




UNDERSTANDING
EDUCATIONAL
STATISTICS USING
MICROSOFT
EXCEL1 AND SPSS1





UNDERSTANDING
EDUCATIONAL
STATISTICS USING
MICROSOFT
EXCEL1AND SPSS1

MARTIN LEE ABBOTT
Department of Sociology
Seattle Pacific University
Seattle, Washington



Copyright# 2011 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States
at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

ISBN: 978-0-470-88945-9

Printed in Singapore

10 9 8 7 6 5 4 3 2 1



To those who seek a deeper understanding of the world as it appears and of what
lies beyond.





CONTENTS

Preface xix

Acknowledgments xxi

1 Introduction 1

Approach of the Book, 1
Project Labs, 2
Real-World Data, 3
Research Design, 3
“Practical Significance”—Implications of Findings, 4
Coverage of Statistical Procedures, 5

2 Getting Acquainted with Microsoft Excel1 7

Data Management, 7
Rows and Columns, 8
Data Sheets, 8

The Excel1 Menus, 9
Home, 9
Insert Tab, 9
Page Layout, 9
Formulas, 10
Data, 11
Review and View Menus, 16

vii



3 Using Statistics in Excel1 17

Using Statistical Functions, 17
Entering Formulas Directly, 17
Data Analysis Procedures, 20
Missing Values and “0” Values in Excel1 Analyses, 20
Using Excel1 with Real Data, 20
School-Level Achievement Database, 20
TAGLIT Data, 21
The STAR Classroom Observation ProtocolTM Data, 22

4 SPSS1 Basics 23

Using SPSS1, 23
General Features, 24
Management Functions, 26
Reading and Importing Data, 26
Sort, 26

Additional Management Functions, 30
Split File, 30
Transform/Compute (Creating Indices), 32
Merge, 34

Analysis Functions, 39

5 Descriptive Statistics—Central Tendency 41

Research Applications—Spuriousness, 41
Descriptive and Inferential Statistics, 44
The Nature of Data—Scales of Measurement, 44
Nominal Data, 45
Ordinal Data, 46
Interval Data, 48
Ratio Data, 50
Choosing the Correct Statistical Procedure for the Nature of
Research Data, 50

Descriptive Statistics—Central Tendency, 51
Mean, 52
Median, 52
Mode, 54

Using Excel1 and SPSS1 to Understand Central Tendency, 56
Excel1, 56
SPSS1, 58

Distributions, 61
Describing the Normal Distribution, 62
Central Tendency, 63
Skewness, 63

viii CONTENTS



Kurtosis, 65
Descriptive Statistics—Using Graphical Methods, 66
Frequency Distributions, 66
Histograms, 67

Terms and Concepts, 71
Real-World Lab I: Central Tendency, 74
Real-World Lab I: Solutions, 75
Results, 75
Results, 76

6 Descriptive Statistics—Variablity 81

Range, 82
Percentile, 82
Scores Based on Percentiles, 83
Using Excel1 and SPSS1 to Identify Percentiles, 84
Note, 86
Standard Deviation and Variance, 87
Calculating the Variance and Standard Deviation, 88
The Deviation Method, 88
The Average Deviation, 89

The Computation Method, 91
The Sum of Squares, 91
Sample SD and Population SD, 92
Obtaining SD from Excel1 and SPSS1, 94

Terms and Concepts, 96
Real-World Lab II: Variability, 97
Real-World Lab II: Solutions, 97
Results, 97

7 The Normal Distribution 101

The Nature of the Normal Curve, 101
The Standard Normal Score: z Score, 103
The z-Score Table of Values, 104
Navigating the z-Score Distribution, 105
Calculating Percentiles, 108
Creating Rules for Locating z Scores, 108

Calculating z Scores, 111
Working with Raw Score Distributions, 114
Using Excel1 to Create z Scores and Cumulative Proportions, 115
STANDARDIZE Function, 115
NORMSDIST Function, 117
NORMDIST Function, 118

Using SPSS1 to Create z Scores, 119
Terms and Concepts, 121

CONTENTS ix



Real-World Lab III: The Normal Curve and z Scores, 121
Real-World Lab III: Solutions, 122

8 The Z Distribution and Probability 127

Transforming a z Score to a Raw Score, 128
Transforming Cumulative Proportions to z Scores, 128
Deriving Sample Scores from Cumulative Percentages, 130
Additional Transformations Using the Standard Normal Distribution, 131
Normal Curve Equivalent, 131
Stanine, 131
T Score, 132
Grade Equivalent Score, 132

Using Excel1 and SPSS1 to Transform Scores, 132
Probability, 134
Determinism Versus Probability, 135
Elements of Probability, 136
Probability and the Normal Curve, 136
Relationship of z Score and Probability, 137
“Inside” and “Outside” Areas of the Standard Normal Distribution, 139
Outside Area Example, 140

“Exact” Probability, 141
From Sample Values to Sample Distributions, 143
Terms and Concepts, 144
Real-World Lab IV, 144
Real-World Lab IV: Solutions, 145

9 The Nature of Research Design and Inferential Statistics 147

Research Design, 148
Theory, 149
Hypothesis, 149

Types of Research Designs, 150
Experiment, 150
Post Facto Research Designs, 153

The Nature of Research Design, 154
Research Design Varieties, 154
Sampling, 155

Inferential Statistics, 156
One Sample from Many Possible Samples, 156
Central Limit Theorem and Sampling Distributions, 157
The Sampling Distribution and Research, 160
Populations and Samples, 162
The Standard Error of the Mean, 162
“Transforming” the Sample Mean to the Sampling Distribution, 163
Example, 163

x CONTENTS



Z Test, 166
The Hypothesis Test, 167
Statistical Significance, 168
Practical Significance: Effect Size, 168
Z-Test Elements, 169

Terms and Concepts, 169
Real-World Lab V, 171
Real-World Lab V: Solutions, 172

10 The T Test for Single Samples 175

Z Versus T: Making Accommodations, 175
Research Design, 176
Experiment, 177
Post Facto Comparative Design, 178

Parameter Estimation, 178
Estimating the Population Standard Deviation, 178
A New Symbol: sx, 180
Biased Versus Unbiased Estimates, 181
A Research Example, 181

T Test for a Single Mean, 182
Example Calculations, 184
Degrees of Freedom, 185
The T Distribution, 187
The Hypothesis Test, 188

Type I and Type II Errors, 189
Type I (Alpha) Errors (a), 189
Type II (Beta) Errors (b), 190

Effect Size, 191
Another Measurement of the (Cohen’s d) Effect Size, 192

Power, Effect Size, and Beta, 193
One- and Two-Tailed Tests, 193
Two-Tailed Tests, 194
One-Tailed Tests, 194
Choosing a One- or Two-Tailed Test, 196

A Note About Power, 196
Point and Interval Estimates, 197
Calculating the Interval Estimate of the Population Mean, 197

The Value of Confidence Intervals, 199
Using Excel1 and SPSS1 with the Single-Sample T Test, 200
SPSS1 and the Single-Sample T Test, 200
Excel1 and the Single Sample T Test, 203

Terms and Concepts, 204
Real-World Lab VI: Single-Sample T Test, 205
Real-World Lab VI: Solutions, 206

CONTENTS xi



11 Independent-Samples T Test 209

A Lot of “T ’S’’, 209
Research Design, 210
Experimental Designs, 210
Pretest or No Pretest, 213
Post Facto Designs, 214

Independent T Test: The Procedure, 215
Creating the Sampling Distribution of Differences, 216
The Nature of the Sampling Distribution of Differences, 217
Calculating the Estimated Standard Error of Difference, 218
Using Unequal Sample Sizes, 220
The Independent T Ratio, 221

Independent T-Test Example, 222
The Null Hypothesis, 222
The Alternative Hypothesis, 223
The Critical Value of Comparison, 223
The Calculated T Ratio, 224
Statistical Decision, 225
Interpretation, 226

Before–After Convention with the Independent T Test, 226
Confidence Intervals for the Independent T Test, 227
Effect Size, 228
Equal and Unequal Sample Sizes, 229
The Assumptions for the Independent-Samples T Test, 229
The Excel1 “F-Test Two Sample for Variances” Test, 230
The SPSS1 “Explore” Procedure for Testing the Equality
of Variances, 233
The Homogeneity of Variances Assumption for the
Independent T Test, 235
A Rule of Thumb, 236

Using Excel1 and SPSS1 with the Independent-Samples
T Test, 236
Using Excel1 with the Independent T Test, 236
Using SPSS1 with the Independent T Test, 239

Parting Comments, 242
Nonparametric Statistics, 243
Terms and Concepts, 246
Real-World Lab VII: Independent T Test, 247
Procedures, 247

Real-World Lab VII: Solutions, 248

12 Analysis of Variance 257

A Hypothetical Example of ANOVA, 258
The Nature of ANOVA, 259

xii CONTENTS



The Components of Variance, 260
The Process of ANOVA, 261
Calculating ANOVA, 262
Calculating the Variance: Using the Sum of Squares (SS), 262
Using Mean Squares (MS), 265
Degrees of Freedom in ANOVA, 266
Calculating Mean Squares (MS), 266
The F Ratio, 267
The F Distribution, 269

Effect Size, 269
Post Hoc Analyses, 271
“Varieties” of Post Hoc Analyses, 272
The Post Hoc Analysis Process, 273
Tukey’s HSD (Range) Test Calculation, 273
Means Comparison Table, 275
Compare Mean Difference Values from HSD, 276
Post Hoc Summary, 276

Assumptions of ANOVA, 276
Additional Considerations with ANOVA, 277
A Real-World Example of ANOVA, 277
Are the Assumptions Met?, 278
Hand Calculations, 281
Calculating SST , 283
Calculating SSB , 283
Calculating SSW, 283
The Hypothesis Test, 283
Effect Size, 284
Post Hoc Analysis, 284

Using Excel1 and SPSS1 with One-Way ANOVA, 285
Excel1 Procedures with One-Way ANOVA, 285
SPSS1 Procedures with One-Way ANOVA, 287

The Need for Diagnostics, 292
Nonparametric ANOVATests, 293
Terms and Concepts, 296
Real-World Lab VIII: ANOVA, 296
Real-World Lab VIII: Solutions, 297

13 Factorial Anova 307

Extensions of ANOVA, 307
Within-Subjects ANOVA, 307
Two-Way Within-Subjects ANOVA, 308
ANCOVA, 308

Multivariate ANOVA Procedures, 309
MANOVA, 309

CONTENTS xiii



MANCOVA, 309
Factorial ANOVA, 309
Interaction Effects, 309
An Example of 2�ANOVA, 310
Charting Interactions, 311
Simple Effects, 312

The Example DataSet, 312
Calculating Factorial ANOVA, 312
Calculating the Interaction, 315
The 2�ANOVA Summary Table, 315
Creating the MS Values, 316
The Hypotheses Tests, 317
The Omnibus F Ratio, 317
Effect Size for 2�ANOVA: Partial h2, 318
Discussing the Results, 319

Using SPSS1 to Analyze 2�ANOVA, 321
The “Plots” Specification, 323
Omnibus Results, 325
Simple Effects Analyses, 325

Summary Chart for 2�ANOVA Procedures, 327
Terms and Concepts, 327
Real-World Lab IX: 2�ANOVA, 329
Real-World Lab IX: 2�ANOVA Solutions, 330

14 Correlation 337

The Nature of Correlation, 338
Explore and Predict, 338
Different Measurement Values, 338
Different Data Levels, 338
Correlation Measures, 338

The Correlation Design, 339
Pearson’s Correlation Coefficient, 340
Interpreting the Pearson’s Correlation, 340
The Fictitious Data, 341
Assumptions for Correlation, 342

Plotting the Correlation: The Scattergram, 342
Patterns of Correlations, 343
Strength of Correlations in Scattergrams, 344

Creating the Scattergram, 345
Using Excel1 to Create Scattergrams, 345
Using SPSS1 to Create Scattergrams, 347

Calculating Pearson’s r, 348
The Z-Score Method, 349
The Computation Method, 351

xiv CONTENTS



Evaluating Pearson’s r, 353
The Hypothesis Test for Pearson’s r, 353
The Comparison Table of Values, 354
Effect Size: The Coefficient of Determination, 354

Correlation Problems, 356
Correlations and Sample Size, 356
Correlation is Not Causation, 357
Restricted Range, 357
Extreme Scores, 358
Heteroscedasticity, 358
Curvilinear Relations, 358

The Example Database, 359
Assumptions for Correlation, 360
Computation of Pearson’s r for the Example Data, 363
Evaluating Pearson’s r: Hypothesis Test, 365
Evaluating Pearson’s r: Effect Size, 365

Correlation Using Excel1 and SPSS1, 366
Correlation Using Excel1, 366
Correlation Using SPSS1, 367

Nonparametric Statistics: Spearman’s Rank-Order Correlation (rs), 369
Variations of Spearman’s Rho Formula: Tied Ranks, 371
A Spearman’s Rho Example, 373

Terms and Concepts, 374
Real-World Lab X: Correlation, 376
Real-World Lab X: Solutions, 377

15 Bivariate Regression 383

The Nature of Regression, 384
The Regression Line, 385
Calculating Regression, 388
The Slope Value b, 389
The Regression Equation in “Pieces”, 389
A Fictitious Example, 389
Interpreting and Using the Regression Equation, 390

Effect Size of Regression, 391
The Z-Score Formula for Regression, 392
Using the Z-Score Formula for Regression, 392
Unstandardized and Standardized Regression Coefficients, 394

Testing the Regression Hypotheses, 394
The Standard Error of Estimate, 394
Calculating sest, 395

Confidence Interval, 396
Explaining Variance through Regression, 397
Using Scattergrams to Understand the Partitioning of Variance, 399

CONTENTS xv



A Numerical Example of Partitioning the Variation, 400
Using Excel1 and SPSS1 with Bivariate Regression, 401
The Excel1 Regression Output, 402
The SPSS1 Regression Output, 404

Assumptions of Bivariate Linear Regression, 408
Curvilinear Relationships, 409
Detecting Problems in Bivariate Linear Regression, 412
A Real-World Example of Bivariate Linear Regression, 413
Normal Distribution and Equal Variances Assumptions, 413
The Omnibus Test Results, 414
Effect Size, 414
The Model Summary, 415
The Regression Equation and Individual Predictor Test
of Significance, 415
The Scattergram, 416

Advanced Regression Procedures, 417
Multiple Correlation, 417
Partial Correlation, 418
Multiple Regression, 419
Additional Considerations, 419

Terms and Concepts, 419
Real-World Lab XI: Bivariate Linear Regression, 420
Real-World Lab XI: Solutions, 422

16 Introduction to Multiple Linear Regression 429

The Elements of MLR, 429
Same Process as Bivariate Regression, 430
Similar Assumptions, 430
Statistical Significance, 430
Effect Size, 430
Coefficients, 430
Scatterdiagrams, 431

Some Differences Between Bivariate Regression and MLR, 431
Multiple Coefficients, 431
Multicollinearity, 431
Explanation of R2, 431
Entry Schemes, 432

Stuff Not Covered, 432
Using MLR with Categorical Data, 432
Curvilinear Regression, 433
Multilevel Analysis, 433

MLR Extended Example, 433
Are the Assumptions Met?, 434
The Findings, 437

xvi CONTENTS



The SPSS1 Findings, 438
The Unstandardized Coefficients, 442
The Standardized Coefficients, 442
Collinearity Statistics, 443
The Squared Part Correlation, 443
Conclusion, 444

Terms and Concepts, 445
Real-World Lab XII: Multiple Linear Regression, 445
Real-World Lab XII: MLR Solutions, 445

17 Chi Square and Contingency Table Analysis 453

Contingency Tables, 453
The Chi Square Procedure and Research Design, 454
Post Facto Designs, 455
Experimental Designs, 455

Chi Square Designs, 455
Goodness of Fit, 455
Expected Frequencies—Equal Probability, 456
Expected Frequencies—A Priori Assumptions, 456

The Chi Square Test of Independence, 456
A Fictitious Example—Goodness of Fit, 457
Frequencies Versus Proportions, 460

Effect Size—Goodness of Fit, 460
Chi Square Test of Independence, 461
Two-Way Chi Square, 461
Assumptions, 462

A Fictitious Example—Test of Independence, 462
Creating Expected Frequencies, 462
Degrees of Freedom for the Test of Independence, 464

Special 2� 2 Chi Square, 466
The Alternate 2� 2 Formula, 467
Effect Size in 2� 2 Tables: Phi, 467
Correction for 2� 2 Tables, 468

Cramer’s V: Effect Size for the Chi Square Test of Independence, 469
Repeated Measures Chi Square, 470
Repeated Measures Chi Square Table, 472

Using Excel1 and SPSS1 with Chi Square, 472
Using Excel1 for Chi Square Analyses, 475
Sort the Database, 475
The Excel1 Count Function, 476
The Excel1 CHITEST Function, 476
The Excel1 CHIDIST Function, 477

Using SPSS1 for the Chi Square Test of Independence, 478
The Crosstabs Procedure, 478

CONTENTS xvii



Analyzing the Contingency Table Data Directly, 481
Interpreting the Contingency Table, 483

Terms and Concepts, 483
Real-World Lab XIII: Chi Square, 484
Real-World Lab XIII: Solutions, 484
Hand Calculations, 484
Using Excel1 for Chi Square Analyses, 485
Using SPSS1 for Chi Square Solutions, 486

18 Repeated Measures Procedures: Tdep and ANOVAws 489

Independent and Dependent Samples in Research Designs, 490
Using Different T Tests, 491
The Dependent T-Test Calculation: The Long Formula, 491
Example, 492
Results, 494
Effect Size, 494

The Dependent T-Test Calculation: The Difference Formula, 495
The Tdep Ratio from the Difference Method, 496

Tdep and Power, 496
Using Excel1 and SPSS1 to Conduct the Tdep Analysis, 496
Tdep with Excel

1, 497
Tdep with SPSS

1, 498
Within-Subjects ANOVA (ANOVAws), 499
Experimental Designs, 499
Post Facto Designs, 501

Within-Subjects Example, 501
Using SPSS1 for Within-Subjects Data, 501
Sphericity, 501

The SPSS1 Procedure, 502
The SPSS1 Output, 504
The Omnibus Test, 506
Effect Size, 507
Post Hoc Analyses, 507
The Interpretation, 507

Nonparametric Statistics, 508
Terms and Concepts, 509

References 511

Appendix: Statistical Tables 513

Index 523

xviii CONTENTS



PREFACE

I have written this book many times in my head over the years! As I conducted
research and taught statistics (graduate and undergraduate) in many fields, I devel-
oped an approach to helping students understand the difficult concepts in a new
way. I find that the great majority of students are visual learners, so I developed
diagrams and figures over the years that help create a conceptual picture of the
statistical procedures that are often problematic to students (like sampling
distributions!).

The other reason I wanted to write this book was to give students a way to under-
stand statistical computing without having to rely on comprehensive and expensive
statistical software programs. Because most students have access to Microsoft
Excel1,1 I developed a step-by-step approach to using the powerful statistical pro-
cedures in Excel1 to analyze data and conduct research in each of the statistical
topics I cover in the book.

I also wanted to make those comprehensive statistical programs more approacha-
ble to statistics students, so I have also included a hands-on guide to SPSS1 in par-
allel with the Excel1 examples. In some cases, SPSS1 has the only means to
perform some statistical procedures; but in most cases, both Excel1 and SPSS1

can be used.
Last, like my other work dealing with applied statistical topics (Abbott, 2010), I

included real-world data in this book as examples for the procedures I discuss. I
introduce extended examples in each chapter that use these real-world datasets, and
I conclude the chapters with a Real-World Lab in which I present data for students

1 Excel1 references and screen shots in this book are used with permission from Microsoft.
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to use with Excel1 and SPSS1. Each Lab is followed by the Real World Lab:
Solutions section so that students can examine their work in greater depth.

One limitation to teaching statistics through Excel1 is that the data analysis fea-
tures are different, depending on whether the user is a Mac user or a PC user. I am
using the PC version, which features a Data Analysis suite of statistical tools. This
feature may no longer be included in the Mac version of Excel1 you are using.

I am posting the datasets for the real-world labs at the Wiley Publisher ftp site.
You can access these datasets there to complete the labs instead of entering the data
from the tables in the chapters. You may note some slight discrepancies in the re-
sults if you enter the data by hand rather than downloading the data due to rounding
of values. The data in the chapters are typically reported to two decimal places,
whereas the analyses reported in the Labs are based on the actual data that both
Excel1 and SPSS1 carry to many decimal places even though you may only see a
value with two decimal places. Despite any slight differences resulting from round-
ing, the primary findings should not change. You may encounter these types of
discrepancies in your research with real data as you move data from program to
program to page.

The John Wiley & Sons Publisher ftp address is as follows:
ftp://ftp.wiley.com/public/sci_tech_med/educational_statistics. You may also

want to visit my personal website at the following address:
http://myhome.spu.edu/mabbott/.

MARTIN LEE ABBOTT

Seattle, Washington
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1
INTRODUCTION

Many students and researchers are intimidated by statistical procedures. This may

in part be due to a fear of math, problematic math teachers in earlier education, or

the lack of exposure to a ‘‘discovery’’ method for understanding difficult proce-

dures. Readers of this book should realize that they have the ability to succeed in

understanding statistical processes.

APPROACH OF THE BOOK

This is an introduction to statistics using EXCEL1 and SPSS1 to make it more

understandable. Ordinarily, the first course leads the student through the worlds of

descriptive and inferential statistics by highlighting the formulas and sequential

procedures that lead to statistical decision making. We will do all this in this book,

but I place a good deal more attention on conceptual understanding. Thus, rather

than memorizing a specific formula and using it in a specific way to solve a prob-

lem, I want to make sure the student first understands the nature of the problem,

why a specific formula is needed, and how it will result in the appropriate informa-

tion for decision making.

By using statistical software, we can place more attention on understanding how

to interpret findings. Statistics courses taught in mathematics departments, and in

some social science departments, often place primary emphases on the formulas/

processes themselves. In the extreme, this can limit the usefulness of the analyses

to the practitioner. My approach encourages students to focus more on how to

understand and make applications of the results of statistical analyses. EXCEL1

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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and other statistical programs are much more efficient at performing the analyses;

the key issue in my approach is how to interpret the results in the context of the

research question.

Beginning with my first undergraduate course through teaching statistics with

conventional textbooks, I have spent countless hours demonstrating how to conduct

statistical tests by hand and teaching students to do likewise. This is not always a

bad strategy; performing the analysis by hand can lead the student to understand

how formulas treat data and yield valuable information. However, it is often

the case that the student gravitates to memorizing the formula or the steps in an

analysis. Again, there is nothing wrong with this approach as long as the student

does not stop there. The outcome of the analysis is more important than memorizing

the steps to the outcome. Examining the appropriate output derived from statistical

software shifts the attention from the nuances of a formula to the wealth of informa-

tion obtained by using it.

It is important to understand that I do indeed teach the student the nuances of

formulas, understanding why, when, how, and under what conditions they are used.

But in my experience, forcing the student to scrutinize statistical output files

accomplishes this and teaches them the appropriate use and limitations of the

information derived.

Students in my classes are always surprised (ecstatic) to realize they can use

their textbooks, notes, and so on, on my exams. But they quickly find that, unless

they really understand the principles and how they are applied and interpreted, an

open book is not going to help them. Over time, they come to realize that the analy-

ses and the outcomes of statistical procedures are simply the ingredients for what

comes next: building solutions to research problems. Therefore, their role is more

detective and constructor than number juggler.

This approach mirrors the recent national and international debate about math

pedagogy. In my recent book, Winning the Math Wars (Abbott et al., 2010), my

colleagues and I addressed these issues in great detail, suggesting that, while tradi-

tional ways of teaching math are useful and important, the emphases of reform

approaches are not to be dismissed. Understanding and memorizing detail are

crucial, but problem solving requires a different approach to learning.

PROJECT LABS

Labs are a very important part of this course since they allow students to take

charge of their learning. This is the ‘‘discovery learning’’ element I mentioned

above. Understanding a statistical procedure in the confines of a classroom is neces-

sary and helpful. However, learning that lasts is best accomplished by students

directly engaging the processes with actual data and observing what patterns

emerge in the findings that can be applied to real research problems.

In this course, we will have several occasions to complete Project Labs that pose

research problems on actual data. Students take what they learn from the book

material and conduct a statistical investigation using EXCEL1 and SPSS1. Then,
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they have the opportunity to examine the results, write research summaries, and

compare findings with the solutions presented at the end of the book.

These are labs not using data created for classroom use but instead using

real-world data from actual research databases. Not only does this engage students

in the learning process with specific statistical processes, but it presents real-world

information in all its ‘‘grittiness.’’ Researchers know that they will discover knotty

problems and unusual, sometimes idiosyncratic, information in their data. If

students are not exposed to this real-world aspect of research, it will be confusing

when they engage in actual research beyond the confines of the classroom.

The project labs also introduce students to two software approaches for solv-

ing statistical problems. These are quite different in many regards, as we will

see in the following chapters. EXCEL1 is widely accessible and provides a

wealth of information to researchers about many statistical processes they

encounter in actual research. SPSS1 provides additional, advanced procedures

that educational researchers utilize for more complex and extensive research

questions. The project labs provide solutions in both formats so the student can

learn the capabilities and approaches of each.

REAL-WORLD DATA

As I mentioned, I focus on using real-world data for many reasons. One reason is

that students need to be grounded in approaches they can use with ‘‘gritty’’ data. I

want to make sure that students leave the classroom prepared for encountering the

little nuances that characterize every research project.

Another reason I use real-world data is to familiarize students with contemporary

research questions in education. Classroom data often are contrived to make a cer-

tain point or show a specific procedure, which are both helpful. But I believe that it

is important to draw the focus away from the procedure per se and understand how

the procedure will help the researcher resolve a research question. The research

questions are important. Policy reflects the available information on a research

topic, to some extent, so it is important for students to be able to generate that

information as well as to understand it. This is an ‘‘active’’ rather than ‘‘passive’’

learning approach to understanding statistics.

RESEARCH DESIGN

People who write statistics books have a dilemma with respect to research design.

Typically, statistics and research design are taught separately in order for students

to understand each in greater depth. The difficulty with this approach is that

the student is left on their own to synthesize the information; this is often not

done successfully.

Colleges and universities attempt to manage this problem differently. Some

require statistics as a prerequisite for a research design course, or vice versa. Others
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attempt to synthesize the information into one course, which is difficult to do given

the eventual complexity of both sets of information. Adding somewhat to the

problem is the approach of multiple courses in both domains.

I do not offer a perfect solution to this dilemma. My approach focuses on an

in-depth understanding of statistical procedures for actual research problems. What

this means is that I cannot devote a great deal of attention in this book to research

design apart from the statistical procedures that are an integral part of it. However, I

try to address the problem in two ways.

First, wherever possible, I connect statistics with specific research designs. This

provides an additional context in which students can focus on using statistics to

answer research questions. The research question drives the decision about which

statistical procedures to use; it also calls for discussion of appropriate design in

which to use the statistical procedures. We will cover essential information about

research design in order to show how these might be used.

Second, I am making available an online course in research design as part of this

book. In addition to databases and other research resources, you can follow the web

address in the Preface to gain access to the online course that you can take in

tandem with reading this book or separately.

‘‘PRACTICAL SIGNIFICANCE’’—IMPLICATIONS OF FINDINGS

I emphasize ‘‘practical significance’’ (effect size) in this book as well as statistical

significance. In many ways, this is a more comprehensive approach to uncertainty,

since effect size is a measure of ‘‘impact’’ in the research evaluation. It is important

to measure the likelihood of chance findings (statistical significance), but the extent

of influence represented in the analyses affords the researcher another vantage point

to determine the relationship among the research variables.

I call attention to problem solving as the important part of statistical analysis. It

is tempting for students to focus so much on using statistical procedures to create

meaningful results (a critical matter!) that they do not take the next steps in

research. They stop after they use a formula and decide whether or not a finding is

statistically significant. I strongly encourage students to think about the findings in

the context and words of the research question. This is not an easy thing to do

because the meaning of the results is not always cut and dried. It requires students

to think beyond the formula.

Statisticians and practitioners have devised rules to help researchers with this

dilemma by creating criteria for decision making. For example, squaring a correla-

tion yields the ‘‘coefficient of determination,’’ which represents the amount of

variance in one variable that is accounted for by the other variable. But the next

question is, How much of the ‘‘accounted for variance’’ is meaningful?

Statisticians have suggested different ways of helping with this question. One

such set of criteria determines that 0.01 (or 1% of the variance accounted for) is

considered ‘‘small’’ while 0.05 (5% of variance) is ‘‘medium,’’ and so forth. (And,

much to the dismay of many students, there are more than one set of these criteria.)
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But the material point is that these criteria do not apply equally to every research

question.

If a research question is, ‘‘Does class size affect math achievement,’’ for

example, and the results suggest that class size accounts for 1% of the variance in

math achievement, many researchers might agree it is a small and perhaps even

inconsequential impact. However, if a research question is, ‘‘Does drug X account

for 1% of the variance in AIDS survival rates,’’ researchers might consider this to

be much more consequential than ‘‘small’’!

This is not to say that math achievement is any less important than AIDS

survival rates (although that is another of those debatable questions researchers

face), but the researcher must consider a range of factors in determining meaning-

fulness: the intractability of the research problem, the discovery of new dimensions

of the research focus, whether or not the findings represent life and death, and so on.

I have found that students have the most difficult time with these matters. Using

a formula to create numerical results is often much preferable to understanding

what the results mean in the context of the research question. Students have

been conditioned to stop after they get the right numerical answer. They typically

do not get to the difficult work of what the right answer means because it isn’t

always apparent.

COVERAGE OF STATISTICAL PROCEDURES

The statistical applications we will discuss in this book are ‘‘workhorses.’’ This is

an introductory treatment, so we need to spend time discussing the nature of statis-

tics and basic procedures that allow you to use more sophisticated procedures. We

will not be able to examine advanced procedures in much detail. I will provide

some references for students who wish to continue their learning in these areas. It is

hoped that, as you learn the capability of EXCEL1 and SPSS1, you can explore

more advanced procedures on your own, beyond the end of our discussions.

Some readers may have taken statistics coursework previously. If so, my hope is

that they are able to enrich what they previously learned and develop a more

nuanced understanding of how to address problems in educational research through

the use of EXCEL1 and SPSS1. But whether readers are new to the study or

experienced practitioners, my hope is that statistics becomes meaningful as a

way of examining problems and debunking prevailing assumptions in the field

of education.

Often, well-intentioned people can, through ignorance of appropriate processes

promote ideas in education that may not be true. Furthermore, policies might be

offered that would have a negative impact even though the policy was not based on

sound statistical analyses. Statistics are tools that can be misused and influenced by

the value perspective of the wielder. However, policies are often generated

in the absence of compelling research. Students need to become ‘‘research literate’’

in order to recognize when statistical processes should be used and when they are

being used incorrectly.
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2
GETTING ACQUAINTEDWITH
MICROSOFT EXCEL1

Microsoft Excel1 is a powerful application for education researchers and students

studying educational statistics. Excel1 worksheets can hold data for a variety of

uses and therefore serve as a database. We will focus primarily on its use as a

spreadsheet, however. This book discusses how students of statistics can use

Excel1 menus to create specific data management and statistical analysis functions.

I will use Microsoft1 Office Excel1 2007 for all examples and illustrations in

this book.1 Like other software, Excel1 changes occasionally to improve perform-

ance and adapt to new standards. As I write, other versions are projected, however,

most all of my examples use the common features of the application that are not

likely to undergo radical changes in the near future.

I cannot hope to acquaint the reader with all the features of Excel1 in this book.

Our focus is therefore confined to the statistical analysis and related functions called

into play when using the data analysis features. I will introduce some of the general

features in this chapter and cover the statistical applications in more depth in the

following chapters.

DATAMANAGEMENT

The opening spreadsheet presents the reader with a range of menu choices for enter-

ing and managing data. Like other spreadsheets, Excel1 consists of rows and

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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columns for entering and storing data of various kinds. Figure 2.1 shows the spread-

sheet with its menus and navigation bars. I will cover much of the available spread-

sheet capacity over the course of discussing our statistical topics in later chapters.

Here are some basic features:

Rows and Columns

Typically, rows represent cases in statistical analyses, and columns represent varia-

bles. According to the Microsoft Office1 website, the spreadsheet can contain over

one million rows and over 16,000 columns. We will not approach either of these

limits; however, you should be aware of the capacity in the event you are down-

loading a large database from which you wish to select a portion of data. One prac-

tical feature to remember is that researchers typically use the first row of data to

record variable names in each of the columns of data. Therefore, the total dataset

contains (rows �1) cases, which takes this into account.

Data Sheets

Figure 2.1 shows several ‘‘Sheet’’ tabs on the bottom of the spreadsheet. These are

separate worksheets contained in the overall workbook spreadsheet. They can be

used independently to store data, but typically the statistical user puts a dataset on

one Sheet and then uses additional Sheets for related analyses. For example, as we

FIGURE 2.1 The initial Excel1 spreadsheet.
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will discuss in later chapters, each statistical procedure will generate a separate

‘‘output’’ Sheet. Thus, the original Sheet of data will not be modified or changed.

The user can locate the separate statistical findings in separate Sheets. Each Sheet

tab can be named by ‘‘right-clicking’’ on the Sheet. Additional Sheets can be cre-

ated by clicking on the small icon to the right of ‘‘Sheet3’’ shown in Figure 2.1.

THE EXCEL1 MENUS

The main Excel1 menus are located in a ribbon at the top of the spreadsheet begin-

ning with ‘‘Home’’ and extending several choices to the right. I will comment on

each of these briefly before we look more comprehensively at the statistical

features.

Home

The ‘‘Home’’ menu includes many options for formatting and structuring the

entered data, including a font group, alignment group, cells group (for such features

as insert/delete options), and other such features.

One set of sub-menus is particularly useful for the statistical user. These

are listed in the ‘‘Number’’ category located in the ribbon at the bottom of the main

set of menus. The default format of Number is typically ‘‘General’’ shown in the

highlighted box (see Figure 2.1). If you select this drop-down menu, you will be

presented with a series of possible formats for your data among which is one

entitled ‘‘Number’’—the second choice in the sub-menu. If you click this option,

Excel1 returns the data in the cell as a number with two decimal points.

When you double-click on the ‘‘Number’’ option, however, you can select from a

larger sub-menu that allows you many choices for your data, as shown in Figure 2.2.

(The additional choices for data formats are located in the ‘‘Category:’’ box located

on the left side of this sub-menu.) We will primarily use this ‘‘Number’’ format since

we are analyzing numerical data, but we may have occasion to use additional for-

mats. You can use this sub-menu to create any number of decimal places by using

the ‘‘Decimal places:’’ box. You can also specify different ways of handling nega-

tive numbers by selecting among the choices in the ‘‘Negative numbers:’’ box.

Insert Tab

I will return to this menu many times over the course of our discussion. Primarily,

we will use this menu to create the visual descriptions of our analyses (graphs and

charts).

Page Layout

This menu is helpful for formatting functions and creating the desired ‘‘look and

feel’’ of the spreadsheet.
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Formulas

The Formulas menu is a very important part of the statistical arsenal of Excel1. We

will discuss specific functions as we get to them in the course of our study; for now,

I will point out that the first section of this menu is the ‘‘Function Library’’ that

contains a great many categories of functions (i.e., ‘‘Financial,’’ ‘‘Logical,’’ ‘‘Text,’’

etc.). Selecting any of these results in a sub-menu of choices for formulas specific to

that category of use. There are at least two ways to create statistical formulas, which

we will focus on in this book.

1. The ‘‘More Functions’’ Tab. This tab presents the user with additional

categories of formulas, one of which is ‘‘Statistical.’’ As you can see when you

select it, there are a great many choices for handling data. Essentially, these

are embedded formulas for creating specific statistical output. For example,

‘‘AVERAGE’’ is one of the first formulas listed when you choose ‘‘More Func-

tions’’ and then select ‘‘Statistical.’’ This formula returns the mean value of a set of

selected data from the spreadsheet.

2. ‘‘Insert Functions’’ Tab. A second way to access statistical (and other) func-

tions from the Function Library is using the ‘‘Insert Function’’ sub-menu that, when

selected, presents the user with the screen shown in Figure 2.3.

Choosing this feature is the way to ‘‘import’’ the function to the spreadsheet. The

screen in Figure 2.3 shows the ‘‘Insert Function’’ box I obtained from my computer.

As you can see, there are a variety of ways to choose a desired function. The

‘‘Search for a function:’’ box allows the user to describe what they want to do with

FIGURE 2.2 The variety of cell formats available in the Number sub-menu.
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their data. When selected, the program will present several choices in the ‘‘Select a

function:’’ box immediately below it, depending on which function you queried.

The ‘‘Or select a category:’’ box lists the range of function categories available.

The statistical category of functions will be shown if double-clicked (as shown in

Figure 2.3). Accessing the list of statistical functions through this button will result

in the same list of functions obtainable through the ‘‘More Functions’’ tab.

When you use the categories repeatedly, as we will use the ‘‘Statistical’’

category repeatedly, Excel1 will show the functions last used in the ‘‘Select a

function’’ box as shown in Figure 2.3.

Data

This is the main menu for our discussion in this book. Through the sub-menu

choices, the statistical student can access the data analysis procedures, sort and filter

data in the spreadsheet, and provide a number of data management functions impor-

tant for statistical analysis. Figure 2.4 shows the sub-menus of the Data menu.

The following are some of the more important sub-menus that I will explain in

detail in subsequent chapters.

Sort and Filter. The Sort sub-menu allows the user to rearrange the data in the

spreadsheet according to a specific interest or statistical procedure. For example,

if you had a spreadsheet with three variables—Gender, Reading achievement, and

Math achievement—you could use the ‘‘sort’’ key to arrange the values of the var-

iables according to gender. Doing this would result in Excel1 arranging the gender

FIGURE 2.3 The ‘‘Insert Function’’ sub-menu of the ‘‘Function Library.’’
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categories, ‘‘M’’ and ‘‘F,’’ in ascending or descending order (alphabetically, de-

pending on whether you proceed from ‘‘A to Z’’ or from ‘‘Z to A’’) with the values

of the other variables linked to this new arrangement. Thus, a visual scan of the

data would allow you to see how the achievement variables change as you proceed

from male to female students. The following two figures show the results of this

example. Figure 2.5 shows the unsorted variables.

As you can see from Figure 2.5, you cannot easily discern a pattern to the data,

depending on whether males or females have better math and reading scores in this

sample.2 Sorting the data according to the Gender variable may help to indicate

relationships or patterns in the data that are not immediately apparent. Figure 2.6

shows the same three variables sorted according to gender (sorted ‘‘A to Z’’ result-

ing in the Female scores listed first).

Figure 2.6 shows the data arranged according to the categories of the Gender

variable. Viewed in this way, you can detect some general patterns. It appears,

generally, that female students performed much better on math and just a bit higher

on reading than the male students. Of course, this small sample is not a good indi-

cator of the overall relationship between gender and achievement. For example, the

math scores for the last male in the dataset (‘‘10’’) and for the third female student

(‘‘24’’) exert a great deal of influence in this small dataset; a much larger sample

would not register as great an influence.

2 The example data in these procedures are taken from the school database we will use throughout the

book. The small number of cases is used to explain the procedures, not to make research conclusions.

FIGURE 2.4 The sub-menus of the Data menu.
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An important operational note for sorting is to first ‘‘select’’ the entire data-

base before you sort any of the data fields. If you do not sort the entire data-

base, you can inadvertently only sort one variable, which may result in the

values of this variable disengaging from its associated values on adjacent

variables. In these cases, the values for each case may become mixed. Select-

ing the entire database before any sort ensures that the values of a given varia-

ble remain fixed to the values of all the variables for each of the cases. The

‘‘Filter’’ sub-menu is useful in this regard. Excel1 adds drop-down menus next

FIGURE 2.5 Unsorted data for the three-variable database.

FIGURE 2.6 Using the ‘‘Sort’’ function to arrange values of the variables.
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to each variable when the user selects this sub-menu. When you use the

menus, you can specify a series of ways to sort the variables in the database

without ‘‘disengaging’’ the values on the variables.

You can also perform a ‘‘multiple’’ sort in Excel1 using the Sort menu. Figure

2.7 shows the sub-menu presented when you choose Sort. As you can see from the

screen, choosing the ‘‘Add Level’’ button in the upper left corner of the screen

results in a second sort line (‘‘Then by’’) allowing you to specify a second sort vari-

able. This would result in a sort of the data first by Gender, and then the values of

Reading would be presented low to high within both categories of gender.

Excel1 also records the nature of the variables. Under the ‘‘Order’’ column on

the far right of Figure 2.7, the variables chosen for sorting are listed as either ‘‘A to

Z,’’ indicating that they are ‘‘alphanumeric’’ or ‘‘text’’ variables, or ‘‘Smallest to

Largest,’’ indicating they are numerical variables. Text variables are composed of

values (either letters or numbers) that are treated as letters and not used in calcula-

tions. In Figure 2.6, gender values are either ‘‘F’’ or ‘‘M,’’ so there is little doubt

that they represent letters. If I had coded these as ‘‘1’’ for ‘‘F’’ and ‘‘2’’ for ‘‘M’’

without changing the format of the cells, Excel1 might treat the values differently

in calculations (since letters cannot be added, subtracted, etc.). In this case I would

want to ensure that the ‘‘1’’ and the ‘‘2’’ would be treated not as a number but as

letters. Be sure to format the cells properly (from the ‘‘Number’’ group in the

Home menu) so that you can be sure the values are treated as you intend them to

be treated in your analyses.

Figure 2.8 shows the resulting sort. Here you can see that the data were first

sorted by Gender (with ‘‘F’’ presented before ‘‘M’’) and then the values of ‘‘Read-

ing’’ were presented low to high in value within both gender categories.

Data Analysis. This sub-menu choice (located in the ‘‘Data’’ tab in the ‘‘Analysis’’

group) is the primary statistical analysis device we will use in this book. Figure 2.4

shows the ‘‘Data Analysis’’ sub-menu in the upper right corner of the menu bar.

Choosing this option results in the box shown in Figure 2.9.

FIGURE 2.7 The Excel1 sub-menu showing a sort by multiple variables.
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Figure 2.9 shows the statistical procedures available in Excel1. The scroll bar to

the right of the screen allows the user to access several additional procedures. We

will explore many of these procedures in later chapters.

You may not see the Data Analysis sub-menu displayed when you choose the Data

menu on the main Excel1 screen. That is because it is often an ‘‘add-in’’ program.

Not everyone uses these features so Excel1 makes them available as an ‘‘adjunct’’.3

3Mac users may not have access to the Data Analysis features since they were removed in previous

versions.

FIGURE 2.8 The Excel1 screen showing the results of a multiple sort.

FIGURE 2.9 The ‘‘Data Analysis’’ sub-menu containing statistical analysis procedures.
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If your Excel1 screen does not show the Data Analysis sub-menu in the

right edge of the menu bar when you select the Data menu, you can add it to

the menu. Select the ‘‘Office Button’’ in the upper left corner of the screen and

then you will see an ‘‘Excel1 Options’’ button in the lower center of the

screen. Choose this and you will be presented with several options in a column

on the left edge of the screen. ‘‘Add-Ins’’ is one of the available choices,

which, if you select it, presents you with the screen shown in Figure 2.10. I

selected ‘‘Add-Ins’’ and the screen in Figure 2.10 appeared with ‘‘Analysis

ToolPak’’ highlighted in the upper group of choices. When you select this op-

tion (you might need to restart Excel1 to give it a chance to add), you should

be able to find the Data Analysis sub-menu on the right side of the Data Menu.

This will allow you to use the statistical functions we discuss in the book.

Review and View Menus

These two tabs available from the main screen have useful menus and functions for

data management and appearance. I will make reference to them as we encounter

them in later chapters.

FIGURE 2.10 The Add-In options for Excel1.
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3
USING STATISTICS IN EXCEL1

The heart of the statistical uses of Excel1 is in the Data Analysis sub-menu that I

described in Chapter 2. I will introduce many of these statistical tools in later

chapters as we encounter different statistical topics. However, before we delve into

those specific topics, I want to point out other ways that we can build statistical

formulas directly into the spreadsheet.

USING STATISTICAL FUNCTIONS

In Chapter 2 I described several ways in which users can enter statistical formulas

directly from the available sub-menus (see especially the ‘‘Formulas’’ section). As I

mentioned, there are several statistical formulas available that we will use exten-

sively in this book. Most are single-procedure formulas like calculating

‘‘AVERAGE’’ or ‘‘STDEV’’ (Standard Deviation), for example. Other procedures

are more complex like the ‘‘FTEST’’ that calculates the equivalence in variance in

two sets of data.

ENTERING FORMULAS DIRECTLY

Another very important use of Excel1 is to ‘‘embed’’ formulas directly into the

worksheet so that you can devise whatever calculation you need. The functions we

discussed above are simply common calculations that have been arranged so that if

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
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you have repeated need for a certain calculation, you can use them more quickly

than entering the formulas by hand.

Choosing the ‘‘¼’’ key notifies Excel1 that what follows is a user-created for-

mula. Thereafter, you can enter the calculation you want as a string of characters.

For example, using the sample of Gender, Reading, and Math scores shown in Fig-

ure 2.6, the following commands (user-created formulas) would yield the average

value for ‘‘Math’’ scores: ¼Sum(C2:C11)/10

In this example, there are three main components of the formula:

� ‘‘¼’’ informs Excel1 that the user is entering a formula.

� ‘‘Sum(C2:C11)’’ calls for adding the values together from cell C2 to C11.

� ‘‘/10’’ divides the summed Math scores by 10 (the total number of scores),

yielding the average Math score (53.46).

Figure 3.1 shows how this looks.

The results of entering the formula are shown in cell E2 (or whatever cell you

used to enter the formula) in Figure 3.1. The formula you entered is shown in the

formula bar directly above the spreadsheet. As you can see, it appears exactly as I

described above. The ‘‘answer’’ of the formula appears in the cell, but Excel1

remembers the formula and attaches it to the cell you chose to enter it. If any of the

scores change, the average calculation will automatically adjust to reflect the

change in values.

There are several ways to get the same result for most formulas you might

want to enter. For example, you could use the menu system I described above

FIGURE 3.1 Entering user-generated formulas in Excel1.
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to enter a function to create the ‘‘AVERAGE,’’ which is what we did using our

own formula. Look at Figure 2.3 again, and you will see that ‘‘AVERAGE’’

(listed in the column on the left side of the screen) is one of the choices from

the functions menu.

Another way to help create your own formulas is to use the ‘‘S’’ button shown on
the ‘‘Home’’ tab. Look at Figure 2.1 and you will see this symbol in the third to last

column (at the top) from the right side of the figure. The symbol means ‘‘sum of’’

and we will use it extensively in our discussion in later chapters since it is such an

important function for statistical analyses. Figure 3.2 shows the result of clicking

this symbol when the cursor is in cell E4. As you can see, when you select the sym-

bol, it creates a formula calling for summing a series of cells you choose. In the

example below, I selected the string of Math values (cells C2 to C11) with the cur-

sor, which Excel1 then added to the formula. You can see the selected cells

enclosed in a dashed box surrounding the Math values.

Figure 3.2 also shows a ‘‘Screen Tip’’ box that appears when you choose the ‘‘S’’
button. Directly below the selected cell where the formula is entered, you will see

the ‘‘help’’ bar explanation of the function: ‘‘¼Sum(number1,[number2, . . . ).’’

This shows that the sum symbol enters the Sum function wherein the numbers from

the selected cells are added.

I used the S button in this example to demonstrate that it is helpful if you

are building your own formula. Had we wanted to complete the formula for the

average value of the math values, we would simply place the ‘‘/’’ figure at the end

of the SUM function listed in the formula window. This would create the same for-

mula we created directly, shown in Figure 3.1.

FIGURE 3.2 Using the S button to create a formula.
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DATA ANALYSIS PROCEDURES

The Data Analysis sub-menu is a more comprehensive and extensive list of statisti-

cal procedures available in Excel1. Typically, this involves several related and

linked functions and specialized formulas that statisticians and researchers use re-

peatedly. These are more complex than each separate function (e.g., Average, Stan-

dard Deviation, etc.), and in fact they may use several functions in the computation

of the formulas. We will start with Descriptive Statistics in a later chapter (a Data

Analysis sub-menu choice) and then move to several inferential procedures also

represented in the sub-menu (e.g., t-Test, Correlation, ANOVA, Regression, etc.).

MISSING VALUES AND ‘‘0’’ VALUES IN EXCEL1 ANALYSES

Some Excel1 procedures you use may encounter difficulty if you are using large

data sets or have several missing cases. In particular, you need to be careful about

how to handle missing cases and zeros. Some procedures do not work well with

missing values in the dataset. Also, be careful about how ‘0’ values are handled.

Remember, missing cases are not ‘‘0’’ values, and vice versa.

USING EXCEL1 WITH REAL DATA

Over the next several chapters, I will introduce you to several databases that we will

use to understand the different statistical procedures. I find it is always better to use

real-world data when I teach statistics since students and researchers must, at some

point, leave the classroom and venture into situations calling for the use of statisti-

cal procedures on actual research problems. I take this same approach in my book

The Program Evaluation Prism (Abbott, 2010), in which I demonstrate the use of

multiple regression using real-world evaluation data.

I will use three primary databases in this book, although I will introduce others in

special situations as I describe the statistical procedures. These databases are related

to my work in evaluation research for educational reform efforts. I will post them

on the website identified in the Preface so that you can practice what you know with

this real-world data.

School-Level Achievement Database

The state of Washington has a comprehensive database detailing school- and dis-

trict-level data that we will use to describe several statistical procedures. I have

used these in several evaluation research projects and find them very informative

for many research applications.1 The state website is easy to use and contains a

1You can review several technical reports using this database in our Washington School Research Center

website: http://www.spu.edu/orgs/research/
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variety of data over several years that can be downloaded. We will learn to down-

load large datasets using this website.

The website is found in The Office of the Superintendent of Public Instruction in

Washington State.2 There are several files containing a variety of variables relating

to school performance and description. For example, school-level achievement files

are available for a number of subjects (e.g., reading and math) across several levels

of grades and years. Additional files provide demographic and descriptive informa-

tion on those same schools so that, when merged, a database is created that will

allow primary research analyses.

The limitation of these data is that they are ‘‘aggregate’’ data. That is, each varia-

ble represents the average score across all the students in a particular school. Thus,

reading achievement is not listed by student, but rather as the ‘‘percent passing the

reading assessment’’ at various grade levels. Privacy laws prevent student level

information being posted, so the researcher must be content with the aggregated

scores.

Aggregate scores can be very helpful in identifying patterns or trends not easily

seen otherwise. But we must always use these data with the caveat that we cannot

make conclusions at a student level, but rather at a school level. Therefore, if we

discover a relationship between reading achievement and class size, for example,

we cannot say that students are better at reading in smaller (or larger) classes, but

rather that reading achievement is higher in schools with smaller (or larger) class

sizes. There may be features of the classes other than size that affect individual

reading achievement.

Nevertheless, aggregate scores are helpful in pointing out patterns that can

lead to further studies at the individual level. Later courses in statistics help

students and researchers work at both levels simultaneously for a much more

accurate and reliable way of understanding individual behavior and the influ-

ence of ‘‘larger’’ or external conditions on individual behavior. Raudenbush

and Bryk (2002) discussed hierarchical linear modeling, for example, as one way

to appreciate both levels and their interaction. I will discuss this a bit further in a

later chapter.

Another reason I like to use this database is that it affords the student and

researcher the opportunity to learn to download data for use in evaluation.

The downloadable databases on the website are in either Excel1 or text formats.

In the exercises ahead, I will use the Excel1 format to build a sample database.

TAGLIT Data

This database consists of several related databases addressing the impact of technol-

ogy on different aspects of the classroom. It is a national-level database gathering

data at the individual student, teacher, and school administrator level. The data files

2 The website address is http://www.k12.wa.us/. The data are used courtesy of the Office of the Super-

intendent of Public Instruction, Olympia, Washington.
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are from a national study in 2003, and all the data are used by permission from

T.E.S.T., Inc.3

Because the data files are so massive and extensive, I will use a TAGLIT data-

base that contains an aggregated set of data from teachers and students, primarily at

the high-school level. I will review and explain the variables as I introduce various

statistical procedures in later chapters.

The STAR Classroom Observation ProtocolTM Data4

This is a remarkable dataset compiled at the individual student and teacher levels

based on individual classroom observations. The BERC Group, Inc. collected thou-

sands of these observations in the attempt to understand the impact of teaching and

learning in the classroom. To what extent does model teaching affect how well

learning proceeds? The heart of the STAR ProtocolTM consists of a standardized

method of measuring ‘‘Powerful Teaching and LearningTM’’ in various subjects

among elementary and middle schools over several years. We can connect these

individual-level observations with school-level variables such as achievement,

income level, and other important variables to understand the connections between

classroom learning and other ‘‘environmental’’ variables.

3 The author acknowledges the kind approval of T.E.S.T., Inc., the owner and manager of TAGLIT data,

for the use of TAGLIT databases in this book. (http://www.testkids.com/taglit/).
4 This dataset is used by permission of The BERC Group, Inc.
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4
SPSS1 BASICS

This book explores the use of statistical procedures in both Excel1 and SPSS1.

Therefore, I included the following sections to provide some familiarity with the

basic functions of SPSS1 along with those in Excel1. I will introduce the specific

menus in later chapters that correspond to the statistical procedures we discuss.1

USING SPSS1

In a book such as this, it is important to understand the nature and uses of a statisti-

cal program like SPSS1. There are several statistical software packages available

for manipulation and analysis of data, however, in my experience, SPSS1 is the

most versatile and responsive program. Because it is designed for a great many

statistical procedures, we cannot hope to cover the full range of tools within SPSS1

in our treatment. I will cover, in as much depth as possible, the general procedures

of SPSS1, especially those that provide analyses for the statistical procedures we

discuss in this book. The wide range of SPSS1 products is available for purchase

online (http://www.SPSS.com/).

The calculations and examples in this book require a basic familiarity with

SPSS1. Generations of social science students and evaluators have used this statis-

tical software, making it somewhat a standard in the field of statistical analyses. In

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

1 Portions of this chapter are adapted from my book (Abbott, 2010) dealing with SPSS1 applications in

multiple regression, by permission of the publisher.
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the following sections, I will make use of SPSS1 output with actual data in order to

explore the power of statistics for discovery. I will illustrate the SPSS1 menus so it

is easier for you to negotiate the program. The best preparation for the procedures

we discuss, and for research in general, is to become acquainted with the SPSS1

data managing functions and menus. Once you have a familiarity with these pro-

cesses, you can use the analysis menus to help you with more complex methods.

Several texts use SPSS1 exclusively as a teaching tool for important statistical

procedures. If you wish to explore all the features of SPSS1 in more detail, you

might seek out references such as Green and Salkind (2008) and Field (2005).

GENERAL FEATURES

Generally, SPSS1 is a large spreadsheet that allows the evaluator to enter, mani-

pulate, and analyze data of various types through a series of drop-down menus. The

screen in Figure 4.1 shows the opening page where data can be entered. The tab on

the bottom left of the screen identifies this as the ‘‘Data View’’ so you can see the

data as they are entered.

A second view is available when first opening the program as indicated by

the ‘‘Variable View’’ also located in the bottom left of the screen. As shown in

Figure 4.2, the Variable View allows you to see how variables are named, the

width of the column, number of decimals, variable labels, any values assigned

to data, missing number identifiers, and so on. The information can be edited

within the cells or by the use of the drop-down menus, especially the ‘‘Data’’

FIGURE 4.1 SPSS1 screen showing data page and drop-down menus.
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menu at the top of the screen. One of the important features on this page is the

‘‘Type’’ column, which allows the evaluator to specify whether the variable is

‘‘numeric’’ (i.e., a number), ‘‘String’’ (a letter, for example), or some other form

(a date, currency, etc.).

Figure 4.3 shows the sub-menu available if you click on the right side of the

‘‘Type’’ column in the Variable View. This menu allows you to specify the nature

of the data. For most analyses, having the data defined as numeric is required,

FIGURE 4.2 SPSS1 screen showing the variable view and variable attributes.

FIGURE 4.3 SPSS1 screen showing sub-menu for specifying the type of variable used in

the data field.
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since most (parametric) statistical analyses require a number format. The ‘‘String’’

designation, shown below at the bottom of the choices, allows you to enter data as

letters and words, such as quotes from research subjects, names of subject groups,

and so on. If you use a statistical procedure that requires numbers, make sure the

variable is entered as a ‘‘numeric’’ variable, or you will receive an error message

and your requested procedure will not be executed.

MANAGEMENT FUNCTIONS

In this chapter, I will cover the essential functions that will allow you to get started

right away with your analyses. Before a statistical procedure is created, however, it

is important to understand how to manage the data file.

Reading and Importing Data

Data can be entered directly into the ‘‘spreadsheet’’ or it can be read by the

SPSS1 program from different file formats. The most common format for data

to be imported to SPSS1 is through such data programs as Microsoft Excel1, or

simply an ASCII file where data are entered and separated by tabs. Using the

drop-down menu command ‘‘File-Open-Data’’ will create a screen that enables

the user to specify the type of data to be imported (e.g., Excel1, Text, etc.).

The user will then be guided through an import wizard that will translate the

data to the SPSS1 spreadsheet format.

Figure 4.4 shows the screens from my computer that allow you to select among a

number of ‘‘Files of Type’’ when you want to import data from SPSS1. These

menus resulted from choosing ‘‘File’’ in the main menu and then choosing ‘‘Open

Data.’’ The small drop-down menu allows you to choose ‘‘Excel1’’ among other

types of files when you import data.

Sort

It is often quite important to view a variable organized by size, and so on. You can

run a statistical procedure, but it is a good idea to check the ‘‘position’’ of the data in

the database to make sure the data are treated as you would expect. In order to

create this organization, you can ‘‘sort’’ the data entries of a variable in SPSS1 as

you did in Excel1.

Figure 4.5 shows the same database as that shown in Figure 2.5, which was gen-

erated from Excel1. To get this screen, I imported the data from Excel1 to SPSS1

using the procedure I described in the previous section. Compare these figures to

get a sense of how similar they are. Both are spreadsheets presenting the data in

rows and columns and preparing them for different management and statistical

analyses procedures.

Sorting the data in SPSS1 is a bit easier than in Excel1 because we do not need to

select the entire database first. In SPSS1, the user can select ‘‘Data’’ from the main

menu bar and then select ‘‘Sort.’’ This results in the screens shown in Figure 4.6.
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FIGURE 4.5 The SPSS1 screen showing the unsorted ‘‘Sort-example’’ data.

FIGURE 4.4 The SPSS1 screens showing import data choices.
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If we choose Gender, as shown in Figure 4.6, we can specify a sort that is either

‘‘Ascending’’ (alphabetical order beginning with ‘‘A’’ if the variable is a string varia-

ble, or starting with the lowest value if it is a numerical value) or ‘‘Descending.’’

Selecting ‘‘Gender—Ascending’’ results in the screen shown in Figure 4.7. Compare

this screen with the one shown in Figure 2.6 generated from Excel1. As you can see,

they are very similar. The only difference between the data screens is that the values

of the numerical variables in the SPSS1 screen (‘‘Reading’’ and ‘‘Math’’) are

expressed with one decimal point, whereas the Excel1 data are expressed in whole

numbers. In either format it is easy to change the number of decimal points.

FIGURE 4.6 SPSS1 data screens showing the ‘‘Sort Cases’’ function.

FIGURE 4.7 The SPSS1 screen showing variables sorted by Gender.
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As with the Excel1 data in Figure 2.6, the user can then visually inspect the data

to observe any patterns that might exist among the variables. You can also sort the

other variables easily in SPSS1 using the same procedure since you do not need

first to select the entire database as with Excel1.

SPSS1 allows multiple sorts as does Excel1. Figure 2.8 shows the example

database sorted first by Gender and then by Reading. We can generate a similar

result in SPSS1 by simply listing multiple variables in the ‘‘Sort Cases—Sort by’’

window. Figure 4.8 shows this specification in SPSS1.

Figure 4.8 also indicates the nature of the variable (string or numeric) by the

small symbols next to each variable. Sorting by ascending order will therefore ap-

propriately arrange the variables according to their type. Figure 4.9 shows the result

FIGURE 4.9 The SPSS1 screen showing the results of sorting by multiple variables.

FIGURE 4.8 The SPSS1 Sort Cases window showing a sort by multiple variables.
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of this multiple sort. As you can see, the Reading values are ‘‘nested’’ within each

category of Gender, as they are in Excel1 (see Figure 2.8). This makes visual in-

spection of the data somewhat easier.

ADDITIONAL MANAGEMENT FUNCTIONS

SPSS1 is very versatile with handling large datasets. There are several useful func-

tions that perform specific operations to make the analyses and subsequent interpre-

tation of data easier. Many of these can be accommodated in Excel1; however,

these specific functions evolved with constant use by researchers since SPSS1 is

designed specifically for statistical analyses. I will not cover all of these, but the

following sections highlight some important operations.

Split File

A useful command for students and researchers that we will use in subsequent

chapters is ‘‘split file,’’ which allows the user to arrange output specifically for the

different values of a variable. Using our ‘‘sort’’ example from Figure 4.5, we could

use the ‘‘split file’’ command to create two separate files according to the Gender

variable and then call for separate statistical analyses on each variable of interest,

for example the Math scores in Figure 4.5.

By choosing the ‘‘Data’’ drop-down menu, I can select ‘‘Split File’’ from a range

of choices that enable me to perform operations on my existing data. Figure 4.10

shows the sub-menu for ‘‘Data’’ with ‘‘Split File’’ near the bottom.

FIGURE 4.10 The ‘‘Split-File’’ option in SPSS1.
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When I choose ‘‘Split File,’’ I can then select which variable to use to create

the separate data files. This is the ‘‘Organize output by groups’’ button shown in

Figure 4.11. As you can see, if you choose this button, you can specify ‘‘Gender’’

by clicking on it in the left column and moving it to the ‘‘Groups Based on:’’ box by

clicking the arrow button.

As Figure 4.11 shows, I selected the option ‘‘Organize output by groups’’ and

then clicked on the variable ‘‘Gender’’ in the database. By these choices, I am issu-

ing the command to create (in this case) two separate analyses for whatever statisti-

cal procedure I call for next since there are two values for the Group variable (‘‘M’’

and ‘‘F’’). When I perform a split file procedure in SPSS1, it does not change the

database; rather, it simply creates separate output according to whatever statistical

procedure you want to examine (e.g., descriptive statistics, correlation, etc.). I will

discuss each of these procedures further in the chapters ahead. For now, it is impor-

tant to understand that SPSS1 has this useful function.

For example, I could next call for SPSS1 to create means for each of the catego-

ries of gender. When I do so, SPSS1 generates an ‘‘output’’ file showing separate

results of the analysis by gender groups. Table 4.1 shows these results. As you can

see, the output contains separate listings for Female and Male students. The top

portion of Table 4.1 shows the Math and Reading scores for Females (58.38 and

71.28, respectively), and the bottom portion shows the scores for Males (48.54 for

Math and 69.44 for reading).

Please note that when you use this procedure, it is necessary to ‘‘reverse’’ the
steps you used after you have created the desired output. Otherwise, you will con-

tinue to get ‘‘split results’’ with every subsequent statistical analysis you call for.

FIGURE 4.11 Steps for creating separate output using ‘‘Split File.’’
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SPSS1 will continue to provide split file analyses until you ‘‘turn it off’’ by select-

ing the first option, ‘‘Analyze all cases, do not create groups’’ at the top of the

option list in the Split File sub-menu. You can see this option near the top of

the sub-menu in Figure 4.11.

Transform/Compute (Creating Indices)

One of the more useful management operations is the Compute function, which

allows the user to create new variables. For this example, I am using a very

small number of cases (15 of 3968 cases) from the TAGLIT database of middle

and high schools from across the United States. The example case consists of

three variables: ‘‘NumStudents,’’ the number of students at the school;

‘‘NumTeachers,’’ the number of teachers at the school; and ‘‘NumComputers’’

the number of computers at the school.

If I want to report a ratio of the number of computers available for the students at

the schools, I can compute a new variable using the menus in SPSS1. At the main

menu (see Figure 4.1), I can access this function by selecting the ‘‘Transform’’ and

then ‘‘Compute Variable’’ option. This will result in a dialog box like the one shown

in Figure 4.12.

In this example, I am creating a new variable (‘‘CompStudent’’) by dividing the

current ‘‘NumComputers’’ variable by the ‘‘NumStudents’’ variable. The first step is

to name the new variable by entering it into the ‘‘Target Variable:’’ window at the

upper left of the screen. Then, you can create a formula in the ‘‘Numeric Expres-

sion:’’ window. As Figure 4.12 shows, I clicked on NumComputers and placed it in

the window by clicking on the arrow button. Then, I entered a ‘‘/’’ mark using the

keypad below the window. Last, I placed NumStudents in the window to complete

the formula: NumComputers/NumStudents.

This procedure will result in a new variable with values that represent the ratio of

computers to students by school. Figure 4.13 shows the resulting database that now

TABLE 4.1 Split File Results for Gender
and Achievement in SPSS1

Gender¼ F

N Mean

Math 5 58.380

Reading 5 71.280

Valid N (listwise) 5

Gender¼M

N Mean

Math 5 48.540

Reading 5 69.440

Valid N (listwise) 5
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FIGURE 4.12 SPSS1 screen showing ‘‘Transform Compute’’ functions.

FIGURE 4.13 Data file showing a new variable, ‘‘CompStudent.’’
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includes the new variable. As you can see, the computer-to-student ratio ranges

from .10 to .51 (or one computer per ten students to one computer per two students).

As you can see from the screen in Figure 4.12, you can use the keypad in the

center of the dialog box for entering arithmetic operators, or you can simply type in

the information in the ‘‘Numeric Expression:’’ window at the top. You will also

note that there are several ‘‘Function group:’’ options at the right in a separate win-

dow. These are operations grouped according to type. Scrolling to the bottom

allows the user to specify ‘‘statistical functions’’ such as means, standard devia-

tions, and so on. You can select whichever operation you need and then enter it into

the Numeric Expression window by clicking on the up arrow next to the Function

Group window. This feature of SPSS1 is similar to the functions available in

Excel1 that we discussed in Chapter 3.

Merge

The merge function is one of the most useful, but the most misunderstood, functions

in SPSS1. I have yet to see any accurate treatment of the appropriate steps for this

procedure in any resource book. I will attempt to provide a brief introduction to the

procedure here because it is so important, but experience is the best way to master

the technique. I recommend that you create two sample files and experiment with

how to use it.

The merge function allows you to add information to one file from another using

a common identifier on which the procedure is ‘‘keyed.’’ For example, suppose you

are working with two separate school-level data files and you need to create one file

that combines variables located on the separate data files. Perhaps one file has a

school ID number and the NumComputers variable we created in the last example,

while a second file has a school ID (the same values as the other file) and the

NumStudents and NumTeachers variables. The merge function allows you to add

variables from one of the files to the other using the common ID number.

You can approach the merge in several ways, but my preferred method is to

choose one file as the ‘‘master’’ to which the separate information is brought. After

the transfer, you can save this file separately as the master file since it will contain

both sets of information. SPSS1 allows you to specify which information to bring

to the separate file in a dialog box.

In this example, I will merge two separate files with a common School ID

number (‘‘IDnum’’). Figures 4.14 and 4.15 show the separate data files. The first

contains the variables NumStudents and NumTeachers whereas the second file

has the NumComputers variable. We want to create a master file containing all

three variables.

The first step is to make sure both ‘‘IDnum’’ variables are sorted (Ascending)

and saved in the same way. (See the section above on sorting variables.) This varia-

ble is the one on which the sort is keyed, and the merge cannot take place if the

variables are sorted differently within the different files, if there are duplicate

numbers, missing numbers, and so on.

Second, in the file you identify as the master file (usually one of the files to

be merged), choose ‘‘Data-Merge-Add Variables’’ as shown in the dialog box in
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FIGURE 4.15 Datafile #2 for merge example.

FIGURE 4.14 Datafile #1 for merge example.
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Figure 4.16. This will allow you to move entire variables from one file to another.

The other option ‘‘Add Cases’’ allows you to append all the cases in one file to the

cases in the other file, a completely different function.

When you ask to ‘‘add variables’’ the dialog box shown in Figure 4.17 appears

which enables you to choose the data file from which you wish to move the desired

variable. As shown in Figure 4.17, we are choosing the second database since

it contains the NumComputers variable that we wish to add to the database in the

first file.

FIGURE 4.16 SPSS1 screen showing the ‘‘Merge’’ options.

FIGURE 4.17 SPSS1 screen listing the available data files to merge.
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The next dialog box that appears is shown in Figure 4.18, in which you can spec-

ify which variable is the ‘‘key variable’’ on which to base the merge. In the current

example, I have used the first file containing IDnum, NumStudents, and NumTeach-

ers as the master file and called for a merge from the second file containing IDnum

and NumComputers. The IDnum variable can be chosen from the top left dialog

box. It is the only variable chosen because it is found in both files. After selecting

the SchoolID variable, you can select the ‘‘Match cases on key variables in sorted

files’’ box, along with the middle choice ‘‘Non-active dataset is keyed table.’’

This tells SPSS1 that you want the second file to be the one from which the new

variable is to be chosen and placed in the master file. You can see that the new

master file will consist of the variables listed in the top right dialog window when

the merge is complete.

In this example, the ‘‘New Active Dataset’’ window, you can see that the new

master file will consist of the IDnum, NumStudents, nad NumTeachers variables

from the first file (indicated by an ‘‘(�)’’ after the variables) and the Numcomputers

variable from the second file (indicated by a ‘‘(þ)’’ after the variable).

The next step is very important. When you click on the bottom arrow, you in-

form SPSS1 that the IDnum variable is the keyed variable. When you place IDnum

in this window, it removes it from the list of variables in the ‘‘New Active Dataset’’

FIGURE 4.18 SPSS1 screen used to identify the ‘‘key variable’’ on which to base the

merge.
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FIGURE 4.19 SPSS1 screen showing the merged file.

FIGURE 4.20 The SPSS1 Analyze menu options.
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window since it is contained in both files. In this example, there will be no other

variables listed in the ‘‘Excluded Variables’’ window since all will be included in

the new master file.

Once you move the key variable to the window using the arrow key, you can

choose ‘‘OK’’ and the desired variables will be added to the master file, which

you can save under a different name. The panel in Figure 4.19 shows the new

master file with the complete list of variables from both files keyed to the same

school ID number.

This example used two simple files, but the same process can be used for more

complex files. Once you have merged the files, it is often helpful to ‘‘eyeball’’ the

data to make sure the variables merged with the variable values appropriately listed

under the keyed variable.

ANALYSIS FUNCTIONS

Over the course of our study in this book, we will have extensive practice at

conducting statistical procedures with SPSS1. All of these are accessible through

the opening ‘‘Analyze’’ drop-down menu as shown in Figure 4.1. The screen in

Figure 4.20 shows the contents of the Analyze menu. We will not be able to cover

all of these in this book, but you will have the opportunity to explore several of

the sub-menu choices. Many of these statistical functions are represented in the

Excel1 formulas that we described in Chapter 3. See Figure 2.9 for a partial list of

those functions.
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5
DESCRIPTIVE STATISTICS—
CENTRAL TENDENCY

When I teach statistics to any group of students, I start by offering a series of

questions that emphasize the importance of statistics for solving real research

problems. Statistical formulas and procedures are logical and can be interest-

ing, but the primary function for statistical analyses (at least, in my mind) is

to bring clarity to a research question. As I discussed in a recent book dealing

with statistics for program evaluation (Abbott, 2010), statistical procedures are

best used to discover patterns in the data that are not directly observable.

Bringing light to these patterns allows the student and the researcher to under-

stand and engage in problem solving.

RESEARCH APPLICATIONS—SPURIOUSNESS

Do storks cause babies? This opening question usually results in a good laugh in

introductory statistics classes. Of course they do not! But a time-worn example in

sociology classes (see Bohrnstedt and Knoke, 1982) is that, in Holland several years

ago, communities where more storks nested had higher birth rates than did commu-

nities with fewer nesting storks. This strong association has always been used to

illustrate the fact that just because two things are strongly related to one another

(correlation), one does not necessarily cause the other. There may be a third varia-

ble, not included in the analysis, that is related to both variables resulting in the

appearance of a relationship.

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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What might that third variable be? Several possibilities exist. One might be

called something like ‘‘ruralness’’ or ‘‘urbanness.’’ That is, the more rural the area,

the more feeding and nesting possibilities exist for storks. It also happens that there

are more children outside of cities, since single individuals more than families often

live in cities. Thus, the apparent relationship between storks and babies is really a

function of this third variable that, when introduced into the equation, reduces the

original relationship to zero. This is illustrated in Figure 5.1. The top panel shows

the apparent relationship between babies and storks, with a two-way line connecting

the variables indicating that the two are highly related to one another. The bottom

panel shows that, when the third variable (Ruralness) is introduced, the relationship

between storks and babies disappears.

This situation is known as ‘‘spuriousness’’ in research. ‘‘Spurious’’ carries the

definition of ‘‘false,’’ which fits a situation in which something apparent is not

accurate or true. Spuriousness is the reason why ‘‘correlation does not equal causa-

tion’’ in research. Just because something is related does not mean that one causes

the other. You can find spurious relationships in any field of research because it is

often difficult to identify whether an apparent, calculated relationship between two

variables is the result of another variable, or variables, not taken into account in the

research. This is one of the reasons why statistics courses are important; we can

learn statistical procedures that will allow us to study multiple relationships at the

same time so as to identify potentially spurious situations.

Identifying potentially spurious relationships is often quite difficult, and it comes

only after extended research with a database. The researcher must know their data

intimately in order to make the discovery. An example of this is a study I reported

in my program evaluation book (Abbott, 2010), this one in the field of industrial

democracy. Initial data analyses on worker participation in an electronics firm

suggested that if workers were given the ability to participate in decision making,

they would have higher job satisfaction. This was a reasonable assumption, given

Storks Babies

Ruralness

Storks Babies

FIGURE 5.1 The spurious relationship between storks and babies.
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similar assumptions in the research literature. However, the more I examined the

data from individual workers, the more I questioned this assumption and decided to

test it further.

I noticed from interviews that many workers did not want to participate in deci-

sion making, even though they had the opportunity to do so. They were content to

do their work and leave at the end of the day without a role in deciding what the

work at their plant should look like or how it should change. I therefore analyzed

the original ‘‘participation—job satisfaction’’ but this time added a third variable,

‘‘desire for participation’’ to the analysis. I found that the apparent relationship was

much more complex than previously assumed. One of my findings was that ‘‘atti-

tudes toward management’’ was not related directly to worker satisfaction, but that

‘‘desire for management’’ affected both of the study variables and led to a different

conclusion than the simple assumption that ‘‘participation causes satisfaction.’’

The popular press often presents research findings that are somewhat bombastic

but which might possibly be spurious. The value of statistics is that it equips the

student and researcher with the skills necessary to debunk simplistic findings.

I have explored one such finding in education for many years and in a variety of

study contexts. This is the assumption that low achievement in K–12 education

is related to ethnicity, with some ethnic groups performing better than others.

Research findings are reported that supposedly lend support to this assumption.

Over several years at the Washington School Research Center, a research center

investigating educational reform, my colleagues and I have explored this assump-

tion using available data from the state of Washington. What we found, in a variety

of research studies, is that the ethnicity—achievement relationship is more complex

than it appears. There may be other variables not in the analysis that might explain

why it appears that one variable is related to the other.

Based on the research literature, we identified socioeconomic status as a poten-

tially meaning variable that might help to illuminate this relationship. Gathering

data on all the schools in the state, we analyzed the impact of ethnicity on achieve-

ment, but this time introduced ‘‘low income’’ into the analysis. The only variable

we had to indicate low income was one that educational researchers use almost

exclusively, namely, the percent of the students at the school qualified to receive

free or reduced (F/R) lunch based on family income. Despite the potential prob-

lems with using this variable as an indicator of family income, it is nevertheless

one available measure that allows us to see the effects of low income on the

ethnicity—achievement relationship.

In virtually every study we conducted, we found that ethnicity, while a very

important variable in the consideration of school-based achievement, was not the

influence it was assumed to be. On closer inspection, we found that most of the

relationship between ethnicity and achievement was really a function of low

income. That is, the greater the percent of children in school qualified for F/R, the

lower the school-based achievement. Ethnicity still influenced achievement, but in

a very small way. Most of the influence of ethnicity was exerted through the avenue

of low income. This relationship can be viewed in much the same way that the

variables are viewed in Figure 5.1.
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We will have the opportunity to explore this relationship further in our discus-

sions in this book. I have made the original database available so that you can

explore it on your own, and I will use many examples from the database to clarify

the statistical procedures in subsequent chapters.

DESCRIPTIVE AND INFERENTIAL STATISTICS

Statistics, like other courses of study, is multifaceted. It includes ‘‘divisions’’ that

are each important in understanding the whole. Two major divisions are Descriptive

and Inferential statistics. Descriptive statistics are methods to summarize and ‘‘boil

down’’ the essence of a set of information so that it can be understood more readily

and from different vantage points. We live in a world that is bombarded with data;

descriptive statistical techniques are ways of making sense of it. Using these

straightforward methods allows the researcher to detect numerical and visual

patterns in data that are not immediately apparent.

Inferential statistics are a different matter altogether. These methods allow

you to make predictions about unknown values on the basis of small sets of

‘‘sample’’ values. In real life, we are presented with situations that cannot pro-

vide us with certainty: Would my method for teaching mathematics improve

the scores of all students who take the course? Can we predict what a student

might score on a standardized test? Inferential statistics allow us to infer or

make an observation about an unknown value from values that are known.

Obviously, we cannot do this with absolute certainty—we do not live in a

totally predictable world. But we can do it within certain bounds of probabi-

lity. It is hoped that statistical procedures will allow us to get closer to

certainty than we could get without them.

THE NATURE OF DATA—SCALES OF MEASUREMENT

The first step in understanding complex relationships like the ones I described ear-

lier is to be able to understand and describe the nature of what data are available to a

researcher. We often jump into a research analysis without truly understanding the

features of the data we are using. Understanding the data is a very important step

because it can reveal hidden patterns and it can suggest custom-made statistical

procedures that will result in the strongest findings.

One of the first realizations by researchers is that data come in a variety of sizes

and shapes. That is, researchers have to work with available information to make

statistical decisions, and that information takes many forms. The examples we dis-

cussed earlier illustrate several kinds of data:

1. Students are identified as either ‘‘qualified’’ or ‘‘not qualified’’ for free or

reduced lunches.
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2. Workers either ‘‘desire participation’’ or ‘‘do not desire participation.’’

3. Job satisfaction is measured by worker responses to several questionnaire

items asking them to ‘‘Agree Strongly,’’ ‘‘Agree,’’ ‘‘Neither Agree nor

Disagree,’’ ‘‘Disagree,’’ or ‘‘Disagree Strongly.’’

4. School leaders measure student achievement through reading and math tests

in which students obtain percentages of right answers.

Nominal Data

The first two examples show that data can be ‘‘either–or’’ in the sense that they

represent mutually exclusive categories. If you are qualified for F/R, for example,

you do not fit the ‘‘not qualified’’ category; if you desire participation, you do not fit

the category of others who do not desire participation. Other examples of this ‘‘cate-

gorical’’ data are sex (male and female) and experimental groups (treatment or

control).

This kind of data, called ‘‘nominal,’’ does not represent a continuum, with

intermediate values. Each value is a separate category only related by the fact

that they are categories of some larger value (e.g., male and female are both

values of sex). These data are called nominal since the root of the word indi-

cates ‘‘names’’ of categories. They are also appropriately called ‘‘categorical’’

data.

The examples of nominal data above can also be classified as ‘‘dichotomous’’

since they are nominal data that have only two categories. Nominal data also

include variables with more than two categories such as schooling (e.g., public,

private, home schooling). We will discuss later that dichotomous data can come

in a variety of forms also, like (a) ‘‘true dichotomies’’ in which the categories natu-

rally occur like sex and (b) ‘‘dichotomized variables’’ that have been created by the

researcher from some different kind of data (like satisfied and not satisfied

workers).

In all cases, nominal data represent mutually exclusive categories. Educators

typically confront nominal data in classifying students by gender or race; or, if they

are conducting research, they classify groups as ‘‘treatment’’ and ‘‘control.’’ In

order to quantify the variables, researchers assign numerical values to the catego-

ries, like treatment groups¼ 1 and control groups¼ 2. In these cases, the numbers

are only categories; they do not represent actual values. Thus, a control group is not

twice a treatment group. The numbers are only a convenient way of identifying the

different categories.

Because nominal data are categorical, we cannot use the mathematical opera-

tions of addition, subtraction, multiplication, and division. It would make no sense

to divide the treatment group by the control group to get one-half. Researchers

must simply indicate the percentage of individuals who occupy the categories, for

example, as a way of reporting what the data indicate. Thus, we might say that, in

our data, 51% are male and 49% are female.
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Ordinal Data

The third example listed above indicates another kind of data: ordinal data. These

are data with a second characteristic of meaning, namely, position. There are cate-

gories, as in nominal data, but with these data the categories are related by ‘‘more

than’’ and ‘‘less than.’’ Some categories are placed above in value or below in

value of some other category. Educational researchers typically find ordinal data in

many places: student attitude surveys, teacher questionnaires, and in-class tests, for

example. In these cases, one person’s response can be more or less than another

person’s on the same measure. In example 3 above, job satisfaction can be meas-

ured by a question that workers answer about their work, such as the following:

‘‘I am happy with the work I do.’’

1. Agree Strongly (SA)

2. Agree (A)

3. Neither Agree nor Disagree (N)

4. Disagree (D)

5. Disagree Strongly (SD)

As you can see, one worker can be quite happy and can indicate ‘‘Agree

Strongly’’ while another can report that they are less happy by indicating ‘‘Agree.’’

Both workers are reporting different levels of happiness, with some being more or

less happy than others. Teacher agreement or disagreement with certain school pol-

icies are similarly measured in educational studies. (These response scales are typi-

cally called ‘Likert’ scales.) In one of the WSRC studies, for example (Abbott

et al., 2008), my colleagues and I reported on a teacher survey in which we asked

respondents several questions about various changes in their schools. For example,

respondents indicated their agreement (using the same scale noted above in the

worker participation study) to the questionnaire item, ‘‘Teacher leaders have had a

key role in improving our school.’’

The resulting data from questionnaire items such as these are ordinal data. They

add greater than and less than to the nominal scale, and in this sense they represent

a more complex set of data. Using such data provides a deeper understanding

of people’s attitudes than simply classifying their answers as nominal data

(e.g., agree–disagree, true–false).

These kinds of questionnaire data are the stock-in-trade of social scientists

because they provide such a convenient window into people’s thinking. Educational

researchers use them constantly in a variety of ways with students, teachers,

parents, and school leaders.

There is a difficulty with these kinds of data for the researcher however.

Typically, the researcher needs to provide a numerical referent for a person’s

response to different questionnaire items in order to describe how a group

responded to the items. Therefore, they assign numbers to the response categories

as shown in Table 5.1.
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The difficulty arises when the researcher treats the numbers (1 through 5 in

Table 5.1) as integers rather than ordinal indicators. If the researcher thinks of the

numbers as integers, they typically create an average rating on a specific question-

naire item for a group of respondents. Thus, assume for example that four educators

responded to the questionnaire item above (‘‘Teacher leaders have had a key role in

improving our school’’) with the following results: 2, 4, 3, 1. The danger is in aver-

aging these by adding them together and dividing by four to get 2.5 as follows

(2þ 4þ 3þ 1)/4). This result would mean that, on average, all four respondents

indicated an agreement halfway between the 2 and the 3 (and, therefore, halfway

between agree and neither). This assumes that each of the numbers has an equal

distance between them—that is, that the distance between 4 and 3 is the same as the

distance between 1 and 2. This is what the scale in Table 5.1 looks like if you simply
think of the numbers as integers.

However, an ordinal scale makes no such assumptions. Ordinal data only assume

that a 4 is greater than a 3, or a 3 is greater than a 2, but not that the distances
between the numbers are the same. Table 5.2 shows a comparison between how an

ordinal scale appears and how it might actually be represented in the minds of two

different respondents.

According to Table 5.2, respondent 1 is the sort of person who is quite certain

when they indicate SA. This same person, however, makes few distinctions be-

tween A and N and between D and SD (but they are certain that any disagreement

is quite a distance from agreement or neutrality). Respondent 2, by contrast, doesn’t

make much of a distinction between SA, A, and N, but seems to make a finer dis-

tinction between areas of disagreement, indicating stronger feelings about how

much further SD is from D.

It is hoped that this example helped you to see that the numbers on an ordinal

scale do not represent an objective distance between the numbers, they are only

indicators of ordinal categories and can differ between people on the same item.

The upshot, for research, is that you cannot add the numbers and divide by the total

to get an average because the distances between the numbers may be different for

each respondent! Creating an average would then be based on different meanings of

the numbers and would not accurately represent how all the respondents, as a group,

responded to the item.

TABLE 5.2 Perceived Distances in Ordinal Response Items

Scale Categories   SA A N  D SD

The way it appears 1 2 3 4  5

Respondent 1 perception 1 2  3  4 5

Respondent 2 perception 1  2  3 4 5

TABLE 5.1 Typical Ordinal Response Scale

SA A N D SD

1 2 3 4 5
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Interval Data

The majority of what we will study in this book uses interval data. These data are

numbers that have the properties of nominal and ordinal data; but they add another

characteristic, namely, equal distance between the numbers. Interval data are num-

bers that have equal distance between them, so that the difference between 90 and

91 is the same as the distance between 103 and 104; in both cases, the difference is

one unit. The value of this assumption is that you can use mathematical operations

(multiplication, addition, subtraction, and division) to analyze the numbers because

they all have equal distances.

An example of an interval scale is a standardized test score such as an intelli-

gence quotient (IQ). While psychologists and educational researchers disagree

about what IQ really represents, the numbers share the equal distance property.

With IQ, or other standardized tests, the respondent indicates their answers to a set

of questions designed to measure the characteristic or trait studied.

Job satisfaction (JS) is another example. Here, respondents may indicate they

strongly agree, agree, and so on, with a series of items measuring their attitudes

toward their job. The Job Diagnostic Survey (Hackman and Oldham, 1980) includes

the following item as part of the measurement of job satisfaction: ‘‘I am generally

satisfied with the kind of work I do in this job’’ (response scale is Disagree Strongly,

Disagree, Disagree Slightly, Neutral, Agree Slightly, Agree, and Agree Strongly).

The measurement of job satisfaction uses a series of these kinds of questions to

measure a worker’s attitude toward their job. What makes this kind of data different

from ordinal data, which uses a similar response scale, is that the JDS uses a ‘‘stan-

dardized’’ approach to measurement. That is, the test was used with a number of

different sets of workers, under the same directions, with the same materials, time,

and general conditions. The JDS items measured job satisfaction among manage-

rial, clerical, sales, machine trade, and other workers. With such wide application,

the set of items comprising the job satisfaction index comes to represent a consist-

ent score. In fact, there are specific statistical procedures that measure the extent to

which the scores are consistent across usage.

The result of repeated, standardized use of these kinds of instruments is that the

response scales come to be accepted as interval data. The distance between units

comes to have meaning as equivalent distances. Thus, even though they may be

based on the same kind of ordinal response scales, as we discussed above, the set of

measures can be multiplied, divided, added, and subtracted with consistent results.

This is the way interval measures are typically used by educational researchers.

Whether or not we truly understand what one unit of IQ represents, we can proceed

with measurement using recognized statistical procedures.

A difficulty in research is that all kinds of items might be thrown together by

someone unaware of the nature of research to yield a ‘‘scale’’ that is then used in

statistical procedures for problem solving. For example, a principal may wish to

understand the attitudes of teachers regarding some educational policy like whether

or not to change a math curriculum. She might ask other principals if they have

done the same thing, or simply sit down and compose a few questions that she
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believes measures teacher opinion accurately. Typically, this involves compiling a

series of Likert items (i.e., involving the response scale illustrated in Table 5.1).

Leaving aside the issue of whether the items are written correctly, she might then

distribute the questions to her teachers and compile the results. As you might imag-

ine, she compiles the results by assigning numbers to the response categories, as in
Table 5.1, and creating averages to each item across all the teacher respondents.

The difficulty with this procedure is, I hope, now obvious. Rather than averaging

the response scores, the teacher should simply report the frequencies of teachers

who report each category. Consider the example in Table 5.3 in which five teachers

respond to a principal-created item like, ‘‘We should change the math curriculum.’’

As you can see, the teachers indicated their attitudes by their choices using an ‘‘x’’

under the appropriate Likert scale category. If the principal were to average the

responses (thereby treating the data as interval), the five teachers would indicate a

3.2 average, or slightly above Neutral. However, if the principal treated the data as

ordinal, she would report the frequencies in the bottom row of Table 5.3. According

to this report, 60% of the teachers who responded to the item were in agreement

while 20% were strongly unfavorable and 20% were neutral. Using the data differ-

ently indicates different views of the teachers’ responses.

This example illustrates several characteristics of numbers that we will discuss

in subsequent chapters. However, I point out here that statistics students and

researchers need to be careful to understand what kind of data they have available

and how to treat it for answering a research question.

In the course of actual research, evaluators often treat ordinal data as if it were

interval data. While from a purist standpoint this is not strictly accurate, researchers

use this assumption, especially with a survey instrument they, or other researchers,

have used repeatedly. Standardized instruments like IQ or some Job Satisfaction

measures are widely accepted and used as interval data. Regardless, students and

researchers need to carefully consider the nature of the items of any instrument

used to measure attitudes and decide how most accurately to represent the results.

Confidence with this assumption increases with well-written items. The inter-

ested student should seek research publications that discuss the criteria for creating

survey items. Babbie (2010) is one such resource that provides a thorough set of

TABLE 5.3 Comparison of Interval and Ordinal Scales

1 2 3 4 5

SD D N A SA Avg

Teacher 1 x 1

Teacher 2 x 4

Teacher 3 x 3

Teacher 4 x 4

Teacher 5 x 4

20% 0 20% 60% 3.2
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guidelines for creating appropriate questions. Creating items that conform to rules

such as these provides a stronger foundation for treating these kinds of ordinal data

as interval. Students and researchers should still exercise caution, especially with

self-generated instruments.

Ratio Data

It is hard to imagine a worker with no satisfaction! Even if they are not completely

enthralled with their work, or totally hate it, they have some attitude. Even ‘‘neu-

tral’’ attitudes indicate a sort of ambivalence in which there are some positive and

some negative aspects of the job. The fact is that it is difficult to imagine the abso-
lute absence of some concepts, attitudes, and behaviors, even IQ. Someone low on

the IQ scale still has an IQ, even if their IQ ‘‘score’’ is zero.

There are other variables that can be said to have the possibility of absolute zero;

the amount of money in your pocket, the distance between two lines, number of

credits of math, number of friends, age, and so on. In such cases, a ‘‘0’’ value means

none. Percentages can have a meaningful zero, as in the case of what percentage of

students go on to college once they graduate from high school, or what percentages

of students pass the state math test. Often, interval scale measures have zeros, but

they are not ‘‘true’’ zeros in the sense of absolute nothing!

The statistical value of ratio scales, those with absolute zeros, is that the re-

searcher can make ratios, hence the derivation of the name. If there is a fixed and

absolute zero, then two things can be referenced to one another since they have a

common benchmark. Student A with 4 math credits can have twice the number

of math credits as Student B who has 2 math credits, for example. If you express

this relationship in a number, you can divide the 4 credits (student A) by 2 credits

(Student B) to get 2, or twice the number of credits. Of course you can also express

the ratio the other way by saying that Student B has only half the math credits

as Student A (or 1/2). Or, we can speak of School A evidencing twice the math

completion rate of School B (assuming both schools use credits in the same way).

Choosing the Correct Statistical Procedure for the Nature of Research Data

An important rule to remember about statistics is to use appropriate statistical tools

with the different kinds of data. In the following chapters we will learn about

different methods for solving a particular problem using the approach that fits the

available information. In this sense, statistics is like a collection of tools that we

can use. We typically do not remove a screw with a sledge hammer (although I

have been tempted at times!); we assess what particular tool works best with the

screw that has to be removed. In the same way, we have to assess what statistical

tool works best with the data we have available. Scales of measurement help us to

classify the data in order to determine what the next steps might be to analyze it

properly.

In real life, research data come in many forms: nominal, ordinal, interval, and

ratio scales. It is hoped that you will gain familiarity with these as I discuss them in

50 DESCRIPTIVE STATISTICS—CENTRAL TENDENCY



this book. This primary step in statistics is often the one that confounds even expe-

rienced researchers. You cannot use certain methods with certain kinds of data—if

you do, you will not get accurate or meaningful results. As I mentioned earlier, you

cannot calculate a mean (you could, but it would be ‘‘meaningless’’) on nominal or

ordinal data. Also, we shouldn’t trust a mean calculated on the appropriate level of

data (interval) if the data are of a certain kind (e.g., income, housing values, etc.).

It takes practice to recognize the scale of measurement, but it is a step that cannot

be missed.

DESCRIPTIVE STATISTICS—CENTRAL TENDENCY

Descriptive statistics include numerical and graphical procedures to assist the

researcher to understand and see patterns in data. Typically, a researcher gathers

data, which, unexamined, exists as a series of numbers with no discernable relation-

ship. By using descriptive statistical techniques, the researcher can present the data

in such a way that whatever patterns exist can be assessed numerically and visually.

The best way to understand these procedures is to begin with a real example. The

following table of data is taken from the school database in Washington. The scores

represent a sample of schools (N¼ 40) that report scores from fourth-grade

students’ state achievement test in 2009. Each case in Table 5.4 represents the

aggregated scores for each school in which the given percentage of students passed

the math achievement portion of the test.

Simply looking at the numbers is not the best way to understand the patterns that

may exist. The numbers are in no particular order, so the researcher probably cannot

discern any meaningful pattern. Are there procedures we can use to numerically

understand these patterns?

Central tendency measures suggest that a group of scores, like those in Table 5.4,

can be understood more comprehensively by using a series of numerical and graphi-

cal procedures. As these measures suggest, we can understand a lot about a set of

TABLE 5.4 Aggregated School Percentages of Students
Passing the Math Standard

Math Percent Met Standard

38 59 35 50

37 74 73 79

46 50 69 89

63 62 66 50

51 25 24 42

30 53 34 73

36 63 40 56

50 72 58 10

40 50 49 56

41 77 28 27
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data just by observing whether or not most of the scores cluster or build up around a

typical score. That is, do the scores have a tendency to approach the middle from

both ends? There will be scores spreading out around this central point (a topic

explored in a later chapter), but it is helpful to describe the central point in different

ways and for different purposes. The primary question the researcher asks here is,

Can we identify a ‘typical’ score that represents most of the scores in the distribu-

tion? In the example above, the researcher needs to know what math achievement

passing score is typical for this sample of schools.

Mean

Perhaps the most basic statistical analysis for numerically describing the central

tendency is the mean, or arithmetic average of a set of scores. Remember from our

discussion of the levels of data that the researcher needs at least interval data to

create a mean score. This is because you need to be able to add, subtract, multiply,

and divide numbers in order to calculate it. If you have less than interval data, it

would not make sense to use these arithmetic operations since you could not assume

the intervals between data points are equal. Thus, for example, you could not get an

average gender (nominal) or an average opinion about the value of constructivist

teaching (ordinal, unstandardized survey question).

Calculating the mean value uses one of the most basic formulas in statistics, the

average: SX/N. This formula uses the ‘‘S’’ symbol, which means ‘‘sum of.’’ There-

fore, the average, or mean value, can be calculated by adding up the numbers,

or summing them, and then dividing by how many numbers there are in the set:

N. Using the values in Table 5.4, we can calculate the mean by summing the

40 numbers to get 2025. If we divide this number by 40, the amount of numbers in

the set, we get 50.63.

P
X

N
¼ 2025

40
¼ 50:63

What does the mean of 50.63 indicate? If you inspect the data in Table 5.4, you

will see that 10% of the students in one school passed the math assessment, while

89% of the students at another school passed. That is quite a difference! What is the

typical percentage of students who passed the math assessment? That is, if you had

to report one score that most typified all the scores, which would it be? This is the

mean, or average value. It expresses a central value (towards the middle) that char-

acterizes all the values.

Median

Another measure of central tendency is the median, or middle score among a set of

scores. This isn’t a calculation like the mean, but rather it identifies the score that

lies directly in the middle of the set of scores when they are arranged large to small

(or small to large). In our set of scores, the median is 50. If you were to rank order
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the set of scores by listing them small to large, you would find that the direct middle

of the set of scores is between the twentieth (50) and twenty-first (50) numbers in

the list. In order to identify the direct middle score, you would have to average these

two numbers to get 50 [(50þ 50)/2]. An equal number of scores in the group of

scores are above and below 50.

The median is important because sometimes the arithmetic average is not

the most typical score in a set of scores. For example, if I am trying to find

the typical housing value in a given neighborhood, I might end up with a lot

of houses valued at a few hundred thousand dollars and five or six houses

valued in the millions. If you added all these values up and divided by the

number of houses, the resulting average would not really characterize the typi-

cal house because the influence of the million dollar homes would present an

inordinately high value.

To take another example, the values in Table 5.5 are similar to those in

Table 5.4, with the exception of seven values. In order to illustrate the effects of

‘‘extreme scores,’’ I replaced each score over 70 with a score of 98. If you calcu-

late an average on the adjusted values in Table 5.5, the resulting value is 54.35.

Changing seven values resulted in the mean changing from 50.63 to 54.35. But

what happens to the median when we make this change? Nothing. The median re-

mains 50, since it represents the middle of the group of scores, not their average

value. In this case, which is the more typical score? The mean value registers the

influence of these large scores, thereby ‘‘pulling’’ the average away from the center

of the group. The median stays at the center.

This small example shows that only a few extreme scores can exert quite an

influence on the mean value. It also shows that the median value in this circum-

stance might be the more typical score of all the scores since it stays nearer the

center of the group. Researchers should be alert to the presence of extreme scores

since they oftentimes strongly affect the measure of central tendency. This is

especially true any time the values reflect money, like housing values, household

income, and so on.

TABLE 5.5 Adjusted School Percentages

Math Percent Met Standard

38 59 35 50

37 98 98 98

46 50 69 98

63 62 66 50

51 25 24 42

30 53 34 98

36 63 40 56

50 98 58 10

40 50 49 56

41 98 28 27
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Mode

The mode is the most frequently occurring score in a set of scores. This is the most

basic of the measures of central tendency since it can be used with virtually any set

of data. Referring to Table 5.4, you can arrange the scores and discover that 50 is

the most frequently occurring score in the set. The mode is a typical score or cate-

gory since data most often ‘‘mass up’’ around a central point, so it makes sense that

the mode, at the greatest point of accumulation in the set, represents the most prev-

alent score.

Central Tendency and Levels of Data. Earlier, I stated that statistics are like tools

and the researcher must use the most appropriate tool with the data available for

their research. This is true with representing central tendency as well.

The mean is used with interval (or ratio) data since it is a mathematical calcu-

lation that requires equal intervals. The median and mode can be used with inter-

val as well as ‘‘lower levels’’ of data (i.e., ordinal and nominal), whereas a mean

cannot. Using either median or mode with interval data does not require a mathe-

matical calculation; it simply involves rank ordering the values and finding the

middle score or the most frequently occurring score, respectively. The mean can-

not be used with ordinal or nominal data since we cannot use mathematical calcu-

lations involving addition, subtraction, multiplication, and division on these data,

as I discussed above.

The median is a better indicator of central tendency than the mean with

‘‘skewed’’ or imbalanced distributions. We will have more to say shortly about

skewed sets of scores, but for now we should recognize that a set of scores can

contain extreme scores that might result in the mean being unfairly influenced and

therefore not being the most representative measure of central tendency. Table 5.5

shows this situation as we discussed in the median section above. Even when

the data are interval (as, for example, when the data are dealing with monetary

value, or income), the mean is not always the best choice of central tendency

despite the fact that it can use arithmetic calculations.

The mode, on the other hand, is helpful in describing when a set of scores fall

into more than one distinct cluster (‘‘bimodal distribution’’). Consider Table 5.6, in

which I ‘‘adjusted’’ just a few scores to illustrate the situation in which a set of

scores has more than one most frequently occurring value. If you look closely, you

will see that there are now two modes: 50 and 73.

In this situation, what is the most appropriate measure of central tendency?

The data are interval, so we could calculate a mean. The mean for these

adjusted scores is 50.80, just slightly higher than the mean (50.63) of the data

in Table 5.4. However, would the resulting mean value truly be the most char-

acteristic, or typical, score in the set of scores? No, because the scores in the

set illustrated in Table 5.6 no longer cluster around a central point; they cluster

around two central points.

Figure 5.2 shows how this looks graphically. As you can see, the math achieve-

ment values along the bottom axis show that there are two most common scores:
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50 and 73. Clearly, this distribution does not look like a smooth normal curve.

Rather, there are two distinct humps that make it problematic to define with just

one characteristic value. In this case, if we reported that the mean value of 50.8,

you can see that it is not the most characteristic score and would therefore be

misleading.

These are real educational data. If we were using the data to describe the

sample of schools’ achievement, for example, we might report that the set of

schools contain two separate groups. Several schools perform at around 50%

met standard for achievement whereas another group performs around 74%. If

this were the case, we might want to investigate the characteristics of the

different groups of schools to see why they might perform so differently.

We will examine below the graphing procedures we used to create Figure 5.2.

First, we will examine how to use Excel1 and SPSS1 to calculate central tendency

values.

TABLE 5.6 Math Achievement Percentages for Bimodal Set

Math Percent Met Standard

38 59 35 50

37 74 73 79

46 50 72 89

63 62 73 50

51 25 24 42

30 53 34 73

36 63 40 56

50 73 58 10

40 50 49 56

41 73 28 27

FIGURE 5.2 Graph of bimodal distribution.
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USING EXCEL1 AND SPSS1 TO UNDERSTAND CENTRAL TENDENCY

Calculating measures of central tendency with Excel1 and SPSS1 is straight-

forward and simple.

Excel1

Starting with Excel1, you can see from Figure 5.3 that I created a simple spread-

sheet listing the percentage values of school math achievement from Table 5.4.

You cannot see all the values since there are 40 scores and they exceed one page on

the spreadsheet.

Figure 5.3 shows the data listed with the heading, ‘‘Table 5.4 Percentages’’ in the

‘‘Data’’ menu screen. This screen contains the ‘‘Data Analysis’’ submenu that we

discussed in Chapter 3. When you select Data Analysis, Excel1 provides the list of

tools that we can use to calculate central tendency values. This drop box, shown in

Figure 5.3 overlaying the spreadsheet, lists the ‘‘Analysis Tools’’ in a separate

menu. I selected ‘‘Descriptive Statistics’’ as shown in the highlighted section of

Figure 5.3. Selecting Descriptive Statistics results in another drop box, as shown

in Figure 5.4.

FIGURE 5.3 School achievement values for calculating central tendency.
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There are several features to observe in Figure 5.4.

1. I selected the entire column of data, including the heading for the analyses, so

I needed to ‘‘inform Excel1’’ not to include the heading in the analyses along

with the percentages. You can see this selection in the ‘‘Labels in First Row’’

box near the top of the drop box.

2. The window to the right of the ‘‘Input Range:’’ row (second from the top)

shows the cells that I selected in the spreadsheet. As you can see, the window

shows ‘‘$A$1:$A$41’’; this indicates that I chose the cells from A1 to A41 for

my analysis. This includes the heading in A1 and then the percentage data

from A2 to A41.

3. Near the middle of the drop box, the ‘‘New Worksheet Ply:’’ is selected. This

instructs Excel1 to present the results of the analyses on a separate worksheet

within the spreadsheet. We could specify that the results be placed in the same

worksheet by listing the appropriate location in the widow to the right of this

selection.

4. I placed a check mark in the ‘‘Summary Statistics’’ option. This will create the

central tendency calculations on a separate sheet within the spreadsheet.

When I select ‘‘OK,’’ Excel1 provides a separate worksheet with the results

of the analysis I requested. This is shown in Figure 5.5, in which I renamed

the active worksheet ‘‘Results.’’ You can see a column of results, among which

are the central tendency measures that were discussed above. The mean (high-

lighted in Figure 5.5) is 50.625, and the median and mode are both 50. There

FIGURE 5.4 Descriptive statistics drop box for calculating central tendency.
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are many other calculated values as well that we will discuss in subsequent

chapters. You should note that Excel1 does not make it clear if there is more

than one mode. If you run the same analysis (descriptive statistics) using the

data from Table 5.6, the results indicate that the mode is 50. No mention is

made of the other mode of 73.

