 2 3] c)a=[1 2+I 3]

d)a=[1 2 3; 3 4 5] e)A=[1 2; 3; 4] fla=[1 2; 3 4 5]
g) A=ones (10,10) + 5.8 h)A=zeros(10,1) + 1 i)A=eye(2) + [1 2 3;4 5 6]

(341

Chapter 2

2. A matrix A is given by

1 2 3 45
6 7 8 9 10

A=[11 12 13 14 15 (P.1)
16 17 18 19 20
21 22 23 24 25

What are the outputs from the following commands?

a)A(3,1)

b)a(1,3) c)A(:,4)
da(l,:) e)A(1,1:3) f)a(1:4,5)
g)A(1:3,1:3) h)A(1:2:5,1:2:5))A(1:3,:)=[]

In many real life applications, we have to work with objects that are described by many
different types of variables. For example, if we wish to describe the motion of a projectile, it
would be useful to know its mass (a scalar), current velocity (a vector), type (a string), and so
forth. In Octave, you can instantiate a single variable that contains all this information. These
types of variables are named structures and cell arrays.

A structure in Octave is like a structure in C—it has a name, for example projectile, and
contains a set of fields® that each has a name, as shown in the following figure:

Structure Fields

Projectile mass = 10.1 |

velocity = [1 0 0] |

type = "Cannonball" |

We can refer to the individual structure field using the . character:
structurename.fieldname

where structurename is the name of the structure variable, and f£ieldname is (as you
may have guessed) the field's name.

30r members in C terminology

Interacting with Octave: Variables and Operators

To show an example of a structure, we can use the projectile described above. Let us
therefore name the structure variable projectile, and set the field names to mass,
velocity, and type. You can, of course, choose other names if you wish—whatever you
find best.

Time for action - instantiating a structure

1. To set the projectile mass, we can use:

octave:32>projectile.mass = 10.1

projectile =

{

mass = 10.100

}

2. The velocity field is set in a similar fashion:

octave:33>projectile.velocity = [1 0 0]

projectile =

{

mass = 10.100
velocity =

0 0

3. We can also set the text field as usual:

octave:34>projectile.type = "Cannonball"

projectile =

{

mass = 10.100
velocity =

1 0 0
type = Cannonball

}

and so on for position and whatever else could be relevant.

Chapter 2

What just happened?

Command 32 instantiates a structure variable with the name projectile by assigning a
field named mass the value 10.100. At this point, the structure variable only contains this
one field.

In Commands 33 and 34, we then add two new fields to the structure variable. These fields
are named velocity and type. It is, of course, possible to keep adding new fields to the
structure.

Instead of typing in one structure field at a time, you can use the struct function. (In the
next chapter, we will learn what an Octave function actually is):

octave:35> projectile = struct("mass", 10.1, "velocity", [1 0 0],
"type", "Cannonball");

The input (called arguments) to the st ruct function is the first structure field name
followed by its value, the second field's name and its value, and so on. Actually, it is not
meaningful to talk about a structure's first and second field, and so you can change the order
of the arguments to struct and it would not matter.

Did you notice that appending a semi-colon after the command suppresses the response (or
output) from Octave?

% You can suppress the output that Octave prints after each
s command by appending a semi-colon to the command.

Accessing structure fields

You can access and change the different fields in a structure by, for example:

octave:36>projectile.velocity(2) = -0.1

projectile =

{

mass = 10.100
velocity =

1 -0.1 0
type = Cannonball

}

[311

Interacting with Octave: Variables and Operators

In case you have many cannonballs flying around?, it will be practical to have an array of
projectile structures. To instantiate an array of two such projectile structures, you can simply
copy the entire projectile structure to each array element by:

octave:37> s(l) = projectile;
octave:38> s(2) = projectile;

Notice that to copy a structure you just use the equal sign, so you need not copy each
structure field. For accessing the structure elements, you use:

octave:39 s(2).type
ans = Cannonball

Octave has two functions—one to set the structure fields, and one to retrieve them. These
are named setfield and getfield:

octave:40> s(2) = setfield(s(2), "type", "Cartridge");
octave:4l>getfield(s(2), "type")
ans = Cartridge

You need to assign the output from set field to the structure. Why that is so will

be explained in Chapter 5. The above example only showed how to instantiate a one
dimensional array of structures, but you can also work withmultidimensional arrays if you
wish.

You can instantiate nested structures, which are structures where one or more fields are
structures themselves. Let us illustrate this via the basic projectile structure:

octave:42 > projectiles = struct("typel", s(1), "type2", s(2));
octave:43 > projectiles.typel.type
ans = Cartridge

Here projectiles has two fields named typel and type2. Each of these fields is a
structure, given by s (1) and s (2) (Commands 37-41).

As you can probably imagine, the complexity and variety of extended structures can become
quite overwhelming and we will stop here.

4A rather undesirable situation, of course.

Chapter 2

Cell arrays

In Octave, you can work with cell arrays. A cell array is a data container-like structure, in that
it can contain both numerical and string variables, but unlike structures it does not have
fields. Each cell (or element) in the cell array can be a scalar, vector, text string, and so forth. |
like to think about a cell array as a sort of spreadsheetas shown in the figure below:

Cell array
cell {1,1} | cell {1,2} cell {1,3}
10.1 100 "Cannonball"
cell {2,1} | cell {2,2} | cell {2,3}
1.0 [000] "Cartridge"

Time for action - instantiating a cell array

1. Toinstantiate a cell array with the same data as the projectile structure above,
we can use:

octave:44> projectile = {10.1, [1 0 0], "Cannonball"}

projectile =

{

[1,1] = 10.1

[1,2] =
1 0 0

[1,3] = Cannonball
}

The numbers in the square brackets are then the row indices and column indices,
respectively.

2. To access a cell, you must use curly brackets:

octave:45> projectile{2}

ans =

1 0 0

3. You can have two-dimensional cell arrays as well. For example:

octave:46> projectiles = {10.1, [1 0 0], "Cannonball"; 1.0, [0 O
0], "Cartridge"}

projectile =

Interacting with Octave: Variables and Operators

{
[1, 1] = 10.100
[2, 11 = 1
[1, 21 =
1 0 0
[2, 21 =
0 0 0
[1, 3] = Cannonball
[2, 3] = Cartridge
}

4. To access the values stored in the cell array, simply use:

octave:47> projectiles{2,3}

ans = Cartridge

What just happened?

Command 44 instantiates a cell array with one row and three columns. The first cell contains
the mass, the second cell the velocity, and the third cell the string "Cannonball", analogous
to the structure we discussed above. Notice that the cells in the array can contain different
variable types, and the cell array is therefore different from a normal array.

To access the value in a cell, you use curly brackets rather than the usual parenthesis, as
shown in Command 45.

You can also work with two-dimensional cell arrays. Commands 46 and 47 show an example
of this. Note that to insert an additional row into the cell array, you use semi-colons—just
like a numerical array.

Instantiate a structure with the variable name train that contains the following field names
and values:

Field Value
type "Freight"
weight 60.0

wagon_index_array 1to 10

[401

Chapter 2

Use the setfield function to change the weight to 90.0. Set the second element in the
wagon_index array field to 23.

In this section, we will learn how to obtain information about the variables that have been
instantiated. This is particularly useful when you have forgotten the names, sizes, or when
you have loaded data from files (more on the latter in Chapter 4).

Time for action - using whos

We are working with quite a few variables now. We can list them all with whos:

octave:48>whos

Variables in the current scope:

Attr Name Size Bytes Class
A 2x2 32 double
B 2x2x2 128 double
T 2x6 12 char
Z 2x2 64 double
a 1x1 8 double
ans 1x9 9 char
b 1x5 40 double
c 3x1 24 double
d 1x12 96 double
projectile 1x3 42 cell
projectiles 2x3 83 cell
s 1x2 83 struct
t 1x11 11 char
z 1x1 16 double

Total is 81 elements using 648 bytes

[al]

Interacting with Octave: Variables and Operators

What just happened?

As seen above, whos prints out five columns. The first column can have values g or p, which
means that the variable is global or persistent. We shall return to what these qualifiers
mean in Chapter 5. In our case, all the variables are what are named local, which is not
stated explicitly by the command whos. A local variable is characterized by being visible and
therefore accessible to a given workspace (or scope). In the example above, we have just a
single workspace—the top-level workspace—wherein all our variables can be accessed. In
fact, we can say that the local variables above define our current top-level workspace.

The second column simply lists the variable names. The sizes of the variables are given in
column three in the form: number of rows times number of columns. For example, the scalar
variable a (from Command 1) has size 1 x 1, meaning that it has one row and one column.
The projectile cell array has one row and three columns, as we know from Command 44.

It is seen from column four that the scalar variable a takes up 8 bytes of memory and is of
class double (column five). The fact that the class is a double means that Octave uses double
precision for the variables, as mentioned earlier. Recall from Command 26 that the variable
t is the text string "Hello World". This string is composed of 11 characters including the
blank space, which can be seen from the output above.This is unlike C, where the end of the
string is indicated with '\ 0' and is a part of the character array.

The variable s is a two dimensional array of structures (Commands 37-41) and the variable
projectiles is a cell array with same basic "building blocks" as the structure array s. From
the table, we observe that it takes up the same memory, so we do not save memory space
using one or the other. By the way, does the number of bytes in the structure array s agree
with the sum of bytes of the fields?

Below the table, we can see that we use a total of 648 bytes of memory for the variables.

You can call whos with an argument, for example, whos ("A"), if you only wish to retrieve
information about A. Also, whos has a little brother who. who lists the local variables, but
does not list other information.

Rather than listing all available information about a variable, you can get information about
its number of rows and columns. We will use this extensively throughout the book. The size
of & is retrieved by:

octave:49> size(A)

[42]

Chapter 2

since A is a 2 x 2 matrix. In general, size returns the number of rows and columns. You can
retrieve these individually if you prefer:

octave:50> rows (a)

ans = 2

octave:51> columns (A)

ans = 2

What happened here should be straightforward to understand.

In Octave, you can also retrieve the length of a variable. We need to understand what that
means exactly. If the variable is a vector or text string, the length is the number of elements
in the array. If the variable is a higher-dimension array, the length is defined as the maximum
number of elements in any of the dimensions. Let us see two examples:

octave:52> length(c)
ans = 3
octave:53> length(T)
ans = 6

The output from Command 53 is the number of columns in the text array. This is returned
rather than the number of rows since the variable T has 6 columns but only 2 rows.

Octave can tell you whether a variable is interpreted as a vector, matrix, string, complex
number, cell array, and much more. Let us check if Octave actually agrees that the variable a
is a scalar:

octave:54>isscalar (a)
ans = 1
Octave returns 1, meaning true (or yes). What about the row vector b?

octave:55>isvector (b)
ans = 1
octave:56>ismatrix(b)

ans = 1

[431

Interacting with Octave: Variables and Operators

That is a bit strange! b is a (row) vector which is recognized by Octave as seen from
Command 55, but why does it interpret b as a matrix as well? A matrix is just an array of
elements (a way of organizing numbers).Thus b can be thought of as a matrix with one row
and three columns. What will the command ismatrix (a) return? Try it out!

You can check the type of any variable with the istype family. Simply use:

octave:1>is <Tab><Tab>
at the command prompt to see the complete list.

Instead of using the istype, you can use typeinfo. For example, instead of Command 56 we
could use:

octave:56>typeinfo (b)

ans = matrix

You can delete variables using the clear command. For example, if you wish to delete the
variable A:

octave:58> clear A

You can also use the wildcard *, for example, to delete the variables projectile and
projectiles, and any other variable name beginning with p, you can use:

octave:59> clear p*

If you do not specify any variables, the clear, command will delete all the variables, so be
very cautious when using the command, because there is no way to retrieve the variables
once you have cleared them from the memory (unless you have saved them somewhere
else, of course). Try to use whos (or who) to see if the variables were cleared by Commands
58 and 59.

Warning: the command

octave:59> clear
>

will clear all variables in the workspace.

Pop Quiz - understanding arrays

What are the outputs from the following commands when A, x, and y are given in Equation
(P.2)?

[a4]

Chapter 2

1 23 -1
A=|4 5 6| x=|-2|and y=[1 2 4] (P2)
7 8 -9 -3
a) size (B) b) row (a) ¢) columns (A)
d) ismatrix (x) e) isscalar (A) f) length (A)

g) length (x)

A few things that make life easier

Imagine that you wish to generate a sequence of numbers in the interval -2.1 to 0.5
(including -2.1 and 0.5) with an incremental spacing of 0.2. This is rather tedious to do by
hand and is very error prone, because it involves typing a lot of digits. Fortunately, Octave
provides you with a very convenient way to do this (note that we now assign the variable b a
new value):

octave:60> b = [-2.1:0.2:0.5]
b =

Columns 1 through 7
-2.1000 -1.9000 -1.7000 -1.5000 -1.3000 -1.1000 -0.9000

Columns 8 through 14
-0.7000 -0.5000 -0.3000 -0.1000 0.1000 0.3000 0.5000

If we had done this by hand instead, we should have typed in:
octave:61> size(b)

ans =

1 14

14 numbers. You can also use negative increments if the interval starting value is larger than
the end value. If you do not provide an incremental value, Octave assumes 1.

An important point is that if we have chosen an increment of, say 0.4, in Command 60,
Octave will give us a number sequence starting from -2.1, but ending at 0.4.

Often you will find yourself in situations where you need to generate a certain sequence of
numbers in a given interval without knowing the increment. You can of course calculate this,
but Octave has a functionality to do just that. Let us generate a sequence of 7 numbers in
the interval above (that is, from -2.1 to 0.5):

1451

Interacting with Octave: Variables and Operators

octave:62 > b = linspace(-2.1, 0.5, 7)

b =
-2.1000 -1.6667 -1.2333 -0.8000 -0.3667 0.0667 0.5000

Octave calculates the increment needed, also ensuring that both points in the interval are
included.

As we shall see later, the functions ones and zeros are very helpful in cases where you
want to generate an array composed of elements with a certain value. For example, to create
a 2 x 3 matrix with elements all equal to 1, use:

octave63:> ones (2, 3)

ans =
1 1 1
1 1 1

Likewise, to create an array (row vector in this case) with zero elements:
octave64:> zeros(l, 4)
ans = 0 0 0 0
ones and zeros also work with multi-dimensional arrays.
You can just as easily create a diagonal matrix with eye:
octaveb5:> eye(4)
ans =
Diagonal Matrix
1 0 0

0
0 1 0 0
0 0 1 0
0 0 0 1

Notice that we need not specify both the number of rows and the number of columns in
Command 65, because a diagonal matrix is only defined for square matrices.

