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Preface

This textbook contains, on the one hand, everything that is needed for a freshman statistician.
On the other hand, it can also be used in advanced courses and in particular it can be used for
empirical research work.

Within the Bachelor’s curriculum it is only possible to demonstrate the correct use of the
most important techniques. For the Master’s curriculum, however, a certain understanding
of these methods is necessary. For doctoral studies, understanding alone is not enough: a
willingness to reflect critically on the statistical methods must be developed.

Since even for doctoral students a repetition of the basics of statistics on an elementary
level is often useful, with this book they can be picked up individually where their powers of
recollection end – if necessary at the beginning of the Bachelor education. And in contrast,
Bachelor’s students are often interested in the contents of a Master’s curriculum or where the
textbook leads. They can get a taste of that now.

Even lecturers will find something new in this textbook; according to our experience,
‘statistics for psychologists’ is not taught by professional statisticians but by psychologists,
mostly by those at the beginning of their academic careers; anecdotes may at least help them
didactically. These casual reflections can of course also be academically amusing for students.

Accordingly, the three to four mentioned target groups are guided through the book using
distinctive design elements.

All examples given in this textbook refer to psychology as an empirical science. However,
the topics covered in psychology are similar to those of (other) social sciences, above all
sociology and educational science. So, of course, this textbook suits their framework as well.

The statistical methods that are recommended in this book and which can be used for
answering the research questions posed by psychology as a science are often only practicable
when using a computer. Therefore we refer to two software packages in this book. The
program package R is both freely accessible and very efficient; that is why we continuously
use R here. However, since in psychology the program package IBM SPSS Statistics is still
preferred for statistical analyses most of the time, it is also illustrated using the examples;
here we use version 19.

We try to present statistical knowledge as simply as possible using these program packages,
and avoid formulas wherever reasonable. However, we did not completely avoid formulas
because we also wish to help those readers interested in the theoretical background. As a



P1: OTA/XYZ P2: ABC
JWST094-Preface JWST094-Rasch September 25, 2011 8:15 Printer Name: Yet to Come

PREFACE xi

matter of fact, more important than formulas is the procurement of appropriate applications
and interpretations of statistical methods. And that is actually the main focus of this book.

We have refrained from citing the exact sources for the practical, everyday methods given,
reserving that for methods that are new or uncommon.

With the hope that the reader may easily gather from this textbook all information relevant
to his/her individual academic level.

This book includes an accompanying website. Please visit www.wiley.com/go/
statisticsinpsychology

Dieter Rasch, Klaus D. Kubinger, and Takuya Yanagida
Rostock and Vienna
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Part I

INTRODUCTION

This textbook requires a multi-layered view of ‘statistics in psychology’. Within the Bachelor’s
curriculum it is only possible to demonstrate the correct use of the most important techniques.
For the Master’s curriculum, however, a certain understanding of these methods is necessary:
for the Master’s thesis, where usually a scientific question has to be worked on single-handed
but under supervision, the student has to refer to statistical analyses in literature concerning
the topic, and if necessary to improve the choice of the method used for analysis. For doctoral
studies, understanding alone is not enough; a willingness to reflect critically on the statistical
methods must be developed. The statistical methods used in the doctoral thesis, which means
the entrance to a scientific career, have to be oriented on state-of-the-art methodological
developments; the ability to follow these developments requires profound knowledge as well
as the aptitude to evaluate new statistical methods regarding their shortcomings.

Since even for doctoral students a repetition of the basics of statistics on an elementary
level is often useful, with this book they can be picked up individually where their powers of
recollection end – if necessary at the beginning of the Bachelor’s education. And in contrast,
Bachelor’s students are often interested in the contents of a Master’s curriculum or where the
textbook leads. They can get a taste of that now.

Finally, even lecturers will find something new in this textbook; according to our
experience ‘statistics for psychologists’ is not taught by professional statisticians but by
psychologists, mostly by those at the beginning of their academic careers; anecdotes may
at least help them didactically. These casual reflections can of course also be academically
amusing for students.

Accordingly, the three to four mentioned target groups are guided through the book using
distinctive design elements.

The running text, without special accentuation, is directed at all target groups. It is
information essential for the further study of the textbook and its practical use – as is this
introduction before Chapter 1. Also the terminology used in the book has to be conveyed in a
standardized way. Finally, some contents, which should be familiar to doctoral students, are
nevertheless aimed at all target groups because we think that repetition is useful.

Moreover, special symbols and labels on the outer edge of some pages signal the tar-
get group that the information is aimed at. Target groups other than the ones indicated
with the symbol can skip these passages without being in danger of missing the respective
educational aim.
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2 INTRODUCTION

The symbol Bachelor indicates that the material in these passages is aimed particularly
at Bachelor’s students since it deals only with the Ability to Use. The symbol Master on
the outer edge indicates that here the reader finds an explanation of the underlying methods,
without using a mathematical derivation that is too detailed; this is about Understanding.
The symbol Doctor on the outer edge of the page announces that the shortcomings of the
method will be discussed and that common misuses will be indicated; this is about Critical
Reflection. Finally, the note For Lecturers signals didactically useful observations, entailing
understanding of the respective topic in a very demonstrative way.

In order to bring all target groups together again, occasionally a Summary is given. At the
beginning of every chapter a short description of its contents is given.
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1

Concept of the book

In this chapter, the structure of the book and accordingly the didactic concept are presented
to the reader. Moreover, we outline an example that will be used in several chapters in order
to demonstrate the analytical methods described there.

In six sections this book conveys the methods of the scientific discipline of ‘statistics’ that are
relevant for studies in psychology:

I. Introduction (Chapters 1 to 4)

II. Descriptive statistics (Chapter 5)

III. Inferential statistics for a single character (Chapters 6 to 10)

IV. Descriptive and inferential statistics for two characters (Chapter 11)

V. Inferential statistics for more than two characters (Chapters 12 and 13)

VI. Theory building statistical procedures (Chapters 14 and 15).

Chapter 1 explains the concept underlying our presentation of the methods. Furthermore
an empirical example that will be used as an illustration in various parts of the book is
provided.

Chapter 2 will demonstrate that quantifying and measuring in psychology is not only
possible but also very useful. In addition we would like to give the reader an understanding
of the strategy of gaining knowledge in psychology as a science; the approach however is
similar to other scientific fields, which is why this book can be used in other fields too.

In Chapter 3 we will address the issue that empirical research is performed in several
steps. For all scientific questions that are supposed to be answered by the study (as diverse
as they might be regarding contents), exact planning, careful collecting of data, and adequate
analysis are always needed.

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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4 CONCEPT OF THE BOOK

Within this context we wish the reader to realize that a study does not always have to
include all the people that the research question is directed at. Out of practical reasons, most
of the time only part of the group of interest can be examined; this part is usually called
sample, whereas the group of interest is called the population. Chance plays an important
role here. It will be shown that we have to make probability statements for the results of the
statistical analysis; the probability calculus used for this is only valid for events for whose
occurrence (or non-occurrence) chance is responsible. For example, a certain event might be
that a specific person is part of the study in question. We will treat this topic in Chapter 4, as
well as in Chapter 7. Since ‘chance’ often has a different meaning in everyday use as opposed
to its general meaning in statistics and therefore in this book, we will point out at this early
stage that a random event is not necessarily a rare or unanticipated event.

Finally, if data concerning one or more person(s) or character(s) that are of interest
have been gathered within the framework of the study, they have to be processed statisti-
cally. The data in their totality are too unmanageable to be able to draw conclusions from
them that are relevant for answering the scientific question. Therefore, special methods of
data compression are necessary. We will deal with this issue in Chapter 5. The decision
of which one of these methods is applicable or most appropriate is substantially based
on the type of data: for example, whether they have been derived from physical measure-
ments or whether they can only express greater/less than and equal to relations. In the
latter case it is important to use methods that have been specially developed for this type
of data.

Mathematical-statistical concepts are needed, especially for the generalization of study
results; these will be introduced in Chapter 6. For readers who are unpracticed in the use of
formulas, this chapter is surely difficult, although we try to formulate as simply as possible.

If the generalization of the study results is the aim, then a prerequisite for the use of
appropriate methods is that the collected samples are random samples; information on this
topic can be found in Chapter 7.

In Chapter 8 an introduction to statistical inference, in particular the principle of hypothesis
testing, will be given. Because of the fact that random samples are used, it is necessary to take
random deviations of the sample data from the population into account. Through hypotheses
that have been formulated before data collection we try to find out as to what extent these
deviations are systematic or can/must be traced back to chance. The aim is to either accept or
reject a hypothesis based on the empirical data.

Chapter 9 pursues a similar objective, but this time the focus is on two populations that
are compared with each other.

The implied separation between planning, data collection, and analysis is true for the
classic procedure for empirical studies. In this book, however, we also want to promote
a sequential approach. Thereby the gradual collection of data is constantly interrupted by
an analysis. This leads to a process that looks like this: observe–analyze–observe–analyze
. . .; this goes on until a predetermined level of precision is reached. This procedure is also
described in Chapters 8 and 9.

Special methods are needed in studies that examine a certain character of the research
unit (which in psychology often is a person or a group of persons) not only under constant
conditions but also under varying conditions or when the study includes more than two popu-
lations. In Chapter 10 we cover situations where there are three or more different conditions
or two or three treatment factors, with at least two values of each (treatment or factor levels).
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CONCEPT OF THE BOOK 5

In psychological research hardly ever is only one character used. If more than one character
per person is observed, then a certain connection between them may exist; we refer here to
statistical relationships. If these relationships are of interest, then the statistical methods
described primarily in Chapter 11 are needed.

If there really are relationships between several characters – or if there is reason to think
so – then one needs very special methods for comparing several populations. Chapters 12 and
13 describe these.

Finally Chapters 14 and 15 give an introduction into theory-building techniques that
establish or test models regarding content.

The appendix of the book is split into three parts: Part A lists the data of Example 1.1
which will be illustrated below, and in part B one can find tables, helpful for some analyses;
often it is faster and more convenient to look up a value than to calculate it with the help
of some software. Appendix C contains a summary of the symbols and abbreviations. A
complete list of references and a subject index are given at the end of the book.

Summary
We assume that empirical studies always yield data regarding at least one character. Optimally,
planning takes place prior to any study. Data are used to answer a specific question. Statistics
as a scientific discipline provides the methods needed for this.

The diverse statistical methods that are recommended in this book and which can be used for
answering the research questions posed by psychology as a science are often only practicable
when using a computer. Therefore we refer to two software packages in this book. The
program package R is both freely accessible and very efficient; that is why we continuously
use R here. However, since in psychology the program package IBM SPSS Statistics is still
preferred for statistical analyses most of the time, it will also be illustrated using the examples.
The appropriate use of such packages is not trivial; that is why the necessary procedures will
be demonstrated by the use of numerical examples. The reader can recalculate everything and
practice their use.

The program package R can be used for the planning of a study, for the statistical analysis
of the data and for graphical presentation. It is an adaptation of the programming language S
that has been developed since 1976 by John Chambers and colleagues in the Bell Laboratories
(belonging to Alcatel-Lucent). The functionality of R can be enhanced through freely available
packages by everybody and at will, and also special statistical methods and some procedures
of C and Fortran can be implemented. Packages that already exist are being made available
in standardized archives (repositories). The most well-known archive to be mentioned here
is CRAN (Comprehensive R Archive Network), a server network that is serviced by the R
Development Core Team. With the distribution of R, the number of R packages has increased
exponentially: whereas there were 110 packages available on CRAN in June 2001, there
were 2496 in September 2010. R is available, free, for Windows, Linux and Apple. With few
exceptions, there are implementations for all statistical methods in R. With the means of the
recently built package OPDOE (see Rasch, Pilz, Verdooren & Gebhardt, 2011), it is possible,
for the first time, to statistically plan studies or to calculate the optimal number of examination
objects and also to successively collect and analyze data in R.

The program package R is available for free at http://cran.r-project.org/ for the operat-
ing systems Linux, MacOS X and Windows. The installation under Microsoft Windows is
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6 CONCEPT OF THE BOOK

initiated via the link ‘Windows’, from where the link ‘base’, which leads to the installation
website, must be chosen. The setup file can be downloaded under ‘Download R 2.X.X for
Windows’ (where X stands for the current version number). After executing this file, one is
lead through the installation by a setup assistant. For the uses described in this book all the
standard settings can be applied. SPSS as a commercial product must be acquired by purchase;
normally universities offer inexpensive licenses for students. More on R can be found under
www.r-project.org, and on SPSS under www.spss.com. In order not to unnecessarily pro-
long the explanation of the operational sequence in R or SPSS, we always assume that
the respective program package, as well as the file that will be used, are already at hand
and open.

In R the input window opens after starting the program; the prompt is in red: ‘>’. Here
commands can be entered and run by pressing the enter button. The output is displayed
in blue right below the command line. If the command is incomplete, a red ‘+’ will ap-
pear in the next line in order to complete the command or to cancel the current command
input by pressing the Esc button. An instruction sequence is displayed as in the following
example:

> cbind(sub1_t1.tab, sub1_t1.per, sub1_t1.cum)

or also as

> cbind(sub1_t1.tab,
+ sub1_t1.per,
+ sub1_t1.cum)

or also as

> cbind(sub1_t1.tab,
+ sub1_t1.per,
+ sub1_t1.cum)

A special working environment in R is the Workspace. Several (calculation-) objects that
have been created in the current session with R can be saved in there. These objects include
results of calculations (single scores, tables, etc.) and also data sets. A workspace can be
loaded with the sequence

File - Load Workspace. . .

For all the examples presented in this book the reader can download the Workspace
‘RaKuYa.RData’ from the website www.wiley.com/go/statisticsinpsychology.

Since there are more data sets in our Workspace, the scores of single research
units/persons have to be accessed by specifying the data set with a ‘$’; for example:
Example_1.1$native_language. A useful alternative for the access is the
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command attach(), which makes the desired data set generally available; for example:
attach(Example_1.1). To minimize repetition, in the instruction sequences given
throughout the book, we assume that the attach() command has already been run and
therefore the relevant data set is active. For some examples we need special R packages; they
must be installed once via the menu Packages - Install Package(s). . . and then
loaded for every session in R with the command library(). The installation of packages
is done via the menu

Packages - Install Package(s). . .

In SPSS the desired data frame can be opened via File – Open – Data. . . after starting the
program. Then we write the instruction sequence as in SPSS handbooks; for example like
this

Analyze
Descriptive Statistics

Frequencies. . .

For all examples in the book the reader can find the data in the SPSS folder 'RaKuYa' on the
website www.wiley.com/go/statisticsinpsychology.

For figures that are shown as the results of the calculations for the examples, we use either
the one from SPSS or the one from R. Only if the graphs differ between R and SPSS will we
present both.

It is the concept of this textbook to present illustrative examples with content – that can be
recalculated – from almost all subject areas concerning the planning and statistical analysis
of psychological studies. A lot of the methods described in this book will be demonstrated
using one single data set in order to not have to explain too many psychological problems.
This will be introduced in Example 1.1.

Example 1.1 The goal is to test the fairness of a popular natural-language intelligence test
battery with reference to children with Turkish native language1,2 (see Kubinger, 2009a3).

The following characters were observed per child (see Table 1.1 and the data sheet in Appendix
A; then see, for R, the respective data structure in Figure 1.1, and for SPSS the screen shot
shown in Figure 1.2).

1 Fairness is a specific quality criterion of psychological assessment methods (tests). A psychological test meets
the requirement of fairness if the resulting test scores don’t lead to a systematic discrimination of specific testees: for
example because of sex, ethnic, or socio-cultural affiliation; see Kubinger, 2009b).

2 The data originally applied to German-speaking countries; however, there was no socio-political difference when
the data in the following analyses were interpreted as relating to English-speaking countries and some ethnic-minority
groups.

3 Due to copyright reasons the original data had to be slightly modified; therefore no deductions regarding content
can be drawn from the data found in the data sheet in the appendix.
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Table 1.1 The characters and their names in R and SPSS (including coded values).

Name of the character Name in R Name in SPSS Coded values

testee number no no
native language of the

child
native_language native_language 1 = ‘German’

2 = ‘Turkish’
age of the child age age
sex of the child sex sex 1 = ‘female’

2 = ‘male’
gestational age at birth

(in weeks)4
age_birth age_birth

number of siblings no_siblings no_siblings
sibling position pos_sibling pos_sibling 1 = ‘first-born’

2 = ‘second-born’
3 = ‘third-born’
4 = ‘fourth-born’
5 = ‘fifth-born’
6 = ‘sixth-born’

social status (after
Kleining & Moore
[1968] according to
occupation of
father/alternatively
of the single mother)

social_status social_status 1 = ‘upper classes’
2 = ‘middle classes’
3 = ‘lower middle

class’
4 = ‘upper lower

class’
5 = ‘lower classes’
6 = ‘single mother

in household’
urban/rural urban_rural urban_rural 1 = ‘city (over

20 000
inhabitants)’

2 = ‘town (5000 to
20000
inhabitants)’

3 = ‘rural (up to
5000 inhabitants)’

marital status of the
mother

marital_mother marital_mother 1 = ‘never married’
2 = ‘married’
3 = ‘divorced’
4 = ‘widowed’

4 The gestational age is the age of the (unborn) child counted from the day of supposed fertilization.
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Table 1.1 (Continued)

Name of the character Name in R Name in SPSS Coded values

test setting test_set test_set 1 = ‘German
speaking child’

2 = ‘Turkish
speaking child
tested in German
at first test date’

3 = ‘Turkish
speaking child
tested in Turkish
at first test date’

Everyday Knowledge, 1st
test date (T-Scores)5

sub1_t1 sub1_t1

Applied Computing, 1st
test date (T-Scores)

sub3_t1 sub3_t1

Social and Material
Sequencing, 1st test
date (T-Scores)

sub4_t1 sub4_t1

Immediately
Reproducing –
numerical, 1st test
date (T-Scores)

sub5_t1 sub5_t1

Coding and Associating,
1st test date
(T-Scores)

sub7_t1 sub7_t1

Everyday Knowledge,
2nd test date
(T-Scores)

sub1_t2 sub1_t2

Applied Computing, 2nd
test date (T-Scores)

sub3_t2 sub3_t2

Social and Material
Sequencing, 2nd test
date (T-Scores)

sub4_t2 sub4_t2

Immediately
Reproducing –
numerical, 2nd test
date (T-Scores)

sub5_t2 sub5_t2

Coding and Associating,
2nd test date
(T-Scores)

sub7_t2 sub7_t2

5 Test scores are generally standardized to a certain scale; T-Scores are a very common method of standardization.
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Figure 1.1 Representation of the data structure of Example 1.1 in R.

In order to illustrate some statistical procedures we need other examples regarding content, but
the data for these examples will not be found in Appendix A due to space limitations; however
they are provided in the aforementioned Workspace and SPSS folders respectively. For the
recalculation of the examples as well as for later calculations with the reader’s own data, we
will also provide the R instruction sequences, so that they don’t have to be typed out. They
can be found on the website www.Wiley.com. For beginners in R these are simply listed in
order in a PDF file; for those readers already experienced in the use of R they are in a syntax
editor for R; that is, Tinn-R (www.sciviews.org/Tinn-R/).
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Figure 1.2 Part of the data view of Example 1.1 in SPSS.
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Measuring in psychology

This chapter deals with several methods of data acquisition that are used in psychology.
The methods for psychological assessment and the methods primarily for answering research
questions have to be distinguished.

Within the field of psychology, the claim of conducting measurements, e.g. to measure ‘psyche’
or psychological phenomena, is often adamantly refuted. The attempt to measure or to quantify
would not allow for the specific, individual, and qualitative characteristics of a person. Instead,
the assessment of the personality of a person should be performed in a qualitative way.

Psychology as a science demonstrates though that this approach to the assessment of
a person, regarding a specific character (within psychology: trait/aptitude), is limited to a
pre-scientific level. While it can lead to important assumptions on causal relations, it never
allows for binding generalizations. On the contrary, measurements that are conducted under
defined abstractions can relate a person’s personality to an objective framework.

Bachelor Statistical data calls for a useful bundling of what is to be measured. Not everything
that is measurable regarding a certain character can be compared in depth, i.e.
individually, but the whole essential part of the information has to be compressed.
A factually acceptable abstraction of the available information has to be made. For
example, this abstraction could be that all 35-year-old women are viewed equally
regarding their age, irrespective of whether one of them has a biologically ‘young’
body caused by practicing competitive sports or another one has a biologically
‘old’ body because she lived in war zones for some years.

We can be sure that measuring in psychology is valuable for psychological case consulting
as well as for research on the evaluation of psychological treatments, and especially for basic
psychological research.

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Master
Doctor

Although there are measurement techniques in psychology that follow the
methods of natural science, measurements of psychic or mental phenomena are
additionally based on specific scientific methods. One thing, however, is common
to all natural sciences, psychology included: measuring means the ascertainment
of the interesting character’s value for the research unit (in psychology this is
mostly a person). This happens as an assignment of numbers or signs in such a way
that these assignments (measuring values), represent empirical factual relations.
That is, the assignment relations must coincide with the empirical (obviously)
given relationships of the research units (discussed in detail in Chapter 4).

Master Although important to note here but not explicitly a distinct measurement tech-
nique are the measurements of physiological psychology: its first sub-specialty,
neuropsychology, studies the relationship between behavior and the activity of
the central nervous system by the means of electrophysiological methods (e.g.
EEG, electroencephalography). Its second sub-specialty, psycho-physiology, in-
vestigates the relationships between behavior and the activity of the vegetative
nervous system by the means of physical methods (e.g. measurement of electro-
dermal activity, EDA). Its third sub-specialty, chemical psychology, explores the
relations between behavior and chemical substances, which are either brought
into the organism from outside (pharmaco-psychology) or are built inside the
organism (endocrine psychology, neuro-chemopsychology, psycho-genetics) by
the means of chemical methods.

2.1 Types of psychological measurements

Some measurement techniques used in psychology are standard methods of psychological
assessment; they are used in case consulting of clients but also in research. For these tech-
niques specific psychometric quality criteria apply. Other measurement techniques are used
specifically in research. Some of them are also used in fields other than psychology, like
sociology or market- and opinion research.

2.2 Measurement techniques in psychological assessment

An extensive introduction to psychological assessment can be found in Anastasi & Urbina
(1997) and Kubinger (2009b).

2.2.1 Psychological tests

The term ‘psychological test’ subsumes all achievement tests, including intelligence tests, as
well as so-called objective personality tests.1

1 If the word ‘test’ is used without an adjective, the reader should be able to tell from the context if a psychological
or statistical test is meant; however, we prefer the use of the more comprehensive term ‘psychological assessment
tool’ when the current explanations aren’t limited to (psychological) tests.
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Master Example 2.1 Intelligence test
An example for an intelligence test is the subtest Verbal Abstraction from the

intelligence test battery AID 2 (Adaptive Intelligence Diagnosticum, Version 2.2;
Kubinger 2009a). ‘How are a candle and a torch alike?’ or ‘How are an airplane
and a bird alike?’ are 2 (very) simple items out of 15 that are presented to the
children. The measurement problem is whether the number of solved items alone
is a representative and fair measure allowing all the testees to be put into a fair
relationship regarding their ability. For example, is child A, who solves the first
of the aforementioned items but not the very difficult one ‘hunting and fishing’,
really as ‘intelligent’ as child B, who doesn’t solve the first of the aforementioned
items but the last, very difficult one? Specific mathematical statistical methods,
developed by psychometrics, can answer this question (see, as an introduction,
Kubinger 2009b, and more precisely Kubinger, 1989). They can also solve even
greater measurement problems in testing. In the AID 2, for example, not all
children are given the same items, but items meeting their ability, as demonstrated
in preceeding items, are selected (so-called adaptive testing).

Master Example 2.2 Objective personality tests
Objective personality tests register individual stylistic features (‘cognitive

styles’) while performing a (achievement) task. The Gestalt test (Hergovich &
Hörndler, 1994), for example, differentiates between ‘field dependent’ and ‘field
independent’ persons. A field-dependent perceptive style occurs when the percep-
tive environment (field) has a strong influence on the perception target; whereas a
field-independent perceptive style occurs when the perception is centered on the
perception target. The measurement problems in this test are similar to the afore-
mentioned example: can the number of solved items, in which a figure disguised
in confusing line drawings has to be found, put all the testees in a fair relation
regarding their field in/dependency?

2.2.2 Personality questionnaires

Personality questionnaires include not only the well-known questionnaires, often called tests,
where one rates oneself and one’s typical behavior patterns, but also tools of assessment by
others where a third party rates a person as well as ‘tests’ of interest.

Master Example 2.3 Personality questionnaires
The internationally most renowned personality questionnaire is the MMPI-2

(Minnesota Multiphasic Personality Inventory-2; Butcher, Dahlstrom, Graham,
Tellegen, & Kaemmer, 1989). ‘I find it hard to keep my mind on a task or job’ and
‘I have had periods of days, weeks, or months when I couldn’t take care of things
because I couldn’t “get going” ’, are two out of more than 500 statements that have
to be rated ‘true’ or ‘false’. The sum of the ‘true’ answers is supposed to indicate
the degree of psychasthenia (i.e. a psychological disorder associated with fear
and obsessive ideas). We will see below that, in contrast to tests, the measurement
problem here is not only aggravated but ultimately completely unsolvable.
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Master Example 2.4 Tools of assessment by others
An often-used tool of assessment by others is the HAMD (Hamilton-

Depression-Rating-Scale; Hamilton, 1980). Again the problem remains: whether
a collection of questions or the scores resulting from them can really picture the
empirically given relations. For example, is patient Z, who has been rated as a
person with suicidal thoughts (‘Wishes he were dead or any thoughts of possible
death to self’) but without any sleeping problems by the psychiatrist or clini-
cal psychologist in charge, as depressive as patient W without suicidal thoughts
but with occasional ‘. . . difficulty falling asleep – i.e. more than 1/2 hour’ and
‘. . . being restless and disturbed during the night’? The calculation procedure
prescribed by the method, however, presumes this. Of course this presumption
would be testable with the above-mentioned methods of psychometrics, but it has
not been done yet.

Master Example 2.5 ‘Tests’ of interest
The above-stated measurement problems of tools of assessment by others also

hold for ‘tests’ of interest, or, even worse, unsolvability becomes a problem, as
described above for the questionnaires.

2.2.3 Projective techniques

Projective techniques are psychological assessment tools that try to uncover the personality
structure and the motives for action of a person by ambiguous material or stimuli.

Master Example 2.6 Projective techniques
Projective techniques imply that a person, when confronted with ambiguous

material or stimuli, unconsciously reacts with his or her own feelings, thoughts,
and attitudes and transfers them into the material. However, the psychometric
groundings of projective techniques often do not justify these conclusions. The
Rorschach inkblot test (see Exner, 2002) is the most well known. As long as the
observations of how and as what the testee interprets the (symmetric) inkblots are
only of a qualitative nature, the procedure doesn’t have a measurement function:
users claim that with some disorders it is only through this technique that there is
the possibility to be able to talk to the patient, because they open up more easily
than if they were asked direct questions. Of course the technique is useful (for the
experienced user) in order to hypothesize about behavior-determining conditions
or typical facets of a human. However, the technique becomes problematic when
the very controversial quantification rules are used. Here the argument mentioned
earlier that the numerical relations don’t depict the empirical ones doesn’t even
have to be used, because the technique doesn’t even claim to reliably measure
any specific character. In order to draw consulting conclusions we have to ask
ourselves for example the following question. In which way is person U, with
5 holistic answers (that means that the answer can be traced to the registra-
tion/description of the whole figure), 3 answers concerning details, and 5 answers
concerning small details, better/inferior, stronger/weaker etc. than person V with
8 holistic answers, 6 answers concerning details, and 12 answers concerning
small details?
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2.2.4 Systematical behavior observation

Systematical behavior observation focuses on category-system-bound observations of a
person’s behavior; it is not the arbitrary or casual observation that is mainly based on subjective
impressions.

Master Example 2.7 Systematical behavior observation
Similar to projective techniques, the rule is: as long as only a (qualitative)

impression is drawn from a systematical behavior observation that leads to
hypotheses on behavior-determining conditions, then the technique has no
measurement function. For example in the AID 2 there is a supplemental sheet
for the observation of work habits, which is used for the qualitative evaluation of
work and contact behavior. Although there are no generally binding quantitative
category systems, their use is not connected with measurement problems (for
example for the characterization of verbal behavior in social contacts or as a
method for the analysis of self-management in everyday life): the counting of
observed character categories is similar to physical measurements – for example
how often somebody uses the word ‘please’.

2.3 Quality criteria in psychometrics

As mentioned earlier, specific quality criteria are relevant for measurement methods in psy-
chological assessment; they define the quality of the collected data: objectivity, reliability,
validity, standardization, and unfakeability.

Objectivity means that the result of the measurement is independent from the diagnosing
psychologist. Reliability alludes to the degree of formal accuracy of the measurement, i.e.
precision. Validity refers to the correctness of the measurement with regards to the content,
which means that the character that is desired to be measured is actually the one that is
measured. Standardization permits the placement of the individual measurement result of
a person within the distribution of all results of a population. Unfakeability means that a
measurement instrument doesn’t allow individual control of type and content of the desired
information. More on psychometric quality criteria can be found in Kubinger (2009b), for
example.

Tests usually meet the requirement of objectivity, especially when they are administered in
a group setting or via a computer. The exactness of the measurement differs from test to test. In
general, tests measure less exactly than physical measurement instruments. Sometimes their
validity has not been analyzed, sometimes it is unsatisfactory, but sometimes it is also provided.
A (up-to-date) standardization is generally available, and tests are essentially unfakeable.

Personality questionnaires, however, are extremely fakeable: they are very transparent
concerning their measurement intentions, and most people will be inclined to answer to their
advantage (e.g. socially desired). Consequently personality questionnaires are rarely valid
and hardly ever accurate. In a group or computer setting they can be considered objective.
This, just as the usually given standardization, doesn’t make these kinds of measurement
instruments any more useful.

Projective techniques are considerably less fakeable than personality questionnaires
because their measurement intention is less transparent. However there are hardly any
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studies concerning the validity and reliability of projective techniques. A standardization
is rarely available.

In systematical behavior observation, objectivity is the primary problem. Apart from
unconscious, mostly nonverbal experimenter effects, there are typically observation and cat-
egorization mistakes (i.e. something relevant is not recorded, or a behavior is misinterpreted
and then coded in an incorrect way). However, systematical behavior observation has a fun-
damental advantage as concerns validity: contrary to personality questionnaires, here real-life
behavior instead of verbal behavior is recorded. The measurement accuracy depends on the
representativity of the chosen observation situation; the fakeability depends on how disturbing
or impressing the observer is. Normally there is no standardization.

2.4 Additional psychological measurement techniques

Although the measurement methods described below can nowadays be found in practical case
consulting as well as being special techniques in psychological assessment, they primarily
come from research.

2.4.1 Sociogram

Starting from a graphic visualization of all positive and negative relations between persons
in a small group, the sociogram tries to measure person-specific as well as group-specific
characters.

Master Example 2.8 Sociogram
With a sociogram it is possible to make topic-related quantifications, for ex-

ample performance- or sympathy-related quantifications of a person’s status of
selection or rejection; this being based on the observed individual preferences or
objections of all members of the group. For the group as a whole, a group cohesion
score can be calculated. The measurement itself is unproblematic as for system-
atical behavior observation, because it is based solely on counts. If the quality
criteria discussed above are applied to this method, then the sociogram performs
better than for example the systematical behavior observation concerning objec-
tivity, but worse as regards validity. Here again, the verbal behavior is measured
instead of the actual behavior. Moreover the generalizability of the result of the
measurement is questionable because of the heavily limited representativity of the
behavior, which is caused by a limitation to a specific composition of the group.

2.4.2 Survey questionnaires

Survey questionnaires are mainly used for the observation of opinions and attitudes that are
present in the population.

Master Example 2.9 Survey questionnaires
There are numerous variants for the formal arrangement of survey question-

naires. Open questions, which are questions with free response format, offer the
respondent the possibility of freely choosing the words for the answers themselves;
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however the evaluator will sooner or later group the individual answers into cat-
egories. So-called closed questions only offer the respondent the possibility of
choosing between a smaller or greater number of given response options (‘fixed
response format’). If only two response options exist – dichotomous response
format (forced choice response format) – many respondents complain that they
are overstrained with the decision they are being asked to make. If there are more
than two response options – multiple choice response format – then arbitrary or
random answers are encouraged. It is also conceivable that some response op-
tions overlap, so that multiple entries are possible. Finally one must distinguish
between different types of response options, particularly whether they are nu-
merical, gradual, or qualitative (i.e. yes, no, maybe) differentiations. Depending
on this there are different measurement problems. They can range from those
found in psychological tests to those in conventional personality questionnaires;
in extreme cases every single question is evaluated and interpreted on its own.

2.4.3 Ratings

Ratings are a subjective judgment concerning a character that is perceived as being continuous.

Master Example 2.10 Ratings
For some specific contents, ratings are another formal arrangement possibility

for questionnaires. In most cases any gradation is possible and can be made
by marking a line between two poles with a cross (so called analogue scale-
response format). If the rating is demanded on a computer, the gradation can be
accomplished in a similar way by clicking with a mouse. Despite the ostensible
metric scaling, ratings only provide less/greater-or-equal-relations: although the
indications themselves are metric, that is to say physically measurable, extensive
literature concerning psycho-physics has shown that humans are not able to
estimate equal distances as in metric scales. If the character in question is rated
globally then only this problem occurs. If, however, several ratings per person are
to be combined, then measurement problems arise that are even more complicated
than the ones that apply to tests. Nevertheless they are solvable with the help of
the methods of psychometrics.

2.4.4 Q-sort

The method of Q-sort is also a tool for subjective judgment; several objects that are to be
compared (persons, activities, situations) are represented by cards, which must be divided
into given categories.

Master Example 2.11 Q-sort
The method of Q-sort most of the time demands that the allocation into

categories follows a predetermined frequency distribution in order to make use
of the whole spectrum of categories. The name comes from early studies about
personality theory where there was a typification of people by means of the so-
called Q-technique in factor analysis (for factor analysis see Section 15.1). The



P1: OTA/XYZ P2: ABC
JWST094-c02 JWST094-Rasch September 20, 2011 1:59 Printer Name: Yet to Come

ADDITIONAL PSYCHOLOGICAL MEASUREMENT TECHNIQUES 19

quantification of the sorting regarding the character of interest also brings in the
repeatedly discussed measurement problems.

2.4.5 Semantic differential

The semantic differential is a special case of ratings.

Master Example 2.12 Semantic differential
In a semantic differential, the response options are reduced to a seven-level

scale between two poles on the one hand, and on the other hand 24 predetermined
polarities (i.e. small–big, weak–strong) define something like a standard, no matter
which content is rated. This is because the denotative meaning of a term, which is
the rationally derived meaning, is not of as much interest as the connotative one,
which is the associative-emotional meaning. In various studies it became clear
that these 24 pairs of opposites always measure three things: appraisal, potency,
and activation of the content in question. Corresponding to the views in Example
2.10, ratings only provide less/greater-or-equal relations; this must be taken into
consideration during such common statistical analyses as the ascertainment of
differences or dependencies. Apart from that, the semantic differential is free of
measurement problems.

2.4.6 Method of pair-wise comparison

In an early effort in psychology to determine the functional connection between a physical
stimulus and its perception, psycho-physicists developed several methods of measurement
that were used in other contexts later on. In this way ratings can be subsumed here. Here the
method of pair-wise comparison has become especially important.

Master Example 2.13 Method of pair-wise comparison
Instead of having an object rated directly by a person concerning the char-

acter of interest, the measurement using the method of pair-wise comparison
is done indirectly, by rating two objects concerning only the relation more/less
than (perhaps: same as). If the pair-wise comparisons are analyzed with special
mathematical-statistical methods of psychometrics, then metric values result.

2.4.7 Content analysis

Originally developed as a method for the systematical and quantitative description of writ-
ten texts, content analysis is related to verbal systematic behavior analysis because it also
categorizes verbal communicational content.

Master Example 2.14 Content analysis
In content analysis counts are used with the aim of making something com-

parable to other texts or communicators. This can refer to syntax or semantics.
Again this count does not lead to measurement problems.
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2.5 Statistical models of measurement with
psychological roots

It’s not so much that measurements in psychology are limited to the methods described up to
this point as that some methods within statistics have taken root, having been developed from
problems in psychology and mostly by psychologists. Much more is measurable with these
higher methods of analysis.

Typifications have already been mentioned: for example, with the help of few or many
characters, an allocation to several typical groups of persons is possible (see Chapter 15).
Again with the help of a few or many characters, any object (i.e. of the existing psychother-
apeutic schools) can be positioned in a multidimensional space of characters by means of
the aforementioned factor analysis, in which a system consisting of as few as possible, not
directly observable (orthogonal) dimensions is taken or sought as a basis.

The mathematical information theory measures the extent of uncertainty that is present
during the search for information about unknown contents. It is determined according to
how much ‘either/or’ information has to be successively received in order to fully know
the content. Within the framework of psychological communication theory, corresponding
methods for the registration of the information transference of humans (i.e. information
content of the intervention of a session, of a psychologist, or a psychotherapeutic school) are
treated. And finally there are special methods for the fundamentally problematic measurement
of change, the models by Fischer (1977). With them the effects of treatments that happen
simultaneously but with different intensity can be separated and quantified independently from
each other.

Summary
Quantifying or measuring serves the aim of making research units comparable with respect to
some character – and therefore serves for the increase of scientific insight. There are different
techniques in psychology to measure psychic phenomena. The various measurement methods
of psychological assessment differ regarding their psychometric quality criteria.
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3

Psychology – an empirical science

This chapter is about the importance of statistics and its methods for psychology as a science.
It will be demonstrated that for the gain of scientific insight in psychology, empirical studies
are needed. An example describes the statistical approach answering the scientific question
that a study is based on. Important statistical terms, which will be clear in context, will be
introduced.

Empirical research starts with a scientific question. Its concluding answer leads to a gain of
insight. The way from the question to the gain of scientific insight is often intricate, not trivial
from the outset, and different according to question. That is why the following section is about
a general strategy for gaining insight in an empirical science.

A first example will be based on a question that can act as representative for many
other scientific questions in applied psychological research. It is about the psycholog-
ical consequences of a hysterectomy; that is, the short- and middle-term condition of
women whose uteruses had to be removed due to medical reasons. It will be demon-
strated that this question can only be answered by means of an empirical research study.
In this context it will be shown that statistically well-founded planning, as well as an
operationalization of the psychological phenomenology (what will be investigated) are
both crucial.

During the careful (research) planning of a study, which is necessary to answer a question,
the focus is on the balance of concurrent demands of optimality. What the adequate solution
strategy generally looks like will be demonstrated with a second example. It does not allude at
all to a psychological question, but to an everyday trivial one. Even here it becomes clear that
statistics as a scientific discipline is able to adequately work on and answer complex questions
which come from – in the first instant – very easy-sounding questions but have finally been
stated more precisely.

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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3.1 Gain of insight in psychology

Psychology as a science deals with the (long-life development of the) behavior and
experience (consciousness) of humans as well as with the respective causative conditions. ‘The
goals . . . are to describe, explain, predict, and control behavior’ and ‘seek[s] to improve the
quality of each individual’s and the collective’s well-being’ (Gerrig & Zimbardo, 2004, p. 4).

From that perspective, there is a need for empirical studies in psychology in order to gain
scientific insight. Using rules and methods from natural sciences, systematic observations of a
character must be made and they have to be related to treatment factors that are controlled as far
as possible. The actually realized values of our observations we call observed (measurement)
values/outcomes of a character.

Master
Doctor

Example 3.1 The psychological consequences of a hysterectomy will be assessed
According to clinical psychology, physical illnesses are connected with mental

aspects most of the time. Some aspects are coping strategies or the prevention
of psychic crises or psychic disorders. After undergoing a hysterectomy there is
reason to fear that patients suffer from lasting psychic crises, for example in the
sense of a massive loss of self-esteem, especially concerning self-esteem as a
woman.

Let’s make the assumption that the cause for the given question is an unsys-
tematic, subjective, or selective perception of some of these patients’ advisors.
At least in terms of health policy or maybe even in economic terms it appears
appropriate to research this question.

For the sake of simplicity let’s assume that earlier research has provided a
psychological assessment tool that can measure the self-esteem or the ‘psychic
stability’ of a person in a valid way. Let’s simply call that tool Diagnosticum Y .
Then we can begin to design a study. Usually one thinks about the first group
of patients that comes along. The most easily reachable, reasonably sized group
(i.e. 30), as concerns the relation of workload and gain of insight, could be
psychologically tested with Diagnosticum Y after surgery.

People critical of this empirical research design would at once argue:

1. It is an arbitrary selection of patients. The institution may have systemati-
cally chosen patients who were too old: in other institutions the mean age
of such patients might be substantially lower. There could be patients with
comparatively low educational level, divergent ethnic origin, long-term
single status and much more.

2. Every result would be meaningless because one would not know which
test scores women without surgery have in Diagnosticum Y (that is to say
the (‘normal’/total) population) as well as which test scores the women of
the study would have had before surgery.

According to this, one should design to examine women from the ‘healthy’ (that
is the (not-yet) positively diagnosed) part of the population at the same time, too.
They form the comparison group compared to the target group. Initially, here
again the first group of women that is available will be chosen – (presumably
similar in number to the first group).
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People critical of this empirical research design would argue:

3. More than ever, this is an arbitrary selection of persons. In the group of
‘healthy’ women, that is to say the comparison group, there could be people
with systematically different psychosocial characteristics (age, education
level, social status, ethnic origin, relationship) as compared to the patient
group; that is, the target group.

4. The two group sizes seem to be too small; hardly anybody will dare to
draw generally binding conclusions because of the possibly observable
differences between the two arbitrarily examined groups. Therefore no
general conclusion about the psychic consequences of a hysterectomy
can be made. A compulsory psycho-hygienic need for action for coping
or prevention cannot be deduced from this – but nobody is interested
in the differences between the two concrete groups (except the patients
themselves and their family members).

Therefore, one must basically reflect on the choice of women that should be
examined. Perhaps one comes to the conclusion that a so-called representative
group – subsequently termed sample – of the population is hard to survey (for
more details see Chapter 4). Not only the comparability of the psychosocial
characteristics is questionable, but also especially the circumstances under which
women from the ‘healthy’ population are willing to undergo the examination (i.e.
only if they are paid and presumably not in a hospital) or which women are willing
at all (i.e. those with especially high self-esteem or a special degree of ‘psychic
stability’). As a consequence one will design to examine the patient group with
Diagnosticum Y not only after surgery (note that here it is important to think about
the exact time of examination after surgery; preferably not right after surgery has
been performed but shortly before discharge) but also before surgery (note that
in this case one must think about the exact time of examination before surgery;
preferably not right before surgery is performed but a short time before hospital
admission). The respective results could be individually compared and from this
the psychic consequences of a hysterectomy could be estimated.

People critical of this empirical research design would argue:

5. Before surgery, presumably no patient will have a test score in Diagnos-
ticum Y that can serve as a comparable value typical of the time before an
illness with indication of hysterectomy.

6. And even if this were the case, a change towards loss of self-esteem or
‘psychic stability’ as a result of a surgery would hardly be surprising,
because every surgery means a massive intrusion into a human’s ‘bio-
(psycho-socio-) tope’.

Thus one has to specify the question: it is less about the examination of the
psychic consequences of surgeries (in a selective way that is a specific surgery
indication), but rather about the examination of the consequences of a specific
surgery that is of interest (namely hysterectomy), preferably compared with other
surgeries (that are less related to the role/functioning as a woman). Accordingly,
an empirical research design is indicated that also includes, apart from a group of
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patients after hysterectomy, a group of patients with surgery that is comparable
regarding severity (from a medical point of view; i.e. gallbladder surgery). Both
groups would be examined with Diagnosticum Y after surgery.

Critics would again object to the choice of the sample:

7. Neither sample has been chosen in a representative way as concerns all
the patients, for whom conclusions should be made. We actually want
insight that refers to all hysterectomy patients (compared to patients with
gallbladder surgery) in the Western civilization or at least the English-
speaking countries. Our findings should be applicable for the typical age
of such patients, for their typical psychosocial characteristics but also
especially for patients in the conceivable future.

8. The choice of gallbladder surgery, out of all surgeries that are comparable
regarding severity, is arbitrary and therefore may not be suitable.

9. The sample size is still not plausible.

Consequently, preliminary studies have to show that the first patient group that
comes along, namely the one from a specific institution, really is typical regarding
specific criteria – especially regarding the aforementioned psychosocial charac-
teristics. Otherwise the research design has to be designed as a multi-center study.
If necessary one has to take care to pick the patients representatively regarding the
calendar month of their surgery, in order to take into consideration seasonal varia-
tions of what is examined with Diagnosticum Y (self-esteem, ‘psychic stability’).
Also, at least through literature, the choice of gallbladder surgery as being typical
for all other surgeries that are comparable regarding severity must be proven.
Finally the number of investigated women should be considered in detail (see
Chapter 8 and the subsequent ones).

The starting point is the just-confirmed question: ‘Are the psychic conse-
quences of a hysterectomy graver than those of surgery with comparable severity?’

Critics of the current empirical research design would now have one final
grave argument:

10. Women, who fall ill such that a hysterectomy is indicated, are different from
the start (maybe from the time of birth) from women who undergo gall-
bladder surgery during their lifespan; for example the former could have
a systematically different personality structure and as a consequence –
under corresponding environmental conditions – a vulnerability to
illnesses of the uterus must be suspected.

Regarding this point of criticism, we ultimately have nothing to offer: this
empirical research design is a classical retrospective study (in experimental psy-
chology: an ex-post-facto design); that means that the allocation of patients to the
two samples did not happen, as in an experiment, by chance (see Chapter 4) before
the exposure to different conditions; but the grouping of the patients was done
afterwards (after falling ill), and therefore by definition unable to be influenced
by the examiner. Differences between patients after indications for hysterectomy
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or gallbladder surgery cannot, if once established, necessarily be traced back to
the group criterion, instead it can never be ruled out that the differences have been
there all along.

The gain of scientific insight in psychology starts, as in all other empirical sciences, with
a deductive phase. Besides a general description of the problem, this phase also comprises:
the specification of the aim of the study; the exact definition of the population of the units
of research for which insights (from a subset, the sample) concerning the scientific question
have to be gained; the exact definition of the required accuracy of the final conclusion; and
the selection or construction of (optimal) designs of the study. Then the investigation and the
collection of data connected with it are carried out. Afterwards, an inductive phase follows,
beginning with the statistical evaluation of the data and the subsequent interpretation of the
results. The latter can lead to new questions that initiate further empirical research.

3.2 Steps of empirical research

Empirical research can be divided into seven steps:

1. Exact formulation (specification) of the scientific question.

2. Definition of certain precision requirements for the final conclusions, required for
answering the scientific question.

3. Selection of the statistical model for the planning and analysis of the study.

4. (Optimal) planning of the study.

5. Realization of the study.

6. Statistical analysis of the collected data.

7. Interpretation of the results and conclusions.

The three first steps, however, cannot just be completed one after the other. The specification
of the precision requirements, for example, can only be accomplished if one knows how the
data will be analyzed later on.

Master
Doctor

The exact formulation of the scientific question is important, because in contrast
to imprecise questions in common speech – which will be understood even if they
are posed in the wrong manner – a lack of precision in research will not lead to
the desired gain of insight.

For Lecturers:

The answer of the former publisher of the ZEIT, Marion Gräfin Dönhoff, to the
question ‘Do you mind if I smoke in your company?’ is quite subtle – ‘I don’t
know, nobody ever dared to’ – here, she actually answered two questions: the
posed (‘Do you stand people smoking?’) as well as the intended (‘May I please
smoke?’) one.
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Doctor Example 3.2 A manufacturer wants to state the mean fuel consumption for a
specific car model.1,2

First we have to point out that the posed question cannot be asked for every
single car, but only for the car model as a whole; in the given case all produced cars
of a specific model form the population (see also Chapter 4). Next, we think about
factors on which fuel consumption depends. At the same time we have to refrain
from looking at the just-bought individual car, which for example as a Friday Car
might have certain defects. We find that fuel consumption depends on the driving
style of the driver (i.e. high- or low-revving typical driving style); on the route
(i.e. Sacramento–Reno over the Sierra Nevada vs. San Diego–Los Angeles along
the Pacific coastline); on whether one drives in the city, on a highway or on an
expressway; on whether one gets into a traffic jam or slowly moving traffic; and
perhaps on many other factors. Therefore we ask ourselves: for which situation
should the statement in the prospectus be valid? For example, one could state the
consumption for the most important situations in a chart. This is unusual, and
because of the amount of information it may be daunting. Instead of eliminating
the mentioned influences (context factors) with special experimental adjustments
(see Section 7.2.2), one could conduct several test drives under some arbitrarily
chosen conditions (i.e. 150 miles each) and determine the fuel consumption; we
will show later on why this would be an inappropriate approach.

Now we consider that instead of a single number it may be advantageous
to state a range (a confidence interval; for more details see Chapter 8) for the
average/mean fuel consumption, averaged particularly concerning all influences –
for most cars produced this range should be true. During the construction of such
a confidence interval one has to fix the relative frequency (more exactly, the
probability; see Chapter 6), 1 – α, with which the mean fuel consumption really
is in that range. One will be anxious to keep α (very) small and therefore keep
1 – α (very) large. At the same time, however, we don’t want to have too large
an interval: the statement of, for example, ‘between 15 and 40 miles per gallon’
would only lead to disapproval in future customers; it hardly contains surprising
information. From this we learn to keep the range within admissible boundaries;
we could for example determine that it should not be larger than 3 miles per gallon.

With this we have accomplished a great deal from the seven steps of empirical
research. The exactly formulated scientific question now is: ‘Within what bound-
aries is the mean fuel consumption of the specific car model expected to be?’
Also part of the analysis has been determined; namely: from the collected data
(here, measurement values in the natural sense; that is fuel consumption in miles
per gallon), a confidence interval will be calculated with the accuracy of α at a
determined width.

1 In a modified way this question was posed as a consulting problem to the first author of this book; the consulting
led not only to a hardly ever published design of the study but also to a statistical analysis that even nowadays is
rarely found in any statistics book.

2 The chosen non-psychological example can easily be transformed by the means of an analogy into a psycho-
logical one: a sport psychologist, who gives a certain treatment (‘mental training’) to long jumpers in a competitive
sports center, wants to publish the mean-achieved training performance.
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Let us now come to the choice of the statistical model and the empirical re-
search design: a statistical ‘model’, which is an assumption, is needed as a math-
ematical explanation for the collection of the data. Due to reasons that will be ex-
plained later on (see Chapter 7) we will aim to have a random sample of a > 1 cars
taken for test drive purposes from the total of all cars produced. With every single
one of these cars, n test drives with predetermined distance will be made, and
the amount of fuel consumed will be measured. These measurement values will
be termed yiv, with i being any (fixed) number of the car that can take any
value between 1 and a. And v is the number of the test drive with car i. For
simplicity (and as we will see later also because it is, in a well-defined way,
optimal) we make the same number of test drives with every car, so that v
runs from 1 to n. Symbolically, our future data will have the form: yiv; i = 1,
2, . . . , a; v = 1, 2, . . . , n, which are a · n measurement values. The future data
structure therefore has already been determined at the time of planning the study.
Now we want to specify a statistical model for yiv. Therefore we assume that the
measurement values yiv fluctuate around a mean μ. Out of all the reasons why we
don’t get the same measurement value every time (these are the so-called causes
of variation), we only can/want to look at possible differences between the cars
(inter-individual causes of variation). Accordingly, deviations between the single
measurement values can be traced back to the effect ai of the respective car i as
well as to a measurement error eiv. We model the observed measurement values
yiv through a random variable yiv (note the difference between yiv and yiv: random
variables are here made distinguishable from non-random quantities through bold
letters). Chance has an effect because we want to assume that the cars in the
study have been randomly taken from the population of cars produced.3 That is
why also the effects ai of the cars must be modeled or described through random
variables. Hence the model equation is:

yiv = μ + ai + eiv (i = 1, 2, . . . , a; v = 1, 2, . . . , n) (3.1)

More about this model and its side condition can be found in Section 10.4.1.3.
With that, essentially all of the first three steps of empirical research have been

completed. For planning the study it is now necessary to optimally determine the
two parameters a and n.4 We can either minimize the amount a · n of test drives
(that is the size of the study) or the cost of the study. At this point we don’t want
to explain in detail how we get to the solution, we only state the result here: with
a = 14 cars, according to the price and precision requirements (not given here),
the test track has to be driven n = 12 times.

As soon as the study has been carried out according to this design, we then
only have to analyze the data and interpret the results, as described in Chapter 10.

3 Basically all cars have the same opportunity of becoming part of the study, for example by having a lottery to
decide which cars will actually be picked.

4 Neither the calculation for a confidence interval, nor the optimal design of the study could be found in literature
at the time of the aforementioned consulting. That is why at that time two colleagues were asked to develop something
appropriate (see now Herrendörfer & Schmidt, 1978).
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For Lecturers:

Non-statistical reasoning often leads to unjustified generalizations in the inter-
pretation of observations. This can be well demonstrated with the following
humorous example. Three Continental Europeans travel through Scotland in a
train. One is very uncritical, one is critical, and the third one is statistically edu-
cated. They see three black sheep standing on a hill. The uncritical one says to
the others: ‘See, in Scotland the sheep are black.’ Next the critical one says: ‘One
cannot say that in such a general way. What one can say is that there are at least
three black sheep in Scotland.’ Then the third one says: ‘Even that doesn’t have
to be true, we can only say that there are at least three sheep in Scotland that are
black on one side.’

Most of the time in psychological studies one will have to deal with the collection of more
than one single character. One then has to decide in favor of one character that is the most
interesting in order to complete the first four steps of empirical research.

Summary
For the gain of insight in psychology, a statistically (meaning: derived from statistics as a sci-
ence) founded design of the study is needed. For this purpose, a definition should be given
for the population (of persons), for whom findings will be recorded (using a subset/sample
of it). Regarding content, the needed observations must be carried out in a way that rele-
vant context factors are controlled. The way of sampling, as well as the size of the sample,
depend on fundamental rules of statistics. The collection of data regards the ascertainment
(often measurement) of observable phenomena, which leads to actually realized values of our
observations; we call them observed (measurement) values/outcomes.
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4

Definition – character, chance,
experiment, and survey

In this chapter, quantitative and qualitative, and continuous and discrete characters, as well
as factors, will be distinguished, and different scale types of observed values/outcomes will
be described. The term ‘chance’ will be defined more precisely. Studies will be divided into
experiments and surveys.

Carrying out a study for the gain of scientific insight within psychology entails conducting
observations with respect to at least a single specific character. For this, there are basically
two strategies. Both of which are based on the principle of chance. Fundamentally chance
is the phenomenon in gambling that is responsible for the outcome of the game (e.g. the
outcome when throwing a die, namely the number 1, 2, . . . , 6, or the outcome of a lottery).
For empirical scientific purposes, one could also say that chance means all influences on
events or observations of interest, which are either not ascertainable or which we don’t want
to ascertain.

Bachelor The term ‘chance’ should not be confused with its meaning in everyday use; there
chance often means ‘seldom’ or ‘unexpected’. In this book an event that happens
by chance is an event that can, but doesn’t have to happen.

Bachelor Example 4.1 Arbitrariness and randomness
The reader might ask within his/her wider range of friends (preferably exactly

18 persons) for the first number between 3 and 20 that comes to mind. If chance
were the only cause of their respective responses, we would basically expect that
every number between 3 and 20 would occur the same number of times, which
is about once. Experience has shown, however, that up to half of the persons

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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will say 17; also other prime numbers and odd numbers tend to occur relatively
more frequently than other numbers. Subsequent arguments explain that people
look for a random number and that they try not to pick any ‘typical’ number like
‘4’ or ‘8’. This example documents that, in this case, arbitrariness is at work,
not chance.

In contrast to events that are dependent on chance, thus being random events, other events we
call (strictly) deterministic.

Master Example 4.2 Drawing from a deck of playing cards
When drawing from a set of well-mixed playing cards, the result is a random

event, for example the 10 of diamonds. If somebody searches for the queen of
hearts and takes it, then this result is an arbitrary event because it has been
determined by the will of that person. Finally if somebody draws the first card
from a newly unwrapped deck, it is a systematic event because, when packed,
decks usually have the ace of spades on top.

Master
Doctor

When several isolated observations (occurrences, events; for example the throwing
of two dice and the observation of the resulting number of spots on top) occur,
we talk about chance if there is either no connection at all or an irrelevant (inter-)
connection between them. If there is a great mass of events (for example the
opening of buds on a blossoming apple tree) then chance is the product of an
accumulation of non-ascertainable influences, resulting without any rule in a
chain of events where one cannot predict in which order the buds will open.

Master
Doctor

Students and lay people (professionals in neighboring disciplines), especially
psychotherapists with a particular school of thought, often express the following
opinion: ‘Chance-based coincidences don’t happen.’ What they mean is that all
events happening around one person have their reason (cause) in that person’s
history; and if not in that person’s own history then in that of some other ‘players’.
In the end this belief in causality implies that the past and the future of the universe
are principally predictable. The past could be completely reconstructed and the
future could be predicted up to the smallest detail. Despite the fact that this attitude
towards life may motivate a client to strengthen his/her internal locus of control
of reinforcement belief,1 such belief in causality is rather crude.

Werner Heisenberg’s Uncertainty Principle shows that the reference to chance
does not have its origin in a lack of theoretically available information, but that
chance is a principle (Heisenberg, 1927); this principle includes the notion that
it is generally impossible to determine simultaneously both the position and
momentum of an elementary particle in some accurate manner, and this is not a
question of methodological failings, but a principle.

1 Greatly simplified, locus of control of reinforcement belief means: ‘by whom or what a person thinks that his/her
life course is determined’.
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The two strategies for obtaining observations of a character are the following:

1. The behavior of certain chosen persons (in general: research units) is (psychologically)
examined with respect to some traits/aptitudes without them being influenced by the
examiner. This is what we call a survey. If sampling by chance, that is random sampling,
occurs, we speak of a random sample. Since we don’t look at samples other than
random samples in this book, we often only talk about samples. Rarely is there a
complete inventory ascertainment of the population or, in other words, a census of the
population/universe, as with statistical almanacs.

2. The persons (research units) receive systematic treatments after they have been selected
for a sample; for example they are first randomly allocated to several groups, then
every group receives a different (psychological) intervention, and finally they are
psychologically examined. This procedure is referred to as an experiment.

For psychological experiments we can give the following simplified definition: in an experi-
ment the researcher observes the behavior (verbal and nonverbal actions, reactions) of his/her
participants (persons; very often then called subjects) under strictly established and controlled
conditions which were varied by him/her intentionally and specifically in order to test the con-
ditions’ influence on the assessed behavior. Thereby randomization of the subject’s condition
assignment is indispensable, and replication of the procedure must be essentially possible;
controlling conditions aims for a reduction in variability of confounding sources.

In both cases, survey and experiment, the collected data for the character of interest
(for example (test) scores on a psychological assessment tool; in general – observed val-
ues/outcomes) are recorded and then statistically analyzed. If an experiment or a survey
consists of several consecutive steps, where every step is based on the result of the preceding
one, then we call this procedure sequential.

Master
Doctor

Generally the observed data depend on chance in two ways: on the one hand the
research units have been chosen at random and assigned to an experimental con-
dition by chance, respectively. On the other hand the same research units observed
under nearly identical sampling circumstances don’t lead to the same outcomes,
but by chance to (slightly) different ones. The latter is due to measurement errors
(see in Section 2.3 the quality criterion of reliability).

Once the data have been collected by means of random sampling and randomization within an
experiment, respectively, we can analyze them with statistical methods. Then we reflect upon
all the results concerning our scientific question that we could possibly obtain. First we look
at the underlying population: a population is the set of objects (persons,2 schools, hospitals,
etc.), for which an empirical study using a subset (sample) is supposed to make a conclusion
regarding certain characters. There must be an operational definition for the population that
allows for an assertion of whether a certain object belongs to or not.

2 In the case of experiments we talk about subjects, within psychological assessment about testees/examinees.



P1: OTA/XYZ P2: ABC
JWST094-c04 JWST094-Rasch September 20, 2011 2:11 Printer Name: Yet to Come

DEFINITION – CHARACTER, CHANCE, EXPERIMENT, AND SURVEY 33

Master
Doctor

Example 3.1 – continued
The psychological consequences of a hysterectomy are to be assessed.

It is important, while formulating the scientific question, to clearly identify
the group of people or, in other words, the population that one wants to observe
or whose aptitudes/traits one wants to quantify. In this example all hysterectomy
patients could be the population, or those aged below 40 years, or those who
come from Central Europe, or those aged below 40 years that live in urban areas,
etc. Therefore populations must be defined exactly with regards to space, time,
and content.

Often not only the objects, that are the (potential) research units, are called population or
sample, respectively, but also the set of (potential) outcomes themselves.

Real populations are finite; the population size is termed N – the sample size is termed n.
In principle, it is possible to carry out a census, meaning that one examines all elements of
the population. In statistics, populations are often assumed to be infinite (in practice we can
use conclusions that are valid under the assumption of infinite populations for N > 1000 and
n
N < 0.1).3

Master Research units can be distinguished more accurately for both experiments and
surveys. In an experiment, the object from a given population that is randomly
assigned to a certain condition (such conditions might be particular treatments) is
what we call an experimental unit. In a survey, the element of the population that
becomes part of the sample is termed survey unit. Of course also the experimental
units have to be (randomly) selected as a sample from a well-defined population.

Up to now we have talked about characters without properly defining what is meant by the
term: a character is that specific feature, which is the research objective of a study; it is
(in-)directly deduced from the scientific question. Apart from socio-graphic factors, in psy-
chology these are mostly traits, aptitudes and all sorts of behavior patterns (see Example 1.1).

Characters have thus various measurement values. The result of ascertainment of a char-
acter, that is the outcome, is in psychology often called an investigational result, also obser-
vational value or observed (measurement) value. Since the result of a statistical analysis of a
study can also be called an ‘investigational result’ (when indicated result of the experiment)
it is preferable to speak of outcomes as observed values, or for short, simply as observations.
By the way, in psychology there is the special case of a test score, which is the (action or)
reaction shown in a psychological test (in general: a psychological assessment tool) that has
been scored in a certain way.

Values of characters are ascertained by means of a ‘measuring instrument’ (in a broader
sense) with the help of a certain scale. More precisely: an unambiguous assignment rule

3 N stands for the extent of finite populations on the one hand, but on the other hand often also stands for the total
number of research units in a study that consists of several groups. However n is always the number of research units
sampled from a population as a single sample.
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of numbers or symbols to the different shapes of a character is termed scaling in general
and a scoring rule in psychology. The set of numbers or symbols that are available, and
between which a more, or less, differentiated relational system is defined, is called a scale.
Therefore a scale mirrors (mostly in numerical terms) the (empirically detectable) relations
between research units. It makes the relations accessible to mathematical operations. The term
scaling includes measurement of a character. The multitude of characters that are potentially
interesting to us now differ regarding their respective scale type.

Master If we empirically compare (put in relation to one another) two objects, let’s
say two sticks, then we expect from the scaling that is available to us, in this
case ideally (metric) measurement, that the assigned scale values (measurement
values) represent the same relation. If we observe that stick Z is double the length
of stick U – by holding stick U two times against stick Z – then an adequate scale
(cm scale) will represent this; for example U : Z = 20 : 40 cm. If we empirically
compare two objects, for example two pupils, and observe that pupil V can
regularly correctly answer the questions concerning the subject material that the
teacher addresses to him (and attends to his schoolwork according to instructions
and excels at written tests), whereas pupil W answers the questions concerning
subject material either incorrectly or not at all (and sometimes only attends to
his schoolwork after being asked to do so several times and sometimes fails
written tests), then we expect from the chosen scale, the assignment of grades, a
correspondingly identical relation of measurement values; for example grade A
for pupil V and grade D for pupil W.

Example 4.3 Typical empirical relations
In psychology we can transform empirical relations into numerical ones as in the following
examples:

1. Spouse B earns twice as much as spouse C.

2. In a perception experiment (signal detection with presentation time appropriate to the
subject’s age), senior citizen D makes, in comparison to senior citizen E, three times
more mistakes than senior citizen F, in comparison to senior citizen E.

3. The level of education (assessed by the highest completed schooling) of person G is
higher than person H’s.

4. Patient I is never married, patient J married, patient K divorced, and patient L widowed.

Every assignment of numbers to persons can logically only mirror those relations that are
empirically given and observable; and those numbers are transformable as long as they
adequately depict the empirical relations.

Below we will have a look at four types of scales, which differ with respect to the number and
the kind of represented relations between the research units. A superior (higher-order) scale
type also includes the relational qualities of the lower-order scale types.
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4.1 Nominal scale

The nominal scale depicts the fewest empirical relations. The scale values consist of signs
(symbols, letters, names) that – even if they are sometimes numbers – can only express
discrepancies. In particular, there is no indication of order between the signs.

Master One recognizes a nominal-scaled character by the fact that the feasible scale
values are arbitrary as long as the discrepancies between them remain. The sex of
persons, for example, is assessed by a nominal scale. It does not matter whether
female persons are characterized by a Venus symbol, f for female or 0, and male
persons by the Mars symbol, m for male or 1.4

Example 4.3 – continued
In Case 4 (patient I is never married, patient J married, patient K divorced, and patient L
widowed), we only need arbitrary names (nominal) for I, J, K, and L, because the only thing
that matters is that the discrepancies are visible; e.g. the names n, m, d, and w are just as
possible as 1, 2, 3, and 4 or a, b, c, and d.

Bachelor Example 4.4 Marital status
In Example 1.1 we find the nominal-scaled character marital status of the

mother. This character’s different shapes cannot at all be empirically relationally
ordered; there is no general chronological order in the course of a person’s life.

In Example 5.2 we will identify the absolute frequency of the different scale
values found in the n = 100 children; in Table 5.3 one can see that 9 mothers are
never married, 65 are married, 22 are divorced, and 4 are widowed. Of course we
can report these results in any other sequence. In any case, the value ‘widowed’
is not logically relegated to ‘divorced’.

When a (nominal-scaled) character has only two values, we also talk about alternative char-
acters or dichotomous/binary characters.

4.2 Ordinal scale

The ordinal scale creates symbols or numbers that express a rank order of the character’s
different shapes. In ordinal-scaled characters the number of possible scale values is generally
independent from the set of research units (cf. e.g. the grading scale). Also, full rankings
(where every research unit out of n gets a rank from 1 to n and thus the number of signs is
dependent on the set of research units) that are derived from metric data (which is how physics
mainly scales; see below for more details) represent ordinal scales.

4 By the way, experience has shown that when female researchers use numbers they tend to code female as 1 and
male as 0, and male researchers the other way around, although a relation of order does not exist for psychological
questions.
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Master One recognizes an ordinal-scaled character by the fact that the scale values may
be arbitrarily chosen as long as the empirical rank order of them is captured.

For Lecturers:

Most statistics text books within psychology claim that a rank-scaled character
is recognizable in that its scale values may be transformed monotonically (e.g.
y → y2). For students this is indeed a very easily understood interpretation, but it
is by no means exact. It is only correct if one postulates that negative values do
not occur – see for instance, however, the scale values ‘−1’, ‘0’, and ‘1’ for the
response options in a questionnaire: ‘no’, ‘I don’t know’, and ‘yes’; they do not
allow the monotonic transformation y → y2.

Example 4.3 – continued
In Case 3 (the level of education of person G is higher than that of person H), the possible scale
values of G and H are located on an ordinal scale because only the relation ‘>’ is relevant; e.g.
the scale values 5 and 4 would be as appropriate as the (admittedly strange-looking) values
10.3 and 8.6.

Bachelor
Master

School grades form an ordinal scale; in ascending order the character’s different
shapes are, for instance, ‘needs improvement’, ‘satisfactory’, ‘great’, and ‘excel-
lent’ or 4.0 to 1.0 (in descending order of achievement).

Bachelor Example 4.5 The scale type of the character social status in Example 1.1
In our example, the character social status is operationally defined via the

occupation of the father, or in the case of single mothers via their occupation. The
various occupations have been ordered (in groups) as follows: ‘upper classes’,
‘middle classes’, ‘lower middle class’, ‘upper lower class’ and ‘lower classes’.
However the way the character social status has been observed here leads to an
additional scale value, which is ‘single mother in household’. It does not fit into
this order either at the beginning, or at the end, or anywhere in between. When
considered like that, this is a nominal-scaled character. If we want to convey the
basically given (rank-) order to the recipient of the results, we have to omit all the
cases with the scale value ‘single mother in household’.

Nominal scale and ordinal scale are often summarized by the term ‘non-metric scales’. And
one terms both types as qualitative data. In contrast, data that stem from a scaling of one
of the two scale types discussed below, interval scale and ratio scale, are called quantitative
data.

Doctor Within psychology one usually counts ordinal-scaled characters as quantitative
characters too. This, after all, is because scale values in rank scales mirror grada-
tions or gradual discrepancies, which means that they express an order regarding
a ‘more or less’ quantity. This differs from nominal-scaled qualitative characters,
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where the scale values have a different qualitative meaning; they are not one-
dimensional but represent several dimensions that cannot be related to each other.
Below we will use the term quantitative character, divergently from its usage in
psychology, but in concordance with the terminology in other natural sciences
and mathematical statistics, only for interval- and ratio-scaled characters.

4.3 Interval scale

The interval scale consists of numbers. The positive differences between them are interpreted
as the distance between the character’s different shapes. Besides the equality of the values,
the equality of the distances is also given. However, there is no absolute zero point – if the
interval scale had an absolute (that is to say ‘natural’) zero point then it would be a ratio scale!

Master An interval-scaled character is recognized by the fact that the measurement values
allow for a linear transformation of the form y → a + by (b > 0) without violating
the empirically given relations. One example for such a transformation is the
conversion of temperatures from Fahrenheit into Celsius:

Celsius = (Fahrenheit − 32) · 5

9

or with b = 5 / 9, a = –160 / 9, Celsius = y, and Fahrenheit = x:

y = 5

9
x − 160

9

Doctor The measurement of temperatures in degrees Celsius or Fahrenheit happens on an
interval scale. Both scales are convertible into each other by a linear transforma-
tion. Particularly with the existence of two scales (Celsius and Fahrenheit) instead
of a single one, it is obvious that temperatures are usually described without an
absolute zero point; the numerically existing zero of the Celsius scale is not a
‘natural’ zero because it has been arbitrarily located at the temperature where
water passes from a fluid into a solid state. There is, however, a natural zero that
the temperature cannot fall below; it is defined by the kelvin scale, which is a
ratio scale. Length and mass also have an absolute zero.

Example 4.3 – continued
In Case 2 (in a perception experiment – signal detection with presentation time appropriate to
the subject’s age – senior citizen D makes, in comparison to senior citizen E, three times more
mistakes than senior citizen F, in comparison to senior citizen E), the possible measurement
values for D, E, and F are scaled at an interval scale level. This is because the measurement
value difference (concerning E) must always express the ratio 3 : 1, without the measurement
values being able to take into account the chosen difficulty of the signal detection (i.e.
depending on the presentation time); for example the test scores 7, 1, and 3 would be as
adequate as 9, 3, and 5, or 20, 8, and 12. The reason why we cannot interpret the ratio of the
measurement values regarding content is that those ratios do not represent empirical relations.



P1: OTA/XYZ P2: ABC
JWST094-c04 JWST094-Rasch September 20, 2011 2:11 Printer Name: Yet to Come

38 DEFINITION – CHARACTER, CHANCE, EXPERIMENT, AND SURVEY

In the given signal detection experiment, only some of all possible signals are used, but we
could instead have used, for example, two signals that are very difficult to discern; then we
might really have observed the values 9, 3, and 5 instead of 7, 1, and 3. If we had used a few
easy, medium, and difficult ones in addition, then we could have got the results 20, 8, and 12,
or would have expected a corresponding result if really fair measurements apply.

Doctor The scientific attempt to scale ‘intelligence’ is a good example for psychologists,
showing how to adequately and not artificially interpret an interval-scaled char-
acter. Described very simply, the intelligence quotient (IQ) is defined as follows.
The test scores (mostly the number of solved problems) obtained in a pertinent
intelligence test from a very large standardization sample are first averaged and
second put in relation to the extent of all the differences between them: the mean
estimated for the population is termed μ; the corresponding extent of all differ-
ences is termed σ (see more precisely in Chapter 6). Then the test score of every
single testee, for example V with the test score yV, is linearly transformed:

IQV = 15 (yV − μ)

σ
+ 100

In this, the specification of the two constants 15 and 100 is arbitrary, especially
the specification of the additional 100; this could have been specified differently
in an equally plausible way, for example 0 instead of 100. Therefore it makes
sense to form the quotient between differences – for example in such a way that
the difference concerning the IQ between person V with IQV = 110 and person
W with IQW = 120 is actually twice as much as the difference between person
P with IQP = 90 and person S with IQS = 95. It is, however, not empirically
founded to judge that person W with IQW = 120 is one-third more intelligent than
person P with IQP = 90, although arithmetically 120 / 90 = 4 / 3. If the additive
constant were set to 0, then the test scores of the persons V , W, P, and S would be
10, 20, −10, and −5; the quotient of the differences between V and W or P and S
would still be 2, but the quotient between W and P would have changed to (−)2!
Therefore the intelligence quotient is interval-scaled.

4.4 Ratio scale

A ratio scale has all the relational qualities of an interval scale and in addition an absolute
zero point. Therefore the equality of relations (proportions, quotients) is presupposed.

Master A ratio-scaled character is recognizable by the fact that the character values can
only be transformed in the way y → ay, (a �= 0); otherwise the empirically
ascertained relations do not match.

Example 4.3 – continued
In Case 1 (spouse B earns twice as much as spouse C), the feasible measurement values taken
by B and C lie on a ratio scale, because there must always be the ratio 2 : 1; e.g. 10 family
allowances and 5 family allowances, $1750 and $875, £1120 and £560.
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Doctor As previously mentioned, the measurement of temperature in kelvin uses a
ratio scale. In psychology, ratio-scaled characters can be found principally where
physical measurements such as age of a person are given. However, from a psycho-
logical point of view, not all physical measurements represent empirical relations
that correspond to a ratio scale. For example, measurements of reaction times that
are mandatorily obtained by the means of a specific psychological assessment tool
within the personel recruitment for a job in surveillance, are indeed fundamentally
based on a metric scale (time scale of the clock); the psychological quality of the
numerical relations of the measurement values is ambiguous, yet: extreme values
(for example missed stimuli or very delayed reactions) can – as concerns the
achievement potential of a testee – hardly establish the same ratio as the concrete
numerical ratio of the observed reaction times. Even the quotients of differences
in reaction times must be viewed critically regarding their content. The choice
of whether the researcher insinuates that the data are ratio-, interval-, or only
ordinal-scaled appears to be based solely on his/her subjective opinion; oriented
on methodic fundamentals, it is, however, possible to empirically determine the
scale type of data by implementing the scaling techniques of psychometrics (see
Kubinger, 2009b).

For Lecturers:

An example taken from sports illustrates how arbitrarily and improperly non-
or pre-scientific scaling procedures in everyday life are applied. In the (alpine)
ski world cup, best-ranked athletes are rewarded with world cup points and the
sum of gained points determines the winner at the end of the season. It would
be easy to contrast racer R with racer S; that is to say to determine the empirical
relation of their speed over the whole season by matching corresponding video
recordings (provided that both have contested the same races). The rules, however,
provide another scaling which represents numerical relations that can contradict
the empirical ones; from that point of view the scaling is unfair: The winner of
a race gets 100 points, the second 80, the third 60, the fourth 40, etc. Supposing
R is 0.01 seconds slower in each of five races than the winner S, and always in
second place; and wins the sixth race, being 2 seconds faster than S, who places
fourth. S would then win the world cup with 550 points, 50 points ahead of R with
500 points, although the matching of the video recordings shows that, calculated
over the whole season, R was 1.95 seconds faster than S. Such an unfair scaling
is irrelevant as long as athletes and viewers freely accede to such authoritarian
rules for the sake of amusement – in psychological assessment in case work,
however, there exists a demand for fairness and objectivity. In those instances
such an unfair scaling would not be justifiable, for ethical reasons!

Master A superior scale can always be downgraded into a lower-ranked one. Thus, as
measures of achievement in a speed-skating competition, instead of stating the
times of the three best racers, one can award a gold medal for the shortest time,
and silver and bronze for the second and third best times. In long jumping this is
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applicable in an analogous way, except that the gold medal here is awarded for the
highest numerical value reached. From this one can see how senseless it would
be to position medal ranks on a number line. In one example gold is on the left
side of the others and in the other it is on the right side. If one doesn’t know what
is behind the ranks in a quantitative way, then not even the direction is clear!

Doctor For example, concerning the measurement of temperature, temperatures
below –40 degrees Fahrenheit and above 120 degrees Fahrenheit might happen,
although with normal outdoor thermometers we can’t measure them. Statements
of temperature are partly made using the measurement values, that is to say quan-
titatively, but partly in the form of ‘below –40 degrees’ and ‘above 120 degrees’.
This corresponds to a mixture of ordinal and interval scale. Such cases occur dur-
ing the measurement of reaction times (at least in the upper level) as well as during
the measurement of lifetime, especially when the researcher cannot wait for the
death of the research units of a sample (e.g. for scientific questions of survival after
clinical treatments). Statistically such data are analyzed either at a lower-ranked
scale – that is to say that the scale values are represented by an ordinal scale – or
the given sample is treated as a censored sample (for a precise description of this
procedure see Rasch, Herrendörfer, Bock, Victor, & Guiard, 2008).

For their authorized use, statistical analysis methods hardly ever need the high requirements
of the ratio scale for the character of interest. Instead they require just an interval scale. That is
why we don’t have to distinguish between the two scale types in the following. We will only
talk about whether a character meets the requirements of an interval scale or not, and mean by
this that the character at least meets these requirements. A ratio scale perhaps beyond that is
nonessential for our observations. Therefore we will simply talk about quantitative characters.

4.5 Characters and factors

Irrespective of the scale type, quantitative characters have to be divided into discrete and
continuous characters. A quantitative character is discrete if it only has very specific mea-
surement values; for example only natural numbers. If however, within a specific interval, all
real numbers are possible measurement values, then the character is continuous.

For Lecturers:

Lem (1971) made clear in one of his utopian novels just how extensive even the
amount of natural numbers is. Here we give a modified account from a passage
of his work:

Ijon Tichy is in a cosmic hotel with an endless amount of rooms –
which have just been taken by an endless number of dentists that have
come from all over the universe in order to take part in a conference.
He witnesses the arrival of an endless number of psychologists that
want to take part in a cosmic psychology conference. Of course they
also need rooms but the hotel manager explains that all rooms have
been taken. Ijon Tichy suggests now that every dentist should just
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move into the room with double the room number of the one they
originally had. Since, after the multiplication by two, these are all
even room numbers, all the rooms with uneven room numbers are
free: there is also an endless amount of them and the psychologists
can then move into those.

Master Depending on the scale type that underlies the sampled data, different statistical
analysis methods are applicable; that is to say, appropriate. For example, the
mean (Section 5.3.1) can only be used to suitably describe quantitative data in
a short and concise way. The mean is therefore absolutely proper to represent
the children from Example 1.1 regarding their test scores in the subtest Everyday
Knowledge. The ‘middle’ social status or moreover the ‘middle’ marital status
of the mother are senseless quantities, as there are no empirical differences that
can be observed; at best a rank order is given; the mean would unwarrantedly
insinuate very specific quantities.

If a character is designated to several (treatment) conditions within a study, then that char-
acter is commonly termed a factor. Completely analogous to characters, one can talk about
quantitative and qualitative factors. The values of a character that is a factor aren’t called scale
or measurement values, but instead factor levels or, for short, levels. A particular difference
between character and factor is the following: Whereas a character is generally postulated as
being determined by chance, a factor can also be modeled as being not random.

Sometimes there are factors that are not (primarily) of interest for a specific question and
therefore are not part of the design of the study: they are confounding factors and are called
noise factors. If they were not held constant or adequately taken into account, the study’s
results would be biased – one says that the results have a bias.

The choice of which statistical method will be used for the analysis of a study depends
closely on which conditions are investigated and which noise factors have to be taken into
account, as well as if, when, and how the influence of unknown noise factors can be minimized.

Summary
For the research units in an empirical study (either a survey or an experiment) we get observed
(measurement) values (within psychological assessment mostly test scores) for the character
in question. These stem from different scale types according to which empirical relations they
represent. These scale types distinguish between quantitative and qualitative characters; the
latter have to be divided into nominal- and ordinal-scaled ones.
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Part II

DESCRIPTIVE STATISTICS

Descriptive statistics describe data independently of whether they stem from a population or
a sample. The data can be described numerically or graphically. When it comes to obtaining
scientific findings, however, descriptive statistics serve at the most as a first step. But inferential
statistics are of more importance: with the help of these, conclusions can be made about the
population, on the basis of a sample.

Master
Doctor

In mathematical statistics, populations are often considered or ‘modeled’, re-
spectively, as infinitely large; this proves especially worthwhile if the size of the
elements, N, is ‘sufficiently’ large, e.g. N > 1000; we will demonstrate later that
sizes of 120 are often sufficient from a practical point of view.

In many cases, it is not possible to observe all elements of the population. Then, one has
to be content with a part of it, i.e. a sample. In doing so, a randomly sampled part from
the population in question is required so that the methods of inferential statistics introduced
in Chapter 7 can be applied. Various approaches to random sampling will be described
in Chapter 6. Although this requirement may be irrelevant for descriptive statistics, the
results of descriptive statistics alone are not sufficient for today’s research projects. The
objective is to extrapolate the results from the sample to the population as is done in ex-
trapolations during political elections, where the overall result is predicted after the first
vote counts – in inferential statistics we use the term ‘to estimate’ instead of the term ‘to
extrapolate’.

We assume in the following that the observed values y1, y2, . . . , yn of a single character, or
the observations y11, y12, . . . , y1n1 ; y21, y22, . . . , y2n2 ; . . .; ym1, ym2, . . . , ymnm of m characters,
respectively, are given. The objective is then to clearly illustrate or to concisely describe the
essential information that is covered with these data.

Bachelor Hence, the individual observations of a sample or of a population should be
compressed appropriately. They cannot be considered in detail, i.e. individually,
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and cannot be completely disclosed to those interested in the research study.
Instead they should be compressed to the essentials of the information in their
entirety.1

Thus, statistics are ascertained and tables and figures are generated.

1 In the first years of the twentieth century, articles in the scientific journal Biometrika can be found in which all
outcomes are listed.
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5

Numerical and graphical
data analysis

In this chapter, descriptive statistics will be introduced as a contrast to inferential statistics.
Data which have been collected in order to answer a certain scientific research question are
mostly very complex in their structure; their essential information is therefore not immediately
ascertainable. There are several methods for the ‘compression’ of data which will be described
in the following. One of them is to list the frequencies of the observed character’s measurement
values in tables or figures. Another method is to calculate statistics that characterize the data
briefly and concisely.

Data analysis can be carried out for a single character alone; however is often performed
simultaneously for several characters. If we consider Example 1.1, several characters have
been acquired, for example age of the child, sex of the child and gestational age at birth.
We will deal first with the case of analyzing each character separately. Then, we will briefly
discuss the special features which occur in the simultaneous analysis of two characters. The
simultaneous analysis of two or more characters will, however, be discussed in more detail in
Chapter 11.

5.1 Introduction to data analysis

Even statistical lay people are used to tables and figures as a method of data analysis. They
would probably also apply the best known of all statistics, the (arithmetic) mean.

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Bachelor Example 5.1 Number of weeks of pregnancy for children with Turkish as a native
language, in Example 1.1

We want to describe the character gestational age at birth (in weeks) briefly
and concisely. This should be accomplished by applying the mean. However, we
first have to identify those children encoded with the value 2 = ‘Turkish’ in the
character native language of the child.

In R, we first enable access to the database Example_1.1 (see Chapter 1) by using the
function attach(). Then we type

> summary(age_birth[native_language == "Turkish"], na.rm = TRUE)

The first argument (arguments serve to specify functions; they are set in parentheses
and separated from each other by commas) in the function summary()refers to the
character gestational age at birth, namely the vector age_birth. Since the analysis is
to be limited to children with ‘Turkish’ as a native language, we add to this argument:
[native_language == "Turkish"]. Because we would like to exclude any miss-
ing values, we use the additional argument na.rm = TRUE. Generally, the function
summary()displays the main results of the analysis.

After the whole command is typed in, we confirm it by pressing the ‘←’ key and get
the result (shortened output):

Min. Mean Max.
35.00 38.52 41.00

In SPSS, we select

Analyze
Compare Means

Means. . .

As a consequence, the window in Figure 5.1 appears. There we select the character ges-
tational age at birth and move it (by clicking the arrow-button) to the field Dependent
List:. Afterwards, we select the character native language of the child to drop and drag it
(analogously) to the field Independent List:. Next we open the window shown in Figure 5.2
by clicking Options. . .. In this window, we select Minimum in the panel Statistics: and move
it to the panel Cell Statistics:. We proceed in a similar fashion with Maximum. Finally, we
click Continue and return to the window shown in Figure 5.1, where we press OK to get the
results (see Table 5.1). For the time being, we won’t consider the row German or the column
Std. Deviation.
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Figure 5.1 SPSS-window for calculating some basic statistics.

Figure 5.2 SPSS-window for choosing which statistics to calculate (e.g. the mean).
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Table 5.1 SPSS-output for the statistics in Example 5.1.

MaximumMinimumStd. DeviationNMean

German

Turkish

Total 41321.79510038.51

41351.5685038.52

41322.0135038.50

native language of the child

Report

gestational age at birth (in weeks)

The mean number of weeks of pregnancy is 38.5 in the sample of children with
Turkish as native language; the lowest value is 35 weeks (rounded); the largest
is 41.

The mean is not only the best-known statistic, but also the most important statistic within psy-
chology. However, one realizes quickly that it is not a measure that is absolutely interpretable.
One cannot draw a conclusion from the calculated result based solely on the concrete value;
instead it should be compared relatively to additional information gained: either compared to
another mean from a different sample (population) or compared to a (generally well-known)
‘standard’.

Bachelor Example 5.1 – continued
Nowadays it is common knowledge that births mainly occur between weeks
35 and 40 of pregnancy; of course there are exceptions, as Table 5.1 shows. The
sample of children with German as a native language in Example 1.1 immediately
comes to mind as an interesting comparison.

A single statistic is not always sufficient in order to describe the essential information of the
data concisely.

Master A mean is only typical for the observations of a sample – it thus only describes
them briefly, concisely and appropriately – if all values are in fact distributed very
close to it. On the other hand, if the outcomes are dispersed very widely around
the mean, the mean is actually not typical; it, then, does not well enough provide
information about the outcomes of the sample on its own.

For example, a mean age (in years) of 5 could result from a sample of
kindergarten children, without this particular age even having occurred once
in the sample. For instance, it could be the case that the same number of children
are either 3 or 7 years old, and there is also an equal number of children aged
either 4 or 6 years old.

In order to be able to evaluate the informative value, or the degree of typicalness, of a sample’s
mean, we also need, in addition to a measure of location (i.e. the ‘position’ in the measured
range with the outcomes dispersed around it), a second statistic: namely a measure of scale.
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For Lecturers:

The meaning of dispersity is illustrated by a poem from List (see Krafft, 1977):2

A man who of statistics had heard
Thought of the mean and found it absurd.
He doesn’t like it; he is opposed,
Though an example has that thinking deposed.

A hunter wants to shoot a duck
And with his first shot he tries his luck.
The shot flies fast out of the barrel,
Lands well in front; for the duck it’s no peril.