SPSS1

Providing the same results with SPSS1 is just as easy as using Excel1. Figure 5.6

shows the screen in which I imported the data from Excel1 to SPSS1. The variable

label is now ‘‘Table54Percentages’’ since SPSS1 does not use empty spaces in vari-

able names (nor are most punctuation marks tolerated). In Figure 5.6 you can see

that I selected the Analyze menu, and then I specified ‘‘Descriptive Statistics’’ and

‘‘Frequencies’’ in a secondary drop menu. You will also notice that there is another

choice we could make if we wished to obtain descriptive statistics: ‘‘Descriptives,’’

the choice immediately below Frequencies. Choosing Frequencies enables me to

specify several more descriptive statistics, including the median and mode values,

than the Descriptives submenu allows.

Figure 5.7 shows the SPSS1 screens that result from choosing Frequencies.

The first screen that appears allows you to specify which variable you wish to

use in the analyses. Use the arrow in the middle of the screen to select and

FIGURE 5.5 Descriptive statistics results worksheet.
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FIGURE 5.6 Descriptive frequencies menus in SPSS1.

FIGURE 5.7 Frequencies submenus in SPSS1.
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move the variable into the ‘‘Variable(s)’’ window, as shown in Figure 5.7. The

second screen comes from choosing ‘‘Statistics’’ in the Frequencies submenu.

You can see this button just to the right of the ‘‘Variable(s)’’ screen. This sec-

ond screen enables you to select Mean, Median, and Mode (among other

analyses) as shown in Figure 5.7.

When you make these selections, SPSS1 generates an output file showing

the results of your request, as shown in Figure 5.8. The output file lists the

measures of central tendency we requested. As you can see, the values of

mean, median, and mode are the same values reported from the Excel1 analy-

sis. The additional output in SPSS1 includes a frequency table in which each

raw score value is listed along with the number of times it appears in the data

(‘‘Frequency’’) and the resulting percent of the set of scores. Because of the

length of the SPSS1 output, you cannot see all the raw score values, but the

frequency table lists a frequency of 5 for the value 50, along with the resulting

percent of the entire set of values (12.5%).

One further feature of the SPSS1 output is a report on multiple modes. As an

example, when I used the data from Table 5.6 (showing the bimodal values), the

output report shows the table in Figure 5.9. Although the specific values of the mul-

tiple modes are not shown, the output includes a statement that there are multiple

modes and the listed value is the lowest value.

FIGURE 5.8 SPSS1 frequency output.
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DISTRIBUTIONS

The purpose of descriptive statistics, like the measures of central tendency we have

discussed thus far, is to explain the features of the set of values we have to work

with as we seek to answer a research question. We used the sample of reading

achievement values above to identify a typical score among a set of scores, for

example. In the next chapter, we will explore visual ways of describing the same

data.

Data in the real world present themselves to the researcher in patterned

ways. We know from experience that people’s attitudes and behaviors are

fairly predictable. This doesn’t mean that our actions are predetermined or

fixed. Rather, it suggests that human beings approach life and experience in

similar ways, with similar results. I discuss this assumption in more detail in

my earlier book on the nature of patterns embedded in data (Abbott, 2010).

In my classes, I stress the point that statistics cannot achieve certainty; it can only

increase our understanding of uncertainty. Researchers focus their analyses at

discovering the patterns of likelihood for certain actions and beliefs.

I will not belabor these points here, but I do want to point out that, because

behavior and attitudes are somewhat predictable, we can study them scientifically.

Part of this study is the recognition that data are typically ‘‘shaped’’ in recognizable

patterns called distributions. Most people recognize the concept of ‘‘normal distri-

bution,’’ where data mass up around some middle value and taper off to the left

and right of this value (or above and below it). A great many, if not most, human

behaviors and attitudes are characterized by this distribution. (I will discuss the

features of the normal distribution much more comprehensively in later chapters.)

Not all data are normally distributed, however. Although the values distributed

are patterned and predictable, they often take many different shapes depending on

Statistics

40N valid

N missing 0

Mean 50.80

Median 50.00

Mode 50a

aMultiple modes exist. The smallest

 value is shown.   

FIGURE 5.9 SPSS1 output showing multiple mode report.
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what they measure. For example, a ‘‘Poisson’’ distribution, which measures the

likelihood of rare events with large numbers of people (e.g., rare diseases across the

United States), does not always have the appearance of the normal, ‘‘bell’’-shaped

distribution. There are many other distributions that you can study in advanced

mathematical statistics texts if you are interested. In this course, we will base our

statistical analyses on the normal distribution.

Think of the distribution as values being ‘‘dealt out’’ along some scale of

values. The more values there are to be dealt out, the more the values pile up

around a central value with fewer values falling above and below the central

point. Figure 5.10 shows an example of a normal distribution. We will examine

this in greater detail later, but for now you can see the ‘‘hump’’ in the middle with

‘‘tails’’ in the ends of the distribution of values. When we calculated the mean,

median, and mode values earlier, we were calculating the value of the distributed

values that characterized most of the values. If all of these values are the same, we

can speak of a ‘‘perfect’’ normal distribution where there are known percentages of

values distributed under the curve. If they are the same, then there would be only

one mode, the median would be the exact middle of the set of scores, and the mean

value would not reflect extreme scores that would imbalance the set of scores in

one or the other direction.

DESCRIBING THE NORMAL DISTRIBUTION

As we will see, we can learn a great deal about the normal distribution by seeing it

graphically with a set of actual data. I will show how to create a visual distribution

by using the frequency information calculated in SPSS1. Before we enter that

discussion, however, I want to point out several ways to describe the normal distri-

bution using numerical calculations.

FIGURE 5.10 Example of the normal distribution of values.
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Central Tendency

We have already discussed these calculations (i.e., mean, mode, and median), but

there are other ways to capture a characteristic central point among a set of values.

In advanced statistics courses, you might learn some of these additional measures of

central tendency. You may learn to create the ‘‘harmonic mean,’’ the ‘‘geometric

mean,’’ or the ‘‘quadratic mean,’’ depending on the nature of your data. In this

course, we will describe how the data from a distribution of scores ‘‘clusters up’’

using the arithmetic mean.

Skewness

Skewness is a term that describes whether, or to what extent, a set of values is not

perfectly balanced but rather trails off to the left or right of center. I will not discuss
how to calculate skew, but it is easy to show. If I use the data from Table 5.6, with

some additional adjustment of scores, you can see from Figure 5.11 that the result-

ing distribution of scores looks imbalanced; in this case, many of the scores trail to

the right of the mean. In this case, we can say that the distribution is positively

skewed (SKþ) since the values trail to the right. The distribution would be nega-

tively skewed (SK�) if the scores trailed away to the left.

Both Excel1 and SPSS1 provide calculations for Skewness. Figures 5.12 and

5.13 show the output from Excel1 and SPSS1, respectively, that includes the

skewness figures. In both cases, the skewness value is 0.43.

The interpretation of the skewness value helps to understand the shape of the

distribution. A skewness value of zero indicates perfect balance, with the values in

the distribution not trailing excessively to the left or right of the center. Positive

values indicate values trailing to the right, and negative values indicate left trailing.

As you can see in both Figures 5.12 and 5.13, the value of 0.43 is positive and

therefore the values will trail to the right (as shown in Figure 5.11).

The important question researchers must ask is, How far from zero is considered

excessive? That is, how big can the skewness number get with the distribution

still retaining the general shape of a normal distribution? The SPSS1 output in

FIGURE 5.11 Illustration of a positively skewed distribution.
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Figure 5.13 is more helpful because it provides the ‘‘Standard Error of Skewness.’’

We will discuss this value in later chapters, but for now you can establish a

general rule of thumb for excessive skew by dividing the skewness value by the

Standard Error of Skewness, resulting in a skewness index. If the resulting index

number does not exceed two or three (positive or negative values), depending on

the number of values in the distribution, the distribution is considered normal

and balanced. You can use the sign (positive or negative) of the skewness value

to indicate which way the skew tends, but the index magnitude indicates

whether or not the skewness is excessive.

Statistics

40N valid

N missing 0

Mean 52.1750

Median 50.0000

Mode 50.00

Skewness 0.430

Standard error of skewness 0.374

Kurtosis –0.077

Standard error of kurtosis 0.733

FIGURE 5.13 SPSS1 output showing descriptive statistics including skewness.

Column1 

Mean 52.18 

Standard error 3.21 

Median 50.00 

Mode 50.00 

Standard deviation  20.32 

Sample variance 413.07 

Kurtosis –0.08 

Skewness 0.43 

Range 88.00 

Minimum 10.00 

Maximum 98.00 

Sum 2087.00 

Count 40.00 

FIGURE 5.12 Excel1 output showing descriptive statistics including skewness.
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Using the reported figures in Figure 5.13, you can see that this procedure results in

a skewness index of 1.15. Therefore, even though the distribution looks imbalan-

ced (see Figure 5.11), it can be considered normally distributed for statistical purposes.

I mentioned earlier that the number of values in the distribution affects this

skewness index. While this will become clearer later on, I mention here that the

Standard Error of Skewness reported by SPSS1 will be smaller with larger numbers

of values in the distribution. So, large datasets (200–400) might have very small

Standard Error of Skewness numbers and result in the overall skewness index being

very large (since dividing by a smaller number yields a larger result). Small

datasets (30–50) will typically have large Standard Error of Skewness numbers

with resulting small skewness indices.

In light of these issues, the researcher needs to consider the size of the distribu-
tion as well as the visual evidence to make a decision about skewness. In the exam-

ple in Figures 5.12 and 5.13, a skewness number of 0.43 seems small, since it has a

Standard Error of Skewness of .34 and would therefore yield the index of 1.15

(within our �2 to 3 rule of thumb). However, if we were to add several more cases

to the distribution, the Standard Error of Skewness would likely shrink resulting in a

larger skewness index. If we use a large dataset, I might view the visual evidence

alone as a better measure of overall balance. Smaller datasets are more problematic,

even though the skewness indexes are within normal bounds. Use both the visual

and numerical evidence to help you decide upon the overall shape of skewness.

There is another way to help assess the extent of skewness using the three

measures of central tendency we discussed (mean, median, and mode). If a distri-

bution of scores is ‘‘balanced,’’ with most of the scores massing up around a

central point, then the mean, median, and mode will all lie on the same point. The

mean is typically the most ‘‘sensitive’’ indicator, and it will get pulled toward

the direction of the skew more readily than the median and the mode. You can use

both the numerical results and the visual inspection to see if this method helps.

The output shown in Figure 5.5 indicates that the mean is 50.63 while both

median and mode are 50. While there is a slight discrepancy, the three values

are very close to one another. Compare these results with those reported in Fig-

ures 5.12 and 5.13 in which the mean is 52.18 and the median and mode are

unchanged. This report, along with the visual evidence in Figure 5.11, indicates a

likely positive skew to the distribution.

Kurtosis

Kurtosis is another way to help describe a distribution of values. This measure

indicates how ‘‘peaked’’ or flat the distribution of values appears. Distributions

where all the values cluster tightly around the mean might show a very high point

in the distribution since all the scores are pushing together and therefore upward.

This is known as a ‘‘leptokurtic’’ distribution. Distributions with the opposite

dynamic, those with few scores massing around the mean, are called ‘‘platykurtic’’

and appear flat. ‘‘Perfectly’’ balanced distributions show the characteristic pattern

like the distribution in Figure 5.10, being neither too peaked nor too flat.
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Making a determination of the extent of kurtosis is similar to the method with

evaluating skewness. You can see from Figures 5.12 and Figure 5.13 that both

Excel1 and SPSS1 report kurtosis and standard error of kurtosis figures. Like

skewness, dividing the kurtosis by the standard error of kurtosis (creating a kurtosis

index) will provide a helpful measure for interpretation. You can use the same �2

or 3 rule such that resulting kurtosis index values greater than 2 or 3 are considered

out of normal bounds. Looking at the kurtosis values indicate which direction this

might take: Positive kurtosis values that are excessive are considered leptokurtic,

whereas negative kurtosis values that are excessive are platykurtic. It is also impor-

tant to use visual evidence as it is for determining skewness.

DESCRIPTIVE STATISTICS—USING GRAPHICAL METHODS

Up to now, we have discussed numerical ways of deciding upon the shape of

distributions. As I mentioned in the discussion of skewness above, it is also

important to be able to describe data visually. Many students and researchers,

as well as consumers of statistical reports, are visual learners. Therefore, it is

important to be able to inspect and analyze the distribution of values by visual

means in order to understand better the nature of the data and to effectively

communicate the results.

The simplest way to visually describe data is simply to rank order it from high to

low, or from low to high. Beyond this are several ways of displaying data to see its

underlying patterns. The frequency distribution is the most commonly accepted

way of showing the array of data.

Frequency Distributions

Frequency distributions are graphs that literally describe the distribution by showing

groups of values. We can use the values in Table 5.4 to demonstrate the method of

creating a frequency distribution and how to view the results. Table 5.7 shows these

values (because of the size of the table, Table 5.7 shows the values in two panels).

Table 5.7 shows the values in three columns. The ‘‘Unordered’’ column shows

the values without ranking or other ordering processes. The ‘‘Ordered’’ column

shows the same values ranked from smallest to largest values. The third column,

‘‘Freq. (10)’’ shows the values in groups of 10. That is, the numbers in this column

indicate how many values in the ordered list fit into groups of values of 10. Thus,

there is one value (‘‘10’’) that lays in the group between 10 and 20; there are four

values (24, 25, 27, 28) that lay in the group between 21 and 30, six values between

31 and 40, and so on. Just visually moving from the top to the bottom of the Freq.

(10) column gives you an idea of the shape of the distribution: 1, 4, 6, 6, 11, 5, 6, 1.

As you can see, there are more values in the middle than on either end, and the

values increase up to the middle and decrease thereafter. This is the numerical

shape of the distribution.

By the way, Figure 5.8 shows the SPSS1 frequency output of a range of values

like ours in the current example. As you can see in the output, SPSS1 reports the
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percent of the total set of numbers that each value represents. Thus, there is only

one value of ‘‘10’’ in the set of values, and it alone represents 2.5% of all the

values. Each of the remaining values are shown along with the percent of the total

set of cases that equal that particular value.

Histograms

We can use the graphical capabilities of Excel1 and SPSS1 to show a group of

values in a graph. The easiest way is to use the ‘‘histogram’’ or graph of the values

we created in the frequency distribution.

Before we do this, we must first decide the size of the groups within which we

will place the values, or the group interval. The decision of what size group

TABLE 5.7 Creating Frequency Groups for Visual Description

Unordered Ordered Freq. (10) Unordered Ordered Freq. (10)

38 10 1 49 62

37 24 28 63

46 25 50 63

63 27 79 66

51 28 4 89 69 5

30 30 50 72

36 34 42 73

50 35 73 73

40 36 56 74

41 37 10 77

59 38 6 56 79 6

74 40 27 89 1

50 40

62 41

25 42

53 46

63 49 6

72 50

50 50

77 50

35 50

73 50

69 51

66 53

24 56

34 56

40 58

58 59 11
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intervals to use will affect the visual results of the data. I used intervals of 10 in the

example in Table 5.7. Since the data represent percentages, I thought it would be

appropriate to use intervals of 10 percentage points. I could just as easily have used

intervals of five percentage points, or some other number. While there is no objec-

tive standard for which intervals to use, you need to have some rationale before you

create the histogram.

Figure 5.14 shows the first step in creating a histogram in Excel1. As you can

see, I selected the Data Analysis button from the Data menu. This results in a sepa-

rate menu in which I can select Histogram. First, however, I added another column

called ‘‘Bins.’’ This column is where I specify and list the group intervals. As you

can see, I created groups in intervals of 10 percentage points: from 10% to 20% to

30%, and so on. The Histogram procedure requires that we provide this to specify

the histogram that will be produced. I like to think of these as ‘‘buckets,’’ since they

are intervals, or receptacles, in which we are ‘‘throwing’’ our values.

Choosing Histogram from the ‘‘Data Analysis’’ menu results in the ‘‘Histogram’’

sub-menu shown in Figure 5.15. As you can see, I specified cells A1:A41 in the

‘‘Input Range:’’ to indicate the table of data and specified cells B1:B11 to indi-

cate the ‘‘Bin Range:’’ Be sure to check the ‘‘Labels’’ box if you include the varia-

ble labels (A1 and B1 in the example in Figure 5.14). Otherwise, the procedure will

not run; only numbers can be used in the procedure.

Figure 5.16 shows the frequency distribution that Excel1 returns (to a separate

sheet in the overall spreadsheet). You will see that the values from the data table

have been placed in the bins and that the frequency column specifies how many

values are in each bin. If you do not specify bins, Excel1 will return the values in

evenly distributed bins between the highest and lowest values in the dataset.

FIGURE 5.14 Excel1 output showing the Histogram specification and the data columns.
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Note that the frequencies in Figure 5.16 are a bit different than those I specified

earlier (1, 4, 6, 6, 11, 5, 6, 1) due to the different method for viewing the intervals.

Excel1 placed one value in the first bin (1–10), but none in the second (11–20), and

so on. I placed one value in the first bin (10–19) and four values in the second bin

(20–29), and so on. This difference underscores the necessity for carefully specify-

ing how you want the data treated. Again, there are no formal rules; just make sure

you use some criterion for creating the bins. You can adjust the histogram when it is

created, but it is easier to do it at the outset by carefully designing the intervals.

Once the frequency distribution is created, you can create the histogram by

choosing Insert on the main menu and Column on the submenu as shown in

Figure 5.17. This results in a sub-menu of several choices for the style of

FIGURE 5.16 Excel1 output showing the frequency distribution.

FIGURE 5.15 Excel1 output showing the Histogram sub-menu.
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histogram you wish to create. I ordinarily choose the ordinary bar graph (the

first choice under the ‘‘2-D Column’’ group shown in Figure 5.17).

Making this choice results in the histogram shown in Figure 5.18. You can see

the general shape of the distribution is roughly normal, with a few minor excep-

tions. Taken together with the numerical analyses discussed in the earlier sections

(skewness and kurtosis values, size and similarity of mean, median, and mode), this

indicates that the data in this set are normally distributed.

You can also create histograms in SPSS1 by using the Graphs menu. When you

select Graphs, SPSS1 returns a series of submenus as shown in Figure 5.19. As you

can see, Graphs allows you to choose from a series of graph templates, among

FIGURE 5.18 Excel1 histogram generated from the frequency distribution.

FIGURE 5.17 Excel1 output showing how to insert a graph using the frequency

distribution.
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which is ‘‘Legacy Dialogs.’’ This gives you a list of classical graph designs includ-

ing the Histogram. Choosing this option results in the dropbox appearing in which

you can specify the features of the histogram, as shown in Figure 5.20. As you can

see, you can also call for a line showing the normal curve by checking the box

called ‘‘Display normal curve.’’

The final result of these procedures is shown in Figure 5.21, an SPSS1 output

file including the histogram. You can double-click on the histogram and copy it so

that you can include it in a word processing file or other report format. You can also

change the format features (axis intervals, titles, etc.) by double-clicking in the

graph area. When you do this, you are presented with several dialog boxes that

include several tools in which you can produce custom histograms.

TERMS AND CONCEPTS

Bimodal A set of data with two modes.

Central Tendency One of the ways to describe a set of data is to measure the way

in which scores ‘‘bunch up’’ around a mean, or central point of a distribution.

Mean, median, and mode are typical measures of central tendency.

Descriptive Statistics The branch of statistics that focuses on measuring and des-

cribing data in such a way that the researcher can discover patterns that might

exist in data not immediately apparent. In these processes, the researcher does

FIGURE 5.19 SPSS1 procedure for creating the histogram.
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FIGURE 5.21 SPSS1 histogram in the output file.

FIGURE 5.20 SPSS1 procedure for specifying the features for the histogram.

72 DESCRIPTIVE STATISTICS—CENTRAL TENDENCY



not attempt to use a set of data to refer to populations from which the data may

have been derived, but rather to gather insights on the data that exist at hand.

Data Distributions The patterned shape of a set of data. Much of statistics for

research uses the ‘‘normal distribution,’’ which is a probability distribution

consisting of known proportions of the area between the mean and the continuu-

m of values that make it up.

Frequency Distributions Tabular representations of data that show the frequency

of values in groupings of data.

Histograms Graphical representations of frequency distributions. Typically,

these are in the form of ‘‘bar graphs’’ in which bars represent groups of num

erical values.

Inferential Statistics The branch of statistics that uses procedures to estimate and

make conclusions about populations based on samples.

Interval Data Data with the qualities of an ordinal scale, but with the assumption

of equal distances between the values and without a meaningful zero value. Typ-

ically, researchers use standardized test values (e.g., IQ scores) as an example of

an interval scale in which the difference between IQ scores of 100 and 101 is

the same as the distance between IQ scores of 89 and 90. This assumption allows

the researcher to use mathematical properties (i.e., adding, subtracting, multi-

plying, and dividing) in their statistical procedures. The lack of a meaningful

zero (e.g., what does an IQ of ‘‘0’’ mean?) is typically exemplified by the ‘‘0’’ on

a Fahrenheit scale not referring to the ‘‘absence of heat’’ but rather simply to a

point in the overall temperature scale.

Kurtosis The measurement of a distribution of scores that determines the exte-

nt to which the distribution is ‘‘peaked’’ or flat. Data distributions that have

excessive kurtosis values may be overly peaked (‘‘leptokurtic’’) or overly flat

(‘‘platykurtic’’).

Mean Average value in a set of data.

Median Middlemost score in a set of data.

Mode The most commonly occurring value in a set of data.

Nominal Data Data that exist as mutually exclusive categories (e.g., home

schooling, public schooling). These data can also refer to ‘‘categorical data,’’

‘‘dichotomous variables’’ (when there are two naturally occurring groups like

male/female), or ‘‘dichotomized variables’’ (when two categories are derived

from other kinds of data like rich/poor).

Ordinal Data Data that exist in categories that are ranked or related to one anoth-

er by a ‘‘more than/less than’’ relationship like ‘‘strongly agree, agree, disagree,

strongly disagree.’’

Ratio Data Interval data with the assumption of a meaningful zero constitute rat-

io data. An example might be the amount of money that people have in their

wallets at any given time. A zero in this example is meaningful!! The zero allo-

ws the researcher to make comparisons between values as ‘‘twice than’’ or ‘‘half

of’’ since the zero provides a common benchmark from which to ground the
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comparisons. Thus, if I have $2 in my pocket and you have $4, I have half of

your amount.

Scales of Measurement The descriptive category encompassing different classes

of data. Nominal, ordinal, interval, and ratio data differ according to the inform-

ation contained in their scales of values. Also known as ‘‘Levels of Measure-

ment.’’

Skewness A measurement of a data distribution that determines the extent to whi-

ch it is ‘‘imbalanced’’ or ‘‘leaning’’ away from a standard bell shape (in the case

of a normal distribution).

Spuriousness A condition in which an assumed relationship between two variab-

les is explained by another variable not in the analysis.

REAL-WORLD LAB I: CENTRAL TENDENCY

Understanding educational strategies and outcomes is a challenge for educators and

practitioners. What explains academic achievement? What impact does a changing

school structure have on student outcomes? These and other questions are routinely

investigated in the attempt to clarify why some schools are effective and others

ineffective in promoting student learning.

I have worked across the country with different programs designed to

improve student outcomes like achievement, retention, and college readiness,

among many others. Each of these programs is well-intentioned, but yields

differential results. Funding agencies and recent government programs focus on

different features of school experience and structure likely to yield positive results

for students. I cannot hope to review all of these here, but I refer readers to my

earlier cited book (Abbott, 2010) as (a) a general summary of the state of these

programs and (b) a recommendation for ways of viewing their success.

This Lab uses data from the state of Washington1 that identifies several out-

comes and characteristics of its schools. Given the large size of the database,

we will use a random sample of schools (N¼ 40) to clarify the nature and use

of central tendency.

Using the Excel1 database in Table 5.8 on 40 schools, conduct the following

analyses using Excel1 and/or SPSS1:

1. Calculate mean, mode, and median for the following variables:

Reading percent met standard

Math percent met standard

2. Report skewness and kurtosis figures.

3. Based on your response to #1 and #2 above, discuss the shape of the distribu-

tions of these variables.

1 The data are used with the permission of the Office of the Superintendent of Public Instruction.
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4. Create a histogram for ‘‘Reading Percent Met Standard.’’

5. Provide a summary or interpretation of the findings.

REAL-WORLD LAB I: SOLUTIONS

1. Calculate mean, mode, and median for the following variables:

Reading percent met standard

Math percent met standard

2. Report skewness and kurtosis figures.

Results

Excel1 data analysis procedures generate the output shown in Table 5.9, and

Table 5.10 shows the SPSS1 results. The shaded cells in Table 5.9 show the de-

scriptive statistics required to respond to #1 and #2 above. The mean, median, and

modes for reading and math are listed along with skewness and kurtosis figures.

Note, however, that the SPSS1 results in Table 5.10 indicate multiple modes,

whereas the Excel1 results in Table 5.9 do not. Recall in our discussion that

Excel1 does not report multiple modes, so it is important to check both sets of

TABLE 5.8 School Data Sample for Lab 1

Reading Percent Met

Standard

Math Percent Met

Standard

Reading Percent Met

Standard

Math Percent Met

Standard

73 38 69 35

69 37 82 73

76 46 81 69

69 63 83 66

66 51 50 24

62 30 54 34

59 36 70 40

81 50 82 58

74 40 85 49

73 41 47 28

80 59 85 50

88 74 90 79

64 50 85 89

83 62 70 50

68 25 70 42

79 53 73 73

81 63 63 56

88 72 37 10

77 50 73 56

85 77 59 27
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results to ensure the variable is not multimodal. Since we are using continuous

data, there may be instances of the same values occurring only once or twice,

thereby indicating multiple modes, but these may not represent distorted (non-nor-

mal distributions). The visual evidence from the graphs will help to confirm this.

3. Based on your response to #1 and #2 above, discuss the shape of the distribu-

tions of these variables.

Results

The skewness and kurtosis figures for both variables indicate normally distributed

values, although the Excel1 output in Table 5.9 does not report the standard error

values for each measure. Judging from the values shown in Table 5.9, the variables

appear to be ‘‘in bounds’’ of a normal distribution. The mean, median, and mode

TABLE 5.10 SPSS1 Descriptive Statistics for Lab 1

Reading Percent Met Standard Math Percent Met Standard

N valid 40 40

N missing 0 0

Mean 72.48 50.61

Median 73.20 50.00

Mode 70a 50

Skewness �0.940 0.008

Standard error of skewness 0.374 0.374

Kurtosis 0.797 �0.412

Standard error of kurtosis 0.733 0.733

aMultiple modes exist. The smallest value is shown.

TABLE 5.9 Excel1 Descriptive Statistics for Lab 1

Reading Percent Met Standard Math Percent Met Standard

Mean 72.48 Mean 50.61

Standard error 1.90 Standard error 2.79

Median 73.20 Median 50.00

Mode 72.70 Mode 50.00

Standard deviation 12.00 Standard deviation 17.68

Sample variance 144.10 Sample variance 312.44

Kurtosis 0.80 Kurtosis �0.41

Skewness �0.94 Skewness 0.01

Range 52.60 Range 78.80

Minimum 37.10 Minimum 9.70

Maximum 89.70 Maximum 88.50

Sum 2899.30 Sum 2024.20

Count 40.00 Count 40.00
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values for reading appear to be similar, indicating a balanced distribution. The

results for math also appear balanced using the same criterion.

The SPSS1 output in Table 5.10 adds the additional information of the

standard errors for skewness and kurtosis. As I discussed earlier, if you divide

the skewness and kurtosis values by their respective standard errors, you can

get a more precise picture of whether or not the variables appear to be nor-

mally distributed. Table 5.11 shows the results of creating indexes by making

these calculations.

The shaded values show the skewness and kurtosis indexes for reading and

math. For reading, the skewness index is large, but it does not exceed 3, which

is within the boundaries of our criterion of a normally distributed variable.

Note that the skewness value (�0.940) is negative, indicating a tendency

toward a skew to the left, but still within normal bounds. The kurtosis value

for math (�0.412) is negative, indicating a tendency toward being flat, but the

index (0.562) shows that it is within normal bounds. All the other indexes (for

both reading and math) are within the boundaries we discussed earlier for

normal distributions.

4. Create a histogram for ‘‘Reading Percent Met Standard.’’

Figure 5.22 shows the Excel1 histogram for reading, and Figure 5.23 shows the

SPSS1 histogram. In both cases, the distribution appears to be negatively skewed.

This follows the numerical trends described in Table 5.11.

TABLE 5.11 Skewness and Kurtosis Indexes for Reading and Math Data

Reading Math

Skewness �0.940 0.008

Standard error of skewness 0.374 0.374

Index of skewness 2.51 0.021

Kurtosis 0.797 �0.412

Standard error of kurtosis 0.733 0.733

Standard Index of kurtosis 1.09 0.562

FIGURE 5.22 Excel1 histogram for reading percent met standard.
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5. Provide a summary or interpretation of the findings.

Recall that with fewer cases, a distribution of scores may have a large stan-

dard error, thus creating a small skewness figure and therefore a small skewness

index (i.e., within bounds). In this case, we might combine the evidence of the

visual data provided by histograms to help make the determination about

whether the variable is normally distributed. Taken together, the numerical and

visual evidence suggest that reading percent met standard in this sample of data

FIGURE 5.23 SPSS1 histogram for reading percent met standard.

FIGURE 5.24 Excel1 histogram for math percent met standard.
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may be slightly negatively skewed, even though the numerical data suggest that

it is normally distributed. We should keep this in mind if we use this variable in

subsequent statistical analyses.

By contrast with the reading results, Figures 5.24 and 5.25 show the Excel1 and

SPSS1 histograms (respectively) for math percent met standard. You can see how

this variable appears normal, which matches the numerical results.

FIGURE 5.25 SPSS1 histogram for math percent met standard.
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6
DESCRIPTIVE STATISTICS—
VARIABLITY

In Chapter 5, we examined several aspects of central tendency in the attempt to

describe a set of data. In addition to mean, median, and mode, we discussed skew-

ness and kurtosis as measures of the balance of a distribution of values. Excel1 and

SPSS1 provided visual descriptions as well as numerical results to help make

assessments of the likely normal distribution of our data. The frequency distribution

and histogram are effective ways of communicating the shape and features of the

distribution.

I will continue to explore descriptive statistics in this chapter. This time, we will

examine the extent to which scores spread out from the mean of a distribution of

values. It is important to understand the characteristic score or value of a distribu-

tion, as we saw with central tendency, but it is also important to understand the

extent of the scatter of scores away from the center. How far away do scores fall,

and what is the average distance of a score from the mean? The answers to these

and similar questions will help us to complete our description of the distribution of

values.

This chapter thus deals with variability or dispersion of scores. Several measures

of variability are important to grasp since we will use them throughout the book in

virtually all the statistical procedures we cover.

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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RANGE

The first way to measure variability is the simplest. The range is simply the numerical

difference between the highest and lowest scores in the distribution and represents a

helpful global measure of the spread of the scores. But remember it is a global mea-

sure and will not provide extensive information. Look at Figure 6.1. If two students

score on the extremes of the distribution of achievement scores, and everyone else

scores near the mean, the range will provide a distorted view of the nature of the

variation. The range represents the ‘‘brackets’’ around the scores, but it cannot tell

you, for example, how far the ‘‘typical’’ score might vary from the mean.

Nevertheless, the range contains important information. It provides a convenient

shorthand measure of dispersion and can provide helpful benchmarks for assessing

whether or not a distribution is generally distributed normally (I will develop this

benchmark later in this chapter).

There are several ways of ‘‘dividing up’’ the distribution of scores in order to

make further sense of the dispersion of the scores. Some of these are rarely used,

but others are quite important to all the procedures we will explore in this book.

PERCENTILE

The percentile or percentile rank is the point in a distribution of scores below which

a given percentage of scores fall. This is an indication of rank since it establishes a
score that is above the percentage of a set of scores. For example, a student scoring

in the 82nd percentile on a math achievement test would score above 82% of the

other students who took the test.

Therefore, percentiles describe where a certain score is in relation to the others in

the distribution. The usefulness of percentiles for educators is clear since most

schools report percentile results for achievement tests. The general public also sees

these measures reported in newspaper and website reports of school and district

progress.

Statistically, it is important to remember that percentile ranks are ranks and are

therefore not interval data. Figure 6.2 shows the uneven scale of percentile scores

along the bottom axis of values in the frequency distribution.

FIGURE 6.1 The characteristics of the range.
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As Figure 6.2 shows, the distance between the 30th and 40th percentiles is not

the same as the distance between the 10th and 20th percentiles, for example. The

30th to 40th percentile distance is much shorter than the 10th to 20th percentile

distance. That is because the bunching up of the total set of scores around the mean

and the tailing off of the scores toward either end of the frequency distribution

result in uneven percentages along the scale of the distribution. Thus, a greater per-

centage of the scores lay closer to the mean, and a lesser percentage of the scores

lay in the tails of the distribution.

Many educational researchers have fallen into the trap of assuming that percent-

iles are interval data and using them in statistical procedures that require interval

data. The results are somewhat distorted under these conditions since the scores

are actually only ordinal data. The U.S. Department of Education developed the

Normal Curve Equivalent (NCE) score as a way of standardizing the percentile

scores. This results in a scale of scores along the bottom axis of the frequency

distribution that have equal distances between values. This transforms rank scores

to interval scores enabling the educational researcher to use the values in more

powerful statistical procedures.

SCORES BASED ON PERCENTILES

Education researchers use a variety of measures to help describe how scores relate

to other scores and to show rankings within the total set of scores. The following are

some of these descriptors based on percentiles:

Quartiles. These are measures that divide the total set of scores into four equal

groups. This is accomplished by using three ‘‘cutpoints’’ or values that create

the four groups. These correspond to the 25th, 50th, and 75th percentiles.

Deciles. These break a frequency distribution into ten equal groups using nine

cutpoints (the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and 90th percent-

iles). They are called deciles since they are based on groups of 10 percentiles.

Interquartile Range. These scores represent the middle half of a frequency distri-

bution since they represent the difference between the first and third quartiles

FIGURE 6.2 The uneven scale of percentile scores.
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(the 75th minus the 25th percentiles). This is a global descriptor for the varia-

bility of a set of scores since the other half of the scores would reside in both

of the tails of the distribution.

USING EXCEL1 AND SPSS1 TO IDENTIFY PERCENTILES

Through much of this chapter, I will use a sample of the TAGLIT (Taking a Good

Look at Instructional Technology) database.1 These data come from the 2003

nationwide survey of elementary and secondary teachers, students, and school

administrators regarding the potential impacts of instructional technology on

classroom outcomes. Originally developed by educators in the University of North

Carolina, these data are currently housed and operated by T.E.S.T. Inc.

The TAGLIT measure is comprised of a series of instruments administered to

different groups within schools in the attempt to understand the extent of technolog-

ical literacy and the impact that technology might have on different student,

teacher, and school outcomes. I combined some of the original data into ‘‘factors’’

that express the following aspects of middle- and high-school teacher experience

with technology:

� The technology skill levels of teachers in secondary schools.

� How often technology applications were used in learning.

� What access to technology did teachers have?

� What technology support was available for teachers?

The database I will use consists of a random sample of teachers from forty

schools. There are several variables in this database, but I will only use one,

student-to-teacher ratios, to demonstrate how to use Excel1 and SPSS1 to generate

percentiles.

Figure 6.3 shows the Excel1 data screen in which I selected the statistical

functions from the More Functions menu. You can see that I selected the

‘‘PERCENTILE’’ function, which allows me to specify a given percentile with

these student-to-teacher ratios (‘‘ratio’’). Note that I selected a cell out of the range of

my data (‘‘DK2’’) so that the percentile I choose will be returned outside the data field.

For this example, I will choose to identify the 72nd percentile, or the score below

which 72% of the cases lay. Figure 6.4 shows the percentile function in which

I specified the 72nd percentile (0.72 in the ‘‘K’’ window) from the array of data

in the DI column (‘‘DI2:DI41’’). When I select OK, Excel1 returns the 72nd per-

centile value of 16.67. Therefore, 72% of the student–teacher ratios in this sample

are below 16.67. You will note in the screenshot in Figure 6.4 that the percentile

value is identified in the dropbox (in the right middle of the box) if you do not wish

to paste it in the selected cell in the spreadsheet.

1 The author acknowledges the kind approval of T.E.S.T., Inc., the owner and manager of the 2003

TAGLIT data for the use of TAGLIT databases for this book (http://www.testkids.com/taglit/).
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FIGURE 6.3 Using the Excel1 functions to create percentiles.

FIGURE 6.4 Specifying a percentile with Excel1 functions.
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Ratio

N Valid 40

N Missing 0

Percentiles 72 16.6667

FIGURE 6.5 Specifying a percentile with SPSS1 functions.

FIGURE 6.6 SPSS1 output for percentile calculation.

The procedure is also very simple using SPSS1. Selecting the Frequencies

procedure, as I described in Chapter 5 (see Figure 5.6), I can specify the same 72nd

percentile and generate the screen shown in Figure 6.5. Selecting ‘‘Continue’’ gen-

erates the screen shown in Figure 6.6. As you can see, the same value (16.67) is

generated by SPSS1.

NOTE

Please note that Excel1 often calculates a slightly different percentile value than

SPSS1 because of the way it handles tied values. Excel1 does this by assigning
the same rank for tied values rather than averaging the tied ranks. That is, if
two values are the same in a string of values, their ranks should be averaged;

apparently, Excel1 does not average the ranks; rather, it simply assigns the

same rank to the tied scores. With our example variable, ratio, there happen to

be two identical ratios (i.e., schools with the same student–teacher ratio), where
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both schools have a ratio of 16.67 (cells DI12 and DI14). Excel1 assigns both

values a rank of 11, since they are the 11th and 12th values in a ranked list.

However, the ranks should technically be averaged, so that both values of 16.67

would receive ranks of 11.5 (where (11þ 12)/2¼ 11.5).

The examples I have discussed above (Figures 6.4 through 6.6) show the same

percentile value when calculated in Excel1 and SPSS1. This just happens to be

because the 72nd percentile of 72 falls at the ratio percentage of 16.67, the two

schools with the tied scores. However, if you specify a percentile of 90, Excel1

returns ‘‘23.38’’ whereas SPSS1 returns ‘‘23.72.’’ Researchers occasionally find

two or more cases with exactly the same values (especially among small datasets

using percentages) among a set of continuous scores in research. You should be

aware of this discrepancy in the way Excel1 and SPSS1 calculate percentiles.

STANDARD DEVIATION AND VARIANCE

To some, these statistical measures appear mysterious; to others, they may seem

superfluous. However, both measures are crucial to calculation and understanding

of statistical procedures we will cover in this book. Make sure you have a level of

comfort with what they represent and how to calculate them before you move on to

the further topics we discuss.

The standard deviation (SD) and variance (VAR) are both measures of the

dispersion of scores in a distribution. That is, these measures provide a view of the
nature and extent of the scatter of scores around the mean. So, along with the mean,

skewness, and kurtosis, they provide a fourth way of describing the distribution of a

set of scores. With these measures, the researcher can decide whether a distribution

of scores is normally distributed.

Figure 6.7 shows how scores in a distribution spread out around the mean value.

Each score can be thought to have a ‘‘deviation amount’’ or a distance from the

mean. Figure 6.7 shows these deviation amounts for four raw scores (X1�X4).

The VAR is by definition the square of the SD. Conceptually, the VAR is a

global measure of the spread of scores since it represents an average squared devia-
tion. If you summed the squared distances between each score and the mean of a

distribution of scores (i.e., if you squared and summed the deviation amounts), you

FIGURE 6.7 The components of the SD.
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would have a global measure of the total amount of variation among all the scores.

If you divided this number by the number of scores, the result would be the VAR, or

the average squared distance from the mean.
The SD is the square root of the VAR. If you were to take the square root of the

average squared distances from the mean, the resulting figure is the standard devia-
tion. That is, it represents a standard amount of distance between the mean and

each score in the distribution (not the average squared distance, which is the VAR).

We refer to this as standard since we created a standardized unit by dividing it by

the number of scores, yielding a value that has known properties to statisticians and

researchers. We know that if a distribution is perfectly normally distributed, the

distribution will contain about six SD units, three on each side of the mean.

Both the SD and the VAR provide an idea of the extent of the spread of scores in

a distribution. If the SD is small, the scores will be more alike and have little spread.

If it is large, the scores will vary greatly and spread out more extensively. Thus, if a

distribution of test scores has an SD of 2, it conceptually indicates that typically, the
scores were within two points of the mean. In such a case, the overall distribution

would probably appear to be quite ‘‘scrunched together,’’ in comparison to a distri-

bution of test scores with an SD of 5.

Conceptually, as I mentioned, the SD is a standardized measure of how much all

of the scores in a distribution vary from the mean. A related measure is the ‘‘aver-

age deviation,’’ which is actually the mean of all the absolute values of the devia-
tion scores (the distances between each score and the mean). So, in a practical way,

the researcher can report that the average achievement test score (irrespective of

sign) among a group of students was two points away from the mean, for example.

CALCULATING THE VARIANCE AND STANDARD DEVIATION

I will discuss two ways of calculating the SD, which can then be squared to provide

the VAR: the deviation method and the computation method. Both methods have

merit; the first is helpful to visualize how the measure is created, and the second is

a simpler calculation.

The Deviation Method

The deviation method allows you to see what is happening with the numbers. In this

formula, the X values are raw scores, M is the mean of the distribution, and N is the

total number of scores in the distribution.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðX �MÞ2

N

s

As you can see, the formula uses deviation scores in the calculation (X�M).

Thus, the mean is subtracted from each score to obtain the deviation amount. These

X�M values in the formula represent the deviation amounts shown in Figure 6.7.
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The deviation scores are squared, summed, and divided by the number of scores.

Finally, the square root is taken to yield the SD. If the square root were not taken,

the resulting value would be the VAR.

One curious aspect of the formula is that the deviation scores are squared and

then the square root is taken of the entire calculation! This appears pointless until

you consider some of the features of deviation scores that become important to later

statistical procedures.

An example may help to illustrate the features of this formula and the process for

calculating SD. Table 6.1 shows the sample TAGLIT values we used earlier in this

chapter to discuss percentiles.

As you can see, I placed the ratio variable in a column along with separate col-

umns for the deviation scores (X�M), the squared deviation scores (X�M)2, and an

additional column I will discuss in the next section. I included the mean values for

each of the first three columns. You can see that the mean value for the deviation

scores is ‘‘0.00’’ because in a set of normally distributed values there will be equal

numbers of values that lay to the left and to the right of the mean. Adding them up

in effect creates a zero total because there will be as many negative as positive val-

ues. Therefore, it is necessary to square all the values to avoid the effects of the

negative and positive signs. Once the values are squared and divided by N, the for-
mula puts everything under the square root sign to remove the earlier squaring of

values. The formula thus provides a neat solution to avoid the negative and positive

deviation values adding to zero.

Creating the final calculation shows the SD to be 4.77 for this sample of schools.

Therefore, the typical school in this group of 40 schools deviates 4.77 from the

mean of 15.13. The largest deviation amount is 11.45 and the smallest deviation

amount is (�0.06).

SD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðX�MÞ2

N

s
SD¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
900:37

40

r
SD¼ ffiffiffiffiffiffiffiffiffiffiffi

22:51
p

SD¼ 4:77

The Average Deviation

I mentioned that the average deviation is the mean of the absolute values of the

deviation scores. In this example, if we created a mean from the absolute value of

each of the school ratios, the average deviation (AD) would equal 3.63. (You can

compute this in Excel1 by using the Formula menu and then choosing Statistical—

AVEDEV.)

Why the discrepancy between the AD and the SD? There is a long answer and a

short answer. The short answer is that the standard deviation is based upon calcula-

tions of the perfect normal distribution with known mathematical properties of the

curve, and based on large sample values. That is why the SD is known as standard-

ized deviation, to make use of these known properties and characteristics. The
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TABLE 6.1 Using the Deviation Method to Calculate SD

Ratio (X) X�M (X�M)2 X2

10.97 �4.16 17.27 120.44

17.56 2.43 5.93 308.51

16.00 0.87 0.76 256.00

15.79 0.66 0.43 249.19

15.89 0.76 0.58 252.46

11.08 �4.05 16.39 122.79

9.00 �6.13 37.58 81.00

10.81 �4.32 18.70 116.77

20.67 5.54 30.65 427.11

20.58 5.45 29.74 423.67

16.67 1.54 2.36 277.78

14.00 �1.13 1.28 196.00

16.67 1.54 2.36 277.78

12.37 �2.76 7.63 152.98

11.90 �3.23 10.40 141.72

13.72 �1.41 1.99 188.22

14.09 �1.04 1.08 198.55

14.27 �0.86 0.74 203.66

7.55 �7.58 57.53 56.93

15.60 0.47 0.22 243.36

7.57 �7.56 57.13 57.33

12.00 �3.13 9.80 144.00

14.41 �0.72 0.52 207.70

15.56 0.43 0.19 242.26

25.00 9.87 97.42 625.00

23.76 8.63 74.56 564.76

26.58 11.45 131.18 706.67

13.49 �1.64 2.69 181.97

25.04 9.91 98.24 627.09

13.00 �2.13 4.54 169.00

18.00 2.87 8.24 324.00

10.00 �5.13 26.32 100.00

11.15 �3.98 15.81 124.41

14.09 �1.04 1.09 198.48

8.08 �7.05 49.75 65.24

17.00 1.87 3.50 289.00

12.28 �2.85 8.15 150.70

15.07 �0.06 0.00 227.23

14.52 �0.61 0.37 210.83

23.33 8.20 67.29 544.44

Mean 15.13 0.00 22.51

Sum 605.13 900.37 10055.02
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average deviation does not make reference to these properties; rather, it is simply

the average (absolute) deviation from the mean of a distribution of values. Gener-

ally, it yields a slightly different value than the SD to account for the properties of

the perfect normal distribution.

THE COMPUTATION METHOD

The second method for calculating the SD is using the computation formula. It

looks more complex than the deviation method, but it is much easier computation-

ally because it does not involve creating the deviation amounts. The formula is as

follows:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X2 �

P
Xð Þ2
N

N

vuut

Computing the SD with this formula involves only two columns, namely, the

column of values and the column of squared values. If you look at Table 6.1, you

will see that I included the second column as ‘‘(Ratio)2’’ indicating that each of the

ratio values are squared. The bottom row includes the sums of the two appropriate

columns. When you use the values in the formula, you compute the same SD as you

did with the deviation formula (with slight differences due to rounding).

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X2 � ðPXÞ2

N
N

vuut
SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10055:02� ð605:13Þ2

40
40

vuut

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
900:46

40

r
SD ¼ 4:75

There is one trick to using this formula. The values of SX2 and (SX)2 are quite
different. The first value is obtained by adding up all the values of the raw scores

that have been squared, yielding 10,055.02 (the sum of the X2 column). The second

value is squaring the sum of the raw score values themselves, which is the sum of

the ratio (X) values (605.13) squared (605.132 or 366,182.32).

The Sum of Squares

The top part of both the deviation and computation formulas, under the radical sign,

is known as the ‘‘Sum of Squares’’ since it is a global measure of all the variation in

a distribution of scores. These measures will be important for later procedures that

analyze the differences between sets of scores by comparing variance amounts.
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Remember, these are equivalent formulas, with the second being an algebraically

equal (computation) approach.X
ðX �MÞ2 or

X
X2 � ðPXÞ2

N

Sample SD and Population SD

I will have much more to say about this difference in later chapters when I discuss

inferential statistics. For now, it is important to point out that computing SD for a

sample of values, as we did with the ratio data, will yield a different value depend-

ing on whether we understand the distribution of data to represent a complete set of

scores or merely a sample of a population.

Remember that inferential statistics differs from descriptive statistics primarily

in the fact that, with inferential statistics, we are using sample values to make infer-

ences or decisions about the populations from which the samples are thought to

come. In descriptive statistics, we make no such attributions; rather, we simply

measure the distribution of values at hand and treat all the values we have as the

complete set of information (i.e., its own population). When we get to the inferen-

tial statistics chapters, you will find that, in order to make attributions about popu-
lations based on sample values, we typically must adjust the sample values since we
are making guesses about what the populations look like. To make better estimates

of population values, we adjust the sample values.

Excel1 and SPSS1 have no way of distinguishing inferential or descriptive

computations of SD. Therefore, they present the inferential SD as the default value.

I will show how to determine the differences and examine the resulting values with

both Excel1 and SPSS1.

Figure 6.8 shows the descriptive statistics output for our student–teacher ratio

variable. As you can see, the mean value (15.13) is the same as that reported in

Table 6.1. However, the SD (the fifth value from the top of the first column) is 4.8

Mean 15.13

Standard error 0.76

Median 14.34

Mode 16.67

Standard deviation 4.80

Sample variance 23.09

Kurtosis 0.18

Skewness 0.74

Range 19.04

Minimum 7.55

Maximum 26.58

Sum 605.13

Count 40.00

FIGURE 6.8 The Excel1 descriptive statistics output for ratio.
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according to this output. In the earlier sections, we calculated the SD to be 4.77. This

discrepancy is due to the fact that Excel1 reports the inferential SD in Figure 6.8.

You can obtain the ‘‘actual’’ or population SD by using the formula menus of

Excel1 as shown in Figure 6.9. As you can see, I have highlighted the ‘‘STDEVP’’

FIGURE 6.9 Using the Excel1 functions to calculate the ‘‘actual’’ SD.
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choice of functions which is the ‘‘standard deviation of the population.’’ This will

calculate a SD based on all of a set of scores as if they constituted the entire popula-

tion. This value will be equivalent to the SD calculations we discussed above. The

Excel1 default value for the SD (the inferential SD) is also available in the list of

functions as ‘‘STDEV.’’

Obtaining SD from Excel1 and SPSS1

I demonstrated how to obtain the SD from Excel1 in the preceding section. Obtain-

ing the SD from SPSS1 is straightforward, but, like Excel1, it returns the inferen-

tial SD as the default value. Figure 6.10 shows the menu screens and options for

creating descriptive statistics, including standard deviations. You can obtain the SD

through the SPSS1 menus for descriptive-frequencies that we discussed in the sec-

tions above regarding percentiles. Figures 6.5 and 6.6 showed how to use the fre-

quencies menus to obtain percentiles, and they included options for SD and means,

among other measures.

Figure 6.11 shows the output from this descriptive–descriptive request. As you

can see, the listed SD is 4.80, the same (inferential SD) value reported in Excel1.

FIGURE 6.10 Using the ‘‘Descriptives’’ menus in SPSS1.
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Because these are default values, you can use Excel1 to calculate the population

SD values or you can convert the inferential SD to the population SD using the

following formula:

SDðPopulationÞ ¼ SDðInferentialÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

N

r
;

SDðPopulationÞ ¼ 4:80

ffiffiffiffiffi
39

40

r
; SDðPopulationÞ ¼ 4:74

Note the other descriptive statistics reported in Figure 6.11. The skewness and

kurtosis values, when divided by their respective standard errors, are within bounds

of a normal distribution (1.97 and 0.25, respectively). The visual evidence suggests

a slight positive skew to the distribution, however, as seen in Figure 6.12.
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FIGURE 6.12 The student–teacher ratio histogram.

Descriptive Statistics

N Range Mean
Standard

deviation Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic
Standard

error 

Standard

error Statistic

Ratio 40 19.04 15.1283 4.80482 23.086 0.736 0.374 0.183 0.733

Valid N (listwise) 40

FIGURE 6.11 The descriptive statistics output from SPSS1.
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Note also the relationship between the range (19.04) and the SD. From our ear-

lier calculation, the ‘‘converted’’ SD (i.e., the ‘‘actual’’ SD) was 4.74. Because a

normally distributed set of data contains just over 6 SDs (� 3 SD), compare the

range to 6 SDs (i.e., 28.44). Since these numbers are quite far apart, the distribution

may not be normally distributed. This is only a ‘‘ballpark’’ rule because extreme

values and sample size will affect both the measures, but it is another piece of

‘‘evidence’’ to use in making the determination of whether the distribution of scores

is normally distributed.

Another rule of thumb is that you cannot calculate a standard deviation or vari-

ance less than 0 or ‘‘negative variability.’’ You can have small variation, or even no

variation (where every score is the same, for example), but never less than zero.

This is one way to check whether you are calculating the variance and standard

deviation correctly.

TERMS AND CONCEPTS

Average Deviation The average deviation represents the mean of the absolute

values of the deviation scores in a distribution.

Deciles These measures break a frequency distribution into 10 equal groups using

nine cutpoints based on the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and

90th percentiles.

Interquartile Range These scores represent the middle half of a frequency

distribution since they represent the difference between the first and third

quartiles (the 75th minus the 25th percentiles).

Normal Curve Equivalent (NCE) Scores These are transformed percentile

scores that yield values with equal distances.

Percentile (or Percentile Rank) Percentiles represent the point in a distribution

of scores below which a given percentage of scores fall.

Population SD This is the SD calculated on all the scores of a distribution of

values and not used to estimate the SD of a larger sampling unit. The ‘‘actual’’

SD of a set of scores.

Quartiles These are measures that divide the total set of scores in a distribution

into four equal groups using the 25th, 50th, and 75th percentiles.

Range The range is the numerical difference between the highest and lowest

scores in the distribution and represents a helpful global measure of the spread of

scores.

Sample SD This is the SD from a sample used to estimate a population SD. This

is used in inferential statistics and can be understood to be an inferential SD.

This is different from an SD used to represent only the values of the sample

distribution of values (Population SD).

96 DESCRIPTIVE STATISTICS—VARIABLITY



Standard Deviation (SD) The SD represents a standard amount of distance

between the mean and each score in the distribution. It is the square root of the

variance (VAR).

Variance (VAR) The variance is the average squared distance of the scores in a

distribution from the mean. It is the squared SD.

REAL-WORLD LAB II: VARIABILITY

Continue the Real-World Lab from Chapter 5. That lab addressed central tendency

whereas we will focus on variability using the data in Table 5.8.

1. What are the SDs (both population and inferential values) for school-based

reading and math achievement percentages?

2. What is the range for both variables?

3. Identify the 25th, 50th, and 75th percentiles for each variable.

REAL-WORLD LAB II: SOLUTIONS

1. What are the SDs (both population and inferential values) for school-based

reading and math achievement percentages?

Results

Table 5.9 reports the (inferential) SDs as 12.00 and 17.68 for reading and math,

respectively. You can use the Excel1 formula menus to calculate the (population)

SDs, using the ‘‘Statistical-STDEVP’’ formula, as I demonstrated in Figure 6.9.

This yields SDs for reading (11.85) and math (17.45) that differ from the (inferen-

tial) SDs shown in Figure 5.9. The alternative method is to use the conversion for-

mula I discussed earlier to obtain the (population) SDs from the Excel1 and SPSS1

output files:

SDðPopulationÞ ¼ SDðInferentialÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

N

r

This formula yields the same results for reading and math as obtaining them

through the Excel1 formula menus.

2. What is the Range for both variables?

Table 5.9 also reports the range values for reading (52.60) and math (78.80). Using

the relationship between the SD and range, we discussed earlier (range¼ 6 � SD) as

REAL-WORLD LAB II: SOLUTIONS 97



a gauge, we find the figures shown in Table 6.2. In both cases, the range and SD

values are discrepant. Recall, however, that smaller distributions (i.e., those with

less than 40) may not be strictly normally distributed because there are not enough

cases to completely populate the distribution curve. In these cases, rely on both the

numerical and visual (see Figures 5.22 through 5.25) evidence to determine the

extent to which the data form a normal distribution.

3. Identify the 25th, 50th, and 75th percentiles for each variable.

Figure 6.13 shows the SPSS1 output for a frequency analysis in which I speci-

fied the 25th, 50th, and 75th percentiles. The output identifies selected values in

addition to the percentile figures for reading and math.

TABLE 6.2 Range and SDs for School-Based Reading and Math Achievement

Range SD 6 � SD
Reading 52.6 11.85 71.1

Math 78.8 17.45 104.7

StandardMetPercentMathReading Percent Met Standard

N 4040valid

N 00missing

50.6172.48Mean

17.67612.004Standard deviation

Skewness 0.008–0.940

0.3740.374Standard error of skewness

0.797Kurtosis –0.412

0.7330.733Standard error of kurtosis

7953Range

Percentiles

37.1066.5825

50.0073.2050

62.8081.9575

FIGURE 6.13 The SPSS1 25th, 50th, and 75th percentile values for reading and math.

TABLE 6.3 The Excel1 25th, 50th, and 75th Percentile
Values for Reading and Math

Reading Math

25th 67.725 37.5

50th 73.2 50

75th 81.85 62.6

98 DESCRIPTIVE STATISTICS—VARIABLITY



Table 6.3 shows the same percentiles obtained through Excel1 (I used the Per-

centile formula pull-down menus as shown in Figure 6.3). Note the discrepancies

between the Excel1 and SPSS1 output values. As I discussed earlier in this

chapter, the discrepancies are due to Excel1 method for (not) accounting for tied

scores in the same way that SPSS1 accounts for them. SPSS1 accurately calculates

tied ranks making their percentile report a bit more precise.
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7
THE NORMAL DISTRIBUTION

Thus far, we have discussed how to describe distributions of raw scores graphically

and in terms of central tendency, variability, skewness, and kurtosis. We will con-

tinue to perform these calculations because most all of the statistical procedures we

will discuss in subsequent chapters require that data be normally distributed. Using

what we have learned with calculating these descriptive statistics, we can confirm

whether our data are normally distributed or if we must use different procedures.

Often, even if the variables are not strictly or exactly normally distributed, we can

still use them because many statistical procedures are ‘‘robust’’ or able to provide

meaningful and precise results even if there are some violations of the normal dis-

tribution assumptions.

THE NATURE OF THE NORMAL CURVE

The normal distribution, as I explained in an earlier chapter, is very common in

educational research, so we need to deepen our understanding of some of the prop-

erties of the normal curve. I call the normal distribution a curve because the histo-

gram forms a curve when the top midpoints of the bars are joined together.

Technically, this is called a frequency polygon. If you look back to Figure 5.25, you

will see the SPSS1 histogram for the school-based math achievement variable we

discussed. In the figure, SPSS1 overlaid the normal curve on top of the histogram

so you can see the extent to which the data approximate a normal distribution. As

you can see from that figure, if you were to connect the top midpoints with a line, it

would not be the smooth line you see, but rather a more jagged line. However, as a

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
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database increases its size, the histogram approximates the smooth normal curve in

variables that are normally distributed; the jagged line becomes filled in as more

cases are added.

When we speak of the normal distribution and how our sample dataset is

normally distributed, we actually speak about our data approximating a normal

distribution. We refer to the perfect normal distribution as an ideal so that we

have a model distribution for comparison to our actual data. Thus, the normal

curve is a kind of perfect ruler with known features and dimensions. In fact,

we can mathematically chart the perfect normal curve and derive a picture of

how the areas under the curve are distributed. Because of these features, we

refer to the perfect normal distribution as a standard normal distribution.
Look at Figure 5.10, which is reproduced here as Figure 7.1. As you can see, the

perfect normal curve is represented as having known proportions of the total area

between the mean and given standard deviation units. A standard normal curve

(also known as a z distribution) has a mean of 0 and a standard deviation of 1.0.

This is always a bit puzzling until you consider how the mean and standard devia-

tion are calculated. Since a perfect distribution has equal numbers of scores lying to

the left and to the right of the mean, calculating the mean is akin to adding positive

and negative values resulting in 0. Dividing 0 by N, of whatever size, will always
equal 0. Therefore the mean of a perfect, standard normal distribution is equal to 0.

The standard normal distribution has a standard deviation equal to 1 unit. This is

simply an easy way to designate the known areas under the curve. Figure 7.1 shows

that there are six standard deviation units that capture almost all the cases under the

perfect normal curve area. (This is the source of the rule for the range equaling six

times the SD in a raw score distribution.) This is how the standard normal curve is

‘‘arranged’’ mathematically. So, for example, 13.59% of the area of the curve lies

between the first (þ1) and second (þ2) standard deviation on the right side of the

mean. Because the curve is symmetrical, there is also 13.59% of the area of the

curve between the first (�1) and second (�2) standard deviation on the left side of

the curve, and so on.

FIGURE 7.1 The normal curve with known properties.
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Remember that this is an ideal distribution. As such, we can compare our actual

data distributions to it as a way of understanding our own raw data better. Also, we

can use it to compare two sets of raw score data since we have a perfect measuring

stick that relates to both sets of ‘‘imperfect’’ data.

There are other features of the standard distribution we should notice.

� The scores cluster in the middle, and they ‘‘thin out’’ toward either end.

� It is a balanced or symmetrical distribution, with equal numbers of scores on

either side of the middle.

� The mean, median, and mode all fall on the same point.

� The curve is ‘‘asymptotic’’ to the x axis. This means that it gets closer and

closer to the x axis but never touches because, in theory, there may be a case

very far from the other scores—off the chart, so to speak. There has to be room

under the curve for these kinds of possibilities.

� The inflection point of the standard normal curve is at the point of the (nega-

tive and positive) first standard deviation unit. This point is where the steep

decline of the curve slows down and widens out. (This is a helpful visual cue

to an advanced procedure called factor analysis, which uses a scree plot to
help decide how many factors to use from the results.)

THE STANDARD NORMAL SCORE: z SCORE

When we refer to the standard normal deviation, we speak of the z score,

which is a very important measure in statistics. A z score is a score expressed
in standard deviation units—that is, a complete standard deviation score of 1,

�1 and so on. That is the way scores in the standard normal distribution are

expressed. Thus, a score of 0.67 would be a score that is two-thirds of one

standard deviation to the right of the mean. These scores are shown on the x
axis of Figure 7.1, and represent the standard deviation values that define the

areas of the distribution. Thus, þ1 standard deviation unit to the right of the

mean contains 34.13% of the area under the standard normal curve, and we

can refer to this point as a z score of þ1. So, if a school’s student–teacher

ratio had a z score of 3.5, we would recognize immediately that this school

would have an inordinately high ratio, relative to the other values, since it

would fall three and one-half standard deviations above the mean where there

is only an extremely small percent of curve represented.

Because it has standardized meaning, the z score allows us to understand where

each score resides compared to the entire set of scores in the distribution. It

also allows us to compare one individual’s performance on two different sets of

(normally distributed) scores. It is important to note that z scores are expressed not

just in whole numbers but as decimal values, as I used in the example above. Thus,

a z score of�1.96 would indicate that this score is slightly less than two standard

deviations below the mean on a standard normal curve as shown in Figure 7.2.
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THE z-SCORE TABLE OF VALUES

Statisticians have prepared a table of values to help researchers understand how

various scores in the standard normal distribution relate to the total area under the

curve. Consider table in Figure 7.3. This is a part (the second half) of the z-score
table you will find in the Appendices.

FIGURE 7.2 The location of z¼ (�) 1.96.

z
0.0 0.0199 0.4801 0.0239 0.4761 0.0279 0.4721 0.0319 0.4681 0.0359 0.4641

0.1 0.0596 0.4404 0.0636 0.4364 0.0675 0.4325 0.0714 0.4286 0.0753 0.4247

0.2 0.0987 0.4013 0.1026 0.3974 0.1064 0.3936 0.1103 0.3897 0.1141 0.3859

0.3 0.1368 0.3632 0.1406 0.3594 0.1443 0.3557 0.1480 0.3520 0.1517 0.3483

0.4 0.1736 0.3264 0.1772 0.3228 0.1808 0.3192 0.1844 0.3156 0.1879 0.3121

0.5 0.2088 0.2912 0.2123 0.2877 0.2157 0.2843 0.2190 0.2810 0.2224 0.2776

0.6 0.2422 0.2578 0.2454 0.2546 0.2486 0.2514 0.2517 0.2483 0.2549 0.2451

0.7 0.2734 0.2266 0.2764 0.2236 0.2794 0.2206 0.2823 0.2177 0.2852 0.2148

0.8 0.3023 0.1977 0.3051 0.1949 0.3078 0.1922 0.3106 0.1894 0.3133 0.1867

0.9 0.3289 0.1711 0.3315 0.1685 0.3340 0.1660 0.3365 0.1635 0.3389 0.1611

1.0 0.3531 0.1469 0.3554 0.1446 0.3577 0.1423 0.3599 0.1401 0.3621 0.1379

1.1 0.3749 0.1251 0.3770 0.1230 0.3790 0.1210 0.3810 0.1190 0.3830 0.1170

1.2 0.3944 0.1056 0.3962 0.1038 0.3980 0.1020 0.3997 0.1003 0.4015 0.0985

1.3 0.4115 0.0885 0.4131 0.0869 0.4147 0.0853 0.4162 0.0838 0.4177 0.0823

1.4 0.4265 0.0735 0.4279 0.0721 0.4292 0.0708 0.4306 0.0694 0.4319 0.0681

1.5 0.4394 0.0606 0.4406 0.0594 0.4418 0.0582 0.4429 0.0571 0.4441 0.0559

1.6 0.4505 0.0495 0.4515 0.0485 0.4525 0.0475 0.4535 0.0465 0.4545 0.0455

1.7 0.4599 0.0401 0.4608 0.0392 0.4616 0.0384 0.4625 0.0375 0.4633 0.0367

1.8 0.4678 0.0322 0.4686 0.0314 0.4693 0.0307 0.4699 0.0301 0.4706 0.0294

1.9 0.4744 0.0256 0.4750 0.0250 0.4756 0.0244 0.4761 0.0239 0.4767 0.0233

2.0 0.4798 0.0202 0.4803 0.0197 0.4808 0.0192 0.4812 0.0188 0.4817 0.0183

2.1 0.4842 0.0158 0.4846 0.0154 0.4850 0.0150 0.4854 0.0146 0.4857 0.0143

2.2 0.4878 0.0122 0.4881 0.0119 0.4884 0.0116 0.4887 0.0113 0.4890 0.0110

2.3 0.4906 0.0094 0.4909 0.0091 0.4911 0.0089 0.4913 0.0087 0.4916 0.0084

2.4 0.4929 0.0071 0.4931 0.0069 0.4932 0.0068 0.4934 0.0066 0.4936 0.0064

2.5 0.4946 0.0054 0.4948 0.0052 0.4949 0.0051 0.4951 0.0049 0.4952 0.0048

2.6 0.4960 0.0040 0.4961 0.0039 0.4962 0.0038 0.4963 0.0037 0.4964 0.0036

2.7 0.4970 0.0030 0.4971 0.0029 0.4972 0.0028 0.4973 0.0027 0.4974 0.0026

2.8 0.4978 0.0022 0.4979 0.0021 0.4979 0.0021 0.4980 0.0020 0.4981 0.0019

2.9 0.4984 0.0016 0.4985 0.0015 0.4985 0.0015 0.4986 0.0014 0.4986 0.0014

3.0 0.4989 0.0011 0.4989 0.0011 0.4989 0.0011 0.4990 0.0010 0.4990 0.0010

0.05 0.06 0.07 0.08 0.09

FIGURE 7.3 The z-score table of values.
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This table of values is based on proportions of the area under the normal curve
between the mean and various z scores. Since the total proportion of the area under

the normal curve is 1.0 and the total area is 100%, I have multiplied the proportions

by 100 to show that the proportions represent percentages of the area within the

distribution. Note also that the percentages shown are calculated in reference to

the mean. The shaded graphs at the top of the columns indicate the proportion of

the curve in relationship to specific z-score values.
As you can see, each z-score value (to two decimal places) is represented in the

table in such a way that you can identify the percent of the area in the normal curve

that is between a given z score and the mean of the distribution (in the first of the

two data columns at each z-score column). The second of the two data columns

shows the percent of the area of the curve that lies in the ‘‘tail’’ of the distribution,

or the percent of the area that lies beyond the given z score.
To take the example in Figure 7.2 (�1.96), you would find the ‘‘tenths’’ part of

the score (1.9) in the first column titled ‘‘z’’ and then follow that row across until

you found the ‘‘hundredths’’ part of the score (in the ‘‘0.06’’ column). When com-

bined, the score of �1.96 indicates a value of ‘‘47.50’’ (or 47.50%) which you will

find if you look at the value in the 1.9 row and the 0.06 column. This number

indicates the percent of the curve between the mean and the z score of �1.96.

Since �1.96 is almost 2 SDs below the mean, you can do a quick mental check to

see if this is reasonable by looking at Figure 7.1. Because there is 34.13% between

the mean and the first SD, and another 13.59% between the first and second SDs,

then the combined total of 47.72% (adding the percentages together) shows the

percent of the curve between the mean and the second SD. This value is very close

to the table value (47.50%) for z¼�1.96.

Note that the sign of negative or positive does not affect you locating the value in

the table because the values in the table are symmetrical; they apply to both ‘‘sides’’

of the distribution equally. The sign is crucial to remember however, since it indi-

cates the direction of the score in relation to the mean. Negative scores are located
to the left of the mean, as shown in Figure 7.2, and positive scores are located to the

right of the mean.

NAVIGATING THE z-SCORE DISTRIBUTION

It is a good idea to familiarize yourself with the z-score table because you may

need to visualize where certain scores are in relation to one another in the z
distribution. You can also use the table to create ‘‘cumulative proportions’’ of

the normal curve at certain z-score values. Cumulative proportions are simply

the summed percentages or proportions of the area in the normal distribution.

Percentiles represent one such proportion measure because they are by defini-

tion the percent of the scores below a given score. You can also calculate

cumulative proportions that exist above given z scores in the same fashion

using the z-score table. Here is an example.
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If you are interested in the percentage of scores that lie below a given score

(as you would in the calculation of a percentile), you can use the z-score table to help
you.What percentage of the standard normal curve lies below a z score of 1.96?

Before you consider your answer in detail, try to create a ‘‘ballpark’’ solution:

� We are looking for a score almost two SDs above the mean (1.96).

� The percentage distribution in the standard normal curve (see Figure 7.1) is

34.13% between the mean and SD 1 and is 13.59% between SD 1 and SD 2.

� Therefore, about 47.72% of the curve (34.13%þ 13.59%) lies between the

mean and a z score of 1.96.

� Since the score is to the right of the mean, you will need to add 50% (the other

half of the distribution) to 47.72% to get an approximate 97.72% of the curve

lying below z¼ 1.96.

Now, compare this ballpark answer to a more precise method of using the

z-score table.

� Locate 1.96 in the table of values as we did earlier using table in Figure 7.3.

The value is 47.50% of the distribution lie between the mean and the score

of 1.96. Remember, 47.50% is not the entire amount of the curve below 1.96.

It is only the amount of the curve that lies between the mean and the z score
of 1.96.

� Add 50% (the other half of the curve) to get 97.50% of the distribution lying

below a z score of 1.96. In order to get the total percentage of the curve that lies
below the z score of 1.96, you would need to add 50.00 to this amount. Why?

Because the curve is symmetrical and each side contains 50.00 (50%). There-

fore, add the 50.00% from the left half of the curve to the 47.50% from the right

half. This would yield a total of 97.50% of the curve below a z score of 1.96.

� This percentage (97.50%) is slightly less than the estimated percentage

(97.72%) because the target score is slightly less than 2 SDs.

� Figure 7.4 shows this identification.

FIGURE 7.4 Using the z-score table to identify the percent of the distribution below a z
score.
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The process is the same for negative z-score values. Take the example of�1.96.

What percent of the curve lies below a z score of�1.96? Using the ballpark estimate

method:

� We know from the standard normal curve that a score 2 SDs from the mean

(either above or below) contains about 47.72% of the distribution (i.e.,

34.13% between the mean and SD 1 plus 13.59% between SD 1 and SD 2).

� Because we need the percent of the distribution below�1.96, we need to

subtract 47.72% from 50%, the total area in the left half of the distribution.

� This results in approximately 2.28% of the distribution below z¼ �1.96.

Now, using the table of values, create a more precise calculation of the percent

of the distribution below z¼ �1.96.

� Locate 1.96 in the table of values using the table in Figure 7.3. The value is

47.50% of the distribution lying between the mean and the score of 1.96

(because the table identifies the percentages for either positive or negative

values).

� Subtract this amount from 50% (the left half of the curve) to get 2.50% of the

distribution lying below a z score of �1.96. Because you are not interested in

the percentage of the distribution that lies above the score of �1.96, you must

‘‘subtract it out’’ of the entire half of the distribution (50%) to see what

percentage lies below the given scores.

� This percentage (2.50%) is slightly greater than the estimated percentage

(2.28%) because the target score is slightly closer to the mean, leaving a

greater area to the left of the target score of�1.96.

� Figure 7.5 shows this identification.

� Note that you can also identify this same amount (2.50%) using the z-score
table because this proportion in the ‘‘tail’’ is also identified in the same set of

columns you used to obtain 47.50%. Because the table is symmetrical, you can

see that the percent of the area in the right (positive) tail would be equivalent

FIGURE 7.5 Using the z-score table to identify the percent of the distribution below

z¼ �1.96.
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to the area in the left (negative) tail, which is the area you sought to solve the

problem.

Calculating Percentiles

You will note that the two examples in Figures 7.4 and 7.5 show how to identify a

percentile. This is a special feature of using the cumulative proportions in the stan-

dard normal distribution and one that we will revisit in subsequent sections.

Creating Rules for Locating z Scores

Some statisticians and researchers like to create rules for the operations we dis-

cussed above. Thus, for example, we might create the following rules:

1. For locating the percent of the distribution lying below a positive z score, add
the tabled value to the 50% of the other half of the distribution.

2. For locating the percent of the distribution lying below a negative z score,
subtract the tabled value from the 50% of the left half of the distribution.

While these may be helpful to some students, they can also be confusing because

there are so many different research questions that could be asked. Generating a

rule for each question would present an additional burden for the student to remem-

ber!! Here is another example that illustrates this point. What percent of the
standard normal curve lies between a z score of�1.96 and�1.35?

Look at Figure 7.6, which illustrates the solution to this problem.

Visualizing the distribution is helpful so that you can keep the ‘‘order of

operations’’ straight.

� Using the table of values, we find that 47.50% of the curve lies between the

mean and �1.96.

� The table of values identifies 41.15% of the area between the mean and �1.35.

� Subtracting these areas identifies 6.35% as the total area of the distribution

that lies between z scores of �1.96 and �1.35.

FIGURE 7.6 Identifying the area between z scores.
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Figures 7.7 and 7.8 show the visual progression that will enable you to answer

this question. Figure 7.7 shows the areas between the mean and the different z
scores (i.e., the tabled values), and Figure 7.8 shows how to treat the two areas to

respond to the question.

FIGURE 7.7 Identifying the tabled values of z scores of �1.96 and �1.35.

FIGURE 7.8 Subtracting the areas to identify the given area of the distribution.

NAVIGATING THE z-SCORE DISTRIBUTION 109



If we created a rule for this operation, it would be something like, ‘‘in order to

identify the area between two negative z scores, subtract the tabled values of the

two scores.’’ Again, this might be useful, but adds to the list of rules we already

generated above.

Other situations for which we would need to generate rules would be as follows:

� Identifying the area between two positive z scores.

� Identifying the area between one positive and one negative z score.

� Identifying the area that lies above a negative z score.

� Identifying the area that lies above a positive z score.

There are many other potential rules as well. My overall point is that I think

it is better to visualize the distribution and then highlight which area percent-

age you need to identify. In this method, there is only one rule: Draw a picture
of the curve and shade in the portion of the curve that you need to identify.

Here is an example for you to visualize. What percentage of the distribution
falls between the z scores of �1.96 and þ1.96? This one might be easy now

that we have used these values before, but if you use the ‘‘visualization’’

method, simply freehand draw a normal distribution and shade in the target

area (i.e., the percentage of the distribution you need to answer the question).

It might look like the drawings in Figure 7.9.

Visualization provides the student with the means to answer any such question.

Essentially, after drawing the figures, you can use the table of values and then

manipulate them in whatever way you need to identify the shaded areas you identi-

fied. Memorizing all the possible rules for identification of percentages of areas

seems to me to be more burdensome and complex.

FIGURE 7.9 Visualizing the area between two z scores.
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CALCULATING z SCORES

A z score is very important score because it provides a perfect standard of measure-

ment that we can use for comparison to raw score distributions that may not be

perfectly normally distributed. Remember, the standard normal curve is a perfect

curve. When we create distributions in real life, we often make assumptions that

the raw score data approximate a normal distribution. Raw score distributions, like

math achievement of our sample of 40 schools we saw earlier, are near normally

distributed, but still not perfectly so. Look again at Figure 5.25 to see the difference

between the raw score of the histogram and the perfect normal curve that is super-

imposed on the histogram.

Because raw score distributions are not always perfectly distributed, we must

perform descriptive analyses to see if they are within normal boundaries. Thus, by

looking at the skewness and kurtosis of a distribution, we can see if the raw score

distribution is balanced and close to a normal shape; if the mean, median, and mode

are on the same point (or close), that is another indication that the data approximate

a normal distribution. Finally, we can use the visual evidence of the histogram and

frequency polygon to help us understand the shape of the distribution.

Suppose we have a set of students’ test scores that have a mean of 100 and an SD

of 15. Let’s say that one student’s score on the test is 120 and his mother calls to ask

how he did on the test. What would you tell her? Look at Figure 7.10.

The distribution of raw scores is not perfect because it is based on scores derived

from real life, and probably not on a large group. For the purposes of the research

and after assessing skewness, kurtosis, and so on, we might assume that the data are

normally distributed. The difficulty is that, since it is not the standard normal curve,

we cannot use the method we just described for computing a percentile (the percent

of the scores that lie below the student’s score). We can tell the mother that her son

FIGURE 7.10 The raw score distribution.
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scored more than one standard deviation above the mean, if that would be of value

to her. What we really need, however, is to translate the student’s raw score of 120

into a z score so that we can calculate a meaningful percentile.

Before we do this, however, we might try our estimation skills just by looking at

the raw score information. The student’s score is 120, which is 20 points above the

mean. Because the SD is 15, that means that the student’s score of 120 is 1 and 1/3

SD above the mean (or approximately 1.33 standard deviations). This means a ball-

park estimate of the percentile as follows:

50% (left half of distribution)

þ 34.13% (distance between mean and SD 1)

þ 4.48% (approximately 0.33 of the distance between SD 1 and SD 2)

Total estimate¼ cumulative proportion of 88.61% or the 89th percentile.

We can transform raw scores to z scores in order to understand where the scores

in a raw score distribution fall in relation to the other scores by making use of the

standard normal distribution. This process involves visualizing and calculating

where a certain raw score would fall on a standard normal distribution. That is, we

would ‘‘translate’’ the x (raw score) to a z (standard score) to enable us to under-

stand where the raw score is in relation to its own mean, and so on. (I like to think

of this as ‘‘ecstasy’’ because we are transforming x values to z values: x to z!) In
doing so, we are using the standard normal curve as a kind of yardstick to help us

compare information that we create in real life.

As an example, suppose that I want to calculate a certain school’s math achieve-

ment score in relation to the other schools’ scores in the sample of 40 schools.

Using the data presented in Figure 7.11 (that I reproduced from Figure 5.25),

consider the ‘‘percentile’’ of a school with a math achievement score of 69. You

can identify where 69 falls on the x axis, but how many ‘‘standard deviation units’’

above the mean does this score represent?

The formula for transforming raw score values (x) to standard normal scores

(z) is as follows, where X is the raw score, M is the mean, and SD is the (popula-

tion) SD:

Z ¼ X �M

SD

Using this formula and the data reported from Figure 7.12, we can calculate the

value of the z score:

Z ¼ X �M

SD
; Z ¼ 69� 50:6

17:68
; Z ¼ 1:03

Mathematically, this formula transforms raw scores into standard deviation

units, which is the definition of a z score. Remember that z scores in the standard
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normal curve are expressed in standard deviation units. The numerator (X – M)

identifies how far the raw score is from its mean, or the deviation amount we dis-

cussed in Chapter 6. When the deviation amount is divided by SD, the denominator,

it transforms the deviation amount into standard deviation units, since dividing

something by a number creates a solution with the character of that number. (It is

FIGURE 7.11 The histogram of math achievement values in a sample of 40 schools.

FIGURE 7.12 The function argument STANDARDIZE with math achievement data.
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like miles per hour created from the number of miles divided by time; the result is

distance per unit of time.)

The raw score of 69 in our example translates to a z score of 1.03. Just by looking
at the z score, you can identify that:

� The raw score lies above the mean, and is therefore a positive value.

� The score is slightly above one standard deviation above the mean.

� The score represents a cumulative proportion of approximately 84.13%, or the

84th percentile (since the percent between the mean and the first SD is 34.13%

and adding 50% yields 84.13%, which translates to the 84th percentile).

Consulting the z table of values only changes this value slightly to the 85th

percentile (since the area between a z value of 1.03 and the mean is 34.85%, which,

when added to 50%, becomes 84.85%).

Now, recall the mother who called in about her son’s achievement score. We

provided an estimate of her son’s performance (approximately the 89th percentile),

but let’s use the z-score formula to get a precise figure.

Z ¼ X �M

SD
; Z ¼ 120� 100

15
; Z ¼ 1:33

Consulting the z table of values, we find that the percent of the distribution

between the mean and the z score of 1.33 is 40.82%. When we add the left

half of the distribution (50%), we arrive at a cumulative percentage of 90.82%

(50%þ 40.82%¼ 90.82%, or the 91st percentile). Our estimate of the 89th

percentile was close to the actual 91st percentile but not exact because we did

not take into account the uneven areas of the curve represented by the first 1/3

of the second SD.

The bottom line of all these examples is that we can use the standard normal

distribution to help us understand our raw score distributions better. We can trans-

late raw scores to z scores in order to see how they relate to the other scores in their

own distribution. There are other uses of the standard normal distribution that we

will examine in subsequent sections.

WORKINGWITH RAW SCORE DISTRIBUTIONS

When you work with raw score distributions, just remember that in order to com-

pare student scores, you need first to transform them to z scores so that you can use

the perfection of the standard normal curve to help you understand the original raw

scores. As is critical in an approach to educational statistics, consider what research

question is being asked: What is the specific nature of the question? What ultimate

outcome is required? Using the visualization and estimation processes we discussed

above, you can proceed with z transformations and calculation of percentiles, if that

is the desired outcome.
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USING EXCEL1 TO CREATE z SCORES AND CUMULATIVE
PROPORTIONS

There are a variety of ways to use Excel1 with the normal distribution features we

have discussed in this chapter. In fact, in Chapter 6 we have already discussed one

way, namely, the percentile function (see Figures 6.3 and 6.4). This function returns

the percentile of a point in the distribution of raw scores that you specify. However,

as we discussed earlier, this function may be problematic with tied values.

There are three additional functions we can use that employ the z-score
formula. I will use the school math achievement distribution to illustrate these

(see Table 5.4).

STANDARDIZE Function

This function, accessible in the same way as the other Excel1 functions (refer to the

discussions in Chapter 6) makes use of the z-score transformation formula we dis-

cussed above:

Z ¼ X �M

SD

Figure 7.12 shows the specification of the values we are using in STANDARD-

IZE to create a z score. Note that I chose a raw score (X) value of 50.00 and entered

the mean (50.61) and the SD (17.45). I chose to use the population SD (which

I created using the STDEVP function) rather than the default inferential SD used by

Excel1. If I chose the OK button, the z-score value will be pasted into the cell I

chose in the spreadsheet. However, you can see that it is listed-below the three input

values as z¼ �0.03495702. You can calculate the same value using a calculator as

shown below:

Z ¼ X �M

SD
; Z ¼ 50:00� 50:61

17:45
; Z ¼ �0:034957

The STANDARDIZE function therefore uses the z-score transformation formula

to return z scores from specified raw scores when you provide the mean and SD.

By the way, you can get the same outcome by directly entering the formula into a

spreadsheet cell. If you look at Figure 7.13, you will see that I have entered the

formula directly into the cell (B2) adjacent to the value I want to transform to a

z score (37.70). You can see the formula, with the appropriate values (raw score,

mean, and SD) located in the formula band directly above the label row in the

spreadsheet. I entered the formula into a cell I selected outside the column of data

(in this case, I chose cell B2), hit the ‘‘Enter’’ key, and Excel1 returned the value of

(�0.74), the z-score transformation of the raw score value of 37.70.

As I discussed, using the equals sign notifies Excel1 that you are entering a

formula. I did so in B2, but it is not shown because, for this example, I wanted to

show how the value is returned and how Excel1 places the formula in the formula

bar. If I make an error, I can make corrections in that band more easily than in the
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cell where I input the formula. For this example, I hit return after I created the

formula in cell B2 and Excel1 returned the z score for x¼ 37.70.

I created this example for another reason. You can use Excel1 to ‘‘replicate’’

actions by selecting and dragging cells. So, in the formula I created, I specified the

cell location (A2) in the formula rather than inputting the raw score value of 37.70.

This is so I could ‘‘drag’’ the formula in cell B2 down the B column. You can do

this by selecting the cell with the formula (B2 in this example); when you move

your cursor around the cell, you will see a variety of cursor styles. By hovering

over the bottom right corner of the cell, you get a cursor style that looks like a ‘‘þ’’

sign. By clicking and holding this cursor, drag the formula in cell B2 down the B

column and Excel1 will replicate the formula for each value in the adjacent data

column (column A in this example). Figure 7.14 shows the results of this operation

for several of the values of the data sample.

You can see the z scores in column B that correspond to the raw scores in

Column A. For example, row 10, column A shows a raw score value of 40.00, and

column B, row 10 shows this to be a z score of �0.61. (Confirm this with your

calculator.) Likewise, the raw score value of 73.90 (in column A, row 13) is trans-

formed to a z score of 1.33 (in column B, row 13). This procedure is a quick way to

generate z-score values from a set of raw scores in Excel1.

Excel1 has other ways of helping you to calculate z scores and cumulative pro-

portions. I will review two of these below. The names of the functions are similar,

so they may be confusing, but they are quite different. The NORMSDIST function

calculates the cumulative proportion of the normal distribution below a given z

FIGURE 7.13 Entering formulas directly in Excel1 using the Enter key.
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score that you enter. The NORMDIST function calculates the cumulative propor-

tion of the normal distribution below a point that is calculated from the raw score,

mean, and standard deviation values (i.e., the data upon which a z score is calcu-

lated) which you enter.

NORMSDIST Function

This Excel1 function is quite helpful because it uses an embedded z-score ta-

ble of values. It is quite simple to use. Figure 7.15 shows the NORMSDIST

function sub-menu deriving from the statistics formula menus. The user simply

inputs a z score and Excel1 returns the proportion of the standard normal

FIGURE 7.14 ‘‘Dragging’’ the formula in Excel1.

FIGURE 7.15 Using the Excel1 NORMSDIST function.
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distribution that lies below this value (essentially, the percentile). As you can

see from Figure 7.15, I entered a z score of 1.33 and the value ‘‘0.908240864’’

is returned immediately below the 1.33 number. This 0.908 value (rounded to

three decimals) is the percent of the area below the z score of 1.33. Thus,

90.8% of the area of the standard normal distribution lies below z¼ 1.33. It is

therefore the 91st percentile. I chose this value purposely to confirm our analy-

sis earlier for the mother who wanted to know her son’s achievement score. If

you recall, we calculated his z score to be 1.33, in the 91st percentile.

The NORMSDIST function works with negative z scores as well. Simply specify

a negative value and it returns the area of the distribution below the value. For

example, we created the z score of�0.74 using the STANDARDIZE function

(see Figure 7.16). If we enter this value in the NORMSDIST function, it returns the

value .2296. Because this is a negative value, it lies to the left of the mean, so you

must use the visualization I discussed earlier to identify the value of .2296.

Figure 7.16 shows a picture of the curve with the appropriate data. Because we

want to identify the area below the z score of�0.74, we must use a z table of values
to identify the percent of the standard normal distribution between the mean and the

z score. We find this to be 27.04%. In order to calculate the area below the z score,
we need to subtract out the 27.04% from 50% to get 22.96%. This is the same value

identified in Excel1 using the NORMSDIST function.

Once again, note that you can get the same value from the z-score table by look-

ing in the ‘‘tail’’ column of the row corresponding to z¼ �0.74. This value is

0.2297 or 22.97%, the same value using the other column (with a slight rounding

difference).

NORMDIST Function

This Excel1 function is a bit different from the previous two I discussed. It is

often confused with the NORMSDIST because of the similarity of the name. It

produces similar information to both the previous functions. Figure 7.17 shows

the function argument window that is produced by the NORMDIST formula

sub-menu. As you can see, I specified the first raw score value in our dataset

FIGURE 7.16 The z-score distribution identifying the area below z¼ �0.74.
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(37.70) so you can reference the output to our earlier example in Figure 7.14. As

you can see in Figure 7.17, NORMDIST returns the value ‘‘0.229702159’’ be-

low the right-hand ‘‘TRUE’’ entry. You will recognize this as the area of the

standard normal distribution that lies below the raw score value of 37.70 and its

z score equivalent of�0.74. Both STANDARDIZE and NORMDIST create z
scores from raw scores, and NORMSDIST calculates the cumulative proportion

from the z score. NORMDIST skips the step of reporting the z score by calculat-

ing the cumulative proportion directly from the raw score. The ‘‘Cumulative’’

information provided by the NORMDIST function output can be either

‘‘TRUE’’ or ‘‘FALSE,’’ depending on your needs. I input TRUE because I

wanted the percentile (or the ‘‘cumulative distribution function’’). I can use

FALSE to calculate the probability of the given score, but that is the subject of

a later chapter. We will return to this function.

USING SPSS1 TO CREATE z SCORES

Using SPSS1 to create z scores is very easy using the ‘‘Descriptives–Descrip-

tives’’ selection from the ‘‘Analyze’’ menu. Figure 7.18 shows the specification

window in which I have identified the math achievement variable (‘‘MathPer-

centMetStandard’’). I can use the ‘‘Options’’ button to further specify mean,

skewness, and a variety of other statistical procedures. However, I can create z
scores by simply checking the box at the lower left corner of the Descriptives

menu window. It is shown in Figure 7.18 as the box ‘‘Save Standardized val-

ues as variables.’’ When I check this box, a new variable is added to the data-

set, one consisting of the z-score values corresponding to the raw score values

FIGURE 7.17 Using the Excel1 NORMDIST function.
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of the (math achievement) variable selected. It is called ‘‘ZMathPercentMet-

Standard,’’ which is simply the name of the original variable with a ‘‘Z’’ on

the front to indicate that the values are z scores. Figure 7.19 shows the new

variable beside the original.

Please note that the z scores created in SPSS1 use the inferential SD, so they will

be slightly different if you used the population SD, as I did, with Excel1. Compare

the same school value to see the differences—they will be very slight.

FIGURE 7.19 Creating a z-score variable using an SPSS1 descriptive menu.

FIGURE 7.18 Using SPSS1 to create z scores.
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TERMS AND CONCEPTS

Frequency Polygon A graph that is formed by joining the midpoints of the bars

of a histogram by a line.

Standard Normal Distribution A normal distribution that is ‘‘perfectly’’ shaped

such that the percentages of the area under the curve are distributed in known

and standard amounts around the mean. The mean has a value of 0 and the

SD¼ 1. Also known as the ‘‘z distribution.’’

z score A raw score expressed in standard deviation units. Also known as a

‘‘standard score’’ when viewed as scores of a standard normal distribution.

REAL-WORLD LAB III: THE NORMAL CURVE AND z SCORES

In Chapter 6 I introduced you to the TAGLIT database that consists of school-

level data from school leaders and students regarding the role of technology in

teaching and learning. The earlier example focused on student to teacher ratios

as a way of demonstrating how to use Excel1 and SPSS1 to generate percent-

iles. In this Real-World Lab, we will use similar data but focus on student–

teacher ratios from the Washington State database. Use the data in Table 7.1

to complete this Real-World Lab.

TABLE 7.1 Student–Teacher
Data fromWashington State

StudentsPerClassroomTeacher

12 27

16 12

14 24

16 17

15 15

21 17

12 12

15 18

14 15

20 15

21 14

18 16

10 17

17 15

17 18

18 9

20 12

21 16

19 17

15 13
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1. What is the descriptive data for the ‘‘StudentsPerClassroomTeacher’’ variable

from the Washington School database?

2. Create z scores for each of the student–teacher ratios.

3. Which, if any, of the z scores would you consider ‘‘extreme’’?

4. Comment on your findings.

REAL-WORLD LAB III: SOLUTIONS

1. What is the descriptive data for the ‘‘StudentsPerClassroomTeacher’’ variable

from the Washington School database?

Figures 7.20 and 7.21 show the descriptive analyses for Excel1 and

SPSS1, respectively. Both reports suggest that the data are fairly normally

distributed. The mean, median, and mode lie close to the same point, and the

skewness and kurtosis data are within normal boundaries. This observation is

confirmed visually by the histogram in Figure 7.22. Although there are a cou-

ple of observations on the upper end of the distribution that may be pulling the

mean up a bit, the distribution appears to be normal.

2. Create z scores for each of the student–teacher ratios.
Table 7.2 shows the z scores of the student–teacher ratio data from Table

7.1. The z scores in Table 7.2 are from Excel1, in which I used the Standard-

ize formula to calculate the first raw score (12); I then created the other z
scores by using the method of dragging the cell formula down across all raw

scores. The z scores generated from SPSS1, using the descriptive–descriptive

command, reveal identical values as the Excel1 values.

3. Which, if any, of the z scores would you consider ‘‘extreme’’?

Table 7.3 is identical to Table 7.2 except that I sorted the z-score values in
order to make it easier to identify extreme values. How large or small does a

StudentsPerClassroomTeacher

Mean 16.25

Standard error 0.57

Median 16.00

Mode 15.00

Standard deviation 3.63

Sample variance 13.17

Kurtosis 1.09

Skewness 0.61

Range 18.00

Minimum 9.00

Maximum 27.00

Sum 650.00

Count 40.00

FIGURE 7.20 Student–teacher ratio descriptive data from Excel1.
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value have to be in order to be called ‘‘extreme’’? The answer to this question

is somewhat subjective, although we have examined some aspects of the nor-

mal distribution that can help us answer this question. If you recall, the middle

4 standard deviations of the standard normal curve defined by the 2 SDs to the

left of the mean (negative side) and the 2 SDs to the right of the mean (posi-

tive side) comprises about 95% of the total area under the curve (47.72% on

each side).

StudentsPerClassroomTeacher

N valid 40

N missing 0

Mean 16.25

Median 16.00

Mode 15

Standard deviation 3.629

Variance 13.167

Skewness .615

Standard error of skewness .374

Kurtosis 1.086

Standard error of kurtosis .733

Range 18

FIGURE 7.22 Student–teacher ratio histogram from SPSS1.

FIGURE 7.21 Student–teacher ratio descriptive data from SPSS1
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TABLE 7.2 z Scores Using Excel1 Standardize Formula

StudentsPerClassroomTeacher z Scores StudentsPerClassroomTeacher z Scores

12 �1.17 27 2.96

16 �0.07 12 �1.17

14 �0.62 24 2.13

16 �0.07 17 0.21

15 �0.34 15 �0.34

21 1.31 17 0.21

12 �1.17 12 �1.17

15 �0.34 18 0.48

14 �0.62 15 �0.34

20 1.03 15 �0.34

21 1.31 14 �0.62

18 0.48 16 �0.07

10 �1.72 17 0.21

17 0.21 15 �0.34

17 0.21 18 0.48

18 0.48 9 �2.00

20 1.03 12 �1.17

21 1.31 16 �0.07

19 0.76 17 0.21

15 �0.34 13 �0.90

TABLE 7.3 Sorted z Scores for Identifying Extreme Values

StudentsPerClassroomTeacher z Scores StudentsPerClassroomTeacher z Scores

9 �2.00 16 �0.07

10 �1.72 16 �0.07

12 �1.17 17 0.21

12 �1.17 17 0.21

12 �1.17 17 0.21

12 �1.17 17 0.21

12 �1.17 17 0.21

13 �0.90 17 0.21

14 �0.62 18 0.48

14 �0.62 18 0.48

14 �0.62 18 0.48

15 �0.34 18 0.48

15 �0.34 19 0.76

15 �0.34 20 1.03

15 �0.34 20 1.03

15 �0.34 21 1.31

15 �0.34 21 1.31

15 �0.34 21 1.31

16 �0.07 24 2.13

16 �0.07 27 2.96
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While there is nothing magical about the ‘‘mean � 2 SD’’ value, it does

represent the great majority of the area of the distribution, and statisticians

use it to help establish a common benchmark for various aspects of statistical

procedures. Using this criterion, examine the data in Table 7.3. You will find

three scores that lie at or above these amounts. I shaded three values: z scores
of�2.00, þ2.13, and þ2.96. The highest z-score value of 2.96 is nearly 3 SDs

above the mean, which represents a very small percentage of the distribution

(approximately 2.15% of the distribution falls between 2 and 3 SDs).

4. Comment on your findings.

The Washington State sample (N¼ 40) of student–teacher classroom ratios

appear to be approximately normally distributed with a mean of 16.25 and SD of

3.63 (inferential SD). Schools in this sample range from student–teacher ratios of 9

to ratios of 27. Mean, median, and mode values are close to one another, and skew-

ness and kurtosis values are within normal bounds. The histogram also confirms

normal tendency with a slight positive skew possibly due to one extreme score. The

student–teacher ratios are slightly higher than the national data sample (TAGLIT)

we discussed in Chapter 6, but not markedly so.

The z scores in the Washington State sample identify perhaps three schools that

are somewhat extreme, using a � 2 SD criterion. Of the three, one score is clearly

extreme, representing a school with a student–teacher ratio of 27:1.
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8
THE Z DISTRIBUTION AND
PROBABILITY

The z distribution is very important to statistics because it provides an ideal

model that we can use to understand the raw data distributions we create. In

fact, in this book, the z distribution straddles both descriptive and inferential

statistics, the ‘‘branches’’ of statistics I introduced earlier. We have seen how

we can use the z distribution to understand raw scores by transforming them to

z scores, and we have learned how to create and manage cumulative percent-

ages. We will continue this discussion to complete our descriptive statistics

section, and we will then consider how the standard normal distribution can

help us to understand inferential statistics.

Chapter 7 discussed both z scores and cumulative percentages, focusing on how

to use the z table to transform z scores. As you recall, the z-score formula is as

follows:

Z ¼ X �M

SD

There are many uses for this formula, as you will see throughout the book. For

now it is enough to know that sometimes you may have different kinds of informa-

tion available and you can use the formula to help you with various analyses of your

data. You can actually use simple algebra to solve for the different parts of the for-

mula. We will consider one such formula because it will become very important to

our later statistical procedures.

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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TRANSFORMING A z SCORE TO A RAW SCORE

In Chapter 7, we used the hypothetical example of a mother trying to under-

stand the test score of her child. Using this same scenario, let us suppose that

the student’s mother was informed that on a certain test with a mean of 100

and a standard deviation of 15, her son got a z score of �1.64. Not being

sophisticated in the interpretation of z scores, she may be interested in what

the raw score was on the test. We can use the z-score formula to calculate the

raw score from the z-score data and the descriptive information about the dis-

tribution. First, we should use the information we have to estimate what a

solution might be.

What can we observe generally? Certainly, because z scores are expressed

in standard deviation units on the standard normal distribution, the student

probably did not perform highly on the test (i.e., because negative scores are

on the left of the distribution—in this case more than 1.5 SDs to the left of

the mean). Consider the following formula, which is derived from the z-score
formula listed above:

X ¼ ZðSDÞ þM

In this formula, the z score we need to transform to a raw score (X) is known,
along with the SD and mean of the raw score distribution. Substituting the values

we listed above, we obtain

X ¼ �1:64ð15Þ þ 100

X ¼ 75:40

So, we can inform the student’s mother that her child received 75.40 on the

test. Although we don’t know how that might translate into a teacher’s grade,

it probably has more meaning to a parent who does not normally see z scores.

To the researcher, however, the z score contains more information.

TRANSFORMING CUMULATIVE PROPORTIONS TO z SCORES

Another situation may arise in which we have cumulative proportions or percentiles

available and wish to transform them to z scores. This is a fairly easy step because

both are based on z scores.
In our previous example, the student’s inquisitive mother would probably have

been given a percentile rather than a z score because the educational system uses

percentiles extensively as the means to make comparisons among scores. Here is a

brief example, again using the mother. Suppose the student’s mother was told that

her son received a score that was at the 60th percentile. What would be the z-score
equivalent?

128 THE Z DISTRIBUTION AND PROBABILITY



As we learned in previous sections, it might be good to first try to visualize

the solution. Figure 8.1 shows how you might visualize this problem. In the

top panel of Figure 8.1, we can see that a percentile score of 60 (or a cumula-

tive percentage of 60%) would fall to the right of the mean by definition

(i.e., because the score surpasses 60% of all the scores, which is above the

50% mark).

Because the 60th percentile is 10% away from the mean (or the 50th percentile),

we know that the percent of the distribution that lies between the mean and the

target score is 10%. We know that the distance between the mean and the first SD

on a z distribution contains about 34.13%, so our percentile score of 60 should rep-

resent an approximate z score of 0.29 (10% divided by 34.13%), using a ballpark

estimate.

If you recall, knowing that the area of the distribution between the percentile

score and the mean is 10% gives us additional information since this is what the

z-score table provides. We can now use the z-score table in reverse to ‘‘finish’’ our

visualization of the answer. If you locate the closest percentage to 10.00% that you

can find in the table (among the first of the column ‘‘pairs’’ of percentages), you

find 9.87% and 10.26%, corresponding to z scores of 0.25 and 0.26, respectively.

Because 10.00% is closest to 9.87%, we can conclude that a percentile score with

this distance from the mean represents a z score of 0.25. (Locate 9.87% in the table,

note the 0.2 in the first z column which is on the same row, add the 0.05 from the

z figure above in the z-score numbered columns for a total of 0.25: that is,

0.2þ 0.05¼ 0.25.)

A second method of arriving at the same z score of 0.25 is to use the second of

the column pairs of percentages, those that are listed in the ‘‘tails’’ of the distribu-

tion. Knowing that the percentile score of 60 also creates a cumulative proportion of

40% in the tail, look for the closest value to 40.00% among the ‘‘tail’’ columns and

you will find that the closest value is z¼ 0.25.

FIGURE 8.1 Visualizing the transformation of a percentile to a z score.
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DERIVING SAMPLE SCORES FROM CUMULATIVE PERCENTAGES

This is another process that involves an understanding of the area in the standard

normal distribution and how to transform scores. In essence, it simply combines the

procedures we have already covered. I will use an example from the school data-

base we have been using from the state of Washington.1

Administrators in schools with fourth-grade students recorded the 2009

results of math and reading achievement tests, as we have see with earlier

examples. The results were ‘‘aggregated’’; that is, all individual (fourth grade)

student achievement test scores were averaged across the entire school. We

have examined the reading and math achievement scores at the school level

from a sample of the schools. We also examined other aggregate variables,

like the student–teacher ratio. We turn now to another aggregate variable that

describes the overall school, ‘‘Percent Free or Reduced Price Meals’’ (F/R).

This demographic variable aggregates the percent of students in a school who

are eligible for free or reduced price meals because of their family income

level. This is not a perfect measure of family income for various reasons.

However, in education research, it is often the only measure available to the

researcher.2

Our sample schools (N¼ 40) show a mean of 50.16 and a (population) SD of

26.54 on the F/R variable, and the data appear normal according to the descriptive

procedures we discussed earlier. Using this descriptive information, which sample

(school) score would represent a cumulative percentage of 67% (i.e., fall at the 67th

percentile) of this sample of data?

Using the admonition to try visualization before we use a formula, how can we

represent the question? Figure 8.2 shows how you can ‘‘see’’ this with a graph of the

distribution. As you can see, the 67th percentile, the ‘‘target’’ school score, lies well

above the mean. Because 34.13% of the distribution lies between the mean and SD

FIGURE 8.2 Visualizing the 67th percentile of the F/R distribution.

1 Data were downloaded from the website of the Office of the Superintendent of Public Instruction at

http://www.k12.wa.us/ and were used by permission.
2 A further dynamic of the data is that F/R measures all the students in the schools that have fourth-grade

scores in reading and math, not just the percent of fourth graders who took the test.
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1, our target score should be approximately at the middle of this area [because 17%,

the distance beyond 50% (the mean of the distribution), is about half of 34.13%],

although a bit closer to the mean given the shape of the curve. Therefore, we can

visualize a z score of about 0.5. With the z score, we can say the school score would

be approximately 63, determined as follows:

1. Our visual estimate of 0.5 z scores represents SD units; therefore the target

score represents approximately one-half of the sample score SD of 26.54.

2. This amount plus the mean of 50.16 equals approximately 63.

Checking this visual calculation with the formula I presented above, we can see

how close we were to the actual sample score value. The 67th percentile falls at the

z score of 0.44 (17% above the mean or 37% in the tail), so, substituting the values

in the formula, we find the sample score to be 61.84%. Therefore, schools with

61.84% F/R lunch qualification are at the 67th percentile of our data sample. Our

estimate (63%) was not perfect, but it helped us to check our analyses and try to see

the relationship among all the various pieces of data.