1461

Chapter 2

Basic arithmetic

Octave offers easy ways to perform different arithmetic operations. This ranges from simple
addition and multiplication to very complicated linear algebra. In this section, we will go
through the most basic arithmetic operations, such as addition, subtraction, multiplication,
and left and right division. In general, we should think of these operations in the framework
of linear algebra and not in terms of arithmetic of simple scalars.

Addition and subtraction

We begin with addition.

Time for action - doing addition and subtraction operations

1. | have lost track of the variables! Let us start afresh and clear all variables first:

octave:66> clear
(Check with whos to see if we cleared everything).

2. Now, we define four variables in a single command line(!)
octave:67> a = 2; b=[1 2 3]; c=[1; 2; 3]; A=[1 2 3; 4 5 6];

Note that there is an important difference between the variables b and c; namely, b
is a row vector, whereas c is a column vector.

3. Letusjumpinto it and try to add the different variables. This is done using the +
character:

octave:68>a+a
ans = 4

octave:69>a+b

octave:71>b+c

error: operator +: nonconformant arguments (opl is 1x3, op2 is
3x1)

(411

Interacting with Octave: Variables and Operators

% It is often convenient to enter multiple commands on the same line. Try to test
S the difference in separating the commands with commas and semicolons.

What just happened?

The output from Command 68 should be clear; we add the scalar a with itself. In Command
69, we see that the + operator simply adds the scalar a to each element in the b row vector.
This is named element-wise addition. It also works if we add a scalar to a matrix or a higher
dimensional array.

Now, if + is applied between two vectors, it will add the elements together element-wise if
and only if the two vectors have the same size, that is, they have same number of rows or
columns. This is also what we would expect from basic linear algebra.

From Command 70 and 71, we see that b+b is valid, but b+c is not, because b is a row
vector and c is a column vector—they do not have the same size. In the last case, Octave
produces an error message stating the problem. This would also be a problem if we tried to
add, say b with A:

octave:72>b+A
error: operator +: nonconformant arguments (opl is 1x3, op2 is 2x3)

From the above examples, we see that adding a scalar to a vector or a matrix is a special
case. It is allowed even though the dimensions do not match! When adding and subtracting
vectors and matrices, the sizes must be the same. Not surprisingly, subtraction is done using
the - operator. The same rules apply here, for example:

octave:73> b-b

is fine, but:

octave:74> b-c
error: operator -: nonconformant arguments (opl is 1x3, op2 is 2x3)

produces an error.

[481

Chapter 2

Matrix multiplication

The * operator is used for matrix multiplication. Recall from linear algebra that we cannot
multiply any two matrices. Furthermore, matrix multiplication is not commutative. For
example, consider the two matrices:

23

12 N
A=y FJanaB= [, 5 o) 2.4)
The matrix product AB is defined, but BA is not. If A is size n x k and B has size
k x m, the matrix product AB will be a matrix with size n x m. From this, we know
that the number of columns of the "left" matrix must match the number of rows of the
"right" matrix. We may think of this as (n x k)(k x m) = n x m. In the example above,
the matrix product AB therefore results in a 2 x 3 matrix:
_[9 12 15
AB=[1) 3¢ 33 (2:5)

Time for action — doing multiplication operations

Let us try to perform some of the same operations for multiplication as we did for addition:

octave:75> a*a
ans = 4

octave:76> a*b

octave:77> b*b
error: operator *: nonconformant arguments (opl is 1x3, op2 is 1x3)
octave:78> b*c

ans = 14

1491

Interacting with Octave: Variables and Operators

What just happened?

From Command 75, we see that * multiplies two scalar variables just like standard
multiplication. In agreement with linear algebra, we can also multiply a scalar by each
element in a vector as shown by the output from Command 76. Command 77 produces an
error—recall that b is a row vector which Octave also interprets as a 1 x 3 matrix, so we try
to perform the matrix multiplication (1 x 3)(1 x 3), which is not valid. In Command 78, on the
other hand, we have (1 x 3)(3 x 1) since c is a column vector yielding a matrix with size

1 x 1, that is, a scalar. This is, of course, just the dot product between b and c.

Let us try an additional example and perform the matrix multiplication between A and B
discussed above. First, we need to instantiate the two matrices, and then we multiply them:

octave:79> A=[1 2; 3 4]; B=[1 2 3; 4 5 6];
octave:80> A*B

ans =
9 12 15
19 26 33

octave:81l> B*A
error: operator *: nonconformant arguments (opl is 2x3, op2 is 2x2)

Seems like Octave knows linear algebra!

Element-hy-element, power, and transpose operations

If the sizes of two arrays are the same, Octave provides a convenient way to multiply the
elements element-wise. For example, for B:

octave:82> B.*B

ans =
1 4 9
16 25 36

Notice that the period (full stop) character precedes the multiplication operator. The period
character can also be used in connection with other operators. For example:

octave:83> B.+B

Chapter 2

which is the same as the command B+B.

If we wish to raise each element in B to the power 2.1, we use the element-wise power
operator. *:

octave:84> B."2.1

ans =
1.0000 4.2871 10.0451
18.3792 29.3655 43.0643

You can perform element-wise power operation on two matrices as well (if they are of the
same size, of course):

octave:85> B.”B

ans =
1 4 27
256 3125 46656

- If the power is a real number, you can use * instead of . *; that is, instead of

Command 84 above, you can use:
o

octave:84>B"2.1

Transposing a vector or matrix is done via the 'operator. To transpose B, we simply type:

octave:86> B!

ans =
1 4
2 5
3 6

Strictly, the ' operator is a complex conjugate transpose operator. We can see this in the
following examples:

octave:87> B

[1 2; 3 4] + I.*eye(2)

B =
1 + 1i 2 + 0i
3 + 01 4 + 1i

octave:88> B'

ans =

[51]

Interacting with Octave: Variables and Operators

1 - 1i 3 - 0i

2 - 01 4 - 1i
Note that in Command 87, we have used the . * operator to multiply the imaginary unit with
all the elements in the diagonal matrix produced by eye (2) . Finally, note that the command

transpose (B) or the operator . ' will transpose the matrix, but not complex conjugate the
elements.

Operators for structures and cell arrays

Arithmetic on structure fields and cells array elements is straightforward. First, let us see an
example of a structure field operation:

octave:89> s = struct("A", [1 2; 3 4], "x", [1; 2]);
octave:90>s.A*s.x

ans =
5
11

and the equivalent cell array operation:

octave:91> ¢ = {I[1 2; 3 4], [1;21};
octave:92> c{1}*c{2}

ans =
5
11

Arithmetic operations on entire structures and cell arrays are not defined in Octave.

Solving linear equation systems: left and right division

You may have wondered why division was not included above. We know what it means

to divide two scalars, but it makes no sense to talk about division in the context of linear
algebra. Nevertheless, Octave defines two different operators, namely, right and left division,
which need to be explained in some detail. It is probably easiest to discuss this via a specific
example. Consider a system of linear equations:

2%+ x,-3x,=1

4x, + 2x,— 2x;=1 (2.6)
X, +x,/2—-x;/2=1.5

521

Chapter 2

We can write this in matrix notation as:

Ax=y, 2.7)

where:

A=

2 1 3 X4 1
4 2 2],x={x2]andy=[3], (2.8)

-1 172 -12 X, 3/2

If the coefficient matrix A is invertible (in fact it is), we can solve this linear equation system
by multiplying both sides of Equation (2.7) with the inverse of A, denoted A"

X= Afly, (2.9)

In Octave, the command 2\ is equivalent to A'y. Notice the backslash. This is named left
division, and you can probably guess why.

The right division (forward slash) command, 2/y, is equivalent to yA™!, which is of course
not defined in this case because the vector y has size 3 x 1 and A has size 3 x 3; that is, the
matrix product cannot be carried out.

Time for action - doing left and right division

1. We need to instantiate the coefficient matrix A and vector y first:
octave:93> A=[2 1 -3; 4 -2 -2; -1 0.5 -0.5]; yv = [1; 3; 1.5];

2. The solution to the linear equation system, Equation (2.6), is then found directly via
the command:

octave:94> A\y

ans =
-1.6250
-2.5000
-2.2500
Easy!

Interacting with Octave: Variables and Operators

What just happened?

It should be clear what happened. In Command 93, we instantiated the matrix 2 and the
vector y that define the linear equation system in Equation (2.6). We then solve this system
using the left division operator. Later in Chapter 6, we will investigate how the left division
operator performs for very large systems.

Let us try the right division operator, even though we know that it will cause problems:
octave:95> A/y
error: operator /: nonconformant arguments (opl is 3x3, op2 is 3x1)

We see the expected error message. The right division operator will, however, work in the
following command:

octave:96> A/A

ans =
1.0000 -0.0000 -0.0000
0.0000 1.0000 -0.0000
0.0000 0.0000 1.0000

This is the 3 x 3 identity matrix L. This result is easily understood because A/2 is equivalent
to AA™'. Notice that due to numerical round-off errors and finite precision, the elements in
this matrix are not exactly 1 on the diagonal and not exactly 0 for the off-diagonal elements,
and Octave therefore displays the elements in floating point format.

What is the result for the command A\A? Try it out to check your answer.

The definitions of the left and right division operators also apply for scalar variables. Recall
that the variable a has the value 2:

octave:97> 1l/a

ans = 0.5000

This is just the fraction 1/2 with a in the denominator. Now, the left division operator:
octave:98> 1l\a

ans = 2

which is equivalent to the fraction 2/1; that is, a is in the nominator. We can say that a\1 is
equivalentto 1/a.

Above we learned that the . operator can be used in connection with other operators. This is
also true for the left and right division operators:

[541

Chapter 2

octave:99> a./A

ans =
1.0000 2.0000 -0.6667
0.5000 -1.0000 -1.0000
-2.0000 4.0000 -4.0000

octave:100> a.\A

ans =
1.0000 0.5000 -1.5000
2.0000 -1.0000 -1.0000
-0.5000 0.2500 -0.2500

It is very important to stress that when performing element-wise left and right division
with a scalar, you must use the . operator. This is different from addition, subtraction, and
multiplication.

For element-wise matrix division, we can use:

octave:101> A./A

It is also possible to perform arithmetic operations on complex variables. In fact, we can
regard the operations above for real numbers as special cases of more general operations for
complex variables.

When adding two complex numbers, we add the real parts and imaginary parts. In Octave,
we simply use the + operator:

octave:102> z = 1 + 2I; w = 2 -3I;
octave:103> z + w

ans = 3 - 1li

[551

Interacting with Octave: Variables and Operators

The same goes for subtraction:

octave:104> z - w
ans = -1 + 5i

Multiplication of z and w is simply:

w=(1+2i)(2-3i)=2-3i+4i+6=8 +i (2.10)

Let us see if Octave agrees:
octavel05:> z*w
ans = 8 + 1i

Now, you may recall that when dividing two complex numbers, you multiply the nominator
and denominator with the complex conjugate of the denominator. In the case of z/w, we get:

(14202 +3) 447
142 (.)('): A+Ti_ 4,7, (2.11)
2-3i 2-3)2+3) 13 1313

z
w

To perform this division in Octave, we can simply use the left or right division operator:

octave:106> z/w
ans = -0.30769 + 0.53846i
octave:107> w\z
ans = -0.30769 + 0.538461
just as we did for real numbers.

You can also perform addition, subtraction, and multiplication with complex vectors and
matrices. You can even solve complex linear equation systems with the left division operator
like it was done above for a real equation system.

[561

Chapter 2

Let us summarize the operators we have discussed above:

Operator Example Description
octave:1>[12;34]+[10;01] Element-wise addition. Array sizes (dimensions)
ans = must match, except for scalar variables. Works for
* P multidimensional arrays.
3 5
octave:1>[12;34]-[10;01] Element-wise subtraction. Array sizes (dimensions)
ans = must match, except for scalar variables. Works for
- 0o 2 multidimensional arrays.
3 3
octave:1>[12;34]*[10;01] Matrix multiplication. Number of columns of the left-
ans = most matrix must match the number of rows of the
* 0 2 right-most matrix, except for scalar variables. Only
works for scalars, vectors, and matrices.
34
octave:1>[12;34]/[10;01] Right division. For the example, it is equivalent to:
y ans = Only works for scalars, vectors, and matrices.
1 2 -1
[1 O] [1 2]
34 0 13 4
octave:1>[12;34\[10;01] |¢ft division. Same as:
\ ans = Only works for scalars, vectors, and matrices.
-2.0000 1.0000 -1
1 211 O
1.5000 0.5000 3 4 0 1
octave:1>[12;34].*[10;01] Element-wise operator. .+ and . - is equivalent to +
ans = and -, which are also element-wise operators.
1 0
0 4
octave:1>[12; 3 4].A2 Element-wise power operator. Currently this
N ans = operator only works for scalars, vectors, and
0 4 matrices.
9 16
octave:1> [1 +1*1 2+2*1;34]' The complex conjugate transpose operator and the
vand . " ans = transpose operator. Only works for scalars, vectors,
and. :
1 - 14 3 - oi and matrices.
2 - 21 4 - 01

[571

Interacting with Octave: Variables and Operators

Pop Quiz - understanding simple operations

1. Which of the following operations are valid if A, x, and y are given by Equation (P.2)?

a)x + x b)x + vy ox - y'
d)A*X e) xX*y f) x*D
g) A\x h) a\y i) x\y

From the vectors x and y given in Equation (P.2), use Octave to calculate the dot product
(also called scalar product) of:

a)xandx

b)xandy

In the previous section, we discussed the basic arithmetic operations. In this section, we will
learn how to compare different variables. Octave (like many other programming languages)
uses very intuitive operator characters for this. They are:

X== Evaluates to true if x equals y

x>y Evaluates to true if x is larger than y

X<y Evaluates to true if x is smaller than vy

X>=y Evaluates to true if x is greater than or equal to y
X<=y Evaluates to true if x is smaller than or equal to y
xl=y Evaluates to true if x is not equal to y

For Octave's comparison operators, true is equivalent to a non-zero value and false is
equivalent to 0. Let us see a few examples—recall the matrix A from Command 93:

octave:108> A(2,1) == 1
ans = 1
octave:109>A(2,1) == 2
ans = 0
octave:110> A(2,1) > 0

Chapter 2

ans = 1
octave:111> A(2,1) != 4
ans = 1

Instead of using ! = for "not equal to", you can use ~=.

You may be familiar with these operators from another programming language. However, in
Octave you can compare vectors and matrices. To compare the first column in A with another
column vector, we use:

octave:112> A(:,1) >= [2; 2; 0]
ans =
1

1
0

Octave:113> A > ones(3,3)

ans =
1 0 0
1 0 0
0 0 0

that is, the comparison is performed element-wise. This, of course, means that the array
dimensions must match except if one of the variables is a scalar.