A second shot goes with a loud crack
But lands a good distance toward the back.
The hunter speaks without fear or dread,
With belief in the ‘mean’,
Statistically speaking, the duck is dead.

But had he been smart and taken buckshot
(We say this only to give him thought)
He could have multiplied his chances.
The shot would miss, yet the duck falls in strife,
For standard deviation shortens his life.

Especially in the case that two samples are to be compared, the calculation of a measure of
scale in addition to a measure of location is absolutely necessary.

Master In the example of kindergarten children with a mean age of 5 years, it could be
the case, for example, that a second sample with exactly the same mean includes
mostly observations of 5 years old but does not include either 3 or 7 years old at
all – and only relatively few of either 4 or 6 years old. Obviously, in this case, the
two samples could not be interpreted as equal with regard to the age.

Bachelor Example 5.1 – continued
Table 5.1 shows that the mean of children with German as a native language is
equal to the mean of children with Turkish as a native language. However, the
observations in the first sample fluctuate between 32 and 41, and in the second
sample between 35 and 41.

5.2 Frequencies and empirical distributions

A simple method which leads directly to a compression of the given data’s information without
substantial loss of information is to count how often the various measurement values of a

2 Freely elaborated by Sandra Almgren using the German original.
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nominal- or ordinal-scaled character occur – we often call the values of qualitative characters
categories, too. As a result, each category is characterized by an (absolute) frequency of
its occurrence. The information that gets lost with this method is only the position of each
element within the original series of outcomes.

Bachelor Especially in the case of extensive data, the classification of the character’s mea-
surement values into classes is required in order to visually represent quantitative
characters. In doing so, it is often useful to aggregate the information to a few
classes. However, this entails a certain loss of information: without any knowl-
edge of the original data, there is likewise no knowledge of the exact outcomes.
Given the clarity of the illustration, this, however, can be accepted.

Master Strictly speaking, classes of a character’s measurement values are always given,
namely

� in discrete, interval-scaled characters in the form of the different measure-
ment values;

� in continuous, quantitative characters because of the limitations of the
measuring precision within a certain measuring range.

Bachelor The observed frequencies per measurement value or class are called absolute
frequencies. Relative frequencies result from dividing the absolute frequencies by
the number of all observations (research units). They are needed if different data
sets of different sizes are supposed to be compared with regard to all measurement
values. The set of all relative frequencies per measurement value or class is called
a frequency distribution or, simply, distribution. It is a case of an empirical distri-
bution as opposed to a theoretical distribution, which means a certain assumption
(see Section 6.2).

For quantitative and also ordinal-scaled characters, it is possible to calculate
cumulative frequencies. These show the absolute or the relative frequencies with
which this or any preceding (smaller) measurement value (class) occurs. The set
of all these relative cumulative frequencies is called the empirical distribution
function of the character.

All of the above-mentioned frequencies can be displayed in tables or figures.
Often, both are produced together.

5.2.1 Nominal-scaled characters

In the case of nominal-scaled characters, the calculation of cumulated frequencies does not
make sense. Instead, we only count the numbers of observations in the different measurement
values (categories); this is done both in the form of absolute and relative frequencies. A
pie chart is a suitable means to illustrate this. In it, the areas of the segments of a circle
represent the relative frequencies of the measurement values (categories) of the investigated
character.
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Bachelor Example 5.2 Marital status of the mother as well as sex of the child in
Example 1.1

Both are nominal-scaled characters. We are interested in the frequencies of
the corresponding categories.

Using R, we enter the following four commands:

> sex.tab <- table(sex)
> marital.tab <- table(marital_mother)
> print(sex.tab)
> print(marital.tab)

i.e. we apply the function table()to the characters sex of the child (sex) and marital
status of the mother (marital_mother). The respective results are assigned to the
objects sex.tab and marital.tab, respectively, using the command ‘<-’ consisting
of the symbols ‘<’ and ‘-’. Next, we set these objects as arguments into the function
print().

This results in:

sex
female male

50 50

marital_mother
never married married divorced widowed

9 65 22 4

Now we ascertain the relative frequencies by typing

> prop.table(sex.tab)
> prop.table(marital.tab)

i.e. we apply the function prop.table() using the relative frequencies stored in
sex.tab and marital.tab as arguments.

This yields:

sex
female male

0.5 0.5

marital_mother
never married married divorced widowed

0.09 0.65 0.22 0.04

In order to create a pie chart of the character marital status of the mother, we type

> pie(marital.tab, main = "Pie chart")

i.e. we apply function pie() to the object of interest, marital.tab, and add a title to
the resulting pie chart using the command main = "Pie chart".

As output, we get the pie chart shown in Figure 5.3.



P1: OTA/XYZ P2: ABC
JWST094-c05 JWST094-Rasch September 22, 2011 8:43 Printer Name: Yet to Come

52 NUMERICAL AND GRAPHICAL DATA ANALYSIS

married

Pie chart

never married

widowed

divorced

Figure 5.3 R-output showing a pie chart of the character marital status of the mother
from Example 1.1.

In SPSS, we select

Analyze
Descriptive Statistics

Frequencies. . .

from the menu to see the window shown in Figure 5.4. Now we select the character sex of
the child and move it to the panel Variable(s):

Figure 5.4 SPSS-window for calculating empirical frequency distributions.
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At the moment, we do not want to calculate any statistics. We therefore ignore the
Statistics. . . button (among others) and just click OK. In the resulting output, we disregard
the column Cumulative Percent due to the fact that there is no ranking of the sexes and, for
this reason, cumulative frequencies (in SPSS called Cumulative Percent) are completely
meaningless; for the currenty relevant part of the output, see Table 5.2.

Table 5.2 SPSS-output showing the empirical frequency distribution of the character sex
of the child in Example 1.1 (shortened output).

Valid PercentPercentFrequency

female

male

Total

Valid

100.0100.0100

50.050.050

50.050.050

sex of the child

We do the same for the character marital status of the mother and see Table 5.3 as a
result.

Table 5.3 SPSS-output showing the empirical frequency distribution of the character
marital status of the mother in Example 1.1 (shortened output).

Valid PercentPercentFrequency

never married

married

divorced

widowed

Total

Valid

100.0100.0100

4.04.04

22.022.022

65.065.065

9.09.09

marital status of the mother

Via

Graphs
Chart Builder. . .

we come to the Chart Builder (see Figure 5.5). Next we select Pie/Polar in the panel Choose
from: of the (already activated) Gallery tab. A pie chart symbol appears in the window on
the right, and we drag and drop it into the Chart preview above. Now a pie chart with the
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axes Slice by? and Angle Variable? appears (see Figure 5.6), as does the additional window
Element Properties (not shown here), which we ignore (e.g. close) for the time being. We
continue by selecting the character marital status of the mother and moving it to the panel
Slice by?. Now we click OK to obtain the pie chart shown in Figure 5.3.

Figure 5.5 SPSS-window Chart Builder.
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Figure 5.6 SPSS-window for creating a pie chart.

5.2.2 Ordinal-scaled characters

In the case of ordinal-scaled characters, we prefer to use the bar chart and the dot diagram
instead of the pie chart, as it is not possible to represent the rank order of the observations
with it.
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Bachelor Example 5.3 Social status without the category ‘single mother in household’
in Example 1.1

If we exclude the category ‘single mother in household’ of the fundamen-
tally nominal-scaled character social status, a new character is created, namely
an ordinal-scaled character. We now want to work with this new character for
statistical analysis.

In R, we first create a new character by entering the following commands:

> socialnew <- factor(as.character(social_status),
+ exclude = "single mother in household",
+ levels = levels(social_status)[-6])
> print(socialnew)

i.e. we apply the function factor() to the character social_status; we transform
this character with the function as.character() to a vector of text strings in order to
explicitly define the measurement values as non-quantitative. With the second argument
exclude, we ignore the measurement value ‘single mother in household’. The third
argument, levels, assigns the names of the individual measurement values by adapting
them with the function levels() from the character social_status. By adding
[-6], we omit the sixth measurement value. We assign the new character to the object
socialnew and set it as an argument in the function print() in order to print the
individual measurement values.

As a result we get (shortened output):

[1] middle classes lower middle class lower middle class
[4] middle classes upper lower class upper classes
[7] middle classes lower middle class <NA>
...
[97] lower middle class lower classes upper lower class

[100] middle classes
5 Levels: upper classes middle classes ... lower classes

The numbers in square brackets refer to the consecutive number of the measurement values.
Missing values are coded as <NA> in R; in our case, this applies for all children living
with their single mother.

To ascertain the empirical frequency distribution of the character socialnew, we
use a command similar to that in Example 5.2

> soc.tab <- table(socialnew)
> soc.pro <- prop.table(soc.tab) * 100
> soc.cum <- cumsum(soc.pro)
> cbind(soc.tab, soc.pro, soc.cum)

i.e. again we use the functions table()and prop.table() to calculate the absolute
and the relative frequencies, respectively. We multiply the relative frequencies by 100
to gain percentages and assign both results to new objects. Furthermore, we sum up the
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percentages by using the function cumsum(); we use the percentages as an argument,
and then we assign the result to the object soc.cum. Finally, we combine the resulting
vectors with the help of the function cbind() to a matrix.

As a result we get:

soc.tab soc.pro soc.cum
upper classes 12 13.636364 13.63636
middle classes 30 34.090909 47.72727
lower middle class 25 28.409091 76.13636
upper lower class 16 18.181818 94.31818
lower classes 5 5.681818 100.00000

In order to illustrate these results graphically, we type

> windows(width = 10, height = 6)
> barplot(soc.tab, xlab = "social status",
+ ylab = "Absolute frequency",
+ main = "Bar chart")

i.e. we demand a new output-window for our chart using the function windows()and
define its size as 10 by 6 inches. Next, we use the object soc.tab as the first argument in
the function barplot() and add as other arguments xlab, ylab, and main = "Bar
chart" in order to set the labels of the abscissa and the ordinate, and in order to give a
title.

As a result, we get the bar chart shown in Figure 5.7.

Bar chart

upper classes middle classes lower middle 
class

upper lower 
class

lower classes

social status

30
25

20
15

A
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ut
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5

0

Figure 5.7 R-output showing a bar chart of the character social status (without the
category ‘single mother in household’; Example 1.1).



P1: OTA/XYZ P2: ABC
JWST094-c05 JWST094-Rasch September 22, 2011 8:43 Printer Name: Yet to Come

58 NUMERICAL AND GRAPHICAL DATA ANALYSIS

Now we produce a dot plot by typing

> dotchart(c(soc.tab), pch = 16, main = "Dot plot",
+ xlab = "Frequency")

i.e. we apply function dotchart() and set soc.tab as the first argument, after trans-
forming the respective table to a vector using the function c(). With the second argument,
pch = 16, we configure our dots as small, filled circles. Furthermore, main = "Dot
plot" adds a title to the plot and xlab = "Frequency"labels the abscissa.

This command results in the dot plot shown in Figure 5.8.

middle classes

upper classes

5 10 15

Frequency

20 25 30

upper lower class

lower classes

Dot plot

lower middle class

Figure 5.8 R-output showing a dot plot of the character social status (without the category
‘single mother in household’; Example 1.1)

In SPSS, we can create a new character using the sequence of commands:

Transform
Compute Variable. . .

In the following pop-up window, we type socialnew as Target Variable, select the character
social_status, and move it to the panel Numeric Expression: (see Figure 5.9). Now socialnew
equals social_status, but we need to add a few conditions. For this we click If. . . and choose
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Include if case satisfies condition: in the subsequent window (Figure 5.10). We want to include
all research units with a social_status of less than or equal to 5 (6 denotes the measurement
value single mother in household). We apply the same procedure as in the window before, but
now we move social_status to the right panel and type ‘<=’ and ‘5’ either on the keyboard or
click the respective buttons (in Figure 5.10 we have already done this). A click on Continue
brings us back to the previous window, and clicking OK leads us back to the SPSS Data
View, where we find an additional column containing the new character socialnew (a section
of this can be seen in Figure 5.11). Missing values correspond to children living with their
single mothers. Finally, we define the type of scale of the new character by switching to
the SPSS Variable View and clicking on the column Measure in order to choose the option
Ordinal from the pull-down list (see Figure 5.12).

Figure 5.9 SPSS-window for computing a new character.
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Figure 5.10 SPSS-window for computing a new character given qualifying conditions.

Figure 5.11 SPSS Data View showing the newly computed character socialnew in
Example 5.3 (section).
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Figure 5.12 SPSS Variable View after creation of the character socialnew in Example 5.3.

Next, we proceed analogously to Example 5.2 (Analyze – Descriptive Statistics –
Frequencies. . .) in order to ascertain the empirical frequency distribution of socialnew and
obtain the output shown in Table 5.4. In SPSS, the values of the empirical frequency
distribution are multiplied by 100 and hence express percentages; they are labeled Cumula-
tive Percent.

Table 5.4 SPSS-output showing the empirical frequency distribution of the character
socialnew from Example 5.3.

Cumulative
PercentValid PercentPercentFrequency

1.00

2.00

3.00

4.00

5.00

Total

System

Total

Valid

Missing

100.0100

12.012

100.088.088

100.05.75.05

94.318.216.016

76.128.425.025

47.734.130.030

13.613.612.012

socialnew

For graphical illustration of the data, we use the sequence of commands from Example 5.2
(Graphs - Chart Builder. . .) to reach the SPSS Chart Builder shown in Figure 5.5. This time,
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we select Bar in the panel Choose from: located under the tab Gallery. Next, we drag and
drop the symbol Simple Bar (this label appears when the cursor hovers over the symbol) into
the Chart preview and move the character socialnew to the panel X-Axis?. By confirming
these settings with OK, we obtain a graph analogous to Figure 5.7. To create a dot plot, we
select Scatter/Dot from the Gallery (see Figure 5.5) and drag and drop the symbol Summary
Point Plot into the Chart preview. We move the character socialnew to the panel X-Axis? and
select Count in the pull-down menu Statistic:, found in the window in Figure 5.13 (if you
initially closed this window, as we recommended, you can reopen it by clicking Element
Properties. . .). By clicking Apply, we confirm this selection; a further click on OK yields the
chart similar to Figure 5.8.

Figure 5.13 SPSS-window to ascertain absolute frequencies in charts.
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Master
Doctor

If an ordinal-scaled character is given, then both the bar chart and the dot diagram
are to be viewed critically. Firstly, the bars suggest that the frequencies refer to
an interval on the abscissa – which is not at all the case; secondly, both figures,
Figure 5.7 as well as Figure 5.8, imply that the distances between the ordered
categories are of equal size – which is not necessarily true.

5.2.3 Quantitative characters

In quantitative characters, there are rarely equal outcomes, if there is a sufficiently high
measuring precision; thus, several measurement values are often pooled together into classes.
In this case, the histogram is an appropriate means to illustrate the empirical frequency
distribution.

Bachelor In principal, the researcher does not have to deal with pooling the outcomes into
the individual classes when illustrating the data with a histogram; this is done
automatically by computer programs.

Bachelor Example 5.4 The empirical distribution function of the character Everyday
Knowledge, 1st test date in Example 1.1 – without children with Turkish as
a native language who were tested in the German language at the first test
date

Since an important question of the study is also to what extent children with
Turkish as a native language are disadvantaged by being tested in the German
language, about half of these children were tested in German at the first test
date while the other half were tested in Turkish. We now disregard the data
from those children with Turkish as a native language who were tested in the
German language at the first test date. We are interested in the character Everyday
Knowledge, 1st test date.

Therefore, we first have to exclude the children with the coded value
‘Turkish speaking child tested in German at first test date’ in the character test
setting.

In R, we first need to select the children in question. To do this, we enter the commands

> sub1_t1.set <- sub1_t1[test_set == "German speaking child" |
+ test_set ==
+ "Turkish speaking child tested in Turkish at first test date"]

i.e. include only those research units of the character Everyday Knowledge, 1st test date
(sub1_t1) that meet the condition specified in the square brackets. This condition is that
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the value of the character test setting (test_set) has to be equal to either one or (the
symbol ‘|’ indicates a logical ‘or’) the other specified value for the case to be included. We
assign the resulting data to the object sub1_t1.set. Now we type:

> sub1_t1.tab <- table(sub1_t1.set)
> sub1_t1.pro <- prop.table(sub1_t1.tab) * 100
> sub1_t1.cum <- cumsum(sub1_t1.pro)
> round(cbind(sub1_t1.tab, sub1_t1.pro, sub1_t1.cum), digits = 1)

i.e. we apply the functions table(), prop.table(), and cumsum() as in
Example 5.3 and assign each result to a new object. With the function cbind(), we
combine these objects to form a table and round() the values to a precision of one
decimal place (digits = 1). This yields:

sub1_t1.tab sub1_t1.pro sub1_t1.cum
25 1 1.4 1.4
27 1 1.4 2.7
31 2 2.7 5.4
33 2 2.7 8.1
35 2 2.7 10.8
37 2 2.7 13.5
41 3 4.1 17.6
46 4 5.4 23.0
48 1 1.4 24.3
50 14 18.9 43.2
52 2 2.7 45.9
54 6 8.1 54.1
56 2 2.7 56.8
58 4 5.4 62.2
60 13 17.6 79.7
61 4 5.4 85.1
63 1 1.4 86.5
65 6 8.1 94.6
69 3 4.1 98.6
71 1 1.4 100.0

In SPSS, we use

Data
Select Cases . . .

to open a window (Figure 5.14) where we can choose If condition is satisfied from the
field Select. Next we click If. . . and, in the following window, we type the text seen in
Figure 5.15 (the symbol ‘|’ indicates a logical ‘or’). By clicking Continue, we return to
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the previous window and confirm our selection with OK. Figure 5.16 shows a section of the
SPSS Data View including the just-created ‘filter variable’, filter_$. To compute the empirical
frequency distribution and the empirical distribution function, we proceed analogously to
Example 5.2 (Analyze – Descriptive Statistics – Frequencies. . .) and select as Variable(s): the
character Everyday Knowledge, 1st test date. By the way, the test scores of Everyday Knowl-
edge (as for other subtests of the intelligence test battery used here), are scaled in T-Scores
(see Footnote 5 in Table 1.1; for more details, see Example 5.5). The result is presented in
Table 5.5, with the values of the empirical distribution function given in the column Cumu-
lative Percent.

Figure 5.14 SPSS-window for selecting cases.
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Figure 5.15 SPSS-window for selecting cases that meet certain conditions.

Figure 5.16 SPSS Data View after computing the new character socialnew in Example 1.1
(section).
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Table 5.5 SPSS-output showing the empirical frequency distribution of the character
Everyday Knowledge, 1st test date from Example 1.1.

Cumulative
PercentValid PercentPercentFrequency

25

27

31

33

35

37

41

46

48

50

52

54

56

58

60

61

63

65

69

71

Total

Valid

100.0100.074

100.01.41.41

98.64.14.13

94.68.18.16

86.51.41.41

85.15.45.44

79.717.617.613

62.25.45.44

56.82.72.72

54.18.18.16

45.92.72.72

43.218.918.914

24.31.41.41

23.05.45.44

17.64.14.13

13.52.72.72

10.82.72.72

8.12.72.72

5.42.72.72

2.71.41.41

1.41.41.41

Everyday Knowledge, 1st test date (T-Scores)

Master A histogram consists of rectangles on the abscissa, which are constructed from all
class intervals; their areas (and, given equal class intervals, also their heights) cor-
respond to the respective (relative or absolute) frequencies. The selected standard
measure of these frequencies is shown in the ordinate.

In the case of a cumulative staircase, rectangles are constructed from all class
intervals; however, now their areas (and, given equal class intervals, also their
heights) correspond to the respective (relative or absolute) cumulative frequencies.
The selected standard measure of these frequencies is shown in the ordinate.

Master Even if there is no pooling of the outcomes to classes in the case of quantitative
characters, it should be noted that for practical reasons only discrete measurement
values are observed; each in itself already represents a class. For example, the
measurement of Mr. K’s height yields the value of 185 cm; however, as there
is little requirement for precision with regards to the subject to be measured,
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and likewise as the measurement instrument is inaccurate, this measurement
value is representative for a whole interval, namely for the interval 184.95 to
185.049999. . .

Bachelor Example 5.4 – continued
The resulting empirical frequency distribution of the character Everyday Knowl-
edge, 1st test date (still) has a relatively large number of classes; namely 20.
However, in the following we want to use fewer classes for the graphical illustra-
tion by using a histogram and a step function.

In R, we create a histogram by typing

> hist(sub1_t1.set, breaks = 10, main = "Histogram",
+ xlim = c(20, 80), ylim = c(0, 20),
+ xlab = "Everyday Knowledge, 1st test date (T-Scores)",
+ ylab = "Frequency")

i.e. we use the already created object sub1_t1.set as the first argument in the function
hist()and breaks = 10 as the second argument determining that there should be
10 classes. The argument main = "Histogram" defines the title of our histogram.
Then xlim and ylim define the represented value range of the abscissa and the ordinate,
respectively; for this, we use the function c()to declare the minimum and maximum.
Finally, xlab and ylab label the axes.

This results in the histogram shown in Figure 5.17a.

Histogram

20 30 40 50

Everyday Knowledge, 1st test date (T-Scores)(a)
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Figure 5.17 a R-output of the histogram in Example 5.4 (the character Everyday Knowl-
edge, 1st test date presented in 10 classes).
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To ascertain the empirical cumulative distribution function, we type

> sub1_t1.ecdf <- ecdf(sub1_t1.set)
> plot(sub1_t1.ecdf, verticals = TRUE, do.points = FALSE,
+ main = "Empirical cumulative distribution function",
+ xlab = "Everyday Knowledge, 1st test date (T-Scores)",
+ ylab = "Cumulative relative frequency")

i.e. we use the object sub1_t1.set as the first argument in the function ecdf()and
assign the result to object sub1_t1.ecdf. Then we submit this object as the first
argument to the function plot(). With verticals = TRUE, we choose to plot a
cumulative staircase, and we prevent the output of points by setting do.points =
FALSE. Finally, main, xlab, and ylab again define the text of the chart title and label
the axes.

As a result, we get the chart shown in Figure 5.18.
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Everyday Knowledge, 1st test date (T-Scores)
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Figure 5.18 R-output of the cumulative staircase in Example 5.4.

In order to produce a histogram in SPSS, we start the SPSS Chart Builder (see Figure 5.5)
using the same sequence of commands (Graphs - Chart Builder. . .) as in Example 5.2. Next,
we select Histogram in the Gallery tab; we drag and drop the symbol Simple Histogram (on the
left side) into the Chart preview and move the character Everyday Knowledge, 1st test date to
the field X-Axis?. Instead of letting SPSS decide on the number of classes, we want to define
10 classes. To do this, we click Element Properties. . . and a window very similar to that in
Figure 5.13 appears. There we choose Set Parameters. . . and the window shown in Figure
5.19 appears. Next, we select Custom in the field Bin Sizes and set Number of intervals: to
11 (in Figure 5.19, we have already done so). Finally, we click Continue, followed by Apply
and OK. The result is the histogram shown in Figure 5.17b.
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Figure 5.19 SPSS-window to define the number of histogram classes.

Mean = 52.78
Std. Dev. = 10.623
N = 74

20 30 40 50

Everyday Knowledge, 1st test date (T-Scores)(b)
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Figure 5.17 b SPSS-output of the histogram in Example 5.4 (the character Everyday Knowl-
edge, 1st test date presented in 10 classes).

Compared with our solution, the automatic SPSS routine would set more classes.
Now we look at the empirical cumulative distribution function. In the SPSS Chart Builder

in Figure 5.5, we select Line in the Gallery tab and drag and drop the symbol Simple Line
into the Chart preview. We then move the character Everyday Knowledge, 1st test date to the
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field X-Axis?. A click on Element Properties. . . gets us to the window shown in Figure 5.13,
where we select Cumulative Count from the pull-down menu Statistic: in the panel Statistics.
In the field Interpolation, we change the Type: to Step and confirm all settings with Apply,
followed by OK. This yields a chart similar to Figure 5.18.

There are obviously certain differences in the histogram inR and SPSS. In general,
the histogram is more illustrative than the step function.

Often it is a matter of clearly illustrating and concisely describing, respectively, two or more
characters simultaneously. Ultimately, it is only possible to illustrate in tabular form with two
characters. Even graphical illustrations are only really successful in the case of exactly two
characters. For more than two characters, a diagram only works well if one of the characters
is compared to all the others and these other characters are ‘related’ with regards to content.

Bachelor Example 5.5 The difference between the first and second test date in the subtest
Everyday Knowledge for children with German as a native language per age of
the child (Example 1.1)

The two characters Everyday Knowledge, 1st test date and Everyday Knowl-
edge, 2nd test date will be compared graphically.

In R, we first select the children with German as a native language by typing

> age.ger <- age[native_language == "German"]
> sub1_t1.ger <- sub1_t1[native_language == "German"]
> sub1_t2.ger <- sub1_t2[native_language == "German"]

i.e. we filter the characters Everyday Knowledge, 1st test date (sub1_t1), Everyday
Knowledge, 2nd test date (sub1_t2), and age of the child (age) for those children who
have German as a native language [native_language == "German"]; then we
assign the respective data to new objects. Now we type

> table(age.ger)

i.e. we submit the argument age of the child (age.ger) to the function table().
As a result, we get:

age.ger
6 7 8 9
13 11 13 13

It can be seen that children aged 6, 7, 8, and 9 years are in the sample. Next, we want to
explore the distribution of the scores among the four age groups. To do this, we type

> sub1_t1.mean <- tapply(sub1_t1.ger, age.ger, mean)
> sub1_t2.mean <- tapply(sub1_t2.ger, age.ger, mean)
> sub1.mean <- cbind(sub1_t1.mean, sub1_t2.mean)

i.e. we successively submit the characters sub1_t1.ger and sub1_t2.ger to the
function tapply() calculating the mean of the children’s age (age.ger). Each result
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is assigned to a new object, which we combine to a matrix using the function cbind().
To illustrate the data graphically, we type

> matplot(sub1.mean, type = "b", lty = 1:2, pch = 18, col = 1:2,
+ xlab = "age", ylab = "T-Score", ylim = c(35, 65),
+ axes = FALSE)
> axis(1, at = 1:4, labels = 6:9)
> axis(2, at = seq(from = 35, to = 65, by = 5))
> legend("topright", col = 1:2, lty = 1:2,
+ c("Everyday Knowledge, 1st test date",
+ "Everyday Knowledge, 2nd test date"))

i.e. we use the object sub1.mean as the first argument in the function matplot(). With
type = "b", we define that the values be presented as points and linked by lines (due to
lty = 1:2, the first line is continuous and the second dashed). pch = 18 defines the
shape of the points, while col = 1:2 sets their colors to black and red. Furthermore,
we label the axes using xlab and ylab, defining the presented range of values (35 to
65 T-Scores) of the ordinate using ylim, and preventing the (default) drawing of the
axes with axes = FALSE. We adjust the axes manually with the function axis(),
identifying the affected axis with the first argument (1 for the abscissa and 2 for the
ordinate). Using the argument at, we establish the location of the tick-marks, namely 1
to 4 on the abscissa and 35 to 65 incremented by 5 on the ordinate – for the latter, we
apply the function seq(). Finally, we add a legend using the function legend(), and
define its position through the first argument "topright". The further arguments col
and lty correspond to the arguments with the same names in the function matplot().
Using c(), we add the two labels "Everyday Knowledge, 1st test date"
and "Everyday Knowledge, 2nd test date".

As a result, we obtain the graph shown in Figure 5.20.
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65 Everyday Knowledge, 1st test date 

Everyday Knowledge, 2nd test date 

Figure 5.20 R-output showing the improving mean of Everyday Knowledge, 1st test
date and Everyday Knowledge, 2nd test date across the age of the child for children with
German as a native language in Example 1.1.
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Analogously to Example 5.4, in SPSS we first make sure that only children with German as
a native language are considered in the analysis: we insert the condition native_language =
1 into the field shown in Figure 5.15 and confirm this entry by clicking Continue, followed
by OK. Next, we start the SPSS Chart Builder in Figure 5.5 with the same sequence of
commands (Graphs – Chart Builder. . .) as in Example 5.2. There we select Dual Axes in the
Gallery tab and drag and drop the symbol Dual Y Axes with Scale X Axis (on the right) into
the Chart preview. To define the ordinate, we move the characters Everyday Knowledge, 1st
test date and Everyday Knowledge, 2nd test date to the field Y-Axis? on the left and right
side of the chart, respectively. Finally, we move the character age of the child to the field
X-Axis?. By clicking on Element Properties. . . , we open a similar window to that shown in
Figure 5.13. In this window, we select Point1 in the panel Edit Properties of: and Mean in the
pull-down menu Statistic:. A pop-up window appears, which we confirm with OK. We then
Apply our settings. To avoid a distorted measurement scale, we select (still in the window
Element Properties) Y-Axis1 (Point1) in the panel Edit Properties of: and remove the check
marks of Minimum and Maximum in the field Scale Range. Now we can set the correct scale
range manually by entering 35 and 65 in the textbox Custom. Again, we Apply these changes
and select the same course of action for Y-Axis2 (Point2). Finally, we press OK and obtain a
graph analogous to that in Figure 5.20, except that the points are not linked.

There are no constant changes in the test scores between the first and second test
date. And obviously, the level of the test performances, in other words the means
of test scores, is not equal across all ages in the given sample.

Summary
The graphical illustration of data is different for discrete, ordinal-scaled, and qualitative charac-
ters from that for (continuous) quantitative characters. There is the pie chart for nominal-scaled
characters, which is not appropriate for ordinal-scaled and quantitative characters. There is the
dot diagram and the bar chart for ordinal-scaled characters. And for quantitative characters,
there is the histogram. All the described graphical methods can be applied for the observations
of a population as well as of a sample.

5.2.4 Principles of charts

Charts serve as the visual expression of information from extensive data sets, especially for
those persons who are not capable of grasping the quantitative meaning of numbers from
tables. Therefore, in principal, charts must be designed simply and must be immediately
comprehensible. Charts which strive only for impressive effects, but detract from or even hide
the essential information, are therefore counterproductive.

Master Three-dimensional block diagrams (bar charts), derived from the histogram, are
inappropriate: first, it is difficult, even for people with a high spatial ability, to put
the volumes represented in a perspective view into fair relation with one another.
Second, often actually only the areas of the front views represent the relations in
question, and not at all the three-dimensional blocks with respect to their volumes –
this is the case if the surface areas of the blocks are not quadratic. Such artificial
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effects increase if, instead of a three-dimensional presentation, the rectangular
areas cast a shadow like a slab of wood.

Master If histograms are confused with bar charts, either the impression of a continuous
character is given while in actual fact it concerns a qualitative or a discrete
quantitative character, or, vice versa, the impression of a discrete character is
given although it is in actual fact a continuous one.

Master Sometimes the dots are connected by straight lines in the dot diagram. The result is
a frequency polygon. This should be avoided because it again implies a continuity
of the character; but it is also misleading in the case of a continuous character:
the resulting sub- (non-rectangular) areas do not match the actual frequencies.

It is important that the standard measures of the abscissa and the ordinate are shown and,
ideally, start at zero. If the latter is not possible on account of the content, the compression
of the scale should be clearly displayed at the point of intersection of ordinate and abscissa;
unfortunately, this is not possible in SPSS.

Bachelor For example, if the development of the average intelligence quotient (IQ; see
the so-called Flynn effect in, for example, Kubinger, 2009b) over time is to
be illustrated, each of the smallest measurement values (perhaps 55 for the IQ,
perhaps 1920 for the calendar year) is hardly of relevance for the illustration.

5.2.5 Typical examples of the use of tables and charts

Tables are of key importance for the standardization of a test within psychological assessment.
If there is also an interest in the course of the test scores across the age groups, this can be
illustrated best with a chart.

Bachelor Example 5.6 Standardization of a test
The test scores of psychological tests are generally put in relation to the

population and then interpreted, or, more precisely, put in relation to a relevant
reference group. For example, in aptitude assessment, the reference group is
defined as that group of persons to which the testee currently belongs, should
belong, or wants to belong in the future and with which he/she should be compared.
Standardization therefore means the determination of the distribution of the test
scores in the relevant test within the reference group.

Therefore it is a matter of the (cumulative) frequencies of all test scores in
a particular test in a ‘large’ standardization sample. An empirical distribution
function is hence determined: for each measurement value the summed (relative)
frequency must be ascertained; this represents outcomes that are smaller than
or equal to the respective value. By defining this empirical distribution func-
tion as valid for the entire reference group in question, it becomes a theoretical
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distribution function. Each future testee can therefore be put in relation to this
reference group.

This can be demonstrated using the test statistic ‘Range of Intelligence’ in
the AID 2. This is determined by the difference between a testee’s largest and
smallest T-Score in the 14 subtests of this intelligence test battery. Table 5.6
shows the observations of the n = N = 977 persons from the standardization
sample. However, the class intervals have been manually chosen in such a way
that specific cumulative (relative) frequencies result. This is in order to be able
to directly assign future test scores to the percentile ranks that correspond to
the values of the most frequent T-Scores by using this table: percentile ranks in
psychological assessment correspond to cumulative frequencies in statistics.

Table 5.6 The empirical/theoretical distribution function of the test
score ‘Range of Intelligence’ in the AID 2 for transformation into
percentile ranks (and T-Scores) (taken from Kubinger, 2009a, p. 208).

T-Score Percentile rank Range

19 0.1 7
27 1.1 13
34 5.5 17
38 11.5 20
41 18.4 22
43 24.2 23
45 30.9 25
46 34.5 25
47 38.2 26
48 42.1 27
49 46.0 28
50 50.0 29
51 54.0 29
52 57.9 30
53 61.8 31
54 65.5 32
55 69.2 34
57 75.8 36
59 81.6 37
62 88.5 40
66 94.5 44
73 98.9 51
81 99.9 59

Bachelor Example 5.7 Intellectual development between 6 and 15 years
As an example for the subtest Everyday Knowledge of the intelligence test battery
AID 2, we want to investigate the course of the (average) test scores regarding
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Figure 5.21 Average ability parameter (according to the Rasch model) in the subtest Ev-
eryday Knowledge of AID 2 across the ages (male standardization sample 1995–1997; taken
from Kubinger & Wurst, 2000, p. 68); the average ability parameters per age correspond to a
T-Score of 50, the given interval limits correspond to the T-Scores of 41 and 59.

the age. In doing so, the test scores are the so-called ‘ability parameters’, as they
result for each testee when a psychological test is calibrated in accordance with
the Rasch model (see in detail in Section 15.2.3.1). Section 2.2.1 has already
indicated that certain statistical methods of psychometrics allow the generation
of interval-scaled test scores that indeed adequately represent the underlying
empirical relationships between different testees (see for details e.g. Kubinger,
2009b). Figure 5.21 shows the course of intellectual development on the basis
of one of the two parts of the data from the standardization sample; namely the
male standardization sample. Besides the average ability parameters, those ability
parameters that belong to the cumulative frequency of 18.4% and 81.6% in the
sample, which correspond to T-Scores of 41 and 59, have also been entered.

A clear trend can be recognized, whereby the slope of the curve flattens across
the age with time. Additionally, the standardization sample seems to have, in fact,
certain irregularities with respect to the population – this population certainly
cannot be taken by census. When establishing a standardization table according
to Table 5.6, it is therefore advisable to ‘smooth’ the observed curve. One way
of smoothing is the application of a regression analysis, which is described in
Chapter 11; the technique of smoothing, however, cannot be discussed here in
further detail.
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5.3 Statistics

Statistics, or more precisely ‘descriptive’ statistics are quantities that characterize or represent
a set of numbers. We usually use the term ‘statistic’ for the case of statistically describing
samples (of size n). In contrast, we use the term ‘parameter’ when it is a matter of a statistical
description of (empirical and theoretical) populations (of size N; see further in Section 6.4).

For quantitative characters, the calculation of a measure of location and a measure of scale
is mostly sufficient in order to characterize the data. The mean, as the most popular measure
of location, is often calculated without any special statistical knowledge. Its corresponding
measure of scale, which here describes the variability of the outcomes, is the square root of
the variance, that is the standard deviation.

5.3.1 Mean and variance

In a finite population (as well as for a theoretical distribution), we use the symbol μ for
the mean; in a sample we use the symbol ȳ. In the population, we call the observations or,
put more precisely, the (theoretically) observable outcomes (i.e. the character’s measurement
values realized by the individual population units) Yv, v = 1, 2, . . . , N. In the sample, the
observations are denoted by yv, v = 1, 2, . . . , n. By using the symbol

∑
(sigma sign) for

summing up several values, we obtain the Formulas (5.1) and (5.2): below the sigma sign, the
current index is specified with its smallest value; above the sigma sign, the largest value of
the index is specified. The sigma sign is to be read as follows: ‘create the term after the sigma
sign for all values of the index (here: v) and sum up all elements of the resulting sequence’.

μ = 1

N

N∑

v=1

Yv = 1

N
(Y1 + Y2 + · · · + YN ) (5.1)

ȳ = 1

n

n∑

v=1

yv = 1

n
(y1 + y2 + · · · + yn) (5.2)

Although the two formulas look different, the calculation is entirely equal in terms of
concrete numerical values.

This is not the case as concerns the variance. In contrast to the usual definition for a
sample (see below), in the population the variance is defined as the arithmetic mean of the
squared difference of the individual outcomes from the mean (of the population) – we use the
symbol σ 2:

σ 2 = 1

N

N∑

v=1

(Yv − μ)2 (5.3)

Master In the first instance it may see completely incomprehensible for laypersons, as
to why the arithmetic mean of the squared difference of the individual outcomes
from the mean is chosen in statistics as the function of a measure of scale. It would
be a lot more straightforward to average the absolute values of the differences of
the outcomes from the mean:

∑ |Yv – μ |/N. However, squaring the differences
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(Yv – μ) has, in any case, the same function: namely, to ignore the direction of the
deviation from the mean. Furthermore, it is precisely the variance defined above
that describes the normal distribution which is so essential for statistics (see in
detail in Section 6.2.2). Finally, many derivations in mathematical statistics are a
lot easier to obtain by using squared differences.

The variance has the squared measurement unit of the outcomes themselves as the unit of
measure or the dimension. This is not very easy to interpret; for example, in the case of the
character intelligence quotient, the measurement unit of the variance would be: the squared
intelligence quotient. Therefore, it is better to use the (positive) square root of the variance
for the description of data, i.e. the standard deviation. The standard deviation of a population
is denoted by σ .

Master Figure 5.22 shows the histogram for the population’s test scores in a fictional
psychological test. In this example it is possible to visually extract the mean,
without having to calculate anything. And hence intuitively it can clearly be seen
that the mean μ does in actual fact describe the observations typically: the position
of the recorded area of outcomes is clearly localized with it.
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Figure 5.22 Histogram for the test scores of a fictional psychological test (μ = 100).

Master The physical analogue to the mean is the centroid of a geometrical object or of
a mass distribution: the object can be balanced (kept in balance) at this point.
Correspondingly, the set of all outcomes in Figure 5.22 is ‘in balance’ at the point
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μ = 100. Additionally it can also be seen from this figure how much the standard
deviation contributes to the characteristic of the distribution of the outcomes. The
standard deviation ascertains the extent of dispersion of the outcomes around the
mean. Thus, a population can be described very accurately with two statistics:
a measure of location and a measure of scale; given a normal distribution (see
Section 6.2.2) it can in fact be described completely with these two statistics.
Vice versa, it is also quite clear from these considerations that the description of
a population using the mean, alone, is completely inadequate. A classic empirical
example at the turn of the nineteenth to the twentieth century shows that although
the approximate average age of death was more or less the same for men and
women, the dispersion of the age of death was much larger for women; i.e. a
relatively large number of women died very young (mainly as a result of childbirth
fever), even though quite a lot of women also became very old – much older than
most men became.

The physical analogue to the variance in statistics is the moment of inertia
of a rotating object. That is the extent of the resistance, provided by a rotating
object against the change of the rotation speed. It is easy to comprehend that the
further away the ‘mass’ lies from the centroid, the greater the force that is needed
to change the rotation speed when an object rotates. For example, the ‘runout’
deceleration at the end of a ‘game of flying’ with young children (where the adult
spins around on their own axis as quickly as possible several times, holding the
child by its hands) lasts much longer if the father instead of the mother plays the
game; this is because usually the father has longer arms.

In the case of a sample, the symbol s2 is used for the variance; however, it is often not defined
completely analogously to the variance of the population. If the variance is needed merely
for descriptive purposes regarding a sample, then an analogy, similar to ȳ instead of μ and
n instead of N, i.e. hence s2 instead of σ 2, would be logical and totally comprehensible for
mathematically and statistically lay people. However, if one refers to inferential statistics (see
Chapter 7), then a slightly different formula can be derived for the sample variance:

s2 = 1

n − 1

n∑

v=1

(yv − ȳ)2 (5.4)

Master The divisor n – 1 instead of n results from the fact – as we shall see later – that
otherwise the mean (expressed statistically: the expected value) of all possible
sample variances, calculated by drawing samples from the population, would not
correspond to the actual variance in the population.

Again, we use the (positive) square root of the variance, s =
√

s2, as the (sample) standard
deviation.

5.3.2 Other measures of location and scale

For several reasons, the mean and the variance are not always appropriate in order to describe
the data adequately.



P1: OTA/XYZ P2: ABC
JWST094-c05 JWST094-Rasch September 22, 2011 8:43 Printer Name: Yet to Come

80 NUMERICAL AND GRAPHICAL DATA ANALYSIS

One of the main reasons for this is that both nominal- and ordinal-scaled characters exclude
their calculation by definition.

Bachelor This can be understood immediately in the case of nominal-scaled characters, as
the different measurement values merely represent different names or qualities.
For example, there is nothing to be calculated for the character color with regard
to the names ‘red’, ‘green’, and ‘blue’. For ordinal-scaled characters, the different
measurement values can only express a rank order, even if they are represented
in numbers. The extent of the distances between these numbers is not based on
content; however, equality justified by content for numerically equal distances
between different measurement values must be guaranteed in order to use mean
and standard deviation.

Master In the case of ordinal-scaled characters, even if the measurement values are
represented by numbers, the calculation of, for example, the mean is inappropriate;
this can easily be seen in the following. Any transformation of measurement
values that keeps the empirically given rank order is permissible in the case
of ordinal-scaled characters (see Section 4.2). For example, the informational
content remains the same, whether we use ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, or we use ‘1’,
‘4’, ‘9’, ‘16’, ‘25’ as school grades: the greater-smaller-equal relations remain the
same. But obviously, the relation of the means of two students would change if
for the one 9, 9, 16, 4 (mean 9.5) instead of 3, 3, 4, 2 (mean 3.0) is now observed
and for the other 1, 1, 25, 16 (mean 10.75) instead of 1, 1, 5, 4 (mean 2.75) is
observed.

Another reason is then given if the data of a qualitative character are not distributed more
or less symmetrically. In this case, the mean is not typical for all observations. For example,
outliers in the data – i.e. rather rarely occurring but extremely deviating outcomes – affect
both the mean and the variance to an unreasonably severe degree.

Doctor In addition to the statistics described here, further statistics that are robust against
outliers have been developed; their introduction at this point would be beyond the
scope of discussion (see, however, Reimann, Filzmoser, Garrett, & Dutter, 2008;
Hoaglin, Mosteller, & Tukey, 2000; Maronna, Martin, & Yohai, 2006).

Bachelor Example 5.8 Mean and standard deviation in the case of outliers
Given n = 10 employees of a work team, all earn $2500 except for one who

earns $2000 and another who earns $3000. The mean, ȳ, of the salary is therefore
$2500, with a standard deviation of s = $235.70. If one employee with $2500
is replaced by a new one, who, however, in turn earns $20 000, then the average
income of the team increases to ȳ = $4250, of course without the income of the
others changing; for the others, the new mean is obviously not appropriate. Also
the variability of the income is, with s = $5539, seriously greater now, although
the differences seem to be very minimal for nine people.
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In the case of ordinal-scaled characters, as well as in the case of a qualitative character which
is not distributed very symmetrically, the median is an appropriate measure of location. It
is based on the outcomes being ranked. The practical approach to ordering the outcomes
according to their actual values is quite simple. A rank is assigned to each outcome; namely
the ranks 1 to n for the outcomes arranged according to their values. This becomes rather
difficult if the number of observations is very large. Furthermore, a fundamental problem
arises if several research units obtain the same value; that is if there are tied ranks (ties). In
this case, the same rank is assigned to each observation which has an identical measurement
value; namely the mean of all ranks which would have been assigned for these observations
if they had to have different values. Statistical methods based on ranking the outcomes carry
out this ranking in SPSS and R without the user having to do anything. Hence, in practice, it
is hardly ever necessary to assign ranks on one’s own.

Bachelor We illustrate the assignment of ranks for the grades of the first student mentioned
above: 3, 3, 4, 2. The best grade achieved (measurement value) is 2; rank 1 is
therefore assigned to this observation. Then, there are two grade 3s; both these
observations receive the ranks 2 and 3 in sum. Since we have to assign the same
rank to both observations, we calculate the mean of both ranks, i.e. 2 + 3

2 = 2.5.
The outcome 4 therefore corresponds to rank 4.

Master The necessary procedure of ranking and assignment of ranks seems to be com-
plicated when put formally.

Example 5.9 Illustration of ranking without any reference to content
Given that we have character y and n = 8 research units with outcomes yv, v = 1, 2, . . . ,

8 as follows: y1 = 13, y2 = 3, y3 = 87, y4 = 50, y5 = 0, y6 = 16, y7 = 21, y8 = 55. We
now arrange these outcomes according to their size: 0, 3, 13, 16, 21, 50, 55, 87. In order
to know which of the so-arranged outcomes belongs to which observation or research unit,
respectively, we apply so-called order statistics: we denote them as y(l), l = 1, 2, . . . , 8; the
index is now placed in brackets, and yv and y(l) must not be confused. Thus, we obtain:
y(1) = y5 = 0, y(2) = y2 = 3, y(3) = y1 = 13, y(4) = y6 = 16, y(5) = y7 = 21, y(6) = y4 =
50, y(7) = y8 = 55, y(8) = y3 = 87. The index l in the order statistic y(l) indicates the rank of
observation yv. For example, y6 = 16 has rank 4; thus, 16 is the fourth largest outcome – it is
therefore y(4) = y6. Finally, we can also specify the rank (order) statistics r(yv), v = 1, 2, . . . ,
8; they determine which rank corresponds to observation yv. We obtain: r(y1) = 3, r(y2) = 2,
r(y3) = 8, r(y4) = 6, r(y5) = 1, r(y6) = 4, r(y7) = 5, r(y8) = 7; as said before, for example,
y6 = 16 receives rank r(y6) = r(16) = 4. If several outcomes are equal, the assignment of ranks
gets a little more complicated. This can even occur with continuous characters on account
of the rounding. Let us take, as a variation to our numerical example, y4 = y8 = 55. Let us
suppose further that the first five order statistics have already been assigned, so that for y4 =
y8 the order statistics y(6) and y(7) come into question, i.e. ranks 6 and 7. Of course, we do not
want to assign two different ranks to the same measurement value. One of several possibilities
to avoid such an assignment is the use of the so-called ‘mid-rank method’ in statistics. It is
applicable for any number of observations with equal measurement values: we calculate the
mean of all consecutive ranks that would be assigned to the same values, and assign this mean
as a rank to the observations in question. In doing this, equal values obtain the same rank. In
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the given case, we therefore have to assign rank 6.5 for both y4 and y8. Moreover, if we had
y1 = 0 = y2 = 0 = y5 = 0, we would have to assign the rank 1 + 2 + 3

3 = 2 to them.

For Lecturers:

One way of avoiding the assignment of different ranks to the same measurement
value can be found in certain sports competitions, where athletes with the same
performance result receive the same rank; however, this time it is the best available
rank. Subsequent ranks are not assigned (according to this approach, there may
be two gold medals, silver is not awarded and the third-best receives the bronze
medal).

Master Example 5.10 The ranks of the observations regarding the character social status
for employed single mothers in Example 1.1

In the following, we are only interested in children (and mothers respectively)
with the measurement value ‘single’ as concerns the character marital status of
the mother. We want to determine the ranks with regard to the social status for
these children. This is obviously only possible if the category ‘single mother in
household’ is disregarded; then social status is in fact, as already mentioned, an
ordinal-scaled character.

In R, we again use the character socialnew from Example 5.3, where the measurement
value 'single mother in household' is already filtered out. Next, we type

> rank(socialnew[marital_mother == "never married"], na.last = NA)

i.e. we use the character socialnew as the first argument in the function rank(),
but restrict the research units to those cases with mothers who have never married,
with [marital_mother == "never married"]. Additionally, using the argu-
ment na.last = NA, we exclude all missing values (due to 'single mother in
household') from the analysis.

As a result, we get:

[1] 3.5 6.0 1.0 3.5 3.5 3.5

Now we ascertain the respective positions of the research units in question within the data
set. We type

> which(socialnew != "NA" & marital_mother == "never married")

i.e. we use the functionwhich()to select those research units which do not have a missing
value in the character socialnew (defined using the operator ‘!=’) and also (because
of the operator ‘&’) do have an unmarried mother.
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This yields:

[1] 13 14 31 34 48 77

For better readability, we have summarized the results in Table 5.7.

To ascertain ranks in SPSS, we first need to select those children with unmarried mothers.
Therefore, we follow the procedure from Example 5.4 (Data – Select Cases. . .) to open the
window shown in Figure 5.15. Now we define the condition marital_mother = 1 and click
Continue followed by OK. Next, we apply

Transform
Rank Cases. . .

and in the resulting window (not shown here), we move the character socialnew from Example
5.3 to the field Variable(s):. A click on OK creates the new character Rsocialn (see the last
column in SPSS Data View – not shown here).

For better readability, we have summarized the results in Table 5.7.

Table 5.7 The ranks of observations in the character social status for
employed single mothers in Example 1.1.

Observation yi (with
i from the file) Order statistic Rank statistic

y31 = 1 y(1) = 1 1
y13 = 2 y(2) = 2 3.5
y34 = 2 y(3) = 2 3.5
y48 = 2 y(4) = 2 3.5
y77 = 2 y(5) = 2 3.5
y14 = 3 y(6) = 3 6

The median is therefore determined as follows: it is just that measurement value which
corresponds to the rank located exactly in the middle of all ranks; thus, for n observations,
this is rank n + 1

2 . If n is odd, the median takes on a specific outcome. If n is even, the
median is located between two outcomes. In the latter case, any value between the two given
measurement values is proper; in general, however, the mean of the two values is chosen.
Hence, the measurement value above and below which each half of the observations is located,
respectively, is considered as typical for a distribution: there are just as many smaller outcomes
than the median as there are larger ones.

Master Formally, the median is defined as follows: it corresponds to the order statistic
which is located exactly in the middle, i.e.

Md = y( n + 1
2 ) if n is odd, and Md = 0.5 ·

(
y( n

2 ) + y( n
2 +1)

)
if n is even (5.5)
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Usually, the interquartile range or the semi-interquartile range is assigned to the median as a
measure of scale. However, this is only appropriate in the case of a quantitative character. No
adequate differences as regards content can be generated for ordinal-scaled characters; thus, a
measure of scale is pointless for them by definition. On the other hand, the interquartile range
proves to be quite useful if the distribution of the data is not at all symmetrical.

The interquartile range IQR is also based on the ranking of the observations. It is defined
illustratively as the difference between the third and first quartile; in analogy to the median,
the values of the quartiles refer to one-quarter or three-quarters of the outcomes’ values
located below and three-quarters or one-quarter above. Nowadays, it is hardly ever calculated

by hand. The semi-interquartile range is IQR
2 .

Master Formally, the interquartile range has to be determined by the so-called P-quantiles
(see Section 6.3). These are limits of intervals of the order P on the number line,
according to the theoretically possible measurement values of a character. With
these P-quantiles the number line is divided into exactly Q = 1

P non-overlapping
intervals, with each of them containing the same number of observations (namely
n
Q ). If n is not divisible as a whole by Q, an almost uniform partition of the
observations is aimed for. That is, the number of elements in each of the Q
intervals is n

Q = n P or n
Q is the nearest, smallest integer to nP. The jth P-quantile,

q(j; P), j = 1, 2, . . . , Q – 1, is for integer values of n
Q defined as

q ( j ; P) =
y(

jQ
) + y(

jQ+1
)

2
(5.6)

For a non-integer value of n
Q , the P-quantile is determined by q(j; P) = y(z), with z

being the largest integer number which is smaller than jQ. Thus, the interquartile
range can be described as IQR = q(3; 0.25) – q(1; 0.25).

Moreover, the median corresponds to the value q(2; 0.25).

The interquartile range can be interpreted as that maximum difference of outcomes which is
shown by 50% of the sample; namely for those research units with ranks located more in the
middle. It has the same unit of measurement as the character.

Master Example 5.9 – continued
If we had had an odd number of observations, e.g. n = 11, then the median would
have resulted as the order statistic n

2 = 5.5; that is the value y(6). In our example
with n = 8, however, any value between y(4) and y(5) is the median; hence, it is
not that obvious, and generally it is defined analogously to Formula (5.6); thus in
the example,

Md = q (1; 0.5) = q(2; 0.25) = y(4) + y(5)

2

Since y(4) = 16 and y(5) = 21, we obtain: Md = 16 + 21
2 = 18.5.
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For the quartiles we need the quantiles of P = 0.25; Q is thus 4. As n
is divisible as a whole by 4, we proceed according to Formula (5.6). It gives
q (1; 0.25) = y(2) + y(3)

2 = 3 + 13
2 = 8 and q (3; 0.25) = y(6) + y(7)

2 = 52.5. Thus, the
interquartile range is 52.5 – 8 = 44.5.

Bachelor
Master

Example 5.11 Do children with German as a native language differ from children
with Turkish as a native language regarding social status (Example 1.1)?

As already mentioned several times, the character social status becomes
ordinal-scaled by excluding the category ‘single mother in household’. We now
want to characterize both groups of mothers and children, respectively, shortly
and concisely regarding the above-mentioned character, by using the median. Fi-
nally, we compare the results of the samples of children with German as a native
language and children with Turkish as a native language.

In R, we type

> tapply(as.numeric(socialnew), native_language, median,
+ na.rm = TRUE)
> tapply(as.numeric(socialnew), native_language, quantile,
+ probs = c(0.25, 0.5, 0.75), type = 6, na.rm = TRUE)

i.e. we again apply the function tapply(), using the character socialnew as the first
argument, which we first convert to a numeric value using the function as.numeric().
As a second argument, we use the character native_language for a comparison of
both German and Turkish with respect to the functions median() or quantile() as
a third argument. Finally, we exclude missing values from the analysis by setting na.rm
= TRUE. Furthermore, we specify the function quantile() by defining the respective
P-quantiles with probs = c(0.25, 0.5, 0.75), and setting the proper algorithm
type = 6.

As a result, we get:

German Turkish
2 3

$German
25% 50% 75%

1.75 2.00 3.00

$Turkish
25% 50% 75%
2 3 4
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In SPSS, we proceed analogously to Example 5.4 (Data - Select Cases. . .) until opening the
window shown in Figure 5.14. There we select All cases to again analyze the total sample.
In order to ascertain the median and the interquartile range for the children with a native
language of German on the one hand and Turkish on the other, we first need to split these
groups in the analysis. To do this, we use

Data
Split File. . .

and select Compare groups from the window shown in Figure 5.23. Then we mark the
character native language of the child and move it to the panel Groups Based on:. After
clicking OK, all subsequent analyses will be applied to two separate groups defined by the
children’s native language.

Figure 5.23 SPSS-window for splitting data into groups.

Now we apply the same sequence of commands (Analyze – Descriptive Statistics –
Frequencies. . .) as in Example 5.2. In the resulting window (Figure 5.4), we move the
character socialnew to the panel Variable(s):. A click on Statistics. . . opens the window
shown in Figure 5.24, where we tick Median and Quartiles in the fields Central Tendency
and Percentile Values, respectively. A click on Continue and OK yields the results shown in
Table 5.8.
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Figure 5.24 SPSS-window Frequencies: Statistics.

Table 5.8 SPSS-output showing median and the 0.25 as well as the 0.75 quantile of the
character socialnew for children with German as a native language in contrast to those with
Turkish in Example 1.1.

Valid

Missing

Median

25

50

75

N

Percentiles

Valid

Missing

Median

25

50

75

N

Percentiles

German

Turkish

4.0000

3.0000

2.0000

3.0000

4

46

3.0000

2.0000

1.7500

2.0000

8

42

Statistics

socialnew
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Regarding the median, children with German as a native language differ from
children with Turkish as a native language by Md = 2 and Md = 3, respectively; the
first typically stem from ‘middle classes’ while the latter typically stem from the
‘lower middle class’. We calculate the interquartile range by hand by subtracting
the value of the 0.75-quantile from that of the 0.25-quantile. For German speaking
children, this is IQR = 3 – 1.75 = 1.25, and for Turkish speaking children, this is
IQR = 4 – 2 = 2. Therefore, the variability of the character social status is larger
for children with Turkish as a native language.

Bachelor Example 5.8 – continued
The median of the salary is Md = $2500 for the initial team, and coin-
cides – because the distribution is symmetrical – with the mean. The change
from an employee with $2500 to another with $20 000 does not alter the
median.

The interquartile range of the income is IQR = 0 for the initial team. Logically,
the change from one employee with $2500 to another with $20 000 also does not
change the interquartile range.

The interquartile range can also be illustrated graphically. This can be done
by extending a dot diagram to a box-(and-whiskers)-plot. Normally, this is par-
ticularly illustrative if a character has to be compared with regard to the median
and the interquartile range as concerns different levels of a factor, i.e. another
character.

Bachelor Example 5.5 – continued
We now want to construct a boxplot for the character Everyday Knowledge, 1st
test date, still classified according to the four ages and limited to the sample of
children with German as a native language.

In R, we type and enter

> boxplot(sub1_t1.ger ∼ age.ger, main = "Boxplot", xlab = "age",
+ ylab = "T-Score")

i.e. we apply the functionboxplot() and use the ‘∼’ command within the first argument
to show that the character Everyday Knowledge, 1st test date (sub1_t1) should be
analyzed in reference to the character age of the child (age). The further arguments
main, xlab, and ylab set the title of the plot and label the axes.

As a result, we get the plot shown in Figure 5.25.
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Figure 5.25 R-output showing a boxplot of the character Everyday Knowledge, 1st test
date for the children with German as a native language (Example 1.1).

In SPSS, we apply the same sequence of commands (Data - Split File. . .) as in Example 5.11
to reach the window shown in Figure 5.23, where we select Analyze all cases, do not create
groups. Now we proceed analogously to Example 5.2 (Graphs - Chart Builder. . .) until we
reach the SPSS Chart Builder (Figure 5.5). There we choose Boxplot in the Gallery tab and
drag and drop the symbol Simple Boxplot (on the left side) into the Chart preview. Then we
move the character Everyday Knowledge, 1st test date to the field Y-Axis? and age of the
child to the field X-Axis?. Finally, we click OK to obtain a plot similar to Figure 5.25.

In the boxplot, the minimum and maximum observed measurement values of
Everyday Knowledge, 1st test date restrict the vertical line per level of the factor
age of the child. Between these two boundaries, a rectangle is shown, basically of
any width, whose length is derived from the interquartile range. A line parallel to
the abscissa represents the median within these rectangles. Particularly extreme
outcomes are displayed separately as outliers.

Figure 5.25 can be interpreted as follows: The medians obviously differ only
slightly; this is not surprising as the subtest Everyday Knowledge is, like all
other subtests, standardized in T-Scores per age class, i.e. with a mean of 50 and
a standard deviation of 10 (see Figure 5.20, with no substantial differences in
the respective means, either). As concerns the interquartile range, there are, in
comparison, larger differences – from about 5 T-Scores to about 13 T-Scores per
age; according to standardization, the interquartile range should be twice-times
two-thirds of the standard deviation, which would thus be about 13 T-Scores.
This demonstrates that, in the given sample of six- and eight-years-olds, the
performances are less dispersed than expected; this suggests a certain floor effect,
i.e. only a few children attain the worst possible test scores.
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Analogously, boxplots can be created in which the mean is used instead of the median.
Additionally the values of the mean plus one-times the standard deviation and mean minus
one-times the standard deviation are entered instead of the quartiles.

Bachelor Example 5.4 – continued
To obtain a more accurate impression of the distribution, in analogy to quartiles,
so-called deciles are to be calculated for the character Everyday Knowledge, 1st
test date; these deciles divide the number of observations into 10, instead of 4,
equally large groups, as would be the case in terms of quartiles.

In R, we ascertain the deciles by typing

> quantile(sub1_t1.set, probs = seq(from = 0.1, to = 0.9, by = 0.1))

i.e. we use the character Everyday Knowledge, 1st test date (sub1_t1) as the first
argument in the function quantile() and then define P-quantiles (probs) by applying
the function seq(), which is set to generate a sequence of numbers from 0.1 to 0.9,
incremented by 0.1.

As a result, we get:

10% 20% 30% 40% 50% 60% 70% 80% 90%
35.6 46.0 50.0 50.0 54.0 58.0 60.0 60.4 65.0

In SPSS, we proceed analogously to Example 5.2 (Analyze – Descriptive Statistics –
Frequencies. . .) to open the window shown in Figure 5.4, where we click on Statistics. . .
This brings us to the window shown in Figure 5.24, where we select Cut points for: (dividing
into 10 equally large groups is set by default) and click on Continue, followed by OK. We
obtain the result shown in Table 5.9.

Table 5.9 SPSS-output showing the deciles of the character Everyday Knowledge, 1st test
date for all children except those with Turkish as a native language being tested in Turkish
on the 1st test date (Example 1.1).

Valid

Missing

10

20

30

40

50

60

70

80

90

N

Percentiles

65.00

61.00

60.00

58.00

54.00

50.00

50.00

46.00

35.00

0

74

Statistics

Everyday Knowledge, 1st test date
(T-Scores)

There are slight differences between R and SPSS.
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Other measures of location and scale found in psychology are: The mode and the range. The
mode is defined as the measurement value whose observed frequency is greater than those of
the two neighboring values – thus distributions may have several modes. Such distributions are
called multimodal distributions, in contrast to unimodal distributions; bimodal distributions
occur relatively frequently. The range is the difference between the largest and the smallest
realized measurement value. It hence describes the maximum difference that is shown by
all outcomes. Thus, it is extremely dependent on outliers; a single extreme value changes
the range tremendously. Unlike the standard deviation and the interquartile range, it cannot
become any smaller by adding other research units. The mode may also be used for nominal-
scaled characters. The range does not make any sense in the case of ordinal- (and also
nominal-) scaled characters.

Bachelor Example 5.8 – continued
The mode of the salary is $2500 for the initial team; the replacement of one
employee earning $2500 with another earning $20 000 does not change the mode.
The range for the initial team is $1000; the replacement of one employee earning
$2500 with another earning $20 000 changes the range to $18 000.

5.3.3 Statistics based on higher moments

So far, we have seen that the description of quantitative data by the mean and standard
deviation (variance) possibly works well. However, problems arise if the distribution of the
outcomes varies considerably from a normal distribution. In order to quickly identify such
a case without any graphical illustration, the use of two further statistics is recommended,
namely a measure of skewness and a measure of kurtosis. The two best-known statistics of
such measures are simply called skewness and kurtosis, respectively.

Master
Doctor

The skewness quantifies the asymmetry of a distribution with respect to the mean;
the kurtosis quantifies whether the distribution has a higher or a flatter peak in
relation to the normal distribution. Both statistics emerge from the so-called kth

order central moments – that is, essentially, the sum of the differences between
each outcome’s value and the mean raised to the kth power (k = 1, 2, . . .) –
more precisely, the arithmetic mean of it. The skewness γ 1 in the population
and the skewness g1 in the sample, respectively, are based on the third-order
central moment and refer to the cube of the standard deviation. In the ideal case
of a symmetrical distribution, γ 1 and g1, respectively, equal 0. For instance, as
concerns the normal distribution, γ 1 = 0. However, a skewness of zero does
not necessarily mean that the distribution is symmetrical. In the case of γ 1 > 0
and g1 > 0, respectively, we talk about a positive skewness, i.e. a right-skewed
distribution, which we can also call a left-steep distribution. In the case of γ 1 < 0
and g1 < 0, respectively, we talk about a negative skewness, which is also called
a left-skewed or a right-steep distribution.

Master
Doctor

Example 5.12 The skewness of the two characters gestational age at birth and
number of siblings in Example 1.1

We can design a histogram and a bar chart, respectively, for both characters
of interest, analogously to Example 5.4 (see Figure 5.26).
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Figure 5.26 (a) The histogram for the character gestational age at birth in Example 1.1;
(b) the bar chart for the character number of siblings in Example 1.1.
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The character gestational age at birth has a left-skewed distribution; the
character number of siblings a right-skewed distribution.

Master
Doctor

The kurtosis γ 2 in the population, and also the kurtosis g2 in the sample, are
based on the fourth-order central moment and refer to the standard deviation to
the power of 4 – and additionally, are reduced by the value 3; this last adjustment
gives the value of 0 in the case of a normal distribution. Above all, the kurtosis
reveals if there are more or fewer outcomes’ values at the ends of a distribution in
comparison to the case of a normal distribution. It describes the ‘concentration’
of the outcomes’ values around the points μ + σ and μ – σ or ȳ+ s and ȳ– s,
respectively; the turning points of the curve of the normal distribution are located
at these positions (see Section 6.2.2).

Bachelor Example 5.4 – continued
For an even better characterization of the distribution, both the skewness and the
kurtosis will be calculated for the character Everyday Knowledge, 1st test date.

In R, we apply the package QuantPsyc, which we load after its installation (see
Chapter 1) using the function library(). Next, we type

> norm(sub1_t1.set)

i.e. we apply the function norm()to the character Everyday Knowledge, 1st test date.
As a result, we get (shortened output):

Statistic
Skewness -0.72621310
Kurtosis 0.03147714

In SPSS, we proceed analogously to Example 5.2 (Analyze – Descriptive Statistics –
Frequencies. . .) to open the window shown in Figure 5.4, where we click the but-
ton Statistics. . . In the resulting window (Figure 5.24), we select Skewness as well as
Kurtosis, click on Continue and OK, and obtain the results g1 = −0.726 and g2 = 0.031.

As the skewness is, in absolute value, smaller than 1 and also besides this it is
negative, a slightly left-skewed distribution is given.

In a quantitative character with a multimodal distribution, all measures of location, i.e. mean,
median, and mode(s), are not at all typical for the given outcomes – fortunately, such distri-
butions are rare in psychology. For unimodal distributions which are, however, asymmetrical,
the mean is located to the right of the median if there is a right-skewed distribution, and if
there is a left-skewed distribution the mean is located to the left of the median. Therefore, the
median, rather than the mean, is then more typical for the outcomes. The same applies in the
case of outliers.
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Summary
Data can be analyzed with statistics. Above all, one should distinguish between measures
of location and measures of scale. For nominal-scaled characters, only a single measure
of location is appropriate, i.e. the mode. For ordinal-scaled characters, the median is also
an appropriate measure. Measures of scale are solely designed for quantitative characters.
Standard deviation (and variance) are associated with the mean; the interquartile range is
associated with the median. All measures of location mentioned are more suited for unimodal
distributions. If the (unimodal) distribution is asymmetrical, the median should be favored
instead of the mean; the same applies if there are outliers.

5.4 Frequency distribution for several characters

If two qualitative characters are to be statistically analyzed together, the first with r, the second
with c measurement values (categories), then there are r · c combinations of categories that can
be illustratively contrasted with each other in a table – for example with regard to the observed
frequency in the sample (or the population). The (two-dimensional) table then consists of r ·
c cells. In the case of more than two characters, there are multivariate frequency tables.

Such tables with r · c cells might even be designed if one of both characters is quantitative.

Bachelor Example 5.13 Two-dimensional frequency table for the characters native lan-
guage of the child and number of siblings in Example 1.1

The character native language of the child is a nominal-scaled, namely a
dichotomous character; the character number of siblings is a quantitative character
with a very limited number of measurement values.

In R, we type

> addmargins(table(no_siblings, native_language))

i.e. we use the characters number of siblings (no_siblings) and native_language
as arguments for the function table(). The function addmargins() demands the
inclusion of row and column totals in the resulting table.

This yields a result identical to Table 5.10.
A grouped bar chart works well for graphical illustration of the frequency distribution

of two qualitative characters; hence we enter the commands

> barplot(table(no_siblings, native_language), beside = TRUE,
+ main = "Grouped bar chart",
+ xlab = "native language of the child",
+ ylab = "number of siblings",
+ ylim = c(0, 20), axisnames = FALSE, legend = TRUE)
> mtext(0:5, side = 1, line = 0.15, at = 1.5:6.5)
> mtext(0:5, side = 1, line = 0.15, at = 8.5:13.5)
> mtext("German", side = 1, line = 1.5, at = 4)
> mtext("Turkish", side = 1, line = 1.5, at = 11)

i.e. we apply the function barplot() to the function table(), defining that the
latter should generate a two-dimensional frequency using the characters number of sib-
lings (no_siblings) and native_language. The other arguments of barplot()
ensure that that the frequencies will be shown next to one another (beside = TRUE),
define the chart title (main), and label the axes (xlab and ylab). Finally, ylim fixes



P1: OTA/XYZ P2: ABC
JWST094-c05 JWST094-Rasch September 22, 2011 8:43 Printer Name: Yet to Come

FREQUENCY DISTRIBUTION FOR SEVERAL CHARACTERS 95

the presented range of measurement on the ordinate, axisnames = FALSE repress the
labeling of the axes according to the character native language of the child; the last argu-
ment, legend = TRUE, produces a legend with default settings. We use the function
mtext() to label the abscissa (side = 1), namely with the values 0 to 5 (0:5) for the
number of siblings as well as "German" and "Turkish" for the native language of the
child; with at = we set the labels to the pertinent position of the abscissa.

As a result, we get the chart shown in Figure 5.27.
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Figure 5.27 R-output of the graphical illustration of a two-dimensional frequency distri-
bution in Example 5.13.

In SPSS, we use the sequence of commands

Analyze
Descriptive Statistics

Crosstabs. . .

to obtain the window shown in Figure 5.28. At this point, the decision needs to be made as to
which of the two characters in question should appear in the rows and which in the columns.
It is advisable to place the character with the larger number of measurement values in rows.
Thus, we move the character number of siblings to the panel Row(s): and native language of
the child to Column(s):. By clicking OK, we obtain the results shown in Table 5.10.

To graphically illustrate the frequency distribution of two qualitative characters, we use
the sequence of commands already known from Example 5.2 (Graphs - Chart Builder. . .) in
order to open the SPSS Chart Builder (Figure 5.5). There we select Bar in the Gallery tab and
drag and drop the symbol Clustered Bar into the Chart Preview. Then we move the character
native language of the child to the field X-Axis? and the character number of siblings to Cluster
on X: set color. Finally, we click OK and obtain a chart similar to that shown in Figure 5.27.
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Figure 5.28 SPSS-window for the creation of a two-dimensional frequency table.

Table 5.10 SPSS-output showing a two-dimensional frequency table of the characters
native language of the child and number of siblings (Example 1.1).

TurkishGerman Total

native language of the child

0

1

2

3

4

5

Total

number of siblings

1005050

330

1064

1697

241311

301614

17314

number of siblings * native language of the child Crosstabulation

Count
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A trend can be noticed that children with Turkish as a native language tend
to have more siblings than children with German as a native language. How
such an impression can be quantified and evaluated with respect to its statistical
importance will be discussed in Chapter 11.
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Part III

INFERENTIAL STATISTICS
FOR ONE CHARACTER

Descriptive statistics provides the basis for inferential statistics. The latter tries to infer from
the sample data to the respective population. For this, further background knowledge is needed:
that is, probability theory as well as sampling procedures based on chance.
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6

Probability and distribution

In this chapter the terms probability, random variable, parameter, and theoretical distribution
are introduced, and the binomial and the normal distribution are described. Further, we
discuss the method of estimation of a parameter.

6.1 Relative frequencies and probabilities

Random sampling means to take elements from a population in such a way that each element
has an equal probability of being chosen; in other words: each element has an equal chance
of being sampled.

The term ‘probability’ has to be defined precisely in the following, due to the fact that in
everyday language ‘probable’ is often used quite differently, mostly in the sense of a relatively
low uncertainty; for instance, ‘It will probably rain today.’

As already introduced in Chapter 4, when throwing a die it is easy to understand that in
the long run the outcome 6 occurs in one-sixth of the cases; more exactly we have a relative
frequency for the result 6 of near to 1

6 . The difference between the relative frequency and
1
6 decreases the more often we throw the die. Relative frequencies have, in many practical
cases, the property that their values differ strongly for different samples and small values of
n. However, for larger values of n they differ only slightly. Formally we say, with growing
n → ∞ or n → N, that the relative frequencies of an event Ek fluctuate decreasingly; they are
nearly constant.

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Bachelor Example 6.1 The relative frequency of ‘number of heads’ for tossing a coin 10
and 100 times

If we toss a coin n = 10 times in d runs, it may happen that even the event
‘number of heads: (only) k = 2 times’ sometimes occurs or, vice versa, the event
‘number of heads: k = 8 times’. The results of ‘number of heads: k = 3 times’
and ‘number of heads: k = 7 times’ will occur more frequently, and very often
we will find the event ‘number of heads: k = 4 times’, ‘number of heads: k = 5
times’, or ‘number of heads: k = 6 times’. If we do the same with n = 100 tosses,
then the events ‘number of heads: k = 20 times’ and ‘number of heads: k = 80
times’ each occur extremely seldom, but relatively often will the events ‘number
of heads: k = 40 times’ through ‘number of heads: k = 44 times’ occur, or the
events ‘number of heads: k = 56 times’ through ‘number of heads: k = 60 times’.
And very clearly the most frequently realized events will be ‘number of heads:
k = 45 times’ through ‘number of heads: k = 55 times’. The reader may try this,
whereby it may be sufficient to use d = 20 runs and instead of n = 10 tosses vs.
n = 100 tosses only n = 10 vs. n = 30 coin tosses, to find out that the relative
frequency of ‘number of heads’ for both these second cases is fairly constant.

In R, we define a new function by typing

> sim.bin1 <- function(n, r, prob = 0.5) {
+ h <- table(rbinom(r, size = n, prob = prob))
+ f <- h/r
+ cat("\n", "count obverse", "\n")
+ cat("\n", paste("n =", n, ", r =", r, "\n", "\n"))
+ return(cbind(h, f = round(f, 2)))
+ }

i.e. we use the function function() and declare the number of tossed coins n, the num-
ber of runs r and the predefined probability of heads prob = 0.5 as its arguments. The
sequence of commands between the braces specifies the algorithm of the new function and
won’t be further explained at this point. We assign this function to the object sim.bin1.
Next we type

> set.seed(123)
> sim.bin1(n = 10, r = 20)

i.e. we set the arbitrary starting number 123 using the function set.seed() in order to
enable repeatability of the results, and apply the previously created functionsim.bin1()
to toss n = 10 coins in r = 20 runs. That is, the line > set.seed(123) is only for
didactic reasons, so that the reader obtains the same results.

The results, plus those for a simulation with r = 100 are presented in Table 6.1. In
addition to this, Table 6.2 shows the results of a rerun with n = 30 coin tosses. If the
reader retries the program and drops the line > set.seed(123), the results will differ,
as when tossing real coins.
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Table 6.1 Absolute (hk) and relative (fk) frequencies of the
occurrence of k times obverse, by r = 20 and r = 100 runs,
each with n = 10 coin tosses.

20 runs 100 runs

k hk fk hk fk

0 0 0 1 0.01
1 0 0 0 0
2 2 0.10 4 0.04
3 1 0.05 12 0.12
4 3 0.15 20 0.20
5 6 0.30 24 0.24
6 2 0.10 24 0.24
7 4 0.20 10 0.10
8 2 0.10 4 0.04
9 0 0 1 0.01

10 0 0 0 0

Table 6.2 Absolute (hk) and relative (fk) frequencies of the occurrence of k times
obverse, by r = 20 and r = 100 runs, each with n = 30 coin tosses.

20 runs 100 runs 20 runs 100 runs

k hk fk hk fk k hk fk hk fk

0 0 0 0 0
1 0 0 0 0 16 2 0.10 13 0.13
2 0 0 0 0 17 1 0.05 14 0.14
3 0 0 0 0 18 2 0.10 7 0.07
4 0 0 0 0 19 2 0.10 3 0.03
5 0 0 0 0 20 2 0.10 3 0.03
6 0 0 1 0.01 21 0 0 1 0.01
7 0 0 0 0 22 0 0 1 0.01
8 0 0 0 0 23 0 0 0 0
9 0 0 0 0 24 0 0 0 0

10 2 0.10 4 0.04 25 0 0 0 0
11 0 0 2 0.02 26 0 0 0 0
12 1 0.05 11 0.11 27 0 0 0 0
13 2 0.10 12 0.12 28 0 0 0 0
14 2 0.10 13 0.13 29 0 0 0 0
15 4 0.20 15 0.15 30 0 0 0 0
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The phenomenon, that the relative frequency of an event Ek with n → ∞ or n → N is nearly
constant, led to the fact that the corresponding constant was (once) called probability (of the
event Ek). Within the scope of this book this given (imprecise) definition is sufficient.

Master Nowadays probability theory is introduced abstractly and mathematically (to
be more exact, with measure theory); i.e. the probability P(E) for any event
E is defined as a real number between 0 and 1 with certain (mathematical)
properties; most of them corresponding with those for relative frequencies. The
higher the probability of an event, the more confident we can be that this event
will occur.

Master Unfortunately in everyday language we often hear: ‘. . . with a probability bor-
dering on certainty’! As a matter of fact, a number can never approach certainty.
Correctly, it must be expressed as follows: ‘There is an event which is most likely
to happen.’ So, this event has a probability near 1. In contrast, events which are
very unlikely to happen have a probability near 0.

Some probability theory terms will now be introduced by means of relative frequencies
because of their above-mentioned properties and their level of understanding. Generally, we
denote the relative frequency of an event E with f (E). In the case where the event E does
not occur, we denote this as the event Ē and say that the events E and Ē are complementary
events. It is apparent that the relative frequency of a complementary event Ē of E is f (Ē) =
1 − f (E). A certain event C always occurs; its relative frequency is therefore f (C) = 1, and
with this we get, for the impossible event I (I = C̄), f (I) = 0 = 1 − f (C).

Master Like the events heads or tails in coin tossing, the events ‘male’ and ‘female’ are
complementary (the possibility that the coin lands vertically on its edge will be
theoretically excluded). In contrast, the events ‘pupil X scores an IQ < 100’ and
‘pupil X scores an IQ > 100’ are not complementary, because the test result ‘pupil
X scores an IQ = 100’ is also possible.

Bachelor Example 6.2 Attitude of women and men towards psychotherapy
In a survey, 211 women and 198 men are asked about their attitude towards

psychotherapy: ‘When you have personal problems, do you then visit a psy-
chotherapist?’ The result of the survey is as follows:

‘yes, visit’ ‘no, not visit’
(A) ( Ā) Sum

women (B) 106 105 211
men (B̄) 82 116 198

Sum 188 221 409

We call the event ‘yes, visit’ A (positive attitude) and the event ‘no, not visit’
Ā (negative attitude). The relative frequency (not taking the sex into account) of
positive attitude is f (A) = 188

409 = 0.4597. We label the event ‘women’ with B,
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and the event ‘men’ with B̄. We then obtain the relative frequency (independent
of attitude) for women with f (B) = 211

409 = 0.5159. Analogously, the relative
frequency of a negative attitude is f ( Ā) = 0.5403 and the relative frequency of
men is f (B̄) = 0.4841.

Besides these events A and B, sometimes the relative frequency (in the following, the proba-
bility) of A given B is of interest, i.e. the relative frequency of A, if the event B has already
occurred: f (A | B). This relative frequency is called conditional relative frequency. The events
(A | B) and also (B | A) are called conditional events. If f (B | A) = f (B) and f (A | B) = f (A), then
the events A and B are called mutually independent; they are independent events. Otherwise
we have dependent events.

Bachelor Example 6.2 – continued
We now consider the question: ‘What is the relative frequency of a positive
attitude for women?’ That is, what is the conditional relative frequency f (A | B)
of a positive attitude (A), given that the person considered is a woman (Event B).
Amongst the 211 women interviewed, we found 106 with a positive attitude; thus
f (A|B) = 106

211 = 0.5024.

We see that A and B are dependent because f (A) = 188
409 = 0.4597 �=

f (A|B) = 106
211 = 0.5024. Sex and attitude towards psychotherapy are dependent

on one another. However, the small difference between f (A) = 0.4597 and f (A|B)
= 0.5024 leads to the conclusion that the degree of dependency is not very high.

If we now turn from relative frequencies to corresponding probabilities – imagining that
n becomes larger and larger until the entire (infinite) population is included – then the
interpretation is actually the same as with the relative frequencies (a probability is always
between 0 and 1).

Master Nowadays probabilities are often written as percentages; this is not wrong, if we
understand 10% as 10

100 = 0.1. This practice stems from the fact that in everyday
life, percentages are used more often than relative frequencies; the former are
actually well-known among laypersons.

In many cases a probability statement of a particular event refers to several options of real-
ization (measurement values), all having the same probability of occurring and all coinciding
with this particular event. For instance the event ‘an odd outcome in throwing a die’ occurs
for three equally likely outcomes – if the die is a fair one. In these cases the probability of
the event E, namely P(E), can easily be calculated. We denote the number of all realization
options by e, and the number of those which coincide with the event E by g; then we have

P(E) = g

e
(6.1)

Master Probability theory has its roots in the mathematical treatment of gambling in the
seventeenth and eighteenth centuries. The classical definition of probability in
Formula (6.1) goes back to Pierre-Simon Laplace.
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Bachelor Example 6.1 – continued
Similarly, the same is true for tossing a die; the relative frequency of tossing ‘6’,
f (6), tends with growing n toward 1

6 , and using Formula (6.1) leads, due to e = 6
and g = 1, directly to P(6) = 1

6 .

For Lecturers:

In statistics the probability of an event is interpreted as the relative frequency of
the occurrence of this event in a long run of observations under equal conditions.
Contrary to this is the interpretation as ‘degree of belief’: the higher the proba-
bility for an event, the more we believe in its occurrence. Such degrees of belief
can be expressed as odds ratios. If for instance someone says ‘I receive €9 if the
event E occurs, and pay €1 if not’, then his/her ‘subjective’ probability for this
event is 0.9 (namely 9

9+1 = 0.9).

Bachelor Example 6.1 – continued
Given that a coin collector arranges several coins with their heads facing up-
wards, then the event ‘head’ would not occur by chance. Therefore, using the
theory of probability would obviously be useless. The theory of probability can-
not make statements about events which are caused by influencing factors other
than chance – in our example the event occurs because of the collector’s arbitrary
arrangement.

For probabilities, the same rules for calculation are valid as for relative frequencies. With
the symbols used above for the latter, we get: P(C) = 1, P(I) = 0, P(Ē) = 1 − P(E).
The conditional probability is denoted by P(A | B) and P(B | A), respectively, and defined
analogously to the conditional relative frequency.

In the following we often need further rules for considering two events, A and B, at the
same time. On the one hand we ask for the probability that either event A or event B occurs.
On the other hand, we ask for the probability that event A as well as event B occurs. For the
first case, the symbol P(A ∪ B) and for the second case the symbol P(A ∩ B) is used. Without
proof (it can be obtained with relative frequencies; there are the same relationships), we have
as a rule for the first case the so-called addition theorem:

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (6.2)

and for the second case the so so-called multiplication theorem:

P(A ∩ B) = P(A) · P(B|A) = P(B) · P(A|B) (6.3)

If A and B cannot occur simultaneously (we say they are mutually exclusive events), then P(A
∩ B) = 0 and we get P(A ∪ B) = P(A) + P(B). If A and B are independent, then that means
we have P(B | A) = P(B) and P(A | B) = P(A), respectively; so then P(A ∩ B) = P(A) · P(B)
follows.
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Master Example 6.3 Evidence for the multiplication and the addition theorem from trials
with a deck of cards

Take a deck of cards with four suits (Hearts, Diamonds, Clubs, Spades); each
suit includes the same 13 ranks (Ace = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen,
King). We are interested now in event A, Queen, and event B, Hearts. The reader
might shuffle the deck carefully – to guarantee randomness – and then draw a card
from anywhere in the deck. After replacing the drawn card and shuffling again,
we repeat this procedure, say a 100 times. Each time the result (event) obtained
is registered as to whether it is or is not Queen of Hearts. We can expect that,
in 100 such runs, the Queen of Hearts is seldom drawn. Should the reader draw
any card a 1000 times in the aforementioned way, then the relative frequency of
Queen of Hearts, i.e. f (A ∩ B), is near to 1

52 . We also get this result from Formula
(6.1) with g = 1 and e = 52 or from the special case of Formula (6.3): P(A ∩ B) =
P(A) · P(B | A) = P(A ∩ B) = P(A) · P(B) = 1

13 · 1
4 .

Similarly, we can determine the probability of event A, Queen, in the
first drawing, and in a second drawing – without replacement of the first
card – the event X, (also) Queen. We compute: P(A ∩ X) = P(A) · P(X | A) =
1

13 · 3
51 = 3

663 .
Analogously, we can proceed to determine the probability of observing either

the event A, Queen, or the event B, Hearts. Computationally, we obtain, from
Formula (6.2), P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 1

13 + 1
4 − 1

52 = 16
52 = 4

13 .
Similarly, we can proceed to determine the probability for either the event A,

Queen, or the event W, King. Computationally, from a special case of Formula
(6.2), we obtain P(A ∪ W) = P(A) + P(W) = 1

13 + 1
13 = 2

13 .

Summary
The phenomenon ‘chance’ can be explained best by the results of gambling. The occurrence or
non-occurrence of any event follows the rules of probability theory. Important is the probability,
that a particular event as well as another particular event occurs, but also the probability that
one of the two events occurs (for mutually exclusive as well as for non-mutually exclusive
events), and, finally, the so-called conditional probability; i.e. the probability that a particular
event occurs, given that a particular other event has already occurred.

6.2 Random variable and theoretical distributions

Now we interpret a character in such a way that the occurrence of each of its measurement
values is considered to be a random event.

That is, we model each character y with a so-called random variable y. The term ‘variable’
indicates that we think of a mathematical function. A variable takes on certain values; in our
case a certain outcome of a character does not depend deterministically (and exclusively) on
any mathematical function, but mainly on chance: that is our ‘model’. Generally we denote
such a chance-based (i.e. random) variable by a bold print letter; the realized value which
a random variable y takes in a particular case is denoted by the same, but not bold, printed
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letter, y. This letter gets a suffix in order to show the number of an observation/realization
(that is to say, outcome) in the sample.

For Lecturers:

While we use bold printed letters in this book to symbolize any random variable,
probability theory and theoretical statistics often use capitals instead. However in
application of statistics, capitals can not be used consistently at all: for instance
the calculated value F of an F-test (see Section 10.4.1) is just a fixed value and
not a random variable.

Master ‘Modeling’ means that we make certain assumptions about a character in
question. There is, above all, an assumption about the way in which the (theoreti-
cally observable) outcomes are distributed throughout the different measurement
values – within the population. The corresponding distribution is called the theo-
retical distribution. Such an assumption is necessary in order to make inferences
from a sample to the population. Some assumptions of an underlying distribution
can even be tested. And some statistical procedures are in some way robust so
that a particular assumption may be violated.

Bachelor Example 6.2 – continued
Take the random variable y used to model the character attitude; there are two
measurement values (functional values) of y: y1 means positive attitude, and y2

means negative attitude.