X ¼ 0:44ð26:54Þ þ 50:16

X ¼ 61:84%

ADDITIONAL TRANSFORMATIONS USING THE STANDARD NORMAL
DISTRIBUTION

In education, researchers often come across a variety of scores and need to under-

stand how they are derived. Knowing about these helps to understand students’

performance, but also how to interpret the information more completely.

Normal Curve Equivalent

We have already discussed one such transformation, the normal curve equiva-
lent (NCE), in Chapter 6. As you recall, these scores are important because

they transform percentile scores into interval data by making the distance be-

tween percentiles equal. While this is a more important feature to researchers

than to parents or teachers, it nevertheless shows how we can use the standard

normal distribution to understand features of our derived (raw score) data.

Stanine

Stanine (standard nine) scores are scores created by transformations using the

standard normal distribution. Used in education, these scores divide the standard

normal distribution into nine parts. (The z scores we have discussed divide the

distribution into about 6 parts by comparison.) The stanine has a mean of 5 and an

SD of 2. So, by changing our formula a bit, we can calculate the stanine, rather than
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a raw score, as follows:

X ¼ ZðSDÞ þM

Stanine ¼ Zð2Þ þ 5

Thus, from our example, we have

Stanine ¼ 0:44ð2Þ þ 5

Stanine ¼ 5:88

T Score

The T score is another transformation used in education because it transforms z
scores into more intuitively understandable scores; Z scores are both positive and

negative, and they have a narrow range (from about �3.00 to þ3.00). T scores

transform z scores into scores that are always positive, and they have a larger range.
T scores have a mean of 50 and an SD of 10. We can use the same formula to trans-

form z scores to T scores:

X ¼ ZðSDÞ þM

T score ¼ Zð10Þ þ 50

Using our previous example:

T score ¼ 0:44ð10Þ þ 50

T score ¼ 54:40

Using the standard normal distribution and the z score, you can therefore make

any sort of transformation. (If you wanted to create your own score, you can use the

same process.) We will use these extensively in our study.

Grade Equivalent Score

Another score used by educators is the grade equivalent score (GES). While these

can have some utility for comparison purposes, you should see that they are some-

what subjective and depend on the composition of a comparison group. The scores

are expressed in grades and months based on the typical score of a comparison

group of students during a nine-month school year. Thus, if my child has a GES of

3.5, this represents her estimate of performance representative of a comparison

group of students at the third-grade level in the 5th month (or January). Because of

their derivation, researchers should use great caution when using GESs in statistical

procedures.

USING EXCEL1 AND SPSS1 TO TRANSFORM SCORES

There are no established formulas or menus in Excel1 or SPSS1 to make the

transformations we discussed earlier in this chapter. Aside from the z-score
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transformations from raw score distributions that we reviewed in Chapter 7, we are

on our own to use both of these statistical programs to create appropriate

transformations.

These are not difficult to do using the programs as elaborate ‘‘calculators.’’

I already demonstrated how to create z scores using Excel1. (Review the

‘‘STANDARDIZE Function’’ section of Chapter 7.) You can easily use SPSS1 to

do the same thing by using the ‘‘Transform’’ menu and then selecting ‘‘Compute.’’

Review the section in Chapter 7, ‘‘Using SPSS1 to Create z Scores.’’ In that

section, I showed how to create z scores by simply checking a box on the

‘‘Analyze–Descriptive Statistics –Descriptives’’ menu choice (see Figure 7.18).

You can use SPSS1 to compute a new variable by entering the z-score formula,

or other relevant formulas. To use the example of a z-score transformation, consider

Figure 8.3, in which I use the ‘‘Transform’’ menu at the top of the page; then from

that menu choose ‘‘Compute Variable,’’ which will yield the sub-menu shown in

Figure 8.3. As you can see, I created a new variable called ‘‘zFreeReduced’’ in the

upper left window. Then, in the ‘‘Numeric Expression’’ window, I created the

formula for calculating a z score from a raw score. I had to first include the existing

raw score variable in the equation by selecting it from the ‘‘Type & Label’’ window

and then moving it to the Numeric Expression window using the arrow button.

It is hoped that you will recognize this formula as simply the z-score formula

from above:

Z ¼ X �M

SD

FIGURE 8.3 Using the Compute Variable menu in SPSS1 to create z scores.
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In SPSS1, it looks like the Numeric Expression in Figure 8.3:

zFreeReduced ¼ ðPercentFreeorReducedPricedMeals � 50:16Þ=26:88

I obtained the mean and (inferential) SD from the Descriptives procedure I have

used before. Thus, I simply indicated in SPSS1 that I wanted to create a new varia-

ble that represents the raw score variable (X) minus the mean (50.16) divided by the

SD (26.88). When I perform this operation, SPSS1 makes the calculations that are

identical to the z scores I obtained using the descriptive procedure. Figure 8.4 shows
the SPSS1 datafile that now contains two z-score variables.

The first variable shown in Figure 8.4 is the original raw score variable. The

second is the new variable I created using the Transform–Compute process. The

third variable is the variable SPSS1 created when I chose to keep standard scores

in the Descriptives–Descriptives menu. In both of the latter cases, all the trans-

formed (z scores) scores are identical.

PROBABILITY

When I teach statistics at any level, I always shade in a certain date in the syllabus

and call it the ‘‘headache day’’ because it is the day I begin to discuss inferential

statistics. Really, I do this to make sure I have my students’ attention! This is an

interesting benchmark in statistics because it requires a shift of thinking from work-

ing with individual raw scores to working with samples of raw scores and their
relationship to the populations from which the samples supposedly came.

FIGURE 8.4 SPSS1 data file with two z-score variables.
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Up to now, we have discussed and used examples of sets of raw scores to exam-

ine descriptive statistics. We concentrated on how to use statistical procedures to

better describe data and to do it in such a way that we will gain a fresh perspective

on what the data may mean. Now, we turn our attention to a different level of
inquiry.

Determinism Versus Probability

In this chapter, we will only briefly look at the topic of probability from a

mathematical perspective. To be sure, we could spend a great deal of time on

this topic; and if this were a mathematics book, we would do just that. I would

like to focus on the application of probability to the kinds of problems we

often encounter in conducting research and, in so doing, begin to shift our

attention to inferential statistics.

Human actions are rarely, if ever, determined. However, it is also the case

that human action is fairly predictable. One has only to consider the many

ways in which the things we (think) we choose to do are really those things

that are expected. Marketing specialists have made billions of dollars on this

principle by targeting the ‘‘baby boomer’’ generation alone! Insurance provid-

ers have known this for years. Sociologically, when people repeatedly act in

society, they create patterns or ruts that are both helpful (in economizing

action and energy) and potentially problematic (because it becomes difficult to

act differently than the rut allows). The result is that human behavior can be

characterized by ‘‘predictability.’’

What does this have to do with statistics? Plenty. We have already seen that

behaviors, attitudes, and beliefs have a great deal of variability. Why is there such

variability? Why do people not always believe the same thing, act the same way,

and so on? In descriptive statistics, we learn the ways to understand the extent of

the variability and whether the resultant distribution of behaviors and beliefs con-

forms to a normal distribution. But that does not explain the why.
Human actions and beliefs have many causes. We cannot understand all of them.

The fact that variance exists may be due to our inability to understand the full range

of forces acting on the individual at any particular moment. But it may also exist

because we cannot fully explicate individual choice or action.

In trying to understand this complexity, we must recognize the importance of

probability. Probability involves the realm of expectation. By observing and

measuring actions and behaviors over time, we develop expectations that can

help us better predict outcomes. If we observe students struggling with a

certain subject area among schools over time, we might eventually predict the

same outcome on future occasions, if there are no changes in conditions. Our

expectation, being based in observation, will help us predict more accurately.

This still does not explain why the students struggle, but it does turn the scru-

tiny toward the potential conditions for the struggle. We may never discover

all the reasons, but the study of probability gets us closer to a more compre-

hensive understanding.
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Elements of Probability

At this point, we could discuss several aspects of probability theory and measure-

ment. However, focusing on the mathematical properties of probability takes us

beyond the primary purpose of this book: to understand how we can use statistical

procedures, along with Excel1 and SPSS1, to make statistical decisions. We will

discuss the nature of probability and how to measure it in the context of actual

research data.

You may wish to explore the formal properties of probability beyond this book.

To do so, you might examine the following topics:

� The Binomial Distribution. This is a distribution of probabilities for a variable
with two outcomes like ‘‘success–failure,’’ ‘‘true–false,’’ or ‘‘heads–tails.’’

Observing repeated occurrences of these variables, like tossing a coin repeat-

edly, yields a known distribution of probabilities.

� Combining Probabilities. There are different rules for how to combine the

probability of events according to your interest in determining (1) whether

one event occurs or another event occurs and (2) whether one event occurs

and another occurs.

� Combinations and Permutations. These are categories of probability that fo-

cus on ordered sequences of events. In a group of 10 students, a combination
is whether Jim and Suzie winning a spelling bee. They can place as ‘‘Jim first,

Suzie second’’ or ‘‘Suzie first, Jim second.’’ Either way, we are considering

these as a combination. However, this combination contains two permuta-
tions; the order of finish is the focus. Thus, ‘‘Suzie first, Jim second’’ is a dis-

tinct permutation from ‘‘Jim first, Suzie second.’’ Thus, the combination

considers all possible ways a set of events can occur, whereas a permutation

considers the order of the finish among the events.

Probability and the Normal Curve

If you think about the normal curve, you will realize that human actions can take a

number of different courses. Most responses tend to be clustered together, but there

will be some responses that fall in different directions away from the main cluster.

Therefore, we can think of the normal curve as a visual representation of the fact

that we do not have certainty, but have probability in matters of such things as

attitudes and buying behavior, test scores, and aptitude.

In inferential statistics, statisticians think of the normal curve in terms of

probability. Because approximately 68% of the area (or a proportion of 0.68)

of the normal curve lies between one standard deviation, positive or negative,

for example, we can think of any given case having a 0.68 probability of fall-

ing between one standard deviation on either side of the mean.

Empirical probability is simply the number of occurrences of a specific event
divided by the total number of possible occurrences. If a student announces ‘‘I am

here’’ at the top of their lungs when they enter the classroom, you can calculate the
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empirical probability of this event by observing the number of times the student

makes the declaration divided by the number of days they enter the classroom.

Thus, if they declare their presence 10 times out of 18 days of class, the probability

of their making the declaration is

Probability ¼ Occurrences

Possible occurrences

Probability ¼ 10 ðOccurrencesÞ
18 ðPossible occurrencesÞ

Probability ¼ 0:556

Therefore, if we wanted to predict whether they would make the declaration on

the next possible occasion, we would have slightly better than equal chance (0.556

versus 0.50) of predicting their behavior (i.e., that they would make the declara-

tion). In this example, you can see how probability is measured: as a number

between 0 (no likelihood) and 1.00 (complete likelihood). We can indicate these

events as follows:

p ¼ the probability of observing the outcome;

q ¼ the probability of not observing the outcome

Therefore,

pþ q ¼ 1 and p ¼ ð1� qÞ

Relationship of z Score and Probability

The primary issue in this book is to recognize that the z score and probability are very
much related, since they both can be characterized by the proportion of the area un-

der the standard normal curve. We can therefore think about certain kinds of prob-
lems as probability statements. Knowing what we do of the distribution of area in the
standard normal curve, we can observe that possible scores ‘‘beyond’’ 2 SDs (in

either a positive or negative direction) are in areas of the distribution where there are

very few cases. Thus, randomly selecting a score from a distribution in these small

areas would have a much smaller probability than randomly selecting a score nearer

the mean of the distribution. In a normally distributed variable, only 5% of cases or

so will fall outside the �2 SD area. Therefore, with 100 cases, selecting a case ran-

domly from this area would represent a probability of 0.05 (since 5/100¼ 0.05).

Since the standard normal distribution represents percentages (as proportions of

the entire area in the distribution) and probabilities, it is easy to convert one to the

other. You can convert percentages to probability simply by dividing the percentage

by 100 (%) as follows:

Probability ðpÞ ¼ 68%

100%
¼ 68

100
¼ 0:68
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For example, consider a principal asking a teacher to select, at random, a student

from a class to represent the entire class on an all-school council of ‘‘technology IQ.’’

Furthermore, suppose that the teacher has just administered a test of technology

knowledge to the class and the distribution of results has a mean of 95 and a standard

deviation of 12. What would be the probability of selecting at random from the class

a student who scored between 89 and 101 to represent the class on the council?

Using the procedures we learned in previous chapters, we can visualize the result

and then calculate it specifically with the z-score formulas.

1. Remember that probability statements are based on the same information as

z scores.

2. Consider where you need to end; that is, what information must you have and

how can you work backwards to get it?

3. Draw or visualize a picture of the normal distribution with a shaded target

area.

Figure 8.5 shows how you might visualize this problem. As you can see, with a

mean of 95 and an SD of 12, the scores of 89 and 101 fall 0.5 a SD below and above

the mean, respectively. Thus, both the lower and upper numbers are 0.5 z scores
from the mean. With the distance from the mean to SD 1 (both positive and nega-

tive) at about 34.13%, the distance between 89 and 101 would occupy about 34%

(since 17% and 17%¼ 34%). The probability would therefore be approximately

0.34 (34%/100%).

We can calculate the distances using the z-score formula:

Z ¼ X �M

SD

Thus, the raw scores of 89 (X1) and 101 (X2) would have z scores (Z1 and Z2) calcu-
lated as follows:

Z1 ¼ 89� 95

12
;

Z2 ¼ 101� 95

12
;

Z1 ¼ �6

12
;

Z2 ¼ 6

12
;

Z1 ¼ �0:5

Z2 ¼ 0:5

FIGURE 8.5 Visualizing the probabilities as a preliminary solution.
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From the z-score table, we find that the area of the curve between the mean and

z scores of 0.5 (positive and negative) is 19.15%. Therefore, 38.30% of the area

of the distribution falls between scores of 89 and 101. This means that there is a

probability of 0.38 of selecting at random a student whose score lies between 89

and 101 on our test of technology knowledge.

Our visualization (p¼ 0.34) was lower than the calculated probability (0.38) due

to the shape of the curve. However, this exercise does point out how visualization

can help you to ‘‘see’’ the dynamics and approximate solution to questions similar

to this.

‘‘Inside’’ and ‘‘Outside’’ Areas of the Standard Normal Distribution

Oftentimes, in statistics and in education, students are asked to identify probabilities

of cases that lie inside or outside sets of scores in a distribution. For example, we

may be asked to identify the middle 90% of the students who take a specific test;

or, conversely, we may be asked to identify the 10% that lie outside, in the extremes

of the distribution (the two ‘‘tails’’ of the curve). In both cases, you can use the

information you have already learned about the normal distribution to solve these

problems.

Calculating these areas is very helpful for you to understand inferential statistics.

Statisticians and researchers have created conventions about which z scores create
‘‘exclusion areas’’ that can be used to compare with the results of actual studies.

When calculated values from statistical studies fall within or beyond these exclu-

sion areas (defined by specific z scores), researchers can make statistical decisions

about whether the findings are ‘‘likely’’ or ‘‘beyond chance.’’ We will look at two

kinds of examples in which we can establish these exclusion areas using the F/R

variable from our sample of schools.

Inside Area Example. Recall that our sample schools (N¼ 40) show a mean of

50.16 and a (population) SD of 26.54 on the F/R variable. What two raw scores

‘‘capture’’ the middle 90% of the distribution?

Using visualization, we are identifying the middle portion of the distribution

encompassed by 45% to the left of the mean and 45% to the right of the mean (since

we want to identify the raw scores on both sides of the 90%). We know that the first

2 SDs contain about 47.72% of the distribution on either side of the mean (for a

total of 95.44%), which is close to our 45% target area on either side of the mean.

Therefore, our raw scores should fall inside the �2 SD mark and the þ2 SD mark.

Figure 8.6 shows these areas.

Now, we calculate the raw score defining the area to the left (45%) of the distri-

bution: Z¼ 1.645 (or 1.65, from the z table). Both Z values lie the same distance

from the mean, but on different sides. Therefore, Z1¼�1.65 and Z2¼ 1.65.

X1 ¼ Z1ðSDÞ þM; X1 ¼ �1:65ð26:54Þ þ 50:16; X1 ¼ 6:37

The raw score defining the right (45%) of the mean is

X2 ¼ 1:65ð26:54Þ þ 50:16; X2 ¼ 93:95
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Therefore, the middle 90% of the sample distribution of schools’ F/R values is

bracketed by the two raw scores of 6.37 and 93.95. Typically, the middle 90% of

the schools will have F/R values between these two values.

Outside Area Example

We can use a similar process to figure the outside portion of the distribution.

This is the portion of the distribution that is in the two ‘‘tails’’ of the distribu-

tion. As you will see, this is an important identification because much of how

we will use probability will involve the ‘‘exclusion area’’ of scores in the tails

of the distribution.

Using the same data, identify the two raw scores that cut off 5% of the distribu-

tion and isolate it into the two tails. Recall that our sample schools (N¼ 40) show a

mean of 50.16 and a (population) SD of 26.54 on the F/R variable.

Figure 8.7 shows how this looks so you can practice the visualization of the

solution. Picture the distribution with small shaded areas (5%) distributed in

the two tails of the distribution. We need to identify the raw score values that

define this area. First, however, we need to use the z-score table and calculations

to help us.

Like the last example, we can use our knowledge about the standard normal dis-

tribution to help us with this visualization.

FIGURE 8.6 Visualizing the middle 90% area of the F/R sample values.

FIGURE 8.7 Visualizing the excluded 5% of the F/R sample values.
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1. Recall that 2 SDs (above and below the mean) contain about 95% of the

distribution (47.72% on either side of the mean).

2. This is very close to our target area because 2.5% of the 5% to be distributed

between the two tails lies on each side of the distribution (i.e., one-half of 5%

is 2.5%), and this leaves 47.50 in the middle of both sides of the distribution

(i.e., 50%� 2.5%¼ 47.50%);

3. Therefore, our raw score is going to lie close to a z score of �1.96 (the tabled

value for 47.50% of the area between the mean and the tail).

Because the distribution is symmetrical, the z-score table identifies the same

z score on the left (negative value) and the right (positive value) of the distri-

bution. Calculating the raw score defining the 2.5% in the left of the distribu-

tion, we obtain

Z1 ¼ �1:96 and Z2 ¼ 1:96

X1 ¼ Z1ðSDÞ þM; X1 ¼ �1:96ð26:54Þ þ 50:16; X1 ¼ �1:86

The raw score defining the right (2.5%) tail is

X2 ¼ 1:96ð26:54Þ þ 50:16; X2 ¼ 102:18

Therefore the scores of �1.86 and 102.18 identify the 5% area distributed in the

two tails of the F/R sample distribution! This is interesting because the scores range

from 0 to 100. Why the discrepancy? Because we are working with sample values

to estimate population values.

Perhaps an easier way to identify the z score in this example using our z table of
values is to find the z score that ‘‘creates’’ a tail of 2.50%. This value would be

identified as the z score closest to a tail value of 2.50% from the tail columns of the

z-score table (i.e., 1.96).

‘‘EXACT’’ PROBABILITY

Thus far, we have discussed probability in terms of the area under the standard

normal distribution. We have seen how to translate given areas (e.g., the percent of

the distribution between the mean and SD 1) into probability statements (e.g.,

p¼ 0.34, from the example above). We have thus converted a range of scores into
a probability amount. Excel1 and SPSS1 provide this information, but they also

report the probability of exact values occurring among a set of values. Thus, the

exact probability of a value of 1.00 occurring in the standard normal distribution is

approximately 0.013. This is the value lying at the SD 1 mark because the standard

normal distribution has mean¼ 0 and SD¼ 1. Thus, a value that lies directly at the

SD 1 mark has a probability of occurring of p¼ 0.013.

To show an example of this, recall our discussion in Chapter 7 regarding the

NORMDIST function in Excel1. Figure 7.17 shows the example of the math
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achievement variable for our sample of 40 schools. As you can see, we used the

‘‘TRUE’’ argument in the ‘‘Cumulative’’ window of the function. This returned

the percent of the normal distribution below the raw score of 37.70 (i.e., 0.2297

or 22.97%).

Figure 8.8 shows the same function window from Excel1, except this time I

specified ‘‘FALSE’’ in the ‘‘Cumulative’’ window. As you can see, this returns the

value of 0.017388417. This is the exact probability of the raw score of 37.70 occur-

ring (known as the probability mass function) in this distribution of values. We will

see these specific probabilities reported by both Excel1 and SPSS1 in our discus-

sion of statistical procedures in the chapters ahead.

You can also estimate this value using the z-score table. Figure 8.9 shows

how to do this using the example in Figure 8.8. As you can see, I identified

the target point of 37.7, but I also identified two values very close to it. Creat-

ing a raw score value 0.5% to the left of the target (37.20%) and 0.5% to the

right (38.20%), I can create a rough estimate of the target point within one raw

score percentage ‘‘band.’’

FIGURE 8.8 Using the Excel1 NORMDIST function for exact probabilities.

FIGURE 8.9 Calculation of an exact probability using the z-score table.
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Calculating the z scores for these points (�0.77 and �0.71, respectively),

you can calculate a percentage of 1.83 using the z-score table as we have in

past exercises. Transforming this percentage to a probability yields p¼ 0.0183.

This is close to the probability identified in Figure 8.8 (0.017388417), but not

exact. The probability of p¼ 0.0183 is the probability of a score occurring

between raw scores of 37.20 and 38.20, not the exact probability of the raw

score of 37.70. Nevertheless, you may see from this example what we mean

by the calculation of an exact probability.

FROM SAMPLE VALUES TO SAMPLE DISTRIBUTIONS

As we end this chapter, let me make some comments about the nature of inferential

statistics that will propel us into the next chapters. Thus far, we have examined raw

score distributions made up of individual raw score values. For example, our set of

40 schools each had student–teacher ratios, math and reading achievement scores,

and F/R levels. We tried to understand the nature of these variables: whether they

were normally distributed and how the percentages were distributed compared to

the standard normal distribution.

In the real world of research and statistics, practitioners almost always deal with

sample values because they very rarely have access to population information.

Thus, for example, we might want to understand our students’ math achievement

scores compared to the math achievement scores of all similar students in the state.

Perhaps we implemented a new way of teaching mathematics and we want to see

if our methods were effective with our students compared to the students in the

state. (If so, we might want to market the approach!) We can gain access to our

own student’s scores quite easily, but it is another matter to gain access to all the

students’ scores in the state!

Inferential statistics are methods to help us make decisions about how real-
world data indicate whether dynamics at the sample level are likely to be related to
dynamics at the population level. That is to say, we need to start thinking about our

entire sample distribution (perhaps our group of 40 students math scores) as being

one possible sample of the overall population of students (math scores) in the state.

If we derive a sample that is unbiased, the sample values (mean and SD, for

instance) should be similar to the population values. If, however, we intentionally

make a change to see what will happen to our sample, we should observe that our

sample values differ from population values. Or, to take another example, we might

observe that another teacher has been using a ‘‘traditional’’ method of teaching

math while I have used my new method and I want to see which is more effective.

In any case, what we are doing is:

1. Assuming at the outset that our sample reflects the population values from

which it supposedly comes.

2. Changing our sample somehow, or observing different conditions between

our sample and another similar sample.

FROM SAMPLE VALUES TO SAMPLE DISTRIBUTIONS 143



3. Then seeing if our changed sample is now different from before, or different

from the other sample.

In all these cases, we are comparing a sample to a population, not examining

individual scores within a sample. We no longer think of our sample values individ-

ually, but as one set that could be derived from a population along with many more
such sets; our sample set of values are now seen as simply one possible set of values

alongside many other possible sample sets. That is the difference between inferen-

tial and descriptive statistics. We therefore change the nature of our research

question:

1. Are our sample values normally distributed? (Descriptive statistics)

2. Do our sample values likely reflect the known (or unknown)

population values from which our sample supposedly came? (Inferential

statistics)

TERMS AND CONCEPTS

Grade Equivalent Scores These are scores typically used by educators to express

grades and months based on the typical score of a comparison group of students

during a nine month school year.

Probability This is the field of mathematics that studies the likelihood of certain

events happening out of the total number of possible events.

Stanines Stanines (standard nine) scores are created by transformations using the

standard normal distribution. Widely used in education, these scores divide the

standard normal distribution into nine parts. The stanine has a mean of 5 and an

SD of 2.

T Scores The T score is a transformed score used in education because it

recalculates z scores into more intuitively understandable scores. Z scores are

both positive and negative, and they have a narrow range (from about �3.00 to

þ3.00). T scores transform z scores into values that are always positive, and with
a larger range.

REAL-WORLD LAB IV

1. Using the data from Table 7.1, identify the raw scores that contain the middle

92% of the distribution.

2. What is the probability of obtaining a student–teacher ratio between 10 and

12?

3. What is the exact probability of obtaining a student–teacher ratio of 20?
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REAL-WORLD LAB IV: SOLUTIONS

1. Using the data from Table 7.1, identify the raw scores that contain the middle

92% of the distribution.

Figure 8.10 shows the pertinent information so that you can visualize the results.

The calculations are in accordance with the figure.

The middle 92% of the distribution identifies an area that lays 46% to the left

of the mean to 46% to the right of the mean. The resulting z scores are therefore

located at �1.75 and þ1.75.

Z1 ¼ �1:75 and Z2 ¼ 1:75

X1 ¼ Z1ðSDÞ þM

X1 ¼ �1:75ð3:58Þ þ 16:25; X1 ¼ 9:99

X1 ¼ 1:75ð3:58Þ þ 16:25; X2 ¼ 22:52

Therefore, the middle 92% of the distribution falls between the raw score values

of 9.99 and 22.52. Given the nature of the sample distribution, this encompasses

most all of the scores.

2. What is the probability of obtaining a student–teacher ratio between 10

and 12?

Figure 8.11 shows the target area for visualization. As you can see, the z scores
for these raw scores calculate to be �1.75 and �1.19, respectively.

The target area occupies about 7.69% of the distribution. Therefore, the proba-

bility of obtaining a student–teacher ratio between the raw scores of 10 and 12 is

p¼ 0.077.

3. What is the exact probability of obtaining a student–teacher ratio of 20?

FIGURE 8.10 The middle 92% of the student–teacher ratios of the sample schools.
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We can use the NORMDIST function to calculate this probability. Figure 8.12

shows the Excel1 function with the result of p¼ .064.

You can estimate this using the z-score table by calculating the area between

scores of 19.5 and 20.5 as follows:

X z
% of Distribution Between

Mean and z Score

19.5 0.91 31.86

20.5 1.19 38.30

Subtracting the relevant percentages yields 6.44% (38.30� 31.86). Converting

this to a probability, we obtain p¼ 0.0644. Compare this to the value yielded by the

NORMDIST function in Excel1 (in Figure 8.12). The values are almost identical.

FIGURE 8.12 Calculating the exact probability of obtaining a raw score value of 20.

FIGURE 8.11 Calculating the probability between raw scores of 10 and 12.
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9
THE NATURE OF RESEARCH DESIGN
AND INFERENTIAL STATISTICS

Does class size have an effect on learning? Education researchers are just beginning

to take a closer look at this research question because it is such a widely held opin-

ion and it has resulted in funding opportunities for schools that have low student

achievement. It has been fashionable in recent years not only to reduce class size,

but also to create smaller schools or ‘‘schools-within-schools’’ as a way to limit

size. The idea underlying all of these notions is that fewer students means that

teachers can more effectively communicate with students and help them learn.

I have evaluated many educational reform efforts that took this tack and have

written in several places about similar strategies. One of the main issues in reform

efforts, it seems to me, is not whether the class is smaller, but the approach to learn-

ing taken by teachers, students, and educational administrations.

The question of class size and achievement is persistent. This being the case, we

can use the example to discuss the nature of research and inferential statistics. To

these issues we now turn.

As I mentioned in Chapter 8, my students anxiously await ‘‘headache day’’ be-

cause it means we must take a different approach to our subject. This is indeed the

case, although it does not have to be overly complex. The main requirement for

understanding inferential statistics is to learn to think abstractly. We have dealt

with descriptive statistics, which, in a sense, are procedures to measure what you

see. Inferential statistics looks at data on a different level of abstraction. We must

learn to understand the connection between what data we see before us and the

statistical world that lies outside and beyond what we see.

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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RESEARCH DESIGN

Before we look in depth at inferential statistics, however, we need to cover some

essential matters of research design. Statistics and research design are companion

topics that need to be understood together. Often, the two subjects are taught

together in college curricula, or they are prerequisites for one another. There is no

best way to sequence the ideas, so I simply try to introduce research design elements

at the brink of discussing inferential statistics because they have mutual reliance.

This is a book on statistics, so we cannot hope to cover all the complexities

of research design. We can only attempt to provide a research ‘‘primer.’’ In what

follows, I will outline some of the basics, but for a comprehensive understanding of

research design, you need to consult standard authorities in the field. You might

start with Earl Babbie’s excellent work (Babbie, 2010) that has served for many

years to provide an excellent examination of social research practice.

Social research is a field of inquiry in which we devise standardized methods for
examining available data to answer research questions. Typically, this involves
collecting data from subjects or existing sources and subjecting the data to the

methods of statistics to provide illumination. We may start with a research question

and then figure out the best way to proceed to solve it. This procedure is research

design. How can we structure our inquiry so that we can find and use data in the

most defensible way to answer a research question? Figure 9.1 shows a process we

might envision that will help us negotiate a research question.

FIGURE 9.1 The process of social research.
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Theory

As you can see, the top element in Figure 9.1 is ‘‘Theory,’’ an abstract idea in

which we state the conceptual nature of the relationship among our ideas of

inquiry. For instance, we might state our earlier question as a theoretical ques-

tion: What is the relationship between size of learning environment and student

learning?

Hypothesis

Because a theory cannot be directly assessed (it exists on an abstract and conceptual

level), we must find a way to empirically restate the theory so that it can be as-

sessed. That is the role of the hypothesis, a statement that captures the nature of the

theoretical question in such a way that it can be directly verified. As you can see in

Figure 9.1, I note that the hypothesis is written in ‘‘testable language,’’ or written in

a way that will provide empirical evidence in support of, or contrary to, a theoreti-

cal question.

Let me add here that I am introducing a scientific process that underlies most all

scientific attempts to understand the world. The physical sciences and social sci-

ences alike use the methods I am describing to generate and verify knowledge. The

theory testing process shown in Figure 9.1 is the heart of this process. By following

the process, we can support or refute a theoretical position, but we can never

‘‘prove’’ it directly. If a hypothesis statement, being constructed in empirical, and

therefore limited, language is borne out, we simply add to our confidence in the

theory. There are many hypotheses that can be generated to test any one theory

since the empirical world cannot completely capture the essence of the abstract con-

ceptual world.

Here is an example of what I mean. I might generate the following hypothesis

regarding the theoretical statement above about size and learning: ‘‘Students in

classroom A (smaller student to teacher ratio) will evidence higher standard test

scores in mathematics than those in classroom B (larger student to teacher ratio).’’

Do you see the difference in language between theory and hypothesis? Theory is

abstract while hypothesis is concrete. Theory is more ‘‘general,’’ while hypothesis

is more ‘‘specific.’’

Theory cannot be captured by a single hypothesis statement; there are sim-

ply too many empirical possibilities that can be created to ‘test’ the theory.

For example, I might suggest another hypothesis: ‘‘Schools’ student to

teacher ratios will be negatively correlated with their aggregated test scores

in math.’’ As you can see, this is another restatement of the theory in lan-

guage that is testable. I can easily (well, perhaps easier!) collect school data

on a sample of schools and statistically assess the relationship between their

student to teacher ratios and their aggregated test scores. If there is a rela-

tionship, as predicted by the hypothesis, this would lend support to the theo-

retical tie between size of learning environment and learning, but it would

not ‘‘prove’’ it.
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TYPES OF RESEARCH DESIGNS

Research designs are simply the ‘‘housing’’ within which we carry out our analyses

to test a theory. You can see in Figure 9.1 that the research design enables the re-

searcher to situate the hypothesis. How can we create the analysis so that we can

use statistical tools to their best advantage to provide evidence for the theory?

While there are many different possibilities, we can note three:

1. Experiment

2. Post Facto—Correlational

3. Post Facto—Comparative

Experiment

There are two ‘‘classes’’ of designs; experimental and nonexperimental (post facto).
Experiments are designs in which the researcher consciously changes the values of
a study variable under controlled conditions and observes the effects on an outcome
variable. Post facto designs are those that involve measuring the relationships

among variables using data that have already been collected.

Of the two examples of hypothesis I listed above, the first is closer to an experi-

ment, depending on how I can control the conditions. Thus, if a principal allows me

to randomly select students and randomly assign them to two different classrooms

(A and B) with different student to teacher ratios, and then after a period of time

assess the differences in student test scores, I would be performing an experiment. I

consciously change the values of a study variable (student to teacher ratio) and as-

sess the effects on an outcome variable (student achievement).

Control Groups. Of course, the particular way in which I control all the influences

other than the two research variables will have a bearing on the strength and validity

of my results. The key to a powerful experimental design is limiting these influ-

ences. One way to do so is to create a ‘‘control group,’’ which is typically a group

similar in every way to a ‘‘treatment group’’ except for the research variable of

interest. In our example, classroom A may have substantially lower student to

teacher ratios (e.g., 12:1) than the ‘‘normal’’ classroom B (e.g., 16:1). In this case,

the treatment variable is ratio size, and students in classroom B are the control

group. Table 9.1 shows these groups. The only difference they have from students

in classroom A is that there are more students per teacher in their classroom. There-

fore, if students in classroom A get superior test scores, the experimenter will

TABLE 9.1 The Experimental Groups

Research Treatment Variable: Student–Teacher Ratio Outcome Variable

Classroom A (low ratio) Experimental group Test scores

Classroom B (typical ratio) Control group Test scores
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attribute the test score increase (the outcome) to a lower student–teacher ratio. The-

oretically, there are no other differences present in the design that could account for

the difference in test scores.

As you might imagine, there are a host of potentially ‘‘confounding’’ conditions,

or ways that the two groups cannot be called comparable. Perhaps the experimenter

cannot truly choose students randomly and assign them randomly to different class-

rooms. If so, then there are differences being ‘‘built in’’ to the experiment: Were

similar students chosen for the different classes? Were there students of ‘‘equal’’

aptitudes, genders, and personality types represented in both groups, for example?

Randomization. Experimenters use randomization methods to ensure comparabil-

ity of experimental groups. By randomization, I mean (1) selecting students ran-

domly and (2) randomly assigning them to different conditions. The power of

randomness is that it results in individual differences between students to be equa-

ted across groups. If every student has an equal chance of being chosen for an

experiment, along with an equal chance of being assigned to classroom A or B,

then the resulting groups should be as equal as possible; there should be very little

bias that would normally influence some students to be chosen for one class and

other students to be chosen for the other class.

Quasi-Experimental Design. Experiments can be either ‘‘strongly’’ constructed or

‘‘weakly’’ constructed according to how well the experimenter can control the dif-

ferences between both groups. Often, an experimenter cannot control all the condi-

tions that lead to inequality of groups, but they still implement the study. The quasi-
experimental design is just such a design. Here, the experimenter may be forced,

because of the practicalities of the situation, to use a design that does not include all

of the controls that would make it an ideal experiment. Perhaps they do not have the

ability to create a control group and must rely on a similar, ‘‘comparable group,’’ or

they may be confronted with using existing classes of students rather than being

able to create the classes themselves.

In the experimental design we discussed above, the experimenter may not be

able to randomly select students from the student body and then randomly assign

them to different conditions. Perhaps the experimenter can only assign the students

randomly to different classrooms. In this case, we cannot be assured that the stu-

dents in the two classrooms are equal, since we could not assure complete random-

ness. However, we might proceed with the experiment and analyze how this

potential inequality might affect our conclusions. This is shown in Table 9.2, in

which the difference from the experimental design shown in Table 9.1 is the ab-

sence of randomization and the lack of a true control group.

There are a great many variations of experimental and quasi-experimental de-

signs. The key differences usually focus on the lack of randomization and/or true

comparison groups in the latter. For a comprehensive understanding of experimen-

tal design and the attendant challenges of each variation, consult Campbell and

Stanley (1963) for the definitive statement. In this authoritative discussion, the

authors discuss different types of designs and how each can address problems of
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internal validity (whether the conditions of the experiment were present to control

extraneous forces) and external validity (including generalizability).

It is probably best to think of experimental designs as being stronger or weaker

rather than as specific ‘‘types’’ that can be employed in certain situations. Many

research design books list and describe several specific (experimental and quasi-

experimental) designs, noting the features that limit problems of internal and exter-

nal validity. Figure 9.2 shows how research designs exist on a continuum in which

they can approach ‘true’ experimental designs on one end that limit all problems

and can make causal attributions to those on the other end of the continuum that are

beset with problems which limit their ability to produce meaningful experimental

conclusions.

Variables. By now, you will recognize that I have used the language of ‘‘variables’’
in my explanation of experimental design. Before we proceed to discuss other de-

signs, we need to note different kinds of variables. Variables, by definition, are the

quantification of concepts (like the student to teacher ratios or test scores) used in

research that can take different values (i.e., vary). Thus, math achievement is a

quantified set of test scores that vary by individual student.

Independent Variables. In research design, we often refer to certain types of varia-

bles. The ‘‘independent variable’’ is understood to be a variable whose measure

does not relate to or depend upon other variables. Thus, in our experimental design

FIGURE 9.2 The nature of experimental designs.

TABLE 9.2 A Quasi-Experimental Design

Research Treatment Variable: Student–Teacher Ratio

Outcome

Variable

Classroom A

(low ratio)

Experimental group (not randomly selected

and assigned)

Test scores

Classroom B

(typical ratio)

Comparison group (not randomly selected

and assigned, but chosen to be

comparable to the experimental group)

Test scores
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example, student–teacher ratio is such a variable because in our research problem

we assume that this is the influence that will lead to an impact on other variables. It

is assumed to be a ‘‘cause’’ of some research action.

There are a host of problems with the independent variable designation. Typi-

cally, we refer to a variable as independent only in the context of an experiment

because we are framing it as leading to certain effects. In nonexperimental contexts,

I prefer to use the designation ‘‘predictor variable,’’ which does not evoke the lan-

guage of causality. A variable can be a predictor of an outcome without being an

independent variable.

In research designs, independent study variables can be ‘‘manipulated’’ or ‘‘non-

manipulated,’’ depending on their nature. Manipulated independent variables are
those the experimenter consciously changes, or manipulates, in order to create the

conditions for observing differential effects of treatment groups on the outcome var-

iable. In our example, student–teacher ratio is the manipulated independent variable

because the researcher could assign students to two different levels or conditions

of this variable: low or high ratios. Another example could be group size, if a re-

searcher wanted to compare different reading groups according to the numbers of

students in the group; perhaps one group would consist of ‘‘few’’ students and an-

other “many” students. In this example, group size is manipulated (i.e., consciously

changed by the researcher) by creating two reading groups of different sizes.

Nonmanipulated independent variables are those that cannot change or cannot

be manipulated by the researcher. Typically, they are characteristics, traits, or

attributes of individuals. For example, gender or age can be independent variables

in a study, but they cannot be changed, only measured. When these types of varia-

bles are used in a research study, the researcher cannot make causal conclusions.

The essence of a true experiment is to observe the effects of changing the conditions

of a variable differentially for different groups and then observing the effects on the

outcome. If nonmanipulated variables are used, by definition the research design

cannot be experimental. For example, if the researcher was interested in the effects

of gender on achievement, the research design can only group the subjects by their

already designated gender; no causal conclusions can be made.

Dependent Variables. Dependent variables are those thought to be the ‘‘receivers

of action’’ in a research study; their value depends upon (is tied to) a previously

occurring variable. Where independent variables are causes, dependent variables

are ‘‘effects’’ or results. In nonexperimental contexts, I like to think of these as

‘‘outcome variables’’ that are linked to predictors.

Post Facto Research Designs

The second hypothesis example I presented above (‘‘schools’ student–teacher ratios

will be negatively correlated with their aggregated test scores in math’’) is a post
facto correlational design. Here, I am simply using data that already exist (on

schools’ student–teacher ratios and their aggregate test scores)—hence, post facto,
which means ‘‘after the fact.’’ I do not consciously change anything; rather I use
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what data I can gather from what is already generated to see if the two set of scores

are correlated. This design uses the statistical process of correlation to measure the

association of two sets of existing scores. [We will discuss this process at length in

the correlation chapter. (Chapter 14).]

A post facto design can also compare conditions rather than correlate condi-

tions. The post facto comparative design seeks to understand difference. Thus, for
example, I might compare two already existing classes of students to see if they

have different test scores. (Perhaps we are interested in whether one class, com-

posed of girls, has different test scores in math than another class composed of

boys.) Statistically, I will assess whether there is a difference between the means of

the test scores, for example. This type of approach uses methods of difference like

the t test, ANOVA, and others. It is post facto, since we are using data that already

exist (i.e., I did not randomly select and assign students to different classes; I used

classes already operative), but it is not correlational, since we see to assess differ-
ence rather than association.

THE NATURE OF RESEARCH DESIGN

I cannot hope to discuss the nuances of each type of design. However, I will intro-

duce the different designs in the context of discussing different statistical proce-

dures in the chapters ahead. For now, it is enough to know that there are different

ways to assess theories. We devise hypotheses according to the nature of our inter-

ests and inquiry, and we thereby validate or question theories by empirical (statisti-

cal) processes.

I should mention here some important aspects of research designs that I will de-

velop in later chapters. In brief, each design has strengths and limitations. The

experiment can be a powerful way of making ‘‘causal statements’’ because, if only

one thing changes (the main treatment) while everything else is similar between the

groups being tested, we can attribute any effects or changes in outcomes to the thing

that was changed. Using the first example again, if we chose and assigned students

appropriately and if the only difference between the two groups was the student to

teacher ratio, then we could attribute any resultant difference in test scores primar-

ily to the ratios. (Of course, as we will learn, we have to take great care to control

all other influences beside the ratios in order to make a causal conclusion.)

Post facto designs cannot lead to causal attributions. Because the data are

already collected, a number of different influences are already ‘‘contained in

the data.’’ In this event, any two groups we compare have differences other than the

research interest (student to teacher ratio) that will intrude upon differences in test

outcomes. It is a matter of controlling these influences that is the difference between

an experiment and a post facto design.

Research Design Varieties

There is another dimension to research design, namely, the variety of ways in which

it is carried out to collect data. Experiments can take place in the laboratory or in
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the field, for example. Post facto designs can use self-report instruments (i.e., ques-

tionnaires) or researcher observation to generate outcome data. More generally, re-

search can be quantitative (focusing on the statistical analysis of numerical

measures for the concepts studied) or qualitative (focusing on the aspects of re-

search assumed to be irreducible to numbers, like the emergent meaning of a con-

cept among a group of people.)

Sampling

I have already alluded to the importance of sampling. By now, sampling is gener-

ally understood to be the process by which a small group of elements is chosen from

a larger (population) group so that the small group chosen is representative of the

larger group. Thus, for example, in my first hypothesis above, sampling might

involve choosing a small number of students from a school in order to create two

different classes rather than including everyone at the school. The purpose is to

create a representative group for study; the conclusions of the study are then

thought to characterize the entire population. Sampling thus follows the hypothesis

in Figure 9.1.

As you might imagine, the sampling process is vulnerable to problems. How do

you choose the sample so that you can be assured it is representative of the entire

population from which it was drawn? There is no way to be entirely certain! But, if

we choose a sample randomly, where each element has an equal probability of be-

ing chosen, we can rest assured that we will have the most representative sample

possible. What we are saying here is that we are using a probability sampling
process; that is, we are using the methods of probability to arrive at a sample group

in which the variability of the sample reflects the variability of the population.

Our sample should have the same gender, age, and other characteristic mix as

the population.

Sampling is more complex than I am making it out; however, at its heart, it re-

ally is a simple principle. The situation I described above is the simple random sam-
ple. There are other types of sampling that recognize the complexity of the process

and the nature of a research problem. Stratified random sampling, for example,

allows the researcher to build in levels or categories so that we can ensure each of

the crucial components of a population is taken into account. If our school has un-

equal numbers of boys and girls, for example, we might want to sample randomly

within sex categories to ensure we have a representative sample group.

What makes sampling difficult is that we often cannot control certain features

of the process that would result in a representative sample. Often, we do not

have the ability to use probability sampling procedures. Perhaps we are studying

a phenomenon in which it is difficult or impossible to identify the population

from which to sample. In such cases, we need to use whatever procedures are

available. I did a study a number of years ago on street-corner preachers. It

would be impossible to identify the population of street-corner preachers, so I

interviewed and observed those street-corner preachers that were convenient.

The convenience sample is obviously not representative, but it may be a

researcher’s only option.
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Another nonrepresentative sampling process is snowball sampling. Often, be-
cause a study population is secretive or difficult to identify, the researcher might

gain additional subject interviews from an existing interview. Then, the additional

interviews might uncover other potential subjects, like a snowball gathering mo-

mentum rolling down a hill. I was forced to resort to this process when conducting

a special census some years ago. The population was resistant and secretive, so I

had to carefully construct an interview list through existing contacts. This and other

nonprobabilistic sampling methods are available to researchers, but the limitations

need to be identified in the study. The sampling problems will be registered in the

conclusions.

INFERENTIAL STATISTICS

Now that we have covered some of the essentials of research design, we can return

to the topic of inferential statistics. The two topics are highly intertwined. As I men-

tioned in Chapter 8, inferential statistics involves a shift in thinking from individual

scores to sets of scores (or samples).

One Sample from Many Possible Samples

We need to begin thinking of our data as a sample that we have drawn from some

larger population, rather than a set of data that is a sample unto itself. Or, stated

differently, we must move from measuring distributions of raw scores to measuring

the probability of sample distributions belonging to certain populations.

In order to pursue the matter of whether size of learning environment affects

learning, we can use inferential statistics to help us understand whether our ob-

served changes from a sample study likely apply to the population of all students.

Figure 9.3 shows how this works.

When we conduct a research study, we typically select a sample that we try to

ensure is representative of a population of interest. Figure 9.3 shows that this sam-

pling process, if it is random, can result in a sample group drawn from any area of a

population distribution. There are four samples shown in Figure 9.3 to show that

most samples will be selected from the area close to the mean of the population if

probabilistic methods are used. We talked about this in the section entitled ‘‘Proba-

bility and the Normal Curve’’ in Chapter 8. The greatest likelihood in sample selec-

tion is that it will come from the area massed most closely to the mean. There are

probabilities that the sample can be drawn from out in the tails, but that is not as

likely.

In our size–learning example, we can understand the population of interest to be

the school, and our sample to be the set of students that we will randomly assign to

two classes, each with a different student–teacher ratio. I must note an issue of gen-

eralizability here. If our population is limited to a school, then the conclusions of

our study can only extend to the population from which it is drawn. The conclusion,

in this case, would be quite limited; it would only apply to the dynamics of our
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particular school and would constitute a case study. If we were to conduct a national
study and selected a larger group of students from the national population, then our

conclusions could extend to the national population.

For discussion purposes, Figure 9.3 shows that, if we were to create a sample

four times, our samples would fall within the large area close to the mean and not

in the tails. If we were to select 1000 samples, we would likely get most of the

samples from around the population mean but several in the tails as well. That is

the nature of the normal distribution.

Of course, we do not need to create four samples for our study. The figure is just

to underscore the fact that when we create samples, they are likely to come from the

area closer to the mean than in the tails. We assume, when we take a sample, that it

represents a population by coming from the area close to the mean. Even though our

sample mean will not likely be exactly the same as the population mean, it will

likely be close.

Sampling error is the difference between the sample and population means,

among other aspects of the distribution. Whenever we take a sample, we are not

likely to come away with a small group with exactly the same mean and standard

deviation as the overall population. This doesn’t make the sample problematic

or unrepresentative unless it is widely divergent from the population mean. Some

error is expected in sampling. The extent of the error is the subject matter of infer-

ential statistics.

Central Limit Theorem and Sampling Distributions

Now, here is a curious fact. Let’s say we did gather 1000 samples from a large

population of students. If we used only the sample means of each sample to repre-
sent their entire sample groups, we could create a new distribution just made up

only of these sample means. In such a process, most of the sample means in this

FIGURE 9.3 The sampling process for inferential statistics.
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new ‘‘sampling distribution’’ would lay close to the overall population mean with

some spreading out into the tails. In fact, the mean of this sampling distribution of

means would be normally distributed, and its mean would be equal to the popula-

tion mean.

Researchers and statisticians refer to this process as resulting from the assump-

tions of the Central Limit Theorem. This theorem states that means of repeated sam-

ples taken from a population will form a standard normal distribution (assuming a

large sample size) even if the population was not normally distributed. The sam-

pling distribution that results will have important properties to researchers conduct-

ing inferential studies.

As you can see in Figure 9.4, the four hypothetical samples are taken from the

population, and their individual means make up a separate distribution called the

sampling distribution. You can see from Figure 9.4 that the individual means,

which represent their sample distributions (M1, M2, M3, M4), lay close to the popu-

lation mean in the new distribution. We can say that the sampling error is smaller as

we get closer to the population mean. Figure 9.4 shows this process using only four

samples for illustration.

There are other important features of the sampling distribution created by using

the means of repeated samples. As you can see in Figure 9.4, the following are true:

1. The sampling distribution will be normally distributed.

2. The mean of the sampling distribution will be equal to the population mean.

That is, if you added up all the sample means and divided by the number of

sample means, the resulting average of sample means would equal the popula-

tion mean.

3. The standard deviation of the sampling distribution will be smaller than the

standard deviation of the population because we are only using the individual

mean scores from each sample distribution to represent the entire set of

FIGURE 9.4 Creating a sampling distribution.
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sample scores. Using only the mean of each sample group results in ‘‘lopping

off’’ most of the variability of individual scores around their contributing

group means, with the result that the sampling distribution will have a smaller

‘‘spread.’’

The importance of the sampling distribution is that it will be normally distrib-
uted. As I noted earlier, if we take repeated random samples and make a separate

distribution from just the sample means, the resulting distribution will be normally

distributed even if the original population is not normally distributed. You can see

this feature of the Central Limit Theorem in Figure 9.5. Because it is normally dis-

tributed, you can see how a single sample mean relates to all other possible sample

means. If you think of your study being one such sample, is your study mean close

to the population mean? How close or far away is it?

You are probably asking yourself, ‘‘so what? What does this have to do with

anything because I would only select one sample for my study?’’ This is the crux of

inferential statistics, so let me answer this (anticipated) question.

Sampling distributions are not empirical; they provide the framework within
which you can understand your sample as one of several possible samples. You
don’t actually select multiple samples for a study such as I described, so the sam-

pling distribution is not empirical. But you should understand that, when you obtain

the results from studying your sample, the results will reflect two things: (1) the

impact of the independent (predictor) variable on the dependent (outcome) variable

and (2) the distance of the sample mean from the population mean. If your sample

is drawn randomly, it should be close to the population characteristics and this

source of ‘‘error’’ should be minimized. But the fact of the matter is, you could

select a sample from the tails of a distribution just by chance. It certainly happens;

that is the nature of probability.

The important question is, How far away from the population mean can I select a

sample and still assume it is representative? This is the operative question at the

FIGURE 9.5 The nature of the sampling distribution.
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center of inferential statistics and the reason we need to envision the sampling dis-

tribution. Even though we will never actually create a sampling distribution by re-
peatedly sampling from a population, the known features of the sampling
distribution will help us to answer the question of representativeness of values.

The Sampling Distribution and Research

In research, you draw a sample from a population and use the sample to reflect the

population characteristics. If you select the sample using probabilistic methods, it

will be representative. That is, the sample mean will likely not fall far from the

population mean.

Next, you ‘‘use’’ the sample to make a careful study. Perhaps, as a simple

example, we perform an ‘‘experiment’’ by selecting a sample of students and

introduce some treatment that we think will affect an outcome measure. In our

example of student–teacher ratios and student learning, we might take our sam-

ple of students and form a class with a small student–teacher ratio. We would

then let the class run for a period of time and then measure the outcome of the

study (student test scores). Do our students have a larger or smaller test average

than ‘‘normal’’ classes with larger student–teacher ratio? Here, we are assuming

that the overall population of students has a certain average ratio that is known,

and we are purposely decreasing it for our students to see if it makes a differ-

ence in learning.

Since we are hypothesizing that smaller student–teacher ratios are helpful to

learning, we would anticipate that the average student test scores in our sample

group would be higher than the test scores of the general population of students.

That is, over the duration of the class, the lower student–teacher ratio would affect

the students in various ways and result in higher achievement (test scores) than for

students in other classes. If we now compared our class achievement average to the

average achievement of the population of students, it might be quite higher. But

how much higher would it have to be for us to conclude that the lower student–

teacher ratio (that we created) had a significant impact on student learning? This is

the importance of the sampling distribution.

When we compare a sample mean to the population mean after we change the
sample in some way (e.g., by an experimental treatment), it may no longer be close

to the population mean. In effect, our treatment may have ‘‘moved it away’’ from

the population mean a certain distance. We use the sampling distribution of means

to ‘‘measure’’ this distance. How far away from the population mean does the sam-

ple mean now fall after the treatment?

The answer to this question is found in probability theory. If we assume that we

will get a sample mean close to the population mean by choosing it randomly, then

we assume that a sample mean, once changed by an experimental treatment, will be
moved further away from the population mean if the treatment is effective. If the

(changed) sample mean now falls in the tail area (exclusion area) of the sampling

distribution, that is tantamount to saying that it is no longer representative of the

population; the sample mean falls too far away from the sample mean.

160 THE NATURE OF RESEARCH DESIGN AND INFERENTIAL STATISTICS



How far is too far? Statisticians and researchers have assumed that if a sample

mean falls into the tails of a distribution, it is not representative; but how far into

the tails? The consensus is generally the 5% exclusion area; that is, the area in the

tails (both sides) that represents the extreme 5% of the area under the standard nor-

mal distribution (i.e., 2.5% on either side).

Therefore, to go back to our example, if our sample students’ test scores are

substantially higher than those of the population, we would say that the lower

student–teacher ratios moved the sample test mean away from the population mean

so far into the tails of the distribution that our students are no longer representative

of the students in the population.

Figure 9.6 shows how you might visualize this. The sampling distribution is

drawn (in theory) from the population of all students. After the experiment, the

students’ scores (as represented by the sample mean) are now ahead of the other

students’ scores as represented on the sampling distribution (the sample mean value

is on the far right of the test score distribution of all students).

The sampling distribution thus becomes a kind of ‘‘ruler’’ that we can use

to apply our findings. It is (theoretically) created according to the Central Limit

Theorem and therefore reflects a ‘‘perfect’’ distribution—that is, a standard normal

distribution. It now stands in the place of the population as our comparison figure.
We can now see where our sample mean falls on this perfect comparison

distribution. If it falls in the tails, as it does in the example in Figure 9.6, we would

say that the treatment changed the group to such an extent that it no longer is the

same as the group of all other students (i.e., population); it is too far away from the

population mean.

Another way of saying this is that, after the experiment, our one sample of many

possible samples is now not in the area of a ‘‘normal’’ sample. All possible samples

are represented by the sampling distribution. Our changed sample is now moved

into the tails, and we can say it is now different from the others.

FIGURE 9.6 Using the sampling distribution to ‘locate’ the sample mean.
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Populations and Samples

Parameters refer to measures of entire populations and population distributions.
This is distinguished from statistics, which refer to measures of sample data taken
from populations. We need to distinguish these measures because inferential statis-

tics is quite specific about the measures available for analysis. One way they are

distinguished is by their symbols; population parameters are typically represented

by Greek symbols.

This is a good place to review some symbols that will distinguish population

measures from sample measures. Because we are now beginning to think of dif-

ferent levels of data, we need to be able to be precise in how we speak of both.

Table 9.3 is a chart showing the symbols for population and sample sets of data.

The Standard Error of the Mean

This is a new term for a measure we have already discussed: the standard deviation

of the sampling distribution of means. The designation ‘‘standard error of the

means’’ is used because it is much shorter! I hope you can see why we give it this

name. Both are simply ways of saying that sM is a standard deviation of a standard

normal distribution of sample means.

The standard error of the mean is a standard deviation. But recall that it is a

standard deviation of a distribution that is ‘‘narrower’’ than the population standard

deviation because we only use the mean scores from repeated sampling to make it

up. You can see this by looking again at Figure 9.4.

Because it is now different from the population standard deviation (sX) we need

to be able to estimate its value. One way of doing this is by the following formula:

sM ¼ sXffiffiffiffi
N

p

TABLE 9.3 Population and Sample Symbols for Inferential Statistics

M The mean of the sample.

SD The standard deviation of the sample (assumes the sample is its own population)

m The Greek letter ‘‘mu’’ is the symbol for the population mean.

MM This is the symbol for the mean of the sampling distribution. You can see how this

works by observing that it is a mean (M), but a mean of the sampling distribution

indicated by the subscript. Thus, it is the mean of the distribution of means, or the
‘‘mean of the means.’’ Because it is (theoretically) created by all possible

samples, it is a parameter.

sX ‘‘Sigma X’’ is the standard deviation of all the population raw scores. This differs

from standard deviation SD in that it does not refer to a sample, but to the entire

population of individual raw scores.

sM The standard deviation of the sampling distribution of means; also called the

standard error of the mean.
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We use this formula because it includes the sample size (N) as a way of help-

ing us make the estimate. The sample size will ultimately determine the size of

the sM since the group size is registered in the sample means that make it up. As

N increases, the sM will decrease; you can see this from the formula. When you

divide a number by a large number, the result will be a smaller number. Concep-

tually, however, this simply refers to the fact that larger sample sizes are better

estimates and therefore the standard deviation of the sample means will likely

be smaller.

The rule of thumb to remember is: sM < sX .

‘‘Transforming’’ the Sample Mean to the Sampling Distribution

Remember that ‘‘sampling error’’ is the distance of a sample mean from the popula-

tion mean. Remember also that the sampling distribution of means is perfectly nor-

mally distributed, and its mean is equal to the population mean (MM¼m). When we

place a sample mean (M) in the sampling distribution as we did in our example in

Figure 9.6, the distance of our sample mean from MM can be expressed as a ‘‘stan-

dard distance’’ by referencing it to the standard deviation of this (perfect) distribu-

tion (sM).

The resulting distance is therefore like a z score that is expressed in standard

deviation units. In effect, we are transforming a raw score mean to a standard

value in the sampling distribution so that we can compare it to all possible sam-

ple means that could be taken from a population. It therefore helps us to answer

the question, How good of an estimate of the population mean is our sample

mean?

Example

Let’s take an example from our school database. Using our question about the

effect of student–teacher ratio upon learning, here are some relevant data to con-

sider. For purposes of the example, I deliberately chose a sample of schools from

among those with small student–teacher ratios. All the schools in the state

(among schools with fourth-grade test scores) had an average student–teacher

ratio of 16.24. The ‘‘sample’’ of schools I chose (N¼ 61) had an average student

to teacher ratio of 13. Remember, these were not randomly selected; I chose

schools on the basis of having low student–teacher ratios to show the dynamics

of our problem.

1. The mean aggregate math achievement of the population of schools:

m¼ 51.96. (This represents the average percent of students in every school in

the state who passed the math assessment.)

2. The population standard deviation (sX) of math passing rates is 18.63.

3. The mean math achievement of a sample (N¼ 61) isM ¼ 44.04.

4. The standard deviation of math passing rates of the sample (SD) is 19.52.
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5. The standard error of the mean (sM) is 2.39.

sM ¼ sXffiffiffiffi
N

p ; sM ¼ 18:63ffiffiffiffiffi
61

p ; sM ¼ 2:39

Figure 9.7 shows how these are ‘placed’ so you can visualize the various mea-

sures. The research question is: Does the mean of our sample (of smaller student–

teacher ratio classrooms) have higher or lower math passing rates than the popula-

tion passing rates? What we need to do is to see where our sample mean falls in the

sampling distribution of means so that we can compare it to the population mean.

We can do this by transforming the sample mean to a standardized value, just as

we did when we created a z score. Here is the formula we used when we were deal-

ing only with single sample scores:

Z ¼ X �M

SD

We can use the same formula with some changes to reflect that we are using

population rather than only sample values:

Z ¼ M � m

sM

Compare the two formulas. They look alike, because they do the same thing.

The z-score formula (top) is used to transform a raw score to a standard score.
These are both at the sample distribution ‘‘level.’’

The bottom formula is used to transform a sample mean to a standard score in
the distribution of means. These are measures used when we are dealing with both

population and sample values.

FIGURE 9.7 Using the sampling distribution and the standard error of the mean.
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If we calculate the standardized sample mean score, Z; we obtain

Z ¼ M � m

sM
; Z ¼ 44:04� 51:96

2:39
; Z ¼ �3:31

Findings. What does this figure of Z¼�3.31 mean? Consider the following find-

ings based on our calculations.

1. It means that the difference between the sample mean and the population

mean, which is the top part of the formula (M�m)¼�7.92. This indicates

that our sample math achievement mean lies below the population math

achievement mean by almost 8%.

2. When we divide this distance (�7.92) by the standard error of the mean

(2.39), it transforms the sample-population distance into a standard mea-

sure, like we did with a z score. The resulting figure Z¼�3.31 means

that our sample mean falls about 3 1
3
standard deviations below the popu-

lation mean!

3. If you recall your z-score table, this means that our sample mean falls

well into the left (negative) tail of the standard normal comparison

distribution.

4. Using the NORMSDIST function from Excel1, you can calculate the area of

the standard normal distribution falling below �3.31 to be 0.00047. In terms

of probability, that would mean that our sample mean is extremely atypical; it

is nowhere close to the population mean.

5. This probability is far below the benchmark 5% (or 2.5% on each side of the

standard normal distribution) that researchers use to conclude that the sample

mean is not typical.

6. Our conclusion is that the sample math achievement for this sample is not

typical of samples drawn from the population; it is so different that is can be

considered belonging to a totally different population of schools.

Figure 9.8 shows how this result looks using the findings from our former figure.

Discussion. We need to remember that these findings are not generalizable because

I did not choose the sample randomly. I deliberately chose it from schools with

smaller student to teacher ratios to demonstrate the process of making a statistical

decision. But consider the findings.

1. We discovered a finding exactly opposite what we expected! Despite the fact

that the ‘‘sample’’ was contrived, real research often results in unexpected

findings such as this. Researchers should be aware of this possibility. In a later

chapter, I will have more to say about ways to address the potential direction

of findings.
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2. This was not an experimental design because I used existing school values. To

constitute an experiment, I would have had to randomly select a group of

schools, and then convince the principals to allow me to deliberately create

lower student–teacher ratios so that I could see if it made a difference to math

achievement! Although this sounds farfetched, some educational programs

have been created for a similar purpose. This is behind many efforts to lower

class size by means of programs like creating smaller schools, schools within

schools, and so on, because of the assumption that these actions will automati-

cally lead to improved student achievement.

3. This set of schools (i.e., deliberate ‘‘sample’’) is a real set of schools with low

average student–teacher ratios. Even though they were not randomly sampled,

and therefore the findings not generalizable, they might indicate a trend we

can observe (and will) in later studies. It is unclear why this particular set of

schools had lower math achievement than the population, but it would indi-

cate that we need to investigate the matter further.

Z TEST

Congratulations! Without being aware of it, you just performed your first inferential

statistical test, the Z test. As you can see, it is not really that difficult to understand.

We simply transformed a sample mean so that it could be compared to all possible

sample means. By doing so, we can see how it ‘‘falls’’ on a standard normal distri-

bution of values and calculate a probability for this score occurring by chance. If it

falls too far into the tails (i.e., beyond the extreme 5% area), we can conclude that it

is not representative of the population.

FIGURE 9.8 Using the sampling distribution to make a statistical decision.
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The Hypothesis Test

What we have done is to perform a hypothesis test. This is the formal, logical

process established to make a scientific decision. If you look back at Figure 9.1, the

bottom step in the process is to support or refute a hypothesis and thereby inform a

theory.

If we identify the steps we used in our example, you will find that these steps

form the general procedure for a hypothesis test that we will follow on all our re-

maining statistical tests (with some variations for each procedure). Here are the

steps with our (contrived) results applied so you can see how it works:

1. The Null Hypothesis or (H0): m15m. Researchers begin by considering a state-

ment that can be measured and then verified or refuted. They begin with the

assumption that there will be no difference between the mean of the study sam-

ple (m1) and the mean of the population (m). The object of the research process

it to see if this is an accurate assumption, or if our sample violates that assump-

tion by being either too large or too small. Our null hypothesis was that a sam-

ple of schools with low student–teacher ratio would have the same math

achievement scores as the population of schools.

2. The Alternative Hypothesis or (HA): m1 6¼ m. This statement is created in or-

der to present the finding that would negate the null hypothesis—thus, the alter-

nate finding. In our study, we proposed that a sample of schools with lower

ratios would show substantially higher achievement than the population. Techni-

cally, our alternate hypothesis allows findings to be not equal to, and thus either

higher or lower than, the population values (which came into play in our

example).

3. The Critical Value: �1.96 z Values (5% Exclusion Area). Recall that we need

to have a benchmark to help us decide whether our actual, calculated results are

considered typical or atypical. Actually, we are using this benchmark to help us

decide which hypothesis (null or alternate) is more accurate. As I discussed be-

fore, for this particular situation researchers use a 5% benchmark. That is, if a

calculated/transformed sample mean falls into the 5% exclusion area (the 2.5%

in each tail) of a standard normal distribution, then it would be considered atyp-

ical. In probability terms, this would represent a probability of occurrence of

(p< 0.05, either positive or negative). Stated differently, it would be considered

not likely to occur just by chance; rather some reason other than chance would

create a finding this extreme.

4. The Calculated Value (�3.31). This is the Z-test value that we calculated from

the values we had available. It represents the results of the Z-test formula that trans-

formed the sample value into a standard score so that we can compare it to other

possible sample outcomes.
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5. Statistical Decision: Reject Null Hypothesis? This step asks us to compare what

we calculated (step 4) to the benchmark (step 3) in order to see which hypothesis

(null or alternate) is more likely. In our study, the sample schools with lower ratios

had much lower math achievement than the population. If we had simply chosen a

sample of schools by chance (rather than intentionally chosen a group with low

ratios), the sample mean would likely not have been this extreme because most

chance selections would be much closer to the population mean.

The lower ratios in this contrived study ‘‘pushed’’ the sample math achievement

mean far down into the left tail of the distribution. Given this result, that there

would be an extremely small probability (p< 0.00047) of a Z-test value this small

falling into the tails simply by chance alone, we would ‘‘reject the null hypothesis.’’

That is, we could conclude that the null hypothesis is not supported by our findings;

the alternate hypothesis is supported by our findings.

6. Interpretation. Researchers must make statistical decisions through the steps

above. However, they must place the findings in the language of the question so

that it has meaning to the audience. We obtained an extremely atypical finding. We

would need to capture this in an interpretive discussion. We might say something

like: ‘‘Our sample group of schools (N¼ 61) had a much lower mean math achieve-

ment (44.04%) than the mean of the population of schools (51.96%) as evidenced

by a statistical hypothesis test (p< 0.05).’’ (Reporting the p< 0.05 finding simply is

a general statement that the probability of our sample mean had a much smaller

probability of a chance finding—that is, in the extreme 5% of the tails of the

distribution.)

Statistical Significance

In probability terms, any finding of p< 0.05 is considered ‘‘statistically signifi-

cant.’’ Researchers and statisticians have a specific definition for statistical signifi-

cance: It refers to the likelihood that a finding we observe in a sample is too far

away from the population parameter (in this case the population mean) by chance
alone to belong to the same population.

Practical Significance: Effect Size

I will develop this measure much further in the following statistical procedures, but

a word is in order here. Researchers and statisticians have relied extensively on

statistical significance to help make statistical decisions. You can see how this lan-

guage (i.e., using p values) permeates much of the research literature; it is even

widespread among practitioners and those not familiar with statistical procedures.

The emphasis in statistics and research now is on effect size, which refers to the

‘‘impact’’ of a finding, regardless of its statistical p value. The two issues are related
to be sure. However, effect size addresses the issue of the extent to which a differ-

ence or treatment ‘‘pushes a sample value away from a parameter.’’ That is, how

much ‘‘impact’’ does a research variable have to move a sample value?
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Consider our example problem shown in Figure 9.8. We performed a statistical

significance test with these findings and concluded that the sample mean of (low)

student–teacher ratio was too far into the tails of the sampling distribution to be

considered a chance finding. The effect size consideration is a completely different
issue. It does not concern itself with probability, but, rather, how far away from the

population mean our sample mean has been driven as result of a lower ratio.

According to Figure 9.8, the sample mean has been pushed far into the left tail of

the sampling distribution as a result of having a lower ratio than the population, a

distance of about 3 1
3
standard deviations!

Z-Test Elements

In order to use the Z test, we must know the population parameters and the sample

statistics. This is often not possible because little may be known about the popula-

tion. In our example, we did have population information (mean and standard devi-

ation) if we define the population as all the schools in the state. We did not have

data on all schools in the United States, so our definition of the population was

somewhat restricted.

We will discuss similar procedures in the next chapter, but with the assumption

that we do not have population information. As you will see, this makes an interest-

ing situation because we must ‘‘estimate’’ the population parameters in order to use

the process we learned in the Z test.

TERMS AND CONCEPTS

Alternative Hypothesis The research assumption that is stated in contrast to the

null hypothesis.

Case Study A study that focuses entirely on one setting rather than making

inferences from one study setting to another.

Central Limit Theorem The statistical notion that means of repeated samples

taken from a population will form a standard normal distribution (assuming a

large sample size) even if the population was not normally distributed.

Control Group An experimental group in which the treatment is not applied or

administered so that the results can be compared with the ‘‘treatment group.’’

Convenience Sample A nonprobabilistic sample selected from available

elements. Usually, this method is used when the researcher has no opportunity to

use random sampling methods as in studying secretive groups or groups with

difficult-to-identify populations.

Dependent Variables Study variables thought to be ‘‘receivers’’ of the action of

independent variables or influenced by predictor variables. Often referred to as

‘‘outcome variables’’ in nonexperimental contexts.

Effect Size The meaningfulness of a study finding. In contrast to statistical

significance, which deals with chance or nonchance as a basis for judging a
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finding, effect size measures the ‘‘impact’’ of a (predictor) study variable to

affect the change in an outcome variable. Also known as practical significance.

Experiment A research design in which the researcher consciously changes the

values of a study variable under controlled conditions and observes the effects on

an outcome variable.

Hypothesis A statement that captures the nature of the theoretical question in

such a way that it can be quantified and directly verified.

Hypothesis Test The formal process of assessing whether or not a test statistic is

judged to be similar to the population elements from which it was drawn or

statistically different from those elements.

Independent Variables A designation in experimental research for treatment

variables or those study variables that are consciously changed to observe effects

on outcome variables.

Manipulated Independent Variables Independent variables the experimenter

consciously changes, or manipulates, in order to create the conditions for

observing differential effects on the outcome variable.

Nonmanipulated Independent Variables Independent variables that cannot be

changed by the researcher. Typically, they are characteristics, traits, or attributes

of individuals.

Null Hypothesis The assumption in an hypothesis test that there is no difference

between the study population yielding a particular sample statistic and the

population from which the sample supposedly came.

Parameters Characteristics or measures of entire populations.

Post facto Research These study designs are those that involve measuring the

relationships among variables using data that have already been collected. The

focus of the study may be to determine differences among study variables (‘‘post
facto comparative’’) or correlations (‘‘post facto correlational’’).

Predictor Variables Study variables that are considered prior to and influential

upon other study variables. In experiments, these are typically called

independent variables; in post facto research, they are simply the alleged

variable of influence upon an outcome variable.

Probability Sampling The process of using probability methods in sampling to

ensure that the sample elements are representative of the elements in the population.

Quasi-Experimental Design Experimental designs in which there are elements

missing or extraneous influences cannot be controlled sufficiently to ensure that

the researcher can make causal conclusions. Ordinarily in program evaluation,

this takes the form of working with ‘‘intact groups’’ or groups that already exist,

or, more generally, the inability to ensure full randomization in designing the

experiment.

Randomization Experimental research procedures in which the study elements

(i.e., sample) are chosen and assigned on the basis of equal chance or probability.

Sampling The process of selecting elements from a population.
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Sampling Distribution The distribution formed from repeatedly drawn means

from a population.

Sampling Error The difference between the sample mean in a study and the

mean of the population from which the sample was drawn.

Simple Random Sample A sampling process in which each element chosen from

a population has an equal chance of being selected.

Snowball Sampling A method of (nonprobabilistic) sampling in which available

sample elements are identified from previous sample elements. Oftentimes, in

studying secretive or difficult groups, additional contacts can be identified as the

researcher proceeds with interviews, for example.

Standard Error of the Mean The standard deviation of the sampling distribution

of means.

Statistical Significance This designation is stated differently for different statistical

procedures. Essentially, it refers to the likelihood that study results are not obtai-

ned by chance or happenstance.

Statistics Characteristics or measures of samples.

Stratified Random Sampling A sampling process that recognizes inherent levels

or strata in the population that can be sampled by probabilistic means.

Theory An abstract idea or statement that links the conceptual relationships

within an inquiry.

Treatment Group An experimental group in which the values of the independent

(or treatment) variable have been changed.

Variables Concepts that have been quantified and used in research. In contrast to

‘‘constants’’ that cannot take different values, variables consist of elements that

can vary or change.

Z Test The statistical test of the likelihood that a sample mean comes from a

population with known parameters.

REAL-WORLD LAB V

In this lab, we will explore another aspect of the theory relating to the relationship

between size of learning environment and achievement. Our chapter example dealt

with class size, which led to the conclusion that smaller class size is not related to

higher achievement; in fact, it is related to lower achievement.

In this lab, we will look at another hypothesis to see whether the size of learning

environment affects achievement. This time, we will explore whether a sample of

schools (N¼ 40) with enrollments of less than 200 will have higher average reading

passing rates than the population of schools in the state (N¼ 1054).

The mean (fourth grade) reading passing percentages for our sample (N¼ 40) of

schools with less than 200 enrollment is 69.29%. The population of schools in the

state (N¼ 1054) yields a mean (m) reading passing rate of 73.33% and a standard

deviation (sX) of 13.28.
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Using this information, perform a Z test to determine whether smaller school size

affects reading passing rates. Respond to the following questions:

1. What is the standard error of the mean?

2. What is the calculated Z-test ratio?

3. Perform an hypothesis test.

4. Write a brief summary of your findings.

5. Discuss effect size.

REAL-WORLD LAB V: SOLUTIONS

Using the information provided, perform a Z test to determine whether smaller

school size affects reading passing rates.

1. What is the standard error of the mean?

Answer: The standard error of the mean is 2.10. This is the standard deviation of

the sampling distribution of means.

sM ¼ sXffiffiffiffi
N

p ; sM ¼ 13:28ffiffiffiffiffi
40

p ; sM ¼ 2:10

2. What is the calculated Z-test ratio?

Answer: The Z-test ratio is �1.92. This represents the number of standard devia-

tions that the sample mean is removed from the population mean in the sampling

distribution of means. Figure 9.9 shows that the sample mean falls to the left of the

sampling distribution about two standard deviations away from the (population)

mean.

Z ¼ M � m

sM
; Z ¼ 69:29� 73:33

2:10
; Z ¼ �1:92

3. Perform a hypothesis test.

The hypothesis test follows the same steps we used in our example above:

The Null Hypothesis (H0): m15m. Our null hypothesis was that a sample of low

enrollment schools will have the same reading achievement scores as the population

of schools.
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The Alternative Hypothesis (HA): m1 6¼ m. The sample of schools with lower enroll-

ments will not have reading achievement percentages equal to all schools in the state.

The Critical Value: �1.96 z Values (5% Exclusion Area). Remember, if a calcu-

lated Z ratio falls into the 5% exclusion area (the 2.5% in each tail) of a standard

normal distribution, then it would be considered unlikely to occur by chance.

The Calculated Z Ratio ¼ (�1.92). The calculated Z value falls into the left side of

the distribution, but not quite in the 5% exclusion area.

Statistical Decision: Do not Reject Null Hypothesis. The calculated Z value was

close to the critical value of rejection, but not beyond it. Strictly speaking, the

sample mean is therefore still in the ‘‘acceptance’’ region and we can conclude that

it is likely a chance finding. That is, our sample of schools has reading passing rates

just below the population mean value by chance; the school size does not result in a

‘‘significant’’ finding. Therefore, we do not reject the null hypothesis; we must as-

sume there are no differences between sample and population values.

Interpretation. On the basis of a Z test (Z¼�1.92) there are no statistically signifi-

cant differences in the average reading passing rates between a sample (N¼ 40) of

schools with low enrollments (<200) and the population of schools in the state.

4. Write a brief summary of your findings.

The interpretation section of the hypothesis test can serve as our summary of

findings.

5. Discuss effect size.

FIGURE 9.9 Using the sampling distribution in the Z test.
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Despite the fact that we did not reject the null hypothesis, there does appear to be

an effect size of some magnitude in this study. The sample mean falls well below

the population mean of reading passing rates. The sample schools’ low enrollment

size appears to have had the result of pushing the reading passing rates below the

population reading passing rates.
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10
THE T TEST FOR SINGLE SAMPLES

I mentioned earlier that I shade in a portion of my syllabus and call it ‘‘headache

day’’ so that students are aware that this is a topic that will take some thinking

about. A number of years ago, one of my students told me their story in which the

headache became real! A graduate student and teacher, the student was taking my

statistics course to get a master’s degree to jump into a higher pay scale (as well as

to understand statistics).

I noticed on several occasions that the student looked increasingly dour, so I

asked the student one day before class began if all was well. The student replied,

‘‘Every day I go home after this class and get overwhelmed!’’ After I pleaded for

the student not to take this route to understand statistics, and as we began to discuss

the topic, the student began to appear livelier and engaged with the topics. I am

happy to report that the student received an ‘‘A’’ grade in the class and, as far as I

know, is no longer overwhelmed at the end of the day!

I use this example for students who feel at this point in the class that the material

is overwhelming. As my student learned, the material is not unknowable; it simply

takes a different way of looking at it to see the direction we are taking in inferential

statistics.

Z VERSUS T: MAKING ACCOMMODATIONS

Up to now, we have been dealing with population values (parameters) that are

known to the researcher. As I mentioned in Chapter 9, however, this is fairly rare.

If you do have access to parameter values, you can use the Z test to help you make a

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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statistical decision about whether your sample values are likely to be taken from

that known population.

If you do not know the population values, we will learn in this chapter how to

estimate them so that we can use them in our statistical decision-making process.

This will seem a little strange at first, since we will use sample values to help

estimate the population values, but we are going to make use of our sampling distri-

bution as well. In addition, we will learn to make small ‘‘adjustments’’ based on the

sample size as a way to better understand the population values.

As we have discussed, the Z distribution consists of the known areas in the stan-

dard normal distribution. We learned in Chapter 9 that we could use the features of

this distribution to help us understand whether a sample value could likely come

from a distribution with known population parameters (Z test). Now we turn to a

related distribution, the T distribution, to help us understand whether a sample value

could likely come from a distribution with unknown population parameters. This is
typically the situation researchers encounter in real-life problem solving because

the knowledge of parameters is unlikely in most situations.

The T test for a single sample is a statistical procedure similar to the Z test, but

with some limitations:

1. Population parameters are unknown. Typically, the population mean may be

known as a general estimate based on similar research, or on the basis of some

other reason. However, the standard deviation of the population is not known.

Therefore, a T test uses estimates of population parameters based on sample

values.

2. Sample size is small. Sample size is very important in statistics because it is

used as a denominator in many calculations. Large sample sizes typically

result in better estimates of population means. According to the Central Limit

Theorem, repeated large samples will more closely approximate a normal

distribution. But how large is large? Researchers and statisticians vary on

that score. Typically, a sample size of 30 is considered large for statistical

procedures by many researchers. Other researchers suggest higher values. I

use N¼ 40 as my operational definition for ‘‘large’’ samples. As you will see,

there is probably no best answer to this question, however.

RESEARCH DESIGN

Does place and income affect technology skills? This is a question that arose during

an evaluation of the TAGLIT data I introduced in Chapter 3. As I noted then,

TAGLIT is a data evaluation system that addresses the nature of technology in

teaching and learning. In 2003, I used the TAGLIT instruments to help evaluate the

progress of certain school districts in using technology in the classroom.

TAGLIT uses several instruments to assess different subject groups on the ques-

tion of technology knowledge and use. Teachers from middle/high schools and

elementary schools, students at different levels, and technology leaders in schools
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were assessed by an electronic data-gathering instrument to explore various aspects

of the overall question of instructional technology. The resulting (national-level) data-

base revealed some interesting and informative insights into the primary questions.

As part of my evaluation, I created four ‘‘factors’’ that summarized much of the

middle/high teachers’ responses using a statistical procedure called ‘‘factor analysis’’

that ‘‘reduces’’ a series of questionnaire items to related groups. I created four fac-

tors that ‘‘clustered’’ the similar responses to sets of questionnaire items—a sort of

index. I named one of these factors ‘‘mhskills’’ because it represented a set of items

that measured the extent of the technology skills of middle/high teachers. This is

one good way of combining similar information so that you can operationally define

a concept like technology skill. As we make our way through this chapter, I will

present a sample of these data and show how to use the T test to make a statistical

decision about the ‘‘theory’’ or research question I posed at the outset of this section.

We discussed research design in Chapter 9; I mentioned then that I would dis-

cuss various designs in more detail in subsequent chapters. The design appropriate

for the subject of this chapter on T test is a very simple one. We will determine

whether a sample group mean is likely to come from a population for which we

have no knowledge of the parameters.

Experiment

If I were to proceed with a random selection of subjects to whom I administered

some treatment or manipulated an independent variable, this design would be an

experimental design. For example, I might have taken a (randomly selected) group

of middle/high teachers and trained them to use certain technology. Then, I would

compare their knowledge of technology to the general knowledge in the population

to determine if my teaching technique was effective.

Campbell and Stanley (1963) refer to this ‘‘experimental’’ design as the ‘‘one-

shot case study’’ because the design does not have the requisite parts of a true

experimental design. Figure 10.1 shows the diagram for this kind of design. There

is only one group, the teachers being taught technology; there is no comparison or

control group. There is no ‘‘pre-test’’ of the technology test to compare to the out-

come test (‘‘post-test’’).

A ‘‘true’’ experimental design would use a randomly chosen sample, but many

times a sample is not chosen randomly. You can see that the potential problems

Research Treatment Variable: 

 Technology Training 
Outcome Variable 

Random 
sample?? 

Experimental Group: 

 MH teachers

Technology knowledge test 

scores

— — (No control group) 

FIGURE 10.1 The one-shot case study.
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with this experimental design would lead to conclusions that are questionable. The

research treatment might be effective, but it would be difficult to disentangle the

experimental effects from the effects of the uncontrolled influences. No causal con-

clusions could be made on the basis of data from this design.

Post Facto Comparative Design

Because the data I will use are existing data, and I did not manipulate an indepen-

dent variable, the design is a post facto comparative design. I have a sample group

drawn from a larger population of data that I wish to compare to an (estimated)

population mean to determine whether the sample is likely to come from this popu-

lation. I cannot make causal conclusions with this design because I did not meet the

conditions of a true experimental design (i.e., randomness, control group, control of

extraneous variables). However, this is one context in which my conclusions would

potentially be equal to those of the one shot case study. Some researchers would

argue that an experimental design this ‘‘weak’’ would be no better than a compara-

tive post facto design.
This design is not the strongest for many reasons. However, researchers often

must use it because of the limitations of the study, the available data, and so on.

The design can still provide meaningful data despite the inability of the researcher

to make causal conclusions.

PARAMETER ESTIMATION

In research designs like the one I discussed above, the researcher is faced with mak-

ing as strong a conclusion about the research question as possible with the available

data. The first task, however, is to understand what data are available and how they

can be used to make a strong conclusion.

Figure 10.2 shows the population, sample, and sampling distribution drawings

that I presented in earlier chapters. As you can see, a research study will be able to

provide sample information and perhaps have available an estimate of the popula-

tion mean, but otherwise there will be no additional information for the researcher.

In this event, the researcher must estimate the key parameters in order to carry

out the study as we did with the Z test. The most important parameter to estimate is

the population standard deviation (sX). Without a notion of the variability of the

population, we cannot make an accurate estimate of the overall likelihood of the

sample mean representing the population mean.

Estimating the Population Standard Deviation

The method for estimating sX is fairly straightforward. In fact, it follows a com-

monsense logic. If you want to know what the population variance looks like, what

is the best guess? The best guess is probably the variance of the sample. Obviously,

it may not be a perfect representation, but the sample variance is the best estimate
of the population variance.
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The method that statisticians have devised to create a more likely estimate than

the sample standard deviation is to ‘‘adjust’’ the sample value. The principle is that

if you divide by a smaller number, the resultant calculation will be larger.

Estimating the population standard deviation from the sample follows the same

principle. If we adjust the standard deviation formula for the sample by subtracting

a value of ‘‘1’’ in the denominator, it will provide a larger estimate of the popula-

tion standard deviation. A larger estimate is more likely to ‘‘capture’’ the true popu-

lation standard deviation, and we can have greater certainty that is representative.

Figure 10.3 shows this process. The actual SD becomes sx when corrected by the

formula. When corrected, it becomes a more accurate estimate of the population

standard deviation, sX .

FIGURE 10.3 Estimating the population standard deviation.

FIGURE 10.2 Using the sampling distribution with estimated population values.
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Look at the following formula (SD) that I discussed in Chapter 6. This is

the formula for calculating the standard deviation for a group of scores that

constitute its own population. I talked about this formula in Chapter 6 in the

context of identifying a difference in the way both Excel1 and SPSS1 calcu-

late standard deviation. In fact, I labeled this the ‘‘population SD’’ or ‘‘actual

SD.’’ We learned that we use this calculation when we are simply trying to

describe a set of data without making reference to a greater population from

which the set of scores may have been derived. We simply consider the set of

scores its own population.

Now that we are considering inferential statistics, we can modify this

formula a bit to be a better estimate of the population standard deviation from

a sample value.

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X2 �

�P
X
�2

N

N

vuut
; sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X2 �

�P
X
�2

N

N � 1

vuut

If you recall, I distinguished this actual SD with the ‘‘inferential SD’’ that is

reported by Excel1 and SPSS1. Although I did not introduce the formula, I wanted

to ensure that you understood the difference between the actual SD and the Inferen-

tial SD. Review the discussion in Chapter 6 to make sure you understand the

difference.

A New Symbol: sx

The second formula above for the value of ‘‘sx’’ is the ‘‘adjusted’’ formula for

estimating a population standard deviation from a sample standard deviation.

Many statisticians and researchers use sx or simply ‘‘s’’ as the symbol for the

estimated standard deviation of the population. You can see that the only dif-

ference between the formulas is the denominator: N in the SD formula and

N� 1 in the sx formula.

We are estimating one parameter, the population standard deviation. As a way to

be more likely to capture the true population standard deviation, we subtract a value

of 1 from the divisor and therefore show a larger result. Review the student–teacher

ratios in Chapter 6. You will see the following:

SDðPopulationÞ or actual SD ¼ 4:74; SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10055:02� ð605:13Þ2

40

40

s

Now, compare this value to the value for sx which is obtained with the same

values above except for the denominator (i.e., 39 instead of 40). This is the value

reported by both Excel1 and SPSS1.

Calculating sx ¼ 4:80; sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10055:02� ð605:13Þ2

40

39

s
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Biased Versus Unbiased Estimates

Statisticians refer to the actual SD as a ‘‘biased estimator’’ because it does not nec-

essarily provide a true picture of the population standard deviation. Since the sam-

ple mean is likely different from the population mean, and since the sample mean is

used in the calculation of the actual SD, it will not provide a true representation of

sx. The estimated standard deviation of the population sx is therefore an unbiased

estimate when it is adjusted as we discussed.

A Research Example

Returning to the research question we posed at the beginning of this chapter,

‘‘Does place and income affect technology skills?’’ We can assess this question

using the T test that I will describe below. First, however, we can get some

practice with calculating sx, the unbiased estimate of the population standard

deviation.

The hypothesis for the research question above is: ‘‘Does the average technology

skill index of our sample of MH teachers from wealthy urban schools represent the

population of MH teachers?’’ Thus, we are asking whether our (known) mean is

representative of an (unknown) population mean. Do teachers from wealthy urban

schools have better technology skills than those from the overall population of

schools?

The outcome variable is the MH teacher technology skills index that I described

above from my factor analysis.1 The sample group consists of 28 wealthy urban

schools from the United States. Wealthy is defined as a low FR percentage (between

1% and 5%), and urban is a category defined by the national database we used in

our TAGLIT study. Table 10.1 shows the data (in two columns) for the sample of

schools.

Review the process in Chapter 6 for calculating the actual SD and sx using

Excel1 and SPSS1. Remember, Excel1 and SPSS1 both provide sx as the default
calculation. Figure 10.4 shows the descriptive summary for the mhskills variable;

the reported standard deviation (sx) is 0.264. Figure 10.5, the SPSS
1 output, yields

the same values as the Excel1 values.

The actual SD from Excel1 is 0.259 (use the ‘‘STDEVP’’ function). The discrep-

ancy between the actual SD and sx is not large; however, the larger sx is a better

estimate of the population standard deviation. Note that in both cases the sample

group appears to be normally distributed as indicated by skewness and kurtosis

figures.

1 The range of the MH teacher skill index is small because the possible values range from 1 to 4. The

overall conclusions of the study should take this into account in deciding the meaningfulness of the

findings.
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T TEST FOR A SINGLEMEAN

Now that we have an estimate of the population standard deviation, we can use this

information to test our hypothesis that our sample mean is likely to come from a

specific population. We will use the same procedure that we used with the Z test,

except now we must use the estimated parameter sx.
Figure 10.6 shows the information we have in graphic form so we can visualize

the process we will use. As you can see, we have estimated the population standard

deviation, but we need the estimated population mean. In these types of research

problems, the researcher must have at least an estimate of the population mean

TABLE 10.1 The
Outcome Data mhskills
for the Research Study

mhskills

3.70 3.09

3.69 3.07

3.63 3.06

3.53 3.05

3.50 3.04

3.50 3.03

3.41 3.03

3.37 3.02

3.37 3.02

3.33 3.02

3.23 2.99

3.22 2.93

3.16 2.87

3.10 2.65

mhskills 

3.200 Mean 

0.050 Standard error 

3.093 Median 

#N/A Mode 

0.264 Standard deviation 

0.070 Sample variance 

–0.455 Kurtosis 

0.334 Skewness 

1.053 Range 

2.647 Minimum 

3.700 Maximum 

89.603 Sum 

28.000 Count 

FIGURE 10.4 Excel1 descriptive statistics for mhskills.
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from which the sample mean can be compared. Typically, there is an informed esti-

mate based on previous research or practitioner observation, among other possibilit-

ies. In this case, we can use m¼ 3.10 as the estimated population technology skill

level of the MH teachers.

As in the Z test, we need to make use of the sampling distribution since it is

a more perfect comparison distribution for our sample mean. Because it is the-

oretically a standard normal distribution, we can transform our sample mean

into the distribution to see how our sample mean compares to the population

mean.

We calculate the (estimated) standard error of the mean using the same pro-

cedure as in the Z test. The following formula applies; note that because we

use sx, the estimated population standard deviation, we will be calculating the

estimated standard error of the mean, which has a new symbol to identify it

specifically: sm.

sm ¼ sXffiffiffiffi
N

p

FIGURE 10.6 Visualizing the T-test process with the sampling distribution.

Descriptive Statistics

N Mean
Standard

deviation Skewness Kurtosis

Statistic Statistic
Standard

error 

Standard

error 

Standard

error Statistic Statistic Statistic

mhskills 28 3.2001 0.04983 0.26369 0.334 0.441 –0.455 0.858

Valid N (listwise) 28

FIGURE 10.5 SPSS1 descriptive statistics for mhskills.
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This new symbol indicates that it is estimated (by using the lowercase s
instead of s) and that it belongs to the sampling distribution (since the sub-

script is an m rather than an x). Thus, we add two additional symbols to our

earlier list in Table 9.3. Table 10.2 reproduces the earlier symbols and adds the

two new symbols.

Example Calculations

In order to perform a T test, we use a formula very similar to the Z test.

t ¼ M � m

sm
; where sm ¼ sxffiffiffiffi

N
p

As you can see, the T-test formula parallels the Z-test formula:

t ¼ M � m

sm
; Z ¼ M � m

sM

The numerator, the difference between sample mean and population mean, is the

same except that with the T test we are using an estimated m.
Using the formula with our current problem, we can calculate t. We must first

calculate sm because it will be the denominator in the T-test formula:

sm ¼ sxffiffiffiffi
N

p ; sm ¼ 0:264

5:29
; sm ¼ 0:05

(Note that the sm of 0.05 is reported in both Figures 10.4 and 10.5, the Excel1

and SPSS1 output files.)

TABLE 10.2 Population and Sample Symbols for Inferential Statistics

M The mean of the sample.

SD The standard deviation of the sample (assumes the sample is its own population).

m The Greek letter ‘‘mu’’ is the symbol for the population mean.

MM This is the symbol for the mean of the sampling distribution. You can see how this

works by observing that it is a mean (M), but a mean of the sampling distribution

indicated by the subscript. Thus, it is the mean of the distribution of means, or the
‘‘mean of the means.’’ Because it is (theoretically) created by all possible samples,

it is a parameter.

sX ‘‘Sigma X’’ is the standard deviation of all the population raw scores. This differs from

SD in that it does not refer to a sample, but to the entire population of scores.

sM The standard deviation of the sampling distribution of means; also called the standard
error of the mean.

sx The estimated standard deviation of the population. The subscript x identifies this
estimated value as belonging to the population of all scores.

sm The estimated standard error of the mean. The subscript m identifies this estimated

value as belonging to the sampling distribution of means.

184 THE T TEST FOR SINGLE SAMPLES



t ¼ M � m

sm
;

t ¼ 3:20� 3:10

0:05
;

t ¼ 2:00

Therefore, our sample mean of 3.20 is transformed into a t ratio of 2.00. This

value indicates that the sample mean value lies 2 standard deviations above

the population mean when transformed to a standard normal T distribution using

the T-test formula. Figure 10.7 shows how to visualize this value.

It is interesting to note that had we used the Z test, we could have rejected

the null hypothesis because the test value (2.00) lies above the Z-test rejection
region (1.96). However, because of the necessity of using the T distribution

(i.e., small samples, unknown population standard deviation), we will have a

new 5% rejection region (2.052) that is based on the T distribution. I will dis-

cuss this new rejection region below; but for now, note that the new exclusion

value of 2.052 is higher than our test value of 2.00, resulting in the inability to

reject the null hypothesis.

Degrees of Freedom

Degrees of freedom (df) are important elements in statistics. Essentially, they repre-

sent the restrictions on the values when we are estimating a population parameter.
Technically, df’s identify how many values are free to vary when making the

FIGURE 10.7 Transforming the sample mean value to the sampling distribution.

T TEST FOR A SINGLE MEAN 185



parameter estimate. We have run into this before, and we can discuss this important

concept with the current research problem.

Figure 10.8 shows the sample schools’ MH teacher skills indexes. As you can

see, I created an Excel1 table with two columns: X�M represents the deviation

scores in which the mean is subtracted from each index score. These are the ‘‘devia-

tion amounts’’ that I discussed in Chapter 6 (see Figure 6.7). I also included the

square of these values, (X�M)2, as I would if I were to calculate the standard

deviation.

Recall that the deviation scores, when added together, equal 0 for the reasons we

discussed in Chapter 6. Here is the curious fact: When we use these values to esti-

mate a parameter, we may be using a mean value that varies slightly from an un-

known population mean. Therefore, the values in the X�M column can change

slightly, but one must be ‘‘fixed’’ to ensure that the deviations still add to 0. Look at

the X�M values; in order for the sum of the values to equal 0, the last value

(X – M)2 X – M mhskills 

0.25 0.50 3.70 

0.24 0.49 3.69 

0.18 0.43 3.63 

0.11 0.33 3.53 

0.09 0.30 3.50 

0.09 0.30 3.50 

0.05 0.21 3.41 

0.03 0.17 3.37 

0.03 0.17 3.37 

0.02 0.13 3.33 

0.00 0.03 3.23 

0.00 0.02 3.22 

0.00 –0.04 3.16 

0.01 –0.10 3.10 

0.01 –0.11 3.09 

0.02 –0.13 3.07 

0.02 –0.14 3.06 

0.02 –0.15 3.05 

0.03 –0.16 3.04 

0.03 –0.17 3.03 

0.03 –0.17 3.03 

0.03 –0.18 3.02 

0.03 –0.18 3.02 

0.03 –0.18 3.02 

0.04 –0.21 2.99 

0.07 –0.27 2.93 

0.11 –0.33 2.87 

0.31 –0.55 2.65 

1.88 0.00 3.20 

FIGURE 10.8 Understanding the concept of degrees of freedom.
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(‘‘�0.55’’) must have this specific value. If the other values change, one value must

take a specific value in order to ensure the outcome of 0.

This example is just to show that estimating parameters places restrictions on
our data. In the case of the T test with one sample, only one value cannot vary.

Thus we can calculate df to be n� 1. This represents the sample size minus one

value. In our example of n¼ 28, the df¼ 27 (28� 1).

Each statistical procedure that we encounter will have a different way of calcu-

lating degrees of freedom because each will be estimating different parameters. We

will make note of df’s as we discuss the hypotheses tests.

The T Distribution

Before we proceed to a hypothesis test, we need to discuss the T distribution. It

is essentially the same as the Z distribution in terms of being a standard normal

distribution. That is, it is normally distributed with known values between the mean

and each standard deviation.

Because the T distribution is typically based on small sample sizes, however

(along with estimated parameters), the T distribution varies by sample size.

Figure 10.9 shows how different sample sizes affect the T distribution. As you

can see, the larger the sample size, the more the T distribution looks like the Z
distribution with the large ‘‘hump’’ in the middle with smaller tails on both

FIGURE 10.9 The nature of the T distribution.
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sides. The smaller the T distribution, the fewer the comparison values that

make it up, with the result that it appears flatter and flatter as the sample sizes

decrease.

The result of these dynamics of size is that the T distribution is often thought of

as a series of distributions that are linked to the size of the sample to be compared.
Since the shape of the curve alters drastically with smaller sample sizes, the exclu-

sion/rejection region for an hypothesis test changes as well. It takes a higher calcu-
lated T ratio to reject the null hypothesis the smaller the sample size. This is

because the 5% exclusion area ‘‘moves’’ away from the mean with smaller sample

sizes due to the changing shape of the distribution.

In our example, n¼ 28; therefore, df¼ 27 (since df¼ n� 1). In order for us to

reject the null hypothesis at the 5% exclusion region, we would need the t ratio to

be at least 2.052 (positive or negative) as indicated in Figure 10.9. The rejection

values for the 5% exclusion area get smaller and smaller as the sample sizes in-

crease. With very large numbers in the sample, the T distribution is in-

distinguishable from the Z distribution (the top curve in Figure 10.9).

The Hypothesis Test

Recall that our hypothesis asks whether a wealthy, urban sample of schools will

have similar MH teacher technology skill indexes as the population of schools. In

order to assess this hypothesis, we can proceed to the hypothesis test as we did with

the Z test; we always use the same five steps.

1. The Null Hypothesis or (H0): m1¼m. Does the MH teacher technology skill

index from wealthy urban schools represent the teachers’ indexes in the popu-

lation of schools?

2. The Alternative Hypothesis or (HA): m1 6¼m. The MH teacher technology

skill index from wealthy urban schools does not represent the teachers’

indexes in the population of schools.

3. The Critical Value: T-Table Values of¼ (�) 2.052 (5% Exclusion Area).
If the calculated value exceeds this value (either positively or negatively), we

can reject the null hypothesis. In such a case, our sample value being that high

would be considered not likely to occur just by chance; rather some reason

other than chance would create a finding this extreme.

4. The Calculated Value (2.00). This is the t-ratio value that we calculated

above. It represents the results of the t-test formula that transformed the sam-

ple value into a standard score on the T distribution so that we can compare it

to other possible sample outcomes.

5. Statistical Decision: Reject Null Hypothesis? We cannot reject the null

hypothesis since our calculated value (t¼ 2.00) does not exceed the t-table
value (df¼ 27) for the 5% exclusion area (either positively or negatively). In

our study, the sample schools’ showed a value representative of the overall

population of schools.
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6. Interpretation. MH teacher average technology skills index scores in the

sample group (N¼ 28) of schools (M¼ 3.20) were representative of schools

in the overall population with an estimated mean of 3.10. In an actual research

study, a t ratio (2.00) this close to the rejection area (2.052) might be consid-

ered significant.

Depending on how rigidly you interpret the ‘‘statistical rules,’’ you might con-

clude that your sample of MH teachers tends to show higher technology skill in-

dexes than schools in the population. We will return to this example finding after

we discuss additional concepts that may help us with this dilemma.

TYPE I AND TYPE II ERRORS

As I have continually noted, statistics deals with uncertainty. You can begin to get a

better picture of this through our discussion of inferential statistics. The hypothesis

test attempts to establish the extent to which it is likely that a certain sample mean

reflects a population mean, not the absolute certainty.

This being the case, statisticians and researchers often can make mistakes in their

conclusions from hypotheses tests. These errors can be presented in two groups.

Type I (Alpha) Errors (a)

The Type I error is mistakenly rejecting the null hypothesis when it should be
accepted. That is, we might reject the null hypothesis, as we did in our Chapter 9

Z-test example of the effects of student–teacher ratios on math achievement. How-

ever, it is possible that our sample mean was one of the few in the exclusion area

just by chance and not a mean that reflected a different population. So, even though

we rejected the null hypothesis on the basis of the size of the Z ratio, it perhaps was

one of the small likelihood samples that just happened to be located in the tails of

the distribution (i.e., the 5% exclusion area). We rejected the null hypothesis, but

perhaps there really is no effect of student–teacher ratios on math achievement. Per-

haps our sample group of schools was just a chance finding.

The 5% exclusion area that statisticians and researchers use for hypothesis tests

is somewhat arbitrary. No matter what the exclusion area set, however, there is the

small possibility that the sample mean comes from beyond the limit of the exclusion

area by chance alone and has nothing to do with the research question. Figure 10.10

shows this error using the general Z-test process for testing the null hypothesis.
As you can see in Figure 10.10, if the Z-test ratio (the calculated value of the

sample mean translated into a Z value in the standard normal distribution) lies be-

yond the exclusion value, we would reject the null hypothesis. In the figure, our

hypothetical Z ratio lies in the tail so we would reject the null hypothesis.

Note, however, that there is 5% of the distribution located in the two tails. In

terms of probability, we establish these as an arbitrary limit for ease of decision

making. One possibility for the Z ratio lying that far into the exclusion area may
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simply be a matter of chance. We may have chosen a sample with a large mean that

happened to differ greatly from the population mean. Therefore, our decision about

the sample not representing the population may be in error. It may be more an issue

of chance than the meaningfulness of the research treatment/variable.

When we use the designation p< 0.05 in announcing our statistical decision

(from the hypothesis test), we are saying that there is less than 5 chances in 100 we

would obtain a test value (Z ratio in this example) that large by chance alone. There-

fore we reject the null hypothesis. However, note that our test result may be one of

those chance findings that happen to be in the 0.05 area of the distribution.

The upshot of all this is that we must understand that our alpha (type I) error is

0.05. Whatever exclusion area we announce (5%, 1%, etc.) defines our alpha error.

Type II (Beta) Errors (b)

Beta errors are quite interesting for many reasons. We will examine several of these

in the chapters ahead. For now, however, we will define the Type II (beta) error as

not rejecting the null hypothesis when it should be rejected.
In some ways, this is the opposite of the alpha error. Just as there is the possibil-

ity that we could reject the null hypothesis due to chance, we could also not reject a
null hypothesis when we really should have. Perhaps our sample was taken by

chance from the left side of the curve and whatever research treatment we used

‘‘moved’’ it toward the right side, but not far enough to fall in the right-hand rejec-

tion region. Perhaps our distribution is skewed, resulting in the research treatment

having to ‘‘work harder’’ to move the test value toward the rejection region.

There are many reasons why a research finding may not be able to reject the

null hypothesis despite being a meaningful finding. This is the range of the

type II error.

Figure 10.11 shows the type II error. The example is a general one, although it is

similar to the results we observed in our t-test example of the hypothesis test of rich

urban schools affecting MH teacher skill indexes in this chapter. As you can see in

the figure, our sample mean was calculated to be very close to the rejection region

of 1.96 (the 5% rejection region for the Z distribution), but not beyond the limit.