You can also compare characters using the comparison operators above. However, they
cannot be used to compare entire strings. For example:

octave:114> "a"=="a"

ans = 1

compare the character a witha, and:
octave:115> "hello"=="henno"
ans = 1 1 0 0 1

compare all character elements in the string hel1o with the characters in henno (element-
wise). However, the command "hello"=="helloo" is not valid, because the two strings do
not have the same dimensions. If you wish to compare the two strings, use strcmp (which is
an abbreviation for string compare):

[591

Interacting with Octave: Variables and Operators

octave:1ll6>strcmp ("hello", "helloo")
ans = 0
meaning false, because the two strings are not the same.

As mentioned above, the result of a comparison operation is either true (value 1) or

false (value 0). In computer science, we refer to this as a Boolean type, after the English
mathematician George Boole. Note that because Octave is a vectorized programming
language, the resulting Boolean can be an array with elements that are both true and false.

Octave interprets all non-zero values as true.

You can do many operations in a single command line, and it is important to know how such
a command is interpreted in Octave.

Time for action — working with precedence rules

1. Letusseeanexample:

octave:117> A*y + a

ans =
2.5000
-3.0000
1.7500

Here, Octave first performs the matrix multiplication between A and y, and then
adds a to that result. We say that multiplication has higher precedence than
addition.

2. Let us try two other examples:
octave:118> A*y."2

ans =
4.2500

-18.5000
2.3750

octave:119> (A*y)."2

Chapter 2

ans =
0.2500
25.0000
0.0625

What just happened?

In command 118, because the . * operator has higher precedence than *, Octave
first calculates element-wise power operation y.*2, and then performs the matrix
multiplication. In command 190, by applying parenthesis, we can perform the matrix
multiplication first, and then do the power operation on the resulting vector.

- The precedence rules are given below for the operators that we
have discussed in this chapter:

High precendence Low precedence

~Q 0 e . /I* + - ==> < >=<= =

Execution direction

When in doubt, you should always use parenthesis to ensure that
Octave performs the computations in the order that you want.

Pop Quiz - understanding precedence rules

Let x and y be given by Equation (P.2). What are the outputs from the following commands?
(Note that one of them produces an error!)

a)2.0./x + y' b)2.0./(x + 2*y") c)2.0/x + y'
d)2.0./x'" + vy e)2.0./(x.72)" + vy

Instead of using the left division operator to solve a linear equation system, you can do it "by
hand". Let us try this using the equation system given by Equation (2.6) with the solution

given in Equation (2.9). First we need to calculate the inverse of A (which exists). This is done
via the inv function:

octave:120>inverse A = inv(A)

inverse A =

0.2500 -0.1250 -1.0000
0.5000 -0.5000 -1.0000
0.0000 -0.2500 -1.0000

611

Interacting with Octave: Variables and Operators

We can now simply perform the matrix multiplication A™'y to get the solution:

octave:l2l>inverse A*y

ans =
-1.6250
-2.5000
-2.2500

This output is similar to the output from Command 94. Now, when Octave performs the left
division operation, it does not first invert A and then multiply that result with y. Octave has
many different algorithms it can use for this operation, depending on the specific nature of
the matrix. The results from these algorithms are usually more precise and much quicker
than performing the individual steps. In this particular example, it does not really make a big
difference, because the problem is so simple.

In general, do not break your calculations up into individual steps if Octave

already has an in-built operator or functionality that does the same in one single
’ step. It is highly likely that the single operation is faster and more precise.

If we replace the coefficient matrix A in Equation (2.8) with the following matrix:

2 1 -3
A=|4 2 2 (2.12)
2 1 1

and try to solve the corresponding linear equation system, Octave will display a warning
message:

octave:122:> A=[2 1 -3; 4 -2 -2; -2 1 1]; A\y

warning: dgelsd : rank deficient 3x3 matrix, rank = 2
ans =

0.3000

-0.1250

-0.1750

[621

Chapter 2

The result in this case is the minimum norm solution to the improperly defined equation
system, which we will not discuss here. What is important is the warning message because
this tells us that the matrix does not have full rank, that is, the rows (or columns) in the
matrix are not linearly independent. This in turn means that no unique solution to the
linear equation system exists. If you inspect the matrix, you will quickly see that the third
row is just the second row multiplied with minus one half, so these two rows are linearly
dependent. You can check the rank of a matrix by:

octave:123> rank(A)

ans = 2

This calculation is already done for you in Command 122, and shows up in the warning
message. You should, of course, always perform this check if you are not absolutely sure
about the rank of a matrix.

We went through a lot of the basics in this chapter! Specifically, we learned:

How to instantiate scalar, vector, and matrix variables.

How to instantiate complex variables.

How to instantiate a text string.

How to access and change the values of array elements.
About structures, cell arrays, and multidimensional arrays.
How to retrieve important information about the variables.
How to add and subtract vectors and matrices.

About matrix multiplication.

Solving linear equation systems.

How to compare scalars, vectors, and matrices.

Some additional helpful functionality.

® 6 6 6 6 0 O 6 0 O o o

Precedence rules.

In the next chapter, we will learn about Octave functions and how to do plotting. We shall
make use of many of the things that we have just learned in this chapter.

As promised in Chapter 2, we will now discuss Octave functions in greater
detail. The first part of the chapter is devoted to this and will give an intro-
duction to and an overview of some of the most useful functions that Octave
provides. In the second part we shall see how to use Octave functions to do
two and three dimensional plotting.

Specifically, we will cover:

Basic mathematical functions.

Miscellaneous helper functions that can initialize variable elements and perform
simple analysis of variables.

¢ Functions for linear algebra and polynomials.
The second part will take you through the plotting facilities, where you will learn:

¢ How to make two- and three-dimensional plots.
¢ About multi-plot and multi-graph plotting.

¢ How to change the properties of the graph and the figure window.

You can think of an Octave function as a kind of general mathematical function—it takes
inputs, does something with them and returns outputs. For example, in Command 20 in
Chapter 2, we used Octave's real function. We gave it the complex scalar input variable z
and it returned the real part of z.

Working with Octave: Functions and Plotting

Octave functions can in general take multiple inputs (also called arguments or input
arguments) and return multiple outputs. The general syntax for a function is:

[output 1, output 2, ...] = function name(input 1, input 2, ...)

The inputs to and the outputs from a function can be scalars, multidimensional arrays,
structures, and so on. Note that the outputs need not to be separated with commas. Since
Octave does not operate with type specifiers, the functions must be able to deal with all kind
of inputs, either by performing the operations differently (and thereby likely also to return
different outputs), or by reporting an error. Sometimes we will use function interface instead
of function syntax, but it refers to the same thing.

| prefer to divide Octave functions into three categories:

1. Mathematical functions (for example,exponential and trigonometric functions).
2. Helper functions (for example, the real function).

3. Operational functions (for example,the inv function from Command 120 in
Chapter 2).

In Octave, there is no such categorization of course. Hopefully, they are all helper functions
in some sense. However, it may help to understand what the differences between them
are. It is probably easiest to illustrate how to use Octave functions via the mathematical
functions, so let us start with them.

Octave provides you with all elementary mathematical functions. Let us go through a few
examples.

Time for action — using the cos function

1. Inorder to calculate cosine of a number, say 7, we simply type:
octave:1l>cos (pi)
ans = -1

pi is the input argument, cos is the Octave function and -1 is the output from cos.
When we use a function we often say that we call that function

2. What if we use a vector as input? Well, why not just try. We know how to instantiate
a vector:

octave:2> x = [0:pi/2:2%pi]

ans =
0.0000 1.5708 3.1416 4.7124 6.2832

Cosine of x is then:

Chapter 3

octave:3>cos (x)

ans =

1.0000e+000 6.1230e-017 -1.0000e+000 -1.8369e-016
1.0000e+000

that is, Octave calculates the cosine of each element in the vector.

3. InCommand 2, we created a row vector, and the result of Command 3 is therefore
also a row vector. If we use a column vector as input to cos:

octave:4>cos (x')

ans =
1.0000e+000
6.1230e-017
-1.0000e+000
-1.8369e-016
1.0000e+000

it returns a column vector.

What just happened?

In Command 1, we use pi as the input argument to the cos function. Now, strictly speaking,
pi is a function itself. If we call pi without any arguments or no parenthesis, it simply
returns the number 7.

The output from Command 3 is not exactly zero at cos (z/2) and cos (37/2) as we might expect.
This is due to the finite numerical precision of a computer calculation. However, from the
result, we see that the values are very close to zero. From Command 3, we see that cos returns
a row vector, because the argument was a row vector. In general, if we had called cos with an
n X m matrix (or higher dimensional array), it would simply take the cosine of each element in
the matrix and return the output with that same size. That is, it will work in an element-wise
manner. This is true for most of Octave's mathematical functions and is worth noting.

% Octave's mathematical functions will
A work in an element-wise manner.

Commands 1 and 4 highlight another important point—any operations or function acting on
the input argument(s) will be carried out before the function is called. In Command 1, the
function p1i is called, and the output from that function is used as input to cos. In Command
4, the vector x is first transposed, and that result is used as input to the function cos. This is
true for all Octave functions.

671

Working with Octave: Functions and Plotting

The table below lists the basic mathematical functions that come with Octave. They are all

called in the same manner as cos:

Function Description Description

sin Sine Cosine

tan Tangent Secant

cot Cotangent Cosecant

log Logarithm base e Logarithm base 10
exp The exponential function Square root
power Power function

In addition to the table above, all the trigonometric functions have their inverse and
hyperbolic cousins defined. For example, the inverse of sine is called asin and the inverse

hyperbolic of sine is asinh.

The following commands yield the same result:

octave:5>exp (I*pi)

ans = -1.0000e+000 - 1.2246e-0161
octave:6> power (e, I*pi)

ans = -1.0000e+000 - 1.2246e-0161
octave:7> e.” (I*pi)

ans = -1.0000e+000 - 1.2246e-0161

So Octave is also able to handle complex input arguments to mathematical functions!

Polynomials in Octave

Octave has a special way of handling polynomials. As an example, consider the third order

polynomial fwhich is a function of x

F(x)=2x +10.1x" +6.

3.1)

Chapter 3

We can represent this polynomial via a vector containing the coefficients:

¢=[210.106] (3.2)

such that the first element is the coefficient for the term with the highest exponent and
the last element is the constant term. There is no first order term in the polynomial, which
is indicated by the 0 in the coefficient vector c. We can now evaluate the function range or
value for x = 0 by using polyval:

octave:8> c=[2 10.1 0 6];
octave:9>polyval(c, 0)
ans = 6

Also, we can calculate the range using a vector as input, for example, the vector variable x,
defined in Command 2:

octave:10>polyval (¢, x)

ans =

6.0000 38.6723 167.6959 439.5791 900.8324

In Chapter 2, you learned about operators in Octave, so you could alternatively use:

octave:1l> 2*x.”3 + 10.1*x."2 + 6

ans =

6.0000 38.6723 167.6959 439.5791 900.8324

More complicated mathematical functions

Octave provides you with much more than the basic mathematical functions, for example,
Bessel functions of different kinds?. Since you know about the different arithmetic operators
from Chapter 2, you can also put together your own mathematical functions using the simple
functions as building blocks.

1We will not cover these special functions here. Check out the official Octave manual should you be
interested in these types of functions.

Working with Octave: Functions and Plotting

Time for action - putting together mathematical functions

1. Letus try to calculate the range of the function:

()= e sinQmx). (3.3)
octave:12> x = 0.5;

octave:13> £

exp (-5*sqrt(x)) *sin (2*pi*x)

f = 3.5689%e-018

2. Ina more useful vector form:

octave:14> x [0:0.1:1];

octave:15> £

exp (-5*sqgrt(x)) .*sin (2*pi*x)

f =

Columns 1 through 7:

0.00000 0.12093 0.10165 0.01650 0.02488 0.00000 -0.01222
Columns 8 through 11:

-0.01450 -0.01086 -0.00512 -0.00000

What just happened?

It should be clear what Commands 12 and 13 do. In Command 15, we must use the element-
wise . * operator. Had we not done so, Octave would try to perform a matrix multiplication
between the vectors given by exp (-5*sqrt (x)) and sin (2*pi*x), which is not defined,
and not what we want either.

We could also have used the element-wise operator in Command 13 when x is a scalar; that is,
Command 14 is a generalized version that works for both scalars and vector and matrix arrays.

% Whenever possible, always make generalized versions of your
s commands such that they work on both array and scalar variables.

The function in Equation (3.3) is a scalar function that maps a real number into a real
number. Functions can also map two real numbers into a real number. Equation (1.1) in
Chapter 1 is an example of such a function. Let us try something a bit simpler, namely:

fy)=x -y (3.4)

701

Chapter 3

and "build" that in Octave's interpreter:

octave:16> x

1l; y = sqgrt(pi);

octave:17> £ = x.72 - y."2
f = -2.1416

The mathematical functions given in Equations (3.3) and (3.4) are examples of scalar
functions. You can, of course, also calculate the range of vector-valued functions. Take, for
example, the function:

f (x) = [cos(x), sin (x), e] (3.5)

In Octave we may find the range like this:

octave:18> x = pi;

octave:19> f [cos(x), sin(x), exp(-0.5%*x)]

1 0 4.8105

We will return to Equations (3.4) and (3.5) when we learn how to plot graphs of these types
of functions.

Helper functions

In Chapter 2, we used quite a few helper functions.ismatrix, real, eye, ones are some
examples. Helper functions work differently from Octave's mathematical functions; for
example, it is not meaningful to call eye with a non-integer number—try to see what
happens if you do.

Rather than embarking on a very long road explaining the entire set of helper functions, we
will go through what | think are some of the most important ones, and from these examples,
explain the general behaviour.

ni

Working with Octave: Functions and Plotting

Generating random numbers

Recall that the ones and zero functions could help us in creating arrays where all elements
had the values 1 or 0, respectively. The function rand does the same, except that the
elements are uniformly distributed random numbers between 0 and 1 (both excluded). To
instantiate a 3 x 5 matrix array with random distributed elements, we can use:

octave:20> A = rand(3,5)

A =
0.72106 0.97880 0.28600 0.92375 0.10514
0.91879 0.43847 0.30922 0.03529 0.84677
0.15474 0.43170 0.47812 0.04455 0.04975

just as we did with the function zeros and ones. If rand is called without any arguments
(same as having no parenthesis at all), it returns a single random number.

Often you will need random numbers from a different distribution. Beside uniformly
distributed numbers, Octave can generate:

1. randn: normal distribution with 0 mean and variance 1 (from here you can generate
normal distributed numbers with arbitrary mean and variance).

2. randg: gamma distribution.
rande: exponential distribution.

4. randp: Poisson distribution.

randn, randq, and rande are called with the same arguments as rand; that is, the output
array dimensions. For randp, you will need to specify the mean as the first argument. Type
helprandp if you have any doubts.