Analogous to characters, we distinguish between discrete random variables and continuous
random variables. Hence there is also a theoretical distribution function F(y). The distribution
function F(y) is, for each real y on the respective axis (here the abscissa), the probability that
the random variable y takes a value smaller than or equal to that value y.1

Master The distribution function F(y) is the generalization of the sum of the frequencies
in Section 5.2. In the case of a discrete random variable, the distribution can be
characterized by the distribution function as well as by the probability function.
The latter gives the probability of the occurrence of each measurement value (as a
function of these values). It corresponds to the relative frequencies. Summarizing
the values of the probability function for all measurement values smaller than or
equal to a certain number y, the value of the distribution function for this value
y is the result. This corresponds to the cumulative relative frequencies and is
defined for each real value y; that is, it is not only defined for the (observable)
measurement values of the character in question. The graph of the distribution
function of discrete random variables is a step curve. In the case of a continuous

1 In German literature, ‘smaller’ is often used instead of ‘smaller than or equal’.
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character, the first derivative of F(y), d F(y)
dy = f (y), is called a density function or

the density of the random variable y.

6.2.1 Binomial distribution

The following type of random variable often arises. Consider n identical, independent runs
of an experiment (in other words: consider n independent research units); let P(E) = p be the
probability of the occurrence of event E. The event E in the following is called ‘success’.
The number of successes is then a random variable y with possible values k = 0, 1, . . . , n.
The probabilities are

P(k successes of n) = p( y = k) = P(k) =
(

n
k

)
pk(1 − p)n−k, for k = 0, 1, 2, . . . , n

(6.4)

Formula (6.4), considered for all values of k, delivers the probability function. The symbol( n
k

)
is called the binomial coefficient, which is defined as

(
n
k

)
:= n!

k! (n − k)!

with n! := n · (n − 1) · (n − 2) · . . . · 3 · 2 · 1; 0! := 1.
( n

k

)
is to be read as ‘n choose k’. Gen-

erally, the binomial coefficient gives the number of different arrangements and combinations,
respectively, of k equal objects on the one side and n − k other, but again equal objects, on
the other side in n positions.

For Lecturers:

Let us consider a family with four children, Anne (A), Beth (B), Carl (C), and
David (D), to derive the binomial coefficient.

As concerns the order of birth, there are then 24 different possible combina-
tions:

ABCD ABDC ACBD ACDB ADBC ADCB
BACD BADC BCAD BCDA BDAC BDCA
CABD CADB CBAD CBDA CDAB CDBA
DABC DACB DBAC DBCA DCAB DCBA

Generally, given n children we have n · (n − 1) · (n − 2) · . . . · 3 · 2 · 1 := n!
combinations; therefore in our case 4 · 3 · 2 · 1 = 24. Now we have n options to
site the first born; each of these n options can be combined with n − 1 options
for the second born, and so on. In mathematics (combinatorics) we call this the
number of permutations.2

2Coming from the Latin, permutare, meaning to interchange something.
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Let us now consider how many combinations exist for four siblings comprised
of two girls and two boys. We now inquire about the number of permutations with
replication, namely to cover n = 4 positions by two groups, with replications
in each group, namely two girls (Anne, Beth), k = 2, and two boys (Carl,
David), i.e. n − k = 2. If we knew the looked-for number of permutations with
replication Pk; n−k, then it follows: from each number Pk; n−k we obtain k! · Pk; n−k

permutations, if we additionally distinguish between the girls (which means it
is actually important who the older one is – Anne or Beth). If we try the same
for the boys (it is also important whether Carl or David is older), then instead
of the k! · Pk; n−k permutations obtained so far, we have (n − k)! · k! · Pk; n−k

permutations; however, this number amounts to n!, which is just the number of
different combinations from the very beginning. That is, we get (n−k)! · k! ·
Pk; n−k = n!; in other words Pk;n−k = n!

k!(n−k)! := ( n
k

)
.

Master Example 6.4 All options of filling out a lottery ticket
The question is: How many different ways exist in a lottery to mark 6 of 49

available numbers? For this we have exactly

(
n
k

)
=

(
49
6

)
= 49!

6! · (49 − 6)!
= 49 · 48 · 47 · 46 · 45 · 44 · 43!

6 · 5 · 4 · 3 · 2 · 1 · 43!

= 49 · 48 · 47 · 46 · 45 · 44

6 · 5 · 4 · 3 · 2 · 1
= 13 983 816 options.

Only one of them contains all 6 of the winning lottery numbers.

A random variable y with the probability of Formula (6.4) is called binomially distributed and
follows a binomial distribution with the determinants n and p.

For Lecturers:

Our example with the family with four children, Anne, Beth, Carl, and David, may
serve for the derivation of the probability of y = k; y being a binomially distributed
variable. We look for the probability of having, amongst n = 4 children, k = 2
girls (and by this n − k = 2 boys). The probability for the birth of a girl can be
stated as follows: p = 1

2 .
Let us now consider a fixed sequence of girls, G, and boys, B, for instance

GGBB; then the probability of exactly this sequence, due to the multiplication
theorem, is p · p · (1 − p) · (1 − p) = p2 · (1 − p)4−2 = 1

16 . Generally, we
obtain that a certain sequence of n children with k girls and n − k boys has the
probability pk · (1 − p)n−k. As already mentioned above, in total,

( n
k

)
different

sequences exist. All these
( n

k

)
sequences fulfill the event of interest: k times G and

n − k times B. Therefore the probability P(k girls out of n siblings) is, according
to the addition theorem,

( n
k

)
pk(1 − p)n−k.
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Master Example 6.5 Probability of drawing Hearts from a complete deck of cards
Again we consider a deck of cards with four suits (Hearts, Diamonds, Clubs,

Spades), each suit having the same 13 ranks (Ace = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
Jack, Queen, King). Given that we draw six cards randomly with replacement,
the probability of drawing the event Heart in an arbitrary draw is 1

4 . The number
of Heart cards in the six drawings, k, is binomially distributed with n = 6 and
p = 1

4 . Therefore the probability for all possibilities k = 0, 1, 2, . . . , 6 is:

P(k = 0) =
(

6
0

) (
1

4

)0 (
3

4

)6

=
(

3

4

)6

= 729

4096
= 0.1779785

P(k = 1) =
(

6
1

) (
1

4

)1 (
3

4

)5

= 6

(
1

4

)(
3

4

)5

= 1458

4096
= 0.355957

P(k = 2) =
(

6
2

) (
1

4

)2 (
3

4

)4

= 15

(
1

4

)2 (
3

4

)4

= 1215

4096
= 0.2966309

P(k = 3) =
(

6
3

) (
1

4

)3 (
3

4

)3

= 20

(
1

4

)3 (
3

4

)3

= 540

4096
= 0.1318359

P(k = 4) =
(

6
4

) (
1

4

)4 (
3

4

)2

= 15

(
1

4

)4 (
3

4

)2

= 135

4096
= 0.0329590

P(k = 5) =
(

6
5

) (
1

4

)5 (
3

4

)1

= 6

(
1

4

)5 (
3

4

)1

= 18

4096
= 0.0043945

P(k = 6) =
(

6
6

) (
1

4

)6 (
3

4

)0

=
(

1

4

)6 (
3

4

)0

= 1

4096
= 0.0002441

We see that k = 1 is the most probable case and therefore just one is the highest
expected number of Hearts drawn. The mode of the theoretical distribution of k is
1. Since there are no further possible combinations, the sum over all probabilities
equals 1.

In R, we obtain these probabilities more conveniently by typing

> probfct <- dbinom(0:6, size = 6, prob = 0.25)

i.e. we apply the function dbinom() to ascertain the density and set 0:6 to include all
possibilities from k is 0 to 6 as the first argument; with size = 6, we set the number of
trials to n is 6 and set p with prob = 0.25, and assign the result to the object probfct.
Next we compute the distribution function by typing

> distfct <- pbinom(0:6, size = 6, prob = 0.25)
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i.e. we set the same arguments in the functionpbinom() and assign the result to the object
distfct. For graphical illustration of the probability as well as distribution function, we
type

> plot(0:6, probfct, xlab = "Value",
+ ylab = "Probability function")
> lines(0:6, probfct, type = "h")

i.e. we set the values on the abscissa (0 to 6) in the function plot() as the first argument,
and the corresponding values of the probability function probfct as the second. The
further arguments xlab and ylab label the axes. To improve the readability of the
resulting chart we amend it with the function lines() using the same coordinates, and
with type = "h" stipulate that the lines be vertical histogram-like.

As a result we get the chart shown in Figure 6.1.
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Figure 6.1 Graphical illustration of the probability function in Example 6.5.

To visualize the distribution function, we type

> plot(0:6, distfct, ylim = c(0, 1), ylim = c(0, 1), xlab = "Value",
+ ylab = "Distribution function")
> lines(0:6, distfct, type = "s")

i.e. again we apply the functions plot() and lines() and set their arguments anal-
ogously. Only this time we use the values of the distribution function distfct and set
type = "s" to get stair steps.
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As a result we get the chart shown in Figure 6.2.
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Figure 6.2 Graphical illustration of the distribution function in Example 6.5.

In SPSS, there is a more convenient way to obtain the probabilities than computing them
manually. After starting SPSS we type the values of column value shown in Figure 6.3
in a new data sheet. Next we select the same command sequence (Transform – Compute
Variable. . .) as in Example 5.3 to open the window in Figure 5.9. We input probfct as Target
Variable: and select PDF & Noncentral PDF from the panel Function group:. Subsequently a
list in the panel Functions and Special Variables: appears and we select PDF.Binom from it.
The name stands for probability density function of a binomial distribution. Next we move
this function to the field Numeric Expression: and set as its argument (value, 6, 0.25). We
confirm these settings by clicking OK and get the probabilities in question (see second column
in Figure 6.3). To ascertain the distribution function we proceed analogously, but name the
Target Variable: distfct and select CDF.Binom from the CDF & Noncentral CDF group list. We
set the same arguments as before and once again click OK to get the result (see third column
in Figure 6.3).

Up next we’d like to visualize the probability function and the distribution function. First,
we need to set the measurement scale of value, probfct, and distfct by changing to the SPSS
Variable View and selecting (click to open a pull-down list) Scale in the column Measure
(see Figure 5.12). Now we start the SPSS Chart Builder shown in Figure 5.5. There we select
Scatter/Dot in the Gallery tab and drag and drop the symbol Simple Scatter into the Chart
Preview. Next we move value to the field X-Axis? and probfct to Y-Axis?. Finally we click
OK and a graphical illustration of the probability function (not shown here) appears, which
we double-click. Subsequently the Chart Editor (Figure 6.4) pops up. In it, we double-click
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Figure 6.3 SPSS Data View in Example 6.5.

Figure 6.4 SPSS Chart Editor.
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Figure 6.5 SPSS-window for defining properties of points.

Figure 6.6 SPSS-window for defining properties of interpolation lines.
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any of the seven points in the chart and get to the window in Figure 6.5. Next we activate
the Spikes tab, tick Floor, and Apply this setting. We need to tick Floor and Apply once again
so that SPSS executes the command. Finally we close the two still-open windows and get a
chart analogous to Figure 6.1.

To illustrate the distribution function graphically, we proceed analogously to the proba-
bility function. We once again start the Chart Builder and drag and drop Simple Scatter into
the Chart Preview. Next we move value to the field X-Axis? and distfct to Y-Axis?. Clicking
OK gets us to a new chart (not shown here), which we double-click to start the Chart Editor.
Instead of double-clicking a point, this time we right-click anywhere on the chart to open
a pull-down menu (not shown) from which we select Add Interpolation Line. This results in
another pop-up window (Figure 6.6), where we tick Step and then click Apply. Finally we
close all pop-up windows and get a chart analogous to Figure 6.2.

6.2.2 Normal distribution

Frequently we deal with continuous characters and model them, of course, with a continuous
random variable. The number of measurement values is theoretically (innumerably) 3 infinite,
even if, due to the given measuring method and the precision of the instruments, this will not
be apparent in practice.

Master The probability of each event for a continuous random variable, that is, with
(innumerable) infinite possible events, is zero. Nevertheless, at each observation
one of them occurs. This becomes obvious taking into account that each outcome
of a continuous character – because of measurement imprecision – represents
a (very) small interval; and for this interval a probability different from zero is
given.

Therefore, for all of these (innumerable) infinite measurement values of a character we use,
instead of a probability function, the density function f (y) of y at y.

The normal distribution is the best-known continuous distribution. Its density function
is:

f (y) = 1

σ
√

2π
e− 1

2σ2 (y−μ)2

(6.5)

In statistics a special case of the normal distribution plays an important role; namely the case
with a mean of 0 and a standard deviation of 1. It is called the standard normal distribution. Its
density function, that is the density function ϕ(z) of a standard normally distributed random
variable z, is:

ϕ (z) = 1√
2π

e− z2

2 (6.6)

3 ‘innumerable’ means: there are more values than natural numbers.
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‘Standardized’ means that y is transformed to z: z = y−μ

σ
. We also say that z is N(0, 1)

distributed or, generally, y is N(μ, σ 2) distributed. Therefore the determinants of the normal
distribution are μ (mean) and σ 2 (variance).

Bachelor Example 5.4 – continued
We considered the empirical distribution function of the character Everyday
Knowledge, 1st test date in Example 1.1, restricted to the sample of children
with German as a native language, as well as to children with Turkish as a native
language but tested in Turkish at the first date.

In R, we have already illustrated the frequencies shown in Table 5.5 graphically (Fig-
ure 5.17a). Next we amend this chart with a normal curve based on the mean and standard
deviation of the sample. The children with native language German, as well as those with
native language Turkish who have been tested in Turkish on the first test date, have already
been selected and assigned to the object sub1_t1.set.

> hist(sub1_t1.set, freq = FALSE, main = "Histogram",
+ xlim = c(20, 80),
+ xlab = "Everyday Knowledge, 1st test date (T-Scores)",
+ ylab = "Relative frequency")
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Figure 6.7a R-output showing a histogram along with the density function of the best-
fitting normal distribution in Example 5.4.
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i.e. we apply the function hist() with analogous arguments as before in this example
(see Chapter 5), with the exception that with freq = FALSE we graphically illustrate
the relative frequency. Next we type

> x <- seq(from = 0, to = max(sub1_t1.set),
+ length.out = length(sub1_t1.set))
> curve(dnorm(x, mean(sub1_t1.set), sd(sub1_t1.set)), add = TRUE)

i.e. we apply the function seq() to create a numerical sequence from 0 to the largest
observed value of the character Everyday Knowledge, 1st test date (sub1_t1.set). With
length.out we set the length of the sequence to be equal to the number of observation
values of the character length(sub1_t1.set). The resulting values are assigned to
the object x. Finally we set the density function, ascertained with the function dnorm()
based on object x as well as on the mean and standard deviation of character Everyday
Knowledge, 1st test date, as the first argument in function curve(). The additional
argument add = TRUE inserts the resulting normal curve into the existing chart.

As a result we get the chart shown in Figure 6.7a.

In SPSS, we have already illustrated the frequencies shown in Table 5.5 graphically (cf.
Figure 5.17b). Next we would like to amend this chart with a normal curve based on the
mean and standard deviation of the sample. We start the SPSS Chart Builder (Figure 5.5)
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Figure 6.7b SPSS-output showing a histogram along with the density function of the
best-fitting normal distribution in Example 5.4.
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with the same command sequence (Graphs – Chart Builder. . .) as in Example 5.2. In it we
select Histogram in the Gallery tab, and drag and drop the symbol Simple Histogram into the
Chart Preview. Then we move the character Everyday Knowledge, 1st test date to the field
X-Axis? and click Element Properties. . . to open the corresponding window. Here we tick
Display normal curve, Apply this change and Close the window. A final click on OK and the
chart shown in Figure 6.7b appears.

Besides the histogram given in Section 5.2.3, which shows the empirical distribution of the
character Everyday Knowledge, 1st test date, the curve of the density function of a theoretical
distribution is given; namely the one resulting if the character were modeled by a normally
distributed random variable. The mean and variance of both distributions are the same.

Master Example 6.6 Density and distribution function of the normal distribution

In R, we can ascertain the density function f (y) and the distribution function F(y) for any
normal distribution, given that we provide the y-values. To do this, we enter the commands

> q <- seq(from = -3, to = 3, by = 0.1)
> densfct <- dnorm(q, mean = 0, sd = 1)
> distfct <- pnorm(q, mean = 0, sd = 1)

i.e. we use the functionseq() to generate a numerical sequence from-3 to3 incremented
by 0.1, and assign the resulting values to the object q. Next we apply the functions
dnorm() and pnorm() to ascertain the density function and the distribution function
of the normal distribution. For both functions we set the y-values in the object q as the
first argument; with mean = 0 and sd = 1 we set the mean as well as the standard
deviation. The results are assigned to the objects densfct and distfct. In order to
illustrate these functions graphically, we type

> plot(q, densfct, type = "l")

i.e. we apply the function plot() and set the y-values in the object q as the first argument
and the density function f (y) in the object densfct as the second. With type = "l"
we stipulate that the coordinates given by the prior arguments will be sequentially linked
by lines. As a result we get a chart analogous to Figure 6.9. Next we type

> plot(q, distfct, type = "l")

i.e. we simply replace the density function by the distribution function distfct; as a
result we get a chart analogous to Figure 6.10.

In SPSS, given that we create a variable (new column in the SPSS Data View) containing
the y-values, we can, analogously to Example 6.2, ascertain the density function f (y) and the
distribution function F(y). Therefore we apply the functions PDF.Normal and CDF.Normal,
in each case with the arguments (quant, mean, stddev); this means that we input the y-values
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Figure 6.8 SPSS Data View showing the density function and the distribution function of
the standard normal distribution.
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Figure 6.9 SPSS-output showing the density function of the standard normal distribution.
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(provided in a variable) as quant and set the mean and standard deviation. In Figure 6.8 we
have already done that for q containing a numerical sequence from −3 to 3, mean 0 and
standard deviation 1, thus a standard normal distribution. The values of the density function
and the distribution function are shown in the second and third columns, respectively.

In order to illustrate this data graphically we start the SPSS Chart Builder (Figure 5.5)
with the same commands (Graphs – Chart Builder. . .) as in Example 5.2. Then we select Line
in the Gallery tab and drag and drop the symbol Simple Line into the Chart Preview. Next
we move the character q to the field X-Axis? and densfct to Y-Axis?. Finally, we click OK to
obtain the chart shown in Figure 6.9. If we drag distfct instead of densfct to the field Y-Axis?
we would obtain the distribution function of the standard normal distribution (Figure 6.10)
after clicking OK.
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Figure 6.10 SPSS-output showing the distribution function of the standard normal
distribution.

The normal distribution is important for several reasons.

1. Many populations in the real world have characters that are actually distributed in a
way that can be approximated well with the normal distribution.

Master There is a simple explanation for why so many characters have nearly nor-
mally distributed outcomes. This is because many characters are the result of
the co-action of several (independent) random components; take intelligence for
instance – we test a lot of partial performances in several intelligence tasks. Now,
put simply, probability theory discloses, according to the so-called central limit
theorem, that when a random variable is the sum of many independently but
arbitrarily distributed random (sub-) variables, then the density function ap-
proaches the normal distribution as the number of (sub-) variables becomes larger.
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Master Example 6.7 Distribution of the sum of integers when throwing three dice
That the density function of a random variable as a sum of several independent,

random (sub-) variables with any distribution tends to be normally distributed
can be demonstrated by throwing three dice at once. The reader might do this
n = 30 times. The random variable y might then be the sum of the integers
from all three dice (3 ≤ y ≤ 18), for each throw. According to experience, the
resulting histogram offers an image which comes quite close to the density of a
normal distribution – despite there being just three summands. Figure 6.11 shows
a numerical example, that we obtained after entering our outcomes (9, 8, 16, 8,
10, 11, 9, 7, 12, 10, 10, 13, 6, 8, 15, 12, 10, 11, 9, 11, 11, 6, 9, 13, 9, 12, 11, 12, 10,
13) as variable dice drawing in SPSS. We construct the histogram with the same
commands as described in the continuation of Example 5.4 in Section 5.2.3. The
x-axis of the histogram has been treated as described at the end of Example 5.5. In
the window similar to that shown in Figure 5.13, we select X-Axis1 (Bar1) in the
panel Edit Properties of: and remove the check marks for Minimum and Maximum
in the field Scale Range and then insert the number 3 into the field Minimum and
the number 18 into the field Maximum. Then we insert the number 1 into the field
Major Increment (after removing the check mark). Finally, we tick Display normal
curve. After Apply and a click on OK the chart shown in Figure 6.11 appears. The
resulting reader’s distribution of the sum of integers from throwing three dice will
of course differ from the one given here.
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Mean = 10.37
Std. Dev. = 2.371
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Figure 6.11 Histogram and density function of the best fitting normal distribution in
Example 6.7.
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2. Many statistical tests are derived under the assumption that the random variable of
interest follows a normal distribution.

Master However, for most statistical tests the assumption of a normally distributed random
variable does not actually matter. Firstly, due to the central limit theorem, even if
the distribution of y in the population is not normal, the distribution of the mean ȳ
(that is if we consider all possible ȳ of all possible samples of size n) tends for n →
∞ toward a normal distribution – as a common rule of thumb n > 30 is enough to
gain a good approximation of the normal distribution. However, in the end what is
of relevance for the derivation of the respective statistical tests is: their assumption
of normally distributed random variables is only stated to be sure, using simple
means, that a normal distribution of the mean ȳ is given. Secondly, most statistical
tests are robust; this means that the assumption of a normally distributed random
variable can be violated for most of them with relatively minor effects (Rasch &
Guiard, 2004). Hence, these tests are generally applicable.

3. Many distributions tend with increasing sample size, that is with n → ∞, toward a
normal distribution.

Master The t-distribution (see Section 8.2.2) tends toward a normal distribution when
the number of degrees of freedom (in principle the sample size n) becomes
large. An analogous statement is valid for the χ2-distribution (see Chapters 8 and
9). But also some discrete distributions tend with growing sample size toward a
normal distribution. If, for instance concerning a binomial distribution, n becomes
large, then the probability that a binomially distributed random variable k, with
the determinants n and p, is smaller than or equal to a number k tends to the
probability that a standard normally distributed random variable z is smaller than
or equal to a number z = (k−np)√

np(1−p)
; that is, P(k < k) ∼= P(z ≤ k−np√

np(1−p)
).

Summary
In statistics, a character of interest is modeled by a random variable, making a plausible
assumption about the distribution of its measurement values. The most important theoretical
distribution in this context is the normal distribution, which is uniquely determined by the
mean and the standard deviation. Many distributions can, at least given certain conditions, be
approximated by the normal distribution. The standard normal distribution has mean 0 and
standard deviation 1.

6.3 Quantiles of theoretical distribution functions

For the application of statistical methods it is regularly of importance to find probabilities
by using some given distribution function. For instance, for a binomial distribution we could
be interested in the probability of at least k = 8 successes, i.e. following Formula (6.4),
P(y ≥ 8) = ∑n

k=8 P(k). Or, for instance, for a (standard) normal distribution we would like
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Figure 6.12 Density function of the standard normal distribution with common quantiles.

to know the probability of z ≥ z = 2.58. Then tables (such as Table B1 in Appendix B) offer
such probabilities, or one calculates them with SPSS or R.

The problem often is considered the other way round: we look for the value yP, for which
the distribution is split into two parts, so that F(yP) = P and 1 − F(yP) = 1 − P, respec-
tively, where P is a certain probability. In the following we generally call yP the P-quantile.
Figure 6.12 gives an example of the density function of the standard normal distribution
including common quantiles.

Master We can illustrate the situation graphically due to the fact that the P-quantile is
defined by F(yP) = P. The area under the curve of the density function f (y), to
the right of yP, is equal to 1 − P; to the left of yP it is equal to P. That is, yP is
that value on the abscissa, for which the distribution function F(y) takes the value
P. Figure 6.13 coincides with Figure 6.10 of the distribution function’s curve of
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Figure 6.13 The 0.9-quantile of the standard normal distribution.
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the standard normal distribution, but now additionally gives the 0.9-quantile on
the abscissa (here the y-axis). For this, the ordinate’s value of 0.9 has to be found,
from where a parallel line to the abscissa must be drawn long enough to cross the
curve; another line is plotted perpendicular to this point of intersection; the value
y0.9 = 1.2816 is the result, when the abscissa is met.

Master Example 6.8 Distribution of the character intelligence quotient
Nowadays, the term intelligence quotient (IQ) belongs to everyday knowl-

edge, even if a layperson cannot interpret the exact value of an IQ correctly. The
IQ is defined such that the (theoretical) outcomes, i.e. IQ-values, are normally
distributed (see Figure 6.14). For each IQ-value on the abscissa, there is a cor-
responding certain value on the ordinate. For an arbitrarily small interval around
such a point, the population’s probability (relative frequency) can be ascertained
for an IQ-value within that interval. David Wechsler (see for instance Kubinger,
2009b) intentionally, though arbitrarily, set the mean to μ = 100 and the standard
deviation to σ = 15. Consequently, in the interval 90 ≤ IQ ≤ 110 lie about 50%
(to be exact, 49.5%) of the persons in the population. Further, 68.3%, i.e. about
two-thirds of the persons of the population, realize values within μ ± σ .

–3 –2 –1 0 1 2 3

55 70 85 100 115 130 145

20 30 40 50 60 70 80

z (μ = 0, σ = 1)

μ + 3σμ + 2σμ + 1σμ – 1σ μμ – 2σμ – 3σ

IQ(μ = 100, σ = 15)

T(μ = 50, σ = 10)

Figure 6.14 The distribution of the intelligence quotient (IQ) in the population. The scale
of so-called T-Scores will be used quite often throughout the text (Example 1.1); the scale
of z-values, used in psychological assessment corresponds to the P-quantiles, z(P), of the
standard normal distribution.

6.4 Mean and variance of theoretical distributions

Besides the graphical illustration of a theoretical distribution, analogous to the statistics of
empirical distributions, so-called parameters (of a theoretical distribution) can be defined.
These parameters are the target of estimations based on proper statistics from samples.
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Master In mathematical statistics, as regards theoretical distributions, most of the
time the term expectation is used instead of the term mean: that is, the value
which we most probably ‘expect’ for a single, randomly chosen unit (from the
population). Even if that value means a contradiction from the content point of
view (for instance in coin tossing we cannot expect the value 3.5, because it is an
impossible event), in the long run, that is, in sum, our ‘expectation’ differs least
from the actual realized outcome.

For a discrete random variable y with the measurement values y1, y2, . . . ,
yr and the corresponding probabilities p1, p2, . . . , pr, the expected value, the
expectation of y is defined as:

μ = E( y) = y1 p1 + y2 p2 + · · · + yr pr =
r∑

l=1

yl pl (6.7)

For a continuous random variable with the density function f (y), the expected
value of y is defined as:

μ =
∞∫

−∞
y f (y)dy (6.8)

For the sake of simplicity, in this book we often use ‘mean’, though the ‘expec-
tation’ is meant.

Master Example 6.5 – continued
Given the probabilities P(k = 0) = 0.1779785. P(k = 1) = 0.355957. . . . , P(k =
6) = 0.0002441, the following expectation results: E(y) = 0 · 0.1779785 + 1 ·
0.355957 + 2 · 0.2966309 + 3 · 0.1318359 + 4 · 0.0329590 + 5 · 0.0043945 +
6 · 0.0002441 = 1.5; i.e. we expect that if we draw a card from a deck six times
(with replacement) that (on average) a Heart results 1.5 times. This is intuitively
obvious, because four different suits are randomly distributed throughout the six
cards.

Master The variance of a theoretical distribution is defined as

σ 2 = E( y − μ)2 = E[ y − E( y)]2 (6.9)

6.5 Estimation of unknown parameters

In Section 6.2 we indicated that for given research questions the character of interest has to be
properly modeled. This includes the determination of the modeled theoretical distribution’s
parameters. As a consequence, we estimate the parameters of the modeled distribution. For
instance, ȳ = 1

n

∑n
v=1 yv (Formula (5.2)) for μ, and s2 = 1

n−1

∑n
i=1 (yi − ȳ)2 (Formula (5.4))

for σ 2 are appropriate estimates.
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Master An estimate is the result of an estimation; it is a realization of an estimation
function. Estimation functions are sometimes called estimations but would be
better called estimators. Bear in mind that an estimation function is not determin-
istic; that is, its functional value, the estimate, does not always result in the same
value. The estimate depends instead on chance, as we are obviously dealing with
a random variable. The estimator describes all theoretically possible estimates:
imagine drawing a (random) sample infinitely often. Therefore all estimates have
a variance and of course a mean.

For Lecturers:

The Dutch language makes a clear differentiation between estimator and estimate;
the former is called schatter, which is a synonym for ‘rifleman’, and the latter is
referred to as schatting, which is a synonym for ‘shot’. Of course shots from a
rifleman vary around the target (that is, the parameter to be estimated).

Master A common principle to obtain an estimate θ̂ of an unknown parameters θ is the
least squares method, which goes back to Legendre (and Carl Friedrich Gauss).
That value θ̂ is chosen as estimate for the parameter θ , which minimizes the sum
of the squared deviations between all the outcomes and the parameter θ .

In the case of the mean of a theoretical distribution of random variable y, that
is μ, we have to minimize

∑n
v=1 (yv − μ)2. This leads to

μ̂ =

n∑
v=1

yv

n
= ȳ

as the estimate. In terms of random variables we get the estimator

μ̂ =

n∑
v=1

yv

n
= ȳ

We see that the sample mean is a proper estimator for the mean of a theoretical
distribution (or a population) – an intuitively evident result.

The empirical mean as an estimator for the mean of a theoretical distribution
has special properties. It is consistent and unbiased. By consistency and lack
of bias we mean the following: generally, an estimator S for the parameter θ is
consistent with regard to θ , if the estimate S = θ̂ tends, for n → ∞, toward the
parameter θ . An estimator S of the parameter θ is called unbiased with regard
to θ , if for all θ the following holds: E(S) = θ . The difference E(S) − θ =
wn(θ ) �= 0 is called the bias of the estimator – the suffix n indicates that the bias
may depend on n.
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Master Example 6.9 Consistency and unbiasedness of the average age of pupils in
primary schools

Given a sample of size n of pupils in the third grade of primary school, we
calculate the average age in months. Then with additional sampled pupils, as
n → N the newly calculated mean comes nearer to the mean age of all pupils in
the third grade, i.e. the mean μ of the population. Therefore, this is a consistent
estimator: the estimate tends with n → N (n → ∞) toward the parameter μ. If
we obtain not only a single sample (of size n), but many samples, namely m,
theoretically infinitely many, that is m → ∞ (all with size n), and we calculate
for each sample the mean age in months, then the mean (expectation) ȳ of all
these m means, ȳm , equals the mean μ of the population. That is, we have an
unbiased estimator as well: the mean of the estimates tends for m → ∞ toward
the parameter μ – independent of the size n.

The reader can empirically understand this unproven phenomenon of unbi-
asedness by, for instance, throwing a die six times each, repeated in approximately
30 runs, and recording the integer on the top side. The mean of the means of the
observed integers will be almost 3.5, which is equal to the theoretical mean of
realized integers.

Master An estimator S for the parameter θ is called an efficient estimator, if its variance
V(S) under all unbiased estimators for that parameter θ is kept to a minimum.
It can be shown that the mean of a random variable is consistent, unbiased, and
efficient with regard to the mean μ – independent of which distribution is given.

As concerns the sample variance as defined in Chapter 5 (that is, with the term
n − 1 in the denominator), its respective estimator is actually an unbiased one.
However, the possible estimator σ̃ 2 = 1

n

∑n
v=1 ( yv − ȳ)2 is biased, because it can

be shown that

E(σ̃ 2) = (n − 1) · σ 2

n
= σ 2 − 1

n
· σ 2

Doctor An estimator S for the parameter θ is called sufficient if the total (relevant)
information of the random sampled outcomes is contained in this estimator.

Master In contrast to the least squares method, there is another approach to gain an
estimate θ̂ of an unknown parameter θ . It is the maximum likelihood method
(MLM). Here any parameter is estimated from the outcomes in such a way that
the latter have maximum likelihood (in other words: maximum plausibility) of
resulting. Starting from the outcomes yv, v = 1, 2, . . . , n, the likelihood function
L(y | θ ) is of interest. This is a function of θ , given all yv. ‘Likelihood’ does not
mean probability, because the function L(y | θ ) does not refer to a random variable
but to fixed values.

Doctor The application of the maximum likelihood method requires knowledge of the
kind of distribution of the random variable which is modeling the character –
we call a random variable’s probability function or density function a likelihood
function if it is considered as a function of the unknown parameter(s). That
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parameter value which maximizes this likelihood function for the given outcomes
is called the maximum likelihood estimate – the corresponding random variable is
the maximum likelihood estimator. By the way, the maximum likelihood estimator
of the expectation of the normal distribution is identical to the least squares
estimator.

Summary
Analogous to statistics in samples, parameters serve for the characterization of the population.
A character is modeled by a random variable, which follows, with respect to the population,
some theoretical distribution. This is determined by such parameters. Several methods of
statistics look for estimators for these parameters, i.e. the unknown parameters of the popula-
tion will be estimated by the given sample.
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7

Assumptions – random sampling
and randomization

In this chapter we show that the application of statistical methods in planning and analysis
of empirical research makes it necessary that the research units are taken from the respective
population randomly. Different options for random sampling and randomization of research
units in experimental designs are discussed. We will particularly consider complete and
incomplete block designs for the elimination of known noise factors.

In responding to an exactly formulated research question (in the area of psychology), a census
of the underlying population obviously is not often considered. We have to get by with samples.
On the other hand we like to make a ‘virtue’ of ‘necessity’: if a census is not essential, but
a sample is sufficient for verifying the (psychological) phenomenon in question with given
precision, then it would be completely uneconomic to not make a research principle out of
this. We will thus look for a sample that is no greater than required in order to describe the
population with the desired precision; we will discuss later what is meant by ‘precision’.

In order to follow this principle of research, i.e. to conduct, instead of a census, an
investigation on a sample of the population, we need a scientific hypothesis. That is, a
certain assumption underlying the exactly formulated research question – otherwise we would
probably not conduct a research study. Aside from a few cases, such an assumption is always
of the form: ‘there are differences between certain groups of research units’ or ‘there is
an association between two characters’. We call this assumption (purely technically) the
alternative hypothesis in contrast to the null hypothesis, which always states: ‘there are no
differences; there are no associations’, or more generally ‘there are no effects’.

Master
Doctor

Example 3.1 – continued
The psychological effects of a hysterectomy are to be investigated. Summarized,
our first reflection on this question leads to the following considerations and

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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approaches to planning a study. We focused on the ‘psychological effect’ on
‘self esteem’ of a woman or her ‘psychological stability’, which we suppose to
be measurable by means of a psychological assessment tool, Diagnosticum Y .
Then, we recognized that an arbitrary selection of patients would be critical. As
a minimum we have to assess ‘healthy’ women by Y as well (that is women who
have not (yet) been positively diagnosed with respect to the given disease), or
even better a group of patients with a surgery of comparable severity (gall bladder
surgery) as control group. It was also considered critical to provide any arbitrary
number of investigated women. The critic’s concern would be that nobody would
be able to conclude that the results (such as any differences established between
the arbitrarily selected groups) were generalizable, i.e. applicable to all women –
so that from these results could be deduced a mandatory psycho-hygienic need
for action for coping with and prevention of psychological effects. But of
course this is the actual aim of every study, namely to generalize: nobody would
be interested in differences related only to those two specific groups. Finally, we
recognized that it was about an ex post facto study; that is, that assignment of the
patients to the two groups was not done, as in an experiment, in a random way
before the exposure to different treatments, but after the appearance of the disease
and hence independent from the researcher. In the end, the exactly formulated
research question is: ‘Is the psychological effect of a hysterectomy more serious
than that of another surgery of comparable severity?’ From this, the following
alternative hypothesis is deduced: ‘The psychological effect of a hysterectomy is
more serious than that of another surgery of comparable severity.’ In contrast, the
null hypothesis is: ‘The psychological effects of a hysterectomy are equal to the
effect of any other surgery of comparable severity’!

As regards the subject matter, the content of a null hypothesis might often seem vacant, but it
is required formally: hypotheses in the empirical sciences concerning stated phenomena can
never be proven (in contrast to mathematics); it is only possible to reject a hypothesis based
on the evidence of its incorrectness which has been empirically observed (at least once) (see
Karl Popper’s principle of falsification, e.g. Popper, 1959). The statistical strategy in this is
to conceptualize a (statistical) test for each research question, in order to examine the null hy-
potheses with the help of the empirically derived data. The data either (clearly) argues against
the null hypothesis or does not (clearly) argue against it; in the latter case, by formal logic we
have to maintain it, but the alternative hypothesis, which is in fact of interest, has to be rejected.

For testing a null hypothesis we can revert to the statistics as offered by descriptive
statistics. However, these are not sufficient. If two different samples differ, for instance, with
respect to the mean, it is not possible to reject or maintain a hypothesis based merely on
this. It has to be taken into account that each sample represents only a part of the underlying
population. It is thus possible that great distortions have occurred, so that the concretely
observed means do not concord sufficiently with the respective parameters in the population
in question. Therefore, not every (minor) deviation between two samples is to be interpreted
in the way that the null hypothesis has to be rejected.

The crucial element of statistical inference in this context is: if we have a random sample
– solely chance decides whether an element of the population is included in the sample or
not – calculus of probabilities can be applied to solve our problem. Using it, we can calculate
how probable it is to randomly obtain the data which we observed (or data which intuitively
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argues even more against the null hypothesis) even though in reality the null hypothesis is
true. The exact value of this probability will finally decide if we maintain the null hypothesis
or reject it (and, in consequence, accept the alternative hypothesis).

We thus do not proceed without random sampling in statistics for answering research
questions in scientific psychology; specifically we cannot calculate the error of our decision
between null and alternative hypothesis (by means of calculus of probabilities) otherwise, and
thus cannot make a judgement about the possible deviation between sample and population.

7.1 Random sampling in surveys

We generally distinguish between surveys and experiments (see Chapter 4), because the
latter allow, from a theoretical scientific point of view, more meaningful, that is causal,
conclusions. Nevertheless, it has to be assumed for experiments as well that the research
units (in psychology mostly persons), who are later assigned to the different experimental
treatments, have been selected randomly before; so, the following explanations apply just as
well for experiments.

Besides the fact that random samples are required in order to eventually be able to take
into account deviations from the population for the interpretation of the research results, the
following is a chief concern: non-random sampling has the disadvantage that there is always
the risk of systematical, not just random, errors. Deviations between sample and population
thus cannot be interpreted either concerning their direction or their extent.

Master Example 7.1 Survey for an election forecast
Although nowadays surveys are not really conducted in such a naive way

anymore, this example, in which a forecast concerning the result of a political
election will be made by means of the (non-random) sampling method of haphaz-
ard sampling, is convenient from a didactic point of view. If we situated ourselves,
as the researcher, at a bustling place in the center of the capital at 12 noon on a
workday in order to interview the first 200 persons who pass by with regard to
their political opinion (election preference), we would make the mistake of sys-
tematically selecting certain groups of persons in an over- or under-represented
way compared to the population (of all eligible voters). As it is to be expected
that these groups of persons typically show a different election behavior, we have
to anticipate systematical error in the result of the research. Namely, would

1. persons working at the periphery of the city, and other correspondingly
locally ‘segregated’ persons (such as university students or housewives
with infants) be under-represented;

2. sales agents with contact addresses in the center be over-represented;

3. pupils eligible to vote and other persons who are bound to certain working
hours (teachers, public officers) be under-represented;

4. elderly people in rest homes and poorly mobile elderly people, as well as
chronically ill persons in clinical treatment be under-represented;

5. persons from certain social classes be over- or under-represented, respec-
tively.
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Here, the following problems are not under consideration at all: certain electors
do not announce their true preferences; some electors completely refuse to give a
response, other electors give the answer which seems to be socially desired in the
given interaction with the interviewer; and often electors change their preference
as a consequence of the publication of a survey.

Master Example 7.2 Telephone survey for an election forecast
Currently election surveys are conducted by means of telephone survey, mostly

using a ‘well-proven’ sample, as the forecast gained in this way in former election
surveys has corresponded quite well with the later result of the election. If such
a well-proven sample is not to hand, we would have to anticipate the following
biases compared to the population:

1. Persons who do not own a fixed line network but only a non-registered
mobile phone would not be reached.

2. Persons who are often away from the home would be under-represented.

3. In shared flats with more than one eligible voter, the ones who routinely
do not answer the phone first would be under-represented.

4. Persons who do not answer the phone, when they do not know the number
which is calling, would be under-represented.

A random sample can be realized theoretically easily, when all elements of the population
are known and registered in a data file. Then who will be included in the sample is decided
by means of a random number generator. Practically, this approach often is not applicable,
because not all elements of the population are known and registered in a data file.

For Lecturers:

A case concerning a presidential election in the US, which is cited as a classical
case in the literature, shows that samples using haphazard sampling can be
entirely useless (from Wallis & Roberts, 1965, p. 102):

In 1936, the Literary Digest, a magazine that ceased publication
in 1937, mailed 10,000,000 ballots on the presidential election. It
received 2,300,000 returns, on the basis of which it confidently pre-
dicted that Alfred M. Landon would be elected. Actually, Franklin
D. Roosevelt received 60 percent of the votes cast, one of the largest
majorities in American presidential history. One difficulty was that
those to whom the Literary Digest’s ballots were mailed were not
properly selected. They over-represented people with high incomes,
and in the 1936 election there was a strong relation between in-
come and party preference. In the preceding four elections, ballots
obtained in the same way had correctly predicted the winners, but
in those elections there was much less relation between income and
party preference.
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7.2 Principles of random sampling and randomization

Randomization in experiments means that a random assignment of the research units to the
treatments is performed, at which the research units themselves have previously been taken
randomly from the population.1

7.2.1 Sampling methods

If one talks about ‘sample’, this is mostly meant as an abbreviation for random sample. A
random sample is the result of a random sampling method. Sampling method describes the
rules by which elements of a given (finite) population are selected for the sample. If these
rules depend on chance, it is thus a random sampling method; this means that each element
in the population can be part of the sample with a given probability greater than zero.

Bachelor As soon as a sample is given, one cannot determine if it is a random sample or
not, without knowing the exact sampling method. Thus, with regard to a sample’s
randomness, it is not decisive which elements of the population are included
in the sample, but only how the sample was taken. If, for instance, in lottery the
numbers 1, 2, 3, 4, 5, 6 win, this does not generally argue against a random sample
of the numbers 1 to 49. Samples which have been taken using random sampling
can definitely appear to be extreme and seem not to be free from systematical
influences. In lotteries, it is demonstrated, by drawing the numbers while a camera
is filming the procedure, that the appearance of seemingly extreme numbers is
nevertheless random. However, certainly the principle of chance leads to the fact
that extreme sample results occur with a very low probability.

Master One often finds a tighter definition of random sampling; namely that each element
of the population has got the same probability of being part of the sample.
However, the definition given above, according to which each element has got
only a ‘given probability’, applies as well if we take a random sample from
strata from a stratified population – this happens with probabilities which are
proportional to the size of the strata.

Random sampling can be conducted according to one of two different principles:

1. Random sampling with replacement: after an element of the population has been taken,
it is registered (and the desired information is gathered, e.g. the measurement values of
the characters in question are observed) and then put back into the population; in that
way it can possibly be taken again. Obviously, this is only possible if the gathering of the
information does not influence the elements (this occurs very rarely in psychological
treatment or psychological testing) or even destroys them.

2. Random sampling without replacement: after an element has been taken from the
population, it is not available any more for re-selection.

1 Rarely, the term randomization is used as a generic term and then includes the random sampling in surveys as
well.
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Master
Doctor

Sampling with replacement leads to the fact that the population can be modeled
well by an infinite theoretical population even if it is small itself. In sampling
without replacement this is only the case when the population is big (approxi-
mately N > 1000 and n

N < 0.1). In sampling with replacement, the sample size n
can be bigger than the size of the population N. Naturally, this is not possible in
sampling without replacement.

Doctor If, from a population of size N, a sample without replacement of the size n < N
is to be taken,

( N
n

)
possibilities exist for this (see Section 6.2.1). Each of these

possibilities has the same probability, which equals 1 /
( N

n

)
according to Formula

(6.1): the one sample actually taken gives g = 1; all possible samples make up
e = ( N

n

)
. In this case we say it is an unrestricted random sampling (without

replacement) in which each possible sample occurs with the same probability.

Different technical options exist for the practical realization of unrestricted random sampling.
In the worst case, the method of drawing lots from a box can still be applied. In science
research work, this is nowadays done with the help of random number generators, which are
used in simulation studies as well (for more detailed information see Section 14.4).

For Lecturers:

The pool from which the random numbers are generated depends on the special
random number generator. This can be, for instance, the set of all 32-bit numbers
or the set of the real numbers in the interval [0, 1]. Often, it is desirable that
the random number generator creates uniformly distributed values; but for some
statistical simulations random number generators which produce a given distri-
bution (e.g. a normal distribution or a binomial distribution) are of interest. Most
of the random number generators of computer programs produce (only) pseudo-
random numbers and therefore are called pseudo-random number generators.
They serve for a sequence of numbers which seems to be but is not random,
because it is calculated by means of any deterministic algorithm: every time
when the random number generating process is started with the same starting
value (that is the so-called seed), the same pseudo-random sequence of numbers
is produced. This can be avoided by first determining the ‘seed’ randomly. For
simulation studies and for random sampling, pseudo-random number generators
are completely sufficient and thus are used in most cases.

Master Example 7.3 A random sample without replacement, of the size n = 5, will be
taken from a population with N = 100 elements

In an unrestricted random sample, each element is taken with a probability of
0.05. Element 8, for instance, will be taken with a probability of 1

100 in the first
step, or will not be taken with a probability of 99

100 , respectively. The probability
that element 8 is taken (only) in the second step equals 99

100 · 1
99 ; that is, 0.01 as

well. Equally, the probability for element 8 up to the fifth step equals 0.01 each
time (e.g. 99

100 · 98
99 · 97

98 · 96
97 · 1

96 ). Thus, the sum of these probabilities results as an
overall probability of 0.05 that element 8 comes into the sample.
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In R, we randomly draw 5 elements out of 100 (numbers 1, 2, . . . , 100) by typing

> sample(1:100, size = 5, replace = FALSE)

i.e. we apply the function sample() and set the number-set 1:100, from which we
randomly draw elements, as the first argument. With the second argument, size = 5,
we define the number of elements to be drawn, and specify by setting replace =
FALSE to draw the sample without replacement. As a result we get a random sequence of
5 numbers from 1 to 100. Since we draw a set of 5 numbers, 1 out of

( 100
5

) = 75 287 520
possible sets (permutations) – whereas each one has 5! = 120 different orders – we hardly
expect to get the same result twice. For instance we get, after adding a start value for the
random number generator (only for didactic reasons – for the purpose of trying out at
home)

> set.seed(321)

as the first result

[1] 96 93 24 25 38

and the next (without using set.seed())

[1] 35 45 29 44 78

However, we can conduct a systematic sampling as well. Therefore, we randomly
choose a number between 1 and 100

5 = 20 and get, for instance, 12 (random
start sampling). Starting from this element, we choose every following 20th el-
ement and obtain the elements 12, 32, 52, 72, and 92 for the sample. Certainly,
the elements 32, 52, 72, and 92 have been chosen systematically depending on
element 12, but because 12 is random they are random too. Obviously, this proce-
dure can, however, be realized more easily/quickly than an unrestricted random
sampling.

Master
Doctor

Sometimes the population, of size N, is divided, in a way which is relevant
regarding the content, into s sub-populations of size N1, N2, . . . , Ni, . . . , Ns.
In particular, the population can occasionally be divided into sub-populations
according to the levels of an assumed noise factor. Then, the sub-populations
are called strata. If the researcher wants to take samples of size n from the
population, he/she has to be concerned that, in the case of an unrestricted random
sampling, not all strata are included in the sample at all, or at least not in an
appropriate relation. In this case, it is preferable to conduct a stratified random
sampling. In this, sub-samples of the size ni(i = 1, 2, . . . , s) are taken from
the ith stratum. The sub-samples are taken from the respective stratum using
unrestricted random sampling. Apart from random sampling, this equates to the
so-called quota sampling, if ni/n is chosen proportionally to Ni/N.
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Master
Doctor

Example 7.4 An intelligence test for 12-year-olds will be standardized
Standardization (see also Section 2.3) in the subject of psychological assess-

ment means the creation of a frame of reference, in relation to which the individual
test score can be put. In this, the respective standardization tables have to rely on
a sample which is representative for the population (see e.g. Kubinger, 2009b).

We suppose that, as an exception, this is about the very tightly defined pop-
ulation of 12-year-olds in Vienna (Austria). It is to be assumed that the social
structure of the different districts of Vienna is different and also influences the
test score. If we now want to avoid that exclusively children from school classes
from only 1 of the 23 districts are observed – which would be quite unlikely, but
not impossible when using unrestricted random sampling – then we should use
the information about the structure of the urban districts.

Master
Doctor

Example 3.1 – continued
In this example, the psychological effects of hysterectomy were to be determined.

If we were to investigate just the first group of patients who come along, we
would obviously be applying haphazard sampling. However, actually we wanted
to gain insight into all hysterectomy patients compared to other female patients
with gall bladder surgery in Western civilization – or at least the English-speaking
countries. Our insight will be applicable for the typical age of such patients, their
other typical psychosocial characteristics, but particularly also for patients in the
conceivable future.

However, a stratification of the population and a corresponding selection
according to some relevant psychosocial characteristics is practically impossible,
as the underlying frequencies are not known or cannot be made public easily.
Stratification according to the hospitals (within the English-speaking area) is
possible. If we realize this, it is a multi-center study.

Master
Doctor

Random sampling is called multi-stage if sequences of random sampling are
done one after the other. In the first stage, a random sample of so-called primary
units is taken from the population. Each primary unit is then to be regarded
as a separate population of so-called secondary units, which are selected using
random sampling again, and which already constitute the elements of the sample
themselves in a procedure with (only) two stages. From each of the primary units,
which have been selected in the first stage, the secondary units are selected in the
second stage. In a procedure with three stages, we call the elements of the sample
tertiary units and so on.

Master
Doctor

Example 7.4 – continued
In Table 7.1 we find the exact information concerning the population and its
strata. Accordingly, we can apply unrestricted random sampling per stratum.
Assuming that the sample size should equal n = 100, we would have to include,
for instance, 3 children from the Hernals district. However, we could also apply
two-stage random sampling proportional to the size, where in the first stage
(preferably without replacement) firstly some of the 23 urban districts (that are
the primary units) are selected randomly. Then, unrestricted random sampling
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Table 7.1 Number of inhabitants overall and the number of 12-year-olds (estimated from
the number of children) in the urban districts of Vienna, 2009. The last column indicates the
relative frequency of 12-year-olds in % (from Statistik Austria, 2009)

Urban district
Number of

inhabitants overall
Number of

12-year-olds Ni 100 · fi = 100 · Ni
16 111

Innere Stadt 16 958 97 0.60
Leopoldstadt 94 595 835 5.18
Landstrasse 83 737 684 4.25
Wieden 30 587 228 1.42
Margarethen 52 548 431 2.68
Mariahilf 29 371 214 1.33
Neubau 30 056 190 1.18
Josefstadt 23 912 160 0.99
Alsergrund 39 422 275 1.71
Favoriten 173 623 1 738 10.79
Simmering 88 102 948 5.88
Meidling 87 285 852 5.29
Hietzing 51 147 441 2.74
Penzing 84 187 748 4.64
Rudolfsheim 70 902 658 4.08
Ottakring 94 735 828 5.14
Hernals 52 701 493 3.06
Währing 47 861 412 2.56
Döbling 68 277 590 3.66
Brigittenau 82 369 783 4.86
Floridsdorf 139 729 1 626 10.09
Donaustadt 153 408 1 926 11.95
Liesing 91 759 954 5.92

Total 1 687 271 16 111 100.00

is performed with respect to all of the 12-year-olds in the chosen districts. A
three-stage sampling would be meaningful as well, in which a certain number of
schools would be selected randomly from each of the districts as secondary units
and, after that, from these schools the pupils would be selected, randomly as well.
Bear in mind that the sampling proportional to the size can be done according to
the number of inhabitants, the area of the districts (less recommendable in this
case), the number of schools, or the number of (12-year-old) pupils in the urban
districts. According to Table 7.1 it is clear that a higher number of inhabitants
does not necessarily mean that the number of 12-year-olds is higher as well. For
instance, the Favoriten district has more inhabitants than the Donaustadt district,
but more children live in the latter than in Favoriten. It is thus appropriate for
our research to choose the districts proportionately with regard to the number
of children. If it had been difficult to determine the number of 12-year-olds, we
would have had to use the number of inhabitants.
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It is also possible in multi-stage sampling that in the last stage all elements are
considered; thus here, for instance, all of the 12-year-olds in the selected schools.
However, in this case not the children, but the schools are the research units – in
this case we say it is a cluster sampling.

Master
Doctor

Stratified sampling must not be mixed up with quota sampling which is common
nowadays within surveys. Indeed, in this case also, sub-populations are determined
with regard to some characters and factors which are considered particularly
important, and the relative proportion of these sub-populations in the overall
population is taken into account using respective quotas for the sampling. It is
thus assured that the sample is in fact representative for the population with regard
to these characters and factors. For instance, by doing so, the percentage of women
in the sample concords with that of the population, as well as the percentage of,
for instance, certain levels of education or age groups. However, the concrete
selection is left to the interviewers, so that the selection does actually not depend
only on chance.

Master Example 7.5 Survey for an elective forecast using quota sampling
If the selection of the persons who are to be included in the sample is left to

the interviewers, they will naturally try to minimize their effort. They just have
to fulfill certain quotas, such as: ‘Interview two women of medium education
level, living in a city, 50 to 60 years old, as well as five men from the lower
educational class from a rural area, of between 18 and 22 years’, and so on. Typical
mistakes, which could lead to a bias in the sample compared to the population,
are:

1. Successfully interviewed persons are asked to arrange contact with other
persons from their circle of acquaintances who are also willing to take part
in the survey (‘pyramid scheme’). However, circles of acquaintances are
often characterized by similar political opinions.

2. In telephone surveys the interviewer possibly stays on the same page of the
directory, so that often several persons from one family living in different
households are addressed – in this case often similar political opinions are
given as well.

Summary
If one wants to use a sample for characterizing a population, the sample has to be taken
using a random sampling method; in this, only chance decides whether a research unit is
included into the sample or not. In this case, calculus of probabilities can be applied; with
its help we can calculate to what extent the observed data argues for or against a certain
null hypothesis. Non-random sampling methods have the disadvantage that they always run
the risk of producing not only random error, but systematical error. Deviances between the
sample and the population thus cannot be estimated either with respect to their direction or
with respect to their size.
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7.2.2 Experimental designs

It is not always easy to determine how the assignment of research units to the treat-
ments/conditions is to be performed. The schedule according to which this is done is called
the experimental design. A simple or completely randomized design is a design in which
each treatment/condition can be assigned to each research unit with the same probability. The
assignment itself is to be done randomly. And it has to be assumed that the available research
units do represent a random sample of the underlying population.

Master
Doctor

Example 7.6 The influence of different item response formats in personality
questionnaires on the tendency to social desirability is to be investigated

We want to assign (for reasons which are not explained here in detail: exactly)
n = 104 persons randomly to v = 4 treatments/conditions: (1) dichotomous re-
sponse format (the testee can answer here by ‘is true’ or ‘is not true’ to questions
like ‘I am often despondent’); (2) five-categorical response format (‘yes, mostly’,
‘yes, from time to time’, ‘I do not know’, ‘no, rarely’, ‘no, almost never’);
(3) analogue scale-response format (see Section 2.4.3), (4) Q-sort as re-
sponse format (see Section 2.4.4). Each condition is to be applied on
26 persons.

In R, we create a matrix consisting of 4 columns and 26 rows, in which n = 104 persons
are randomly assigned. We type

> matrix(sample(104, size = 104, replace = FALSE), ncol = 4)

i.e. we again apply the function sample() – see Example 7.3 for the meaning of the
arguments – and set the result as the first argument in the function matrix(). We add
the argument ncol = 4 to get a matrix with 4 columns.

As a result we get (shortened output):

[,1] [,2] [,3] [,4]
[1,] 50 58 6 47
[2,] 17 76 64 60
[3,] 36 24 15 95
. . .

. . .

. . .

[24,] 19 42 53 62
[25,] 23 92 2 70
[26,] 65 46 78 79

Each column represents one of v = 4 treatments, and the numbers stand for the randomly
assigned persons, who were serially numbered from 1 to 104.

Sometimes, restrictions due to the content exist concerning the assignment of the research
units to the treatments. This is mostly the case when one or more noise factors come
into consideration.
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Doctor An experimental design is called a block design with b blocks, if a certain noise
factor is taken into account by means of the creation of blocks. The number
kj(j = 1, 2, . . . , b) of the research units in the jth block is called the block size of
block j; the sum of the kj equals the sample size n. The number of research units
which occur with the ith treatment is called the replication ri of the treatment i.
The sum of the ri equals the sample size n as well.

For Lecturers:

Many of the notations in statistics have a long tradition. Numerous statistical
procedures can be traced back to the British statistician Ronald A. Fisher, who
worked in an agricultural research station near London for a long time. He often
chose symbols from this domain. The treatments often were varieties, and the
observed character the yield. The letter v for the number of the treatment comes
from the word variety; the denotation of y for the observations from the word
yield, and the denotation of r for the number of replications from the word
replication.

Doctor Example 7.6 – continued
One possible noise factor is sex – in psychology a noise factor is often called a
moderator. In this case we would have b = 2 blocks, which are j = 1 (female)
and j = 2 (male). It has to be guaranteed that, in all of the 4 treatments, both
categories of this moderator have to be realized equally frequently; thus k1 =
k2 = 13.

Doctor When constructing a block design, the procedure has to be as follows. First the
number, b, of blocks (number, b, of levels of the noise factor) is to be determined
and defined by the contents. Then, the research units are to be assigned to the
blocks, if they are not already assigned in some natural way, as for instance twins
or siblings are. This assignment has to be done in an exhaustive and disjunctive
way. We assume here that all b blocks contain the same number of research units
k. The randomization is now to be performed in the following way: the research
units in each block are to be assigned randomly to the treatments. A randomization
is conducted separately for each block.

Doctor Example 7.7 Altogether, nine clients will be randomly assigned to three psy-
chotherapists

The three psychotherapists are to be understood as blocks; their possible
influence is thus to be eliminated using the creation of blocks. Naturally, the
assignment will be done randomly.

In R, we type

> matrix(sample(9, size = 9, replace = FALSE), ncol = 3)

– see Example 7.3 or 7.6 for the workings of the functions and arguments.
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As a result we get:

[1,] 8 3 4
[2,] 6 7 1
[3,] 5 9 2

Doctor In the case of k < v the situation is different. In these cases, we say that we have
incomplete blocks in an incomplete block design.

Doctor Example 7.8 Planning a study with five treatments in grouped research units
If we want to test v = 5 postoperative treatments in patients in triple bedrooms

and to eliminate possible ‘room effects’, the rooms are our blocks and the block
size of each room is k = 3. So in every block there are less research units
(patients) than treatments, which are to be investigated. Thus it is not possible
that all treatments are applied simultaneously in one room.

Doctor As can be shown, the goal to determine all treatment effects with the same
precision (and also all possible differences between treatment effects with the
same precision) requires that all treatments occur with the same frequency
(r times) in the design. The precision of a difference of two treatments depends
here on how many times, that is λ times, the respective pair of observations is
in the experimental design given. From this goal a certain experimental design
results: an incomplete block design (with equal block size k) is called a balanced
block design, if each of the v treatments occurs with the same frequency (r times)
in the experiment, and the number of occurrences of each of the possible treatment
pairs always equals λ.

In a balanced incomplete block design we have n = vr = bk. On one hand,
the total number of research units n results from the product of the number v
of treatments and the number r of the applications of these treatments in the
experiment; on the other hand, n results as the number b of blocks times the block
size k. It also has to be true that λ(v − 1) = r(k − 1), as in v treatments v(v−1)

2 pairs
of treatments exist (see Section 6.2.1), each of which occurs λ times, so that the
overall number of pairs in the experiment equals λ v(v−1)

2 . However, this number
can also be calculated by multiplying the number b of blocks by the number k(k−1)

2

of pairs which appear in each of the blocks; that is λ v(v−1)
2 = b k(k−1)

2 ; replacing
bk by vr, we obtain λ v(v−1)

2 = v r (k−1)
2 . There are thus two necessary conditions

for the existence of a balanced incomplete block design. This reduces the number
of possible quintuples of natural numbers v, b, r, k, and λ considerably. If we
determine a balanced incomplete block design for reasons of contents by three of
these parameters, for instance by v, k, and λ, then the remaining parameters can
be calculated with the help of the two formulas. Bear in mind that these necessary
conditions are not always sufficient2 for the existence of a balanced incomplete
block design. For example, the values v = 16, r = 3, b = 8, k = 6, λ = 1 do

2 For an event A it may be necessary that B has occurred, but the fact that B has occurred may not be sufficient
for A to occur; for instance, because C is necessary as well for A.
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fulfill the necessary conditions, as 16 · 3 = 8 · 6 and 1 · 15 = 3 · 5; anyway such
a design does not exist.

It is essential in incomplete block designs that they are connected block
designs; disconnected block designs cannot be analyzed as a whole, but have to
be treated like two or more independent experimental designs. An incomplete
block design is connected, if for each pair (Ak, Al) of treatments A1, A2, . . . , Av,
a sequence exists which starts with Ak and ends with Al such that succeeding
treatments in this sequence both occur in at least one block.

The formal representation of block designs can be done by creating a so-called
incidence or assignment matrix. This type of matrix has v rows and b columns,
and it contains the nij, which describe how often the ith treatment (the ith row)
occurs in the jth block (the jth column). Generally in incomplete block designs it
is convenient to use, instead of the incidence matrix, a compact notation for its
characterization: in this, each block corresponds to a bracket term in which the
numbers of the treatments included in the block are written.

Doctor Example 7.9 Formal example of an incomplete block design without relation to
any content

A block design with v = 4 treatments and b = 6 blocks is defined by the
following incidence matrix:

⎛

⎜
⎜
⎝

1 0 1 0 0 0
0 1 0 1 1 1
1 0 1 0 0 0
0 1 0 1 1 1

⎞

⎟
⎟
⎠

As this matrix contains the number zero, it represents an incomplete block design.
In the compact notation, it can be written in the form (1, 3), (2, 4), (1, 3), (2, 4), (2,
4), (2, 4). As written, the first bracket, for instance, represents block 1, in which
the treatments 1 and 3 occur; for example, the first column, which defines the first
block, contains the number 1 in rows 1 and 3, which corresponds to treatments 1
and 3.

Here, the first and the second treatment do not occur together in any of the
six blocks: no continuous path of vertical or horizontal steps between the matrix
content ‘1’ and ‘1’ can be found between these two treatments; it follows that the
design is an unconnected block design. The consequence of this fact becomes clear
when we change the numeration of the blocks and the treatments or interchange
the columns and rows of the incidence matrix in an appropriate way. Doing so,
we do not change anything in the structure of the design. So we interchange the
blocks 2 and 3 and the treatments 1 and 4, thus the columns 2 and 3 and the rows
1 and 4 in the incidence matrix. The following matrix results:

⎛

⎜⎜
⎝

0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 0 0

⎞

⎟⎟
⎠
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We can see now that the experimental design consists of two designs with
separated partial sets of treatments. In one design we have, in the rearranged
notation, two treatments (1 and 2) in the last four blocks. In the other design we
have two more treatments (3 and 4) in the first two blocks.

Doctor Example 7.8 – continued
This concerns five psychological postoperative treatments, which are to be inves-
tigated in patients in triple bedrooms. We want to construct a balanced incomplete
block design. The triple bedrooms represent blocks of the size k = 3; we have v =
5 psychological postoperative treatments. We suppose that the patients of seven
triple bedrooms are available for the experiment; that is n = 21. As we remember,
it has to be true that vr = bk = n; that is 5r = 21, as well as λ(v − 1) = r(k − 1);
that is 4λ = 2r or r = 2λ, and consequently 5r = 10λ = 3b = 21. As r and b have
to be integers, we cannot construct a balanced incomplete block design under the
given circumstances.

Thus it is better to plan our experimental design using relevant software
programs – here it will turn out that we cannot incorporate 7 triple bedrooms
when testing 5 treatments.

In R, we apply the package OPDOE, which we load after its installation (see in Chapter 1)
using the function library(). Next we type

> bibd(v = 5, k = 3)

i.e. we apply the function bibd() and set the number of treatments with v = 5 and the
block size with k = 3. The program selects an appropriate method out of 21 construction
methods available (which can be found in Rasch, Pilz, Verdooren, & Gebhardt, 2011).

As a result we get:

block treatments
1 (1, 2, 3)
2 (1, 2, 4)
3 (1, 2, 5)
4 (1, 3, 4)
5 (1, 3, 5)
6 (1, 4, 5)
7 (2, 3, 4)
8 (2, 3, 5)
9 (2, 4, 5)
10 (3, 4, 5)

v = 5 k = 3 b = 10 r = 6 lambda = 3

In column block you see the number of the respective block and, beside it, in column
treatments, the three respectively assigned psychological postoperative treatments. At
the end, the five characteristics of the block design are specified.
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First, we write the resulting design in compact notation; each of the bracket
terms corresponds to a triple room; the numbers included are the numbers of the
postoperative treatments numbered consecutively from 1 to 5: (1, 2, 3); (1, 2, 4);
(1, 2, 5); (1, 3, 4); (1, 3, 5); (1, 4, 5); (2, 3, 4); (2, 3, 5); (2, 4, 5); (3, 4, 5). If we
consider treatment 1, for instance, it is applied in the rooms 1 to 6 for one patient
each; treatment 4, for instance, is applied 6 times also – once in each of the rooms
2, 4, 6, 7, 9, 10. If we pick out, in addition, the pair (2, 5) in order to examine
the frequency of treatment pairs, we find this pair in the rooms 3, 8, and 9, and
thus in fact exactly λ = 3 times. We do not have to verify that this block design
is connected, because each treatment is connected to each other by at least one of
the pairs.

Doctor Example 7.9 – continued
It is difficult to prove that an incomplete, unbalanced block design is connected.
We add an additional observation to our design for the treatment 1 in block 4:

⎛

⎜
⎜
⎝

1 0 1 1 0 0
0 1 0 1 1 1
1 0 1 0 0 0
0 1 0 1 1 1

⎞

⎟
⎟
⎠

With this, we obtain a connected block design. In contrast to the case before, a
sequence of treatment pairs exists now, and such pairs occur in one of the blocks
together. For instance, the sequence: (2, 4) in column 2; (1, 4) = (4, 1) in column
4; and (1, 3) in column 1 sets up the connection between the treatments 2 and 3,
because treatment 2 is also found in column 4, and treatment 3 in column 1. That
such a sequence can be found for each treatment pair can be recognized from
the following: each of the pairs (1, 2), (1, 3), (1, 4), and (2, 4) occurs together in
one block, and therefore each pair is connected directly; the sole remaining pair,
(3, 4), is, for instance, connected by the sequence (1, 3) and (1, 4).

Doctor In psychological assessment, within the area of test construction and so-called
Large Scale Assessments3, respectively, incomplete connected block designs are
often required. This is due to the fact that the number of experimental conditions
(test items) is far too big to be able to present them to all testees. Therefore,
groups of test items are assembled in so-called test booklets, which are presented
as a package to the different groups of testees. These test booklets thus are
the different blocks of the experimental design. In the simplest case a balanced
incomplete block design is feasible. However, as, generally, the population of the
persons also has to be stratified into sub-populations and also the set of test items
is stratified, a balanced incomplete block design becomes practically impossible.
Besides the sex of the testees, their age and their nationality have to be taken into

3 This means a survey of (all) persons of a defined population with the help of (psychological or) psychological
educational tests. Mostly they are about educational contents.
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account, and, as regards the test items, their difficulty and the topic of content,
and mainly the number of applications in former investigations. Therefore, it
is important to insure at least a connected block design, because otherwise the
results from the different test booklets and various test items, respectively, would
not be comparable.
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8

One sample from one population

In this chapter we consider point estimation, the construction of confidence intervals, and
the testing of hypotheses, all of these concerning only a single population. The principle of
statistical tests, which is based on probability theory, is explained in detail using a typical
method as an example. We show, by fixing certain precision requirements, how the planning
of a study is performed, i.e. the necessary sample size is calculated. However, this fixing of a
sample size in advance is not needed if sequential testing is applied.

We assume that we are investigating a single population concerning a single character and we
draw just one random sample.

For most of the following methods we further assume that the character investigated
is normally distributed – more exactly that the character can be modeled sufficiently by a
normally distributed random variable. In this case the mean and the variance completely
characterize the population: the density of the normal distribution is uniquely fixed, as long as
the mean μ and the variance σ 2 are known (see Formula (6.5)). As we have already explained
in Section 6.2.2, assuming a normal distribution is important mostly for the mathematical
derivation of the method, and seldom, however, for the practical application.

8.1 Introduction

Inferential statistics is directed at the estimation of an unknown parameter, the testing of
hypotheses – that is to say hypothesis testing – regarding this parameter, and the construction
of confidence intervals for this parameter.

To describe these three subjects we consider only the parameter mean μ of a normally
distributed random variable, which is used as a model for the character to be observed. By
doing this the presentation becomes less abstract but, nevertheless, remains valid for the
general case. We draw a random sample from a population of size n. We denote the random
variable by y, the n observed values with y1, y2, . . . , yv, . . . , yn.

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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8.2 The parameter μ of a character modeled by a normally
distributed random variable

The assumption of the random variable y being normally distributed is theoretically important
for the testing of hypotheses and for the construction of confidence intervals, because the
methods discussed below can only be derived under this condition. From a practical point
of view this assumption is often not needed, because the differences between results are
negligible if the distribution deviates from the normal distribution. For point estimations by
the least squares method (contrary to maximum likelihood estimation; see Section 6.5) this
assumption is not even theoretically necessary.

8.2.1 Estimation of the unknown parameter μ

We speak about a point estimation if we ascertain an unknown parameter of the population
by means of a statistic based on a sample – thus leading to a certain value.

Fundamentally, the unknown parameter μ – as well as the outcomes – lies between −∞
and ∞. It was shown (see Section 6.5), that the estimator for μ is μ̂ = ȳ = 1

n

∑n
v=1 yv . The

mean ȳ of the sample is a proper estimator for the mean μ in the population.

Master A single mean in an observed sample is just one of theoretically infinite possible
means in infinite possible samples. All these possible means are possible realiza-
tions of a random variable: ȳ. Derivations in mathematical statistics show that if y
is normally distributed then ȳ is normally distributed too, with expectation/mean
μ and variance σ 2

n (or with the standard deviation σ√
n

) – where σ 2 is the variance

of y. The standard deviation σ√
n

of the estimator ȳ is called the standard error.1

It is plausible that the differences between the means of several samples
become smaller the larger the sample size n, on which the calculation of the
mean is based, becomes. But primarily the variability of the means from several
samples depends on how much the observed outcomes of the character in question
are spread within the population.

Master Example 8.1 Simulation to demonstrate the sample theory without reference to
any content

From a hypothetical population of a normally distributed random variable y
with mean μ = 50 and standard deviation σ = 10 we would like to draw k =
10 random samples.2 Each sample has size n = 10. From each of these samples
we now calculate the sample mean ȳl (l = 1, 2, . . . , k) as well as the estimated
standard error, sl√

n
(instead of σ l we use its estimate; see Section 6.5).

1 This is different from the standard measurement error in psychological assessment; the latter is based on the
reliability of a (psychological) test.

2 Statistical simulation means repeated sampling from a population that is well defined in advance, without
actually gaining the data empirically (more precisely see in Section 14.4).
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In R, we define a new function by typing

> sim.se <- function(k, n, mu = 50, sig = 10) {
+ me <- numeric(length = k)
+ se <- numeric(length = k)
+ for(i in 1:k) {
+ sample <- rnorm(n, mean = mu, sd = sig)
+ me[i] <- round(mean(sample), digits = 2)
+ se[i] <- round(sd(sample)/sqrt(n), digits = 2)
+ }
+ return(cbind("mean" = me, "standard error" = se))
+ }

i.e. we apply the function function() and use the number of samples k as the first
argument and the sample size n as the second. The mean mu = 50 and the standard devi-
ation sig = 10 are used as the third and fourth arguments. The sequence of commands
in the braces specifies the simulation procedure and will not be explained in detail here.
We assign the function to the object sim.se.

Next, we type

> set.seed(123)
> sim.se(k = 10, n = 10)

i.e. we set the arbitrary starting number 123 using the function set.seed() in order to
enable repeatability of the results. We do so only for didactic reasons, so that the reader
yields the same results. In practical use, the line > set.seed(123)is omitted. Now
we calculate the sample mean and the standard error of k = 10 random samples of size
n = 10, using the previously created function sim.se.

The results are presented in Table 8.1.

Table 8.1 Means and standard errors for sampling/simulation of 10
samples of size 10 out of a population with μ = 50 and σ = 10.

Sample number Sample mean
Standard error of

the mean

1 50.75 3.02
2 52.09 3.28
3 45.75 2.94
4 53.22 1.67
5 49.91 3.42
6 52.22 2.71
7 51.23 2.96
8 46.37 3.15
9 53.13 1.73

10 54.37 3.38
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In the samples we find estimates which sometimes deviate considerably from the
parameter μ = 50. This is not surprising, because we have drawn relatively small
samples, and with this the chance of big deviations is greater. The reader can try
further simulations and will see that, for larger n, the deviations from parameter
μ = 50 generally become smaller.

8.2.2 A confidence interval for the unknown parameter μ

Point estimation on its own is not compelling, because, in some cases, the estimator can result
in an estimate far from the parameter. Additionally, it is better to estimate a region, in which
the parameter is most likely located. Such a region is called a confidence interval.

Master A confidence interval is a function of the random sample; that is to say it is also
random in the sense of depending on chance; hence we speak of a random interval.
However, once calculated based on observations, the interval has of course non-
random bounds. Sometimes only one of the bounds is of interest; the other is
then fixed – this concerns the estimator as well as the estimate itself. Contrary to
a two-sided confidence interval, such a confidence interval is called a one-sided
confidence interval.

A confidence interval for the mean μ is an interval with at least one random bound, which
covers the parameter with probability 1 − α. This probability – or better to say the con-
fidence coefficient – is the probability for the correctness of the conclusion ‘μ lies in the
confidence interval’. Often we choose α = 0.05 or α = 0.01; hence we often speak about a
‘100 · (1 – α)%’ interval, namely a 95% or 99% confidence interval.

It can be shown that – given that the normally distributed character’s variance is known –
the lower (L) and the upper (U) bound of the confidence interval for the mean is given by:

L = ȳ − z
(

1 − α

2

)
· σ√

n
; U = ȳ + z

(
1 − α

2

)
· σ√

n
(8.1)

Here z(1 − α
2 ) is the (1 − α

2 )-quantile of the standard normal distribution (see Section 7.1). We
find the quantiles in Appendix B, Table B2; as an experienced user of statistics, alternatively
we remember the values z(0.975) = 1.96 and z(0.995) = 2.58. For example, with R the P-
quantiles for the most common distributions can easily be calculated; we demonstrate this in
the following examples.

If, as is usually the case, the variance in the population is not known, then instead of the
bounds in Formula (8.1), the following are applicable – with s being the standard deviation
of the sample according to Formula (5.4) as an estimator σ̂ of σ :

L = ȳ − t
(

n − 1; 1 − α

2

)
· s√

n
; U = ȳ + t

(
n − 1; 1 − α

2

)
· s√

n
(8.2)

Here t(n−1, 1−α
2 ) is the (1−α

2 )-quantile of Student’s (central) distribution or, for short, t-
distribution with df = n − 1 degrees of freedom. This distribution is symmetrical (centered
at the value 0) and takes a flatter course than the standard normal distribution. However, with
growing sample size n → ∞, it tends towards the standard normal distribution. The quantiles
can be found in Appendix B, Table B2.
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Master The derivation of the bounds in (8.1) and (8.2) starts with the probabilities

P

(

z
(α

2

)
≤ ȳ − μ

σ

√
n ≤ z

(
1 − α

2

))

= 1 − α

and

P

(

t
(

n − 1;
α

2

)
≤ ȳ − μ

s

√
n ≤ t

(
n − 1; 1 − α

2

))

= 1 − α (8.3)

respectively. From the symmetry of the normal distribution and the t-distribution,
centered at 0, we have z( α

2 ) = −z(1 − α
2 ) and t(n − 1; α

2 ) = −t(n − 1; 1 − α
2 ).

Now the bounds L and U have to be found so that any deviation of estimator
and parameter lies in between them with the probability 1 −α. It can be shown
that ȳ−μ

σ

√
n is standard normally distributed, and ȳ−μ

s

√
n is t-distributed, so that

the corresponding inequalities result. Algebraic rearrangements lead to Formulas
(8.1) and (8.2).

For Lecturers:

The t-distribution is also called the Student distribution due to the pseudonym of
its ‘discoverer’ (Student, 1908), who was William Sealy Gosset. The distribution
he established contradicted the doctrine of his time, and the brewery Guinness,
where Gosset was employed, did not allow him to publish under his actual name.

For Lecturers:

Obviously, the term degrees of freedom is a function of the sample size. But the
following example clarifies the chosen wording exactly. Concerning the variance,
the sum of squared deviations

∑n
v=1 (yv − ȳ)2 (the so-called sum of squares) is

of relevance. If, once the sample mean is calculated, we may imagine that all n
outcomes, yv, apart from one, i.e. n – 1, may be changed without changing the
mean as well as the sum of squares

∑n
v=1 (yv − ȳ)2, then only the nth value is

consequently unequivocally determined: we only have the ‘freedom’ to choose
n − 1 outcomes arbitrarily.

Master Example 8.2 An ‘infinite’ (∞) sample size in statistics by the example of the
t-distribution

From Table B2 we take the values t(10, 0.975), t(30, 0.975), and t(100, 0.975).
In the corresponding row for df and in the column for 0.975 we find the values
2.228, 2.042, and 1.984. If the t-distribution with growing sample size n → ∞
now tends to the standard normal distribution, then t(∞, 0.975) must be equal to
z(0.975) = 1.96 – which indeed is the case. We learn that it is not so important
numerically whether the sample size is n = ∞ or ‘only’ n = 101 (df = 100),
because the two quantiles are very near to each other.
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Master Often we need only a one-sided confidence interval. Then Formulas (8.1) and
(8.2) have to be changed so that one side of the inequality equals +∞ or −∞,
respectively, and α

2 is replaced by α. For example Formula (8.2) changes to

L = ȳ − t(n − 1, 1 − α)
s√
n

; U = ȳ + t(n − 1, 1 − α)
s√
n

(8.4)

The equation for the lower bound in Formula (8.4) refers to a left-hand-sided
confidence interval; its upper bound is ∞. The equation for the upper bound in
Formula (8.4) refers to a right-hand-sided confidence interval; its lower bound is
−∞. Whether we use one-sided or two-sided confidence intervals depends on the
corresponding research question.

Master
Doctor

As already indicated, once a confidence interval is calculated based on the obser-
vations, the interval has of course non-random bounds. Hence it would be better
to call these intervals ‘realized confidence intervals’, but this is seldom the case.
Nevertheless, bear in mind that such intervals either include or do not include the
unknown parameter: there is no longer a probability statement to give. That is,
the statement ‘this interval includes the unknown parameter’ can be wrong, but
in the span of a researcher’s life it will be correct in approximately 100 ·α% of
all cases.

Bachelor Example 8.3 Confidence interval for the mean of the character Immediately
Reproducing – numerical, 1st test date for children with German as their native
language (Example 1.1)

We choose α = 0.05.

In R, we first create a data set containing exclusively children with German as a native
language, by typing

> Example_1.1.g <- subset(Example_1.1,
+ subset = native_language == "German")
> attach(Example_1.1.g)

i.e. we apply the functionsubset() to select those children from data setExample_1.1
who meet the condition native_language == "German", and assign their data to
the object Example_1.1.g. Next, we enable access to this database using the function
attach().
Now we calculate the confidence interval for sub5_t1. We type

> t.test(sub5_t1, conf.level = 0.95)
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i.e. we apply the function t.test() to the character Immediately Reproducing –
numerical, 1st test date (sub5_t1). With conf.level = 0.95 we stipulate the 95%
confidence interval. As a result, we get (shortened output):

95 percent confidence interval:
47.45432 52.74568
sample estimates:
mean of x

50.1

In SPSS, we use the following sequence of commands (after having limited our sample to
children with German as a native language, analogously to Example 5.5)

Analyze
Descriptive Statistics

Explore. . .

and in the resulting window (see Figure 8.1) we drag and drop Immediately Reproducing –
numerical, 1st test date to the panel Dependent List:. Next, we open the window shown in
Figure 8.2 by clicking Statistics. . . The default setting for the Confidence Interval for Mean
is set to 95%. A click on Continue and OK yields the results shown in Table 8.2.

Figure 8.1 SPSS-window for description of data.
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Figure 8.2 SPSS-window for calculation of a confidence interval.

Table 8.2 SPSS-output of the confidence interval for Example 8.3 (shortened output).

Std. ErrorStatistic

Mean

Lower Bound

Upper Bound

95% Confidence Interval
for Mean

Immediately Reproducing

(T-Scores)

52.75

47.45

1.31750.10

Descriptives

Two-sided 95% confidence intervals result from both program packages as be-
tween 47.45 and 52.75.

Master Example 8.1 – continued
Let us assume that from each of our 10 simulated samples we had calculated
the confidence interval for α = 0.05 following Formula (8.2). The results are
now additionally given in Table 8.3. For example, for the first sample, despite
the fact that the sample mean is 50.75, all values between 43.92 and 57.57 are
possibly true as concerns the population mean. Naturally such an inaccurate result
is unsatisfactory, but beware that even this result might be wrong – on average
5% of our studies dealing with such an analysis will be wrong: the unknown
parameter μ lies then outside that interval.
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Table 8.3 Confidence intervals for the mean of a population with μ = 50 and σ = 10
for 10 simulated samples of size n = 10.

Two-sided confidence
interval

No. of the
sample Sample mean

Estimated standard
error of the mean

Lower
bound

Upper
bound

1 50.75 3.02 43.92 57.57
2 52.09 3.28 44.66 59.51
3 45.75 2.94 39.10 52.41
4 53.22 1.67 49.45 56.99
5 49.91 3.42 42.17 57.66
6 52.22 2.71 46.09 58.34
7 51.23 2.96 44.53 57.93
8 46.37 3.15 39.25 53.49
9 53.13 1.73 49.21 57.05

10 54.37 3.38 46.72 62.02

Master
Doctor

Psychologists sometimes utilize a totally incorrect interpretation of statistical
results. Fundamentally, statistics aims for a conclusion which is based on the
conceptualization that it is either correct with a certain probability or wrong with
1 minus this probability. However, concerning confidence intervals, researchers
frequently conclude ‘With 95% certainty the unknown parameter lies between x
and z.’ This is wrong, because the parameter either lies between x and z or not,
but ‘the parameter cannot choose to be within this interval today and tomorrow
to be outside of the same interval’; the parameter is not random.3 That is, for
a certain calculated result, no probability statement is possible (anymore); any
probability statement is only valid for the applied method as a principle, but not at
all for each individual result. The point is, that we hazard for each of our studies
the conclusion: ‘The mean lies in the calculated interval’, because the method of
calculation has a high probability, 1 – α, of being correct. In any individual case
this statement is either correct or wrong. If, during our lives as researchers, we
often make such analyses and conclusions, then in appropriately 100 · (1 – α)%
of all the cases we will be right.

This statistical approach can be compared to the situation in a hospital in
which difficult surgeries often have to be performed. If in the past this surgery
was successful in 95% of the cases, the physician may say to the patient ‘All will
be good’; but he does not know in advance what may happen in a certain given
case. Another parallel for this statistical approach would be weather forecasting.

3 Take into account that random parameters actually occur in the Bayesian statistics approach, which however is
not dealt with in this book.
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8.2.3 Hypothesis testing concerning the unknown parameter μ

Often we have a certain, fact-based assumption about the unknown parameter μ of a character,
which is, as indicated, modeled by a normally distributed random variable. The research
question for a study therefore could be whether the unknown parameter μ, after estimation
from a sample, is compatible with a certain parameter value μ0. Our null hypothesis is
H0: μ = μ0.

Either we have – in the case that H0 is wrong – the conjecture that μ > μ0 or
μ < μ0, respectively, or we have no specific conjecture and state μ �= μ0. In the first case our
alternative hypothesis is HA: μ = μ1 > μ0 and HA: μ = μ1 < μ0, respectively; in the second
case HA: μ = μ1 �= μ0. In the first case the alternative hypothesis is called one-sided, and in
the second case two-sided. We also speak of one-sided and two-sided problems. The decision
between a one-sided or a two-sided alternative hypothesis, as well as the determination of
some other precision requirements, must be made prior to data sampling (data analysis), and
founded with regard to content.

Bachelor Example 8.3 – continued
Because the test is standardized, i.e. the mean and the standard deviation for
the population are fixed with μ0 = 50 (T-Scores) and σ = 10, we are now
interested in whether our sample stems from a population with just this mean or
not. There actually is some risk that our sample is biased – the results from Vienna
may systematically differ from the population of German speaking children in
Germany, Austria (whole country), Switzerland, or South Tyrol. Furthermore, a
biased sample could also result from an arbitrary selection of schools in terms
of, for instance, the socio-economic milieu. The null hypothesis therefore is
H0: μ = μ0 = 50; the alternative hypothesis is HA: μ �= 50.

The matter at hand, that is the principle of statistical tests, is to determine whether we reject
the null hypothesis due to empirical data or, alternatively, accept it due to these data. In both
cases we can be wrong, i.e. make an error. On the one hand, we can reject a null hypothesis
which in reality is correct. This is called a type-I error. On the other hand the null hypothesis
can be accepted despite it being wrong (i.e. in reality the alternative hypothesis is valid). This
is called a type-II error. All possible decisions in statistical testing are shown in Table 8.4.

We now know that empirical research means making conclusions under uncertainty, with
the risk of making a wrong conclusion. We have to assess exactly which risk we are willing
to accept: how likely or unlikely each of the possible errors should be. By convention the
probability of a type-I error, that is the type-I risk, very often is chosen as α = 0.05 or

Table 8.4 Decisions in statistical testing.

Decision based on
the observations True situation

H0 correct, i.e. μ = μ0 HA correct, i.e. μ �= μ0

H0 rejected type-I error no error
H0 accepted no error type-II error
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sometimes also as α = 0.01. In testing any null hypothesis, it is our goal that in all comparable
studies the null hypothesis is on average erroneously rejected in only 5% (or 1%) of the cases.

The principle of statistical testing is to split all possible sample results into two parts. The
one part consists of all results supporting the null hypothesis; the other part consists of all
results supporting the alternative hypothesis, i.e. arguing against the null hypothesis. We then
calculate the probability for all results in the second part, i.e. for those arguing against the null
hypothesis, given that in reality the null hypothesis is valid. If this probability is small and
in fact smaller than the type-I risk, then the observed data (or even more extreme data) are,
under the assumption of the null hypothesis, too unlikely to be explained by chance alone:
therefore we reject the null hypothesis, because it does not sound at all rational to believe we
only were dogged by bad luck.

It is important to know that this principle of statistical testing always applies, whatever
the null hypothesis claims, how many observations are given, what scale type the interesting
character has, and so on. Nevertheless, the principle of statistical testing can be most easily
understood using a binomially distributed character.

Master Example 8.4 The principle of testing explained by an example of a character
which is modeled by a binomially distributed random variable

The question is, whether a certain coin that we happen to have on hand is a
‘fair’ coin or not.