(This is similar to the findings from our example above in which the t ratio of 2.00

was very close to the 5% exclusion area of 2.052 in the T distribution.)

FIGURE 10.10 The Z-test exclusion areas.
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Perhaps there were other factors resulting in the inability to reject the null hy-

pothesis (of teacher skills) rather than the effect of schools being rich and urban.

Perhaps the sample was not randomly chosen, perhaps the variable was skewed,

and so on. For whatever reason, we did not reject the null hypothesis. There is a

chance, however, that we possibly should have rejected the null hypothesis.

Look in Figure 10.11 at the distance between the population mean and the sam-

ple mean (shown by a two-sided arrow). This shows that the research effect

‘‘moves’’ the sample mean away from the population mean some distance. The hor-

izontally hatched region of the sample distribution is the area that lies above the

rejection region in the comparison distribution. Any sample mean test value that

would fall in this region would result in the null hypothesis being rejected and

therefore would be a ‘‘correct’’ decision.

The possibility of the beta error would lie in the diagonally hatched region of the

test distribution. This is the region that would not result in a rejection of the null

hypothesis because this is the area that falls below the rejection region. As you can

see, our sample test value fell just below the rejection region and therefore in the

beta error section, representing a possible type II error.

The beta error can be measured like the alpha error. The diagonally hatched

region would represent the proportion of beta (b), while the horizontally hatched

section of the test distribution represents the non-beta area (1�b).

EFFECT SIZE

Effect size is a very important concept in statistics as I have mentioned in past

chapters. It refers to the strength or impact of a finding. (In Chapter 9, I discussed

effect size as practical significance versus statistical significance.) Although related

to statistical significance, it refers to the distance a research variable or treatment

‘‘moves’’ a sample test mean away from a population mean.

Figure 10.11 shows the effect size by the double-sided arrow separating the pop-

ulation and sample means. In our example above, the MH teacher average skill in-

dex was much higher than the population average due to place (urban) and wealth

(low FR), even though it did not result in rejecting the null hypothesis.

FIGURE 10.11 Visualizing beta and non-beta areas.

EFFECT SIZE 191



Here are some things to note regarding effect size:

1. It measures the impact of the research treatment/variable to move a sample

test mean away from a population mean.

2. It is a separate consideration from statistical significance. Even though these

are related concepts, effect size addresses the extent of the sample mean being

moved away from the population while statistical significance refers to

whether this is a chance finding.

3. Statistical tests have effect size measurements even though the null hypothesis

is not rejected.

Each statistical test procedure we will discuss in this book has an effect size

measurement. For the single-sample t test, the effect size formula is

d ¼ M � m

sx

This formula is derived from Cohen’s d, the classic formula for transforming the

distance between two means (in the single sample t test, this is the distance of the

sample mean from the population mean) into standard deviation units by dividing

the M � m distance by the standard deviation (sx). Substituting our values from the

example above, we obtain

d ¼ M � m

sx
; d ¼ 3:20� 3:10

0:26
; d ¼ 0:385

Therefore, the effect size of our research study is 0.385. This represents the dif-

ference in the population and sample mean in standard deviation units. Several val-

ues are suggested for interpreting the magnitude of effects size, like the following

from Cohen (1988):

0.20 small effect

0.50 medium effect

0.80 large effect

Despite not being able to reject the null hypothesis, the research variable

(wealthy, urban schools) resulted in higher MH teacher average technology skill

indexes than those found in the population of schools. The population and sample

means were over 1/3 standard deviations (0.385) apart. There is thus a low-to-

medium effect size evern though we did not reject the null hypothesis.

Another Measurement of the (Cohen’s d) Effect Size

You may notice that the effect size calculation d is similar to the t ratio. However,
the t ratio transforms the M�m distance into standard deviation units of the
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sampling distribution (sm) instead of the population distribution (sx). Because these
are similar measures, we can use another calculation to achieve similar results [see

Cohen (1988)].

d ¼ tffiffiffiffi
N

p ; d ¼ 2:00ffiffiffiffiffi
28

p ; d ¼ :38

The chief difference between these methods is that the second formula is more

sensitive to sample size.

POWER, EFFECT SIZE, AND BETA

There are relationships between Type II error, effect size, and power. Power repre-

sents the ability of a statistical analysis to detect a ‘‘true’’ finding. The larger the

power, the greater the probability of rejecting the null hypothesis when it should be

rejected. As we discussed above, Type II (beta) error is the probability of not reject-

ing the null hypothesis when it should have been rejected. Power and beta are there-

fore complementary: Power is therefore defined as (1�b).
Look again at Figure 10.11, which shows all these measures.

� Beta (b) is the area of the sample distribution diagonally hatched and repre-

sents sample test mean values that do not reject the null hypothesis.

� Power (1�b) is represented by the area horizontally hatched. Sample test

means that fall in this section will reject the null hypothesis correctly; this rep-

resents the power of the relationship among the test variables.

� Effect size is represented by the double-sided arrow, the distance the sample

test value moves away from the population mean and measured in standard

deviation units.

Power tables exist in which the researcher can determine the sample size and

magnitude of Cohen’s d to achieve certain ‘‘levels’’ of power (Cohen, 1988).

ONE- AND TWO-TAILED TESTS

Up to now, we have assumed that when we create a rejection region, or exclusion

area of the comparison distribution for the hypothesis test, we will split the exclu-

sion area into both tails. Figure 10.12 shows the two tailed test in which the rejec-

tion region is split into the two tails of the distribution. The figure shows the Z
distribution since it is easier to understand as an example. The top figure shows the

5% exclusion area. As you can see, the 5% must be split in half so that both tails

will have half the rejection region. Thus, 2.50%þ 2.50%¼ 5%.

Figure 10.12 also shows the 1% exclusion area in which the 1% is split into both

tails of the distribution (0.5% in each tail).
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Two-Tailed Tests

The ‘‘default’’ hypothesis test uses the two-tailed test because it allows for the pos-
sibility that a research finding may be changed in either direction, positive or nega-
tive. If you recall the example of the Z test we discussed in Chapter 9, we had a z
ratio of �3.31. Because this was the Z test, we used the exclusion area of 5%, which

translated to z values of� 1.96. If we had used the 1% exclusion area with two tails,

the exclusion values would have been � 2.58. The result of the hypothesis test was

that we could reject the null hypothesis because our test value (�3.31) exceeded the

left exclusion value of �1.96.

As we discussed above, the exclusion values change when using the T distribu-

tion because the sample values are often smaller, and so on. In the example we

discussed in this chapter, our t ratio of 2.00 was not large enough to reject the null

hypothesis because the exclusion value was � 2.052. If we had wanted to use the

more stringent 1% exclusion area for the T distribution (with df¼ 27), the exclusion

values would have been � 2.771. The exclusion values for the T distribution must

be evaluated differently for each statistical test because the sample sizes can vary.

One-Tailed Tests

Researchers can also establish one-tailed tests by ‘‘stacking’’ the entire rejection

region in one tail or the other, but not both. Figure 10.13 compares the one- and

two-tailed 5% exclusion areas for the Z distribution. The top figure shows the two-

tailed test with the 5% split into both tails; the exclusion value is � 1.96. The bot-

tom figure shows a one-tailed test with all 5% loaded into one tail. In this case, the

exclusion value is 1.65. (If we had loaded the 5% in the left side of the distribution,

the exclusion value would have been �1.65.)

FIGURE 10.12 The two-tailed test.
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Table 10.3 shows the exclusion values for the Z distribution for both the one- and

two-tailed tests. As you can see, it matters a great deal which you choose for your

research problem.

To give you a sense of how the exclusion values differ for the T distribution,

Table 10.4 shows the values for df¼ 27, the sample size we used in our example

above. Recall that our test value (t ratio) was 2.00. We did not reject the null

hypothesis since I used the two-tailed test.

Consider what would have happened if I had chosen a one-tailed test at the 5%

exclusion area. I would have rejected the null hypothesis! My t ratio of 2.00 would

more than exceed the exclusion value of 1.703.

FIGURE 10.13 One- and two-tailed exclusion values.

TABLE 10.3 Exclusion Values for the Z Distribution

One-Tailed Test Two-Tailed Test

5% Exclusion area 1.65 (either positive or negative) � 1.96

1% Exclusion area 2.33 (either positive or negative) � 2.58

TABLE 10.4 Exclusion Values for T Distribution (df¼ 27)

One-Tailed Test Two-Tailed Test

5% Exclusion area 1.703 (either positive or negative) � 2.052

1% Exclusion area 2.473 (either positive or negative) � 2.771
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Choosing a One- or Two-Tailed Test

It is up to you as a researcher to choose which type of exclusion value you include

in the hypothesis test. There is no absolute rule about which you choose. However,

you should be ready to defend your choice. The 5% exclusion area of a two-tailed

test is considered a standard for researchers. However, researchers exploring poten-

tial relationships among variables may choose a much lower exclusion region.

One potentially thorny issue in using a one-tailed test is which tail to identify as

the exclusion area. The logical sequence of the hypothesis test requires researchers

to choose, before they calculate the t ratio, whether they will use a one- or a two-

tailed test. So, you should use some criteria for deciding which tail to use, if you

decide on a one-tailed test.

One criterion is your expectation, based on the research literature, or other

research findings, that your test result will tend toward one direction or the other.

For example, if you have noted in the literature that student technology skills almost

always eclipse teacher’s skills, you might use the right tail as the exclusion area if

you are comparing teachers and students on a technology learning task.

Another criterion is to think about the nature of your sample. If you are working

with a sample group that is ‘‘extreme’’ on some measure (e.g., introducing a new

method for learning math among special education students), you might anticipate

that the students’ scores would increase after the new instructional method. This is

somewhat intuitive. If a group of students had really low achievement, for example,

there would only be one way to go, namely, up! This is the principle of the ‘‘regres-

sion to the mean effect’’ in research. A group’s scores will generally increase upon

retesting if they are low to begin with. On the other hand, if they are high, retesting

runs the risk of lowering the scores!

The example problem in Chapter 9 shows how a researcher may encounter diffi-

culties by using a one-tailed test. As you recall, we tested schools with lower

student–teacher ratios to see if they would have better achievement than the general

population of schools that tend to have larger ratios. We rejected the null hypothe-

sis, but only because we used a two-tailed test. Had we decided to load the rejection
region into only the positive side of the distribution, under the general expectation

that lower student–teacher ratios are better for learning, we could not have rejected

the null hypothesis even though our z-test ratio was extremely high at �3.31.

So, in some sense, it is a gamble as to whether you use a one- or two-tailed test.

It is easier to reject the null hypothesis with a one-tailed test, but it is also riskier if

there is a reasonable possibility that the direction of your findings will tend to the

opposite side from what you expect.

A NOTE ABOUT POWER

We discussed power above, but I wanted to note here that there are ways a re-

searcher can increase the power of a finding. The following are some of the factors

I have discussed or hinted at thus far that might increase power:
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1. Using a one-tailed test, depending on the nature of the research question.

2. Using a lower exclusion value (5% versus 1%).

3. Increasing the sample size because this will generally lower the size of the

standard error with the result of increasing the test ratio.

4. Making sure the sample is not skewed.

We will add to this list as we proceed. For now, remember that you as the re-

searcher are in the driver’s seat of your research. Use appropriate methods, pay at-

tention to power and effect size, and be systematic in obtaining the most accurate

results with the appropriate statistical procedures.

POINT AND INTERVAL ESTIMATES

In conducting the analysis of our t test of a single mean, we transformed our sample

mean to see where it would fall on the sampling distribution of means. This allowed

us to make a decision about whether the sample mean likely came from the popula-

tion. To researchers, the t-test procedure is called a ‘‘point estimate.’’ The object of

the procedure is to create one point in the sampling distribution of means so that we

can compare it to the population mean. In order to do this, we had to have some idea

of the population mean. Ordinarily, the population mean is not known, so the re-

searcher must posit a value, based on past research or other criterion. This value is

more than a guess; however, it still is likely not exactly equal to an unknown popu-

lation value.

Another way to proceed with a research study is to estimate the population mean

within a certain range of values. This is known as a ‘‘confidence interval.’’ This
interval is the range of values that will likely contain the true population mean
within a certain percentage of certainty. We often use the same benchmark for

probability as we do for a point estimate to create the range of values: p¼ 0.05.

Thus, we speak of the 0.95 confidence interval to mean the range of values within

which the true population mean will fall with a 95% certainty. We might also

choose a more ‘‘certain’’ range of values by using a benchmark of p¼ 0.01. I will

show how this works.

Calculating the Interval Estimate of the Population Mean

What would this interval of values look like? How can it be created? The short

answer is that we will use the ‘‘inclusion area’’ to create the range of values, rather

than the exclusion area that we used in the t test above.
Look at Figure 10.12 again. I used this figure to discuss the two-tailed test. How-

ever, the figure also illustrates the inclusion area that will ‘‘capture’’ the true popu-

lation mean. The top figure shows a 0.95 inclusion area (indicated by the double-

sided arrow) and the bottom shows a 0.99 inclusion area. These areas conform to

the 0.95 confidence interval (CI0.95) and the 0.99 confidence interval (CI0.99),

respectively.
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A statistical formula is used to identify the limits of this interval—that is, the

specific values on the sampling distribution of means that bracket the inclusion

area. These values represent the confidence interval. The formula is not new to you.

If you recall, we learned in Chapter 8 to transform a z score into a raw score as

follows:
X ¼ ZðSDÞ þM

We can use this formula to create the confidence intervals by adapting it to the T
distribution, since we are dealing with unknown population parameters. The

adapted formula is

Confidence interval ¼ � tðsMÞ þM

As you can see, the Z value is replaced by � t and SD is replaced by sm in the

formula. Beyond these changes in symbols that represent the difference between

the Z distribution and the T distribution, the formula is the same. Examining each

element of the formula, we observe the following:

� t is the value of t from a statistical table that recognizes the appropriate df

value. For example, in our research question above, the t value at df¼ 27 was

� 2.052.

sm is the estimated standard error of the mean. In our example, sm¼ 0.05.

M, the sample mean in our example, was 3.2.

Substituting these values into the formula will yield the CI. In this example, we

can use CI.95 because that is the assumption used to create the appropriate T value

from the table (i.e., the 5% exclusion�95% inclusion area).

CI0:95 ¼ � 2:052ð0:05Þ þ 3:2

You will notice that the t value from the T table is both a positive and a negative

number because we are using it in a two-tailed procedure; we want to identify val-

ues on the left and right of the sample mean that will bracket the population mean

estimate. Therefore, we need to calculate the confidence interval twice: once with t
as a negative value and once as a positive value.

CI0:95 ¼ �2:052ð0:05Þ þ 3:2

CI0:95ðleft bracket valueÞ ¼ 3:097

CI0:95 ¼ þ2:052ð0:05Þ þ 3:2

CI0:95ðright bracket valueÞ ¼ 3:303

Figure 10.14 shows these values. The T-table values are shown capturing the

95% inclusion area. Below these brackets are the calculated values that define the

CI0.95 interval. We can summarize by stating that with a 95% certainty, the true

population mean will fall between 3.097 and 3.303.
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This is quite a different process than the point estimate, but the procedures are

created to answer different questions:

� Point Estimate. Is the sample mean of 3.20 likely to be from a population with

an assumed mean of 3.10 (from our example)?

� Confidence Interval. Based on the sample values, what is the population mean

likely to be? Between what range of values is the population likely to fall with

a 95% certainty?

THE VALUE OF CONFIDENCE INTERVALS

As you will see, confidence intervals are quite important in statistics. We have

learned how to create brackets that will contain a population parameter. That is, we

have estimated a population parameter within a certain probability level.

Confidence limits can be placed around any parameter estimate. We will learn

to create CIs with each procedure we discuss.

You may notice that you can create a 95% or a 99% CI. Both CIs are created in

the same fashion; the difference being the tabled t value that defines the inclusion

area. The value of the CI0.99 is that it is more likely to contain the true population
estimate, since it will create a wider interval of values. However, in doing so it will

be less precise. Look at our two examples:

CI0.95 Interval values: 3.097–3.303

CI0.99 Interval values: 3.061–3.339

Figure 10.15 compares the CI0.95 and CI0.99 for our example. As you can see, the

CI0.99 is wider, and therefore more likely to contain the actual population mean.

However, the width of the interval makes it a less precise estimate than the CI0.95.

Our research findings provide an interesting example. If you recall, the popula-

tion mean was assumed to be 3.10. The CI0.95 lower boundary of 3.097 directly fell

FIGURE 10.14 Confidence intervals values for the example.
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on this assumed value. It would thus barely be included in the CI0.95. However, the

assumed mean of 3.10 would easily fit in the CI0.99. The researcher must decide

which is the more important aspect of the estimate, the extent of confidence or

precision.

USING EXCEL1 AND SPSS1 WITH THE SINGLE-SAMPLE T TEST

We can use both Excel1 and SPSS1 to evaluate a single-sample T test, although

SPSS1 is the more straightforward. Both provide the same results.

SPSS1 and the Single-Sample T Test

SPSS1 provides a very easy way to perform this test with a drop-down menu. As

you can see in Figure 10.16, you can access the ‘‘One-Sample T Test . . . ’’ menu

through the Analyze menu on the main screen and then choose ‘‘Compare Means.’’

FIGURE 10.15 Comparing CI0.95 and CI0.99.

FIGURE 10.16 Using SPSS1 to obtain the single-sample T test.
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When you choose the one-sample T test, you are presented with the menu in

Figure 10.17.

This menu allows you to specify which dependent (outcome) variable you are

testing by specifying the appropriate variable in the ‘‘Test Variable(s):’’ window

using the arrow button. Include the assumed mean value in the ‘‘Test Value’’

window near the bottom of the menu. As you can see in Figure 10.17, I included

3.10 because this was the value I assumed the population mean to be in our research

question.

Figure 10.18 shows the SPSS1 output tables including descriptive statistics and

the T-test results.
Figure 10.18 shows several important statistical calculations. The top panel

provides the descriptive statistics on MH teacher technology skills, including mean

FIGURE 10.17 Using the single-sample T test in SPSS1.

One-Sample Statistics

N Mean
Standard
deviation 

Standard error
of the mean

mhskills 28 3.2001 0.26369 0.04983

One-Sample Test

Test value = 3.10

95% Confidence Interval of the
difference

 
t df

Significance
two-tailed 

Mean
difference Lower Upper

mhskills 2.009 27 0.055 0.10011 –0.0021 0.2024

FIGURE 10.18 The SPSS1 output tables with T-rest results.
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(3.2001) and standard deviation (0.26369) values. It also provides the sm value

(0.04983).

The bottom panel shows the calculated t ratio (2.009) and the df (27) values. The
significance reported (0.055) is the actual probability value of values occurring

‘‘beyond’’ this result. Up to now, we have referred to a table of values to create

numerical values that exclude a certain portion of the tails for our hypothesis test

(i.e., 0.05, 0.01). SPSS1 provides the exclusion percentage in the tail from the point
of the calculated t ratio (2.009 in this case). If this actual probability value is less

than (i.e., smaller) the tabled exclusion value of 0.05, the T test is considered a

significant finding because the test value would fall into the exclusion area.

In this example, however, we cannot reject the null hypothesis because our test

value (2.009) fell at the probability point that excluded 0.055 of the distribution in

the tail. We needed this number to be smaller than 0.05. Therefore, as we found in

our earlier analysis by hand, we cannot reject the null hypothesis. We can point out

other findings for the CI through SPSS1 in Figure 10.19.

When I specified the T test for a single mean in SPSS1 (see Figure 10.18), I had

the option of requesting CI values. Figure 10.19 shows this request. Note that you

can call for CI values other than 0.95 or 0.99 by entering them in the top window.

As you can see, I called for CI0.95 values.

If you refer back to Figure 10.18, the SPSS1 output file already includes the

confidence intervals because it is a default procedure. The results look a bit differ-

ent from those we discussed since SPSS1 shows confidence interval values around

the assumed population mean. This is the way to view the output values:

Assumed population mean ð‘‘Test Value’’Þ ¼ 3:10
�0:0021 ¼ 3:0979 Lower limit

þ0:2024 ¼ 3:3024 Upper limit

FIGURE 10.19 The SPSS1 output tables with T-test results.
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These values correspond to the values we calculated by hand above. You can

check the CI0.99 values in the same way as above. Simply change the default 0.95

in the ‘‘One-Sample T Test: Options’’ window to 0.99 and SPSS1 returns the fol-

lowing values for the Lower and Upper interval: Lower¼�0.0380 and Upper

¼ 0.2382. Using the same process as above, you can confirm the CI0.99 values. The

values are the same as our hand calculated CI values, accounting for slight differ-

ences due to rounding.

Assumed population mean ð‘‘Test Value’’Þ ¼ 3:10
�0:0380 ¼ 3:062 ðLower limitÞ
þ0:2382 ¼ 3:338 ðUpper limitÞ

Excel1 and the Single Sample T Test

The Excel1 program makes you work a bit harder than SPSS1, but you can use it

effectively to conduct a single-sample t test. The Data sub-menus do not include the

single-sample t test. However, the descriptive analysis that you performed on the

MH Teacher skills (see Figure 10.4) provides all the information you need to con-

duct the analysis.

If you recall, here is the relevant information taken from the descriptive analysis:

Mean¼ 3.20

Standard deviation (sx)¼ 0.264

Estimated standard error (sm)¼ 0.05

Count (N)¼ 28

You can simply substitute the values above in the t-test formula. The only thing

you need to remember is the assumed population mean (3.10):

t ¼ M � m

sm
; t ¼ 3:20� 3:10

0:05
; t ¼ 2:00

As you can see, your calculation of t using Excel1 descriptive summary is the

same as our own calculation and that derived from SPSS1.

The next step in the hypothesis test is to determine whether the calculated

t ratio (2.00) is ‘‘extreme enough’’ to reject the null hypothesis. You could

proceed as you did in the hand calculation by comparing the t ratio to the

tabled value of t (2.052). This comparison would lead you to be unable to

reject the null hypothesis because 2.00 does not exceed the exclusion value

of 2.052.

You may access the T table in Excel1 through the use of the ‘‘TDIST’’

function. This function is available by choosing the statistical functions from

the Formulas menu on the main page. (Review the material in Chapter 2

USING EXCEL1 AND SPSS1 WITH THE SINGLE-SAMPLE T TEST 203



dealing with the Excel1 functions.) When you choose TDIST, the window in Fig-

ure 10.20 appears.

As you can see, I entered the relevant information in the TDIST function

windows. The ‘‘X’’ window is the place to enter the calculated t ratio. Excel1 com-

pares this value to T-table values using df (27) and tails (2) information.

When this information is entered, you can select ‘‘OK’’ to paste the result-

ing value to your spreadsheet. However, note that the result (0.055652427) is

returned in the middle of the function screen. Like SPSS1, this value is the

actual probability of values greater than the sample mean occurring on the

comparison distribution. If the value is beyond (smaller than) the 0.05 level

(the standard exclusion area used by researchers), then you would reject the

null hypothesis. However, in this example, 0.05565 is larger than 0.05, so you

cannot reject the null hypothesis.

You must calculate the CI values by hand as we did above because Excel1 does

not provide this information for the single-sample t test. You need to have access to

a T distribution table for this calculation because you need the 0.05 (or 0.01) exclu-

sion values to calculate the estimated population mean interval. Because Excel1

(TDIST) returns the actual probability of a result, you cannot use this for the CI.

(The Excel1 function ‘‘Confidence’’ calculates confidence intervals for the Z test,

but not for the T test.)

TERMS AND CONCEPTS

Biased Estimator A sample measure that does not provide an accurate measure

of the population characteristic.

Confidence Interval Creating a range of values that will likely contain the true

population value within a certain percentage of certainty.

Degrees of Freedom The restrictions on the sample values when estimating a

population parameter.

FIGURE 10.20 The TDIST function in Excel1.
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Effect Size The strength or impact of a finding, typically the amount of distance

the test value is ‘‘pushed’’ away from the population value.

Factor Analysis A statistical procedure that ‘‘reduces’’ a series of items to related

groupings of items.

One-Tailed Tests Locating the exclusion area in one tail of the comparison

distribution.

Point Estimate Transforming a sample value (e.g., sample mean) to a compari-

son distribution to determine whether it is statistically different from a popula-

tion value (e.g., population mean).

Power The ability of a statistical analysis to detect a ‘‘true’’ finding.

Two-Tailed Tests Locating the exclusion area in both tails of the comparison

distribution.

Type I (Alpha) Error The Type I error is mistakenly rejecting the null hypo-

thesis when it should be accepted.

Type II (Beta) Error Not rejecting the null hypothesis when it should be rejected.

REAL-WORLD LAB VI: SINGLE-SAMPLE T TEST

This lab will use the STAR Classroom Observation ProtocolTM data provided by

The BERC Group, Inc. I included a general description of this database in

Chapter 3 as a process for measuring the extent to which Powerful Teaching

and LearningTM is present during a classroom observation. The BERC Group,

Inc. has performed thousands of classroom observations of all grade levels and

subject areas.

The sample group of observations in Table 10.5 consists of observations of math

classrooms (N¼ 18) in grades K–8 across several schools. The study variable

(i.e., outcome variable) is an overall measure of the extent to which Powerful

Teaching and LearningTM was present during a classroom observation in year four

of a study.

TABLE 10.5 The STAR Classroom Observation
ProtocolTM Data

Overall Overall

4 3

3 3

3 3

2 4

2 2

3 2

4 4

2 2

3 3
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The study variable ‘‘Overall’’ scored observations of teachers in the following

categories:

Score Category

1 Not at all

2 Very little

3 Somewhat

4 Very

The purpose of this lab is to respond to the following research question:

‘‘Do K–8 math classrooms demonstrate different levels of Powerful Teaching

and LearningTM than the population of all classrooms observed?’’ The popula-

tion of classrooms of all grades and subjects is assumed to have an Overall

average of 2.45.

1. Calculate the single sample t test by hand and perform the hypothesis test.

2. Calculate the effect size and CI.95.

3. Perform the single sample t test through Excel1 and SPSS1.

4. Provide a summary of your findings.

REAL-WORLD LAB VI: SOLUTIONS

1. Calculate the single-sample T test by hand and perform the hypothesis test.

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X2 �

P
Xð Þ2
N

N � 1

vuut
; sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160� 2704

18
17

;

vuut
sx ¼ 0:758

sm ¼ sxffiffiffiffi
N

p ; sm ¼ 0:179

t ¼ M � m

sm
; t ¼ 2:89� 2:45

0:179
t ¼ 2:458

� H0: m1 ¼ m (there is no difference between the Overall mean of the sample

of K–8 math classrooms and the classrooms in the study population).

� HA: m1 6¼ m (the sample group Overall mean is not the same as all class-

rooms in the study population).

� The Critical Value: The two-tailed T-table value (t0.05,17df)¼ 2.110.

� Calculated t¼ 2.458.

� Statistical Decision: Reject the null hypothesis since the calculated value of

the t ratio (2.458) exceeds the exclusion value on the distribution (2.110).
� Interpretation: The single-sample T test revealed that the sample group of

K–8 math classrooms showed higher average observed Powerful Teaching
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and LearningTM scores than the population of classrooms observed at all

grade levels and in all subject areas.

2. Calculate the effect size and CI0.95.

d ¼ tffiffiffiffi
N

p ; d ¼ 2:458

4:24
; d ¼ :58 ðMedium effectÞ

Confidence interval¼� tðsMÞ þM; ðt0:05;17dfÞ ¼ 2:110

Lower interval value¼� 2.110 (0.179)þ 2.89¼ 2.512

Upper interval value¼þ 2.110 (0.179)þ 2.89¼ 3.268

CI0.95 consists of an interval of 2.512 to 3.268 for the population from
which this sample came. Note that this interval does not contain the assumed

population mean (2.45). Because we rejected the null hypothesis, we con-

cluded that our sample mean was so different that it must have come from a
population mean much higher than the general population with an assumed
Overall mean of 2.45.

3. Perform the single-sample T test through Excel1 and SPSS1.

Figure 10.21 shows the Excel1 descriptive statistics output for Overall.

The calculated values needed for the single-sample T test are shaded.

Using the shaded mean and sm values from Figure 10.21, the calculated

t ratio is the same as our hand calculation under #1 above.

t ¼ 2:89� 2:45

0:179
; t ¼ 2:458

Using the Excel1 TDIST function, the calculated value is p¼ 0.025.

Because this value is lower (i.e., more extreme) than the 5% exclusion value,

we can reject the null hypothesis. The hypothesis test results in #1 above are

verified.

Overall

Mean 2.889
Standard error 0.179

3.000 Median 
3.000 Mode 

Standard deviation 0.758
0.575 Sample variance 

–1.118 Kurtosis 
0.195 Skewness 
2.000 Range 
2.000 Minimum 
4.000 Maximum 

52.000 Sum 
18.000 Count 

FIGURE 10.21 The Excel1 descriptive data for the sample group overall scores.
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The SPSS1 single-sample t test results are shown in Figure 10.22. As you

can see, the shaded t ratio (2.455) is the same as those calculated by hand and

through Excel1 (slight differences due to rounding).

Other relevant findings from the SPSS1 output in Figure 10.22 are the

following:

� The significance (0.025) like that reported by Excel1 is the actual probabil-

ity of a finding at least this extreme; that is, the t ratio (2.455) falls into the

exclusion area at the point where only 0.025 probability of a sample value

are more extreme. Thus, since this value of 0.025 is smaller (more extreme)

than the 0.05 exclusion area, we can reject the null hypothesis.

� The confidence interval values are the same as those we calculated by hand

under #1 above:

Assumed population mean ð‘‘Test Value’’Þ ¼ 2:45
þ0:06 ¼ 2:51 ðLower limitÞ
þ0:82 ¼ 3:27 ðUpper limitÞ

4. Provide a summary of your findings.

A single-sample T test of a randomly chosen group (N¼ 18) of K–8 math class-

rooms revealed significant differences in their overall Powerful Teaching and Lear-

ningTM scores from the population of observed classrooms in all grades and

subjects with an assumed mean of 2.45 (t¼ 2.46, p< 0.025). The K–8 math class-

rooms demonstrated higher average Overall scores than the population. This study

revealed a medium effect size (d¼ 0.58) indicating a meaningful sample mean

score difference from the population of classrooms.

One-Sample Statistics

N Mean
Standard
deviation 

Standard error
of the mean

Overall 18 2.89 0.758 0.179

One-Sample Test

Test value = 2.45

95% Confidence interval of the
difference 

t df
Significance
(two-tailed)

Mean

difference Lower Upper

Overall 2.455 17 0.025 0.439 0.06 0.82

FIGURE 10.22 The SPSS1 results of the single-sample t-test.
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11
INDEPENDENT-SAMPLES T TEST

We have arrived at an important benchmark in the book. By now, you have gained

an understanding of descriptive statistics, and you are working your way toward an

understanding of sampling distributions and how they are helpful in making statisti-

cal decisions. We have discussed two inferential tests: the Z test, and the single-

sample T test.

In the chapters ahead, we will build upon your understanding of inferential

statistics. This chapter extends what we learned in Chapter 10 about the T test. As

you will see, there is a logical process of extending the Single-Sample T test to the

two sample (independent) T test.

A LOT OF ‘‘T ’S’’

In the previous chapters, we discussed several ‘‘t’’ statistics and measures:

� T score—a transformed z score.
� Single–sample T ratio

� Two–tailed T table of values

� One–tailed T table of values

To these we will add yet another t, the ‘‘two-sample T test for independent

samples.’’ This is a ‘‘workhorse’’ test in statistics because it is so versatile and

straightforward. The reason it is so common is that it allows us to perform a very

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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basic function in statistics and common practice, compare. The nature of statistics is
comparison, as we have learned in the inferential process of comparing sample

measures to population measures.

Perhaps you have heard an advertisement like the following: New Ox Vomit

toothpaste is 25% better! The immediate question that should spring to mind is,

Compared to what? Old Ox Vomit toothpaste? A wooden twig? Other brands of

toothpaste? In order to find out whether this claim has any merit, we must compare

it to something else to see if there is really a difference.

In Chapter 10, we used a sample mean to estimate a population mean. In essence,

we were comparing a sample value to an (assumed) population value. We will

extend this comparison to include a second sample group; the independent-samples

T test is designed to do just that. This statistical procedure assesses whether two

samples, chosen independently, are likely to be similar or sufficiently different

from one another that we would conclude that they do not even belong to the same

population.

RESEARCH DESIGN

As we encounter new statistical procedures, I want to draw us back to our examina-

tion of research design. It is important to understand how a statistical procedure
should be used rather than simply how to calculate it.

If you recall, we distinguished experiment from post facto designs in Chapter 9.

One of the key differences was whether the researcher manipulated the independent

variable (experiment) or simply measured what data already exists (post facto). The
independent T test can be used with either design.

Experimental Designs

Figure 11.1 shows the diagram for an experimental design in which there are two

groups: experimental group and control group. As you can see, the treatment varia-

ble is manipulated by assigning one group (experimental) one level of a treatment

and the other group (control) a different level (or no treatment at all). The depen-

dent (outcome) variable is tested after the independent variable has been changed

to see if there is a difference between the outcome measures of the two groups.

Dependent Variable (Outcome) Research Treatment Variable (Independent or Predictor) 

Random 

selection and 

assignment? 

Experimental group Pretest scores 
Outcome test scores 

(post-test scores) 

Random 

selection and 

assignment? 

Pretest scores 
Outcome Test Scores Control group 

(post-test scores) 

FIGURE 11.1 The research design with two groups.
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If there is a difference, the researcher attributes the change to the presence or
action of the independent variable (i.e., makes a causal attribution).

The researcher may only make causal attributions if there is randomization in

which subjects are chosen and assigned to groups randomly. If randomization is

present, then the assumption is that both groups (experimental and control) are

equal at the outset. Then, if they are different on the dependent variable measure

after the experiment is over, the differences must be because of the treatment that

was introduced to change the experimental group and not the control group.

Under these conditions, the researcher compares the outcome measures of both

groups when the experiment is over to see if there is a difference. The independent

T test is the statistical procedure to use because we are comparing two sample

groups. Formally stated, we are testing the difference between two sample groups

to see if they belong to the same population after the experimental manipulation. It

is assumed that they belong to the same population at the beginning (before the

independent variable is manipulated).

Independent and Dependent Samples. In research designs like those shown in

Figure 11.1, the researcher compares the (post-test) outcome measures of both

groups. Note that this statistical test uses independent samples. This means that

choosing subjects for one group has nothing to do with choosing subjects for the

other group. Thus, if I randomly select Bob and assign him randomly to group 1

(high noise), it has nothing to do with the fact that I choose Sally and assign her

randomly to group 2 (low noise). This is an important assumption because it assures

the researcher that there are no ‘‘built-in linkages’’ between subjects. The power of

randomization will result in the comparability of the two groups in this way.

Dependent samples would consist of groups of subjects that had some structured

linkage, like using the same people twice in a study. For example, I might use pre-

test scores from Bob and Sally and compare them with their own post-test scores.
Using dependent samples affects the ability of the randomness process to create

comparable samples; in such cases, the researcher is assessing individual change
(before to after measures) in the context of the experiment that is assessing group
change.

Figure 11.2 shows how dependent samples might be used in an experimental

context. As an example, we might have a ‘‘pre–post’’ design where we take a pre-

test measure on the subjects in a group, expose the group to some experimental

condition, and then take a post-test of the same subjects. This would mean that the

pre-test group would be very specifically related to the post-test group (since they

would be the same people) and would therefore not be independent.

Dependent Variable (Outcome) Research Treatment Variable (Independent or Predictor) 

Random 

selection and 

assignment? 

Experimental group Pretest scores 
Outcome test scores 

(post-test scores) 

FIGURE 11.2 Using dependent sample measures in experimental designs.
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Another dependent samples design is using matched samples, a situation in

which we purposely choose people to be in two groups to be compared rather than

choosing randomly. For example, we might be concerned about gender and pur-

posely assign equal numbers of men and women to two groups. As you can see in

Figure 11.3, the randomness criterion in the first column is replaced by ‘‘matching’’

to indicate that we are using two groups of different people (not the same people

twice), but they are structurally linked by our decision to purposely ‘‘build in’’
some group similarity.

Between and Within Research Designs. Research designs differ as to whether they

measure independent samples, dependent samples, or both. The design in Figure 11.1

illustrates all three processes. Between-group designs are those in which the
researcher seeks to ascertain whether the groups demonstrate unequal outcome
measures. That is, are there differences between the groups’ post-test scores?

In Figure 11.1, this would be comparing the post-test scores for the experimental

group versus the control group. It is represented by the ‘‘vertical’’ distance in the

‘‘Outcome’’ measure column.

Within-group designs are those in which the researcher seeks to ascertain
whether subjects in a group change over time. In Figure 11.1 the within-group de-

sign would be the change from a group of subjects’ pre-test scores to their post-test

scores. This would be represented by the ‘‘horizontal’’ difference of a group; that is,

are the scores within a specific group different after the treatment than they were at

the beginning?

Mixed designs are those in which both within- and between-group measures can

be taken. The design in Figure 11.1 is one such design. The vertical comparison of

post-test scores is between groups, and the horizontal comparison of pre-test to

post-test difference is within subjects.

Using Different T Tests. Depending on the nature of the design, an experiment may

call for different T-test procedures. With independent samples, the researcher would

use an independent-samples T test by comparing the post-test measures between

two treatment groups. This procedure is the focus of this chapter.

If the researcher uses dependent samples, they would need to use another kind of

T test called a dependent-samples T test. Other names for this test are: repeated-

measures T test, within-subjects T test, and paired-samples T test. Both Excel1 and

SPSS1 refer to these as paired sample T tests.

Dependent Variable (Outcome) Research Treatment Variable (Independent or Predictor) 

Pretest scores Matching Experimental group 
Outcome test scores 

(post-test scores) 

Pretest scores Matching 
Outcome test scores Control group 

(post-test scores) 

FIGURE 11.3 Using matched groups in experimental designs.
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Pretest or No Pretest

Experimental research designs differ in terms of whether they include a pre-test of
the dependent variable measure. A pre-test is simply administering the dependent

variable measure before the experiment begins to ensure that the two groups are in

fact equal. Some experimental designs that include full randomization do not use a

pre-test because the researchers assume that randomization results in equal groups;

therefore, there is no need for a pre-test. In fact, under these conditions, eliminating

a pre-test might eliminate potential problems because research subjects can often be

affected by receiving a test of the outcome measure before the study. (This is

known as pre-test sensitivity.)

Example of Experiment. When I was studying experimental psychology as an

undergraduate student, I performed an experiment on the effects of noise on human

learning. I randomly selected students and randomly assigned them to either a high

or low noise condition (by using a white noise generator with different decibel

levels). Then, I gave the students in both groups the same learning task and com-

pared their performance. The learning task (the outcome measure) was simple word

recognition. Figure 11.4 shows the research design specification for this experiment.

Note some features of the experiment shown in Figure 11.4:

� I randomly selected students and then randomly assigned them to the two

treatment groups.

� I did not use a ‘‘control group’’ (the ‘‘absence of the treatment’’) but rather a

second level or condition of the treatment variable to yield two treatment

groups.

� I did not pre-test the subjects on word recognition before exposing them to

different experimental treatment conditions.

� I administered the word recognition test (outcome measure) to both groups

after exposing them to different experimental treatment conditions.

I randomly selected and assigned students, which allowed me to assume that they

were equal on all important dimensions (to the experiment). I exposed the two groups

to different conditions, which I hypothesized would have differential effects on their

learning task. Thus, if I had observed that one group learned differently (either better

Dependent Variable Research Treatment Variable (Noise) 

 (Word Recognition) 

Random 

selection and 

assignment 

No pretest
Experimental group 

(high noise level) 

Outcome test scores 

(number of recognized words) 

Random 

selection and 

assignment 

No pretest
Control Group 

(low noise level) 

Outcome Test Scores 

(number of recognized words) 

FIGURE 11.4 Example of experimental research design using t test with two groups.
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or worse) than the other group, I could attribute this difference to the different condi-

tions that I exposed them to (high or low noise). If their learning was quite different,

I could conclude, statistically, that the groups were now so different that they could

no longer be thought to be from the same population of students I started with. That

is the process I used for testing the hypothesis of difference. Specifically, I used the

T test with independent samples to detect difference in post-test scores.

I will discuss this experiment in subsequent chapters as well. The short answer as

to whether or not I observed statistical differences between the high and low noise

outcome measure is no. This didn’t mean that noise doesn’t affect learning; it just

gave me a way to look at the problem differently. As we will see, this example

shows several features of the theory testing process as well as the T-test procedure.

Post Facto Designs

In Chapter 9, I discussed the post facto design as one in which I compare group

performance on an outcome measure after group differences have already taken

place. These designs can be correlational or comparative, depending on how the

researcher relates one set of scores to the other (i.e., using correlation or difference

methods, respectively).

A post facto design compares conditions with one another. Thus, for example,

rather than perform an experiment to detect the impact of noise on human learning,

I might ask a sample of students to indicate how loud their music is when they study

and their GPA. Then, I could separate the students into two groups (high and low

noise studiers) and compare their GPA measures.

In this design, therefore, I would not manipulate the noise measure; I would sim-

ply create groups on the basis of already existing differences in noise conditions. If

the outcome measure (GPAs) was different between the groups, I would conclude

that noise would possibly be a contributing factor to GPA. I could not speak caus-

ally about noise because many other aspects of studying may have affected GPA

(and most decidedly would!).

Figure 11.5 shows how the post facto design might appear using my noise

research question. I would simply use an independent samples t test to compare the

GPA measures for high and low noise studiers.

Studying Under Low Noise Studying Under High Noise 

GPA scores GPA scores 

GPA scores GPA scores 

— — 

— — 

Mean GPAHigh Mean GPA Low

FIGURE 11.5 The post facto comparison for independent t test.
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This same design could use dependent samples if I deliberately ‘‘stack’’ the two

samples to be the same on some issue. For example, I might equate the numbers of

women and men students and equivalent numbers of freshmen, sophomores, jun-

iors, and seniors in both noise groups. If I did this, I would be matching the groups

and therefore creating dependent samples. Under these circumstances, I would need

to use the dependent-samples T test.

INDEPENDENT T TEST: THE PROCEDURE

In the independent T test, the researcher takes a pair of samples to see whether these

can be said to be from a single population. The experimental and post facto designs

that we discussed above both would yield sample data for two samples. Figure 11.6

shows how the two sample process works.

The chief concern with this test is the difference in the means of the two samples.

If the samples are chosen randomly, by chance the means will both be close to the

actual population mean (the value of which is unknown). By chance alone, the dif-

ference between the means should be fairly small.

If we chose two sample groups (or, in an experiment, we randomly chose a

group and randomly assigned them to two groups), we would therefore expect

the group means to be similar. In research, we start with this assumption but

observe whether the two sample means are still equal after an experimental

treatment, or if the group means are different when we compare different condi-

tions of the research variable.

FIGURE 11.6 The independent samples T-test process.
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Using my post facto example above, my reasoning would be as follows:

� I have two groups of students, some who study under high noise and some who

study under low noise.

� I assume the groups of students were equivalent before they developed their

habits of studying under different amounts of noise.

� My task is to determine whether, now that they have developed their habits of

study, they are still equivalent or different on a word recognition task; if I

reject the null hypothesis, it will indicate that they no longer belong to the

same population of students.

� If they are different now, then I can say that the different noise may have

affected their ability to recognize words. However, there were surely other

influences that led them to develop their study habits, so I cannot say that the

different word recognition ability is caused only by the noise.

But how large does this difference have to be before it could be said that a differ-

ence that large could not reasonably be explained by chance and therefore the two

groups do not represent a single population? That is the nature of the T-test process
that we examined with the single-sample T test in Chapter 10.

Creating the Sampling Distribution of Differences

In Chapter 10, we learned that in order to decide whether a (single) sample mean

came from a (assumed) population, we had to use the sampling distribution of

means as a standard of comparison. Because we will now ask a similar question

with two sample groups, we need to think about a sampling distribution created not

by repeated sampling of a single group, but by a pair of groups.

FIGURE 11.7 All possible pairs of samples.
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The sampling distribution of differences is the sampling distribution that we will

use as a standard of comparison in the independent samples T test. It is called the

sampling distribution of differences because it focuses on the differences between
the means of pairs of sample groups. Figure 11.7 shows the process used to create

the sampling distribution of differences (remember, this is not something the re-

searcher does, it is simply to show the conceptual steps for creating the sampling

distribution of differences).

Figure 11.7 shows pairs of samples being randomly selected from a popula-

tion. The sampling distribution is made up of all possible pairs of sample
means; Figure 11.7 simply shows four such pairs as an example of how it works.

When all possible pairs of samples are taken from a population, a distribution

can be created on the basis of the differences between the means of the pairs
(designated in the figure by ‘‘D’’). Figure 11.8 represents the process of creating

the D values (differences between pairs of sample means) that form the sam-

pling distribution of differences.

The Nature of the Sampling Distribution of Differences

In Figure 11.8, the sampling distribution of differences is created by differences

between all possible pairs of sample means. This sampling distribution of differ-

ences will now serve as the standard of comparison to see whether a pair of sample

means that a researcher randomly selects could be said to be representative of a

research population. In effect, how does the difference in the sample means that we
select compare to all possible sample mean differences?

FIGURE 11.8 The sampling distribution of differences created from pairs of samples.
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The Mean and Standard Deviation of the Sampling Distribution of Differences.
The mean of the sampling distribution of differences (mm1�m2

) should be equal to 0,

because if we select means randomly, they will by chance come from both sides of

the distribution; the positive and negative values of the means, when added, would

cancel one another out resulting in a total of 0.

Because all pairs of samples are hypothetically taken to create the sampling dis-

tribution, this distribution should be normally distributed. Therefore, if a researcher
observes that a pair of samples in their study results in a difference in means that is

significantly removed from 0 on the sampling distribution of differences, the re-

searcher can conclude that the research samples cannot be said to come from the

same population.

In order to transform the difference in sample means from our research study

to the sampling distribution of differences, we need to be able to specify the

standard deviation of this sampling distribution of differences. The standard

deviation of the sampling distribution of differences is known as the standard

error of difference and is symbolized by sD. The lowercase s identifies this as an
estimated standard deviation, and the subscript D identifies it as belonging to the

distribution of differences. The shorthand designation for sD is the estimated
standard error of difference.

Technically, sD is the estimate of a parameter. If you can imagine it, the standard

deviation of all possible mean differences that forms the sampling distribution of

differences is symbolized by sm1�m2
. Because we could never calculate this, we

must estimate this population parameter, which is our estimated value of sD.
We can now introduce these new symbols to our list we compiled in Table 10.2.

Table 11.1 shows the entire list of symbols including the two new entries.

Figure 11.9 shows the symbols relevant to the distribution of differences.

Calculating the Estimated Standard Error of Difference

Figure 11.9 shows the conceptual method for calculating sD. As you can see, in

order to create the estimated standard error of difference, we must combine the
information from two separate samples. Each sample standard deviation is impor-

tant to the overall estimate, so we must ‘‘pool’’ the sample standard deviations to

create a single sampling distribution standard deviation. Technically, we pool the
variances from the two research samples to obtain sD.

The pooled variance is a way of weighting the sample variances (with df’s) to

ensure a better estimate. This is simply the average of the variances from which we
can derive sD as long as the sample sizes are equal. Because sample sizes (n1 and
n2) are so critical in estimating variance, the formula for this process requires equal

sample sizes. (If sample sizes are unequal, we would need to estimate sD with a

different formula because estimates of the population variance based on the sam-

ples, s2, will not be equally weighted.)
Below is the formula for calculating sD when there are equal sample sizes. Note

the sequence of calculations necessary to calculate sD. You must calculate the

estimated standard deviation (s) from each sample; then you must use s to calculate
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FIGURE 11.9 Symbols in the distribution of differences.

TABLE 11.1 New Entries to the List of Population and Sample Symbols

M The mean of the sample.

SD The standard deviation of the sample (assumes the sample is its own

population)

m The lowercase Greek letter ‘‘mu’’ is the symbol for the population mean.

MM This is the symbol for the mean of the sampling distribution. You can see

how this works by observing that it is a mean (M), but a mean of the

sampling distribution indicated by the subscript. Thus, it is the mean of the
distribution of means, or the ‘‘mean of the means.’’ Because it is

(theoretically) created by all possible samples, it is a parameter.

sX ‘‘Sigma X’’ is the standard deviation of all the population raw scores. This

differs from SD in that it does not refer to a sample, but to the entire

population of scores.

sM The standard deviation of the sampling distribution of means; also called the

standard error of the mean.
sx The estimated standard deviation of the population. The subscript x identifies

this estimated value as belonging to the population of all scores.

sm The estimated standard error of the mean. The subscript m identifies this

estimated value as belonging to the sampling distribution of (single)

means.

mm1�m2
The mean of the sampling distribution of differences; a parameter. This value

is 0 because if all possible samples are taken, half will be negative and half

will be positive, resulting in a 0 value when the means are subtracted.

sm1�m2
. The population standard deviation of all mean differences; a parameter.

sD The estimated standard deviation of the sampling distribution of differences.

Also known as the estimated standard error of difference.
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sm for each sample. This is the same process we used in the single-sample T test.

We are simply performing the calculation twice because there are two samples

involved. Finally, the separate sm values are pooled to create sD. This is the point at
which we combine the sample values to create the standard error of difference.1

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m1

þ s2m2

q
; where sm1

¼ s1ffiffiffiffiffi
n1

p and sm2
¼ s2ffiffiffiffiffi

n2
p

Using Unequal Sample Sizes

Unequal sample sizes present the researcher with the problem I mentioned above.

Because we need to pool the estimated population variances, unequal sample sizes

will affect the overall estimate according to the magnitude of the differences. An

average places the estimated value directly in the middle of both sample estimates.

However, when one sample is larger, the pooled ‘‘average’’ is influenced more

greatly by the value with the bigger sample size.

To account for the different ‘‘weights’’ presented by different sample sizes,

researchers use a different formula for sD. This formula looks quite complex, but it

makes conceptual sense if you look carefully. The formula uses elements that you

have learned before. Here is the formula:

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSS1Þ þ ðSS2Þ

ðdfÞ
� �

1

n1
þ 1

n2

� �s

If you recall from Chapter 6, the sum of squares (SS) value is the way we calcu-

lated a global measure of variation for a set of values.

SS ¼
X

X2 �
P

Xð Þ2
N

When the SS is divided by the sample size, it is a calculation for population vari-

ance (or the actual variance of a set of scores).

Variance ¼ SS

N
or Variance ¼

P
X2 �

P
Xð Þ2

N

N

Under the square root sign, this became the (actual) standard deviation

SD ¼
ffiffiffiffiffiffi
SS

N

r
or SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X2 �

P
Xð Þ2

N

N

vuut

1 Note that the formula for sD combines the estimated variances from both samples but produces the

standard error of difference, which is a standard deviation measure.
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We used these calculations to estimate the population standard deviation (sx)
by dividing the values by the degrees of freedom. In the case of a single sample,

the df¼ n� 1. (See Chapter 10 to review the formula and calculation for sx.)
Looking again at the formula above using the pooled estimate of variance for

calculating sD with unequal sample size, you will see these primary elements.

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSS1Þ þ ðSS2Þ

ðdfÞ
� �

1

n1
þ 1

n2

� �s

As you can see in the left half of the equation under the radical sign above,

we are simply combining SS values from both samples and dividing by the de-

grees of freedom for both. This is the pooled variance and is shown below as
(Pooled) s2

X. Taking the square root of the pooled variance yields the pooled
standard deviation, which is useful when we calculate effect size below. It is

shown below as (Pooled) sX.

ðPooledÞ s2
X ¼ ðSS1 þ SS2Þ

df
; ðPooledÞ sX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSS1Þ þ ðSS2Þ

ðdfÞ
� �s

When you have two samples, you are combining the degrees of freedom as well

as the variation measure. In the independent T test with two samples, the degrees of

freedom is thus equal to

ðdf1 ¼ n1 � 1Þ þ ðdf2 ¼ n2 � 1Þ ¼ n1 þ n2 � 2

The right half of the equation for sD under the radical is tantamount to dividing

the left half by the combined sizes of samples to yield sD from the pooled variance.

Remember what the estimated standard error of difference (sD) is. It is the esti-
mated standard deviation of the sampling distribution of difference (or estimated

standard error of difference). Whether sD is calculated from samples that have equal

n sizes or unequal n sizes, the sD measure is valuable because it allows the re-

searcher the ability to transform the difference in sample means (m1�m2) to a point

on the sampling distribution. This enables the researcher to compare this point with

all possible sample differences to determine if the resultant point (difference be-

tween samples) is too large to be obtained by chance.

The Independent T Ratio

What I described above are the elements used to calculate the independent T test. It

is an extension of the single-sample T test in that we are simply adding a second

sample value. Once we have calculated sD, we can calculate the overall T ratio.

t ¼ ðM1 �M2Þ � mM1�M2

sD
; df ¼ N1 þ N2 � 2
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Compare this formula with the single-sample T ratio we discussed in Chapter 10:

t ¼ M � m

sm
; df ¼ N1 � 1

As you can see, the independent T test adds a second sample mean value and

uses a calculated standard error of difference (sD) that incorporates the second sam-

ple (according to whether the sample size is equal or unequal). The population of all

paired sample differences (mm1�m2
) is subtracted from the difference in sample

means (M1�M2). The distance of the sample mean difference from the population

value is transformed to standard deviation units on the sampling distribution when it

is divided by sD. This value (the independent t ratio) indicates that it is likely not a

chance finding if it exceeds the tabled probability value for the exclusion.

INDEPENDENT T-TEST EXAMPLE

As an extended example of the independent T test, I will use the STAR Classroom

Observation ProtocolTM data I used in Real-World Lab VI: Single-Sample T Test.

This time, the research question will focus on the impact of school level on overall

observation of Powerful Teaching and LearningTM.

Put in the form of a question, the research focus is, Do elementary/middle

schools differ from high schools in average Overall measures of Powerful Teaching

and LearningTM among math teachers? The data are a random sample (N¼ 50)

from all math teacher observations in year four (2008) of a STAR Classroom

Observation ProtocolTM study.

Table 11.2 presents the data I will use for this example. As you can see, the study

presents two groups: classroom observations from elementary/middle schools

(n1¼ 23) constitute group 1, and classroom observations from high schools consti-

tute group 2 (n2¼ 27). The data in each of these groups represent the classroom

observation data for selected classrooms in the schools. The data are the ‘‘Overall’’

scores that represent the extent to which Powerful Teaching and LearningTM is

present during a classroom observation. (See Chapter 10, Real-World Lab VI:

Single-Sample T-Test for a description of how this variable is measured.)

The research question addresses whether the Overall scores are equal between

these two groups. That is, is there a difference between elementary/middle and

high school classrooms’ STAR Powerful Teaching and LearningTM scores?

Responding to this research question requires a hypothesis test of difference using

the independent-samples T test.

The Null Hypothesis

The null hypothesis for the independent-samples T test is similar to that for the

single-samples T test.

H0: m1 ¼ m2
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Technically, the null hypothesis states that the population from which group 1

came is the same as the population from which group 2 came. This is a formal way

of stating that the sample group means are equal.

The Alternative Hypothesis

The alternative hypothesis is that the populations from which the samples came are

not equal.

HA: m1 6¼ m2

The Critical Value of Comparison

We will use the T table as we did for the single-sample T test. Despite the fact

that our overall sample is 50, and therefore considered large, our group sample sizes

TABLE 11.2 STARTM ‘‘Overall’’ Data from
Elementary/Middle and High Schools

Elementary/Middle High School

3 1
2 3
2 2
3 1
2 2
2 2
4 1
2 1
2 1
1 1
1 3
1 2
3 3
4 1
3 1
4 2
4 2
3 4
1 1
3 3
2 2
2 2
4 2

2
3
2
2
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(23 and 27) warrant the use of the T table. Furthermore, we have no knowledge of

the parameter values.

Remember that the degrees of freedom must be identified so we can specify the

exclusion value for the T table of values. For the independent-samples T test:

df ¼ n1 þ n2 � 2;

df ¼ 23þ 27� 2 ¼ 48:

Note that the overall sample group size of 50 is indicated by a capital N, whereas
each group size is indicated by the lowercase n. This is an important distinction to

keep in mind as we proceed through this and subsequent statistical procedures.

Referring to the T table with df¼ 48, we find the comparison value is 2.0106. If

the T table does not show your specific df, as it does not in this case, use the closest

value. Remember that the value of 2.0106 is the t ratio value that identifies the 5%

exclusion area on our comparison distribution. If our calculated t ratio exceeds this

number, we would reject the null hypothesis and conclude that our two sample

means are different from one another.

The comparison value is identified for a two-tailed test. Therefore, if the calcu-

lated t ratio exceeds this value either positively or negatively, we would reject the

null hypothesis. The comparison value is identified:

tð0:05; 48Þ ¼ 2:0106

The Calculated T Ratio

Recall our formula for the independent-samples t ratio, using the sD formula for

unequal cell sizes. Using the data from Table 11.3, calculate the t ratio:

t ¼ ðM1 �M2Þ � mM1�M2

sD
;

t ¼ ð2:52� 1:93Þ � 0

0:264
;

t ¼ 2:23;

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSS1Þ þ ðSS2Þ

ðdf Þ
� �

1

n1
þ 1

n2

� �s
;

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð23:7391Þ þ ð17:8519Þ

ð48Þ
� �

1

23
þ 1

27

� �s
;

sD ¼ 0:264

The calculated t ratio for the independent samples T test (with df¼ 48) is 2.23.

This value2 represents the transformed difference in the sample-group means of a

value in standard deviation units on the sampling distribution of differences. It

shows where the two-sample-group difference in means falls on the comparison

distribution so we can decide either if it is a chance difference or whether the

difference is too large by chance to be considered a common population.

2 The calculated t ratio is 2.26 if you carry out the operations with several decimals. Our calculated t ratio

used only three decimal places, so the t ratio will differ a bit due to rounding.
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Statistical Decision

Because the calculated t ratio (2.23) exceeded the exclusion value (2.0106), we

would reject the null hypothesis. The t ratio, representing the transformed

difference in our study groups in standard deviation units of the sampling distribu-

tion of differences, thus is so extreme that it could not be assumed to occur by

TABLE 11.3 STARTM ‘‘Overall’’ Data Analyses

Elementary/Middle High School

X1 X2
1 X2 X2

2

3 9 1 1

2 4 3 9

2 4 2 4

3 9 1 1

2 4 2 4

2 4 2 4

4 16 1 1

2 4 1 1

2 4 1 1

1 1 1 1

1 1 3 9

1 1 2 4

3 9 3 9

4 16 1 1

3 9 1 1

4 16 2 4

4 16 2 4

3 9 4 16

1 1 1 1

3 9 3 9

2 4 2 4

2 4 2 4

4 16 2 4

2 4

3 9

2 4

2 4X
58 170 52 118X

X2 170 118X
X

� �2

3364 2704

SS 23.7391 17.8519

Pooled variance 0.86648

Pooled standard deviation 0.9308
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chance alone. Thus, we would conclude that the sample means came from different

populations. Figure 11.10 shows how these values compare.

Interpretation

The independent-sample T test revealed that the sample group of elementary/

middle classrooms showed higher average observed Powerful Teaching and Lear-

ningTM scores than the high-school sample of classrooms. The t ratio of 2.23 is

statistically significant (p< 0.05), indicating that the difference in group means is

not likely due to chance.

This is a ‘‘global’’ test of the effects of school level on the presence of Powerful

Teaching and LearningTM among math classrooms. Because the sample (N¼ 50)

was randomly drawn, we can reasonably generalize the conclusions to the overall

population of math classroom observations among study schools.

BEFORE–AFTER CONVENTIONWITH THE INDEPENDENT T TEST

Which group to consider group 1 or group 2 in an independent-samples T test is an

important consideration. As you can see from the formula, the researcher can con-

sider either group to be group 1 or group 2. Depending on how they are entered into
the formula, the sign of the t ratio will differ.

If we had considered high-school classrooms to be group 1 and Elementary/MS

classrooms to be group 2 in the previous example, the resultant t ratio would

have been �2.23 instead of þ2.23. This would not have altered the finding (rejec-

tion of the null hypothesis) unless we had specified a one-tail test in the positive

exclusion region.

This example points out that you need to use caution in specifying group

identification. This is as much an issue for experimental studies as it is for post facto
studies because the researcher can assign the treatment group as either group 1 or

group 2.

Let me suggest a convention for this dilemma. When you are dealing with a

research design that uses ‘‘before’’ and ‘‘after,’’ you can think of the ‘‘before’’ as

FIGURE 11.10 The statistical decision for the STARTM group research question.
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what you are measuring the ‘‘after’’ against. By convention, subtract the ‘‘before’’
score from the ‘‘after’’ so that you can show the change ‘‘left over’’ after the before
score is subtracted out. This convention would yield the following conceptual

design (the general experimental pattern):

t ¼ After� Before

StError

If you subtract out the before from the after scores, you will just have the

increment left over that is due to your program, or whatever you designed to

move the sample data ‘‘away’’ from the population data. Thus, for example, if

you are dealing with a program that reduces stress, and you posit that a treat-

ment program will result in lower stress scores after the program is completed,

then using the above formula revision should show negative values if your

research hypothesis is accurate. If your research hypothesis suggests that higher

scores should result from training designed to increase management potential,

then using the above should yield positive values if your research hypothesis

is accurate.

This convention is perhaps less clear with post facto designs because the re-

searcher may not be aware which direction the results may tend. The key issue

is being aware of the nature of the data and how the signs should fall if your
alternate (research) hypothesis is true. In the post facto example above, the re-

searcher may have been aware from previous observation or research literature

that high school math classrooms might show lower Powerful Teaching and

LearningTM scores than elementary/middle-school classrooms. In this case, the

researcher might place high school classrooms as group 2 so their scores would

be subtracted out of elementary/middle-school classrooms to yield the increment
of difference as a positive value.

There are exceptions to this process. It is up to you as the researcher to make sure

that you understand which value you place first in the formula and how that deci-

sion will affect your conclusions. One obvious exception is if your research hypoth-

esis is not true, or if in fact it is the opposite of what you expect!!

CONFIDENCE INTERVALS FOR THE INDEPENDENT T TEST

Remember that the T test above is a point estimate. We transformed the group mean

difference to a point on the sampling distribution in order to see if it fell into the

exclusion area (which it did). However, if we were interested in estimating the pop-

ulation value, we would use the CI procedure we learned in Chapter 10 with a cou-

ple of changes to the formula.

The formula below is for the single sample (refer to Chapter 10 for a complete

analysis of the formula):

CI0:95 ¼ �tðsMÞ þM
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The independent-samples T-test formula is almost identical, but include some

changes:

CI0:95 ¼ ðtable value of � tÞðsDÞ þ ðM1 �M2Þ

As you can see, the tabled value of t is the same. The changes are due to using a

different sampling distribution with consequent changes in the standard error (sD
rather than sM) and due to having two sample means rather than a single mean

(thus, usingM1�M2 rather thanM).

Using the data available from the analyses above, we obtain

CI0:95 ¼ �2:0106ð0:264Þ þ ð2:52� 1:93Þ
CI0:95 ¼ �2:0106ð0:264Þ þ 0:596

CI0:95ðleft bracket valueÞ ¼ 0:065
CI0:95 ¼ 2:0106ð0:264Þ þ 0:596

CI0:95ðright bracket valueÞ ¼ 1:127

Therefore, we can say that the true population mean value from which our sam-

ple group differs is between 0.065 and 1.127. This interval does not include 0, the

assumed population mean, thereby indicating that our sample group means are sig-

nificantly different.

EFFECT SIZE

Effect size is very important, so we need to calculate it as we did for the single-

sample T test. As you recall, we calculated Cohen’s d according to the following

formula:

d ¼ tffiffiffiffi
N

p

Because we added another sample group, we need to adjust the formula. Cohen

(1988) lists the calculation as follows:

d ¼ M1 �M2

s

Cohen noted that the denominator (s) is the population standard deviation. He

further specified that for the formula, the researcher could use the standard devia-

tion for either group because they are assumed to be equal. (Another approach is to

use s for the entire set of scores as the denominator.) Because we have learned to

create the pooled variance and the pooled standard deviation as the combined esti-

mate of the population standard deviation, we could use this as the denominator.

d ¼ M1 �M2

ðPooledÞsX
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Using this adjusted formula, we find the following:

d ¼ 2:52� 1:93

0:931
; thus d ¼ 0:6337

We can use the same criteria for judging the magnitude of the effect size (d) that
we did in Chapter 10: 0.20, Small; 0.50, medium; 0.80, large. In this example our

effect size is judged to have a medium effect.

An alternate method (Cohen, 1988) that does not include the pooled standard

deviation is

d ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2
n1ð Þ n2ð Þ

r
; d ¼ 2:23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23þ 27

621

r

This alternate formula provides essentially the same value of d¼ 0.6328. In

both cases, the effect size is judged to be medium. In terms of the research

problem, this indicates that the independent variable ‘‘level of school’’ had an

impact on the Overall scores such that the difference between elementary/mid-

dle- and high-school groups ‘‘moved’’ the average Powerful Teaching and

LearningTM about 0.63 standard deviation units apart (based on the population

standard deviation).

EQUAL AND UNEQUAL SAMPLE SIZES

The example I used above included unequal sample sizes. While it is a bit

more complex, I wanted to use it to explain features not present in the equal

samples case. The unequal samples example demonstrates several important

features of the pooled variance that are important to effect size and will also

help to illustrate features of other statistical procedures we cover in subse-

quent chapters.

I also wanted to use an example with unequal sample size because that is typi-

cally what researchers find with real data. And, as we will see in the next sections,

Excel1 and SPSS1 provide sD despite sample size differences.

THE ASSUMPTIONS FOR THE INDEPENDENT-SAMPLES T TEST

All statistical tests require that the researcher first assess whether the conditions are

appropriate for using a specific procedure. Using the correct statistical procedure
for a given research problem ensures a greater likelihood of not committing Type I
and Type II errors. This is a general statement that applies to all statistical proce-

dures, not just the independent T test. Many statistical tests, including the T test, are

called ‘‘robust’’ because they can be relied upon to deliver valid results even if
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some of the assumptions are not perfectly met, but the researcher should always

assess the assumptions prior to using a statistical procedure.

Here are the requirements for the independent-samples T test:

� The samples are independent of one another.

� Dependent variable is interval level.

� Sample populations are normally distributed.

� Both populations have equal variance (this is also known as the ‘‘test of homo-

geneity’’ because we are assessing ‘‘sameness’’).

The researcher can assess the first two of these assumptions easily. Whether or

not the samples are independent of one another is connected to the method and pur-

pose of the research. As we discussed earlier, the cases for both of our sample

groups must not be connected to one another. That is, the membership of one group

must not rely on the membership of another. We will discuss the ‘‘dependent sam-

ples T test’’ in a later chapter. The researcher likewise can assess whether or not the

outcome variable is interval level.

The third and fourth assumptions require a bit more investigation. To determine

whether the samples are normally distributed, the researcher must use the descrip-

tive statistical procedures we discussed in Chapter 5. Are skewness and kurtosis

values ‘‘in bounds’’? Does the graphical ‘‘evidence’’ match the numerical assess-

ment of skewness, kurtosis, and so on? These procedures should be assessed before

the researcher proceeds to the independent T test.

The fourth assumption requires a separate statistical test. The descriptive statisti-

cal summary produced to check the third assumption will reveal the values for vari-

ance and standard deviation. However, the researcher cannot conclude that they are

equal or unequal simply by looking at them!

The Excel1 ‘‘F-Test Two Sample for Variances’’ Test

Excel1 provides a way to assess the equality of variances in the two samples used

in a research study. The ‘‘F-Test Two Sample for Variances’’ is available through

the ‘‘Data–Data Analysis’’ series of menus. Figure 11.11 shows the sub-menu

called out from the Data Analysis menu.

When you choose this option, you will need to specify the range of values for

groups 1 and 2. The output with the results of the test appear in a separate sheet, as

shown by Figure 11.12. As you can see, the output includes some descriptive analy-

ses in addition to the F-test results.
We will discuss the F test in much greater detail in later chapters. But for now,

think of the F test as a way to compare variances rather than means. We have com-

pared sample means in Chapter 10 (single sample) and in the current chapter (two

sample means) using the sampling distribution of means. The F distribution is a

sampling distribution of variances. So, when we are interested in whether the vari-

ances of two sample groups are equal, we compare their differences to the sampling
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distribution of variances. The following is the formula used to create the F ratio to

test whether it exceeds chance expectation:

F ¼ s2Group 1

s2Group 2

; F ¼ 1:08

0:69
; F ¼ 1:57

You can compare the results of our analysis (F¼ 1.57) with the value in the

Excel1 output result in Figure 11.12. If you look at the formula, it simply compares

the variances to see if one is substantially greater or lesser than the other. If both are

relatively equal (or comparable), the result would be F¼ 1. The further the F ratio

departs from 1, the less likely the group comparisons are equal. But how different

do the variances have to be before we judge them not equal? We use the same logic

as we did with the T tests. If our test value (the transformed score applied to the

sampling distribution) exceeds the exclusion value, we conclude that it is too

extreme to be a chance finding. (Thus, we are performing a sort of ‘‘mini hypothesis

test’’!)

The F distribution looks different than the sampling distribution of means be-

cause we are sampling all possible variances. Figure 11.13 shows how this sampling

distribution of variances appears.

F-Test Two-Sample for Variances 

High School Elementary/Middle 

1.932.52Mean

0.69 1.08 Variance 

27.00 23.00 Observations 

26.0022.00df

1.57F

0.13 P(F<f) one-tail 

1.97 F Critical one-tail 

FIGURE 11.12 The Excel1 output for the two-sample variance test.

FIGURE 11.11 The Excel1 equal variance test menu.
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The F distribution appears to be a normal distribution that has skewed to the

right. This is because variances are never negative values. As you can see, all

values tend to the right (positive) with the majority of observations near the left

(smallest) side of the distribution. When we perform a hypothesis test for equal

variance, the calculated F-ratio values can fall to the left or the right side of the

distribution, depending on which variance (i.e., for group 1 or group 2) has the

greatest value.

You could place either group in the numerator or denominator in the for-

mula; it depends on which group you identify as group 1. However, please

note that ‘‘left’’-side values for this F test are difficult to determine, so the

best rule of thumb is always place the largest variance in the numerator and
the smallest variance in the denominator because we are only trying to deter-

mine the proportion of the two variances. Excel1 will calculate both exclusion

regions, however.

If group 1 has the greater value, the resulting proportion will likely tend toward

the right side, in which case the right exclusion value is checked for an excessive

value. If group 1 is smallest, then the left exclusion area is the one that will deter-

mine excessive calculated F ratios.

In our case, group 1 variance (2.52) is largest, so we would expect the F ratios to

tend toward the right exclusion area. We do not need a separate F table of values to

identify the exclusion area because Excel1 reports the exact probability of a find-

ing. F tables of values are common in statistics, so you may check statistical author-

ities [like Cohen et al. (2003), for example].

Figure 11.12 also reports two additional values. These are the values we use to

assess equality of variances. In Figure 11.12, the following outcome indicates the

likelihood of a chance finding:

PðF � f Þ one-tail ð0:13Þ

We can interpret this result as a 0.13 probability that a calculated F ratio that

high (1.57) could be considered a chance finding, using a one-tailed table of proba-

bility. The next statement identifies the exclusion value for a one-tailed table of

FIGURE 11.13 The F distribution and exclusion area.
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probability that our calculated F would need to exceed before it would fall into the

exclusion range:

F Critical one-tail ð1:97Þ

Taking both of these findings into account, we would conclude that our two

group variances, while different, are nevertheless in the range of chance expecta-

tion. Because our calculated F ratio does not exceed the critical value that defines

the exclusion area (1.97), we can conclude that our variances are statistically

equivalent.

The SPSS1 ‘‘Explore’’ Procedure for Testing the Equality of Variances

SPSS1 also has a procedure for testing the equality of variances. It is known as

‘‘Levene’s Test’’ and is reported through the ‘‘Explore’’ menu. Figure 11.14 shows

how to access this procedure.

When you choose Explore, two further dialog boxes appear that allow you to

specify the procedure. Figure 11.15 shows the box in which you can specify the

variables of interest. As you can see, I entered the STAROverall variable as the

dependent variable because that is the variable I want to check for equal variances

according to groups of ‘‘elemmidhs.’’ The procedure will therefore assess whether

the elementary/middle/high school classroom values for STAROverall have an

equivalent variance to the values for high school. I also chose ‘‘Both’’ so that the

output would include visual (plots) as well as numerical (statistics) output.

FIGURE 11.14 Accessing the SPSS1 Explore procedure.
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Figure 11.16 shows the further specification of the Explore procedure that I

accessed by choosing the ‘‘Plots...’’ button on the preceding Explore menu (see

Figure 11.15). Choosing Plots results in a further specification of the Explore proce-

dure in which I can ask for several additional criteria to be applied. I will not

explain all of these here, but I would only point out the choices for ‘‘Spread vs

Level with Levene Test’’ in the bottom of the panel.

As you can see, there are several choices for how to manage the data to be

analyzed for equality of variance. Because we are only interested in a ‘‘global’’

measure of equality, we can choose ‘‘Untransformed,’’ which tests the data values

‘‘as is’’ or as raw data. If we were interested in ‘‘transforming’’ group values that

may include outliers or extreme scores, we could choose ‘‘Transformed’’ in this

panel to see how changing the values might affect the outcome. As it is, we are

only interested in the equality of variances. Figure 11.17 shows the SPSS1 output

for assessing the equality of variance.

There are several things to note on the output shown in Figure 11.17, although

our primary interest is in the assessment of the equality of variance. As you can

see, the Levene Statistic (3.469) is shown to have a significance level of 0.069.

Technically, the Levene’s Test tests the hypothesis that the difference between the

variances of the two groups is 0.

Essentially, the SPSS1 output states that the elemmidhs groups of

STAROutcome have statistically comparable variances since the Levene’s

value (3.469) is not large enough to fall into the exclusion area. The Levene’s value

would have had to show a significance level of less than 0.069 to fall into the exclu-

sion area (usually defined by p¼ 0.05). Therefore, we can assume that the group

variances are equivalent.

FIGURE 11.15 Specifying the variables of interest for equality of variances.
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The Homogeneity of Variances Assumption for the Independent T Test

Despite using different statistical procedures, both Excel1 and SPSS1 concluded

that the group variances were equal. Therefore, we can consider the fourth assump-

tion to be met. Had the equality of variances test (F test) or Levene’s Test indicated

that the group variances were not equal, we would need to discuss further whether

we could proceed with the T test. As I mentioned, the T test is robust and will pro-

vide valid results even with slightly different variances. However, with large differ-

ences, we might need to transform the values or use a different statistical procedure.

Test of Homogeneity of Variance

Levene Statistic df1 df2 Significance

Based on mean 3.469 1 48 0.069

Based on median 2.165 1 48 0.148

Based on median and with

adjusted df

2.165 1 44.559 0.148

Overall score revised 

Based on trimmed mean 3.190 1 48 0.080

FIGURE 11.17 The SPSS1 output assessing equality of variance.

FIGURE 11.16 Specifying the Levine’s Test for equality of variances.
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Note here, however, that Levene’s test is very sensitive and sometimes overly con-

servative. You might use both the Excel1 and SPSS1 procedures to confirm your

decision to proceed with the T test.

A Rule of Thumb

A simple rule of thumb might be helpful as well as these more formal procedures.

If the F ratio we calculate according to the formula above is 2 or less, we can gener-

ally consider the variances to be equal for the purposes of using the independent

T test. We only need a global indication of homogeneity of variance to proceed.

USING EXCEL1 AND SPSS1 WITH THE INDEPENDENT-SAMPLES
T TEST

When we are assured that our data meet the assumptions for the independent T test,

we can proceed using Excel1 and SPSS1, which are both very straightforward pro-

cedures. Each provides the calculation for the t ratio and the pertinent information

for hypothesis tests, and the output for both preclude the necessity for using the T
table of values.

Both Excel1 and SPSS1 provide separate T tests, depending on whether the

group variances are equal. Therefore, even if the homogeneity of variance test or

Levene’s Test show unequal variance, the researcher can rely on the separate

formulas in Excel1 and SPSS1 to provide a meaningful T-test result.

Using Excel1 with the Independent T Test

The T-test procedure is available in Excel1 from the ‘‘Data–Data Analysis’’ menus.

Figure 11.18 shows the menu of procedures with the ‘‘t-Test: Two-Sample

FIGURE 11.18 The Excel1 specifications for the independent T test.
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Assuming Equal Variances’’ option highlighted. Note that another test option,

directly below the highlighted selection, allows the researcher to choose the

same T test, but one in which the variances are not assumed to be equal.

Excel1 uses a special formula to account for the unequal variances. It is best

to check that the equal variance assumption is met prior to using the T test (as

I discussed in the previous section of this chapter); however, you can make

use of this special procedure. In the current example, we determined that we

had met the homogeneity of variance assumption, so we can choose the first

option.

In Excel1, you need to create the file structure in such a way that the program

will recognize the groups appropriately. If you look at Table 11.2, you will see that

the data are presented in two columns. The first column are the raw Group 1 values

(Elementary/Middle) and the second column consists of the raw Group 2 values

(High School). When you specify the location of the data for the T test, be sure that

you specify the columns correctly.

When you choose this option, the call-out window in Figure 11.19 appears. In

this window, the researcher must specify the location of both group values (in the

‘‘Input’’ windows), whether labels are included in the locations (‘‘Labels’’ box),

and which exclusion value you wish to use (in the ‘‘Alpha’’ window showing

‘‘0.05’’ in the current example). You can choose to have Excel1 print the output in

different places (‘‘Output options’’). The default location is a separate sheet within

the data file.

Figure 11.20 shows the Excel1 output for the T test of the two groups. You can

compare the values with those we computed by hand above. All the values in the

output match those we calculated. The ‘‘new’’ aspects of the output table related to

the last four values. These show the probability of an extreme t ratio. Essentially,

FIGURE 11.19 The Excel1 call-out window for locating data.
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with these values, we do not need to make reference to a T table of values. Here is

how to interpret the results:

� P(T� t) one-tailed: 0.01. This value (0.01) represents the probability of our

finding (t¼ 2.26). Essentially, this t-ratio value is the transformed mean differ-

ence score placed in the sampling distribution of differences. The exclusion

value of the one-tailed T test, according to a Table of Values, is 1.68. Because

our calculated value of 2.26 far exceeded this value, we can reject the null

hypothesis because the probability of a t-ratio value that high by chance alone

is p¼ 0.01.

� t Critical one-tailed: 1.68. This is a ‘‘companion’’ value to the immediately

preceding value. It represents the exclusion value for a 0.05 one-tailed test.

� P(T� t) two-tailed: 0.03. This probability is the probability of our finding in a

two-tailed test. In a two-tailed (0.05) test, our calculated t ratio (2.26)

exceeded the critical tabled value of T and thus could reject the null hypothe-

sis. The actual probability of a t-ratio value that high by chance alone is

p¼ 0.03 on the two-tailed comparison chart. The value below (2.01) is the

exclusion value for the 0.05 two-tailed test.

� t Critical two-tailed: 2.01.

Taken together, the results indicate that we can reject the null hypothesis that

Elementary/Middle and High School Powerful Teaching and LearningTM Overall

scores for math classrooms are equal. We can conclude that the scores for math

classrooms in elementary and middle schools are statistically significantly higher
than those of math classrooms in high schools.

As I noted earlier, CI and effect size calculations are not available in Excel1.

These can be easily calculated by hand, however. Use the formulas and procedures

we discussed in the sections above.

High School Elementary/Middle

1.93 2.52 Mean 

0.69 1.08 Variance 

27.00 23.00 Observations 

0.87 Pooled variance 

0.00 Hypothesized mean difference 

48.00 df 

2.26 t Stat 

0.01 P(T< t) one-tailed 

1.68 t Critical one-tailed 

0.03 P(T< t) two-tailed 

2.01 t Critical two-tailed 

FIGURE 11.20 The Excel1 output for the independent T test with equal variances.
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Using SPSS1 with the Independent T Test

Like Excel1, SPSS1 provides a very straightforward way of conducting the inde-

pendent samples T test. You can use the ‘‘Analyze’’ menu to access several T-test
options that provide the output you need to conduct a research analysis. SPSS1

provides CI output routinely, so this is an advantage over using the Excel1 proce-

dure. SPSS1 is also limited, however, in that it does not provide results for Cohen’s

d effect size measure. However, this is a simple hand calculation, so the researcher

can provide this critical information.

Figure 11.21 shows the Analyze menus for accessing the independent-samples

T test. As you can see, the ‘‘Compare Means’’ sub-menu provides the option for the

independent T test.

In Chapter 10 we discussed the single-sample T test, which is the choice immedi-

ately preceding the two-sample T test. When you choose the ‘‘independent–samples

T test’’ from the menu, the call-out window appears that allows you to specify the

variables you wish to use in the analysis, as shown in Figure 11.22.

As you can see in Figure 11.22, the dependent variable ‘‘overall’’ is placed in the

‘‘Test Variable(s):’’ window. The ‘‘Options’’ button at the top right of the window

allows the researcher to specify values for the CI. The default value is 95%, but

you may change this depending on how you wish to balance the ‘‘confidence–

precision’’ question I discussed in Chapter 10.

FIGURE 11.21 The SPSS1 menus for the independent-samples T test.
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The independent variable is placed in the ‘‘Grouping Variable:’’ window.

This allows the researcher to specify the values of elemmidhs in the database

that will serve as group 1 and group 2. When you add the name of the variable

to the window by using the arrow, SPSS1 prompts you to ‘‘Define Groups’’ as

shown in Figure 11.23.

You can see in Figure 11.23 that I entered ‘‘1’’ for Group 1 and ‘‘2’’ for

Group 2. These are the values I assigned Elementary/Middle and High School

classrooms for the elemmidhs variable in the SPSS1 database. If my grouping

variable was a continuous variable (like percentages of F/R by school), I could

use the ‘‘Cut point:’’ button to specify a value that would divide my grouping

variable into two groups.

FIGURE 11.23 Specifying group values for the independent T test.

FIGURE 11.22 The Independent-Samples T-Test call-out window for specifying the

analysis.
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When you create the analysis by choosing ‘‘OK’’ as shown in Figure 11.22,

SPSS1 creates the output showing the results of the analysis. Figure 11.24 shows

the two panels of data produced in the output file. The top panel is the descriptive

statistics shown for each group. You can compare these values to our hand calcula-

tions above, as well as with the Excel1 output.

The second panel of Figure 11.24 provides the specific results for the indepen-

dent-samples T test. Here are some important ‘‘parts’’ of the analysis:

� I shaded the left half of the panel to show that this is a separate part of the

analysis. It is the equality of variance test, Levene’s Test, that assesses

whether we meet the assumption of equal group variances. As we discussed,

if the significance is smaller than 0.05, this indicates that the equality of var-

iance falls in the exclusion area, and we would have to conclude that the

variances were not equal. However, as you can see in the panel, the signifi-

cance level of 0.069 is larger than 0.05, so we may assume that the variances

are statistically equal.

� The second column of the panel shows two ‘‘groups’’ of analyses: ‘‘Equal

variances assumed’’ and ‘‘Equal variances not assumed.’’ These are the

two possibilities for Levene’s Test. Since, in our current analysis, our

group variances were considered equal, we can use the first row of results.

If Levene’s Test would have shown a significance level smaller than 0.05,

we could use the second row of results because the group variances would

be considered not equal.

� Considering the first row of data, the first statistic is the calculated t ratio
(2.256). This value is the same as that produced by Excel1. Our hand calcula-

tion was a bit different due to rounding.

Group Statistics

elemmidhs N Mean

Standard

deviation 
Standard

error of mean 

1.00 23 2.52 1.039 0.217Overall score revised 

2.00 27 1.93 0.829 0.159

Independent-Samples Test 

Levene's Test for

Equality of Variances  t-test for equality of means 

95% Confidence

interval of the

difference  

F Significance t df
Significance

(two-tailed)

Mean

difference

Standard 

error of 

difference Lower Upper

Equal

variances

assumed 
3.469 0.069 2.256 48 0.029 0.596 0.264 0.065 1.127

Overall

score

revised  

Equal

variances

not

assumed 

2.215 41.898 0.032 0.596 0.269 0.053 1.139

FIGURE 11.24 The SPSS1 output for the independent T test.
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� The ‘‘Significance (Two-Tailed)’’ column indicates a significance level of

0.029. Remember, SPSS1 provides the exact calculated probability of a cer-

tain finding. Therefore, this finding shows that it is well into the 0.05 exclusion

area of a two-tailed test. Therefore, the t ratio would result in a rejection of the

null hypothesis. This is a finding so extreme that, it could not be considered a

chance finding.

� The standard error of difference (sD) is provided in the next column and is the

same value we calculated by hand. Recall that Excel1 does not produce the sD
but shows the pooled variance. I calculated both of these by hand so you can

compare the values.

� The CI0.95 values are provided in the final two columns. With the indepen-

dent samples T test, the confidence interval values shown are the actual

interval values (lower and upper). Remember, the population of mean dif-

ferences is 0. The interval of the population mean estimate of 0.065 to

1.127 does not include this value. We would not expect it to contain 0 be-

cause we rejected the null hypothesis, indicating that our groups were so

different that they did not belong to the same population (i.e., one in which

the population of mean differences was 0). These values match our hand

calculations above.

As I mentioned above, neither Excel1 nor SPSS1 provide Cohen’s d as a mea-

sure of effect size. However, because both provide the t ratio, you can calculate the

effect size by hand using the ‘‘alternate’’ formula:

d ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2
n1ð Þ n2ð Þ

r
; d ¼ 2:26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23þ 27

621

r

This calculation finds d¼ 0.64, which differs from my hand calculation

only slightly due to rounding. The conclusion remains that the differences in

Powerful Teaching and LearningTM scores (as shown by the overall variable)

attributed to grouping math teachers by level of school (Elementary/Middle

or High School) shows a medium effect; it is a meaningful ‘‘separation’’ of

scores.

PARTING COMMENTS

Remember that statistical tests need to be ‘‘fitted’’ carefully to the nature of

the data and the research situation. If it is not carefully fitted, the power of

the test will be diminished. Some very important things to remember in terms

of the independent T test, in this regard, is that there are specific formulas to

be used when the groups have different sample sizes and when the sample
groups are dependent, rather than independently formed. In the former case,
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we learned to use a special formula for sD that accommodated unequal sample

sizes. In the latter case, you need to understand how to use the ‘‘repeated

measures’’ T test that uses dependent samples. I will discuss this procedure in

a later chapter.

You should congratulate yourself at this point. You learned about one of the

most common and practically useful statistical tests available. The T test is common

in all research literature, and now you will be able to understand how the results are

interpreted. You also have the knowledge to assess whether test results, published

or unpublished, were properly reported and used.

NONPARAMETRIC STATISTICS

To this point, we have studied parametric statistics, which are procedures that

make reference to parameters (mean and standard deviation) of populations in

helping us to make statistical decisions. If you recall, we have made use of

sampling distributions to compare sample values (i.e., means and standard de-

viations) to estimated population parameters. These are procedures that use

interval data.

There is another ‘‘class’’ of statistics that do not make these assumptions. These

nonparametric statistical procedures directly calculate test values rather than esti-

mating parameters or referring to sampling distributions. For these reasons, they

are also known as distribution-free tests. They typically make decisions with ordi-

nal or nominal data.

Nonparametric procedures are also helpful for statistical decisions that in-

volve (interval level) sample data that do not meet certain assumptions. As we

have seen, for example, the assumption of normally distributed variables is often

crucial to an analysis—so much so that extremely skewed data might prevent a

researcher from proceeding with a parametric procedure. With extreme viola-

tions of normally distributed data the researcher might resort to transforming
the skewed data (i.e., changing the skewed data so that it becomes normally

distributed). A second option for violations for normal distributions is to use

nonparametric statistical tests.

There are several nonparametric statistical tests comparable to the independent-

samples T test. Possibly the most well known is the Mann–Whitney U Test. Excel1

does not provide nonparametric analyses, but SPSS1 allows the researcher to use a

variety of these tests.

As a brief (hypothetical) example, consider the data in Table 11.3X. These

data show the teachers’ rankings of (male and female) students on fear of math.

Since the data are ranks (ordinal data), we cannot use the independent T test

because that test requires at least interval data. The Mann–Whitney U test will

help us determine whether the two sets of ranks are likely to be from the same

population.
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I will not detail the hand calculations for this test but rather show how to use

SPSS1 to obtain the results. If you would like to explore this and other

nonparametric tests further, you might consult Siegel and Castellan’s (1988)

seminal work.

As you can see from Table 11.3X, the rankings are presented by the

student’s gender (1¼male, 2¼ female). The higher ranks indicate greater

math fear.

Using SPSS1 is straightforward. Figure 11.24a shows the specification for the

test. Note that there are two routes to conduct the test. When you choose

‘‘Nonparametric Tests’’ you have the option of selecting ‘‘Independent Samples,’’

which allows you to use a template for this and related tests. However, using the

second route, ‘‘Legacy Dialogs—Two Independent Samples,’’ affords you more

control over the test specification.

Using the second route produces the menu window shown in Figure 11.24b. As

you can see, I specified the Fear rankings as the test variable and gender as the

grouping variable. At this point, I can choose the Mann–Whitney U as well as a

number of related tests. In the ‘‘Options’’ button (upper right part of the window),

I chose to create descriptive statistics.

Running this test (‘‘OK’’) results in the output shown in Figure 11.24c. These are

the primary output to determine whether the sample groups are from different

populations.

The output in Figure 11.24c shows the average of the ranks for both groups

in the top panel. The bottom panel shows the results of the Mann–Whitney

U test. As you can see, the test resulted in a significant difference

between males and females in terms of fear of math (p¼ 0.004).

Female ranks were much higher on average (9.5) than those of males (3.50).

TABLE 11.3X Mann–Whitney
U-Test Data

Fear Test Gender

8 1

9 1

2 1

5 1

4 1

10 1

25 2

11 2

28 2

21 2

14 2

16 2
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FIGURE 11.24a The SPSS1 options for the Mann–Whitney U test.

FIGURE 11.24b The SPSS1 specification for the Mann–Whitney U test.
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Note that the Mann–Whitney U-test statistic (0.000) is very low! In this test, the

lower the result, the greater the significance.

TERMS AND CONCEPTS

Between Group Designs Those studies in which the researcher seeks to ascertain

whether entire groups demonstrate unequal outcome measures.

Dependent Samples Groups that have some structural linkage that affects the

choice of group membership. Examples are using the same subjects (pre–post)

for an experiment, or comparing the results of a test using ‘‘matched groups.’’

Tests for dependent samples are also known as ‘‘repeated measures,’’ ‘‘within

subjects,’’ and ‘‘paired samples’’ tests.

Independent Samples For statistical testing purposes, samples are independent if

choosing the elements of one group has no connection to choosing elements of

the other(s).

Matched Samples Samples that have been intentionally created to be equivalent

on one or several characteristics. Such a process affects the independence

assumption of the groups. Matched groups are therefore considered ‘‘dependent’’

samples.

Mixed Designs Those studies in which there are both between and within

components.

Ranks

Gender N Mean rank Sum of ranks 

1 6 3.50 21.00

2 6 9.50 57.00

Fear

Total 12

Test Statistics
a

Fear

Mann–Whitney U 0.000

Wilcoxon W 21.000

Z –2.882

Asymptotic significance (two-tailed) 0.004

Exact significance [2*(one-tailed significance)] 0.002b

bNot corrected for ties. 

aGrouping variable: Gender. 

FIGURE 11.24c The SPSS1 output for the Mann–Whitney U test.
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Within Group Designs Studies in which the researcher seeks to ascertain

whether subjects in a group or matched groups change over time.

REAL-WORLD LAB VII: INDEPENDENT T TEST

In this lab, you will conduct an independent T test with our school database to

see if class size affects achievement. Education researchers are just beginning to

take a closer look at this research question because it is such a widely held opin-

ion and it has resulted in funding opportunities for schools that have low student

achievement.

The t test is particularly useful in this situation because it can be used with post
facto or experimental designs, as we have discussed. The analytical procedures are

the same. There are two schools of thought on this question that we can assess

through our t-test analysis.

� It is a popular assumption among the public, education practitioners, and even

education researchers that the smaller the class size, the greater the likelihood

of increased achievement. The primary determinants are thought to be things

like more time for responding to individual students, more time to devote

to students of different learning styles, more physical space for students to

utilize, and similar factors.

� A different school of thought indicates that class size, by itself, will not neces-

sarily lead to higher achievement levels. Rather, it is the opportunities to
change the way learning occurs occasioned by smaller classes that is the key
ingredient in achievement gains. Just having smaller classes may mean that the

teacher teaches the same way they always have, but with the luxury of fewer

students unless they seize the opportunity to change their instructional

approach in ways they could not with larger classes. My research colleagues

and I discuss these issues as ‘‘first- and second-order changes’’ (Abbott et al.,

2010).

We can use the school data to assess these views. This lab allows you to test the

assumptions with the t test, which focuses on the difference between schools with

‘‘small’’ class size and schools with ‘‘large’’ class size in terms of school math

achievement.

Procedures

In this lab, we will analyze the relationship between class size and math achieve-

ment by creating two groups of schools’ math achievement according to a split of

their class size. In order to have confidence in our t test, we want to first make sure

that our assumptions are met.
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Assumptions. As we noted, it is important to examine the test variables to make

sure we can use the statistical test we are planning. For the independent T test, we

will focus on the following:

� The samples are independent of one another.

� Dependent variable is interval level.

� Sample populations are normally distributed.

� Equal variance.

The Database. Table 11.4 shows the data for this Lab. The database is sorted by

student–teacher ratio to illustrate the sorting procedures that follow.

Real-World Lab VII Questions

1. Discuss whether the assumptions are met for the independent T test.

2. Calculate the independent T test by hand and perform the hypothesis test.

3. Calculate the effect size and CI0.95.

4. Perform the independent T test with Excel1 and SPSS1.

5. Provide a summary of your findings.

REAL-WORLD LAB VII: SOLUTIONS

The solutions to this Lab are presented below according to the Lab questions.

1. Are Assumptions Met for the Independent T Test?

The assumptions for the independent T test are listed below. The first two can be

assumed to be met by the research variables. Both variables are school level per-

centages and therefore interval level, and groups based on student to teacher ratios

are not dependent on one another to form groups.

1. The samples are independent of one another.

2. Dependent variable is interval level.

3. Sample populations are normally distributed.

4. Equal variance.

Assessing the next two assumptions requires that we create our two study

groups from the database in Table 11.4. As you can see, the student–teacher

ratio data are listed as a continuous variable. In order to compare schools that

differ on this variable, we need to create two groups based on the magnitude of

student–teacher ratio.
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Assessing Normal Distribution. We can assess this assumption by creating descrip-

tive information on both groups of schools that differ on the size of the student to

teacher ratios. You can do this in a number of ways. One way is to use the ‘‘median

split,’’ which splits the database into two groups on the basis of the median value of

the independent variable, the student–teacher ratio. The median teacher ratio in this

dataset is 16 (you can easily identify this by the methods we learned in past chap-

ters). Using this value, we can create two groups of schools based on the size of

their student–teacher ratio, a variable we can call ‘‘class size.’’

You can use Excel1 to sort ‘‘StudentsPerClassroomTeacher’’ from low to high.

Then:

� Create a new variable called ‘‘Class Size’’.

� Assign a group of Small sizes (‘‘1’’) on the new variable (Class size) if the

values on the original variable (‘‘StudentsPerClassroomTeacher’’) are 15 or

less.

� Assign a group of Large sizes (‘‘2’’) on Class Size if the values are 16 or

greater on StudentsPerClassroomTeacher.

� Create two sets of Math Achievement averages according to the Class Size

(Small or Large).

TABLE 11.4 TheMath Achievement and Student–Teacher Ratio Database for Lab VII

MathPercent-

MetStandard

StudentsPer-

ClassroomTeacher

MathPercent-

MetStandard

StudentsPer-

ClassroomTeacher

73 9 79 16

50 10 10 16

38 12 62 17

36 12 25 17

73 12 66 17

40 12 34 17

56 12 89 17

27 13 56 17

46 14 74 18

40 14 53 18

50 14 58 18

51 15 42 18

50 15 50 19

77 15 41 20

24 15 63 20

49 15 30 21

28 15 59 21

50 15 72 21

37 16 69 24

63 16 35 27
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The data file we have created is shown in Table 11.5.

As you can see, using the median split of 16 resulted in two groups of schools:

Those with ‘‘small’’ class sizes (<16 student–teacher ratio) and ‘‘large’’ class sizes

(�16 student–teacher ratio). We can now compare the math achievement values in

both groups.

Assessing whether the two sample groups are normally distributed can be

checked by skewness and kurtosis values, as well as graphical methods. Using

Excel1 for the descriptives yields the values in Figure 11.25.

According to the data in Figure 11.25, both groups of schools show approxi-

mately normally distributed groups since skewness and kurtosis figures are

small. Confirm this with SPSS1, which shows similar results (i.e., skewness and

kurtosis figures that are ‘‘in range’’ when the figures are divided by their stan-

dard errors). The graphical ‘‘evidence’’ follows in Figures 11.26 and 11.27,

which were obtained through Excel1 ‘‘Descriptive’’ and ‘‘Histogram’’ menus,

as we discussed in earlier chapters. SPSS1 shows similar graphs obtained

through the ‘‘Graphs’’ menu.

Although both figures show histograms that do not appear perfectly normal, the

profiles tend toward normal when the sample size is taken into account. Combined

TABLE 11.5 The Study Database with Math Achievement
in Small and Large Class Sizes

Class Size Small—Group 1

Math Achievement

Class Size Large—Group 2

Math Achievement

73 37

50 63

38 79

36 10

73 62

40 25

56 66

27 34

46 89

40 56

50 74

51 53

50 58

77 42

24 50

49 41

28 63

50 30

59

72

69

35
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Math Achievement by Class Size 

Large Classes Small Classes 

53.01 47.66 Mean 

4.13 3.62 Standard error 

57.15 49.25 Median 

#N/A 50.00 Mode 

Standard deviation 19.38 15.36 
375.74 235.94 Sample variance 

–0.24 –0.15 Kurtosis 

–0.33 0.48 Skewness 

78.80 53.10 Range 

9.70 24.30 Minimum 

88.50 77.40 Maximum 

1166.30 857.90 Sum 

22.00 18.00 Count 

FIGURE 11.25 Descriptive analyses for real-world lab VII.

FIGURE 11.26 Math achievement in schools with small class size.

FIGURE 11.27 Math achievement in schools with large class size.
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with the numerical data, we can assume that the normal distribution assumption is

met for this procedure.

Assessing Equal Variance. Assessing this assumption requires that we use the

Excel1 and SPSS1 procedures we used above in this chapter. The Excel1 ‘F test

for equal variances’ results is shown in Figure 11.28. As you can see, the one tail

p¼ 0.17 which shows that the F ratio does not fall in the exclusion area (p< 0.05).

Therefore, the two variances are statistically equal.

Note: I placed the group with the largest variance as group 1 and the group with

the smaller variance as group 2. In this way, I would receive a result on the right

side of the comparison distribution. I could have reversed this procedure, but ‘‘left

tests’’ often are a bit trickier to decipher with actual F tables. Of course, the Excel1

works with both processes.

The SPSS1 ‘‘Explore’’ procedure output is shown in Figure 11.29. According to

the analyses, Levene’s Statistic is not significant. In every case, the ‘‘Significance’’

value (ranging from 0.199 to 0.253) does not fall in the exclusion area (of p< 0.05).

Thus, by these criteria, the sample variances are equal.

Meeting the Assumptions for the Independent T Test. According to the

foregoing analyses, the four assumptions for the Independent T test are met with

this sample of data. We can now proceed to the remaining questions for Real-World

Lab VII.

F-Test Two-Sample for Variances 

Variable 2Variable 1 

47.6653.01 Mean 

235.94375.74 Variance 

18.0022.00 Observations 

17.0021.00 df 

1.59 F 

0.17 P(F< f) one-tailed 

2.22 F Critical one-tailed 

FIGURE 11.28 The Excel1 output for the F test of equal variance.

Test of Homogeneity of Variance

Levene Statistic df1 df2 Significance

Based on mean 1.707 1 38 0.199

Based on median 1.348 1 38 0.253

Based on median and

with adjusted df

1.348 1 37.042 0.253

MathPercentMetStandard

Based on trimmed mean 1.642 1 38 0.208

FIGURE 11.29 The SPSS1 ‘‘Explore’’ output.
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2. Calculate the Independent T Test by Hand and Perform the Hypothesis Test

t ¼ ðM1 �M2Þ � mM1�M2

sD
; sD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSS1Þ þ ðSS2Þ

ðdf Þ
� �

1

n1
þ 1

n2

� �
;

s

t ¼ ð47:66� 53:01Þ � 0

5:62
; 5:62 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4011Þ þ ð7891Þ

ð38Þ
� �

1

18
þ 1

22

� �
;

s

t ¼ �0:952;

H0 : m1 ¼ m2 There is no difference in the populations from which the

sample groups came.

HA : m1 6¼ m2 There is a difference in the populations from which the

sample groups came.

t(0.05,38)¼ 2.024

t(calculated)¼�0.952

Decision: Do not reject the null hypothesis; the two groups are not

different.

Interpretation: Schools with large and small student to teacher ratios do

not differ in terms of their average math achievement

scores (the percentage of students who pass the math

assessment).

3. Calculate the Effect Size and CI0.95

d ¼ M1 �M2

ðPooledÞsX
; d ¼ 47:66� 53:01

17:70
; d ¼ 0:30

d ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2
n1ð Þ n2ð Þ

r
; d ¼ :952

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18þ 22

18ð Þ 22ð Þ ;
r

d ¼ 0:30

CI0:95 ¼ ðtable value of � tÞðsDÞ þ ðM1 �M2Þ
CI0:95 ¼ �2:024ð5:62Þ þ ð47:66� 53:01Þ
Lower Limit : � 16:72

Upper Limit : 6:02

4. Perform the Independent T Test with Excel1 and SPSS1

Excel1 Results. Figure 11.30 shows the Excel1 results of the t test. The shaded t
ratio (�0.95) agrees with our hand calculation. The actual probability of the result
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(p¼ 0.35) is also shaded and indicates that the t ratio does not extend into the exclu-
sion region. Therefore, we do not reject the null hypothesis.

SPSS1 Results. Figure 11.31 shows the SPSS1 results of the t test. I shaded

Levene’s Test portion to point out that we have equal variances, as we discussed

above. All other values agree with our hand calculations and the Excel1 output.

(The CI values in Figure 11.31 are slightly different from our hand calculations due

to rounding.)

5. Provide a Summary of your Findings

The findings of an independent T-test analysis revealed no differences between

low and high class sizes on school-based math achievement. Two groups of

schools (n1¼ 18 and n2¼ 22) showed no statistically significant differences in

t-Test: Two-Sample Assuming Equal 
Variances

Small Class

Size  Large Class Size 

53.01 47.66 Mean 

375.74 235.94 Variance 

22.00 18.00 Observations 

313.20 Pooled Variance 

Hypothesized Mean Difference  0.00 

38.00 df 

t Stat –0.95

0.17 P(T < t) one-tail 

1.69 t Critical one-tail 

P(T < t) two-tail 0.35

2.02 t Critical two-tail 

FIGURE 11.30 Excel1 results of independent t test.

Independent Samples Test 

t test for Equality of Means 

95% Confidence 
Interval of the 

Difference

df t 
Significance

(Two-Tailed)

Mean
Difference

Standard error

Difference Upper Lower 

Equal
variances 
assumed

–5.35 0.347 38 –0.952 6.03 –16.74 5.62 MathPercentMetStandard 

Equal
variances 
not assumed 

–5.35 0.336 37.973 –0.974 5.77 –16.48 5.49 

Significance

1.707 0.199

Equality of 
Variances

Levene's Test for 

F

FIGURE 11.31 SPSS1 results of independent t test.
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math achievement scores (t¼�0.952, p< 0.347). However, math achievement

scores tended to be higher in schools with larger student–teacher ratios, with a

small effect size (d¼ 0.30). Figure 11.32 shows a graph comparing the groups’

math achievement

FIGURE 11.32 Graph comparing schools with low (Grp1) and high (Grp2) class size with

regard to math achievement.
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12
ANALYSIS OF VARIANCE

We now come to a very popular test with educational researchers and educational

psychologists. Analysis of variance (ANOVA) is popular because the researcher

is able to compare several different groups—unlike the T test, which only com-

pares two groups. ANOVA is really quite an ingenious test in the way in which it

allows statistical decisions by analyzing components of the variance of the groups
to be compared.