The pi function we used above is also a helper function. It works pretty
much like rand, for example:

. octave:1>pi(2,2)
% ans =
s
3.1416 3.1416
3.1416 3.1416

generates a 2 X 2 two-dimensional array with elements having value 7.

Octave provides you with a function that returns the minimum of a one dimensional array.
However it can also be called using A above as argument, for example:

121

Chapter 3

octave:21> min(A)

ans =

0.15474 0.43170 0.28600 0.03529 0.04975

That is,min calculates the minimum of each column in A. If we apply min to a vector array,
for example, using the output we get from Command 21:

octave:22> min (ans)

ans = 0.03529

Thus,the minimum of the array is given by ans . This is the same as the minimum of A. We
could combine Commands 21 and 22 to find the minimum of a directly:

octave:23> min(min (a))

ans = 0.03529

The max function finds the maximum of an array and works just like min.

% Octave functions that perform vector operations work (as
i default) in a column-wise manner if the argument is a matrix.

Let us see another example of a useful Octave function, namely, sort. This function will sort
array elements for you. sort is an example of an Octave function that can be called with
different number of input and output arguments, depending on what exactly you want sort
to do and what information you wish to retrieve from it2. The simplest way to call sort is to
give the function a single variable, say the matrix A, as input. Each column in 2 will then be
sorted according to the rule above:

octave:24> sort (A)

ans =
0.15474 0.43170 0.28600 0.03529 0.04975
0.72106 0.43847 0.30922 0.04455 0.10514
0.91879 0.97880 0.47812 0.92375 0.84677

’min and max above are other examples of functions that can be called with a different number of input

and output arguments. See the help text for these functions if you are curious.

131

Working with Octave: Functions and Plotting

Rather than sorting A in ascending order, we can sort the elements in a descending order
using the mode input argument "descend"(or 'descend'). You can also sort the array
elements row-wise, and you can even ask sort to return an array with the original indices in
the new sorted array. Let us see an example of this:

octave:25> [S i] = sort(A, 2, "descending")

S =
0.97880 0.92375 0.72107 0.28600 0.10514
0.91879 0.84677 0.43847 0.30922 0.03529
0.47812 0.43170 0.15474 0.15474 0.04455

i =
2 4 1 3 5
1 5 2 3 4
3 2 1 5 4

The second input argument tells sort to sort the elements in A row-wise. If you wish to sort
column-wise, you can leave out the second argument or use the value 1.

In total sort can be called in 12 different ways—many of which are practically the same. In
general sort is called as:

[S i] = sort(A, dir, opt)

If we compare that with the general syntax format, we see that s and i are outputs and 3,
dir, and opt are input arguments. If sort is called with zero or one output argument, it will
always return the first in the list, in this case the sorted array. This is true for most Octave
functions, but not all as we shall see later. Again, you can see how to call a function by using
the help command.

| use £ind quite often and believe it is worth showing you this helper function as well. It is
particularly powerful when used together with the different operators we learned about in
Chapter 2. £ind returns the indices of non-zero elements in an array. For example:

octave:26> [i j] = £ind ([0 O0; 1 0])
i=2
j=1

that is, the element in the second row (indicated via i) and the first column (as indicated via
j) is a non-zero element. Let us try to use £ind for something useful—what elements in A
are less than 0.5?

nl

Chapter 3

octave:27> [i, j]l = £ind(A<0.5);

Notice that | have stored the output in the variable i and § and suppressed the output to

the screen to save space. Now, from Chapter 2, we know that the argument to £ind, A<0.5,
returns a matrix with 0 (for false) and 1 (for true). £ind then simply returns the matrix indices
for the elements with value of 1. Let us check if we get what we would expect, for example:

octave:28> i(1l), j(1)

ans = 3

ans = 1

Inspecting the matrix variable A in Command 20, we see that the element in row 3, column 1
is less than 0.5, as found from Command 28. Like sort above, £ind can be called in different
ways. Type help find to see how.

The functions any and all are related to £ind. The difference is that any returns true if any
element in an array is non-zero, and al1l returns true if all elements are non-zero. The two
functions work in a column-wise manner if the argument is a matrix. Let us illustrate this:

octave:29> any ([0 0; 1 0])

ans =
1 0
octave:30> all ([0 0; 1 0])

In Command 29, the input matrix is composed of two columns. The first column has a
nonzero element, but the other does not. any therefore returns a 1 and a 0. On the other
hand, all returns two zeros, because both columns have at least one zero element.

floor, ceil, round, and fix

It is perhaps easiest to illustrate these four functions by a few simple examples.

Time for action - trying out floor, ceil, round, and fix

1. The floor function: oc-
tave:31> floor(1.9)

ans = 1

17151

Working with Octave: Functions and Plotting

2. The ceil function:

octave:32> ceil(1.1)
ans = 2

3. The round function:
octave:33> round(1l.9)
ans = 2

4. The fix function:

octave:34> fix(pi)

ans = 3

What just happened?

From Command 31, we see that £1oor returns the largest integer which is smaller than the
input argument, ceil the smallest integer that is larger than the input, round simply rounds
towards to the nearest integer, and £ix returns the integer part of a real number. With
these definitions, we have:

octave:35> floor(-1.9)
ans = -2

The four functions will work in an element-wise fashion if the input is an array with arbitrary
dimensions.

The functions sum and prod are also very useful. Basically they sum or multiply the elements
in an array. Let us see two simple examples:

octave:36> sum([1 2; 3 4])

octave:37> prod([1 2 3 4])

ans = 24

1761

Chapter 3

You can also perform accumulated sum and product calculations with cumsum and cumprod:

octave:38>cumsum([1 2; 3 4])

ans =
1 2
4 6

octave:39>cumprod([1 2 3 4])

ans = 1 2 6 24

Absolute values

Octave has a function called abs that can calculate the absolute value. Recall that for
a complex number z = x + iy the absolute value is given by | z| = \/xz +y2 according to
Pythagoras' theorem. Let us see a few examples of calculating the absolute value:

octave:40> abs(2.3)
ans = 2.3

octave:41> abs(-2.3)
ans = 2.3

octave:42> abs (2 + 2i)
ans = 2.8284
octave:43> abs(-2-2i)
ans = 2.8284

abs will work in an element-wise manner if the input argument is an array.

Except for the abs function above, we have not considered how complex numbers are
treated in helper functions. Now that we know how to calculate absolute values, we can
include a few examples of how functions work when complex numbers are used as input
arguments. For example, let us try to find the maximum of a complex array:

octave:44>max([1+2i, 2+2i, 2-0.1i])

ans = 2+2i

¥1]]

Working with Octave: Functions and Plotting

You could imagine that max would return the maximum of the real parts and the maximum
of the imaginary parts, but it does not. max returns the element with the largest absolute
value. min, of course, returns the element with minimum absolute value.

If sort is given an array of complex numbers, it will sort according to the elements absolute
value. For example:

octave:45> sort ([1+2i 2+2i 2-0.1i])

ans =

2.0000 - 0.10001i 1.0000 + 2.00001i 2.0000 + 2.00001i

Try to call other functions with complex input arguments.

Operator functions

Operator functions carry out more complex operations on its arguments. To do this, Octave
uses highly optimized algorithms and existing libraries like LAPACK or FFTW. Of course, the
helper function sort is also based on rather complicated algorithms, but the operation itself
(sorting an array) is relatively simple.

Linear algebra

In Chapter 2, we learned how to solve linear equation systems using the left division
operator. Also, we learned how to calculate the inverse of a matrix. Octave can do much
more linear algebra some of which we will discuss in the following.

Time for action - using Octave for advanced linear algebra

1. Itis easy to calculate the determinant of a 2 x 2 matrix, but for a 3 x 3 matrix, the
calculation becomes tedious, not to mention larger size matrices. Octave has a
function det that can do this for you:

octave:46> A=[2 1 -3; 4 -2 -2; -1 0.5 -0.5];
octave:47>det (2)
ans = 8

Recall from linear algebra that the determinant is only defined for a square
n x n matrix. Octave will issue an error message if you pass a non-square
matrix input argument.

2. Letuschange & a bit:
octave:48> A=[2 1 -3; 4 -2 -2; -2 1 1];

octave:49>det (A)

7181

Chapter 3

ans = 0

This result is consistent with the result from Chapter 2. A does not have full rank,
that is, the determinant is 0.

3. The eigenvalues of an 1 x n matrix are given by the equation:
det(A — AI) = 0. (3.6)

To calculate the eigenvalues in Octave, we can use the eig function:
octave:50> A = [1 2; 3 4];
octave:51>eig(A)
ans =

-0.3722

5.3722
4. eigcanalso return the eigenvectors. However, given two outputs, the output

sequence changes such that the first output is the eigenvectors and the second is
the eigenvalues. In Octave, you type:
octave:52> [V, L] = eig(a)
V =

-0.8245 -0.4159

0.5657 -0.9093

L =
Diagonal Matrix

-0.3722 0

0 5.3722
The eigenvectors are given by the columns in v, and the eigenvalues are the
diagonal elements in L.
What just happened?

We have already discussed Commands 46-51. In Command 52, we include the calculation
of the eigenvectors. Notice that the output changes when we call eig with two outputs,
which is not the usual behavior that we expect from an Octave function. This is to maintain
compatibility with MATLAB.

17191

Working with Octave: Functions and Plotting

Now, recall that the eigenvector v to a corresponding eigenvalue 1 is given by the linear
equation system:

(A—2Dv=0. (3.7)

We can write Equation (3.7) as Bv = 0, where B =A —]I, that is, the eigenvector, is the null
space (or kernel) of the matrix B. In Octave, we can calculate the null space directly:

octave:53> lambda = L(1, 1);
octave:54> B = A - lambda*eye(2);
octave:55> null (B)

ans =
0.8245
-0.5657

which is the eigenvector corresponding to the eigenvalue -0.3722 in agreement with the
output from Command 523, By the way, what is the rank of B? Since you can calculate the
null space, you can also calculate the range of matrices. This function is named orth and
works in the same way as null. The following table lists the linear algebra functions that we
have covered here and in Chapter 2:

Function Description Function Description

det The determinate eig Eigenvectors and eigenvalues

inv/inverse Matrix inverse null Orthonormal null space

orth Orthonormal range space rank Matrix rank
Polynomials

Above, we learned how to represent polynomials in Octave by the polynomial coefficients.
Here, we will go through three functions that can help us to find the roots and the
coefficients of the polynomial's integral and derivative.

In Command 8, we instantiate an array c with elements [2 10.1 0 6], representing the
polynomial given in Equation (3.1). To find the roots of this polynomial we use:

31f you wish to calculate the eigenvectors, you should of course use eig.

Chapter 3

octave:56> roots(c)

ans =
-5.1625 + 0.00001i
0.0563 + 0.76021
0.0563 - 0.76021

that is, the graph crosses the axis once.
The indefinite integral (or antiderivative) of fis given by:
ff(x)dx= %x4+%x3+6x (3.8)

plus a constant of integration. The derivative is:

df (x)

= 6x" +20.2x. (3.9)

Notice that Equations (3.8) and (3.9) are themselves polynomials which is represented via
their coefficient. In Octave, we can easily find the indefinite integral and derivative:

octave:57> polyinteg(c)

ans =

0.5000 3.3667 0.0000 6.0000 0.0000
octave:58> polyderive(c)

ans =

6.0000 20.2000 0.0000

which agree with the calculus above.

Pon Quiz - using simple mathematical functions

1. Letthe variable & be given by the command:

octave:1> A = rand(2,3);

2. What are the sizes of the output from the following commands?

a) log (n) b) log(a') C) max (A)

d) sort (A") e) sum(A) f) cumsum (2)

811

Working with Octave: Functions and Plotting

3. Which of the following commands are not valid?

a)rand (3,3,2) b) polyval ([i, 2+i], 31i) c¢)f=[cos(x), sin(x); x]
d) sort (A, 10) e) [I, j] = f£ind(A=0.5)

Have a go hero - understanding the find function

Let the variable A be instantiated by:

octave:1> A = [3 3 3; 4 5 1];

What is the output from the following command?

octave:2> [i,jl=£find(A>3); sum(i), sum(j)

Two-dimensional plotting

In the second part of this chapter, we will discuss how you can make plots with Octave. Since
version 3.0.0, the Octave development team has done a lot to improve the plotting interface
in order to obtain larger compatibility with MATLAB. At the same time, the plotting programs
have improved significantly, and the plotting facilities have now become quite impressive.
Depending on the Octave version you are using, the plotting program may not support all the
plotting commands and facilities that we will go through here. Also, the graphical output may
be different.

From version 3.4.0, Octave has a built-in native plotting program based on the
Fast Light Toolkit* (FLTK), but the default plotting program will likely be gnuplot.
Therefore, if you have Octave version 3.4.0 or higher installed with the FLTK
plotting backend, you can load and change the default plotting toolkit to FLTK by
using:

%‘ octave:1>graphics_toolkit("fltk")
To change back to gnuplot:
octave:2>graphics_toolkit("gnuplot")

You can see what graphical toolkits are loaded and available with the function
available graphics_toolkits.

4see http://www.fltk.org

1821

Chapter 3

Time for action — making your first plot

Let us try to plot the polynomial, f, given in Equation (3.1) in the interval x € [-5.5; 1]:

octave:59> x = [-5.5:0.1:1]; £ = polyval(c,x);
octave:60> plot(x, f)

You should now see a plot looking somewhat like the one below:

-40 L

What just happened?

The first input argument to plot is the x variable which is used as the x axis values. The
second is £ and is used as the y axis values. Note that these two variables must have the
same length. If they do not, Octave will issue an error. You can also call plot with a single
input argument. In this case, the input variable is plotted against its indices.

When we plot the graph of f, we actually connect the discrete values given by the vector
£ with straight lines. Thus, you need enough points in order for the figure to represent the
graph well.

plot and set

There are some things that do not look quite satisfactory in the figure above:

1. The axes are not right, for example, the x axis starts from -6, not -5.5.
2. The graph and the window box lines are too thin.

3. The axes are not labelled.
4

The numbers on the axes are too small.

Working with Octave: Functions and Plotting

We can fix all that! In fact, there are different ways of doing this, and we will use the most
flexible approach.

To do so, we need to:

1. Know more about the function plot.

2. Learn about the function set.
The general syntax for plot is:
plot(x, y,fmt, property, value, ...)

We have already discussed the two first input arguments. The input argument £mt is the
plotting format or style. If you leave this out, Octave will use the default blue line. The fourth
argument propertyis a property of the graph (for example, the color or linewidth) and
value is the property value. The dots indicate that you can specify several property and
property value pairs.

In general, set is called as:
set (handle, property, value, ...)

where handle is a graphic object handle (for example, a handle to an axis), property is a
property of the graphical object (say range of an axis) and value is its value (for example,
the interval from -5.5 to 1).