Hence, the null hypothesis is: ‘In half the cases, the coin falls showing heads;
in the other half the coin shows tails.’ The alternative hypothesis is: ‘The coin
falls on one of the two sides more often than on the other.’ That is, under the
null hypothesis, the probability for a head, following Formula (6.1) is P(head) =
1/2. The null hypothesis therefore formally reads: H0: P(head): = p = P(tails): =
1 − p = 1/2. The alternative hypothesis is: HA: p �= 1/2. For the final conclusion we
select – for the decision between null and alternative hypothesis – a type-I risk of
α = 0.05.

Before data are sampled, we first have to split all possible sample results
into two parts: those supporting the null hypothesis on the one hand (acceptance
region), and those results supporting the alternative hypothesis, i.e. arguing against
the null hypothesis (rejection region). For this we first have to fix the sample size,
which means the number of times n the coin will be tossed. Here we have a
population which can never be completely observed, as it is infinite (all possible
results of tossing that coin). We decide to toss the coin n = 10 times. Now we
have to define the acceptance region and the rejection region in such a way that
the probability of erroneously rejecting the null hypothesis – the type-I risk – is
0.05.

We first arbitrarily assume that if we obtained heads k = 2 times in n = 10
turns, then this is against the null hypothesis: heads occurred too seldom. Then,
of course, this is the case even more for k < 2. However there also exists another
extreme case, namely that heads occurred ‘too often’, i.e. k = 8 times (or even
more); bear in mind that our alternative hypothesis has actually been formulated as
two-sided. Therefore we now have the rejection region defined: the results for k in
the set {0, 1, 2, 8, 9, 10}. All other results, i.e. k from the set {3, 4, 5, 6, 7}, define
the acceptance region. In order to take the type-I risk, α, into account, we must
calculate as the next step the probability that a result belonging to the rejection
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region is observed – although the null hypothesis is true. For this, the number k
(times heads) is to be modeled as a binomially distributed random variable k (as
above in Example 6.5). Using Formula (6.4) the required probabilities P(k ≤ 2)
and P(k ≥ 8) can be calculated:

P (k ≤ 2) =
2∑

i=0

(
10
i

) [
1

2

]i [
1

2

]10−i

= (1 + 10 + 45)

(
1

2

)10

= 0.0547

and

P (k ≥ 8) =
10∑

i=8

(
10
i

) [
1

2

]i [
1

2

]10−i

= (45 + 10 + 1)

(
1

2

)10

= 0.0547

Because the two cases are mutually exclusive, the total probability, the actual
type-I risk for the splitting used for the acceptance region and rejection region is:
0.0547 + 0.0547 = 0.1094 > 0.05 = α (addition rule; see Formula (6.2)). That
is, our arbitrary splitting of the whole into an acceptance and a rejection region is
not appropriate for α = 0.05.

Now we analogously calculate the probability of at most 1 time or at least
9 times tossing heads, which means that the creation of completely different
acceptance and rejection regions is necessary. The result is (1 + 10)(1/2)10 +
(10 + 1) (1/2)10 = 0.0214 < 0.05 and is also not appropriate. Nevertheless once
we have data observed, we can make a unique statement. The case k ≤ 2 or
k ≥ 8 with n = 10 is, under the null hypothesis (a fair coin), very unlikely. But
it is more likely than the critical probability that we, in advance, decided to risk;
only if the calculated probability were smaller than 0.05 would we have rejected
the null hypothesis. But according to 0.1094, we have to accept it. On the other
hand, in the case where k ≤ 1 or k ≥ 9, the null hypothesis has to be rejected. As
a matter of fact, in such a study we can, in the long run, not constrain the actual
type-I risk; if we always only reject the null hypothesis in the case where k ≤ 1
or k ≥ 9, then we will be wrong in just approximately 2 of 100 studies – given
that the null hypothesis is true and the coin fair.

Master Example 8.4 – continued
The reader may perform a simulation for example with 10, 20, and with 100 runs
(tossing a coin).

In R, we again create a new function. We type

> sim.bin2 <- function(rep, p1 = 2, p2 = 8, n = 10, prob = 0.5) {
+ hit <- table(rbinom(rep, n, prob))
+ rel <- hit/rep
+ p1.e <- sum(rel[which(names(rel) <= p1)])
+ p2.e <- sum(rel[which(names(rel) >= p2)])
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+ cat(paste("\n", " P(k <= ", p1,") =",sep = ""),
+ round(p1.e, 5),
+ paste("\n", " P(k >= ", p2,") =",sep = ""),
+ round(p2.e, 5),
+ "\n", "\n")
+ return(invisible(list(hit, rel, c(p1.e, p2.e))))
+ }

i.e. we apply the function function(), using as an argument the number of runs, given
for the time being, by a variable rep. Additionally, we use the number of cases in question
as arguments; that is p1 with 2 for k ≤ 2, and p2 with 8 for k ≥ 8. Furthermore, we
use as arguments the number of coin tosses per run, n, and probability of a tail with
prob = 0.5. The sequence of commands inside the braces specifies the procedure of
the simulation and will not be explained in detail here. Finally, we assign this function to
the object sim.bin2. Now, we type

> set.seed(143)
> sim.bin2(rep = 10)

i.e. we set the arbitrary starting number 143 using the function set.seed().We do this
only for didactic reasons, so that the reader yields the same results. In practical application,
this line is to be omitted. We apply the function sim.bin2(), and with rep = 10 we
simulate 10 runs.

This yields:

P(k <= 2) = 0.1
P(k >= 8) = 0.1

The estimate for 10 runs is 0.1 for the probability P(k ≤ 2); and P(k ≥ 8) = 0.1
as well. The reader may proceed to perform the simulation with 20 (and with
100) runs; if he/she uses the computer program, even 200 runs would pay off.
The result will be that the estimate of the probability P(k ≤ 2) + P(k ≥ 8) comes
closer and closer to 0.1094 when the number of runs increases.

We do this now for only 50 runs. Using the seed of 155 we get P(k ≤ 2) +
P(k ≥ 8) = 0.04.

For Lecturers:

With discrete distributions like the binomial distribution, a given value of α can
seldom be maintained, in contrast to continuous distributions. If in the case of a
discrete distribution the value of α must be adhered to, then so-called randomized
tests have to be used. The strategy is, in the case of n = 10 and p = 1/2 as follows:

‘Reject the null hypothesis if k = 0, 1, 9, 10; accept it if k = 3, . . . , 7. If k = 2 or
k = 8 then do a simulation; that is to say generate a random number within the
interval of 0 and 1 (see Section 14.4); if this random number is smaller than or
equal to 0.05−0.0241

0.0439 = 0.59 (see Example 8.4) then we reject the null hypothesis,
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otherwise we accept it. In doing so we actually realize a type-I risk of α =
0.05. Of course, it is hard to understand for a beginner in statistics that he/she
sometimes has to use a die so that the type-I risk holds. So, it sounds better to
advise him/her to only apply the test with either a type-I risk of α = 0.0214 or a
type-I risk of α = 0.1094 – or even to enlarge the sample size.

It is important to choose the type-I risk before planning the study and sampling (analyzing)
the data. Otherwise, if the type-I risk is not chosen until the analysis has been finished and the
actual result is known, then all studies of this kind would obviously always use the highest
of the available alternative risks. For instance, if an empirical result was obtained that would
not reject the null hypothesis at the type-I risk of 0.01, but would allow it to be rejected at
the type-I risk of 0.05, then the researcher will always choose the latter type-I risk – though
sometimes a level of 0.01 suffices.

Now the statistical concept of significance is the central issue. We call a result of a
statistical test significant when this result is statistically meaningful. More precisely this
means that an observed deviation between the corresponding parameter’s estimate and the
parameter as hypothesized under the null hypothesis (for instance μ̂ = ȳ �= μ0) is larger than
can be explained by chance. Each rejected null hypothesis is therefore based on a significant
result. We can say that the parameter of the population from which the sample is drawn differs
significantly from the value which is hypothesized by the null hypothesis. On the other hand,
a non-significant result of a statistical test means that the empirically given deviation from
the null hypothesis (for instance μ̂ = ȳ �= μ0) must be interpreted as random error. Statistical
tests are also called tests of significance; the type-I risk, α, is then called the significance level.

Analogously to the case of calculating a confidence interval for the unknown parameter μ,
testing of a hypothesis concerning μ needs to differ, depending on whether the population’s
variance is known or not. It can be shown that the following test statistic for the case of a
normally distributed random variable and known variance has a standard normal distribution:

z = ȳ − μ0

σ

√
n (8.5)

For the (usual) case of an unknown variance, the following test statistic is t-distributed with
df = n – 1 degrees of freedom: s is the standard deviation of the sample from Formula (5.4),
as an estimator σ̂ for σ :

t = ȳ − μ0

s

√
n (8.6)

The test using the test statistic in Formula (8.6) is called the one-sample t-test.

Master The change from standard normal distribution to t-distribution is logical, when
the variance has to be estimated from the sample. As the t-distribution always
takes a flatter course than the standard normal distribution, the critical region
of the density function, i.e. the rejection region as concerns the null hypothesis,
falls in a more extreme area (see Figure 8.3). And of course, if an additional
unknown parameter has to be estimated, the sample data must be more extreme as
concerns the null hypothesis; that is, they must lead to a larger test statistic or, in
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Standard normal distribution
t-distribution (df = 9)

3

Figure 8.3 Density function of the standard normal distribution and the t-distribution.

other words, the deviation ȳ − μ0 must be larger to become significant. Because
the t-distribution converges for n → ∞ to the standard normal distribution, the
smaller n is the larger the resulting deviation must be.

When applying both statistical tests to the data of the given sample there is only the test
statistic z and t to calculate, respectively, as well as their respective absolute values | z | and | t |;
then we must compare the resulting value with its appropriate P-quantile in Table B1 and B2
of Appendix B, respectively. In the case of a two-sided alternative hypothesis, we have to use
the column from Table B2 with 1 minus half of the type-I risk; that is 1 − α

2 . This P-quantile is
also called the critical value. If the calculated (absolute) value of the test statistic in question
is larger than the critical one, then the observed data (and more extreme values) are, under
the null hypothesis, less likely than the type-I risk accounts for; the null hypothesis must be
rejected.

If there are content-related reasons to expect a deviation from the hypothesized parameter
only in one direction, then we use a one-sided alternative hypothesis. Then | z | and | t |,
respectively, have to be compared with the P-quantile from Tables B1 and B2 corresponding
to the (overall) type-I risk α; however first we check whether the values of z and t, respectively,
correspond with the direction of the alternative hypothesis at all.

Bachelor Example 8.5 Contrasting empirical t-values with the critical values (P-
quantiles) in Table B2 of Appendix B

Without regard to content we consider the (one-sided) alternative hypothesis
HA: μ < μ0; H0: μ = μ0, with type-I risk α = 0.05. We assume that we come,
according to Formula (8.6) for a certain n = 20 observations, to a test statistic value
of t = –1.85. Then we proceed as follows: The P-quantile of the t-distribution for
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1 – α = 0.95 and df = 19 equals t(19, 0.95) = 1.7291; because |−1.85| = 1.85 >

1.7291 = t(19, 0.95), the result of our analysis is significant: the null hypothesis
must be rejected – the sign is appropriate.

In R, we calculate the P-quantile in question by typing

> qt(0.95, df = 19)

i.e. we use the function qt() and set 0.95 as the first argument and add, with df = 19,
the degrees of freedom.

As a result, we get:

[1] 1.729133

To ascertain the p-value for the P-quantile 1.85 we type

> pt(-1.85, df = 19)

i.e. we set the test statistic with the value of -1.85 as the first argument in the function
pt(), and the degrees of freedom with df = 19 as the second argument.

This yields:

[1] 0.03996467

In the case of a two-sided alternative hypothesis and the same type-I risk α =
0.05, we would have to use the P-quantile with the value 1 – α

2 = 0.975.

Pertinent software packages usually do this laborious work for the researcher. They almost
always report a value ‘p’, which is the probability of obtaining any result out of those
contradictory to the null hypotheses even though it is true; sometimes this p-value is only
given in some ‘Significance’ column. Then we only have to check whether p < α. If yes, the
null hypothesis must be rejected; if no, the null hypothesis must be accepted. In SPSS, in the
case of a one-sided alternative hypothesis, the given p-value must be divided by two, because
there the p-value is always calculated for two-sided alternative hypotheses.

Bachelor Example 8.3 – continued
We consider the character y, Immediately Reproducing – numerical, 1st test date
for children with German as their native language; the null hypothesis is H0: μ =
μ0 = 50; the alternative hypothesis is HA: μ �= 50. We decide on a type-I risk of
α = 0.05.

In R, we have already created the data set Example_1.1.g, which contains exclusively
children with German as a native language, and we enabled access to the database using
the function attach(). Now we type

> t.test(sub5_t1, mu = 50)
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i.e. we apply the function t.test() and use the charactersub5_t1 as the first argument
and set the mean mu = 50, which we expect if the null hypothesis is true, as the second
argument.

As a result, we get:

One Sample t-test

data: sub5_t1
t = 0.076, df = 49, p-value = 0.9398
alternative hypothesis: true mean is not equal to 50
95 percent confidence interval:
47.45432 52.74568
sample estimates:
mean of x

50.1

In SPSS, we select

Analyze
Compare Means

One-Sample T Test. . .

In the resulting window shown in Figure 8.4, we drag and drop Immediately Reproducing –
numerical, 1st test date to Test Variable(s):. Since SPSS tests for the null hypothesis
μ0 = 0 according to the default settings, we have to change the Test Value to the value
of the parameter stated in the null hypothesis, if it does not equal zero. In the window
shown in Figure 8.4 we have already set the Test Value to 50. By clicking OK, we obtain
the result shown in Table 8.5. In the column Sig. (2-tailed) the corresponding p-value can
be found.

Figure 8.4 SPSS-window for calculating a one sample t-test.
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Table 8.5 SPSS-output of one sample t-test in Example 8.3 (shortened output).

Sig. (2-tailed)dft

Test Value = 50

Immediately Reproducing

(T-Scores)

.94049.076

One-Sample Test

Because of a calculated p-value of 0.9398 and 0.940, respectively, the result of
our analysis is not statistically significant (p ≥ α), so that we accept the null
hypothesis H0: μ = μ0 = 50.

Master The advantage of one-sided alternative hypotheses is that the total type-I risk is
concentrated in the region of interest. For example, in the case of HA: μ > μ0,
if it is not at all possible for the parameter μ to be smaller than μ0, it would
be an unnecessary risk to also take values μ ≤ μ0 into account. For instance, in
Table B2 in Appendix B we realize that t(n − 1, 1 − α

2 ) > t(n − 1, 1 − α), which
means – according to Figure 8.3 – that even smaller deviations of μ and μ̂0

become significant.

Master To be more exact, in the case of a one-sided problem, the null hypothesis is
generally H0: μ ≤ μ0 or H0: μ ≥ μ0, respectively, instead of H0: μ = μ0.
Therefore, the null hypothesis is a composite hypothesis. Sometimes, however,
values μ < μ0 cannot occur because of content reasons.

Bachelor Researchers may misstep and establish their final conclusion regarding hypothesis
testing by using some probability concerning its validity. Such an approach is,
however, incorrect. The established conclusion is not more or less likely at all, but
either correct or incorrect. The type-I risk, that is the probability α of rejecting
the null hypothesis erroneously, has no bearing on the concrete decision made in
the end. The type-I risk is only of relevance to the situation before data sampling
(analyzing) applies. It challenges only the researcher’s understanding that, if the
study were repeated (under totally identical conditions) very often, we would
come correspondingly often, that is in about 100 · (1 – α)% of the studies,
to a correct conclusion. As we, however, only processed a single study of this
sort, our statistical test-based conclusion is correct or incorrect. If we could
obtain knowledge about the true situation, and hence would transcendentally
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know whether the null hypothesis holds or not, then our statistical test-based
conclusion has no other choice than to be definitely correct or incorrect, but has of
course no chance-dependent probability of being correct or wrong. This situation
is comparable with drawing a playing card. Whenever a card is drawn from a
randomly ordered blind deck, our conclusion, or rather suggestion, that this card
is hearts no longer has any probability of being right or wrong but factually is
either correct or incorrect. That is, any statistical, test-based conclusion is only
to establish that the null hypothesis holds or the null hypothesis does not hold.
Type-I risk concerns the method of analysis but not a single concrete result of
any study.

8.2.4 Test of a hypothesis regarding the unknown parameter μ in the
case of primarily mutually assigned observations

Often we deal with just a single sample (of research units; in psychology mostly persons), but
nevertheless there are, per unit, two or more observations for content-related traits, aptitudes or
the like. In psychology we speak about matched samples as if we had more than only a single
sample, but in fact we have only one sample of research units with two or more observations;
statistically these observations stem from two or more specially modeled random variables.
Therefore, we come to the case of several characters, though from the content point of view
it is often the same character. When there are only two observations per unit, the easiest way
is to reduce the data to a single character; for example if we are interested in the effect of a
treatment in a ‘pre and post’ design. Formally, we observe, for every subject, two characters
(x = pre, y = post); from a content point of view we observe the same trait/aptitude at two
different times. The sample consists of pairs of observations. Given that both characters are
interval scaled, we can calculate, for subject v, the difference dv = xv − yv; thus we only have
a single character.

Bachelor
Master

Example 8.6 As concerns children with German as their native language and
the subtest Immediately Reproducing – numerical, are there any learning effects
due to testing twice? (Example 1.1)

Because we consider an intelligence test, that is fundamental abilities are
measured which are stable for a relatively long time, repeated testing of a testee
should result in almost the same test scores. As a consequence, we expect, for
the variable d = x – y, rather small outcomes dv = xv − yv; at least values such
that their sum comes close to zero – differences from zero should occur only due
to the testees’ (mental) constitution on that particular day. The null hypothesis
is therefore μ = E(d) = 0. On the other hand, because of learning effects, the
performance in the second testing could be better, so that for most of the children
we have: dv = xv − yv < 0. The alternative hypothesis is therefore HA: E(d) < 0.
The null hypothesis is exactly: H0: E (d) ≥ 0.
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In R, there is an easier way than to compute the differences dv = xv − yv at first. We will
show both options here. In doing so, we will continue using the data setExample_1.1.g.
We have already enabled access to this database by applying the function attach() in
Example 8.3.

Applying the first method, we type

> diff <- sub5_t1 - sub5_t2

i.e. we compute the differences between the characters Immediately Reproducing – numer-
ical, 1st test date (sub5_t1) and Immediately Reproducing – numerical, 2nd test date
(sub5_t2) and assign the result to the object diff. Next, we type

> t.test(diff, alternative = "less")

i.e. we again apply the function t.test(). We now use the new variable diff as the
first argument and alternative = "less" as the second argument, as we want to
test the one-sided alternative hypothesis HA: E(d) < 0.

As a result, we get (using the first method):

One Sample t-test

data: diff
t = -1.3014, df = 49, p-value = 0.0996
alternative hypothesis: true mean is less than 0
95 percent confidence interval:

-Inf 0.1960075
sample estimates:
mean of x

-0.68

We obtain the same result, more easily, if we proceed immediately in the following way.
We type

> t.test(sub5_t1, sub5_t2, paired = TRUE, alternative = "less")

i.e. we specify the two characters in question and request the calculation of pair-wise
differences by using paired = TRUE as an argument in the function. Additionally, we
specify the one-sided alternative hypothesis by using the argument alternative =
"less".

This yields:

Paired t-test

data: sub5_t1 and sub5_t2
t = -1.3014, df = 49, p-value = 0.0996
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alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf 0.1960075
sample estimates:
mean of the differences

-0.68

In SPSS, there is also an easier way to obtain the result than to compute the differences
dv = xv − yv at first. We will again show both options here.

In the first case, we actually apply the first sequence of commands (Transform – Compute
Variable. . .) described in Example 5.3 to calculate a new variable. We type diff as the Target
Variable and compute the difference between the observed values of Immediately Reproducing
– numerical, 1st test date (sub5_t1) and Immediately Reproducing – numerical, 2nd test date
(sub5_t2). To do this, we type sub5_t1 - sub5_t2 in the text field Numeric Expression:.
Next we click If. . ., tick Include if case satisfies condition:, and type native_language = 1.
By clicking Continue, we return to the window Compute Variable. Now we click OK. The
new variable diff is calculated for each person and can be found in the SPSS Data View in
the last column on the right (the first column which was vacant before). Next we proceed
analogously to Example 8.3. In the window shown in Figure 8.4, we drag and drop diff to
Test Variable(s): and set the Test Value to 0. By clicking OK, we get the result shown in
Table 8.6.

Table 8.6 Output (shortened) for Example 8.6.

Sig. (2-tailed)dft

Test Value = 0

diff .19949-1.301

One-Sample Test

We can obtain the same result more easily, if we proceed in the following way (from
Example 8.3 the sample is already limited to children with German as native language).
We apply

Analyze
Compare Means

Paired-Samples T Test. . .

and in the resulting window (see Figure 8.5), we drag and drop Immediately Reproducing –
numerical, 1st test date to the column Variable1 in the panel Paired Variables: and Immediately
Reproducing – numerical, 2nd test date to the column Variable2. We click OK and obtain the
result shown in Table 8.7. However, we have to halve the resulting p-value shown in Sig.
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(2-tailed), because testing of one-sided alternative hypotheses is not possible using SPSS in
most cases, and this applies here as well.

Figure 8.5 SPSS-window for conducting a paired sample t-test.

Table 8.7 SPSS-output showing the result of the paired sample t-test in Example 8.6
(shortened output).

Mean Sig. (2-tailed)dft

Paired
Differences

numerical, 1st test date (T-Scores) -

numerical, 2nd test date (T-Scores)

Pair 1 .19949-1.301-.680

Paired Samples Test

According to the p-value of 0.0996 and 0.199 / 2 = 0.0995, respectively, there
is a non-significant result. Our research question is to be answered as follows:
for children with German as their native language, no learning effects have been
found in the subtest Immediately Reproducing – numerical.

The alternative approach of testing using the original data instead of the differences
dv = xv − yv is known as the paired sample t-test (see Example 8.6).
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8.3 Planning a study for hypothesis testing with respect to μ

Remember, Table 8.4 summarizes all errors, which potentially result when conclusions are
based on a statistical test. Up until now we exclusively have discussed the type-I error. So
far, our considerations might induce/encourage always testing with a very small type-I risk.
However, type-I risk and the probability of a type-II error, that is the type-II risk, β, do directly
depend on each other.

In the first instance, we of course try to minimize both sources of erroneous conclusions: of
course, we neither like to reject the null hypothesis erroneously (type-I error), nor do we like
to accept it erroneously – the latter means that we fail to detect a true alternative hypothesis
(type-II error). However, as can be shown, these risks are mutually dependent, meaning that
a practical compromise between the two must be found.

Master
Doctor

We now illustrate in Figure 8.6 the situation of testing a hypothesis for the case of
H0: μ ≤ μ0 and HA: μ > μ0. Given that the variance of the population is known,
Formula (8.5) comes into play. The test statistic therefore is z. We consider, on
the one hand, the case that μ = μ0 (the null hypothesis) is true, and on the other
hand the case that μ = μ1 = μ0 + 2 (the alternative hypothesis) is true. The area
denoted by α corresponds with the probability of rejecting the null hypothesis
– despite it being true – because of a certain sample of observations with mean
ȳ. The area α hence shows the type-I risk. The corresponding (1 – α)-quantile
now separates the real line, at the point z(1 – α), into the acceptance region of the
null hypothesis (left side of z(1 – α)) and the rejection or critical region (equal to
and right side of z(1 – α)). If an observed value, z, falls into the critical region,
then we argue as follows: it is not plausible that the null hypothesis is true while
we have obtained such an extreme (or rare) result. However, the given specific
ȳ, leading to a specific value z, has as a matter of fact actually been observed;
hence it is rational to conclude that our hypothesis, the null hypothesis, is or was
wrong. The area denoted by β corresponds with the probability of accepting our
null hypothesis, despite it being wrong (i.e. in the case μ1 = μ0 + 2 is true). The
area β hence shows the type-II risk. We realize the following:

1. If the researcher draws a sample with a certain size n as discussed thus far,
he/she cannot determine β, the type-II risk, but it just results according to
μ1 – the researcher has no control.

2. If the type-I risk, α, were chosen smaller, then the type-II risk, β, becomes
larger. It is therefore nonsense to select a type-I risk that is ‘too small’,
because then it is apparent that it could happen that the alternative hypoth-
esis is almost never to be accepted, though it is valid: for α → 0 we find
β → 1.

3. The type-II risk depends on the real value of μ1 = μ0 + δ; the more μ1

differs from μ0, the smaller the type-II risk.

4. In the case of an unknown population variance, i.e. where the t-distribution
becomes relevant, then – because the t-distribution takes a flatter course
than the standard normal distribution (the smaller n, the flatter the course
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−3 −2 −1 543210
z(1 − α)

α

β

Figure 8.6 The graphs of the density function of the test statistic z in Formula (8.5) for
μ = μ0 (left) and μ = μ1 = μ0 + 2 (right).

becomes) – for the same values of ȳ and μ1, the area denoted by α moves
to the right; as a consequence the area denoted by β becomes larger.
Conversely, for a fixed value μ1 = μ0 + δ, the type-II risk, β, becomes
smaller with increasing sample size n → ∞. Hence, to make both the risks
smaller, it is necessary to enlarge the sample size.

5. Again considering the t-distribution, fundamentally every difference be-
tween μ0 and μ1 might result in significance, even an extremely small one;
all we have to do is select a sufficiently large sample size, because then the
two density functions become steeper and steeper and tend to no longer
overlap.

Doctor By the way, Figure 8.6 alters to Figure 8.7 in the case of an unknown variance of the
variable y, so that the t-test according to Formula (8.6) has to be applied. Given the
null hypothesis, the test statistic’s distribution is the (central) t-distribution with
corresponding degrees of freedom. However, given the alternative hypothesis,
the test statistic’s distribution is the non-central t-distribution (with respective
degrees of freedom) and the so-called non-centrality parameter λ = μ1−μ0

σ

√
n.

This distribution is clearly not symmetric.

−3 −2 −1 10 9876543

α

β

t(1 – α)

Figure 8.7 Graphs of the density function of the test statistic t in Formula (8.6) for μ = μ0

(left) and μ = μ1 = μ0 + 2 (right).
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In psychological research, the type-I risk is almost always fixed as either α = 0.05 or 0.01.
For the choice of the type-II risk β there are hardly any conventions; this means the researcher
can determine it adequately for the given problem.

Master
Doctor

If the type-II risk, β, is controlled at all – i.e. the study is planned so that β is
fixed from the very beginning of data sampling (see details in the following) –
then some text books recommend using β ∼= 4 α. This is, however, completely
unjustified; on the contrary, this recommendation often is made totally in error.
In the case, namely, in which a certain research question with any type-II error
entails big negative consequences, these being bigger than any type-I error, it
must be tested with β ≤ α.

Master
Doctor

Example 8.7 The different severities of type-I and type-II error for different
research questions

Some research question might lead to the following null hypothesis: ‘A cer-
tain cognitive head-start program for preschool-age children has no negative
consequences on their development of social competence.’ If this hypothesis
is erroneously accepted, children, parents, and other important persons in the
surrounding environment (for instance future peers and teachers) suffer the con-
sequences: promoted children would be striking in their social behavior. If, on the
other hand, the hypothesis is erroneously rejected, children would suffer from the
fact that they cannot fully realize their achievement potential. Hence, the conse-
quences of an erroneous conclusion must be taken into account when deciding the
two kinds of risk. This is of the utmost importance for a researcher, who is willing
to plan, perform, and analyze a study. Here, we have to balance whether the bur-
den for the child from social competence deficits is graver than an incomplete use
of his/her achievement potential as early as possible – particularly the findings of
developmental psychology showing that an uninfluenced cognitive development
process sooner or later leads to the same achievement evolvement. For this reason
we could choose here β = 0.01 and α = 0.05.

Doctor If there are several statistical tests (for a one-sided alternative hypothesis), cer-
tainly we will prefer the one that reaches, for each type-I risk α for a certain
parameter value, the largest value of the power function – which means the small-
est type-II risk. Then we have the so-called most powerful α-test (at the parameter
value in question). If an α-test is the most powerful for all possible parameter
values it is called a uniformly most powerful α-test. A uniformly most powerful
α-test needs, in comparison with all other α-tests, the smallest sample size for
a given type-II risk. In the case of a normal distribution, the one-sided t-test
according to Formula (8.6) is such a most powerful α-test.

In the case of a two-sided alternative hypothesis, the t-test is no longer a
uniformly most powerful α-test, but it is one if only unbiased tests are under
discussion. Unbiased tests never realize power function values smaller than α. As
can be shown, the t-test is a uniformly most powerful unbiased α-test, meaning
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that it is uniformly most powerful for all possible parameter values, but not only
for selective ones (see for details Lehmann & Romano, 2005).

Theoretically any difference between the hypothesized μ0 and the hypothesized μ1 can result
in significance, as long as the sample size is sufficiently large; thus a significant result of its
own is not necessarily meaningful from a content point of view. In principle such a result
could be meaningless, because the resulting difference might be, for instance, μ1 − μ0 =
0.00001. For example, a difference of 1 T-Score in intelligence tests, in practice, does not mean
anything. Such a small difference is without any practical consequences. Therefore studies
have to be planned in such a way that any significant differences from the hypothesized value
in the null hypothesis (μ0) are practically relevant – we also say: they are of practical interest.

As concerns Figure 8.6 and Figure 8.7 and the type-II risk β, we have behaved until now
as if only a single value μ1 for the alternative hypothesis is possible. Of course, in most of
the analyses all the values unequal μ0 (in the case of a two-sided alternative hypothesis) and
all the values smaller or larger than μ0, respectively (for one-sided alternative hypotheses),
are possible. But for each value of μ1, another value of the type-II risk, β, results. As already
seen in Figure 8.7, β becomes increasingly smaller the more μ1 − μ0 differs from zero.
Coming to the point, we are interested in the practically relevant minimal difference; for this,
the expression E = (μ1 − μ0) / σ , that is the relative or in other words standardized practically
relevant difference, is called the (relative) effect size.

An important step in planning a study is therefore the determination of the practically
interesting minimal deviation δ = μ1 − μ0. Once δ is determined, given a certain type-I risk
α and a certain type-II risk β, one can calculate the necessary sample size.

Master
Doctor

Once α, β, and δ are determined, the precision requirements are fixed (see Sec-
tion 3.2). In fact the matter at hand is the requirement to get knowledge about
erroneous conclusions as concerns the null hypothesis in the case that a practically
relevant difference is given.

Master
Doctor

The exact meaning of a relevant difference δ = μ1 − μ0 is the following. All
differences μ1 − μ0 which are equal or even larger than the fixed δ should
preferably not be missed by the statistical test in question. In other words, not
detecting those differences should happen only with the probability β or an even
smaller probability.

Master
Doctor

The sample size we are looking for, given certain precision requirements, can
(graphically) be found using the power function. The power function quantifies,
per sample size for all possible values of δ, the respective power; that is, the
probability to reject the null hypothesis. If the alternative hypothesis is false, the
power amounts generally to 1 – β, or more exactly to 1 – β(δ) (obviously, the
power depends on δ). If the null hypothesis is true, the power function equals α.

Of course, it would be unfair to compare the power of a test at α = 0.01 with
the power of a test at α = 0.05, because a larger α means that the power is also
larger (often at all values of the alternative hypothesis) – in Figure 8.8, the reader
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Figure 8.8 The power function of the t-test in Formula (8.6) for testing the null hypothesis
H0 : μ = μ0 against HA: μ �= μ0, using the type-I risk α = 0.05. Shown are the cases for
n = 5 (lowest curve) and some other sample sizes, up to n = 20 (topmost curve). For instance,
trying a power of 0.9, we find on the abscissa the relative effect size; this is 1.5 in the case of
n = 7.

may imagine that for an α > 0.05 the curves will be moved upwards along the
ordinate. For this, only tests with the same α are comparable.

For the calculations of the (necessary) sample size (given a one-sided alter-
native hypothesis), we look first for all power functions of all possible sample
sizes which equal α at μ0; this being the parameter hypothesized under the null
hypothesis. Then we look for the practically relevant (minimal) difference δ. We
decide on that power function which results, at this point, in the probability 1 – β

(the probability of rejecting the null hypothesis). As a consequence, at this point
the probability of not rejecting the null hypothesis (the probability of making a
type-II error) is β. The respective power function fixes the sample size n. Given a
two-sided alternative hypothesis, we use the points −δ and +δ. Figure 8.8 shows
that differences larger than δ and |δ|, respectively, occur with an even smaller
probability than β.

A special problem arises in the case of an unknown variance σ 2. Though this parameter can be
replaced in Formula (8.6) by the sample variance, planning a study already requires intrinsic
observations in order to estimate σ 2. However, we can proceed as follows: the anticipated
range of the character in question (the difference of maximal and minimal outcome; see
Section 5.3.2) has to be divided by six, and the result may be used as an estimate for σ .

Master The estimation of σ for a normally distributed random variable by 1
6 of the range

is due to the fact that, with a probability of more than 0.99 (exactly 0.9974),
such a variable has nearly all its values between μ – 3σ and μ + 3σ . Hence, the
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range is approximately 6σ (see in Table B1 in Appendix B for σ = 1 the values
P(z = −3) and P(z = 3).

Master
Doctor

Another option to estimate σ 2 is to take the variance from an earlier study.
Sometimes there is a ‘least favorable’ value for σ 2, which may be used. If nothing
is known about the distribution of the character in question, the researcher may
first take a small sample of the size 10 ≤ n0 ≤ 30 and calculate a first estimate of
the variance; the result can be taken for the calculation of n. If this so-calculated
n > n0, then n – n0 further observations have to be sampled – otherwise data
sampling can be stopped (see in detail Rasch, Pilz, Verdooren, & Gebhardt, 2011;
size 10 ≤ n0 ≤ 30 for the pre-sample suits, according to simulation studies).

In practice, one uses pertinent computer packages in order to calculate the sample size needed
for a given α, β, and δ (for how to do it by hand, see Rasch, Pilz, Verdooren, & Gebhardt,
2011).

Example 8.8 A psychological test for measuring stress resistance will be extreme-group
validated (see, for validation of psychological tests, in particular, the method of ‘extreme-
group validation’, for instance Kubinger, 2009b)

The test is standardized on a random sample from the population ‘non-academic earners
between 25 and 35 years of age’: N(μ = 0, σ 2 = 1). As an extreme group, an ‘approved’
field staff (door-to-door salesmen) is available. We are now interested in the hypothesis that
the mean of test scores is at most μ0 = 0.67 in the field-staff group, against the one-sided
alternative hypothesis that this is not the case. We decide on δ = 2

3σ , α = 0.01 and β = 0.05;
the hypotheses are

H0 : μ ≤ 0.67
HA : μ > 0.67

The hypothesized μ0 = 0.67 is due to the fact that this is a difference from the mean 0 of
the whole population to an extent of two-thirds of the standard deviation. Interpreted as a
p-quantile of the distribution under the null hypothesis, this value corresponds to the probabil-
ity 1 – p of nearly 0.75. If the test were valid, then persons who have appeared to be apparently
stress resistant should attain on average at least such a percentile rank (in comparison with
the population as a whole). Because then the validity is dubious, from the content point of
view a deviation (to below) of two-third of a standard deviation is – according to our opinion
– relevant; for smaller deviations, however, measurement errors might just be responsible, as
far as our experience proves. The variance of the field staff we suppose is also σ 2 = 1.

We now calculate the sample size n.

In R, we use the package OPDOE, which we have already installed in Example 7.8. Now
we type

> size.t.test(delta = 0.67, sd = 1, sig.level = 0.01, power = 0.95,
+ type = "one.sample", alternative = "one.sided")
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i.e. we apply the function size.t.test()and use delta = 0.67 as the first
argument to specify the practically relevant (minimum) difference δ. The standard de-
viation with sd = 1 is used as the as the second argument, and the type-I error with
sig.level = 0.05 as the third one. The required power (power = 0.95), thus
1 – β, is used as the fourth argument. The fifth argument, type = "one.sample",
specifies the number of samples. Finally, alternative = "one.sided" specifies
the type of the alternative hypothesis.

As a result we get

[1] 38

Thus, we need a sample size of n = 38.
Now suppose we have the test scores of n = 38 field-staff members, given in the file

Example_8.8 (see Chapter 1 for its availability).

In R, we enable access to the database Example_8.8 by using the function attach() (see
Chapter 1). To conduct the t-test we type

> t.test(stress, mu = 0.67, alternative = "greater")

– the meaning of the arguments is explained in Example 8.3.
As a result, we get:

One Sample t-test

data: stress
t = 2.0356, df = 37, p-value = 0.0245
alternative hypothesis: true mean is greater than 0.67
95 percent confidence interval:
0.7247016 Inf
sample estimates:
mean of x
0.9895362

In SPSS, we apply the same sequence of commands (Analyze – Compare Means – One-
Sample T Test. . .) as in Example 8.3 to conduct a one-sample t-test after having loaded the
database. In the resulting window (shown in Figure 8.4), we drag and drop the character
stress resistance to the panel Test Variable(s): and type the value stated in the null hypothesis
(0.67) in the field Test Value:. By clicking OK, we obtain the results shown in Table 8.8 and
Table 8.9.
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Table 8.8 SPSS-output showing mean and standard deviation in Example 8.8 (shortened
output).

Sig. (2-tailed)dft

Test Value = 0.67

stress resistence .049372.036

One-Sample Test

Table 8.9 SPSS-output showing the result of the one-sample t-test in Example 8.8
(shortened output).

Std. DeviationMeanN

stress resistence .96767.989538

One-Sample Statistics

Because the p-values are 0.0245 and 0.049 / 2 = 0.0245, respectively, the result is significant;
that is to say the null hypothesis ‘the mean of test scores in the population of field staff is
(at most) μ0 = 0.67’ must be rejected. However, as Table 8.9 indicates, the mean of the sample
is 0.9895, so we must conclude that the population mean of field-staff members is clearly
larger than 0.67: the extreme-group validation was therefore successful.

Usefulness of planning a study with respect to the sample size is proven by the following: if a
study is done accordingly, then it is guaranteed that, with given type-I risk, the relevant effect
(μ1 − μ0) will actually be discovered by the statistical test with a known, high probability of
1 – β.

Master
Doctor

In psychology, however, the sample size for answering any research question is
almost always determined ‘intuitively’, or better to say ‘easy-going pragmati-
cally’. ‘Easy going’ insofar as no (pretended) exaggerated effort is put forth in
the study. ‘Pragmatically’ insofar as there have been some practices established
for the determination of the sample size. In textbooks there sometimes is the rec-
ommendation to choose a sample size of n > 30. This is comprehensible, because
in these cases most likely the central limit theorem applies (i.e. the assumption of
normal distribution of a character’s modeled random variable is beside the point;
see Section 6.2.2). However, that argument is no longer needed, because simu-
lation studies about the robustness show that, even for large deviations from the
normal distribution, the test statistic’s distribution hardly alters (Rasch & Guiard,
2004).

The ‘intuitive’ determination of the sample size is not at all in accordance
with statistical foundations. The sample size n is to be derived exclusively from
α, β, δ (and σ ).
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If no planning applies, then in the case of a significant result nothing is known, as concerns
the (relative) effect size. Therefore, it should at least be estimated from the data. Even less
is known in the case of a non-significant result about the type-II risk, given that the true
effect is as large as the estimated effect size. Therefore, the researcher may be interested
in this risk; we will call it ‘result-based type-II risk’. In the given case we estimate E =
(μ1 − μ0) / σ by Ê = (ȳ1 − μ0)/σ and Ê = (ȳ1 − μ0)/s, respectively. The calculation of the
‘result-based type-II risk’β

∗
can be done by program packages very easily, for instance by R;

in psychological research the program package G∗Power 3 is often used, and like R this is
available as freeware (www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/).

Example 8.8 – continued
The estimated relative effect size is Ê = 0.9895 and Ê = 0.9895 / 0.9677 = 1.0225, respec-
tively.

Although the study has been planned, and we therefore know that at a given type-I risk
of 0.01 a practically relevant (relative) effect of at least 0.67 can be detected by the test
with the probability of 0.95, we now calculate just for a tutorial the type-II risk β

∗
based on

observations, with probability of 0.95.

In R, we type

> power.t.test(n = 38, delta = 1.0225, sig.level = 0.01,
+ type = "one.sample", alternative = "one.sided")

i.e. we again apply the function power.t.test(). We set the sample size with n =
38, and the estimated relative effect size with delta = 1.0225. The meaning of the
remaining arguments is explained in the application of the function size.t.test() in
this example, above.

As a result, we get:

One-sample t test power calculation

n = 38
delta = 1.0225

sd = 1
sig.level = 0.01

power = 0.999907
alternative = one.sided

The result of 1 – β
∗ ≈ 1.00 differs from 0.95, upwards.

If the true relative effect were really 1.0225 then we nearly do not have a type-II risk
at all.
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Example 8.9 Example to estimate the ‘result-based type-II risk’β
∗

without relation to any
content

We assume, without planning the study, that we have got a random sample of n = 12
persons and have applied the t-test according to Formula (8.6); there is a one-sided research
question (α = 0.01). The analysis resulted in no significance. The estimated (relative) effect
size may be Ê = 0.5. This is considered relevant with regard to content. We now calculate
the ‘result-based type-II risk’β

∗
.

In R, we type, analogously to Example 8.8 – continued,

> power.t.test(n = 12, delta = 0.5, sig.level = 0.05,
+ type = "one.sample", alternative = "one.sided")

i.e. we again apply the function power.t.test()and use the arguments explained
above.

As a result, we get:

One-sample t test power calculation

n = 12
delta = 0.5

sd = 1
sig.level = 0.05

power = 0.4918845
alternative = one.sided

The result of β∗ = 1 – 0.4919 = 0.5081 shows – given the true effect equals the esti-
mated one, which we consider as practically relevant – that in comparable studies with
n = 12, a false null hypothesis would more often be accepted than rejected. The results of
this study should not be published, because it indicates inadequate or absent planning of
the study.

Determination of sample sizes is also possible for the topics of point estimation and
confidence intervals. As the first one regularly results in calculations of a confidence
interval, and the latter can be used for testing a hypothesis, we do not deal with plan-
ning a study as concerns these topics in this textbook (but see Rasch, Pilz, Verdooren, &
Gebhardt, 2011).

Master Choosing the type-I risk α of statistical tests equal to that α used for a confidence
interval, the following connection exists: if the parameter value hypothesized in
the null hypothesis lies inside the corresponding confidence interval, the null
hypothesis is to be accepted. Otherwise, if a statistical test results in significance,
then we know that the confidence interval does not cover the hypothesized value
of the null hypothesis.
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Summary
In testing hypotheses, the researcher has to decide which probability for a type-I error and
which probability for a type-II error he/she can tolerate. The corresponding risks are denoted
by α and β, whereby most of the time α = 0.05 (sometimes 0.01) is used. In relation to α,
the probability β has to be decided; this depends on which of the two kinds of error is more
important for the given research question. The statistical test is based on the idea of calculating
the probability that the observed data or (from the null hypothesis’ point of view) even more
extreme data may occur – though the null hypothesis is actually true. If this probability is smaller
than α, the null hypothesis is to be rejected; we say: the result is significant. Probability theory,
however, can only be applied if the data stems from a random sample. For planning a study as
concerns the determination of the sample size, a practically relevant minimal difference has
to be determined for which the null hypothesis is not rejected with probability β (type-II risk);
that is for which that difference is not detected by the test. Such a relative or standardized
practically relevant difference is called (relative) effect size.

8.4 Sequential tests for the unknown parameter μ

Once accepted that the scientific gain of findings (in psychology) is only possible by planning
a study in order to come to unequivocal conclusions, by known risks, then the demonstrated
strategy can be optimized. The method is sequential testing. This is a specific technique of
statistical inference.

Sequential testing can be applied, if the observations of a character can or must be done in a
study one after the other. Typical examples are laboratory analyses, psychological assessment
by individual testing, or consulting of patients and clients in hospitals or institutions alike.
The basic idea is to analyze existing observed data before the next research unit is sampled.

For instance, for a test of the hypothesis H0 : μ = μ0 versus HA: μ �= μ0 after each step
of analysis, after each research unit, there are the following three options:

� accept H0

� reject H0

� continue the study and data sampling, respectively.

The advantage of sequential testing compared with the ‘classical’ approach is that, with the
average of many studies, many fewer observations are needed. However, only if α, β, and δ

are fixed in advance does sequential testing work; any decision for the given three options is
possible.

Bachelor Sequential testing is still rarely applied in psychology. However, where each
research unit causes high costs, it is already a part of everyday usage, for example
in pharmacological research.

Master
Doctor

There are two different approaches to sequential testing. In the original approach
by Wald (1947), at the very beginning of a study it is totally unknown how many
research units will be needed. Such tests therefore are called open sequential
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tests. Nevertheless, the average sample size for these sequential tests is smaller
than for the corresponding tests with a planned and therefore fixed sample size.
But there is another approach: testing and data sampling ends at the latest with a
maximal number of research units; these tests are called closed sequential tests.
Their disadvantage is that their average sample size is a little bit larger than that
of the open sequential tests; but it is still smaller than that of the corresponding
tests with a planned and therefore fixed sample size.

A special group of closed sequential tests are the sequential triangular tests.
Their principle goes back to Whitehead (1992) and Schneider (1992) and is as
follows. Using the observed values yv, some cumulative ascertained ancillary
values Zv and Vv are calculated. In the case of a test with respect to the mean μ

that is after the mth step, i.e. after we have observed the values y1, y2, . . . , ym, it
is to calculate

Dm =
√
√
√
√ 1

m

m∑

v=1

y2
v , Zm =

m∑

v=1
yv

Dm
, and Vm = m − Z2

m

2m

Here Dm is obviously essentially a function of the estimated standard deviation
of y, and Zm is a function of the standardized estimated mean of y. The values
Zm can be marked on the abscissa of a rectangular coordinate system, and values
Vm on the ordinate. For a one-sided alternative hypothesis, two straight lines are
defined in dependence of type-I and type-II risk and of the practically relevant
minimal difference δ. They form a triangle open to the left side, and intersect each
other at a point Zmax; this is the value corresponding to the maximal sample size
nmax of the sequential triangular test. As long as the sequence of the Zm values
is within this triangle, then sequential testing and data sampling, respectively,
are to continue. If one of the two borderlines is met or even exceeded, then the
procedure stops. Depending on which line is concerned, the null hypothesis is
either accepted or rejected. In the case of a two-sided alternative hypothesis, this
is split into two one-sided alternative hypotheses in such a way that the two-sided
alternative hypothesis is to be rejected when one of the two one-sided alternative
hypotheses is rejected. Using α

2 instead of α for each of the one-sided alternative
hypotheses, a triangle as described above is constructed. Both are open towards
the left side and end at the same point of the abscissa on the right side. As long as
the sequence of the Zm values is within any of these triangles, sequential testing
and data sampling, respectively, are to continue. If one of the outside borderlines
of the triangles is met or even exceeded, then the null hypothesis is to be rejected.
If the sequence of the Zm values stays in the region between the two triangles, the
null hypothesis is to be accepted.

For the sequential triangular tests there are program packages like PEST
(see Whitehead, 1992) and CADEMO-TRIQ (www.biomath.de). SPSS offers
no sequential testing, but in R we find sequential triangular tests in the package
OPDOE. Because we are not dealing with commercial software apart from SPSS,
we will now introduce those sequential triangular tests available in R.
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Master
Doctor

Example 8.10 Is the sample of children with German as their native language
in Example 1.1 a representative sample as concerns the personality trait consci-
entiousness?

At the end of the study of Example 1.1, suspicion rises that the children with
German as their native language were negatively biased as concerns personality
trait conscientiousness. Therefore in a follow-up study with the aid of a personality
questionnaire4, this character has additionally been tested. Conscientiousness is
standardized to T-Scores, i.e. modeled as a normally distributed random variable
with mean μ0 = 50 and standard deviation σ = 10. The null hypothesis is therefore
H0: μ = μ0 = 50 and the alternative hypothesis is HA: μ < 50: if the sample does
not stem from the population in question, then we expect the children to achieve
lower test scores. We choose α = 0.05, β = 0.20, and δ = 0.67.

Because we prefer to not test, if possible, all 50 children with German as their
native language with the personality questionnaire, we proceed sequentially. We
start with the first five children of our data set, who have been tested with the
intelligence test-battery.

Their results are as follows: 50, 52, 53, 40, and 48.

In R, we type

> conscient.tt <- triangular.test.norm(x = c(50, 52), mu0 = 50,
+ mu1 = 43.3, sigma = 10,
+ alpha = 0.05, beta = 0.2)

i.e. we apply the function triangular.test.norm(). We use the vector of the
first and second observation value c(50, 52)of the character conscientiousness as the
first argument, the mean μ0 = 50 (mu0 = 50) as the second, and with mu1 = 43.3
indirectly δ as third argument. Furthermore, we specify the standard deviation of σ =
10 (sigma = 10) and the respective precision requirements by alpha = 0.05 and
beta = 0.2. Now we assign the function to the object conscient.tt.

As a result, we get:

Triangular Test for normal distribution

Sigma known: 10

H0: mu = 50 versus H1: mu < 43.3
alpha: 0.05 beta: 0.2

Test not finished, continue by adding single data via update()
current sample size for x: 2

4 For example in NEO PI-R (NEO Personality Inventory-Revised; Costa & McCrae, 1992), conscientiousness is
measured by questions like the statement ‘I’m known for my prudence and common sense.’
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A final decision based on the first two observation values is not possible. Thus, we type

> conscient.tt <- update(conscient.tt, x = 53)

i.e. we apply the functionupdate() to amend its first argument, objectconscient.tt,
with the third observation valuex = 53 which is used as the second argument. The result
is similar to the one above; that is, we are informed that further observation values have to
be added.

Because after n = 5 children no terminal decision is possible, either for accepting
or for rejecting the null hypothesis, we test a further child. As a result, after
sequentially testing one child after the other up to altogether n = 13 children, no
decision is possible there, either: even these test scores (38, 45, 56, 45, 50, 53, 68,
44) force us to continue testing. After three more children (with test scores 55,
54, 51) we come to a terminal conclusion.

In R, we add now the 16th observation value by typing

> conscient.tt <- update(conscient.tt, x = 51)

i.e. we apply the function update() to amend the object conscient.tt with
x = 51.

50 10 15 20

−
10

−
5

5
0

Triangular Test

v_n

z_
n

H0

H1

Figure 8.9 R-output showing the result of the sequential triangular test in Example 8.10
after 16 observation values have been entered.
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As a result, we get (see also Figure 8.9):

Triangular Test for normal distribution

Sigma known: 10

H0: mu = 50 versus H1: mu < 43.3
alpha: 0.05 beta: 0.2

Test finished: accept H0
Sample size for x: 16

As a matter of fact, the conclusion is that the null hypothesis has to be accepted;
the sample of children with German as their native language in Example 1.1 is
representative with respect to the personality trait conscientiousness.

With SPSS no sequential testing is possible.

8.5 Estimation, hypothesis testing, planning the study, and
sequential testing concerning other parameters

8.5.1 The unknown parameter σ 2

Since Section 5.3.1 we know that an appropriate (that is, unbiased) estimator of the
population variance σ 2 is the sample variance according to Formula (5.4): σ̂ 2 = s2 =

1
n−1

∑n
v=1 ( yv − ȳ)2.

In psychology there are hardly any research questions leading to a confidence interval for
the variance of a character modeled as a normally distributed random variable. The same is
true as concerns hypothesis testing pairs like H0: σ 2 = σ 2

0 , HA: σ 2 �= σ 2
0 (and HA: σ 2 < σ 2

0
or HA: σ 2 > σ 2

0 ). In this respect the planning of a study and sequential testing are also of no
relevance (see, if needed, Rasch, Pilz, Verdooren, & Gebhardt, 2011).

Doctor As can be shown, given a normally distributed random variable, the test statistic

χ2 = σ̂ 2

σ 2
(n − 1)

is χ2-distributed with df = n – 1 degrees of freedom (see in Table B3 in Appendix
B the α- and (1−α)-quantiles χ2(n − 1, α) and χ2(n − 1, 1 − α); values missing
in this table can of course be determined by R and SPSS). As a consequence,
bounds of the confidence interval for σ 2 are deducible given:

L = (n − 1) · s2

χ2
(

n − 1, 1 − α

2

) ; U = (n − 1) · s2

χ2
(

n − 1,
α

2

) (8.7)
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A test immediately follows – the null hypothesis is accepted with a type-I risk α

if the hypothesized value σ 2
0 lies within the bounds of the confidence interval.

Doctor Example 8.11 The question is, whether students functioning as examiner of IQ
did their job fairly

Skepticism always arises that hired helpers are lazy and produce testees’ an-
swers in psychological tests and questionnaires on their own instead of actually
testing the testees. Clever, but dilatory student examiners will try to hit approx-
imately the average IQ in doing so. But what is hard to anticipate for them and
even harder to control is to ‘generate’ the variance of the IQ values sufficiently
precisely over all testees. For this reason, for each student examiner, the variance
of the IQ values he/she delivers for analysis shall be estimated.

More precisely, for each student examiner a confidence interval (α = 0.05)
for the variance of the IQ values is calculated.

Let us assume that for a certain student examiner the sample variance is σ̂ 2 =
144, due to n = 21 testees. We remember that the intelligence tests are standardized
to σ = 15. From Table B3 in Appendix B we obtain χ2(20, 0.025) = 9.591 and
χ2(20, 0.975) = 34.17, and using this, from Formula (8.7) the 95% confidence
interval results as [20 · 144 / 34.17 = 84.28; 20 · 144 / 9.591 = 300.28]. We use
this confidence interval for testing the pair of hypotheses H0: σ = 15; HA: σ

�= 15. Because the observed value 225 lies within the interval, we accept the
null hypothesis and trust our test administrator. On the other hand, we could have
tested the given null hypothesis directly by χ2 = (144 / 225) · 20 = 12.8 > 9.591 =
χ2(20, 0.025); the probability of this data, or more extreme data, given the null
hypothesis, is not small enough (is not less than 0.05) to reject it.

8.5.2 The unknown parameter p of a dichotomous character

Without any derivation it is plausible that the probability p of one of the two possible outcomes
of a dichotomous character is best estimated by p̂ = h

n with h (again) the absolute frequency
of that value, given n observations and research units, respectively.

The exact formula for a confidence interval is complex and hardly used in psychology. This
is because, for even relatively small sample sizes n, the distribution function of the binomial
distribution is well approximated by a normal distribution. And therefore the bounds of the
confidence intervals are:

L = p̂ − z
(
1 − α

2

)
√

p̂(1 − p̂)

n − 1
; U = p̂ + z

(
1 − α

2

)
√

p̂(1 − p̂)

n − 1
(8.8)

Apart from the fact that from a confidence interval a test also results (the null hypothesis is to
be accepted, with the type-I risk α, if the hypothesized value p0 lies within the bounds of the
confidence interval), a test of this null hypothesis is also possible by an approximately standard
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normally distributed test statistic (with a two-sided or one-sided alternative hypothesis):

z = p̂ − p0
√

p̂(1 − p̂)

n − 1

(8.9)

One has just to compare this resulting value z with the respective standard normal distri-
bution’s α

2 - and (1 – α
2 )-quantile or α- and (1 – α)-quantile, respectively, from Table B2 in

Appendix B.
A rule of thumb is: if n · p ≥ 5 and n · (1 − p) ≥ 5, the approximation is sufficient.

Bachelor
Master

Example 8.12 From the study of Example 1.1, the relative proportion of children
with exactly two siblings will be estimated

We look for a point estimate as well as for a confidence interval (α = 0.05).
First of all we count how often the value ‘2’ has been realized in the character
number of siblings.

In R, we type (after having attached the original data set of Example 1.1)

> addmargins(table(no_siblings))

i.e. we request the output of the frequency distribution of the character number of siblings
by applying the function table(). The function addmargins() ascertains the sum of
all frequencies. As a result, we get:

no_siblings
0 1 2 3 4 5 Sum
17 30 24 16 10 3 100

In SPSS, we select

Analyze
Descriptive Statistics

Frequencies. . .

and drag and drop number of siblings to Variable(s): and click OK. As a result, we get
Table 8.10.
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Table 8.10 SPSS-output showing the frequencies in Example 8.12.

Cumulative
PercentValid PercentPercentFrequency

0

1

2

3

4

5

Total

Valid

100.0100.0100

100.03.03.03

97.010.010.010

87.016.016.016

71.024.024.024

47.030.030.030

17.017.017.017

number of siblings

Table 8.10 shows that h = 24 and n = 100. The relative proportion we are looking
for is to estimate p̂ = 24

100 = 0.24. The confidence interval results, according to

Formula (8.8), as [0.24 − 1.96
√

0.24·0.76
99 ; 0.24 + 1.96

√
0.24·0.76

99 ]; that is [0.1971;
0.2829].

Bachelor Example 8.13 Will party A win the next election with an absolute majority,
according to an opinion poll?

In an opinion poll, h(A) = 842 of n = 2000 interviewed randomly sampled
persons will vote for party A. The question is whether, from these results, at the
next election (which will be held in the very near future), party A can expect
to win with an absolute majority (that is, simplified: P(A) = p = 0.5; exactly:
P(A) = p = 0.500 · · · 01). The null hypothesis is thus H0: p ≥ 0.5; the alter-
native hypothesis is HA: p < 0.5. Type-I risk is chosen with α = 0.05. As p̂ =
f (A) = 842 / 2000 = 0.421, we get:

z = 0.421 − 0.5
√

0.421 · 0.579

1999

= −7.15

From Table B2 in Appendix B we find –z(1 – 0.05) = –2.33; the result is significant,
and the null hypothesis must be rejected. Party A cannot reckon on absolute
majority.

Until now we have discussed only the (relative) effect size for comparing means. Of course,
estimates of an effect size from the result of a statistical test are always available; in which
way an effect size for a standard normally distributed test statistic can generally be estimated
will be dealt with, however, later in Section 11.3.5.

Several methods exist for planning a study, but there is no single method that leads, for all
values of p, systematically to the smallest sample size. By the way, each of them needs some
a priori information of roughly the size of p.
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Master
Doctor

The least favorable case for the sample size n is that with p = 0.5; the nearer p is
to 0 or 1, the smaller the required sample size. We apply a method based on the
normal distribution approximation; the alternative hypothesis may be one-sided.
If p∗ is that value which roughly is to be expected, then n is to be determined
approximately as

[
z1−β

√
(p∗ + δ) (1 − p∗ − δ) + z1−α

√
p∗ (1 − p∗)

]2

δ2

or the next larger integer, respectively: δ is the practically relevant difference
between the (by the null hypothesis) hypothesized parameter p0 and the actual
true parameter p. This difference will not result in significance in cases with a
probability of β · 100%. The formula holds for p∗ ≤ 1

2 only; if p∗ > 1
2 , replace

p∗ by 1 – p∗. If the alternative hypothesis is two-sided, 1 − α
2 is to be used instead

of 1 – α.

Master
Doctor

Example 8.14 The number of applicants in a psychological study in Vienna
that come from Germany in the calendar year X + 1, in comparison with those in
calendar year X

We assume that in year X the proportion of applicants from Germany is 0.4. In
order to predict the respective proportion in the year X + 1 – for instance to gain
insight into future enrollment fees – the sample of the first n applicants should be
used. The null hypothesis is H0: pX+1 = p; the alternative hypothesis is HA: pX+1

�= p. We choose α = 0.05, β = 0.05, and δ = 0.2.

In R, we compute the sample size with the help of the package OPDOE by typing

> size.prop_test.two_sample(p1 = 0.4, p2 = 0.6, alpha = 0.05,
+ power = 0.95, alt = "two.sided")

i.e. we use the probability stated in the null hypothesis, p1 = 0.4, as the first argument
and the probability resulting from δ = 0.2, that is p2 = 0.6, as the second argument
in the function size.prop_test.two_sample(). Moreover, we use the type-I risk
(alpha = 0.05) as the third, the type-II risk subtracted from 1 (power = 0.95) as
the fourth, and the type of the alternative hypothesis (alt = "two.sided") as the
fifth argument in the function.

As a result, we get:

[1] 170

We have to wait until n = 170 applicants are there; we then check their nationality.
Note: in this example we have to assume that the order of applicants is random.

Master
Doctor

Testing of hypotheses concerning the parameter p of a dichotomous character is
also possible with a sequential triangular test.
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Master
Doctor

Example 8.14 – continued
Assume that we had already asked 88 applicants for their nationality and p̂X+1 =
0.5114.

In R, we obtain the preliminary result shown in Figure 8.10 (given that the last observation
was ‘Germany’) by typing

> nation.tt <- triangular.test.prop(nation, p0 = 0.4,
+ p1 = 0.2, p2 = 0.6,
+ alpha = 0.05, beta = 0.05)

i.e. we apply the function triangular.test.prop() and use all 88 observation
values in the object nation as the first argument in the function. With p0 = 0.4 we
specify the null hypothesis and with p1 = 0.2 and p2 = 0.6 we indirectly define
δ. Finally, we use the arguments alpha = 0.05 and beta = 0.05 to specify the
respective precision requirements. We assign the result to the object nation.tt.
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Figure 8.10 R-output showing the result of the sequential triangular test in Example 8.14
after 88 observation values have been entered.

As a result we get:

Triangular Test for bernoulli distribution R-
H0: p = 0.4 versus H1: p > 0.6 or p < 0.2
alpha: 0.05 beta: 0.5

Test not finished, continue by adding single data via update()
current sample size for x: 88
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Analyzing the 89th observation – again an applicant from Germany – we get
the terminal decision: in the year X + 1 we expect a larger proportion of Ger-
man applicants than in the year X. The resulting sample size of n = 89 with
sequential testing is much smaller than when planning a fixed sample size for
the study.

8.5.3 The unknown parameter p of a dichotomous character which is
the result of paired observations

Often there is just a single sample (of research units; in psychology mostly persons); but
nevertheless, content-wise, two or more values for the same character are observed. In such a
case, given a quantitative character, we have already dealt with two values per research unit in
Section 8.2.4. In the case of a qualitative character, the methodical approach differs somewhat
from that in Section 8.2.4, because there can be no differences ascertained. In the following
we consider a dichotomous character and once again only two observations per unit. Again,
for instance a certain treatment’s effect is of interest.

In this context, the primary aim is testing a null hypothesis. If we denote the two possible
values with ‘+’ and ‘–’, then we expect under the null hypothesis that the relative frequency
of, for instance, ‘+’ within the population in question (i.e. the population’s probability) does
not change from the first observation time to the second. That is H0: p1 = p2, HA: p1 �= p2.
As with quantitative characters, the matter at hand is measuring the change per research
unit. There are four possibilities of two outcomes per unit: (+, +), (+, –), (–, +), and (–,
–). The corresponding relative frequencies and probabilities are f (+, +), . . . , f (–, –) and
p(+, +), . . . , p(–, –), respectively. The only data which count contra-null hypothesis and
pro-alternative hypothesis are f (+, –) and f (–, +). Given the null hypothesis, f (+, –) > 0
and/or f (–, +) > 0 occur just by chance; principally only (+, +) or (–, –) would be realized.
As a consequence, the null hypothesis is to be reformulated: H0: p(+, –) = p(–, +); HA:
p(+, –) �= p(–, +).

As can be shown, some test statistic is (given the null hypothesis) asymptotically χ2-
distributed (‘chi-square’) with df = 1 degree of freedom. This means that the actual distribution
of that test statistic can – for sufficiently large sample sizes – be approximated with the χ2-
distribution. The rule of thumb is: h(+, –) + h(–, +) ≥ 25. The test based on this test statistic
is called the McNemar test. Because nowadays almost nobody will calculate it manually, we
refrain from presenting the formula.

How the effect size for tests with a χ2-distributed test statistic can be estimated is shown
in Section 11.3.5.

Apart from the fact that any planning of a study would require prior (rough) knowledge,
calculation of the (overall) sample size is completely impossible.

Bachelor
Master

Example 8.15 Is the advanced training in a seminar ‘aptness in negotiations’
efficient?

In advanced training in a seminar within a company, several co-workers are
trained during a week to use proper strategies in negotiations. Before starting, as
well as about a month after the end of the seminar, the boss of each of the 25
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participants judges their behavior in sales conversations either as positive (‘1’) or
as negative (‘0’). The results are (each column corresponds to a participant):

Before the seminar 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
After the seminar 1 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1

More clearly arranged, this data is:

After the
seminar Total

+ −
Before the seminar + 1 3 4

− 14 7 21

Total 15 10 25

Now we apply the McNemar test (see Chapter 1 for the availability of the
data).

In R, we apply the package exact2×2, which we load after its installation (see Chapter 1)
using the functionlibrary(). First, we create two vectors according to the values shown
above. To do this, we type

> before <- c(1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0)
> after <- c(1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,
+ 1, 0, 0, 1, 1, 1, 1)

i.e. we apply the function c() to concatenate all of its arguments into a vector. We assign
the resulting vectors to the objects before and after, respectively. Now we conduct a
McNemar test by typing

> mcnemar.exact(before, after)

i.e. we use the two vectors before and after as arguments in the function
mcnemar.exact().

As a result, we get (shortened output):

Exact McNemar test (with central confidence intervals)

data: before and after
b = 14, c = 3, p-value = 0.01273
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.302461 25.326134
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In SPSS, we first type in the variables before and after according to the values shown above.
To conduct a McNemar test we proceed in the following way. We use the sequence of
commands from Example 5.13 (Analyze - Descriptive Statistics - Crosstabs. . .) to create a
two-dimensional frequency table. In the resulting window (see Figure 5.28), we drag and
drop before to the field Row(s): and after to the field Column(s):. Next we click Statistics. . .

and tick McNemar in the following pop-up window (see Figure 8.11). After clicking Continue
and OK we get Table 8.11 as a result.

Figure 8.11 SPSS-window for selecting statistics.

Table 8.11 SPSS-output showing the result of the McNemar test in Example 8.15.

Exact Sig.
(2-sided)Value

McNemar Test

N of Valid Cases 25

.013
a

Chi-Square Tests

a. Binomial distribution used.

The null hypothesis is to be rejected. As h(+, –) < h(–, +), the seminar was
successful.
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Master The McNemar test can be replaced by the so-called binomial test (see Example
8.5): we look for the conditional probability P[k = h(+, –)|n = h(+, –) +
h(–, +); p = 1/2)] – given that h(+, –) > h(–, +); as indicated we have to interpret,
for instance, h(+, –) as k. This probability can be approximated by

P

(

z ≤ k − np√
np(1 − p)

)

(8.10)

(see Section 6.2.2); a rule of thumb is: if n· p ≥ 5 and n· (1 – p) ≥ 5, then the
binomial distribution is sufficiently approximated by the normal distribution.

8.5.4 The unknown parameter pj of a multi-categorical character

We consider a sample of n research units, for which a multi-categorical (c-categorical) char-
acter has been ascertained. For each observation j, j = 1, 2, . . . , c, one can count the number
hj of respective observations in the sample. In the population we postulate the respective pa-
rameters (probabilities) p1, p2 . . . , pj, . . . , pc. These probabilities are estimated by the relative
frequencies in the sample; that is p̂ j = f j .

Again we do not deal with confidence intervals here. As concerns hypothesis testing,
the matter at hand is the comparison of an empirical and some theoretical distribution. The
empirical frequency distribution is given by fj and hj = n · fj, respectively. The theoretical
distribution is defined by the hypothesized probabilities pj and npj. The test depends on the
concrete null hypothesis. Mostly we are interested in the null hypothesis that the probabilities
of all categories are equal to each other, i.e. H0:

p1 = p2 = · · · = pj = · · · = pc. The alternative hypothesis is then HA: pj �= pg, for at least one
pair j �= g.

However, any other theoretical distribution is possible. As can be shown, the following test
statistic is (given the null hypothesis is true) asymptotically χ2-distributed; that is:

χ2 =
c∑

j=1

(h j − np j )2

np j
is approximately χ2−distributed,

with d f = (c − 1) degrees of freedom (8.11)

Though, these days, nobody would compute this test statistic by hand, Formula (8.11) shows
that with the help of the (1 – α)-quantiles of the χ2-distribution, χ2((c – 1), 1 – α), a decision
for or against the null hypothesis is feasible (for instance according to Table B3). If the
resulting value in Formula (8.11) exceeds this quantile, the null hypothesis is to be rejected,
and the result is significant; as concerns the empirical distribution with its frequencies, some
of them (or even all) differ from those which were hypothesized by the null hypothesis. The
observed differences between the relative frequencies and the probabilities under H0 cannot
be explained by chance alone.

Master The test statistic in Formula (8.11) is based on a squared mathematical term;
therefore take into account that the direction of the differences is not considered
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with the alternative hypothesis. Hence, no matter which content and which
direction of deviation is of interest, this test always refers to a two-sided alternative
hypothesis. Nevertheless, from the formal point of view we are interested only
in one side of the χ2-distribution, the right one – this is the side corresponding
to large (squared) differences. If one considers also the left side – this is the side
tending towards 0 – then the test examines (in addition) whether the (squared)
differences are less than expected by chance.

A rule of thumb for the sample sizes in order to get a sufficient approximation of this χ2-tests’
distribution is: npj ≥ 5 for all j.

Example 8.16 Do suicides cumulate in certain calendar months?
Unsystematic observations from co-workers in mental health professions show that in

central Europe in the winter, more precisely between November and February, relatively
more suicides are observed than in the other months. A psychologist therefore in a certain
political region records over some years the frequencies of suicides per calendar month
(January = 1, . . . , December = 12):

Calendar month 1 2 3 4 5 6 7 8 9 10 11 12
Number of suicides observed 28 32 16 20 12 14 5 8 12 20 24 35

The null hypothesis is that there are no differences between the calendar months; hence H0:
p1 = p2 = · · · = p12 = 1

12 ; the alternative hypothesis is HA: pj �= pg, for at least one pair
j �= g; i.e. at least two probabilities differ from 1

12 . We decide on the type-I risk α = 0.01.

In R, we start by creating a vector containing the number of documented suicides. To do
this, we type

> number <- c(28, 32, 16, 20, 12, 14, 5, 8, 12, 20, 24, 35)

i.e. we apply the function c() to concatenate all its arguments into a vector, which we
assign to the object number. Next, we conduct a χ2-test by typing

> chisq.test(number)

i.e. we submit the vector number containing the number of documented suicides to the
function chisq.test(). According to the default settings, the null hypothesis states
that the probability of all categories is the same.

As a result we get:

Chi-squared test for given probabilities
data: number
X-squared = 52.1239, df = 11, p-value = 2.589e-07
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In SPSS, we create a data file with two columns: in the first one, we type in the character
calendar month (month) with values from 1 to 12 and in the second column the corresponding
frequencies (f) according to the list shown above.

In SPSS Variable View we set character calendar month (month) in the column Measure
to Nominal and the corresponding frequencies (f) to Scale. Next, we weight the character
month using the corresponding frequencies. To do this, we select the sequence of commands

Data
Weight Cases. . .

In the resulting pop-up window (not shown) we select Weight cases by and drag and drop
the character f to the field Frequency Variable:. We confirm the weighting by clicking OK. To
start the analysis, we apply

Analyze
Nonparametric Tests

One Sample. . .

In the resulting window (not shown), we activate the tab Fields in the control panel at the
top. This gets us to the window shown in Figure 8.12, where calendar month has already
been automatically moved into the panel Test Fields:.

Now we switch to the tab Settings (see Figure 8.13), where we select Customize tests and
tick Compare observed probabilities to hypothesized (Chi-Square test). The null hypothesis

Figure 8.12 SPSS-window I for calculating a χ2-test.
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assumes that the probabilities for all categories are equal, according to the default setting.
After clicking Run, the output window shows the table Hypothesis Test Summary (not
shown), which we double-click. As a consequence, a window containing a table with the
essential results pops up. The p-value, which can be found in Asymptotic Sig. (2-sided test):,
equals 0.000.

Figure 8.13 SPSS-window II for calculating a χ2-test.

The result is significant. The frequencies of suicides in all calendar months are, in contrast to
the null hypothesis, not equal; the null hypothesis is to be rejected. At least in December we
found many more suicides than in July.

Concerning the estimation of the effect size, see Section 11.3.5.
Planning of a study concerning n is, for this χ2-test, not possible, though it is concerning c.

8.5.5 Test of a hypothesis about the median of a quantitative character

Very seldom in psychology it is of interest to test a hypothesis with respect to a quantitative
character’s median instead of its mean. However, for example if the character and its modeled
variable, respectively, have an extremely skewed distribution – so that the median better
characterizes the data than the mean – then we might access non-parametric tests/distribution-
free tests. These are tests without a specific assumption about the distribution.
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It is notable that such an approach is not intrinsically justified by a suspected deviation
from the normal distribution of the character in question per se. Particularly as Rasch and
Guiard (2004) showed that all tests based on the t-distribution or its generalizations are
extraordinarily robust against violations from the normal distribution. That is, even if the
normal random variable is not a good model for the given character, the type-I risk actually
holds almost accurately. Therefore, if a test statistic results on some occasion in significance,
we can be quite sure that an erroneous decision concerning the rejection of the null hypothesis
has no larger risk than in the case of a normal distribution.

It is notable as well that the test which becomes relevant for the given problem – Wilcoxon’s
signed-ranks test – is not at all appropriate here if the character is only ordinally scaled.
Although this test is generally announced as a homological method (to the t-test): according
to Section 4.2, the empirical relations on which an ordinal-scaled character is based do
not induce differences of measurement values which make any sense; however, this test
presupposes this.

Doctor If there is a random variable y with the median Md, then the null hypothesis
is H0: Md = Md0 (HA: Md �= Md0). Wilcoxon’s signed-ranks test can be used
for testing this hypothesis. First of all, the differences dv = yv − Md0 are to
be calculated, as well as their absolute values |dv|. Finally these values are to
be ordered (ascending) and ranks are to be assigned accordingly. The sum of
those ranks, S+, referring to any positive difference, has a known distribution, and
tables or (better) program packages can be used in order to get the probability
of the observed (or even more extreme) data, given the null hypothesis is true. If
n > 50, an approximation of the distribution of the test statistic S+ by a normal
distribution is justified. Tables, as well as the formula for the test statistic in the
case of such a justified approximation, will not be given here, because we exclude
manual calculations. The application of program packages is according to the
Example 8.17 in the following Section 8.5.6; the only difference is that we now
have to use, in addition to the outcomes yv of the character y, the values xv = Md0

for a virtual character x.

Planning a study is generally difficult for non-parametric tests, because it is hard to formulate
the alternative hypothesis (however see, for instance, Brunner & Munzel, 2002).

8.5.6 Test of a hypothesis about the median of a quantitative character
which is the result of paired observations

As already discussed in Section 8.2.4, we often have a single sample, but two observations
(xv, yv) per research unit for the same character from a content point of view. If now the
median is more appropriate than the mean for the characterization of the differences dv =
xv – yv (given quantitative data), then again Wilcoxon’s signed-ranks test can be used. Once
the differences dv = xv – yv have been calculated the procedure is the same as described above.
The null hypothesis concerning the modeled random variable d is: H0: Md = 0.

Again a possible given deviation from a normal distribution does not necessarily entail
the application of this procedure. And of course it is not at all appropriate for ordinal-scaled
characters.
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Doctor Example 8.17 Evaluation of a campaign
An opinion research institute tries to evaluate the political party A during

a campaign. 250 persons are sampled using stratified sampling (see in Section
7.2.1) and are interviewed before and after the campaign about their ‘Sympathy
for party A’. The persons could take a position using an analogue scale-response
format (see Section 2.4.3). In the analysis, the 7-inch line of the analogue scale-
response format was split into 140 small intervals of equal length; therefore each
answer corresponds with one value 0 ≤ yv ≤ 141 (0 inch ‘very little sympathy’ up
to 7 inches ‘much sympathy’). Usually in this context the empirical distribution
of the observations follows a ‘U-shaped’ distribution; i.e. either a person finds the
party very sympathetic or the person has a strong antipathy. To judge the effect
of the campaign we calculate the differences of the outcomes after and before
the campaign, and test for significance (i.e. H0: Md = 0). We apply Wilcoxon’s
signed-ranks test (type-I risk α = 0.05). We use the data Example_8.17 (see
Chapter 1 for their availability). Because such a campaign may also have negative
effects on the sympathy for the party A, we decide on a two-sided alternative
hypothesis.

In R, we enable access to the database Example_8.17 by using the function attach()
(see Chapter 1). Then we apply Wilcoxon’s signed-ranks test by typing

> wilcox.test(sym1, sym2, paired = TRUE, correct = FALSE)

i.e. we apply the function wilcox.test() and use the characters sym1 and sym2
as arguments in it. With paired = TRUE, we request the calculation of pair-wise
differences, and with correct = FALSE we prevent the continuity correction, which
otherwise is conducted automatically according to the default settings.

As a result, we get:

Wilcoxon signed rank test

data: sym1 and sym2
V = 13117, p-value = 0.04012
alternative hypothesis: true location shift is not equal to 0

In SPSS, we apply

Analyze
Nonparametric Tests

Related Samples. . .

after having loaded the data. In the resulting window (not shown), we select the tab Fields.
This gets us to a window very similar to the one in Figure 8.12. Now, we drag and drop
both Sympathy2 and Sympathy1 to Test Fields:. Generally, any order of the variables can be
chosen, though interchanging the variables alters the sign of the resulting test statistic.
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Next, we select the tab Settings. In the resulting window (see Figure 8.14), we activate
Customize tests and tick Wilcoxon matched-pair signed-rank (2 samples). Finally, we Run
the analysis and, as a result, we get an output window showing the table Hypothesis Test
Summary (not shown here), which we double-click. The resulting window shows a table
containing the relevant results. Here we can find the Standardized Test Statistic with a value
of −2.053 and the p-value, which equals 0.040, in Asymptotic Sig. (2-sided test).

Figure 8.14 SPSS-window for settings for non-parametric tests with two or more samples.

Because the p-value is smaller than 0.05, the campaign had a significant effect;
we reject the null hypothesis. The test statistic (in SPSS) is negative, which
means negative differences have higher ranks; that is, changes happen towards
antipathy.

Because the test statistic of Wilcoxon’s signed-ranks test is asymptotically
standard normal distributed, the estimation of the effect size can be done as
described in Section 11.3.5.
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Summary
For hypothesis testing there are different statistical tests depending on the scale type of the
character of interest, and depending on the kind of parameter which is hypothesized. Their
application with computer packages is generally very easy. For sequential testing the research
units are sampled one after the other and analysis is always applied subsequently, that is until
a terminal decision for or against the null hypothesis can be made.
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Two samples from two populations

This chapter is about statistical tests for comparing parameters of two populations, from each
of which samples have been drawn. Wherever possible (and where practically applicable),
it will be shown how planning of a study is carried out by specifying certain precision
requirements. Furthermore, it will be demonstrated how sequential testing works for certain
tests.

We assume that two independent samples from each of two populations are of interest;
independent, as per its definition in Chapter 6, means that each outcome in one sample, as a
particular event, will be observed independently of all other outcomes in the other sample.
Once the outcomes of the particular character are given, (point) estimates can be calculated
for each sample. However the main question is: do the two samples stem from the same
population or from two different populations?

Bachelor Example 9.1 Do, at the first test date, children with German as a native language
differ from those with Turkish as a native language in the subtest Everyday
Knowledge (Example 1.1)

This example deals with children whose native language is German and chil-
dren whose native language is Turkish as two independent (random) samples. The
question is now whether these two samples stem from two different populations
in terms of the character Everyday Knowledge, 1st test date; of course they stem,
by definition, from different populations in relation to other characters, in par-
ticular with regard to their ancestral nationality. Nevertheless, it is conceivable,
perhaps not very plausible, that these two samples as representatives of Viennese
students (in terms of the character Everyday Knowledge, 1st test date) stem from
a ‘uniform’ single population.

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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9.1 Hypothesis testing, study planning, and sequential
testing regarding the unknown parameters μ1 and μ2

As it is the most illustrative, we will first consider again the parameter μ; that is, the two
means of the two populations underlying the samples, which are considered as different for
the time being. The character of interest is modeled by a normally distributed random variable.
That is to say, a random sample of size n1 and n2, respectively, will be drawn from the two
populations 1 and 2. The observations of the random variables y11, y12, . . . , y1n1

on one hand
and y21, y22, . . . , y2n2

on the other hand will be y11, y12, . . . , y1n1 and y21, y22, . . . , y2n2 . We
term the underlying parameters μ1 and μ2, respectively, and σ 2

1 and σ 2
2 , respectively. The

unbiased estimators are then μ̂1 = ȳ1 and μ̂2 = ȳ2, respectively, and σ̂ 2
1 = s2

1 and σ̂ 2
2 = s2

2,
respectively (according to Section 8.5.1 and Formula (5.4)).

The null hypothesis is H0: μ1 = μ2 = μ; the alternative hypotheses is HA: μ1 �= μ2, and
in the case of a one-sided hypothesis either HA: μ1 > μ2 or HA: μ1 < μ2.

The solution to the problem is simple according to recent findings from simulation studies
(Rasch, Kubinger, & Moder, 2011), while the traditional approach has almost always been
unsatisfactory because it wasn’t theoretically regulated for all possibilities. Nevertheless, an
introduction to the traditional approach must be given at this point: the current literature on
applications of statistics (in psychology) refers to it, and also methods for more complex issues
are built on it. Lastly, sequential testing is currently not possible without the corresponding
traditional test.

The traditional approach is based upon the test statistic in Formula (9.1). It examines the
given null hypothesis for the case that the variances of σ 2

1 and σ 2
2 , respectively, of the relevant

variables in the two populations, are not known; this is the usual case. However, it assumes
further that these variances are equal in both populations; yet experience has shown that this
is often not the case. The test statistic

t = ȳ1 − ȳ2√
(n1 − 1) · s2

1 + (n2 − 1) · s2
2

n1 + n2 − 2

·
√

n1n2

n1 + n2
(9.1)

is t-distributed with df = n1 + n2 – 2 degrees of freedom. This means (despite the fact that
today hardly anyone calculates by hand), that we can decide in favor of, or against, the null
hypothesis, analogous to Section 8.2.3, by using the quantile of the (central) t-distribution,
t(n1 + n2 – 2, 1 – α

2 ) and t(n1 + n2 – 2, 1–α), respectively, depending on whether it is a two-
or one-sided problem. It will therefore be rejected if | t | > t(n1 + n2 – 2, 1 – α

2 ) and if | t | >
t(n1 + n2 – 2, 1 − α), respectively, provided the sign of ȳ1 − ȳ2 is in the given direction of the
alternative hypothesis. If the null hypothesis has to be rejected, it is again called a significant
result: as concerns the two populations, the two means are different; the observed differences
between ȳ1 and ȳ2 cannot be explained by chance (alone).

Master
Doctor

The given condition for the test statistic in Formula (9.1), namely the assumption of
equal variances in both populations, strictly speaking limits the null and alternative
hypothesis to the following: H0: μ1 = μ2 = μ, σ 2

1 = σ 2
2 = σ 2; HA: μ1 �= μ2,

σ 2
1 = σ 2

2 = σ 2; or in the case of a one-sided question either HA: μ1 > μ2, σ 2
1 =

σ 2
2 = σ 2 or HA: μ1 < μ2, σ 2

1 = σ 2
2 = σ 2.
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Master Formula (9.1) can be understood more precisely in that the test statistic used is
centrally t-distributed under the null hypothesis – i.e. with mean 0. However,
under the alternative hypothesis, this test statistic is non-centrally t-distributed,
with the non-centrality parameter

μ1 − μ2

σ
·
√

n1n2

n1 + n2

The calculation of this test, the two-sample t-test, is particularly simple with statistical com-
puter programs; however the theory-based justification is not:

� First, it has to be considered that the application of the test is only justified if there is
a quantitative character, which is at least interval scaled; computer programs can, of
course, be used for ordinally scaled characters without any justification as concerns the
scaling, and can also be used for multi-categorical, nominally scaled characters, which
however would be illogical (see also Section 5.3.2).

� So far we have assumed that the character of interest can be modeled by a normally
distributed random variable. But it remains unclear how to proceed if this assumption
is not plausible.

� The two variances in the two underlying populations were certainly not assumed to be
known, but were estimated from the respective samples. However, it was assumed that
the two populations have the same variance even though they perhaps have different
means. It still remains unclear how to proceed if this assumption is not plausible.

� A further stringent requirement is that, before the data collection and data analysis
applies, the study is planned; given a chosen type-I risk α, a difference δ = μ1 –
μ2, which is considered to be relevant, will not be detected by the test only with
a satisfactorily low type-II risk, β. That is, the sample sizes n1 and n2 need to be
accordingly determined in advance.

Master
Doctor

As for the previously made assumption of a normally distributed modeled variable
in the t-test, a number of things have to be considered. Firstly, according to
our explanation of the central limit theorem, the only necessary assumption is
that both samples should be of an agreeable size; however, rules of thumb are
controversial and not necessarily sufficiently empirically researched (see again in
Section 6.2.2). Secondly, if such rules of thumb are ignored, another test or ‘pre-
test’ of normality of the variable y in both populations is not appropriate because
the available inventory of methods is of very low power (i.e. 1 – β is relatively
low). Thirdly, the assumption of a normal distribution is practically negligible
because the t-test is, even in the case of small sample sizes, robust against any
deviation from this assumption (see Rasch & Guiard, 2004).

Master Rasch and Guiard (2004) simulated 10 000 pairs of samples each (from two
populations) where the null hypothesis was correct, and performed the t-test.
Different sample sizes, equal and unequal variances, and distributions other than
the normal distribution were used in these simulations. At the end, each of the
specified type-I risks α was compared with the relative frequency of (false)
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rejections among the 10 000 cases. All deviations were (with the exception of
the t-test in the case of unequal variances) less than 20% of the given α, which
phenomenon is called ‘20% robust’ against non-normality.

Master
Doctor

There is also more to be said regarding the assumption of equal variances in the
two populations. Firstly, the t-test basically gives incorrect results and thus often
leads to false interpretations and conclusions if the assumption of equality of
variances is not met in reality. Secondly, there indeed is an appropriate ‘pre-test’,
i.e. a test that checks whether the hypothesis of equal variances can be accepted
or has to be rejected (see in Section 9.2.2). But then we would have to consider
all combinations of two possible type-I errors and two possible type-II errors in
our investigation, which becomes very complicated (Rasch, Kubinger, & Moder,
2011). Thirdly, planning the study with such a pre-test would hardly be possible;
to determine the two sample sizes needed, one would need data supporting the
hypothesis that both variances of both populations are equal.

For planning a study (and subsequent analyzing), it is much more practical to strive for a test
which is not based on such stringent, namely actually not verifiable, assumptions. It remains
essential that there is an (at least) interval-scaled character. Although the test statistic that is
recommended in the following also derives from the assumption of a normally distributed
modeled character, actual deviations from the normal distribution, however, prove to be
practically meaningless (Rasch & Guiard, 2004; Rasch, Kubinger, & Moder, 2011). That is to
say, the stated null hypothesis can be better tested with a test-statistic that is slightly different
from the test statistic in Formula (9.1) – regardless of whether the two variances in both
populations are equal or not. The test statistic itself is, again, t-distributed or approximately
so; the test is called the two-sample Welch test. The procedure described above as the traditional
approach, namely the application of the (two-sample) t-test, including testing the equality of
variances with a special (pre-) test is, however, strictly to be rejected based on the new level of
knowledge. If it were to be adhered to, it would result in unknown (large) type-I and type-II
risks in many cases.

Master Since the Welch test also permits unequal variances in the populations, the degrees
of freedom of its test statistic also depend on the corresponding variance estimates,
due to its derivation:

t = ȳ1 − ȳ2√
s2

1

n1
+ s2

2

n2

(9.2)

is approximately t-distributed with

df =

(
s2

1

n1
+ s2

2

n2

)2

s4
1

(n1 − 1) n2
1

+ s4
2

(n2 − 1) n2
2



P1: OTA/XYZ P2: ABC
JWST094-c09 JWST094-Rasch September 22, 2011 8:14 Printer Name: Yet to Come

204 TWO SAMPLES FROM TWO POPULATIONS

degrees of freedom. The computation of the Welch test is very simple using
statistical computer programs.