There are several variations of this test. We will focus primarily on the

‘‘One-Way’’ ANOVA in this chapter, but I will cover an extension of the test

briefly at the end of the chapter. One way ANOVA refers to the number of inde-

pendent variables. In research, independent variables are known as ‘‘factors.’’
Therefore, if we have a research problem that has several levels of one indepen-

dent variable, we can use One-Way ANOVA to detect any differences among

the sample groups.

We will make brief reference to the ‘‘Factorial ANOVA’’ at the end of the

chapter. This will introduce you to an important elaboration of the One-Way

ANOVA. In Factorial ANOVA, we introduce a second (or more) independent vari-

able to our research analysis. ‘‘Factorial’’ refers to the fact that we have more than

one factor in the procedure. Thus, if we have two independent variables, our test

would be a factorial ANOVA, or a 2XANOVA.

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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A HYPOTHETICAL EXAMPLE OF ANOVA

In Chapter 11, I discussed an experiment I conducted on the effects of noise on

human learning. Because there were only two groups to compare in that example

(high versus low noise), I showed how the independent T test could be used to test

the null hypothesis. When I conducted the actual experiment, I compared four

groups on their rates of learning. Figure 12.1 shows the design of the experiment.

As you can see, there were four groups, three of which used different levels of

noise and one control group in which no noise was present. (Recall that I used white

noise in different magnitudes to distinguish the experimental groups.) The noise

level in Group III, 30 decibels is comparable to quiet conversation; 60 decibels is

equivalent to normal conversation; 90 decibels is equivalent to heavy truck traffic.

(Sustained exposure to 90 decibel noise could result in hearing loss.)

There is (still) only one independent variable (noise) in the experiment, but now

there are groups in four levels of the independent variable. A T test would be in-

appropriate because I would need to conduct six T tests to compare all the group

results! This would involve the group comparisons in Figure 12.2.

Even if I had conducted all these T tests, I would have no idea of the

‘‘whole’’ test result. I needed the ANOVA because it conducts all the compari-
sons within the same procedure at the same time. I needed one ‘‘omnibus’’

answer to the question of whether noise affects human learning. If this result

Dependent Variable Research Treatment Variable (Noise) 
 (Word Recognition) 

Random 
selection and 
assignment 

No pretest

No pretest

No pretest

No pretest

Experimental Group I 
(90 decibels) 

Outcome test scores
(number of recognized words)  

Outcome test scores
(number of recognized words)  

Outcome test scores
(number of recognized words)  

Outcome test scores
(number of recognized words)  

Random 
selection and 
assignment 

Experimental Group II 
(60 decibels) 

Random 
selection and 
assignment 

Experimental Group III 
(30 decibels) 

Random 
selection and 
assignment 

Control Group 
(No noise level) 

FIGURE 12.1 The four groups in the noise—learning experiment.

Group�Comparisons 
Experimental�Group�I�versus�Experimental�Group�II 
Experimental�Group�I�versus�Experimental�Group�III 
Experimental�Group�I�versus�Control�Group 
Experimental�Group�II�versus�Experimental�Group�III 
Experimental�Group�II�versus�Control�Group 
Experimental�Group�III�versus�Control�Group 

FIGURE 12.2 The two group comparisons in the experiment.
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rejected the null hypothesis, I could then proceed to dig further into the results

to examine which of the groups were different from the others and therefore

may have been responsible for the overall omnibus finding.

THE NATURE OF ANOVA

When a researcher conducts multiple (separate) tests on the same data in the

research study, the alpha error ‘‘accumulates.’’ This is known as familywise error
since we consider each comparison to be part of the same ‘‘family’’ of tests. Thus,

although it is not this simple, if we have six tests and the alpha error is 0.05 for

each, we might have a 0.30 alpha error (6 � 0.05) in the entire family of compari-

sons! The more tests we conduct, the greater the likelihood that we will make alpha

errors. Thus, the ‘‘overall’’ test is compromised.

The ANOVA ‘‘conducts’’ all these comparisons together by analyzing compo-

nents of variance and therefore contains familywise error. We have seen how the

T test used variance measures (i.e., sum of squares) to help detect differences

between two sample groups. ANOVA identifies three sources of variance: the vari-

ation that exists within each sample group, between each sample group and the

overall (grand mean), and the total variance from all sources.

Because the ANOVA process analyzes all these sources of variance simulta-

neously, we do not have to rely on multiple tests using the same data. The null

hypothesis in the hypothetical experiment would thus be

H0 : m1 ¼ m2 ¼ m3 ¼ m4

This null hypothesis states that all four group means come from the same popu-

lation; there is no difference between the group means. As you can see, there are a

variety of ways in which the null hypothesis could be rejected. The following

represent two of several possibilities: All the Groups could be from different

populations (the top example); or, Group 1 could be from a different population

than Group 2, and Groups 3 and 4 could differ (the bottom example). There are

several other possibilities!

HA : m1 6¼ m2 6¼ m3 6¼ m4;

HA : m1 6¼ m2 ¼ m3 6¼ m4

If the means of the groups are markedly dissimilar to one another (in a statistically

significant sense), we could reject the null hypothesis and conclude that at least one

of the group means differs from the others. If we are able to reject the null hypothe-

sis, ANOVA will not indicate which mean (or means) is different from the others.

In that event, we would perform a separate test, called a ‘‘post hoc comparison,’’ in

order to identify which of the means were significantly different from one another.

We will discuss this process after we discuss the overall or Omnibus ANOVA test.
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THE COMPONENTS OF VARIANCE

If you recall the earlier chapters, you will remember that variance is a measure

of the dispersion of scores in a distribution. We used variance measures in

Chapter 11 when we discussed the T test, and we can use these measures for

ANOVA. Variance is a more ‘‘global’’ measure of variance, so we will use it

instead of the standard deviation (another measure of dispersion) as a way of

determining how sample groups differ from one another. Look at Figure 12.3 to

see how our experimental groups might be represented, using the noise experi-

ment I introduced above.

Figure 12.3 shows the sample groups arrayed from left to right on an X axis of

noise groups that show different ‘‘number of learning errors,’’ which is the depen-

dent variable for this experiment (represented on the Y axis). Remember that my

experimental question was whether noise affected human learning. I operationally

defined learning as the number of simple words recalled during a memorization

task. The experiment sought to see if different amounts of noise would decrease the

number of words recalled.

Figure 12.3 shows the three sources of variance in an ANOVA analysis. The four

sample groups have their own distributions, so all their scores ‘‘spread out’’ around
their means. This is known as ‘‘Within Variance’’ (VWithin) because the variance is
measured within each sample distribution. Figure 12.3 also shows a ‘‘shadow’’ dis-

tribution that represents a total distribution if all the individual scores from all the

sample groups were thrown in to one large distribution. If we were to measure the
variance of that large, composite distribution, this would constitute the ‘‘total

FIGURE 12.3 The components of variance.
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variance’’ (VTotal). As you can see, the composite distribution has a mean value,

indicated by the dashed line. This total mean is known as the ‘‘grand mean.’’

Between variance (VBetween) is the variation between each sample group mean and
the grand mean.

� VTotal is the total variance of all individual scores in all sample groups.

� VBetween is the variation between the sample means and the grand mean.

� VWithin is the variation of individual scores within their own sample groups.

THE PROCESS OF ANOVA

In effect, the ANOVA process determines whether the sample means vary far
enough from the grand mean that they could be said to be from the different popula-
tions. What makes this question difficult to determine is that within each group, the

scores vary around their own group mean. If the sample group means are close

enough to one another, single scores could lie within the area where the groups

overlap making group identification difficult for these individual scores.

Figure 12.4 shows two possible results that illustrate the process of ANOVA.

The top panel shows the results of an experiment in which the groups are so

‘‘squished together’’ that the group variances are intermingled. In the bottom

example, the groups are far enough apart that individual group variances do not

have extensive overlap. That is, the variances within each sample group do not con-

fuse the distance between the groups. If we have an actual result like the bottom

example, we would be likely to determine that the groups are statistically different

from one another. This might not be the case in the former.

ANOVA seeks to determine whether the VBetween would be large relative to the
VWithin, as appears to be the case with the bottom example. In the top example, the

FIGURE 12.4 Different ANOVA possibilities.
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VWithin ‘‘muddles the picture’’ of how the groups relate to one another. It is for this

reason that within variance is often referred to in research (and in SPSS1) as ‘‘error

variance.’’ If we want to understand how far apart the group means are from the

grand mean, the error variance (VWithin) ‘‘gets in the way.’’ When there is less error

variance, then the distance between the group means and the grand mean (i.e., the

VBetween) becomes easier to distinguish.

CALCULATING ANOVA

The calculation of ANOVA compares VBetween to VWithin. When VBetween is large

relative to VWithin, there is a greater likelihood that the researcher can reject the

null hypothesis. We can suggest a ‘‘conceptual equation’’ that expresses this

relationship:

F ¼ VBetween=VWithin

ANOVA uses the ‘‘F distribution’’ as a comparison distribution for the relation-

ship of the between-to-within variance. We introduced the F test in Chapter 11

when we discussed how to test whether two sample variances were statistically

equal. This same distribution (see Figure 11.13) can be used to see where a calcu-

lated ANOVA falls on the sampling distribution of all possible samples. After all,

we are still comparing variances. But in the ANOVA test we are comparing be-

tween to within variance, whereas in the Equal Variances Test we are comparing

two sample variances.

The equation above thus expresses the relationship of between to within variance

as a point on the F distribution of all possible samples to determine whether the

sample group means are far enough from the grand mean that the calculated F ratio

would fall in the exclusion area of the comparison distribution. If a researcher ob-

tained an actual result like the bottom example in Figure 12.4, there would be a

greater likelihood that the F ratio (calculated F) would fall in the exclusion area

than if the top example was obtained.

Calculating the Variance: Using the Sum of Squares (SS)

ANOVA helps the researcher identify and compare all the components of variance

present in the research study. Therefore, each of the variance components must be

calculated in order to make a statistical decision. The sum of squares (SS) is used to

measure the components. As I explained in past chapters, SS is a large number

when the scores of a distribution are spread out but a small number when the scores

are close together.

In Chapter 11, I specified the formula to calculate SS:

SS ¼
X

X2 �
P

Xð Þ2
N
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We can use variations of this formula to calculate each of the three sources of

variance. Moving from conceptual to computational definitions, we can identify

these sources as follows:

SST is the sum of squares of the total distribution of all individual scores (VTotal)

SSB is the sum of squares between the group means and the grand mean

(VBetween)

SSW is the sum of squares within each sample group (VWithin)

Calculating the three SS values is somewhat easier when you consider that the

total variation (VTotal) is comprised of the between (VBetween) and within (VWithin)

variances. Therefore,

SST ¼ SSB þ SSW and SSW ¼ SST � SSB

I will introduce a simple (hypothetical) set of findings for my noise–learning

experiment to demonstrate how to calculate these components. Then we can

explore an example with real data. Table 12.1 shows hypothetical data for the

experiment. The dependent variable is number of learning errors.

Table 12.2 shows the data with appropriate squares to be used to calculate the

sums of squares. The general SS formula follows the data; then the calculations

are shown for each variance component.

SS ¼
X

X2 �
P

Xð Þ2
N

TABLE 12.1 Hypothetical Experiment Data

Control 30 Decibels 60 Decibels 90 Decibels

5 7 12 15

4 5 11 14

3 6 10 18

6 8 12 12

TABLE 12.2 Hypothetical Experiment Data with Squares

Control 30 Decibels 60 Decibels 90 Decibels

X1 X2
1 X2 X2

2 X3 X2
3 X4 X2

4

5 25 7 49 12 144 15 225

4 16 5 25 11 121 14 196

3 9 6 36 10 100 18 324

6 36 8 64 12 144 12 144P
18 86 26 174 45 509 59 889
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Calculating SST

SS ¼ P
X2 � ðPXÞ2

N

SST ¼ ð86þ 174þ 509þ 889Þ � ð18þ 26þ 45þ 59Þ2
16

SST ¼ 1658� 1369

SST ¼ 289

Calculating SSB. Calculating SSB uses a variation of the SS formula, but the focus

is on the deviation of each group mean from the grand mean. Therefore, we will

calculate ‘‘group means’’ in variance terms and subtract the variance measure of the

grand mean. Here is the revised formula:

SSB ¼ ðPX1Þ2
n1

þ ðPX2Þ2
n2

þ ðPX3Þ2
n3

þ ðPX4Þ2
n4

ð�Þ ðPXÞ2
N

This equation looks intimidating, but if you look at it, the main ‘‘pieces’’ make

sense. As you can see, a global measure of each group’s mean ((SX)2/n) is divided
by the group’s sample size. Then, the grand mean measure ((SX)2/N) is subtracted
from the total of the separate group mean measures. I shaded this portion of the

equation so you can see the components clearly. There is an important thing to note

in this equation:

n 6¼ N

If you look carefully at the equation, you will note that the separate group mean

measures have the ‘‘group sizes’’ (n) as the divisor. The grand mean measure at the

end of the equation has the total individual score size (N) in the divisor. This is

because the grand mean is calculated for all individual scores (N¼ 16) whereas the

individual group mean measures are divided only by the scores that make up that

group (all four sample groups have n¼ 4).

SSB ¼ ðSX1Þ2
n1

þ ðSX2Þ2
n2

þ ðSX3Þ2
n3

þ ðSX4Þ2
n4

ð�Þ ðSXÞ2
N

SSB ¼ 324

4
þ 676

4
þ 2025

4
þ 3481

4
ð�Þ ð18þ 26þ 45þ 59Þ2

16

SSB ¼ 81þ 169þ 506:25þ 870:25ð�Þ1369
SSB ¼ 257:5

As you can see, I left the shaded portion in the equations to show that this portion

is the same in the SST and SSB formulas. It ‘‘represents’’ the grand mean, so its

value will not change, just the way it is used. In the SST formula, all the individual

scores (X) deviate away from the (grand) mean. Thus, the shaded portion of the
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formula shows that this is the value from which all the scores deviate. In the SSB
formula, the shaded portion represents the grand mean as well. Here, all of the

sample group means are added together and then subtracted from the grand mean.

It is as if each of the group means is treated as a single score, and we are calculating

the variance of the group means around the grand mean (which, of course, we are

actually doing!).

Calculating SSW. From the above equation, we know that if we have calculated

SST and SSB, we can derive SSW without additional calculations:

SSW ¼ SST � SSB

SSW ¼ 289� 257:5

SSW ¼ 31:5

Creating a Data Table. Now that we have calculated the key SS values, we can use

a table to display the results. As you will see in the steps ahead, this is a very helpful

visual step, and it is one that both Excel1 and SPSS1 use to display the ANOVA

results. You should therefore learn to use the table so you can keep all the calcu-

lated values in order and so that you can understand how ANOVA results are

reported by most all statistical software.

Table 12.3 shows the template we will use with our results thus far. As you can

see, we have calculated the sums of squares for each ‘‘source’’ of variance. Remem-

ber that the SS is a measure of variance based on the raw scores we have in our

data file.

Using Mean Squares (MS)

As you recall, inferential statistics addresses the issue of how sample values repre-

sent (or do not represent) population values. In the Z and T tests, we learned to

transform sample values to points on a sampling distribution so that we could show

how our calculated sample ratio compares to all possible sample values.

We need to treat ANOVA in the same way. It is also an inferential process, so
we will use sample values to estimate population values. We calculated the sample

variances using SS values, so we need to use these values to estimate population

variances. This is akin to our using sample values (SD) to create an estimate (sx) of

TABLE 12.3 The ANOVA Results Table

Source of Variance SS df MS F Ratio

Between 257.5

Within 31.5

Total 289
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the population standard deviation (sX) in the T test. In order to estimate the popula-

tion standard deviation, we had to use the sample standard deviation and ‘‘adjust’’ it

by dividing it by its degrees of freedom (in the single-sample T test, the df¼ n� 1)

so that it would be a better estimate of the population parameter.

With ANOVA, we will use degrees of freedom to make each of our SS values
better estimates of population values. These estimates are known as ‘‘mean

squares’’ because they are created by dividing the SS by degrees of freedom, much

like we create a mean by adding together the values in a sample and divide by the

number in the sample.

Degrees of Freedom in ANOVA

We can use the degrees of freedom to help estimate population values because the

size of the samples greatly affect the variance estimates. By using degrees of

freedom in order to obtain better estimates, we will create mean squares that

average out the variance regardless of sample size. Here are the degrees of freedom

for each SS value:

� dft (Degrees of freedom for total SS)¼N � 1 (N¼ the total number of indi-

vidual scores in all groups combined).

� dfb (Degrees of freedom for between SS)¼ k � 1 (where k¼ number of

sample groups)

� df w (Degrees of freedom for within SS)¼N � k

When we make specific population estimates from sample values, we use
(‘‘lose’’) degrees of freedom. As you see, estimating the total variance uses 1 df

because we are using the entire set of individual scores. Estimating the between

variance uses another 1 df because we are using the set of sample means. Estimating

the within variance uses several more (depending on how many sample groups

there are) degrees of freedom, since the sample groups are separate ‘‘sets’’ of scores

that deviate around their respective group means.

Calculating Mean Squares (MS)

Calculating MS values is simple when you look at our ANOVA table of values.

Table 12.4 shows the MS values that are derived from dividing the SS values by

their respective degrees of freedom.

TABLE 12.4 The ANOVA Results Table with Calculated MS Values

Source of Variance SS df MS F Ratio

Between 257.5 3 85.83

Within 31.5 12 2.625

Total 289 15 —
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You can derive the MS values directly from the table by dividing the SS values

by their df values as follows:

MSB ¼ ssb
df b

; MSB ¼ 257:5

3
; MSB ¼ 85:83;

MSw ¼ ssw
df w

MSw ¼ 31:5

12
MSw ¼ 2:625

You can note other features from Table 12.4:

� The between and within SS values sum to the total SS value

� The between and within df values sum to the total df value

The F Ratio

You can see from Table 12.4 that I did not include the MST value. That is

because we do not need it for our ANOVA analysis! In an earlier section of

this chapter, I noted that the ANOVA process determines whether the sample
means vary far enough from the grand mean that they could be said to be from
the different populations. What we need in order to determine this is a compari-

son of the variation of the means from the grand mean (MSB), to the variance

within each of the sample groups that make the earlier estimate difficult to

determine (MSW).

Here is the formula for calculating the F ratio. Using the values from Table 12.4,

I showed the actual, calculated F ratio from our example problem.

F ¼ MSB

MSW
; F ¼ 85:83

2:625
; F ¼ 32:70

As you can see, we are simply comparing the variation of the sample means

around the grand mean (MSB) to the variation within each sample group (MSW). I

mentioned before that the within variance measure is known as ‘‘error’’ just for this

reason. If the sample group values did not vary at all, it would be easy to see how

far away the sample means vary from the grand mean! Consider the two panels in

Figure 12.5.

The top panel of Figure 12.5 shows a hypothetical example of four sample

groups with almost no within variance. In this case, it is easy to see how distinct the

group means are and how clearly they differ from the grand mean. The bottom

panel shows just the opposite. There is so much within variance that it is almost

impossible to see how distinct the group means are and how they vary around the

grand mean. The within variance is essentially ‘‘noise’’ and is therefore called error.

It is for these reasons that I said that the F ratio is a measure of the between

variation relative to the within variance. That is why the F ratio is simply
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comparing the between to the within variation. When you divide the two, you

would anticipate a much higher ratio in the top panel than in the bottom panel

because the divisor in the F ratio would be much smaller in the top panel.

In our example, the between variance measure was 85.83 relative to the within

measure of 2.625. These represent quite differing variance measures! It is fairly

easy to assume that the resulting F ratio (32.70) represents a situation where the

sample group means are quite spread out around the grand mean. The question is,

How far from the grand mean do the sample means have to vary before they could

be said to represent different populations? This is the essence of the ANOVA

hypothesis test.

Table 12.5 shows the final ANOVA table with the F ratio included. The

structure of the table allows you to ‘‘see’’ how the calculation for the F ratio

was performed. The between MS (85.83) was divided by the within MS (2.625)

to yield 32.70.

TABLE 12.5 The Final ANOVA Results Table

Source of Variance SS df MS F Ratio

Between 257.5 3 85.83 32.70

Within 31.5 12 2.625

Total 289 15 —

FIGURE 12.5 ANOVA possibilities of groups with different within variances.
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The F Distribution

If you refer to Figure 11.13, you will see that the F distribution does not appear to

be similar to the Z or T distributions. Remember I mentioned in Chapter 11 that

the F distribution is a sampling distribution of variances, not means. We saw in the

F test for equal variance that most group variances will hover around 1 when the

variances are equal (because if we divide similar variance measures the ratio will

be close to 1.00).

In the ANOVA test, we are not comparing two group variances, but between to

within variance. When we compare these measures, the resulting F ratio is often

much larger than 1. Thus, the F distribution is directional. Together with the fact

that variance measures cannot be negative (they can be very small, but not nega-

tive), the researcher needs to compare a calculated F ratio with a tabled value of F
that represents all possible samples of variance.

The F distribution is therefore our sampling distribution of comparison. F tables

have been created to identify the exclusion values at 0.05 and 0.01 probability, for

example. The table is complex because it takes into account the degrees of freedom

of both the between and the within measures since sample size is so critical to the

analyses.

In our example, the tabled value of F at 0.05 and df’s for between (3) and within

(12) variance measures, the exclusion value is 3.49. Thus, 3.49 is the value on the F
distribution that defines the exclusion area. If our calculated value exceeds this

value, we can reject the null hypothesis. In our example, the calculated F equals

32.70, which far exceeds the tabled value of F. Therefore, we can conclude that our

finding (32.70) falls in the exclusion area of p< 0.05 (3.49) and is therefore not

likely a chance finding (i.e., it is a statistically significant finding).

If our example values represented the data in my experimental study, we could

reject the null hypothesis. This would mean that, taken together, the means of the

group noise levels vary so greatly around the grand mean that the groups represent

different populations of people.1

EFFECT SIZE

Like our other statistical analyses, we can create an effect size that shows the ‘‘im-

pact’’ of the independent (predictor) variable on the dependent (outcome) variable.

In the case of our example, the effect size concern could be asked as, How

much does the grouping on the independent variable affect the outcome measure?

1By the way, the actual outcome of my experiment was interesting! I found no significant differences

between the groups. My speculation as to why was that I was using white noise, rather than ‘‘real’’ noise

(like different kinds of music, street noise, people yelling, etc.), I didn’t take into account what the sub-

jects were used to (that is, they were all different coming in to the experiment; some were used to study-

ing with music, others weren’t, etc.), and they were all trying really hard to do well on the ‘‘test.’’ The

research literature on this issue is very interesting. My undergraduate experiment as yet has not won me

any prizes for original research!
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We are trying to determine how much noise impacts learning by measuring how

much the specific noise groupings (0, 30, 60, and 90 decibels) push the outcome

measure apart.

So far, we have discussed effect size in terms of Cohen’s d measures where we

analyzed the difference between two groups (independent T test) or between a

group and a population (single-sample T test). The ANOVA determines the signifi-

cance of group differences by examining variance, so we can use a variance mea-

sure to express effect size.

h2 is the symbol that refers to effect size in ANOVA. It is the Greek lowercase

eta. It refers to the proportion of variance in the outcome measure explained by
the grouping on the independent variable. It is easy to calculate from the ANOVA

table from the following formula:

h2 ¼ SSBetween

SSTotal
;

h2 ¼ 257:5

289
;

h2 ¼ 0:89

Thus, 89% of the variance in learning errors is due to assigning subjects to our

four different noise levels! The effect size is very large (only 100% is possible,

obviously), but this is probably because we have only groups of size four, and this

is a hypothetical example.

How large is large? That is, how large does h2 have to be before you would say it

is meaningful? That is a question for which there are many answers! The reason it

has many answers is that it depends on the sample sizes, number of groups, and so

on. I alluded to power analysis in earlier chapters. Statisticians have constructed

tables that take into account factors that would have an impact on the size of the

effect size value. For example, there are tables for the 0.05 level of significance, as

well as for the group size as considerations in judging effect size (see Cohen, 1988).

There are therefore many standards offered by statisticians and researchers for

judging effect size meaningfulness. I tend to take two approaches to this question.

First, I can suggest the following as benchmark comparisons: 0.01 (small), 0.06

(medium), and 0.15 (large). These are ballpark figures because the next approach is

the most crucial.

The second approach to the question is allowing the researcher to judge the

meaningfulness of the effect size by the nature of the problem studied. It would

therefore have a lot to do with the subject. If I am studying a hypothetical research

question with very small sample sizes (as I did in the noise–learning example),

I would not be very excited about a very large effect size (and in our study, 0.89 far

exceeded the 0.15 guideline for ‘‘large effect size’’). However, if I am studying a

new drug that can lessen the death rate from AIDS, I would be ecstatic to find an

effect size of 0.03 even though it would be judged ‘‘small’’ by the earlier

benchmarks.
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One way to visually understand effect size as ‘‘explained variance’’ is to use

Venn diagrams. Look at Figure 12.6. The top circle represents the outcome mea-

sure of learning errors. The bottom circle represents the noise groups. Effect size

is represented in the portion of the top circle with diagonal lines. The 89% refers

to our h2 value of 0.89. If the top circle represents all the variation of learning

errors, we can reduce that variance by 89% just by knowing the different noise

conditions! There are many things that probably result in learning errors, but in

our small study we have concluded that the different noise conditions reduced

our lack of knowledge by 89%!

POST HOC ANALYSES

The question after we reject the null hypothesis is, What specific group mean varia-

tion(s) from the grand mean might be responsible for the overall size of the F ratio?

Stated differently, are all the sample means similar in producing learning errors

(obviously not since we rejected the null hypothesis), or are some group means

much more responsible for affecting the F ratio? What configuration of group mean

differences affected the overall F ratio?

Figure 12.7 shows two possibilities of group differences that might produce

a significant F ratio. The top panel shows that the first three noise level

groups are similar in producing learning errors, but the subjects in the fourth

noise level are much more likely to produce learning errors than the other

three. The bottom panel of Figure 12.7 shows that the first two groups are

similar, but both are very different from the third and fourth groups (which

are similar to one another). There are many other possible combinations of

findings!

FIGURE 12.6 Venn diagram showing effect size.
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‘‘Varieties’’ of Post Hoc Analyses

Post hoc analyses look at group comparisons within the overall ANOVA (signifi-

cant) result to detect where sample group comparisons may be so large that they

cannot be said to belong to the same population. The process is similar to individual

T tests of pairs of samples within the overall ANOVA study. If you recall, I men-

tioned earlier in this chapter that our ANOVA would consist of six separate T tests

if we wanted to conduct paired comparisons. Because we could not do this without

creating familywise error, we performed the ANOVA test that compared all the

sources of variance at once.

After the overall (omnibus) test of ANOVA is found to be significant, we must

‘‘return’’ to our initial question about which paired differences may be responsible

for the ANOVA result. In order to avoid familywise error with the paired compari-

sons, statisticians have created processes for identifying paired sample differences

that limits the overall error measures. Many are specially designed to fit specific

research designs. Here are some examples of procedures used for ‘‘unplanned’’

comparisons (paired comparisons not identified before the study).

FIGURE 12.7 Post hoc test possibilities.
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� Scheffe Test—A conservative post hoc analysis that works well with uneven

group sizes and uses stricter decision criteria.

� Tukey’s HSD—This Honestly Significant Difference procedure is used when

the researcher wants to compare all possible pairs of samples.

� Dunnett—This test is used only with single comparisons, usually comparing a

control group and experimental group(s).

There are several other post hoc analyses available for use, depending on the

nature of the research issues. I will demonstrate the most common post hoc analysis
for unplanned comparisons, the Tukey’s HSD. Statistical programs such as SPSS1

provide this and other post hoc analyses, so you can expand your range of under-

standing and expertise of post hoc analyses as you pursue further research.

The Post Hoc Analysis Process

The general process that researchers follow after concluding that the omnibus

(overall) ANOVA test is significant is as follows:

1. Calculate the Tukey HSD critical value.

2. Create a comparison table that includes all the group means.

3. Compare each mean difference to the critical HSD value to determine which

of the pairs are significantly different from one another.

4. Conclude the post hoc analysis with a general summary of results.

Tukey’s HSD (Range) Test Calculation

This test is also called Tukey’s Range Test because it requires the use of the ‘‘Stu-

dentized Range Table’’ to help identify a critical value of comparison. In essence,

the HSD is a critical value of exclusion because it is based on a set of probabilities

that define extreme values on a distribution that takes into account the degrees of

freedom in the overall study and the number of groups in the analysis. Thus, we use
a formula to determine the value beyond which the paired group differences in the
study would be considered extreme.

The Tukey HSD formula is as follows:

HSD ¼ qðRangeÞ

ffiffiffiffiffiffiffiffiffiffi
MSw

n

r

The ‘‘pieces’’ of the formula are as follows:

� HSD is the calculated point on the comparison distribution that identifies

extreme values; any test value that is calculated larger than this value is con-

sidered extreme and would result in the rejection of the hypothesis that a pair

of group means was equal.
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� q(Range) is the value obtained in the Studentized Range Table that helps to

establish the exclusion value. I will use the example of the 0.05 level of exclu-

sion, but you can establish the value for 0.01 or other levels of exclusion. If

I do not specify otherwise in the examples that follow, you can assume I am

using the 0.05 level.

� MSw is the mean square within value found in the ANOVA table. In our exam-

ple above, it is equal to 2.625. Recall that I mentioned that the ANOVA within

measures were known as ‘‘error.’’ Thus, in the formula, the error measure is

‘‘adjusting’’ the critical value of exclusion. If the error is large, it will have a

marked impact on the exclusion area, and so on.

� n is the group size used in the comparison(s). In our example, all the groups

were n¼ 4. Thus, we can use this formula to establish one HSD critical value

for each of our six paired comparisons. If the group size is unequal, there is a

formula for Tukey’s HSD that identifies the group sizes for each paired com-

parison. Therefore, if you have unequal group sizes, you would need to create

more than one HSD value for the planned comparison. The SPSS1 program

adjusts for unequal group sizes.

Using the Range Table is straightforward if you remember that it is adjusted

based on the ANOVA error measure (within groups MS). Table 12.6 shows a small

part of a Range Table to give you an example of how to use it.

As you recall, we had four noise groups in the experiment, and the MSW degrees

of freedom was 12 (see Table 12.5). I shaded the relevant columns and rows in the

example table in Table 12.6. The number of sample groups is the ‘‘4’’ column, and

the MSW df is the ‘‘12’’ row. Where these intersect is the q(Range) value we will use
in the HSD calculation.

HSD ¼ qðRangeÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
MSw

n
;

r

HSD ¼ 4:20

ffiffiffiffiffiffiffiffiffiffiffi
2:625

4

r
;

HSD ¼ 3:40

TABLE 12.6 Example of Values from a Studentized Range Table

Number of Sample Groups

MSW df 2 3 4 5 6 7 8

11 3.115 3.822 4.258 4.575 4.824 5.03 5.203

12 3.083 3.775 4.200 4.509 4.752 4.951 5.12

13 3.057 3.736 4.152 4.454 4.691 4.885 5.05
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Means Comparison Table

Once the HSD critical value has been calculated, we can proceed to examine how

the group means differ. If you refer to Figure 12.2, you will see the six group com-

parisons that are necessary when there are four sample groups. In order to see what

the group differences are among the groups, it is a simple matter of subtracting the

group means. Table 12.7 lists the means of each of the four sample groups.

We can calculate the six paired sample differences by subtracting each pair of

means as follows:

M1 �M2 ¼ �2:00
M1 �M3 ¼ �6:75

..

.

M3 �M4 ¼ �3:50

Doing the comparisons this way would yield the appropriate paired mean differ-

ences. Note in the list, however, that if we subtract the higher group means (e.g.,

M4) from the lower (e.g., M1), the values are negative. In these paired comparison

tests, we are interested only in the magnitude of the difference, not the sign. We can

interpret the overall results by referring to the size of the means, but the paired tests

do not use the sign. Therefore, you can subtract the smaller group means from the

larger to get positive values.

Another method for doing this is to create a ‘‘matrix’’ of group means. A matrix

is simply a table constructed of rows and columns. We will see arrays of data in

matrix form later in the book, so it is a good idea to use them to display data.

SPSS1 uses matrix arrays for some output that we will examine (including the post
hoc analysis).

Table 12.8 shows the group means in a matrix display. Above, we calcu-

lated the difference of M1 and M3 to be �6.75. I placed this value in the

TABLE 12.7 The Group Means

Groups Means

M1 4.50

M2 6.50

M3 11.25

M4 14.75

TABLE 12.8 Matrix of Group Means

M1 (4.5) M2 (6.5) M3 (11.25) M4 (14.75)

M1 (4.5) — 2.00 6.75 10.25

M2 (6.5) — 4.75 8.25

M3 (11.25) �6.75 — 3.50

M4 (14.75) —
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matrix under column M1 and row M3. Thus, when I subtract 11.25 from 4.5, I

get �6.75.

However, I can obtain positive values by subtracting the lower mean values from

the higher. I have shown these values in the table. For example, subtracting 4.5

from 11.25 results in a value of 6.75, which is located in the M3 column and the M1

row. Note that the matrix is symmetrical. The same values will appear in the lower

‘‘triangle’’ that appear in the upper ‘triangle’ (I shaded the upper triangle) in

Table 12.8. I left the �6.75 in both the lower and upper triangles to show the sym-

metry of the table.

Compare Mean Difference Values from HSD

The next step in the post hoc analysis is to compare the group mean differences

(from Table 12.8) to our HSD value of 3.40. If any of the group mean differences

exceed the HSD value, we would consider those two means significantly different.

As you can see from the table, all the mean pairs exceed HSD except the M1 � M2

difference (2.00).

Post Hoc Summary

Our analysis showed that all paired comparisons showed significant differences

except the group 1 (control group)–group 2 (30 decibel) comparison. Figure 12.8

shows how the groups might be arrayed to yield this finding.

ASSUMPTIONS OF ANOVA

As with the other statistical tests we discussed, the researcher needs to assess

whether the conditions of the data are appropriate for the ANOVA test. Here are

FIGURE 12.8 The post hoc summary for the example.
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the primary assumptions, although ANOVA is also somewhat robust with respect to

slight variations of assumptions:

1. Population is normally distributed.

2. Population variances are equal. This assumption refers to the variance of the

sample groups. You should make sure that the groups (in our case the noise

conditions) have equal variance on the outcome measure (in our case, learning

errors). (This is the homogeneity of variance assumption.)

3. Samples are independently chosen.

4. Interval data on the dependent variable.

ADDITIONAL CONSIDERATIONSWITH ANOVA

We will have more to say about these procedures, but here are some things to keep

in mind as you think about the One-Way ANOVA.

1. You can still use ANOVA (‘‘the F test’’) even if you only have two group

means. In this case, remember that there is a relationship between F and T
such that F ¼ T2.

2. The effect size is critical, as we have learned with the other tests we have

covered. We learned to calculate h2, which indicates the strength of the effects

of F. Effect size is always calculated, even if the omnibus F test does not

result in the reject of the null hypothesis. This is important to remember! Just

because a study finding is or is not statistically significant does not indicate

how much of a practical impact it has.

3. ANOVA, like the T test can be used in experimental contexts (where we con-

sciously change the value of an independent variable to see what effects this

has on a dependent variable) and for post facto situations (where we simply

try to determine if there are existing differences among several sample groups

without changing the value of the independent variable). In our example of

noise and learning, I used ANOVA experimentally, since I directly ‘‘manipu-

lated’’ or changed the value of the independent variable (noise level), to see if

this affected the dependent variable (errors in learning performance).

4. Be sure to meet the assumptions of the test before you use it:

� Populations are normally distributed.

� Population variances are equal.

� Independent selection.

� Interval data on the dependent variable.

A REAL-WORLD EXAMPLE OF ANOVA

Shifting from a hypothetical to a real example of ANOVA, I will return to our state

database showing schools with various percentages of students passing the math
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and reading assessments. In the extended example that follows, I will use Excel1

and SPSS1 to analyze the question, Does the percentage of low-income students in

a school have an effect on school-based achievement levels? This is an important

question because family income, while important, has not been the subject of a

great deal of scrutiny as a potential factor in influencing achievement.

Our database cannot provide individual level student data, so we cannot analyze

the individual impact of family income on students’ achievement. However, we can

study the question when it is viewed at the school level. In the latter case, we can

use the database from the state of Washington, which shows the percentages of

students who pass the math (and other subject) assessment and the percentage of

students who qualify for free/reduced price meals (FR). Researchers use the FR

variable as a way (often, the only way) to indicate low income.

I will use a dataset that is randomly chosen from all the schools in the state with

fourth-grade classes (N¼ 1232). I called for a 5% sample within categories of low,

medium, and high percentages of FR (using 33.33% and 66.67% to create the three

groups). This method retains the proportion of the free reduced lunch groupings.

The final sample (N¼ 59) only includes schools that provided achievement results

for math and reading. Table 12.9 shows the data sample.2

ARE THE ASSUMPTIONS MET?

Before we proceed to the hand calculations for this example problem, we need to

look at the assumptions for ANOVA. We need to determine whether the data are

appropriate for the analysis we have planned.

1. Population is Normally Distributed?

As you recall from Chapter 5, I mentioned that skewness and kurtosis are good

indicators to help assess normal distributions. For ANOVA, we need to make sure

that the outcome data are normally distributed for each of the independent variable

levels. In this case, we have three independent variable levels: low, medium, and

high FR. Are the achievement data normally distributed? We can use the results in

Figure 12.9 to test this assumption.

TABLE 12.9 The Data for ANOVA Example

Frequency FR Percent Valid Percent Cumulative Percent

Valid 1—Low 27 45.8 45.8 45.8

2—Medium 18 30.5 30.5 76.3

3—High 14 23.7 23.7 100.0

Total 59 100.0 100.0

2 I used a process similar to the one in Real-World Lab VII for creating FR groups. Refer to that discus-

sion for creating the study datafile shown in Table 12.10.
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The Excel1 output in Figure 12.9 indicate that all three groups are fairly

normally distributed as determined by the similarity of mean and median values,

and skewness and kurtosis figures. The Low group may possibly be a bit negatively

skewed and leptokurtic judging by the skewness and kurtosis values. We can use

SPSS1 to investigate further. Figure 12.10 shows the descriptive values that

include skewness and kurtosis standard errors, and Figure 12.11 shows the graphs

for the groups.

As you can see, skewness for the Low group is generally within bounds when

you divide the skewness value by its standard error (�1.469/0.448¼ 3.28),

although it does exceed the ‘‘2 to 3’’ benchmark I mentioned in Chapter 5. The

Low group also appears to be leptokurtic by the same criteria (2.981/.872¼ 3.42).

The graphs in Figure 12.11 help to show these assessments.

If the researcher determined the Low group’s skewness and kurtosis values were

excessive, they could make a number of choices:

� Choose not to use ANOVA.

� Transform the outcome measure so it conforms to normal bounds.

� Examine and possibly eliminate the outliers that may change the distribution

configuration.

� Proceed with the analysis and note the concerns in the conclusions.

High Medium Low 

34.22 50.16 66.24 Mean 
3.87 3.93 3.40 Standard error 

34.75 49.05 70.30 Median 
#N/A #N/A #N/A Mode 

Standard deviation 14.47 16.69 17.66 
209.37 278.69 312.01 Sample variance 
–0.53 –0.45 2.98 Kurtosis 
–0.13 0.19 –1.47 Skewness 
48.60 59.80 80.10 Range 
11.40 24.40 9.70 Minimum 
60.00 84.20 89.80 Maximum 

479.10 902.80 1788.40 Sum 
14.00 18.00 27.00 Count 

FIGURE 12.9 The descriptive output (Excel1) to test the normal distribution assumption.

Low 66.24 27 17.664 2.981 0.872 –1.469 0.448 70.30

Med. 50.16 18 16.694 –0.450 1.038 0.190 0.536 49.05

High 34.22 14 14.470 –0.527 1.154 –0.128 0.597 34.75

Total 53.73 59 20.908 –0.742 0.613 –0.281 0.311 54.10

MathPercentMetStandard

FR Mean N
Standard
Deviation

Standard
Error of

Skewness Kurtosis

Standard
Error of
Kurtosis Skewness Median

FIGURE 12.10 SPSS1 descriptive output for normal distribution assumption:

mathPercentMetStandard.
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Even though the skewness and kurtosis numbers are a bit high, I would

proceed with the study. As it is, the coefficients are just at the highest bounds,

but not overly excessive. At the end of the analysis section, I will include a

comment that addresses the need for ‘‘diagnostic’’ analyses for study databases

to help with these kinds of decisions. For illustration purposes, we will proceed

with the analysis.

By the way, I used the ‘‘Analyze–Compare Means–Means’’ menus in SPSS1

to generate the values in Figure 12.10. I could have use the ‘‘Analyze–

Descriptive Statistics–Frequencies’’ menus as I have in past chapters, but I

wanted to show this useful function. Figure 12.12 shows the menus and choices

for this procedure. On the ‘‘Means’’ menu, you list the dependent variable and

specify what groups of the dependent variable (FR in this example) to assess.

As you can see, I specified means, kurtosis, skewness, standard errors, and so

on, for the FR groups.

2. Are Variances Equal?

This second assumption is important for ANOVA because it relies on comparisons

of variance measures. Excel1 does not have a good way to assess equal variances

for multiple groups. As we saw in Chapter 11 with the T test, Excel1’s ‘‘F-Test
Two-Sample for Variances’’ analysis tool is very helpful for two sample groups,

but not more than two. In Chapter 11, I showed the SPSS1 Levene’s Test output

that is included with the T test. We can use the same process to test for equal

FIGURE 12.11 SPSS1 graphs for FR groups.
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variances in our sample groups. In the sections that follow, we will examine the

Levene’s Test results.

3. Samples are Independently Chosen?

This assumption is met by virtue of schools being randomly chosen and not placed

in groups due to any structurally linking criteria.

4. Interval Data on the Dependent Variable?

This assumption is met. Percentages are interval data.

HAND CALCULATIONS

Before we proceed to Excel1 and SPSS1, we can perform the calculations by

hand for comparison. Because of the magnitude of the numbers (they are all in

percentages), I prepared an Excel1 spreadsheet showing the data and providing

the key sums for the ANOVA calculations. Table 12.10 shows the data and

the sums.

FIGURE 12.12 The SPSS1 Means procedure.
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We can now use the formulas above to ‘‘populate’’ our ANOVA summary table.

The calculations for SST, SSB, and SSW follow. Table 12.11 shows the values in

the completed ANOVA summary table.

TABLE 12.10 The ANOVA Example Database with Key Values

Low FR% Medium FR% High FR%

X1 X2
1 X2 X2

2 X3 X2
3

9.70 94.09 24.40 595.36 11.40 129.96

30.80 948.64 25.60 655.36 12.50 156.25

50.00 2500.00 27.30 745.29 15.00 225

50.80 2580.64 33.30 1108.89 27.90 778.41

54.10 2926.81 41.70 1738.89 28.50 812.25

54.40 2959.36 44.40 1971.36 33.30 1108.89

55.80 3113.64 44.60 1989.16 34.10 1162.81

55.90 3124.81 46.20 2134.44 35.40 1253.16

63.20 3994.24 49.00 2401.00 35.60 1267.36

64.70 4186.09 49.10 2410.81 42.30 1789.29

64.80 4199.04 50.70 2570.49 46.30 2143.69

65.00 4225.00 51.10 2611.21 46.80 2190.24

65.80 4329.64 61.60 3794.56 50.00 2500

70.30 4942.09 63.00 3969.00 60.00 3600

70.60 4984.36 67.20 4515.84

72.10 5198.41 69.10 4774.81

73.90 5461.21 70.30 4942.09

76.70 5882.89 84.20 7089.64

78.30 6130.89

79.10 6256.81

79.30 6288.49

79.60 6336.16

82.40 6789.76

82.60 6822.76

83.70 7005.69

85.00 7225.00

89.80 8064.04

Sums 1788.40 126,571 902.80 50,018 479.10 19,117

SX2 126,571 50,018 19,117

(SX)2 3198,375 815,048 229,537
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Calculating SST (SST ¼25,353.49)

SS ¼ P
X2 � ðSXÞ2

N

SST ¼ ð126; 571þ 50; 018þ 19; 117Þ � ð1788:4þ 902:8þ 479:1Þ2
59

SST ¼ 195; 706� 170; 352:6

Calculating SSB (SS B¼ 9782)

SSB ¼ ðSX1Þ2
n1

þ ðSX2Þ2
n2

þ ðSX3Þ2
n3

ð�Þ ðSXÞ2
N

SSB ¼ 3; 198; 375

27
þ 815; 048

18
þ 229; 537

14
ð�Þ ð1788:4þ 902:8þ 479:1Þ2

59

SSB ¼ 118; 458þ 45; 280þ 16; 395ð�Þ170; 352:6

Calculating SSW (SS W¼ 15,571)

SSW ¼ SST � SSB
SSW ¼ 25; 353:49� 9782

The Hypothesis Test

Null Hypothesis: H0 : m1 ¼ m2 ¼ m3 ¼ m4

Alternate Hypothesis: HA : m1 6¼ m2 6¼ m3 6¼ m4

Critical Value of Exclusion: F(.05,2,56)¼ 3.16

Calculated F: 17.59

Decision: Reject the null hypothesis. (This test is significant at

or beyond p< 0.05. (That is, the calculated F ratio

was so large it surpassed the 0.05 exclusion value of

3.16 and therefore lies in the extreme portion of the

comparison distribution.)

Interpretation: The omnibus test indicates that the FR groups show

different mean percentages of students who pass the

math assessment. Schools with low FR percentages

show higher percentages of students who pass the

math assessment.

TABLE 12.11 The Completed ANOVA Summary Table for the Extended Example

Source of Variance SS df MS F Ratio

Between 9782 2 4891 17.59

Within 15,571 56 278

Total 25,353 58 —
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Effect Size (h2 ¼ 0.39)

The effect size is an easy calculation using the ANOVA summary table values. As

the calculation indicates, 39% of the variance in math passing rates among the study

schools is explained/affected by the FR groupings. This value far exceeds the 0.15

guideline for a high effect size, but the value of the effect size is contextualized by

the research problem. In this case, I would think that one influence explaining

almost 40% of schools’ math passing rates is amazingly high. We will keep an eye

on the FR variable in subsequent analyses.

h2 ¼ SSBetween

SSTotal

h2 ¼ 9782

25353

Post Hoc Analysis

Using the Tukey Range Test, we can create the HSD critical comparison value

to compare our mean differences. Using the Tukey Range table of values,

we can identify q(Range)¼ 3.40. We identified this value in the table by viewing

the groups¼ 3 column and the MSW df row¼ 60 because the table did not

include the df¼ 56 row. If we wanted to be additionally conservative we could

have used the df¼ 40 row (which identified the q(Range)¼ 3.44) because this

would make the exclusion value more stringent, but the actual df (56) was clos-

est to the df of 60.

HSD ¼ qðRangeÞ

ffiffiffiffiffiffiffiffiffiffi
MSw

n

r

HSD ¼ 3:40

ffiffiffiffiffiffiffiffi
278

20

r

HSD ¼ 12:68

Recall that this formula requires the sample sizes to be equal. Without introduc-

ing a formula that accommodates unequal sample size, you can take the average of

the sample sizes ((27þ 18þ 14)/3¼ 20).

Table 12.12 continues the post hoc analysis by presenting group mean differ-

ences to compare with the HSD value. As you can see, all group mean differences

exceed the HSD value of 12.68. Therefore, the groups differ from one another sta-

tistically. Figure 12.11 shows how the group means might appear.

Figure 12.13 shows the groups graphed together. You can see that the percent

passing rates are highest for the low FR group followed by the medium FR group

and finally the high FR group.
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USING EXCEL1 AND SPSS1 WITH ONE-WAY ANOVA

Now that we have used hand calculations to derive the ANOVA results, I will show

how to use Excel1 and SPSS1 to derive the results quickly. We can compare all

three sets of results.

Excel1 Procedures with One-Way ANOVA

In order to use One-Way ANOVA in Excel1, the data need to be arrayed like

the data table in Table 12.10. Show three columns, one for each of the FR

groups, and populate the rows with the Math achievement data from the study

schools. Simply select the entire set of data, including the labels in the first row,

and use the ‘‘Data–Data Analysis’’ menus to bring you to the screen shown in

Figure 12.14. As you can see, there are three choices for ANOVA. The One-

Way ANOVA uses a single factor (one independent variable) so the top choice

is the option we need for our analysis.

TABLE 12.12 The Group Mean Difference Matrix

M1 (66.24) M2 (50.16) M3 (34.22)

M1 (66.24) — 16.08 32.02

M2 (50.16) — 15.93

M3 (34.22) —

FIGURE 12.13 The three FR group distributions on percent passing math assessments.
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When we run this operation, Excel1 returns the output shown in Figure 12.15.

The top panel is the descriptive statistics showing the mean and variance math

achievement values for each FR group. The ‘‘Average’’ column will be helpful

when we create the mean difference matrix for the post hoc analysis if we reject the
null hypothesis in the omnibus F test.

The bottom panel of Figure 12.15 shows the ANOVA summary table. This is the

same table we created by hand. It shows the sources and measures of variance and

the calculated F ratio (17.59). Excel1 also reports the exact probability of the F
ratio in the ‘‘P-value’’ column. The reported value of ‘‘1.18E-06’’ does not look

like our usual probability figures (e.g., p< 0.05) because it is written in scientific

notation. The E-06 part of the value means to move the decimal place six places to

the left of its current position. Thus, the probability value actually is

p¼ 0.00000118. Our F ratio thus falls extremely far into the exclusion area and is

highly unlikely to be a chance finding. Scientific notation is used as a shorthand

mechanism to report numbers with many digits.

FIGURE 12.14 The Single Factor ANOVA menu option in Excel1.

Anova: Single Factor 

SUMMARY 

VarianceAverageSum Count Groups 

312.0166.241788.427 Low FR 

278.6950.16902.818 Medium FR 

209.3734.22479.114 High FR 

ANOVA 

Source of Variation F crit P value F MS df SS 

3.161861 1.18E-0617.594890.8329781.66 Between groups 

278.075615,571.83 Within groups 

5825,353.49 Total 

FIGURE 12.15 The Excel1 single-factor ANOVA output.
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The F crit (or, critical value for F) value in the summary table indicates the point

value on the F distribution that defines the exclusion area. Our F ratio of 17.59 well

exceeds this point, resulting in the extremely small p value.
Note that the Excel1 output does not include information about effect size.

However, you can calculate eta squared (h2) easily from the summary table as we

did in our hand calculations. Recall that h2¼ 0.39 calculated as follows:

h2 ¼ SSBetween

SSTotal
;

h2 ¼ 9782

25; 353

Because the omnibus test was significant (i.e., we rejected the null hypothesis),

we can perform the post hoc analysis. However, no provision is made in Excel1 to

create the post hoc analysis. You can perform it as we did in our hand calculations if

you are using Excel1 as your only statistical software.

SPSS1 Procedures with One-Way ANOVA

The one-way ANOVA procedure in SPSS1 is easy to create and is thorough in

what it reports. Figure 12.16 shows the menu choices that allow the one-way

ANOVA procedure. As you can see, it is in the same menu group that includes the

single-sample T test and the independent-samples T test that we discussed in previ-

ous chapters. This menu also includes the Means procedure we used above to create

the descriptive data for the three FR groups.

FIGURE 12.16 The SPSS1 menu options for accessing the one way ANOVA.
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When you select the One-Way ANOVA procedure, the window shown in

Figure 12.17 appears that allows the researcher to specify the analysis. As you can

see, I specified the MathPercentMetStandard variable as the outcome measure, and

I included FR as the grouping variable (‘‘Factor’’). The three buttons on the top

right of the screen can be used for further specification.

Figure 12.18 shows the choices available from selecting the ‘‘Post Hoc’’ button
from the One-Way ANOVA menu. As you can see, there are several post hoc
procedures available for inclusion in the analysis. I selected the Tukey procedure

to demonstrate the results alongside our hand calculations of the Tukey Range

Test. Note that the post hoc procedures are ‘‘grouped’’ according to whether equal

variances (of the FR sample groups) are assumed or not. There are a few post hoc
procedures available if you find the variances to be unequal.

FIGURE 12.18 The post hoc choices from SPSS1 One-Way ANOVA.

FIGURE 12.17 The One-Way ANOVA specification windows.
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When you select the ‘‘Options’’ button from the One-Way ANOVA menu,

you can select several important procedures that we can use in our analysis.

Figure 12.19 shows these choices. As you can see, I chose ‘‘Descriptive’’ proce-

dures to derive the group means and other data, along with the ‘‘Homogeneity of

variance test’’ option that will produce Levene’s Test for equality of variance. This

will allow us to assess the equal variance assumption for one-way ANOVA that we

discussed in the earlier section on the assumptions for ANOVA.

The output that results from these specifications is shown in Figures 12.20

through 12.23. The descriptive values are reported in Figure 12.20. You can com-

pare this information with the Excel1 report in Figure 12.15.

The next panel in the output is Levene’s Test, shown in Figure 12.21.

As you see, Levene’s Test was not significant because the ‘‘Significance’’

reported is p¼ 0.827. Therefore, the test statistic did not land in its exclusion re-

gion or it would have reported a much smaller chance probability (i.e., p< 0.05).

Since Levene’s Test was not significant, the FR groups can be considered to have

equal variance in their school math achievement values. That is, because the test

was not significant, the null hypothesis of equal variances among sample groups

was not rejected. This is the finding that confirms that the equal variance assump-

tion is met for one-way ANOVA and that allows the researcher to continue with

the ANOVA analysis. If Levene’s Test would have shown a significant result, the

FIGURE 12.19 Options for SPSS1 one-way ANOVA.
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‘‘Significance’’ value would be smaller than 0.05, indicating that its calculated test
value would have fallen in the exclusion area. Under this circumstance, the

researcher would need to decide how to proceed because one of the ANOVA

assumptions would not have been met.

The next panel of the results is the ANOVA summary table shown in

Figure 12.22. This table is identical to the Excel1 table (see Figure 12.15), but the

‘‘Significance’’ value is not reported in scientific notation. It is listed as 0.000, indi-

cating that the p value for the F ratio is extremely small! If you change the decimal

places for this value, it shows 0.00000118, which matches the Excel1 value.

SPSS1 does not routinely produce h2, but you can confirm that the effect size is

the same as our hand calculation (h2¼ 0.39) by dividing the appropriate values

from the ANOVA summary table.

The final panel of the SPSS1 output is the post hoc analysis that we specified as

shown in Figure 12.18. The results are shown in Figure 12.23. I highlighted some

ANOVA

MathPercentMetStandard

Sum of Squares df Mean Square F Significance

Between groups 9781.661 2 4890.831 17.589 0.000

Within groups 15571.831 56 278.068

Total 25353.492 58

FIGURE 12.22 SPSS1 one-way ANOVA summary table.

Test of Homogeneity of Variances

MathPercentMetStandard

Levene Statistic df1 df2 Significance

0.191 2 56 0.827

FIGURE 12.21 Levene’s test results in SPSS1 one-way ANOVA.

Descriptives
MathPercentMetStandard

95% Confidence Interval for Mean 

N Mean
Standard

deviation 
Standard

error Lower Bound Upper Bound 
Minimum Maximum 

1.00 27 66.24 17.664 3.399 59.25 73.22 10 90

2.00 18 50.16 16.694 3.935 41.85 58.46 24 84

3.00 14 34.22 14.470 3.867 25.87 42.58 11 60

Total 59 53.73 20.908 2.722 48.29 59.18 10 90

FIGURE 12.20 The descriptives report in SPSS1 one-way ANOVA.
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of the values in the first row to explain the output. The first two columns indi-

cate which two FR group means are being compared. According to the shaded

values, the first comparison is between FR 1 (Low) and FR 2 (Medium). The

difference in the group means (66.24� 50.16¼ 16.08) is shown in the third col-

umn (‘‘Mean Difference I� J.’’) and the difference is considered significant as

shown by the shaded value (0.007) in the Significance column. Thus, the differ-

ence in the group means (16.08) was large enough to fall in the exclusion region

of the comparison distribution as determined by the Tukey HSD statistic (not

shown). Therefore these two FR groups are significantly different in terms of

schools’ math achievement results. The remaining comparisons are interpreted

in the same fashion.

The standard error of the HSD statistic (5.074 for the first comparison) is

reported in the ‘‘Standard Error’’ column, but the calculated HSD value is not

shown. Note that you could create confidence intervals around the mean differences

as shown in the final two columns.

The Tukey report in Figure 12.23 is arranged a bit differently than our group

mean matrix. However, you can see that both negative and positive values are

reported, depending on which value is reported first. As with our matrix, the inter-

pretation of the values depends on the context of the research question. In our study,

the group means indicate percentages of students in the study schools who passed

the math assessment. Therefore, positive values indicate stronger math perform-

ance. FR group 1 (Low FR) thus outperforms the other two groups, while FR group

2 outperforms FR group 3.

All the findings indicate that FR is a significant (because we rejected the null

hypothesis) and meaningful (due to the magnitude of the effect size) influence on

school math achievement. In fact, the results are dramatic. We may wish to quibble a

Multiple Comparisons

MathPercentMetStandard

Tukey HSD 

95% Confidence Interval 

(I) FR (J) FR Mean Difference (I–J) 
Standard

Error 
Significance

Lower Bound Upper Bound 

2.00 16.081
a

5.074 0.007 3.87 28.301.00

3.00 32.016
a

5.492 0.000 18.79 45.24

1.00 –16.081
a

5.074 0.007 –28.30 –3.872.00

3.00 15.934
a

5.942 0.026 1.63 30.24

1.00 –32.016
a

5.492 0.000 –45.24 –18.793.00

2.00 –15.934
a

5.942 0.026 –30.24 –1.63

a
The mean difference is significant at the 0.05 level. 

FIGURE 12.23 The Tukey post hoc results in the SPSS1 one-way ANOVA procedure.
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bit about the FR (Low) skewness and kurtosis, but the results are fairly clear. Family

income (as measured by FR) appears to have a strong affect on school-based math

achievement. We will extend our analysis with this variable in subsequent analyses.

THE NEED FOR DIAGNOSTICS

Every researcher knows that real data can be problematic. Not all sample group

data conform to perfect distributions. Sometimes, even small discrepancies in

the data or data entry errors can have a huge effect on the results of an analysis.

Ordinarily, I include a section on diagnostics when I write about statistical pro-

cedures [e.g., see Abbott (2010)]. I will talk about these issues as we encounter

them in this text, but I strongly encourage you to seek out further, advanced

works when you begin to perform actual research with real data. Before you

begin, pay attention to the nature of the data, and decide whether you are satis-

fied that there are no issues that may lead to invalid results. I encourage my

students to always simply look at the data. You may be surprised what your

eyes pick up that the analyses do not!

As an example of this point, consider our database shown in Table 12.10. The

first value of the FR Low group is 9.7. You can see by looking at the other values

that this value is quite low. In order to make this point, I eliminated it from the

analysis. Simply dropping that single value resulted in the F ratio increasing to

24.98 (from 17.59) and the h2 increasing to 0.48 (from 0.39)! In addition, the skew-

ness and kurtosis values fell dramatically (both fell to below 1.00).

Eliminating one school from the study assured us that the assumptions for

ANOVA were met and the power of the findings was increased substantially. This

result shows the influence only one case can have in a study. Therefore, you need to

be very careful about the assumptions and the meaningfulness of the data before

you begin a study.

There can be a fine line between using diagnostic procedures to eliminate cases
that should be eliminated and simply eliminating cases because it makes the results
better! I intentionally left the extreme case in the data because it is a real school and

these were real results. However, it is not a traditional school, it is an alternative

school with nontraditional education for students whose needs cannot be met in a

traditional school (e.g., students with behavioral problems).

Here is the key issue: Keep or eliminate cases based on the nature of the study

and the research study guidelines. Because the school in my example above may not

be typical of all the other schools in the study, I could have eliminated it as being

noncomparable. Again, I chose to leave it in based on two things: (1) I wanted to

discuss the general point of eliminating cases for diagnostic reasons, and (2) I wanted

to point out that declining to analyze a set of data because the data exceed skewness
and kurtosis benchmark values (‘‘from 2 to 3’’) may not be warranted. In the current

study, if I had eliminated the low case, the group mean would have increased to 68.41

(from 66.24). This would only have further separated the groups from one another.

The slight skewness and kurtosis ‘‘violations’’ were not problematic in this study.
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Taken together, I will underscore a theme I have stated previously. The re-

searcher is ultimately in charge of the nature of the research. Statistical procedures

can help to make sense out of data and help to make statistical decisions, but the

researcher is ultimately the most important part of the process for conducting a

study and making conclusions.

NONPARAMETRIC ANOVA TESTS

As I discussed in Chapter 11, there are nonparametric tests that correspond to the

parametric tests that I cover in this book. One of the ‘‘parallel’’ nonparametric tests

for the Independent-Samples T Test is the Mann–Whitney U that I discussed in Chap-

ter 11. There are nonparametric tests that are similar to the ANOVA test as well.

The Kruskal–Wallis Test is one of the parallel nonparametric tests for one-way

ANOVA. Like the Mann–Whitney U, this test uses ranks and determines whether

groups of dependent variable ranks are different from one another.

The data in Table 12.12a are hypothetical data that compare the aggregate math

achievement of urban (Setting¼ 1), rural (Setting¼ 2), and suburban (Setting¼ 3)

groups of schools. Like the ANOVA test, the research question is whether these

groups are equivalent or statistically different. The Kruskal–Wallis Test uses ranks

to make the determination.

Using SPSS1 to specify the Kruskal–Wallis Test is a similar process to the one

we used for the Mann–Whitney U in Chapter 11. If you look at Figure 11.24a, you

will see the process for specifying the Kruskal–Wallis Test. The only difference is

that you would choose ‘‘k Independent Samples’’ rather than ‘‘2 Independent Sam-

ples’’ because Kruskal–Wallis tests the differences among more than two groups.

When you choose this option, you will see the window in Figure 12.23a. As you

can see, I specified the MathAch variable as the test variable and entered the three

TABLE 12.12a Hypothetical Data for Kruskal–Wallis
Test

Setting MathAch

1 10

1 14

1 6

1 12

2 24

2 18

2 38

2 16

3 54

3 52

3 42

3 50
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Ranks

Setting N Mean Rank 

1.00 4 2.50

2.00 4 6.50

3.00 4 10.50

MathAch 

(b)

Total 12

Test Statistics
a,b

MathAch 

Chi-square 9.846

df 2

Asymp. Sig. 0.007

aKruskal Wallis Test 
bGrouping Variable: Setting. 

FIGURE 12.23 (a) The specification window for the Kruskal–Wallis test. (b) The output

for the Kruskal–Wallis test.
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setting groups in the ‘‘Grouping Variable’’ window. Note that you can choose other

tests of this type in the ‘‘Test Type’’ box, but I will only show the results for the

Kruskal–Wallis Test.

Figure 12.23b shows the results output for the Kruskal–Wallis Test. The top

panel shows the descriptive results, which in this example are the mean ranks by

setting groups. The bottom panel shows the test statistics that will help us determine

whether there are significant differences between the setting groups. As you can

see from the results, we can reject the null hypothesis at the p < 0.007 level. There

are significant MathAch differences among the setting groups.

Like ANOVA, if there are significant differences among the different groups, we

may wish to conduct post hoc analyses to see how the groups differ. One way of

doing this is to conduct separate Mann–Whitney U Tests for all comparisons. In

this case, there would be three paired comparisons (i.e., Setting groups 1 & 2,

groups 1 & 3, and groups 2 & 3).

As I explained above with the post hoc process in ANOVA, conducting

three separate Mann–Whitney U Tests may result in a problem because we

would compound the overall alpha error. We can still use this process by using

a ‘‘correction’’ to our alpha exclusion area. The Bonferroni method specifies that

we can divide the overall alpha level (0.05) by the number of paired compari-

sons in order to create an appropriate target significance area for each. Because

we have three comparisons, and we use the 0.05 level of significance, the

Bonferroni technique would specify a new region of rejection at p< 0.0167

(0.05/3¼ 0.0167).

This process creates a more conservative estimate of the significance of

paired comparisons, but we can run into trouble if we have too many compari-

sons! In the current example, the overall Kruskal–Wallis results indicated a sig-

nificant finding at p< 0.007. If we were to conduct all three comparisons, we

would find the results shown in Table 12.12b. As you can see, each of the com-

parisons was significant at p< 0.029, which exceeds our new rejection region of

0.0167. If we were more selective in our comparisons, we could specify only

one or possibly two comparisons, but beyond this we would not have confidence

in our differences.

One further warning is in order for both the Mann–Whitney U Test and

Kruskal–Wallis Test. If we have several tied ranks, the results may be somewhat

compromised. My examples in this chapter and Chapter 11 were simple and did

not have tied ranks. Actual data analyses would likely be larger and may involve

several tied ranks.

TABLE 12.12b The Paired Comparison Results

Mann Whitney U Significance

Group 1–2 0.029

Group 1–3 0.029

Group 2–3 0.029
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TERMS AND CONCEPTS

ANOVA The Analysis of variance test that assesses the extent to which the

variance between group means and the grand mean of a distribution is large

relative to the variance of individual scores of different sample groups. This test

is typically used with three or more sample groups.

F Test The statistical test comparing the between and within variances in an

ANOVA test. The calculated ratio of between to within variance is compared to

the exclusion values of the F distribution.

Familywise Error The inflation of alpha error due to conducting multiple post
hoc comparison tests.

Kruskal–Wallis Test The nonparametric test comparable to ANOVA but using

ordinal data.

Levene’s Test The statistical test assessing the assumption of homogeneity of

variance.

Post Hoc Analyses Individual comparison tests conducted among sample group

values subsequent to a significant ANOVA finding.

Variance Between The variation of group means around the grand mean in an

ANOVA analysis.

Variance Total The total variation (between and within) in an ANOVA analysis

resulting from all individual scores varying around the grand mean.

Variance Within The variation of scores around their own group means in an

ANOVA analysis. Also known as ‘‘error.’’

REAL-WORLD LAB VIII: ANOVA

This lab is an extension of our real-world example above. This time, however, the

outcome measure is schools’ reading achievement rather than math achievement.

We will use the same predictor variable, FR. The overall research question is the

same: Does family income affect schools’ student achievement results?

We will use the same data sample (59 schools) with schools grouped according

to low, medium, and high FR lunch (as an operational definition of family income).

You can use Excel1 to create the database the same way I did above for ease of

calculation.

1. Discuss whether the data meet the assumptions for ANOVA.

2. (Temporarily) Eliminate the school in the low FR category with an extreme

result and compare the results with your findings for #1 above.

3. Calculate the one-way ANOVA test by hand showing results (including the

extreme case.)

4. Use Excel1 and SPSS1 to analyze the data with and without the extreme case.

5. Create a summary of findings.
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REAL-WORLD LAB VIII: SOLUTIONS

Table 12.13 shows the Excel1 database that includes the extreme case (case #1 in

Group 1 that is shaded). I showed key data analyses that are appropriate for ANOVA.

1. Discuss Whether the Data Meet the Assumptions for ANOVA

Assumption 1: Are Populations Normally Distributed? Tables 12.14 and 12.15

show the respective Excel1 and SPSS1 descriptive summaries for the FR groups

TABLE 12.13 The Data for Real-World Lab VIII

Low

FR (X1) X2
1

Medium

FR (X2) X2
2

High

FR (X3) X2
3

26 665.64 56 3180.96 22 479.61

62 3782.25 60 3564.09 41 1697.44

69 4774.81 63 4019.56 46 2070.25

75 5670.09 65 4225 47 2218.41

75 5685.16 67 4448.89 49 2430.49

76 5745.64 70 4900 54 2883.69

78 6068.41 70 4942.09 61 3672.36

82 6707.61 70 4956.16 62 3794.56

83 6822.76 70 4956.16 66 4303.36

83 6938.89 73 5299.84 71 5069.44

84 6972.25 77 5882.89 71 5097.96

84 7022.44 79 6162.25 75 5625

85 7157.16 79 6193.69 76 5715.36

85 7225 79 6304.36 80 6400

85 7259.04 80 6320.25

87 7482.25 83 6855.84

87 7516.89 92 8500.84

87 7534.24 95 8968.09

88 7691.29

88 7761.61

90 8010.25

90 8136.04

91 8226.49

94 8817.21

96 9120.25

96 9120.25

96 9235.21

SX 2,217.90 1,327.60 819.70

SX2 187,149.13 99,680.96 51,457.93

(SX)2 4,919,080.41 1,762,521.76 671,908.09

n 27 18 14

Mean 82.14 73.76 58.55
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(including the extreme case). As you can see from both tables, the normal distribu-

tion assumption is not met in the FR Low group. Both skewness and kurtosis are

well out of bounds (i.e., far beyond our 2–3 guideline). The results are most clear in

Table 12.15 because SPSS1 reports the standard error for skewness and kurtosis.

The graphs in Figure 12.24 provide a clear visual summary of these group one

violations.

Assumption #2: Are Population Variances Equal? We will check this assumption

by examining the Levene’s Test results in SPSS1.

Assumptions #3 (Independent Selection) and #4 (Interval Data) Are Met.

2. (Temporarily) Eliminate the School in the Low FR Category
with an Extreme Result and Compare the Results with
Your Findings for #1 Above

Both the Excel1 and SPSS1 results (Tables 12.16 and 12.17, respectively) indicate

no skewness or kurtosis violations when the extreme case is removed. The graphs in

Figure 12.25 confirm these findings with visual evidence.

TABLE 12.14 The Excel1 Descriptive Analyses

Low FR (X1) Medium FR (X2) High FR (X3)

Mean 82.14 73.76 58.55

Standard error 2.66 2.40 4.36

Median 85.00 71.60 61.10

Mode 95.50 70.40 #N/A

Standard deviation 13.81 10.18 16.32

Sample variance 190.81 103.71 266.50

Kurtosis 10.51 0.04 0.25

Skewness �2.83 0.41 �0.73

Range 70.30 38.30 58.10

Minimum 25.80 56.40 21.90

Maximum 96.10 94.70 80.00

Sum 2217.90 1327.60 819.70

Count 27 18 14

TABLE 12.15 The SPSS1 Descriptive Analyses: ReadingPercentMetStandard

FR Mean N
Standard

Deviation Kurtosis

Standard Error

of Kurtosis Skewness

Standard Error

of Skewness

1.00 82.14 27 13.813 10.506 0.872 �2.828 0.448

2.00 73.76 18 10.184 0.037 1.038 0.408 0.536

3.00 58.55 14 16.325 0.249 1.154 �0.728 0.597

Total 73.99 59 16.254 1.616 0.613 �1.186 0.311
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FIGURE 12.24 The SPSS1 graphs of FR groups with reading results to assess

assumption #1.

TABLE 12.16 The Excel1 Descriptive Analyses (Excluding Extreme Case)

Low FR (X1) Medium FR (X2) High FR (X3)

Mean 84.31 73.76 58.55

Standard error 1.60 2.40 4.36

Median 85.10 71.60 61.10

Mode 95.50 70.40 #N/A

Standard deviation 8.16 10.18 16.32

Sample variance 66.57 103.71 266.50

Kurtosis 1.28 0.04 0.25

Skewness �0.93 0.41 �0.73

Range 34.60 38.30 58.10

Minimum 61.50 56.40 21.90

Maximum 96.10 94.70 80.00

Sum 2192.10 1327.60 819.70

Count 26 18 14

REAL-WORLD LAB VIII: SOLUTIONS 299



3. Calculate the One-Way ANOVA Test by Hand Showing Results
(Including the Extreme Case)

Calculating SST (SST¼ 15,322)

SS ¼P
X2 � ðSXÞ2

N
;

SST ¼ ð187; 149þ 99; 681þ 51; 458Þ � ð2217:9þ 1327:6þ 819:7Þ2
59

;

SST ¼ 338; 288� 322; 966

TABLE 12.17 The SPSS1 Descriptive Analyses (Excluding Extreme Case):
ReadingPercentMetStandard

FR Mean N
Standard

Deviation Kurtosis

Standard Error

of Kurtosis Skewness

Standard Error

of Skewness

1.00 84.31 26 8.159 1.280 0.887 �0.931 0.456

2.00 73.76 18 10.184 0.037 1.038 0.408 0.536

3.00 58.55 14 16.325 0.249 1.154 �0.728 0.597

Total 74.82 58 15.079 1.615 0.618 �1.090 0.314

FIGURE 12.25 The SPSS1 graphs of FR groups (excluding extreme case).
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Calculating SSB (SSB¼ 5133)

SSB ¼ ðSX1Þ2
n1

þ ðSX2Þ2
n2

þ ðSX3Þ2
n3

ð�ÞðSXÞ
2

N
;

SSB ¼ 4; 919; 080

27
þ 1; 762; 522

18
þ 671; 908

14
ð�Þð2217:9þ 1327:6þ 819:7Þ2

59
;

SSB ¼ 182; 188þ 97; 918þ 47993ð�Þ322; 966

Calculating SSW (SSW¼ 10,189)

SSW ¼ SST � SSB;

SSW ¼ 15; 322� 5133

Table 12.18 shows the ANOVA summary table with the calculated results. The

calculated F (14.10) is significant (p< 0.05) as determined by the critical F value in

an F distribution table (F(0.05,2,56)¼ 3.17). The effect size can also be determined

from Table 12.18 as:

h2 ¼ SSBetween

SSTotal

h2 ¼ 5133

15; 322

h2 ¼ 0:34

Tukey’s Post Hoc Analysis. The Tukey Range table of values points to q(Range)¼
3.40 as with our previous (math) example. Using the Tukey formula, we obtain

HSD ¼ qðRangeÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
MSw

n
;

r

HSD ¼ 3:40

ffiffiffiffiffiffiffiffi
182

20

r
;

HSD ¼ 10:26

TABLE 12.18 The Completed ANOVA Summary Table for Lab VIII

Source of Variance SS df MS F Ratio

Between 5133 2 2567 14.10

Within 10,189 56 182

Total 15,322 58 —
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Recall that this formula requires the sample sizes to be equal. Without

introducing a formula that accommodates unequal sample size, we will take the

average of the sample sizes ((27þ 18þ 14)/3¼ 20) as we did with the math

example. Table 12.19 shows the results with the reading outcome variable. The

two shaded cells are significant because these mean differences exceed the HSD

value of 10.26. Therefore, Groups 1 (Low FR) and 2 (Medium FR) are not

different from one another, but Group 3 (High FR) is different from both the

other groups.

4. Use Excel1 and SPSS1 to Analyze the Data with and without the Extreme
Case

Before we analyze the ANOVA results, note that the Levene’s Test results are dif-

ferent, depending on whether the extreme case is included. Table 12.20 provides a

comparison from SPSS1 printouts. The top panel shows a significant Levene’s
statistic when the extreme case is included, which indicates that the sample group
variances are not equal. In this case, we would need to decide how to proceed if we

wished to continue with this analysis. The bottom panel indicates that the Levene’s

statistic is not significant, which indicates that the sample group variances are equal

and the equal variance assumption for ANOVA is met.

TABLE 12.19 The Group Mean Difference Matrix for Reading

M1 (82.14) M2 (73.76) M3 (58.55)

M1 (82.14) — 8.39 23.59

M2 (73.76) — 15.21

M3 (58.55) —

TABLE 12.20 SPSS1 Levene’s Test Comparison with and without the Extreme Case

Test of Homogeneity of Variances (with Extreme Case)
ReadingPercentMetStandard

Levene Statistic df1 df2 Significance

5.660 2 55 0.006

Test of Homogeneity of Variances (without Extreme Case)

ReadingPercentMetStandard

Levene Statistic df1 df2 Significance

1.576 2 56 0.216
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Table 12.21 compares the Excel1 ANOVA results with (top panel) and without

(bottom panel) the extreme case. As you can see, the calculated F ratios (shaded)

are quite different. Both are significant. Table 12.22 shows the SPSS1 results com-

parison which are identical to the Excel1 results.

Note the different way in which the significance is reported by both programs.

SPSS1 does not include the tabled F comparison value (Excel1 reports it in the

final column, ‘‘F crit’’). SPSS1 reports significance as ‘‘0.000,’’ whereas Excel1

reports the actual probability value in scientific notation.

TABLE 12.21 Excel1 Comparison Tables for Reading—FR Lab VIII

ANOVA (With Extreme Case)

Source of Variation SS df MS F P Value F crit

Between Groups 5133.863 2 2566.932 14.1088 1.09E-05 3.161861

Within Groups 10,188.55 56 181.9383

Total 15,322.41 58

ANOVA (Without Extreme Case)

Source of Variation SS df MS F P Value F crit

Between Groups 6068.697 2 3034.348 24.2158 2.86E-08 3.164993

Within Groups 6891.746 55 125.3045

Total 12,960.44 57

TABLE 12.22 SPSS1 Comparison Tables for Reading—FR Lab VIII

ANOVA (Including Extreme Case)
ReadingPercentMetStandard

Sum of Squares df Mean Square F Significance

Between Groups 5133.863 2 2566.932 14.109 0.000

Within Groups 10,188.546 56 181.938

Total 15,322.409 58

ANOVA (Excluding Extreme Case)
ReadingPercentMetStandard

Sum of Squares df Mean Square F Significance

Between Groups 6068.697 2 3034.348 24.216 0.000

Within Groups 6891.746 55 125.304

Total 12,960.443 57
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You can also compare differences in effect sizes, including the extreme case

results in h2¼ .34 versus h2¼ 0.47 when the case is excluded.

h2 ¼ 5133

15322
; h2 ¼ :34

h2 ¼ 6069

12960
; h2 ¼ :47

Excel1 does not provide post hoc analyses, so we will use SPSS1 to show the

Tukey results. Table 12.23 shows the Tukey results both with (top panel) and with-

out (bottom panel) the extreme case. As you can see from the shaded cells, the

results are different, depending on whether the extreme case is included.

TABLE 12.23 SPSS1 Post Hoc Results with and without the Extreme Case

Multiple Comparisons

Tukey HSD

95% Confidence Interval

(I) FR (J) FR

Mean

Difference

(I�J)

Standard

Error Significance

Lower

Bound

Upper

Bound

1.00 2.00 8.389 4.104 0.111 �1.49 18.27

3.00 23.594a 4.442 0.000 12.90 34.29

2.00 1.00 �8.389 4.104 0.111 �18.27 1.49

3.00 15.206a 4.807 0.007 3.63 26.78

3.00 1.00 �23.594a 4.442 0.000 �34.29 �12.90

2.00 �15.206a 4.807 0.007 �26.78 �3.63

Tukey HSD

95% Confidence Interval

(I) FR (J) FR

Mean

Difference

(I�J)

Standard

Error Significance

Lower

Bound

Upper

Bound

1.00 2.00 10.556
a

3.432 0.009 2.29 18.82

3.00 25.762a 3.711 0.000 16.82 34.70

2.00 1.00 �10.556a 3.432 0.009 �18.82 �2.29

3.00 15.206a 3.989 0.001 5.60 24.81

3.00 1.00 �25.762a 3.711 0.000 �34.70 �16.82

2.00 �15.206a 3.989 0.001 �24.81 �5.60

aThe mean difference is significant at the 0.05 level.
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When the extreme case is included, groups 1 and 2 are not different from each

other, but both are different from group 3. However, when the extreme case is

excluded, all three group differences are significant.

5. Create a Summary of Findings

Taken together, the data analyses indicate that groups of FR have an impact on

schools’ reading achievement results. In particular, as the percentages of students

qualified for FR increase in the schools, the percentage of students meeting the

reading achievement assessment declines. The results are sharpened by excluding

the results of one alternative school that is not structurally comparable to the other

sample schools. When the case is excluded, F¼ 24.22 (p< 0.05) and the effect size

is substantial (h2¼ 0.47), indicating that 47% of the schools’ reading achievement

scores are affected by grouping on the FR variable (Low, Medium, and High). A

Tukey HSD analysis indicated that each of the three FR groups’ reading achieve-

ment percentages were significantly different from the other groups.
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13
FACTORIAL ANOVA

In Chapter 12, we discussed research studies with one independent variable and one

dependent variable. The designation ‘‘one-way’’ ANOVA makes reference to the

independent variable. We can extend these procedures by adding a second (or

more) independent variables to the design. This is known as Factorial ANOVA
because the focus is multiple factors (i.e., independent variables). When a second

independent variable is added, the procedure is known as a ‘‘two-way ANOVA.’’

A shorthand identification of factorial ANOVA is ‘‘2�ANOVA’’ indicating

that there are two independent variables. (A 3�ANOVA has three independent

variables, etc.)

Before we discuss factorial ANOVA, I want to mention briefly some extensions

of the ANOVA procedure. We will not explore these in this book, but you will see

how ‘‘adaptable’’ ANOVA is to different research situations.

EXTENSIONS OF ANOVA

There are several ANOVA procedures for special research designs and situations.

The basic ANOVA design is very flexible in that it can admit several different

sources of variance to compare at the same time.

Within-Subjects ANOVA

An ANOVA procedure designed for use with repeated measures is known as

Within-Subjects ANOVA. These are designs that use two or more measures from
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the same subjects or matched group subjects. (We will briefly examine one of these,

within subjects ANOVA, in a later chapter.) An example might be an ANOVA

design with only one group of subjects that is measured more than once, perhaps as

a ‘‘before–after’’ design or ‘‘pretest–post-test’’ design.

In these designs, the two measures of the dependent variable are highly related to

one another because we are measuring the same person(s) twice. Thus, we need a

statistical procedure that will take this relationship into account as the overall

ANOVA is calculated.

Two-Way Within-Subjects ANOVA

If the ANOVA design has more than one independent variable on which the same

group or subjects are measured twice, the researcher can use this Two-Way Within-

Subjects ANOVA. These research situations call for procedures that help ferret out

the differences among repeated measures. For example, suppose we used pre–post

comparisons on our noise–learning subjects (within subjects), but we also tested

them under ‘‘non-white noise’’ as well as ‘‘white noise’’ conditions. In this case, we

have more than one independent variable on whose levels the same subjects are

measured twice.

ANCOVA

A very useful ANOVA design that researchers use to control extraneous influ-

ences is Analysis of Covariance. If the researcher cannot truly randomize in the

study, ANCOVA might be helpful as a way of limiting the influence of a variable

or variables ‘‘outside’’ the design (known as ‘‘covariates’’), but that might affect

the results.

As an example, if we had not been able to randomly select and assign sub-

jects to the noise–learning experiment, we might be concerned that variables

other than noise might affect the outcome measure (learning). We might use

some existing measure of ‘‘learning ability’’ (GPA, achievement test score) as

a ‘‘control’’ on learning so that the post-test measure would measure only the

effects of the noise, not the individual subjects’ ability to learn. A pretest score

is a popular covariate.

ANCOVA procedures are controversial when the researcher relies on them

rather than randomization for producing valid and meaningful results. Randomiza-

tion provides the greatest confidence that all the extraneous variables are controlled

in a research situation. However, as we have seen, the researcher may not have

the luxury of full randomization. In these cases, particularly in quasi-experimental

designs, ANCOVA is a helpful tool.

ANCOVA procedures are also (perhaps especially) useful in post facto designs

when there is no manipulation of the independent variable. The researcher attempts

to control as many additional influences as possible on the outcome measure and

ANCOVA can be very helpful. ANCOVA is also used in procedures that are not

ANOVA-based, like multiple regression procedures.
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MULTIVARIATE ANOVA PROCEDURES

The procedures we cover in this book are univariate procedures. This means that

we have only one dependent or outcome variable in the research design. As you

move further into advanced statistical measures, you will see multivariate proce-

dures that have more than one outcome variable. MANOVA and MANCOVA are

two examples of multivariate procedures.

MANOVA

When a researcher adds one or more dependent variables to an ANOVA

design, the procedure is called MANOVA or Multivariate Analysis of Vari-

ance. To extend my noise experiment example from Chapter 12, I could have

added another dependent variable such as performance on a visual recognition

task. Thus, I would have had one independent variable (noise) and two depen-

dent variables (learning performance and visual recognition). I would use

MANOVA with this design because all the sources of error are contained

when you examine all the statistical tests at the same time. (We discussed this

as limiting familywise error in Chapter 12.)

MANCOVA

Of course, the statistical procedures can become increasingly sophisticated along

with the sophistication and complexity of the design. MANCOVA (Multivariate

Analysis of Covariance) is the extension of ANCOVA to designs with multiple
dependent variables.

FACTORIAL ANOVA

The factorial ANOVA performs the single ANOVA procedure twice (or as

many times as you have independent variables in the design) within the same

analysis. In this way, the familywise error is contained. In the output, we will

learn to recognize the separate effects of these two independent variables

(called main effects).

Interaction Effects

The factorial ANOVA also performs an additional analysis of the interaction
effects. As I have stated elsewhere, an interaction is present when the relationship
between one predictor and the outcome variable changes at different levels of
another predictor variable (Abbott, 2010). The key feature of an interaction effect

is that both independent variables have effects on each other as well as the depen-

dent variable; different levels of one independent variable affects the levels of the

other independent variable.
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An Example of 2�ANOVA

To take an example, suppose that in our noise–learning example, we were interested

in the difference between men and women as well as the difference between noise

conditions in producing learning errors. This 2�ANOVA would include the follow-

ing primary analyses:

� Main Effect 1: Do noise conditions differ in # of learning errors?
� Main Effect 2: Do men and women differ in # of learning errors?

� Interaction Effect: Do men and women produce different learning errors un-

der different noise conditions?

Figure 13.1 shows the design of an experiment in which we added a second inde-

pendent variable (men versus women) to our earlier noise–learning design. (In the

Figure 13.1 example, I created three groups of noise rather than four groups for a

clearer example.) As you can see, there are two main effects indicated by the analy-

ses between rows (noise) and between columns (men versus women). The depen-

dent variable learning errors are represented by the shaded areas where they would

be entered according to the independent variable categories.

The other analysis in 2�ANOVA is the interaction effect, represented by the

different shades in Figure 13.1. The darker the shade, the higher the learning errors.

In Figure 13.1, men and women differ in their patterns of errors under different

noise conditions. This is an interaction effect. Figure 13.2 shows how the interac-

tion effect appears with a line chart.

As you can see, Figure 13.2 shows that men produce more errors as the noise

levels increase. Women show a different pattern. Their highest errors are produced

under no-noise conditions with lower numbers of errors in medium- and high-noise

conditions. This is a hypothetical example, so we cannot draw conclusions about

the nature of noise and sex on learning errors. However, the example provides

insight into the fact that 2�ANOVA conducts several analyses simultaneously. The

interaction effect is shown separately in the 2�ANOVA output.

Women Men 

No Noise 

Medium Noise 

High Noise 

Do Noise conditions 
differ in # of 
learning errors? 

Do men and women 
differ in # of learning 
errors?

FIGURE 13.1 Main effects analyses in 2�ANOVA.
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Charting Interactions

When the interaction graph shows that the lines do not cross or intersect, we do not

expect a significant interaction. In these cases, the groups may be different on the

dependent variable, but the values of one independent variable are consistently par-

allel across values of the other independent variable.

There are different kinds of interactions that you will recognize by graphing

them. Disordinal interactions are those in which the lines cross in the plotted graph.
Figure 13.2 is an example of the disordinal interaction.

Ordinal interactions are those in which the lines may not cross within the plotted

graph, but they are not parallel. In these cases, the lines could intersect or cross if

they were carried out beyond the plotted area of the graph. (In these cases, the re-

searcher would need to decide if the extension of the analyses would not be of inter-

est to the research question.) Figure 13.3 shows examples of an ordinal interaction

and a study with no interaction.

FIGURE 13.2 The interaction effect of sex and noise conditions.

FIGURE 13.3 Ordinal interaction patterns compared to no interaction.
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Simple Effects

Generally, a significant interaction effect in the 2�ANOVA takes precedence

over the main effects findings. If there is a significant interaction, the main

effects dynamics ‘‘hide’’ the unequal cell findings across the factors. Looking

at Figure 13.1, for example, you could not detect the different ways that men

and women are affected by noise conditions if you were simply comparing the

total of men versus women. The different shades would be mixed together and

indistinguishable. Likewise, if you were just considering noise differences, the

men’s and women’s shades would be mixed together.

The interaction effects allow you to ‘‘disaggregate’’ the findings in such a way

that you can see the differences in one variable at each level of the other. Simple
effects are the ways you can ‘‘see’’ all these nuances. Simple effects show the

differences in categories of one independent variable within single categories of the

other independent variable.

In Figure 13.2, both the men’s and women’s lines represent separate simple

effects. The figure shows that if you focus only on men, you can see that the errors

increase across noise conditions. For women, the effects of noise are inconsistent on

their error production.

There are separate calculations for simple effects that researchers learn to calcu-

late in advanced statistics books or through SPSS1 and other statistical programs.

I will demonstrate these procedures briefly.

THE EXAMPLE DATASET

The example data I will use for this chapter is taken from the STAR Class-

room Observation ProtocolTM data provided by The BERC Group, Inc. I

included a general description of this database in Chapter 3 as a process for

measuring the extent to which Powerful Teaching and LearningTM is present

during a classroom observation. The BERC Group, Inc. has performed thou-

sands of classroom observations of all grade levels and subject areas in

Washington State. I chose a 5% sample of the 1189 observations in year four

of one study in Washington schools and randomly chose five observations per

cell to yield the ‘‘balanced’’ data in Table 13.1.1

CALCULATING FACTORIAL ANOVA

The factorial ANOVA has several comparisons that recognize the complexity of the

data. There are three primary comparisons:

1Although randomly drawn, I am using this small set of data only to illustrate 2�ANOVA, not to make

study conclusions.
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� Main effects (two comparisons)

� Row effects (Level of school in Table 13.1)

� Column effects (Subject in Table 13.1)

� Interaction effects (one comparison)

In order to calculate these comparisons, we need to start by calculating the

total, between, and within sums of squares as we did with the one-way

ANOVA. These are the ‘‘building blocks’’ of our 2�ANOVA calculations.

With the one-way ANOVA, recall that the total SS is the measure of variation

of all the individual scores around the grand mean. The between SS is the

measure of variation between the group means and the grand mean. The within

SS (the error measure) is the measure of variation of the group scores around

their own group means.

The ‘‘new’’ measures represent the following sources of variation:

� Row SS measure the variation of the row means (school level means in the

example) in reference to the grand mean.

� Column SS measure the variation of the column means (subject means in the

example) in reference to the grand mean.

� Interaction SS measure the variations of row means at levels of the column

means in reference to the grand mean.

Table 13.2 shows the data in Table 13.1 with the key calculations needed for the

2�ANOVA. As you can see, there are totals for the individual cells as well as sepa-

rate summaries for columns and rows.

TABLE 13.1 Data for 2�ANOVA Example

English Math

Elementary 1 2

3 2

3 3

3 4

3 3

Middle 4 3

2 2

3 4

4 1

2 3

High School 4 1

4 2

4 1

3 1

3 1
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TABLE 13.2 Data Summaries for 2�ANOVA Calculations

ENGLISH MATH

X X2 X X2
Elementary 1 1 2 4

3 9 2 4

3 9 3 9
n(row) 10

3 9 4 16 ΣX(row)
ΣX2(row)

n(row)
ΣX(row)
ΣX2(row)

n(row)
ΣX(row)
ΣX2(row)

27

3 9 3 9 79

n 5 5

ΣX
ΣX2

13 14

37 42

Middle 4 16 3 9

2 4 2 4

3 9 4 16
10

4 16 1 1
28

2 4 3 9 88

n 5 5

ΣX 15 13

49 39

High School 4 16 1 1

4 16 2 4

4 16 1 1
10

3 9 1 1
24

3 9 1 1 74

n 5 5

18 6

66 8

n(col) 15 15
ΣX(col)
ΣX2(col)

46 33

152 89

ΣX2

ΣX
ΣX2

Calculating SST (all six ‘‘cells’’ are included in the equation):

SS ¼ P
X2 �

P
Xð Þ2
N

SST ¼ ð37þ 42þ 49þ 39þ 66þ 8Þ � ð13þ 14þ 15þ 13þ 18þ 6Þ2
30

SST ¼ 241� 208:03
SST ¼ 32:97

Calculating SSB (including the six cell means):

SSB ¼
P

X1ð Þ2
n1

þ
P

X2ð Þ2
n2

þ
P

X3ð Þ2
n3

þ
P

X4ð Þ2
n4

þ
P

X5ð Þ2
n5

þ
P

X6ð Þ2
n6

ð�Þ
P

Xð Þ2
N
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SSB ¼
P

13ð Þ2
5

þ
P

14ð Þ2
5

þ
P

15ð Þ2
5

þ
P

13ð Þ2
5

þ
P

18ð Þ2
5

þ
P

6ð Þ2
5

ð�Þð13þ 14þ 15þ 13þ 18þ 6Þ2
30

SSB ¼ 223:80ð�Þ208:03
SSB ¼ 15:77

Calculating SSW (including the six cell values):

SSW ¼ SST � SSB

SSW ¼ 32:97� 15:77

SSW ¼ 17:2

Calculating the SS(Rows) (the main effect of school level):

SSðRowsÞ ¼
P

row1ð Þ2
n1

þ
P

row2ð Þ2
n2

þ
P

row3ð Þ2
n3

ð�Þ
P

Xð Þ2
N

SSðRowsÞ ¼ ð27Þ2
10

þ ð28Þ2
10

þ ð24Þ2
10

ð�Þ208:03
SSðRowsÞ ¼ 208:9ð�Þ208:03
SSðRowsÞ ¼ 0:87

Calculating the SS(columns) (the main effect of subjects):

SSðcolumnsÞ ¼
P

col1ð Þ2
n1

þ
P

col1ð Þ2
n2

ð�Þ
P

Xð Þ2
N

SSðcolumnsÞ ¼ ð46Þ2
15

þ ð33Þ2
15

ð�Þ208:03
SSðcolumnsÞ ¼ 213:7ð�Þ208:03
SSðcolumnsÞ ¼ 5:63

Calculating the Interaction

Like the SSW we can calculate the interaction SS (symbolized as SSrXc) by subtract-

ing the SS for rows and columns from the overall SS between as follows:

SSrXc ¼ SSB � ðSSðRowsÞ þ SSðcolumnsÞÞ
SSrXc ¼ 15:77� ð0:87þ 5:63Þ
SSrXc ¼ 9:27

The 2�ANOVA Summary Table

Just as we did with the one way ANOVA, we can now create the ANOVA summary

table for the 2�ANOVA. It has three rows to show the main effects and interaction
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effect, but it is otherwise the same as the one way table. Table 13.3 shows the

summary table with the calculated SS values included.

Recall that the ANOVA is an inferential process, so we need to estimate the

population variances (MS values) from the sample variances (SS values). We need

the degrees of freedom to create the estimates appropriately. These are a bit differ-

ent from the one-way ANOVAs because we are estimating different values, but the

basics are the same. Here are the ways to calculate the various degrees of freedom:

dfTotal ¼ N � 1 ðthe overall number of observations minus 1Þ
dfRow ¼ r � 1 ðthe number of rows minus 1Þ
dfCol ¼ c� 1 ðthe number of columns minus 1Þ
dfrXc ¼ ðr � 1Þ ðc� 1Þ ð# of rows � 1� # of columns minus 1; or dfRow � dfColÞ
dfW ¼ N � ðdfRow � dfColÞ ðor N � the number of cellsÞ

Creating the MS Values

In the one-way ANOVA, we used the following formula to calculate the F ratio:

F ¼ MSB

MSW

This formula simply compared the between to the within sums of squares in

order to see if the group means were far apart relative to the (error) variance within

each of the sample groups. With 2�ANOVA, we do the same thing, except that we

calculate the F values for each of the three effects (main effects and interaction

effect) by dividing each by the overall MSW.

Frow ¼ MSrow

MSW
; Fcol ¼ MScol

MSW
; FrXc ¼ MSrXc

MSW

Table 13.4 shows the completed 2�ANOVA summary table with the values we

calculated above. Now that we have the F ratios for the various components of the

study, we can proceed with hypotheses tests to determine whether the F ratios are in

the exclusion area of the comparison distribution and therefore not likely to occur

by chance.

TABLE 13.3 The 2�ANOVA Summary Table

Source of Variance SS df MS F

Between 15.77

Row main effect (level of school) 0.87

Column main effect (subject) 5.63

Interaction effect (level X subject) 9.27

Within (error) 17.2

Total 32.97
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The Hypotheses Tests

Table 13.4 shows the F-table values in the last column. These values indicate

the 0.05 exclusion region. Thus, any F ratio larger than the tabled values

would be considered significant at the p< 0.05 level. According to the table,

the omnibus test, the main effect for subject and the interaction effect are

significant. Thus, their F-ratio values are too high to be expected to occur by

chance (at the 0.05 level).

The Omnibus F Ratio

When we tested the one way ANOVA, we created the omnibus F ratio, a trans-

formed ratio of our sample values applied to the comparison distribution in order to

assess whether our sample values were likely a chance finding. In 2�ANOVA, we

focus on the F ratios of the specific row, column, and interaction effects to deter-

mine the same thing. That is why they can be computed by adding the SS values for

the main effects and the interaction effects. This will provide an overall SSBetween
value that can yield the omnibus F ratio. Thus,

SSBetween ¼ SSrow þ SScol þ SSrXc;

SSBetween ¼ 0:87þ 5:63þ 9:27;

SSBetween ¼ 15:77

The MSBetween can then be calculated by dividing the SSBetween by its df measure

(in this example it is 5 because it combines the df measures for the three effects).

MSBetween ¼ SSBetween

dfBetween
;

MSBetween ¼ 15:77

5
;

MSBetween ¼ 3:15

TABLE 13.4 The Completed 2�ANOVA Summary Table

Source of Variance SS df MS F F-Table Value1

Between 15.77 5 3.15 4.38 2.62�

Row main effect (level of school) 0.87 2 0.435 0.61 3.40

Column main effect (subject) 5.63 1 5.63 7.82 4.26�

Interaction effect (level X subject) 9.27 2 4.64 6.44 3.40�

Within (error) 17.2 24 0.72

Total 32.97 29

1F ratios exceeding F-table values are significant at or beyond the 0.05 level.
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The omnibus F ratio can be calculated by using the MSBetween value divided by

the MSW value as we did for the one way ANOVA:

F ¼ MSB

MSW
;

F ¼ 3:15

0:72
;

F ¼ 4:38

Effect Size for 2�ANOVA: Partial h2

Just as we did with one-way ANOVA, we need to understand the effect size of our

study. When we had one independent variable, it was a simple matter to calculate

h2, which expresses the proportion of the total variance explained by the indepen-

dent variable groups:

h2 ¼ SSBetween

SSTotal

We can calculate the ‘‘omnibus’’ effect size as follows:

h2 ¼ SSBetween

SSTotal
;

h2 ¼ 15:77

32:97
;

h2 ¼ 0:48

This value expresses the combined impact of the groups of school levels and

subjects on the STARTM overall measure. Thus the combined groupings explain

almost half (0.48) of the STARTM outcome measure of teaching observations.

Because we added another independent variable, however, we can ‘‘break the

overall explained variance down’’ into its specific proportions. We have created

three proportions of the total variance that can be so measured. The effect size for

2�ANOVA is therefore known as ‘‘Partial Eta Squared’’ or ‘‘Partial h2.’’ It is par-

tial because it is not an overall measure. Rather, it ‘‘partials out’’ the overall vari-

ance so that only the contribution of the specific main effect (or interaction effect)
is measured on the total variance explained.

Because the SSW is the error measure in ANOVA, we have to take it into account

in the overall assessment of calculating the F ratios and the effect sizes as well. The

following is a ‘‘conceptual equation’’ explaining how effect size works for partial

effects:

Partial h2 ¼ SSEffect

SSEffect þ SSW

As you can see, the SS measure for the specific effect (main effect and/or inter-

action effect) is divided by the same SS measure plus the SSW. The reasoning is that

the bottom part of the equation constitutes the total SS for the particular effect
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under consideration. Thus, the formula yields a percentage of variance explained in
the dependent variable that is provided by the proportion of the specific effect rela-
tive to its error measure.

Here is how Partial h2 is calculated for each main effect:

Effect Size for Row Main Effect (School Level):

Partial h2row ¼ SSrow

SSrow þ SSW
;

Partial h2row ¼ 0:87

0:87þ 17:2
;

Partial h2row ¼ 0:048

Effect Size for Column Main Effect (Subject):

Partial h2col ¼
SScol

SScol þ SSW
;

Partial h2col ¼
5:63

5:63þ 17:2
;

Partial h2col ¼ 0:247

Effect Size for Interaction Effect (School Level � Subject):

Partial h2rXc ¼
SSrXc

SSrXc þ SSW
;

Partial h2rXc ¼
9:27

9:27þ 17:2
;

Partial h2rXc ¼ 0:35

The question of the effect size ‘‘meaningfulness’’ is a matter for the researcher to

decide, as we discussed in Chapter 12. If you recall, I suggested the following

guidelines for assessing h2: 0.01 (small), 0.06 (medium), and 0.15 (large). Because

these are measures for the ‘‘omnibus’’ effect size, they may be too large for the

partial measures. However, they do provide some benchmark for judging the mag-

nitude of partial h2 results.

Discussing the Results

As we saw in Table 13.4, the omnibus test, the main effect for subject and the inter-

action effect are significant. Thus, school level and subject (english or math) taken

together significantly affect the STARTM overall observation value (because the

omnibus test was significant). The results are inconsistent among the various groups

of the factors, however. The researchers task is now to ‘‘dig deeper’’ into the find-

ings to understand the specific contributions of each of the levels of the factors.
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I mentioned above that when there is a significant interaction effect in the
2�ANOVA, this finding takes precedence over the main effects findings. Because
there are inconsistent values of one variable on values of the other variable, we

need to examine the interaction findings before other values. The two ways to do

this are by graphing the interaction and examining simple effects. I will show one

of the plots from the SPSS1 analysis that shows the interaction, and then I will

discuss the simple effects findings in the SPSS1 output.

Figure 13.4 shows the two lines for subject (english and math) on the different

school levels. As you can see, there is a disordinal interaction between these two

factors on the outcome measure of STARTM (estimated) mean values. The three

schools compare differently to one another, depending on the subject. Elementary

school classroom observations are similar for both subjects, whereas the observa-

tions are quite different at the high school level (with English outperforming math).

The simple effects can be viewed by considering each line separately. To take

the example of math in Figure 13.4 (dashed line), you can see that the value of the

‘‘overall’’ scores at the high school level is much lower than at the other two school

levels. The simple slope of English shows a different pattern. The values of ‘‘over-

all’’ change from elementary to high school also, but the difference in ‘‘overall’’

scores at the different school levels is not as extensive as in the case of math. I will

discuss the SPSS1 simple slope findings below. The simple slope questions for

English and math ‘‘overall’’ scores among the different school levels are as follows:

FIGURE 13.4 The interaction graph for the 2�ANOVA example (levelsch by subject).
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� Are the differences between elementary, middle-school, and high-school math

classrooms’ overall scores large enough to be considered statistically

significant?

� Are the differences between elementary, middle-school, and high-school

English classrooms’ overall scores large enough to be considered statistically

significant?

The trends in both math and English lines appear to show that the values are

quite different, depending on the level of the school. But are they ‘‘different

enough’’ to be considered significant? We could calculate the simple effects by

hand, but most researchers rely on statistical programs to help assess all the findings

for 2�ANOVA.

Excel1 does not have a straightforward method for assessing 2�ANOVA. One

procedure exists for ‘‘ANOVA: Two-Factor without Replication,’’ but there is no

provision for examining interaction effects.

SPSS1 has a very easy way to create the complete 2�ANOVA procedure

including interaction effects. Examining simple effects is not immediately apparent

through the main menus, however. The researcher must rely on ‘‘syntax’’ statements

that create the appropriate output for simple effects. Syntax is akin to programming

within SPSS1. It is not as intimidating as it sounds because the program includes

‘‘macro-like’’ statements that the researcher can use to create custom output. I will

mention these statements for simple effects in the following section.

USING SPSS1 TO ANALYZE 2�ANOVA

Figure 13.5 shows the data file structure for the SPSS1 2�ANOVA analysis. As

you can see, the dependent variable (overall) is listed with its raw score values fol-

lowed by the two factors (i.e., independent variables). The values in the latter varia-

bles identify the factor categories. Thus, levelsch categories are: 1, elementary; 2,

middle school; and 3, high school. Subject categories are: 1, English; 2, math.

Once the file is created, you can access the 2�ANOVA through the Analyze

menu. Figure 13.6 shows the choices leading to the appropriate ANOVA. As

you can see, the ‘‘General Linear Model’’ menu is chosen first. This general

category includes procedures that allow the researcher to examine the linear

effects of one or more independent variables on dependent variable(s). By

choosing ‘‘Univariate’’ we are specifying the procedures that include only one

dependent variable.