Time for action - changing the figure properties

1. Letus try to change the plot of the graph above. First:
octave:61> plot(x, £, "linewidth", 5);

This command will create the same plot as above, but here we specify the graph
property 1inewidth to have the value 5 rather than 1.

2. To set the correct limits on the axis, we use set:

octave:62> set(gca, "xlim", [-5.5 1])

3. We can also use set to set the line width of the window box and the font size of the
numbers on the axes:

octave:63> set(gca, "linewidth", 2)

octave:64> set(gca, "fontsize", 25)

4. The axes labels are also set by the set function. Here the properties are "xlabel™"
and "ylabel", and the property value is set using the text function:

[8a1

Chapter 3

octave:65> set(gca, "xlabel", text("string", "x", "fontsize", 25))

octave:66> set(gca, "ylabel", text("string", "f£(x)",

"fontsize", 25))

5. The figure should now look something like the figure below:

60 T T T T T T

40

% Many prefer to use single quotation marks around the property
T label, for example, 'x1im'. Use whatever you prefer.

What just happened?

In Command 62, the handle input argument gca is actually a function and is an abbreviation
for 'get current axis'. The property "x1im" stands for x axis limits, which we set to values -5.5
and 1.

You can also set and change the axes labels by using the functions x1abel and ylabel, and
you can specify the axes limits with the axis function. However, set is more flexible and
once you get used to it, you will find it easy with which to work.

As you can see from the interface, set can be called with a series of properties and property
value pairs. Thus, Commands 62-66 can be merged into a single call to set

octave:67> set(gca, "xlim", [-5.5 1], "linewidth", 2, "fontsize", 25,
"xlabel", text("string", "x", "fontsize", 25), "ylabel",
text ("string", "f(x)", "fontsize", 25))

1851

Working with Octave: Functions and Plotting

Note: The figures in this text may look different from the screen output you see
% (especially the font size will likely appear much larger). In general, printed plots
’ look different from the screen plots: what you see is not necessary what you get.

Adding lines and text to your plot

You can also add lines and text to your figure in order to highlight things.For example, you
may want to point to the root of the polynomial. To add lines, we use the 1ine function:

octave:68> line([-5.16 -4], [-2 -20], "linewidth", 2)

Here, the line will go from the point (x, y)=(-5.16, -2) to (x, y)=(-4, -20) and have a width of 2.
It would also be informative to have a text string stating to what the line actually points. For
this we can use the function text we saw above:

octave:69> text(-3.9, -23, "root", "fontsize", 20);

The two numbers (x, y) give the point where the string "root" begins. Let us add a bit more
information, namely:

octave:70> line([0 0], [5 -20], "linewidth", 2)
octave:71> text(-1.0, -22, "local minimum", "fontsize", 20)

The figure below shows how the plot looks after adding lines and text:

60

401

20r
f(x)

-20

root local minimum |

A0 4 3 2 B 0

Plot styles and colors

Recall from the function syntax that you can specify to plot the format with which the graph
should be plotted. For example, to plot Equation (3.1) using circles instead of lines, you can use:

Chapter 3

octave:72> plot(x, £, "o")

The existing graph is deleted just as the axes limits and axes labels can change or disappear.
You may find the points too large or too small. The property markersize can help you to
set the size of the points:

octave:73> plot(x,f, "o", "markersize", 4);

You can experiment with the marker size value. Other point formats are *, +, %, ., and %,
which can be combined with - to connect the points with a line.

You can also specify to Octave the color you want the graph to be plotted with via the
property color. Let us re-plot the graph of the polynomial, using points connected with
lines in the color red:

octave:74> plot(x, £, "o-", "markersize", 4, "linewidth", 2, "color",
n redll)

octave:75> set(gca, "xlim", [-5.5 1], "ylim", [-40 60], "linewidth", 2,
"fontsize", 25, "xlabel", text("string", "x", "fontsize", 25),
"yvlabel", text("string", "f(x)", "fontsize", 25))

Notice, that because we re-plot the graph, we need to specify the axes properties again,
which we do in Command 75. The next figure below shows how the graph looks with this
plotting style and color.

Title and legends

The figure can also be fitted with a title and the graph with a legend. The latter is especially
relevant when you have several graphs in the same figure. To add a legend stating that the
graph is the range of f'you use:

octave:76> legend("f(x)")
and to add a title you can use the set function:

octave:77> set(gca, "title", text("string",
"My favorite polynomial", "fontsize", 30))

Notice that title is a valid property of the axes object handle, but 1egend is not.

Ticks

You can control the axes tick marks. For example, you may want the numbers -40, -20, ... 60
to be displayed on the y axis. Again, we can use set:

octave:78> set(gca, "ytick", [-40:20:60])

1811

Working with Octave: Functions and Plotting

ytick is the property and the array is the corresponding value. You can also set the x axis
ticks with the property xtick. It is important to note that the array need not be evenly
spaced. You could also use [-40 -30 40 55 60]. Try it out!

Sometimes it can be helpful to have a grid to guide the eye. To turn on the grid, use:
octave:79> grid on

To turn the grid off again, simply type:

octave:80> grid off

The grid will connect the tick marks, so if you have unevenly spaced tick marks, the grid will
also be unevenly spaced. The figure below show the final plot after title, legend, ticks and
grid have been set.

&0 My favorite polynomial
- fix]—
“ / e s,
g
§ ‘\\
20 ‘.P ‘\._‘
'] L
o | ¢ e
of J
/
.’:
20
40— r} 3 2 i 0

fplot

Many Octave users also use fplot. This function can be used to plot graphs of mathematical
functions, hence the prefix f. This is different from plot that plots two data arrays against each
other. To plot a sine function in the interval from 0 to 2z with £plot using 50 points, you type:

octave:81l>fplot("sin", [0 2*pi], 50)

Notice that we need not to specify what to plot on
/S the x and y axes. fplot figures that out.

Chapter 3

Just as you can delete or clear variables from the workspace, you can also delete figures. The
command:

octave:82>clf

will do so. Notice that the graphic window remains, but that the content is deleted.

Octave enables you to do much more than simply plot a single graph. In this section, you will
learn how you can plot multiple graphs in single figure window, how you can have several
plotting windows, and how to use subplots.

To show how you can plot multiple graphs in a single window, we plot two polynomials:

fi®)=2X+10.1x+6 and f,(x)=2x +10.1x - 10.1x+6 (3.10)

in the same figure window. Notice that /| is the same polynomial as the one given
in Equation (3.1).

Time for action - having muitiple graphs in the same figure

1. We start by defining the domain and the coefficients representing the polynomial:
octave:83> x = [-5.5:0.1:2]; c 1 = [2 10.1 0 6];
c 2 = [210.1 -10.1 6];

2. We then calculate the ranges of ; and f:
octave:84> f 1 = polyval(c 1, x); £ 2=polyval(c 2, x);

3. And plot the graphs:
octave:85> plot(x, £ 1, "linewidth", 5, x, £ 2,

"linewidth", 5, "color", "red")

After setting the axes limits, font sizes, and so forth, the figure window looks like the
next figure below.

What just happened?

From Command 85, we see that plot can plot many graphs in a single call, and that you can
even specify the properties and values of each graph.

Working with Octave: Functions and Plotting

Alternatively, you can use the command hold on to force Octave to not delete the existing
graph(s); that is, instead of Command 85, you can use:

octave:86> plot(x, £ 1, "linewidth", 5);

octave:87> hold on

octave:88> plot(x, £ 2, "linewidth", 5, "color", "red")
When you want Octave to stop "holding on", you simply type:
octave:89> hold off

You may wonder how the subscripts are made. Easy! Just use an underscore to indicate that
the next character is a subscript. For example, in the figure below, you use:

octave:90> text(-3.9, -23, "f 1(x)")

If you want more than one character to be a subscript, you can use curly brackets around
the characters, for example,"£ {123} (x) ". For superscript, you can use * (hat) instead of
underscore. This feature, however, may not be supported by your plotting toolkit.

100 Two polynomials

80+ f,(x)

In Octave, you can also work with several figure windows at once. To change to or to create a
figure window 2, for example, you type:

octave:91> figure(2)

The next time you use plot, the graph will be shown in window 2. You can go back and work
with figure 1 by:

octave:92> figure(1l)

Chapter 3

If you have opened many figure windows and have lost track of which figure is the current
one, you can use gcf :

octave:93>gcf
ans = 1

This answer means that the current figure is 1.

Rather than opening several figure windows, you can have multiple subplots in the same
window. If you want to make subplots, you need to instruct Octave to divide the window
into a two-dimensional array of #n rows and m columns. For example, to start a figure window
with dimensions 2 x 3, that is, with six plots, you use the command:

octave:94> subplot(2,3,1)

The first two arguments to subplot set the window dimensions, and the third tells Octave
to plot in the subplot window with index 1. The indices run in a row-wise manner, as
illustrated in the figure below. The figure shows an example of a window with six subplots
arranged on a 2 by 3 grid where each subplot is plotting something random.

Index nr.1 Index nr.2 Index nr.3
60 T T T T T T T

40 -

ol 1 01

Index nr.5

0T T T T T T 1

40 -

20

20 -

40

91l

Working with Octave: Functions and Plotting

You can now use the plot, set, 1ine, and text commands that we have learned earlier in
this subplot. To change to subplot 2, you simply type:

octave:95> subplot(2,3,2)

The subplot functionality becomes particular useful whenever you want to have insets; for
example, if you want to zoom in on a particular part of the graph. Let us say you want to plot
the graphs of the two functions f, and f,, from Equation (3.10). Instead of plotting them in
the same window, we can plot /] as an inset.

Time for action — making an inset

1. First we type the command:
octave:96> subplot(1l,1,1)

which will open the main plotting window and allow you to make subplots.

2. Now, to plot the graph of f, with line width 5, we use:
octave:97>plot(x,£f 1, "linewidth", 5)

3. Set the axis limits to ensure space for the inset:
octave:98> set(gca, "xlim", [-6 2.5], "ylim", [-50 70])

4. When we insert the smaller inset window, we specify the location of the lower-left
corner of the inset and the length and height. We do so in fractions of the main
plotting window (including the axis ticks). For example:

octave:99> axes("position", [0.3 0.2 0.3 0.3])

5. Toplotin the inset, we simply use the basic plot function:
octave:100> plot(x, £ 2, "red", "linewidth", 5)

What just happened?

In Command 99, the function axes is used to control the axes properties. The first argument
is the axes property "position", and the second argument is the corresponding value.
Unfortunately, you cannot (currently) control this via set. Now, the value specifies that the
lower-left corner of the inset window is located a fraction 0.3 inside the main window in the
x direction and a fraction 0.2 inside the main window in the y direction. The size of the inset
is given by the last two elements in the array.

You can now change the axes and text property of the inset as you wish using set. The figure
below shows the final outcome of our efforts:

1921

Chapter 3

You can add more insets via axes. However, you cannot go back to the main window or
other insets and make changes. It can therefore take a bit of trial and error before the figure

looks just like you want it to.

We end this section by summarizing the different properties and corresponding values
discussed here for plot and set:

plot Property

Property value

linewidth

makersize

color

fmt (not given explicitly)

Numerical value that sets the graph line width (or thickness).
Size of point styles.A numerical value.

Color of graph: "black","red","green","blue","mag
enta","cyan","white"

mam gn g wxgw w_w w*nNote: your plotting toolkit
may support more formats].

Working with Octave: Functions and Plotting

set Property Property value
x1limand ylim x and y range on plot. Numerical array with two elements.
fontsize Size of tick marks. Numerical value.

The axis labels. String object which can be set via the text

label and ylabel .
xlabel andylabe function.

Line width (or thickness) of the figure boundaries.

linewidth .
Numerical value.

xticksandyticks Array giving the tick marks.
title A text string specified using the text function.

You can save (or rather print) your plot to a file via the print function. For example:
octave:101> print ("polynom.png", "-dpng");
will print the current window to the file "polynom.png" in png (Portable Network Graphics)

format. Notice the -d before the format specification. This is an abbreviation for "device".

- You can also use print in a non-functional form, for
example, Command 101 could be replaced with:
i
octave:101> print polynom.png —dpng

print supports most of the common formats:

eps Encapsulated PostScript (I recommend this format if your text program or printer
supports it).

ps PostScript.

pdf Portable Document Format.

ipg/ipeg Joint Photographic Experts Group image.

gif Graphics Interchange Format image.
tex TeX picture (to be included in a TeX document).
pslatex LaTex picture file for labels and PostScript for the graphics. This enables you to edit

the labels later.

png Portable Network Graphics image.

Type help print to see the extensive list of options.

[9a1

Chapter 3

When using the eps and ps format, | prefer to add the —solid and -color
options:

%‘ octave:1> print("polynom.eps", "-deps", "-solid", "-color");

This prevents the printed graphs from being shown with dashed or dotted lines
and is printed in color.

Pop Quiz - understanding the plotting options

Which of the following properties do not have a correct value associated with it?

a) "linewidth" 6 b) "ylabel" 34 c) "fontsize" Times Roman
d) "x1im" [1:10] e) "xticks" [1:10] f) "color" red
g) Iltitlell ngon

Have a go hero — making inserts

In this exercise, you will make two plots of the graph of the function given by Equation (3.3).
In the main plotting window, the graph is plotted over the interval x € [0; 10] and in an inset,
it is plotted over the interval x € [0; 2]. Follow the guidelines:

1. Give Octave the command: subplot(1,1,1).

2. Instantiate the vector variable x1arge with elements in the interval [0;10]. (Make
sure that the vector has sufficient elements.)

Calculate the range of the function over this interval and plot the graph.
Set any property you wish.
Instantiate the vector variable xsmall with elements in the interval [0;2].

Calculate the range of the function over this interval.

N o v ks~ w

Use the axes function to set the position of the inset at 0.4, 0.4 and with size 0.4
and 0.4.

o

Plot the inset and change any property you wish.

9. Print the figure window to a pdf file named complex.pdf.

Compare the printed figure with the screen output.

Working with Octave: Functions and Plotting

Three-dimensional plotting

Equations (3.4) and (3.5) define two mathematical functions that are more complicated to
visualize and plot compared to the simple polynomials in the previous section. Equation

(3.4) is a scalar function that depends on two variables. The graph of such a function can be
visualized via a surface plot. Equation (3.5) is a vector valued function and can be plotted as a
parametric curve in a three-dimensional space. In this section, we shall see how to do this.

Let us start by making a surface plot of the graph of Equation (3.4) in the interval x € [-2; 2]

and y € [-2; 2]. Since we work with discrete points,we need to evaluate the range of ffor all
different combinations (x,y)), (x,,),...(x). To do this in an easy way in Octave, we generate
two mesh grids such that all combinations can be included when we calculate the graph of f.