Bachelor Example 9.1 – continued
We fix α = 0.05 and decide on a one-sided alternative hypothesis; that is HA:
μG >μT, because we do not assume that children with Turkish as a native language
perform better in the test than children with German as a native language.

In R, we first enable access to the data set Example_1.1 (see Chapter 1) by using the
function attach(). Then we type

> t.test(sub1_t1 ∼ native_language, alternative = "greater",
+ var.equal = FALSE)

i.e. we use the command to analyze the character Everyday Knowledge, 1st test date
(sub1_t1) in reference to the factor native language of the child as the first argu-
ment in the function t.test(); as second argument, we state, with alternative
= "greater", that the alternative hypothesis is one-sided, and, with the argument
var.equal set to FALSE, we adjust for the (possible) case of unequal variances.

As a result, we get:

Welch Two Sample t-test

data: sub1_t1 by native language
t = 0.6006, df = 97.369, p-value = 0.2747
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-2.188438 Inf

sample estimates:
mean in group German mean in group Turkish

53.16 51.92

In SPSS, we select

Analyze
Compare Means

Independent-Samples T Test. . .

to obtain the window shown in Figure 9.1. There we move the character Everyday Knowledge,
1st test date into the panel Test Variable(s):. Next we move the character native language of
the child into the panel Grouping Variable:. Afterwards, we click the button Define Groups. . .

in order to set how the groups are labeled. In this case, in the window shown in Figure 9.2
we type the digit 1 (corresponding to children with German as a native language) in the field
Group 1:, and in the field Group 2: we type the digit 2 (this corresponds to children with
Turkish as a native language); by clicking Continue, we return to Figure 9.1, from which OK
yields the result in Table 9.1.
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Figure 9.1 SPSS-window for comparing two sample means.

Figure 9.2 SPSS-window for selecting the samples for a comparison of two sample means.

Table 9.1 SPSS-output for the Welch test in Example 9.1 (shortened output).

Sig. (2-tailed)dft

t-test for Equality of Means

Equal variances assumed

Equal variances not
assumed

Everyday Knowledge,
1st test date (T-Scores)

.54997.369.601

.54998.601

Independent Samples Test

Table 9.1 makes it immediately plain that it is necessary to distinguish two cases: the case
that both populations have equal variances, and the case that the variances are distinct. Since
we have no advance information regarding this, we have to assume the more general second
case; this corresponds to the Welch test. In column t we read the value of the according
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t-distributed test statistic. Because it is positive, in our case ȳ1 = ȳG > ȳT = ȳ2 applies,
which means that the difference has the expected tendency. We could compare the value t
from column t in Table B2 with the (1 – α)-quantile t(97.369) ≈ t(98, 0.95) = 1.661. The
result is non-significant. However, SPSS spares us doing so: the column (2-tailed) gives the
probability of getting a value |t| ≥ |t|. Note that in the given case the alternative hypothesis
is one-sided; hence we have to bisect (mentally) the stated probability, which yields 0.2745.

We realize that 0.2747 or 0.2745, respectively, is the probability of getting a mean
difference that is equal to or greater than the one observed here by validity of the
null hypothesis. We must accept the null hypothesis because this probability is
greater than α = 0.05.

For Lecturers:

The recommendation to use the Welch test instead of the t-test cannot be found in
any textbook of applied statistics and may therefore surprise experienced users.
This recommendation is instead based on the results of current research from
Rasch, Kubinger, & Moder (2011).

Strictly speaking, each step, i.e. testing the null hypothesis for normal dis-
tribution per sample, testing the null hypothesis for equality of variances, and,
finally, testing the null hypothesis for equality of means, should each have to be
carried out with a newly collected pair of samples. Only in this way would it be
possible to calculate (using the multiplication rule for independent events), for
example, the probability of not falsely accepting any of the null hypotheses of
the three pre-tests, and ultimately falsely rejecting or falsely accepting the null
hypothesis concerning the means.

However, the extensive simulation studies in Rasch, Kubinger, & Moder
(2011) concern the realistic case that all preliminary tests for the t-test are carried
out on the basis of one and the same sample pair. Various sample sizes from
systematically varied distributions with both equal and also unequal variances,
and both equal and also different means, were used to randomly generate 100 000
sample pairs each. In the case of equal means, the relative frequency of the
(falsely) rejected null hypothesis of interest (H0 : μ1 = μ2) is a good estimate of
the actual type-I risk αact for the nominal α = 0.05.

The results show quite clearly that the actual type-I risk, i.e. the risk estimated
using simulation, is only in the case of the Welch test near the chosen value
α = 0.05 – it is exceeded by more than 20% in only a few cases. By contrast,
the t-test rejects the null hypothesis to an unacceptably large extent. Moreover,
the Wilcoxon U-test (see Section 9.2.1) does not maintain the type-I risk in any
way: it is much too large.

Referring to the t-test, the desired relative effect size is, for equal sample sizes, according to
Section 8.3

E = μ1 − μ2

σ
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For the Welch test it is then:

E = μ1 − μ2√
σ 2

1 + σ 2
2

2

If it is only supposed to be estimated for illustration purposes after an analysis, then it is
possible to do this precisely with

Ê = ȳ1 − ȳ2√
s2

1 + s2
2

2

or to simplify matters – without overestimating the effect – with

Ê = ȳ1 − ȳ2

smax

with smax being the larger of the two standard deviations.
Planning a study for the Welch test is carried out in a rather similar manner to that in

Chapter 8 using pertinent computer programs. A problem arises, however: in most cases it
is not known whether the two variances in the relevant population are equal or not, and if
not, to what extent they are unequal. If one knew this, then it would be possible to calculate
the necessary sample size exactly. In the other case, one must be content with determin-
ing the largest appropriate size, which results from equal, realistically maximum expected
variances.

Example 9.2 How large should the sample sizes in Example 1.1 have been for testing, with
given precision requirements, whether children with German as a native language differ from
those with Turkish as a native language in the subtest Everyday Knowledge, at the second test
date? (See Example 9.1)

Since children with Turkish as a native language may at best show an equally high per-
formance compared to children with German as a native language regarding the character
Everyday Knowledge, 2nd test date (due to possible language-related handicaps), we have
to use the one-sided alternative hypothesis HA: μ1 > μ2, while the null hypothesis is H0:
μ1 (= μG) = μ2 (= μT); precisely, H0: μ1 ≤ μ2. We take a type-I risk of α = 0.05 and a
type-II risk of β = 0.05; as a (minimum) relevant difference δ = μ1 − μ2, we fix δ = 6.67
(T-Scores). Since T-Scores are calibrated to a mean μ = 50 and a standard deviation σ =
10 (see Example 5.5), this means that a difference of two-thirds of the standard deviation of
the standardization sample is considered to be relevant. In the case that a group of children
(with German as a native language) on average matches the standardization sample (μ = 50
T-Scores, corresponding to a percentile rank of 50), it would be considered as relevant if the
other (with Turkish as a native language) shows on average only 43.33 T-Scores in the un-
derlying population; that would mean a percentile rank of 25 compared to the standardization
sample.

We do not know whether the two variances in the relevant population are equal or not.
Thus, we can only determine the largest appropriate size for both samples.
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In R, we use the package OPDOE, which we load (see Chapter 1) using the function
library(), to ascertain the sample size. We type

> size.t.test(delta = 6.67, sd = 10, sig.level = 0.05, power = 0.95,
+ type = "two.sample", alternative = "one.sided")

i.e. we submit the appropriate precision requirements (see Example 8.9), along with the
information that the standard deviation (sd) is 10, to the function size.t.test(),
specify with type = "two.sample" that the two samples are from two populations,
and finally set alternative = "one.sided", because we plan to conduct a one-
sided test.

As a result, we get:

[1] 50

For the given precision requirements, a one-sided research question and equal variances,
the result is therefore (rounded to) n1 (= nG) = n2 (= nT) = 50. With these sample sizes, when
using the significance level 0.05, a mean difference of at least 6.67 will not be discovered
with a maximum probability of 0.05.

In Psychology, often even in the case of two samples, homogeneous variances are spoken
of, though it is generally used only for more than two samples, where the respective variances
are equal. Similarly there are heterogeneous variances if the variances are unequal. Accord-
ingly, the Welch test is often referred to as the ‘t-test for homogeneous variances’ and the
so-called ‘t-test for heterogeneous variances’, instead of the Welch test.

Master
Doctor

As stated in Section 8.4, the technique of sequential testing offers the advantage
that, given many studies, on average far fewer research units need to be sampled as
compared to the ‘classic’ approach of hypothesis testing with sample sizes fixed
beforehand. Nevertheless, we need also the precision requirements α, β, and δ. In
the case of two samples from two populations and testing the null hypothesis H0:
μ1 = μ2, there is again a sequential triangular test. Its application is completely
analogous to Section 8.4. The only difference is that we use δ = 0 − (μ1 −
μ2) = μ2 − μ1 for the relevant (minimum difference) between the null and the
alternative hypothesis, instead of δ = μA − μ0. Again we keep on sampling data,
i.e. outcomes yiv, i = 1, 2, until we are able to make a terminal decision: namely
to accept or to reject the null hypothesis.

Master
Doctor

Example 9.3 Validation of a psychological test
The validity of a psychological test refers to the fact that it actually measures

the particular trait/aptitude which it claims to measure (see, for example, Anastasi
& Urbina, 1997).

As an example we will take the validation of a psychological aptitude test
for programmers. The prognostic validity criterion is the professional success
achieved at a large computer centre after a probationary period of six months. The
aptitude test was given at the beginning of the probationary period; no candidate
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was excluded from employment on probation on the basis of his or her test score in
the aptitude test. Up until the start of the first evaluation, 25 candidates were em-
ployed on a probationary basis. After the six-month probationary period was up,
3 of them (group 1) had been dismissed due to lack of qualification and 2 of them
(group 2) had been hired on a permanent basis; the other 20 candidates are still
on probation. In the following, the test scores of the first 5 candidates are quoted:

Group 1 Group 2

48 54
51 55
47

The study is designed in such a way that α = 0.05, β = 0.2, and δ = 10
T-Scores. The deviation of δ = 10 T-Scores corresponds, for example, to the
case that the average test score matches the percentile rank of 50% in one group
and the percentile rank of 83.3% in the other group. The alternative hypothesis is
one-sided: HA: μ1 < μ2; hence, the null hypothesis is H0: μ1 ≥ μ2.

In R we use again the package OPDOE, and ascertain the sample size by typing

> size.t.test(delta = 10, sd = 10, sig.level = 0.05, power = 0.8,
+ type = "two.sample", alternative = "one.sided")

i.e. we apply the function size.t.test(), in which we use the appropriate precision
requirements along with the specification of the standard deviation (sd), as well as the num-
ber of samples and the type of alternative hypothesis alternative = "one.sided"
as arguments.

As a result, we get:

[1] 14

Thus, one would have to plan a sample size per group of n1 = n2 = 14 for the worst
case, i.e. equal variance in both populations. In this way, the researcher becomes
aware of the fact that the available sample size of n1 + n2 = 25 is basically too
small to meet the given precision requirements.

With n1 = 3 and n2 = 2 at the beginning, sequential testing shows, not
surprisingly, that more data must be sampled (see Figure 9.3).

In R, for now a sequential triangular test corresponding to the Welch test is not available.
Hence we have to, rather inappropriately, use the one for the t-test, staying well aware that
this leads, in the case of distinct variances in both populations, to falsely rejecting the null
hypothesis more often than nominal for the assumed α.
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> valid.tt <- triangular.test.norm(x = 48, y = 54,
+ mu1 = 50, mu2 = 60,
+ sigma = 10, alpha = 0.05,
+ beta = 0.2)

i.e. we apply the function triangular.test.norm() and use the first observation
value of group 1 (x = 48) and group 2 (y = 54) as the first two arguments; furthermore
we set μ0 (mu1 = 50)and μ1 (mu2 = 60), and sigma = 10 for σ . Finally, we set
the appropriate precision requirements with alpha = 0.05 and beta = 0.2. All
of this we assign to object valid.tt.

As a result, we get:

Triangular Test for normal distribution

Sigma known: 10

H0: mu1=mu2= 50 versus H1: mu1= 50 mu2>= 60
alpha: 0.05 beta: 0.2
Test not finished, continue by adding single data via update()

After the first round (with altogether two observations), no final decision is achievable and
for that reason we enter further observations by typing

> valid.tt <- update(valid.tt, x = 51)

i.e. we apply the functionupdate() and use the object valid.tt as the first argument;
as second argument we add the second observation value of group 1 (x = 51). We again
assign the result to the object valid.tt.

Now, this yields the result:

Triangular Test for normal distribution

Sigma known: 10

H0: mu1=mu2= 50 versus H1: mu1= 50 mu2>= 60
alpha: 0.05 beta: 0.2

Test not finished, continue by adding single data via update()

Even after the second round (with altogether three observations) no final decision is
achievable; hence we type

> valid.tt <- update(grp.tt, y = 55)

i.e. we submit to the function update() the object valid.tt again as first argument
and, as second, with y = 55, the second observation value of group 2. We again assign
the result to the object valid.tt.
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This yields the result:

Triangular Test for normal distribution

Sigma known: 10

H0: mu1=mu2= 50 versus H1: mu1= 50 mu2>= 60
alpha: 0.05 beta: 0.2

Test not finished, continue by adding single data via update()

Even after analyzing altogether four observations no final decision is possible; such being
the case we proceed by typing

> valid.tt <- update(valid.tt, x = 47)

i.e. we add the third observation value of group 1, x = 47.
The result is:

Triangular Test for normal distribution

Sigma known: 10

H0: mu1=mu2= 50 versus H1: mu1= 50 mu2>= 60
alpha: 0.05 beta: 0.2

Test not finished, continue by adding single data via update()

After including altogether five observations, still no final decision is attainable (additionally
see Figure 9.3).

86420 10

−
6

−
4

−
2

0
2

Triangular Test

v_n

z_
n

H0

H1

Figure 9.3 R-output of the sequential triangular test in Example 9.3 after altogether five
observations (starting from the second, observations are entered as points into the triangle).
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There are similar results if one analyzes the subsequent incoming data. For the
following candidates, namely candidate 6 with test score 49, who turned out to
be qualified and was hired on a permanent basis after the probationary period and
therefore belongs to group 2, and for the candidates 7 to 15 (with: 54, group 1;
51, group 2; 58, group 2; 46, group 2; 52, group 1; 44, group 1; 57, group 2; 56,
group 1; 49, group 1), the reader may recalculate this him/herself. The result after
candidate number 16 with test score 62, group 2, is provided in the following.

Hence, in R, we type

> valid.tt <- update(valid.tt, y = 62)

i.e. we use, in the function update(), the object valid.tt as the first argument and,
as second, with y = 62, the 16th observation value. The result is assigned to the object
grp.tt and as output we get:

Triangular Test for normal distribution

Sigma known: 10

H0: mu1=mu2= 50 versus H1: mu1= 50 mu2>= 60
alpha: 0.05 beta: 0.2

Test not finished, continue by adding single data via update()

Still no final decision can be achieved (see Figure 9.4.)
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Figure 9.4 R-output of the sequential triangular test in Example 9.3 after altogether 16
observations.
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A terminal decision is, therefore, still not possible. It is still the same case after
observations 17 to 21 (51, group 1; 53, group 2; 49, group 1; 56, group 2;
49, group 1). However, after observation 22 (54, group 2), sequential testing
terminates.

In R, after looking at 21 observations altogether, we type

> valid.tt <- update(valid.tt, y = 54)

i.e. we use, in the function update(), the 11th observation value of group 2, y = 54.
As a result, we get:

Triangular Test for normal distribution

Sigma known: 10

H0: mu1=mu2= 50 versus H1: mu1= 50 mu2>= 60
alpha: 0.05 beta: 0.2

Test finished: accept H1

And Figure 9.5 appears.
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Figure 9.5 R-output of the sequential triangular test in Example 9.3 after altogether
22 observations.

Sequential testing ends after observation 22; the decision is made in favor of the
alternative hypothesis. As the average test score from the aptitude test for the
programmers who were later hired is significantly greater, the test principally
meets the quality criterion of validity.
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Usually, sequential testing starts with one or two outcomes from each of the
two groups and then new outcomes are observed, alternating between group
1 and 2. Thus, the allocation rate between the groups is selected as 1 : 1. Of
course the allocation rate does not have to be set to 1 : 1, if there are economical
or ethical reasons (especially in the clinical area when comparing two treat-
ments). One could also simultaneously sample more than one observation in
one step, even at a later time point and not only at the beginning. However,
in this case ‘overshooting’ may occur; that is, a terminal decision might be
missed and hence the selected risks would no longer hold. Finally, it is not
always necessary to register each observation alternating between the groups
(see Example 9.3).

As discussed in Section 8.2.3, we often have two outcomes of content-related traits or the like
from each research unit, but statistically these outcomes stem from two specially modeled
random variables (we gave the example of being interested in the effect of a treatment in a pre
and post design). Then it is simplest, also in case of two samples, to trace the data to a single
character. In other words, analogous to the case of only a single sample in Chapter 8, we
calculate the difference dv = y1v − y2v of the respective pair of outcomes per research unit
and use them as new y11, y12, . . . , y1n1 and y21, y22, . . . , y2n2 – given the original characters
are interval scaled.

9.2 Hypothesis testing, study planning, and sequential
testing for other parameters

9.2.1 The unknown location parameters for a rank-scaled character

If the character of interest y is ordinally scaled, neither the Welch test nor the t-test is
admissible: as explained most accurately in Section 5.3.2, empirical differences would be
implied that are not expressed by the outcomes. If one, however, wants to compare two samples
from two populations regarding their location, the Wilcoxon rank-sum test (Wilcoxon, 1945)
would be adequate. We refer to the test here as the U-test, according to the common term for
the test statistic, U.

However, the U-test is derived for hypothesis testing with regard to the equality of two
arbitrary continuous distributions. In essence this means that not only the location of the
distribution of the outcomes is compared, but also the distribution as a whole. Most applications
of the U-test (in psychology) falsely interpret the results ‘automatically’ as though the means
of the populations in question differ in the case that the null hypothesis has been rejected. Yet,
the U-test, for example, also becomes significant (when the sample size is appropriate) if the
variance (in the case of a quantitative character) or the variability of the outcomes (in the case
of an ordinal-scaled character) is different in both populations. For the purpose of location
comparison, the U-test therefore only makes sense if it is plausible that the populations do
not differ with regard to variance or variability, respectively.
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Doctor The test goes back to Wilcoxon, 1945 who derived tables of critical values of
the test statistic W for equal sizes in both samples. Later Mann & Whitney
(1947) published tables for different sizes for a transformed test statistic U. The
relationship between the test statistic W of Wilcoxon and the test statistic U of
Mann and Whitney is as follows. At first we renumber (if needed) the samples so
that the size n1 of the first sample is not larger than the size n2 of the second one.
Then all n1 + n2 observations are ordered by size, and ranks are given to them.
Then W is just the sum of the ranks of those observations belonging to the first
sample. The test statistic of the Mann–Whitney test is then

U = W − n1 (n1 + 1)

2

Master The presupposition for the derivation of the U-test is that the character is continu-
ous. This is not self-evidently met for the intended case of application, namely an
ordinal-scaled character. For example, grades of some grade scales are obviously
not continuous: a student receives the grade ‘2’ or ‘3’, but e.g. not 2.34590912. . .

On the one hand, psychology raises the argument that the respective ordinal
scales or the ordinal-scaled outcomes, respectively, are due to some theory of
measurement abstraction (the consequence of a factual unalterable measurement
imprecision), but actually an interval-scaled character is under consideration. On
the other hand, there are corrections for the test statistic which take the case of
ties, i.e. identical observations, into account.

The U-test thus examines the null hypothesis that the two relevant populations with continuous
distribution functions F(z) and G(z), respectively, are equal, i.e. H0: F(z) = G(z), for all values
of z. In contrast, the two-sided alternative hypothesis claims HA: F(z) �= G(z) for at least one
value z. The one-sided alternative hypothesis is HA: F(z) > G(z) or HA: F(z) < G(z) for at
least one value z.

Master
Doctor

The derivation of the test statistic of the U-test for testing the null-hypotheses is
based on the assignment of ranks (see Section 5.3.2) for the outcomes of both
samples. Then, basically, the test from Formula (9.1) is applied, whereby the
variance for the numbers 1 to n1 + n2 is always equal and therefore known.

The U-test is very simple to calculate with statistical computer programs.

Master Example 9.4 Calculation example for the U-test without relation to any content
Consider the outcomes y11, y12, . . . , y1i, . . . , y1n1 in sample 1 and the outcomes

y21, y22, . . . , y2j, . . . , y2n2 in sample 2 as a starting point. Let’s say n1 = n2 = 5.
When we rank all observations altogether, we will use ‘a’ instead of y1i and ‘b’
instead of y2j, for all i and j, in order to simplify matters. The alternative hypothesis
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may be HA: F(z) < G(z) for at least one value z, with F for population 1 and G
for population 2; the null hypothesis is therefore H0: F(z) ≥ G(z). We choose α

= 0.01.
If all y1i differ among themselves and all y2j differ among themselves, and

finally all y1i differ from all y2j, there results a unique sequence, for example: b-b-
b-a-a-b-b-a-a-a. This result intuitively contradicts H0. That is to say, under H0 we
would expect something like: b-a-b-a-b-a-b-a-b-a or a-b-a-b-a-b-a-b-a-b or the
like, or even b-b-a-a-a-a-a-b-b-b or a-a-a-b-b-b-b-b-a-a. Our data therefore tend
to speak in favor of the alternative hypothesis of the type: b-b-b-b-b-a-a-a-a-a.
Now let us introduce the concept of inversion, which means that any b precedes
an a; then we recognize that in our example the number of inversions is U = 1 ·
5 + 1 · 5 + 1 · 5 + 1 · 3 + 1 · 3 = 21; in the case of the alternative hypothesis
given above it would be Umax = 5 · 5 = 25.

We can now easily calculate the probability that the number of inversions is
equal to or greater than 21 though H0 is correct. For this purpose we calculate the
number of possible arrangements to distribute 5 a’s and 5 b’s over a total of 10
positions in accordance with Section 6.2.1; i.e.

(
10
5

)
= 10 · 9 · 8 · 7 · 6

1 · 2 · 3 · 4 · 5
= 252

We are interested in all arrangements with U ≥ 21; U = 25 precisely fulfils one
of the 252 arrangements, as does U = 24. U = 23 fulfils two of the arrangements
because one b can precede two a’s, or two b’s can precede one a. As a provisional
result we obtain P(U ≥ 23) = 4

252 = 0.01587; and this is larger than α = 0.01,
so that P(U ≥ 21) is also larger than α = 0.01. Therefore, the probability of our
result (or of one that is more in favor of the alternative hypothesis) is certainly
small if we were to assume H0, but not so small that we would reject H0.

It can be demonstrated that H0 can be rewritten as a function of rank positions
for a and b. For n = n1 + n2 rank positions, the sum is 1 + 2 + . . . + n =
n(n+1)

2 , so that, for example for n1 = n2, under H0 the same ranking sum n(n+1)
4

is expected for both samples (for n1 �= n2 accordingly we expect that the average
rank position is the same in both samples). In the case of tied ranks in principle
nothing would change in this approach.

As the test statistic of the U-test is asymptotically standard normally distributed, the estimate
of the effect size can be carried out accordingly (see Section 11.4).

Planning the study as concerns non-parametric methods generally results in problems
because the alternative hypothesis is hard to quantify.

Bachelor Example 9.5 The social status will be compared between children with Ger-
man as a native language and children with Turkish as a native language
(Example 1.1)

For this purpose we want to exclude children with the measurement value
‘single mother in household’ from the analysis – this changes the character so-
cial status from a nominal-scaled character to an ordinal-scaled one. The null
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hypothesis H0 is ‘The distribution of children in the measurement values of social
status is equal for both populations in question’; the alternative hypothesis HA is
‘On the whole, the social status of children with German as a native language is
higher’. We choose α = 0.01.

In R, we use character socialnew, defined in Section 5.2.2. To conduct the U-test we
type

> wilcox.test(as.numeric(socialnew) ∼ native_language,
+ alternative = "less", correct = FALSE)

i.e. we apply the function wilcox.test(), in which we use the command to an-
alyze the character socialnew in reference to the character native language of the
child (native_language) as first argument; with the function as.numeric()we
transform the character socialnew to numeric values. With the second argument, al-
ternative = "less", we specify the alternative hypothesis as one-sided, and with
the third argument we specify that the analysis will be conducted without continuity
correction.

As a result, we get (shortened output):

Wilcoxon rank sum test

data: as.numeric(socialnew) by native language
W = 770, p-value = 0.04467
alternative hypothesis: true location shift is less than 0

In SPSS, for this purpose we use character socialnew, already defined in Section 5.2.2, for
which we need – factually incorrect, but according to an SPSS peculiarity – to redefine
the type of scale from Ordinal to Scale (see Example 5.3). Next we select the sequence of
commands

Analyze
Nonparametric Tests

Independent Samples...

and select in the resulting window (not shown) the Fields tab and get to a window very
similar to Figure 8.12; we drag and drop socialnew into Test Fields: and native language
of the child into Groups:. Next we switch to the Settings tab and get to the window in Fig-
ure 9.6. Here, we select Customize tests and tick Mann-Whitney U (2 samples). After clicking
Run, we get in the resulting output window the table Hypothesis Test Summary (not shown),
which we double-click; subsequently a window pops up, including a table from which we
learn the essential result – the p-value in Asymptotic Sig. (2-sided test) is 0.089. Due to the
one-sided alternative hypothesis we have to bisect it, and get 0.0455.
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Figure 9.6 SPSS-window for choosing among a collection of non-parametric tests.

As the p-value is larger than 0.01, the null hypothesis is to be accepted. Viennese
students with Turkish as a native language do not come from different social
classes in comparison to students with German as a native language.

Master
Doctor

Sequential testing for the U-test is possible in principle, even by using a sequential
triangular test. Besides the fact that, regarding the alternative hypothesis, certain
input requirements have to be established, which is hard to do before research,
the program package R currently does not provide such a routine.

9.2.2 The unknown parameters σ 2
1 and σ 2

2

Hypothesis testing regarding the variance of a normally distributed modeled random variable
y from two independent samples is at most important for the traditional approach as concerns
the t-test and hence regarding hypothesis testing with respect to the mean – as explained above
in more detail. Apart from this, hypothesis testing regarding the variance is relatively unusual
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in psychology. However, it basically is a matter of the null hypothesis H0: σ 2
1 = σ 2

2 versus the
two-sided alternative hypothesis HA : σ 2

1 �= σ 2
2 (one-sided problems are quiet uncommon in

practice). Only one test statistic is indicated below, however we will not address planning a
study, which generally is possible.

The method of choice is Levene’s test. Its test statistic is based on the absolute values
of the difference between the outcomes and their mean per sample, i.e. d1v = |y1v − ȳ1| or
d2v = |y2v − ȳ2|, respectively. The (two-sample) t-test is then applied to the resulting values
of the new random variable d. Of course there are computer programs available for direct
computation of the test statistic in question; however, in SPSS only, for instance, in connection
with the computation of the t-test or the Welch test.

Master
Doctor

Example 9.6 Calculation example for Levene’s test without relation to any
content

Let us take the outcomes 2, 4, 5, 6, and 8 in the character y for sample 1,
and the outcomes 1, 2, 5, 8, and 9 for sample 2. Then obviously ȳ1 = ȳ2 = 5,
and, therefore, 3, 1, 0, 1, and 3 results for d1v, as well as 4, 3, 0, 3, and 4 for d2v of
the character d. We apply the t-test and calculate Levene’s test with R and SPSS
directly.

In R, we can conduct Levene’s test in two ways. For both we start by typing

> x <- gl(2, k = 5)
> y <- c(2, 4, 5, 6, 8, 1, 2, 5, 8, 9)

i.e. we apply the function gl() and create a factor with two (2) levels and k = 5
observations each, and assign it to the object x. Applying the function c(), we concatenate
all observation values into a vector and assign it to the object y.

The first option to conduct Levene’s test is via t-test. We type

> tapply(y, x, mean)

i.e. we ascertain the mean of the vector y for both levels of x.
As a result, we get:

1 2
5 5

Thus in both groups (1 and 2) the mean is 5. Next we type

> d <- abs(y - 5)

i.e. we subtract the mean 5 from each observation value and ascertain the absolute value
with the function abs(). The result is assigned to object d. Last, we type

> t.test(d ∼ x, var.equal = TRUE)

and conduct a t-test, analyzes d in reference to x.
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As a result, we get:

Two Sample t-test

data: d by x
t = -1.2649, df = 8, p-value = 0.2415
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.3876676 0.9876676

sample estimates:
mean in group 1 mean in group 2

1.6 2.8

For the other option, we use the function leveneTest() of package car, which we
load after its installation (see Chapter 1) using the function library(). Next, we type

> leveneTest(lm(y ∼ x), center = "mean")

i.e. we apply the function leveneTest() and use the function lm() to analyze the
character y in reference to character x as the first argument; as the second argument, we
request the original Levene test with center = "mean".

As a result, we get:

Levene’s Test for Homogeneity of Variance (center = "mean")
Df F value Pr(>F)

group 1 1.6 0.2415
8

In SPSS, we use the same sequence of commands as in Example 9.1 (Analyze – Compare
Means – Independent-Samples T Test...) two times (once for the character y and the other
time for the character d) and each time get to the window in Figure 9.1. There, we move the
respective character to Test Variable(s):. The test statistic of the t-test in the table t-test for
Equality of Means (that is with reference to character d) leads to the p-value of 0.242 in Sig.
(2-tailed). The test statistic of the (directly conducted) Levene’s test in the table Levene’s Test
for Equality of Variances (that is with reference to the character y) also leads to p = 0.242.

Master
Doctor

In many textbooks the so-called F-test is still recommended in order to test the
null hypothesis H0: σ 2

1 = σ 2
2 . Simulation studies (see Rasch & Guiard, 2004)

have shown, however, that this test is very sensitive to even small deviations
from the postulated normal distribution of the character of interest; it then does
not maintain the type-I risk. It is a different case with Levene’s test; this test is
very robust with respect to deviations from the normal distribution. Therefore
SPSS uses Levene’s test exclusively; however the symbol F, which is used for the
respective test statistic, is confusing.
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9.2.3 The unknown parameters p1 and p2 of a dichotomous character

Given two independent samples with the sizes n1 and n2 respectively, we consider the di-
chotomous character y. In each of the two samples, we can determine the relative frequency
with which one of the two measurement values has been ascertained. From Section 8.5.2,
we know that these two relative frequencies f 1 = p̂1 and f 2 = p̂2 are estimates for the two
unknown parameters p1 and p2. The null hypothesis is H0: p1 = p2; the alternative hypothesis
is H1: p1 �= p2 or H1: p1 < p2 or H1: p1 > p2.

Now it can be shown that the following test statistic is asymptotically χ2-distributed under
the null hypothesis; i.e.

χ2 =
r∑

i=1

c∑
j=1

(oij − eij)2

eij
(9.3)

is asymptotically χ2-distributed, with df = (r – 1)(c – 1) degrees of freedom. In this case,
oij are the absolute frequencies of the measurement values in categories i = 1, 2, . . . , r and
sample j = 1, 2, . . . , c (see Table 9.2); eij are the expected values under the null hypothesis,
calculated as:

eij =

r∑
i=1

oij ·
c∑

j=1
oij

r∑
i=1

c∑
j=1

oij

In our case it is r = c = 2 and thus df = 1; the more general illustration chosen indicates that the
test statistic in Formula (9.3) applies to more than two samples and or for a multi-categorical
qualitative character (apart from that, Formula (8.11) is a special case of (9.3)). This means
(despite the fact that these days hardly anyone is going to calculate by hand) that one can use
the (1 − α)-quantile of the χ2-distribution χ2((r – 1)(c – 1), 1 – α) to decide for or against
the null hypothesis. If the null hypothesis has to be rejected, we again speak of a significant
result: for the two populations, the distributions concerning the two measurement values are
different; the observed differences in the relative frequencies between the two samples cannot
be explained by chance (alone).

Table 9.2 2 × 2 table.

Measurement
values

A Ā

Sample from
Population 1 o11 o21

Population 2 o12 o22
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Master Since the test statistic in Formula (9.3) is essentially a quadratic term, the direction
of deviation between the observed and the expected frequencies under the null
hypothesis (that is, as concerning the measurement values, the frequencies are
divided proportionally across both samples) cannot be adopted in the alternative
hypothesis. Therefore, the test is always two-sided with regard to content, although
formally only one side of the χ2-distribution is of relevance: namely the right
side – i.e. the one which corresponds to large (squared) deviations. If we also
took the left side of the χ2-distribution into account, i.e. the side that approaches
0, then we would test whether the total (squared) deviation is smaller than would
be expected by chance.

The most common rule of thumb with regard to what constitutes sufficient sample sizes for
the approximation of the χ2-test is: eij ≥ 5, for all i and j (see however e.g. Kubinger, 1990).
Computer programs often refer to what extent such rules of thumb are satisfied or violated
in a particular case. The Yates’ continuity correction, which aims to improve the adjustment
of distribution, is best recommended for r = c = 2 and a sample size of o11 + o12 + o21 +
o22 < 20.

In Section 11.3.5 we will additionally provide a measure to estimate the effect size. There
is no way of planning a study as regards the sizes n1 and n2 for the χ2-test.

Master
Doctor

As concerns planning a study for the χ2-test, it can be said that it is certainly
possible to determine the appropriate number of degrees of freedom with a given
type-I and type-II risk, as well as a given relevant difference (of probabilities);
however the size of sample(s) is unobtainable. Thus, in the sense used here,
planning a study with this test, or with all χ2-distributed test statistics, is not
possible.

Master
Doctor

Example 9.7 Is the frequency of only children the same in families where German
is the child’s native language and in families where Turkish is the child’s native
language (Example 1.1)?

We deal with two populations and indicate the probability of an only child with
p1 for children with German as a native language and p2 for children with Turkish
as a native language. In fact, awareness of cultural differences leads us to expect
more children in families with Turkish as a native language than in families with
German as a native language; therefore p1 > p2; but, as an alternative hypothesis
to the null hypothesis H0: p1 = p2, the χ2-test tests H1: p1 �= p2. We choose a
type-I risk of α = 0.05, a type-II risk of β = 0.2, and we determine δ = 0.2 as a
minimum relevant difference δ = p1 – p2.

In R, we use, analogously to Example 9.6, the package car, which we have already
installed and loaded with the function library(). To begin with, we transform the
character no_siblings into the new character only_child by typing

> only_child <- recode(no_siblings, "0 = 1; else = 2")
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i.e. we apply the function recode() to the character no_siblings and define the
coding rules of the values in quotation marks; namely 0 = 1 and else = 2; the thusly
recoded values are assigned to the objectonly_child. Next we create a cross-tabulation,
by typing

> addmargins(table(native_language, only_child))

i.e. we use the characters native_language and only_child as arguments for
the function table(); the function addmargins() specifies the inclusion of row and
column totals in the resulting table.

As a result, we get:

only_child
native_language 1 2 Sum

German 14 36 50
Turkish 3 47 50

Sum 17 83 100

Next we conduct a χ2-test. Hence we type

> chisq.test(native_language, only_child, correct = FALSE)

i.e. we apply the function chisq.test()and use native_language and
only_child as arguments; due to correct = FALSE the analysis is conducted
without Yates’ correction.

As a result, we get:

Pearson’s Chi-squared test

data: native_language and only_child
X-squared = 8.5755, df = 1, p-value = 0.003407

In SPSS, we start with

Transform
Recode into Different Variables...

to transform, in the resulting window (Figure 9.7), the character number of siblings into the
new character only_child. In order to do this, we select the character number of siblings and
move it to the field Input Variable -> Output Variable:. In the panel Output Variable we type
only_child in the field Name: and click Change. The button Old and New Values. . . gets us
to the next window (Figure 9.8). For Value:, in the panel Old Value we type 0, and 1 in
the panel New Value. Next we press Add, and select the option All other values in panel
Old Value, and type 2 into the field Value in panel New Value. A click on Add followed
by Continue returns us to the previous window, and after pressing OK the transformation is
performed.
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Figure 9.7 SPSS-window for recoding into a new character.

Figure 9.8 SPSS-window for setting the values of a new character.

To create a two-dimensional frequency table we use the steps described in Example 5.13
(Analyze - Descriptive Statistics - Crosstabs. . .) and drag and drop the character only_child
into the field Row(s): and the variable native language of the child into the field Col-
umn(s):. A click on Statistics. . . gets us to the next window, where we tick Chi-square, click
Continue and complete our query with OK. Table 9.3 shows the cross-tabulation including
the respective frequencies; in Table 9.4 among others is the result of the χ2-test (as Pearson
Chi-Square).
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Table 9.3 SPSS-output of the cross-tabulation in Example 9.7.

TurkishGerman Total

native language of the child

yes

no

Total

only child

1005050

834736

17314

only child * native language of the child Crosstabulation

Count

Table 9.4 SPSS-output of the χ2-test in Example 9.7 (shortened output).

Asymp. Sig.
(2-sided)dfValue

Pearson Chi-Square

Continuity Correctionb

N of Valid Cases 100

.00817.087

.00318.575
a

Chi-Square Tests

a. 0 cells (.0%) have expected count less than 5. The
minimum expected count is 8.50.
b. Computed only for a 2x2 table

It proves to be a significant result. The null hypothesis should be rejected. We can
calculate by hand from Table 9.3: f 1 = p̂1 = 14

50 = 0.28 and f 2 = p̂2 = 3
50 = 0.06;

these are the best (point) estimates of the probability of an only child in the two
populations.

Master
Doctor

Another test statistic can also be derived for the given problem; this also allows
study planning and sequential testing. The test statistic

u =
| f 1 − f 2| − min(n1, n2)

2n1n2√
p̂(1 − p̂)

·
√

n1n2

n1 + n2
(9.4)

is asymptotically N(0, 1)-distributed, with

p̂ = n1 f1 + n2 f2

n1 + n2

– the term subtracted in the numerator of the test statistic reduces the difference
between the two observed relative frequencies and corresponds to Yates’ conti-
nuity correction. Thus, the procedure of hypothesis testing is as usual; in the case
of a one-sided problem, it is important to make sure that the sign of f 1 – f 2 is in
the hypothesized direction.
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Planning a study basically takes place in a similar manner to that of cases al-
ready discussed by using relevant computer programs. The planning and analysis,
however, is not possible in SPSS.

Master
Doctor

Example 9.7 – continued
For the test statistic in Formula (9.4), planning the study is possible as follows.
We already decided, above, on α = 0.05 and β = 0.2, as well as δ = 0.2, but now
we need to determine the values of p1 and p2 more precisely: realistically, it may
be p1 = 0.3 and p2 = 0.1. Of course, here we use the possibility of a one-sided
alternative hypothesis HA: p1 > p2.

In R, we ascertain the sample size1 by typing

> size.prop_test.two_sample(p1 = 0.3, p2 = 0.1, alpha = 0.05,
+ power = 0.8, alt = "one.sided")

i.e. we apply the function size.prop_test.two_sample() and use the value of
p1 (p1 = 0.3) as the first argument and the value of p2 (p2 = 0.1) as the sec-
ond. We set alpha = 0.05 as the third argument and power = 0.8, which means
1 – β, as the fourth; and as fifth we set the type of the alternative hypothesis to one-sided
(alt = "one.sided").

As a result we get:

[1] 59

And,

> power.prop.test(p1 = 0.3, p2 = 0.1, sig.level = 0.05, power = 0.8,
+ alternative = "one.sided")

leads to n = 49.

It follows that 59 or 49 persons have to be included in each of the samples. In
Example 1.1, we had 50 children each, and this we regard as sufficient.

We obtain

u =
|0.28 − 0.6 | − 50

2 · 50 · 50√
0.17 · 0.83

·
√

50 · 50

100
= 2.80 > 1.645 = u(1 − 0.05)

1 There exist several formulas but no one is uniformly the best. Due to this fact there are two R-programs for
calculating n: size.prop test.two sample() of OPDOE which is based on a corrected formula (Formula
(2.51), p. 49 in Rasch, Pilz, Verdooren, & Gebhardt, 2011), and power.prop.test() which is based on the
original formula (Formula (2.50), p. 49 in Rasch, Pilz, Verdooren, & Gebhardt, 2011). Both of them may be used.
Which one is more appropriate depends on the values of the probabilities and their difference.
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In R, we can compute the test statistic from Formula (9.4), by defining an appropriate
function; we call it p.test(); so we type

> p.test <- function(f1, f2, n1, n2) {
+ p <- (n1*f1 + n2*f2)/(n1 + n2)
+ numer <- abs(f1 - f2) - (min(c(n1, n2))/(2*n1*n2))
+ denom <- sqrt(p*(1-p))
+ nn <- sqrt((n1*n2)/(n1+n2))
+ u <- numer/denom*nn
+ return(round(u, digits = 3))
+ }

i.e. we use function() and declare the relative frequencies f 1 and f 2 as the first two
arguments and n1 and n2 as third and fourth. The sequence of commands between the
braces corresponds to Formula 9.4 and won’t be further explained at this point.

Next, we conduct the analysis by typing

> p.test(f1 = 0.28, f2 = 0.06, n1 = 50, n2 = 50)

i.e. we use the previously created function p.test() and set the determinants according
to Example 9.7 as arguments.

As a result, we get:

[1] 2.795

The result is equivalent to the χ2-test result.

Master
Doctor

Sequential testing is possible using appropriate computer programs.

Example 9.8 Calculation example for sequential testing for the comparison of
two unknown parameters of a dichotomous character without relation to any
content. The null hypothesis is H0: p1 = p2 = 0.5. The alternative hypothesis is
HA : |p1 − p2| = 0.4.

The reader may recalculate that after the following successively sampled
outcomes ‘1’ or ‘0’ for the groups 1 and 2, a terminal decision has to be made in
favor of the alternative hypothesis: group 1 ‘1’, group 2 ‘0’, group 1 ‘1’, group 2
‘1’, group 1 ‘0’, group 2 ‘0’, group 1 ‘1’, group 2 ‘1’, group 1 ‘0’, group 2 ‘0’,
group 1 ‘1’, group 2 ‘0’, group 1 ‘1’, group 2 ‘0’, group 1 ‘1’ (α = 0.05; β =
0.20; δ = 0.4). Without the last outcome, sequential testing cannot be completed
under the given precision requirements.

In R, using the package OPDOE again, we do this by typing

> Example.tt <- triangular.test.prop(x = 1, y = 0,
+ p0 = 0.1, p1 = 0.5, p2 = 0.9,
+ alpha = 0.05, beta = 0.2)
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Here we wrote (according to the R-notation) p0 = p1 - 0.4 = 0.1, p1 = 0.5,
p2 = p1 + 0.4 = 0.9; we use the function triangular.test.prop(), for
which we apply, as the first two arguments, the first observation value of group 1 (x =
1) and group 2 (y = 0), respectively. Additionally, we set p0 = 0.1, p1 = 0.5,
and p2 = 0.9 for H0: p1 = p2 = 0.5 and HA: p2 = 0.1 or p2 = 0.9, respectively.
Furthermore we set the appropriate precision requirements with alpha = 0.05 and
beta = 0.2. All this we assign to the object Example.tt.

As a result, we get:

Triangular Test for bernoulli distribution

Sigma unknown, estimated as 0.4315642314
H0: p1=p2= 0.5 versus H1: p1= 0.5 and p2>= 0.9 or p2< 0.1
alpha: 0.05 beta: 0.2

Test not finished, continue by adding single data via update()

Since, with this as well as with the following observations, no final decision is obtainable,
we proceed analogously until we, after the 15th observation value, can stop the sequential
testing (see Figure 9.9).

0.0 0.5 1.0 1.5 2.0

−
3

−
2

−
1

0
1

2
3

Triangular Test

v_n

z_
n

H1

H1

H0

Figure 9.9 R-output of the sequential triangular test in Example 9.8 after altogether 15
observations.

Therefore, the hypothesis of p1 > p2 is accepted.
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9.2.4 The unknown parameters pi of a multi-categorical
nominal-scaled character

Again, there are two independent samples with sizes n1 and n2, respectively, in which we
consider a multi-categorical, nominally scaled character y. The character should have c differ-
ent measurement values. Per value 1, 2, . . . , j, . . . , c, we now have the absolute and relative
frequencies hij and fij, with i = 1, 2 (in general: i = 1, 2, . . . , r samples). The underlying
probabilities should be pij. All considerations will then remain similar to the case of a di-
chotomous character. Formula (9.3) as a test statistic can be applied in order to test the null
hypothesis H0: p1j = p2j for all j; the alternative hypothesis is H1: p1j �= p2j, for at least
one j.

Bachelor Example 9.9 The difference in marital status of the mother between children
with German as a native language and children with Turkish as a native language
will be investigated (Example 1.1)

We decide on a type-I risk of α = 0.05.

In R, we conduct the χ2-test analogously to Example 9.7; hence we type

> chisq.test(marital_mother, native_language, correct = FALSE)

i.e. we use the function chisq.test() and apply both characters, marital sta-
tus of the mother and native language of the child, that is, marital_mother and
native_language, and conduct the analysis with correct = FALSE, hence with-
out Yates’ correction.

As a result, we get:

Pearson’s Chi-squared test

data: native_language and marital_mother
X-squared = 16.4629, df = 3, p-value = 0.0009112

In SPSS, we follow the steps described in Example 9.7, except we apply the character
marital_mother instead of the character only_child. First we get the frequencies of the character
combinations, arranged as in Table 9.5. The result of the χ2-test is, with a p-value of 0.001,
significant.
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Table 9.5 SPSS-output of the two-dimensional frequency table in Example 9.9.

TurkishGerman Total

native language of the child

never married

married

divorced

widowed

Total

marital status
of the mother

1005050

413

22418

654223

936

marital status of the mother * native language of the child
Crosstabulation

Count

As the p-value is 0.001, the null hypothesis has to be rejected: there are significant
differences between mothers of children with German as a native language and
those of children with Turkish as a native language, concerning the marital status.
These relate, at least, to the marital status ‘divorced’, which is more apparent in
mothers of children with German as a native language than in mothers of children
with Turkish as a native language.

Summary
When it comes to hypothesis testing regarding the comparison of two populations, different
statistical tests can be applied, depending on the type of scale of the character of interest and
also on the desired parameter. For quantitative characters, in terms of mean differences, it is
best to apply the Welch test; for ordinal-scaled characters, in terms of distribution differences,
the U-test, and for nominal-scaled characters, in terms of different probabilities of the mea-
surement values, the χ2-test. In the case of the Welch test, both planning of the study and
sequential testing is possible in accordance with certain given precision requirements. On the
other hand, planning a study for the U-test is problematic because it will be hard to quantify
the alternative hypothesis; it is not usual to apply sequential testing with this test. Planning a
study with respect to the sample sizes needed is not possible in the case of the χ2-test.

9.3 Equivalence testing

In recent times, the use of so-called equivalence tests has come about. For example, in the
case of two kinds of therapy or support programs, one of which is favored for some reason
(for example due to economic reasons), then the question would be raised as to whether
both are equal in terms of the desired effect, i.e. are equivalent. Due to the fact that there
are probably also certain irrelevant differences, it is necessary to examine more precisely
whether the differences in terms of the desired effect exceed a certain relevance threshold or
not. Thus, it is not about ‘total equality’ as is the case with significance testing, but rather
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about ‘approximate equality’, where we have to specify exactly what degree of inequality still
conforms to ‘approximate equality’ or ‘approximate equivalence’.

Doctor As far as the mean difference μ1 − μ2 is concerned, regarding the two normally
distributed random variables y1 and y2, the null hypothesis as well as the alter-
native hypothesis is defined quite differently in comparison to before. First, we
denote the tolerable extent of a difference with ε. Thus, there is an equivalence in-
terval between –ε and ε for the difference μ1 − μ2. For any differences within this
interval, mean differences between the two populations are interpreted as prac-
tically meaningless, and values outside the interval as meaningful. Although we
could formulate the null and alternative hypothesis as follows: H0: |μ1 − μ2|≤ ε;
HA: |μ1 − μ2|> ε, there are, however, mathematical reasons which argue against
this. In this case, the test statistic (9.1) would no longer be centrally t-distributed,
even under the null hypothesis, and consequently the test would not be applicable
in the form presented here. However, if we swap the null and alternative hypoth-
esis, then the problem is relatively easy to solve. Thus, the hypotheses are now
H0 : |μ1 − μ2| > ε and HA : |μ1 − μ2| ≤ ε. That is to say, the null hypothesis
claims that the therapies or support programs are not equivalent regarding the
two means of the character y; but the alternative hypothesis states that they are
(‘approximately’) equivalent.

If we now decide for (‘approximate’) equivalence on the basis of the empirical
data, this should be correct with a probability of 1 – α. This is synonymous with
the fact that both the hypothesis ‘μ1 − μ2 is greater than or equal to ε’ and the
hypothesis ‘μ1 − μ2 is less than or equal to −ε’ will be rejected with the risk α,
respectively, although one of them is true. Unlike significance testing (in this case
the t-test), in equivalence tests, both hypotheses μ1 − μ2 > ε and μ1 − μ2 < –ε

are to be tested collectively with the risk α. Hence, exact equivalence means that
both these hypotheses are false.

Compared to the significance testing, we are only dealing with one risk here.
Although we can also calculate a power, Wellek (2003) shows that this is often
only possible with simulation studies.

In principal, all tests for significance in this chapter can also be rewritten
as equivalence tests (see further details in Rasch, Herrendörfer, Bock, Victor, &
Guiard, 2008).

In our case of an equivalence test for the difference of means, μ1 − μ2, the
calculation amounts to two one-sided confidence intervals. It can be deduced that
these – if the variances of the two populations are equal – can be found as follows:

L = ȳ1 − ȳ2 − t(n1 + n2 − 2, 1 − α)s ·
√

n1 + n2

n1n2
and

U = ȳ1 − ȳ2 + t(n1 + n2 − 2, 1 − α)s ·
√

n1 + n2

n1n2
(9.5)

If the calculated limits U and L are now both within the range of the alternative
hypothesis HA : −ε < μ1 − μ2 ≤ ε, then H0 will be rejected and the alternative
hypothesis will be accepted. Planning a study is carried out by specifying a size δ
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as the upper limit for the average (expected) distance δ ≥ (μ1 − μ2) − E (L) of
the interval limit L and/or as the lower limit for the average (expected) distance
δ ≥ E (U) − (μ1 − μ2) of the interval limit U, and by determining the value of
α. The closer the limit(s) of the interval (9.5) is/are to the difference (μ1 − μ2)
on average, the more accurate the result is. It is best to choose the same size n for
both samples. Then we can solve the equation

N = 4
σ 2

δ2
t2(N − 2, 1 − α)

with N = n1 + n2. Both n1 and n2 then have to be rounded up to integers.

Doctor Example 9.10 Comparison of two rehabilitation programs in terms of their ef-
fectiveness

Two different programs A and B, for the rehabilitation of different memory
functions after traumatic brain injury, differ insofar as A has to be carried out by
the occupational therapist, whereas B can be carried out on a computer, without
the necessity for staff to be present. It is assumed that the personal attention from
a therapist has an additional positive or negative effect that is, however, practically
negligible. As the affected population has a mean of 35 T-Scores with a standard
deviation of 10 in a pertinent memory test, one hopes that the application of any
of the two programs leads to an increase of 20 T-Scores in the long term, where
differences between the two programs of up to ε = 5 T-Scores would indicate
(‘approximate’) equivalence. That is to say, based on the rehabilitation success
(T-Score in the memory test after applying the respective rehabilitation program
minus T-Score in the memory test before its application), the null and alternative
hypothesis are stated as follows: H0 : |μA − μB| > 5 and HA : |μA − μB| ≤ 5.
The risk α will be 0.05.

Planning the study leads therefore to N = 4 102

52 t2 (120, 0.95) = 16 · 1.662 =
44.09 (rounded up i.e. N = 45), if one sets 2n – 2 = 120 in a first iteration step.
Correcting this in the next step to 16 · t2(45,0.95) = 16 · 1.682 = 45.15 hardly
changes the result; thus 23 people in each group are sufficient.

In R, we use the function power.t.test – in doing so we have to submit power =
0.5 as argument. The reason for this is that the formula for the sample size of the confidence
interval only relates to the p-quantile of 1 – α

2 , whereas the function power.t.test
requires a p-quantile of 1 – β, too, which we, in our case, have to set to null, which is
achieved by β = 0.5. Hence we type

> power.t.test(delta = 0.5, sd = 1, sig.level = 0.05, power = 0.5,
+ type = "two.sample", alternative = "one.sided")

i.e. we submit the precision requirements as separate arguments to the function
power.t.test()(instead of σ = 10 and δ = 5 we use sd = 1 and delta =
0.5; more simply σ = 1 and δ = 0.5, though), as well as the further arguments type =
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"two.sample", since we have two samples, and alternative = "one.sided",
because of the one-sided alternative hypothesis.

As a result, we get:

Two-sample t test power calculation

n = 22.34895
delta = 0.5

sd = 1
sig.level = 0.05

power = 0.5
alternative = one.sided

NOTE: n is number in ∗each∗ group

By rounding up, according to the R-program, 23 persons can be chosen from each
group; that is, therefore, N = 46.

In the appropriately planned study, we might obtain ȳA = 18.18 and ȳB =
15.51;

s2 = s2
1 · 23 + s2

2 · 23

46
= 100

From this follows

U = 2.67 − 1.68 · 10 ·
√

46

23 · 23
= −2.28

as well as O = 7.62.
As we see, not both limits of the confidence interval are in the equivalence

range –5 to 5; therefore the null hypothesis, which states lack of equivalence, has
to be accepted.
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10

Samples from more than
two populations

This chapter is about selection procedures and statistical tests for comparing parameters from
more than two populations from which samples have been drawn. The latter especially include
the numerous forms of analysis of variance, but also multiple comparisons of means. Regarding
analysis of variance, we distinguish between one-way analysis of variance and multi-way
analysis of variance; in the latter between cross classification and nested classification. Of
interest are always the differences between the factor levels; the factors can have fixed or
random (caused by chance) levels. Depending on whether there are fixed or random factors,
this dictates which particular tests have to be performed. Given multi-way analysis of variance,
besides the main effects of each factor, the interaction effects of factors (and factor levels,
respectively) will be dealt with thoroughly. Also, methods for ordinally- and nominal-scaled
characters will be discussed.

We start from at least three independent samples from each of the respective number of
populations of interest – independent in the sense defined in Section 6.1, which states that
each outcome in one sample will be observed independent of all other outcomes in the
other samples. So, this definitely precludes the existence of research units in one sample
that are related to specific other research units of the other sample (e.g. siblings). Once the
outcomes of the particular character are given, (point) estimates can be calculated in each
sample. However, the main question is: do the samples stem from the same population or
from different populations? The latter answer is still given even when a single sample does
not stem from the same population as the others.

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Bachelor Example 10.1 Do children differ regarding test scores on Everyday Knowledge,
1st test date, depending on their sibling position? (Example 1.1)

The example is about several independent (random) samples of first-borns,
second-borns, etc. The question is, if these samples stem from different popula-
tions in terms of the character Everyday Knowledge, 1st test date; of course they
stem, by definition, from different populations regarding other characters. In the
psychological literature, there are theories claiming that intelligence decreases
with later position in the ranking of siblings.

10.1 The various problem situations

Again, we try to introduce the problem on the basis of the statistic: mean, and thus on the
basis of a quantitative character.

To simplify matters, we assume that the variances in the a populations, from which
a independent samples are drawn, are all equal. The particular character should also be
modeled sufficiently well by a normally distributed random variable yi, i = 1, 2, . . . , a in each
population. There are now two fundamentally different problem situations.

Assume that a researcher investigates several psychological tests regarding their quality to
measure a particular ability. In this case, he/she wants to choose one of these tests for practical
use, similar to the way somebody may want to choose one drug to combat a specific disease
from several drugs on the basis of a clinical study. This illustrates problem-situation 1: from
a populations, on the basis of sample results, the most appropriate one for a clearly defined
purpose has to be selected. This brings us to selection procedures.

It is a completely different situation if we want to find out, considering the data from
Example 1.1, whether there are differences between children from places with a = 3 different
measurement values (character: urban/rural with the categories ‘city’, ‘town’, and ‘rural’)
regarding the subtest Everyday Knowledge. Regardless of which consequences would be
possible in the medium or long term, it is not about the selection of the ‘best’ population for
a particular purpose. This represents problem-situation 2: the question is whether there are
differences between the means of the a populations. This leads to so-called overall tests, also
called omnibus tests, namely in the form of analysis of variance. So, we are not interested
which population or populations differ(s) from which other(s), but only in the existence of such
differences at all. However, if we are interested in more details, regarding which populations
differ from each other, i.e. the comparison of each and every population with one another, then
this represents problem-situation 3: the need to examine between which of the a populations
there are differing means. This leads to multiple comparisons of means.

We start with the presentation of selection procedures and then deal with multiple compar-
isons of means. Analysis of variance will be discussed afterwards, though it certainly provides
less information initially in comparison to multiple comparisons of means, but it is usually
preferable in terms of meeting precision requirements.

Essentially, this chapter is actually about the comparison of means, and ‘homologous’
methods, i.e. those that do not result in conclusions about the arithmetic mean, but nevertheless
all give evidence about the location of a distribution of a character. We will point out where



P1: OTA/XYZ P2: ABC
JWST094-c10 JWST094-Rasch September 25, 2011 8:55 Printer Name: Yet to Come

SELECTION PROCEDURES 237

access to particular methods is given for other statistical measures, such as relative frequency,
as for example is the case in selection procedures.

10.2 Selection procedures

If the aim of a study actually consists of determining which population has the smallest or
largest mean of a populations, then researchers should not perform hypothesis testing, but
instead a selection procedure should be done. In this case, the very simple selection rule is:
once a sample has been drawn from each population, declare the ‘best’ population as the one
which has the largest – or smallest – sample mean. Such an approach is always reasonable,
regardless of whether this one mean is significantly different from (any or all) other means or
not. In contrast, multiple comparisons of means are particularly inappropriate for the given
question. They unnecessarily increase the required total sample size.

Below, we consider the special case of looking for that population with the largest mean
μi (i = 1, 2, . . . , a).

Unlike hypothesis testing, planning a study only requires the determination of the proba-
bility of a false selection – it is traditionally also called β, although this probability has nothing
to do with a type-II risk – as well as a minimum relative effect size δ, which is considered to
be relevant. In the particular case of means, δ specifies the minimum difference between the
‘best’ (in the situation-specific defined sense of the word) and second-best population. Since
actual deviations smaller than δ are practically irrelevant, it does not matter if we select, not
the best, but instead, erroneously, the second best etc. However, we do not want to make a
false selection in the case of a deviation exceeding δ. That is, providing that the difference
between the largest and the second-largest mean exceeds the value δ, then the probability of
a false selection should not be larger than the predetermined β.

The required sample size for the given values of δ and β also depends on the number a of
the populations to be investigated. It has to be determined for the worst case. This occurs if
there is just a difference of δ between the largest mean, μmax, and the second largest, μII, and
if all other means are equal, μII. If the sample size is calculated for this worst-case situation
and with respect to any false decision’s probability equal to β, then one is just on the side of
caution: the probability of a false selection is smaller than β in all other cases. It is optimal,
in the sense of an as-small-as-possible total sample size, to draw samples of the same size n
in all populations.

The analysis is, as already stated, quite simple: the researcher calculates the sample mean
from each of a samples, and determines that population with the largest sample mean to be
the best (Bechhofer, 1954).

Example 10.2 One of six training programs for reading and spelling difficulties has to be
selected, namely the one with the greatest treatment success.

Given that all a = 6 training programs are equally time-consuming, expensive, and can
be used equally well and willingly by any psychologist, then each of the 6 training programs
will be carried out on the same number of randomly selected children (e.g. six- to seven-year-
olds). The character of interest is the difference in the test scores in an appropriate reading and
spelling test before and after the application of the training program. We decide on a probability
of a false selection with β = 0.05, and the relative minimum difference with δ = 0.33σ .
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In R, we first load the package OPDOE, which we have already used in Chapter 8, applying
the function library(). For calculating the sample size, we type

> size.selection.bechhofer(a = 6, beta = 0.05, delta = 0.333,
+ sigma = 1)

i.e. we use the number of populations, a, as the first, and the probability of an erroneous
selection, β, as the second argument. The relative minimum difference, δ, is used as the
third, and the standard deviation, σ , as the fourth argument in the function. As a result,
we get:

[1] 90

Consequently, each training program has to be conducted with at least 90 children.

For Lecturers:

The reasons why selection procedures are rarely used (not only) in psychology
are as follows:

� Selection procedures were suggested about 50 years after the other statis-
tical methods were developed.

� Selection procedures are ‘unexciting’; with their application one can hardly
impress.

� Selection procedures are not included in statistical packages, such as SPSS,
due to their simplicity.

If one is interested in the probability p of a dichotomous character, the aim of the study will
be to find, from a populations, that one with the largest or smallest probability, respectively,
with regard to one of the two measurement values of this dichotomous character. Then, as
above, the probability β of a false selection and a minimum effect size δ, which is considered
to be relevant, has to be determined, where δ describes the minimum difference between the
‘best’ (in the particular defined sense) and second-best population. More details can be found
in Rasch, Pilz, Verdooren, & Gebhardt (2011).

10.3 Multiple comparisons of means

The starting point is a independent random samples from the same number of populations;
we assume that we do not (yet) know, from the application of an analysis of variance,
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if there are any differences at all between the means of these populations. That is, the
question: ‘Which populations are different regarding their means?’ still allows for the non-
existence of differences. In the sense of the first step of empirical research as stated in Section
3.2, this question has yet to be formulated more precisely. It must be clarified: does one only
want to test the null hypothesis H0: μi = μl, i �= l for some (particular) pair of means, or for
all pair-wise differences of a > 2 means. All the methods by which one can do this are called
multiple comparisons of means.

Essentially new, in comparison to what has already been said, is that we now have to
distinguish between two alternatives for each of the risks; namely between two different
type-I risks and two different type-II risks. The comparison-wise risk refers to each individual
comparison. Therefore, one takes a certain (given) risk in each comparison, i.e. the risk of
falsely rejecting the null hypothesis on one hand and of falsely accepting the null hypothesis
on the other hand. The consequence of such an approach is that the greater the number of
pair-wise comparisons, the greater the probability of a wrong decision in at least one of
these comparisons within the same study. This is exactly the reason why one usually will
not take a comparison-wise risk. Then one decides for a study-wise risk. So, if one uses a
study-wise risk, then one has a certain (given) risk for the entire study; i.e., for all performed
comparisons, a certain (given) accumulated risk of falsely rejecting the null hypothesis on the
one hand, and a certain (given) accumulated risk of falsely accepting the null hypothesis on
the other hand. Then, it does not matter whether there was only a wrong decision regarding
a single comparison or, in extreme cases, regarding all comparisons. For example, if we
actually perform all

( a
2

)
possible comparisons and test the corresponding null hypothesis H0:

μi = μl, then the study-wise type-I risk α indicates the probability that at least one of the
null hypotheses is falsely rejected. The study-wise type-II risk β indicates the probability of
falsely accepting at least one of the null hypotheses.

Now, we have to distinguish between methods that determine both risks either comparison-
wise or study-wise; besides that, there are also methods that take the type-I risk study-wise
and the type-II risk comparison-wise into account.

Statistical tests that determine both risks study-wise are the tests of analysis of variance.
For these, study-wise risks can even be taken into consideration as precision requirements.
But first we consider the case of comparison-wise risks in the following.

It is almost obvious why a comparison-wise type-I risk is usually undesirable. If one
actually performs all

( a
2

)
comparisons and every time takes the risk of a type-I error with

a probability of α, then the overall type-I risk tends, given a is quite high, quickly to 1.
However, there are sometimes research questions for which a comparison-wise risk is quite
appropriate. In such a case it is recommended to perform comparisons only between each pair
of adjacent means, when all means are ranked by size, instead of performing all comparisons.
Then there are only a – 1 comparisons instead of

( a
2

)
. Of course it is also conceivable to only

compare each of the (estimated) means from a − 1 populations with a standard (reference)
population.

Example 10.3 Validation of a psychological test via extreme groups
For the evaluation of a psychological test’s validity, it is recommendable to compare

the (mean) test scores from two groups of testees that show obvious extreme values of the
character that it is intended to measure by the test. If this is about a test to measure the ability to
cope with stress, we might have the idea to compare the following three groups (populations):
I counter service, II staff nurse, and III kindergarten teacher. We are especially interested in
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the comparison of I and II as well as the comparison of I and III. We do not need a study-wise
(type-I) risk, because we absolutely want to validate the test twice: for both the groups II and
III, we need proof of validity; whereas a type-I error here does not change anything regarding
the evidence of quality there (and vice versa). So in this case, one will take a comparison-
wise risk.

Of course, the researcher has already to decide on a study-wise or a comparison-wise risk while
planning the study. Since the study-wise risk represents a stricter (precision) requirement than
a comparison-wise risk, it requires a larger sample size.

An appropriate method for comparison-wise type-I and type-II risks is the so-called least
significant difference (LSD) test. It is simply the pair-wise application of the t-test, essentially
in accordance with Formula (9.1); though, because there are more than two samples, there
is a different estimation of the common variance σ 2. According to the explanations in Sec-
tion 9.1, it is again preferable to perform a pair-wise applied Welch test – for which planning
of the study has already been dealt with.

Master
Doctor

In most cases (in psychology), the LSD-test (that is the multiply-applied t-test
according to Formula (9.1)) is performed without any thought put into whether
a comparison-wise type-I risk is at all appropriate for the particular research
question.

If one wants to perform the LSD-test in SPSS without calculating all
( a

2

) =
a(a−1)

2 pair-wise t-tests separately one after another, as is demonstrated in Example
9.1, but instead more conveniently (and using the more accurate estimation of σ ),
simultaneously with a specific program command, then one has to perform the
analysis of variance (see Section 10.4.1) beforehand (to call up the option LSD in
Post Hoc. . .). In this case the user should be aware that he/she first tests study-wise,
but continues testing comparison-wise.

If the researcher has – according to a carefully considered research question –
decided on a comparison-wise type-I risk, then the pair-wise applied Welch test
has to be preferred over the pair-wise t-test in any case, as the Welch test better
meets the nominal type-I risk in the case of violations of the presumptions of the
t-test.

In R, we can conduct a pair-wise Welch test by typing

> pairwise.t.test(y, g = group, p.adj = "none", pool.sd = FALSE)

i.e. we apply the function pairwise.t.test(), using the character of interest y as the
first argument. As the second argument we use g = group, which determines to which
of the respective samples an observation unit belongs. With p.adj = "none" we omit
the so-called α correction (see Section 15.2.1.1) and, using pool.sd = FALSE, we
specify the Welch test.

As a result, we obtain the p-values of all pair-wise tests, arranged in a matrix.
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As concerns ordinal-scaled characters, one can proceed analogously to the method of multiple
comparisons of means, if interested in distribution differences; in terms of comparison-wise
risks, the U-test is applicable.

10.4 Analysis of variance

It is indeed correct that variances (precisely: sums of squares) are decomposed by the method
of analysis of variance; nevertheless, this method is exclusively about tests for comparing
means. Basically, it is about establishing the effect of (qualitative) factors on a quantitative
character y. Thereby, each nominal- or ordinal-scaled factor, in the sense of Section 4.5, has
a ≥ 2 measurement values, or that is to say categories. In the simplest case, we only have a
single such factor; then, the one-way analysis of variance or one-way layout, respectively, is
the direct generalization of the situation underlying the t-test. However, it is often the case that
more than just one factor exists, generally p factors. This is called p-way analysis of variance
or, generally, a multi-way analysis of variance (two-way layout etc.).

10.4.1 One-way analysis of variance

In general, we denote the one single factor by A, and its a levels by Ai, i.e. A1, A2, . . . , Aa.

Master The statistical model of analysis of variance is a special case of the so-called
general linear models (see more details in Section 13.1). As a matter of fact,
the character of interest, y, is modeled as a random variable y of some linear
function. That is, besides the presumption of a normally distributed variable with
population mean E(y) = μ and population variance σ 2

y = σ 2, it is assumed
that every (theoretically possible) observation of y differs from μ by an error
component e. From the definition of the random variable in question, y = μ + e,
it is obvious that the error variance, i.e. the variance of e, is also equal to σ 2.
However, this model is too simple and is only appropriate for the case in which
we only consider a single sample and in which the null hypothesis (that all samples
stem from the same population) is actually true. (See also the similarity of this
model to the basic equation of the so-called classical test theory; e.g. in Lord &
Novick, 1968.) If we also consider the case of the alternative hypothesis, y = μ + e
therefore has to be supplemented by a further term (parameter) which takes the
diversity of means in different populations into account. By doing so, we have
defined a formalism that basically allows us to test several hypotheses.

In analysis of variance, we always assume that the variability of the research
units in y depends linearly on certain (new) model parameters. Thus, several
models of analysis of variance differ by type and number of such parameters.

The method is about the means of populations, which underlie the given samples and
initially are considered to be dissimilar. The character of interest will be modeled as a
normally distributed random variable. That is, a random sample of the size ni is collected
from each of the a populations Gi, i = 1, 2, . . . , a. The outcomes of the random variables yi1,
yi2, . . . , yini are yi1, yi2, . . . , yini . The underlying parameters are μi and σ 2

i . The corresponding
estimators are then (according to Section 8.5.1 and Formula (5.4)): μ̂i = ȳi and σ̂ 2

i = s2
i .
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In analysis of variance, it is typical to differentiate between different (basic) models.
Certainly, the type of the model has, in the case of one-way analysis of variance (i.e. with only
one factor), no effect at all as concerns hypothesis testing; but the effect is, however, serious
in the case of more than one factor.

Case 1: exactly the a levels (measurement values) of the factor being included in the
analysis are of interest. In such a case, model I of analysis of variance is on hand. Since the
levels of the factor are fixed from the outset, we talk about a fixed factor.

Bachelor Example 10.1 – continued
In designing such a study, the researcher would probably decide to record the birth
order: first-, second-, third-, and fourth-born; because the population of fifth- or
even later-born persons is relatively small, these sibling positions can be ignored
to some extent. It might be discussed whether the fourth- and all later-born should
be taken as a common factor level, or all those later than fourth-born should not
be recorded at all and therefore be excluded from consideration. In any case, it is
just these four factor levels in which we are interested. The factor sibling position
is fixed.

Case 2: the factor has many measurement values (levels); their number theoretically has to
be considered infinite. The a levels, which have to be included in the study, are randomly
selected by drawing a random sample from all levels of the population. Thus, the factor has
to be modeled as a random variable itself. This case represents model II of the analysis of
variance. Seeing that the levels of the factor are obtained by chance and are therefore not
fixed, we talk about a random factor.

Bachelor Example 10.1 – continued
Although unrealistic, the following case still has great illustrative qualities. If
we want to investigate exactly a = 3 different sibling positions, but randomly
obtain the sibling positions of third-, fourth-, and seventh-born from all practically
possible sibling positions 1 to 9, it can be demonstrated that the number of
measurement values (levels) of the factor in this example is too small for model
II to really be applicable.

Example 10.4 Do the test scores of students from different schools differ in
test T?

For example, for calibrating a psychological test, a sample of schools could
be randomly drawn (in a multi-stage random sampling procedure); these schools
would then represent the levels of the factor school – in these schools, the children
could be selected randomly again. The number of schools, for example in Boston,
would therefore be large enough that we do not have to use a model with finite
populations of levels. Bear in mind, the question was: are there differences in
the test scores between children from all Boston schools? So, we are not only
interested in the randomly selected schools.

Case 3: there is a finite number, namely SA levels, of factor A, where the number SA is not
large enough to be modeled by case 2. On the other hand, there is no possibility or desire to
include all these levels in the investigation. We are not dealing with this case here (but see,
for example, Rasch, 1995).
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Bachelor Example 10.5 Do the test scores of students from different municipal districts
differ in test T?

For example, for calibrating a psychological test, a sample of municipal dis-
tricts could be randomly drawn (using a multi-stage random sampling procedure);
these would then represent the levels of the factor municipal districts – in these
municipal districts, schools, and within that, children could be selected randomly
again. The population of the levels of the factor municipal districts in Boston
consists of SA = 21 elements; the number 21 is so small that model II should not
be chosen.

10.4.1.1 Model I

For case 1, we first model the character of interest more precisely than with the random
variables yiv, i = 1, . . . , a; v = 1, . . . , ni. Model I of one-way analysis of variance is then:

yiv = E( yiv ) + eiv = μi + eiv = μ + ai + eiv (i = 1, 2, . . . , a; v = 1, 2, . . . , ni ) (10.1)

In Formula (10.1), the terms ai are fixed,1 i.e. parameters; eiv describe the errors of the random
variables yiv. The terms ai are the effects of the factor levels Ai; they are called (main) effects
in statistics. We recognize that the variance of yiv is therefore equal to the variance of eiv;
i.e. σ 2(yiv) = σ 2 = σ 2(eiv). The total size of the research is defined as N as a matter of
simplification; i.e. N = ∑a

i=1 ni .
If all ni = n, we talk about equal cell frequencies, otherwise they are termed unequal cell

frequencies. The term cell arises from the fact that the outcomes yiv can be systematically
arranged in different cells of a table (see Table 10.1).

Table 10.1 Data structure of a one-way analysis of variance.

Level A1 Level A2 . . . Level Aa

y11 y21 . . . ya1

y12 y22 . . . ya2
...

...
...

...
y1n1 y2n2 . . . yana

We consider the null hypothesis H0: μi = μl = μ for all i and all l, and the alternative
hypothesis HA: μi �= μl for at least one i �= l. A one-sided alternative hypothesis of the type
HA: μi > μl is not treatable with elementary methods of statistics.

1 ai is an (unknown) parameter, like (until now) μ and σ ; basically, we always denote parameters by Greek
letters – a previous exception was parameter p for the probability. But we deviate from that in the context of analysis
of variance. The reason is less that this is usual in the international literature of statistics and not because the
corresponding Greek letter α has a fixed, completely different meaning; the reason is rather that, in the formulaic
representation, instead of this parameter, i.e. a fixed value, also random variables are defined, for which we uniformly
use a bold notation in Latin in this book.
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For derivation, especially of hypothesis testing, the following must be assumed:

� The eij are normally distributed according to N
(
0, σ 2

)
, i.e. with the same expected

value 0 and equal variance σ 2.

� The eij are independent of each other.

� a ≥ 2 and ni ≥ 2 for all i.

Doctor The a + 1 parameters μ, ai (i = 1, 2, . . . , a) of Formula (10.1) are estimated by the
least squares method (see Section 6.5). It follows, by setting

∑a
i=1 ai = 0, that the

estimates are μ̂ = ȳ = 1
N

∑a
i=1

∑ni
v=1 yiv and âi = ȳ − ȳi , with ȳi = ∑ni

v=1 yiv ;
i = 1, 2, . . . , a.

Master To better understand the method, but also because computer programs represent
it as follows, we look at the so-called analysis of variance table more precisely
in the following. We distinguish between a realized analysis of variance table,
i.e. referring to empirical data, and a theoretical table – which includes certain
expected values.

Fundamentally, analysis of variance is about decomposing the total sum of
certain squared differences into several partial sums; we call them all, for short,
sums of squares (SS). Amongst others, these are clearly summarized in the analysis
of variance table (see Table 10.2).

Table 10.2 Empirical analysis of variance table of one-way analysis of variance for model
I (ni = n).

Source of
variation SS df MS

Factor A SSA =
a∑

i=1

n∑

v=1
(ȳi − ȳ)2 a − 1 MSA = SSA

a−1

Residual SSres =
a∑

i=1

n∑

v=1
(yiv − ȳi )2 N − a s2 = σ̂ 2 = MSres = SSres

N−a

Total SSt = ∑a
i=1

∑n
v=1 (yiv − ȳ)2 N − 1

The sum of squares SSt is the sum of the squared differences of all outcomes yiv

from the total mean ȳ = 1
N

∑a
i=1

∑n
v=1 yiv ; it expresses the total variability of

outcomes in the study. SSA is the sum of squares of the level means ȳi from the
total mean ȳ; it expresses the variability of the level means. And SSres is the sum
of squares of the outcomes yiv from the respective level mean; it expresses the
(average) variability of outcomes per level.

It can be shown that SSt = SSA + SSres. Analogously, it is obvious that
df t = dfA + df res (see Table 10.2); the derivation of the degrees of freedom
will not be given here. By dividing the individual sums of squares by their corre-
sponding degrees of freedom we obtain the mean squares (MS); there is no further
interest in the conceivable statistic MSt.
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As can be shown, the error variance or residual variance σ 2 can be estimated
by s2 = σ̂ 2 = MSres; the corresponding estimator s2 = MSres is unbiased. Hy-
pothesis testing arises from the theoretical analysis of variance table in which
the expected values of the mean squares are recorded (Table 10.3). Thereby it
is assumed that the following arbitrary condition of reparameterization is met:∑a

i=1 ai = 0.

Table 10.3 Theoretical analysis of variance table of one-way analysis of variance for
model I (ni = n).

Source of
variation SS df MS E(MS)

Factor A SSA =
a∑

i=1

n∑

v=1
( ȳi − ȳ)2 a − 1 MSA = SSA

a − 1
σ 2 + n

a − 1

∑
a2

i

Residual SSres =
a∑

i=1

n∑

v=1
( yiv − ȳi )2 N – a = a(n – 1) MSres = SSres

N − a
σ 2

Total SSt =
a∑

i=1

n∑

v=1
( yiv − ȳ)2 N – 1 = an – 1

The above, given null hypothesis H0: μi = μl = μ for all i and all l, and the
alternative hypothesis HA: μi �= μl for at least one i �= l, now have to be rephrased
as follows: H0: ai = al = a = 0 for all i and all l, and HA: ai �= al for at least
one i �= l. Now, a test can be derived from Table 10.3: it involves comparing two
mean squares that both have the same expected value under the null hypothesis.
If the test provides a significant result, both variances have to be interpreted as
unequal in the population, which means not all ai = 0; and therefore the means
are different.

It can be shown that the null hypothesis can be tested with the following test statistic;

F = MSA

s2
(10.2)

is F-distributed with df 1 = a − 1 and df 2 = N − a degrees of freedom. Given that the null
hypothesis is true, MSA as well as s2 estimate the variance of y and e, respectively; the former
from the variance of the means ȳi = μ̂i . So, this F-test examines if the means vary more than
is explainable by the variability of the variable itself. If this is the case, then the means differ
systematically.

This means, the null hypothesis can be tested using the (1 − α)-quantile of the F-
distribution. It will be rejected if the calculated value of F > F (a − 1, N − a : 1 − α);
otherwise it will be accepted. If the null hypothesis has to be rejected, we again talk about a
significant result. However, this does not yet state which means differ in which direction.

Doctor Incidentally, for a = 2 we have the case of Section 9.1; namely testing a hypothesis
regarding the comparison of two means from two populations. The test statistic
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in Formula (10.2) is just the square of the test statistic in Formula (9.1). For the
quantiles, it is therefore F (1, N − 2 : 1 − α) = t2

(
N − 2, 1 − α

2

)
, as the reader

can easily verify by comparing corresponding values in Tables B2 and B4 in
Appendix B.

Considerations regarding the estimation of the effect size will be made in Section 11.3.4.
Planning a study, i.e. the determination of the necessary sample size, is done analogously

to Chapters 8 and 9 by specifying certain precision requirements. Type-I risk, type-II risk, α

and β, are chosen again analogously; but the parameter δ has to be redefined: δ will now be
the distance from the largest of all a means to the smallest. However, in analysis of variance,
the sample size also depends on the location of the remaining a − 2 means. The available
computer programs determine the sample size for both the worst and the best case. Basically,
the worst case should be assumed; i.e. the case that leads to the largest (minimum) size for
given precision requirements. This case occurs if all other a − 2 means are located exactly
in the middle of both extreme means (see Figure 10.1). In that case, it is – as generally
applies – optimal in terms of a smallest possible sample size, if the size is equal in all samples,
i.e. ni = n.

µ (1) = µmin µ (2) = ··· = µ (a–1) µ (a) = µmax

Figure 10.1 The (worst) case for the location of the a means μ(i) (i = 1, . . . , a) ordered by
size, which leads to the largest sample size.

Example 10.6 Planning a study for one-way analysis of variance without relation to any
content

Assume a = 4. We decide on α = 0.05; β = 0.2; δ = μmax – μmin = 0.67σ ; so it will
follow that δ = 0.67 by assuming σ = 1.

In R, we calculate the sample size again using the package OPDOE; we type

> size_n.one_way.model_1(alpha = 0.05, beta = 0.2, delta = 0.67,
+ a = 4, cases = "maximin")

i.e. we apply the function size_n.one_way.model_1() and use as arguments the
precision requirements α = 0.05, β = 0.2, and δ = μmax – μmin = 0.67 (with delta =
0.67). Witha = 4we fix the number of populations, and withcases = "maximin"
we request the sample size for the worst case. As a result, we get:

[1] 50

Thus, we have n = 50.
In instances where it is known from the outset that unequal sample sizes are unavoidable,

we have no algorithm that meets the precision requirements. In any case, the smallest sample
size should be equal to the calculated n.
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Bachelor Example 10.1 – continued
In Example 1.1, there is a total of 100 children. First, we investigate how many
children are distributed into each sibling position, but we instantly decide, because
of the low relative frequency of fifth- or even later-born sibling positions in
the population, to analyze only up to the fourth sibling position. We obtain a
corresponding frequency table using R or SPSS, as we have done in Example 5.4
by using sibling position as the character in question. We note: n1 = 44, n2 = 24,
n3 = 16, n4 = 8. The sample size of n = 50, which we calculated in advance by
planning the study above, is rather too small – bearing in mind that planning of the
given study was originally designed for another research question (see Example
9.2). We now analyze with the one-way analysis of variance.

In R, we first have to exclude all children whose sibling position is bigger than four from
the analysis. To do this, we type

> Example_1.1.s <- subset(Example_1.1,
+ subset = unclass(pos_sibling) < 5)

i.e. we use the database Example_1.1 as the first argument in the function subset(),
and the condition subset = unclass(pos_sibling) < 5 as the second argu-
ment. We need the function unclass() to make the selection pos_sibling < 5.
We assign the data which we have selected to Example_1.1.s. After enabling access to
the new databaseExample_1.1.s by applying the functionattach() (see Chapter 1),
we type, to conduct the analysis of variance

> aov.1 <- aov(sub1_t1 ˜ pos_sibling)
> summary(aov.1)

i.e. we apply the function aov(), specifying the analysis of the character Every-
day Knowledge, 1st test date (sub1_t1) with respect to the factor sibling position
(pos_sibling). We assign the result of the analysis to the object aov.1 and submit
this object to the function summary().

As a result, we get:

Df Sum Sq Mean Sq F value Pr(>F)
pos_sibling 3 253.9 84.65 0.7719 0.5128
Residuals 88 9651.0 109.67

We consider only the two last columns: The F-test is not significant, because the value
shown in Pr(>F)is bigger than α = 0.05.

In SPSS, we first have to exclude from the analysis all children whose sibling position is
bigger than four. To do this, we use the same sequence of commands (Transform – Recode
into Different Variables. . .) as in Example 9.7. This gets us to the window shown in Figure 9.7,
where we drag and drop the character sibling position to the panel Input Variable -> Output
Variable:. In the section Output Variable, we type pos_sib in the text field Name and click
Change. A click on Old and New Values. . . gets us to the window shown in Figure 9.8, where
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we tick Range, value through HIGHEST: in the section Old Value and type the value 5 in
the text box. Now, we tick System-missing in the section New Value and click Add. Next,
we tick All other values in the section Old Value and Copy old value(s) in the section New
Value. A click on Add and Continue gets us back to the previous window. We click OK and
the transformation is done. To conduct the analysis, we select

Analyze
Compare Means

One-Way ANOVA. . .

In the resulting window, shown in Figure 10.2, we drag and drop the character Everyday
Knowledge, 1st test date to the panel Dependent List: and the character pos_sib to the panel
Factor: (we have already done this in Figure 10.2). By clicking OK, we get the results shown
in Table 10.4.

Figure 10.2 SPSS-window for the one-way analysis of variance.

Table 10.4 SPSS-output of the table of variances for one-way analysis of variance
(model I) in Example 10.1.

Sig.FMean Squaredf
Sum of
Squares

Between Groups

Within Groups

Total 919904.989

109.671889651.040

.513.77284.6503253.949

ANOVA

Everyday Knowledge, 1st test date (T-Scores)

In the output shown in Table 10.4, we consider only the two last columns: the F-test is not
significant, as the p-value indicated in the column Sig. is bigger than 0.05.

The children in different sibling positions do not differ with respect to the character
Everyday Knowledge, 1st test date.
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It is usually advised to test the presumption that there are homogeneous variances, i.e. that
there is variance homogeneity, before performing one-way analysis of variance. However, by
analogy to the problem of the t-test, we suggest not to do so here. Instead, in the case of equal
cell frequencies, i.e. ni = n, we recommend not applying the one-way analysis of variance,
but to run the analysis in accordance to a special case of Hotelling’s T2. This test statistic,
which is based on all pair-wise mean differences of the a factor levels, is intended for more
than one character and will be discussed in more detail in Section 12.2; it is not influenced by
deviations from variance homogeneity (see Moder, 2007, 2010).

Example 10.1 – continued
In the following, we assume that we have actually sampled data according to Example 10.6;
that is we have tested each of n = 50 first-, second-, third-, and fourth-born male high school
students in 6th class, say for instance with the subtest Social and Material Sequencing from
the intelligence test-battery AID 2. We can now calculate Hotelling’s T2 with the data of
Example 10.1 (see Chapter 1 for its availability) regarding the factor sibling position (with
the levels first, second, third, and fourth position) and therefore test the null hypothesis H0:
μ1 = μ2 = μ3 = μ4.

In R, we define a new function with the help of function() by typing

> hotT2.aov <- function(X, nf, nrep) {
+ require(MASS)
+ ncol <- nf*(nf-1)/2
+ D <- matrix(1:(nrep*ncol), nrep, ncol)
+ k = 0
+ for(i in 1:(nf-1))
+ {
+ for(j in (i+1):nf)
+ {
+ k <- k+1
+ D[,k] <- X[,i]-X[,j]
+ }
+ }
+ Xq <- apply(D, 2, mean)
+ V <- var(D)
+ rank <- qr(V)$rank
+ IV <- ginv(V)
+ T2 <- t(Xq)%*%IV%*%Xq*nrep
+ df1 <- rank
+ df2 <- nrep-rank
+ F <- T2*(nrep-rank)/(rank*(nrep-1))
+ probf <- 1-pf(F, df1, df2)
+ cat(" df1 df2 T2 F ProbF\n",
+ formatC(df1, width = 7), formatC(df2, width = 7),
+ formatC(T2, format = "f", width = 12,
+ digits = 5, flag = " "),
+ formatC(F, format = "f", width = 11,
+ digits = 5, flag = " "),
+ formatC(probf, format = "f", width = 11,
+ digits = 5, flag = " "),"\n")
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+ res <- list(T2 = T2, F = F, df1 = df1, df2 = df2, probf = probf,
+ Xq = Xq, D = D, V = V, IV = IV)
+ return(invisible(res))
+ }

i.e. we apply the function function()using the data matrix X as the first argument,
which contains the observation values per factor level in its columns. As the second
argument, we use, with nf, the number of factor levels a = 4 and, with nrep, the number
of observation values n per factor level. The sequence of commands within the braces
determines the procedure of the function and is not explained in detail here. Finally, we
assign this function to the object hotT2.aov. Next, we enable access to the database
Example_10.1 (see Chapter 1) by using the function attach(). Then we prepare the
data for the analysis by typing

> pos1 <- sub4[which(unclass(pos_sibling) == 1)]
> pos2 <- sub4[which(unclass(pos_sibling) == 2)]
> pos3 <- sub4[which(unclass(pos_sibling) == 3)]
> pos4 <- sub4[which(unclass(pos_sibling) == 4)]
> pos.dat <- cbind(pos1, pos2, pos3, pos4)

i.e. we create a vector of the observation values in the character Social and Material
Sequencing (sub4), separately for each of the factor levels of the factor sibling position
(pos_sibling). The function which()serves to make sure that only certain research
units are considered. The function unclass() is needed to select the observation units
which stem from the respective factor level of sibling position (pos_sibling). We
assign each of the vectors consisting of the values selected in this way to a new object
(pos1 to pos4). Next, we submit these objects to the function cbind() for creation
of an adapted data matrix. We assign this data matrix to the object pos.dat. Now, we
finally conduct the analysis using Hotelling’s T2 by typing

> hotT2.aov(pos.dat, nf = 4, nrep = 50)

i.e. we apply our function hotT2.aov() and submit the data matrix pos.dat as the
first argument to the function. As the second argument, we use the number of factor levels
a = 4, with nf = 4, and as the third one the number of children per factor level n = 50,
with nrep = 50.