These menus allow you to specify the 2�ANOVA analyses through a series of

sub-menus. Figure 13.7 shows the overall menu for specifying the factors and

dependent variable measure of the analysis. As you can see, I specified overall as

the ‘‘Dependent Variable:’’ and both levelsch and subject as the ‘‘Fixed Factor(s):’’

in this analysis.
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The Univariate menu allows the researcher several choices for specifying the

analysis. The buttons on the upper right side of the callout window can be used to

customize the output. In what follows, I will show a series of callouts for a ‘‘basic’’

2�ANOVA procedure for our example. More complex analyses can be created by

researchers who gain experience with 2�ANOVA.

Overall Subject Levelsch Overall Subject Levelsch 

1 1 1 
1 1 3 
1 1 3 
1 1 3 
1 1 3 
2 1 2 
2 1 2 
2 1 3 
2 1 4 
2 1 3 
1 2 4 
1 2 2 
1 2 3 
1 2 4 
1 2 2 

2 2 3 
2 2 2 
2 2 4 
2 2 1 
2 2 3 
1 3 4 
1 3 4 
1 3 4 
1 3 3 
1 3 3 
2 3 1 
2 3 2 
2 3 1 
2 3 1 
2 3 1 

FIGURE 13.5 The SPSS1 data file for the 2�ANOVA example.

FIGURE 13.6 The SPSS1 ‘‘General Linear Model’’ and ‘‘Univariate’’ menus.
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The ‘‘Plots’’ Specification

This choice allows you to create plots of the factors and is a very helpful procedure.

Figure 13.8 shows how to use the menus to specify the plot that I produced in

Figure 13.4. As you can see, I created the ‘‘levelsch�subject’’ plot by specifying

levelsch in the horizontal axis and subject in the ‘‘Separate Lines:’’ window. You

must push the ‘‘Add’’ button (located just above the Plots window) once you

specify the plot so that it shows up in the Plots window.

You can choose the next button ‘‘Post Hoc’’ from the Univariate window if you

wish to examine the group differences. However, since our interaction term was

significant, we will need to look at the simple effects.

The ‘‘Univariate: Options’’ button is important for specifying further the kinds of

output you wish to see. Figure 13.9 shows some of the choices you can make. For

this basic example, I specified descriptive statistics and effect size estimates. The

‘‘Estimated Marginal Means’’ shown in the upper part of the panel are estimated
population means for the cells. This menu would help with the simple effects analy-

ses. However, SPSS1 does not allow simple effects analyses to be specified from

this menu. Researchers must use SPSS1 ‘‘syntax’’ (a series of pre-programmed

commands) in conjunction with the 2�ANOVA procedure. The following syntax

specification must be added to the procedure syntax in order to produce simple

effects output (readers unfamiliar with SPSS1 syntax may want to note these for

further study):

/EMMEANS¼TABLES (levelsch�subject) comp (subject)

/EMMEANS¼TABLES (levelsch�subject) comp (levelsch)

FIGURE 13.7 The SPSS1 menus for specifying the 2�ANOVA procedure.
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FIGURE 13.8 The Plots window that specifies the results graph.

FIGURE 13.9 The choices in the ‘‘Univariate: Options’’ window.
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After the foregoing choices are made, the researcher can create the 2�ANOVA

by choosing ‘‘OK’’ on the main Univariate menu. In what follows, I will present

some of the main parts of the SPSS1 output relevant to our example. Figure 13.10

shows the main summary table. You can compare the values in this table to the

values we calculated by hand above.

Omnibus Results

As you can see in Figure 13.10, two columns are added to the summary table that

we did not include in our hand calculations. The ‘‘Significance’’ column specifies

whether, and how far, the transformed F-ratio value falls into the comparison distri-

bution. Thus, significance values beyond 0.05 indicate that the F results fall further

into the exclusion region and are considered significant. All the values except the

F ratio for levelsch are significant.

The ‘‘Partial Eta Squared’’ values match those we calculated by hand. One

note here is that the Partial Eta Squared for the Corrected Model (0.478) shown in

Figure 13.10 is actually the omnibus h2. The ‘‘Corrected Model’’ results represent

the omnibus Between variance measures. The ‘‘Corrected Total’’ variance measure

represents our Total variance measure.

Figure 13.10 results indicate that the significant interaction will take precedence

in our discussion and findings of these data. Had the interaction not been signifi-

cant, we could have proceeded to examine the results for each main effect sepa-

rately. In what follows, I will discuss the simple effects findings because the

interaction was significant.

Simple Effects Analyses

When you include the appropriate syntax instructions for simple effects, SPSS1

produces simple effects tables showing separate F tests for each level of one

Tests of Between-Subjects Effects

Dependent Variable:overall 

Source

Type III Sum of 

Squares df Mean Square F Significance Partial Eta Squared 

Corrected model 15.767
a

5 3.153 4.400 0.006 0.478

Intercept 208.033 1 208.033 290.279 0.000 0.924

Levelsch 0.867 2 0.433 0.605 0.554 0.048

Subject 5.633 1 5.633 7.860 0.010 0.247

Levelsch*subject 9.267 2 4.633 6.465 0.006 0.350

Error 17.200 24 0.717

Total 241.000 30

Corrected total 32.967 29

aR squared = 0.478 (Adjusted R squared = 0.370). 

FIGURE 13.10 The SPSS1 2�ANOVA summary table.
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variable across the levels of the second factor. Figure 13.11 shows the simple

effects table for each of the levels of the schools across levels of subject. Each main

row is a separate F test of that particular level.

As you can see from Figure 13.11, the third category of findings (High School) is

a test of the overall scores among high school classrooms to see whether the subject

levels (English and math) differ significantly from one another. The F ratio (20.093)

is significant (p¼ 0.000), which indicates that English and math are significantly

different among high school classes.2 English and math are not different from each

other at the other levels of schools. Elementary schools and middle schools show

nonsignificant differences between English and math overall scores (F¼ 0.14 and

F¼ 0.558, respectively).

The plot in Figure 13.12 shows these simple effects results. Like the plot in

Figure 13.4, this figure shows how the dependent variable scores on each level of

one factor change across levels of the other factor. In Figure 13.12, the plot provides

a visual description of the simple effects results we saw in Figure 13.11. The

English and math overall scores differed significantly at the high school levels as

shown in the plot. The other two lines (elementary and middle schools) show very

little difference in overall scores between English and math subjects.

Figure 13.13 shows the other simple effects analysis. In this table, only the

second subject effect (math) is significant (F¼ 5.302, p¼ 0.012). This analysis

indicates that the different school levels show significantly different overall

scores among math classrooms. Figure 13.4 is a plot of this simple effect analy-

sis. As you can see, the math subject line is considerably different across levels

of school, with the high school level much lower than the elementary school and

middle school levels. The English subject line indicates differences among the

school levels (with the high school level showing highest overall scores), but

not significantly so.

Univariate Tests

Dependent Variable:overall 

levelsch Sum of Squares df Mean Square F Significance Partial Eta Squared 

Contrast 0.100 1 0.100 0.140
a

0.712 0.006Elementary

Error 17.200 24 0.717

Contrast 0.400 1 0.400 0.558 0.462 0.023Middle

Error 17.200 24 0.717

Contrast 14.400 1 14.400 20.093 0.000 0.456High

School 

Error 17.200 24 0.717

aEach F tests the simple effects of subject within each level combination of the other effects shown. These tests are based 

on the linearly independent pairwise comparisons among the estimated marginal means. 

FIGURE 13.11 The SPSS1 simple effects table for levels of schools on subject areas.

2 Remember that a significance level of 0.000 as reported by SPSS1 is shorthand for a very small

‘‘actual’’ probability. You may want to simply report p< 0.001 to indicate a very small chance probability.
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SUMMARY CHART FOR 2�ANOVA PROCEDURES

The procedures for 2�ANOVA may seem complex compared to those for one-way

ANOVA, but it is straightforward. SPSS1 provides a thorough series of output to

help with the simple effects analyses, which seem to be the most time consuming

aspects. Figure 13.14 is a procedural flow chart for 2�ANOVA that you might con-

sider as you prepare to use the procedure with your data.

TERMS AND CONCEPTS

ANCOVA (Analysis of Covariance) An ANOVA type design that limits the

influence of a variable or variables outside the design (known as ‘‘covariates’’)

that might affect the results.

FIGURE 13.12 The interaction graph for the 2�ANOVA example (subject by levelsch).

Univariate Tests

Dependent Variable:overall 

Subject Sum of Squares df Mean Square F Significance Partial Eta Squared 

Contrast 2.533 2 1.267 1.767
a

0.192 0.1281.00

Error 17.200 24 0.717

Contrast 7.600 2 3.800 5.302 0.012 0.3062.00

Error 17.200 24 0.717

aEach F tests the simple effects of levelsch within each level combination of the other effects shown. These tests are based

on the linearly independent pairwise comparisons among the estimated marginal means.  

FIGURE 13.13 The SPSS1 simple effects table for subject areas on levels of schools.
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Disordinal Interactions Interactions indicated by graph lines that cross in the

plot area.

Factorial ANOVA A designation indicating an ANOVA with more than one

independent variable (i.e., factor).

Interaction Effects When the relationship between one predictor and the

outcome variable changes at different levels of another predictor variable

[See Abbott (2010)].

MANCOVA (Multivariate ANCOVA) The statistical procedure that uses

ANCOVA with multiple dependent variables.

MANOVA (Multivariate ANOVA) The statistical procedure that uses ANOVA

with multiple dependent variables.

Multivariate The designation in statistical analyses indicating more than one

dependent variable.

Ordinal Interactions Interactions that may not cross in the plot area, but which

may cross if the lines were continued outside the plot area.

Partial Eta Square The effect size measure expressing the proportion of the total

variance explained by an independent variable when other influences are

controlled.

FIGURE 13.14 The 2�ANOVA procedure chart.
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Simple Effects Differences (outcome) in the categories of one variable within

single categories of another variable.

SPSS1 Syntax Preprogrammed commands used in SPSS1 procedures.

Univariate The designation in statistical analyses indicating one dependent

variable.

Within-Subjects ANOVA Indicating an ANOVA used for repeated measures;

either the same group of subjects or subjects in matched groups.

REAL-WORLD LAB IX: 2�ANOVA

We will return to our school database for this lab. The chapter example focused on

teaching and learning in math and English classes using the STARTM data. We will

continue the focus on math, but the school data uses aggregated variables to predict/

explain school-level math achievement.

In previous labs and exercises, we have explored the importance of FR in

education studies. FR, as an indicator of family income, has been shown in the

literature to be a very powerful influence on achievement at the school level.

We will use FR in this study along with an indicator of ethnicity, ‘‘percent

white.’’

Both family income and ethnicity are featured in most all studies of school and

student achievement. More infrequently, both variables are included in studies to

determine which is the more powerful explanation of achievement. The studies that

do include both most often conclude that income is the stronger predictor of

achievement [e.g., Abbott (2010)]. This lab provides an opportunity to examine the

dual influence of income and ethnicity on school-level achievement using

2�ANOVA.

I have already discussed FR as a predictor of achievement in Chapter 12.

Let me add a note about the ethnicity variable, ‘‘percent white.’’ The school

database provides the percent of students in various ethnic categories at

schools in the state. Studies commonly use the percent of Caucasian students

at a school as an indicator of ‘‘white/non-white’’ proportion. That is, if you

report the percent of white students, this is also a way of reporting the percent-

age of students who are non-white. Studies often specify ethnic categories for

further analysis, but a general ‘‘non-white’’ category is a helpful indicator in

some procedures.

Here are the variables we will use in this lab:

� Math: The percentage of students at the school who passed the state math

assessment.

� FR: The percentage of students in schools qualified for free and/or reduced

lunches. Three equal groups were created using percentiles.

� Ethnicity: The percentage of students in schools categorized as ‘‘white.’’ Two

groups were created by a median split.
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The study schools were those in the database we used for the Chapter 12 exam-

ple of one-way ANOVA. In this lab, we will use a balanced 2�ANOVA design

comprising 6 cells (similar to the chapter example of STARTM data). We randomly

chose the schools for each cell from the 58 (randomly chosen) schools we used

in Chapter 12 (we used the database in which we dropped the extreme score) to

provide an example of the 2�ANOVA procedure.

Figure 13.15 shows the data table for this lab. As you can see, in order to balance

the design, we are only using 12 schools. This sample is randomly chosen; but

because it is so small, we should use caution in generalizing the findings. I will

comment further at the end of the lab procedure.

Real-World Lab IX Questions.

1. Calculate the 2�ANOVA by hand.

2. Calculate effect sizes.

3. Interpret the results from your calculated summary table.

4. Perform the procedure using SPSS1 (if available) and interpret results.

REAL-WORLD LAB IX: 2�ANOVA SOLUTIONS

The results for this lab are included under each question.

1. Calculate the 2�ANOVA by Hand

Calculating SST (all six ‘‘cells’’ are included in the equation):

SS ¼ P
X2 �

P
Xð Þ2
N

;

SST ¼ ð9125þ 10; 361þ 2692þ 7362þ 953þ 4325Þ

� ð135þ 141þ 70þ 120þ 41þ 93Þ2
12

;

SST ¼ 34; 818� 30; 000;

SST ¼ 4818

56 65 
1 (Low)

85 70 

69 24 
2 (Medium)

51 46 

47 13 
3 (High)

46 28 

FIGURE 13.15 The balanced data for the 2�ANOVA Real-World Lab.
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Calculating SSB (including the six cell means):

SSB ¼
P

X1ð Þ2
n1

þ
P

X2ð Þ2
n2

þ
P

X3ð Þ2
n3

þ
P

X4ð Þ2
n4

þ
P

X5ð Þ2
n5

þ
P

X6ð Þ2
n6

ð�Þ
P

Xð Þ2
N

;

SSB ¼
P

135ð Þ2
2

þ
P

141ð Þ2
2

þ
P

70ð Þ2
2

þ
P

120ð Þ2
2

þ
P

41ð Þ2
2

þ
P

93ð Þ2
2

ð�Þð135þ 141þ 70þ 120þ 41þ 93Þ2
12

;

SSB ¼ 33; 868ð�Þ30; 000;
SSB ¼ 3868

Calculating SSW (including the six cell values):

SSW ¼ SST � SSB;

SSW ¼ 4818� 3868;

SSW ¼ 950

Calculating the SS(Rows) (the main effect of school level):

SSðRowsÞ ¼
P

row1ð Þ2
n1

þ
P

row2ð Þ2
n2

þ
P

row3ð Þ2
n3

ð�Þ
P

Xð Þ2
N

;

SSðRowsÞ ¼ ð276Þ2
4

þ ð190Þ2
4

þ ð134Þ2
4

ð�Þ30; 000;
SSðRowsÞ ¼ 32; 558ð�Þ30; 000;
SSðRowsÞ ¼ 2558

Calculating the SS(columns) (the main effect of subjects):

SSðcolumnsÞ ¼
P

col1ð Þ2
n1

þ
P

col2ð Þ2
n2

ð�Þ
P

Xð Þ2
N

;

SSðcolumnsÞ ¼ ð246Þ2
6

þ ð354Þ2
6

ð�Þ30; 000;
SSðcolumnsÞ ¼ 30; 972ð�Þ30; 000;
SSðcolumnsÞ ¼ 972

Calculating the Interaction. Like the SSW, we can calculate the interaction SS

(symbolized as SSrXc) by subtracting the SS for rows and columns from the overall

SS between as follows:

SSrXc ¼ SSB � ðSSðRowsÞ þ SSðcolumnsÞÞ
SSrXc ¼ 3868� ð2558þ 972Þ
SSrXc ¼ 338
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The 2�ANOVA Summary Table. Figure 13.16 shows the 2�ANOVA summary

table. Note that you may show slightly different computed values due to rounding. I

used an Excel1 spreadsheet that retains the actual value of the entries but used the

rounded values in the SS calculations above. Any differences due to these rounding

procedures should not affect the overall findings much.

2. Calculate Effect Sizes

Omnibus Eta Square:

h2 ¼ SSBetween

SSTotal
;

h2 ¼ 3868

4818
;

h2 ¼ 0:80

Effect Size for Row Main Effect (FR):

Partial h2row ¼ SSrow

SSrow þ SSW
;

Partial h2row ¼ 2558

2558þ 950
;

Partial h2row ¼ 0:729

Effect Size for Column Main Effect (Ethnicity):

Partial h2col ¼
SScol

SScol þ SSW
;

Partial h2col ¼
972

972þ 950
;

Partial h2col ¼ 0:5057

Source of Variance SS df MS Fa

Between 4.8859* 773.6 5 3868 

Row main effect (FR) 8.078* 1279 2 2558 

Column main effect (Ethnicity) 6.139* 972 1 972 

Interaction effect (FR × Ethnicity) 1.067 169 2 338 

Within (error) 158.33 6 950 

Total 11 4818 

aThe F ratios indicated by an asterisk are significant at or beyond p<0.05 as determined by the F
distribution table of values.   

FIGURE 13.16 The 2�ANOVA summary Table for Lab IX.
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Effect Size for Interaction Effect (FR � Ethnicity):

Partial h2rXc ¼
SSrXc

SSrXc þ SSW
;

Partial h2rXc ¼
338

338þ 950
;

Partial h2rXc ¼ 0:2624

3. Interpret the Results from Your Calculated Summary Table

The 2�ANOVA summary table indicates that the omnibus F ratio (4.8859) is sig-

nificant (p< 0.05), indicating that the data show significant differences among the

various (cell) mean groups. School-level math achievement is affected by FR and/

or ethnicity; both main effects (F¼ 8.078 and F¼ 6.139, respectively) are signifi-

cant (p< 0.05). The interaction effect is not significant.

Eta Squared for the omnibus F ratio is 0.80, indicating that over 80% of the vari-

ance in the school math achievement results are attributable to the FR and ethnicity

groupings. Partial eta square values for FR and ethnicity are both substantial (0.729

and 0.5057, respectively), with FR indicating the stronger effect.

Note: Because there are so few cases, we must use caution in interpreting the

results. However, I performed the 2�ANOVA on the entire dataset (which you can

also do with the data files provided in the Wiley website) and confirmed the same

trends. Overall (N¼ 1039), FR, ethnicity, and the interaction are all significant

(which, with the N size, is not surprising). The effect sizes indicate the various

strenths of the findings, however. The partial eta squares for FR (0.261) are much

stronger than those for ethnicity (0.012) and the interaction (0.017), indicating that

FR is the stronger predictor of math achievement. The findings in Lab IX with

n¼ 12 show the same trends, albeit with a stronger ethnicity effect size.

4. Perform the Procedure Using SPSS1 (If Available) and Interpret Results

As you can see, the SPSS1 results in Figure 13.17 match the hand calculations in

Figure 13.16. The actual significance levels in the ‘‘Significance’’ column provide a

more specific picture of how far into the exclusion region the transformed F ratios

fell. From this point of view, ethnicity was narrowly significant.

Figure 13.18 shows the (Tukey) post hoc analyses of FR. Because the interaction
was not significant, we can proceed to analyze the main effects and show the post hoc
analyses. (I did not calculate these by hand because they are readily available from

SPSS1; I am presenting the results here for the example Lab data.) Note that the

ethnicity post hoc analyses are not available because there are only two groups. You

can examine the mean values directly to see which levels of ethnicity are higher.

You can see from Figure 13.18 that the differences in the row variable are due to

the differences between group 1 (Low) and group 3 (High) FR values. Thus, schools

with the highest FR values (i.e., the schools with the greatest percentages of

students eligible for FR funding) show a lower math achievement average.
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You can use your calculated values to compare the ethnicity group means. The

data indicate that the low ethnicity group of schools show a lower math achieve-

ment passing proportion (41%) than the high ethnicity group of schools (59%).

You can see the results of the overall analysis by looking at the simple effects

plots despite the fact that the interaction was not significant. Figure 13.19 shows one
such plot. From our discussion of interaction plots above, it appears there is an

ordinal interaction in Figure 13.19. Recall that in the ordinal interaction, the lines do

not cross in the plotted area, but may cross if they are extended. In this case, how-

ever, the extension of the lines would make no sense because there are no other

Tests of Between-Subjects Effects

Dependent Variable:Math 

Source

Type III Sum of 

Squares df Mean Square F Significance

Partial

Eta Squared 

Corrected model 3868.000
a

5 773.600 4.886 0.040 0.803

Intercept 30,000.000 1 30,000.000 189.474 0.000 0.969

FR 2558.000 2 1279.000 8.078 0.020 0.729

Ethnicity 972.000 1 972.000 6.139 0.048 0.506

FR*ethnicity 338.000 2 169.000 1.067 0.401 0.262

Error 950.000 6 158.333

Total 34,818.000 12

Corrected total 4818.000 11

aR squared = 0.803 (Adjusted R Squared = 0.639). 

FIGURE 13.17 The SPSS1 summary table for lab IX.

Multiple Comparisons

Math 

Tukey HSD 

(I) FR (J) FR Mean Difference

(I–J) 

Standard

Error 
Significance

Lower Bound 

95% Confidence Interval

Upper Bound 

2.00 21.5000 8.89757 0.114 –5.8002 48.80021.00

3.00 35.5000
b

8.89757 0.017 8.1998 62.8002

1.00 –21.5000 8.89757 0.114 –48.8002 5.80022.00

3.00 14.0000 8.89757 0.326 –13.3002 41.3002

1.00 –35.5000
b

8.89757 0.017 –62.8002 -8.19983.00

2.00 –14.0000 8.89757 0.326 –41.3002 13.3002

a
Based on observed means. The error term is mean square (error) = 158.333.

b
The mean difference is significant at the 0.05 level.   

FIGURE 13.18 The post hoc analyses from the 2�ANOVAa.
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FIGURE 13.19 The FR simple effects plot for the 2�ANOVA lab.

FIGURE 13.20 The ethnicity simple effects plot for the 2�ANOVA lab.
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categories of ethnicity. These are categories that do not extend as would continuous

data values.

The lines in Figure 13.19 show that the FR groups of schools generally show

higher math achievement values the lower the FR category. The distance between

the low FR and high FR groups is significant as indicated by the Tukey results.

Figure 13.20 shows the other simple effects plot. Again, there is no ordinal inter-

action despite the lack of parallel lines. The high ethnicity category is significantly

higher in math achievement values than the low category of schools.
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14
CORRELATION

Probably everyone has an understanding of the basic principles of correlation; it has

an intuitive appeal. Most everyone understands that correlation analyzes whether

changes in one thing are linked to changes in something else. Thus, for example,

we may observe that students who get the highest reading achievement test scores

are also the ones who read the most. Or, stated another way, as the achievement

scores change in the upward direction, so does the amount of time spent reading,

and vice versa.

In Chapter 5, I introduced correlation as a way of understanding the associ-

ation between two variables. What does association mean? It refers to ‘‘related-

ness’’ or the extent to which two events ‘‘vary with one another.’’ To use the

example I alluded to in Chapter 5, if the percentage of Caucasian students

increases in schools, achievement increases. We can say that the values of the

one variable (achievement) change positively as the values of the other varia-

ble (ethnicity) increase. Thus, the values of both variables increase together, or

‘‘co-vary.’’

Of course, as I also discussed in Chapter 5, not every correlation is what it

seems! There may be additional variables not taken into account in the analysis that

give the original two variables the ‘‘appearance of co-varying.’’ This is known as

spuriousness. The Real-World Lab IX in Chapter 13 hints at the complexity of the

ethnicity–achievement correlation by considering the additional impact of family

income in the relationship.

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

337



THE NATURE OF CORRELATION

We will examine correlation in some depth in this chapter. It is a useful procedure

for many reasons, and several methods of calculating correlations exist that are

‘‘fitted’’ to the nature of the research question.

Explore and Predict

Evaluators use correlation to explore the relationships among a series of variables

they suspect may be important to a research question. Other evaluators may use

correlation to help predict an outcome knowing that the predictor and the outcome

variables are related. Explanation and prediction are two important uses of

correlation.

Different Measurement Values

Correlation is somewhat unusual in that the researcher can measure the relationship

between two variables that are operationally measured differently. For example, in

the opening paragraph, I mentioned the relationship between reading achievement

and amount of reading. If I operationally define reading achievement as the score on
a state achievement test and amount of reading as the number of books read per

month, I will end up with two different sorts of scores. The state reading test may

represent a standardized score that ranges from 100 to 600, while the amount of

reading may simply be a number that ranges from 0 to 20 (although not many K–12

students read 20 books per month!).

Different Data Levels

In the foregoing example, the researcher can measure the association between two

differently measured variables because we are looking at how one score changes as

the other score changes. Thus, both variables do not have to be measured with the

same values. Correlation measures are so powerful that a researcher can also calcu-

late the correlation of two variables measured with different levels of data (i.e.,

interval, ordinal, or nominal). A researcher might correlate reading achievement

scale scores (interval level) with students’ subjective appraisals of the extent of

their reading (ordinal level) as their rating of ‘‘A Lot, Some, A Little, or None.’’

Correlation Measures

In this chapter, I will discuss correlation measures that can be used with two inter-

val or ratio level variables. Table 14.1 shows some additional correlation measures

that can be calculated with variables of different levels of data.

As you can see, there are several measures of correlation that can be ‘‘custom-

ized’’ for the specific nature of the researcher’s study question. The first three

columns of Table 14.1 show measures of correlation that use different levels of
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data. The correlation measures that are italicized are those that use ‘‘artificial’’

measures. For example, the tetrachoric correlation measures two continuous

(interval level) variables that have been dichotomized. In some of our examples in

this book, we created categories out of continuous scores, like creating FR cate-

gories (low, medium, and high) out of a continuous score (percentage of students

at a school eligible for FR) to illustrate a particular statistical procedure.

Tetrachoric correlation might measure the relationship between FR and another

dichotomized variable.

Table 14.1 also shows a column (the fourth column) of measures known as

proportional reduction in error (PRE) measures. We have already worked with

some of those measures at the interval level (eta squared and partial eta

squared), but there are several others at other levels of data I indicated with

different shades (i.e., gamma for ordinal and Cohen’s Kappa for nominal).

These are measures in which correlation is used to ‘‘reduce error.’’ We saw in

Chapter 12 (one-way ANOVA) that h2 is a measure of how much variance in

the outcome variable is explained by the categories of the predictor variable.

That is, how much variation (error) is reduced by knowing the relationship

between the two variables? Eta squared and other such measures are expressed

in the amount of variance explained.
We cannot hope to talk about all of these in this book. I wanted you to see the

tremendous variety of correlation measures; and there are yet more measures

I didn’t include in Table 14.1! In this chapter I will discuss Pearson’s correlation

coefficient, which is the most common correlation procedure with interval data.

THE CORRELATION DESIGN

The correlation study is a post facto design because the researcher is relating two

sets of scores that have been gathered on an individual case. We do not use correla-

tion in an experimental design because in the latter we are attempting to detect dif-
ferences in group scores after an intervention. Correlation measures ‘‘sameness,’’

TABLE 14.1 Measures of Correlation

Nominal Level

Data

Ordinal Level

Data

Nominal by

Ordinal

Proportional Reduction

in Error (PRE)

Contingency

Coefficient
Spearman’s Rho Biserial

h2

Partial h2

r2

Phi Coefficient Kendall’s Tau Point Biserial Gamma

Cramer’s V (Cohen’s) Kappa

Tetrachoric
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and an experiment measures ‘‘difference.’’ Multiple regression procedures, which

are based on correlation, can be used in experimental designs under certain circum-

stances (see Abbott, 2010).

PEARSON’S CORRELATION COEFFICIENT

Named after Karl Pearson, the Pearson’s Correlation Coefficient, symbolized by r,
is used to measure the relationship between two interval level variables. I used the

above example of reading achievement and number of books read to show how this

method can be quite versatile and helpful.

Interpreting the Pearson’s Correlation

When we calculate Pearson’s r, we need to know what it means! Pearson’s r is a
number that varies from �1.0 to þ1.0. The closer the r value is to 0, the less the

two variables are related to one another. Here are the two primary ‘‘dimensions’’ of

Pearson’s r that are helpful for interpreting the relationship:

� Strength: The closer the r value gets to either �1 or þ1, the stronger the
correlation between two variables. An r value of 1.00 would indicate

that every time one variable increased by one unit, the second variable in-

creases by one unit. It is also the case that a value of 1.00 would indicate that

each time a variable decreases by one unit, the second variable also decreases

by one unit.

� Direction: When the variables change their values in the same direction, the r
is a positive correlation. Whenever the variables change in opposite direc-
tions, the r value is negative. ‘‘Positive’’ and ‘‘negative’’ do not mean ‘‘good’’

and ‘‘bad,’’ they simply indicate the direction of change in both variables.

Negative correlations are also called inverse correlations because one variable
is going up as the other is going down in value.

Figure 14.1 shows some examples of the different possibilities of weak and

strong, positive and negative r values. Keep in mind these r values are not real. I

introduced some of them as examples in earlier chapters and I made the others up! I

simply wanted to show that an r value can take different values and have different

‘‘signs.’’ We will discuss later how to calculate the Pearson’s r and how to deter-

mine whether the r value is strong or weak.
I used shading in Figure 14.1 to indicate strength of relationship. The ‘‘Weak’’

column thus shows lighter shading and correlations (both positive and negative)

that are close to 0. The ‘‘Strong’’ column has a darker shade indicating stronger

correlations (both positive and negative) closer to 1.00 and �1.00. The arrows in

the cell indicate direction, whether positive (both arrows pointing in the same direc-

tion) or negative (arrows pointing in opposite directions). You can see from these

features that a negative correlation closer to�1.00 is considered strong even though
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it is an inverse relationship. Remember that negative does not mean bad, just oppo-

site direction.

The Fictitious Data

I will use a fictitious example to demonstrate how to calculate Pearson’s r and then I
will introduce a real data example. Table 14.2 shows the fictitious data we will use

to show how to calculate Pearson’s correlation. The Reading Achievement (RA)

variable consists of test scores from eight students on a reading test with 150 points

possible. The Books Read (BR) variable is the number of books the students

reported reading over the summer break. The research question is whether there is a

correlation between the two variables.

STRENGTH
WEAK STRONG 

r = 0.02 r = .85 

Family Income–Student Storks–Babies 
Achievement 

POSITIVE There is very little (non-
spurious) relationship 
between the number of 

storks and the number of 
babies being born 

As we have seen, schools 
with wealthier families have 

higher aggregate 
achievement scores 

r = -.10 r = -.73 

Lattes Consumed–Success Noise–Human Learning 
at Threading a Sewing 

Needle

DIRECTION

NEGATIVE In my undergraduate 
experiment, the data only 

weakly reported an 
association of increasing 

noise and decreasing 
learning

Generally, as people ingest 
more caffeine, they are less 

dexterous!

FIGURE 14.1 Examples of Pearson’s r values.

TABLE 14.2 Fictitious Data for Correlation
Example

Reading Achievement Books Read

120 10

20 3

50 7

90 5

110 9

100 8

40 6

10 3
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Assumptions for Correlation

As with the other statistical procedures, there are assumptions that must be met be-

fore we can use Pearson’s r correlation. The primary assumptions are as follows:

� Randomly chosen sample.

� Variables are interval level (for Pearson’s r).

� Variables are independent of one another. This assumption is somewhat diffi-

cult to understand, but it deals with ‘‘autocorrelation,’’ which is the tendency

for one set of scores to be linked to a second set in a series, like time-related

measures. If we measure daily crime rates, for example, there will be a ‘‘built-

in’’ correlation because each day is most often related to the next. With corre-

lation, we need to make sure that we have no such ‘‘linkages’’ like a time

series in our data.

� Variables are normally distributed.

� Variances are equal. Pearson’s r is robust for these violations unless one or

both variables are significantly skewed.

� Linear relationship. The two variables must display a ‘‘straight line’’ when

plotting their values. Thus, for example, if we were correlating the age of a

car with the value of a car, the correlation would probably be a straight line

(in a downward direction, indicating an inverse relationship). Violations of

this assumption might include ‘‘curvilinear’’ relationships in which plotted

data appear to be in the form of a ‘‘U.’’ For example, with the age and value

of a car, the linear relationship might change over time because really old cars

increase in value. We can ‘‘see’’ this assumption in a scattergram, which I

will discuss below. Formally, we can detect these ‘‘curvilinear’’ relationships

through SPSS1.

It should be noted that correlation is a ‘‘robust’’ test, which means that it can

provide meaningful results even if there are some slight violations of these assump-

tions. However, some are more important than others in this regard, as we will see.

PLOTTING THE CORRELATION: THE SCATTERGRAM

I mentioned the scattergram in discussing the assumption of linearity above. Vari-

ously known as scatter diagram, scatterplot, scatter graph, or simply scattergram,

we can create a visual graph that shows the relationship between two variables.

Figure 14.2 shows the scattergram between our two example variables, reading

achievement and books read. As you can see, the dots are displayed from the lower

left side of the plot to the upper right side. This pattern indicates a positive correla-

tion because as one variable increases in value, the other value also increases.

Reading the plot is straightforward. The values in the table of data are presented

in ‘pairs’ with each pair representing a single student’s scores. Thus, the top pair of
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values in Table 14.2 indicate that this student scored 120 on the reading achieve-

ment test and read 10 books during the summer. I filled in the dot in Figure 14.2 to

show the pair of scores for the next-to-last student in Table 14.2 (the student scoring

40 on the reading test and reading 6 books).

As you can see, the pairs of scores are entered into the plot simultaneously so

that each dot represents the pair of scores of an individual student. Typically, the

outcome variable is placed on the Y axis and the predictor variable is placed on the

X axis.

In correlation designs it is not always apparent which variable is the outcome
and which is the predictor, you simply have to understand which is which from
the research question. The ‘‘inherent’’ research question in our study is whether the

amount students read (number of books) will influence their reading achievement.

Therefore, the books read is the predictor variable (X) in this study. It could just as

easily be the other way around! A researcher could posit that higher reading

achievement gives way to increased reading.

Patterns of Correlations

Correlations can be positive like the one in Figure 14.2, or they can be negative and

even nonlinear. Figure 14.3 shows some of the possibilities for correlation patterns

in scattergrams.

Panel a in Figure 14.3 shows the positive correlation we observed with the actual

data in Figure 14.2. However, the results could have been different. Panel b shows a

negative (or inverse) correlation in which the more books a student read, the lower

the reading achievement score! Panel c shows no correlation at all; the scores do not

FIGURE 14.2 The scattergram between reading achievement and books read.
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fall into a recognizable pattern. Panel d shows a curvilinear relationship in which

students who read a medium amount of books have high achievement scores, but

students who read either a lot or only a few books have poor scores! These panels

are only to show the correlation possibilities that might be produced in an actual

study.

Strength of Correlations in Scattergrams

The correlation panels in Figure 14.3 showed correlations with different directions

or patterns. The dots could extend upward to the right (positive correlation), down-

ward to the right (negative correlation), or in other patterns. Figure 14.4 show scat-

tergrams that indicate the strength of the correlation.
The top two panels (a and b) represent positive correlations. The dots are arrayed

from bottom left to upper right. But note that the extent of the scatter around the
line is different. We use a line to represent the scatter and pattern of the dots (in a

later chapter, we will learn to calculate the equation for this ‘‘line of best fit’’).

When the dots have a wide scatter, like the scattergram in panel a, the correlation is

weaker. This would indicate that as values of one variable (books read) increase, the

values of the other also increase, but not ‘‘one for one.’’ Panel b shows a positive

correlation with a tighter pattern of dots that indicate more of a ‘‘one for one’’ in-

crease in the values of both variables.

Panels c and d of Figure 14.4 show negative correlations. In panel c, the correla-

tion is inverse in that as one variable increases in value, the other decreases, but the

FIGURE 14.3 Correlation patterns in scattergrams.
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values do not change in a ‘‘one-for-one’’ relationship. The negative correlation in

panel d shows a much higher correlation because the dots are very close to the line,

indicating a more ‘‘one-to-one’’ change in values.

The panels underscore the fact that ‘‘negative’’ correlations are not necessarily

bad since negative only refers to direction. As you can see in panel d, this negative

correlation is very strong. I indicated strength of correlation by the depth of the

shading in the panels with stronger correlations showing darker shades.

CREATING THE SCATTERGRAM

You can easily freehand draw a scattergram with pairs of data. However, both

Excel1 and SPSS1 provide simple procedures to create the graphs.

Using Excel1 to Create Scattergrams

With the table of data entered in an Excel1 spreadsheet, simply highlight the entire

table (including labels) and choose the ‘‘Insert’’ menu from the main menu list.

Figure 14.5 shows this selection with our table of fictitious data. As you can see, I

highlighted the table of values and chose Insert. I can then choose Scatter from the

list of possible graphs. I am presented with several choices for the scattergram in a

dropdown menu. For the simple, linear correlation the upper left choice is

appropriate. As the data increase in complexity, you can experiment with the other

scattergram choices.

FIGURE 14.4 Strength of correlations in the scattergram.
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Figure 14.6 shows the scattergram created by our menu choices above. As you

can see, the dots are displayed according to the pairs in the data table. One note

here is that the scattergram will be created according to how you arrange the data.

As you can see, the number of books read is shown on the X axis because that varia-

ble was listed first in the data table. If you reverse the order of the variables, the

scattergram will look different because the scales of the variables will be on differ-

ent axes.

The scattergram in Figure 14.6 is the ‘‘plain’’ graph that Excel1 produced by

making our menu choices. You can edit the graph by double clicking on parts of the
graph and then right clicking for edit choices. A simple way to make edits is to use

the main menu bar when you have the graph selected. The ‘‘Chart Layout’’ menu

provides several different ways that you can make the graph appear. For example,

one choice includes axis titles; another includes the raw data table, and so on. I can

include the line through the data by using these methods.

FIGURE 14.5 The Excel1 scattergram specification.

FIGURE 14.6 The Excel1 scattergram.

346 CORRELATION



Using SPSS1 to Create Scattergrams

SPSS1 has a straightforward way to create scattergrams using the main

‘‘Graphs’’ menu. Figure 14.7 shows how to create the scattergram through the

‘‘Graph–Legacy Dialogs–Bar’’ path of menu choices. Near the bottom of the

list is ‘‘Scatter/Dot,’’ which will produce a specification box that allows you to

design your scattergram. In this system, you do not need to move the data

columns so that one of the variables is listed first, as in Excel1.

When you choose ‘‘Scatter/Dot’’ the menu box in Figure 14.8 appears. This box

is similar to the Excel1 specification in which you can choose the scattergram

that matches the complexity of your research data. For our fictitious example, the

‘‘Simple Scatter’’ choice is appropriate.

FIGURE 14.7 The SPSS1 Graph menu for creating scattergrams.

FIGURE 14.8 The Scatter/Dot menus.
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Choosing the ‘‘Simple Scatter’’ design from the menu produces a specification

window like the one shown in Figure 14.9. As you can see, I specified that the

Books Read variable should be placed on the X axis. I can select the ‘‘Titles’’ and

‘‘Options’’ buttons in the upper right corner of the window to further specify the

graph, but I prefer to edit the scattergram once it is produced.

When you choose ‘‘OK’’ from the window in Figure 14.9, SPSS1 produces a

graph in the output file like the one shown in Figure 14.2. If you double click on the

graph, you can make a series of edits using the available menu screens. I added the

line to the ‘‘basic’’ graph to produce the graph in Figure 14.2.

CALCULATING PEARSON’S r

There are several ways to calculate the Pearson’s r by hand. Formulas exist using

the ‘‘deviation’’ method or the ‘‘calculation method’’ or even the ‘‘Z-score
method.’’ I want to present two formulas in this book because both point out differ-

ent facets of the Pearson’s r.
The Z-score formula appears to be the most simple until you realize that, in order

to use it, you have to transform every score to a Z score. The calculation method is

FIGURE 14.9 The scattergram specification window in SPSS1.

348 CORRELATION



my preferred method because it uses symbols and formulas we have used in past

chapters and includes a simple data table of values.

THE Z-SCOREMETHOD

The first question most students ask is, Why are there so many different formulas?

The simple answer to this is that each formula uses ‘‘parts’’ that express different

components of the correlation relationship.

The Z-score formula follows:

rXY ¼
P

ZXZY

N

In this formula, the correlation between two variables X and Y (symbolized

by rXY) is calculated by summing the products of the X Z scores and the Y Z
scores and then dividing by the number of pairs (in correlation, the N indicates
pairs, not the total set of scores). In order to carry out this formula, you would

first need to create Z scores for each of the X and Y values using the formula

we discussed in Chapter 7:

Z ¼ X �M

SD

Creating Z scores by hand is tedious, so if there are many pairs of scores,

this is a labor-intensive effort! On the other hand, creating the Z scores in an

Excel1 spreadsheet is quite simple, as we discussed in Chapter 7. Table 14.3

shows the values as I created them in an Excel1 spreadsheet using the

embedded Z formula. I had to first calculate the mean and SD values for both

variables as shown.

TABLE 14.3 The Data Table Showing Z Scores

Books Read Z (Books) Reading Achievement Z (Achievement) ZX�ZY
10 1.48 120 1.32 1.95

3 �1.38 20 �1.19 1.64

7 0.26 50 �0.44 �0.11

5 �0.56 90 0.56 �0.32

9 1.07 110 1.06 1.14

8 0.66 100 0.81 0.54

6 �0.15 40 �0.69 0.11

3 �1.38 10 �1.44 1.98

S¼ 0 S¼ 0

M¼ 6.375 M¼ 67.5 SZXZY 6.93

SD¼ 2.45 SD¼ 39.92 r 0.87
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Once these calculations are made, you can use the Z-score formula to calculate

Pearson’s r as follows (I included the relevant calculations in the final column of

Table 14.3):

rXY ¼
P

ZXZY

N
;

rXY ¼ 6:93

8
;

rXY ¼ :866

Note: Be careful when you calculate the numerator of the formula. It is not the

sum of the Z scores for column Z (Books) times the Z-score sum of column Z
(Achievement). That would look like the following:

rXY ¼ ðP ZXÞð
P

XYÞ
N

The reason is that the sums of these particular columns would equal 0! Like the

deviation method for calculating SD that we discussed in Chapter 6, there will be an

equal number of negative and positive Z scores in a normally distributed set of

scores. Therefore, you must multiply each pair of Z scores to arrive at the values in

the last column of Table 14.3. Otherwise, this is the result:

rXY ¼ ð0Þð0Þ
8

;

rXY ¼ 0

The reason to use the Z-score formula is to use the transformed X and Y values
as Z scores that present the X and Y values in the same scales. The reason to do this

will become more apparent when we discuss regression procedures; but for now,

look at Figure 14.10 that presents the scattergram with Z-score values for both the

FIGURE 14.10 The Z-score scattergram in Excel1.
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X and Y values. The X axis is the Z-score values of X (books read) and the Y axis

represents the Z values of the Y variable (achievement).

As you can see, all the values of the two scores are now expressed in the
same scale: as Z-score values, the majority of which (over 99%) range between

�3.00 and þ3.00. Whereas before our highlighted score of the next-to-last stu-

dent (Books read¼ 6, and Achievement score¼ 40) was expressed in raw score
units (that is, the units of the original scores), the transformed scores are

expressed in Z-score units (Books Read¼�0.15, and Achievement¼�0.69). I

highlighted the next-to-last student score in both Table 14.3 (shaded) and in

Figure 14.10 (as the large round dot) so you can see how the data are arrayed

in the scatterdiagram.

Using Z scores thus creates the same scale for raw score variable units of any
magnitude. This does not change the correlation or the relationship among the dots,

as you can see from the array of dots in Figures 14.6 and 14.10.

THE COMPUTATION METHOD

There are several computation formulas for Pearson’s r. I prefer the following

because it uses the SS (sum of squares) measures that we have used throughout

former chapters. The overall formula looks straightforward. Conceptually, the

formula expresses correlation (r) as the proportion of the cross product SS (or

the SS of the X�Y pairs) to the square root of the overall product of the X and

Y sums of squares.1

rXY ¼ SSXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðSSXÞ ðSSYÞ
p

Recall that the SS is a general (unstandardized) variance measure of the popula-

tion of scores. The computation formula thus includes variance (SS) measures of

the XY products as well as the individual X and Y SS values. The formula for SS

we discussed in Chapter 6 is

X
X2 � ðPXÞ2

N

Each of the SS values (for X and Y) in the Pearson’s r formula can be computed

with these formulas. The product SS (the numerator in the Pearson’s r formula) can

1 This makes conceptual sense if you recognize the denominator as a combined variance measure of X

and Y together, because each SS is multiplied (creating a kind of variance measure) and transformed to a

combined variance measure. Thus, the formula expresses the ‘‘variance’’ of the XY product measures as

a proportion of the overall variance of both sets of scores. This is conceptually what ANOVA does—

compares variance components.
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be calculated with a variation of the same SS formula by simply using the product

column (XY) of values:

SSXY ¼
X

XY � ðPXÞðP YÞ
N

Here is how the example data would be computed using the computation

formula:

The SSXY

SSXY ¼ P
XY � ðPXÞðP YÞ

N

SSXY ¼ 4120� ð540Þð51Þ
8

SS Books�Reading ¼ 677:5

The SSY

SSY ¼
P

Y2 � ðP YÞ2
N

SSReading ¼ 49; 200� 291; 600

8

SSReading¼ 12; 750

The SSX

SSX ¼
P

X2 � ðPXÞ2
N

SSBooks ¼ 373� 2601

8

SSBooks ¼ 47:875

Pearson’s r

rXY ¼ 677:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið47:875Þ ð12750Þp
rXY ¼ 677:5

781:28

rXY ¼ 0:867

As you can see, the resulting Pearson’s r of 0.867 is equivalent to the r value
computed with the Z-score formula. Both formulas yield the same value.
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EVALUATING PEARSON’S r

Now that we calculated Pearson’s r, what does the value mean? Recall that the

(fictional) study asked if reading achievement and the number of books read was

correlated. We saw that the scattergrams presented strong visual evidence that there

was a relationship, but how can we judge the strength of the relationship simply by

looking at the resulting r of 0.867?

The Hypothesis Test for Pearson’s r

The r of 0.867 is certainly closer to 1.00 than it is to 0, so we can use this as one

gauge of its meaningfulness. However, like the other statistical tests we have dis-

cussed in this book, we assess the statistical significance of a test ratio by comparing

it to a sampling distribution.

Therefore, the first way to determine whether the r value is significant is to per-

form a hypothesis test as we have with other statistical procedures. If the calculated

value exceeds the tabled value (that is, if the calculated value is further out in the

tail of the exclusion area), we concluded that the test value is statistically

significant.

We use the same steps as we did with other statistical tests:

1. The Null Hypothesis (H0): r¼ 0. The null hypothesis states that the correla-

tion between the variables in the population from which the sample values came

(symbolized by the parameter value of rho or r) is 0.

2. The Alternative Hypothesis (HA): r 6¼ 0. The alternative hypothesis states that

the population correlation is not 0.

3. The Critical Value rdf(0.05). The comparison value for the value of r that

defines the exclusion area at a given probability level (I used 0.05 in the above

value) is determined by a table of values as are other statistical procedures. The

tables for correlation are extensive (as you might imagine since Fisher designed

them) and detailed. The exclusion values for Pearson’s r can be found in the

Appendix.

Like other statistical procedures, testing the null hypothesis for correlation uses

degrees of freedom because we are estimating a population parameter from a sam-

ple statistic. The degrees of freedom for correlation is N – 2, where N is the number

of pairs. We ‘‘lose’’ two degrees of freedom because we are estimating a population

value with two sample sets of values.

The table for correlation specifies that the two-tailed 0.05 critical (exclusion)

value for r at 6 degrees of freedom (8 pairs minus 2¼ 6) is

rdf(0.05)¼ 0.707. Values that are greater than 0.707 would therefore be considered

statistically significant.

4. The Calculated Value (0.867)

5. Statistical Decision. We reject the null hypothesis because the calculated

value (0.867) exceeded the critical value of exclusion (0.707). A significant
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correlation indicates that a calculated value as high as our value is unlikely to oc-
cur if there is no correlation in the population.

6. Interpretation. We can consider our calculated r of 0.867 to be statistically

significant. This indicates that it is likely not a chance finding. In the words of the

(fictitious) research question, the students’ reading achievement test scores are posi-

tively correlated to the number of books they read during the summer.

The Comparison Table of Values

Because the correlation tables are so extensive and because we will be using

Excel1 and SPSS1, I include only a brief correlation table in this book. However,

there is an alternate way to identify the critical values by using the T table of values

that is included. Cohen (1988) provides the following formula that we can use in the

T tables as a comparison value. In effect, we are ‘‘transforming’’ the r value into a

t ratio that we can then compare against the critical values of T in the T table (using

N�2 degrees of freedom in the table):

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p

Therefore, in the present example:

t ¼ 0:867
ffiffiffiffiffiffiffiffiffiffiffi
8� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:75

p

t ¼ 4:2474

Our r value of 0.867 is ‘‘transformed’’ to a t ratio of approximately 4.2474.

When we look in the T table of values using N�2 degrees of freedom, we note

that the critical value of t0.05,6¼ 2.447. Therefore, our calculated value of r
(0.867) is significant because it resulted in a t score that exceeded the critical

T value (2.447).

Effect Size: The Coefficient of Determination

A second way to judge the meaningfulness and strength of a correlation is the

effect size. With every statistical procedure, we have seen that there is a way to

measure the impact of a relationship. With correlation, we can judge the strength

of the relationship by the coefficient of determination or r2. This value is simply the
square of r and refers to the amount of variance in one variable explained by the
other. What this means is this: We can consider the fact that a distribution of

scores (e.g., reading achievement test scores) vary a certain amount, or are spread

out around a mean score.

The question is, Why do reading achievement scores vary? In a world where

every child was the same, there would be no variance—everyone would get the
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same score. But we don’t live in that kind of world, so something, or things, are

responsible for kids getting different reading achievement scores. Figure 14.11

shows how the variables relate to one another in terms of ‘‘explaining variance.’’

If we establish a correlation is significant (i.e., between achievement test scores

and number of books read), the variables’ measures overlap (like the Venn diagram

in Figure 14.11), and we can understand this overlap to be the amount of variance in

the original spread of the scores (reading achievement) that is explained by this new

variable (number of books read). Thus, knowing how many books a student reads

during the summer is a partial explanation of their reading achievement scores. The

number of books read doesn’t explain all the variation in reading achievement,

because there is still a lot of ‘‘unexplained variance’’ (the amount of the reading

achievement circle not overlapping with the books read circle), but it ‘‘chips away’’

at the overall spread of the scores. The r2 value is this explained variance.
Figure 14.12 shows another way to visualize effect size in correlation. The over-

all distribution represents the entire variability of reading achievement scores. With

a correlation of 0.867, the r2 of 0.75 reduces the amount of ‘‘unexplained variance’’

in reading achievement by 75%. Thus, there are other variables not in our analysis

that might help to further ‘‘explain away’’ the remaining 25% of unexplained

variation.

I will discuss further insights into r2 in Chapter 15. For now we can understand it
as the percentage of the variance in one variable (outcome) contributed by another
(predictor). Knowing how much variance is explained is helpful to the researcher,

FIGURE 14.11 The effect size of correlation—explaining variance.
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but what guidelines do we have that will help us judge the extent of the explained

variance? Cohen (1988) provides the following conventions for the r2:

Small Effect Size : r2 ¼ 0:01 ðr ¼ 0:10Þ
Medium Effect Size : r2 ¼ 0:09 ðr ¼ 0:30Þ

Large Effect Size : r2 ¼ 0:25 ðr ¼ 0:50Þ
These r2 size conventions may appear to be small, and for some studies they may

not be appropriate. The researcher is ultimately in charge of establishing the mean-

ingfulness of the correlation effect size since it is tied to the nature of the research

question. Thus, I might not be excited about an r2 of 0.09 in a small exploratory

summer school study of reading achievement and books read, but I might be very

excited about the same effect size in a study of the relationship between a collabo-

rative teaching approach developed in several school districts and increased student

reading scores.

The r2 is one of the PRE methods I mentioned at the opening of this chapter. If

you look at Figure 14.1 r2 is listed in the last column with the other PRE methods

that we discussed in the ANOVA chapters. All these are related measures in that

they focus on explaining variance. I will develop this notion further in Chapter 15.

CORRELATION PROBLEMS

There are several factors that can affect the size of a correlation and therefore its

power (i.e., the ability to reject the null hypothesis when it should be rejected).

I will mention several such factors in this section.

Correlations and Sample Size

As I stressed in previous chapters, hypotheses tests establish whether a finding is

likely a chance finding. (We just discussed the effect size, which is distinguished

from the statistical rejection of the null hypothesis.) Be aware that the sample size
dramatically affects the size of Pearson’s r.

For example, with 15 cases, the researcher can reject the null hypothesis (two-

tailed at 0.05) with r¼ 0.514. With a sample of 30, the researcher can reject the

null hypothesis at 0.361. With a sample of 102, the researcher can reject the null

FIGURE 14.12 The effect size components produced by correlation.
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hypothesis at 0.195. It only takes an r¼ 0.098 to reject the null hypothesis with

N¼ 402! Therefore, with the same study variables, but simply larger samples, the
researcher will reject the null hypothesis more easily. (This relates to power analy-

sis, as I noted above.)

Correlation is Not Causation

We have noted this injunction previously. The problem with discovering correla-

tions is the temptation to assume that the variables are causally related. Thus, we

might be tempted to assume that the fictitious study correlation above means

that time reading causes achievement test score increases. It does not necessar-

ily mean this. There are many things that are related to reading achievement

test scores other than the number of books one reads during the summer—and

some of them may be better explanations of increases in scores. What are

some? If you were to list other potential causes, you could probably produce a

long list (e.g., the nature of how the student reads, ability, school curriculum,

nature of the environment at home, interest level, parents ability, and so on).

Restricted Range

The strength and size of a correlation is dramatically affected by ‘‘restricted range,’’

or the selection of scores that do not display full variability. Figure 14.13 shows this

problem with a scattergram.

If a study sample is relatively homogenous on the variables (e.g., all the sub-

jects appear to be similar in achievement or time reading), the resulting correla-

tion can appear to be very low. In the top panel of Figure 14.13, students of all

FIGURE 14.13 The correlation problem of restricted range.
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different achievement scores and number of books read were correlated, which

resulted in a strong correlation. If the study is restricted to students who are very

similar to one another, like a group of students from a gifted reading program

who were obsessive readers, the resulting correlation would be less pronounced

and perhaps not significant. The power of a correlation is related to the variabil-

ity of the study variables.

Extreme Scores

‘‘Outlier’’ scores can have a dramatic effect on the calculated r. This is the same

problem with any statistical procedure like the one we examined in Chapter 12. As

we saw, deleting one extreme score had a surprisingly marked effect on the results.

With correlation, extreme scores (especially in studies with small sample sizes) can

likewise be problematic.

I offer the same suggestion with correlation studies because with studies using

other statistical procedures, the researcher must use their understanding of the data

and the research situation in order to ‘‘manage’’ extreme scores. They can transform

such scores, delete them, or retain them as legitimate depending on their

understanding.

The first step in limiting the effects of extreme scores is to detect them! In other

works [e.g., Abbott (2010)] I devote significant attention to diagnostic procedures

for correlation and regression studies. The serious researcher should seek these

works out before engaging in a correlation study.

Heteroscedasticity

This essentially refers to violating the equal variance assumption among study

variables. Homoscedasticity is the condition in which an outcome variable has

equal variation across the levels of the predictor variable. If this condition is not

present—for example, if the scores of one study variable were markedly skewed—

the correlation would show a distortion. Figure 14.14 shows the two conditions of

homoscedasticity (a) and heteroscedasticity (b). In some cases, heteroscedasticity

may result in a departure from linearity.

Curvilinear Relations

I showed an example of a curvilinear relationship in Figure 14.3 (panel d). In

these types of relationships, the pattern of the data may extend in one direction

and then break in a different direction creating a nonlinear path. In Abbott

(2010), I discussed diagnosis of curvilinear relationships in great detail. These

are often not easy to detect, but SPSS1 has a straightforward procedure that

helps to make the assessments about whether the linearity assumption is violated

in a study. I will develop this procedure in Chapter 15 when I discuss bivariate

regression.
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THE EXAMPLE DATABASE

Because I introduced the research question about the relationship among ethnicity,

FR, and achievement in Chapter 13, I will use these with a larger dataset to illus-

trate the correlation procedure. The database is a random sample of 40 schools

taken from the Washington State school database that I discussed in Chapter 6. The

variables we will consider for the correlation example are the same as those in Real-

World Lab IX: 2�ANOVA. Both are continuous variables (interval data):

� Math: the percentage of students at the school who passed the state math

assessment.

� FR: the percentage of students in schools qualified for free and/or reduced

lunches.

Table 14.4 shows the sample data in two columns (each). I will use this database

to provide a real world example of calculating correlation and making appropriate

conclusions. For the current example, we will calculate Pearson’s r for the relation-
ship between math and FR. We will use the same database for other calculations in

the Real-World Lab.

We will use the steps I discussed above as the process for performing the corre-

lation analysis and making conclusions:

1. Check assumptions.

2. Calculate Pearson’s r.

FIGURE 14.14 The correlation conditions of homoscedasticity and heteroscedasticity.
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3. Evaluate Pearson’s r using:

a. Hypothesis test

b. Effect size

Assumptions for Correlation

We can use Excel1 and SPSS1 to assist with the assumptions. Some do not require

additional analyses.

� Randomly chosen sample: The sample (N¼ 40) was randomly selected from

the total set of schools in the state of Washington with fourth-grade results for

the included variables (N¼ 1054).

� Variables are interval level: All data are percentages.

� Variables are independent of one another: The variables are not linked.

� Variables are normally distributed: Figures 14.15 (Excel1) and 14.16

(SPSS1) show the descriptive results for the study variables. The variables

appear to be normal from the results. The SPSS1 report includes the standard

error for skewness and kurtosis, so you can confirm that the values for both

variables lay within the boundaries we discussed for both measures.

Figures 14.17 and 14.18 show the histograms for both variables. As you can see,

both graphs appear normal, although, due to sample size, the FR graph is a bit

horizontal.

TABLE 14.4 The School Database Sample

Cases 1–20 Cases 21–40

Math FR Math FR

50.0 42.9 39.8 38.9

42.2 13.3 56.1 25.3

37.7 42.4 73.3 62.4

41.3 53.8 40.0 72.1

62.5 24.6 46.0 88.6

69.2 28.9 49.6 35.9

9.7 84.7 53.0 45.1

27.9 91.6 58.9 34.3

24.3 86.1 50.0 70.9

34.2 68.1 72.7 0.0

26.5 73.9 58.2 11.8

36.4 65.4 61.7 19.0

30.2 99.8 65.9 61.6

56.3 76.5 88.5 12.1

50.0 60.9 77.4 1.3

51.1 81.3 50.0 59.0

25.4 87.2 48.5 44.7

36.9 49.4 72.1 15.4

62.9 58.2 73.9 34.7

34.6 32.1 79.3 52.2
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Descriptive Statistics

N Mean
Stdandard

Deviation Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic
Standard

Error 

Standard

Error Statistic

Math 40 50.60500 17.676073 312.444 0.008 0.374 –0.412 0.733

FR 40 50.1618 26.87608 722.324 –0.073 0.374 –0.930 0.733

Valid N (listwise) 40

FIGURE 14.16 The SPSS1 descriptive output for the study variables.

FR Math 

Mean 50.1650.61 

Standard error 4.252.79 

Median 50.7750.00 

Mode #N/A 50.00 

Standard deviation 26.8817.68 

Sample variance 722.32312.44 

Kurtosis –0.93–0.41 

Skewness –0.070.01 

Range 99.7678.80 

Minimum 0.009.70 

Maximum 99.7688.50 

Sum 2006.472024.20 

Count 4040 

FIGURE 14.15 The Excel1 descriptive statistics.

FIGURE 14.17 The SPSS1 histogram for Math.
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� Variances are equal: We can assume equal variance because neither variable is

markedly skewed.

� Linear relationship: Figure 14.19 shows the scattergram between Math and

FR. As you can see, the pattern of the dots is fairly evenly distributed around

the line and the overall shape of the dots is in a straight line.

FIGURE 14.18 The SPSS1 histogram for FR.

FIGURE 14.19 The scattergram between Math and FR.
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Computation of Pearson’s r for the Example Data

Table 14.5 is the database with the key sums in the columns. After I show the hand

calculations, I will use both Excel1 and SPSS1 to provide the correlation analyses.

The general correlation formula using SS values is

rXY ¼ SSXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðSSXÞ ðSSYÞ
p

The SSXY

SSXY ¼P
XY � ðPXÞðP YÞ

N

SSFR�Math ¼ 89; 793:8� ð2024:2Þð2006:5Þ
40

SSFR�Math ¼ �11; 743:7

The SSX

SSX ¼P
X2 � ðPXÞ2

N

SSFR ¼ 128; 818:7� 100; 651:1

SSFR ¼ 28; 170:62

The SSY

SSY ¼P
Y2 � ðP YÞ2

N

SSMath ¼ 114; 619:9� 102; 434:6

SSMath ¼ 12; 185:3

Pearson’s r

rXY ¼ �11; 743:7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið28; 170:62Þ ð12; 185:3Þp
rXY ¼ �11; 743:7

18; 527:5

rXY ¼ �0:63
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TABLE 14.5 The Database with Sums for Calculation

Math M2 FR FR2 Math X FR

50.0 2500.0 42.9 1843.8 2147.0

42.2 1780.8 13.3 176.1 560.0

37.7 1421.3 42.4 1795.5 1597.5

41.3 1705.7 53.8 2894.9 2222.1

62.5 3906.3 24.6 606.0 1538.6

69.2 4788.6 28.9 832.9 1997.2

9.7 94.1 84.7 7181.8 822.0

27.9 778.4 91.6 8387.8 2555.2

24.3 590.5 86.1 7411.0 2091.9

34.2 1169.6 68.1 4644.3 2330.7

26.5 702.3 73.9 5461.1 1958.3

36.4 1325.0 65.4 4272.3 2379.2

30.2 912.0 99.8 9952.8 3012.9

56.3 3169.7 76.5 5854.6 4307.8

50.0 2500.0 60.9 3705.1 3043.5

51.1 2611.2 81.3 6607.5 4153.7

25.4 645.2 87.2 7603.8 2214.9

36.9 1361.6 49.4 2438.1 1822.0

62.9 3956.4 58.2 3385.6 3659.9

34.6 1197.2 32.1 1028.6 1109.7

39.8 1584.0 38.9 1514.5 1548.9

56.1 3147.2 25.3 641.0 1420.4

73.3 5372.9 62.4 3893.8 4573.9

40.0 1600.0 72.1 5205.5 2886.0

46.0 2116.0 88.6 7853.4 4076.5

49.6 2460.2 35.9 1291.9 1782.8

53.0 2809.0 45.1 2035.6 2391.2

58.9 3469.2 34.3 1176.3 2020.1

50.0 2500.0 70.9 5033.3 3547.3

72.7 5285.3 0.0 0.0 0.0

58.2 3387.2 11.8 138.2 684.3

61.7 3806.9 19.0 361.1 1172.5

65.9 4342.8 61.6 3800.0 4062.3

88.5 7832.3 12.1 147.3 1074.3

77.4 5990.8 1.3 1.7 100.7

50.0 2500.0 59.0 3483.5 2951.1

48.5 2352.3 44.7 1995.9 2166.8

72.1 5198.4 15.4 237.0 1110.1

73.9 5461.2 34.7 1203.9 2564.1

79.3 6288.5 52.2 2720.8 4136.4

SX¼ 2,024.2 SY¼ 2006.5 SXY¼ 89,793.8

SX2¼ 114,619.9 SY2¼ 128,818.7
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Using the table values and the formulas above, I calculated Pearson’s r to be

�0.63. Because the numbers are so large, I used an Excel1 spreadsheet as a calcu-

lator by entering the formulas for each SS value in the spreadsheet. Therefore, my

totals may be a bit different from yours if you used a calculator because Excel1

carries out the values to many decimal points. You should end up with the same, or

very slightly different, Pearson’s r value.

Evaluating Pearson’s r: Hypothesis Test

We will use the same hypothesis test steps as we have with other statistical proce-

dures and as we did above with the fictitious example:

1. The Null Hypothesis (H0): r¼ 0

2. The Alternative Hypothesis (HA): r 6¼ 0

3. The Critical Value r38(0.05)¼ 0.312

Remember that the degrees of freedom for correlation is N – 2, where N is the

number of pairs. Because N¼ 40, the df¼ 38 (40 – 2).

The table for correlation specifies that the two-tailed 0.05 critical (exclusion)

value for r at 38 degrees of freedom is 0.312. Values that are greater than 0.312

would therefore be considered statistically significant.

4. The Calculated Value (�0.63)

5. Statistical Decision

We reject the null hypothesis because the calculated value (�0.63) exceeded the

critical value of exclusion (0.312). A calculated value as high as our calculated
value (�0.63) is unlikely to occur by chance.

6. Interpretation

We can consider our calculated r of �0.63 to be statistically significant

(p< 0.05). This indicates that it is likely not a chance finding. In the words of the

research question, the schools’ average math achievement test scores are negatively

correlated to the FR percentages. Schools with greater numbers of students eligible

for free/reduced lunches show lower math achievement scores. Because this is a

random sample, we can be reasonably sure that the findings generalize to all schools

in Washington State.

Evaluating Pearson’s r: Effect Size

The effect size, r2, is easy to calculate. It is simply the square of the correla-

tion (�0.63) and yields a value of r2¼ 0.40. Therefore, FR values account for
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40% of the variance in schools’ math achievement scores. According to the

criteria we discussed earlier, this would represent a large effect size (i.e., it

exceeds r2¼ 0.25).

CORRELATION USING EXCEL1 AND SPSS1

Correlation is an easy calculation for both Excel1 and SPSS1. I will show how to

create the correlation and discuss the results.

Correlation Using Excel1

Figure 14.20 shows the menu window when you select ‘‘Data–Data Analysis’’

from the main menu in the spreadsheet where the data are located. This should

be a familiar menu now that we have used it in past procedures. When you

select ‘‘Correlation,’’ you are presented with another specification window as

shown in Figure 14.21. As you can see, I selected both columns of data at the

same time in the ‘‘Input Range:’’ window. Because I included the labels, I

made sure to check the ‘‘Labels in First Row’’ box. The default is to create

the data in a separate spreadsheet.

When you select ‘‘OK’’ from the button shown in Figure 14.21, you will see the

correlation results in a matrix form, even though there is only one correlation pair.

Figure 14.22 shows the FR–Math correlation as �0.63 which matches our hand

calculated value.

Note that Excel1 does not specify the p value of the result. You must consult

the Correlation Table of Values to obtain the comparison value for the hypothe-

sis test.

FIGURE 14.20 The ‘‘Correlation’’ window in the Excel1 Data–Data Analysis menu.
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Correlation Using SPSS1

Figure 14.23 shows the SPSS1 correlation menu. Note that it is called ‘‘Bivariate’’

because we are specifying a two-variable correlation (‘‘bi’’ means two). When

you make this choice, you are presented with the specification menu shown in

Figure 14.24.

As you can see in Figure 14.24, I included both variables in the ‘‘Variables:’’

window. The default values for this specification window are shown. The analysis

will produce the Pearson r (this is the only value produced in the default analysis),

and SPSS1 will create a (‘‘Two-tailed’’) hypothesis test and ‘‘Flag significant cor-

relations’’ according to the default checks.

If you select the ‘‘Options’’ button in the upper right part of the window, you can

request means, standard deviations, and cross-product values. The latter are helpful

Math FR 
FR 1
Math 1 –0.63385 

FIGURE 14.22 The Excel1 correlation matrix.

FIGURE 14.21 The ‘‘Correlation’’ specification window in Excel1.
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if you wish to compare the values with those you calculated by hand. For this exam-

ple, I did not select the options.

Choosing ‘‘OK’’ will produce the correlation matrix shown in Figure 14.25. As

you can see, the same correlation value is produced as in Excel1 and in our hand

FIGURE 14.23 The SPSS1 correlation menu.

FIGURE 14.24 The correlation specification window.
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calculations. The additional features of the SPSS1 are helpful because they provide

the values you need for a hypothesis test. As you can see, the correlation signifi-

cance level (p¼ 0.000) is listed, which indicates that the correlation is far into the

exclusion area and therefore considered a significant correlation; the null hypothesis

is rejected.

As with other output we have examined, SPSS1 lists the exact probability of the
finding. When we create hypotheses tests using Correlation Tables for our exclusion

values, we report significance as p< 0.05 indicating that the calculated value fell into

the exclusion area beyond the boundary of the 0.05 level of probability. The exact

probability reported in Figure 14.25 (0.000) is actually the following: 1.13E-5, which

translates to p¼ 0.0000113! Therefore, our calculated r fell so far into the exclusion

region that it has an extremely small probability of representing a chance finding.

NONPARAMETRIC STATISTICS: SPEARMAN’S RANK-ORDER
CORRELATION (rS)

We have not discussed nonparametric correlation procedures thus far, but I listed

some examples in Table 14.1. Those listed in the first three columns are non-

parametric procedures designed to measure correlations with less than interval data.

I will briefly describe one of these in this chapter, Spearman’s rho. I will discuss

other nonparametric measures in a separate chapter.

Up to now, we have assumed two interval-level variables in calculating

Pearson’s r. However, researchers often do not have access to interval data. For

example, educational researchers might have only data such as ‘‘teacher ranking’’

of students as an operational measure of student achievement. In this case, as we

saw in Chapter 5, our rank-ordered data are ordinal data and we can make no

assumption that the interval between the numbers is equal.

If we have ordinal data, as in the example of teacher rankings, we can use a

variation of correlation called Spearman’s r. Also called Spearman’s rank-order

Correlations

FR Math 

Pearson correlation 1 –0.634a

Significant (two-tailed) 

Significant (two-tailed) 

0.000

FR

N 40 40

Pearson correlation –0.634a 1

0.000

Math 

N 40 40

aCorrelation is significant at the 0.01 level (two-tailed).  

FIGURE 14.25 The SPSS1 correlation matrix.
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correlation, or Spearman’s rho, this procedure calculates a correlation using ordinal
data or interval data that have been ranked.

Spearman’s rho results vary between �1 and þ1 as with Pearson’s r. You can

obtain a negative value, which is interpreted as it is with Pearson’s r. However,
because this not a parametric statistic, we cannot square the rs value to arrive at a

‘‘variance explained’’ figure as in Pearson’s r. We can perform an hypothesis test to

see whether the value is significant.

The hand calculation for Spearman’s rho is as follows:

rs ¼ 1� 6
P

d2

NðN2 � 1Þ
The formula appears somewhat strange in comparison to the other procedures

we have studied. Like some nonparametric tests, Spearman’s rho formula in-

cludes a constant in the formula (a constant is a number that does not change).

The 6 appears mysterious, but the nonparametric formula is created to yield a

value that fits the �1 range, and the value of 6 allows the computed values to

fall in this range. There is a longer explanation, but this gives you some insight

into nonparametric procedures.

The formula above is used with two sets of ranks like the hypothetical example

of data in Table 14.6:

If we use the formula I included above, the following is the calculation for

Spearman’s rho:

rs ¼ 1� 6
P

d2

NðN2�1Þ

rs ¼ 1� 6ð8Þ
5ð25�1Þ

rs ¼ 1� 48

120

rs ¼ 1� 6
P

d2

NðN2�1Þ
rs ¼ 0:60

TABLE 14.6 Hypothetical Correlation of Rankings by Books Read and
Reading Ability

Class Ranking—Books Read Teacher Ranking—Reading d d2

1 2 �1 1

2 1 1 1

3 5 �2 4

4 3 1 1

5 4 1 1

Totals 0 8
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Spearman’s rho calculations can be part of hypotheses tests using the same

process as the hypothesis tests in the parametric procedures. The null and alter-

native hypotheses state that the correlation will be 0 (or not 0, respectively) in

the population the sample data represent. Spearman’s rho is calculated with the

above formula, and the researcher can compare the calculated value to a critical

test value.

Spearman’s rho has a special table of comparison values to use for hypothe-

sis tests. In this table, the researcher does not use degrees of freedom because

no parameters are estimated. However, if a table of values is not available

(I do not include such a table in this book), the researcher can use the T
Table of values with the same formula I noted above for Pearson’s r. When
you use the T Distribution Table for identifying a comparison value, you can
use degrees of freedom as we did with Pearson’s r because the table is created

for a parametric comparison.

t ¼ rs
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2s

p
t ¼ 0:6

ffiffiffi
3

pffiffiffiffiffiffiffiffiffi
0:64

p

t ¼ 1:30

Using the T Table of values, I note that the critical value of rejection at the 0.05

(two tailed) level with df¼ 3 (5 � 2) is 3.182. Therefore, because our calculated

t value (from Spearman’s rho) is 1.30, we cannot reject the null hypothesis.

The one-tailed 0.05 exclusion value using Spearman’s Table of critical values

for five data pairs is 0.90. (Spearman’s Table does not provide a two-tailed value

with N¼ 5.) You would therefore need a 0.90 correlation or higher to reject the null

hypothesis. Using either table would therefore indicate the same result: We cannot

reject the null hypothesis.

Variations of Spearman’s Rho Formula: Tied Ranks

Researchers sometimes use rank-order procedures when they have data that are

interval, but the data are not normally distributed, as I mentioned above when I

discussed skewed variables. Situations in which this is common involve using

financial data, like housing values, teachers’ salaries, or school funding. I will pro-

vide an extended (actual) example of this in a section below.

More commonly, researchers have studies in which they may have both ordinal

and interval level variables. In either case, however, the simple Spearman’s rho

formula above will most likely not be appropriate as I will discuss later. The reason

is that larger studies with more cases or studies that involve ranking of interval

variables usually result in tied ranks, which are problematic to the basic Spearman’s

rho formula.
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If skewed interval-level variables are used along with ranked variables, the
skewed interval data must first be ranked and then correlated with variables
already ranked. In these cases, the Spearman’s rho formula above should not be

used. Table 14.6 presents a brief example of using interval data that are transformed

to rank-order variables.

In our fictitious study, we used Class Ranking—Books Read as one of our ordi-

nal, (ranked) variables. What if we had used the number of books the students read

instead of the ranking variable? We would then have an interval-level variable. In

such a case, we would need to rank order the interval data so that both of our study

variables would then be ordinal (remember, the other variable, Teacher Ranking—

Reading is already an ordinal variable). Table 14.7 shows the comparison of these

variables and how the interval-level variable can be changed to rankings.

I placed the original ranked variable in the first column. The second column is

the interval-level variable we are going to use in the study instead of the ranked

variable. The problem with these data values, however, is that the third and fourth

students tied because they read the same number of books (six). If we want to rank

this variable, we must average tied ranks.
When we rank the students in the order of the greatest number of books read

(you can also rank them in the other direction), the top two students are ranked 2

(second) and 1 (first), but the next two students occupy the same rank (third).

Therefore, we must average the rank positions of the books read (average the rank

positions, not the actual values). This means that we average the third and fourth

rank positions resulting in two ranks of 3.5 (because 3þ4
2

¼ 3:5). I showed this in

Table 14.7 in the third (shaded) column.

Once this variable has been changed to a rank-order variable from an interval-

level variable, we can proceed with Spearman’s rho calculation with the new

ranked variable and the teacher ranking variable in Table 14.6.

Remember, however, the basic Spearman’s rho formula I used above for this

calculation works well with small samples, but it is affected by variables with

tied ranks. If we have tied ranks, we must use another formula that takes the

tied ranks into account. I will not introduce that formula in this chapter. I just

wanted to point out that larger datasets, especially those involving skewed inter-

val data that have been ranked, should be analyzed by SPSS1 or similar statisti-

cal software. As you can see, ranking skewed data can be quite a process

especially if the dataset is large.

TABLE 14.7 Ranking an Interval Variable

Class Ranking-Books Read Number of Books Read Books Read Rankings

1 12 2

2 14 1

3 6 3.5

4 6 3.5

5 1 5
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A Spearman’s Rho Example

I mentioned above that researchers often are faced with using data that are so dis-

torted that they cannot be used with parametric procedures like Pearson’s r. In such

cases, they might use Spearman’s rho because this procedure can be used with

skewed data. Creating ranks with these kinds of variables would be very tedious,

especially with large datasets. Fortunately, SPSS1 includes the Spearman’s proce-

dure that can be very helpful.

As an example, one of the databases we have used to demonstrate statistical pro-

cedures in this book is the TAGLIT data. One school finance variable in the 2003

TAGLIT data related to instructional technology is how much funding was received

from grants by school for benefitting instructional technology. Figure 14.26 shows

the SPSS1 summary for this variable in one database with over 10,000 cases.

As you can see from Figure 14.26, this is an extremely skewed variable! The

median is $0 and the mean is $52,463.11. Therefore, over half of the schools

received no grant funding designated for instructional technology in that year. How-

ever, there were many schools that exceeded $10,000 and several that received over

$100,000. Under these circumstances, the researcher would not want to use these

data in a Pearson’s correlation despite the fact that they represent interval (even

ratio) level data. If the researcher has interval data that depart this far from the

assumptions of parametric tests to the extent that they cannot be reasonably used,

then Spearman’s rho can be used instead of Pearson’s r.
I will provide a short example of the data above used in a research study so that

you can see how to use Spearman’s rho correlation. If you recall, I used a TAGLIT

example in Chapter 6 in which I described a measure of Middle/High-School teach-

ers’ technology skill. A researcher may wish to correlate such a measure with a

Median 0.00

Skewness 99.984

Standard error of skewness 0.024

Kurtosis 10,004.004

Standard error of kurtosis 0.049

Statistics

Grant$$

10,019N valid

N missing 2

Mean 52,463.11

FIGURE 14.26 Descriptive.
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variable like the grants received variable shown in Figure 14.26. The object would

be to see whether grant funding was related to teacher technology skill. That is, do

MH teacher technology skills increase with increased school grant funding for in-

structional technology?

Figure 14.27 shows the Spearman’s r results for this research question. As you

can see, the correlation is 0.035 and is significant at p¼ 0.028. (Figure 14.24 shows

how to obtain this SPSS1 output. There is simply a box to check in the same speci-

fication window in which you call for Pearson’s r.)
Spearman’s rho is 0.035, which indicates a very low degree of association

between the variables. Remember, as the value of Spearman’s rho approaches 0,

the relationship between the variables is weaker. Note, however, that the signifi-

cance level is p¼ 0.028! This result underscores our earlier discussion of the impor-

tance of sample size. Despite a weak relationship, it is statistically significant.

As a point of interest, look at Figure 14.28 which shows the same variables

analyzed using Pearson’s r. The results show almost no correlation (r¼�0.003).

The fact that we were using the extremely skewed variable Grant$$ affected the

correlation results using Pearson’s r. Even though Spearman’s rho was a low corre-

lation, it was nevertheless larger (and significant). These results point to the impor-

tance of using the correct correlation procedure with your available data. They also
underscore the point that the power of a study is increased by using the appropriate
statistical procedure.

TERMS AND CONCEPTS

Coefficient of Determination The squared value of r, the Pearson correlation

coefficient, which represents the proportion of variance in the outcome variable

accounted for by the predictor variable of a study.

Correlations

ldr53 mhskills

Correlation coefficient 1.000 0.035a

Significance (two-tailed) 

Significance (two-tailed) 

— 0.028

Grant $$ 

N 10,019 3968

Correlation coefficient 0.035a 1.000

0.028 —

Spearman's rho 

mhskills

N 3968 3968

aCorrelation is significant at the 0.05 level (two-tailed).  

FIGURE 14.27 The SPSS1 Spearman’s rho results.
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Dichotomized Variables Continuous scores that have been transformed into

variables with only two values (e.g., high or low). This is related to, but not the

same as, dichotomous variables, which are those variables that naturally have

two categories (e.g., male or female).

Heteroscedasticity A violation of the assumption of equal variation. In this

condition, the variance of one study variable is not equal at each value of the

other study variable.

Homoscedasticity The assumption of equal variance in a study in which the

variance of one variable is equal at values of the other variable in a study.

Linear Relationship The relationship among study variables that forms a straight

line if plotted on a graph. Violations of linearity might take the form of

curvilinear relationships in which the graphed line is not straight but curved.

Outliers Extreme scores in a distribution that may result in a distortion of values

of the total set of scores.

Proportional Reduction in Error Measures (PRE) Procedures that measure

how much variation is reduced or explained by knowing the relationship among

study variables. In correlation, r2 is such a measure in that it describes the

proportion of variance in the outcome variable that is accounted for by the

predictor variable.

Restricted Range A problem in correlation studies in which the entire set of

scores is not used in an association, but rather a selected group of the scores is

used that that do not represent the total variability.

Scattergram A graph that shows the relationship between study variables

when they are plotted together. Also called scatter diagram, scatterplot, or scatter

graph.

Correlations

ldr53 mhskills

Pearson correlation 1 –0.003

Significance (two-tailed) 

Significance (two-tailed) 

0.855

Grant$$

N 10,019 3968

N 3968 3968

Pearson correlation –0.003 1mhskills

0.855

FIGURE 14.28 SPSS1 Pearson’s r results.
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REAL-WORLD LAB X: CORRELATION

In this lab, we will use TAGLIT data with a research question similar to the exam-

ple in the chapter. The TAGLIT data in Table 14.8 are a random sample (N¼ 50) of

schools with MH Teacher Skills data (N¼ 3968) selected from the national data-

base in 2003. The two variables are:

� Earmark$ is the funding a school earmarks for technology (in thousands of

dollars).

� MHSkills is the index of technology skills among middle- and high-school

teachers. The higher the index value, the greater the perceived technology skill

of the teacher.

Lab X Questions

1. Do the variables meet the assumptions for Pearson’s r?

TABLE 14.8 The Real-World X Data

Cases 1–25 Cases 26–50

Earmark$ mhskills Earmark$ mhskills

15.00 2.65 0.00 3.33

0.00 3.50 8.00 3.13

15.00 3.19 0.00 3.03

15.00 2.79 0.00 3.11

0.00 3.00 0.00 3.32

2.00 3.08 0.00 3.74

0.00 3.15 5.00 3.07

5.00 3.10 200.00 2.98

27.60 3.28 0.00 3.10

0.00 3.07 7.21 3.12

10.00 2.87 0.00 2.80

0.00 3.47 1.00 3.28

14.00 3.25 0.00 3.40

5.00 2.90 0.00 3.58

35.00 2.96 0.00 3.00

70.00 3.29 30.00 2.87

0.00 2.89 0.00 3.20

3.00 2.97 2.50 2.82

0.00 2.75 5.00 3.09

35.00 2.89 10.00 3.00

10.00 3.16 0.00 3.47

14.00 3.28 2.00 3.40

0.50 2.80 0.00 3.50

0.00 3.06 6.50 3.10

0.00 3.32 3.00 3.00
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2. Conduct the appropriate correlation procedure with Excel1 and SPSS1 and

explain your results.

3. Calculate the Pearson’s r by hand and perform the hypothesis test.

4. What is the effect size?

5. Discuss the results.

REAL-WORLD LAB X: SOLUTIONS

1. Do the Variables Meet the Assumptions for Pearson’s r?

� Randomly chosen sample: The sample (N¼ 50) was randomly selected from

the total set of school data in the 2003 TAGLIT national (N¼ 3968).

� Variables are interval level: All data are either dollars or index scores.

� Variables are independent of one another: The variables are not linked.

� Variables are not normally distributed: Figures 14.29 (Excel1) and 14.30

(SPSS1) show the descriptive results for the study variables. The Earmark$

variable appears to be severely positively skewed from both sets of results.

The SPSS1 report includes the standard error for skewness and kurtosis,

which confirms the extreme skew. The MHSkills variable is normally

distributed.

Figures 14.31 and 14.32 show the histograms for both variables. As you can see,

the histogram for Earmark$ (Figure 14.31) indicates a severe positive skew in

agreement with the numerical data. Figure 14.32 shows a normal distribution for

MHSkills.

� Variances are equal: We cannot assume equal variance because one variable is

markedly skewed.

MHSkills Earmark$ 

Mean 3.12 11.13 
Standard error 0.03 4.26 
Median 3.10 2.00 
Mode 3.00 0.00 
Standard deviation 0.24 30.13 
Sample variance 0.06 907.77 
Kurtosis –0.15 32.80 
Skewness 0.38 5.40 
Range 1.09 200.00 
Minimum 2.65 0.00 
Maximum 3.74 200.00 
Sum 156.07 556.31 
Count 50 50 

FIGURE 14.29 The Excel1 descriptive statistics for Lab X.
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� Linear relationship: Figure 14.33 shows the scattergram between Earmark$

and MHSkills. As you can see, the pattern of the dots does not indicate a linear

relationship due to the extreme skew of Earmark$.

2. Conduct the Appropriate Correlation Procedure with Excel1 and SPSS1

and Explain Your Results

Given the violation of assumptions, we will conduct the Spearman’s rho procedure

with SPSS1. Figure 14.34 shows the results.

According to the results in Figure 14.34, Spearman’s rho correlation (rs¼
�0.324) is significant (p¼ 0.022). There is an inverse relationship between Ear-

mark# and MHSkills. The more funding was earmarked for instructional technol-

ogy, the lower the MHTeacher skills. This is an interesting finding that bears

greater study. One possible reason for the inverse relationship is that schools

Descriptive Statistics

N Mean
Standard

Deviation Skewness Kurtosis

Statistic Statistic Statistic Statistic
Standard

Error 

Standard

Error Statistic

Earmark$ 50 11.13 30.129 5.397 0.337 32.802 0.662

mhskills 50 3.1214 0.23577 0.383 0.337 –0.151 0.662

Valid N (listwise) 50

FIGURE 14.30 The SPSS1 descriptive output For Lab X.

FIGURE 14.31 The SPSS1 histogram for Earmark$.
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responded to the lack of teacher technology skills by earmarking more funds for

instructional technology. This suggestion, if accurate, points to the fact that correla-

tion is not causation; either variable may be considered the predictor and/or the out-

come. The other problem is that nearly half the sample schools earmarked no

funding, which may have affected the relationship.

FIGURE 14.33 The SPSS1 scatterplot of Earmark$ (predictor) and MHSkills (outcome).

FIGURE 14.32 The SPSS1 histogram for MHSkills.
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3. Calculate Pearson’s r by Hand and Perform the Hypothesis Test

Table 14.9 shows the data table with sums (not all data are shown). The Pearson’s r
hand calculations follow the data table. The calculated Pearson’s r is�0.135. The

correlation does not appear strong, so we will conduct the hypothesis test.

The SSXY

SSXY ¼P
XY � ðPXÞðP YÞ

N

SSEarmark�MHSkills ¼ 1689:47� ð556:31Þð156:07Þ
50

SSEarmark�MHSkills ¼ �47

The SSX

SSX ¼P
X2 � ðPXÞ2

N

SSEarmark$ ¼ 50; 670:52� 6189:62

SSEarmark$ ¼ 44; 480:9

The SSY

SSY ¼P
Y2 � ðP YÞ2

N

SSMHSkills ¼ 489:89� 487:16

SSMHSkills ¼ 2:73

Correlations

Earmark$ mhskills

Correlation coefficient 1.000 –0.324a

Significance (two-tailed) — 0.022

Earmark$

N 50 50

Correlation coefficient –0.324a 1.000

Significance (two-tailed) 0.022 —

Spearman's rho 

mhskills

N 50 50

aCorrelation is significant at the 0.05 level (two-tailed).  

FIGURE 14.34 The SPSS1 Spearman’s rho results.
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Pearson’s r

rXY ¼ SSXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðSSXÞðSSYÞ
p

rXY ¼ �47ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið44; 480:9Þð2:73Þp
rXY ¼ �47

348:47

rXY ¼�0:135

The hypothesis results follow:

1. The Null Hypothesis (H0): r¼ 0

2. The Alternative Hypothesis (HA): r 6¼ 0

TABLE 14.9 The Data Table with Sumsa

Earmark$ Earmark$2 mhskills Skills2 Earmark$� Skills

15 225 2.65 7.041174 39.80

0 0 3.50 12.25 0.00

15 225 3.19 10.15759 47.81

15 225 2.79 7.79138 41.87

0 0 3.00 9 0.00

2 4 3.08 9.472716 6.16

0 0 3.15 9.895823 0.00

5 25 3.10 9.61 15.50

28 762 3.28 10.73822 90.44

0 0 3.07 9.447535 0.00

10 100 2.87 8.239026 28.70

0 0 3.47 12.01778 0.00

14 196 3.25 10.5625 45.50

5 25 2.90 8.41 14.50

35 1225 2.96 8.7616 103.60

70 4900 3.29 10.83929 230.46

— — — — —

— — — — —

— — — — —

— — — — —

0 0 3.50 12.25 0.00

7 42 3.10 9.61 20.15

3 9 3.00 9 9.00

SX¼ 556.31 SY¼ 156.07 SXY2¼ 1689.47

SX2¼ 50,670.52 SY2¼ 489.89

aNot all data are shown due to space considerations.
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3. The Critical Value r48(0.05)¼ 0.279

4. The Calculated Value (�0.135)

5. Statistical Decision: Do not reject the null hypothesis. The calculated correla-

tion does not fall into the exclusion area and is therefore likely a chance

finding.

4. What Is the Effect Size?

The effect size for this Pearson’s r is 0.018. The predictor variable explains

(accounts for) less than 2% of the variance in the outcome variable. This amount is

considered small by the Cohen (1988) criteria.

5. Discuss the Results

Because the Earmark$ variable was extremely skewed, we conducted a Spearman’s

rho correlation and found the relationship of MHSkills to Earmark$ to have an sig-

nificant inverse relationship (rs¼�0.324, p¼ 0.022). Although the correlation is

significant, it is difficult to determine the direction of the relationship. We suggested

MHSkills to be the outcome variable. However, this finding may reveal that

MHSkills drove the funding for instructional technology and therefore served as

the predictor. Additional study with the full range of variables in the database may

reveal the nature of the relationship between these study variables.
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15
BIVARIATE REGRESSION

This chapter discusses a very important statistical procedure for evaluators.

Regression techniques use correlation to help predict the values of an outcome
variable knowing values of the predictor variable. If you recall, I mentioned at the

outset of Chapter 14 that correlation helps researchers to explain and predict.

By extension, regression techniques use correlations between variables to explain
variance in outcome variables and predict specific outcome values at different

values of predictor variables.

We have already made reference to regression procedures in the scattergrams we

created and discussed. For example, Figure 14.2 showed the scattergram of the cor-

relation between the number of books read and student reading achievement. The

scattergram used a line to show the pattern of the student scores. We discussed

correlation as being stronger when the dots were close to the line and the direction

of the line, indicating whether the relationship was positive or inverse.

The line that ‘‘captures’’ the pattern of the correlation relationship is actually the

regression line of best fit. We will learn in this chapter to calculate the equation for

this line so that we can understand the dimensions of the relationship between the

two variables. We can use the line to help us predict values of the outcome variable

knowing values of the predictor variable, and we can identify the ‘‘explained vari-

ance’’ between the two variables knowing the dimensions of the line.

If a teacher created a regression equation for the relationship between the stu-

dents’ number of books read and reading achievement scores, they could use this

information to help them understand other students not in the study. For example, if

a new student entered the class, the teacher could ask them how many books they

read over the summer and then use the regression equation to predict what their

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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reading achievement might be. The prediction would likely be a much better esti-

mate of the student’s reading achievement than simply guessing!

The teacher could also understand how much of the variance in reading achieve-

ment is explained by the number of books read and how much variance is left

unexplained. They will have created a model of explanation that will help them in

subsequent studies to focus even further on other variables that might help to

explain further the unexplained variance.

THE NATURE OF REGRESSION

Technically, regression refers to the spread of the values of Y for values of X. This
refers to the fact that at fixed values of the predictor variable (X) there are several

values of the outcome variable (Y). This spread of Y values will have a mean at each

X value. The path of a line that crosses through all the means is what we refer to as

the regression line. It is a line of best fit because it passes through the means of the Y
points across the values of X. Consider Figure 15.1, a hypothetical example using

books read and reading achievement.

In Figure 15.1, you can see that when the number of books read (X) is 4, there are
several students represented. This means that several students read four books, but

not all of these students had the same reading achievement score. I drew a small

distribution around these dots to show that, at any value of X, there will be a spread
of values of Y. The mean of all these Y values at each of the X values will be the best

score to represent all the others. Thus, the entire regression line will pass through

the means of all the Y values that spread out around values of X.

FIGURE 15.1 The line of best fit.
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Because the mean of the Y values (at each value of X) is the best representative
of the other Y values, we can use this value to predict a value of Y. I showed this in

Figure 15.1 by a dashed horizontal line extending from the (mean) Y value (when

X¼ 4) to the Y axis. This value (approximately 60) represents the predicted value of

Y when X¼ 4. We could extend similar lines to the Y axis at the other values of X.
Figure 15.2 shows another dimension of regression analysis. When we create the

regression line, our predicted values of Y represent the mean of the spread of Y val-

ues at values of X. However, the actual values of Y (which we do not know) might

vary from this predicted value. I represented this variability of prediction with a

small distribution around the predicted values on the Y axis.

As you can see, when the correlation between the two variables is stronger, the pre-

dicted Y values have less variability and can be thought to be more accurate. Because

there is less variability of Y scores at each value of X, the ‘‘mean of the groups of Y’’ is
a more precise estimate and therefore will produce a more accurate predicted Y value.

Figure 15.3 shows another dimension of regression. When there is no significant

correlation, the predictability of Y at values of X is very poor. You can see how this

is problematic because with very low correlation, we cannot establish a meaningful

regression line that will provide good estimates or predicted Y values.

THE REGRESSION LINE

Just as there were two methods for calculating Pearson’s r, there are two methods

for calculating the regression line. The first of these methods uses Z scores, just as

FIGURE 15.2 The effect of correlation on prediction accuracy.
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our first correlation formula used Z scores. The logic of this formula is best under-

stood by first looking at the raw score formula, which is the second way of creating

the equation for the regression line.

Both the Z-score formula and the raw score formula are variations of the equa-

tion for a line that you probably learned in an algebra class:

Y ¼ mX þ b

In this formula, m is the slope of the line (rise over run), and b is the y intercept.
Statisticians use the same formula but with different symbols. In the statistical for-

mula, b represents the slope of the line and a is the y intercept. So, the statistical

equation for the straight line (i.e., regression line) we use is

Ŷ ¼ bX þ a

You will note that Ŷ is the symbol for ‘‘Y predicted,’’ which is the predicted

value of Y at values of X. This is often represented as Y’ as you can see in Figure

15.2, or simply as Ypred. I will use the latter (Ypred) in this chapter.
The b and a values in the equation have research meanings beyond slope and

intercept. Here is how to use them in research:

� b is the slope of the regression line. When we calculate the equation, the b is

the coefficient for the predictor variable that indicates the unit change in Y with
each unit change in X. That is, for every 1 unit change in the X variable, how

many units will the Y variable change?

� a is the Y intercept. This refers to the value of Y when X¼ 0. (You must exam-

ine research graphs carefully because some do not show 0 on the X axis. I will

discuss this below.)

FIGURE 15.3 The lack of meaningful prediction with no significant correlation.
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We can learn best by using a fictitious example and then moving to a real-world

example. Table 15.1 is a fictitious dataset that follows the theme we used in Chapter

14 of the relationship between books read and reading achievement. In regression,

we are using the correlation to help us better predict the values of one variable from

the values of the other variable.

I am using different values than we used in Chapter 14 in order to illustrate the

elements of the regression relationship, but the research question is similar. With

regression, we are using one variable as the predictor (X¼Books Read) and an out-

come variable (Y¼Reading Achievement). Thus, we are using regression to create

a model that will accomplish two things:

1. Explain as much variance as possible in the outcome variable.

2. Predict values of the outcome variable with values of the predictor.

Figure 15.4 shows the scattergram between the two variables (from SPSS1). As

you can see, the regression line (line of best fit) has been calculated and drawn

through the dots in such a way as to minimize the distance of each dot from the

line. As we discussed above, you may also think of the line representing the mean

of all the Y values that lie at each value of X. Because we have so few observations,

this isn’t visually apparent, but you can see it more clearly with more observations

as we will in our next example.

Our task is to calculate the regression line so we can understand better the prop-

erties of regression. We will calculate both b and a for this equation.
Note that in Figure 15.4 the Y intercept is shown (i.e., the regression line is

shown crossing the Y axis), but the intercept value (a) is the value of Y when

X¼ 0. This value lies directly above the 0 on the X axis where the regression line
would intersect the Y axis. I indicated this with the vertical and horizontal lines in

the scattergram. Since the X¼ 0 is not directly on the Y axis, the value of a is

deceptive. On the graph, a appears to be about 47 (the point of intersection of the

regression line and the Y axis). However, as we will see, the calculated value of a
is 49.41, which is seen more clearly by the added vertical and horizontal lines. I

wanted to show an actual scattergram result so you can understand the meaning of

the a value.

TABLE 15.1 The Fictitious Data on Books Read and
Reading Achievement

Books Read Reading Achievement

0 45

1 58

3 62

5 76

6 81

8 86

9 90
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CALCULATING REGRESSION

As I noted above, we will begin by calculating the raw score formula for regression.

This formula uses the actual values of X and Y as they appear in the raw score data

table. Both variables are measured in their own scales. If you look at the data in

Table 15.1, you will see that both X and Y are interval-level variables, but the mag-

nitudes of the scale values are different. X values range from 0 to 9, whereas Y
values range from 45 to 90. Our raw score formula uses the values as they exist in

the table.

Ypred ¼ bX þ a

If you look carefully at the formula, there are four elements, two of which are

dependent upon the calculation of the other two.

� Ypred is the outcome that depends on the values of the other calculations;

� X takes the values from the data the researcher uses as the predictors;

The two values above are ‘‘resident’’ in the equation, they are there but do not

show a value in the equation. The other two elements are calculated: b, the slope, is
calculated by the following equation:

b ¼ r
ffiffiffiffiffiffiffiffi
SSY

pffiffiffiffiffiffiffiffi
SSX

p

FIGURE 15.4 The scattergram between books read and reading achievement.
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a, the intercept is calculated by the following equation:

a ¼ MY � bðMXÞ

The Slope Value b

Note that the slope is simply the r value times the relationship between the variance

(SD) of Y to that of X (in the formula, I use the SS value that represents the SD when

the square root is taken). Here are some observations about the slope:

� When r is large, the slope value will be larger, indicating a larger slant to the

regression line and a greater impact of X on Y.
� When r is small, the slope will be flatter. The r value thus modifies the slope

by influencing the size of the rise (Y) over the size of the run (X).
� When r¼ 1.0, a perfect correlation, the slope is the direct relationship between

the SD values of Y and X.
� When r¼ 0, or no correlation, the slope will be flat, indicating no predictive
value of X for Y values.

� Intermediate values of r ‘‘weight’’ the impact of the slope.

The Regression Equation in ‘‘Pieces’’

The regression equation looks difficult but it is manageable if you think of it in

‘‘pieces.’’ Figure 15.5 shows how you might consider the calculation formula.

A Fictitious Example

Table 15.2 shows the values in Table 15.1 needed for calculating the pieces of the

regression equation.

Ypred = bX + a 

+ a = MY – b(MX)

Neither Ypred nor X are calculated 

b
r SS

Y

SS
X

FIGURE 15.5 The formula in pieces.
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Here are the pieces of the regression equation. Remember, we must calculate r as
we did in Chapter 14. The value of regression depends upon a significant and mean-

ingful r value:
r value:

rXY ¼ SSXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðSSXÞðSSYÞ
p ; rXY ¼ 331:43ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið69:71Þð1636:86Þp ¼ :98

b value:

b ¼ r
ffiffiffiffiffiffiffiffi
SSY

pffiffiffiffiffiffiffiffi
SSX

p ; b ¼ :98
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1636:86

pffiffiffiffiffiffiffiffiffiffiffi
69:71

p ; b ¼ 4:75

a value:

a ¼ MY � bðMXÞ; a ¼ 71:14� 4:75ð4:57Þ; a ¼ 49:43

Now that we have calculated all the pieces, we can put them in the equation as

shown in Figure 15.6. As you can see, the X value simply stays in the equation

without a value.

Interpreting and Using the Regression Equation

Once we arrive at the final regression formula, we can interpret the parts and use it

for prediction. The b is a coefficient of X and indicates the unit change in Y with

every unit change in X. Thus, when X changes by one unit (i.e., when a student

reads one additional book), the Y value increases by 4.75. If reading achievement is

measured in percentage on the reading test, then each book read results in a gain of

almost 5% on the reading test!

TABLE 15.2 The Calculated Sums of the Fictitious Data

Books Read (X) X2
Reading Achievement

(Y) Y2 XY

0 0 45 2025 0

1 1 58 3364 58

3 9 62 3844 186

5 25 76 5776 380

6 36 81 6561 486

8 64 86 7396 688

9 81 90 8100 810P
X¼ 32

P
Y¼ 498

P
XY¼ 2,608P

X2¼ 216
P

Y2¼ 37,066

M¼ 4.57 M¼ 71.14

SD¼ 3.156 SD¼ 15.29
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If we wished to predict a value of Y for a certain value of X, we can simply put

the X value in the equation and solve for the Ypred. For example, if we want to pre-

dict a Reading Achievement score for a student who read four books, the predicted

reading achievement score would be 68.43:

Ypred ¼ 4:75ð4Þ þ 49:43;
Ypred ¼ 68:43

Figure 15.7 shows the predicted reading achievement value (68.43) when the

student read four books.

EFFECT SIZE OF REGRESSION

Regression is based on correlation, so the effect size is r2 as in correlation. In this

instance we can conclude, as we did with correlation, that with this sample the

FIGURE 15.7 Using the regression formula to predict a value of Y at X¼ 4.

Ypred  = bX + a 

Ypred  =     4.75    X   + 49.43

FIGURE 15.6 The completed regression formula.
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number of books read accounts for approximately 96% (0.96) of the variance in

reading achievement. (If it were only this simple!). As with correlation, we can use

the same criteria from Cohen (1988): r2 values of 0.01, 0.09, and 0.25 for small,

medium, and large effects, respectively.

THE Z-SCORE FORMULA FOR REGRESSION

If you recall, I noted earlier that there is another way to calculate the regression

formula using Z scores. Like correlation, this would involve creating Z scores for

each of the scores in the data table. The resulting formula is very simple, however,

because with bivariate regression the slope is equal to the correlation (slope¼ r).1

You can see how this works if you consider that the SD of Z scores is 1. Thus, the

following would apply:

b ¼ r
ffiffiffiffiffiffiffiffi
SSY

pffiffiffiffiffiffiffiffi
SSX

p ; b ¼ rð1Þ
ð1Þ ; b ¼ r

If both X and Y were transformed to Z scores, their SDs would be 1. Thus, as you
can see from the formula for calculating b, this would mean that we would be

dividing the Y SD (which equals 1) by the X SD (which also equals 1) to yield 1.

(Remember that the
ffiffiffiffiffiffi
SS

p
value in the equation is a measure of SD.)

When both X and Y values are Z scores, the scattergram would show the change in

scales for both variables. Because both would be in Z-score scales, there would be no
Y intercept; the regression line would cross the Y axis at the origin (where X¼ 0 and

Y¼ 0). Figure 15.8 shows this. As you can see, the vertical and horizontal lines create

the Y and X axes at values of 0 for both. Where they cross is the origin, which repre-

sents X¼ 0 and Y¼ 0. (Note that both the Y and X axes have negative values because

Z scores are negative as well as positive.) Because the regression line passes through

the origin, the Y intercept is always 0, unlike the intercept with the raw score formula.

The Z-score formula therefore changes due to the revised values for b (i.e., b¼ r)
and a (a¼ 0 since there is no Y intercept). The following shows the raw-score for-

mula and the resulting Z-score formula that incorporates the changes in values from

using Z scores.

Raw-Score Formula : Ypred ¼ bX þ a

Z-Score Formula : ZY ¼ rZX;which in final form is ZY ¼ bZX

Using the Z-Score Formula for Regression

If you use the Z-score formula to predict ZYvalues, you need to remember to use ZX
values. Thus, if you wanted to predict a ZY value, you would need to obtain Z values

for the X scores.

1 This is only true for regression studies with one predictor variable (bivariate regression). Multiple

regression creates a different value for the slope value with Z-score formulas.
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For example, if you wanted to use the Z-score formula for the previous problem

(i.e., What is Ypred when X¼ 4?), you would first need to create the Z score

for X¼ 4. This would yield the ZX value of¼�0.181 4�4:57
3:156

� �
. Using the Z-score

formula, the resulting predicted ZY score is �0.177.

ZY ¼ rZX

ZY ¼ 0:98ð�0:181Þ
ZY ¼ �0:177

Therefore, when ZX¼�0.181, ZY¼�0.177. If you did not want to report the

resulting Zpred as a Z score, you could transform it to a raw score using the formula

you learned to transform Z scores back to raw scores (Chapter 8). Just remember
to use the M and SD of the Y variable because you are transforming a ZY score to a
Y raw score:

Raw score ðYpredÞ ¼ ZðSDÞ þM;

ðYpredÞ ¼ �0:177ð15:29Þ þ 71:14;

ðYpredÞ ¼ 68:436

This predicted value (68.436) is the raw score (Y) predicted by a ZX of �0.181.