Time for action — making a surface piot

1. First we define the domain:

octave:102> x = [-2:0.1:2]; y = x;

2. Then we generate the mesh grids:
octave:103> [X Y] = meshgrid(x,y):

3. We can now calculate the range of ffor all combinations of x and y values in
accordance with Equation (3.4):

octave:104> Z = X."2 - Y."2;

4. To make a surface plot of the graph we use:

octave:105> surface(X,Y, Z)

The result is shown below:

Chapter 3

Saddle point

Ao b ho-omwa

What just happened?

In Command 103, x is simply a matrix, where the rows are copies of x, and Y is a matrix
where the columns are copies of the elements in y. From X and Y, we can then calculate the
range as done in Command 104. We see that Z is a matrix. Also, notice that surface uses
the mesh grids and the resulting z matrix as inputs.

You can, of course, change the different properties—just like we did for two-dimensional
plotting. For example:

octave:106> surface(X,Y,Z, "linwidth", 4)

octave:107> set(gca, "linewidth", 2, "fontsize", 20, "xlim", [-2 2])
octave:108> set(gca, "xlabel", text("string", "x", "fontsize", 30)
octave:109> set(gca, "ylabel", text("string", "y", "fontsize", 30)

You can also add text strings and lines to your three-dimensional plot:

octave:110> text(-3.2, 1, 3, "f(x,y)", "fontsize", 30)
octave:111> 1line([0 0], [0 1], [0 2], "linewidth", 5, "color", "red")
octave:112> text(-0.5, 1.5, 1.8, "Saddle point", "fontsize", 25)

Notice that you need to specify three coordinate points to text and line because we work in a
three dimensional space. The result is shown above in the previous figure.

1971

Working with Octave: Functions and Plotting

You can change the position of the viewer looking at the plot. This is done by the view
function. The arguments to view are the azimuth and elevation angles ¢ and 6. See the
illustration below:

To set the view to (¢, 6)=(35,30), use:

octave:113> view(35,30)
The result is shown in the surface plot above.

You can change the surface color using colormap. Commands 114 and 115 show a few
examples of this and with different views:

octave:1ll4>colormap ("gray"); view(-35, 30);
octave:1ll5>colormap ("summer"); view(0,0);

The results are shown below:

Chapter 3

Valid color maps are:

jet (default) summer copper
hsv spring gray
hot autumn bone
cool winter pink

You can also use the function mesh. This works just like surface, except that it does not fill
out the mesh grid with a color. Try it out!

It can be difficult to see the fine details in a surface plot. Here contour plots may help. In Octave,
you can use one of three functions to do contour plots: contour, contourf, and contour3.
They are called like surface, for example, contourf (X, Y, Z) and contour3 (X, Y, z). You
can specify to the functions how many contour levels you want (fourth argument). The default is
10. Also, you can control the properties. Let us see two examples:

octave:1ll6>contourf (X,Y,Z, 20);
octave:117> contour3(X,Y,Z, "linewidth", 6);

The results from Commands 116 and 117 are shown below:

Three-dimensional parametric plots

Finally, let us plot the graph of the function given by Equation (3.5). As mentioned above,
this is a parameterized curve in space.

Working with Octave: Functions and Plotting

Time for action - plotting parametric curves

1. First, we need to instantiate the variable x, for example:

octave:118> x = linspace(0, 10*pi)';

2. Then, we calculate the range of f:

octave:119> f = [cos(x), sin(x), exp(-0.5*x)];

3. Just check that we got the right size:

octave:120> size(f)

ans =

100 3

4. We can now plot the curve using plot3:
octave:121> plot3(£(:,1), £(:,2), £(:,3), "linewidth", 4)

5. To set the right properties, we can use:

octave:122> set(gca, "linewidth", 2, "fontsize", 20);

octave:123> set(gca, "xlabel", text("string", "x","fontsize", 30);
octave:124> set(gca, "ylabel", text("string", "y","fontsize", 30);
octave:125> set(gca, "zlabel", text("string", "z","fontsize", 30);
octave:126> set(gca, "zlim", [0 1.2])

octave:127> text(0.9, -0.25, 0.9, "t=0", "fontsize", 30)
octave:128> view(20,30)

Phew! The final figure is shown below:

[1001]

Chapter 3

What just happened?

In Command 119, we calculated the range of the interval—notice the transpose operator
in Command 118! In Command 120, we checked the size of the variable £ and in Command
121, we used plot3 to plot the curve. After that, we just changed the figure properties in
order to make it a bit nicer.

Recall Equation (1.1) in Chapter 1. Use meshgrid and surface to reproduce the figure that
the command peaks creates.

We learned a lot in this chapter about Octave functions and plotting.
Specifically, we covered:

Octave functions in general.

Mathematical functions including how polynomials are represented in Octave.
Helper functions.

Operator functions.

How to calculate the range of more complicated mathematical functions.

Two dimensional plotting.

® 6 & 6 o o o

How to plot several graphs in the same figure window, subplots, and how to
navigate between multiple figure windows.

1011

Working with Octave: Functions and Plotting

¢ Three-dimensional plotting including contour plots

¢ How to change the figure and axis properties

In the next chapter, we will see how scripts can be used to execute a sequence of commands
so that you do not need to retype the same commands over and over.

11021

Often you will need to execute a sequence of commands. Instead of typing
these commands directly into Octave's command prompt,you can write them in
a text file and then execute that file from the prompt. This enables you to make
any necessary changes later and then execute (or run) the file again without
having to go through the tedious labour of rewriting every single command. A
file composed of a single command or a sequence of commands is referred to
as a script file or just a script. In this chapter, you will learn how to write both
simple scripts and scripts that include more complicated program flows.

Sometimes it is useful to save your work, that is, to save the variables that
contain the main results of your efforts. This chapter will also go through how
you can do this in Octave, and show how you can load the variables back into
Octave's workspace.

To summarize, in this chapter you will learn:

What a script is and how to execute it.

*

How to control the execution of commands in a script using the i1 f and switch
statements.

To use for, while, and do statements.
Control exception handling.

How to save and load your work.

* 6 o o

About printing text to the screen and how to retrieve inputs from the user.

Rationalizing: Octave Scripts

We will start with something very simple. In Chapter 3, we discussed how to retrieve the
minimum value of an array (Commands 20-23). Let us try to do the same thing, but this time
using a script.

Time for action — making your first script

1. Start the Octave interactive environment and open the editor:
octave:1> edit

2. Write the following commands in the editor, but leave out the hash marks (#) and
the code line numbers to the right. They are used only for reference:
Code Listing 4.1

A = rand(3,5); #1
#2
min (min (A)) #3

Downloading the example code

from your account at http: //www.PacktPub. com. If you purchased this
book elsewhere, you can visit http: //www.PacktPub.com/support and
register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have purchased

3. Savethefile as script41.m (notice the extension .m) under the current directory
or anywhere in the Octave search path directory.

4. Now executing the commands in the script file is done by simply typing:

octave:2> script4l

ans = 0.1201

What just happened?

In Command 1, we opened the editor and we then wrote two Octave commands. When we
ask Octave to execute the text file in Command 2, it will execute each command in the file.

Since we did not add a semicolon at the end of line 3 in Code Listing 4.1, the command
returns the result in ans which is then displayed.

The file extension .m is needed for compatibility with MATLAB. However, you do not actually
need it in order to execute the script. To ensure that the script is executed no matter what
the extension is, you can use source ("file name"), where file name is replaced with
the actual name of the file.

(1041

Chapter 4

Scripts may not begin with the keyword function since this makes Octave
interpret the file as a function file rather than a script. We will come back to the
’ function keyword and its meaning in the next chapter.

Improving your script: input and disp

It is possible to interact with the user. This can be done by using the input and disp
functions. input is in general called using:

a = input(prompt string, "s")

where prompt stringis a text string and "s"is an optional argument that must be
included if the input is a string. Following are a few examples using the Octave command
prompt as testing ground:

octave:3> a = input ("Enter a number: ");
Enter a number: 42

octave:4 > a

a = 42

octave:5> s = input ("Enter a string: ");
Enter a string: Hello World

error: 'Hello' undefined near line 4 column 1
octave:6> s = input ("Enter a string: " , "s");
Enter a string: Hello World

octave:7> ischar(s)

ans = 1

Notice that ischar returns true (1) if the argument is a character or character array. In
Command 5, Octave issues an error because it tries to assign s the value of a variable named
Hello. In order to specify that s should be assigned the string Hello World, we need to
include the optional argument "s"in the input function as shown in Command 6.

[1051

Rationalizing: Octave Scripts

input can only assign a value to a single variable, and it is not particularly useful to fill large
cell arrays or structures. input does, however, accept array inputs, for example:

octave:8> A = input ("Enter matrix elements: ")
[1 2; 3 4]
A =

1 2

3 4

You can print text and variable values to the screen using disp:

octave:9> disp("a has the wvalue"), disp(a)
a has the value
42

Notice that when given a variable as input, disp works as if you had typed the variable
name without a trailing semicolon. disp can also display structures and cell arrays.

We can use input and disp to interact with the user of the script.

Time for action - interacting with the user

1. Open anew file and write the following commands in the editor:
Code Listing 4.2

nr = input ("Enter the number of rows in the matrix: "); #1
nc = input ("Enter the number of columns in the matrix: "); #2
#3
A = rand(nr,nc) ; #4
#5
minA = min(min(3a)) ; #6
#7
disp("The minimum of A is"); #8
disp (mina) ; #9

Save itas script42.m.

[1061]

Chapter 4

2. Executing Code Listing 4.2, we get:

octave:10>script42

Enter the number of rows in the matrix: 12
Enter the number of columns in the matrix: 20
The minimum of A is

0.00511

What just happened?

Code Listing 4.2 allows the user to specify the size of the array (lines 1 and 2). Just like Code
Listing 4.1, the script then finds the minimum of the array. The result is printed using the
disp function.

On some systems, the text that you want to print to the screen may be buffered. Basically,
this means that the text can sit in a queue and wait to be displayed and can potentially be
an annoying problem. To be sure to avoid this, you can flush the buffer before you prompt
the user for input. This is done via the command ££f1ush (stdout), where stdout is the
output buffer (or stream). For example, to ensure that the stdout stream is flushed before
input is called in Command 3, we use:

octave:11> fflush(stdout) ;
octave:12> a = input("Enter a number: ");

Enter a number: 42

Comments

When your script becomes larger and more complicated, it is useful to have comments
explaining what the commands do. This is particularly useful if you or any other person will
use or make changes to the script later. Any line beginning with a hash mark # or percentage
sign % will be ignored by the interpreter, for example:

octave:13> a
a = 42
octave:14> # a

octave:15> % a

11071

Rationalizing: Octave Scripts

From the above commands, you can see that if you omit the hash mark or percentage
characters, Octave prints the value of a (which is 42 as seen by the output from Command
13). Starting the line with # or % simply makes Octave ignore that line.

Let us add a few comments to Code Listing 4.2 above and flush the stdout stream:

Code Listing 4.3

flush the output stream #1
fflush(stdout) ; #2
#3
Get the number of rows and columns from the user #4
nr = input ("Enter the number of rows in the matrix: "); #5
nc = input ("Enter the number of columns in the matrix: "); #6
#7
Instantiate A and assign the elements random numbers #8
A = rand(nr,nc) ; #9
#10
Evaluate the minimum value #11
minA = min(min(A)) ; #12
#13
Print the result to the screen #14
disp ("The minimum of A is"); #15
disp (mina) ; #1le6

| use hash mark when writing comments, but this is not compatible with MATLAB, which
uses the percentage sign.

% If you want to be able to execute your scripts in MATLAB,
s use the % character when you write comments.

Very long commands

Sometimes you need to write a very long command. For example, we saw in Chapter 3 that
the function set can be called with many arguments. To break a command into several lines,
you can use three full stops (periods) ... or back slash\. For example, line 5 in Code Listing
4.3 can be broken into two lines by:

nr = input("Enter the number of rows

in the matrix: ");

[108]

Chapter 4

or:
nr = input ("Enter the number of rows \
in the matrix: ");

The backslash is traditionally used in Unix type systems to indicate that the line continues.
The three full stops are used for compatibility with MATLAB.

% If you want to be able to execute your scripts in MATLAB use . . . to indicate
s that the command line continues.
Workspace

Whenever you execute an Octave script from the Octave command prompt, the variable
instantiated in the script is stored in the current workspace and is accessible after the script
has finished executing. Let us illustrate this with an example:

octave:16> clear

octave:17> who

octave:18> script4l

ans = 0.62299

octave:19> who

Variables in the current scope:
A ans

It is important to keep track of what variables you have instantiated, including variables
instantiated in the scripts. Assume that we have happily forgotten that A was instantiated
through Command 18 and we now type the following command:

octave:20> A(:,1) [0:10]

error: A(I,J,...) = X: dimension mismatch.

Now Octave complains about the dimension mismatch because we cannot change the length
of one of the columns in A. Had A not been instantiated previously, this command would be
perfectly valid. To avoid this (as well as other problems), | often call clear at the beginning
of the script. This will clear all variables you have instatiated, so be careful when doing this!

(1091

Rationalizing: Octave Scripts

For GNU/Linux and MacO0S X users

Under GNU/Linux and MacOS X, you can call an Octave script directly from the shell, so you
do not need to start Octave's interactive environment first. To do this we simply need to:

1. Find out where Octave is installed. Typically the executable will be at:/usr/bin/
octave.

2. Add the following line at the very start of your script file, say script43.m:
#! /usr/bin/octave -gf
3. Save the file and exit Octave.

4. Make sure that you are in the directory where the file is saved. At the shell prompt,
write:

$ chmod u+x script43.m

to allow the file to be executed.

5. Now type:
$./script43.m

You should see the script being executed, just as it would be from the Octave
prompt.

Which of the following commands will issue an error or warning?

a) disp(32) b)disp(3,2) c) s=input ("Enter textstring: ");
d)disp("Min.ofA is:",min(A)) e) fflush

In Chapter 3, we plotted a parameterized curve in three dimensions using plot3. Use
plot3 inside a script to plot the graph of the following vector valued function:

f (x) =[cos (x), x,\/5_x] (P.1)

for x € [0;8 x]. Make changes to the axes label font size, text, and the line width by editing
the script. When you are satisfied with the figure, print it to a file in any format you find
appropriate.

(1101

Chapter 4

In the previous section, we learned how to write a very simple script and we saw that a script
is just a sequence of commands. In this section, you will learn how to use statements in
order to control the behaviour of a script. This enables you to code scripts that can perform
different and much more complicated tasks.