As a result, we get:

df1 df2 T2 F ProbF
3 47 6.15429 1.96770 0.13170

In SPSS, we first have to rearrange the data of data set Example 10.1. Therefore, we select

Data
Restructure. . .

and, in the resulting window (Figure 10.3), we tick Restructure selected cases into variables.
With a click on Next we come to the following window (not shown here), where we drag
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and drop the character sibling position to the field Identifier Variable(s):. After clicking Next,
three more windows appear successively (all without figure here), in which we just confirm
everything by clicking Next, and in the last one (not shown here) we click Finish. This brings
us to a small window showing a warning, to which we react by clicking OK.

Figure 10.3 SPSS-window for restructuring data.

Now we select

Data
Transpose. . .

In the resulting window (not shown), we drag and drop all characters from sub4_t1.1 to
sub4_t1.50 to the field Variable(s): and click OK. As a consequence, a small window (not
shown) with a warning appears. We click OK. In this way, we obtain a new data sheet with
which we can continue working. In order to conduct Hotelling’s T2, we select

Analyze
Scale

Reliability Analysis. . .

In the resulting window (Figure 10.4) we drag and drop the variables var001 to var004 to
the field Items:. We click Statistics. . . and in the resulting window (not shown here) we tick
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Hotelling’s T-Square. After clicking Continue and OK, we get a table, where we find the main
result with regard to Hotelling’s T2: the p-value equals 0.132.

Figure 10.4 SPSS-window for calculating Hotelling’s T2.

The p-value is 0.132, so there is no significant difference between the four investigated sibling
positions regarding the character Social and Material Sequencing.

Master
Doctor

The appropriate method for testing variance homogeneity again would be, as in
Section 9.2.2, Levene’s test or a generalization thereof. But the problem is entirely
analogous to the t-test. However, as Moder (2010) found, a solution is not as easy
to find if more than two samples are given as is now the case. Anyway, even the
Welch test, which is also available in a generalized form, does not meet the type-I
risk if the distributions differ greatly between the samples. However, one-way
analysis of variance itself is very sensitive to deviations from the presumption of
variance homogeneity. Finally, also the generalization of the U-test, namely the
Kruskal–Wallis H-test (see below), does not only test differences in the location
of the relevant populations’ distributions.

Even when the application of Hotelling’s test statistic T2 will be commonly used in the
given context, there is a problem of principle. Namely, that for all different types of analysis
of variance, especially in cases of multi-way (see below, starting from Section 10.4.4) and
multivariate analyses of variance (see Section 13.3), there are presumptions referring to
several parameters of variability of the characters in question; just for example, referring to
the variances. Certainly there are tests to examine these; but such tests are neither independent
from the test of the actual questions, i.e. analysis of variance, nor are they generally robust
with regards to violations of certain distributional assumptions as is the case with analysis
of variance itself. But what aggravates the problem is the fact that the researcher, if he/she
uses these pre-tests in spite of everything, does not have an alternative to analysis of variance,
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given that any pre-test results in significance. In particular, non-parametric methods are
just as unsatisfactory a solution, because, as we have pointed out, they test an entirely
different null hypothesis from that intended by analysis of variance; despite the fact that
for multi-way analysis of variance there are barely any adequate non-parametric methods,
and for multivariate analysis of variance there are even fewer. In the practice of psychological
research, this results in the following unacceptable consequences: either to disclaim the
respective presumption or, in the case of the application of such pre-tests, to ignore their
possible significant results – without realization that the result of the analysis of variance
could be consequently interpreted completely contrary to the actual issue.

In this book, we therefore recommend proceeding as follows:

1. Where possible use procedures that are mostly independent of violations from
homogeneity – so far this has been the Welch test and Hotelling’s test with the test
statistic T2.

2. Where there are no such methods (yet), identify homogeneity or heterogeneity on
a descriptive basis according to certain rules of thumb (especially with multi-way
analyses of variance) or apply the appropriate pre-test, albeit without guarantee of a
precise total type-I risk, and without accurate knowledge of the actual type-I risk for
the primarily interesting test of comparing the means, respectively.

3. If there is heterogeneity, the researcher should either exclude individual factors (in terms
of multi-way analyses of variance) and/or individual factor levels and/or individual
characters (in terms of multivariate analyses of variance) from the analysis. Of course
that is the strategy of a posterior2 model fitting, which can lead to distorted results in
the direction of one or the other hypothesis. If such an exclusion is not possible, the
actual posed research question cannot be answered. The researcher then may have to
change the (null) hypothesis or change from a study-wise to a comparison-wise type-I
risk (see also below).

As concerns the abovementioned rule of thumb, we recommend considering differences
between the standard deviations of two factor levels of larger than a factor of 1.5 as being too
large to apply the methods of analysis of variance. Where, as concerns the one factor level,
68.3% of the population are located between μ – 1 and μ + 1 (see Example 6.8), as concerns
the other factor level, only 49.5% of the population are located in this area (given the null
hypothesis is true); thus, a comparison of the two samples regarding a measure of location on
its own does not seem convincing at all.

As already mentioned in Section 8.2.3 and Section 9.1, we often have two outcomes of each
research unit, which are statistically interpreted as each stemming from a separately modeled
random variable but, with respect to content, describe the same thing (bear the example in
mind that some treatment effects should be ascertained with a pre and post design). Then it
is simplest, also with more than two samples, to trace the data to a single character. That is,
given interval-scaled characters, we calculate the difference of the respective pair of outcomes
per research unit and use them as values yi1, yi2, . . . , yini .

2 Latin: from those things that follow
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10.4.1.2 Post hoc tests

Analysis of variance is unsatisfying insofar as, in the case of a significant result, the researcher
does not know between which means and samples, respectively, and therefore between which
populations, there are differences. That is the price of having a study-wise type-I risk (and
also a study-wise type-II risk).

Therefore, the inventory of statistical methods provides so-called post hoc3 tests. In the
simplest case this is the LSD test, which was discussed in Section 10.3 regarding multiple
comparisons of means. However, this test uses comparison-wise risks and is therefore inap-
propriate. On the other hand, the so-called Newman–Keuls procedure also tests pair-wise, but
with a study-wise type-I risk (and a comparison-wise type-II risk). Following an analysis of
variance, where the researcher has already decided on a study-wise type-I risk, this procedure
is more appropriate.

Basically, the Newman–Keuls procedure is only designed for use with equal sample sizes,
as a consequence of which the approximations often used in computer programs do not
guarantee that the type-I risk will be precisely met. In any case, using computer programs the
analysis is easily done; hence, no formulae will be given here.

Computer programs are also available for planning the study; their application is, however,
a moot point, because the researcher will likely plan the study in terms of (one-way) analysis
of variance.

Bachelor Example 10.7 Do the mean test scores in Coding and Associating, 1st test date
differ with regard to the social status (Example 1.1)?

On the one hand, the mentioned subtest is non-verbal and thus, no disadvan-
tages have to be expected for members of lower social classes (see, for example,
Cattell, 1987); on the other hand, there are school-atypical tasks with particular
materials that members of certain social classes may be more familiar with than
others. So, we test the null hypothesis H0: μi = μ for all i, knowing already, from
Example 5.3, that there are a = 6 factor levels regarding the factor social status.
The alternative hypothesis is HA: μi �= μl for at least one i �= l. We also know
from Example 5.3 that the corresponding ni have the sizes: 5, 16, 12, 25, 30, 12.
This is different from the calculation according to Example 10.6, because the data
were originally sampled for another research question – given the same precision
requirements we get n = 59; nevertheless, we test with a type-I risk of α = 0.05.
Following the same procedure as in Example 10.1, we obtain a significant result
this time (the p-value is 0.006). We now want to locate the differences precisely
and therefore apply the Newman–Keuls procedure.

In R, we apply the package agricolae, which we first install (see Chapter 1) and
then load using the function library(). Furthermore, we enable access to the original
database Example_1.1 (see Chapter 1) using the function attach(). Now, we type

> aov.2 <- aov(sub7_t1 ˜ social_status)
> SNK.test(aov.2, trt = "social_status")

3 Latin: after the fact
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i.e. we first conduct an analysis of variance, applying the function aov(). We assign the
result of this analysis to the object aov.2. Next, we apply the function SNK.test(),
to which we submit the object aov.2 as the first argument, and as the second one, with
trt = "social_status", the factor of interest social status.

As a result, we get (shortened output):

sub7_t1 std.err replication
lower classes 44.60000 5.045790 5
lower middle class 52.92000 2.391596 25
middle classes 53.23333 2.016987 30
single mother in household 51.83333 2.312133 12
upper classes 62.58333 2.230839 12
upper lower class 47.62500 2.411561 16

alpha: 0.05; Df Error: 94

Critical Range
2 3 4 5 6

8.480896 10.171840 11.172138 11.880532 12.426881

Harmonic Mean of Cell Sizes 11.94030

Different value for each comparison
Means with the same letter are not significantly different.

Groups, Treatments and means
a upper classes 62.58333
b middle classes 53.23333
b lower middle class 52.92
b single mother in household 51.83333
b upper lower class 47.625
b lower classes 44.6

We thus obtain two disjunctive groups of factor levels: the ‘upper classes’ on one hand and
all other factor levels of social status on the other hand.

In SPSS, we have to (preferably after knowing that the analysis of variance yields a sig-
nificant result) tick Post Hoc. . . in the window shown in Figure 10.2 and obtain Figure
10.5. There, we click S-N-K (for Student–Newman–Keuls – so called the Newman–Keuls
procedure in SPSS) followed by Continue – the type-I risk is already set to α = 0.05
according to the default settings. Clicking OK gets us to the result shown in Table 10.5.
This table summarizes the groups, which do not differ in their means. Here, two such
combined groups result. We can see that the three samples for the categories ‘lower
classes’, ‘upper lower class’ and ‘upper classes’ are not contained all together in the
same combined group; i.e. the two former groups differ significantly from the latter.
Apart from that, there are no significant differences. Figure 10.6 illustrates these results
graphically.
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Figure 10.5 SPSS-window for the calculation of post hoc tests.

Table 10.5 SPSS-output of Newman–Keuls procedure in Example 10.7.

N 21

Subset for alpha = 0.05

lower classes

upper lower class

single mother in
household

lower middle class

middle classes

upper classes

Sig. .064.264

62.5812

53.2353.2330

52.9252.9225

51.8351.8312

47.6316

44.605

social status (after
Kleining M& ooreKl ei ni ng M & oor e 

Coding and Associating, 1st test date (T-Scores)

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 11.940.
b. The group sizes are unequal. The harmonic mean of the
group sizes is used. Type I error levels are not guaranteed.
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Figure 10.6 Graphical summary of the results from Table 10.5.
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R and SPSS provide different results. This is because there are unequal sample
sizes and the two program packages obviously adjust the test statistic differently.
We recommend interpreting the results from SPSS. With respect to the subtest
Coding and Associating, children from ‘lower classes’ and the ‘upper lower class’
achieve significantly lower mean test scores than children from ‘upper classes’.

Master
Doctor

As can be seen in Figure 10.5, there are many other post hoc tests. We will,
however, not deal with them (but see Hsu, 1996). Note the following though:
sometimes we want to compare all a – 1 means (and populations respectively)
with a specific reference/standard/control mean, i.e. the ath mean. In that case,
the so-called Dunnett procedure is the method of choice; it also tests with a
study-wise type-I risk (the type-II risk is comparison-wise). For instance, in
Example 10.7, we could determine ‘single mother in household’ as the reference
population. Compared with the Newman–Keuls procedure, there is a difference
regarding planning the study, insofar as it is optimal to provide more research units
ns for the standard than for the other factor levels, each having n units; that is
ns = n

√
a − 1. It is strongly advised to not apply the Duncan test: with this test, it

is not known whether the risks are to be interpreted as study- or comparison-wise.

10.4.1.3 Model II

Regarding case 2, i.e. model II, it occurs far less frequently than model I in psychology.

Master The distinction between model I and model II has no effect on hypothesis testing
in terms of one-way analysis of variance and, therefore, it does not matter if model
I is always selected due to a lack of knowledge that there is actually also a model
II of analysis of variance in existence. Nevertheless, model II should be addressed
here for the sake of completeness. In this case, the model is as follows:

yiv = E( yiv ) + eiv = μi + eiv = μ + ai + eiv (i = 1, 2, . . . , a;

v = 1, 2, . . . , ni ) (10.3)

While the (main) effects ai in model I of Formula (10.1) are fixed statistics, the
ai are corresponding random variables; they have a mean, E(ai), and a variance
σ 2(ai).

In addition to the presumptions of model I, the following must also be provided
to derive a test:

� The eiv are independent of the ai.

� E(ai) = 0 for all i.

� The ai all have the same variance, σ 2
a .

It follows that the random variables yiv do not have the same variance as the errors
eiv, but have the variance σ 2

a + σ 2.
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Master
Doctor

The variance of yiv therefore consists of the two components σ 2
a and σ 2: the

so-called variance components. It can be shown that the yiv within a cell are
not independent as in model I. This dependency is quantified by the so-called
intra-class correlation coefficient, which quantifies the proportion of factor A in
the variance of the character (see more details in Section 11.3.4).

Master The column for the expected values of the theoretical analysis of variance table
looks different compared to model I (see Table 10.6).

Table 10.6 Theoretical analysis of variance table of one-way analysis of variance for
model II (ni = n).

Source of
variation SS df MS E(MS)

Factor A SSA =
a∑

i=1

ni∑

v=1
( ȳi − ȳ)2 a − 1 MSA = SSA

a − 1
σ 2 + nσ 2

a

Residual SSres =
a∑

i=1

ni∑

v=1
( yiv − ȳi )2 N – a = a(n – 1) MSres = SSres

N − a
σ 2

Total SSt =
a∑

i=1

n∑

v=1
( yiv − ȳ)2 N – 1 = an – 1

It is not possible to estimate the (main) effects in model II, because it is about
random variables, not about parameters. Instead, we estimate the variance com-
ponent of factor A, σ 2

a . There are several methods, but the simplest is the analysis
of variance method. One equates the MS calculated from the data with the ex-
pected values E(MS), by replacing the variance components σ 2 and σ 2

a with their
estimates s2 and s2

a .
The null hypothesis states again that factor A with its a levels has no influence

on the random variable y which models the investigated character y. This means
that there is no variability of the factor levels, i.e. that H0: σ 2

a = 0. By contrast,
the alternative hypothesis is HA: σ 2

a > 0. Accordingly, as given by Table 10.5,
an F-test can be performed to test the null hypothesis; F = MSA

MSres
is F-distributed

with df 1 = a − 1 and df 2 = N − a degrees of freedom. So, this is again about
comparing two mean squares, which have the same expected value given the null
hypothesis. If the F-test provides a significant result, the two mean squares are
interpreted as being not equal in the population; from this we infer σ 2

a > 0.
Unfortunately, there is no getting around taking both the presumption of

variance homogeneity and independence of all random variables in Formula
(10.3) untested.

Master
Doctor

Example 10.8 The extent of differences in effectiveness of psychotherapists
should be tested
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The experimental design requests that clients with the same diagnosis according to
ICD-10 (e.g. ‘Other anxiety disorders’, F414) are treated by different psychother-
apists. The effectiveness of the psychotherapy per client will be measured, where
effectiveness is operationalized as the difference of the test score in an anxiety
questionnaire before and after the six months of therapy. If the psychotherapists
were typical representatives of different schools (such as: Psychoanalysis, Be-
havior Therapy, Gestalt Therapy, Client-centered Therapy, Systemic Therapy),
we would have – given that the assignment of the clients to the psychothera-
pists would happen by chance – a model I, because fixed factor levels would be
given. In such a case, we would be interested in the differences between these
schools. However, we want to determine the extent of differences regarding the
effectiveness of psychotherapists in this particular case, irrespective of school
affiliation.

Specifically, clients with the aforementioned diagnosis were randomly as-
signed to a = 22 psychotherapists. These were in turn taken randomly from
the sufficiently large population of all the country’s psychotherapists. Now, the
individual psychotherapists represent the factor levels of a random factor and
therefore, a model II situation is at hand.

We use the data of Example 10.8 (see Chapter 1 for its availability), which
contains, besides the character effectiveness and the factor therapist, the characters
sex of the client, and sex of the therapist per client. For reasons that are not related
to effectiveness, not all psychotherapists had the same number of clients, so the
sample sizes ni (i = 1, 2, . . . , 22) are not all equal; instead the number of clients
varies between 20 and 30. The test scores of the anxiety questionnaire are factor
scores according to a factor analysis (see Section 15.1) and therefore have decimal
places. The data are just simply collected; that is, unfortunately no planning of
the study was done beforehand. We decide on a type-I risk of α = 0.01; indirectly,
compared to the possible type-I risk of 5%, this results in a larger, although
unknown type-II risk.

By way of exception we decide to apply the appropriate pre-test to demonstrate
its calculation. Therefore, we consider first, using the generalized Levene’s test,
whether the variances are homogeneous; i.e. whether the null hypothesis holds,
H0: σ 2

i = σ 2
l for all i �= l (H1: σ 2

i �= σ 2
l for at least one pair i and l, i �= l). We take

a type-I risk of α = 0.01 here as well.

In R, we apply the package lawstat, which we load after its installation (see Chapter 1)
using the functionlibrary(). Moreover, we enable access to the database Example_10.8
using the function attach(). For calculating Levene’s test, we type

> levene.test(effect, group = therapist, location = "mean")

i.e. we use the argument effect for the character effectiveness, the argument group =
therapist for the character therapist, and location = "mean" as one of different
possible calculation procedures in the function levene.test().

4 The ICD-10 Classification of Mental and Behavioural Disorders (World Health Organization, 1993).
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As a result, we get:

classical Levene’s test based on the absolute deviations from the
mean

data: effect

Test Statistic = 0.67, p-value = 0.8639

As the result of the Levene’s test is not significant, we continue calculating the analysis of
variance. We type

> aov.3 <- aov(effect ˜ 1 + Error(therapist))
> summary(aov.3)

i.e. we apply the function aov(), and determine that the character effectiveness (effect)
should be analyzed with regard to the not fixed (1), but random (Error) factor therapist
(therapist). We assign the result of this analysis to the object aov.3. Applying the
function summary()with the object aov.3 as its argument, we request a summary of
the results.

This yields:

Error: therapist
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 21 386.39 18.400

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 566 3247.5 5.7376

We calculate the F-value in question manually: F = 18.400 / 5.7376 = 3.207, with
df 1 = 21 and df 2 = 566 degrees of freedom. Now, we can determine the critical
F-value F(21, 566: 0.99) = 1.89 by consulting Table B4 in Appendix B. Alternatively, we
can calculate the p-value which corresponds to the value F = 3.207 in the following way,
using R:

> pf(3.207, df1 = 21, df2 = 566, lower.tail = FALSE)

i.e. we apply the function pf(), using the F-value as the first argument and the degrees
of freedom df 1 and df 2 as the second and the third argument. With lower.tail =
FALSE, we request the corresponding p-value.

As a result, we get:

[1] 2.432629e-06

Thus, the p-value equals 0.000.
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In SPSS, we can calculate Levene’s test only in combination with the analysis of variance
as the actual procedure of analysis. This is done by choosing a certain option within this
procedure. Selecting

Analyze
General Linear Model

Univariate. . .

we reach the window shown in Figure 10.7. There, we drag and drop the character effec-
tiveness into the field Dependent Variable:. The character therapist, as the factor, is dragged
and dropped into the field Random Factor(s):. Next, we click Options. . . and in the resulting
window (shown in Figure 10.8), we tick Homogeneity tests. If we want to apply only the
rule of thumb described above, we can tick Descriptive statistics instead. In this case, the
output would show e.g. all of the standard deviations per factor level. Clicking Continue and
OK, we obtain the results: a non-significant Levene’s test at first, and then the result of the
analysis of variance shown in Table 10.7.

Figure 10.7 SPSS-window for calculating analyses of variance.
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Figure 10.8 SPSS-window for calculation of Levene’s test.

Table 10.7 SPSS output of one-way analysis of variance (model II) in Example 10.8.

Sig.FMean Squaredf
Type III Sum
of Squares

Hypothesis

Error

Hypothesis

Error

Intercept

therapist

5.738
b

5663247.474

.0003.20718.40021386.392

18.048
a

21.375385.789

.000802.16514477.693114477.693

SourceSour ce 

Tests of Between-Subjects Effects

Dependent Variable: effectiveness

a.  .972 MS(therapist) + .028 MS(Error)
b. MS(Error)

The rows Intercept with Hypothesis and Error are not of interest; the statistic SSres is labeled
as Error in SPSS.
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Because the F-test is significant (the p-value is smaller than α = 0.01), the
variance of the psychotherapists with regard to therapy effectiveness is signifi-
cantly different from zero.

Master
Doctor

Both planning a study design and the calculation of the result-based type-II risk
β

∗
are more difficult for model II than for model I, and are not provided (yet) by

the computer programs used here.

10.4.2 One-way analysis of variance for ordinal-scaled characters

If the examined character is ordinal-scaled, the application of one-way analysis of variances is
inappropriate. Instead, a generalization of the U-test, the (Kruskal–Wallis) H-test is adequate.

It tests the null hypothesis that the populations under discussion, with the distribution
functions Fi(z), i = 1, 2, . . . , a, are equal. For the application of the H-test, everything is
analogous to the U-test (see Section 9.2.1).

Master
Doctor

The derivation of the H-test statistic to test this null hypothesis is based on the
assignment of ranks for the outcomes of all samples in total. Essentially, the F-test
of Formula (10.2) is then applied to these, with the variances for the numbers 1 to
N = ∑

ni always being equal and therefore known; this is the reason why there is
a χ2-distributed test statistic instead of an F-distributed one.

The calculation of the H-test is very simple to perform using statistical computer programs.
A measure for the effect size to be estimated is not commonly used for the H-test.
As already stated in Section 9.2.1, planning a study for non-parametric methods is difficult,

because the alternative hypothesis can hardly be quantified; we will, therefore, not go into
that here (but see e.g. Brunner & Munzel, 2002). Post hoc tests are uncommon.

Bachelor Example 10.9 Three different techniques regarding an opinion poll will be com-
pared

Opinion polls, implemented using appropriate attitude questionnaires, always
suffer from the fact that the response rate is much lower than desired. For this
reason, certain ‘supporting measures’ are often used. Given a factor method – (1)
normal postal sending; (2) previous announcement of the questionnaire by tele-
phone; (3) promise of remuneration in the case of returning the questionnaire –
the character in question in a study (by randomization of the addressees) is the
number of days until returning the questionnaire. For the case that the question-
naire was returned only after a reminder, the measurement value ‘900 + number
of days after warning’ is given; for the case that there is no return at all, the
measurement value is 999.

An interval scale for this character is not at all plausible, not only because
of the arbitrary encoding of the return period, but also because of the different
reactions: returning sooner or later, returning sooner or later only after warning,
and not returning at all ‘impede’ the investigation in a quantifiable way; anyhow,
an ordinary ranking is obviously possible. The character is ordinal-scaled.

We use the data of Example 10.9 (see Chapter 1 for its availability). It contains
the character duration besides the factor level of the factor method for each
returned questionnaire.
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In R, we conduct the H-test by typing

> kruskal.test(duration ˜ method, data = Example_10.9)

i.e. we apply the function kruskal.test() and specify that the character duration
should be analyzed with regard to the factor method. With data = Example_10.9,
we determine the database which is to be used.

As a result, we get:

Kruskal-Wallis rank sum test

data: duration by method
Kruskal-Wallis chi-squared = 66.6024, df = 2, p-value = 3.447e-15

The p-value thus equals almost zero.
Now, we calculate the mean ranks by typing

> with(tapply(rank(duration), method, mean), data = Example_10.9)

i.e. we apply the function rank() to the character duration. We use this function as
the first argument in the function tapply(). With method we indicate the factor, and
with mean we request the mean per factor level. Finally, we determine the database which
is to be used by applying the function with().

As a result, we get the mean ranks as shown in Table 10.8.

In SPSS, the H-test can be found in

Analyze
Nonparametric Tests

Independent Samples. . .

In the resulting window (not shown here), we select the tab Fields, which gets us to a window
very similar to the one shown in Figure 8.12. We drag and drop duration to Test Fields: and
method to Groups:. Now, we select the tab Settings and, as a consequence, we reach the
window shown in Figure 9.6. There, we choose Customize tests and tick Kruskal-Wallis 1-way
ANOVA (k samples). After a click on Run, the table Hypothesis Test Summary is produced
in the output window (not shown here). We just double-click this table, and a window with
a table opens. Here, we find the main result in Asymptotic Sig. (2-sided test). The p-value
equals 0.000.

For calculating the mean ranks, we select the sequence of commands (Transform – Rank
cases. . .) from Example 5.10. In the resulting window (not shown here) we drag and drop
the character duration to the field Variable(s): and click OK. As a consequence, the character
Rank of duration is added to the Data view. Now, we select the sequence of commands
(Analyze – Compare Means – Means. . .) from Example 5.1, and reach the window shown
in Figure 5.1. There, we drag and drop the character Rank of duration to the field Dependent
List: and the character method to the field Independent List:. After a click on OK, we obtain
Table 10.8 as a result.
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Table 10.8 SPSS-output of the mean ranks in Example 10.9.

Std. DeviationNMean

normal

telephone

remuneration

Total 69.412296248124.50000

68.7091579077.63333

56.83279784143.50595

49.78251974159.92568

mehod

Report
Rank of duration

Results show significant differences between the three techniques, with number
(3), i.e. financial reward, leading to the shortest return periods: this can be seen
from the mean ranks. The mean rank is lowest for (3) and it has to be understood
as follows: the greater the duration until return, the higher the rank.

10.4.3 Comparing more than two populations with respect to a
nominal-scaled character

To generalize from Sections 9.2.2 and 9.2.3, we sometimes are interested in more than two
samples – either for a dichotomous or a multi-categorical (nominal)-scaled character. In that
case, the null hypothesis is H0: pij = plj for all j in all a samples and in all sample pairs i
and l, respectively; the alternative hypothesis is H1: pij �= plj for at least one j and one sample
pair i and l. Then, the test statistic in Formula (9.3) applies again. In the case of a significant
result, the same problem arises as in analysis of variance; the χ2-test is an overall test, too.
As concerns interpretation, the best way is to consider the largest (relative) deviations oij – eij

(or their squared values, respectively).

Bachelor Example 10.10 Do four different schools of psychotherapy lead to different
satisfaction ratings of the clients?

We are interested in the four schools Psychoanalysis, Behavior Therapy, Self-
centered Psychotherapy, and Systemic Therapy. Sixty clients with similar com-
plaints (‘anxiety’) were in turn alternately assigned to one of the four schools of
psychotherapy, and were asked about their satisfaction regarding the success of the
therapy after eight weeks. The response options were ‘very satisfied’, ‘medium’,
and ‘not satisfied’. Type-I risk is = 0.05.

The analysis of the data of Example 10.10 (see Chapter 1 for its availability),
analogous to Example 9.9, provided a p-value of 0.106; the null hypothesis has
to be accepted.

As for all tests with χ2-distributed test statistics, we will specify a measure for the estimated
effect size in Section 11.3.5.
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Summary
If there are more than two populations from which independent samples are drawn, the goal
may be to select the ‘best’ of them, such as the one with the largest mean; this leads to
selection procedures. On the other hand, it can be about comparing all, for example, means;
this leads, if it really is about means, to analysis of variance, and in exceptional cases to
multiple comparisons of means. These last methods make it clear that one can basically take
a study-wise or a comparison-wise risk in hypothesis testing. This has to be taken into account
when interpreting the results. Analysis of variance always leads to an F-test. For ordinal-scaled
characters, there is the H-test; for nominal-scaled characters, again, the χ2-test.

10.4.4 Two-way analysis of variance

In two-way analysis of variance we consider, in addition to factor A with its levels A1,
A2, . . . , Aa, a second factor B with its levels B1, B2, . . . , Bb. The levels of the two factors can
be combined in two ways: either according to a cross classification or according to a nested
classification/hierarchical classification.

In cross classification – we write A × B – observations do not have to occur in all
combinations of A and B, i.e. not in every one of the a · b combinations of factor levels AiBj of
the a levels Ai of A with the b levels, Bj, of B. If they do, it is a complete cross classification;
otherwise it is an incomplete cross classification. We always assume that incomplete cross
classifications are ‘connected’ in the sense of the block designs given in Section 7.2.2.

In nested classification, the levels of B occur in exactly one level of A; we write B ≺ A.
Again, the character of interest is modeled as a normally distributed random variable. That

is to say, in a cross classification from each of the a · b populations, a random sample of size
nij will be drawn. The outcomes of the random variables yijv are then yijv, i = 1, 2, . . . , a; j =
1, 2, . . . , b; v = 1, 2, . . . , nij. The underlying parameters are μij and σ 2

i j . The corresponding
estimators are μ̂i j = ȳi j and σ̂ 2

i j = s2
i j (according to Section 8.5.1 and Formula (5.4)).

In addition to the distinction of cross and nested classification, we have to differentiate
between fixed and random factors. It is possible that both factors are fixed, i.e. model I; or
that both factors are random, i.e. model II; or that one factor is fixed and the other random.
The last represents mixed-models.

10.4.4.1 Cross classification – model I

For model I of analysis of variance (in which both factors are fixed), the model equation for
cross classification is:

yijv = μ + ai + b j + (ab)ij + eijv (i = 1, . . . , a; j = 1, . . . , b; v = 1, . . . , ni j ) (10.4)

In this equation, μ is the total mean, the terms ai are the effects of the individual factor
levels Ai of A, the main effects of A; the terms bj are the effects of the individual factor
levels Bj of B, the main effects of B, and the terms (ab)ij express the extent of the interaction
between the levels Ai and the levels Bj – the so-called interaction effects of A × B. Such
an interaction effect is only defined if there are actually observations in the combinations of
factor levels AiBj. If nij = n, there are equal cell frequencies. In this case, we have the data
structure of Table 10.9. For reasons of simplicity we deal in the following formulas most of
the time only with equal cell frequencies. Unequal cell frequencies need more complicated
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Table 10.9 Data structure of a cross classification of factor A with a levels and factor B
with b levels with equal cell frequencies (nij = n > 1).

Levels of B

Levels of A B1 B2 . . . Bb

A1 y111 y121 . . . y1b1

y112 y122 . . . y1b2
...

...
...

...
y11n y12n . . . y1bn

A2 y211 y221 . . . y2b1

y212 y222 . . . y2b2
...

...
...

...
y21n y22n . . . y2bn

...
...

...
...

...
Aa ya11 ya21 . . . yab1

ya12 ya22 . . . yab2
...

...
...

...
ya1n ya2n . . . yabn

formulas. If such a case applies in an example, we deal with it appropriately using program
packages.

The special thing with two-way (generally: multi-way) analysis of variance in the case
of a cross classification is that it is possible to examine interactions between factors. If
there were no interest in such an interaction, it would of course be possible to calculate a
one-way analysis of variance regarding each of the factors A and B. However, if there also
is interest in examining the interaction effect between the factors, an additional hypothesis
needs to be tested, besides the two null hypotheses regarding the main effects. While the two
null hypotheses H0(A) and H0(B) examining these main effects independently are stated and
tested analogously to the one-way analysis of variance, the third null hypothesis H0(A × B) is:
there are no mean differences between the combinations of factor levels AiBj, which cannot
be explained by the two main effects alone.

Example 10.11 Is there a different course of development in athletic stamina as concerns
girls and boys in the age range of 12 to 14 years?

It is imaginable that 12- to 13-year-old girls show higher scores in athletic stamina on
average than boys of that same age, but that boys show higher scores than girls at the age of
14. If this were indeed the case, we would have an interaction between age (factor A with
three levels A1: 12, A2: 13, and A3: 14) and sex (factor B with two levels, B1: female and B2:
male). This would even be the case if the girls’ superiority just weakens with age but never
reaches inferiority.
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For the derivation of hypothesis testing, it must be assumed:

� The eijv are normally distributed according to N (0, σ 2), i.e. with the same expected
value 0 and equal variance σ 2.

� The eijv are independent of each other.

� The cross classification is connected in the sense of Section 7.2.2.

� a ≥ 2 and b ≥ 2.

Depending on the model, these universal presumptions need to be supplemented.

Master As described for one-way analysis of variance, both the total mean squares as
well as their degrees of freedom will be decomposed into components. In two-way
analysis of variance these will be, in addition to the ‘residual’, the components
which are dedicated to the factors A and B, respectively, and also to the compo-
nent of interaction. Thus, the analysis of variance table becomes more extensive
(Table 10.10). It is, however, identical for all models in the theoretical analysis
of variance table, with the exception of column E(MS)(see Table 10.11). The
following new notations are useful: the mean of the levels of factor A is written
as ȳi., the mean of the levels of factor B as ȳ. j , and the mean of the combinations
of factor levels AiBj as ȳi j ; N = ∑a

i=1

∑b
j=1 ni j .

Table 10.10 Analysis of variance table for two-way cross classification (nij = n > 1).

Source of
variation SS df MS

Factor A SSA =
a∑

i=1

b∑

j=1

n∑

v=1
( ȳi. − ȳ)2 a – 1 MSA = SSA

a − 1

Factor B SSB =
a∑

i=1

b∑

j=1

n∑

v=1
( ȳ. j − ȳ)2 b – 1 MSB = SSB

b − 1

Interaction
A × B

SSAB =
a∑

i=1

b∑

j=1

n∑

v=1
( ȳi j − ȳi. − ȳ. j + ȳ)2 (a – 1) (b – 1) MSAB = SSAB

(a − 1)(b − 1)

Residual SSres =
a∑

i=1

b∑

j=1

n∑

v=1
( yi jv − ȳi j )2 ab(n – 1) MSres = SSres

ab(n − 1)

Total SSt =
a∑

i=1

b∑

j=1

n∑

v=1
( yi jv − ȳ)2 N – 1
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Table 10.11 Expected values of the mean squares E(MS) for the models of two-way cross
classification (nij = n >1); σ 2

a , σ 2
b , and σ 2

ab are the variance components.

Source of
variation Model I Model II

Mixed model (A fixed,
B random)

Factor A σ 2 + bn
a−1

n∑

i=1
a2

i σ 2 + nσ 2
ab + bnσ 2

a σ 2 + nσ 2
ab + bn

a−1

n∑

i=1
a2

i

Factor B σ 2 + an
b−1

b∑

j=1
b2

j σ 2 + nσ 2
ab + anσ 2

b σ 2 + anσ 2
b

Interaction
A × B

σ 2+ n
(a−1)(b−1)

∑

i, j
(ab)2

i j σ 2 + nσ 2
ab σ 2 + nσ 2

ab

Residual σ 2 σ 2 σ 2

Using the mean squares of the analysis of variance table, the null hypotheses can
be tested independently for each model.

Master More specifically, the assumptions for model I are as follows:

H0(A): ai = 0 for all i; HA: ai �= al for at least one i �= l

H0(B): bj = 0 for all j; HA: bj �= bl for at least one j �= l

H0(A × B): (ab)ij = 0 for all i, j; HA: (ab)ij �= (ab)lm for at least two pairs i,
j �= l, m.

The estimators of the model parameters μ, ai, bj, and (ab)ij (in model I, in case
of equal cell frequencies) are: μ̂ = ȳ, âi = ȳi. − ȳ, b̂i = ȳ. j − ȳ, (âb)i j = ȳi j −
ȳi. − ȳ. j + ȳ, given

∑a
i=1 ai = 0,

∑b
j=1 b j = 0,

∑a
i=1 (ab)i j = ∑b

j=1 (ab)i j = 0
for all i and all j.

The corresponding F-tests can be taken from Table 10.11: again, these are
about comparing mean squares; those which are to be compared having the same
expected value under the null hypothesis. If the F-test provides a significant
result, the two mean squares are to be interpreted as unequal in the population;
i.e. the relevant model parameters are not all zero – the respective means are
different.

Post hoc tests, in particular the Newman–Keuls procedure (see Section
10.4.1.2), are provided by pertinent computer programs also for multi-way anal-
yses of variance; however, just for the main effects of each factor, but not for
interaction effects. However, it is possible to graphically illustrate the means
of the factor levels and combinations of factor levels and to create a graph of
the means of the combinations of factor levels, respectively, to describe the
interaction effects.
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Master
Doctor

Example 10.11 – continued
We only consider the example theoretically. There might be a mean score of

μ = 100 (athletic stamina; standardized arbitrarily). The main effects of factor A,
age, are a1 = −10, a2 = 3, and, because of the model assumption

∑a
i=1 ai = 0,

it follows a3 = 7. Furthermore, the main effects of factor B, sex, are b1 = 5 and
therefore b2 = −5. We are only free to choose two of the six interaction effects;
the others are fixed because of the model assumptions. We think of (ab)11 = 6 and
(ab)21 = 4; so we have (ab)12 = −6, and (ab)22 = −4; also it then has to be (ab)31

= −(6 + 4) = −10 and therefore (ab)32 = 10. Thereby, the expected values μij =
μ+ ai + bj + (ab)ij in the six combinations of factor levels are given (Table 10.12).

Table 10.12 Values of μ + ai + bj + (ab)ij of Example 10.11.

Age (years) Female Male

12 μ11 = 100 – 10 + 5 + 6 = 101 μ12 = 100 – 10 – 5 – 6 = 79
13 μ21 = 100 + 3 + 5 + 4 = 112 μ22 = 100 + 3 – 5 – 4 = 94
14 μ31 = 100 + 7 + 5 – 10 = 102 μ32 = 100 + 7 – 5 + 10 = 112

If we took scores from several students, these outcomes in the six combinations
of factor levels would disperse around the expected values stated in Table 10.12.

As this example is designed for illustration, we assume three significant F-
tests, given a sufficiently large total sample size for both main effects as well
as for the interaction effect between age and sex. It turns-out that younger chil-
dren/teenagers show less athletic stamina than older children, and that girls of the
investigated age show more athletic stamina than boys, but that the superiority
of girls regarding athletic stamina changes, with progressing age, to inferiority.
12-year-old boys show the lowest, while 13-year-old girls and 14-year-old boys
disclose the highest levels of athletic stamina. Figure 10.9 shows the course of
the means for all combinations of factor levels in order to illustrate the observed
interaction effect. It can be seen that the average athletic stamina increases almost
in a linear fashion through the age levels of male children, but reaches a maximum
in girls at the age of 13 and thereafter decreases.

80

90

100

110

12 13 14
age

male

female

Figure 10.9 Graphical illustration of the interaction effect in Example 10.11.
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Doctor Occasionally in two-way (and multi-way) analyses of variance, the special case
of having n = 1 arises; i.e. only one outcome (of only a single research unit) per
combination of factor levels occurs. In such an instance, the interaction between
two (or even more) factors can no longer be estimated. Apart from that the analysis
can be performed completely analogously. If there is, however, still interest in
the interaction, there are special approaches in two-way analysis of variance that
will not be described here (see Rasch, Rusch, Šimečková, Kubinger, Moder &
Šimeček, 2009).

In model I the null hypothesis regarding the main effect of factor A, H0(A), has to be tested
with the following test statistic:

F A = MSA

MSres
(10.5)

It is F-distributed with df 1 = a − 1 and df 2 = ab(n − 1) degrees of freedom. Given the
null hypothesis is true, MSA as well as s2 = σ̂ 2 = MSres estimate the variance of y and e,
respectively; MSA depends on the variance of the means of all levels Ai, i = 1, 2, . . . , a.

The null hypothesis regarding the main effect of factor B, H0(B), has to be tested with the
following test statistic:

FB = MSB

MSres
(10.6)

It is F-distributed with df 1 = b − 1 and df 2 = ab(n − 1) degrees of freedom. Given the null
hypothesis is true, MSB and MSres estimate the variance of y and e, respectively. MSB depends
on the variance of the means of all levels Bj, j = 1, 2, . . . , b.

The null hypothesis regarding the interaction effect A × B, H0(A × B), has to be tested
with the following test statistic:

F AB = MSAB

MSres
(10.7)

It is F-distributed with df 1 = (a – 1)(b – 1) and df 2 = ab(n − 1) degrees of freedom.
Given the null hypothesis is true, MSAB as well as MSres estimate the variance of y and
e, respectively. MSAB depends on the variance of the means of all combinations of factor
levels AiBj.

Planning a study, i.e. the determination of the necessary sample size, can basically be done
analogously to Section 10.4.1.1, but it has to be decided which of the three null hypotheses is
in the limelight and of primary interest. The R-package OPDOE provides all variants. Again,
the sample size is determined primarily for the worst case; i.e. the case which leads to the
largest size for given precision requirements. And again, it is optimal in the sense of the
smallest possible sample size, if there are equal sizes in all samples, i.e. nij = n.

Example 10.12 The influence of a child’s native language and sex on its test score on the
subtest Applied Computing, 1st test date will be investigated (Example 1.1)
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Native language of the child (factor A) and sex of the child (factor B) are fixed factors,
both with two levels each; i.e. a = b = 2. We decide on α = 0.05, β = 0.10, and δ = 0.67σ .
Of interest is primarily the interaction, for which the sample size will be determined.

In R, the package OPDOE is used to calculate the sample size (see Example 10.2 as well).
Thus, we type

> size_n.two_way_cross.model_1_axb(alpha = 0.05, beta = 0.1,
+ delta = 0.67, a = 2, b = 2,
+ cases = "maximin")

i.e. we apply the function size_n.two_way_cross.model_1_axb, using as argu-
ments the precision requirements α = 0.05, β = 0.10, and δ = 0.67σ (with delta =
0.67). Furthermore, we put the number of factor levels a = b = 2 by using a = 2 and
b = 2 as arguments, and, with cases = "maximin", we request the calculation of
the sample size for the worst case.

[1] 48

Therefore, 48 persons have to be investigated in each of the four cells; as already mentioned,
planning the study of Example 1.1 was done with regard to another research question; thus,
in particular equal sample sizes cannot be obtained here.

The analysis is primarily about the null hypothesis H0(A × B): ‘There is no interaction
between the child’s native language and sex regarding its test score on the subtest Applied
Computing, 1st test date’ (all (ab)ij are equal to zero). Additionally, there is of course also
interest in the null hypotheses H0(A): ‘The mean test scores on the subtest Applied Computing,
1st test date do not differ between the levels of the factor native language of the child
(“German” vs. “Turkish”)’ (all ai are equal to zero), as well as H0(B): ‘The mean test scores
on the subtest Applied Computing, 1st test date do not differ between the levels of the factor
sex of the child (“male” vs. “female”)’ (all bj are equal to zero).

We first have to examine to what extent the standard deviations of all combinations of
factor levels differ.

In R, we type

> tapply(sub3_t1[native_language == "German"],
+ sex[native_language == "German"], sd)
> tapply(sub3_t1[native_language == "Turkish"],
+ sex[native_language == "Turkish"], sd)

i.e. we apply the function tapply() and use the character Applied Computing, 1st test
date with sub3_t1 as the first argument. As the second argument, we use sex of the
child (sex), and as the third one the statistic which is to be calculated separately for the
different categories of the character sex of the child, thus sd. With [native_language
== "German"] and [native_language == "Turkish"], we specify that the
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respective analyses are to be conducted for children with German, and children with
Turkish, as a native language.

As a result, we get:

female male
7.916228 7.563729

female male
8.013114 8.784456

In SPSS, we split the data file based on the characters native language of the child and sex
of the child. To do this, we select the sequence of commands (Data – Split File. . .) as shown
in Example 5.11, and reach the window shown in Figure 5.23. There, we choose Compare
groups and drag and drop the characters native language of the child as well as sex of the child
to the field Groups Based on:. Now, we click OK and select the next sequence of commands
(Analyze - Descriptive Statistics - Frequencies. . .) analogously to Example 5.2. We reach the
window shown in Figure 5.4, where we drag and drop the character Applied Computing, 1st
test date to the field Variable(s):. Next, we click Statistics. . . and tick Std. deviation in the
section Dispersion. After a click on Continue and OK, we obtain Table 10.13.

Table 10.13 SPSS-output of the standard deviations in Example 10.12 (shortened output).

Valid

Missing

Std. Deviation

N

Valid

Missing

Std. Deviation

N

female

male

Valid

Missing

Std. Deviation

N

Valid

Missing

Std. Deviation

N

female

male

German

Turkish

8.784

0

25

8.013

0

25

7.564

0

25

7.916

0

25

Statistics

Applied Computing, 1st test date (T-Score)

Now, we go back to the window shown in Figure 5.23, where we tick Analyze all cases,
do not create groups. Clicking OK, we make sure that all further analyses are done for the
overall sample again.

The ratio of largest to smallest standard deviation is 8.784 / 7.564 = 1.161 < 1.5; i.e.
the plausible limit according to the rule of thumb (see above). The application of a two-way
analysis of variance seems, therefore, to be justified.
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In R, we type

> aov.4 <- aov(sub3_t1 ˜ native_language * sex)
> summary(aov.4)

i.e. we use the same function as in Example 10.8. The analysis is now conducted for the
character Applied Computing, 1st test date (sub3_t1) with regard to the two factors
native language of the child (native_language) and sex of the child (sex). Using the
connection ‘*’ between the two characters, both of the main effects and the interaction
effects are tested. We assign the result to the object aov.4, which we submit to the
function summary().

As a result, we get:
Df Sum Sq Mean Sq F value Pr(>F)

native_language 1 90.3 90.250 1.3818 0.2427
sex 1 0.2 0.250 0.0038 0.9508
native_language:sex 1 4.4 4.410 0.0675 0.7955
Residuals 96 6270.1 65.313

In SPSS, we select the same sequence of commands (Analyze – General Linear Model –
Univariate. . .) as in Example 10.8. In the resulting window shown in Figure 10.7, we drag
and drop the character Applied Computing, 1st test date to the field Dependent Variable:.
The factors native language of the child and sex of the child are dragged and dropped to the
field Fixed Factor(s):. Next, we click Options . . . and reach the window shown in Figure 10.8,
where we tick Descriptive statistics. After clicking Continue and OK, we get the result shown
in Table 10.14 as well as (again) the standard deviations shown in Table 10.13.

Table 10.14 SPSS-output of the table of variances of the two-way analysis of variance
(model I) in Example 10.12.

Sig.FMean Squaredf
Type III Sum
of Squares

Corrected Model

Intercept

native_language

sex

native_language * sex

Error

Total

Corrected Total 996364.990

100261289.000

65.313966270.080

.796.0684.41014.410

.951.004.2501.250

.2431.38290.250190.250

.0003903.093254924.0101254924.010

.694.48431.637394.910
a

Source

Tests of Between-Subjects Effects

Dependent Variable:Applied Computing, 1st test date (T-Score)

a. R Squared = .015 (Adjusted R Squared = -.016)

None of the three null hypotheses have to be rejected.
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Doctor

The analysis is more complicated if some of the frequencies for the combinations
of factor levels in the data structure of Table 10.9 are zero. We will not discuss
planning the study here, as it is mostly possible – if there is planning at all –
to obtain (equal) cell frequencies. So, the following will be about a case where
there was no (appropriate) planning and therefore zero frequencies of individual
combinations of factor levels simply ‘happen’. However, as long as we have
a connected cross classification in the sense of a connected block design (see
Section 7.2.2), the analysis can be done rather simply using approximations from
computer programs.

In SPSS, we can choose four different ways of calculating the sums of squares; namely
from type I to type IV. Type III is appropriate for complete cross classifications; this is
in fact the standard setting. Type IV should be used for incomplete cross classifications
(with interactions). Type I and II are used for nested and mixed (three-way or multi-way)
classifications. Moreover, if there are unequal cell frequencies, SPSS always automatically
uses that type which suits best. In R (standard package) type I is always used, leading in the
case of equal cell frequencies to the same result as type III.

Master
Doctor

Example 10.13 Do the test scores in the subtest Applied Computing, 1st test date
differ depending on the combination of social status and marital status of the
mother? (Example 1.1)

The respective null hypotheses are as follows. H0(A): ‘The mean test scores
in the subtest Applied Computing, 1st test date do not differ between the levels
of the factor marital status of the mother’ (all ai are equal to zero). H0(B): ‘The
mean test scores in the subtest Applied Computing, 1st test date do not differ
between the levels of the factor social status’ (all bj are equal to zero). H0(A × B):
‘There is no interaction between marital status of the mother and social status
regarding the mean test scores in the subtest Applied Computing, 1st test date’
(all (ab)ij are equal to zero). Both factors are again fixed – there is only interest
in these factor levels. During the analysis we find out about the cell frequencies
of all combinations of factor levels.

In R, we create a two-dimensional frequency table by typing

> table(social_status, marital_mother)

i.e. we submit the characters social status (social_status) and marital status of the
mother (marital_mother) as arguments to the function table().

As a result, we get a table which is essentially identical with the one shown in
Table 10.15.

In SPSS, we create Table 10.15 via Analyze – Descriptive Statistics - Crosstabs. . . , proceed-
ing analogously to Example 5.13.
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Table 10.15 SPSS-output of the two-dimensional frequency table in Example 10.13.

widoweddivorcedmarriednever married Total

marital status of the mother

upper classes

middle classes

lower middle class

upper lower class

lower classes

single mother in
household

Total

social status (after
Kleining & Moore
according to occupation of
father/alternatively of the
single mother)

100422659

122703

50320

1603130

2515181

3002244

121281

social status (after Kleining & Moore according to occupation of father/alternatively of the single mother)*
marital status of the mother Crosstabulation

Count

As we can see, there are several empty cells. There is no interaction (ab)ij defined
for the corresponding combinations of factor levels AiBj. However, one can easily
prove that the classification is connected in the sense of Section 7.2.2. For example,
it is possible without having to skip empty cells to get from ‘never married’, ‘upper
classes’ (in the row ‘upper classes’) to ‘divorced’ (in the column ‘divorced’) and
from there to ‘single mother in household’, and finally (in the row ‘single mother
in household’) to ‘widowed’.

Before we actually apply analysis of variance, we again examine the ratio
of the largest to the smallest standard deviation; but we only want to use those
combinations of factor levels that are at least populated with 10 observations –
conspicuous extreme values in the others could have easily occurred by chance.
Both in R and SPSS, these standard deviations can be determined completely
analogously to Example 10.12. The result is 9.456 / 7.715 = 1.226 < 1.5, which
is the plausible limit according to the rule of thumb (see above). Therefore the
application of the analysis of variance seems to be justified.

In R, we type

> aov.5 <- aov(sub3_t1 ˜ marital_mother * social_status)
> summary(aov.5)

i.e. we apply the function aov() and use as argument the formula sub3_t1 ˜ mar-
ital_mother *social_status. Thus, the character Applied Computing, 1st test
date (sub3_t1) is to be analyzed with regard to the factors marital status of the mother
(marital_mother) and social status (social_status). Using the connection ‘*’
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between the two factors, all main effects and the interaction effect are tested. We assign the
result of the analysis to the object aov.5. Finally, we submit this object to the function
summary() in order to obtain a summary of the results (shortened output):

Df Sum Sq Mean Sq F value Pr(>F)
marital_mother 3 116.0 38.678 0.6116 0.60936
social_status 5 759.8 151.963 2.4031 0.04376
marital_mother:social_status 9 303.9 33.762 0.5339 0.84584
Residuals 82 5185.3 63.235

In SPSS, we proceed analogously (Analyze – General Linear Model – Univariate. . .) to
Example 10.12, but now we first click Model . . . in the window shown in Figure 10.7. In the
resulting window (Figure 10.10), we select Type IV in the pull-down menu Sum of squares:,
as this is preferable in the case that vacant cells exist (see above). Clicking Continue gets
us back to the window shown in Figure 10.7, where we drag and drop the character Applied
Computing, 1st test date to the field Dependent Variable:. In addition, we drag and drop
the factors social status and marital status of the mother to the field Fixed Factor(s):. After
clicking OK, we get the result shown in Table 10.16.

Figure 10.10 SPSS-window for selecting between Type I to IV methods of calculation of
the sum of squares in two-way (and multiple) analysis of variance.
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Table 10.16 SPSS-output of table of variances in two-way analysis of variance (model I)
in Example 10.13.

Sig.FMean Squaredf
Type IV Sum
of Squares

Corrected Model

Intercept

social_status

marital_mother

social_status *
marital_mother

Error

Total

Corrected Total 996364.990

100261289.000

63.235825185.287

.846.53433.7629303.857

.646.55635.1543105.462
b

.818.44227.9435139.716
b

.0001641.552103803.8891103803.889

.3711.09769.394171179.703
a

SourceSource

Tests of Between-Subjects Effects

Dependent Variable:Applied Computing, 1st test date (T-Score)

a. R Squared = .185 (Adjusted R Squared = .016)
b. The Type IV testable hypothesis is not unique.

There are major differences between the results provided by R and SPSS. This is
because R (without additional programming of one’s own) currently still does not
calculate using type IV sums of squares like SPSS, but instead uses type I. For
that reason, in this example we base our interpretation on the results of SPSS:
not a single one of the three null hypotheses has to be rejected.

In particular, if the interaction were significant, i.e. the corresponding null
hypothesis were to be rejected, it would be possible to illustrate this graphically.

In R, we type

> windows(width = 8.5, height = 6)
> interaction.plot(marital_mother, social_status, sub3_t1,
+ type = "b", ylim = c(35, 65))

i.e. we first open an output window with a width of 8.5 inches and a height of 6
inches by applying the function windows(). We continue by applying the function
interaction.plot(), to which we submit the character marital status of the mother
(marital_mother) as the first argument, the character social_status as the sec-
ond one, and the character Applied Computing, 1st test date (sub3_t1) as the third one.
With type = "b" we request lines as well as labeling (with numbers), and with ylim
= c(35, 65) we define the range of values to be presented; that is 35 to 65.

As a result, we get Figure 10.11a.
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never married married divorced widowed

social_status

lower middle class
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upper lower class
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middle classes
single mother in household
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Figure 10.11a Exemplification of the interaction in Example 10.13.

In SPSS, we click Plots. . . in the window shown in Figure 10.7. As a consequence, the
window shown in Figure 10.12 appears. There, we drag and drop the factor marital_mother
to the field Horizontal Axis: and the factor social_status to the field Separate Lines:. Then,
we click Add and Continue, followed by OK, in order to create the diagram, which is shown
in Figure 10.11b. In the given example, the apparent differences are not significant and thus
are not to be overvalued.

Figure 10.12 SPSS-window to create a graph of interactions.
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lower middle class
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Figure 10.11b Exemplification of the interaction in Example 10.13.

10.4.4.2 Cross classification – model II

Model II rarely plays a role in psychology. But where it is important, the erroneous application
of model I would often lead to incorrect results, because the corresponding F-tests would be
incorrect.

Master
Doctor

The data structure is entirely analogous to model I (see Table 10.9). The difference
is that a population of factor levels is given for levels of both A and B, in which
the actual levels of the study stem from a random sampling method. For model
II of analysis of variance (both factors are random), the model equation for cross
classification (in the case of equal cell frequencies) is:

yi jv = μ + ai + b j + (ab)i j + eijv (i = 1, . . . , a; j = 1, . . . , b; v = 1, . . . , n)

(10.8)

In this equation all terms are interpreted analogously to those in Formula (10.4),
with the exception that all effects are random variables. Also analogous to model
I, an interaction effect is defined only if there is at least one outcome in the
combination of factor levels AiBj.
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For the derivation of hypothesis testing the following is required in addition
to the model I assumptions:

� E(ai) = E(bj) = E((ab)ij) = E(eijv) = 0 for all i, j, v.

� The variances of ai, bj, and (abij) are each the same: σ 2
a , σ 2

b , and σ 2
ab.

� All random variables on the right side of the model equation are independent
of each other.

The hypotheses are as follows:

H0(A): σ 2
a = 0; HA: σ 2

a > 0

H0(B): σ 2
b = 0; HA: σ 2

b > 0

H0(A × B): σ 2
ab = 0; HA: σ 2

ab > 0.

In the case of equal cell frequencies per combination of factor levels, there exist
the following exact tests. They can be derived from Table 10.11; we recognize
that, unlike in model I, the F-test does not, for all three null hypotheses, relate the
respective mean squares (MSA, MSB, and MSAB) to that of the ‘residual’ (MSres);
instead for both main effects the F-test has to be related to the mean square of the
interaction effect (MSAB).

Given unequal cell frequencies, the Satterthwaite procedure is notable, which,
however, only leads to an approximately F-distributed test statistic.

There is no program package in R for planning the study.
We do not give an example at this point; however, the whole procedure is

suitably illustrated by an example of three-way analysis of variance (see Sec-
tion 10.4.7).

10.4.4.3 Cross classification – mixed model

The mixed model also plays only a minor role in psychology. However, where it is important,
the erroneous application of model I would lead to incorrect results, because the respective
F-tests would be wrong.

Master
Doctor

The data structure is again completely analogous to model I (see Table 10.9). The
difference is that, for example, the levels of A are fixed, but those of B are drawn
from a population of factor levels; that is specifically for the particular study using
a random sampling method. For the mixed model of analysis of variance (factor
A is fixed, factor B is random) the model equation for cross classification (in the
case of equal cell frequencies) is:

yijv = μ + ai + b j + (ab)ij + eijv (i = 1, . . . , a; j = 1, . . . , b; v = 1, . . . , n)

(10.9)

The terms of this equation are equivalent to all the abovementioned. Again, the
interaction is only defined for those combinations of factor levels for which
outcomes exist.
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For derivation of hypothesis testing, in addition to the model I assumptions
the following apply:

� E(bj) = E((ab)ij) = E(eijv) = 0 for all i, j, v.

� The variances of bj and (abij) are each the same: σ 2
b and σ 2

ab.

� All random variables on the right side of the model equation are independent
of each other.

The hypotheses are as follows:

H0(A): ai = 0 for all i; HA: ai �= al for at least one i �= l; with
∑a

i=1 ai = 0

H0(B): σ 2
b = 0; HA: σ 2

b > 0

H0(A × B): σ 2
ab = 0; HA: σ 2

ab > 0.

There are exact tests in the case of equal cell frequencies. These can be derived
from Table 10.11; we recognize that, unlike in model I, the F-test does not, for all
three null hypotheses, relate the respective mean squares (MSA, MSB, and MSAB)
to that of the ‘residual’ (MSres); instead, for the main effect of the fixed factor A
the F-test has to be related to the mean square of the interaction effect (MSAB).

Given unequal cell frequencies, the Satterthwaite procedure is notable, but
only leads to an approximately F-distributed test statistic.

Planning a study design, i.e. the determination of the necessary sample size,
can only be done with regard to hypothesis testing of the fixed factor A. This is
not to determine the necessary cell frequency – in fact it can be specified as small
as possible with n = 2 – but instead the number of levels of the random factor
which have to be sampled. We do not give an example here (for this see Rasch,
Pilz, Verdooren, & Gebhardt, 2011).

10.4.4.4 Nested classification – all models

A fundamentally different data structure than that found in Table 10.9 results from a nested
classification; i.e. if there is no cross classification. Table 10.17 illustrates this data structure.

Table 10.17 Data structure of a two-way analysis of variance with nested classification
(nij = n > 1).

Levels of A A1 A2 . . . Aa

Levels of B B11 B12 . . . B1b B21 B22 . . . B2b . . . Ba1 Ba2 . . . Bab

y111 y121 . . . y1b1 y211 y221 . . . y2b1 . . . ya11 ya21 . . . yab1

y112 y122 . . . y1b2 y212 y222 . . . y2b2 . . . ya12 ya22 . . . yab2
...

...
...

...
...

...
...

...
...

...
...

...
...

y11n y12n . . . y1bn y21n y22n . . . y2bn . . . ya1n ya2n . . . yabn

It is factor B which is nested in factor A (that is, B ≺ A). The difference between cross
classification and nested classification is that in nested classification not all b factor levels of
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factor B are combined with all a factor levels of factor A, but instead always b other (generally
even: bi other) levels of B are combined with a certain level Ai of A. The random variable yijv

is therefore the vth observation in Bij. An interaction is thereby understandably not defined.

Master
Doctor

The following model equations are due to the four different models I, II, and (two)
mixed models – with the mixed model we must distinguish between the two cases
that either A is fixed and B is random or that A is random and B is fixed.

yijk = μ + ai + bij + eijv(i = 1, . . . , a; j = 1, . . . , bi ; v = 1, . . . , nij) (10.10)

yijk = μ + ai + bij + eijv(i = 1, . . . , a; j = 1, . . . , bi ; v = 1, . . . , nij) (10.11)

yijk = μ + ai + bij + eijv(i = 1, . . . , a; j = 1, . . . , bi ; v = 1, . . . , nij) (10.12)

yijk = μ + ai + bij + eijv(i = 1, . . . , a; j = 1, . . . , bi ; v = 1, . . . , nij) (10.13)

In these equations, μ is the total mean, the terms ai and ai, respectively, are the
effects of the individual factor levels Ai of A, the main effects of A; bij and bij,
respectively, are the effects of factor level Bij of B within Ai. If nij = n is valid for
all Bij and if bi = b, we talk about a balanced case. The equations show that no
interaction effects are modeled.

For derivation of hypothesis testing, it must generally be assumed:

� The eijv are normally distributed according to N (0, σ 2); i.e. with the same
expected value 0 and equal variance σ 2.

� The eijv are independent of each other.

� a ≥ 2 and b ≥ 2.

The analysis of variance table is equal for all models (see Table 10.18); the model-
specific column E(MS) of the theoretical analysis of variance table is shown in
Table 10.19.

Table 10.18 Analysis of variance table for two-way nested classification – balanced case.

Source of variation SS df MS

Factor A SSA =
a∑

i=1

b∑

j=1

n∑

v=1
( ȳi − ȳ)2 a – 1 MSA = SSA

a−1

Factor B within factor A SSB in A =
a∑

i=1

b∑

j=1

n∑

v=1
( ȳi j − ȳi )2 ab – a MSB in A = SSB in A

ab−a

Residual SSres =
a∑

i=1

b∑

j=1

n∑

v=1
( yi jv − ȳi j )2 N – ab MSres = SSres

N−ab

Total SSt =
a∑

i=1

b∑

j=1

n∑

v=1
( yi jv − ȳ)2 N – 1
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Table 10.19 Expected values of the mean squares E(MS) for the models of two-way nested
classification – balanced case; σ 2

a and σ 2
b in a are the variance components per factor level.

Source of
variation Model I Model II

Mixed model
(A fixed,
B random)

Mixed model
(A random,
B fixed)

Factor A σ 2 + bn
a−1

∑

i
a2

i σ 2 + nσ 2
b in a

+ bnσ 2
a

σ 2 + nσ 2
b in a

+ bn
∑a

i=1 a2
i

a−1

σ 2 + bnσ 2
a

Factor B
within
factor A

σ 2 + n
a(b−1)

∑

i, j
b2

i j σ 2 + nσ 2
b in a σ 2 + nσ 2

b in a σ 2 + n
∑a

i=1

∑b
j=1 b2

i j

a(b−1)

Residual σ 2 σ 2 σ 2 σ 2

Nothing further has to be presumed for model I for the derivation of hypoth-
esis testing; but we (again) assume the following arbitrary reparameterization:∑a

i=1 ai = 0 and
∑b

j=1 bi j = 0 for all i. For model II, the following must also be
assumed:

� E(ai) = E(bij) = 0 for all i, j.

� The variances of ai and bij are each the same: σ 2
a and σ 2

b in a .

� All the random variables are independent of each other; in particular eijv are
independent of ai and bij.

For the mixed model (A fixed, B random), the following must also be assumed in
addition to model I:

� E(bij) = 0 for all i, j.

� The variances of bij are the same: σ 2
b in a .

� The random variables are independent of each other; i.e. eijv independent
of bij.

And for the mixed model (A random, B fixed), it must be assumed additionally to
model I:

� E(ai) = 0 for all i.

� The variances of ai are the same: σ 2
a .

� The random variables are independent of each other; i.e. eijv independent
of ai.

The hypotheses for all four types of models are now clearly summarized in Table
10.20.
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Table 10.20 The hypotheses of the four types of models for a two-way analysis of variance
with nested classification (nij = n > 1).

Null hypothesis H0 Alternative hypothesis HA

Factor A B A B
Model

I ai = 0 for all i bij = 0 for all i, j ai �= al for at
least one i �= l

bij �= bil for at
least one j �= l

II σ 2
a = 0 σ 2

b in a = 0 σ 2
a > 0 σ 2

b in a > 0

Mixed (A fixed,
B random)

∗
ai = 0 for all i σ 2

b in a= 0 ai �= al for at
least one i �= l

σ 2
b in a > 0

Mixed
(A random,
B fixed)

∗∗

σ 2
a = 0 bij = 0 for all i, j σ 2

a > 0 bij �= bil for at
least one j �= l

∗ with
∑a

i=1 ai = 0.

∗∗ with
∑b

j=1 bi j = 0.

There are exact tests for the case of equal cell frequencies; they can be derived
from Table 10.19. It can be recognized that the F-test does not relate, for all models
and both null hypotheses, the respective mean squares to that of the ‘residual’.
Instead, for model II and for the mixed model (A fixed, B random), the F-test for
the main effect of factor A has to use the mean squares with respect to the main
effect of B (within A) as the denominator.

Given unequal cell frequencies, the Satterthwaite procedure is notable, but
only leads to an approximately F-distributed test statistic.

Planning the study, i.e. the determination of the necessary sample size, can
only be done with regards to hypothesis testing of a fixed factor. Planning a
study regarding hypothesis testing for a random factor has not (yet) been realized
in R. For the models of Formula (10.10) and (10.13), the cell frequency n is
calculated in accordance with the precision requirements. In contrast, it is not the
cell frequency which is determined for the model of Formula (10.12) – it can be
chosen as small as possible with n = 2 – but instead the number of sampled levels
of factor B within each level of factor A. We do not give an example here (for this
see Rasch, Pilz, Verdooren, & Gebhardt, 2011).

Master
Doctor

Example 10.14 The extent of differences in the effectiveness of psychotherapists
will be examined in dependence of their sex.

In an extension of the research question in Example 10.8, the extent of differ-
ences in the effectiveness of psychotherapists will be investigated more accurately
in dependence of their sex. The sample of a = 22 psychotherapists is stratified; in
fact, there were 11 psychotherapists selected from the stratification group ‘male’
as well as 11 from the stratification group ‘female’. Thus, the sex of the thera-
pist represents factor A, which is a fixed factor. The different psychotherapists
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represent the 11 levels of the nested factor therapist, B, which still is a random
factor. Therefore, this is the mixed model (A fixed, B random) of the two-way
nested classification. The ‘planning’, which happens just now, after the fact of
given data, provides the following insight. If interest is primarily about the null
hypothesis regarding factor A, the sex of the therapist, then the sample size n of
the clients (per cell) does not occur in the degrees of freedom of the respective
F-test (MSA has to be related to MSB in A); thus, planning the study is just about
determining b; namely the number of psychotherapists per factor level of A. Thus,
the sample size has to be only n > 1; so, n = 2 would be sufficient. We decide
on: α = 0.05, β = 0.20, and δ = 1σ .

In R, we load the package OPDOE and type

> size_b.two_way_nested.b_random_a_fixed_a(alpha = 0.05,
+ beta = 0.2,
+ delta = 1, a = 2,
+ cases = "maximin")

i.e. we apply the function size_b.two_way_nested.b_random_a_fixed_a and
use successively the arguments for α = 0.05, β = 0.20, and δ = 1σ (delta = 1). With a
= 2, we determine the number of levels of the factor A, and withcases = "maximin"
we request the calculation of the sample size for the worst case.

As a result, we get:

[1] 17

The calculated number of psychotherapists per sex, b = 17, comes up short in the
given data.

We want to examine the presumption of variance homogeneity in accor-
dance with the abovementioned rule of thumb. We proceed in correspondence
with Example 10.8. The proportion of largest to smallest standard deviation is
2.875 / 2.021 = 1.422 < 1.5, the plausible limit. Therefore the application of
analysis of variance seems to be justified.

In R, to conduct the analysis we type

> aov.6 <- aov(effect ˜ sex_ther + Error(therapist))
> summary(aov.6)

i.e. we apply the function aov() and request the analysis of the character effectiveness
(effect) with regard to the (fixed) factor sex of the therapist (sex_ther) and the ran-
dom (Error(therapist)) factor therapist. The result of this analysis is assigned
to the object aov.6, which we submit to the function summary().

As a result, we get:

Error: therapist
Df Sum Sq Mean Sq F value Pr(>F)
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sex_ther 1 0.10 0.0983 0.0051 0.9438
Residuals 20 386.29 19.3147
Error: Within

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 566 3247.5 5.7376

Regarding the main effect of the factor therapist (therapist), we manually calculate
the F-value of interest, namely F = 19.3147 / 5.7376 = 3.366, with df1 = 20 and df 2 =
566 degree of freedom. Now, we can determine the critical value F(20, 566: 0.99) = 1.91
by consulting Table B4 in Appendix B. Alternatively, we can calculate the p-value which
corresponds to the value F = 3.366 using R, in the following way:

> pf(3.366, df1 = 20, df2 = 566, lower.tail = FALSE)

i.e. we apply the function pf() and use as the first argument the observed F value of
3.366. As the second and third argument we use the degrees of freedom df1 and df 2. With
lower.tail = FALSE, we request the corresponding p-value.

As a result, we get:

[1] 1.347957e-06

In SPSS, we proceed in the same way (Analyze – General Linear Model – Univariate. . .) as
in Example 10.8, and in the window shown in Figure 10.7, we additionally drag and drop the
factor sex_ther to the field Fixed Factor(s):. After a click on Model. . . , the window shown
in Figure 10.10 appears. In the pull-down menu Sum of squares:, we select Type I, which is
appropriate for the calculation of a nested classification. A click on Continue gets us back to
the previous window. Next, we click Paste and change the last line in the appearing window,
which contains SPSS-syntax, to the last one shown in Figure 10.13, to adjust it for nested
classification. In order to conduct the analysis, we select All in the pull-down menu Run and
obtain the result shown in Table 10.21.

Figure 10.13 SPSS-syntax for Example 10.14.
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Table 10.21 SPSS-output of the table of variances for the two-way analysis of variance
with nested classification (mixed model) in Example 10.14.

Sig.FMean Squaredf
Type I Sum of

Squares

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Intercept

sex_ther

therapist(sex_ther)

5.738
c

5663247.474

.0003.36619.31520386.294

19.685
b

19.686387.512

.944.005.0981.098

19.685
a

19.686387.512

.000757.34214908.014114908.014

Sour Source ce

Tests of Between-Subjects Effects

Dependent Variable:effectiveness

a. 1.027 MS(therapist(sex_ther)) - .027 MS(Error)
b. 1.027 MS(therapist(sex_ther)) - .027 MS(Error)
c. MS(Error)

We realize that the sex of the psychotherapist has no significant influence on the
effectiveness of the therapy. However, the effect of the psychotherapist is of course
significant, as it is in Example 10.8. Certain psychotherapists are, therefore, more
effective than others.

As already mentioned several times, most recently in Section 10.4.1.1, we often have two
outcomes for each research unit, which are statistically interpreted as each stemming from
an individually modeled random variable, but with respect to content describe the same thing
(bear the example in mind that some treatment effects should be ascertained with a pre and
post design). Of course, the repeatedly described procedure is also the simplest solution for
cases with the data structure of a two-way (or even any multi-way) analysis of variance: given
interval-scaled characters, the data are transformed into a single character as the difference
of the respective pair of outcomes and then further calculations are continued with them. If
there are, however, more than just two observations per research unit, this procedure does
not work. Formally, the study design has to be ‘redefined’. Suppose we have a data structure
such as a one-way analysis of variance (see Table 10.1), except that now the given outcome
observations stem, row for row by line, over all factor levels of factor A, from the same
research unit (person) v (bear in mind that, up to now, there was always a different research
unit v for each factor level). Then these persons 1, 2, . . . , n represent the factor levels of a
second factor, B, which is random in any case: we must indeed assume further on that the
research units were drawn by a random sample procedure and that there is not just interest in
the actual sampled research units. That is, it is only ‘pretended’ that the data structure is that
of a one-way analysis of variance, but the given data structure has to be understood formally
as a two-way analysis of variance. The analysis is thereby resolved (but see also Section 13.3).
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10.4.5 Two-way analysis of variance for ordinal-scaled
characters

Non-parametric analogues of two-way analysis of variance for both cross classification and
nested classification can be found in Brunner & Munzel (2002). They are particularly ap-
propriate for ordinal-scaled characters, but they are not yet counted as standard procedures
and can only be performed using the computer program SAS (www.sas.com), which is not
discussed in this book. So, when there is a data structure of a two-way analysis of variance
for an only ordinal-scaled character, we recommend using an H-test for each factor separately
and not testing the interaction effect, if the reader does not want to familiarize him/herself
with that computer program.

10.4.6 Bivariate comparison of two nominal-scaled factors

If there are two qualitative factors, in particular two nominal-scaled factors, and if one con-
siders the observed frequencies per combination of factor levels (in one sample), then there
is basically no other data structure than the one discussed in Section 10.4.3. The hypothe-
ses H0 and HA stated there can now be interpreted in a different way; namely H0: pij =
plj regarding all factor levels j of a factor B (in Section 10.4.3, it was measurement val-
ues of the multi-categorical character of interest) in all i = 1, 2, . . . , a factor levels of a
factor A (it was samples in Section 10.4.3), or respectively in all pairs of factor levels i
and l; and HA: pij �= plj for at least one j and one pair of factor levels i and l, respec-
tively. Thus, these hypotheses refer exactly to the interaction of A and B. If we abstain
from an exact test and consequently work with the test statistic of Formula (9.3), we would
therefore not have to distinguish between model I, model II, and the mixed model. Main
effects that are possibly of interest have to be tested separately with the test statistic of
Formula (8.11).

10.4.7 Three-way analysis of variance

In three-way analysis of variance, in addition to factor A with the levels A1, A2, . . . , Aa and
factor B with the levels B1, B2, . . . , Bb, we consider a third factor, C, with the levels Ck,
i.e. C1, C2, . . . , Cc. Again, the levels of the three factors can be combined in two ways,
either according to a cross classification or according to a nested classification. It is of course
possible that some combinations of factor levels do not occur; in particular it does not always
have to be the case that nijk = n. The outcomes of the random variables yijkv are then yijkv, i = 1,
2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , c; v = 1, 2, . . . , nijk. Besides the obvious generalization
of cross classification and nested classification, there are two mixed classifications in which
both cross classification and nested classification are given. This means there exists the case
of the cross classification A × B × C, and the case of the nested classification A � B � C
as well as the two mixed classifications (A × B) � C and (A � B) × C . It should be noted
that each of these cases can be given as model I, model II, or as a mixed model. Table 10.22
summarizes all variants.
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Table 10.22 Classifications in combination with the models of
three-way analysis of variance. ‘×’ indicates a cross
classification, ‘�’ a nested classification; bold notation indicates
a random factor, otherwise fixed factors are represented.

A × B × C
A × B × C
A × B × C
A × B × C
A � B � C
A � B � C
A � B � C
A � B � C
A � B � C
A � B � C
A � B � C
A � B � C

(A × B) � C
(A × B) � C
(A × B) � C
(A × B) � C
(A × B) � C
(A × B) � C
(A � B) × C
(A � B) × C
(A � B) × C
(A � B) × C
(A � B) × C
(A � B) × C
(A � B) × C
(A � B) × C

Doctor Model equations for the different types of classifications and models of three-way
analysis of variance are given in Table 10.23.

Table 10.23 Model equations for all classifications in combination with model I, model II,
and mixed model in three-way analysis of variance; the factor levels of nested factors are set
in the index in brackets.

Structure Model equation

A × B × C yijkv = μ + ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + eijkv

A × B × C yijkv = μ + ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + eijkv

A × B × C yijkv = μ + ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + eijkv

A × B × C yijkv = μ + ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + eijkv

A � B � C yijkv = μ + ai + bj(i) + ck(ij) + eijkv
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Table 10.23 (Continued)

Structure Model equation

A � B � C yijkv = μ + ai + bj(i) + ck(ij) + eijkv

A � B � C yijkv = μ + ai + bj(i) + ck(ij) + eijkv

A � B � C yijkv = μ + ai + bj(i) + ck(ij) + eijkv

A � B � C yijkv = μ + ai + bj(i) + ck(ij) + eijkv

A � B � C yijkv = μ + ai + bj(i) + ck(ij) + eijkv

A � B � C yijkv = μ + ai + bj(i) + ck(ij) + eijkv

A � B � C yijkv = μ + ai + bj(i) + ck(ij) + eijkv

(A × B) � C yijkv = μ + ai + bj + (ab)ij + ck(ij) + eijkv

(A × B) � C yijkv = μ + ai + bj + (ab)ij + ck(ij) + eijkv

(A × B) � C yijkv = μ + ai + bj + (ab)ij + ck(ij) + eijkv

(A × B) � C yijkv = μ + ai + bj + (ab)ij + ck(ij) + eijkv

(A × B) � C yijkv = μ + ai + bj + (ab)ij + ck(ij) + eijkv

(A × B) � C yijkv = μ + ai + bj + (ab)ij + ck(ij) + eijkv

(A � B) × C yijkv = μ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv

(A � B) × C yijkv = μ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv

(A � B) × C yijkv = μ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv

(A � B) × C yijkv = μ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv

(A � B) × C yijkv = μ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv

(A � B) × C yijkv = μ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv

(A � B) × C yijkv = μ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv

(A � B) × C yijkv = μ + ai + bj(i) + ck + (ac)ik + (bc)j(i)k + eijkv

We do not deal with the assumptions for the derivation of hypothesis testing in
detail; they are analogous to the previous tracts. We will also not give explicitly the
hypotheses themselves or the empirical and theoretical analysis of variance tables,
from which the F-tests would be derived directly (but see Rasch, Herrendörfer,
Bock, Victor, & Guiard, 2008). Rather, we want to lead the reader over to the
software programs, which will calculate the appropriate F-tests, given the design
is correctly specified by the researcher as regards cross or nested classification
on the one hand and with regards to model I, model II, or the mixed model on
the other hand. However, we want to illustrate the application of two variants by
using examples.

Regarding planning a study, again the R-package OPDOE offers all variants
(see Rasch, Pilz, Verdooren, & Gebhardt, 2011).

Doctor Example 10.15 The extent of differences in the effectiveness of psychotherapists
will be examined in dependence of their sex, as well as in dependence of the
client’s sex.

In an extension of the research question in Examples 10.8 and 10.14, this is
now about the extent of differences in the effectiveness of psychotherapists with
respect to their sex and with respect to the client’s sex; in particular regarding
the sex relationship of both. We thus distinguish the already considered ni clients
between ‘male’ and ‘female’. The character sex of the therapist continues to be
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the fixed factor A. The psychotherapists represent the levels of the nested factor
B (therapist), a random factor. And finally, the third factor C represents the sex of
the client, which is also a fixed factor. Therefore, this is the mixed classification
(A � B) × C . The structure of the data – if yijkv is the vth outcome in the ith level
of A, the jth level of B, and the kth level of C (i = 1, 2; j = 1, 2, . . . , b; k = 1,
2; v = 1, . . . , nijk) – is shown in Table 10.24 (n has to be replaced by nijk in the
given example); to make the a · b = 2 · 11 = 22 psychotherapists distinguishable
regarding their identification, we number them 1, 2, . . . , p, p + 1, p + 2, . . . , 2p
(with p = b). We determine the type-I risk with α = 0.01.

Table 10.24 Data structure of the 2 × b × 2 × n outcomes in Example 10.15.

A1 Therapist male A2 Therapist female

B11

Therapist
1

B12

Therapist
2 . . .

B1b

Therapist
p

B21

Therapist
p + 1

B22

Therapist
p + 2 . . .

B2b

Therapist
2p

C1 y1111 y1211 . . . y1b11 y2111 y2211 . . . y2b11

Client y1112 y1212 . . . y1b12 y2112 y2212 . . . y2b12

male ...
...

...
...

...
...

...
...

y111n y121n . . . y1b1n y211n y221n . . . y2b1n

C2 y1121 y1221 . . . y1b21 y2121 y2221 . . . y2b21

Client y1122 y1222 . . . y1b22 y2122 y2222 . . . y2b22

female ...
...

...
...

...
...

...
...

y112n y122n . . . y1b2n y212n y222n . . . y2b2n

If there is primary interest in the null hypothesis regarding factor A, n does not
matter again as concerns planning the study. Then b = 17 once more. However,
if there is primary interest in the null hypothesis regarding factor C, then b = 9
will be needed, for the same precision requirements.

In R, we can see this by applying the package OPDOE in the following way. We type

> size_b.three_way_mixed_cxbina.model_4_c(alpha = 0.05, beta = 0.2,
+ delta = 1, a = 2, c = 2,
+ n = 1, cases = "maximin")

i.e. we apply the function size_b.three_way_mixed_cxbina.model_4_c, us-
ing the precision requirements α = 0.05, β = 0.20, and δ = 1σ (delta = 1) as
arguments. With a = 2 and c = 2 we determine the number of factor levels; thus
a = b = 2. Furthermore, we indicate, with n = 1, that the sample size can be as small as
possible, and with cases = "maximin"we request the sample size for the worst case.

As a result, we get:

[1] 9
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The analysis is conducted as follows – beforehand we check the presumption of
variance homogeneity, analogous to Examples 10.12 and 10.14; the proportion
of largest to smallest standard deviation is 2.620 /1.835 = 1.428 < 1.5, which is
the plausible limit. Therefore, the application of analysis of variance seems to be
justified.

In R, we type

> aov.7 <- aov(effect ˜ sex_ther + sex_clie +
+ sex_clie:sex_ther +
+ Error(therapist + therapist:sex_clie))
> summary(aov.7)

i.e. we apply the function aov() and request the analysis of the character effectiveness
(effect) with regard to the fixed factor sex of the therapist (sex_ther), the fixed
factor sex of the client (sex_clie), the random (Error()) factor therapist, the
interaction between sex of the client and sex of the therapist (sex_clie:sex_ther),
and the interaction between therapist and sex of the client. We assign the result of the
analysis to the object aov.7. Finally, we submit this object to the function summary().

As a result, we get:

Error: therapist
Df Sum Sq Mean Sq F value Pr(>F)

sex_ther 1 0.10 0.0983 0.0051 0.9438
Residuals 20 386.29 19.3147

Error: therapist:sex_clie
Df Sum Sq Mean Sq F value Pr(>F)

sex_clie 1 6.883 6.8830 0.6147 0.4422
sex_ther:sex_clie 1 9.620 9.6203 0.8591 0.3650
Residuals 20 223.952 11.1976

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 544 3007 5.5276

Regarding the main effect of the factor sex of the therapist (sex_ther), we thus obtain
with F = 0.0051 the p-value 0.9438. Concerning the main effect of the factor sex of
the client (sex_clie), we get with F = 0.6147 the p-value 0.4422, and regarding the
interaction between the factors sex of the therapist (sex_ther), and sex of the client
(sex_clie), we obtain with F = 0.8591 the p-value 0.3650.

We calculate manually the F value of interest for the main effect of the factor ther-
apist; namely: F = 19.3147 / 11.1976 = 1.725, with df 1 = 20 and df 2 = 20 degrees of
freedom. Now, we can determine the critical value F(20, 20: 0.99) = 2.938 by consulting
Table B4 in Appendix B. Alternatively, we can calculate the p-value which corresponds to
the value F = 1.725 using R, in the following way:

> pf(1.725, df1 = 20, df2 = 20, lower.tail = FALSE)
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i.e. we apply the function pf() and use as the first argument the observed F value of
1.725. As the second and third argument we use the degrees of freedom, each being 20.
With lower.tail = FALSE, we request the corresponding p-value.

As a result, we get:

[1] 0.1156951

We calculate the F value of interest for the interaction between the factor therapist
and the factor sex of the client (sex_clie) as F = 11.1976 / 5.5276 = 2.026, with df 1 =
20 and df 2 = 544 degrees of freedom. We calculate the corresponding p-value using R in
the following way:

> pf(2.026, df1 = 20, df2 = 544, lower.tail = FALSE)

i.e. we apply the function pf() and use the F value as the first argument and the degrees
of freedom df 1 and df 2 as the second and the third argument. With lower.tail =
FALSE, we request the corresponding p-value.

As a result, we get:

[1] 0.005414724

In SPSS, we proceed (Analyze – General Linear Model – Univariate. . .) as shown in Example
10.14, and additionally drag and drop the character sex_clie to the field Fixed Factor(s):. We
click Model. . ., choose again Type I in Sum of squares:, and come back to the previous
window by clicking Continue. A click on Paste brings us to a new window with SPSS-
syntax, in which we change the last line to match the one shown in Figure 10.14. Finally, we
select All in the pull-down menu Run, and obtain the result shown in Table 10.25.

Figure 10.14 SPSS-syntax for Example 10.15.
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Table 10.25 SPSS-output of the table of variances for the tree-way analysis of variance
with nested classification (mixed model) in Example 10.15.

Sig.FMean Squaredf
Type I Sum of

Squares

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Intercept

sex_ther

therapist(sex_ther)

sex_clie

sex_ther sex_clie*

sex_clie therapist*
(sex_ther)

5.528
f

5443007.019

.0052.02611.19820223.952

11.352
e

19.480221.133

.369.8479.62019.620

11.352
d

19.480221.133

.446.6066.88316.883

11.198
c

20223.952

.1161.72519.31520386.294

19.690
b

19.697387.850

.944.005.0981.098

19.690
a

19.697387.850

.000757.12214908.014114908.014

SourceSource

Tests of Between-Subjects Effects

Dependent Variable:effectiveness

a. 1.027 MS(therapist(sex_ther)) - .027 MS(Error)
b. 1.027 MS(therapist(sex_ther)) - .027 MS(Error)
c. MS(sex_clie * therapist(sex_ther))
d. 1.027 MS(sex_clie * therapist(sex_ther)) - .027 MS(Error)
e. 1.027 MS(sex_clie * therapist(sex_ther)) - .027 MS(Error)
f. MS(Error)

There are unimportant differences between R and SPSS regarding the results of
the two F-tests for examining the main effect of the factor sex of the client
and the interaction effect of the factors sex of the therapist and sex of the
client.

We notice that only the interaction effect between the client’s and the
psychotherapist’s sex is significant. Therefore, certain psychotherapists are
systematically more effective for females using their therapy; certain other psy-
chotherapists are systematically more effective for males. The significant main
effect of factor B, therapist, which was found in the Examples 10.8 and 10.14 can
now be explained by the specific interaction.

One may be further interested in finding out between which psychotherapists
and which sex there are differences and also in which direction the differences
are. Then we have to create a graph similar to Example 10.13.