Compare this to the raw score values above calculated by the raw-score formula

because these are the Z-score values corresponding to predicting Y from an X score

of 4.

FIGURE 15.8 The SPSS1 Z-score scattergram of books read and reading achievement.
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Unstandardized and Standardized Regression Coefficients

You will note that the slope value in the raw score formula and in the Z-score for-

mula have different symbols. This is because in the raw-score formula we are using

unstandardized (i.e., raw score) values. That is, values that have not been trans-

formed to Z scores. When we use Z scores, the slope is referred to as ‘‘Beta’’ and

symbolized by b. We refer to this value as the standardized coefficient because Z
scores are scores expressed in standard deviation units.

This may seem to be a petty distinction, but I will show you later that it is an

important difference. Statistical software reports regression results in different

ways, depending on whether standardized values are used, so you need to keep this

difference in mind.

TESTING THE REGRESSION HYPOTHESES

When you calculate a regression equation, you can use it to explain variance and to
predict values. But the same question remains with regression as with the other pro-

cedures we have discussed thus far: Are the results statistically significant?

There are two considerations for statistical significance in bivariate regression:

1. The Omnibus test is the statistical significance of the overall regression
model.

2. The individual predictor(s) test assesses the statistical significance of each

predictor in the model (in bivariate regression there is only one predictor).

We will examine the results for both of these tests by examining the results from

Excel1 and SPSS1. I will note here that the omnibus test is an F test because the F
test assesses significance by comparing components of variance. Our raw-score for-

mula uses SS values that will allow you to see the relationships among the variables

in the analysis. The individual predictor test is a T test of whether the slope differs
from 0 (in effect, a T test of a single sample). We have discussed both of these tests

in past chapters, so you will be prepared to understand the results.

THE STANDARD ERROR OF ESTIMATE

We have examined several inferential statistical tests that use sampling distribu-

tions as comparisons for our transformed test values. The regression analysis cre-

ates a sampling distribution of sorts, the standard deviation of which is called the

standard error of estimate, symbolized by sest.
When we use the regression equation to make predictions, our estimate will in-

frequently match exactly the actual value of Y. Rather, our Ypred value will be some-

what different than an actual value. This difference is called the error of prediction

or simply error. The differences between Ypred values and actual Y values are also
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known as residuals. When all the prediction errors from the model are placed in a

distribution, we can calculate a mean and standard deviation of the entire group.

The sest is the standard deviation of all the prediction errors. We can use this value

as a comparison of all individual prediction errors, and we can also use it to create a

confidence interval of scores within which the actual value of Y will fall a given

percentage of time (e.g., 95% of the time).

Calculating sest

Calculating sest is straightforward. The prediction errors are in reference to the vari-
ance measure of Y, so we simply adjust this measure by using the correlation mea-

sure and the degrees of freedom for regression. This will yield the standard

deviation of the distribution of prediction errors.

In the formula, we start with SSY, the variance measure of Y. Then we divide it

by the degrees of freedom of regression (and correlation). As you recall, the degrees

of freedom for correlation is N� 2 because we are estimating two parameters (pre-

dictor and outcome variables). This is the same in bivariate regression where we

have two variables. When you divide the variance measure by the degrees of free-

dom, we create an estimate of the SD of the sampling distribution (i.e., the standard

error). Taking the square root creates an SD measure from the variance measure

(SSY) we used to create the estimate.

The sest measure is made more precise by taking into account the correlation be-

tween the predictor and outcome variables. Thus, in the formula, we modify our esti-

mate by multiplying by (1� r2), which is the unexplained variance. As you can see,

when there is a large correlation (as there is in our fictitious sample), this unexplained

variance will be very small and will therefore result in a sest that is small. However,

when the original correlation is weak (i.e., approaching 0), there will be a greater

amount of unexplained variance. This will result in a larger standard error of estimate.

Sest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSY

N � 2
ð1� r2Þ

r

In our fictitious example, sest is calculated as follows. Your results may be

slightly different, depending on whether you round off the elements of the formula

before you use it or complete the formula in one step (as with Excel1 and SPSS1).

Sest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSY

N � 2
ð1� r2Þ

r
;

Sest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1636:86

7� 2
ð1� 0:963

r
Þ;

Sest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
327:372ð0:0374Þp

;

Sest ¼ 3:499

The result is 3.499. What does this mean? It is the estimated standard deviation
of all the prediction errors of our regression equation.
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Our original correlation (r¼ 0.981) was very large, so the standard error is not

large. If the correlation had been small, for example r¼ 0.10, look what would

happen to the sest calculation:

Sest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1636:86

7� 2
ð1� 0:01Þ;

r

Sest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
327:372ð0:99Þ;p

Sest ¼ 18:00

You can see by comparing these sest results that a stronger correlation reduces
the prediction error. The range of sest is therefore:

sest¼ 0, when there is perfect correlation, r¼ 1.

sest¼The maximum value is equal to SDY when the correlation¼ 0.

CONFIDENCE INTERVAL

Earlier, we predicted a value of Y (68.43) when X was 4. We can have confidence

that this value is close to the actual value of Y, but it will likely not be exactly

the same. Therefore, we can estimate a range of values that will capture the true

value of Y (a parameter estimate) by using the sest value. This is the same process

we followed with other statistical procedures when we created confidence intervals

that identified the boundary values within which the true (population) value fell a

given percent of the time (e.g., 95%).

We can use sest to identify the interval within which we can expect the true

(parameter) value of Y to fall. Recall that in Chapter 10 we used the following

formula to establish the CI for the single sample population estimate:

Confidence interval ¼ � tðsMÞ þM

With regression, we use the same approach, but substituting our different

elements. The CI for the (estimated) true value of Y is

Confidence interval ¼ � tðsestÞ þ Ypred

In this formula, we still use the tabled value of T because our sample size is very

small. In larger samples, you can use the Z value (1.96 at the 0.05 level, etc.). Please

remember, however, that when you identify the exclusion value with the T table for

regression, you need to use the df value of N� 2 (since our regression procedure

estimates two parameters). The sest replaces the standard error of the mean (sM)
because we are estimating values of Y rather than the population mean. We are

establishing boundary values around our predicted value of Y (Ypred), so this value

replacesM in the single-sample CI formula.
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Using the CI formula, we can estimate the true value of Y when X¼ 4 as follows:

Confidence interval ¼ � tðsestÞ þ Ypred

CI0:95 ¼ � 2:571ð3:50Þ þ 68:43

_Lower Boundary ¼ 59:43 _Upper Boundary ¼ 77:43

CI0:95 ¼ �2:571ð3:50Þ þ 68:43 CI0:95 ¼ þ 2:571ð3:50Þ þ 68:43

According to these estimates, we are confident at the 0.95 level that the true value

of Y will fall between 59.43 and 77.43. The sest has helped us to identify these values

which are much more accurate because we have used the value of the correlation to

help us estimate more precisely. Without the knowledge of the correlation, we would

estimate the boundaries somewhere between approximately 25.97 and 110.90! This

is because we would only have the sY (16.52) to use in the estimation. The high

correlation between X and Y has helped us to create a more precise estimate.

EXPLAINING VARIANCE THROUGH REGRESSION

I mentioned earlier that the main functions of regression are prediction and explan-

ation. Correlations greater than 0 (i.e., significant) improve the predictions of the

outcome variable at various levels of the predictor variable. We saw this in the

figures that showed ‘‘tighter’’ patterns of dots around the line having stronger corre-

lations and, therefore, more precise predictions.

We can also use regression relationships to explain the proportion of variance in

the outcome variable resulting from its relationship to the predictor variable. The r2

value is a numerical expression of this explained variance, as we saw in Chapter 14.

Now we can delve a bit more deeply into the relationships to show how this works.

We can use sum-of-square calculations to measure components of variance that will

partition the variance or break the variance down into recognizable parts.

The following formula expresses these parts of the variance in the relationship

between the number of books read and the reading achievement of the students in

the study. The equation has three parts.X
ðY �MYÞ2 ¼

X
ðYpred �MYÞ2 þ

X
ðY � YpredÞ2

The part of the equation on the left of the equals sign is the total variance mea-
sure of Y. As the equation shows, there are two parts on the right side of the equa-

tion produced by the regression relationship that explains the total variance in the

outcome variable. Here are the three parts and how they are calculated:X
ðY �MYÞ2 ¼ the Total sum of squares of Y ; or simply SSY

The next component (immediately to the right of the equals sign) is the portion

of variance in the outcome variable that we can identify through the predictive
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power of the correlation with the predictor variable. It is the known portion of vari-

ance in the outcome variable and is called the regression portion, or the sum of

squares of regression.

X
ðYpred �MYÞ2 ¼ sum of squares of regression; or SSreg

The last portion represents the part of the variance in the outcome variable that is

unknown or that which we cannot identify through the variables in our regression

equation. It is called error because its origin cannot be determined. This part is

measured by creating residual values that exist between the predicted Y values

and the actual Y values. This ‘‘residual sum of squares’’ value is a combination of

random error and unexplained variance.

X
ðY � YpredÞ2 ¼ sum of squares of residual; or SSres

In regression, we are accounting for total variance by partitioning it, or breaking

it up, so that we can understand better where it comes from. The following is a

simplification of the larger regression equation above:

SSY ¼ SSreg þ SSres

Stated differently:

Total variation in Y ¼ Known variation ðSSregÞ þ Unknown variation ðSSresÞ

These parts of total Y variation are similar to the sources of variance we dis-

cussed in the ANOVA chapter (Chapter 12). Recall that we determined the follow-

ing with respect to the portions of variance in an ANOVA study:

SST ¼ SSB þ SSW

Like the regression equation, we explained total variance as a combination of

between (known) and within (unknown or error) variance. There is a very close

relationship between ANOVA and regression that I will discuss further below.

We learned in Chapter 12 that you can calculate eta square (an effect size

measure) as follows:

h2 ¼ SSBetween

SSTotal

Like ANOVA, you can create a similar measure, r2, from the proportions of

variation identified in regression. Consider the following formula and compare it to
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the eta square formula above:

r2 ¼ SSreg

SSY

Hopefully, you can see the parallels between these two formulas. Both measure the

proportion of known variance (regression) to total variation. Both express the amount

of explained variance in an outcome variable accounted for by a predictor variable.

USING SCATTERGRAMS TO UNDERSTAND THE PARTITIONING
OF VARIANCE

The parts of the regression equation are easier to understand through a visual exami-

nation of the scattergram. Remember that residuals are the prediction errors that

result from using our regression equation to predict values of the outcome variable

Y. Each prediction yields a value that is a certain distance from the actual value of Y.
Figure 15.9 shows the regression relationship between our two variables in

the fictitious example. The regression line is established between the X variable

(number of books read) and the Y variable (reading achievement).

I have shown three lines in Figure 15.9 that help to show the parts of variation:

1. The dotted line in the scattergram (the lowest of the three lines) is the actual
value of Y. (There was no actual value of Y in the study data, so we can as-

sume this to be 65 for illustration purposes. That is, we are assuming that a

student not in the study has read four books and received a 65 on the reading

achievement assessment.)

2. The solid black line just above the (dotted) mean line is the predicted value of

Y at a certain value of X. (The value shown in the figure is X¼ 4, which, as we

calculated in an earlier section of this chapter, predicted a value of Y of 68.43.

Remember, there was no student who read four books in the study; we simply

FIGURE 15.9 The parts of the Y variance.
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demonstrated earlier that the regression equation could help us predict values

of Y at certain values of X.)

3. The dashed line above the predicted value line is the mean of Y (71.14). This

is a primary reference point for our analyses because the MY is the best guess

of the value of Y if we had no other information. That is, without any help

from the regression with X, if someone asked you to guess a reading achieve-

ment value for a certain student, the best guess would be the mean of the read-

ing achievement scores because most student scores would fall there.

I added three identifiers to Figure 15.9 to point out the parts of the variation we

are attempting to understand:

� a¼ SSY. This is the SS measure for the differences between the mean of Y and

the actual value of Y. Remember that variance is a measure of how far from the

mean all the scores in a distribution ‘‘scatter out.’’ Thus, in Figure 15.9, this

represents the large distance of the actual Y value from the mean of Y.
� b¼ SSreg. This distance represents the ‘‘known’’ variation. Think of this part as

representing the distance that a predicted value moves away from the mean and
closer to the actual value as a result of the correlation between X and Y. Thus,
the correlation has the effect of identifying the known relationship between X
and Y, resulting in the predicted value being moved closer to the actual value.

The stronger the correlation, the greater this portion of the variance, because

the predicted values will fall further from the mean and closer to the actual

values.

� c¼ SSres. This part represents the distance between the predicted value of Y
and the actual value. It is the unknown portion of the variation because we

have no information about what might cause it to be as large as it is. The SSreg-
moved the predicted value closer to the actual value (due to the influence
of X), but couldn’t get it all the way! The SSres is what is ‘‘left over’’ or error.

Now, examine the r2 equation again. As you can see, we are comparing the parts

of variation from the regression analysis. The r2, or effect size, increases as the
SSreg increases relative to the overall variation in Y. Another way of saying this is

that as the predicted scores move further away from the mean toward the actual

values of Y, the more variation we explain in the Y variable.

r2 ¼ SSreg

SSY

A NUMERICAL EXAMPLE OF PARTITIONING THE VARIATION

Now that we have examined the variation parts in the scattergram, we can use the

actual calculations from the fictitious study to measure the proportions of variation.

Table 15.3 shows these calculations.
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Remember that the equation for these parts is the one we discussed above. I have

shown this equation with the actual values Table 15.3:

SSY ¼ SSreg þ SSres;

1636:86 ¼ 1575:64þ 61:21

As you can see from the equation, the total variation in Y is a combination of

known (SSreg) and unknown (SSres) variation. Comparing these two sources, you

can see that the unknown proportion is much smaller than the known proportion

because the correlation was so large (r¼ 0.98). You can calculate r2 from the

variance sources, as we discussed above:

r2 ¼ SSreg

SSY
;

r2 ¼ 1575:64

1636:86
;

r2 ¼ 0:96

I hope you can see from the previous sections that partitioning the variance is an

important avenue for understanding the relationships between an outcome and a

predictor variable.

USING EXCEL1 AND SPSS1 WITH BIVARIATE REGRESSION

We have explored the value of regression for prediction and explanation in the sec-

tions above. We now turn to exploring the regression output to illustrate these pro-

cedures. I will use the same fictitious data in this section, but then will introduce a

‘‘real’’ data example in a later section.

TABLE 15.3 The Calculations for the Components of Variance

X Y (Y�MY) (Y�MY)
2 Ypred (Ypred�MY) (Ypred�MY)

2 (Y� Ypred) (Y� Ypred)
2

Residuals

0 45 �26.14 683.46 49.41 �21.73 472.33 �4.41 19.45

1 58 �13.14 172.74 54.16 �16.98 288.29 3.84 14.72

3 62 �9.14 83.59 63.67 �7.47 55.81 �1.67 2.80

5 76 4.86 23.59 73.18 2.04 4.15 2.82 7.95

6 81 9.86 97.16 77.93 6.79 46.12 3.07 9.40

8 86 14.86 220.73 87.44 16.30 265.68 �1.44 2.08

9 90 18.86 355.59 92.20 21.05 443.26 �2.20 4.83

MY¼ 71.14

SSY¼ 1636.86 SSreg¼ 1575.64 SSres¼ 61.21

USING EXCEL1 AND SPSS1 WITH BIVARIATE REGRESSION 401



The Excel1 Regression Output

We will use the data in Table 15.1 to demonstrate the Excel1 regression procedure.

At the Data Analysis window that results from using the main menu options

‘‘Data—Data Analysis,’’ you can choose ‘‘Regression,’’ which will produce the

window in Figure 15.10.

As you can see, I entered the spreadsheet locations of the Y (reading achieve-

ment) and X (books read) data. I checked the ‘‘Labels’’ box because I included the

variable labels so that the output would identify the variable data. I asked ‘‘Confi-

dence Level 95%,’’ but this applies to the regression coefficients (b and a) rather
than any specific prediction. I also asked for ‘‘Residuals’’ so you can see how these

values appear. Recall that we used them above to partition the variance.

When I run this specification, Excel1 returns four panels of results. I show these

below in Figures 15.11 to 15.14.

Figure 15.11 confirms the values that we produced in our hand calculations.

Note that the Pearson’s r is called ‘‘Multiple R’’ when it is used in regression. The

‘‘Adjusted R Square’’ measure is affected by the sample size among other consider-

ations and we can use it with real-world data as I will discuss below. You can see

that the ‘‘Standard Error’’ is the same value as our sest of 3.50.
Figure 15.12 shows the data that will help us test the null hypothesis for regres-

sion. If you recall, I mentioned that there are two kinds of significance tests with

FIGURE 15.10 The Excel1 regression specification window.
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regression. One is the omnibus test that determines whether the overall results

establish a non-chance predictive model between our two study variables. Note that

the omnibus test results are provided in an ANOVA table. I discussed above the

close relationship between ANOVA and regression because both procedures use

sum of squares calculations to understand how the components of variation between

the study variables relate to each other. The following are two important elements

of the ANOVA results:

1. The omnibus significance test is provided by the F ratio (128.70, significant

beyond p< 0.000), which indicates that the proportion of total variance

explained by the SS of regression is beyond the value expected by chance

(according to the F distribution).

2. The total explained variance, or R2 (0.96) can be obtained by dividing the

SSreg (1575.64) by the SSY (1636.86).

Figure 15.13 shows the table of values that allows us to perform the second sig-

nificance test, the test of the individual predictors. Recall that I mentioned that, once

the omnibus test was performed, we would need to perform a test on the individual

predictor(s) to determine whether the slope was significantly different from 0. This

test is primarily important for Multiple Regression, which has more than one inde-

pendent (predictor) variable. Thus, we would need to perform individual signifi-

cance on the separate predictors to see which added most to the overall prediction.

As you can see, the t Stat for the predictor variable X (Books Read) is 11.34 and

is determined to be significant (in the ‘‘P value’’ column at p< 0.00). This test uses

the single-sample t ratio to determine whether the derived slope coefficient (4.75) is

significantly different than a population value of 0. Therefore, we can conclude that

the individual predictor books read is a significant predictor of the reading achieve-

ment of this sample of students.

Regression Statistics 

Multiple R 0.98

R square 0.96

Adjusted R square 0.96

Standard error 3.50

Observations 7

FIGURE 15.11 The Excel1 regression statistics output.

ANOVA 

Significance F F MS SS df 

Regression 0.00128.701575.641575.64 1 

Residual 12.2461.21 5 

Total   1636.86 6 

FIGURE 15.12 The Excel1 regression model output: ANOVA.
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Figure 15.13 also provides the calculated value of the slope (b) and intercept (a)
values we used to create the regression equation. As you can see, the values in the

table for a and b (49.41 and 4.75, respectively) correspond to the values we calcu-

lated by hand as shown in the following formula from our earlier calculations (the a
value is slightly different due to rounding):

Ypred ¼ 4:75X þ 49:43

Figure 15.13 also shows standard error; but this is not sest, which is shown in

Figure 15.11. These standard errors are those connected to both the a and b coeffi-

cients (that is, the standard deviation of the sampling distributions of estimates for

intercept and slope) to create CI values for each. The confidence intervals shown in

the last two columns (Lower 95% and Upper 95%) result from estimates using the

standard errors.

The last Excel1 panel is shown in Figure 15.14 and lists the predicted and resid-

ual values for each case in the dataset. You can compare these values to those in

Table 15.3. Remember, the sest is the estimated standard error of these residuals.

Excel1 has an option for ‘‘standardized residuals’’ that I did not request which

transforms the residual values to standardized values (i.e., Z values) so you can see

at a glance which ones exceed 2 or 3 and might therefore be considered extreme or

outlier values. In our fictitious database, we would expect no such outliers, but you

can use this feature with actual data in your studies.

The SPSS1 Regression Output

SPSS1 creates bivariate regression output very similar to the Excel1 output in the

former section. I will note below some unique features from SPSS1 that are helpful

Upper 95% Lower 95% P-value t Stat Standard Error Coefficients 

Intercept 55.39 43.43 0.00 21.23 2.33 49.41 

Books Read (X) 5.83 3.68 0.00 11.34 0.42 4.75 

FIGURE 15.13 The Excel1 regression output showing the regression coefficients.

RESIDUAL OUTPUT 

Observation Residuals Predicted Reading Achievement (Y ) 

1 –4.41 49.41 

2 3.84 54.16 

3 –1.67 63.67 

4 2.82 73.18 

5 3.07 77.93 

6 –1.44 87.44 

7 –2.20 92.20 

FIGURE 15.14 The Excel1 predicted values and residuals for the study data.
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for bivariate regression and that establish a model for interpreting multiple regres-

sion results.

The SPSS1 procedure is available through the main ‘‘Analyze–Regression’’

menu. When you select this option, you will be presented with several regression

procedures from which to choose. You can see several options for regression

(Figure 15.15). For bivariate regression, we can select ‘‘Linear’’ because this proce-

dure applies to regression equations that manage one (bivariate) or many predictors

(multiple). Note that this regression procedure assumes a linear relationship that we

discussed above. I will review all the regression assumptions in a later section in

this chapter.

Figure 15.16 shows several ways to specify the bivariate regression study. The

main specification window ‘‘Linear Regression’’ requires that you place the predic-

tor variable in the ‘‘Independent(s)’’ window and the outcome variable in the

‘‘Dependent’’ window. As you can see, I have specified both variables using our

fictitious data.

Once the variables are specified, the user can choose from a number of buttons

on the right side of the Linear Regression window. All of these are important for

different kinds of studies, but the ‘‘basic’’ bivariate regression can be created by

including only a few additional specifications from the ‘‘Statistics’’ button. I have

shown this window in Figure 15.16.

The ‘‘Linear Regression: Statistics’’ window allows the user to create descriptive

information on the study variables (‘‘Descriptives’’) as well as to produce the

ANOVA table (‘‘Model Fit’’) results and identify changes to the R2 from predictors

added to the analysis (R-squared change). The ‘‘Estimates’’ and ‘‘Confidence

intervals’’ choices produce the a and b coefficients with their confidence intervals.

FIGURE 15.15 The regression options in SPSS1.
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The ANOVA table in SPSS1 is identical to that produced in Excel1, so I will

not include it here. The same values are represented, which can be used to create

the omnibus significance test.

The results panel in Figure 15.17 (‘Model Summary’) show the outcomes in a bit

different format from Excel1. You will find the same values for R, R2, Adjusted R2,

and sest in this panel as in the Excel1 results. There are some new results that are

important in this panel, however. I will list these below.

FIGURE 15.16 The SPSS1 regression specification windows.

Model Summary

Change Statistics 

Model R R Square 

Adjusted R 

Square

Standard

error of the

Estimate  

R Square 

Change F Change df1 df2

Significance

F Change 

1 0.981
a

0.963 0.955 3.499 0.963 128.702 1 5 0.000

a
Predictors: (Constant), BooksRead 

FIGURE 15.17 The SPSS1 model summary results panel.
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� ‘‘R-Square Change’’ shows the impact of the predictor variable on the overall

regression model. There is only one predictor, so this is a bit harder to see; but

if there were additional independent variables, there would be separate lines of

data and the R-Square-Change value would show how the addition of each

predictor would change the overall R-Square value. Because there is only

one predictor in the current study, the R-Square-Change value is the same as

the R-Square value in the second column. You might think of this value as the

predictor variable (books read) increasing the explained variance in Y (reading

achievement) from 0% to 96%.

� ‘‘F Change’’ similarly shows the impact of adding the predictor (only one in

this study) to the F value.

� ‘‘Significance F Change’’ registers the change in the significance of the F
value from the addition of the predictor variable. Both this and the former will

change when additional predictors are included in the model.

Figure 15.18 shows the ‘‘Coefficients’’ panel that provides the information nec-

essary to create the regression equation and assess the significance of the individual

predictor. As you can see, this panel looks almost identical to the Excel1 results

(see Figure 15.13). There is one important addition to this output that you should

note, however.

Figure 15.18 includes the column ‘‘Standardized Coefficients’’ just before the T-
test results are provided. This column of data includes the Beta (b) coefficient,
which is the standardized coefficient for the regression equation. Recall that at the

outset of this chapter I discussed two ways of creating the regression equation. The

method we used involved the regression equation that used the actual (raw score)

scales of the variables. This method produced the regression equation we noted

above that uses the a (49.41) and b (4.754) values located in the ‘‘Unstandardized

Coefficients’’ columns in Figure 15.18. Using these coefficients produces the same

equation as noted above using Excel1:

Ypred ¼ 4:75X þ 49:43

The other method we discussed was the Z-score method where we transformed

the raw score values of both X and Y variables and then created the regression

Coefficients
a

Unstandardized Coefficients 

Standardized

Coefficients 95.0% Confidence Interval for B 

Model B
Standard

error Beta t
Signifi-

cance Lower Bound Upper Bound 

(Constant) 49.410 2.328 21.226 0.000 43.426 55.3941

BooksRead 4.754 0.419 0.981 11.345 0.000 3.677 5.831

a
Dependent Variable: Reading Ach 

FIGURE 15.18 The SPSS1 coefficients panel results for the bivariate regression.
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equation:

ZY ¼ bZX

Recall that with bivariate regression, the slope coefficient is equal to the Pearson’s

r value if we use standardized X and Y values. Thus, Figure 15.18 shows the Beta (b)
coefficient, which can be used in the standardized equation:

ZY ¼ bZX;

ZY ¼ 0:981ZX

If you check the values in Figure 15.18, you will see that the standardized

coefficient is equal to the Pearson’s r because we only have one predictor variable.
Many students are curious as to why SPSS1 produces both sets of coefficients.

There are several answers to this question, but the most common answer is that

researchers often wish to work with both of their variables on the same scale of

measurement. Thus, in our fictitious study, both books read and reading achieve-

ment would be expressed as standardized (Z) scores. SPSS1 can save the raw score

values as Z scores as we saw in Chapter 8 if you wish to use the standardized values

in scattergrams as I did in Figure 15.8.

ASSUMPTIONS OF BIVARIATE LINEAR REGRESSION

As in the case of the other statistical procedures we discussed, there are assumptions

for linear regression that, when met, will likely yield the best predictions and

explanation of variance. Different authorities look at these assumptions differently,

so I will list some common assumptions here.

� Variables are interval level. Regression procedures can use ordinal and even

nominal data as the predictor variable but not the outcome variable. In

advanced courses, you will learn how to create and use categories of data to

predict interval level outcomes. I treat this in detail in other publications

[see Abbott (2010)]. There are other regression procedures for studies with

categorical outcomes (logistic regression, for example), but we will use

interval level variables for our bivariate regression examples.

� Variables are normally distributed.

� Variances are equal. As with Pearson’s r, regression is robust for these viola-

tions unless one or both variables are significantly skewed. You can use scat-

tergrams to detect patterns that may indicate violations of this assumption. If

the pattern of dots is not generally evenly distributed around the regression

line, the variances may not be equal, for example. Technically, this assumption

means that the variance of one variable should be generally the same at differ-
ent levels of the other variable.
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� Linear relationship. With linear regression, the two variables must display a

‘‘straight line’’ when plotting their values. Thus, for example, if we were corre-

lating the age of a car with the value of a car, the correlation would probably

be a straight line (in a downward direction, indicating an inverse relationship),

but then the line would change in an upward direction because really old cars

increase in value. Formally, we can detect these curvilinear relationships

through SPSS1.

� Cases are independent of one another. As I mentioned with correlation, this

assumption is somewhat difficult to understand, but it deals primarily with not

using variables in which there are linkages among the participants. The pairs

of data from each participant must not be connected.

CURVILINEAR RELATIONSHIPS

Thus far, we have discussed bivariate linear relationships. As you check the

assumptions for your study, however, you might find that the variables are not re-

lated to one another in linear fashion. Scattergrams are always helpful to detect

these possible violations of assumptions, but SPSS1 has a procedure that provides

a numerical analysis.

As a brief example, I will demonstrate these issues with a database we have used

previously in this book. This is the school-level sample (N¼ 40) of reading and

math achievement scores and FR percentages. The first bivariate study I will use

as an example of curve estimation to test the linear assumption is the relationship

between reading achievement and FR.

In order to test the assumption of linearity, use the ‘‘Analyze–Regression–Curve

Estimation’’ menu to get the screen shown in Figure 15.19.

As you can see, I placed the reading achievement variable in the ‘‘Dependent’’

window and placed FR in the ‘‘Independent’’ window. In the ‘‘Models’’ box, there

are several choices for curve ‘‘fitting’’ that might be applicable to our data. I have

chosen two of these (‘‘Linear’’ and ‘‘Quadratic’’) to show how each method fits

the data to the regression line. In essence, these methods (and the others listed) are

attempts to provide the best fit of the line to the dots. As you can see, there are

several different models that might provide a better regression equation.

Figure 15.20 shows the resulting scattergram with two curves placed on the data.

The linear (solid) line is shown along with the quadratic (dashed) line. The pattern

of the dots appear to favor the quadratic line indicating a curvilinear relationship.

That is, low and high FR values are related to lower reading assessment scores

while middle FR levels are related to higher reading assessment scores. The two

lines are close to one another, so how do you decide which is a better fit?

The curve estimation procedure also provides a numerical analysis of the two

lines so that you can compare how they fit the data. Figure 15.21 shows the results

of this analysis.

You interpret this output as you would a given linear regression output such as

the example above with our fictitious data. In the output table, however, there are
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FIGURE 15.19 The Curve Estimation procedure in SPSS1.

FIGURE 15.20 The Curve Estimation procedure for FR and reading assessment.
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two lines of data that correspond to two different statistical models. The first line

(Linear) shows that the regression equation between FR and Reading would result

in an R2 of 0.407, along with the following linear equation:

Ypred ¼ �0:285X þ 86:779

The second line (Quadratic) shows the regression equation with an R2 of 0.434,

along with an equation of

Ypred ¼ �0:018X1 þ�0:003X2
1 þ 82:118

This equation looks a bit different because it adds a component (�0.003X1
2)

that corresponds to the quadratic pattern. The quadratic model adds the squared

values of FR to the regression equation along with the unsquared values in pre-

dicting reading assessment. In this way, we can see if the squared values add
information to estimating the curve. Predicted Y values are created by combining
two estimated coefficients: (a) the coefficient for the values of the X variable and

(b) the coefficient for the squared values of the X variable. The resulting equa-
tion would therefore represent a line that curves or that contains two different
trajectories.

The quadratic model (curvilinear) explains 2.7% more of the variance in reading

assessment than the linear equation (0.434� 0.407¼ 0.027). Along with the visual

evidence from the scattergram, we might conclude that the quadratic model is a

better fit for these variables. However, as a researcher, you might decide that the

linear relationship, although explaining a bit less variance, may be the better model

for your study.

Compare the reading results above with the curve estimation results for FR with

school-level math assessment. Figure 15.22 shows the scattergram and Figure 15.23

shows the numerical results.

As you can see in Figure 15.22, the two lines (linear and quadratic) are almost

indistinguishable. The quadratic model explains a fraction more of the variance

than does the linear model (0.404� 0.402¼ 0.002, or 0.2 of 1% of explained vari-

ance). Both sources of information suggest that the FR–math assessment analysis

generally fits the assumption of a linear model.

Model Summary and Parameter Estimates

Dependent Variable is ReadingPercentMetStandard

Model Summary Parameter Estimates 

Equation R Square F df1 df2 Significance Constant b1 b2

Linear 0.407 26.098 1 38 0.000 86.779 –0.285

Quadratic 0.434 14.182 2 37 0.000 82.118 –0.018 –0.003

The independent variable is PercentFreeorReducedPricedMeals.

FIGURE 15.21 The curve estimation model summary.
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DETECTING PROBLEMS IN BIVARIATE LINEAR REGRESSION

I mentioned earlier that I have dealt with detecting problems with statistical

assumptions in other publications [see Abbott (2010), in particular about regression

procedures]. You can see that performing a regression study can be quite complex,

but that your results can be improved if you meet the assumptions of the procedure.
This is a general rule in statistics: The power of a study is improved by using the

proper procedure and meeting the assumptions for each.

SPSS1 provides several diagnostic procedures to assist researchers with their

attempts to meet the assumptions of their chosen statistical measures. You may

want to explore these further as you advance in your use of statistics in problem

solving. We have discussed some in this chapter on bivariate regression (i.e., using

residual analyses and curve fitting). I encourage you to seek other diagnostic

techniques to help with your real-world studies.

Model Summary and Parameter Estimates

Dependent Variable is MathPercentMetStandard

Model Summary Parameter Estimates 

Equation R Square F df1 df2 Significance Constant b1 b2

Linear 0.402 25.520 1 38 0.000 71.516 –0.417

Quadratic 0.404 12.524 2 37 0.000 69.679 –0.312 –0.001

The independent variable is PercentFreeorReducedPricedMeals.

FIGURE 15.23 The numerical curve estimation data for FR with school-level math

assessment.

FIGURE 15.22 The curve estimation for FR with math assessment.
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A REAL-WORLD EXAMPLE OF BIVARIATE LINEAR REGRESSION

I will use the data from our earlier study to show the various aspects of interpreting

Excel1 and SPSS1 results. This database is the sample of schools I used to show

the curve estimation procedures above: the sample (N¼ 40) of schools with FR and

math assessment scores. The study question is whether FR can significantly predict

math assessment scores and be helpful in explaining the variance in math

assessment.

In this example I will not provide the individual data for hand calculations. I will

provide the Excel1 and SPSS1 outcome tables so you can learn to interpret the

results. First, we will address the assumptions:

� Variables are interval level. Both are percentages and therefore interval level.

� Linear relationship. We discussed this above in our curve estimation analysis

of the study variables and found that the linear model was acceptable.

� Cases are independent of one another. Met by nature of the data.

� Variables are normally distributed. We will examine the descriptive data

below and discuss the findings for this assumption.

� Variances are equal. We will discuss this assumption with the normal distribu-

tion assumption.

Normal Distribution and Equal Variances Assumptions

Figures 15.24 and 15.25 show the descriptive data from Excel1 and SPSS1 with

respect to these study variables. As you can see from both Figures, the study varia-

bles are normally distributed as indicated by skewness and kurtosis values that are

within acceptable boundaries. Because neither variable is extremely skewed,

the scattergram should show an even distribution of dots around the regression line.

FR Math Assessment 

Mean 50.16 50.61 

Standard error 4.25 2.79 

Median 50.77 50.00 

Mode #N/A 50.00 

Standard deviation 26.88 17.68 

Sample variance 722.32 312.44 

Kurtosis –0.93 –0.41 

Skewness –0.07 0.01 

Range 99.76 78.80 

Minimum 0.00 9.70 

Maximum 99.76 88.50 

Sum 2006.472024.20 

Count 40 40 

FIGURE 15.24 The Excel1 descriptive summaries for the study variables.
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Figure 15.22 shows this to be the case, so we can accept that the equal variance

assumption is met.

The Omnibus Test Results

Recall that the omnibus test assesses the statistical significance of the overall re-

gression model. We can use both Excel1 and SPSS1 to examine the omnibus test

results through the ANOVA table. I will show the Excel1 results in Figure 15.26,

although SPSS1 provides identical results. As you can see, the F (25.52) is signifi-

cant (p¼ 0.00001) which indicates that the overall model significantly predicts

school-level reading assessment from FR scores.

Effect Size

You can calculate the effect size by using the SS values from the table in

Figure 15.26. As you can see, r2 is 0.402, which is considered a large effect accord-

ing to the guidelines we discussed earlier.

r2 ¼ SSreg

SSY
;

r2 ¼ 4895:65

12; 185:30
;

r2 ¼ 0:402

Descriptive Statistics

N Mean
Standard

deviation 

Standard

error

Standard

error

Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic

Math Assessment 40 50.60500 17.676073 0.008 0.374 –0.412 0.733

FR 40 50.1618 26.87608 –0.073 0.374 –0.930 0.733

Valid N (listwise) 40

FIGURE 15.25 The SPSS1 descriptive summaries for the study variables.

ANOVA 

Significance F MS SS df 
F

Regression 0.00001 25.520364895.6464895.646 1 

Residual 191.833 7289.653 38 

Total 12185.3 39 

FIGURE 15.26 The Excel1 omnibus test results: ANOVA.
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The Model Summary

Both Excel1 and SPSS1 provide overall model summary data that provide further

information for the omnibus test and effect size. I will show the SPSS1 results in

Figure 15.27 because of the additional information contained in the output as I de-

scribed earlier in this chapter. As you can see, the effect size is as we calculated it

above, and both the F-Change and R-Square-Change values are significant. The sest
is 13.85, which will be helpful if we wish to predict specific values of reading

assessment given values of FR.

The Regression Equation and Individual Predictor Test of Significance

I will show the individual coefficient results from both Excel1 and SPSS1 in order

to point out the unique results of the outputs. Both report identical findings for the

test of the predictor slope and for the coefficient values.

Both Figures 15.28 (Excel1) and 15.29 (SPSS1) show that the t value (�5.05)

for FR is significant (p< 0.000). This indicates that the slope for FR is significantly

different from 0. That is, the slope is nonzero. The confidence intervals for the coef-

ficients indicate that the estimated population slope falls between �0.58 and �0.25

at the 95% level. If this interval had included 0, we would have to conclude that a 0

population slope was possible and, therefore, that the slope is not significant. How-

ever, the values do not include 0, so we can be confident (at the 0.95 level) that the

slope is significantly different from 0.

Figures 15.28 and 15.29 show the coefficients we can use to create the regression

equation:

Ypred ¼ �0:42X þ 71:52

Model Summaryb

Change Statistics 

Model R R Square 

Adjusted R 

Square

Stdandard

error of the

Estimate  

R Square 

Change F Change df1 df2
Significance

F Change 

1 0.634
a

0.402 0.386 13.850378 0.402 25.520 1 38 0.000

a
Predictors: (Constant), PercentFreeorReducedPricedMeals 

b
Dependent Variable: MathPercentMetStandard 

FIGURE 15.27 The SPSS1 model summary results for the reading assessment—FR study.

Upper 95%Lower 95% P-value t Stat Standard Error Coefficients 

Intercept 81.0062.04 0.0015.274.6871.52 

FR –0.25–0.58 0.00–5.050.08–0.42 

FIGURE 15.28 The Excel1 regression output for the reading assessment—FR study.
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Thus, we can identify that with a change of 1% in FR, the reading assessment

value decreases by 0.42%.

Figure 15.29 also includes the standardized regression coefficient (b) of �0.634,

which is also r in this analysis. If we wanted to create the standardized regression

equation, it would be as follows:

ZY ¼ �0:634ZX

Either of these regression formulas can be used for prediction. However, you

must remember to use the Z-score formula to transform the outcomes if you wish to

create raw-score values using the standardized (Z) formula.

The Scattergram

Figure 15.30 is the (SPSS1) scattergram between math assessment and FR. As you

can see, the dots are evenly spaced around the line, indicating that the equal

Coefficients
a

Unstandardized

Coefficients 

Standardized

Coefficient
95.0% Confidence

Interval for B 

Model B
Standard

error Betaa t Significance Lower Bound Upper Bound 

(Constant) 71.516 4.683 15.272 0.000 62.036 80.9961

FR –0.417 0.083 –0.634 –5.052 0.000 –0.584 –0.250

a
Dependent Variable: MathPercentMetStandard 

FIGURE 15.29 The SPSS1 Coefficients output for the reading assessment—FR study.

FIGURE 15.30 The scattergram between FR and reading assessment in the study schools.
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variance and normal distribution assumptions are met. The intercept is at 71.5,

which reflects the a coefficient value in our regression equation. The �0.42 slope is

evident in the downward direction of the line. The scattergram also includes the R2

value in the legend so that you can see the explained variance resulting from the

relationship.

ADVANCED REGRESSION PROCEDURES

Correlation and regression are very useful statistical techniques. However, they are

somewhat limited in that we are only using one predictor variable to understand the

variance in the outcome variable. Real-life research is much more complex. FR

does explain a good deal of the variation in school-level math achievement, but

there is still a lot of the variance unexplained. In our last example, we saw that the

effect size was 0.40. That is a very large effect size, but it means that 60% of the

math achievement variance is not explained. Fortunately, there are several statisti-

cal procedures that are helpful for these complex problems.

Multiple Correlation

If you recall, we discussed a fictitious study in which we used books read as a way

of explaining the variance in reading achievement test scores. However, we know

that no one variable by itself will explain all of the variance of another; life is not

that simple. Therefore, we might use several predictor variables, analyzed at the

same time, to explain more of the variance of a dependent variable. Multiple corre-
lation is a technique that correlates several predictors to a dependent variable.
Will the combined influence of the set of independent variables explain more of the

variance in a dependent variable than will a single predictor?

We can extend our fictitious example to understand multiple correlation. If you

look at Figure 14.11, you will see that a Venn diagram illustrates how a correlation

results in explained variance (i.e., through r2). Recognizing the complexity of the

research situation, we might add ‘‘ability level’’ to our original correlation to see

what additional explanation it provides. Figure 15.31 shows how this might appear

through Venn diagrams.

As you can see, the addition of the second predictor, reading ability, results in

additional overlap with the dependent variable reading achievement. Therefore, the

amount of overlap illustrated by the hatching (of both predictors) shows that this

multiple correlation explains more of the variance in reading achievement than

using a single predictor.

We may never be able to explain all of the variation in reading achievement in

this manner, because there are probably an infinite number of potential explana-

tions. But it helps us to get closer to understanding the variance in the distribution

of dependent variable scores.

We will not calculate multiple correlation in this book. I wanted to introduce you

to the procedure so that you can understand how correlation and regression are used

ADVANCED REGRESSION PROCEDURES 417



in research. We add (and subtract) variables from the models we build so that we

can increase our understanding of a study (i.e., outcome) variable.

With a single predictor, r2 is the effect size indicator. With multiple correlation,

the effect size (the ‘‘multiple coefficient of determination’’) is indicated by the capi-

tal r as R2. You will note that the regression summaries presented in both Excel1

and SPSS1 show the multiple R2 because they are designed to describe the effects

of multiple predictors.

Partial Correlation

Partial correlation is a process whereby the researcher assesses the correlation

between an outcome variable Y and one independent variable (X1) while holding

a second independent variable (X2) constant. What this means in practice is that

we are taking into account all of the various pieces of the overall set of

correlations.

Recall the Venn diagram in Figure 15.31. As you can see I labeled the vari-

ous overlapping sections of the circles with A through D. The partial correlation

of books read (X1) and reading achievement (Y) is like saying we are going to

correlate these two variables after we remove the influence of reading ability
(X2) from both of the other variables. This is like saying that, among everyone

of the same reading ability, the correlation of books read and reading achieve-

ment is a certain value.

FIGURE 15.31 The multiple correlation relationship in the fictitious study example.
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In this situation, we can understand the partial correlation by looking at the pro-

portion of variance explained in Y after the X2 influence is removed from both of the

other variables. In terms of the Venn diagram in Figure 15.31, the explained vari-

ance would be equivalent to the proportion of A to D (i.e., A/D).

Multiple Regression

If multiple correlation can explain additional variance in Y as a result of adding

more predictors, multiple regression can use the additional variables in a for-

mula measuring the influence of all the predictors on the outcome variable. The

incremental gain of each predictor in explaining more of the variance in Y is

identified in a multiple regression formula. The slope values of each indepen-

dent variable measure the effects of that particular predictor on Y when the influ-
ence of the other predictors is controlled. These regression coefficients can be

tested for significance to provide a view of how important each of the indepen-

dent variables are in predicting Y.
We will cover multiple regression in greater depth in Chapter 16. I encourage

you to pursue an understanding of this procedure, which I believe is one of the most

valuable statistical techniques for researchers. I explore the topic in depth in Abbott

(2010).

Additional Considerations

In advanced books and courses, you will learn about several statistical techniques

that are built on the correlation–regression procedures. Path Analysis, Structural

Equation Modeling, Canonical Correlation, Discriminant Analysis and Hierarchical

Linear Modeling are just a few of many such powerful techniques.

TERMS AND CONCEPTS

Beta The standardized regression coefficient. Sometimes called ‘‘beta weight’’

and ‘‘beta coefficient.’’

Confidence Interval In regression, the confidence interval is the range of y values
within which the ‘‘true’’ population value of a predicted y value is likely to fall.

Line of Best Fit This is the term for the regression line calculated from the slope

and y intercept values. It is called the line of best fit because a line is drawn

through the bivariate scatter of values in such a way that distances from the line

are minimized.

Multiple Correlation A statistical procedure that measures the association of

several predictors with a single outcome variable.

Multiple Regression A statistical procedure assessing the influence on an outcome

variable of more than one predictor variable.
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Partial Correlation Generally, the process of assessing the correlation between an
outcome and predictor variable when holding a second predictor constant.

Slope In a regression equation, the slope is the ‘‘angle’’ of the line which is

measured by comparing ‘‘rise over run.’’

Standard Error of Estimate The standard deviation of the distribution of

estimates in a regression study (i.e., the distribution of prediction errors).

Y Intercept In a regression equation, this value refers to the y value when X¼ 0.

This value will fall at the intersection of the regression line and the y axis.

REAL-WORLD LAB XI: BIVARIATE LINEAR REGRESSION

In this lab, we will use regression with the TAGLIT data I described in Chapter 3.2

In particular, we will use the Middle/High-School teacher (MHTeacher) technology

factors to determine whether the data support a regression model whereby we pre-

dict technology impact from technology skills.

You may recall that these factors came from a national study in which I used

factor analysis to create indices of various technology uses in the classroom. Four

factors emerged from that study:

� Technology Skills—the extent of MH teachers’ technology skills.

� Technology Impact—the extent to which MH teachers believed that technol-

ogy impacted teaching and learning in the classroom.

� Technology Access—The extent to which MH teachers had access to technol-

ogy in their schools.

� Technology Support—The extent of technology support in MH teachers’

schools.

The data for this lab represent a random sample (N¼ 60) from the database

(N¼ 3444) of schools from 2003 in which the factors represent aggregated MH

teacher factors from schools with at least 10 students and 5 teachers. The response

categories from which the factors were created were as follows:

MHImpact. The eight items measured teacher perception of the result of their

use of technology in the classroom in various ways with the following

response categories:

‘‘1’’—No

‘‘2’’—Yes, somewhat

‘‘3’’—Yes, quite a bit

‘‘4’’—Yes, very much

2The author acknowledges the kind approval of T.E.S.T., Inc., the owner and manager of TAGLIT data,

for the use of TAGLIT databases in this book (http://www.testkids.com/taglit/).
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MHSkills. The many items forming this factor were based on MHTeacher per-

ceptions of their technology skills in various areas according to the response

categories:

‘‘1’’—I don’t know how to do this

‘‘2’’—I can do this but sometimes I need help

‘‘3’’—I can do this independently

‘‘4’’—I can teach others how to do this

The research question for this lab is whether we can predict Technology Impact

(MHImpact) from Technology Skills (MHSkills). That is, do MH teachers rate the

impact of technology on the teaching and learning in their classrooms to be higher

depending on the level of their technology skills? Table 15.4 shows the data we will

use in this lab (in two sets of columns).

TABLE 15.4 Lab XI Data

mhskills mhimpact mhskills mhimpact

2.88 2.64 3.26 2.79

3.00 2.71 2.90 2.83

2.87 2.61 2.90 2.45

3.01 2.75 3.12 2.56

3.24 2.93 3.12 3.08

3.11 2.84 3.08 3.05

2.96 2.65 2.81 2.39

3.14 2.88 3.50 3.23

3.10 2.75 3.48 2.96

3.05 2.71 2.93 2.94

2.92 2.61 3.01 2.43

3.08 2.85 2.86 2.36

3.02 2.66 3.36 3.20

3.00 2.64 2.90 2.35

2.89 2.57 3.08 3.15

2.98 2.61 3.16 2.49

3.17 2.76 3.35 3.27

3.16 2.74 2.71 2.76

2.98 2.84 2.60 2.21

2.96 2.57 3.33 2.65

2.93 2.56 3.14 2.33

3.46 3.14 3.56 3.38

3.04 2.62 2.73 2.87

2.83 2.49 3.37 2.66

2.75 2.63 3.40 3.38

3.20 3.01 2.99 3.42

3.02 2.90 3.47 2.69

2.60 2.50 3.40 3.52

3.15 2.68 2.64 1.99

2.72 2.61 2.63 3.02
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Lab-Questions

1. Do the variables meet the assumptions for correlation and regression?

2. What is the correlation between MHSkills and MHImpact?

3. Is the correlation significant?

4. What is the effect size?

5. What is the regression equation?

6. Is there a significant regression between MHSkills and MHImpact?

7. Predict a value of MHImpact when MHSkills is 3.29 and identify the

CI0.95 values.

REAL-WORLD LAB XI: SOLUTIONS

1. Do the Variables Meet the Assumptions for Correlation and Regression?

� Variables are interval level. The variables represent aggregated factor index

scores and are interval. It could be argued that the response categories are not

interval data, but I have treated them as interval for creating the index scores.

As we have discussed in earlier chapters, some researchers may not make this

assumption.

� Variables are normally distributed. Figures 15.32 and 15.33 represent the

Excel1 and SPSS1 descriptive statistics, respectively. As you can see from

both figures, the study variables appear to be normally distributed. The histo-

grams for these variables are shown in Figures 15.34 and 15.35.

mhimpact mhskills 

Mean 2.763.05 

Standard error 0.040.03 

Median 2.713.02 

Mode 3.382.60 

Standard deviation 0.310.24 

Sample variance 0.090.06 

Kurtosis 0.28–0.42 

Skewness 0.370.19 

Range 1.540.96 

Minimum 1.992.60 

Maximum 3.523.56 

Sum 165.85183.00 

Count 6060 

FIGURE 15.32 The Excel1 descriptive statistics for the study variables.
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� Variances are equal; linear relationship. We can use a scattergram to show

visual evidence for these two assumptions. I will use the SPSS1 procedure for

curvilinear relationships (‘‘Curve Estimation’’) to show these results.

As you can see in Figure 15.36, the two best-fit lines are similar, making it diffi-

cult to decide about which model to use. Figure 15.37 shows the curve estimation

data which can help in our decision. Both the linear and quadratic models are signif-

icant. However, the R2 difference is very slight at 0.008.

Making a decision to assume linearity is often difficult in these circumstances,

since there is a slight curvilinear trend in the scattergram. However, I will keep the

sample data as an example of a linear relationship according to the following rea-

soning. An outlier analysis of these data identified one data point, which, if elimi-

nated, would result in (a) an identical R2 value for both linear and quadratic models

Descriptive Statistics

N Mean
Standard

deviation 

Standard

error 

Standard

error 

Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic

mhskills 60 3.0501 0.23809 0.057 0.185 0.309 –0.418 0.608

mhimpact 60 2.7642 0.30706 0.094 0.365 0.309 0.284 0.608

Valid N (listwise) 60

FIGURE 15.33 The SPSS1 descriptive results for the study variables.

FIGURE 15.34 The mhskills histogram.
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and (b) nearly identical regression lines. I believe it is necessary to leave the outlier

score in the analysis because there is no reason to exclude it as being an error. Be-

yond this, however, a residual analysis, which advanced researchers often conduct,

shows no violations of linearity. Therefore, I believe the best course of action is to

FIGURE 15.35 The mhimpact histogram.

FIGURE 15.36 The scattergram showing linear and quadratic regression lines for the study

variables.
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leave the score in the analysis and treat the data as linear, but note the potential

influence of the one outlier score.

� Cases are independent of one another. This assumption is met.

2. What Is the Correlation Between MHSkills and MHImpact?

Table 15.5 shows the sums of square values derived from the data table that you can

use to calculate the Pearson’s r value. The correlation is positive, indicating that as

MHSkills increase, MHImpact scores also increase. Use the formula to calculate

Pearson’s r by hand, and then confirm your calculation by using Excel1 and

SPSS1 procedures. Figures 15.38 and 15.39 show the correlation tables from

SPSS1 and EXCEL1, respectively.

rXY ¼ SSXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðSSXÞðSSYÞ
p ;

0:594 ¼ 2:561ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3:345Þð5:563Þp

3. Is the Correlation Significant?

As you can see, both correlation tables (Figures 15.38 and 15.39) report the same

Pearson’s r value (0.594) and SPSS1 notes the significance level (p¼ 0.0000006).

Using the Pearson’s r table of exclusion values, we compare the calculated

r¼ 0.594 to the r0.05,58¼ 0.25. Thus, our calculated r is well into the exclusion

range defined by 0.25. Thus, our correlation is significant, p< 0.05.

Model Summary and Parameter Estimates

Dependent Variable is mhimpact 

Model Summary Parameter Estimates 

Equation R Square F df1 df2 Significance Constant b1 b2

Linear 0.353 31.585 1 58 0.000 0.429 0.766

Quadratic 0.361 16.125 2 57 0.000 4.367 –1.814 0.420

The independent variable is mhskills. 

FIGURE 15.37 The Curve Estimation Model Between mhskills and mhimpact.

TABLE 15.5 The Data Summaries for CalculationsP
X

P
X2 P

Y
P

Y2
P

XY

183.004 561.521 165.85 464.01 508.42

SSX SSY SSXY

3.345 5.563 2.561
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4. What Is the Effect Size?

The coefficient of determination (r2)¼ 0.353. Therefore, 35% of the variance in

MHImpact is explained by MHSkills. This effect size is considered large according

to the guidelines we discussed in the chapter above.

5. What Is the Regression Equation?

The hand calculations for the bivariate regression are as follows. We can compare

the equation with the Excel1 and SPSS1 output that follows.

b value:

b ¼ r
ffiffiffiffiffiffiffiffi
SSY

p
SSX

; b ¼ 0:594
ffiffiffiffiffiffiffiffiffiffiffi
5:563

pffiffiffiffiffiffiffiffiffiffiffi
3:345

p ; b ¼ 0:766

a value:

a ¼ MY � bðMXÞ; a ¼ 2:764� 0:766ð3:05Þ; a ¼ 0:428

The Regression Equation:

Ypred ¼ 0:776X þ 0:428

The regression equation indicates that the value of MHImpact increases by 0.776

units when MHSkills increases by 1 unit. The regression line crosses the Y axis at

Correlations

mhskills mhimpact

Pearson Correlation 1 0.594a

Significance (two-tailed) 

Significance (two-tailed) 

0.000

mhskills

N 60 60

Pearson Correlation 0.594a 1

0.000

mhimpact

N 60 60

aCorrelation is significant at the 0.01 level (two-tailed).  

FIGURE 15.38 The SPSS1 correlation matrix for the study variables.

mhimpact mhskills 

mhskills 1

mhimpact 1 0.593775 

FIGURE 15.39 The Excel1 correlation matrix for the study variables.
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0.428 when X¼ 0. Figures 15.40 and 15.41 show the tables with the a and b coef-

ficients. Figure 15.41, the SPSS1 table, shows the standardized b coefficient as

well (0.594).

6. Is There a Significant Regression Between MHSkills and MHImpact?

The Omnibus Test. The omnibus test (F¼ 31.585, p¼ 0.0000006) indicates that

the regression model (MHSkills predicting MHImpact) is significant. Figure 15.42

shows the Excel1 ANOVA table that includes this finding. (The SPSS1 ANOVA

model is identical.)

The Individual Predictor Test. Both Figures 15.40 and 15.41 show that MHSkills,

the predictor, is significant (t¼ 5.620, p¼ 0.0000006). The CI0.95 for b (0.493 to

1.039) do not include the value of 0, confirming a significant slope.

Figure 15.43 shows the SPSS1 Model Summary table with additional indicators

of significance. As you can see, the F Change (31.585) is significant

(p¼ 0.0000006).

7. Predict a Value of MHImpact When MHSkills¼ 3.29 and Identify the CI0.95
Values

The following formulas provide the calculated values for sest and the CI0.95 values

for the predicted value of MHImpact when MHSkills is 3.29. As you can see, the

predicted value for MHImpact is 2.981.

Ypred ¼ 0:776X þ 0:428;

Ypred ¼ 0:776ð3:29Þ þ 0:428;

Ypred ¼ 2:981

Coefficients 
Standard 

Error P-value t Stat 
Lower
95%

Upper
95%

1.26–0.410.311.030.42 0.43 Intercept 

1.040.490.005.620.14 0.77 mhskills 

FIGURE 15.40 The Excel1 coefficients table showing the b and a values.

Coefficients
a

Unstandardized Coefficients 

Standardized

Coefficients
a

95.0% Confidence Interval for B 

Model B
Standard

error Beta
a t Significance Lower Bound Upper Bound 

(Constant) 0.429 0.417 1.028 0.308 –0.406 1.2631

mhskills 0.766 0.136 0.594 5.620 0.000 0.493 1.039

a
Dependent Variable: mhimpact 

FIGURE 15.41 The SPSS1 Coefficients table showing the b and a values.

REAL-WORLD LAB XI: SOLUTIONS 427



The CI.95 values are calculated as follows following the sest calculation. The
estimated population value for the Ypred falls between 2.483 and 3.479 at the

CI0.95 level.

Sest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSY

N � 2
ð1� r2Þ;

r

Sest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:563

58
ð1� 0:353Þ;

r

Sest ¼ 0:249;

Confidence Interval ¼ � tðSestÞ þ Ypred;

CI0:95 ¼ � 2:000ð0:249Þ þ 2:981

_Lower Boundary ¼ 2:483 _Upper Boundary ¼ 3:479

CI0:95 ¼ �2:000ð0:249Þ þ 2:981 CI0:95 ¼ þ 2:000ð0:249Þ þ 2:981

ANOVA 

Significance F  F MS SS df 

Regression 0.0031.581.961.96 1 

Residual 0.063.60 58 

Total 5.56 59 

FIGURE 15.42 The Excel1 ANOVA summary table for the MHSkills—MHImpact study.

Model Summary

Change Statistics 

Model R R Square 

Adjusted R 

Square

Standard

error of the

Estimate  

R Square 

Change F Change df1 df2

Significance

F Change 

1 0.594
a

0.353 0.341 0.24919 0.353 31.585 1 58 0.000

aPredictors: (Constant), mhskills 

FIGURE 15.43 The SPSS1 Model Summary table showing a significant F-Change value.
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16
INTRODUCTION TOMULTIPLE
LINEAR REGRESSION

At the end of Chapter 15, I mentioned that Multiple Linear Regression (MLR) is an

extension of bivariate linear regression in which more than one predictor variable is

added to an equation that predicts values of an outcome variable. Because MLR is

such an important statistical procedure in research, I wanted to discuss the topic in

this brief chapter.

MLR is a complex procedure and well beyond the scope of this book. However, I

believe it is important, and necessary, for all students of statistics to understand at

least the basics of the procedure. I will identify some of the primary elements of

MLR and provide a simple example based on real world research. We will not

discuss the hand calculations but will instead examine the Excel1 and SPSS1 out-

put for the research example.

You will need to explore more advanced treatments of MLR in order to gain

depth of understanding this versatile process. I encourage you to explore my more

comprehensive treatment of MLR in Abbott (2010) as a starting point.

THE ELEMENTS OF MLR

We can start our treatment of MLR by noting the elements common to all

regression procedures and especially to bivariate regression that we discussed in

Chapter 15. The following are some of the similarities.

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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Same Process as Bivariate Regression

MLR, like bivariate regression, is a process that creates a model for predicting
values of an outcome variable from predictor variables, along with a way of

explaining the variance in an outcome variable. Although the hand calculations are

more complex, the overall procedure is the same. We are examining the linear
relationship among variables (predictors and outcome) that will improve on our
prediction of values of an outcome variable knowing the correlation between the
outcome and predictors.

Similar Assumptions

Generally speaking, MLR shares the assumptions of bivariate regression. Statisti-

cians make a distinction in assumptions when the researcher uses MLR for research

in which a predictor can take only certain values (‘‘fixed effects’’ models) and when

MLR is used for research in which the variables can take any number of values

(‘‘random effects’’ models). Both of these approaches can be used for experimental

and nonexperimental studies; but you should explore further discussion of these

approaches, depending on your particular research question.

Statistical Significance

Like bivariate regression, MLR can be examined for statistical significance by

examining the omnibus test and the individual predictor(s) test(s). Both procedures

make use of the ANOVA table because both examine how the various components

of variance relate to one another. Bivariate regression has only one individual pre-

dictor test while MLR has several, but the statistical significance of each individual

predictor can be tested with an individual T test.

Effect Size

Effect size is measured the same way in MLR as in bivariate with the omnibus test

of the model. In both cases, R2 is an indicator of how much variance is explained in

the outcome variable as a result of the predictor(s). There are more specific effect

size indicators for individual predictors in MLR, but they are based on the same

principle.

Coefficients

Like bivariate regression, there is a regression equation with coefficients that help

to explain the relationship among the study variables. In MLR, of course, there are

additional coefficients because there are additional predictors. The beta coefficients

express the same thing: the changes in Ypred when the beta coefficients change one

unit. Because MLR has multiple beta coefficients, this interpretation changes to

‘‘the changes in Ypred when the beta changes one unit and the effects of the other

predictors are controlled.’’ This last restriction allows the researcher to understand
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how a particular predictor affects the outcome at similar levels of all the other
predictors. This is the way in which the other predictors are spoken of as being

controlled.

Scatterdiagrams

We have seen how useful scattergrams are for expressing visually the relationship

between a predictor and an outcome. MLR can use scattergrams for models that

include a second predictor by creating a 3-D graph that includes a Z axis as well

as axes for X and Y. More complex MLR designs can use graphical methods that

capture the additional influences of other variables, but these are beyond the scope

of this book.

SOME DIFFERENCES BETWEEN BIVARIATE REGRESSION
AND MLR

There will obviously be some differences between the two approaches given the

added complexity of additional predictors. These differences are not related to the

structure of the process, but are due to the added complexity.

Multiple Coefficients

I mentioned this difference above. Again, added predictors do not change the essen-

tial nature of regression, but rather call for additional methods for interpretation of

output.

Multicollinearity

Multicollinearity is a facet of MLR that relates to the relationship among the
predictors as well as the relationship between predictors and outcome. In our ficti-

tious example of books read predicting reading achievement in Chapter 15, we

discussed adding a second predictor, reading ability, as a way of understanding

multiple correlation Figure 15.31 showed the ‘‘pieces’’ of variance in Y explained

by the two predictors. MLR takes into account that predictors probably have some

relationship to one another as well as to the outcome variable.

The MLR output can be examined to understand the size and nature of the com-

ponents of variance produced in a model with several predictors. Statisticians have

devised guidelines for detecting problems in which ‘‘too much’’ of the predictor-to-

predictor variance clouds the understanding of explained variance in the outcome

variable and makes it difficult to understand the contribution of individual

predictors.

Explanation of R2

The explanation of components of explained variance in the outcome is related to

the complexity of multiple coefficients and multicollinearity. MLR can be used to
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pinpoint the contribution to the R2 of individual predictors. This is one of the chief

contributions of MLR to research.

Although we cannot pursue this matter very far, I will mention that interpretation

of the components of R2 rests with some procedural elements (‘‘order of entry

schemes’’) as well as with the very important correlation procedures of partial
correlation and semi-partial (or ‘‘part’’) correlation. I introduced these concepts in

Chapter 15, and I will demonstrate how to use one of these for interpreting MLR

results.

Entry Schemes

MLR results can be affected by the order in which predictors are added to the equa-

tion by statistical software. Some software procedures add (and remove) the predic-

tors to the overall model in stepwise fashion according to a set of predetermined

statistical guidelines that judge whether the predictors meet certain numerical

thresholds. Other schemes allow the researcher to add predictors to a MLR model

in the order they determine based on a priori or other grounds.
The researcher can use several approaches to identify the influence of predictors

on an outcome variable. (I will show a couple of these in the example below.)

‘‘Hierarchical’’ regression is simply an MLR study in which the researcher adds

predictors according to an indication of importance to the study and observes the

changes to the overall R2 as a result of adding the predictors.

STUFF NOT COVERED

Because of the complexity of MLR, we cannot hope to discuss all the dimensions

in this book. I mentioned some of these areas above (e.g., partial and semi-partial

correlation). Here are some other areas of MLR we cannot cover here, but which I

encourage you to pursue.

Using MLR with Categorical Data

MLR is quite versatile and allows the researcher to use categorical as well as

continuous predictors. It can even be used in experimental studies; there is a statisti-

cal connection between MLR and ANOVA, the latter of which is typically used for

experimental study.

MLR uses categorical data through procedures in which the researcher trans-

forms each of the categories of a predictor into separate subvariables, which

together comprise the predictor. Each of these subvariables can then be understood

in their relationship to the outcome variable. (An example might be creating four

subvariables from our treatment variable ‘‘noise’’ in predicting human learning in

our fictitious study in an earlier chapter.) Transforming predictors to sets of subvari-

ables can be done using dummy, effect, or contrast coding according to the needs of

the researcher.

432 INTRODUCTION TOMULTIPLE LINEAR REGRESSION



Curvilinear Regression

Like bivariate regression, the relationship of the predictors to the outcome variable

in MLR may be nonlinear as well as linear. Statistical software, like SPSS1, have

ways of identifying these trends so the researcher can express the most efficient

model for predicting the outcome variable.

Multilevel Analysis

Multilevel analyses are procedures that recognize different levels of data in a

regression study. For example, we have discussed the relationship between

technology skills and technology impact among MH teachers (TAGLIT data).

We need to recognize that we could look at this relationship in more than

one way.

Typically, researchers simply want to see if one variable (i.e., skills) can predict

the other (i.e., impact). This approach understands the data as a teacher-level

phenomenon. However, might the school within which the teacher works also influ-

ence both of these variables? Some schools may recruit teachers with more

advanced technology skills, for example. Or, some schools may place more of an

emphasis on using technology in the classroom.

In any case, multilevel analysis is a way of understanding what the relation-

ships are at one level of analysis (teacher level) by recognizing the influence of

another level of analysis (school level). These are very powerful tools for a

researcher, but they are not easy to learn. You might explore Bickel (2007) for

a very straightforward approach to understanding this procedure. Raudenbush

and Bryk (2002) discuss this analysis in their treatment of Hierarchical Linear

Modeling (HLM).

MLR EXTENDED EXAMPLE

In this section, I will present an MLR study to show some of the ways to interpret

the findings from Excel1 and SPSS1. Both will perform MLR analyses, but the

Excel1 capacity is more limited than SPSS1. In addition, because SPSS1 is specif-

ically designed for these kinds of complex analytical procedures, there are more

custom features provided in the menus.

In Chapter 15 (Real-World Lab XI) I presented a bivariate regression analysis

using a sample (N¼ 60) of TAGLIT data in which I predicted the MH teachers’

perceived impact of technology on the classroom from the teachers’ technology

skill values. These were aggregated teacher scores from schools in which at least

10 teachers submitted TAGLIT questionnaires. The current extended example uses

the sample database (TAGLIT 2003-Middle-HighSchool-Teachers) available

through the Wiley Publications ftp website for my 2010 book (N¼ 589). I will use

this database to analyze the same research question, but with an additional

predictor.

MLR EXTENDED EXAMPLE 433



The following factor scores will be used in this example:

� mhimpact. This is the outcome variable that is a combined measure of

teachers’ perceptions of the impact of technology on their classrooms

(teaching and learning).

� mhskills. This is the single predictor I used in the Chapter 15 study that meas-

ured the teachers’ perceptions of their technology skills.

� mhaccess. This factor is the teachers’ perception of their access to their

schools’ technology resources.

The study question is whether middle/high-school teachers’ perceptions of their

technology skills and access to technology significantly predict their perceptions of

the impact of technology on teaching and learning. I will treat mhimpact as the out-

come variable, mhskills as the first predictor, and mhaccess as the second predictor.

ARE THE ASSUMPTIONS MET?

Before we proceed, we need to ensure that the assumptions are met. I discussed the

assumptions for the outcome and first predictor in Chapter 15. I will summarize

those findings and add the information for the second predictor.

� Variables are interval level. As in Chapter 15, I am treating all the factor index

scores as interval data.

� Variables are normally distributed. Figures 15.32 through 15.35 showed both

mhskills and mhimpact were normally distributed. Figure 16.1 shows the de-

scriptive information for mhaccess.

As you can see, the skewness and kurtosis values indicate that there are no viola-

tions of kurtosis, but the skewness value appears to be quite high. The standard

skewness value (�5.13) is well beyond our suggested guideline of 2 to 3. However,

recall that with large sample sizes (beyond 200 or so) we need to rely on visual

evidence as well as the numerical evidence. Figure 16.2 shows the histogram for

mhaccess. As you can see, the histogram shows a slight negative skew, but only

slight. It is reasonable to conclude that if there are normal distribution violations of

this predictor, they are slight. We will address other ways below of adding to our

decision to use this variable in the MLR analysis.

� Variances are equal; linear relationship. We will use a scattergram to show

visual evidence for these two assumptions as we did in Chapter 15 for mhskills

and mhimpact. I will use the SPSS1 procedure for curvilinear relationships

(Curve Estimation) to show these results.

As you can see in Figure 16.3, the two best fit lines (linear and quadratic) are

similar, adding to our confidence that this predictor meets the MLR
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assumptions. Figure 16.4 shows the SPSS1 summary table showing the numeri-

cal curve fit analysis. Although the quadratic model is significant, it does not

increase the R2 over the linear model. The curve fit analysis between the two

predictors is similarly very close.

FIGURE 16.2 The mhaccess factor histogram.

Statistics

MHTeacher access to technology factor 

589N valid

N missing 0

Mean 2.8411

Median 2.8750

Mode 2.50
a

Standard deviation 0.38700

Variance 0.150

Skewness –0.518

Standard error of skewness 0.101

Kurtosis 0.358

Standard error of kurtosis 0.201

aMultiple modes exist. The smallest value is shown. 

FIGURE 16.1 The descriptive data for mhaccess.
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One additional piece of evidence for using mhaccess as it exists is that,

even if transformed, there is no impact on the overall R2 of the model. Varia-
ble transformation is a process for changing the data in various ways to ac-

count for (a) outliers and (b) problems with linearity, normal distribution, and

so on.

These transformations do not change the relationship among the study variables,

they just help to show how a ‘‘normalized’’ variable might be used in the analysis.

Transforming mhaccess did not change the outcome of the analysis.

� Cases are independent of one another. This assumption is met.

FIGURE 16.3 The SPSS1 curve estimation scattergram with mhaccess and mhimpact.

Model Summary and Parameter Estimates

Dependent Variable is MHTeacher technology impact factor. 

Model Summary Parameter Estimates 

Equation R Square F df1 df2 Significance Constant b1 b2

Linear 0.128 85.793 1 587 0.000 2.133 0.207

Quadratic 0.128 42.951 2 586 0.000 2.273 0.104 0.019

The independent variable is MHTeacher access to technology factor. 

FIGURE 16.4 The SPSS1 curve fit summary for mhaccess and mhimpact.
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THE FINDINGS

In what follows, I will present the Excel1 and SPSS1 findings for the study

including comments so that you can understand the output files. I will start with

the Excel1 findings and then proceed to the SPSS1 output to demonstrate the

additional features of the latter.

Figure 16.5 presents the general findings including the R2 and the standard error

of estimate. According to these findings, mhskills and mhaccess together explain

about 25% of the variance in mhimpact.

Figure 16.6 is an ANOVA summary table that we can use for the omnibus test of

the model. As you can see, the F test indicates a significant model (F¼ 99.07,

p< 0.001) showing that the F ratio is far into the exclusion area. There is only an

extremely small probability that this is a chance finding. You can reproduce R2

(0.25) by calculating the proportion of total variance explained by the regression

(7.51/29.72) as we discussed in Chapter 15.

Figure 16.7 shows the individual predictor tests. From this output, you can

examine the t tests for the various predictors and identify the (unstandardized) re-

gression equation. The t tests indicate that both predictors are significant predictors
of mhimpact when the other predictor is held constant. The X1 coefficient (t¼ 9.91)

and X2 coefficient (t¼ 4.55) are both significant at p< 0.05.

The following is the MLR equation as it appears in ‘‘parameter language,’’ but

each of the elements are the same as in the bivariate equation:

Ypred ¼ b0 þ b1X1 þ b2X2

b0 indicates the intercept, or value of the coefficient a. Formally, it is the value

of Y when the predictors equal 0.

Regression Statistics 

Multiple R 0.50

R square 0.25

Adjusted R square 0.25

Standard error 0.19

Observations 589

FIGURE 16.5 The overall MLR findings from Excel1.

ANOVA 

Significance F F MS SS df 

Regression 0.00 99.073.757.512 

Residual 0.0422.21586 

Total 29.72588 

FIGURE 16.6 The Excel1 ANOVA summary table.
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b1X1 indicates the slope (b1) of the first predictor (X1).

b2X2 indicates the slope (b2) of the second predictor (X2).

Replacing these values with the actual data from the results in Figure 16.7, we

obtain the (unstandardized) regression equation for this study.

Ypred ¼ 1:17þ 0:41Xmhskills þ 0:11Xmhaccess

Researchers can use this equation to predict values of mhimpact when they know

the values of mhskills and mhaccess. You would use the same process we dis-

cussed in Chapter 15 to make the prediction. You could then construct confi-

dence intervals around the predictions using the (multiple) standard error of

estimate shown in Figure 16.5.

Note also in Figure 16.7 that the confidence intervals are shown for the regres-

sion coefficients. The confidence limits for neither predictor include the likelihood

of a 0 slope, which is another indication of a significant predictor.

THE SPSS1 FINDINGS

The SPSS1 results include all of the Excel1 findings we discussed above. In what

follows, I will point out some of the unique features of SPSS1 that help to explain

some of the nuances of the model.

Figure 16.8 shows the Linear Regression specification window that I presented

in Chapter 15 (Figures 15.15 and 15.16). Recall that this series of menus is available

through the main Analyze–Regression–Linear set of choices. This selection yields

the option window in Figure 16.8. I reproduced this window because I want to point

out a couple of very important specifications for MLR analyses.

In Figure 16.8, you see that I placed mhimpact in the ‘‘Dependent’’ window and

placed the first predictor, mhskills, in the ‘‘Independent(s)’’ window. What you

cannot see in this figure is that I can place the second predictor, mhaccess, in a

second ‘‘Block’’ of predictors. Note that mhaccess is highlighted in the list of

variables on the left of the screen. When I choose the ‘‘Next’’ button (located just

below the ‘‘Dependent’’ window), I can enter this second predictor by itself. In this

way, I have instructed SPSS1 to create an MLR model with two predictors, but to

add the predictors hierarchically.

Upper 95%Lower 95% P-value t Stat Standard Error Coefficients 

Intercept 1.39 0.94 0.00 10.20 0.11 1.17 

mhskills 0.49 0.33 0.00 9.91 0.04 0.41 

mhaccess 0.15 0.06 0.00 4.55 0.02 0.11 

FIGURE 16.7 The Excel1 individual predictor coefficients.
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Thus, our output will show two models of data: one with the first predictor only,

and the second with both predictors. In this way, we can compare how the model
summary data change with the introduction of the second predictor.

Figure 16.8 also shows another important feature that I discussed above as an

‘‘order of entry scheme.’’ Note that in the middle of the figure is a dropdown menu

entitled ‘‘Method,’’ which by default shows ‘‘Enter.’’ This is the place where

researchers can determine how they want the SPSS1 program to manage the

predictors in the model. As shown (‘‘Enter’’), I have directed the program to treat

the introduction of the predictors in my own fashion. Because I used two ‘‘Blocks’’

of predictors, I have instructed SPSS1 to enter the first predictor (mhskills) and

then enter the second predictor (mhaccess) separately so that I can see the changes

when the second predictor variable is added. This is the essence of hierarchical

regression.

Other choices for entry include ‘‘Stepwise,’’ which allows SPSS1 preset entry

and removal protocols to enter and retain each variable in a somewhat ‘‘mechanical’’

fashion. For example, if I had a study with five predictors, the stepwise procedure

would add and retain (or delete) predictors, depending on the size of their impact on

the model. It might be the case that only two predictors would be retained and the

others excluded even though the researcher has good reason to include them.

The stepwise procedure can be useful at times, but most researchers avoid the

method because it takes the choice for building the model out of the researcher’s

control. If the researcher is including each predictor on some a priori grounds for

inclusion, then it is important to see the impact on the results despite the variable

not ‘‘making the cut’’ established by the program.

FIGURE 16.8 The SPSS1 Linear Regression specification menu.
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The menu of entry schemes includes other methods that exceed the bounda-

ries of our treatment of MLR. However, most research studies can profitably

use hierarchical regression (‘‘Enter’’) for their analyses. Depending on how

you use the output, it does not matter which scheme you use!

As I showed in Chapter 15, the ‘‘Statistics’’ button in the upper right corner of the

window shown in Figure 16.8 allows the researcher to choose several kinds of MLR

output. I showed the default choices for bivarite regression in Figure 15.16. These

also work fine for MLR, but in Figure 16.9 I show some additional specifications.

First, you can see that in Figure 16.9 I did not include confidence intervals

because I showed those above in the Excel1 output (see Figure 16.7). The two new

choices shown in Figure 16.9 are ‘‘Part and partial correlations’’ and ‘‘Collinearity

diagnostics.’’ I cannot explain these choices exhaustively, but I did want to note

them and what they provide so that you can begin to use them in your own research.

I introduced ‘‘part’’ (semi-partial) and ‘‘partial’’ correlations above. These can

be used in many ways in the MLR analysis. One very helpful use is to show the

‘‘squared part correlation’’ as the contribution to R2 for each variable added to the

model. I will demonstrate this briefly below. I discussed multicollinearity above as

a potential problem resulting from a high ‘‘intercorrelation’’ among the predictors.

Choosing collinearity diagnostics helps to ensure that our study avoids serious vio-

lations of this assumption.

Figure 16.10 shows the model summary information from SPSS1 resulting from

our specification. Note that the program actually creates two summaries. The first

FIGURE 16.9 The SPSS1 Linear Regression specification for MLR output.
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‘‘Model’’ is the one that only contains the first predictor and the outcome variable

(in this case, only mhskills is included as a predictor of mhimpact). The second

model is the one that includes the second predictor (mhaccess) as well. The reason

for getting two models is that I specified that each of the two predictors should be

entered separately in different blocks so that I could see how the model summary

changed when I added the second predictor. This process would be the same no

matter the number of predictors; adding each predictor separately would provide a

number of hierarchical models.

In Figure 16.10, the last model (Model 2) is the same as the overall model shown

in the Excel1 output in Figures 16.5 and 16.6 because Excel1 combined the two

predictors in the same model. Compare these results and you will see that the Model

2 SPSS1 results are the same as the Excel1 results (R2, sest, etc.).
I shaded one cell in Figure 16.10 to explain. This ‘‘R-Square Change’’ represents

the additional variance of the dependent variable (mhimpact) explained by adding a

second predictor. As you can see, the second predictor (mhaccess) explains an addi-

tional 2.6% percent of variance (0.026) in mhimpact.

Now, look at the R2 values in the ‘‘R-Square’’ column for Models 1 and 2 (0.226

and 0.253, respectively). If you subtract these values, you will get the 0.026 shown

in the ‘‘R-Square Change’’ column. Either way, you can see how much the second

predictor adds to the explanation of the variance in the outcome variables.

This brief example shows the value of hierarchical regression. You can see how

the results change by adding subsequent predictors and thereby have a more com-

prehensive view of the relationship among the study variables. You can see, for

example, that this second predictor also resulted in a ‘‘Significance F Change’’

value, which is important to the omnibus test.

The SPSS1 ANOVA summary table shown in Figure 16.11 is similar to

that from Excel1 (see Figure 16.6). As I noted above, the ANOVA results for

Model 2 in Figure 16.11 is the same as in Figure 16.6 because Excel1 com-

bines the individual predictor data. By examining the results in the two mod-

els, you can see the influence of the second predictor.

The next SPSS1 output concerns the tests for the individual predictors. Figure

16.12 shows the ‘‘Coefficients’’ output, which specifies the slope and intercept

Model Summaryc

Change Statistics 

Model R R Square 

Adjusted R

Square

Standard

Error of the

Estimate  

R Square 

Change F Change df1 df2 Significance

F Change 

1 0.476
a 0.226 0.225 0.19792 0.226 171.693 1 587 0.000

2 0.503
b

0.253 0.250 0.19468 0.026 20.690 1 586 0.000

a
Predictors: (Constant), MHTeacher technology skills factor. 

b
Predictors: (Constant), MHTeacher technology skills factor, MHTeacher access to technology factor. 

c
Dependent variable: MHTeacher technology impact factor. 

FIGURE 16.10 The SPSS1 MLR model summary.
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values for each of the models. Once again, the SPSS1 results in Model 2 are the

same as those from Excel1. (Compare these to those shown in Figure 16.7.)

The Unstandardized Coefficients

The unstandardized coefficients shown in their own columns are the same in Model

2 as those shown in Excel1. Thus, you can create the same unstandardized regres-

sion formula as shown above.

The Standardized Coefficients

Figure 16.12 includes a column for ‘‘Standardized Coefficients.’’ These values rep-

resent what the coefficients would be if we had used Z scores instead of raw scores

Coefficientsa

Unstandardized

Coefficients

Standardized

Coefficients Correlations Collinearity Statistics

Model B Standard

error 

Beta
t Significance

Zero-order Partial Part Tolerance VIF

(Constant) 1.209 0.116 10.434 0.0001

MHTeacher technology

skills factor  

0.497 0.038 0.476 13.103 0.000 0.476 0.476 0.476 1.000 1.000

(Constant) 1.166 0.114 10.200 0.000

MHTeacher technology

skills factor  

0.413 0.042 0.395 9.907 0.000 0.476 0.379 0.354 0.802 1.247

2

MHTeacher access to

technology factor  

0.105 0.023 0.181 4.549 0.000 0.357 0.185 0.162 0.802 1.247

a
Dependent Variable: MHTeacher technology impact factor 

FIGURE 16.12 The SPSS1 Coefficients output.

ANOVAc

Model Sum of Squares df Mean Square F Significance

Regression 6.726 1 6.726 171.693 0.000
a

Residual 22.994 587 0.039

1

Total 29.719 588

Regression 7.510 2 3.755 99.071 0.000
b

Residual 22.210 586 0.038

2

Total 29.719 588

a
Predictors: (Constant), MHTeacher technology skills factor. 

b
Predictors: (Constant), MHTeacher technology skills factor, MHTeacher access to technology factor. 

c
Dependent variable: MHTeacher technology impact factor. 

FIGURE 16.11 The SPSS1 ANOVA summary table showing two models.
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in the data. This is a very useful set of information because it gives you the stan-

dardized (Z) information without the researcher having to transform all the raw

scores to Z scores. As you can see in Model 1, the standardized beta coefficient

(b¼ 0.476) is equal to the R when only the first predictor is in the model. This is

the Pearson’s r between mhskills and mhimpact because, as I explained in Chapter

15, in bivariate regression (where there is only one predictor) the beta coefficient is

equal to the r value. As you can see, this is not true when you have more than one

predictor. In the latter case, the standardized coefficients represent how many Z-
score units the outcome variable changes with one-unit Z-score changes in the pre-

dictors (when the other predictors are held constant).

Collinearity Statistics

The ‘‘Collinearity Statistics’’ columns (last two columns on the right side of the

figure) show the results researchers can use to determine if the intercorrelation

among the predictors is too high. You can consult advanced statistical treatments of

this information as you begin to build your understanding of MLR. I include an

explanation in my (Abbott, 2010) book dealing with program evaluation that may

be helpful. Generally, the lower the ‘‘Tolerance’’ value, the greater the inter-

correlation complications. The ‘‘VIF’’ values are derived from the tolerance values,

so higher numbers are problematic. The values in Figure 16.12 do not indicate prob-

lems of multicollinearity.

The Squared Part Correlation

I shaded the ‘‘part correlation’’ column in Figure 16.12 to show a very important

aspect of the SPSS1 output. If you recall Figure 15.34, we can show how multiple

correlation helps to explain ‘‘pieces’’ of the variance in the outcome variable as a

result of the two predictors in a MLR analysis. I recreated Figure 15.31 as

Figure 16.13 in order to show the results for the current study problem.

If you look at Figure 16.13, you will see that I shaded portion A, which

represents the ‘‘unique’’ explanation of the variance in the outcome due to the

mhskills predictor. Portion B includes the intercorrelation (overlap) between

the two predictors (mhskills with mhaccess). This is the proportion of the vari-

ance in the outcome that is problematic because we cannot ‘‘assign’’ it to one

or the other predictors. Part C represents the unique contribution to the vari-

ance in the outcome based on the mhaccess predictor. Part D is the

unexplained variance in the outcome.

Part correlation, when it is squared, represents the unique explanation of the

variance of an outcome variable based on a single predictor. It is like comparing

(dividing) Part A in Figure 16.13 to all the variance in the outcome (Parts AþB

þCþD). You can see how this works by looking at the shaded cells of

Figure 16.12.

� In Model 1, the part correlation of mhskills is 0.476.
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� The part correlation squared (0.4762¼ 0.2265) equals the R-Square-Change
value in Figure 16.10.

� In Model 2 the part correlation of the second predictor added to the model,
mhaccess (0.162), when squared (0.1622¼ 0.026), equals the R-Square

Change in Model 2 of Figure 16.10.

The general principle of the squared part correlation is that you can use it to

understand the explanation of the variance in the outcome variable of a single pre-

dictor no matter how it is entered into the equation. If you add more than one varia-

ble to each ‘‘block,’’ this is a bit more complex to see, but it is a powerful feature

presented in the SPSS1 choice of output.

Conclusion

The example study concludes that the two predictors, mhskills and mhaccess,

are significant predictors of mhimpact. Both predictors explain about 25% of

the variance (i.e., R2¼ 0.253) in mhimpact, a finding considered large according

to the guidelines we discussed in Chapter 15. Each predictor is a significant

predictor (as determined by the t values), but mhskills is the more powerful of

the two in explaining the variance of mhimpact. Thus, according to this sample

of data, it is important for teachers to have access to technology for making an

impact on the classroom, but is it much more important that they perceive that

they have technology skills. Having skills explains almost 5 times more unique

variance in mhimpact than having access to technology.

FIGURE 16.13 The part correlation segment of MH Skills.
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TERMS AND CONCEPTS

Collinearity Statistics Measures of the extent to which multilinearity exists

among a set of predictor variables in a regression study.

Hierarchical Regression An interpretive technique in multiple regression studies

in which the sequential impact of predictor variables on the outcome variable is

measured.

Multicollinearity A measure of the overlap (or intercorrelation) among predictors

in a multiple regression study. This overlap can obfuscate the overall relationship

of the set of predictors to the outcome variable.

Variable Transformation The process of changing data by various procedures to

accommodate outliers and problems of linearity (among other problems).

REAL-WORLD LAB XII: MULTIPLE LINEAR REGRESSION

In this lab, we will use the TAGLIT data as we did in the chapter example. How-

ever, we will use the factors extracted from elementary teachers rather than middle/

high-school teachers. Can elementary teachers’ technology impact scores be

predicted by their technology skills and technology access scores?

Lab XII Questions

1. Are assumptions met for MLR?

2. What are the findings? Use Excel1 and SPSS1 to identify effect size, omni-

bus test, individual predictor tests, and the unstandardized regression

equation.

3. What is the unique explanation of variance in eimpact from the predictor

eaccess?

4. What conclusions can you draw about the research question from the

findings?

REAL-WORLD LAB XII: MLR SOLUTIONS

1. Are the Assumptions Met for MLR?

� Variables are interval level. As in Chapter 15, I am treating all the factor index

scores as interval data.

� Variables are normally distributed. Figure 16.14 shows that both eskills and

eimpact are normally distributed. Eaccess appears to be negatively skewed

and leptokurtic, however.

The standard skewness value (�9.28) is well beyond our suggested guide-

line of 2 to 3. However, recall that with large sample sizes (beyond 200 or so)
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we need to rely on visual evidence as well as the numerical evidence because

the standard errors with larger datasets will be very small and result in a

higher skewness quotient. Figure 16.15 shows the histogram for ehaccess. As

you can see, the histogram shows a very slight negative skew. It is reasonable

to conclude from the graph that if there are normal distribution violations of

this predictor, they are slight. I will discuss at length other criteria below for

using this variable in the MLR analysis.

� Variances are equal; linear relationship. We will use a scattergram to show

visual evidence for these two assumptions as we did in Chapter 15 for mhskills

and mhimpact. I will use the SPSS1 procedure for curvilinear relationships

(‘‘Curve Estimation’’) to show these results.

Descriptive Statistics

N Mean Standard

deviation 

Skewness Kurtosis

Statistic Statistic Statistic Statistic Standard

Error 

Standard

Error 

Statistic

Elementary Teachers technology

skills factor  

944 2.8407 0.25562 –0.189 0.080 0.406 0.159

Elementary Teachers technology

impact factor  

944 2.6240 0.26704 –0.083 0.080 –0.113 0.159

Elementary Teachers access to

technology factor  

944 2.8550 0.42637 –0.742 0.080 1.120 0.159

Valid N (listwise) 944

FIGURE 16.14 The descriptive data for eaccess.

FIGURE 16.15 The ehaccess factor histogram.
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As you can see in Figure 16.16, the two best-fit lines (linear and quadratic) are

similar, but they diverge at the extremes where the values (dots) are sparse. The

influence of the extreme values (at both ends) is problematic for deciding that this

relationship is not linear. Authorities like Cohen et al. (2003) urge caution under

these circumstances.

Figure 16.17 shows the SPSS1 summary table showing the numerical curve

fit analysis. Although the quadratic model is significant, there is a very mini-

mal increase in the R2 value over the linear model (0.004). Given the influence

of the extreme scores, which I discussed above, I am not compelled by this

summary to conclude a nonlinear relationship between eaccess and eimpact.

One additional piece of evidence for using eaccess as it exists is that, even

if ‘‘transformed,’’ there is very little impact on the overall R2 of the model

(from 0.158 to 0.163). I transformed eaccess using the accepted method of

FIGURE 16.16 The SPSS1 curve estimation scattergram with eaccess and eimpact.

Model Summary and Parameter Estimates

Dependent Variable is Elementary Teachers technology impact factor. 

Model Summary Parameter Estimates 

Equation R Square F df1 df2 Significance Constant b1 b2

Linear 0.158 177.125 1 942 0.000 1.913 0.249

Quadratic 0.162 91.255 2 941 0.000 2.332 –0.071 0.059

The independent variable is Elementary Teachers access to technology factor. 

FIGURE 16.17 The SPSS1 curve fit summary for eaccess and eimpact.
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‘‘reflecting’’ and taking the square root of the raw scores to decrease curvili-

nearity. While this is an acceptable method, it makes interpretation more diffi-

cult (i.e., it changes the scale of the variables and it reverses the direction of

the relationship), and the very small R2 increase does not warrant using a

transformed predictor.

I am leaving this predictor in the analysis because of the evidence I discussed

above. As a researcher, you will be called upon to make difficult choices with your

data. I left eaccess in this lab so that you could grapple with ‘‘real-world problems.’’

� Cases are independent of one another. This assumption is met.

2. What Are the Findings? Use Excel1 and SPSS1 to Identify Effect Size,
Omnibus Test, Individual Predictor Tests, and the Unstandardized
Regression Equation

In what follows, I will present the Excel1 and SPSS1 findings for the study includ-

ing comments so that you can understand the output files as I did with the chapter

example. I will begin with the Excel1 findings and point out the additional findings

from the SPSS1 output.

Figure 16.18 presents the general findings including the R2 and the sest. Accord-
ing to these findings, eskills and eaccess together explain about 27% of the variance

in eimpact.

Figure 16.19 shows the ANOVA summary table that we can use for the

omnibus test of the model. As you can see, the F test indicates a significant

Regression Statistics 

Multiple R 0.52

R square 0.27

Adjusted R square 0.27

Standard error 0.23

Observations 944

FIGURE 16.18 The overall MLR output from Excel1.

ANOVA 

Significance F F MS SS df 

Regression 0.00178.259.2418.48 2 

Residual 0.0548.77 941 

Total 67.25 943 

FIGURE 16.19 The Excel1 ANOVA summary table for the elementary teachers study.
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model (F¼ 178.25, p< 0.000) indicating that the F ratio is far into the exclu-

sion area. There is only an extremely small probability that this is a chance

finding. You can reproduce R2 (0.27) by calculating the proportion of

total variance explained by the regression (18.48/67.25) as we discussed in

Chapter 15.

Figure 16.20 shows the individual predictor tests. From this output, you can

examine the t tests for the two predictors and identify the (unstandardized) regres-

sion equation. The t tests indicate that both predictors are significant predictors of
eimpact when the other predictor is held constant. The Xeskills coefficient (t¼ 12.29)

and Xeaccess coefficient (t¼ 5.86) are both significant at p< 0.05.

The following is the MLR equation as it appears in ‘‘parameter language,’’ but

each of the elements are the same as in the bivariate equation:

Ypred ¼ b0 þ b1X1 þ b2X2

b0 indicates the intercept, or value of the coefficient a. Formally, it is the value

of Y when the predictors¼ 0.

b1X1 indicates the slope (b1) of the first predictor (X1).

b2X2 indicates the slope (b2) of the second predictor (X2).

Replacing these values with the actual data from the results in Figure 16.20

results in the (unstandardized) regression equation for this study.

Ypred ¼ 1:10þ 0:42Xeskills þ 0:12Xeaccess

Researchers can use this equation to predict values of eimpact when they know

the values of eskills and eaccess. You would use the same process we discussed in

Chapter 15 to calculate actual predictions. You could then construct confidence

intervals around the predictions using the (multiple) standard error of estimate

shown in Figure 16.18.

Note also in Figure 16.20 that the confidence intervals are shown for the regres-

sion coefficients. The confidence limits for neither predictor include the likelihood

of a 0 slope, which is additional evidence of significant predictors.

Standard Coefficients 

Error

Lower P-value t Stat 

95% 

Upper

95% 

Intercept 1.260.940.0013.210.08 1.10 

eskills 0.480.350.0012.290.03 0.42 

eaccess 0.160.080.005.860.02 0.12 

FIGURE 16.20 The Excel1 individual predictor coefficients for the elementary teachers

study.
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The SPSS1 Findings

In what follows, I will point out some of the unique features of SPSS1 that

help to explain some of the nuances of the model as I did in the chapter

example. Figure 16.21 shows the model summary information from SPSS1

resulting from our specification.

Model 1 results show that eskills by itself explains approximately 25% (0.248)

of the variance in eimpact, and that the change in the F test from this predictor is

statistically significant. Model 2 results show that eaccess is also a signicant predic-

tor (as determined by the ‘‘Significance F Change’’ results) and uniquely explains

about 2.6% of the variance in eimpact.

The SPSS1 ANOVA summary table shown in Figure 16.22 shows both Model

1 and Model 2 results to be statistically significant (F¼ 311.182, and F¼ 178.25,

respectively). You can recreate the R2 values using the SS values shown in the

table in Figure 16.22.

ANOVAc

Model Sum of Squares df Mean Square F Significance

Regression 16.698 1 16.698 311.182 0.000
a

Residual 50.549 942 0.054

1

Total 67.247 943

Regression 18.477 2 9.238 178.250 0.000
b

Residual 48.770 941 0.052

2

Total 67.247 943

a
Predictors: (Constant), Elementary Teachers technology skills factor. 

b
Predictors: (Constant), Elementary Teachers technology skills factor, Elementary Teachers access to technology factor. 

c
Dependent Variable: Elementary Teachers technology impact factor. 

FIGURE 16.22 The SPSS1 ANOVA summary table for the elementary teachers study.

Model Summaryc

Change Statistics 

Model R R Square 

Adjusted R

Square

Standard

error of the

Estimate  

R Square 

Change F Change df1 df2
Significance

F Change 

1 0.498
a

0.248 0.248 0.23165 0.248 311.182 1 942 0.000

2 0.524
b

0.275 0.273 0.22766 0.026 34.313 1 941 0.000

a
Predictors: (Constant), Elementary Teachers technology skills factor. 

b
Predictors: (Constant), Elementary Teachers technology skills factor, Elementary Teachers access to technology factor. 

c
Dependent Variable: Elementary Teachers technology impact factor. 

FIGURE 16.21 The SPSS1 MLR model summary for the elementary teacher study.
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The next SPSS1 output concerns the tests for the individual predictors.

Figure 16.23 shows the ‘‘Coefficients’’ output, which specifies the slope and inter-

cept values for each of the models. Note again that the SPSS1 results for Model 2

are the same as those from Excel1 (see Figure 16.20.)

3. What Is the ‘‘Unique’’ Explanation of Variance in eimpact
from the Predictor eaccess?

As you can see in Figure 16.23, the unique variance in eimpact explained by eaccess

is .026 (or 2.6%) which is calculated by squaring the part correlation (0.1632 ¼
0.026). This same value is shown in Figure 16.21 under Model 2 R-Square Change.

4. What Conclusions Can You Draw About the Research Question
from the Findings?

The findings indicate that the two predictors, eskills and eaccess, are significant

predictors of eimpact. Both predictors explain about 27% of the variance

(i.e., R2¼ 0.275) in eimpact, a finding considered large according to the guide-

lines we discussed in Chapter 15. Each predictor is a significant predictor (as

determined by the t values), but eskills is the more powerful of the two in

explaining the variance of eimpact. According to the sample data, it is important

for elementary teachers to have access to technology for making an impact on

the classroom, but is it much more important that they perceive that they have

technology skills. Having technology skills explains almost 5 times more unique

variance in eimpact than having access to technology.

Coefficientsa

Unstandardized

Coefficients

Standardized

Coefficients Correlations Collinearity Statistics

Model B Standard

Error 
Beta

t Significance
Zero-order Partial Part Tolerance VIF

(Constant) 1.145 0.084 13.605 0.0001

Elementary Teachers

technology skills factor  

0.521 0.030 0.498 17.640 0.000 0.498 0.498 0.498 1.000 1.000

(Constant) 1.098 0.083 13.215 0.000

Elementary Teachers

technology skills factor  

0.417 0.034 0.399 12.294 0.000 0.498 0.372 0.341 0.730 1.370

2

Elementary Teachers

access to technology

factor  

0.119 0.020 0.190 5.858 0.000 0.398 0.188 0.163 0.730 1.370

a
Dependent Variable: Elementary Teachers technology impact factor 

FIGURE 16.23 The SPSS1 Coefficients output for the elementary teacher study.
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17
CHI SQUARE AND CONTINGENCY
TABLE ANALYSIS

Up to now, we have explored statistical procedures that use continuous data that are

interval level. These are the procedures you will encounter the most often in evalua-

tion reports, newspaper articles and scholarly articles. However, we cannot con-

clude our study of statistics without discussing one of the most versatile and useful

procedures that can be used with any level of data.

Chi Square is a statistical procedure that primarily uses nominal, or categorical,

data. It works by examining frequency counts, or simply the number (frequency) of

people or observations that fit into different categories. An example might be the

number of people who prefer certain movies out of a range of movie possibilities,

or the number of different types of automobiles in a parking lot.

The Chi Square procedure is used in two different ways. It is used in a goodness-

of-fit test and in hypotheses tests of independence. We will discuss both of these

uses in this chapter. Even though Chi Square uses nominal data, there is a Chi

Square distribution of values with which we can determine exclusion values for our

hypotheses tests. We will therefore treat the Chi Square procedures in the same

fashion we have learned for hypothesis testing.

CONTINGENCY TABLES

Chi Square data are presented in spreadsheet form in rows and columns. The

researcher can easily see how the data are arrayed across the categories of the

variables. The tables of data containing the frequencies are called contingency

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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tables because the data in the row cells are contingent upon or are connected
to the data in the column cells. Statisticians and researchers often refer to the

analysis of contingency tables as cross-tabulation, or simply crosstabs. If you

look ahead in this chapter to Table 17.3, you can see an example of a contin-

gency table. In that figure, 160 children are classified in terms of their sex and

movie choice.

Having the data displayed in rows and columns according to the categories of

the variables making up the contingency table is helpful to the researcher. Simple

visual inspection may help to detect patterns not ordinarily apparent when the data

are not placed in tables. However, the question that we have asked with other proce-

dures in this book is, How different do the data (in row and column cells) have to be
before we could conclude that the data patterns are statistically significantly
different?

The answer to the question above is the reason researchers use Chi Square. The

Chi Square procedure statistically analyzes the differences among the data in con-

tingency tables to determine whether the patterns of difference are different enough

to be considered statistically significant.

When researchers wish to present the results of their analyses, or to simply

list the data in the tables, they use percentages instead of frequencies. This is

because the frequencies in cells are often different across rows and columns.

Therefore, percentages are a way to present the frequency data on a level play-

ing field. Raw frequency differences are transformed to a common expression

across the entire contingency table. We will explore these facets of contin-

gency table analyses in this chapter and discuss some traditional rules for how

to present the data in the tables.

One convention some researchers use when presenting data in contingency
tables is to present the independent variable categories in columns and the
dependent variable categories in rows.1 In this way, the column data percentages

are created to total 100% and the researcher can compare values of the independent
variable categories within rows of the dependent variable categories. This enables
a common way of interpreting the data from visual inspection and from Chi Square

analyses. I will show how this works in this chapter by using some examples.

THE CHI SQUARE PROCEDURE AND RESEARCH DESIGN

The Chi Square procedure is very important because it is so versatile. It can be used

with any kind of data. Often, researchers are limited as to what data they can gather

and may only be able to use simple frequency counts. In some cases, researchers

can use Chi Square with existing reports of some variable of interest.

1 Other researchers organize contingency tables in the opposite fashion, with the independent variable

categories in rows. As you will see in the analyses to follow, it does not matter which convention you use

as long as you remember how to create the interpretation.
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Post Facto Designs

Here are some examples of how researchers might use Chi Square in post facto
designs:

� Determining whether frequency counts of crimes reported by neighborhood in

a newspaper article represent a statistically significant finding.

� Comparing attitudes, choices, or behaviors among groups of school children.

� Windshield surveys of schools, businesses, or neighborhoods by classifying

observed frequencies of human traffic patterns.

� Comparing the popularity of cafeteria food by classifying amount of waste.

You might recognize some of these as studies in which the researcher uses

‘secondary data’ (data that already exist) or ‘unobtrusive’ measures (data that

are gathered in natural settings without the researcher ‘intruding’ into the

research context).

Experimental Designs

Chi Square can also be used with experimental data. I will discuss one such

study in which I used Chi Square to determine if there were pre–post differences

among a group of students in an ethnic literature classroom (Trzyna and Abbott,

1991). This experimental design called for a special Chi Square design that uses

repeated measures.

CHI SQUARE DESIGNS

I mentioned earlier that there are two primary uses of Chi Square to determine

statistical significance. We will look at both of these in this chapter, but I want to

make a distinction between the types at the outset.

GOODNESS OF FIT

Goodness-of-fit tests compare actual data to expected data distributions. This use
of Chi Square involves one variable with several categories. The researcher

wishes to determine whether the data that are seen (observed frequencies) are

statistically different from the expectations of how the data should behave

(expected frequencies). For example, if there are four movie choices available

for a group of children, the expected distribution of choices is that there will

be the same number of children who choose each movie. We compare the actual

movie choices of children to see how closely these ‘‘real’’ choices compare to what

we ‘‘expect.’’
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Expected Frequencies—Equal Probability

One of the complexities of this kind of study is how to determine what is expected.

Often, expectation is simply a matter of equal probability, as was evident in the

movie choice example above. In the absence of any other information, the

researcher would simply expect equal distributions of choices in each category.

Thus, if there were 160 children and 4 movie choices, the expected number of

choices for each movie would be 40. This is figured as follows:

f e ¼
N

k

We use fe to represent expected frequency. So, in this formula, expected

frequency is a matter of dividing the total number of subjects (N) by the number of

categories (k) in the variable of interest. Therefore:

f e ¼
N

k
;

f e ¼
160

4
;

f e ¼ 40

If we have 160 children, and four movie choices, we would expect equal num-

bers of the children (40) to choose each of the movies.

Expected Frequencies—A Priori Assumptions

Another way to determine expected frequency is to use prior knowledge or theoreti-

cal assumptions about what should happen. Thus, a researcher may have knowledge

(from other studies or on the basis of past observation) that one of the movie choices

is much more popular. In this case, the researcher can determine the proportion

or probability of each movie choice and then see how many children in the study

actually choose each of the movies. It might look like this hypothetical finding:

Movie A 0.35 probability, resulting in an expected

frequency (fe) of 56 (0.35 � 160)
Movie B 0.25 probability, fe¼ 40

Movie C 0.25 probability, fe¼ 40

Movie D 0.15 probability, fe¼ 24

THE CHI SQUARE TEST OF INDEPENDENCE

The second primary use of Chi Square is in research studies in which there are

two or more variables involved. For example, the researcher may wish to de-

termine whether the movie choices were equal, as in the above description, but

also may question whether the gender of the child will have an impact on their

movie choice. Thus, there are now two variables, movie choices and gender,

which create a contingency table of data. The question is whether the values
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of the categories of one variable are in any way linked to the values of the

other variable’s categories. Do the cell frequencies of one variable influence

the cell frequencies of the other?