We will discuss the different type of statements: if, for, while, and so on by evaluating
whether a number is a prime number or not. As you know, a prime number (or just a prime)
x is a natural positive number that has exactly two divisors—1 and itself. Adivisor y is a
natural positive number larger than 1 such that the division x/y has no remainder. From the
definition of a prime, we may write a simple program flow chart as shown below. Notice
that if 2 is a divisor, then we need not check for any other even number. The algorithm is

of course extremely naive and there are much more efficient ways of evaluating whether a
number is a prime number or not.

No
A 4
Remainder O Yes ;
for the x not a prime
division x/2?
No
A 4
Remainder O
for the division Yes x not a prime
Xy, where y is P
odd and y < x?

No
A 4

X IS a prime

[l

Rationalizing: Octave Scripts

Decision making - the if statement

From the program flow chart, it is seen that we can decide if a number is not a prime by
evaluating whether the number is smaller than 2 or if the remainder of the division x/2 is
zero. To do so in Octave, you can use the i f and elseif statements. In general the syntax is:

if condition 1
do something (body)
elseif condition 2

do something else (body)

else
do something if no conditions are met (body)

endif

If condition 1 istrue (nonzero), the if statement body is executed. If condition 1

is false and condition 2 istrue, the elseif body is executed. The elseif and else
statements are optional. Let us illustrate the usage by a small code snippet that checks if the
two first conditions in the flow chart are met:

if (x<2)
disp("x not a prime");
elseif (rem(x,2)==0)
disp("x not a prime");
else
disp("x could be a prime number") ;
endif

The rem function returns the remainder of x/2. It is important to underline that if the first
if statement body is executed, meaning that if the comparison operation x < 2 evaluates
to true, the elseif and else statements are not evaluated. The Octave interpreter simply
jumps to the line after the endi £ statement. Likewise, if rem (x, 2) ==0 is true, the else
statement is not executed. This happens only if both the conditionsto if and elseif are
false.

You can have statements in Octave's command prompt as well. It is always a good idea to do
simple tests here. To actually see what the code snippet above does, we use:

octave:21> x=9;
octave:22> if (x<2)

>disp("x not a prime");

[n2]

Chapter 4

>elseif (rem(x,2)==0)

>disp("x not a prime");

>else

>disp("x could be a prime number");

>endif

X could be a prime number

but it is not. If you have made a coding error or typo anywhere, Octave will tell you so.

% If the condition is an array, the 1 £ and elseif statement
s body is only executed if all elements in the array are true.

In the code snippet above, we wrote two lines that were identical. Every line of code is error-
prone and repeating code should be avoided if possible unless there is a particular reason
not to. Octave provides you with a set of so-called Boolean operators (the third type of
operator that you will learn in this book). They enable you to include several comparisons
within a single statement such that you can avoid repeating code.

Octave's Boolean operators are divided into element-wise and short-circuit operators.

Element-wise Boolean operators

There are three element-wise Boolean operators, namely, &, |, and !. Perhaps it is easiest to
discuss how they are used through a couple of examples from the Octave prompt:

octave:23> A=eye(2); B=[1 2;3 4];

octave:24> A==eye(2) & B==eye(2)

ans =
1 0
0 0

(131

Rationalizing: Octave Scripts

Command 23 is trivial. In Command 24, we use the & operator between two Booleans given
via the comparison operators A==eye (2) (left Boolean) and B==eye (2) (right Boolean).
Recall from Chapter 2 that the comparison operators == evaluates to Boolean types. Now,
the left Boolean is a 2 x 2 matrix where all the elements are true because == compares
element-wise and evaluates to true for all matrix elements. For the same reason, the right
Boolean gives a 2 x 2 matrix where all the elements have value false except for the element
at row 1 column 1. The & operator then simply evaluates if the elements in the left Boolean
and the right Boolean are both true. If so, the result of the Boolean operation is true. This is
illustrated in the below figure. Note if both values are false, the & operator evaluates to false:

true & true true & false || true | true true | false
Evaluates Evaluates to|| Evaluates Evaluates to
to true false to true true
I | |
| | b '
1 1 1 0 1 1 1 0
&
1 1 0 0 1 1 0 0
A==eye(2) B==eye(2) || A==eye(2) B==eye(2)

Unlike the & operator, the | operator evaluates to true if the left Boolean is true or if the right
Boolean is true. For example:

octave:25> A==eye(2) | B=eye(2)

ans =
1 1
1 1

since A is simply equal to eye (2).

The Boolean operator ! negates. This means that if a Boolean a is true, ! a is false. For
example, since A is the 2 x 2 identity matrix, it can be thought of as a Boolean, where the
diagonal components have values true and off-diagonal components have value false. The
negation of A is:

octave:26> A

ans =
0 1
1 0

(14l

Chapter 4

Boolean operators have lower precedence than comparison operators.

Short-circuit Boolean operators

The & and | operators go through the Booleans element-wise, meaning that the operator
evaluates the Boolean value for all pairs in the variables. Sometimes you may just want
to know if, say Ais equal to eye (2) and if B is equal to eye (2), without caring about the
individual elements. For this purpose you can use short-circuit Boolean operator &&

octave:27> A==eye(2) && B==eye(2)

ans = 0

This tells you that this is not the case. Likewise we can use the the short-circuit operator | |
to check if o or Bis equal to eye (2):

octave:28> A==eye(2) || B==eye(2)

ans = 1
This is because when A was instantiated, it was set to eye (2).

The table below summarizes the output from the Boolean operators &, &&, | and | |:

Operators Boolean 1 Boolean 2 Result

&and && true true true
true false false
false false false

| and | | true true true
true false true
false false false

The Boolean operators are commutative; such that trues false is equivalent to false & true.

Using Boolean operators with an if statement

Instead of using the if and elseif statement construction in the previous code snippet, we
can now apply both conditions to the same i f statement:

if (%<2 | rem(x,2)==0)
disp("x is not a prime");
else
disp("x could be a prime");
endif

(1151

Rationalizing: Octave Scripts

If x is, for example, 2, then the comparison operation x<2 evaluates to false and

rem(x, 2) ==0 evaluates to true, so the | Boolean operator evaluates to true according to
the table and the condition in the if statement is met. On the other hand, if x is 9, then
the comparison operationsx<2 and rem (x, 2) ==0 evaluate to false and the if statement
body is not executed. In this example, you could also use the short-circuit Boolean operator
| | because x is a simple scalar.

Nested statements
Like other programming languages, you can have if statement constructions within an if,

elseif, or else statement. For example:

if (%<2 | rem(x,2)==0)
disp("x is not a prime");
else
if (x>3 & rem(x,3)==0)
disp("x not a prime");
else
disp("x could be a prime");
endif
endif

The switch statement

Some programmers prefer to use the switch statement construction over if statements.
This is often possible and can help to significantly improve the readability of the code. The
general syntax is:
switch option
case option
do something (body)
case option

do something else (body)

otherwise
do something default (body)

endswitch

The use of the switch statement can be illustrated by rewriting the previous code snippet:

switch (x<2 | rem(x,2)== 0)
case 1
disp("x not a prime");

(1161

Chapter 4

otherwise
disp("x could be a prime");
endswitch

It should be clear what the program flow is.

Loops

From the program flow chart shown above, it can be seen that we need to calculate the
remainder of the division x/y for all values of y that are smaller than x, so if x is large,
we need to call rem many times. In Octave, we can do so using the for, while, or do
statements.

The for statement

The syntax is simple:

for condition
do something (body)

endfor

The for statement and the corresponding endforconstruct a so-called for-loop. A for-loop
is executed as long as condition is true. Let us see a code snippet:

for y=3:x-1
if (rem(x, y)==0)
disp("x not a prime");
endif
endfor

The first time Octave executes the for loop, v is set to 3 before the rest of the loop is
executed. The second time,y is set to 4, and so on. We say that y is incremented with 1.
When y equals x, the condition is not met because y runs from 3 to and including x-1, as
specified in line 1 and the loop stops executing.

From our definition of prime numbers, we know that we need not calculate the remainder
of all the even numbers. We can skip the even numbers by letting y have the values 3, 5, 7,
and so on. This is done by starting at y=3 and then incrementing y by 2, which is done by
replacing line 1 in the code snippet with the following:

for y=3:2:x-1

In this way, we carry out only half the computations.

1111

Rationalizing: Octave Scripts

Also, in the code snippet above, the remainder is calculated for all y<x, even though

we know that if it equals O for just one single vy, x is not a prime. It would therefore be
convenient to break out of the loop whenever this condition is met—not only do we
decrease the number of computations, but we also get rid of a text string repeatedly telling
us that x is not a prime. To this end, Octave has a break command (or keyword) which will
make Octave to break out of the loop, but continue executing any code after the loop. The
updated version of the code is:

for y=3:2:x-1

if (rem(x,y)==0)
disp("x is not a prime");
break;
endif
endfor

Instead of breaking out of a loop if some condition is met, you may want the loop to
continue. You can tell Octave to continue looping via the cont inue keyword. In a moment,
you will also see that this keyword should be used with some care.

The while and do statements
As an alternative to for loops, you can use while and do statements. The syntax for the
while construction is:
while condition
do something (body)

endwhile
The reimplementation of the code snippet above is straight forward:

y=3;
while v < x
if (rem(x,y)==0)
disp("x is not a prime");
break;
endif
Yy =Y + 2;
endwhile

In line 1, we initialise the value of y to 3 before we enter the while loop. Code lines 3-6
check if x is not a prime, and in line 7, y is incremented with 2.

Note that break can also be used to break out of a while loop.

(118l

Chapter 4

Instead of ending the statement bodies with endif, endfor, and so forth, you
A can simply use end. This is compatible with MATLAB's syntax.

We could perhaps be tempted to use the continue keyword instead, for example:

(Leads to an infinite loop)
y=3;
while y<x
if (rem(x,y) !=0)
continue;
else
disp("x is not a prime");
endif
y =Y + 2;
endwhile

However, this leads to an infinite loop because continue will make the interpreter skip all
the commands inside the loop body including the liney = y + 2, meaning that y is never
incremented and the comparison operation y<x is always true.

You can force Octave to execute a loop once and then continue that loop if a certain
condition is met. The syntax is:

do
something (body)

until condition

Again, the code snippet can be changed to illustrate this construction:

y=3;
do
if (rem(x,y)==0)
disp("x is not a prime");
break;
endif
Yy =Y + 2

until ys>=x

Note that we have to use the comparison y>=x (and not y<x) here.

(19l

Rationalizing: Octave Scripts

In the previous three code snippets, the variable y is incremented. Octave supports the C
style incremental and decremental operators (which is the last operation type in this book).
For example, to increment a variable y with 1, we can use y += 1 or y++ which are both
equivalenttoy = y+1.In general you can increment y by any number, x, usingy += x.To
decrement, we simply use y-- orin general y-= x.

Since Octave is a vectorized programming language, the incremental operators also work on
multidimensional arrays, incrementing element-wise.

Strictly speaking, the incremental operation y++ will return the old value of y before
incrementing it. For example:

octave:29> y=0; y++
ans = 0

octave: 30> y

ans = 1

Therefore, be aware of any side effects when you use Boolean operators. Take for example
the two commands:

octave:31> x=0; y=0; a=(x++ & y++)
ans = 0

and

octave:32> x=0; y=0; a=(y++ & X++)
ans = 0

After the Command 31 x=1 and y=0, but after the Command 32 y=1 and x=0. This is
because the incremental operation x++ increment x with one but returns the old value 0.
This means that the left Boolean is false, hence the Boolean x++ &y++ is false no matter
what y++ evaluates to according to the table above. y++ is therefore not evaluated. The
same argument holds for Command 32.

Like the i £ statement, you can have nested loops. For example, if you wish to sum up all
elements in a matrix variable A with nr rows and nc columns, you can use the code snippet:

1201

Chapter 4

sum=0;
for n=1:nr
for m=1:nc
sum += A(n,m) ;
endfor
endfor

| strongly recommend that you use the function sum (Chapter 3) to compute the sum of an
array because this function executes much quicker than the nested loop construction above.

% If you use nested loops, break will
A break out of the inner-most loop.

In the previous sections, we learned how to control program flow using different statements.
In this section, we will put the code snippets together and make a script that follows the
programming flow chart for computing whether a number is a prime or not. In the last part
of this section, we will expand the code and make the necessary changes to the script such
that it can calculate an entire sequence of primes.

The approach that we will use here (and there are quite a few different ones) is to assume
that the number x entered by the user is a prime. This is done by setting a Boolean

variable is_x prime to true. The script then checks this assumption using the if and for
statements discussed above and if it is found that x is not a prime, the script will set is x
prime to false and break out of the for-loop. At the end, the script then writes whether x is
a prime or not depending on the value of is_x prime:

Code Listing 4.4

Script that evaluates whether a number is a prime or not #1
#2

Retrieve input #3
fflush(stdout) ; #4
X = input ("Enter a number: "); #5
#6

Assume x is a prime #7
is x prime = 1; #8
#8
Go through the steps in the programming flow chart #10
Based on the code snippets in the text #11
if (x!=2 & (%<2 | rem(x,2)==0)) #12
is x prime = 0; #13
else #14
for y=3:2:x-1 #15

[1211

Rationalizing: Octave Scripts

if (rem(x,y)==0) #16

is x prime = 0; #17
break; #18

endif #19
endfor #20
endif #21
#22

if (is_x prime) #23
disp("x is a prime"); #24
else #25
disp("x is not a prime"); #26
endif #27

Line 12 needs some explanation. If we had used the code snippet from above:
x<2 | rem(x,2)==0

directly, the number 2 would have been evaluated as not being a prime. By using the &
Boolean operator, we exclude this special case. Had we not included the parenthesis, Octave
would have evaluated the line from left to right, or equivalently as:

(x!=2 & x<2) | rem(x,2)==0

which evaluates to false |true, which in turn gives true according to the above Boolean
table. If the condition is true, the body of the if statement is executed telling you that 2
is not a prime. The parenthesis force Octave to first evaluate (x<2 | rem(x,2)==0)
giving true and since false & true yields false, the i f statement body is not executed.

Let us test the script. Save the file as script44 .m, for example, and execute it at the Octave
prompt:

octave:33> script44
Enter a number: 2

x is a prime
octave:34> script44
Enter a number: 109221
X is not a prime
octave:35> script44
Enter a number: 109211

X is a prime

1221

Chapter 4

| bet you did not know that! As mentioned earlier, Octave has a true arsenal of helpful

functionalities, so it also has its own built-in function, isprime, that can tell you if a

number is a prime or not. Check if your script agrees with Octave's function and notice the

difference in execution speed for large input values.