Doctor Example 10.16 The items of a psychological test will be calibrated in accordance
with the Rasch model

The Rasch model (see Section 15.2.3.1) implies certain properties of the items
of a psychological test. These can be used for empirical data, to verify whether the
items of a given test actually correspond to the Rasch model; then, and only then,
it is justifiable to count the number of solved items as the test score per person.



P1: OTA/XYZ P2: ABC
JWST094-c10 JWST094-Rasch September 25, 2011 8:55 Printer Name: Yet to Come

296 SAMPLES FROM MORE THAN TWO POPULATIONS

The most important property in this context is that there is no interaction between
certain groups of persons; for instance with regard to the sex and specific items.
Let us therefore consider the testee’s sex as factor A (with two factor levels),
the testees themselves as the factor levels of factor B, which is nested to factor
A; and the items as factor levels of a factor C. Then A and C are fixed, and B is
random; in the calibration of a psychological test, it is exactly about the specifically
designed items; it is also exactly about the respective levels of the partition into
subgroups of testees, but it is not about certain testees, but instead about those
of a random sample. This is therefore the same variant as in Example 10.15,
the variant (A � B) × C . However, the interesting character, test-achievement,
is a dichotomous one, having only the two measurement values ‘solved’ and
‘not solved’; its modeling as a normally distributed random variable is therefore
implausible. Nevertheless, Kubinger, Rasch, & Yanagida (2009) demonstrated,
using simulation studies, that if a three-way analysis of variance is applied on
such data, it largely meets the nominal type-I risk (with regard to the interaction
of interest between A and C) – under certain realistic conditions with a practically
useful power of 1 – β. As a result, not only a new model test for the Rasch model
is obtained, but, in contrast to any other model tests for the Rasch model, it is
possible to determine the necessary number of testees b per factor level of A to
meet any desired precision requirements; i.e. planning a study for the calibration
of a psychological test (see Example 15.8 for illustration).

Doctor Example 10.17 The extent of faking in personality questionnaires will be inves-
tigated

Several studies suggest that the extent to which persons fake personality ques-
tionnaires in selection situations in the sense of a more ‘attractive’ view of their
personality (see the psychometric quality criterion of unfakeability e.g. in Kub-
inger, 2009b) depends on three factors among others: the answer format (factor A),
in particular with the factor levels ‘dichotomous response format’ and ‘analogue
scale response format’; the time pressure (factor B), with the factor levels ‘response
time limited’ and ‘response time not limited’; and the instruction (factor C), with
the factor levels ‘warning is given that faking response behavior can be detected
using ingenious computer software’ and ‘no such warning’. The three factors
can be cross classified; they are all fixed and dichotomous. Thus, this is variant
A × B × C . Planning the study will be based on α = 0.05, β = 0.05, and δ = σ .

In R, we type, using the package OPDOE

> size_n.three_way_cross.model_1_axbxc(alpha = 0.05, beta = 0.05,
+ delta = 1, a = 2, b = 2,
+ c = 2, cases = "maximin")

i.e. we apply the function size_n.three_way_cross.model_1_axbxc(), using
the arguments α = 0.05, β = 0.05, and δ = σ (delta = 1). With a = 2, b = 2,
and c = 2, we indicate the number of factor levels a = b = c = 2, and with cases =
"maximin", we request the sample size n for the worst case.

As a result, we get:

[1] 27
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According to this, we have to present the personality questionnaire in an
experiment to n = 27 subjects in each combination of factor levels; we there-
fore need a total of 216 subjects who are randomly assigned to the combinations
of factor levels.

We use the data from Khorramdel & Kubinger (2006) for this analysis; these
are the data from Example 10.17 (see Chapter 1 for its availability). For the sake
of example, we restrict ourselves to the character internalization – it measures the
extent of ‘internal locus of control of reinforcement’ (see footnote 1 in Chapter 4).

We again examine the proportion of largest to smallest standard deviation.
By analogy e.g. to Example 10.12, we obtain the ratio 1.723 / 1.221 = 1.411
both with R and SPSS, which is smaller than 1.5 and in accordance with the
abovementioned rule of thumb. Thus, application of analysis of variance again
appears to be justifiable.

In R, we load the package car, which we have already used in Example 9.7, by applying
the function library(). Furthermore, we enable access to the database Example_10.17
(see Chapter 1) with the help of the function attach(). Now, we type

> options(contrasts = c("contr.sum", "cont.poly"))
> aov.8 <- aov(inter ˜ format * time * instruct)
> Anova (aov.8, type = 3)

i.e. we apply the function options() and set contrasts = c("contr.sum",
"cont.poly") to request the same computational procedure as SPSS. Next we use the
function aov() and request the analysis of the character internality (inter) with regard
to the (fixed) factors response format (format), time pressure (time), and instruction
(instruct), including all main effects and interaction effects. We assign the result of
the analysis to the object aov.8. Next, we submit this object as the first argument to the
function Anova(). With type = 3, we decide on type III.

As a result, we get (shortened output):

Anova Table (Type III tests)

Response: inter
Sum Sq Df F value Pr(>F)
(Intercept) 800.49 1 381.2850 <2e-16
format 8.68 1 4.1364 0.0433
time 0.15 1 0.0694 0.7925
instruct 2.73 1 1.3027 0.2551
format:time 0.53 1 0.2511 0.6169
format:instruct 5.25 1 2.5010 0.1154
time:instruct 3.81 1 1.8124 0.1798
format:time:instruct 0.13 1 0.0619 0.8038
Residuals 417.79 199
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For calculating the means, we type

> model.tables(aov.8, type = "means")

i.e. we apply the function model.tables(), and submit the object aov.8 to the
function. With type = "means", we request the calculation of the means.

As a result, we get (shortened output):

Tables of means
Grand mean

2.10628

format
dichotomous analogue

2.319 1.835

In SPSS, we reach the window shown in Figure 10.7 using the same sequence of commands
(Analyze – General Linear Model – Univariate. . .) as in Example 10.8. There, we drag and
drop the character internalization to the field Dependent Variable:. Next, we drag and drop
the characters answer format, time pressure, and instruction to the field Fixed Factor(s):. We
click Options. . . and tick Descriptive statistics in the window shown in Figure 10.8. A click
on Continue brings us back to the previous window. After clicking OK, we obtain the results
shown in Table 10.26 and 10.27.

Table 10.26 SPSS-output of the table of variances for the three-way analysis of variance
(model I) in Example 10.17.

Sig.FMean Squaredf
Type III Sum
of Squares

Corrected Model

Intercept

format

time

instruct

format * time

format * instruct

time * instruct

format * time * instruct

Error

Total

Corrected Total 206441.662

2071360.000

2.099199417.789

.804.062.1301.130

.1801.8123.80513.805

.1152.5015.25115.251

.617.251.5271.527

.2551.3032.73512.735

.792.069.1461.146

.0434.1368.68418.684

.000381.285800.4861800.486

.1301.6243.410723.872
a

Source

Tests of Between-Subjects Effects

Dependent Variable:internalization

a. R Squared = .054 (Adjusted R Squared = .021)
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Table 10.27 SPSS-output of the means for the factor levels of the significant main effect
in Example 10.17 (shortened output).

NStd. DeviationMean

TotalTotal

TotalTotal

dichotomous

analogue 911.3441.84

1161.5242.32

answer format time pressure instruction

Descriptive Statistics

Dependent Variable:internalization

All main effects and interaction effects, with the exception of factor A (answer
format) are not significant. By considering the means we notice that there is a
larger test score (in the direction of internalization) for the ‘dichotomous response
format’ than for the ‘analogue scale response format’. Since a higher internal locus
of control of reinforcement is more socially desirable, this result implies that there
is a larger extent of fakeability in personality questionnaires given a dichotomous
response format.

Regarding the analysis of more than three-way classifications, we refer to Hartung, Elpelt, &
Voet (1997).

Summary
In analysis of variance, we have to distinguish between fixed and random factors, i.e. those
whose factor levels were fixed, or determined by chance. It is a model I if there are only fixed
factors, a model II if there are only random factors, and a mixed model if there are both types
of factors. Additionally, two or more factors can be combined in certain ways; namely as a
cross classification or as a nested classification. In terms of the latter, not every factor level of
the one factor is combined with all factor levels of another, but every factor level of a nested
factor appears in only one factor level of another factor. The basic difference between one-
way and multi-way analysis of variance is that it is possible to examine interaction effects in
addition to the main effects with regard to differences between the means. Any type of analysis
of variance leads to an F-test. The application of a two-way analysis of variance for ordinal-
scaled characters is uncommon. A bivariate comparison of two nominal-scaled characters
leads to the χ2-test again.
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Part IV

DESCRIPTIVE AND
INFERENTIAL STATISTICS
FOR TWO CHARACTERS

After the introduction of essential procedures for planning a study and its statistical analysis
with respect to a single character, we will now refer to the simultaneous ascertainment of two
characters – taken from the same sample. Generally, in this part a single sample or population
is of interest, but two samples are of interest only by exception.

Insofar as we were concerned with inferential statistics up to now (particularly with
hypothesis testing), the scientific question was about differences. Furthermore, mostly differ-
ences of means of samples and populations, respectively, were of interest. In the following
chapter, however, the question is completely different: it is about the statistical relationship
of two characters.
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Regression and correlation

In this chapter we polarize deterministic relationships and dependencies on the one side
and stochastic relationships of two characters on the other side – thereby stochastic means
dependent on chance. Within the field of psychology only the latter relationships are of
interest. We will deal at first with the graphical representation of corresponding observation
pairs as a scatter plot. We will focus mainly on the linear regression function, which grasps
the relationship of two characters, modeled by two random variables. Then we will consider
several correlation coefficients, which quantify the strength of relationship. Depending on
the scale type of the characters of interest, different coefficients become relevant. In addition
to (point) estimators for the corresponding parameters, this chapter particularly deals with
hypothesis testing concerning these parameters.

11.1 Introduction

The term ‘relationship’ can be explained by means of its colloquial sense. We know from
everyday life, for instance, phrases and statements of the following type: ‘Children’s behavior
is related to parents’ behavior’, ‘Learning effort and success in exams are related’, ‘Birth-rate
and calendar month are related’, and so on.

Bachelor Example 11.1 Type and strength of the relationship between the ages of the
mother and father of last-born children is to be determined

From everyday life experience, as well as for obvious reasons, ages of both
parents are related. Although there are some extreme cases, for example a 40-
year-old mother together with a 25-year-old father of a child, or a 65-year-old
father with a 30-year-old mother, nevertheless in our society a preponderance of
parents with similar ages can be observed.

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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In contrast to relationships of variables in mathematics, in psychology relationships do not
follow specific mathematical functions. Thus exact functions like y = f (x) do not exist for
relationships in the field of psychology.

Bachelor In many mathematical functions, every value x from the domain of a function f
corresponds to exactly one value y from the co-domain. In this case, the function
is then unique. The graph of such a function is a curve in the plane (x, y). In
such a function, x is called the independent variable and y is called the dependent
variable. This terminology is common also in the field of psychology, mainly in
experimental psychology, and can also be found in relevant statistical software
packages.

Thus, if we talk about a relationship, an interdependence between two characters or a de-
pendency of one character on the other is meant. We have to distinguish strictly between the
terms of a functional relationship in mathematics, the stochastic dependency in statistics, and
the colloquial term of relationship in psychology, which means a dependency ‘in the mean’.
However, we will see that psychology is concerned exactly with the (stochastic) dependencies
with which statistics deals. We also call them ‘statistical dependencies’. Cases which deal
with functional relationships, like in mathematics, hardly exist in empirical sciences and are
not discussed in this book.

Bachelor Example 11.2 Some simple mathematical functions
Between the side lengths, l, of a square and its circumference, c, the following

functional relationship exists: c = 4l. Here, this function is a linear function
(‘equation of a straight line’). To calculate the area A from the side lengths, the
formula A = l2, a quadratic function, has to be used. Of course it is possible
to combine both formulas and to calculate A from c by means of the formula:
A = c2

16 .

Obviously relations between two quantitative characters, between two ordinal-scaled, and two
nominal-scaled characters are of interest, but also all cases of mixtures (e.g. a quantitative
character on one hand and an ordinal-scaled character on the other hand).

Example 11.3 The dependency of characters from Example 1.1
Aside from gestational age at birth, which has been addressed several times before, and

which trivially is a ratio-scaled character, mainly the test scores of all subtests are interval
scaled. It could be of interest, for instance, to what extent test scores from the first and the
second test date are related, or scores from different subtests.

Besides this, data from Example 1.1 includes ordinal-scaled characters like social status
or sibling position, as well as nominal-scaled characters like marital status of the mother,
sex of the child, urban/rural, and native language of the child. Of interest could be the
relationships of gestational age at birth (ratio-scaled) and sibling position (ordinal-scaled), of
social status (ordinal-scaled) and urban/rural (nominal-scaled, polychotomous), or of marital
status of the mother (nominal-scaled, polychotomous) and the native language of the child
(nominal-scaled, dichotomous).
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However, relationships often also result between an actually interesting character and a
factor or a noise factor (see Chapter 4, as well as Section 12.1.1 and Section 13.2).

Example 11.4 Does a relationship exist between the native language of a child and its test
scores in the intelligence tests battery in Example 1.1?

When it is a question of a difference in the (nominal-scaled, dichotomous) factor native
language of the child related to, for instance, the test score of subtest Everyday Knowledge,
then the two-sample Welch test, which has already been discussed, even tests the relationship
between the test score (as a quantitative character) and the native language of the child. If we
furthermore suppose that the (nominal-scaled, dichotomous) character sex of the child is a
noise factor, then the interest is in the relationship between sex of the child or native language
of the child and the test score.

For the purpose of discovering whether certain relationships of (quantitative) characters
exist, we illustrate the phenomenon of a relation by representing the pairs of observations
in a rectangular coordinate system. In the case of two characters x and y, this is done by
means of representing every research unit v by a point, with the observations xv and yv as
coordinates. We thus obtain a diagram, which represents all pairs of observations as a scatter
plot.

Bachelor Example 11.5 In which way are the test scores in the characters Applied Com-
puting, 1st test date and Applied Computing, 2nd test date related?

We assume that intelligence is a stable character, thus a character which is
constant over time and over different situations. In this case, the relationship
should be strict. For illustrating the relation graphically, we represent the test
scores at the first test date on the x-axis (axis of the abscissa) and the test scores
at the second test date on the y-axis (axis of the ordinates). Both characters are
quantitative.

In R, we first enable access to the data set Example_1.1 (see Chapter 1) by using the
function attach(). Then we type

> plot(sub3_t1, sub3_t2,
+ xlab = "Applied Computing, 1st test date (T-Scores)",
+ ylab = "Applied Computing, 2nd test date (T-Scores)")

i.e. we use both characters, Applied Computing, 1st test date (sub3_t1) and Applied
Computing, 2nd test date (sub3_t2), as arguments in the function plot(), and label
the axes with xlab and ylab.

As a result, we get a chart identical to Figure 11.1.

In SPSS, we use the same command sequence (Graphs – Chart Builder. . .) as shown in
Example 5.2 in order to open the window shown in Figure 5.5. Here we select Scatter/Dot in
the panel Choose from: of the Gallery tab; next we drag and drop the symbol Simple Scatter
into the Chart preview above. Then we move the character Applied Computing, 1st test date
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to the field X-Axis? and the character Applied Computing, 2nd test date to the field Y-Axis?.
After clicking OK we obtain the chart shown in Figure 11.1
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Figure 11.1 Scatter plot for Example 11.5.

We clearly distinguish from the scatter plot the following tendency: ‘The bigger
the score is at the first test date, the bigger the score is at the second test date’, but
obviously there is no functional relationship. In that case, all of the points would
have to be situated exactly on the graph of any determined function, which is hard
to imagine for the given scatter plot. Nevertheless, one comes to the conclusion
that this scatter plot can be described, at least roughly, by a straight line (with a
positive slope).

Although, in empirical research in psychology, only relationships by trend and no func-
tional relationships exist, in the case of two (quantitative) characters it seems to be meaningful
to place a straight line or, if necessary, some other type of curve through the points of a scatter
plot in the way that all deviations of the points from the resulting line (or curve) are as small
as possible – on the whole. The procedure of adjusting a line or, more generally stated, a
curve, to the points of a scatter plot concerns the ‘type’ of relationship. The question is if the
relationship is linear or nonlinear; and in the case that it is linear, the slope and the intercept
of the linear function are of interest.
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Bachelor Obviously, it is always feasible to fit a mathematical function (e.g. a straight
line) in the best way possible to a scatter plot. However, the essential question
is to what extent the adjustment succeeds. It is always about how distant the
single points of the scatter plot are from the curve that belongs to the func-
tion. In the case of a relationship of 100%, all of the points would be situated
exactly on it.

The question of the type of relationship is the subject of the so-called regression analysis.
Initially the appropriate model is selected; that is the determination of the type of function.
In psychology this is almost always the linear function. The next step is to concretize the
chosen function; that is, to find that one which adjusts to the scatter plot as well as possible.
If this concretization were done by appearance in a subjective way, the result would be too
inexact. An exact determination can be made by means of a certain numeric procedure, the
least squares method (see Section 6.5). From a formal point of view, this means that the
slope and intercept of the so-called regression line have to be determined in the best way
possible.

Bachelor After having exactly determined the type of relationship between two characters,
as concerns future research units the outcome for one of the characters can be
predicted from the outcome of the other character. For that purpose, the graph of
the mathematical function, which has finally been chosen, has to be positioned
in a way that the overall differences (over all pairs of observations) between the
true value and that value determined by the other character based on the given
relationship, becomes a minimum. That is how the term ‘regression’ derives from
Latin (‘move backwards’), in the way that a certain point on the abscissa is
projected, via the respective mathematical function, onto the corresponding value
on the ordinate.

Doctor Generally, in regression analysis two different cases have to be distinguished:
there are two different types of pairs of outcomes. In the case which is usual
in psychology, both these values of each research unit were ascertained (mostly
simultaneously) by observation, and result as a matter of fact (so-called model
II). In contrast, in the other type (model I), the pair of outcomes consists of one
value (e.g. the value x), which is chosen (purposely) in advance by the researcher
but only the other value (y) is observed as a matter of course. This type is rarely
found in psychology. An example of this model is the observation of children’s
growth between the age of 6 and 12 years. The investigator thus determines the
age at which the body size of the children is measured. In this case, the x-values
are not measured, but determined a priori.

The type of the model influences the calculation of slope and intercept of
the regression line. More detailed information concerning model I in combina-
tion with regression analysis can be found for example in Rasch, Verdooren, &
Gowers (2007).
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11.2 Regression model

If we model the characters x and y by two random variables x and y, then (x, y) is called a
bivariate random variable. Then the regression model is

yv = f (xv ) + ev (v = 1, 2, . . . , n) (11.1)

or

xv = g( yv ) + e′
v (v = 1, 2, . . . , n) (11.2)

The function f is called a regression function from y onto x and the function g is called a
regression function from x onto y. In function f , y is the regressand and x is the regressor, and
vice versa in function g. The random variables ev or e′

v describe error terms. The model partic-
ularly assumes that these errors are distributed with mean 0 and the same (mostly unknown)
variance in each research unit v. It is also assumed that the error terms are independent from
each other, as well as that the errors are independent from the variables x or y, respectively.

If functions f and g are linear functions, the following regression models result:

yv = β0 + β1xv + ev (v = 1, 2, . . . , n) (11.3)

or

xv = β ′
0 + β ′

1 yv + e′
v (v = 1, 2, . . . , n) (11.4)

respectively. If the random variables x and y are (two-dimensional) normally distributed, the
regression function is always linear.

Usually the two functions y = β0 + β1x and x = β ′
0 + β ′

1 y differ from each other. They
are identical exclusively in the case that the strength of the relationship is maximal.

We thus have defined the regression model for the population. Now, we have to estimate
the adequate parameters β0 and β1 or β ′

0 and β ′
1, respectively, with the help of a random

sample taken from the relevant population. With regard to the content, this is of interest
mainly because, in practice, sometimes only one of the values (e.g. x-value) is known and
we want to ‘predict’ the corresponding one (y-value) in the best way possible. For both of
the random variables x and y we will denote, in addition to the parameters of the regression
model, means and variances as follows: μx and μy, σ 2

x and σ 2
y .

Starting from the need to place the regression line through the scatter plot in the way
that the overall differences between the true value and the value determinable from the
other character’s value (based on the given relationship) are minimized, the estimates for the
unknown parameters in the population, for instance for yv = β0 + β1xv + ev, can be given as
follows:

b0 = β̂0 = −b1 x̄ (11.5)

b1 = β̂1 =
1

n−1

n∑

v=1
(xv − x̄) (yv − ȳ)

s2
x

(11.6)



P1: OTA/XYZ P2: ABC
JWST094-c11 JWST094-Rasch September 22, 2011 16:25 Printer Name: Yet to Come

REGRESSION MODEL 309

Here s2
x is the estimate of σ 2

x . The equation for the estimated regression line is now ŷ =
b1x + b0; thus for a concrete research unit v, ŷv = b1xv + b0.

Doctor Replacing the outcomes xv and yv in Formula (11.5) and (11.6) by the random
variables xv and yv, by which these outcomes are modeled, we obtain the corre-
sponding estimators; these are unbiased.

Master What was sloppily called overall ‘difference’ between the true value, yv, and that
value determined by the other character based on the given relationship, ŷv , is,
from a formal point of view, a sum of squares. The sum of squares has basically
the same function here as the absolute value of differences, but it possesses
particular statistical advantages compared to the absolute value. Thus β0 and β1

are estimated by β̂0 and β̂1 such that

n∑

v=1

(yv − ŷv )2 =
n∑

v=1

[
yv − (

β̂1xv + β̂0
)]2

takes a minimum. The solution is found by partial differentiation and setting the
first derivative to zero. The resulting values, b0 = β̂0 and b1 = β̂1, thus constitute
the estimates.

So it is not the distances in the sense of the shortest distance between a scatter
plot’s point and the respective regression line’s point which are determined (and
squared and added up), but the difference in a line segment parallel to the y-axis
(see Figure 11.2). The distances in the sense of the shortest distance would be
obtained by dropping down the perpendicular of a point to the regression line.

The differences on a section of line parallel to the x-axis, which are generated
when x and y as regressor and regressand are interchanged, have also been drawn
in Figure 11.2. Thus different quantities are minimized: either the dotted or the
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Figure 11.2 Illustration of differences and distances.
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Figure 11.3 The density function of a two-dimensional normal distribution.

dashed sections of line. This leads to two different regression lines except for the
case of a perfect relationship, in which all of the points are situated exactly on the
regression line.

The numerator of Formula (11.6) is called the (sample) covariance. It describes the extent to
which the two characters ‘vary together’. In Formula (11.6) this is the estimate sxy = syx =
σ̂xy of the parameter σxy = σyx in the underlying population. Covariance in the population
characterizes the two-dimensional normal distributed variable (x, y) in addition to the means
and variances. However, the condition of distribution, which is met here, will only be relevant
for questions of inferential statistics (see Section 11.4). Anyway, we give here a graphical
illustration of such a two-dimensional normal distribution (Figure 11.3).

Master From a formal point of view this results in the option to write Formula (11.6) also
as: b1 = sxy

s2
x

(or b′
1 = sxy

s2
y

, respectively). For the parameters analogously we may

write, for instance, β1 = σxy

σ 2
y

.

The difference between observation yv at the point of observation xv and the y-value of the
regression line ŷv , thus (yv − ŷv ) = yv − (β̂1xv + β̂0), is called the residual. A careful residual
analysis is generally part of model fitting; that is, it gives information whether the chosen
model fits or several pairs of values are striking.

Bachelor Example 11.5 – continued
We consider the relationship of test scores in subtest Applied Computing between
first and second test date. With regard to the content, it is logical to predict the
latter by the former.

In R, we first type

> lm.1 <- lm(sub3_t2 ˜ sub3_t1)
> summary(lm.1)

i.e. we apply the function lm() and submit the formula sub3_t2 ˜ sub3_t1 as an
argument, meaning that Applied Computing, 2nd test date (sub3_t2) is the regressand
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and Applied Computing, 1st test date (sub3_t1) the regressor; we assign the result of
this regression analysis to the object lm.1. Finally we submit this object to the function
summary().

As a result, we get (shortened output):

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.10534 3.53079 2.012 0.0469
sub3_t1 0.85313 0.06907 12.351 <2e-16

Hence the slope b1 of the regression line is 0.8531, the intercept b0 is 7.1053; at this point
we will not discuss the remaining values.

Next we save the predicted values for each x-value, as well as the residuals and the
standardized residuals, by typing

> resid <- cbind("PRE_1" = lm.1$fitted.values,
+ "RES_1" = lm.1$residuals,
+ "ZRE_1" = rstandard(lm.1))
> summary(resid)

i.e. we extract the needed values from object lm.1, namely with $fitted.values the
predicted values and with $residuals the residuals; with the function rstandard()
we ascertain the standardized residuals by submitting lm.1 as an argument. We label
the results "PRE_1", "RES_1" and "ZRE_1" and combine the single result vectors
column by column with the function cbind(). We assign the results to the object resid,
which we submit to the function summary() as an argument.

As a result, we get:

PRE_1 RES_1 ZRE_1

Min. :38.67 Min. :-1.579e+01 Min. :-2.8926572
1st Qu.:43.79 1st Qu.:-3.042e+00 1st Qu.:-0.5577114
Median :51.47 Median : 5.984e-02 Median : 0.0109406
Mean :50.18 Mean : 8.790e-17 Mean :-0.0007525
3rd Qu.:54.88 3rd Qu.: 2.827e+00 3rd Qu.: 0.5169367
Max. :67.68 Max. : 1.821e+01 Max. : 3.3359756

Next, we want to plot the standardized residuals for each x-value (Applied Computing, 1st
test date) in a rectangular coordinate system; hence we type

> plot(sub3_t1, resid[, "ZRE_1"],
+ xlab = "Applied Computing, 1st test date (T-Scores)",
+ ylab = "Standardized residuals")

i.e. we use the character Applied Computing, 1st test date (sub3_t1) and the standardized
residuals (resid[, "ZRE_1"]) as arguments in the function plot(); xlab and
ylab label the axes.

As a result, we get the chart in Figure 11.4.
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Figure 11.4 R-output of a scatter plot showing the outcomes and residuals in
Example 11.5.

It is advisable to check whether −2 < ZRE_1 < 2 is true at all times; if not, one has to
assume observation errors or simply an unfitting model. This rule of thumb arises from the
fact that, if the random errors are standard normal distributed, then more than 95% of all
values would be within the above-specified range. In our case, 6 out of 100 research units
are outside these bounds. You detect this by typing

> sum(rstandard(lm.1) < −2 | rstandard(lm.1) > 2)

i.e. we select those standardized residuals which are either smaller (‘<’) than −2 or (‘|’)
bigger (‘>’) than 2, and count their number with the function sum().

As a result, we get:

[1] 6

Next, we want to illustrate the scatter plot along with the regression line to answer the
actual question of the relation between the test scores in subtest Applied Computing on the
first and second test date; hence we type

> plot(sub3_t1, sub3_t2,
+ xlab = " Applied Computing, 1st test date (T-Scores)",
+ ylab = " Applied Computing, 2nd test date (T-Scores)")
> abline(lm.1)

i.e. we use the function plot() as before, and label the axes appropriately. Next, we
use the regression model in object lm.1 as an argument in the function abline() and
thereby amend the chart with a line according to the model parameters. The completed
chart conforms to Figure 11.10.
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In SPSS, we use the sequence of commands

Analyze
Regression

Linear. . .

from the menu and select the character Applied Computing, 2nd test date and move it to the
field Dependent:. Next we select Applied Computing, 1st test date and move this character
to the field Independent(s): (see Figure 11.5). Next, we click Save. . . and get to the window
shown in Figure 11.6, where the required fields are already checked. Hence we request the
predicted values for each x-value as well as the residuals and the standardized residuals
(these are the residuals divided by the estimated standard deviation). The new variables
PRE_1 (predicted values), RES_1, and ZRE_1 (residuals and standardized residuals) are
added to the file (see Figure 11.7). A click on Continue, followed by OK gets us the result
shown in Table 11.1.

Figure 11.5 SPSS-window for conducting a linear regression.
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Figure 11.6 SPSS-window for saving values in the course of a linear regression analysis.

Figure 11.7 SPSS-Data View after saving the residuals in Example 11.5 (section).
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Table 11.1 SPSS-output of the regression coefficients in Example 11.5 (shortened
output).

Std. ErrorB Beta Sig.t

Standardized
CoefficientsUnstandardized Coefficients

(Constant)

Applied Computing,
1st test date (T-Score)

1

.00012.351.780.069.853

.0472.0123.5317.105

Model

Coefficients
a

a. Dependent Variable: Applied Computing, 2nd test date (T-Scores)

In Table 11.1 we find the slope b1 of the regression line in the last row of column Unstan-
dardized Coefficients in B (hence in the row Applied Computing, 1st test date). The intercept
b0 is called Constant in SPSS and is found one row above. We will not discuss the remaining
values in the table at this point. The regressand is referred to as Dependent Variable below
the table.

Since we have requested the residuals, SPSS primarily returns the minimum and maxi-
mum of the residuals in Table 11.2. The residuals themselves are added, like the predicted
values and the standardized residuals, to the data set (cf. again Figure 11.7).

Table 11.2 SPSS-output showing statistics of the residuals.

NStd. DeviationMeanMaximumMinimum

Predicted Value

Residual

Std. Predicted Value

Std. Residual 100.995.0003.304-2.865

1001.000.0002.558-1.682

1005.483.00018.210-15.790

1006.84150.1867.6838.67

Residuals Statistics
a

a. Dependent Variable: Applied Computing, 2nd test date (T-Scores)

Next, we want to plot the standardized residuals of each x-value (Applied Computing, 1st
test date) in a rectangular coordinate system. We can draw such a chart by following the
command sequence (Graphs – Chart Builder. . .) as before, but need to select Standardized
Residual for the field Y-Axis?. This way we get a chart analogous to Figure 11.4.

It is advisable to check whether −2 < ZRE_1 < 2 is true at all times; if not, you have to
assume observation errors or simply an unfitting model. This rule of thumb arises from the
fact that, if the random errors were standard normal distributed, then more than 95% of all
values would be within the above-specified range. To ascertain the count of values outside
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these bounds, we would need to create a frequency table as shown in Example 5.2, from
which we refrain here. That such cases even exist can be seen in Table 11.2, in the Row Std.
Residual in the columns Minimum and Maximum.

Next, we finally want to illustrate the scatter plot along with the regression line to answer
the actual question of the relation between the test scores in subtest Applied Computing on
the first and second test date; hence we select

Analyze
Regression

Curve Estimation. . .

and get to the window shown in Figure 11.8. Here we keep the default selection of Linear,
move the character Applied Computing, 2nd test date to the field Dependent(s): and the
character Applied Computing, 1st test date to the field Variable: in the panel Independent.
With OK we get the desired chart (Figure 11.9). Double-clicking the chart starts the Chart
Editor (see Figure 6.4), which we can use to, e.g., rescale the chart, so that the zero value for
both variables is shown. We do that by selecting Edit from the menu bar and clicking Select
X Axis. Subsequently a new window pops up (not illustrated), where we change the value in
row Minimum in field Custom to 0, Apply this setting and close the window. We repeat this
procedure for the sequence of commands Edit – Select Y Axis. Now we can close the Chart
Editor and, as a result, we get Figure 11.10.

Figure 11.8 SPSS-window for creating a scatter plot as well as a regression line.
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Figure 11.9 SPSS-output of the scatter plot and the regression line in Example 11.5 (scaled
by SPSS).
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Figure 11.10 SPSS-output of the scatter plot and the regression line in Example 11.5
(rescaled by the user).
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Thus the regression line for Applied Computing, 2nd test date, to Applied
Computing, 1st test date is: ŷv = 0.853xv + 7.105. In Figure 11.4 no particu-
lar abnormality is noticeable, at the most that residuals fluctuate somewhat more
in small test scores. If these fluctuations were more distinct, we would have to
doubt the model condition that all random variables ev have the same variance.

The equation of the estimated regression line ŷ = b1x + b0 now actually can be used for
(future) observations xn+t, t = 1, 2, . . . to best determine the corresponding value in variable
y: ŷn+t = b1xn+t + b0. Thus ŷn+t is the predicted value on the regression line for the points
for which no x-values are given.

Generally, it is only legitimate or reasonable to use, for a prediction, x-values which
fall in the interval between the biggest and the smallest observed xv-value. This is not only
scientifically logical, but is mainly due to the fact that the linear regression often empirically
is valid within a certain well-defined area, but in other areas a nonlinear relationship exists.
For instance, in infants, body weight has a relatively strong linear relation with body size.
However, it would obviously be meaningless to try to predict the body weight of a 12-year-old
by means of a linear regression, which was determined in babyhood.

Master However, often it is exactly predictions outside the observed area of values that
are of interest. Economic statisticians, for example, want to forecast the future
economic trend from the trend of the past years. The problems talked about above
can often be solved by using an adequate growth function.

11.3 Correlation coefficients and measures of association

After the type of statistical relationship between two characters has been defined, the regression
model is determined and it is possible to estimate the parameters of the regression function
by means of a sample of pairs of outcomes. Of course the strength of the correlation is of as
great or greater interest. The measure for the strength of correlation is called the correlation
coefficient or, more generally stated, a measure of association.

So far, we have been concerned exclusively with linear functions and consequently with
the correlation between two quantitative characters. We will continue in this way in the
following, and discuss other types of associations subsequently.

11.3.1 Linear correlation in quantitative characters

A measure of the strength of the linear correlation between two random variables x and y is
Pearson’s correlation coefficient or the product-moment correlation coefficient. It is defined
as the ratio of covariance and the product of standard deviations. For didactical reasons, in
the following we will first consider the situation in the population and then afterwards come
back to data from a sample:

ρ = σxy

σxσy
(11.7)

In contrast to the regression coefficient, the correlation coefficient is a measure which is
symmetric regarding x and y. It takes values in the interval between −1 and 1. If ρ > 0, we
say that a positive correlation exists between the two random variables. Then high values of x
are related (by trend) with high values of y. Depending on the strength of the relationship, thus
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the absolute value of ρ, the relation is more or less consistent. If ρ < 0, we say that a negative
correlation exists between the two random variables. Then high values of x are related (by
trend) with small values of y. If the two random variables are independent from each other,
thus ‘uncorrelated’, the covariance is σ xy = 0, and therefore also the correlation coefficient ρ

= 0 and both of the regression coefficients β1, β ′
1. Nevertheless, if, for two random variables,

ρ = 0, then they are not necessarily independent from one another. But, a linear relation does
not exist in any case.

Master Pearson’s correlation coefficient can be deduced intuitively as follows.
First we reflect on the question of for which cases we would consider a

correlation between two characters as relevant, for instance relevant to an extent
that it seems to be meaningful to predict an unknown value yi from xi by means of
the regression line. Now, the correlation would surely be considered as relevant
and such a prediction as meaningful, if the character x, modeled by x, could
‘explain’ ‘why’ the observations of the other character y, modeled by y, take,
exactly, certain realizations yv, v = 1, 2, . . . , n.

We assume here that we are interested in the correlation between intelligence
(intelligence test with test score x) and school achievement (school achievement
test with test score y), which is indeed the subject of many debates. School
achievement thus is to be modeled by a random variable, which will certainly not
lead to the same outcomes in all children, but to outcomes with a certain variabil-
ity, measured by variance. If intelligence, as the other modeled random variable,
is capable of explaining this variability in the way that high school achievement
often is related to high intelligence and low school achievement to low intelli-
gence, then the following question arises: to what extent exactly is the intelligence
‘responsible’ for the variability in school achievement of these children? It is im-
portant to note that causality between the two characters is not presumed thereby.
That is to say that it is equally possible, with regard to the content, that, in-
versely, differences in school achievement cause the corresponding differences in
the intelligence test. It is also possible that the differences between the children
concerning school achievement as well as intelligence test achievement are due
to differences between the children in the trait ‘achievement motivation’.

Thus the question is about the extent of variance σ 2
y in school achievement,

which is determined (we also say: described) solely by the variance in intelligence.
Provided that the regression from y onto x is given, we can determine the value
ŷv = ŷ(xv ) = b0 + b1xv for each research unit v. Calculating the variance s2

ŷ of all
of these values ŷv , we obtain the estimation for σ 2

ŷ of ŷ of that fraction of variance
of y, σ 2

y , which can be described (or predicted, respectively) or determined for the
given population from x. It is of interest now to relate this variance σ 2

ŷ to the total
variance of y (within the population), thus to calculate the relative proportion of

variance explained by x:
σ 2

ŷ

σ 2
y
.

Since

σ 2
ŷ = E [ ŷ − E ( ŷ)]2 = E [b0 + b1x − E (b0 + b1x)]2 = β2

1 · E [x − E(x)]2

=
(

σxy

σ 2
x

)2

· σ 2
x = σ 2

xy

σ 2
x
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Figure 11.11 The regression line for a scatter plot with Pearson’s correlation coefficient
of 0.00031.

this relative proportion of the variance of y explained by x equals the square of
Pearson’s correlation coefficient:

σ 2
ŷ

σ 2
y

= σ 2
xy

σ 2
x

· 1

σ 2
y

= ρ2.

Ideally, ŷ and y coincide precisely for all v. Then, numerator and denominator
are identical in the quotient ρ2; thus ρ2 = 1. Given the case that y and x are not
(linearly) correlated, the regression line from y to x has to proceed in parallel to
the x-axis. That is, the same value, μv, has to be predicted for every xv in order to
minimize the sum of squares (see the example in Figure 11.11). Therefore β1 =
β ′

1 = 0, and thus ρ2 = 0 as well. As a consequence, the value of ρ2 is between 0
and 1. The stronger the relationship is, the closer the value of ρ2 is to 1.

The square of Pearson’s correlation coefficient is called the coefficient of determination. As
a symbol for this parameter (concerning the population) we use ρ2. An appropriate point
estimator is B = r2 = ρ̂2, in which r = rxy = ρ̂ constitutes a point estimator for the parameter
ρ on its part:

r =
1

n−1

n∑

v=1
(xv − x̄) ( yv − ȳ)

sx sy
(11.8)
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Master The estimator r for ρ in Formula (11.8) is not unbiased. An unbiased estimator
also exists, but as the bias is not too big, we recommend using Formula (11.8),
nevertheless.

Bachelor A coefficient of determination of, for instance, B = 0.81 (thus r = 0.9) means that
81% of the variance in y can be explained by the variance in x (and vice versa).
Then, 19% of the variance (the variability) of y depends on other, unknown
(influencing) factors. A coefficient of determination of B = 0.49 (thus r = 0.7)
indicates that almost half of the variance of the variables is explained mutually.
This can be referred to as a medium-sized correlation. If the correlation coefficient
equals 0.3 and therefore the coefficient of determination B = 0.09, not even 10%
of the variance is being explained mutually. In most cases, this relationship is not
relevant in a practical sense.

For Lecturers:

If the two regression lines are drawn into a rectangular coordinate system, they
intersect in the area of observations (see Figure 11.12). The angle ω = ωxy − ωyx

which is embedded in the two lines is clearly related to the correlation coefficient
(this is true for the unknown regression lines of the population and ρ on the one
hand and for the estimated regression lines and r on the other hand). If ρ = 1 or
ρ = −1, this angle equals zero: both lines are identical. If ρ = 0, the lines are
perpendicular to each other and the angle equals 90◦. It can be shown that

ρ2 = 1 − sin ω

cos ωyx sin ωxy

If ω = 90◦, sin ω = 1 and ρ2 = 0. Contrariwise, if both lines are identical, ω and
sin ω equal 0 and ρ2 = 1. That is, ρ equals +1 if the common line ascends, and
otherwise −1.

y

ω

y = β0 + β1x

x = β′0 + β′1y

ωyx
ωxy

x

Figure 11.12 All angles of the two regression lines for an arbitrary example.
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Generally, we caution against calculating the correlation coefficient uncritically; that is
without making sure in advance by means of a graph that the assumed relationship is in fact
linear.

Bachelor Example 11.6 Example for calculation without regard to content
We want to illustrate graphically the following pairs of observations (x, y) in

order to determine a possible relationship between x and y.

x 0 1 0 −1 0.707107 −0.707107 0.707107 −0.707107
y 1 0 −1 0 0.707107 −0.707107 −0.707107 0.707107

In R, we first create two vectors corresponding to the pairs of values by typing

> x1 <- c(0, 1, 0, -1, 0.707107, -0.707107, 0.707107, -0.707107)
> y1 <- c(1, 0, -1, 0, 0.707107, -0.707107, -0.707107, 0.707107)

i.e. we use the function c() to concatenate the values in each row into a vector, which we
assign to objects x1 and y1, respectively. Next we type

> plot(x1, y1)

i.e. we submit x1 and y1 to the function plot().
As a result, we get Figure 11.13.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

y
1

Figure 11.13 Scatter plot for Example 11.6.
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Next, we ascertain the extent of the linear relationship by typing

> cor(x1, y1, method = "pearson")

i.e. we use both variables, x1 and y1, as arguments in the function cor(); with method
= "pearson" we select Pearson’s correlation coefficient.

As a result, we get:

[1] 0

In SPSS, we open a new data sheet (File – New – Data) and start by typing in the characters
x and y according to the given table, above. Next we draw a scatter plot with the command
sequence (Graphs – Chart Builder. . .) from Example 11.5 and move x to the field X-Axis?
and y to the field Y-Axis?. With OK, we get a chart analogous to Figure 11.13. Now we use
the sequence of commands:

Analyze
Correlate

Bivariate. . .

and, in the resulting window (see Figure 11.14), move x and y to the field Variables:, confirm
with OK, and get as a result that Pearson’s correlation coefficient is 0 (see Table 11.3).
Looking at the scatter plot in Figure 11.13, which we create analogously to Example 11.5,
obviously no linear relationship exists; however a 100% nonlinear relationship does: all eight
points match the circle equation x2 + y2 = 1 of the unit circle and therefore all y-values are
uniquely determined by the x-values. Linear correlation simply is unfit to quantify the existing
100% relationship. The result ‘1’ in the output states the respective correlation coefficient of
each variable with itself, which naturally is 1.0.

Figure 11.14 SPSS-window for computing correlation coefficients.
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Table 11.3 SPSS-output showing Pearson’s correlation coefficients for the data given in
the table of Example 11.6.

yx

Pearson Correlation

Sig. (2-tailed)

N

Pearson Correlation

Sig. (2-tailed)

N

x

y

88

1.000

1.000

88

1.000

.0001

Correlations

Bachelor Example 11.5 – continued
The question is about a relationship between the test scores in the characters
Applied Computing, 1st test date and Applied Computing, 2nd test date.

In R, we type

> cor(sub3_t1, sub3_t2, method = "pearson")

i.e. we use the characters Applied Computing, 1st test date (sub3_t1) and Applied
Computing, 2nd test date (sub3_t2) as arguments in the function cor().

As a result, we get:

[1] 0.7802943

In some respects a relationship between the characters Applied Computing, 1st test
date and Applied Computing, 2nd test date exists, but no exact linear correlation.

Doctor As described above, the case of model I, in which one of the values (e.g. x-value)
per pair of values is predetermined by the investigator and only the correspond-
ing y-value is actually observed, is found very rarely in psychology. However,
we want to point out clearly the following: Pearson’s correlation coefficient is
not defined for this case; we had always assumed that character x as well as
character y can be modeled by random variables. Unfortunately, software pro-
grams, such as for instance SPSS, do not caution the user against such mistaken
application.

Summary
Often a statistical relation exists between two characters, insofar as the scatter plot of a
research unit’s pairs of observations, which are represented in a rectangular coordinate system,
can be described rather precisely by a straight line. The optimal line is determined by means
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of regression analysis. We aim for one of the characters, the regressand, to be predicted as
precisely as possible by the other one, the regressor , with the help of the sought-after line. The
looked-for parameters (of the line) are called regression coefficients. A measure of the strength
of correlation is Pearson’s correlation coefficient. The square of this coefficient is called the
determination coefficient; it indicates the percentage of variance of the characters modeled by
random variables, which they mutually explain due to their relationship.

11.3.2 Monotone relation in quantitative characters and relation
between ordinal-scaled characters

If no linear, but a (strictly) monotone relation between two characters is given, Pearson’s
correlation coefficient underestimates the actual relationship. A monotone relation means that
y increases or decreases when x increases. Therefore, in this case other correlation coefficients
are considered; that is mainly such ones as are applicable for ordinal-scaled characters. The
best known of these coefficients is Spearman’s rank correlation coefficient/Spearman’s rs,
which is characterized by the parameter ρS for the population and by the statistic rS = ρ̂S for
the sample. It can be calculated very easily with the aid of statistical software programs.

Master Spearman’s rank correlation coefficient in the sample is derived from Pearson’s
correlation coefficient by ranking the values per variable x and y according to
the rules in Section 5.3.2. With these ranks Pearson’s correlation coefficient is
calculated.

The interpretation of the algebraic sign, thus of the direction of the relationship, is done in the
following way: a positive Spearman’s rank correlation coefficient indicates that, with higher
ranks in one character, the rank in the other character tends to increase.

Also for Spearman’s rank correlation coefficient, the coefficient of determination B =
r2

S is frequently calculated. The interpretation is more difficult in this case: it describes the
percentage of variance explained by the ranks – not by the originally quantitative outcomes.

In analogy to Pearson’s correlation coefficient, if ρS = 0 or rS = 0, this does not mean that
no relationship between x and y exists. But certainly, no monotone relationship does exist.

Bachelor Example 11.6 – continued
Spearman’s rank correlation coefficient results with rS = 0 as well for the data
from Example 11.6.

In R, we type

> cor(x1, y1, method = "spearman")

i.e. we use the characters x1 and y1 as arguments in the function cor(); with method
= "spearman" we select the Spearman’s rank correlation coefficient.

As a result, we get:

[1] 0
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In SPSS, we proceed analogously to computing Pearson’s correlation coefficient, but in
Figure 11.14 select Spearman instead of the default Pearson.

Spearman’s rank correlation coefficient is applied in the following cases:

� Two quantitative characters are given, but the question is not about a linear, but about a
monotone relationship.

� At least one of the characters is an ordinal-scaled character; the other character is either
quantitative or ordinal scaled as well.

Bachelor Example 11.7 Does a relationship exist between the test score in subtest Applied
Computing, 1st test date and social status in Example 1.1?

The test scores in subtest Applied Computing are interval-scaled, but social
status is merely ordinal-scaled – given that we exclude all of the children with
‘single mother in household’, as we did in former examples. Consequently, Pear-
son’s correlation coefficient does not come into consideration, but Spearman’s
rank correlation coefficient does. The analysis is performed in the same way as in
Example 11.6. The result is: rS = −0.274. The relationship is to be described as
marginally (negative); the test score in subtest Applied Computing and the social
status are hardly associated.

Besides Spearman’s rank correlation coefficient, another correlation coefficient based on ranks
is used more and more: Kendall’s τ . Due to the given symbol, it is difficult to differentiate
between the parameter in the population and the statistic in the sample as an appropriate
estimator for the parameter, but this should always become clear from the context.

Master By its concept, Kendall’s approach differs from Spearman’s approach: the latter
is based on the differences between the ranks of the research units in the two
characters, and the former is based on the number of permutations in the ranking
of the research units with respect to one character compared to the ranking of the
research units in the other character. The square of Kendall’s τ thus cannot be
interpreted as the percentage of explained variance.

Other measures to determine the strength of relationship in ordinal-scaled
characters exist as well. None of them are established in psychology (but see, for
example, Kubinger, 1990).

11.3.3 Relationship between a quantitative or ordinal-scaled character
and a dichotomous character

Sometimes it is recommended to use Pearson’s correlation coefficient also in the case of
one quantitative and one dichotomous character. Analogously, Spearman’s rank correlation
coefficient or Kendall’s τ would be applicable, if one character was ordinal-scaled and the
other one a dichotomous character. Here, it is less critical that in the second case numerous ties
arise (this fact would be irrelevant due to the obligatory correction for ties which is included in
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the formula), than the fact that, in both cases, despite an ‘ideal’ relationship, in many instances
the correlation coefficients cannot achieve the value of 1.

Master Example 11.8 Numeric example without regard to content, for the artificial use of
Pearson’s and Spearman’s rank correlation coefficient or Kendall’s τ , respectively,
in the case of one dichotomous character

For the data mentioned below, the correlation coefficients do not equal 1,
although data was chosen in such a way that the maximum possible relationship
is given. In one case the yv are quantitative outcomes; in the other case they are
already into ranks transformed values.

Person
number 1 2 3 4 5 6 7 8 9 10

yv 1 2 3 4 5 6 7 8 9 10
xv 1 1 1 1 1 2 2 2 2 2

In this example Pearson’s correlation coefficient has to coincide with Spearman’s
correlation coefficient. The result is: r = rS = 0.870. Kendall’s τ results as τ =
0.745 (calculations are performed as in Example 11.6).

In R, we begin by creating two vectors, representing the values of the characters x and y;
hence we type

> y2 <- 1:10
> x2 <- rep(1:2, each = 5)

i.e. we assign the values 1 to 10 to the object y2 and a sequence of numbers created
by the function rep() to the object x2; namely, the values 1 to 2 are repeated five
times, each (each = 5). Next, we ascertain the different correlation coefficients by
typing

> cor(y2, x2, method = "pearson")
> cor(y2, x2, method = "spearman")
> cor(y2, x2, method = "kendall")

i.e. we use the characters y2 and x2 as arguments in the function cor() and set the
respective correlation coefficient, in fact Pearson’s correlation coefficient, Spearman’s
rank correlation coefficient, and Kendall’s τ , with the argument method.

As a result, we get:

[1] 0.8703883
[1] 0.8703883
[1] 0.745356
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In SPSS, we open a new data sheet (File – New – Data) and begin by typing in the values of
the two characters, x and y (as y and x). Next, we select Kendall’s tau-b in Figure 11.14.

As the reader can easily verify, each of these coefficients equals 1 only if for xv

= 1 all of the observations in character y are the same and also for xv = 2 all of
the observations in character y are identical.

Master Hence, different variants of Kendall’s τ exist, inter alia the statistics τ b and τ c.
The latter is preferable when the number of (realized) measurement values of the
two characters, which are to be correlated, are not the same, because otherwise
the strength of the relationship may be underestimated.

Master Example 11.8 – continued
We now determine the coefficient τ c as well.

In R, we create a new function to determine the coefficient τ c; hence we type

> tau.c <- function(x, y) {
+ x <- table(x, y)
+ x <- matrix(as.numeric(x), dim(x))
+ con.x <- sum(x*mapply(function(r, c) {sum(x[(row(x) > r) &
+ (col(x) > c)])}, r = row(x), c = col(x)))
+ dis.x <- sum(x*mapply(function(r, c) {sum(x[(row(x) > r) &
+ (col(x) < c)])}, r = row(x), c = col(x)))
+ m <- min(dim(x))
+ return((m*2*(con.x-dis.x))/((sum(x)ˆ2)*(m-1)))
+ }

i.e. we use the function function() and set the two the characters that we would like
to correlate as arguments. The sequence of commands inside the braces defines the inner
workings of the function and will not be discussed.

Next, we type

> tau.c(y2, x2)

i.e. we use the previously created characters y2 and x2 as arguments in the new function
tau.c().

As a result, we get:

[1] 1

In SPSS, we create a cross tabulation with the command sequence (Analyze – Descriptive
Statistics – Crosstabs. . .) explained in Example 5.13, and, in the window in Figure 5.28,
click the button Statistics. . .; in the resulting window (see Figure 11.15) we select Kendall’s
tau-c in the panel Ordinal. With Continue and OK we get the result: 1.0.
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Figure 11.15 SPSS-window for computing Kendall’s τ c.

The reader may calculate other examples in order to find that, even in the case
of unequal numbers of observations of the two characters, τ b < τ c – taking
absolute values – does not always result. If the relationship is marginal,
sometimes – taking absolute values – τ c < τ b (see, for instance, data from
Example 1.1 and the two characters urban/rural and number of siblings:
τ b = −0.021, τ c = −0.010.

Generally, the problem of determining the relationship does not exist: for the dichotomous
character as a factor with the factor levels ‘+’ and ‘–’, or ‘1’ and ‘2’, or the like, in the case
of a quantitative character y, the two-sample Welch test can be applied, and in the case of
an ordinal-scaled character, Wilcoxon’s rank-sum test. Then, however, we test a hypothesis
immediately. If the null hypothesis has to be rejected, the distributions of the variable y in
the two groups (factor levels) differ (in the case of planning the study, to the extent which
was regarded as relevant). In this respect, a relationship between the factor levels in x and the
observations in y exists. More exactly we could say that, equivalently to the null hypothesis
H0: μ1 = μ2 = μ in the two-sample Welch-test, the hypothesis H0: ρ = 0 (with the alternative
hypothesis HA: ρ �= 0 or HA: ρ > 0 or HA: ρ < 0) is being tested. And equivalently to the
null hypothesis H0: F(z) = G(z) in Wilcoxon’s rank sum test, we have H0: ‘a relationship
between x and y does not exist’ (with the alternative hypothesis HA: ‘a relationship between
x and y exists’, or HA: ‘a relationship between x and y exists in such a way that higher values
in x are associated with higher values in y’, or HA: ‘a relationship between x and y exists in
such a way that higher values in x are associated with lower values in y’). Herewith not only
the inferential statistics subject of hypothesis testing concerning the relationship between two
characters – for the given scale types of the characters – is completed, but also the subject
planning and sequential testing (see Chapter 9).
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Master Example 11.9 Item discriminatory power
Within psychometrics, item discriminatory power describes the extent to

which a certain item of a psychological test is capable of discriminating in the
same way as the test as a whole (with the exception of the item in question)
between persons with different intensities regarding the measured ability.

We assume that, for instance, we have m = 8 dichotomous characters
yl, l = 1, 2, . . . , m, items of a psychological test, which were observed in n
testees. Each item can be either ‘solved’ (= 1) or ‘not solved’ (= 0). Then, for
example, a new variable y∗

l = ∑8
j=1, j �=l yl can be defined, that is the sum of all

solved items except the item which is considered at the moment, l. Subsequently,
Pearson’s correlation coefficient between yl and y∗

l is calculated. Sometimes this
special case of a correlation between a quantitative and a dichotomous variable is
called point-biserial correlation.

With regard to the considerations made above, the interpretation of item
discriminatory power based on the theoretical maximum value of 1 is not useful.
It would be preferable to apply the two-sample Welch test and, if the study has not
been planned (with targeted precision requirements), to interpret the estimated
effect size.

11.3.4 Relationship between a quantitative character and a
multi-categorical character

A method for quantifying the relationship between an ordinal-scaled and a multi-categorical
(non-dichotomous) character does not exist in statistics. In this case, we have to downgrade
the ordinal-scaled variable to the next-lower scale type; thus to exploit only the information
of a nominal scale (equal or unequal). This results in using that association measure which is
available for two multi-categorical characters (see below in Section 11.3.5).

However, if the question is about a quantitative and a multi-categorical character, Fisher’s
correlation ratio/eta-squared is an appropriate association measure – again, because of the
given symbol, it is difficult to differentiate between the parameter in the population and the
statistic in the sample as an appropriate estimator for the parameter. This coefficient can be
easily calculated with the help of statistical software as well, and it also often cannot reach
the value of 1 even in the case of an ‘ideal’ correlation.

Master
Doctor

With reference to Table 10.3, Fisher’s correlation ratio is defined by

η2 = SSA

SSt
(11.9)

thus by the relation of the sum of squares of the level means ȳi concerning the
overall mean ȳ and the sum of squares of the observations yiv concerning the
overall mean ȳ; thereby, levels mean the different categories of the nominal-
scaled character (see Section 10.4.1.1). The possible values of η2 are 0 ≤ η2 ≤ 1.
η2 = 0 if ȳi = ȳ for all i; then SSA or the variance of the level means, respectively,
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equals zero. η2 = 1 results only if, for all v, yiv = ȳi happens to occur; thus if the
character y does not possess any variance per factor level i (compare the analogy
to Section 11.3.3).

Master Example 11.8 – continued
Though the structure of data in this example is just a special case of all pos-
sible applications of Fisher’s correlation ratio, it is nevertheless appropriate to
demonstrate that this coefficient cannot reach a value of 1, despite an ‘ideal’
relationship.

In R, we need to compute Fisher’s correlation ratio step by step; we start with typing

> summary(aov(y2 ˜ x2))

i.e. we conduct, using the function aov(), a simple analysis of variance (cf. e.g. Example
10.1) and request the summarized results with the function summary().

This yields (shortened output):

Df Sum Sq Mean Sq F value Pr(>F)
x2 1 62.5 62.5 25 0.001053
Residuals 8 20.0 2.5

From this table of variances, we extract that SSA and SSres are62.5 and20.0, respectively;
now, we can compute Fisher’s correlation ratio. Hence we type:

> sqrt(62.5/(62.5 + 20))

i.e. we use the function sqrt() to calculate the square root in Formula 11.9.
As a result, we get:

[1] 0.8703883

In SPSS, we simply select Eta in Figure 11.15, and Continue, followed by OK, gets us the
same result as the Spearman’s rank correlation coefficient; that is η = 0.870.

Doctor Fisher’s correlation ratio is associated with several other problems as well. η2

reaches the maximum value of 1 if only one single observation is given per
category in the nominal-scaled character (factor level). Then, numerator and
denominator in Formula (11.9) are equal.

Doctor η2 is also related in a certain way to the intra-class correlation coefficient, which
is applied in genetics as the heritability coefficient; that is the proportion of the
phenotypic variance which is covered by the genotypic variance.
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The intra-class correlation coefficient is assignable in all models of analysis
of variance (see Chapter 10), in which at least one random factor exists. The
simplest case is the case of model II of analysis of variance. We will limit our
consideration to this case at first. With the components of variance σ 2

a and σ 2,
which have been introduced in 10.4.1.3, the intra-class correlation coefficient is
defined by

ρI = σ 2
a

σ 2
a + σ 2

The estimate of ρI is obtained from the estimates for the components of variance
by

rI = ρ̂I = s2
a

s2
a + s2

In the case of equal cell frequencies n, we can also write

rI = s2
a

s2
a + s2

=
MSA − MSres

n
MSA − MSres

n
+ MSres

.

The term ‘correlation’ is to be understood here in the way that, with the
intra-class correlation coefficient, the correlation of the random variables yiv is
measured within the same factor level, or in other words within the same class.
It can be defined analogously for two- and three-way cross classification and in
all nested classifications. In psychology, it plays an important role mainly in this
last sort, which are called ‘hierarchical linear models’ in this context (see Section
13.3).

Obviously, a strong relation exists between the one-way analysis of variance (see Section
10.4.1.1) and Fisher’s correlation ratio, thus the association measure for a quantitative char-
acter and a multi-categorical character. Hence, one realizes (as already in Section 11.3.3)
that the questions about ‘differences’ and the questions about ‘relationships’ do not aim for
something basically different. If (significant) differences in the means exist between a levels
of a fixed factor A with regard to character y, a relationship between this character and the
nominal-scaled factor exists in the respect that the (mean) observations of y are associated
with certain categories of A. Contrariwise, if a relationship of the nominal-scaled factor A
and the quantitative character y exists, this means that, in certain categories of A, the (mean)
observations in y differ.

That is, Fisher’s correlation ratio or the determination coefficient, η2, respectively, is
generally capable of quantifying the significant difference of means, concerning the interest-
ing factor, revealed by analysis of variance (or two-sample Welch test). The determination
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coefficient η2 thus describes the resulting effect; that is, it estimates the effect size. An effect
size defined in this way is, though, not comparable directly with the (relative) effect size as it
was much more illustratively defined for the t-test by the relevant difference for content δ (see,
for instance, in Section 8.3 the relative effect size E = (μ1 − μ0) / σ ), but can nevertheless
be interpreted as an absolute measure, as well. The effect size E or its estimate Ê as defined
up to now expresses the (mean) differences in units of the character’s standard deviation. In
contrast, the determination coefficient η2, as (estimated) effect size, expresses the percentage
of sum of squares (sum of squared differences), of all observations with respect to the overall
mean, which can be explained by the sum of squares of the all factor level means with respect
to the overall mean. While in the first case the effect size can become (much) bigger than 1,
η2 can maximally reach the value of 1, and even this occurs only in the extremely infrequent
case described above. In this respect η2 as an (estimated) effect size runs the risk of being
compared in interpretation with an unrealistic optimal value.

Bachelor Example 10.1 – continued
The question was, if children differ in their test scores in Everyday knowledge,
1st test date, dependent on their sibling position.

In Section 10.4.1.1, we have found for this example that significant differ-
ences do not exist. Therefore, it was unnecessary to estimate an effect size.
We want to supplement this here, and show how to calculate it with the help
of software programs in case of a significant result of the one-way analysis of
variance.

In R, we compute η2 analogously to Example 11.8 by typing

> 253.9/(253.9 + 9651)

i.e. we use the values of SSA and SSres from Table 10.4 and put them in Formula 11.9.
As a result, we get:

[1] 0.02563378

In SPSS, we cannot proceed as in the first place (via One-Way ANOVA. . .) to get Fisher’s
correlation ratio, but instead use the command sequence (Analyze – General Linear Model –
Univariate. . .) described in Example 10.8 to open the window in Figure 10.7 – children
with a sibling position higher than the fourth are already excluded from analysis. Here,
after moving the character Everyday Knowledge, 1st test date and the factor sibling po-
sition to Fixed Factor(s):, we click Options. . . and the window in Figure 10.8 pops up.
Finally, we select Estimates of effect size; clicking Continue and OK gets us the, in com-
parison to Table 10.4, extended Table 11.4. From the column Partial Eta Squared we get
η2 = 0.026.
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Table 11.4 SPSS-output showing the table of variances of the analysis of variances
(model I) in Example 10.1 (shortened output).

Partial Eta
SquaredSig.FMean Squaredf

Type III Sum
of Squares

Corrected Model

Intercept

pos_sibling

Error

Total

Corrected Total 919904.989

92263375.000

109.671889651.040

.026.513.77284.6503253.949

.946.0001550.475170041.9461170041.946

.026.513.77284.6503253.949
a

Source

Tests of Between-Subjects Effects

Dependent Variable:Everyday Knowledge, 1st test date (T-Scores)

a. R Squared = .026 (Adjusted R Squared = -.008)

Obviously, the effect is negligible. Only 2.6% of the sum of squares of the test
scores in subtest Everyday Knowledge can be explained by the sum of squares of
the mean test score per sibling position.

Fisher’s correlation ratio can be calculated as an estimate for the effect size for all other types
of analysis of variance with cross classification, too.

Master
Doctor

Example 11.7 – continued
If we want (because of the significant result) to determine the result-based type-II
risk, we have to calculate η2 first.

In R, we do that by typing

> 386.392/(386.392 + 3247.474)

i.e. we use the values of SSA and SSres from e.g. Table 10.7, and put them in Formula 11.9.
As a result, we get:

[1] 0.1063308

In SPSS, we have to repeat the procedure, but this time we need to click Options. . . in Figure
10.7. This opens the window in Figure 10.8, where we select Estimates of effect size. After
Continue and OK we get the result from the column Partial Eta Squared.

The estimated effect size is η2 = 0.106.
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Master
Doctor

As opposed to the calculation according to Formula (11.9), in SPSS a ‘partial’ η2

is calculated as an estimated effect size in analysis of variance; in the case of one-
way analysis of variance, this effect size coincides with η2. The underlying idea
is to estimate, in the case of multi-way analyses of variance, the separated effect
for each case, when the corresponding null hypothesis is rejected. For instance,
for the two-way analysis of variance of Table 10.10, the following three measures
of partial coefficients result:

η2
A = SSA

SSA + SSres
, η2

B = SSB

SSB + SSres
, and η2

AB = SSAB

SSAB + SSres

So, for all partial coefficients we have η2
part ≥ η2. Thus, the not very illustrative

interpretation of partial η2 is: the corresponding percentage of variance (to be
formally correct: sum of squares) of all observations of the character of interest
– corrected by the other factors’ contribution, the interaction effects included –
which is explained by the variance (to be formally correct: sum of squares) of the
factor level means.

The ostensible advantage of estimation of the specific effect by the effect size
of partial η2 is accompanied by the problem that, unlike for η2, the sum of all
estimated effect sizes does not equal 1.

Referring to analysis of variance, the question of hypothesis testing concerning Fisher’s
correlation ratio has also been solved, and herewith also the question of planning a study.

11.3.5 Correlation between two nominal-scaled characters

In the case of relationships between two nominal-scaled characters, we have to distinguish
generally between the case of both characters being dichotomous on one hand and the case
of at least one character being multi-categorical on the other hand.

In any case, the observation pairs (xv, yv) can be represented very clearly in a contingency
table, as we already did in previous chapters (see mainly Section 9.2.3); more exactly speaking,
we talk about a two-dimensional contingency table, because two characters are given.

In the more general case, the character which was modeled by the random variable x
has r different categories, and the character modeled by y possesses c categories. When
arranged in a matrix (table), r × c cells result, for example r rows times c columns. The
number of observed combinations of categories is entered in these cells. If n research units
are given, the frequency per combination of categories is described by nij, i = 1, 2, . . . , r and
j = 1, 2, . . . , c. The special case of r = c = 2 is of course included here. In this case, the table
is often referred to as a fourfold table or 2 × 2 table. In contrast, the general contingency table
then is called an r × c table.

At first, we consider the general case with r > 2 and/or c > 2.
If the number of categories r and number of categories c is not very big, any tendencies of

a relationship can be detected already from the contingency table. In doing so, it is important
to keep in mind that, because of the nominal-scaled categories, no direction of ‘arrangement of
order’ can be ascertained; all of the rows and all of the columns are generally interchangeable
with each other arbitrarily.
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Bachelor Example 9.9 – continued
The question was about the difference in marital status of the mother between
children with German or Turkish as their native language. Using the χ2-test, we
determined a significant difference. For this purpose we interpreted the character
native language of the child as a factor with the two factor levels ‘German’
and ‘Turkish’. If a difference in the distribution on the categories of marital
status exists between children with German and children with Turkish as their
native language, then a relationship between the two characters exists in so far as
certain categories of marital status occur more frequently and other categories less
frequently in children whose native language is German then in children whose
native language is Turkish.

Table 9.5 shows mainly that children with Turkish as their native language
have considerably more married mothers than the children with German as their
native language. Contrariwise, the former have only a fraction of mothers with
the marital status ‘divorced’ compared to the latter.

The common measure for the general case of a contingency table is the so-called contingency
coefficient, more precisely Pearson’s contingency coefficient. Consequently, it is an unsigned
measure and it is based on the statistic of the χ2-test from Formula (9.3):

C =
√

χ2

χ2 + n

As it facilitates comprehension, we will use C for the statistic in the sample, and ζ for the
parameter in the population, which is estimated by C; although this notation is not common
practice. As this coefficient also cannot achieve the value of 1 in many cases, dependent on
r · c, it is preferable to calculate (in the sample) the corrected contingency coefficient:

Ccorr =
√

t

t − 1
C (11.10)

in which t is the smaller of the two values r and c.

Bachelor Example 9.9 – continued
We want to quantify the relationship determined by means of the χ2-test between
marital status of the mother and native language of the child.

In R, we apply the package vcd, which we load after its installation (see Chapter 1) using
the function library(). Next, we type

> assoc.1 <- assocstats(table(marital_mother, native_language))
> summary(assoc.1)

i.e. we create, using the function table(), a contingency table of the two characters
marital status of the mother (marital_mother) and native language of the child
(native_language), and submit it as an argument to the function assocstats();
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the result of this analysis is assigned to the object assoc.1. Finally, we request the
summarized results with the function summary().

As a result, we get:

Number of cases in table: 100
Number of factors: 2
Test for independence of all factors:

Chisq = 16.463, df = 3, p-value = 0.0009112
Chi-squared approximation may be incorrect

Xˆ2 df P(> Xˆ2)
Likelihood Ratio 17.338 3 0.00060216
Pearson 16.463 3 0.00091122

Phi-Coefficient : 0.406
Contingency Coeff.: 0.376
Cramer’s V : 0.406

To compute Ccorr we type

> sqrt(2/(2-1))*assoc.1$contingency

i.e. we conduct the computation according to Formula (11.10), and use the contingency
coefficient $contingency in the object assoc.1.

As a result, we get:

[1] 0.53171

In SPSS, we produce a cross tabulation (see Example 5.13), where we click Statistics. . . and
get to Figure 11.15. Next, we select Contingency coefficient. As a result, we get Table 11.5:
the contingency coefficient C is 0.376. Since SPSS states neither the maximum of C nor
Ccorr directly, we compute Ccorr manually:

Ccorr =
√

t

t − 1
C =

√
2 · 0.376 = 0.532

The p-value 0.001 in Table 11.5 in Approx. Sig. corresponds to that of the χ2-test earlier
in Example 9.9

Table 11.5 SPSS-output of the contingency table in Example 9.9

Approx. Sig.Value

Contingency Coefficient

N of Valid Cases

Nominal by Nominal

100

.001.376

Symmetric Measures
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Compared to the maximum possible relationship, the observed relationship
between native language of the child and marital status of the mother is 53%;
that is, a relationship of medium strength.

Other measures of association exist as well for this case, but they hardly play any role in
psychology (but see Kubinger, 1990). Nevertheless, some of them are output ‘automatically’
by SPSS.

Doctor If, in the case of contingency tables, the question about the relationship between
two characters focuses on regression analysis, we generally have to differentiate
between two models, as in analysis of variance. One of them is found only in-
cidentally in psychology, but then mostly is simply not recognized at all by the
researcher as an entirely different statistical problem. The common case refers to
research units being sampled by chance and for which the values in both char-
acters have been ascertained accordingly (model II). In the other case (model I),
one value per pair of outcomes (e.g. the value x) is determined or in other words
selected in a systematic way, and only the corresponding y value is ascertained
accordingly. An example for model I is the survey of Example 1.1 concerning
the children with German or Turkish as their native language: the researcher
determined that 50 children from the first population and 50 children from the
second population would be investigated. In this case, the values of x are not as-
certained, but determined a priori. Therefore, the cases of application in Chapter
9 differ from those in this chapter. There, the different rows (or columns, respec-
tively) representing several populations have been determined with regard to their
marginal totals prior to data acquisition; only the respective other marginal totals
were random. In the case examined here we have only one sample (of research
units), and both marginal totals, of rows as well as of columns, are random. How-
ever, this difference is of interest only theoretically: practically, the calculation
procedures for the association measures described here and for the χ2-test are
the same.

For Lecturers:

In contingency tables, a model III also exists; this is given in a famous example
by Ronald A. Fisher (for more detailed information see e.g. Salsburg, 2002). It
is about an English lady who pretends to be able to find out in which order tea
and milk had been put in a cup. Fisher designed an experiment, in which eight
different cups of tea were given to the lady for tasting, of which four were filled in
one way and four cups in the other way. This was also told to the lady. Therewith
the marginal sums of, for instance, of the rows of the contingency table, are fixed.
Given that the lady is intelligent, the marginal sums of the columns are also fixed,
because the lady was told how many cups had been filled using each method of
preparation.
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Table 11.6 General 2 × 2 table.

Character 2 Marginal totals of rows
B B̄

Character 1 A a b a+b
Ā c d c+d

Marginal totals of columns a + c b + d n = a + b + c + d

In the case of a 2 × 2 table, there is also an association measure, which is related to the χ2-test
from Formula (9.3). This is the φ-coefficient:

√
χ2

n

Again because of the given symbol, it is difficult to differentiate between the parameter in the
population and the statistic in the sample as an appropriate estimator for the parameter. As
this coefficient also cannot achieve the value of 1 in many cases, even if an ‘ideal’ relationship
is given, it is preferable to determine the corrected φ-coefficient (within the sample):

φcorr = φ

φmax
(11.11)

It has to be noted that φmax cannot be calculated easily. If o11 to o22 in Table 9.2 are renamed
as a to d (see the general 2 × 2 table in Table 11.6), φmax results as follows:

φmax =
√

(a + b)(b + d)

(c + d)(a + c)
(11.12)

with (a + b) ≤ (c + d), (b + d) ≥ (a + c), and (c + d) ≥ (b + d).

Master A φ-coefficient exists in a general form as well; that is the relation between the
contingency coefficient and φ-coefficient is as following:

C =
√

χ2

χ2 + n
=

√
φ2

φ2 + 1

The reason why there are two association measures at the same time is, on the
one hand, that, for r × c tables, the φ-coefficient can also become bigger than 1:
namely maximally

√
t − 1; for r = c = 3, this is 1.414, for instance. On the other

hand, though Pearson’s contingency coefficient is indeed the oldest association
measure based on the χ2-test, the φ-coefficient is the immediate special case
of Pearson’s correlation coefficient for the case of two dichotomous characters.
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Using the frequencies a to d, from Formula (11.8) as well as from Formula (9.3)
it can easily be derived:

φ = ad − bc√
(a + b)(c + d)(a + c)(b + d)

(11.13)

Master Example 11.10 Relationship of two items of a psychological test
It can be demonstrated easily that the φ-coefficient cannot achieve the value

of 1 even in the case of an ‘ideal’ relationship. At first we give, in Table 11.7
(upper, left-hand 2 × 2 table), a numeric Example 1 for data from 100 testees who
solved (+) or did not solve (−) two items of a psychological test. According to
(11.12), φ = 0.40. This value of an association measure, of Pearson’s correlation
coefficient, would have to be interpreted as rather small, because only 16% of the
variance is mutually determined. However, we see that the difficulty of the two
items differs. While item x was solved by only 20 out of the 100 testees, item y
was solved by 50 out of 100 testees. Even if an ideal relationship existed in the
empirically given marginal totals of rows and columns, the φ-coefficient would
not equal 1. Instead of using Formula (11.11) – in which it would be necessary to
interchange rows or columns, or to skip over the 2 × 2 table, respectively, because
of the side conditions (a + b) ≤ (c + d), (b + d) ≥ (a + c), and (c + d) ≥ (b +
d) – we use the following calculation procedure according to Kubinger (1995) to
determine φmax.

Table 11.7 2 × 2 tables for Example 11.10.

Numeric Example 1  Ideal relationship for given  
marginal totals 

Item x    Item x   
+ −    + −   

Item y + 18 32 50   Item y + 20 30 50  
− 2 48 50    − 0 50 50  

 20 80     20 80   
φ = 0.40     φ max = 0.50

Example 2 
Ideal relationship 

 Example 3 
Ideal relationship 

Item x    Item x   
+ −    + −   

Item y + 20 0 20   Item y + 30 20 50  
− 0 80 80    − 0 50 50  

20 80    30 70   
φ max = 1.00    φmax = 0.65

In the intersection of row and column of each biggest marginal total of items
x and y, the smaller marginal total has to be selected as a′ or d′, respectively. In
order to get the observed smaller marginal total correct, b′ or c′ (depending on
which of the marginal totals was the smaller one), respectively, has to be set equal
to 0. Thereby also all other values of the contingency table are determined. The
calculation according to Formula (11.12) is conducted with these values instead
of the originally given a, b, c, and d.
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For Example 1 the following results are derived with this procedure: the
smaller of the two bigger marginal totals (in the rows this is 50; in the columns
this is 80) is 50; this is the value for d′. For this reason c′ has to set equal to 0,
so that the marginal total remains 50. Then b′ = 30 and a′ = 20 necessarily (see
the upper, right-hand 2 × 2 table, ideal relationship for given marginal totals, in
Table 11.7). If these values for a, b, c, and d are inserted into Formula (11.12),
the result is φmax = 0.50. With regard to this, the φ-coefficient with φ = 0.40 is
not that small. When we calculate φcorr = 0.40

0.50 = 0.80, exactly this fact becomes
evident. It is easy to realize that only when the marginal totals of both items are
identical can the φ-coefficient actually become 1 (see the lower, left-hand 2 × 2
table in Table 11.7). Example 3 (see the lower, right-hand 2 × 2 table in Table
11.7) illustrates additionally that the φ-coefficient can become bigger the more
similar the marginal totals of both items are: instead of φmax = 0.50 in Example 1,
the maximum of the φ-coefficient is now φmax = 0.65.

Master Interestingly, although it is a fact that Pearson’s contingency coefficient (in
quadratic contingency tables) is necessarily always smaller than 1 as a conse-
quence of non-equivalence between the two marginal totals of x and y, this is
not reflected in literature. The reader can easily verify this analogously to Exam-
ple 11.10.

As the φ-coefficient represents a special case of Pearson’s correlation coefficient for the case
of two dichotomous characters, φ2 = B has to conform to the coefficient of determination.
Nevertheless, φ2 should not be used for interpretation, precisely because it often underesti-
mates the strength of association. It is preferable to interpret φcorr as the relative strength of
relationship, which is given compared to the theoretically maximum possible relationship.
Squaring φcorr, a pseudo-coefficient of determination is obtained: compared to the maximum
possible percentage of explained variance, φ2

corr · 100% was observed.

Bachelor Example 9.7 – continued
The question is, if the frequency of only-children is identical in families with
children with German as their native language and in families with children with
Turkish as their native language. Again, the question for differences is generally
equivalent to the question for a relation between native language of the child
and the character ‘only child’ versus ‘child with siblings’ which arises from the
character number of siblings.

We refer once more to Table 9.4. We already know that a significant difference
exists according to the results of the χ2-test. Thus, a relationship exists. We want
to quantify its strength by means of the φ-coefficient.

In R, we use the package vcd (cf. Example 9.9 above); since a vector of the character
values ‘only child’ and ‘child with siblings’ has already been created (cf. Example 9.7),
we type:

> assoc.2 <- assocstats(table(native_language, only_child))
> summary(assoc.2)
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i.e. we use the contingency table of native language of the child (native_language)
and number of siblings (only_child), which we create with the function
table(), as an argument in the function assocstats(); the result is assigned
to the object assoc.2. Finally, we request the summarized results with the function
summary().

As a result, we get:

Number of cases in table: 100
Number of factors: 2
Test for independence of all factors:

Chisq = 8.575, df = 1, p-value = 0.003407
Xˆ2 df P(> Xˆ2)

Likelihood Ratio 9.1852 1 0.0024399
Pearson 8.5755 1 0.0034072

Phi-Coefficient : 0.293
Contingency Coeff.: 0.281
Cramer’s V : 0.293

Since R neither states φmax nor φcorr, we need to compute both manually. From Table 9.3,
we see that the conditions (a + b) ≤ (c + d), (b + d) ≥ (a + c), and (c + d) ≥ (b + d) are
not satisfied without interchanging rows and columns. After several failed trials we find
the solution: the contingency table needs to be flipped 90◦ to the right; thus a = 3, b = 14,
c = 47, and d = 36. Now the rules apply: (a + b) = 17 ≤ (c + d) = 83; (b + d) = 50 ≥
(a + c) = 50; and (c + d) = 83 ≥ (b + d) = 50. Hence φmax =

√
(a+b)(b+d)
(c+d)(a+c) =

√
17·50
83·50 =

0.453 and therefore, φcorr = 0.293
0.453 = 0.647.

In SPSS, for the variable only_child already created in Example 9.7, we use the same sequence
of commands (Analyze – Descriptive Statistics – Crosstabs . . .) and press Statistics . . . , and
select Phi and Cramer’s V (as well as Chi-square for checking purposes) – we cannot disable
the output of the hardly ever used coefficient Cramer’s V . We click Continue and conclude
the entries with OK. As a result, we get the already known contingency table, as well as
Table 11.8 including the φ-coefficient and the result of the χ2-test.

Table 11.8 SPSS-output of the φ-coefficient in Example 9.7 (shortened output).

Approx. Sig.Value

Phi

N of Valid Cases

Nominal by Nominal

100

.003.293

Symmetric Measures

Since SPSS neither states φmax nor φcorr, we need to compute both manually. From Table
9.3, we see that the conditions (a + b) ≤ (c + d), (b + d) ≥ (a + c), and (c + d) ≥ (b + d)
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are not satisfied without interchanging rows and columns. After several failed trials we find
the solution: the contingency table needs to be flipped 90◦ to the right; thus a = 3, b = 14,
c = 47, and d = 36. Now the rules apply: (a + b) = 17 ≤ (c + d) = 83; (b + d) = 50 ≥
(a + c) = 50; and (c + d) = 83 ≥ (b + d) = 50. Hence φmax =

√
(a+b)(b+d)
(c+d)(a+c) =

√
17·50
83·50 =

0.453 and therefore, φcorr = 0.293
0.453 = 0.647.

The strength of the relationship, compared to the maximum possible relationship
(for the given marginal totals), comes up to 64.7%. The calculated strength of
relationship is considerable: children with Turkish as their native language are
only-children much less frequently than children with German as their native
language. Squaring φcorr, we obtain a pseudo-coefficient of determination of
0.6472 = 0.419. Compared to the maximum possible percentage of variance, we
observed 41.9%.

Referring to the χ2-test, the topic of hypothesis testing concerning relationships of two
characters – given the corresponding scaling of the characters – is completed as well: the
test statistic in Formula (9.3) is valid for any two multi-categorical characters. Then, the null
hypothesis is, expanding or supplementary to Section 9.2.3 (with H0: p1j = p2j for all j) in the
case of an r × c contingency table, H0: phj = pgj for all j and all h and g (or, equivalently,
H0: phj = phl for all h and all j and l) or now H0: ζ = 0, with the alternative hypothesis HA:
phj �= pgj, for at least one j and h �= g (or, equivalently, HA: phj �= phl for at least one h and
j �= l) or now HA: ζ > 0. For the φ-coefficient the same is true analogously; we just cannot
differentiate between statistics and parameters in this case.

Contrariwise, with the reference of χ2-tests to measures of association, there is the
possibility to define a corresponding effect size and to estimate it for the case that the research

was not planned. Thus, if any χ2-distributed statistic is given, because of φ =
√

χ2

n , in addition

to Fisher’s correlation ratio η2 is a further association- or correlation-based effect size that can
be estimated: φ2 = χ2 / n. However, interpretation is difficult, because, as described above,
φ2 often cannot achieve the value of 1 even in cases of optimal explanation of variance due to
the given distributions of marginal totals. By the way, the (estimated) effect size φ2 is suited
generally as well for all standard normal-distributed statistics. As known from mathematical
statistics, the squared standard normal-distributed z2 is χ2-distributed with df = 1 degree
of freedom. From that point of view the following effect size can be estimated as well:
φ2 = z2 / n.

A particular question regarding the association of two nominal-scaled characters concerns
the concordance of two raters with respect to a certain character. In psychology, mainly in
psychological assessment, this is very frequently of interest, for instance with regard to the
objectivity of psychological testing or that is to say with regard to test administrator (examiner)
effects (see Section 2.3). Somewhat misleadingly, one then talks about inter-rater reliability.
It can be quantified by means of the kappa coefficient. This coefficient corrects the percentage
of observed concordances over all categories by that percentage of accordance which would
be expected to occur in random ratings. Additionally, the resulting percentage is related to the
maximum possible percentage which cannot be explained by chance. Using the notation for
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the absolute frequencies in a quadratic contingency table (with r = c) such as, for example,
in Section 9.2.3, and n = ∑c

i

∑c
j oi j , this results in:

κ =

c∑

i=1

oii

n
−

c∑

i=1

⎛

⎜
⎜
⎜
⎝

c∑

j=1
oi j

n

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c∑

j=1
o ji

n

⎞

⎟
⎟
⎟
⎠

1 −
c∑

i=1

⎛

⎜
⎜
⎜
⎝

c∑

j=1
oi j

n

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c∑

j=1
o ji

n

⎞

⎟
⎟
⎟
⎠

(11.14)

In pertinent program packages even a test statistic for testing the null hypothesis H0: κ = 0
(against the alternative hypothesis HA: κ > 0) is calculated; this test statistic is asymptoti-
cally normally distributed. However, in applying the kappa coefficient one aims only for a
description of how close it comes to the ideal value of κ = 1, thus a complete concordance.

Bachelor Example 11.11 How strong is the concordance between two raters in an assess-
ment center?

Within an assessment center, 25 participants in a seminar are rated by two
assessors with respect to their competence in a presentation exercise, according
to three criteria: ‘convinces by content’ (1); ‘seems to be respectable, but does
not convince by content’ (2); and ‘seems to be incompetent’ (3). The exact results
are the following (ratings which are listed one upon the other stem from the same
participant. See Chapter 1 for the availability of the data):

Assessor 1 1 2 2 1 1 2 2 1 2 1 1 3 1 1 1 1 1 2 1 3 2 1 2 1 1
Assessor 2 1 2 3 1 2 2 1 1 1 1 1 2 1 1 1 2 1 1 1 3 2 1 1 1 1

In R, we type

> assess1 <- c(1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1,
+ 1, 2, 1, 3, 2, 1, 2, 1, 1)
> assess2 <- c(1, 2, 3, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2,
+ 1, 1, 1, 3, 2, 1, 1, 1, 1)

i.e. we define the single values of each assessor as a separate vector by using the function
c(), and assign them to the objects assess1 and assess2, respectively. Next, we use
the appropriate function in the package vcd, namely

> Kappa(table(assess1, assess2))

i.e. we use assess1 and assess2 as arguments in the function table() to create a
contingency table, which we submit as an argument to the function Kappa().
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As a result, we get (shortened output):

Unweighted 0.3710692

In SPSS, we open a new data sheet (File – New – Data) and begin by typing in the two
characters assess1 and assess2 according to the values above. Following the command
sequence (Analyze – Descriptive Statistics – Crosstabs. . .), we create a cross tabulation
and use the character assess1 in the field Row(s): and the character assess2 in the field
Column(s):. By clicking Statistics. . . we open the window in Figure 8.11 (cf. Example 8.14),
where we select Kappa, Continue, and confirm with OK. The result is κ = 0.371.

Compared to the maximum possible strength of concordance, the two assessors
conform to each other to 37.1%.

11.3.6 Nonlinear relationship in quantitative characters

In the case that the regression function f in (11.1) is plausibly not linear, a polynomial
regression function – namely quadratic regression function – or logistic regression function
comes into consideration.

Doctor The quadratic regression function is a polynomial of degree two. The correspond-
ing regression model is

yv = β0 + β1xv + β2x2
v + ev (11.15)

While the quadratic regression function is appropriate (better than the linear one)
when the slope of the function is steeper in smaller values of x than in medium-
sized values, and flatter for high values of x, the logistic regression function is
appropriate when an inflection point exists in the course of the relation between
x and y. The logistic regression results in the regression model

yv = β0

1 + β1eβ2 xv
+ ev with β0, β1, β2 �= 0 (11.16)

Here β0 indicates the asymptotic value of yv, thus at the point where xv → ∞; β1

indicates the shift along the abscissa, and β2 the extent of curvature.