The general expectation of chance in which one variable is not linked to another

will result in what researchers call independence. That is, the categories of one

variable are in no way connected or linked in a pattern to the categories of the other.

An example would be that both boys and girls choose each of the four movies

equally.

If the categories of data do show a pattern whereby the frequencies of some

cells are much greater than the frequencies of other cells, we might speak of the

variables being dependent on one another. Thus, if girls most often choose movie A

and boys opt for movie C much more frequently, we might say that the choice of

movie is dependent on the child’s gender. A different way of thinking about this is

asking whether knowing the values of one variable helps you to know anything

about values of the other.

Researchers use Chi Square to determine whether there are statistically sig-

nificant differences among the cell frequencies. In this way, they can detect

patterns that might indicate relatedness between the study variables. This is

what we call the test of independence. If we reject the null hypothesis (com-

plete independence or no relationship among the cells), then we can conclude

that the data are not independent, but instead that there is a dependent relation-

ship between the study variables.

A FICTITIOUS EXAMPLE—GOODNESS OF FIT

Perhaps the easiest way to explore the nuances of Chi Square is to use an example.

Because I introduced movie choices above, we can use this to show how to proceed

with a goodness-of-fit test using Chi Square. This is also referred to as a one-way
Chi Square. The ‘‘one’’ represents the fact that there is only one row of data (i.e.,

one variable with several categories). Thus, this example would be a 1� 4

Chi Square, or a study with one row and four columns.

Let us suppose that a researcher conducts a brief study with 160 eighth-grade

children. The research question is whether the children show a difference in their

choice of movies. Here are some (fictitious) choices:

Movie A Drooling Ghouls

Movie B Blarney’s Funny Adventure

Movie C Happy, Lucky, and the Beached Whale

Movie D Skateboard Bingo

Using what we expect to happen by chance, we can determine that the expected

frequency is 40 for each movie, as we showed above.

f e ¼
160

4
;

f e ¼ 40
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The question is, How do the actual choices (observed frequency, fo) compare to

the expected choices (expected frequencies, fe)? For this, the researcher uses the

general Chi Square (represented by x2) formula that compares fo to fe as follows:

x2 ¼
X ðf o � f eÞ2

f e

As you can see, the formula sums up the squared differences between observed

and expected frequencies which are divided by the expected frequencies. While this

formula sums all the differences up, think of the process as the summing up of the

statistical calculations in each cell. Table 17.1 shows how we might arrange the

data so that we can make the required calculations.

As you can see from Table 17.1, we calculated x2 ¼ 9:80. As I described above,

this is a general measure of how the differences between expected and observed

frequencies are arrayed in the data table. The researcher must now decide if the 9.8

is a large enough Chi Square value to conclude that the movie choices are statisti-

cally different. To do this, we need to conduct a hypothesis test procedure as we did

with the other statistical procedures.

1. Null Hypothesis: f o ¼ f e. (There is no difference between what we expect to

happen and what we observe to happen.)

2. Alternative Hypothesis: f o 6¼ f e. (There is a difference between what we

expect to see and what we actually see.)

3. Critical Value of Exclusion: For this value, we use the Chi Square Table of

Values. As we have seen with other statistical procedures, we need to estab-

lish a value of exclusion on the Chi Square distribution to compare with our

actual, calculated value. If our calculated value exceeds this exclusion value,

we would conclude that the results of our study are too large to be considered

a chance finding.

We must use degrees of freedom with the goodness-of-fit test to identify

the appropriate comparison value from the Chi Square table of values. For the

one-way Chi Square, the df¼ k� 1, where k is the number of categories.

Thus, df¼ 3. For this study, the 0.05 critical value of exclusion is 7.82. We

represent this as x2
:05;3 ¼ 7:82.

TABLE 17.1 The Fictitious Movie Choice Data Analysis

Movie A Movie B Movie C Movie D

f o 56 30 34 40

f e 40 40 40 40

f o � f e 16 �10 �6 0

ðf o � f eÞ2 256 100 36 0

ðf o � f eÞ2
f e

6.4 2.5 0.9 0

x2 ¼ P ðf o � f eÞ2
f e

¼ ð6:4þ 2:5þ :9þ 0Þ ¼ 9:80
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Like the T distribution, the Chi Square distribution is actually several dis-

tributions that vary with the size of the sample. Thus, the degrees of freedom

identify a separate Chi Square distribution that is used as a comparison distri-

bution to establish the critical values of exclusion. Chi Square is a directional
test because of the shape of the distribution(s). The exclusion value is located

on the right side of the distribution. Figure 17.1 shows sketches of the general

shapes of the Chi Square distribution at selected df values. As you can see,

the shape of the distribution is quite different, depending on the degrees of

freedom.

4. Calculated Chi Square: This is the Chi Square value we calculated above,

x2 ¼ 9:80.

5. Decision: Because our calculated value (9.80) exceeds the critical value

(7.82), we conclude that there is a statistically significant difference among

the categories of movie choices at the 0.05 level, p< 0.05.

6. Interpretation: The students in the study group chose movies in statistically

different numbers. The question for the researcher is how to report the

findings of this study in the words of the study question. For this, I refer

back to my earlier statement that researchers need to use percentages to

report findings because categories may have unequal raw number values.

Table 17.2 shows the fictitious data with appropriate percentages. Based

on these percentages, we would conclude that most children prefer

Movie A.

FIGURE 17.1 The Chi Square series of distributions.

TABLE 17.2 The Reporting Data for the Fictitious Study

Movie A Movie B Movie C Movie D

f o 56 30 34 40 ¼ 160

% 35% 56
160

� �
18.75% 30

160

� �
21.25% 34

160

� �
25% 40

160

� � ¼ 100%
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Frequencies Versus Proportions

There is a technical point to be made about Chi Square and the kind of data we use.

Most researchers use frequencies, or raw counts and numbers in the cells (e.g., the

number of children who choose a certain movie). In this case, we are actually com-

paring two different distributions, an actual distribution of occurrences, and an

expected distribution of occurrences. Statisticians refer to this as a nonparametric
test because we are not comparing a sample set of data to a (known or unknown)

population. A case in which we compare a sample to a population would be known

as a parametric test because we refer to population values.

We can use Chi Square as a parametric test when we view the distributions as

representing populations. This is seen most clearly where we express both expected

and observed values as proportions, which can express population values. In the

movie choice example above, I showed how we can create frequencies from

expected probabilities or proportions. Treating the test as comparing sample pro-

portions to population proportions would be considered a parametric test.

There is a relationship between these uses of the data, however. Calculating a

Chi Square using proportions is equivalent to Chi Square calculated from frequen-

cies through the following:

x2
frequencies ¼ ðx2

proportionsÞ2 � N

In practice, we can treat the data as parametric and perform hypothesis tests as

we have with other statistical procedures. Most critical comparison tables for Chi

Square use raw score frequencies (as does the one in this book). It is important to

understand the difference between these two approaches and to understand that the

data can be expressed in different ways.

EFFECT SIZE—GOODNESS OF FIT

Effect size for Chi Square is very basic because we are using categorical data.

Essentially, we use measures of association to determine the impact of the relation-

ship among our variables. Association measures include the correlation measures

we used to show how changes in one variable were linked to changes in another.

In goodness of fit tests, we only have one variable with at least two categories.

While there are a number of effect size measures for Chi Square, especially for the

test of independence that I will discuss next, I will introduce the most common

measure called contingency coefficient here, symbolized by C. The formula for C is

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x2 þ N

s

The contingency coefficient is essentially a correlation measure for nominal

data. The Chi Square test compares observed and expected frequencies in an

attempt to understand if there is a statistically significant difference between the
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two. Contingency coefficient is a correlation measure of the overall association be-

tween the two study variables.

Although this is a measure of association, we cannot interpret it as we did with r2

(i.e., the proportion of variance in one variable explained by the other). Due to the

nature of the data, we must refer to a set of values as we have with other effect

size measures. Because C does not reach the maximum value of 1.00, the effect

size values for small, medium, and large vary with the conditions of the study (e.g.,

number of categories). Cohen’s (1988) suggestions are generally 0.10 (small), 0.30

(medium), and 0.50 (large), depending on the factors affecting C.
Using the fictitious data above, we can calculate C.

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x2 þ N

s
;

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9:80

9:80þ 160

r
;

C ¼ 0:24

Using the criteria above, we can suggest a small effect size for the fictitious

study.

CHI SQUARE TEST OF INDEPENDENCE

The goodness-of-fit test above is a very basic assessment of the difference among

categories of one variable. With the test of independence, we can add the categories

of a second variable that recognizes additional complexity of a study question and

thereby create a contingency analysis. With two variables, we can express the cate-

gory data in rows and columns.

Recall my earlier description of the test of independence as concerning whether

the values of the categories of one variable are in any way linked to the values of

the other variable’s categories. That is, do the cell frequencies of one variable influ-

ence the cell frequencies of the other?

We can use the same formula for Chi Square that we used with the goodness-of-

fit test:

x2 ¼
X ðf o � f eÞ2

f e

Two-Way Chi Square

Because we use contingency tables with rows and columns for the test of indepen-

dence, both of which may have multiple categories, the test is often referred to as
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the two-way Chi Square. Thus, if we added gender categories to the fictitious study

above, this would be a 2� 4 Chi Square since it would consist of two gender rows

and four movie choice columns.

Assumptions

In this test, we need to note a couple of assumptions. As we have noted with

other statistical procedures, the power of a test increases to the extent the

assumptions are met. For the Chi Square test of independence, we need to

address the following:

1. The categories of both variables should be independent of one another. This

sounds like a redundancy in a test of independence, but the idea here is that

the cases of the two variables are not related or structurally linked. If we add

gender to the fictitious study above, for example, we might be concerned if

many of the boys and girls were siblings. Siblings talk to one another and

may even share similar movie choices.

2. The Chi Square test of independence works best if there is no expected cell

frequency less than five. This small value tends to distort the value of the

calculation. We will discuss the Yates Correction Factor as a possible remedy

in a 2� 2 table, but one solution is to collapse adjacent cells to avoid the

problem. Of course, with sample sizes low enough to cause this problem, you

might consider restructuring the study or getting additional cases.

A FICTITIOUS EXAMPLE—TEST OF INDEPENDENCE

As I mentioned above, the test of independence can recognize additional complex-

ity. Let us assume the researcher was interested in gender effects as well as movie

choices among a group of school children. This would yield the contingency table

of frequencies shown in Table 17.3.

Creating Expected Frequencies

Please note that the data in Table 17.3 are observed frequencies. In order for us to

conduct a Chi Square analysis, we need to know the expected frequencies for each

TABLE 17.3 The Fictitious Test of Independence Observed Frequency Data

Movie A Movie B Movie C Movie D Totals (Mr)

Girls 20 18 22 35 95

Boys 36 12 12 5 65

Totals (Mc) 56 30 34 40 (Grand Total) GT¼ 160
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of the cells. In the absence of a priori expected frequencies, we can calculate them

from the following formula:

f e ¼
ðMrÞðMcÞ

GT

The language of this formula is quickly understood if you see that the M stands

for marginal total. Thus:

Mr is the marginal total for rows.

Mc is the marginal total for columns.

GT is the grand total.

Here is an example using the observed frequency cell for girls who choose

Movie A:

f e ¼
ðMrÞðMcÞ

GT
;

f e ¼
ð95Þð56Þ

160
;

f e ¼ 33:25

Therefore, the expected frequency for this cell (girls who choose Movie

A)¼ 33.25, which, as you can see, is different from the observed frequency of 20.

The reason we need to use this method is that there are different numbers of boys

(N¼ 65) and girls (N¼ 95) in the study. Also, the movie choices are uneven (i.e.,

56, 30, 34, 40). Because of the differences of category sizes in both variables, the
expected frequencies cannot be equal in all cells. If we had the same number of

boys and girls, and the number of movie choices were all the same, we could simply

divide the total (160) by the number of cells (8) to get the same expected frequency

(20) for all cells, as we did in the goodness-of-fit test. However, the unequal sizes

means that the weighting of each cell size is different.

We use the formula above to help us create appropriate cell sizes because we are

using the marginal totals. By multiplying the marginal totals associated with a given
cell and dividing by the grand total, we can get a more precise (weighted) expected
frequency for each cell.

Table 17.4 shows the expected frequencies calculated for each cell in parenthe-

ses. If you calculate these expected frequencies, they should total the marginal

totals just the same as the observed frequencies. All the expected frequencies

together should equal 160.

If you calculate the expected frequencies as I did for the table, you should

note that you actually would only have to calculate three of the row cells to

derive all the rest of the expected frequencies. Look at Table 17.4 to see how

this works. I highlighted the cell values to show that if you create these expected

frequencies only, all the other expected frequencies in the other cells can be

obtained by simply subtracting the sum of these calculated expected frequencies
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from the marginal total (Mr) of 95. Here is how we could calculate the expected

frequency for the last cell in the first row (girls who choose Movie D):

33:25þ 17:81þ 20:19 ¼ 71:25

Then,

95ðMrÞ � 71:25 ¼ 23:75

You can use the same logic with the column expected frequencies, but here it is

even simpler because there are only two cells per column. Thus, we calculate the

expected frequency for boys who choose Movie A:

56ðMcÞ � 33:25ðthe already calculated expected frequencyÞ ¼ 22:75

Degrees of Freedom for the Test of Independence

These calculations express the meaning of degrees of freedom. Only one of the girl

(row) cells cannot change its value when the other three row cells are known. Thus

all the row cells (4) are free to vary except for one. The same logic applies to col-

umn cells (movie choices). Because there are only two cell values making up each

column, one is free to change its value, but the other one is not because it must

equal a certain number to equal the marginal total for that column.

The degrees of freedom are therefore calculated as follows:

df ¼ ðrows� 1Þðk � 1Þ

In our study,

df ¼ ð2� 1Þð4� 1Þ ¼ 3

Table 17.5 shows the calculated Chi Square based on the formula we used above

in the goodness-of-fit test.

x2 ¼
X ðf o � f eÞ2

f e

As you can see, the calculated x2 for this study was 26.52. Our assumptions were

met because we did not have an expected frequency less than 5 and our study

TABLE 17.4 The Expected Frequencies for the Study

Movie A Movie B Movie C Movie D Totals (Mr)

Girls 20 (33.25) 18 (17.81) 22 (20.19) 35 (23.75) 95

Boys 36 (22.75) 12 (12.19) 12 (13.81) 5 (16.25) 65

Totals (Mc) 56 30 34 40 (Grand Total)

GT¼ 160
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description of subjects did not specify that the subjects were connected to each

other (i.e., dependent). We can therefore proceed to the hypothesis test to determine

whether the categories of the two variables show a pattern of connection or whether
we can conclude that the variable categories are independent (do not demonstrate a

connection of relationship).

Using the same hypothesis testing steps as with the goodness-of-fit test, we can

determine whether the calculated Chi Square of 26.52 falls into the exclusion region

of our comparison distribution.

1. Null Hypothesis: f o ¼ f e. (There is no difference between what we expect to

happen and what we observe to happen.)

2. Alternative Hypothesis: f o 6¼ f e. (There is a difference between what we

expect to see and what we actually see.)

3. Critical Value of Exclusion: df¼ 3 (see above for calculation).

x2
:05;3 ¼ 7:815

4. Calculated Chi Square

x2 ¼ 26:52

5. Decision: Because our calculated value (26.52) exceeds the critical value

(7.815), we conclude that there is a statistically significant difference among

the categories of girl’s and boy’s movie choices at the 0.05 level, p< 0.05.

6. Interpretation: The girls and boys in the study group chose movies in statisti-

cally different numbers. The specific interpretation of the direction of the find-

ings is shown in Table 17.6. As you can see, I presented the table with

percentages in the cells along with the frequency in the cell in parentheses.

I changed the nature of the table according to the protocol I noted above. That is,

the independent variable should be placed in columns, and the dependent variable

TABLE 17.5 The Calculated Chi Square for the Test of Independence

Girls Boys

Movie

A

Movie

B

Movie

C

Movie

D

Movie

A

Movie

B

Movie

C

Movie

D

f o 20 18 22 35 36 12 12 5

f e 33.25 17.81 20.19 23.75 22.75 12.19 13.81 16.25

f o � f e �13.25 0.19 1.81 11.25 13.25 �0.19 �1.81 �11.25

ðf o � f eÞ2 175.56 0.04 3.29 126.56 175.56 0.04 3.29 126.56

ðf o � f eÞ2
f e

5.28 0.00 0.16 5.33 7.72 0.00 0.24 7.79

x2¼ 26.52 (5.28þ 0.00þ 0.16þ 5.33þ 7.72þ 0.00þ 0.24þ 7.79¼ 26.52)
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should be placed in rows. This way, you can create column percentages (equaling
100%) and interpret across the rows of the dependent variable categories.

Using the table protocol allows you to frame the results in terms of independent

and dependent variables that might be featured in the research design. Thus, we

might interpret the findings as follows: Over twice the percentage of boys preferred

Movie A (55.38% to 21.05%), whereas over four times the percentage of girls pre-

ferred Movie D (36.84% to 7.69%).

I presented the table in this fashion (with IV categories in columns and DV

categories in rows) because it is more meaningful for interpretation. We will also

use it this way in SPSS1.

SPECIAL 2� 2 CHI SQUARE

There are special formulas for the 2� 2 Chi Square tests of independence that allow

you to calculate values directly from the frequencies in the contingency table rather

than calculate fe. Table 17.7 shows the layout of the 2� 2 table with the cells

labeled a through d for clarification. As you can see, the marginal totals simply add

the cells across the rows and down the columns.

I present the alternate formula (without a calculated example) for four reasons.

1. The 2� 2 table is fairly common in research, so you should be aware of alter-

nate means for hand calculations.

2. There are special effect size calculations for this design that form the basis for

effect size calculations that can be used with other types of tables.

3. The 2� 2 table illustrates the use of a correction process for tables with low

sample size.

4. This design is used with repeated measures studies, one of which I will

discuss below.

TABLE 17.6 The Percentages of the Study Data for Interpretation of Findings

Girls Boys

Movie A (20) 21.05% (36) 55.38%

Movie B (18) 18.95% (12) 18.46%

Movie C (22) 23.16% (12) 18.46%

Movie D (35) 36.84% (5) 7.69%

Totals (95) 100.00% (65) 100.00%

TABLE 17.7 The 2� 2 Chi Square
Contingency Table

a b aþ b

c d cþ d

aþ c bþ d N
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The Alternate 2� 2 Formula

The formula for the 2� 2 table, utilizing the cell identification letters (a through d,
as shown in Table 17.7), is as follows:

x2 ¼ Nðad � bcÞ2
ðaþ bÞðcþ bÞðaþ cÞðbþ dÞ

If you look closely at the formula, it generally expresses the ad to bc cell totals as
a proportion of all the marginal totals. Thus, as the differences grow between the ad
and bc axes, the Chi Square value increases.

To take an example of this special formula, consider Table 17.8, which is

adapted from Table 17.3. The data in the table are simply the boys and girls choices

between only the first two movie choices (Movie A and Movie B). Following the

convention shown in Table 17.7, I labeled each cell as a, b, c, or d.
If you calculate Chi Square using the special formula, you will find that the result

is the same had you used the general formula I introduced earlier in the chapter. The

following analyses compare the two approaches showing the same calculated Chi

Square result (with slight rounding differences).

x2 ¼ Nðad � bcÞ2
ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ ;

x2 ¼ 86ð240� 648Þ2
ð38Þð48Þð56Þð30Þ ;

x2 ¼ 14; 315; 902

3; 064; 320
;

x2 ¼ 4:67

Now, using the general formula on the same data to calculate Chi Square, con-

sider the data in Table 17.9. As you can see, the layout is similar to the general

formula examples I introduced in earlier sections.

Effect Size in 2� 2 Tables: Phi

In a 2� 2 table under the circumstances I described above, the perfect relationship

between the categories of two variables equals unity or a proportion of 1. These

TABLE 17.8 The Example Movie Choice Data in a 2� 2 Table

Movie A Movie B Totals (Mr)

Girls a¼ 20 b¼ 18 38

Boys c¼ 36 d¼ 12 48

Totals (Mc) 56 30 (Grand Total) GT¼ 86
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special properties allow the researcher to express the relationships among the values

in terms of a special effect size measure known as w (phi). Phi varies between

values of 0 and 1 and, when squared, can be expressed in terms of explained vari-

ance (i.e., the same as r2). Thus, w2 is the proportion of variance in one variable

explained by the other.

The formula for phi is very simple. As you can see, it is based on Chi Square and

can be calculated simply by dividing x2 by N and taking the square root of the result:

w ¼
ffiffiffiffiffi
x2

N

r

The same criteria for judging C apply also to phi. Cohen’s (1988) suggestions

are generally 0.10 (small), 0.30 (medium), and 0.50 (large).

Correction for 2� 2 Tables

Some researchers point out that it is important to correct 2� 2 tables, especially

those that have small sample sizes because they may not provide the best estimates.

The Yates Correction for Continuity formula allows the researcher to adjust the

calculations to make it more difficult to reject the null hypothesis and therefore pro-

vide a more conservative Chi Square result. Researchers are divided about whether

to use the correction at all because it may be too conservative. If you use Chi Square

with small samples, especially the special 2� 2 table, be aware of this issue and

investigate the use of the corrected formula. I present the formula here, but do not

provide a calculated example. (The example above from Table 17.8 is inappropriate

because the sample size is large.)

x2 ¼ N jad � bcj � N
2

� �2
ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ

TABLE 17.9 Using the General Chi Square Formula on the 2� 2 Table

Girls Boys

Movie A Movie B Movie A Movie B

Cell a b c d

f o 20 18 36 12

f e 24.74 13.26 31.26 16.74

f o � f e �4.74 4.74 4.74 �4.74

ðf o � f eÞ2 22.468 22.468 22.468 22.468

ðf o � f cÞ2
f e

0.908 1.694 0.719 1.342

x2 ¼ (0.908þ 1.694þ 0.719þ 1.342)¼ 4.663
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As you can see, this is simply the special Chi Square formula for a 2� 2 table

with the adjustment of subtracting N
2
from the jad � bcj difference before it is

squared. (Note that the N
2
adjustment is subtracted from the absolute value of the

ðac� bcÞ difference because this value can be a negative value.) In practical terms,

it adds one step to the overall set of steps in calculating Chi Square.

CRAMER’S V: EFFECT SIZE FOR THE CHI SQUARE
TEST OF INDEPENDENCE

I return now to the question of effect size for the Chi Square Test of Independence.

In earlier sections, I discussed C, the general effect size measure for Chi Square,

especially appropriate for the goodness-of-fit test, and w, the effect size measure

especially appropriate for the 2� 2 test of independence.

Tests of independence that are more complex than the 2� 2 table (i.e., that have

more than two rows and/or two categories) typically use another measure of effect

size, Cramer’s V. The w value calculated from the 2� 2 arrangement allows the

researcher to express effect size as ‘‘variance explained,’’ but we cannot do this

with larger tables.

Cramer’s V calculates effect size values that range between 0 and 1. Because it

takes into account tables with different numbers of rows and column categories, the

formula includes an adjustable feature.

Cramer’s V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2

Nðdfsmallest of r or cÞ

s

As you can see, the formula looks very much like the w formula except it is

modified by the number of rows and columns in the table. The following element

of the formula captures the shape of the table and uses it to modify the w formula:

dfsmallest of r or c

This value refers to the degrees of freedom calculation for the test of indepen-

dence that I introduced earlier:

df ¼ ðr � 1Þðk � 1Þ
Cramer’s V uses the smaller of either (r – 1) or (k – 1) in the formula. Thus, in

our fictitious example, we had a 2� 4 table. In this case, we would use (r� 1)

because it represented the smallest number (i.e., 2� 1 as opposed to 4� 1).

Cramer’s V calculation for our fictitious test of independence would therefore be

Cramer’s V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

26:52

160ð2� 1Þ ;
r

Cramer’s V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

26:52

160ð2� 1Þ ;
r

Cramer’s V ¼ 0:407
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The judgment for the magnitude of Cramer’s V does not always use the guide-

lines we discussed for the other effect size measures (0.10 for small, 0.30 for

medium, and 0.50 for large) that pertain to the other tests. This is because we must

take into account the adjustment to the formula caused by the shape of the table.

Once again, Cohen (1988) provides the adjusted set of guidelines. I refer you to

Cohen’s book for the complete set of figures.

In our example, because we had a 2� 4 table, we could use the same 0.1, 0.3,

and 0.5 guidelines for judging the effect size for Cramer’s V as we did for C. Larger
tables will have reduced magnitude effect size criteria that determine small,

medium, and large effects. For example, if our table had been a 3� 4, the effect

size criteria for a ‘large effect’ would be 0.354. In this event, if we had calculated

Chi Square to be the same 0.407, the effect size would have been determined to be

large instead of medium. As is it however, we can conclude that our fictitious study

using a 2� 4 table showed a medium effect size.

REPEATEDMEASURES CHI SQUARE

Recall that we made a distinction with other statistical procedures between those

that used independent samples and those that used dependent samples. In

Chapter 11, I identified dependent samples designs as those in which one group is

somehow linked structurally to the other. Thus, in experimental designs, a group

measured twice (e.g., pretest and posttest) would need to be treated differently than

other group measures because the same group of subjects would be measured twice.
If the T test was used to detect a difference between two dependent samples in an

experiment for example (i.e., pre–post, Time 1–Time 2, Matched samples), we

would need to use a special T test that factored out the relatedness so the T test

could see what the unique differences remained between the two samples. The

same thing would be true for ANOVA procedures that measured the same group

twice in a design.

You may recall that we referred to these kinds of measures in several ways:

� Repeated-measures tests

� Dependent-samples tests

� Paired-samples tests

� Within-subjects tests

I will talk about these dependent measures (especially dependent T and within

subjects ANOVA) in a subsequent chapter because it is so important to research.

Chi Square also has a special ‘within subjects’ design that I will mention here to

give you an idea of what repeated measures are and how Chi Square can be used

experimentally.

Recall that an experiment introduces a treatment (i.e., manipulation of the inde-

pendent variable) and then takes a measure of the outcome (dependent) variable to
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observe the effect of the treatment. Chi Square can be used with categorical data in

these experimental designs. Look at Figure 11.2 to see the general design

specification.

A number of years ago, a colleague and I published an article (Trzyna and

Abbott, 1991) in which we reported a (dependent sample) Chi Square test with data

we gathered from one of our courses. We were attempting to see what effect a col-

lege course on ethnic literature might have on grieving behavior. Using a series of

protocols, we classified students as either grieving or not grieving at the beginning

and end of the course (actually, we used data from several courses). Table 17.10

show the table of data we used for the Chi Square analysis.2

With this type of design, we measured the same students at different times

(beginning and end of class). Therefore, we had to use a special dependent

measures Chi Square test called the McNemar test. As you can see from the

table, I labeled the cells a through d. There was one student (the upper left

cell labeled a) grieving at the beginning of the class but not at the end. By

contrast, there were 17 students not grieving at the beginning but grieving at

the end of class (shown in cell d). The formula and example solution for this

special test is

x2
McNemar ¼

ða� dÞ2
aþ d

x2
McNemar ¼

ð1� 17Þ2
1þ 17

x2
McNemar ¼ 14:22

In our study, we therefore rejected the null hypothesis since 14.22 exceeded the

exclusion value ðx2
0:5;1 ¼ 3:84Þ. The treatment (class) had an effect on the students

such that significantly more of the students were grieving at the end of class. The w
of 0.73 for this study indicated a large effect size. Phi Squared indicated that over

53% of the results of the grieving outcome were explained by categorizing the

values of the intervention in this way (w2¼ 0.732¼ 0.533).

TABLE 17.10 The Dependent Samples Chi Square
for the Grieving Study

Post

Not Grieving Grieving

Pre
Grieving a¼ 1 b¼ 9

Not Grieving c¼ 0 d¼ 17

2 This adapted table is used by permission of College Literature, West Chester University, 210 E.

Rosedale Avenue, West Chester, PA 19382.
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Repeated Measures Chi Square Table

As you can see, the focus in the cells is the change from cell a to cell d. That is, we
want to determine the difference between how many students had the condition
before but not after and the number of students who did not have the condition at
the beginning but did afterward. If the null hypothesis is accurate, these two cells

should be relatively equal. If the treatment had an effect, these two cells would

show differences. (If the class results in grieving, then cell d would be much larger

than cell a.) The formula essentially compares the differences between the two cells

as a proportion of the total frequency of the two cells.

The McNemar formula will change depending on how you create the table. Just
remember that the two critical cells are the ones I identified above. Here is an exam-

ple of changing the table and how the formula would change. If you changed the

position of the Post conditions as shown in Table 17.11, the formula would change

to recognize the important two cells.

If you set the table up this way, the two critical cells are now b and c because you
need to detect the difference between students who had the condition before but not

after (cell b) compared to the number of students who did not have the condition at

the beginning but did afterward (cell c). As you can see, we get the same calculated

value (14.22), but you must be careful to set the table up to reflect these differences.

x2
McNemar ¼

ðb� cÞ2
bþ c

;

x2
McNemar ¼

ð1� 17Þ2
1þ 17

;

x2
McNemar ¼ 14:22

USING EXCEL1 AND SPSS1 WITH CHI SQUARE

Both Excel1 and SPSS1 will assist with Chi Square analyses, although SPSS1 pro-

vides a more thorough summary of findings and is easier to use. I will demonstrate

both programs using a sample of the TAGLIT data. In Chapter 14, we discussed

correlation and the process for assessing the relationship between two interval level

variables. We also discussed Spearman’s rho as a way to calculate a correlation with

ordinal data. If you recall, I used a TAGLIT variable ($ earmarked for technology)

that was extremely skewed and therefore not suitable for a Pearson’s r correlation.

TABLE 17.11 Changing the Dependent Samples Chi
Square Categories

Post

Grieving Not Grieving

Pre
Grieving a¼ 9 b¼ 1

Not Grieving c¼ 17 d¼ 0
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I will return to this TAGLIT variable and similar variables that measure funding

levels because they represent data that are too skewed for use in interval data proce-

dures. This will show the versatility of Chi Square in managing any level of data

that do not meet the assumptions of other (interval level) statistical procedures.

This example uses two TAGLIT variables that deal with funding levels.

Table 17.12 shows the two variables and the coding of those variables for Chi

Square analysis.

As you see in Table 17.12, I coded the two funding variables as 0 or 1, depend-

ing on whether any technology funding at all was earmarked or spent on profes-

sional development. The reason I recoded the variables is that both deal with

funding and such variables are almost always skewed. Figures 17.2 and 17.3 show

the histograms that confirm the extreme skew in both variables.

As I have mentioned in past chapters, there are ways of transforming variables

that do not meet the assumptions for statistical procedures like these. The two

TABLE 17.12 Coding the Variables for the Chi Square Example

TAGLIT Variable Coded TAGLIT Variable

School funding (in $) that schools chose to

earmark for technology.

Earmark (0 if no funding was earmarked; 1 if

any funding was earmarked for technology.)

Technology funding (in $) spent this year at

the school for professional development.

PDexp (0 if no funding was spent on PD; 1 if

any funding was spent on PD.)

FIGURE 17.2 The ‘‘Earmarked Funds’’ variable with extreme positive skew.
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variables I am using here could be transformed to meet the assumptions for the

Pearson’s r procedures, but there are many reasons why I might choose not to use

transformations. Among these is that transforming variables sometimes creates dif-

ficulties for interpretation. For example, I might make a log transformation by using

the logarithm of the values, or a related process that would force the data into a

normal distribution, but it may be difficult to explain to a reader what this means!

Another reason for my using data as I have proposed it is that I am interested in a

question of difference rather than association. By using Chi Square, I am interested

to know how cases in one category of the independent variable compare on catego-

ries of the dependent variable. That is, how do the cases differ on the categories of

comparison? Correlation measures association and therefore asks a different ques-

tion. We end up using measures of association for effect size indications, but the

primary Chi Square procedure is a procedure of difference.

I am recoding the study variables into categorical values for this example in

order to show the versatility of Chi Square. This method is not without controversy,

however, because someone might argue that creating categories does not use all the

data sufficiently, and so on. These are not natural categories; rather I am creating

them as categories based on (severely skewed) interval values. I defend this use of

the data especially as a way to explore what differences might exist among the cate-

gories as created.

Table 17.13 shows the frequency data from the sample (N¼ 200) placed in the

appropriate cells. Each cell includes a frequency of schools that indicate whether

funding was earmarked or expended for PD. You can calculate this by hand

FIGURE 17.3 The ‘‘$ Expended on PD’’ variable with extreme positive skew.
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according to the method I described earlier (Chi Square Test of Independence).

Because this is a 2� 2 table, you can use the special formula to calculate x2 if you
do not want to calculate expected frequencies. The hand-calculated answer is

x2¼ 16.87, p< 0.05 (because x2
0:5;1 ¼ 3:841).

USING EXCEL1 FOR CHI SQUARE ANALYSES

You can obtain the results from the Chi Square test of significance in Excel1 once
you have created the contingency table from the database. If you have a large data-

base, this is cumbersome, but you can use the Count function to help create the table

of values (as in Table 17.13).

Sort the Database

It helps to sort the two variables before you begin so that you can easily iden-

tify when both values are 0, when Earmark is 1 and PDexp is 0, and so forth.

Using this method, you can reproduce the values in Table 17.13. Figure 17.4

shows a truncated Excel1 database I used to create the frequency table. I only

TABLE 17.13 The Chi Square Table of Values

Earmark$—No Earmark$—Yes Totals (Mr)

PD Expenditure—No 53 61 114

PD Expenditure—Yes 16 70 86

Totals (Mc) 69 131 (Grand Total) GT¼ 200

PDexp Earmark 

0 0

0 0

0 0

0 1

0 1

0 1

1 0

1 0

1 0

1 1

1 1

1 1

FIGURE 17.4 The truncated database for the Chi Square example.
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listed 12 of the 200 cases to show how I coded the data. As you can see, if a

school indicated they earmarked 0$ for technology, I coded the school ‘‘0’’ and

likewise for PDexp. If the school earmarked ANY funds for technology,

I coded the school ‘‘1’’ and likewise for PDexp.

The Excel1 Count Function

Once you have coded and sorted the two variables, use the ‘Formulas–Statistical–

Count’ selection from the menus, which will open the specification window

shown in Figure 17.5. As you can see, I used this function to create the cell

count for ‘Earmark-0, PDexp-0.’ This function simply reports the n size within

the cells identified in the function. In the truncated database in Figure 17.4,

this would represent the first three cases. As you can see in Figure 17.4, this

represents 53 cases.

The Excel1 CHITEST Function

When the contingency table cells are counted, you can use the Chi Test function to

obtain results for the test of independence. Because this does not use the special

(2� 2) formula, you must calculate the expected frequencies in a separate table so

Excel1 can compare observed and expected frequencies.

Figure 17.6 shows the ‘‘CHITEST’’ function that you can obtain through the

‘‘Formulas–Statistical–CHITEST’’ menus. As you can see, I identified the cells for

actual and expected frequencies from my spreadsheet. The CHITEST function

immediately returns the results for the Chi Square test immediately below the cell

FIGURE 17.5 The Excel1 Count function for summarizing data to use in Chi Square

analyses.
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range windows. In this case, Excel1 returned the value 3.85457E-05, indicating

that the Chi Square test of independence was statistically significant at the

p¼ 0.00004 level. Thus, the calculated Chi Square value fell far into the exclusion

values of the Chi Square distribution, indicating a likely non-chance finding.

The Excel1 CHIDIST Function

Note that Excel1 does not return the actual, calculated x2 (16.87), nor any indica-

tion of effect size. This makes it difficult to report effect size! You can use another

Excel1 function, CHIDIST, to return the probability of the finding according to

the Chi Square distribution if you have already calculated x2. Use the Formulas–

Statistical–CHIDIST menus to create the window shown in Figure 17.7.

As you can see, I simply placed the value of 16.87 in the X window and specified

1 for Deg_Freedom because our table is a 2� 2. The function immediately returns

the same probability value (or virtually equal since we didn’t have the calculated

FIGURE 17.6 The CHITEST function in Excel1 for Chi Square analysis.

FIGURE 17.7 The Excel1 CHIDIST function to identify the Chi Square probability.
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value from Excel1, but rather used a rounded result from hand calculations) as we

obtained with CHITEST.

USING SPSS1 FOR THE CHI SQUARE TEST OF INDEPENDENCE

You can use the Crosstabs command in SPSS1 to create a Chi Square analysis. I

will demonstrate the procedure with the same data I used in the Excel1 example,

and then I will show an alternate procedure that is best when you input the data

table directly into SPSS1.

The Crosstabs Procedure

SPSS1 prepares a contingency table with the data you specify and provides a range

of analyses. Starting with the database in which we code the variables as we did

with Excel1 above, we can choose the Crosstabs procedure through the main menu

choices: Analyze–Descriptive–Crosstabs. Figure 17.8 shows the Crosstabs menu

that results from this choice.

As you can see in Figure 17.8, I called for the column variable (Earmark) to be

the independent variable and the row variable (PDexp) to be the dependent variable

for this analysis according to the protocol I discussed above. This specification will

result in a table similar to the one in Table 17.13.

The Statistics . . . button shown in Figure 17.8 allows the researcher to choose

which statistical analyses are desired. Figure 17.9 shows this window in which I call

FIGURE 17.8 The SPSS1 Crosstabs specification window.
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for the overall Chi Square statistics and a series of measures for nominal data: C, w,
and Cramer’s V.

You also need to choose the Cells . . . button (just under the Statistics... button).

In this menu, you can choose how the percentages are created, among other things.

Figure 17.10 shows this menu choice in which I called for column percentages

given the protocol I discussed above. I also requested expected frequencies so I

could report them in a summary table.

This series of choices results in SPSS1 output showing the Chi Square analyses

needed for significance tests and effect sizes. I will show the relevant tables next.

Figure 17.11 is the contingency table showing observed and expected frequencies

and column percentages.

As you can see, Figure 17.11 looks like the contingency table shown in

Table 17.12. Figure 17.11 provides the percentages we will need to interpret the

results once we have tested the results for statistical significance. Figure 17.12

shows the Chi Square Test results from SPSS1.

As you can see in Figure 17.12, the Pearson Chi-Square analysis shows a statisti-

cally significant Chi Square result (x2¼ 16.87, p< 0.0001). This is the same result

we saw earlier from the Excel1 analyses. There are several other tests appropriate

FIGURE 17.9 The Crosstabs: Statistics menu in SPSS1.
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FIGURE 17.10 The SPSS1 Crosstabs: Cell Display menu.

PDexp * Earmark Crosstabulation

Earmark

0.00 1.00
Total 

Count 53 61 114

Expected count 39.3 74.7 114.0

.00

% within Earmark 76.8% 46.6% 57.0%

Count 16 70 86

Expected count 29.7 56.3 86.0

PDexp 

1.00

% within Earmark 23.2% 53.4% 43.0%

Count 69 131 200

Expected count 69.0 131.0 200.0

Total 

% within Earmark 100.0% 100.0% 100.0%

FIGURE 17.11 The SPSS1 crosstabs contingency table.



for Chi Square analyses that we will not cover in this book. I will only point out that

the Yates Continuity Correction Factor is shown as Continuity Correction¼ 15.66,

(p< 0.000). While I do not advocate the use of this result, you can note that the

value, which is only created for the 2� 2 table, is less than the Chi Square value

because it is a more conservative estimate. In any case, this value is also statistically

significant.

Effect sizes are shown in Figure 17.13. As you recall, I specified these in the

Crosstabs procedure. Because this is a 2� 2 table, we can use w which indicates a

value of 0.29. According to our guidelines, this is (nearly) a medium effect size

according to the Table 17.9. If we square w, we can interpret the value as the

percent of variance in PDexp accounted for by Earmark. Thus, about 8.4% of the

variance in PDexp is accounted for by Earmark (w2¼ 0.292¼ 0.084).

Analyzing the Contingency Table Data Directly

Another method of using SPSS1 to calculate Chi Square is to create the summary

table directly into the SPSS1 spreadsheet rather than using the Crosstabs menus

Chi-Square Tests

Value df

Asymptotic

Significance

(Two-Sided)

Exact

Significance

(Two-Sided) 

Exact

Significance

(One-Sided) 

Pearson Chi-Square 16.870
a

1 0.000

Continuity correction
b

15.658 1 0.000

Likelihood ratio 17.607 1 0.000

Fisher's exact test 0.000 0.000

Linear-by-Linear association 16.785 1 0.000

N of valid cases 200

a
0 cells (0.0%) have expected count less than 5. The minimum expected count is 29.67. 

b
Computed only for a 2 × 2 table. 

FIGURE 17.12 The SPSS1 Chi square significance test output.

Symmetric Measures

Value
Approximate

Significance

Phi 0.290 0.000

Cramer's V 0.290 0.000

Nominal by Nominal 

Contingency Coefficient 0.279 0.000

N of Valid Cases 200

FIGURE 17.13 The SPSS1 effect size measures.
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with raw data as we did above. We will still end up using Crosstabs, but this alter-

nate procedure allows you to simplify the data file prior to conducting the analyses

by using a weight cases specification. Figure 17.14 shows the spreadsheet that we

can create directly into SPSS1.

As you can see, the contingency table cells are identified by 1s and 0s and

the observed frequencies are placed in a separate variable that I have called

‘‘Number.’’ This arrangement simply identifies that, for example, 53 schools

show no Earmark funds and no PDexp funds. The table shows that 61 schools

had Earmark funds but no PDexp funds. The remaining two cells can be identi-

fied in this fashion.

Once in this format, you can choose the Data–Weight Cases menu, which will

return the window shown in Figure 17.15. This calls for SPSS1 to consider 53 lines

of data with Earmark¼ 0 and PDexp¼ 0, and so forth. This is simply a shortcut

method to avoid entering all 200 lines of data. As you can see, I called for the pro-

gram to use the Number variable as a way to virtually recreate the raw score data file.

FIGURE 17.14 The SPSS1 Chi Square data table.

FIGURE 17.15 The SPSS1 weight cases specification window.
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Once you make this choice, you can use the Crosstabs menus to create the same

Chi Square output that I described above. This method is much easier if you have a

large sample of data to input.

Interpreting the Contingency Table

As I mentioned above, you need to interpret the analyses from the percentages in

the contingency table once you have established a statistically significant finding. If

you look at Figure 17.11, you will see that I followed the protocol of using the

columns to create percentages that equal 100% so that we can interpret across rows

of the dependent variable. In this case, we can point out that over twice the percent-

age of schools with Earmark funds designate PDexp funds compared to schools that

do not have Earmark funds (53.4% to 23.2%). Alternatively, we can say that when

schools do not show Earmark funds, they are much less likely to designate PDexp

funds (76.8% to 46.6%).

The independent and dependent variables in this Chi Square analysis may be

difficult to determine. As I have designated them, however, we can point out that

when schools do not Earmark funds for technology, they typically do not spend

technology funds for professional development. In this formulation, the PD expen-

diture appears to reflect the importance placed on technology signaled by earmark-

ing funds for technology.

TERMS AND CONCEPTS

Chi Square Test of Independence Chi Square analyses involving frequencies

from more than one study variable.

Contingency Coefficient An effect size measure for Chi Square analyses. This

measure is essentially a correlation with nominal data and is used to show the

strength of association among study variables.

Contingency Table Presentation of data in rows and columns to show how data

in rows are contingent upon or connected to the data in column cells. Also called

Crosstabs or Cross-tabulation analysis.

Cramer’s V An effect size measure for the Chi Square Test of Independence with

tables that exceed the 2� 2 arrangement (i.e., that have more than two rows and/

or categories).

Goodness of Fit Chi Square analyses that compare actual frequency data to

expected data distributions.

McNemar Test A special Chi Square test used with repeated measures designs.

Phi Coefficient An effect size measure based upon Chi Square and typically used

in studies with 2� 2 tables. When Phi is squared, it expresses the proportion of

variance in one variable explained by the other.

Yates Correction for Continuity A method for adjusting 2� 2 Chi Square table

data that have small sample sizes or small expected cell frequencies.
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REAL-WORLD LAB XIII: CHI SQUARE

The Lab for Chi Square is from a small study I conducted a number of years ago in

a subsidized housing development. The residents of this housing district were all

low income, and there was a significant amount of crime prior to an intervention in

which services were increased to residents and a new community policing model

was established. This sample of residents (N¼ 140) answered a questionnaire that

assessed, among other things, their fear of crime and whether they had been the

victim of a crime. The survey was conducted after the intervention had taken place,

so crime levels were decreasing.

The two variables in the analysis are:

� Victim—Whether respondents indicated they had been the victim of a crime.

� FEARHILO—Assessment of whether their fear of crime was high or low.

Conduct a Chi Square analysis on the data in Table 17.13 and summarize your

findings.

REAL-WORLD LAB XIII: SOLUTIONS

Because this data table represents the special 2� 2 Chi Square table, we can use the

alternate formula for hand calculations. Once we do this, I will use Excel1 and

SPSS1 to perform the test of independence.

Hand Calculations

The following are the hand calculations for the data in Table 17.13 using the alter-

nate formula.

x2 ¼ Nðad � bcÞ2
ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ ;

x2 ¼ 140ð1872� 660Þ2
ð81Þð59Þð68Þð72Þ ;

x2 ¼ 8:79

TABLE 17.13 The Lab XIII Survey Data

Victim?

Fear No Yes

Low 48 33

High 20 39
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We can now compare our actual x2 (8.79) to the tabled value x2
0:05;1 ¼ 3:841. We

can reject the null hypothesis (p< 0.05) and conclude that there is a statistically

significant difference between the categories of Victim and FEARHILO.

The effect size is w for this table, calculated as follows:

w ¼
ffiffiffiffiffiffiffi
x2

N
;

r

w ¼
ffiffiffiffiffiffiffiffiffiffiffi
8:79

140
;

r

w ¼ 0:25

The effect size is small to medium and indicates that we can explain about 6% of

the variance in one variable as a result of the other.

Using Excel1 for Chi Square Analyses

As I demonstrated earlier in the chapter, you can use Excel1 to perform the test of

independence by using the CHIDIST function as shown in Figure 17.16. As you can

see, this function returns the value of p¼ 0.003, indicating a very small probability

of concluding a chance finding with these data.

Alternatively, you can use the CHITEST function by calculating the expected

frequencies so that you can enter them from the spreadsheet into the CHITEST

function menu. Table 17.14 shows the contingency table with the expected frequen-

cies in separate cells. You need to create the table in this fashion so that you can

easily use the CHITEST function. Figure 17.17 shows the CHITEST function with

the observed and expected frequencies placed in the appropriate windows (Actual_

range and Expected_range, respectively).

FIGURE 17.16 The Excel1 CHIDIST results for the test of independence.
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Figure 17.17 shows the results of the test of independence just below the ob-

served and expected windows. As you can see, p is 0.003 (which is the same value

as shown in Figure 17.16 with different rounding of values).

Using SPSS1 for Chi Square Solutions

Figure 17.18 shows the SPSS1 spreadsheet with the variable specification for the

Chi Square analysis. Once you create the data in this fashion, you can weight the

cases by the Number variable, which will allow you to use the crosstabs menu to

complete the analysis.

Figure 17.19 shows the results of the Chi Square analysis. As you can see,

x2¼ 8.79 and p¼ 0.003. Both of these findings confirm our hand calculations and

Excel1 analyses.

Figure 17.20 shows the effect size calculations. Recall that we can use Phi for

this 2� 2 table. The calculated w¼ .25, which is the same value we calculated by

hand above.

FIGURE 17.17 The Excel1 CHITEST function with observed and expected frequencies

identified.

TABLE 17.14 The Contingency Table with Expected Frequencies

Fear No Yes

Victim? (Observed)

Low 48 33

High 20 39

Victim? (Expected)

Low 39.3 41.7

High 28.7 30.3
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FIGURE 17.18 The SPSS1 variables used for the Chi Square analysis.

Chi-Square Tests

Value df

Asymptotic

Significance

(Two-Sided)

Exact

Significance

(Two-Sided)

Exact

Significance

(One-Sided)

Pearson Chi-Square 8.789
a

1 0.003

Continuity correction
b

7.803 1 0.005

Likelihood ratio 8.909 1 0.003

Fisher's exact test 0.004 0.002

Linear-by-linear association 8.727 1 0.003

N of valid cases 140

a
0 cells (0.0%) have expected count less than 5. The minimum expected count is 28.66. 

b
Computed only for a 2 × 2 table. 

FIGURE 17.19 The SPSS1 Chi Square findings.

Symmetric Measures

Value

Approximate

Significance 

Phi 0.251 0.003

Cramer's V 0.251 0.003

Nominal by nominal 

Contingency Coefficient 0.243 0.003

N of valid cases 140

FIGURE 17.20 The SPSS1 Effect size findings.
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We can use the next part of the output for interpretation. Figure 17.21 shows the

Crosstabs output for the contingency table according to the layout of our data.

I called for column percentages in order to use the protocol of placing the predictor

variable in columns and the outcome variable in rows.

As you can see from Figure 17.21, when the respondents have been victims of a

crime, they are much more likely to have a high fear of crime. Over 54% of victims

have a fear of crime compared to 29.4% of those not victimized. This difference in

fear persists even when crime is on the decline as it was in our study.

FEARHILO * Victim Crosstabulation

Victim

NO Yes 
Total 

Count 48 33 81Low 

Percent within victim 

Percent within victim 

70.6% 45.8% 57.9%

Count 20 39 59

FEARHILO 

Hi

29.4% 54.2% 42.1%

Count 68 72 140Total 

100.0% 100.0% 100.0%

FIGURE 17.21 The SPSS1 contingency table output for the crosstabs analysis.
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18
REPEATEDMEASURES PROCEDURES:
Tdep AND ANOVAws

I have mentioned several times in this book that the researcher needs to consider a

statistical procedure carefully before using it. The greatest power and confidence

relies on using the correct statistical procedure with the available data according to

the appropriate research design.

In this chapter, I am going to return to two statistical procedures that statisticians

have adapted for use with ‘‘repeated measures’’ data. We discussed the independent

T test (Chapter 11) and the general ANOVA procedure (Chapter 13), which were

both designed for independent samples. While there are other such procedures, the

dependent T test and the within-subjects ANOVA represent very important proce-

dures that researchers can use in experimental and post facto situations in which the

data are linked in some way.

Recall that I made a distinction between statistical procedures that used indepen-

dent samples and those that used dependent samples. In Chapter 11, I identified

dependent samples designs as those in which one group is somehow linked structur-

ally to the other. Thus, in experimental designs, a group measured twice (e.g., pre-

test and post-test) would need to be treated differently than other group measures

because the same group of subjects would be measured twice.
If the T test was used to detect a difference between two dependent samples in an

experiment for example (i.e., pre–post, Time 1–Time 2, matched samples), we

would need to use a special T test that factored out the relatedness so the T test

could see what the unique differences remained between the two samples. The

same thing would be true for ANOVA procedures that measured the same group

twice in a design.

Understanding Educational Statistics Using Microsoft Excel1 and SPSS1. By Martin Lee Abbott.
# 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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As I noted in Chapter 17, in which I discussed the dependent samples Chi Square

(McNemar Test), these kinds of measures have several names:

� Repeated-measures tests

� Dependent-samples tests

� Paired-samples tests

� Within-subjects tests

INDEPENDENT AND DEPENDENT SAMPLES IN RESEARCH DESIGNS

Independent and dependent sample data can be used in both experimental and post
facto designs. Dependent samples are most commonly encountered in experimental

or quasi-experimental designs in which a sample group is given a pretest and then

administered a post-test after some intervention. It is used in some post facto
research to measure a group on some attitude measure at different times.

Table 18.1 shows several possibilities for independent and dependent samples in

research and post facto designs. This table highlights the dependent T test because

there are only two groups. A similar table could be created for three or more groups

that would emphasize the within-subjects ANOVA.

TABLE 18.1 Independent and Dependent Samples in Experimental and Post Facto
Designs

Experimental Designs Post Facto Designs

Two Independent

Samples

(Between

Subjects)

Tind comparing post-test

differences of two groups of

different subjects after an
intervention

Tind comparing existing data on

two groups of different
members

Example: Do the potential for
violence (PFV) measures differ
between two randomly chosen
groups after one group watches
the movie, ‘Swimming in Gore’?

Example: Do the PFV measures
differ between a group of
postal workers and a group of
‘‘save the puppies’’
advocates?

Two Dependent

Samples

(Within

Subjects)

Tdep comparing Pre–Post

differences or Time 1–Time2

differences of the same group of
subjects after an intervention

Tdep test comparing matched
group differences on an
existing measure or outcome

Example: Is the post-test PFV
score higher than the pretest
PFV scores of one group that
watches ‘‘Swimming in Gore’’?

Example: Do the PFV scores
differ between two classes
(one in the urban core and one
in the suburbs) of fourth-grade
students matched on academic
achievement?
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As I noted in Chapter 11, independent samples means that choosing subjects

for one group has nothing to do with choosing subjects for the other group.

Thus, if I randomly select Bob and assign him randomly to group 1 (the exper-

imental group that watches ‘‘Swimming in Gore’’), it has nothing to do with

the fact that I choose Sally and assign her randomly to group 2 (the group

that does not see ‘Swimming in Gore’). The random selection of these group

members is a very important assumption because it ensures the researcher

that there are no built-in linkages between the groups’ post-test scores. The

power of randomization will result in the comparability of two groups chosen

in this way.

Dependent samples consist of groups of subjects that have some structured link-

age, like using the same people twice in a study. For example, I might use pretest

PFV scores from both Bob and Sally and compare these scores with their own post-
test PFV scores. Using dependent samples affects the ability of the randomness

process to create comparable samples; in such cases, the researcher is assessing

individual change (before-to-after measures) in the context of the experiment that is

assessing group change.

Dependent samples also include matched samples, a situation in which we pur-

posely choose people to be in two groups to be compared rather than choosing and

assigning subjects randomly. For example, we might be concerned about gender for

a given study and purposely assign equal numbers of men and women to two

groups. In this case, the randomness criterion is violated in order to assure the re-

searcher that the resulting groups have matching characteristics on a crucial study

influence. This is typically the case where the researcher cannot control the condi-

tions for random selection and assignment.

USING DIFFERENT T TESTS

When researchers use dependent samples, they need to use an independent T test

that has been adjusted for the influence of the relatedness of the samples. This ad-

justed test is called a dependent samples T test. Other names for this test are: re-

peated measures T test, within subjects T test, and paired samples T test. Both

Excel1 and SPSS1 refer to these as paired sample T tests.

There are two ways to calculate the dependent T test (Tdep). I will introduce both
approaches in this chapter, but we will focus primarily on interpreting the Excel1

and SPSS1 procedures rather than the hand calculations.

THE DEPENDENT T-TEST CALCULATION: THE LONG FORMULA

The long formula for Tdep looks intimidating, but it makes conceptual sense. It is

essentially the same as the formula for Tind except that we must adjust the estimated

standard error of difference sD to account for the relatedness in the samples.
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As you will recall from Chapter 11, these are the Tind formulas:

t ¼ ðM1 �M2Þ � mM1�M2

sD
;

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m1

þ s2m2

q

The formulas for Tdep are the same except for the estimated standard error of the

difference using the adjusted formula below (sDr
).

tdep ¼ ðM1 �M2Þ � mM1�M2

sDr

The Tdep formula thus becomes

tdep ¼ ðM1 �M2Þ
sDr

Here is the formula for the adjusted standard error of difference:

sDr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2M1

þ s2M2
� ½2rðsM1

ÞðsM2
Þ �

q

As you can see, the only difference is that there is a second component included

that is subtracted out of the sD in the Tind formula. I shaded this portion in the for-

mula. Recall that I said that dependent samples are related (correlated) to one an-

other and that the dependent T test must subtract out this relatedness.

If you look at the Tdep formula, the shaded portion that measures this relatedness

is subtracted out of the formula. The shaded portion includes r, the Pearson’s corre-
lation coefficient. If the two sample groups are related (correlated), this r value will
modify the measures that are used to calculate the Tdep ratio. However, if you have

two independent samples, they will not be related, r will equal 0, and the shaded

portion will therefore also equal 0. When this is the case, the sDr
will be equivalent

to sD.

Example

I will use an example to show these calculations briefly. Recall the formulas we

used to create the Tind which we will use to create the Tdep values.

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X2 �

P
Xð Þ2

N

N � 1

vuut
; sD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m1

þ s2m2

q
; sm1

¼ s1ffiffiffiffiffi
n1

p ; sm2
¼ s2ffiffiffiffiffi

n2
p
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The SS formulas can also be used since SS is part of the sx calculation:

sx ¼
ffiffiffiffiffiffi
SS

df

r
or sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X2 �

P
Xð Þ2

N

N � 1

vuut

The data for this exercise are fictitious. The values represent the number of math

errors committed by students before (Time 1) and after (Time 2) a constructivist

math course in high school. Because the same students took the assessment at two

different times, we will use the Tdep to see if the intervention (math course) was

effective.

Table 18.2 shows the data in columns. Because of space limitations, I created

two columns each for Time1 and Time2. Use the formulas above to calculate the

Paired T ratio.

Table 18.3 shows the relevant calculations for this problem. Confirm the sum-

mary calculations and then use them to conduct a Tdep test.

TABLE 18.2 The Study Data

Time1 Time2 Time1 Time2

11 6.0 41 35.0

4 2.0 62 47.0

11 11.0 29 29.0

18 9.0 55 50.0

30 23.0 46 49.0

7 12.0 39 38.0

12 10.0 41 40.0

42 42.0 45 46.0

32 20.0 49 58.0

17 5.0 41 35.0

24 24.0 54 56.0

46 37.0 50 53.0

26 28.0 52 58.0

28 31.0 50 49.0

44 39.0 56 57.0

44 30.0 62 60.0

38 38.0 57 39.0

45 39.0 54 48.0

35 34.0 79 70.0

45 36.0 64 62.0

39 31.0 47 41.0

40 37.0 64 50.0

48 40.0
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Results

tdep ¼ ðM1 �M2Þ
sDr

;

tdep ¼ 40:51� 36:76ð Þ
0:888

tdep ¼ 4:223

;

The Paired T ratio for this study is 4.223. When we compare this to the

tabled value of T to determine whether it is a significant ratio, we use df ¼
N� 1, where N is the number of pairs of data. Therefore Tdep.05,44¼ 2.021.

Therefore, since our calculated Tdep¼ 4.223, we can reject the null hypothesis

(p< 0.05). The difference between Time1 and Time2 is statistically different.

The students committed fewer math errors in Time2 suggesting that the math

course was successful.

Effect Size

We can use the same effect size formula for the Tdep as we did for the single-sample

T test (in Chapter 10). The difference is that N is the number of pairs of data.

Using 0.2, 0.5, and 0.8 as the criteria for small, medium, and large, as we did in

Chapter 10, we can judge our calculated effect size for this finding (d¼ 0.63) as a

medium effect.

d ¼ Tdepffiffiffiffi
N

p ;

d ¼ 4:223ffiffiffiffiffi
45

p ;

d ¼ 0:63

TABLE 18.3 The Calculated Elements of the Study Data

Time1 Time2

Means 40.51 36.76

SS 12,291.244 12,102.311

sx 16.714 16.585

sm 2.492 2.472

sD 3.51

r 0.936

sDr
0.888
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THE DEPENDENT T-TEST CALCULATION: THE DIFFERENCE
FORMULA

There is another way of hand calculating paired data that is shorter and follows a

procedure you have already learned. As you recall from Chapter 10, we discussed

the process for calculating the single sample T ratio. The formulas we used were

t ¼ M � m

sm
; sm ¼ sxffiffiffiffi

N
p

We can use this method to calculate a T ratio for paired data by subtracting
values in one set of scores from paired values in the other set of scores to yield a
single set of Difference scores. Once you have the Difference scores, you can use

the formulas above to calculate the result. You can see how I included the Differ-

ence scores into the single sample T formula below to use it with our Difference

change scores:

t ¼ M � m

sm
becomes Tdep ¼ Mdiff � 0

sm-diff

One matter of note in the altered formula that uses the Difference scores is the 0

in the place occupied by the population mean in the single sample T formula. This

simply refers to the fact that the population of all differences between related group

scores will be 0 because some differences will be negative and some will be posi-

tive. This would create a 0 sum. Therefore, the formula compares the sample mean

Difference score to the population of difference scores, the latter of which is 0.

SSdiff ¼
P

D2 �
P

Dð Þ2
N

;

sdiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSdiff

N � 1
;

r

sm-diff ¼ sdiffffiffiffiffi
N

p

The bottom line is that you can use the same formula you used with the single

sample T test with only slight variations. In this way, you do not have to calculate

the Pearson’s r value as you did in the long formula. By creating Difference scores,

you subtract out the relatedness.

The two approaches (long formula and Difference formula) yield the same Tdep
value. With larger datasets, we will use Excel1 and SPSS1 to make the calcula-

tions, so you do not need to be concerned at this point with the different formulas.

Here is how the Difference formulas and procedure would work using the data in

Table 18.2. Table 18.4 shows the summary calculations which you can use to con-

duct the Tdep test. Remember that the df for this calculation is N� 1 (pairs).
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The Tdep Ratio from the Difference Method

When you use this method, use the modified formula below to calculate the Tdep.

Tdep ¼ Mdiff � 0

sm-diff
;

Tdep ¼ 3:756� 0

0:887
;

Tdep ¼ 4:234

If you compare the Tdep value from the Difference method, you will find that it is

equivalent to the Tdep calculated from the long method, with some rounding

discrepancy.

Tdep AND POWER

As I have stated several times, the maximum efficiency of statistical procedures is
reached when the researcher uses the appropriate statistical measure with the study
data. To see how this works in the example study above, conduct Tind with the data

and compare the results to our Tdep result. Table 18.5 shows the comparison. As you

can see, if we had not used the appropriate formula (Tdep), we would not have been

able to reject the null hypothesis. However, because we did use Tdep, we rejected the
null hypothesis and concluded that the math course was effective.

USING EXCEL1 AND SPSS1 TO CONDUCT THE Tdep ANALYSIS

Both Excel1 and SPSS1 have straightforward procedures for conducting the Tdep
analysis. I will show the analysis of both procedures here starting with Excel1.

TABLE 18.4 The Difference Procedure for Calculating Tdep

Time1 Time2

Mean 3.756P
D 169P
D2 2193

SSdiff 1558.31

Sdiff 5.95

sm-diff 0.887

TABLE 18.5 The Tind Comparison with Tdep

Tind¼ 1.07 Tdep¼ 4.234

T0.05,88¼ 2.00 T0.05,44¼ 2.021

Decision: Do not reject H0 Reject H0, p< 0.05
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Tdep with Excel1

The Excel1 procedure is created through the Data–Data Analysis–‘‘t Test:

Paired Two Sample for Means’’ menu. When you make this choice, the screen in

Figure 18.1 appears. As you can see, I specified the location of the data in the two

Variable Range windows, and I indicated that the data included the variable label

by checking the Labels box.

When I make this selection, Excel1 returns the findings shown in Figure 18.2. As

you can see, the Tdep value of 4.23 is shown (shaded cell), and the correlation (0.94)

is shown. The values below the Tdep figure show the results of the hypothesis test(s)

with their respective exclusion values. For example, the cell that includes P(T� t)
one-tail indicates that Tdep is significant at 0.00 (i.e., beyond p< 0.05) for the one-

tailed T test which sets the exclusion value at 1.68. The last two cells confirm

the significance level (0.00 or beyond p< 0.05) with a two-tailed test in which the

exclusion value of 2.02.

t-Test: Paired Two Sample for Means 

Time2 Time1 

36.7640.51Mean 

275.05279.35Variance 

4545Observations 

0.94Pearson correlation 
Hypothesized mean Difference  0

44df 

t Stat 4.23

0.00P(T< t) one-tail 

1.68t Critical one-tail 

0.00P(T< t) two-tail 

2.02t Critical two-tail 

FIGURE 18.2 The Tdep findings from Excel1 paired Two-Sample test.

FIGURE 18.1 The Excel1 Tdep specification window.
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Tdep with SPSS1

The Tdep analysis with SPSS1 is equally straightforward. The Tdep analysis is

accessed by using the Analyze–Compare Means–Paired-Samples T Test menu.

This will create the window shown in Figure 18.3.

As you can see in Figure 18.3, I simply used the arrow button to indicate Time1

as ‘‘Variable1’’ and Time2 as ‘‘Variable2’’ for the analysis. This is all that is neces-

sary. The default formulas and specifications will produce the analyses we need.

When I choose ‘‘OK’’ SPSS1 produces a series of output tables that I will use to

complete the Tdep analysis. I show these output tables in Figures 18.4, 18.5 and 18.6.

Figure 18.4 shows the descriptive findings from the data. As you can see the sm
values (2.492 and 2.472) are produced and can be used with the long formula to

check your hand calculations.

Figure 18.5 shows the correlation analysis between Time1 and Time2 which is

necessary for the long formula calculation. In any case, it is important to note even

if you choose to calculate the Tdep by hand with the Difference method.

Figure 18.6 shows the Tdep test findings. You can compare these to our hand

calculations above. Note that the sDr
value (0.888 in our hand calculations) is shown

Paired Samples Statistics

Mean N Standard

Deviation 

Standard

Error of the Mean 

Time1 40.51 45 16.714 2.492Pair 1 

Time2 36.76 45 16.585 2.472

FIGURE 18.4 The SPSS1 descriptive output for Tdep.

FIGURE 18.3 The SPSS1 Tdep specification window.
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as the standard error of the mean. The Tdep value (4.233) is shown with the calcu-

lated significance (p¼ 0.000). The mean shown in the first column of data is the

difference in means (40.51� 36.76¼ 3.75) from Time1 and Time2 that is used in

the numerator of the Tdep formula. The ‘‘95% Confidence Interval of the Differ-

ence’’ values (1.968–5.543) indicates the confidence brackets that will contain the

true population difference (i.e., Time1–Time2 difference) 95% of the time. Note

that the df is 44, indicating ‘pairs �1.’

WITHIN-SUBJECTS ANOVA (ANOVAWS)

We now consider another extension of ANOVA. This time, we will discuss Within-

Subjects ANOVA, which focuses on the repeated measures applied to the subjects

of one group. The One-Way ANOVA (Chapter 12) and the Factorial ANOVA

(Chapter 13) treatments of ANOVA focused on ‘‘between-subjects’’ applications.

That is, do sample groups differ on some outcome measure? As you recall, we

explored the differences in learning resulting from different noise conditions (One-

Way ANOVA) and then extended this to include the differences between boys and

girls (Factorial ANOVA) by including a second factor.

Experimental Designs

Table 18.6 shows the classic experimental design in which two groups (randomly

selected in the ‘‘true’’ experiment and not in the ‘‘quasi’’ experiment) are compared

on post-test scores after some intervention. The experimental group receives the

intervention, and the control or comparison group does not receive the intervention.

Paired Samples Correlations

N Correlation Significance

Pair 1 Time1 & Time2 45 0.936 0.000

FIGURE 18.5 The SPSS1 correlation output for Tdep.

Paired Samples Test

Paired Differences 

95% Confidence Interval of the 

Difference

Mean Standard

Deviation 

Standard

Error of the Mean
Lower Upper

t df Significance

(Two-Tailed) 

Pair 1 Time1–Time2 3.756 5.951 0.887 1.968 5.543 4.233 44 0.000

FIGURE 18.6 The SPSS1 Tdep-test summary.
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If the post-test scores differ between the groups, the implication is that the treatment
is responsible.

An example might be our factorial ANOVA (Chapter 13) in which we analyzed

noise conditions (factor 1) and gender (factor 2) as influences on learning. To do

this, we assumed that the experiment included randomization of subjects so that we

did not have to include the pretests. The assumption is that if subjects are randomly

chosen, the groups’ pretest measures will be equal and therefore will not need to be

included in the analyses. We simply compared the post-test (learning) scores for

men and women in the different noise conditions.

There is also value in knowing how the individual subjects of each group change
across the time of the experiment. If the experimental treatment is effective, it

should cause changes in individuals’ post-test scores compared to their pretest

scores.

It is often difficult to achieve full randomization, so we cannot assume the pretest

measures of different treatment groups (experimental and comparison groups) will

be equal. Therefore, we need to take into account the differences that happen from

pretest to post-test within both (all) treatment groups. The experimental design that
does not include full randomization therefore may include both within subjects and
between subjects measures. This is known as a mixed design. Figure 18.7 shows

how this works.

In this chapter, I will discuss the within subjects element of this design because

it is often the case that research simply focuses on how one group of subjects

change over time. To extend our example from the Tdep section above, this might

mean conducting math assessments three times for each subject in the experiment.

Table 18.6 shows how this design looks.

Because we now have three measures for each student, we extend our Tdep test to
a within-subjects ANOVA. This procedure will detect differences for each student

among the three math assessments. Because the three math assessments are based

on the same students, we must use a statistical procedure that factors out the

Pre Test 
Scores

Experimental Group Treatment 
Post Test 
Scores

Pre Test 
Scores

Comparison Group(s) 
Post Test 
Scores

Within Subjects

Between
Subjects

FIGURE 18.7 The mixed design that includes within-subjects and between-groups element.

TABLE 18.6 The Experimental Design

Pretest Scores Experimental Group Treatment Post-Test Scores

Pretest Scores Comparison Group(s) Post-Test Scores
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sameness so that we can see what the resulting differences are among the three

assessments. Will the constructivist math teaching method result in declining math

errors across the three assessments?

Post Facto Designs

Within-subjects procedures can be used with post facto designs as well because we

are not necessarily assuming experimental manipulation. We might simply be inter-

ested in whether a group of students’ math assessments are consistent across a cer-

tain time period (e.g., semester) or if they are erratic for some reason. The key issue

is how the same students (or matched group of students) compare to themselves

across different data collection periods or conditions.

WITHIN-SUBJECTS EXAMPLE

Table 18.7 shows the data we will use for this example. As you can see, it is the

same data we used for the Tdep example with an additional assessment period for

each student (Time3). For the purposes of this example, let us consider the time

periods as Time1—beginning of school year, Time2—end of school year, and

Time3—end of summer. Will the teaching approach produce consistent learning

(lower math errors) over the course of the year including summer?

USING SPSS1 FORWITHIN-SUBJECTS DATA

For this example, I will not present the hand calculations but focus on the use of the

statistical program to produce the findings. Excel1 does not have a straightforward

method for calculating the one way ANOVAws. I will therefore focus on the SPSS
1

program, which has detailed procedures for this design. I will discuss the procedure

using the data in Table 18.7.

The output for ANOVAws is quite complex. Therefore, I will present only the

basic output to show how to interpret the primary findings.

Sphericity

One of the assumptions of ANOVAws is that the variances among the subjects’ (in

this case) three time periods be approximately equal. That is, the variance between

TABLE 18.7 Data for Within-Subjects Study with Three Categories

Time1 Time2 Time3

Subject 1 11 6 3

Subject 2 4 2 3

Subject 3 11 11 4

— — — —

Mean Time1 Mean Time2 Mean Time3
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Time1 and Time2 should be equal, the variance between Time2 and Time3 should

be equal, and the variance between Time1 and Time3 should be equal. This is like

the assumption we saw for one-way ANOVA that was assessed by the Levene’s

Test. With the ANOVAws we will assess the variances to make sure they are equiv-

alent by the Mauchly’s Test of Sphericity and then proceed with our analyses,

depending on whether we have met or violated the assumptions.

THE SPSS1 PROCEDURE

We create the specification for the ANOVAws through the Analyze–General Linear

Model–Repeated Measures menu. This creates the window shown in Figure 18.8.

As you can see, I specified at the top that the within-subjects factor I will use is

Time and that it has three measurements (specified in the ‘‘Number of Levels’’

window).

When I select ‘‘Define,’’ the window shown in Figure 18.9 will appear. This

summarizes my specification in the ‘‘Within-Subjects Variables’’ window. As you

can see, there are several choices I can make to further specify the model on the

right side of this window.

TABLE 18.8 The Within-Subjects Example Data

Time1 Time2 Time3 Time1 Time2 Time3

11 6 3 41 35 40

4 2 3 62 47 40

11 11 4 29 29 40

18 9 6 55 50 40

30 23 7 46 49 41

7 12 8 39 38 41

12 10 9 41 40 41

42 42 9 45 46 44

32 20 12 49 58 47

17 5 18 41 35 48

24 24 20 54 56 49

46 37 21 50 53 49

26 28 22 52 58 51

28 31 27 50 49 52

44 39 30 56 57 52

44 30 32 62 60 56

38 38 33 57 39 57

45 39 34 54 48 62

35 34 36 79 70 62

45 36 36 64 62 62

39 31 37 47 41 63

40 37 38 64 50 75

48 40 40
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FIGURE 18.8 The SPSS1 specification window for the ANOVAws procedure.

FIGURE 18.9 The ‘‘SPSS1 Repeated Measures’’ window.
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Choosing the ‘‘Contrasts’’ button allows the user to specify that our comparison

of conditions are based on repeated measures. Figure 18.10 shows this ‘‘Repeated

Measures: Contrasts’’ window. As you can see, I clicked on ‘‘Time’’ and then

chose the ‘‘Change Contrast’’ button, which allowed me to choose ‘‘Repeated,’’

and then I clicked on ‘‘Change’’ to make sure the change registered in the

window. This is shown in Figure 18.10, where the ‘‘Factors’’ window shows

‘‘Time(Repeated).’’

When I make these selections, I next can choose the ‘‘Options’’ button in the

main ‘‘Repeated Measures’’ window (shown in Figure 18.9). This creates the win-

dow shown in Figure 18.11. As you can see, I have chosen to ‘‘Display Means for’

Time by moving it to the right-side window. I also checked the ‘‘Compare main

effects’’ box and specified the ‘‘Bonferroni’’ adjustment from the ‘‘Confidence in-

terval adjustment’’ button just below the ‘‘Display Means for:’’ window. Under

‘Display’ I checked the ‘‘Descriptive statistics’’ and ‘‘Estimates of effect size’’

boxes to show the appropriate results in the output.

THE SPSS1 OUTPUT

In this book, I will provide only a basic look at the SPSS1 ANOVAws analyses and

how to create general interpretations. As the research design increases in complex-

ity, however, so does the design specification and output. You will need to consult

additional sources if you choose to elaborate on the one-way ANOVAws design

shown here.

Figure 18.12 shows the Descriptive table that includes the means of the three

time conditions for the 45 subjects. You can see that the SD measures are generally

FIGURE 18.10 The ‘‘Contrasts’’ window to specify repeated contrasts.
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equal, but the SD measure for Time3 is slightly larger. When we test the equiva-

lence in variances (through the Mauchly’s Test of Sphericity) we will assess

whether this difference will be problematic.

The output for Mauchley’s Test of Sphericity is shown in Figure 18.13. The crit-

ical value to look for is the ‘‘Significance’’ value shown in the middle of the table.

In this case, the results show that there are significant differences among the vari-

ance measures of the three Time conditions. Thus, we have a violation of the

FIGURE 18.11 The ‘‘Options’’ menu for the ANOVAws procedure.

Descriptive Statistics

Mean Standard Deviation N

Time1 40.51 16.714 45

Time2 36.76 16.585 45

Time3 35.49 18.817 45

FIGURE 18.12 The ‘‘Descriptive Statistics’’ output.
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sphericity condition. These can be very sensitive tests, so we will take note of the

violation in our analysis of the remaining output.

The Omnibus Test

Figure 18.14 shows the output for the within-subjects effects of Time. The first

group of findings under Time show four different rows of output. The first ‘‘Sphe-

ricity Assumed’’ is like the one-way ANOVA F test in which there are equal vari-

ances. As you can see, this test is significant (F¼ 7.830, p< 0.01). If we had no

sphericity violations, we would use this value to make our conclusions.

However, since we did observe a violation of sphericity, we need to use an ad-

justed F-test value. As you can see from Figure 18.14, SPSS1 provides three such

adjusted tests. The ‘‘Greenhouse–Geisser’’ test is shown in the second row and is a

commonly used, conservative, test. As you can see, this F value is the same, but

the significance level is slightly different due to the adjustment for sphericity. The

result is the same, however. Time is a significant repeated measure condition

(F¼ 7.830, p¼ 0.002).

Mauchly's Test of Sphericityb

Measure:MEASURE_1

Epsilon
aWithin 

Subjects

Effect
Mauchly's W Approximate

Chi Square 

df Significance
Greenhouse–Geisser Huynh–Feldt Lower-bound 

Time 0.694 15.697 2 0.000 0.766 0.788 0.500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is

proportional to an identity matrix.

b
May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed

in the Tests of Within-Subjects Effects table.  

a
Design: Intercept; Within-Subjects Design: Time. 

FIGURE 18.13 The Mauchley’s Test of Sphericity results.

Tests of Within-Subjects Effects
Measure:MEASURE_1

Source
Type III Sum of 

Squares df Mean Square F Significance
Partial

Eta Squared

Sphericity assumed 613.970 2 306.985 7.830 0.001 0.151

Greenhouse–Geisser 613.970 1.532 400.870 7.830 0.002 0.151

Huynh–Feldt 613.970 1.576 389.624 7.830 0.002 0.151

Time

Lower-bound 613.970 1.000 613.970 7.830 0.008 0.151

Sphericity assumed 3450.030 88 39.205

Greenhouse–Geisser 3450.030 67.390 51.195

Huynh–Feldt 3450.030 69.335 49.759

Error(Time)

Lower-bound 3450.030 44.000 78.410

FIGURE 18.14 The within-subjects effects output for time.
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Effect Size

Figure 18.15 shows the ‘‘Multivariate Tests’’ results. These reveal the effect size
findings for this study and are not impacted by sphericity. We have not discussed

these so far, but many researchers use Wilks’ Lambda as the effect size measure for

ANOVAws in this situation. Wilks’ Lambda (L) is based on measuring unexplained

variance, so the smaller the value, the stronger the effect.

As you can see from Figure 18.15, L¼ 0.641 and is significant (p< 0.0001).

You will also note that in this test, L is complementary to Partial Eta Squared,

which is not based on error, but on the size of the regression (i.e., Partial h2¼ 1�
L). As you can see, Partial h2¼ 0.359 and Wilks’ Lambda¼ 0.641, suggesting that

the impact of the time conditions on math errors is considered large (using the crite-

ria we suggested in Chapter 13).

Post Hoc Analyses

Just as we did with the ANOVA tests in Chapter 12, we must perform post hoc

analyses when the omnibus test is significant. Figure 18.16 shows the ‘‘Pairwise

Comparisons’’ output that indicates which time conditions differ. As you can see,

all the comparisons are significantly different except the difference between Time2

and Time3.

You can see that the differences among the means of the time conditions are

large except for Time2–Time3 (1.267). The plot in Figure 18.17 provides visual

comparisons in the plotting of the means. As you can see, there is a large difference

(fewer math errors) between Time1 and Time2, but the difference in errors from

Time2 to Time3 is much less.

The Interpretation

Taking all the output into account, we can say that the students do improve their

math achievement across the time conditions. Each time period shows less math

errors. The growth in understanding of math occurs mainly during the school year

(Time1 to Time2). Although some growth continues into the summer, the effects

are not significant.

Multivariate Testsb

Effect Value F Hypothesis df Error df Significance
Partial Eta

Squared 

Pillai's Trace 0.359 12.020
b

12.020
b

2.000 43.000 0.000 0.359

Wilks' Lambda 0.641 2.000 43.000 0.000 0.359

Hotelling's Trace 0.559 12.020
b

2.000 43.000 0.000 0.359

Time

Roy's Largest Root 0.559 12.020
b

2.000 43.000 0.000 0.359

b
Exact statistic 

a
Design: Intercept; Within-Subjects Design: Time. 

FIGURE 18.15 The effect size output for ANOVAws.
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NONPARAMETRIC STATISTICS

In past chapters, I have presented the nonparametric counterparts of some parame-

tric tests. Thus, for the Independent-Samples T test, I discussed the Mann–Whitney

U test, and I presented a section on the Kruskal–Wallis Test when I discussed the

One-Way ANOVA procedure.

Pairwise Comparisons

Measure:MEASURE_1

95% Confidence Interval for Difference
b

(I) Time (J) Time Mean Difference (I–J) Standard

Error 
Significance

b
Lower Bound Upper Bound 

2 3.756
a

0.887 0.000 1.547 5.9641

3 5.022
a

1.453 0.004 1.405 8.639

1 –3.756
a

0.887 0.000 –5.964 –1.5472

3 1.267 1.526 1.000 –2.532 5.065

1 –5.022
a

1.453 0.004 –8.639 –1.4053

2 –1.267 1.526 1.000 –5.065 2.532

Based on estimated marginal means. 
a
The mean difference is significant at the 0.05 level. 

b
Adjustment for multiple comparisons: Bonferroni. 

FIGURE 18.16 The Post Hoc output for the time study.

FIGURE 18.17 The comparison plot for the time conditions.
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Both of the repeated measures tests in this chapter also have a nonparametric

counterpart. With two related (dependent) samples of ordinal data the researcher

would use the Wilcoxen test. If there are more than two dependent samples of less

than interval data, the researcher would use the Friedman test. Both of these are

available in SPSS1 and can be accessed with the same ‘‘analyze’’ menu I demon-

strated with the Mann–Whitney U and Kruskal–Wallis tests.

TERMS AND CONCEPTS

Dependent Samples Groups in which the members are structurally related, such

as using the same group of subjects twice in an experiment (pre–post), or using

‘‘matched groups.’’ Also known as paired samples, repeated measures, and

within-subjects measures.

Friedman Test A nonparametric test used with more than two dependent samples

(repeated measures) with ordinal data.

Greenhouse–Geisser Test This is one of the tests used by SPSS1 to adjust

values affected by sphericity.

Sphericity The assumption with repeated measures tests (like ANOVAws) that

the variance of group differences are equal.

Wilcoxen Test A nonparametric test used with two dependent samples (repeated

measures) with ordinal data.

Wilks’ Lambda An effect size measure based on the amount of unexplained

variance. Small results are considered stronger than large results.
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TABLE A Z-Score Table (Values Shown Are Percentages)

20.0z

0.0 0.000 50.000 0.399 49.601 0.798 49.202 1.197 48.803 1.595 48.405 1.994 48.006

0.1 3.983 46.017 4.380 45.620 4.776 45.224 5.172 44.828 5.567 44.433 5.962 44.038

0.2 7.926 42.074 8.317 41.683 8.706 41.294 9.095 40.905 9.483 40.517 9.871 40.129

0.3 11.791 38.209 12.172 37.828 12.552 37.448 12.930 37.070 13.307 36.693 13.683 36.317

0.4 15.542 34.458 15.910 34.090 16.276 33.724 16.640 33.360 17.003 32.997 17.364 32.636

0.5 19.146 30.854 19.497 30.503 19.847 30.153 20.194 29.806 20.540 29.460 20.884 29.116

0.6 22.575 27.425 22.907 27.093 23.237 26.763 23.565 26.435 23.891 26.109 24.215 25.785

0.7 25.804 24.196 26.115 23.885 26.424 23.576 26.730 23.270 27.035 22.965 27.337 22.663

0.8 28.814 21.186 29.103 20.897 29.389 20.611 29.673 20.327 29.955 20.045 30.234 19.766

0.9 31.594 18.406 31.859 18.141 32.121 17.879 32.381 17.619 32.639 17.361 32.894 17.106

1.0 34.134 15.866 34.375 15.625 34.614 15.386 34.850 15.151 35.083 14.917 35.314 14.686

1.1 36.433 13.567 36.650 13.350 36.864 13.136 37.076 12.924 37.286 12.714 37.493 12.507

1.2 38.493 11.507 38.686 11.314 38.877 11.123 39.065 10.935 39.251 10.749 39.435 10.565

1.3 40.320 9.680 40.490 9.510 40.658 9.342 40.824 9.176 40.988 9.012 41.149 8.851

1.4 41.924 8.076 42.073 7.927 42.220 7.780 42.364 7.636 42.507 7.493 42.647 7.353

1.5 43.319 6.681 43.448 6.552 43.574 6.426 43.699 6.301 43.822 6.178 43.943 6.057

1.6 44.520 5.480 44.630 5.370 44.738 5.262 44.845 5.155 44.950 5.050 45.053 4.947

1.7 45.543 4.457 45.637 4.363 45.728 4.272 45.818 4.182 45.907 4.093 45.994 4.006

1.8 46.407 3.593 46.485 3.515 46.562 3.438 46.638 3.363 46.712 3.288 46.784 3.216

1.9 47.128 2.872 47.193 2.807 47.257 2.743 47.320 2.680 47.381 2.619 47.441 2.559

2.0 47.725 2.275 47.778 2.222 47.831 2.169 47.882 2.118 47.932 2.068 47.982 2.018

2.1 48.214 1.786 48.257 1.743 48.300 1.700 48.341 1.659 48.382 1.618 48.422 1.578

2.2 48.610 1.390 48.645 1.355 48.679 1.321 48.713 1.287 48.745 1.255 48.778 1.222

2.3 48.928 1.072 48.956 1.044 48.983 1.017 49.010 0.990 49.036 0.964 49.061 0.939

2.4 49.180 0.820 49.202 0.798 49.224 0.776 49.245 0.755 49.266 0.734 49.286 0.714

2.5 49.379 0.621 49.396 0.604 49.413 0.587 49.430 0.570 49.446 0.554 49.461 0.539

2.6 49.534 0.466 49.547 0.453 49.560 0.440 49.573 0.427 49.585 0.415 49.598 0.402

2.7 49.653 0.347 49.664 0.336 49.674 0.326 49.683 0.317 49.693 0.307 49.702 0.298

2.8 49.744 0.256 49.752 0.248 49.760 0.240 49.767 0.233 49.774 0.226 49.781 0.219

2.9 49.813 0.187 49.819 0.181 49.825 0.175 49.831 0.169 49.836 0.164 49.841 0.159

3.0 49.865 0.135 49.869 0.131 49.874 0.126 49.878 0.122 49.882 0.118 49.886 0.114

0.04 0.0530.010.00

2.392 47.608 2.790 47.210 3.188 46.812 3.586 46.414

6.356 43.644 6.749 43.251 7.142 42.858 7.535 42.465

10.257 39.743 10.642 39.358 11.026 38.974 11.409 38.591

14.058 35.942 14.431 35.569 14.803 35.197 15.173 34.827

17.724 32.276 18.082 31.918 18.439 31.561 18.793 31.207

21.226 28.774 21.566 28.434 21.904 28.096 22.240 27.760

24.537 25.463 24.857 25.143 25.175 24.825 25.490 24.510

27.637 22.363 27.935 22.065 28.230 21.770 28.524 21.476

30.511 19.489 30.785 19.215 31.057 18.943 31.327 18.673

33.147 16.853 33.398 16.602 33.646 16.354 33.891 16.109

35.543 14.457 35.769 14.231 35.993 14.007 36.214 13.786

37.698 12.302 37.900 12.100 38.100 11.900 38.298 11.702

39.617 10.383 39.796 10.204 39.973 10.027 40.147 9.853

41.309 8.692 41.466 8.534 41.621 8.379 41.774 8.226

42.786 7.215 42.922 7.078 43.056 6.944 43.189 6.811

44.062 5.938 44.179 5.821 44.295 5.705 44.408 5.592

45.154 4.846 45.254 4.746 45.352 4.648 45.449 4.551

46.080 3.920 46.164 3.836 46.246 3.754 46.327 3.673

46.856 3.144 46.926 3.074 46.995 3.005 47.062 2.938

47.500 2.500 47.558 2.442 47.615 2.385 47.670 2.330

48.030 1.970 48.077 1.923 48.124 1.876 48.169 1.831

48.461 1.539 48.500 1.500 48.537 1.463 48.574 1.426

48.809 1.191 48.840 1.160 48.870 1.130 48.899 1.101

49.086 0.914 49.111 0.889 49.134 0.866 49.158 0.842

49.305 0.695 49.324 0.676 49.343 0.657 49.361 0.639

49.477 0.523 49.492 0.508 49.506 0.494 49.520 0.480

49.609 0.391 49.621 0.379 49.632 0.368 49.643 0.357

49.711 0.289 49.720 0.280 49.728 0.272 49.736 0.264

49.788 0.212 49.795 0.205 49.801 0.199 49.807 0.193

49.846 0.154 49.851 0.149 49.856 0.144 49.861 0.139

49.889 0.111 49.893 0.107 49.897 0.104 49.900 0.100

0.06 0.07 0.08 0.09

Source: Pearson, Karl, F.R.S. Tables for Statisticians and Biometricians, Part I, 3rd ed., University College, London: Biometric Laboratory,

Cambridge University Press, 1930. Used with permission.
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TABLE B Exclusion Values for the T Distribution

One-Tailed 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.0025
Two-Tailed 0.8 0.5 0.2 0.1 0.05 0.02 0.01 0.005

Degrees of
Freedom

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.320

2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089

3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453

4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773

6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317

7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029

8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833

9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497

12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428

13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372

14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252

17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222

18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197

19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135

22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119

23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104

24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067

27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057

28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047

29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030

40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971

60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860

1 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807

Source: Pearson, E. S., and Hartley, H. O. Biometrika Tables for Statisticians, Volume I., 2nd

ed. Cambridge, UK: University Press, 1962. Used with permission.
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TABLE C Critical (Exclusion) Values for the Distribution of F

df in the Numerator (Between)

Exclusion

Level 1 2 3 4 5 6 7 8 9 10 11 12

1 0.05 161 200 216 225 230 234 237 239 241 242 243 244

0.01 4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6082 6106

2 0.05 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41

0.01 98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.41 99.42

3 0.05 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74

0.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05

4 0.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91

0.01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37

5 0.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68

0.01 16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.29 10.15 10.05 9.96 9.89

6 0.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00

0.01 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72

7 0.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57

0.01 12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.71 6.62 6.54 6.47

8 0.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28

0.01 11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.82 5.74 5.67

9 0.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07

0.01 10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 5.18 5.11

10 0.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91

0.01 10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 4.78 4.71

11 0.05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79

0.01 9.65 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 4.46 4.40

12 0.05 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69

0.01 9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 4.22 4.16

13 0.05 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60

0.01 9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96

14 0.05 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53

0.01 8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80

15 0.05 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48

0.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67

16 0.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42

0.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55

17 0.05 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38

0.01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45

18 0.05 4.41 3.55 3.16 2.93 2.77 3.66 2.58 2.51 2.46 2.41 2.37 2.34

0.01 8.28 6.01 5.09 4.58 4.25 4.01 3.85 3.71 3.60 3.51 3.44 3.37
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TABLE 14.C (Continued)

df in the Numerator (Between)

Exclusion

Level 1 2 3 4 5 6 7 8 9 10 11 12

19 0.05 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 2.34 2.31

0.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30

20 0.05 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.31 2.28

0.01 8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.45 3.37 3.30 3.23

21 0.05 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25

0.01 8.02 5.78 4.87 4.37 4.04 3.81 3.65 3.51 3.40 3.31 3.24 3.17

22 0.05 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23

0.01 7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12

23 0.05 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20

0.01 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07

24 0.05 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18

0.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.25 3.17 3.09 3.03

25 0.05 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 2.20 2.16

0.01 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.21 3.13 3.05 2.99

26 0.05 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15

0.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.17 3.09 3.02 2.96

27 0.05 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13

0.01 7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.14 3.06 2.98 2.93

28 0.05 4.20 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.24 2.19 2.15 2.12

0.01 7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.11 3.03 2.95 2.90

29 0.05 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10

0.01 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 2.92 2.87

30 0.05 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 2.12 2.09

0.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.06 2.98 2.90 2.84

32 0.05 4.15 3.30 2.90 2.67 2.51 2.40 2.32 2.25 2.19 2.14 2.10 2.07

0.01 7.50 5.34 4.46 3.97 3.66 3.42 3.25 3.12 3.01 2.94 2.86 2.80

34 0.05 4.13 3.28 2.88 2.65 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05

0.01 7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 2.82 2.76

36 0.05 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03

0.01 7.39 5.25 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72

38 0.05 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02

0.01 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2.75 2.69

40 0.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00

0.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.66

42 0.05 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.02 1.99

0.01 7.27 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.64

44 0.05 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98

0.01 7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62

46 0.05 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97

0.01 7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 2.66 2.60

(continued)
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TABLE 14.C (Continued)

df in the Numerator (Between)

Exclusion

Level 1 2 3 4 5 6 7 8 9 10 11 12

48 0.05 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.40 2.08 2.03 1.99 1.96

0.01 7.19 5.08 4.22 3.74 3.42 3.20 3.04 2.90 2.80 2.71 2.64 2.58

50 0.05 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95

0.01 7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56

55 0.05 4.02 3.17 2.78 2.54 2.38 2.27 2.18 2.11 2.05 2.00 1.97 1.93

0.01 7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59 2.53

60 0.05 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92

0.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50

65 0.05 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.02 1.98 1.94 1.90

0.01 7.04 4.95 4.10 3.62 3.31 3.09 2.93 2.79 2.70 2.61 2.54 2.47

70 0.05 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89

0.01 7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45

80 0.05 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88

0.01 6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41

100 0.05 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.88 1.85

0.01 6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36

125 0.05 3.92 3.07 2.68 2.44 2.29 2.17 2.08 2.01 1.95 1.90 1.86 1.83

0.01 6.84 4.78 3.94 3.47 3.17 2.95 2.79 2.65 2.56 2.47 2.40 2.33

150 0.05 3.91 3.06 2.67 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82

0.01 6.81 4.75 3.91 3.44 3.14 2.92 2.76 2.62 2.53 2.44 2.37 2.30

200 0.05 3.89 3.04 2.65 2.41 2.26 2.14 2.05 1.98 1.92 1.87 1.83 1.80

0.01 6.76 4.71 3.88 3.41 3.11 2.90 2.73 2.60 2.50 2.41 2.34 2.28

400 0.05 3.86 3.02 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.78

0.01 6.7 4.66 3.83 3.36 3.06 2.85 2.69 2.55 2.46 2.37 2.29 2.23

1000 0.05 3.85 3.00 2.61 2.38 2.22 2.10 2.02 1.95 1.89 1.84 1.80 1.76

0.01 6.66 4.62 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.26 2.20

1 0.05 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75

0.01 6.63 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18

Source: Snedecor, G. W., and Cochran, W. G. Statistical Methods. Ames, IA: Iowa State

University Press, 1980. Used with permission.
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TABLE D Tukey’s Range Test (Upper 5% Points)

k¼Num.
of Groups 2 3 4 5 6 7 8 9 10

MSwdf
1 18.00 27.00 32.80 37.10 40.40 43.10 45.40 47.40 49.10

2 6.09 8.30 9.80 10.90 11.70 12.40 13.00 13.50 14.00

3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46

4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83

5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99

6 3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49

7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16

8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92

9 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60

11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49

12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40

13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32

14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25

15 3.01 3.67 4.08 4.37 4.60 4.78 4.94 5.08 5.20

16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15

17 2.98 3.63 4.02 4.30 4.52 4.71 4.86 4.99 5.11

18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07

19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04

20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92

30 2.89 3.49 3.84 4.10 4.30 4.46 4.60 4.72 4.83

40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65

120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.48 4.56

1 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47

Source: Pearson, E. S., and Hartley, H. O. Biometrika Tables for Statisticians, Volume I, 2nd

ed. Cambridge, UK: University Press, 1962. Used with permission.
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TABLE E Critical (Exclusion) Values for Pearson’s Correlation Coefficient, r

One-Tailed 0.05 0.025 0.01 0.005 0.0025 0.0005
Two-Tailed 0.1 0.05 0.02 0.01 0.005 0.001

Degrees of
Freedom
1 0.988 0.9969 0.9995 0.999877 0.9999692 0.99999877

2 0.9000 0.950 0.9800 0.99000 0.99500 0.99900

3 0.805 0.878 0.9343 0.9587 0.9740 0.99114

4 0.729 0.811 0.882 0.9172 0.9417 0.9741

5 0.669 0.754 0.833 0.875 0.9056 0.9509

6 0.621 0.707 0.789 0.834 0.870 0.9249

7 0.582 0.666 0.750 0.798 0.836 0.898

8 0.549 0.632 0.715 0.765 0.805 0.872

9 0.521 0.602 0.685 0.735 0.776 0.847

10 0.497 0.576 0.658 0.708 0.750 0.823

11 0.476 0.553 0.634 0.684 0.726 0.801

12 0.457 0.532 0.612 0.661 0.703 0.780

13 0.441 0.514 0.592 0.641 0.683 0.760

14 0.426 0.497 0.574 0.623 0.664 0.742

15 0.412 0.482 0.558 0.606 0.647 0.725

16 0.400 0.468 0.543 0.590 0.631 0.708

17 0.389 0.456 0.529 0.575 0.616 0.693

18 0.378 0.444 0.516 0.561 0.602 0.679

19 0.369 0.433 0.503 0.549 0.589 0.665

20 0.360 0.423 0.492 0.537 0.576 0.652

25 0.323 0.381 0.445 0.487 0.524 0.597

30 0.296 0.349 0.409 0.449 0.484 0.554

35 0.275 0.325 0.381 0.418 0.452 0.519

40 0.257 0.304 0.358 0.393 0.425 0.490

45 0.243 0.288 0.338 0.372 0.403 0.465

50 0.231 0.273 0.322 0.354 0.384 0.443

60 0.211 0.250 0.295 0.325 0.352 0.408

70 0.195 0.232 0.274 0.302 0.327 0.380

80 0.183 0.217 0.257 0.283 0.307 0.357

90 0.173 0.205 0.242 0.267 0.290 0.338

100 0.164 0.195 0.230 0.254 0.276 0.321

Source: Pearson, E. S., and Hartley, H. O. Biometrika Tables for Statisticians, Volume I, 2nd

ed. Cambridge, UK: University Press, 1962. Used with permission.
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TABLE F Critical Values of the Chi Square Distribution

p Value
Degrees of
Freedom (k) 0.1 0.05 0.02 0.01 0.001

1 2.706 3.841 5.412 6.635 10.827

2 4.605 5.991 7.824 9.210 13.815

3 6.251 7.815 9.837 11.345 16.266

4 7.779 9.488 11.668 13.277 18.467

5 9.236 11.070 13.388 15.086 20.515

6 10.645 12.592 15.033 16.812 22.457

7 12.017 14.067 16.622 18.475 24.322

8 13.362 15.507 18.168 20.090 26.125

9 14.684 16.919 19.679 21.666 27.877

10 15.987 18.307 21.161 23.209 29.588

11 17.275 19.675 22.618 24.725 31.264

12 18.549 21.026 24.054 26.217 32.909

13 19.812 22.362 25.472 27.688 34.528

14 21.064 23.685 26.873 29.141 36.123

15 22.307 24.996 28.259 30.578 37.697

16 23.542 26.296 29.633 32.000 39.252

17 24.769 27.587 30.995 33.409 40.790

18 25.989 28.869 32.346 34.805 42.312

19 27.204 30.144 33.687 36.191 43.820

20 28.412 31.410 35.020 37.566 45.315

Source: Pearson, E. S., and Hartley, H. O. Biometrika Tables for Statisticians, Volume I, (2nd

ed.) Cambridge, UK: University Press, 1962. Used with permission.
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INDEX

Aggregate scores, 21

Alpha error. See Type I error.

Analysis of variance (ANOVA), 257–336

calculation of, 262–69

components of variance, 260–61

F-test, 262

factorial (2XANOVA), 307–336

interaction effect, See Interaction

main effects, 310–11

one way, 257–305

simple effects, See Simple effects

two-way within-subjects, 308

within-subjects, 307–8, 329, 499–508

ANCOVA, 309, 327

Assumptions of

ANOVA, 276–77

bivariate regression, 408–9

chi square test of independence, 462

correlation, 360–62

independent-samples T-test, 229–36

multiple linear regression, 434–36

Average deviation, 89–91

Beta, 407–8, 419

Beta error. See Type II error

Bimodal distribution, See Distribution,

bimodal

Bivariate regression, See Regression

Case study, 157, 169

Central limit theorem, 157–58, 169

Central tendency, See Descriptive statistics,

central tendency

Chi square, 453–83

contingency tables, 453–54, 483

effect size, See Effect size

expected frequencies, 456, 462–64

frequencies versus proportions, 460

goodness of fit, 455–461, 483

repeated measures, 470–72, 483
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461–72, 483
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Confidence interval (Continued )
for regression, 396–97, 419

value of, 199

Contingency coefficient, 460, 483

Contingency tables, See Chi square,

contingency tables

Continuous variable, 240

Control group, 150, 169

Convenience sample, 169

Correlation, 337–69, See also Pearson’s r
versus causation, 357

contingency coefficient, See Contingency
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Cramer’s V, See Cramer’s V
eta square, See Eta square

nature of, 338–39

partial eta square, See Partial eta square

phi, See Phi

problems, 356–58

Spearman’s rho, See Nonparametric

statistics

z score method, 349–51

Cramer’s V, 469–470, 483
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115–119, See also Percentile

deriving sample scores, 130–31

transforming to z scores, 128–29

Curvilinear relationship, 358, 409–12, 433

Deciles, 83, 96

Degrees of freedom

in ANOVA, 266

in chi square, 464–66

in correlation, 353

defined, 185–86, 204

in independent T test, 221, 224

in single sample T test, 185–87

Dependent variables, 169

Descriptive statistics, 41–99

central tendency, 51, 54–60, 63, 71–75

contrasted to inferential statistics, 44

graphical methods, 66–71

research applications, 41–44

scales of measurement, 44–50, 74

standard deviation, 87–97

variability, 81–99

Diagnostics, 292, 412

Dichotomized variable, 339, 375

Distribution, 61–62

bimodal, 54, 71

data, 61–62, 73

frequency, 66, 73

of means, 160

nature of, 61

normal, See Normal distribution

sampling, 178, 156–61

Distribution-free tests, See Nonparametric

statistics

Dunnett test, 273

Effect size, 4–5, 168–69, 193

ANOVA, factorial, 318–19

ANOVA, one way, 269–71

Chi square goodness of fit, 460

Chi square 2x2 tables, 467

Chi square test of independence, 469

correlation, 354–56

defined, 191, 205

multiple linear regression, 430

regression, 391–92, 414

T test, dependent, 494

T test, independent samples, 228

T test, single mean, 191–93

within-subjects ANOVA, 507

Z test, 168

Error

regression, See standard error, of estimate

sampling, 157

Estimate

biased and unbiased, 181, 204

interval, See Confidence interval

point, See Point estimate

Eta Square (�2), 270

EXCEL1, xix–xx, 1, 3, 5–21

ANOVA, 285–87

bivariate regression, 401–404

central tendency, 56–58

chi square, 472–78

correlation, 366–67

cumulative proportions, 115–120

data analysis procedures, 20

data management, 7–9

dependent t-test, 496–98

entering formulas directly, 17–19

F-test two sample for variances, 230

independent t test, 236–38
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menus, 9–16

missing cases and zeros, 20

parameter estimation, 181–82
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real-world data with, 20–22

scattergram, 345–47

single sample T test, 203–4

standard deviation, 92–94, 180

transforming scores, 132–34

use of statistical functions, 17

use of statistics, 17

z scores, 115–120

Exclusion values, 160–61, 185–88,

224–25

Expected frequency, see Chi square,
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Experiment, See Research design,

experiment

Extreme score, 358, 375

F distribution, 230–33, 269

F ratio, 267–68, 317–18

F test, 296

analysis of variance, see Analysis

of variance (ANOVA)
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Frequency distribution, 66
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Homogeneity of variance

assumption of, 277
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Hypothesis, 149
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null, 167

Hypothesis test, 167–68

Inferential statistics, 147, 156

contrasted to descriptive statistics, 44
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Interaction, 309

ANOVA, 310–11

charting, 311
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effect, 328

ordinal, 311, 328
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Interval data, 48–50, 73
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Kruskal-Wallis test, See Nonparametric

statistics
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Levels of measurement, See Scales

of measurement

Levene’s test, 233–35, 280, 296
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Main effects, See Analysis of variance
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MANCOVA, 309, 328

Mann-Whitney U test, See Nonparametric
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MANOVA, 309, 328

Matched groups, 212
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Measurement, see Scales of measurement
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Multiple comparisons, 258, 272
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Multiple linear regression, 419, 429–52
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Multiple linear regression (Continued )
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squared part correlation, 443–44
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Multivariate, 309, 328

Nominal data, 45, 73

Nonparametric statistics, 243
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scores, 83, 96, 131

Normal distribution, 62, 101–126

nature of, 101–103

normal curve, 101–102, 131

raw score distributions, 114

standard, 102
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Outlier, See Extreme score

Parameter

defined, 162, 170

estimation, 178–82, 187
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predictor variables, 170, 383–4,
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