If you want to calculate a whole sequence of primes, then it is not practical to use the script
from Code Listing 4.4. However, we can easily modify it to meet our needs. The strategy is
the same, but instead of prompting the user for a specific number, she will have to enter the
number of primes she wants to retrieve starting from 2. The primes are stored in the array

prime_sequence:
Code Listing 4.5

Script that calculates a sequence of primes

Clear the prime array
clear prime sequence;

Retrieve user input
fflush(stdout) ;

nprimes = input ("Enter number of primes (>0): ");

Initializing x to 2 - gets rid of a comparison
operation inside the loop
X = 2;

Initialize counter to 1 since 2 is a prime
prime counter = 1;
prime sequence (prime counter) = x;

while prime counter<nprimes
Assume x is a prime number
is x prime = 1;

if the remainder of x/2 or x/y for y<x is zero then

#x is not a prime.
if (rem(x,2)==0)
is x prime = 0;
else
for y=3:2:x-1

if (rem(x,y)==0)
is x prime = 0;
break;
endif
endfor

11231

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32

Rationalizing: Octave Scripts

endif #33
#34

if is x prime is true (1) then save the value of #35
x in an array #36
if (is_x prime) #37
prime counter++; #38
prime sequence (prime counter) = x; #39
endif #40
#41

X++; #42
endwhile #43

It should be clear how the program flows. However, two points should be made:
¢ Since we need not allocate memory in advance, the length of the array prime
sequence increases as the script finds more and more prime numbers (line 39).
¢ Also, we can clear prime sequence in line 4 even if it is not instantiated, which is

the situation the first time we execute the script.

Now, save the script as script45.mand execute it:

octave:36> script45
Enter number of primes (>0): 10
octave:37> prime sequence
prime sequence
2 3 5 7 11 13 17 19 23 29

Try to increase the number of primes in the sequence, say enter 20, 100, and 1000. Notice
how long it takes to compute the primes as you increase the length of the sequence.
According to the World Wide Web, the largest prime computed is today (August 2010)
22431126091 50 you probably do not want enter the competition using Code Listing 4.5!
Computing the first 1000 prime numbers using Code Listing 4.5 took my computer 213.64
seconds. Octave's own function primes could do the same in 0.02 seconds—a speedup of
around a 10° %*.

Exception handling

In the situation where an error occurs in a script, Octave will print an error message and
normally (that is, hopefully) return to the command prompt. The values of the variables will
then be whatever they were assigned before the error occurred.

INote that the input to primes is not the number of primes you want to find!

[124]

Chapter 4

With the try and unwind protect statements, you can force Octave to execute
commands in a script even after an error has occurred. The general syntaxes are:
try
something (body)
catch
cleanup if an error has occurred (body)

end try catch
and

unwind protect
do something (body)
unwind protect cleanup
cleanup whether an error has occurred or not (body)

end_unwind protect

As you can see, the difference between the two constructions is that the try-catch only
executes the body after catch if the body in try produces an error, whereas the unwind
protect-unwind protect cleanup construction always executes the cleanup part. If an
error occurs outside the construction, the cleanup part will of course not be executed.

In Code Listing 4.4, we store the user input in a variable x. Assume that you use the script
as a part of a larger project where x stores a value of something important that you wish to
keep. Of course, you could rename x in script44 .mto something different, but you can
also use the unwind project cleanup statement as seen in the following code snippet:

Stores the original value of x
original x = x;

unwind project
fflush (stdout)
X = input ("Enter a number: ");
..# As in Code Listing 4.4
unwind protect cleanup
disp ("Recovering the original value of x");
x = original x;
end_unwind protect

11251

Rationalizing: Octave Scripts

After executing the script, x will always be assigned the original value even if an error occurs
in the body of the unwind project. For example, if we deliberately make an error by giving
a string input rather than a number, then the following error message will occur:

octave:38>x.a = 1.0; x.b = "Hello World";

octave:39> x

x=
{

a = 1

b = Hello World
}

octave:40>script46

Enter a number (>0): Hello World

error: evaluating assignment near line...
Recovering the original wvalue of x

octave:41> x

x=
{

a = 1

b = Hello World
}

In this particular example, x is never assigned a new value because input fails, but you can
see, the interpreter enters the body of the unwind protect cleanup statement.

Pop Quiz - understanding statements and Boolean operators

1. Which of the following Boolean operations return true?

a) true | false b) true & false c) true && false
d) false & false e) (true | false) & false f) true | (false & false)
giL|o

11261

Chapter 4

2. What text is printed to the screen if the following code snippet is executed?
for n=1:3
for m=1:2:5
printf ("%d %d4d", n, m);
if (m==2)
break;
endif
endfor
endfor

3. What is wrong with the following code (find at least three mistakes)?
for n=1:10

m=1;
while m<=10
printf("n is %d, m is %4 \n", m, n);
endfor
endwhile

4. What is wrong with the following code (find at least three mistakes)?
s=input ("Enter a text string: ");
if (s=="Hi")
disp("You entered Hi");
elseif

disp("You did not enter Hi");
end

Added flexibility - C style input and output functions

The function disp is easy to use. However, it has limitations. For example, we can display
only a single variable with disp and it always prints a newline character after displaying the
variable value

Octave has implemented most of the very flexible input and output functionality that you
may know from C. If not, do not worry, we will go through the most important one here,
namely the print £ function. Functions that can write and read to and from files, such as
fprintf, fgets, and fscanf, are also supported in Octave: if you want to know more
about these functions, | strongly recommend you to look in the Octave manual.

1211

Rationalizing: Octave Scripts

printf is an acronym for print formatted text. The general syntax is:

printf (template, ...)

Here, template is a text string and can also include text format specifiers and/or escape
sequences. The . . . indicates optional arguments. For example:

octave:42>for n=1:5
>printf ("n is %d\n", n);
>endfor

nis 1

n is 2

n is 3

n is 4

n is 5

Here the template includes a text n is, a format specifier ¥4, and the escape sequence \n.
%d instructs print £ to print the value of n as an integer and the sequence \n means new
line. Since we specify a format, there must be an argument with a value to print. This is given
by the value of n. The commonly used format specifiers and escape sequences are listed in
the below table:

Format specifiers Escape sequence

%d Integer format \n Newline

st Floating point format \t Horizontal tab
e or $E Scientific floating point format \b Backspace

5c Character format \r Carriage return
%8s String format

Try to change the format specifier and escape sequence characters. For example:

octave:43> for n=1:5
>sprintf("n is %f \t", n);
>endfor

n is 1.0000 n is 2.0000 n is 3.0000 n is 4.0000 n is 5.0000

11281

Chapter 4

When we calculated the first 1000 primes, it took some time and it would be nice to
somehow know how far in the computation the script has come. The below code listing
shows an example of how we can extend Code Listing 4.5 such that the script prints a
message whenever it finds a prime:

While prime counter<nprimes

if (is_x prime)

prime counter++;

prime_sequence (prime counter) = x;
printf ("\r") ;
printf ("Found prime: %4 - %4 to go ", \

X, nprimes-prime counter) ;
fflush (stdout) ;
endif

X++;
endwhile
printf ("\n") ;

The following points should be made: in the first call to print £ we just print an escape
character, \r, which means that the next output will be printed at the beginning of the
line. In the second call to print £, we perform a computation inside the optional argument
list. This is perfectly legal since, as we know, these operations are performed before calling
the function?. Finally, we must flush stdout in order to ensure that the template is actually
printed to the screen when we call printf. Try to comment out the £f1ush (stdout)
command and see how the script behaves. You may not see any difference!

Pop Quiz - printing with printf

What is printed to the screen if the following commands are executed?

a)printf ("Hello World\xr") ; b) printf ("Hello World\b \n");
c)printf ("Hello World\b \t\n"); d) printf ("$d\n", 2);
e)printf ("$f\n", 2); f)printf ("%e\n", 2);

2As discussed above, incremental operators have side effects, so they should always be used with care.

11291

Rationalizing: Octave Scripts

If you use script45.mto compute a very long sequence of primes, it would probably be a
good idea to save the variable prime sequence to avoid calculating the sequence again.
Saving variables in Octave is easy. Simply use:

octave:44> save primes.mat prime sequence

to save prime_sequence in afile called primes.mat. If you want to save more than one
variable, you just write all the variable names after the file name. The general syntax is:

save -optionl -option2 filename variablel variable2

where —optionl -option2 specifies the file format, £i1lename is the name of the file

(for example, primes.mat in Command 44) and variablel variable2 ... isthe list

of variables that you wish to save. You can use wildcards to save all variables with a specific
pattern, for example, if variablel is given as primes*, all variables with prefix primes will
be saved. If you do not specify any variables, all variables in the current workspace are saved.

% In Command 44, | have used the extension . mat, but you can use any filename
i you wish with or without the file extension.

From your editor, try to open the file primes.mat. You will see something like this:

Created by Octave 3.2.4, Sun Aug 29 12:30:20 2010
name: prime sequence
type: matrix

rows: 1

H*+ H H HF

columns: 1385
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89

Here you can see that Octave has added five lines beginning with a hash mark, #.This is
referred to as the heading. Here various information is stored, like who created the file

(in the case Octave, it could also be a username) and the name of the variable. If you load
the file into Octave's workspace, the interpreter will go through the heading and create a
variable called prime sequence (overwriting any existing one) with the rows, columns, and
values listed. Of course, the heading and therefore the file cannot be read by other programs
unless they are specially designed to do so. If you save more than one variable, a header will
be written for each one.

You can tell Octave to change the output format such that it can be read by other programs.
This is specified via the options listed below.

[130]

Chapter 4

Option Description

-text Saves the variables in readable text format with information about the variables
(names, dimensions, and so on.) Also, Octave prints a small file header about
who created the file and when. This option is set as default.

-ascii Saves the variables in ASCII format. This format will not include variable
information. This is not recommended if you save more than one variable and
wish to load them into Octave at a later stage. This is useful when data is read by
other programs.

-binary Saves the variables in Octave's own binary format. This could speed up things.

-hdf>s Portable binary format.

-vX or =Vx Saves the variables in MATLAB format. Currently, x can have values 4, 6, or 7 and
indicates the MATLAB version number.

-zipor-z Compressed output format (for saving hard disk space). This option can be used

together with any format option above.

For example, to save primes segquence in simple ascii format, use:

octave:45> sav

Take a look at the
options.

e -ascii primes.dat prime sequence

output file. You can, of course, type help save to see all the available

Let us see how one can load the variable(s) stored in a file. First, we clear the workspace to
be sure that we actually load the variable prime sequence stored in the file primes.mat:

octave:46> cle
octave:47> loa
octave:48> who
Variables in t

Attr Name

prime_ sequence

ar; whos
d primes.mat
s

he current scope:

1x1385 11080 double

11311

Rationalizing: Octave Scripts

Notice that Octave treats the numbers as doubles, since we have not explicitly told it otherwise.

The general syntax for 1oad is:

load -optionl -option2 filename

where the options are the same as above for the save command. For example, to load the
data stored in the ascii file primes.dat, we can use:

octave:49> load -ascii primes.dat
octave:50> whos

Variables in the current scope:

Attr Name size Bytes Class
prime sequence 1x1385 11080 double
primes 1x1385 11080 double

Notice that when loading an ascii file like we did in Command 49, Octave will create a
variable called primes that contains the prime sequence. It is infortunate that we chose to
load data into a variable called prime in this example, since this stops you from using
the built-in function of the same name.

In general, if the file does not contain a heading, Octave will create a variable

having the name of the data file, excluding the extension, overwriting any
’ existing variable or function with that name.

To avoid the problem of overwriting existing variables and function names, you can use the
functional form of 1oad. For example, to load data stored in an ASCII file named primes.
dat into a variable, say prime sequence you can use:

octave:51l>prime sequence = load("primes.dat", "ascii");

This will also work if you have saved the data in other formats, if and only if the data file
contains a single simple variable and not a structure or cell array. | therefore recommend
that you use the default text format when you save and load your data files, unless there is a
specific reason not to.

save also has a corresponding functional form, for example, Command 40 could be replaced
with:

octave:40> save("prime.mat", "prime sequence");

11321

Chapter 4

In this exercise, we will analyse the prime sequence a bit. The so-called prime gap g, is
defined as the difference between a prime p and the next one p , thatis:

gn =P, ,—Pn (P.2)

Use script45.mto calculate the first 1000 primes.
Save the prime sequence in a file named primes 1000.mat.

Write a script that loads the prime sequence and calculates the prime gap using a
for loop.

Plot the first 100 prime gaps.

Optional: Instead of using a for-loop you can use Octave's dif £ function. Check out
diff's help text and replace the for-loop with diff.

In this chapter, we have learned how to:

® 6 ¢ 6 6 o o

Write a simple script and execute it.

Use the control statements if and switch.

Use for, while, and dostatements.

Perform exception handling with the unwind protect and try statements.
Put everything together in order to write a script with complicated program flow.
Save and load our work using the save and 1oad commands.

Use the print £ function.

In the next chapter you will use the statements learned here when you code your own
Octave functions.

[1331

Extensions: Write Your Own Octave
Functions

In this chapter, you will learn how to write your own Octave functions. This

will not only enable you to utilize more of Octave's built-in functionality, it also
makes it possible to extend Octave to do pretty much anything you want it to in
a highly reusable and modular manner.

After reading this chapter, you will be able to:

Write your own Octave functions.
Check and validate user inputs to the functions.

Write function help text.

* 6 ¢ o

Define mathematical functions that can be used by Octave to solve different
numerical problems.

Perform simple debugging of your functions.

Vectorize your code.

Your first Octave function

In general, the syntax for a function is:

function [outputl, output2, ...] = functionname (inputl, input2,...)
do something (body)

endfunction

Extensions: Write Your Own Octave Functions

where outputl, output2, ... arethe output variables generated by the function

and inputl, input2, ... areinputsto the function and are also referred to as input
arguments. The function has a name specified by functioname. The commas separating
the outputs are optional. Both output and input arguments are optional and can be scalars,
matrices, cell arrays, text strings, and so forth.

Let us first discuss a simple example. Our first function will perform a simple task; it will
evaluate the minimum and maximum values of a vector array. We design the function such
that the user enters an array and the function then returns the minimum and maximum
values. Recall that the maximum and minimum values of an array can be obtained through
the Octave functions max and min.

Time for action — programming the minmax function

1. Open your text editor and write the following code
Code Listing 5.1

function [minx, maxx] = minmax (x) #1
#2

maxx = max(x); #3
minx = min (x) ; #4
#5

endfunction #6

2. Save the code as minmax.m under the current directory or anywhere in the Octave
search path.

3. To execute the function type the following commands at the Octave command
prompt:

octave:1> a = rand(1l, 5)

a =

0.573584 0.588720 0.112184 0.052960 0.555401
octave:2> [mina, maxal] = minmax(a)
mina = 0.052960

maxa = 0.588720

as we would expect.

[1361

Chapter 5

What just happened?

From line 1 in Code Listing 5.1, we see that the function name is minmax, the function
takes the input x, and returns two outputs minx and maxx. It should be clear what code
lines 3 and 4 do. The endfunction keyword ends the function body. We will adopt th