Doctor Example 11.12 Numeric example for quadratic and logistic regression functions
without regard to content

We use the analysis of Example 11.5. This is about the relationship between
the character Applied Computing, 1st test date and Applied Computing, 2nd test
date. We would like to represent the scatter plot including a linear, a quadratic,
and a logistic regression function.
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In R, we type

> lm.lin <- lm(sub3_t2 ˜ sub3_t1)
> lm.quad <- lm(sub3_t2 ˜ 1 + sub3_t1 + I(sub3_t1ˆ2))
> nls.log <- nls(sub3_t2 ˜ SSlogis(sub3_t1, Asym, xmid, scal))

i.e. we use the function lm() to create regression models for the linear, the quadratic, and
the logistic regression function, respectively. Applied Computing, 1st test date (sub3_t1)
is the regressor; Applied Computing, 2nd test date (sub3_t2) is the regressand. We spec-
ify the linear regression function with sub3_t2 ˜ sub3_t1, and the quadratic with
sub3_t2 ˜ 1 + sub3_t1 + I(sub3_t1ˆ2) – where the statement in I() rep-
resents the quadratic term. In order to create the logistic regression function, we use
the function nls() in R with sub3_t2 ˜ SSlogis(sub3_t1, Asym, xmid,
scal) – where the statement in SSlogis() represents the logistic term. The re-
sulting regression models from the function lm() and nls() are assigned to the ob-
jects lm.lin, lm.quad, and nls.log. Next we illustrate the scatter plot; therefore,
we type

> plot(sub3_t1, sub3_t2,
+ xlab = "Applied Computing, 1st test date (T-Scores)",
+ ylab = "Applied Computing, 2nd test date (T-Scores)")

i.e. we use sub3_t1 and sub3_t2 as arguments in the function plot() and label the
axis with xlab and ylab. We add the regression functions to the chart, by typing

> abline(lm.lin)
> lines(seq(35, 75, 0.1), predict(lm.quad,
+ newdata = data.frame(sub3_t1 = seq(35, 75, 0.1))), lty = 5)
> lines(seq(35,75, 0.1), predict(nls.log,
+ newdata = data.frame(sub3_t1 = seq(35, 75, 0.1))), lty = 4)
> legend("bottomright", lty = c(1, 5, 4),
+ c("Linear", "Quadratic", "Logistic"))

i.e. we submit the linear regression function in the object lm.lin as an argument to
the function abline(). The function lines() draws a line using the coordinates
from the first argument, a number series from 35 to 75 in steps of 0.1 produced by the
function seq(), and the second argument, the corresponding predicted values (newdata
= data.frame) of the quadratic regression function in the object lm.quad using the
function predict(); we proceed analogously for the logistic function. In doing so, we
predict the values of the character Applied Computing, 2nd test date from the possible
values 35 to 75 of the character Applied Computing, 1st test date (sub3_t1); with
lty = 5 and lty = 4 we select the line types. Lastly, we create a legend(),
set its position with the first argument, in this case the lower right corner of the chart
("bottomright"), and amend it with the labels "Linear", "Quadratic", and
"Logistic" using the function c().



P1: OTA/XYZ P2: ABC
JWST094-c11 JWST094-Rasch September 22, 2011 16:25 Printer Name: Yet to Come

CORRELATION COEFFICIENTS AND MEASURES OF ASSOCIATION 347

As a result, we get Figure 11.16.
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Figure 11.16 R-output showing the linear, quadratic, and logistic regression function in
Example 11.12.

Next, we plot the corresponding regression coefficients, by typing

> coef(lm.lin)
> coef(lm.quad)
> coef(nls.log)

i.e. we use the respective regression objects in the function coef().
As a result, we get:

(Intercept) sub3_t1
7.1053387 0.8531325

(Intercept) sub3_t1 I(sub3_t1ˆ2)
-15.946484522 1.795332804 -0.009384195

Asym xmid scal
72.73897 35.58403 17.81893

To obtain the corresponding regression coefficients for the logistic regression function
according to formula (11.16), we rearrange the resulting parameters xmid and scal. We
type

> exp(coef(nls.log)[2]/(coef(nls.log)[3]))
> -1/coef(nls.log)[3]
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As a result, we get:

xmid
7.36677

scal
-0.0561201

Hence, we obtain β0 = 72.739; β1 = 7.367; β2 = –0.056.

In SPSS, we use the command sequence (Analyze – Regression – Curve Estimation. . .),
analogously to Example 11.5, to open the window in Figure 11.8, and once again select
Linear and, additionally, Quadratic. After clicking OK we get the result in Table 11.9 as well
as a chart analogous to Figure 11.16, just without the logistic regression function. We obtain
the coefficient of determination as a measure of the relationship size from Table 11.9 in
column R Square.

Table 11.9 SPSS-output of the regression coefficients in Example 11.12.

Sig.df2df1FR Square b2b1Constant

Parameter EstimatesModel Summary

Linear

Quadratic -.0091.795-15.946.00097277.472.615

.8537.105.000981152.549.609

Equation

Model Summary and Parameter Estimates

The independent variable is Applied Computing, 1st test date (T-Scores).

Dependent Variable:Applied Computing, 2nd test date (T-Scores)

In order to obtain the logistic regression function in SPSS, we use the command sequence
Analyze – Regression – Nonlinear. . . (not shown here), where we type
beta0/(1+beta1*exp(beta2 * u3_t1)) in the panel Model Expression: and drop the
character Applied Computing, 2nd test date in the panel Dependent:. The parameter
estimation process requires pertinent starting values; namely the highest observation value
of the regressand for β0; that is 70 in this case; for β1 and β2 we choose the arbitrary 0.9
and −0.1. To enter the starting values, we click Parameters. . .. As a consequence a small
window (not shown) appears, where we define the parameters one after another by entering
the Name: (beta0, beta1, and beta2) and the Starting Value: (70, 0.9, and -0.1), each of
which we confirm with Add, and click on Continue after we have defined the last parameter.
After clicking on OK, we obtain the results: β0 = 72.739; β1 = 7.367; β2 = –0.056; the
coefficient of determination B is 0.613.

The estimated regression functions are for the linear, the quadratic, and the logistic
function:

ŷv = 7.1053 + 0.8531xv , ŷv = −15.9465 + 1.7953xv − 0.0094x2
v ,

and ŷv = 72.74

1 + 7.37 · e−0.056
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We recognize that the linear regression describes the data hardly any worse than
do the two selected nonlinear regressions; see Chapter 14 for more details.

11.4 Hypothesis testing and planning the study concerning
correlation coefficients

We have described the methods of regression and correlation mainly for the purpose of
descriptive statistics, so far. However, when dealing with the regression model (and Pearson’s
correlation coefficient), the difference between the result in the sample and the true relationship
in the corresponding population already has been denoted. Naturally, as for the case of just
one character, in inferential statistics the subjects of (point) estimation, confidence intervals,
and hypothesis testing, and (mainly with respect to the last of these), planning of the study
and sequential testing, become relevant.

The point estimator for Pearson’s correlation coefficient has already been discussed above
(see Formula (11.8)), and actually also the one for regression coefficients by explicitly indicat-
ing the estimates in Formulas (11.5) and (11.6). For the association measures discussed here,
it was addressed at least implicitly that the statistics from the sample yield point estimates for
the underlying parameters. Similarly, the calculated correlation coefficients for ordinal-scaled
characters are to be regarded as estimates. As for confidence intervals, most software packages
output standard errors, by means of which the user can generally calculate the confidence
intervals for β0 and β1. However, in psychological research the confidence interval for the
parameters of a regression line is hardly of interest. The same applies to hypothesis testing
with regard to the parameters of the regression line and therewith also for the corresponding
planning of the study. In contrast, these subjects are important for Pearson’s correlation co-
efficient in psychological research practice. They are discussed in detail in the following. As
we remember, we have to assume that the two characters of interest, which are modeled by
random variables, are normally distributed.

Doctor In Table 11.1 (or in the corresponding summary of results in the calculation with
R, respectively) of Example 11.5, in addition to the regression coefficients for the
example (of which the content is not of interest here), after analysis conducted by
means of SPSS, three supplementary columns can be found: the standard error,
the value of a t-distributed statistic (whose formula we will not reproduce here),
and the p-value. This last refers implicitly to the null hypotheses H0: β0 = 0
and H0: β1 = 0, respectively. If the type-I risk has been determined by α =
0.05 previously, then both null hypotheses have to be rejected. Using R, the same
information is obtained. For calculation of the confidence intervals for β0 and β1,
the indicated standard error can be used. For β1 it corresponds to the term with the
square root in the following formula for the lower limit L and the upper limit U:

L = b1 − t
(

n − 2, 1 − α

2

) √
1

n − 2

(
s2

y

s2
x

− b2
1

)

;

U = b1 + t
(

n − 2, 1 − α

2

) √
1

n − 2

(
s2

y

s2
x

− b2
1

)

(11.17)
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The determination of a confidence interval for Pearson’s correlation coefficient is easily
possible with R; we do not explain the planning of the study with regard to the confi-
dence interval here, because in psychological research the main focus is rather on hypothesis
testing.

Master
Doctor

SPSS delivers a confidence interval for Pearson’s correlation coefficient via boot-
strapping (see Section 14.4). An approximate confidence interval with the lower
limit L and the upper limit U can be determined as follows:

L = 1

2
ln

1 + r
1 − r

−
z
(

1 − α

2

)

√
n − 3

; U = 1

2
ln

1 + r
1 − r

+
z
(

1 − α

2

)

√
n − 3

(11.18)

Master
Doctor

Example 11.13 How strong is the relationship between Everyday Knowledge
and Applied Computing (at the first test date) in Example 1.1?

We are not content to calculate a point estimate, but want to calculate a
confidence interval for ρ with a confidence coefficient of 1 – α = 0.95.

In R, we type

> cor.test(sub1_t1, sub3_t1, alternative = "two.sided",
+ method = "pearson", conf.level = 0.95)

i.e. we use the two characters Everyday Knowledge, 1st test date (sub1_t1) and Ap-
plied Computing, 1st test date (sub3_t1) as arguments in the function cor.test();
with alternative = "two.sided" we select the two sided alternative hypothesis
HA: ρ �= 0; with method = "pearson" we request the product-moment correlation
coefficient; and conf.level = 0.95 sets the confidence coefficient.

As a result, we get:

Pearson’s product-moment correlation

data: sub1_t1 and sub3_t1
t = 4.7371, df = 98, p-value = 7.33e-06
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.2570199 0.5789775

sample estimates:
cor

0.431647

For SPSS, we create a complementary syntax. We begin with the command sequence
(Analyze – Correlate – Bivariate. . .) described in Example 11.6. The result is r = ρ̂ = 0.432.
Next, we open a new data sheet (File – New – Data) and, in the Variable View, define the
characters r and n; then, we change to Data View and type the number 0.432 in the first
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row in column r, and the number 100 in column n. Now we create the syntax; hence we
select

File
New

Syntax

and type the program code shown in Figure 11.17 into the resulting window. Subsequently
we click Run and select All to start the computation. As a result, we get Figure 11.18; the
confidence interval of the unknown Pearson’s correlation coefficient ρ has the bounds 0.26
and 0.58.

Figure 11.17 SPSS-syntax for computing the 95% confidence interval of ρ.

Figure 11.18 SPSS-Data View after running the syntax in Figure 11.17 in Example 11.13.

In the case of another confidence coefficient α, for example α = 0.01, you have to replace
the number 0.975 four times by the number 0.995 in the Syntax.

Traditionally, only one null hypothesis is in question; that is H0: ρ = 0 (with the alternative
hypothesis HA: ρ �= 0 or HA: ρ > 0 or HA: ρ < 0, respectively). For this case an exact test
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exists, and the test statistic

t = r
√

n − 2√
1 − r2

(11.19)

is t-distributed with df = n – 2 degrees of freedom.
We reject the null hypothesis in favor of the two-sided alternative hypothesis HA: ρ �= 0,

if |t| > t(n − 2, 1 − α
2 ), otherwise the null hypothesis is accepted. In the case of a one-sided

alternative hypothesis (given that the sign indicates the right direction), t(n − 2, 1 − α
2 ) has to

be replaced by t(n − 2, 1 − α). If the null hypothesis is to be rejected, we say that a ‘significant
correlation’ exists. As an estimated effect size, B = r2 comes into consideration analogously
to η2 and φ2, but now the maximum value of 1 can actually be reached.

Example 11.14 Does a relationship exist between Everyday Knowledge and Applied Com-
puting (both at the second test date) in Example 1.1?

We formulate a one-sided alternative hypothesis HA: ρ > 0 to the null hypothesis H0:
ρ = 0, because it can be deduced from intelligence theories that different components of
intelligence are positively correlated. The type-I risk is chosen to be 0.05.

In R, we type

> cor.test(sub1_t2, sub3_t2, alternative = "greater",
+ method = "pearson")

i.e. we use the two characters Everyday Knowledge, 2nd test date (sub1_t2) and Applied
Computing, 2nd test date (sub3_t2) as arguments in the function cor.test(); with
alternative = "greater"we select the appropriate one-sided alternative hypoth-
esis, and with method = "pearson" we request Pearson’s correlation coefficient.

As a result, we get

Pearson’s product-moment correlation

data: sub1_t2 and sub3_t2
t = 5.1332, df = 98, p-value = 7.222e-07
alternative hypothesis: true correlation is greater than 0
95 percent confidence interval:
0.3191661 1.0000000

sample estimates:
cor

0.4603284

In SPSS, we proceed analogously to Example 11.6 and use the same command sequence
(Analyze – Correlate – Bivariate. . .). However, this time we select One-tailed in the panel Test
of Significance – knowing that in SPSS we can’t ascertain Pearson’s correlation coefficient
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without testing the null hypothesis H0: ρ = 0 at the same time. Hence, we uncheck Flag
significant correlations. Selecting this option just abets the not-to-be-recommended process of
selecting the type-I error rate in hindsight, since SPSS states different type-I errors according
to the p-value (in the row Sig. (1-tailed)).

As a result, we get r = ρ̂ = 0.460; the p-value is stated as .000.

As α > p, the result is significant. The null hypothesis H0: ρ = 0 has to be rejected. A
significant correlation between Everyday Knowledge and Applied Computing (at the second
test date) exists; that is, in the population also a correlation of ρ > 0 is to be anticipated. As
this is quite an ‘empty’ statement (the true correlation indeed is bigger than zero, but in the
end still so small that it is not of practical relevance) we add: the best estimate for Pearson’s
correlation coefficient in the population is ρ̂ = 0.460. We can also say that the estimated
effect equals B = 0.2116; thus that somewhat more that one-fifth of the variance is explained
mutually by the relationship.

For Lecturers:

In the case that the p-value (e.g. in SPSS) is output as .000, and thus does not
contain a decimal place with a number other than 0, the following wording is often
advised: ‘p < 0.001’. Behind this is the well-meant intention to communicate
explicitly to the reader that we do not have p = 0. Certainly, an output of the type
‘.000’ means that it is a truncated number, which differs from zero only in a later
decimal place. This is totally clear for the mathematically competent reader. The
wording ‘p < 0.001’ is, however, really crucial, because it gives the impression
that the researcher has chosen a type-I risk of α = 0.001. This problem would
not exist at all if it were written: p < α = 0.05 (e.g. for a previously determined
type-I risk of α = 0.05).

In publication in the field of psychology it can be found that mostly merely the null hypothesis
H0: ρ = 0 is tested. However, this is almost always unsatisfying and lacking practically all
information. It is quite possible then that the true correlation coefficient, the one in the
population, equals only ρ = 0.1, for instance, or even less, which will probably not lead to
any particular scientific consequences.

Bachelor Mainly in combination with the significance of a correlation coefficient, in sta-
tistically unprofessional psychological literature the following argument is often
found: ‘the correlation indeed is not very high at 0.3, but significant’; here the
given significance is stated in an effort to compensate for the lack in strength of
the correlation coefficient. This is completely meaningless, because a significant
correlation indicates just that it does not equal 0 (in the population) – a correlation
coefficient is relevant only when the coefficient of determination actually shows
a strength of relationship which is relevant with regards to content.
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The question of whether the relationship of (at least) two characters reaches a certain size ρ0

�= 0 (thus H0: ρ = ρ0, with for instance (at least) ρ0 = 0.7, to explain (almost) 50% of the
variance) is much more interesting than testing the null hypothesis H0: ρ = 0. However, for
the case of ρ0 �= 0, there exists only a statistic for which the distribution is known merely
with regard to its asymptotic behavior. In order to use this statistic legitimately, a sample size
of n ≥ 50 is required; and even in this case the specified type-I and type-II risks hold just
approximately. We will limit our considerations here to the use of pertinent software packages
(the corresponding formula can be found e.g. in Figure 11.19).

The planning of the study is carried out in analogy to the previous chapters. After the null
hypothesis, thus ρ0, has been specified (and, where indicated, ρ0 = 0 as well), type-I risk α

and type-II risk β as well as δ, the (minimal) relevant difference between ρ0 and ρ, have to
be determined.

Example 11.15 Determination of inter-rater reliability
In psychometrics, the precision of measurement of a test is often ascertained by admin-

istrating the test twice to the same testees within quite a short period of time. According
to the German standards for ‘Proficiency Assessment Procedures’ (DIN, Deutsches Institut
für Normung e.V., 2002), Pearson’s correlation coefficient – here called reliability – would
have to be at least equal to 0.70, in order to be applicable for vocational aptitude assessment.
The question is about the required sample size for testing the null hypothesis that Pearson’s
correlation coefficient between character x and character y equals ρ0 = 0.8; that is H0: ρ ≥
0.8; HA: ρ < 0.8. The type-I risk is determined by α = 0.05; the type-II risk by β = 0.2. A
deviation of δ = –0.1 is relevant; that is, if ρ is below the interval [0.7; 0.8], the type-II risk
should not be bigger than 0.2.

In R, we use the package OPDOE and type

> size_n.regII.test_rho_2(side = "one", alpha = 0.05, beta = 0.2,
+ rho = 0.8, delta = 0.1)

i.e. we apply the function size_n.regII.test_rho_2 using side = "one" as
first argument to specify the alternative hypothesis as one-sided, and alpha = 0.05
as second and beta = 0.2 as third argument to set the type-I error and type-II error,
respectively; finally, with delta = 0.1 we state the value that marks the deviation
limit for the given −δ.

As a result, we get

[1] 119

Thus, we have to recruit a sample of the size n = 119.
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Example 11.15 – continued
We assume that in our sample of the size n = 119 the Pearson’s correlation
coefficient of r = 0.69 results. As described above, the null hypothesis H0: ρ ≥
0.8 is to be tested.

In R, we define a new function(); hence, we type

> cor.p0 <- function(r, r0, n) {
+ z <- 0.5*log((1+r)/(1-r))
+ zeta <- 0.5*log((1+r0)/(1-r0))
+ u <- (z-zeta)*sqrt(n-3)
+ p <- pnorm(u, lower.tail = FALSE)
+ return(list("u" = u, "pval" = p))
+ }

i.e. we set r, for the observed, and r0, for the hypothetical, correlation coefficient, as
arguments in the function function(); n states the sample size. The sequence of
commands inside the braces defines the inner workings of the function and will not be
discussed. The newly created function is assigned to the object cor.p0. Next, we type

> cor.p0(r = 0.69, r0 = 0.8, n = 119)

i.e. we use the function cor.p0() and apply the arguments 0.69 for r, 0.8 for ρ, and
119 for n.

As a result, we get:

$u
[1] -2.699653

$pval
[1] 0.9965294

Hence, a probability of 0.9965 corresponds to the underlying standard normal-distributed
statistic z = −2.6997.

In SPSS, testing the null hypothesis H0: ρ ≥ ρ0 is not possible; Kubinger, Rasch, &
Šimečkova (2007) published an applicable syntax on that account, which we will display
here. To use it, we proceed analogously to Example 11.13 and open a new data sheet
(File – New – Data) to define, via Variable View, the characters r, rho, and n; we change to Data
View and type, in the first row in column r, the number 0.69; in column rho the number 0.8;
and in column n the number 119. Next, we type the program in Figure 11.19 into the window
Syntax Editor. Subsequently we click Run and select All and thus start the computation.
The result can be obtained from the amended Data View (see Figure 11.20) in the columns
u (here the symbol “u” used instead of “z” as usual) and p.
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Figure 11.19 SPSS-syntax for testing the null hypothesis H0: ρ ≥ ρ0.

Figure 11.20 SPSS-Data View after running the syntax in Figure 11.19 in Example 11.15.

The statistic shows with z = –2.70, thus with a negative sign, that the empirical
result is in the direction of the one-sided alternative hypothesis. In this case the
calculated probability value of 0.9965 has to be subtracted from 1 in order to
determine the p-value. Thus, the p-value equals 1 − 0.9965 = 0.0035. The null
hypothesis has to be rejected.

The reader may recalculate that the observed Pearson’s correlation coefficient
of 0.69 would not have led to the rejection of the null hypothesis in question for
n = 20, for instance, with a p-value of 0.1507.

Sequential testing of hypotheses concerning Pearson’s correlation coefficient is still not avail-
able for routine use in pertinent software packages.

It has hardly been investigated what are the consequences of a violation of the two-
dimensional normal distribution; in particular as concerns type-I risk. Apart from this, there
are hardly any routinely applied procedures to test this requirement. For Spearman’s rank
correlation coefficient, simply the same statistic (11.14) as for Pearson’s correlation coefficient
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is used, but different suggestions concerning sample size are given; however, a sample size
of n > 30, which is realistic within the field of psychology, should be sufficient (see e.g.
Kubinger, 1990). For Kendall’s τ a special statistic exists, which is not reported here (see e.g.
Kubinger, 1990).

Summary
For monotone nonlinear relationships and for relationships with ordinal-scaled characters,
the Spearman correlation coefficient and Kendall’s τ are appropriate. For the determination
of the strength of a relationship between a quantitative and a multi-categorical character,
Fisher’s correlation ratio/eta-squared exists. For two dichotomous characters, the φ-coefficient
is available; for two nominal-scaled characters with at least one multi-categorical character
there is the contingency coefficient. For all of these last three coefficients, it always has to be
taken into account that they often cannot achieve the value of 1 even in cases of an ‘ideal’
relationship. For all coefficients, mainly for Pearson’s correlation coefficient, hypothesis testing
is possible, which in praxis mostly concerns whether a relationship between the two characters
of interests exists at all. However, hypothesis testing with regard to the question of whether a
relationship of a certain strength exists is much more meaningful.

11.5 Correlation analysis in two samples

Occasionally it is also of interest whether two correlation coefficients, ρ1 and ρ2, which have
been calculated in the same characters x and y, but in two different populations 1 and 2, differ.
Then, the null hypothesis is H0: ρ1 = ρ2, and the two-sided alternative hypothesis is HA:
ρ1 �= ρ2 (the one-sided alternative hypothesis is either HA: ρ1 < ρ2 or HA: ρ1 > ρ2).

Master
Doctor

Again, the distribution of the statistic in question is known merely asymptoti-
cally, so that in this case, as well, mostly sample sizes of at least n = 50 are
required. For this reason we do not address the subject of planning of a study
here.

Master
Doctor

Example 11.16 Does Pearson’s correlation coefficient (inter-rater reliability) be-
tween the first and the second test date of subtest Everyday Knowledge differ
between children with German and children with Turkish as their native language
in Example 1.1?

As the children with Turkish native language have been tested in the given
study partly in German and partly in Turkish at the first test date (see the character
test setting in Table 1.1) – and inversely at the second test date – we have to
suspect that Pearson’s correlation coefficient between the two characters Every-
day Knowledge, 1st test date and Everyday Knowledge, 2nd test date does not
constitute a suitable measure for retest reliability for children with Turkish as
their native language. The test scores could differ considerably between the two
test dates in several children, depending on whether they (already) mastered the
German language or if they (still) know Turkish at all, respectively. In contrast,
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in children with German native language differences between the first and second
test date should be merely due to random effects.

We assume that the effect of changing the language has to be considered as
relevant only if it causes a shifting of Pearson’s correlation coefficient of at least
δ = 0.2; the latter as concerns a reduction of the strength of retest reliability. We
determine the type-I risk by α = 0.05.

We calculate the two correlation coefficients in question as in Example 11.6.
For this we have to select the relevant data: the data from children with German as
native language on the one hand and the data from children with Turkish as native
language on the other hand. This selection can be processed as in Example 5.4,
which there concerned the character test setting, but here concerns the character
native language of the child. The results are rG = 0.944 for the children with
German as native language and rT = 0.614 for the children with Turkish as native
language.

In R, we define a new function using the function function(); hence, we type

> cor.diff <- function(r1, r2, n1, n2) {
+ z_r1 <- 0.5*log((1+r1)/(1-r1))
+ z_r2 <- 0.5*log((1+r2)/(1-r2))
+ u <- (z_r1-z_r2)/sqrt(1/(n1-3)+1/(n2-3))
+ p <- 2*min(pnorm(u), pnorm(u, lower.tail = FALSE))
+ return(list("u" = u, "pval" = p))
+ }

i.e. we set r1 and r2 for the two correlation coefficients as well as n1 and n2 for the
two sample sizes as arguments in the function function(). The sequence of commands
inside the braces defines the inner workings of the function and will not be discussed. We
assign the new function to the object cor.diff. Next, we type

> cor.diff(r1 = 0.944, r2 = 0.614, n1 = 50, n2 = 50)

i.e. we use the arguments 0.944 and 0.614 for the two observed product-moment corre-
lation coefficients, and 50 (twice) for the two sample sizes in the function cor.diff().

As a result, we get:

$u
[1] 5.1301

$pval
[1] 2.895877e-07

A probability of almost zero corresponds to the underlying standard normal-distributed
statistic z = 5.1301.



P1: OTA/XYZ P2: ABC
JWST094-c11 JWST094-Rasch September 22, 2011 16:25 Printer Name: Yet to Come

CORRELATION ANALYSIS IN TWO SAMPLES 359

In SPSS, this hypothesis test is not available. Hence, we have to use the Syntax provided
here in Figure 11.21. For this purpose, we create a new data sheet (File – New – Data) and
in the Variable View define the characters r1, r2, n1, and n2. We change to the Data View and
type the value 0.944 in the column r1 and the value 0.614 in the column r2; we type 50 in the
column n1 as well as in the column n2. Subsequently, we click Run and select All to start the
computation. The result can be obtained from the amended Data View (see Figure 11.22):
we get the value 0.00 in column p.

Figure 11.21 SPSS-syntax for computing a statistic for comparing two Pearson’s correla-
tion coefficients.

Figure 11.22 SPSS-Data View after running the syntax in Figure 11.21 for Example 11.16.

With the resulting p-value of 0.00, the null hypothesis has to be rejected. The retest
reliability for subtest Everyday Knowledge is significantly greater in children with
German as their native language than in children with Turkish as their native
language.

It is also possible to compare correlation coefficients ρ i (i = 1, 2, . . . , a) between the characters
x and y in more than two samples. As this very rarely plays a role in psychology, we do not
discuss this case here.
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Part V

INFERENTIAL STATISTICS
FOR MORE THAN TWO
CHARACTERS

The comparison of two means with the two-sample t-test is simply a special case of a
one-way analysis of variance for the case of only two observed samples (or actually: factor
levels), instead of at least three. Having said that, it has been shown that the approach in
inferential statistics cannot be generalized, that simply, from the case of two samples to the
case of at least three samples. This applies analogously if we want to cross from the case
of two simultaneously observed characters over to the case of at least three characters. The
generalization is not trivial. However, the procedures for two characters can easily be regarded
as special cases of at least three characters. Nevertheless, it would be more appropriate from
a didactic point of view to introduce the case of exactly two samples as well as the case of
exactly two characters separately.

In this section, we will discuss all generalizations of the methods explained up to now for
more than two characters. Firstly, for one sample from only one population again; then for at
least two samples each from a (different) population.

To start with, we note that the topics of planning the research study and sequential
testing are generally of secondary interest, as both are easiest to implement in the case
of many characters by focusing on one character as the most important one. (Excep-
tions to this, in other words the planning of a research study which takes more than two
characters into consideration, can be found e.g. in Rasch, Herrendörfer, Bock, Victor, &
Guiard, 2008.)



P1: OTA/XYZ P2: ABC
JWST094-c12 JWST094-Rasch September 25, 2011 7:56 Printer Name: Yet to Come

12

One sample from one population

In this chapter we will discuss procedures for the combined analysis of more than two
characters, which were all ascertained from the research units of one single sample. Besides
this, special approaches to regression and correlation analysis will be presented, mainly
for quantitative characters. As concerns hypothesis testing, we will primarily discuss proce-
dures for the comparison of means, or ‘homological’ methods for ordinal-scaled characters,
respectively.

12.1 Association between three or more characters

We first consider the case of exclusively quantitative characters. One single sample from a
certain population is of interest. However, we now not only consider the two characters x and y
modeled by random variables, but also the character z. If we have more than three characters,
we choose the notations yq, q = 1, 2, . . . , m for the particular characters.

Bachelor Example 12.1 How are the characters Everyday Knowledge, 1st test date, Ap-
plied Computing, 1st test date, and Social and Material Sequencing, 1st test date,
related in Example 1.1?

First, we illustrate the (three-dimensional) scatter plot.

In R, we use the package scatterplot3d, which we load after its installation
(see Chapter 1) by using the function library(); additionally, we use the function
attach() in order to make the database Example_1.1 (see Chapter 1) available. Now,
we type

> scatterplot3d(sub1_t1, y = sub3_t1, z = sub4_t1, xlim = c(20, 80),
+ ylim = c(20, 80), zlim = c(20, 80),

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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+ xlab =
+ "Everyday Knowledge, 1st test date (T-Scores)",
+ ylab =
+ "Applied Computing, 1st test date (T-Scores)",
+ zlab =
+ "Social and Material Sequencing, 1st test date (T-Scores)")

i.e. we apply the function scatterplot3d() to the three characters Everyday Knowl-
edge, 1st test date, Applied Computing, 1st test date, and Social and Material Reasoning,
1st test date; with xlim, ylim, and zlim, we define the respective axes. As a result, we
obtain Figure 12.1a.

Everyday Knowledge, 1st test date (T-Scores)
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Figure 12.1a R-output showing the three-dimensional scatter plot in Example 12.1.

In SPSS, following the steps described in Example 5.2 (Graphs – Chart Builder. . .), we open
the window in Figure 5.5. There, we click Scatter/Dot and drag and drop the symbol for
Simple 3-D-Scatter (first row, third symbol) into the Chart preview. Now, we drag and drop
Everyday Knowledge, 1st test date into the field X-Axis?, then Applied Computing, 1st test
date into the field Y-Axis? and Social and Material Sequencing, 1st test date into the field
Z-Axis?. After clicking OK, we obtain Figure 12.1b.
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Figure 12.1b SPSS-output showing the three-dimensional scatter plot in Example 12.1.

One realizes – at least readers with sufficient spatial imagination do – that
the three-dimensional scatter plot takes a form similar to an ellipsoid. Pear-
son’s correlation coefficients can be calculated in a pair-wise manner as in
Example 11.6.

12.1.1 Partial correlation coefficient

The correlation between two characters of interest x and y is often ‘disturbed’, ‘overlain’, or
‘obscured’ by a third character, z.

Bachelor Example 12.2 How strong is the association between oral fluency and
dexterity?

Let us imagine that a researcher tests n > 30 three-year-old children with
pertinent psychological tests. Developmental psychology leads us to expect that
three-year-old children will achieve a lower proficiency level concerning both
oral fluency and dexterity, compared to children of school-going age. Based on
other scientific findings in developmental psychology, we also expect that children
will fundamentally differ such that some children are more gifted with respect to
linguistic abilities and others are more practically gifted, so that some children
perform much better in one area than in the other. Furthermore, there are also
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probably children who perform relatively well or relatively poorly in both areas.
In other words, there is presumably no relation between oral fluency and dexterity
in the case of three-year-old children. If illustrated on a fictitious data set, a scatter
plot as in Figure 12.2 could result. Pearson’s correlation coefficient, which can
then be calculated, will result in a value close to zero. This result is factually
plausible.
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Figure 12.2 Scatter plot for three-year-old children in Example 12.2.

If the researcher were to make more effort, he would also investigate the
question of the association between oral fluency and dexterity in six-year-old
children at the same time – three-year-old children are, on their own, not typical
in order to answer the question per se. We would indeed also expect the two
characters to be unrelated in this case; thus a similar scatter plot should result
(see Figure 12.3). However, if the researcher analyzed the data as a whole and
thus represented both of the scatter plots in one single chart (see Figure 12.4), a
clear trend would result; namely that the greater the oral fluency is, the greater
the dexterity is: Pearson’s correlation coefficient would be considerably greater
than zero (actually the estimate is r = 0.674).

If the researcher also assessed four- and five-year-old children, the results
would be even more problematic. Again, there is no correlation if an age-specific
analysis is done. However, if all partial samples are included over the four levels of
age, a seemingly even more clear relationship between oral fluency and dexterity
in the graph results (see Figure 12.5), and Pearson’s correlation coefficient is r
= 0.592. According to this example, if one were to create a scatter plot each
time before modeling a linear regression in order to gain an impression about the
nature of the relationship, this would indeed be successful in the case of three-
and six-year-old children exclusively, but it would fail if all four age groups were
observed together. In this example the ‘true’ relationship between oral fluency
and dexterity is being overlain by a third character, the age.
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Figure 12.3 Scatter plot for six-year-old children in Example 12.2.
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Figure 12.4 Scatter plots for three- and six-year-olds in Example 12.2.

We call this a noise factor (see Section 4.5). Even when no (linear) correlation exists between
two characters, a correlation can appear to be present, as both of the characters depend on
a third one. In this case, one refers to a ‘spurious correlation’. Apart from the fact that a
direct, ‘true’ relationship between the characters does not exist, but instead an artificial one, a
pseudo-relationship, though mathematically correct, misleads us to an incorrect interpretation.
Under no circumstances should one conclude that there is a causal relationship between the
two characters if Pearson’s correlation coefficient is high. However, sometimes an artificial
result is easy to recognize: if, for instance, the birth rate at the Austrian Lake Neusiedl over the
calendar months is correlated with the number of storks which nest in the area, the resulting
correlation coefficient is also considerably larger than zero. Of course, there is no causal
relationship between these two characters, birth rate, on one hand, and number of storks, on



P1: OTA/XYZ P2: ABC
JWST094-c12 JWST094-Rasch September 25, 2011 7:56 Printer Name: Yet to Come

368 ONE SAMPLE FROM ONE POPULATION

0

20

40

60

80

100

200 40 60 80 100
dexterity

or
al

 fl
ue

nc
y

Figure 12.5 Combined scatter plots for three-, four-, five-, and six-year-old children in
Example 12.2.

the other hand; a relatively high Pearson’s correlation coefficient is obtained artificially, as both
characters depend on a third one, the calendar month (birth rates still show highs in the calendar
months of March to May/June in Central Europe). On the other hand, there are also cases where
the mutual dependency of the two characters of interest on a third one causes a correlation of
almost zero, even though the two characters themselves correlate relatively highly.

Master Example 12.3 Relationship between the ‘dose’ and the effect of a certain psy-
chotherapeutic treatment

The following deals with criminal offenders, who are selected at random to un-
dergo psychotherapy. We consider the character x, the ‘dose’ of the psychotherapy
conducted – operationalized by the number of therapy units actually conducted
per offender within one year. Additionally, we assess the character y; this is the
difference for a certain test score from a questionnaire for assessing Acceptance
of social values and norms, which is assessed at the beginning and then again at
the end of the therapy. The effect of the psychotherapeutic treatment would be
great, if the value of the difference were (positive and) high. Given linearity of the
relationship, Pearson’s correlation coefficient between the two modeled variables
x and y of rxy = 0.1 might result. This result initially argues against the usefulness
of the therapy; the result indicates, in particular, that a longer treatment does
not lead to a greater effect. However, this conclusion is relativized if one takes
into account that the character Compliance, modeled by the random variable z,
can also be assessed by using a particular questionnaire and correlates with the
number of therapy sessions with rxz = 0.9. We suppose that Compliance also cor-
relates with Acceptance of social values and norms with ryz = −0.2. While this
last correlation coefficient again hardly indicates any relationship, it is interesting
to see that the more therapy sessions take place, the higher the compliance is.
Therefore, perhaps the low correlation between ‘dose’ and effect stems from the
fact that several offenders do not show any compliance with respect to therapy?
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The influence of such a noise factor z can be eliminated statistically. This is done by calculating
the partial correlation coefficient (of first order) with the help of the pair-wise determined
Pearson’s correlation coefficients rxy, rxz, and ryz in the following way:

rxy.z = rxy − rxzryz√(
1 − r2

xz

) (
1 − r2

yz

) (12.1)

This coefficient can be interpreted as the extent of the association between the characters
x and y, corrected for the noise factor. It thus expresses the strength of the linear correla-
tion between the two characters on condition that all observations are somehow technically
‘standardized’ to a certain value for a third character, z. This coefficient can again be inter-
preted as an estimation of the correlation coefficient ρxy in the population which is actually in
question.

Master Formula (12.1) is obtained by initially trying to predict the two variables x and y
from z: x̂v = b1zv + b0 and ŷv = b∗

1zv + b∗
0. Subsequently, the differences xv −

x̂v and yv − ŷv are calculated and correlated. In other words, the correlation or
the coefficient of determination, respectively, is calculated. It is thus computed,
to what extent the variability of the observations in x (corrected by the variability
which can be predicted accordingly by z) can be explained by the variability of
the observations in y (also corrected by the variability which can be predicted
accordingly by z). Algebraic transformations finally lead to Formula (12.1).

The outline of the mathematical derivation of a partial correlation coefficient
implies that the application of Formula (12.1) for Spearman’s rank correlation
coefficient or even Kendall’s τ in the case of at least one ordinal-scaled character
is not appropriate: the calculation of differences does not make sense in this case.

When we have k = 4 characters, of which 2 are to be regarded as noise factors, it is possible to
calculate the partial correlation coefficient of second order with the help of the corresponding
partial correlation coefficients of first order in the following way. (Here we use the notations
‘1’ to ‘3’ instead of x, y, and z, and for the fourth character the notation ‘4’)

r12.34 = r12.43 = r12.4 − r13.4r23.4√(
1 − r2

13.4

) (
1 − r2

23.4

) (12.2)

We do not present partial correlation coefficients of higher order here.

Master Example 12.3 – continued
Inserting the calculated correlation coefficients in Formula (12.1), we obtain

rxy.z = 0.1 − (−0.2) · 0.9√
(1 − 0.04) (1 − 0.81)

= 0.66

That is, if we only conducted the therapy with offenders with the same Com-
pliance – ideally probably with high Compliance – a relationship of medium
strength (B = 0.662 = 0.43) between the ‘dose’ and effect of the applied
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psychotherapy can be expected: the higher the number of sessions, the greater
(by trend) is the difference of the test scores in Acceptance of social values and
norms.

Bachelor Example 12.4 We are interested in the relationship between the subtests Imme-
diately Reproducing – numerical, 1st test date and Coding and Associating, 1st
test date

Pearson’s correlation coefficient is obtained analogously to Example 11.6; the
estimate is r = 0.525. The coefficient is thus not particularly high; however, it is
considerable, as the underlying test concept aims for all subtests to not correlate
with each other or, if they do, then only slightly. We now have to take into
consideration that the extent of this relationship could be influenced by gestational
age at birth. Psychological research indicates that premature infants show deficits
in certain areas of cognitive development, which cannot be compensated for until
the age of 10 or 11 years. Perhaps gestational age at birth thus overlies the ‘true’
relationship between the two subtests.

In R, we use the package ggm, which we load after its installation (see Chapter 1) by using
the function library(). Subsequently, we type

> parcor(var(cbind(sub5_t1, sub7_t1, age_birth)))

i.e. we use the function cbind() in order to merge the characters Immediately Re-
producing – numerical, 1st test date (sub5_t1), Coding and Associating, 1st test date
(sub7_t1), and gestational age at birth (age_birth) into a matrix, which we in turn
use as the argument in the function var(); this calculates the variance–covariance matrix
(see Section 13.2), which we in turn submit into the function parcor().

As a result, we get:

sub5_t1 sub7_t1 age_birth
sub5_t1 1.0000000 0.51274555 0.15968154
sub7_t1 0.5127456 1.00000000 0.03522305
age_birth 0.1596815 0.03522305 1.00000000

The required value is to be found at the intersection of (sub5_t1) and (sub7_t1) in the
output matrix: the partial correlation coefficient is 0.51.

In SPSS, we select

Analyze
Correlate

Partial. . .

and, first of all, in the window produced (Figure 12.6), drag and drop the characters Imme-
diately Reproducing, 1st test date and Coding and Associating, 1st test date into the field
Variables:; gestational age at birth goes into the field Controlling for:. After clicking OK, we
obtain the result rxy.z = 0.513.
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Figure 12.6 SPSS-window for calculating the partial correlation coefficient.

This means that, even if the influence of gestational age at birth is eliminated, a
certain linear relationship between the two subtests exists.

If one only wants to test the null hypothesis H0: ρxy.z = 0 for the partial correlation coefficient
(e.g. against the two-sided alternative hypothesis HA: ρxy.z �= 0), then an exact test is possible
in analogy to the statistic in Formula (11.19) (it is robust with respect to deviations from the
fundamental requirement of a three-dimensional normal distribution):

t = r xy.z
√

n − 3√
1 − r2

xy.z

(12.3)

is t-distributed with df = n − 3 degrees of freedom. However, in this case the question of
whether the relationship between two characters (eliminating a third one) reaches a certain
size ρ0 �= 0 is of more interest; thus H0: ρxy.z = ρ0. As in Section 11.4 there is also a test
for this – the indicated syntax for SPSS from Example 11.15 can be used, whereby the term
SQRT(n − 3) has to be replaced by SQRT(n − 4).

12.1.2 Comparison of the association of one character with each of
two other characters

Sometimes it is also of interest whether the strength of the association between a character
y and a character x is greater than that between y and the character z. The null hypothesis
is then H0: ρxy = ρyz, and the alternative hypothesis HA: ρxy > ρyz. As can be shown
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(Williams, 1959), the test statistic for each respective two-dimensional normal distribution is

t = (r xy − r yz)
√

(n − 3)(1 + r xz)√
2(1 − r2

xy − r2
yz − r2

xz + 2 · r xy r yz r xz)
(12.4)

which is t-distributed with df = n − 3 degrees of freedom.

Bachelor Example 12.5 Does Everyday Knowledge, 1st test date in Example 1.1 correlate
higher with Social and Material Sequencing, 1st test date than with Coding and
Associating, 1st test date?

We want to answer this question with a type-I risk of α = 0.05.
Without needing to explain how Table 12.2 is obtained (the calculation of the

required Pearson’s correlation coefficients can be done quite simply as in Example
11.6), we extract rxy = 0.370, ryz = 0.172, and rxz = 0.230 from this table. If we
insert these values into Formula (12.4) and calculate manually, the result is t =
1.72, which is a significant result on account of t(97, 0.99) ≈ 1.665 according
to Table B2. In actual fact, Everyday Knowledge correlates more strongly with
Social and Material Sequencing than with Coding and Associating.

12.1.3 Multiple linear regression

In the case of more than two characters, a regression analysis can also be of interest in the
sense that one character may be predicted by at least two others. This is called multiple linear
regression.

Doctor In multiple linear regression we can again differentiate between model I and
model II (see Section 11.1). In the case of model II, which is mostly relevant
in psychology, it is a matter of tuples of outcomes, all of which are observed
(simultaneously and) randomly in the respective research unit and not selected by
the investigator in any targeted manner.

The linear regression function in the general case is:

yv = β0 + β1x1v + β2x2v + · · · + βm xmv + ev (v = 1, 2, . . . , n) (12.5)

The ev are defined again as normally distributed errors in analogy to the case of a simple
regression, for which all other assumptions from Section 11.2 should also be fulfilled. The
following topics generally exist for this: estimation of the regression coefficients β0, β1, . . . ,
βm, prediction of y by means of ŷ(x1, . . . , xm) = ŷ for given values x1, . . ., xm, confidence
intervals for each of the regression coefficients, hypothesis testing concerning the regression
coefficients, and the determination of the strength of the association – the last of these again
primarily by means of some coefficient of determination.

In particular, the estimation of regression coefficients as well as the determination of the
multiple (linear) correlation coefficient in the sample is easy to do with relevant software
programs.
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Master The easiest way of deducing the multiple correlation coefficient is with the
coefficient of determination, by determining the proportion of variance of the
regressand which is explained by the regressors by means of the multiple (lin-
ear) regression. The multiple correlation coefficient R is thus defined in turn as
the square root of the coefficient of determination. In this way, no arithmetic
sign results because a (multi-dimensional) ‘direction’ for the dependency of the
regressand on the regressors is not possible. Obviously, this multiple correla-
tion coefficient is not a symmetric measure for the relationship between several
characters, but always depends on which character is defined as the regressand.

Master Example 12.6 Can the test score in Everyday Knowledge, 1st test date in
Example 1.1 be sufficiently explained by the test scores from the other four
subtests?

Subtests of the like of Everyday Knowledge are often regarded as typical and
universal representatives for measuring general cognitive abilities (‘intelligence’);
if this were true, the test score in this subtest at the very least would have to be
explained well by all other test scores collectively.

In R, we type

> summary(lm(sub1_t1 ˜ sub3_t1 + sub4_t1 + sub5_t1 + sub7_t1))

i.e. we apply the function lm() to our regression formula by having Everyday Knowl-
edge, 1st test date (sub1_t1) predicted by all the other subtests (sub3_t1, sub4_t1,
sub5_t1, sub7_t1); we have the results summarized by the function summary().

This yields (shortened output):

Call:
lm(formula = sub1_t1 ˜ sub3_t1 + sub4_t1 + sub5_t1 + sub7_t1)

Coefficients:
Estimate Std. Error

(Intercept) 9.80978 6.93208
sub3_t1 0.41036 0.11402
sub4_t1 0.25919 0.09794
sub5_t1 0.32344 0.09755
sub7_t1 -0.14256 0.09121

Multiple R-squared: 0.3507

In SPSS, we proceed analogously to Example 11.5 (Analyze – Regression – Linear. . .) in
order to open the window in Figure 11.5, where we drag and drop the character Everyday
Knowledge, 1st test date into the field Dependent:. Now, we drag and drop all in all four
characters into the field Independent(s):; namely Applied Computing, 1st test date, Social
and Material Sequencing, 1st test date, Immediately Reproducing – numerical, 1st test date,
and Coding and Associating, 1st test date. By clicking OK, we obtain as a result the estimated
regression coefficients displayed in Table 12.1; we also find the multiple linear correlation
coefficient R = 0.592 in the results output.
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Table 12.1 SPSS-output of the regression coefficients in Example 12.6
(shortened output).

Std. ErrorB

Unstandardized Coefficients

(Constant)

Applied Computing, 1st test date
(T-Scores)

Social and Material Sequencing,
1st test date (T-Scores)

numerical, 1st test date (T-Scores)

Coding and Associating, 1st test
date (T- Scores)

1

.091-.143

.098.323

.098.259

.114.410

6.9329.810

ModelModel

Coefficients
a

a. Dependent Variable: Everyday Knowledge, 1st test date (T-Scores)

We thus obtain the estimation ŷv = x̂1v for the test score of person v in the subtest
Everyday Knowledge, 1st test date: x̂1v = 0.41 · x2v + 0.259 · x3v + 0.323 · x4v −
0.143 · x5v + 9.810. With a coefficient of determination of 0.5922 = 0.351, just
slightly more than one-third of the variance is explained; this appears to be far
too little if Everyday Knowledge is to be considered typical for other cognitive
abilities.

As in the case of a linear regression with only a single regressor, it is of course forbidden to
apply the model of multiple linear regression when at least one of the characters is ordinal-
scaled, because differences in the respective measurement values are not empirically founded.

12.1.4 Intercorrelations

In order to clearly illustrate all pair-wise correlations (in psychology, these collectively are
frequently termed intercorrelations), it is possible to systematically arrange them in a matrix.

Bachelor Example 12.7 Intercorrelations of the test scores from the five subtests in
Example 1.1

We have assessed the test scores from each of the five subtests Everyday
Knowledge, Applied Computing, Social and Material Sequencing, Immediately
Reproducing – numerical, and Coding and Associating at two different test dates.
We can now correlate these m = 10 (interval-scaled) characters in a pair-wise
manner with each other – this results in ( 10

2 ) = 45 Pearson’s correlation coefficients
according to Section 7.2.1.

In R, we type

> cor(cbind(sub1_t1, sub3_t1, sub4_t1, sub5_t1, sub7_t1, sub1_t2,
+ sub3_t2, sub4_t2, sub5_t2, sub7_t2))
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i.e. we create a matrix by applying the function cbind() to all five subtests at both test
dates. We use this matrix as an argument in the function cor().

The results corresponds to the ones in Table 12.2

In SPSS, using the sequence of commands (Analyze – Correlate – Bivariate. . .) described
in Example 11.6, we open the window in Figure 11.14 in order to simply drag and drop
all 10 characters into the field Variables:. In SPSS there is a preset default determination
of the significance of the correlation coefficient, which should definitely be deactivated by
removing the check mark at the option Flag significant correlations. This would otherwise
lead to the labeling of coefficients significantly different from zero with one to three asterisks
in the output. As already discussed in Section 8.2.3, this leads to a misinterpreted type-I risk;
additionally, in a practical context, it would hardly be interesting to know if a correlation
coefficient deviates from zero, but rather if it deviates from a certain previously defined
value ρ0 (see Section 11.4). Nevertheless, by doing this we cannot prevent the SPSS-
output from stating the p-value with regards to the null hypothesis H0: ρ = 0 at Sig.
(2-tailed). By clicking OK, we obtain the results; i.e. a table whose content corresponds to
Table 12.2.

A matrix with 10 rows and 10 columns thus results. In fact, the upper or
lower triangular matrix would have been sufficient for illustration because the
matrix is naturally symmetrical to the main diagonal. The value is always 1
in the main diagonal as the correlation of a character with itself always equals
1.00. All correlation coefficients are positive; that is, children with larger test
scores in one subtest (at one test date), also tend to have larger test scores
in other subtests or at a different test date, respectively. The strongest rela-
tionship exists between the two test scores in subtest Coding and Associating
(r = 0.908), and the weakest one between Everyday Knowledge and Coding and
Associating (1st test date; r = 0.172). In this concrete case, we thus obtain two
different types of correlations: on the one hand, those between the several sub-
tests concerning the similarity of the abilities assessed, and, on the other hand, the
stability of the measured abilities over the two dates in time (the so-called retest
reliability).

An intercorrelation matrix can of course also be created for Spearman’s rank correlation
coefficients and also for the coefficients of Kendall’s τ , and, in actual fact, for all measures of
association.

We now recognize that relationships between more than two characters in the case of
exclusively quantitative characters cannot be described by a single statistic. The same applies
if all of the characters are at least ordinal-scaled. However, if we are dealing with several
characters, of which all except one are nominal-scaled, then it is of course possible to examine
more complex relationships by means of the corresponding interaction effects in a multiple
analysis of variance. This is even more so the case when we deal with more than two solely
nominal-scaled characters (see Section 12.1.6.).
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12.1.5 Canonical correlation coefficient

Sometimes we are interested in the relationship of m1 (interval-scaled) characters, on the one
hand, and, m2 other (interval-scaled) characters on the other hand. When all of these m1 +
m2 = m characters in n research units from one sample have been observed, we can try to find
the largest achievable linear relationship between the two groups of characters. The solution
for this problem is the canonical correlation coefficient.

Doctor If one of the groups of characters consists of the characters x1, x2, . . . , xm1 , and the
other of the characters z1, z2, . . . , zm2 , a linear combination is formed from each
of these groups; thus a kind of ‘meta-character’ with the weights c1, c2, . . . , cm1

or d1, d2, . . . , dm2 , respectively: x∗ = c1x1 + c2x2 + · · · + cm1 xm1 and z∗ = d1z1 +
d2z2 + · · · + dm2 zm2 . For this, all weights are to be determined in the way that
the Pearson’s correlation coefficient between x∗ and z∗ reaches a maximum value.
The result is the canonical correlation coefficient.

This is applied very rarely in psychology. Therefore, we will not do the
calculation for an example here. The calculation itself can easily be carried out
using pertinent software programs.

Doctor Example 12.8 How great is the association between the test scores in the test
battery T1 and the test scores in the test battery T2?

Assume that, in a research study, the test scores of five-year-old children in
the m1 subtests of a (developmental) test battery T1 were assessed in the year x,
and in the year + 1 the test scores of the same, now six-year-old children, were
assessed in the m2 subtests of an (intelligence) test battery T2. Both test batteries
are age specific; in other words, we suppose that the test battery T1 can not be
applied for six-year-old children and contrariwise the test battery T2 cannot be
applied for five-year-olds. Nevertheless, it is important for counseling centers to
know how well the results in the test battery T1 at preschool age can predict the
(intelligence) test scores in the test battery T2 at school age. Thus, the canonical
correlation coefficient between the two test batteries is of interest, or even more,
the exact regression coefficients. If the canonical correlation coefficient is almost
1, then the test battery T1 is suitable for predictions. It is then of interest which
regression coefficients (in each one of the two linear combinations) contribute the
most to the correlation.

12.1.6 Log-linear models

If all of the characters of interest are nominal-scaled, then the data can be summarized in
a multi-dimensional contingency table; that is, the contingency table discussed in Section
11.3.5 becomes a ‘contingency cube’ in the case of three characters, and so on. In the general
case, we refer to it as a k-dimensional contingency table.
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Master The method which is discussed in the following is also sometimes used for ordinal-
scaled characters. In this case, it is important to bear in mind that if this method
is used, the additional information due to having ranked categories (measurement
values) is lost.

Master
Doctor

With the help of the so-called log-linear models, it is now possible to test various
relationships between any number of nominal-scaled characters as to whether they
exist or do not exist. The only limitation is that the frequencies per combination of
all categories have to be sufficient. Already in the case of three dichotomous char-
acters, for instance, 23 = 8 combinations are possible. If we want to analyze only
6 items of a questionnaire with 4 answer categories, the number of combinations
already equals 46 = 4096.

Therefore, we will restrict ourselves here to only three characters – in accor-
dance with the case of a maximum of three factors in the analysis of variance
discussed in Chapter 10. The three characters are denoted as A, B, and C – in
analogy to the discussion there. A shall possesses a categories (levels) Ai; B the
b categories (levels) Bj; and C the c categories (levels) Ck. The n research units
yield outcomes, for which we count the numbers of ‘hits’ per combination of
categories Ai × Bj × Ck. So, nijk, for instance, means that the combination Ai ×
Bj × Ck has been realized nijk times within the n research units.

Master Example 12.9 The relationship between native language of the child, social
status, and the character only child vs. child with siblings in Example 1.1 is of
interest

We determine the character only child vs. child with siblings as demonstrated
in Example 9.7. Subsequently, we count the frequencies per combination of
categories.

In R, we obtain the three-dimensional contingency table by typing

> table(native_language, social_status, only_child)

i.e. we apply the function table() to the three characters native_language,
social_status, and only child vs. child with siblings (only_child). As a result,
we get:

, , only_child = 1

social_status
native_language upper classes middle classes lower middle class

German 3 2 3
Turkish 1 0 1

social_status
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native_language upper lower class lower classes
German 2 0

Turkish 0 0
social_status

native_language single mother in household
German 4

Turkish 1

, , only_child = 2

social_status
native_language upper classes middle classes lower middle class

German 7 11 7
Turkish 1 17 14

social_status
native_language upper lower class lower classes

German 5 2
Turkish 9 3

social_status
native_language single mother in household

German 4
Turkish 3

In SPSS, we obtain the three-dimensional contingency table by once again following the steps
(Analyze – Descriptive Statistics – Crosstabs. . .) described in Example 5.13; thus opening
the window in Figure 5.28. There, we drag and drop native language of the child into the
field Row(s):, social status into the field Column(s):, and only_child into the field Layer 1 of
1. By clicking OK, we obtain Table 12.3, among other results.

Table 12.3 SPSS-output displaying the three-dimensional contingency table in
Example 12.9.

single mother
in household

lower
classes

upper lower
class

lower middle
class

middle
classes

upper
classes Total

social status (after Kleining & Moore according to occupation of father/
alternatively of the single mother)

German

Turkish

Total

native language
of the child

German

Turkish

Total

native language
of the child

Yes

No

83751421288

4733914171

364257117

1752424

310101

1442323

only_chy_child

native language of the child * social status (after Kleining & Moore according to occupation of father/
alternatively of the single mother) *only_child Crosstabulation

Count
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Doctor Again, the frequencies nijk, that is the data observed in the realized sample, can be
modeled as being caused by certain parameters in the corresponding population. In
other words, these observed frequencies are to be defined as random variables nijk.
They are induced by the expected values ηijk or the probabilities pijk, respectively,
so that the nijk also constitute the estimates η̂ijk of the estimator η̂ijk = N p̂ijk. The
random variables nijk can be explained in various ways under different null or
alternative hypotheses, and thus should be modeled specifically. Again one aims
for a linear model approach as this is the simplest one. However, this cannot be
carried out in a trivial manner as the parameters of the random variables are now
probabilities or rely directly on probabilities, respectively. Therefore, in statistics
the following approach is chosen:

pijk = e
∑

l
λl

or, as this can be written more easily, ln pijk = ∑
l λl . If we now switch from

parameter pijk to parameter ηijk, then ln ηijk = ln npijk = ln n + ln pijk = ln n +∑
l λl results.

Master
Doctor

In the given case, the following log-linear model can now be formulated:

ln(ηijk) + eijk = μ + αi + β j + γk + (αβ)ij + (αγ )ik + (βγ )jk

+ (αβγ )ijk + eijk (12.6)

whereby the symbols on the right have the same meaning as in the three-way
analysis of variance in Section 10.4.7.

The model in Formula (12.6) is called the saturated model as it contains all
possible interaction effects.

Statistical tests can verify whether the saturated model explains the data better
than, for instance, a model which is reduced to certain interaction effects. Or one
(immediately) compares two different special cases of Formula (12.6) and tests
whether the model with fewer parameters explains the data not much worse than
the model with more parameters. That is to say, these types of tests examine
diverse null hypotheses that certain interaction effects equal zero or do not exist,
respectively. If this is the case, the respective null hypothesis can be retained.
Then, (with respect to the given type-I risk) a relationship between the characters
concerned does not exist. In the reverse case, a (significant) relationship exists.

Doctor It is only possible to compare hierarchically subordinate models with superordi-
nate models. For instance, the model μ + αi + β j + γk + (βγ )jk can be compared
to the model μ + αi + β j + γk + (αγ )ik + (βγ )jk. In this way, the interaction
(αγ )jk is tested against zero. In contrast, the two models μ + αi + β j + γk +
(βγ )jk and μ + αi + β j + γk + (αβ)ij + (αγ )ik cannot be compared because, in
doing so, no definable hypothesis is tested.
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Master
Doctor

This principal of hypothesis testing is that of a goodness of fit test (see
Section 14.2.1). These tests are generally used for testing the given, actual
observed frequencies (of combinations of categories) and the hypothetically ex-
pected frequencies with regard to congruence. In Chapters 8 to 10 different
variants of χ2-tests have already been discussed; these are in actual fact (also)
tests of goodness of fit in this respect. Asymptotically χ2-distributed test statistics
also always result with regard to the log-linear models – in which the number
of degrees of freedom equals the number of the independent summands of the
relevant test statistic minus the number of estimated parameters, minus 1.

In the given case of three characters A, B, and C, the following models can be
tested (successively) with respect to their goodness of fit or can be compared to
the saturated model, respectively.

Null hypothesis 1, the following model is true:
ln(η(1)

ijk ) = μ + αi + β j + γk + (αβ)ij + (αγ )ik + (βγ )jk; thus H 1
0 :

(αβγ )ijk = 0, for all i, j, and k

Null hypothesis 2a, the following model is true:
ln(η(2a)

ijk ) = μ + αi + β j + γk + (αγ )ik + (βγ )jk; thus H 2a
0 : (αβ)ij = 0

and (αβγ )ijk = 0, for all i, j, and k

Null hypothesis 2b, the following model is true:
ln(η(2b)

ijk ) = μ + αi + β j + γk + (αβ)ij + (βγ )jk; thus H 2b
0 : (αγ )ik = 0

and (αβγ )ijk = 0, for all i, j, and k

Null hypothesis 2c, the following model is true:
ln(η(2c)

ijk ) = μ + αi + β j + γk + (αβ)ij + (αγ )jk; thus H 2c
0 : (βγ )jk = 0

and (αβγ )ijk = 0, for all i, j, and k

Null hypothesis 3a, the following model is true:
ln(η(3a)

ijk ) = μ + αi + β j + γk + (βγ )jk; thus H 3a
0 : (αβ)ij = (αγ )ik = 0

and (αβγ )ijk = 0, for all i, j, and k

Null hypothesis 3b, the following model is true:
ln(η(3b)

ijk ) = μ + αi + β j + γk + (αβ)ij; thus H 3b
0 : (αγ )ik = (βγ )jk = 0

and (αβγ )ijk = 0, for all i, j, and k

Null hypothesis 3c, the following model is true:
ln(η(3c)

ijk ) = μ + αi + β j + γk + (αγ )ik; thus H 3c
0 : (αβ)ij = (βγ )jk = 0

and (αβγ )ijk = 0, for all i, j, and k

Null hypothesis 4, the following model is true:
ln(η(4)

ijk ) = μ + αi + β j + γk ; thus H 4
0 : (αβ)ij = (αγ )ik = (βγ )jk = 0

and (αβγ )ijk = 0, for all i, j, and k.

Doctor If the ηijk are now estimated as η̂
(g)
ijk for each model (g), the corresponding null hy-

pothesis can be tested by means of the following test statistic; thus the goodness of
fit of the model (g) to the actual frequencies in the three-dimensional contingency
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table (that is, to the saturated model):

2I(H (g)
0 ) = 2

∑
i

∑
j

∑
k

nijk ln

(
nijk

η̂
(g)
ijk

)
(12.7)

This test statistic is asymptotically χ2-distributed – the number of degrees of
freedom will not be discussed here.1

Differences between the test statistics of the different models can be sta-
tistically compared: if model (h) is a model subordinated to model (g), then
2I(H (g−h)

0 ) = 2I(H (g)
0 ) − 2I(H (h)

0 )is also asymptotically χ2-distributed, with a
number of degrees of freedom which equals the difference of the degrees of
freedom of the two test statistics.

Master
Doctor

Example 12.9 – continued
We want to examine whether a three-factor interaction effect exists between the
characters native language of the child, social status, and the character only child
vs. child with siblings in Example 1.1. The null hypothesis is H0: (αβγ )ijk = 0,
for all i, j, and k; the alternative hypothesis is H1: (αβγ )ijk �= 0 for at least two
triples ijk �= lmp. We take a type-I risk of α = 0.05.

In R, we use the package MASS, which we load after its installation (see Chapter 1) by
applying the function library(). Then, we type

> loglm(˜(native_language + social_status + only_child)ˆ2,
+ data = table(native_language, social_status, only_child))

i.e. we apply the function loglm(), specifying that all two-way (ˆ2) interactions
between the three characters native language of the child (native_language),
social_status, and only child vs. child with siblings (only_child) are to
be modeled, however excluding the three-way interaction. Additionally, we request
the output of a three-dimensional frequency table of all three characters with
table(native_language, social_status, only_child), which we as-
sign to the object data.

As a result, we get:

Call:
loglm(formula = ˜(native_language + social_status + only_child)∧2,

data = table(native_language, social_status, only_child))

Statistics:
X∧2 df P(> X∧2)

Likelihood Ratio 4.524669 5 0.4765896
Pearson NaN 5 NaN

1 The denotation ‘I’ refers to the so-called Fisher’s information within the frame of parameter estimators (see
Section 15.2.3.1).
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i.e. the interesting χ2-(goodness of fit)-test underPearson is not being calculated because
the expected values of at least one combination of categories are too small. Nevertheless, the
value stated under Likelihood Ratio, which is also asymptotically χ2-distributed,
usually does not differ from the regular χ2-test value (for more details on the likelihood-
ratio test, see Section 14.2.2).

In SPSS, we select the sequence of commands

Analyze
Loglinear

Model Selection. . .

in order to open the window in Figure 12.7, where the characters native language of the
child, social status, and only_child (from Example 9.7) have already been dragged and
dropped into the field Factor(s):. Afterwards, one has to use the button Define Range. . . in
order to define which groups are to be analyzed. In this case, we type a 1 into the field
Minimum: (into a small window which opens after the respective character has been marked)
for the characters native_language and only_child, and a 2 into the field Maximum:; the
character social_status ranges from 1 to 6. Now, we click Paste in order to open the SPSS
Syntax-Editor. In Figure 12.8, we already deleted everything except the first two lines in
this window and complemented the syntax respectively – we only need the first Design
command for our example; in order to show the reader how other null hypotheses might be
tested hierarchically, the other Design commands are listed as well. By clicking Run and All,
we obtain very extensive output results. The relevant result can be found in Table 12.4: the
test value of the χ2-(goodness of fit)-test under Pearson.

Figure 12.7 SPSS-window for the log-linear models.
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Figure 12.8 SPSS-syntax for Example 12.9.

Table 12.4 SPSS-output of the χ2-(goodness of fit)-test in Example 12.9.

Sig.dfChi-Square Sig.df
a

Adjusted

Likelihood Ratio

Pearson .1793.42754.907

.2103.47754.525

Goodness-of-Fit Tests

a. One degree of freedom is subtracted for each cell with an expected value
of zero. The unadjusted df is an upper bound on the true df, while the
adjusted df may be an underestimate.

Obviously, the number of observations for a three-dimensional 2 × 2 × 6 con-
tingency table is very low. Therefore, the approximation to the χ2-distribution is
still quite inaccurate. As a rule of thumb it is advisable to have expected values
bigger than or equal to five.

We realize that the three-factor interaction effect is not significant. The prob-
ability for an outcome in a certain combination of categories is thus not specific,
but can be sufficiently explained by the frequencies of each category in the under-
lying population and if need be by the respective two-factor interaction effects.
In the other case, the case of a significant test statistic, this would mean that a
certain combination (for instance Turkish as native language, lower social status,
and child with siblings) would occur much more frequently than can be explained
by the native language, social status, the character only child vs. child with sib-
lings or all two-factor interactions, respectively – and at the same time any other
particular combination is correspondingly less frequent.

If one tests several null hypotheses, but always stops when the null hypothesis
is rejected for the first time in the hierarchical sequence of such tests, then the
study-wise type-I risk holds the nominal value of α.
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Summary
If more than two quantitative characters are ascertained in research units of a single sample,
the partial correlation coefficient can determine the strength of the relationship between the two
of them, eliminating the influence of one or more other characters (on these two characters) –
the third or all other characters are potential noise factors. Multiple linear regression refers to
the case that one character should be predicted from at least two other characters; canonical
correlation coefficient refers to the case that a group of at least two characters should be
correlated with another group of at least two other characters. Log-linear models test the
relationships between at least three nominal-scaled characters.

12.2 Hypothesis testing concerning a vector of means μ

Although rather rare in psychology, one can also test hypotheses with regard to the underlying
mean in the multivariate case; thus for the m characters y1, y2, . . . , ym, this can be done in
complete analogy to Section 8.2.3. A presupposition is that the quantitative characters ym can
be modeled by an m-variate normally distributed random variable, in which we arrange the
m (univariate, normally distributed) random variables yq in a vector notation; it is easier to
write the transposed vector �yT = (y1, y2, . . . , ym). Likewise, we can define a (transposed)
mean vector: �μT = (μ1, μ2, . . . , μm). The null hypothesis is H0: �μ = �μ0, where �μT

0 = (μ01,
μ02, . . . , μ0m). The alternative hypothesis is HA: �μ �= �μ0; that is to say, μ1l �= μ0l is true for
any l.

Master
Doctor

A test formally requires the examination of the so-called covariance matrix/
variance–covariance matrix/variance matrix as well as the determinant of this
matrix and the trace in this context. The covariance matrix for m characters
appears as follows:

Σ =

⎛
⎜⎜⎜⎜⎝

σ 2
1 σ12 . . . σ1m

σ12 σ 2
2 . . . σ2m

...
... . . .

...
σ1m σ2m . . . σ 2

m

⎞
⎟⎟⎟⎟⎠

(12.8)

That is to say, the variances per random variable in the population are arranged
in the main diagonal and all pair-wise covariances, which are the numerators of
Pearson’s correlation coefficients (see Section 11.2), are off the main diagonal.
Analogously, in the case of n > m observations per character, we would obtain
a matrix S = Σ̂ , in which we insert the corresponding estimates instead of the
parameters (or the matrix S = Σ̂ for the estimators, respectively).

The estimation of the parameters and the determination of confidence intervals
will not be discussed here. Our discussion will be limited to hypothesis testing.

It can be shown that Hotelling’s statistic

T 2 = n
(
�̂μ − �μ

)T
S−1( �̂μ − �μ) (12.9)
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is distributed in accordance with Hotelling’s distribution – this particular distri-
bution or

n − m

m(n − 1)
T 2

respectively, can be transformed into an F-distribution with df 1 = m and df 2 =
n − m degrees of freedom. In Formula (12.9), S−1 is the inverse matrix of S, and
�̂μ is the estimator of the parameter vector �μ.

The test can easily be conducted using pertinent computer programs. The
assumption of the m-dimensional normal distribution of the outcomes is, however,
difficult to test.

Master
Doctor

Example 12.10 Is the acquired sample of children with German as their native
language in Example 1.1 representative with respect to the test scores in the five
subtests?

The subtests were scaled in such a way that the mean equals μq = 50 in the
population (at the first test date). The question is now whether the acquired sample
is in accordance with the population in so far as that the obtained means do not
differ significantly from the test score 50. Naturally, we could apply the procedure
for each subtest individually as in Example 8.11. However, in this case, we would
run m = 5-times the type-I risk. With the test statistic (12.9) on the other hand, we
test the null hypothesis H0: μT = μT

0 = (50, 50, 50, 50, 50) against the alternative
hypothesis HA: μT �= (50, 50, 50, 50, 50) with the chosen type-I risk study-wise;
we choose α = 0.05.

In R, we type

> sub1_t1.ce <- sub1_t1-50
> sub3_t1.ce <- sub3_t1-50
> sub4_t1.ce <- sub4_t1-50
> sub5_t1.ce <- sub5_t1-50
> sub7_t1.ce <- sub7_t1-50
> sub.ce <- cbind(sub1_t1.ce, sub3_t1.ce, sub4_t1.ce, sub5_t1.ce,
+ sub7_t1.ce)[native_language == "German", ]

i.e. we subtract the value 50 from each of the observed values of each subtest
(sub1_t1 through sub7_t1) and assign the results to one new object each. By us-
ing the function cbind(), we merge the objects to a matrix column by column; with
[native_language == "German",], we select the children with German as a
native language and assign the matrix to the object sub.ce. In order to conduct the
analysis, we type

> summary(manova(sub.ce ˜ 1), test = "Hotelling-Lawley",
+ intercept = TRUE)
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i.e. we use the function manova(), to request that the matrix be analyzed in the specified
way; with test = "Hotelling-Lawley", we select the desired test value, and
with intercept = TRUE, we request hypothesis testing. Finally, we have the analysis
summarized by applying the function summary().

As a result, we get (shortened output):

Df Hotelling-Lawley approx F num Df den Df Pr(>F)
(Intercept) 1 0.5365 4.8285 5 45 0.001282
Residuals 49

In SPSS, we conduct a transformation of the observed values of all subtests from the first
test date by selecting

File
New

Syntax

and typing in the command lines from Figure 12.9 in the resulting window. Now, we click
Run and select All in order to conduct the calculation.

Figure 12.9 SPSS-syntax for Example 12.10.

Next, following the sequence of commands (Data – Select Cases. . .) shown in Example
5.4, we select the children with German as a native language by clicking the button If
condition is satisfied in the window in Figure 5.14 and clicking the button If. . . in order to
type native_language = 1 into the resulting window Select Cases: If seen in Figure 5.15. We
confirm this by clicking Continue and OK. Now, we conduct the analysis by selecting
Analyze

General Linear Model
Multivariate. . .

In the resulting window (not shown here), we drag and drop the characters sub1_t1.ce
through sub7_t1.ce into the field Dependent Variables:. Now, we select Options. . . and set a
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check mark at Estimates of effect size. After clicking Continue and OK, we obtain the results
in Table 12.5, of which we are only interested in the line concerning Hotelling’s Trace.

Table 12.5 SPSS-output for Hotelling’s T2 in Example 12.10.

Sig.FMean Squaredf
Type III Sum
of Squares

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Intercept

Index1

urban_rural

id(urban_rural)

Index1 * urban_rural

202.186
b

31663890.633

.1381.992402.7272805.454

202.186
b

31663890.633

.792.891180.17215828467.229

180.172
a

15828467.229

.00027.8885024.60215024.602

202.186
b

31663890.633

.2591.355273.9562547.913

180.172
a

15828467.229

.00027979.6295041155.16915041155.169

SourceSource

Tests of Between-Subjects Effects

Dependent Variable:intelligence first-born

a. MS(id(urban_rural))
b. MS(Error)

According to the p-value of 0.001, the result is significant; the null hypothesis
is to be rejected. The acquired sample of children with German as their native
language is to be considered as not representative with respect to their test scores
in the five subtests.

12.3 Comparisons of means and ‘homological’ methods for
matched observations

As has already been discussed several times in previous chapters, the following deals with the
case of more than one character; however each of the given observations is clearly matched
to another one across the same research unit. This problem has already been solved for
exactly two such characters; however not for the case of at least three characters. As we are
interested in both quantitative and ordinal-scaled variables – in the latter case (only) with
regard to differences in the position of the underlying distributions – it is not only about the
comparisons of means, but also about ‘homological’ methods for ordinal-scaled characters.

12.3.1 Hypothesis testing concerning means

If a sample has two characters, which practically mean the same thing in terms of content, but
which have been ascertained under different conditions for the respective research units, then
in actual fact we again obtain one single character by forming the differences of the outcomes
per person v, like dv = xv − yv as already shown in Sections 8.2.3 and 9.1. The methods
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designed for one single character (in only one, or two or more samples) can be applied for
these differences. When at least three characters are given, the approach of forming differences
is, however, no longer applicable. Instead we have to take approaches such as that in Section
8.2.4 (see Example 8.6), where the paired sample t-test has been described as an alternative
method of analysis.

Thus, the case of interest is that a tuple of outcomes, definitely matched to one other, from
the m modeled random variables y1, y2, . . . , ym is given. We assume a normal distribution for
each random variable. It is important to note that the research units do not necessarily have
to deal with the same person; the only thing of importance is the definite association of the
outputs per given research unit.

Bachelor
Master

Example 12.11 The influence of sibling order on intelligence will be investigated
The results of several research studies with impressively large sample sizes

have repeatedly shown that the higher the sibling order of the tested person, the
lower that person’s test scores are in relevant intelligence tests. Nevertheless, there
are several methodological objections, which argue against the binding impact
of the statements made in these research studies. It can be criticized, amongst
other things, that independent samples have been used in all research studies, in
other words all children from a family have never been examined. Only when it
can be significantly confirmed on average that, for instance, first born are more
intelligent than last born, using matched tuples of outcomes, thus across the
children from one family in each case, do the results gain validity. In the case of
unrelated tuples of outcomes, it can generally be criticized that the noise factor
circumstances which account for which sibling from a family becomes part of the
sample overlies the association of interest; namely that between birth order and
intelligence.

If we suppose that all three children (aged between 16 and 30 years) from a
family of three children are tested with an intelligence test, the tuples of outcomes
are matched because it can generally be expected that the test scores of the siblings
are correlated based on the factors of genetic constitution and environmental con-
ditions. Therefore, the test scores are dependent on one another. Thus, a one-way
analysis of variance according to Section 10.4 does not come into consideration.

An analysis of variance for matched samples provides the solution to this problem. It analyses
the data structure given in Table 12.6. It is evident that this is a special case of the one provided

Table 12.6 Data structure of a cross classification of factor A, reserach unit, with a levels,
and of factor B, with b factor levels, in a single cell allocation (nij = n = 1).

Levels of B

Levels of A B1 B2 . . . Bb

A1 y11 y12 . . . y1b

A2 y21 y22 . . . y2b
...

...
...

...
...

Aa ya1 ya2 . . . yab
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in Table 10.9: two factors, namely the factor A with a factor levels of the different research
units and the actual factor of interest B, with b factor levels designated to several (treatment)
conditions, are cross classified, with the special case of n = 1 per combination of factor levels.
Factor A is a random factor because we assume that the a research units have been randomly
taken from a defined population; as a rule factor B is a fixed factor as we are actually interested
in the selected factor levels (b = m characters). It is thus a special case of the mixed model
from Section 10.4.4.3. As n = 1, the interaction effect cannot be tested in a common way.

Bachelor
Master

Example 12.11 – continued
We want to investigate the given research question using the data set Example
12.11 (see Chapter 1 for its availability). The null hypothesis is H0: ‘There are no
significant differences between the different sibling positions with regard to the
character intelligence’. We choose a type-I risk of α = 0.05.

In R, we first have to rearrange the data from the database Example 12.11. In order to do
this, we type

> Example_12.11.l <- reshape(Example_12.11,
+ varying = list(c("int1", "int2",
+ "int3"),
+ c("r1", "r2", "r3")),
+ direction = "long")

i.e. we use the function reshape(), setting the database Example_12.11 as the first
argument. With the second argument, varying, by using the function c() we set the
characters which we associate to each other as vectors of the their respective observed
values; that is int1, int2, and int3 on the one hand, and r1, r2, and r3 on the other
hand. These two vectors are submitted as a list by applying the function list(). With
direction = "long", we select the desired rearrangement. We assign the rearranged
database to the object Example_12.11.l. Next we set the character time to a factor
by typing

> Example_12.11.l$id <- as.factor(Example_12.11.l$id)
> Example_12.11.l$time <- as.factor(Example_12.11.l$time)

i.e. we apply the function as.factor() to the objects Example_12.11.l$id and
Example_12.11.l$time, respectively, and assign the factor to $id and $time
respectively in the data set Example_12.11.l.

For the following analysis, we use the package ez, which we load after installation
(see Chapter 1) by applying the function library(). Afterward, we type

> ezANOVA(Example_12.11.l, dv = .(int1), wid = .(id),
+ within = .(time))

i.e. we apply the functionezANOVA() to the database in the objectExample_12.11.l;
with the second argument, dv = .(int1), we submit the information on which of the
character groups is to be analyzed (int oru), and with the third argumentwid = .(id),
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the information that the research units are identifiable by the label id. Finally, with the
fourth argument, within = .(time), we indicate the factor of the observed values
associated to each other.

As a result we get (shortened output):

Note: model has only an intercept; equivalent type-III tests
substituted.

$ANOVA
Effect DFn DFd F p p<.05 ges

2 time 2 318 1.346574 0.261609 0.005549277

$‘Mauchly’s Test for Sphericity’
Effect W p p<.05

2 time 0.9951725 0.6822916

$‘Sphericity Corrections’
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05

2 time 0.9951957 0.2615938 1.007781 0.261609

In this, the value in column ges refers to a so-called Generalized Eta-Squared measure of
effect size.

In SPSS, we first have to rearrange the data in the database Example l2.11. In order to
do this, we select the same sequence of commands as in the continuation of Example 10.1
(Data – Restructure. . .) and, in the resulting window (Figure 10.3), confirm the preset setting
Restructure selected variables into cases by clicking Next. In the next window (not shown
here), we click on More than one, leave the preset 2 at How Many? and confirm this by clicking
Next. In the following window (not shown here), we drag and drop the characters intelligence
first-born, intelligence second-born, and intelligence third-born into the field Target Variable:
trans1 under Variables to be Transposed; we have to proceed analogously for trans2 –
which we select via Target Variable: – and for the characters rating intelligence first-born,
rating intelligence second-born, and rating intelligence third-born. By clicking Next, we get to
another window, where we simply confirm all of the above with Next; in the next window,
we once again confirm by clicking Next and, in the final window, click on Finish. Eventually,
we arrive at a small window with a warning, to which we respond by clicking OK. Finally,
we obtain a new data sheet with which we can continue the analysis.

Now, we proceed analogously (Analyze – General Linear Model – Univariate. . .) to, for
example, Example 10.8 in order to mark Dependent Variable: trans1, displayed as intelligence
first-born [trans1], in the window in Figure 10.7. We drag and drop the character Index1 into
the field Fixed Factor(s): and the character id into the field Random Factor(s):. If we also
want the estimated magnitude of effect η2, we have to additionally click Options. . . in order
to set a check mark at Estimates of effect size in the window in Figure 10.8. By clicking OK,
we obtain the results in Table 12.7. The resulting p-value concerning the character Index1,
i.e. the sibling position, amounts to 0.262.
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Table 12.7 SPSS-output of the analysis of variance for matched outcomes in
Example 12.11.

Partial Eta
SquaredSig.FMean Squaredf

Type III Sum
of Squares

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Intercept

Index1

id

Index1 * id
c

0.000

1.000203.44731864696.088

203.447
b

31864696.088

.341.3941.035210.64015933491.831

203.447
b

31864696.088

.008.2621.347273.9562547.913

210.640
a

15933491.831

.993.00023932.5135041155.16915041155.169

SourceSource

Tests of Between-Subjects Effects

Dependent Variable:intelligence first-born

a. MS(id)
b. MS(Index1 * id)
c. MS(Error)

In SPSS, it is also possible to select

Analyze
General Linear Model

Repeated Measures. . .

in order to conduct the same analysis; however, we have to use the original database Example
12.11 for this. In the window Repeated Measures Define Factor(s) in Figure 12.10, we
type the name of the character for which we have repeated observations into the field
Within-Subject Factor Name:; in our case, for example, pos_sibling. We type 3 into the field
Number of Levels: and subsequently click Add (the results of this are already displayed in
Figure 12.10). By clicking Define, we get to the next window (Figure 12.11), where we
drag and drop the three levels of the factor sibling position, namely intelligence first-born,
intelligence second-born, and intelligence third-born, into the field Within-Subjects Variables
(which has already been done in Figure 12.11). If we also want the estimated magnitude of
effect η2, we additionally have to click Options. . . in order to set a check mark at Estimates
of effect size in the resulting window (quite similar to the one in Figure 10.8).

Now, we continue by clicking OK and obtain, among other things, a composition of
results on the three levels of the factor sibling position (see Table 12.8). The p-value of the
respective F-test is again 0.262.

Finally, in SPSS, it is possible to conduct the same analysis by following the steps
described in Example 10.1 (Analyze – Scale – Reliability Analysis. . .); in the window in
Figure 10.4, we drag and drop the characters intelligence first-born, intelligence second-
born, and intelligence third-born into the field Items: and click Statistics. . . . In the following
window (not shown here), we mark the option F-Test in ANOVA Table, return to the previous
window by clicking Continue and confirm by clicking OK. The output then also contains the
p-value 0.262.
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Figure 12.10 SPSS-window for computing an analysis of variance for matched outcomes.

Figure 12.11 SPSS-window for re-structuring the data in order to apply an analysis of
variance for matched outcomes.
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Table 12.8 SPSS-output of the analysis of variance for matched outcomes in
Example 12.11.

Partial Eta
SquaredSig.FMean Squaredf

Type III Sum
of Squares

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

pos_sibling

Error(pos_sibling)

406.894159.00064696.087

203.447318.00064696.087

204.429316.47264696.087

203.44731864696.087

.008.2481.347547.9121.000547.912

.008.2621.347273.9562.000547.912

.008.2621.347275.2791.990547.912

.008.2621.347273.9562547.912

Source

Tests of Within-Subjects Effects

Measure:MEASURE_1

Due to the p-value of 0.262 > 0.05, the null hypothesis can be accepted.

We have previously only considered the data structure of matched samples and discussed
which of the models of analysis of variance, as explained above, is relevant for this case –
additionally we have shown possible analyses in an example. We have not yet referred to
the presuppositions, particularly as concerns the elsewhere-common assumption of homo-
geneity of variances. Depending on which method of analysis is chosen, computer pro-
grams will calculate Levene’s test or Mauchly’s sphericity test, or no corresponding test
is provided. In the case of Mauchly’s sphericity test, there are similar reservations to
the ones initially discussed in connection with the two-sample Welch test and illustrated
in detail for Levene’s test. It tests to what extent the pair-wise differences of outcomes
of each two factor levels show the same variances (we do not explicitly give the null
hypothesis here). All the same, several proposals for the correction of the F-distributed
test statistics exist for the case that Mauchly’s sphericity test has a significant result
(for instance the correction according to Greenhouse–Geisser; see e.g. Table 12.8). We
suggest – if one does not use our rule of thumb from Section 10.4.1.1 – that the correction
according to Greenhouse–Geisser simply be applied immediately, but no pretest should be
conducted.

Of course, mult-way analyses of variance with matched outcomes are possible as well.
Basically these are always special cases for n = 1 with an additional random factor of the
research units. A two-way analysis of variance for a tuple of matched outcomes can then
be calculated by means of a three-way analysis of variance, in which the two actual factors
are fixed or random, depending on the content of the research question. The third factor is a
random factor with the research units as factor levels. At the same time, it should be taken
into account that a nested classification is given for the last factor: it is nested in the factor
which does not contain the several (treatment) conditions as its levels.

Doctor Example 12.12 The influence of the birth order on intelligence will be
investigated, whereby the interaction with the character city/rural is of partic-
ular interest.
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Expanding on Example 12.11, we want to investigate the given research
question using the data set Example 12.11 (see Chapter 1 for its availability). We
have one fixed factor birth order with a = 3 levels, the random factor family with
b levels, and the factor residence with the c = 2 levels ‘city’ and ‘rural’. The null
hypothesis is identical to the one in Example 12.11 with regard to the factor birth
order; with regard to the interaction effect the null hypothesis is H0: ‘There are
no combinations of “city” or “rural”, respectively, and birth order, which show
particularly high or particularly low mean test scores in the character intelligence.’
We decide on a type-I risk of α = 0.05.

In R, we keep on using the rearranged database from Example 12.11 as well as the package
ez, which we already loaded in Example 12.11. We type

> ezANOVA(Example_12.11.l, dv = .(int1), wid = .(id),
+ within = .(time), between = .(residence))

i.e. we use the function ezANOVA(), adding the argument between =
.(residence) to the command from Example 12.11, which causes the additional
factor residence to be included into the analysis.

As a result, we get (shortened output):

$ANOVA
Effect DFn DFd F p p<.05 ges

2 residence 1 158 27.887756 4.194872e-07 * 0.051596580
3 time 2 316 1.354974 2.594484e-01 0.005897507
4 residence:time 2 316 1.991869 1.381496e-01 0.008645615

$‘Mauchly’s Test for Sphericity’
Effect W p p<.05

3 time 0.9963584 0.7509703
4 residence:time 0.9963584 0.7509703

$‘Sphericity Corrections’
Effect GGe p[GG] p[GG]<.05 HFe p[HF]

3 time 0.9963716 0.2594412 1.009075 0.2594484
4 residence:time 0.9963716 0.1383308 1.009075 0.1381496

In SPSS, analogously to Example 12.11, we can proceed in two ways. We start by describing
the second approach, because the data does not have to be rearranged for it. Following
the sequence of commands (Analyze – General Linear Model – Repeated Measures. . .) in
Example 12.11, we open the window in Figure 12.10 and Figure 12.11, additionally dragging
and dropping the character residence into the field Between-Subject Factor(s): in the latter
window. If we also want the estimated magnitude of effect η2, we have to additionally click
Options. . . in order to set a check mark at Estimates of effect size in the following window
(quite similar to the one in Figure 10.8). By clicking Continue and OK, we obtain the results
in Table 12.9 and Table 12.10. The p-values under Sig. are the ones to be interpreted.
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Table 12.9 SPSS-output of the two-way analysis of variance (Tests of Within-Subjects
Effects) for observed values associated with each other in Example 12.12.

Partial Eta
SquaredSig.FMean Squaredf

Type III Sum
of Squares

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

pos_sibling

pos_sibling * residence

Error(pos_sibling)

404.371158.00063890.633

202.186316.00063890.633

202.922314.85363890.633

202.18631663890.633

.012.1601.992805.4541.000805.454

.012.1381.992402.7272.000805.454

.012.1381.992404.1941.993805.454

.012.1381.992402.7272805.454

.009.2461.355547.9121.000547.912

.009.2591.355273.9562.000547.912

.009.2591.355274.9541.993547.912

.009.2591.355273.9562547.912

SourceSource

Tests of Within-Subjects Effects

Measure:MEASURE_1

Table 12.10 SPSS-output of the two-way analysis of variance (Tests of Between-
Subjects Effects) for observed values associated with each other in Example 12.12.

Partial Eta
SquaredSig.FMean Squaredf

Type III Sum
of Squares

Intercept

residence

Error 180.17215828467.229

.150.00027.8885024.60215024.602

.994.00027979.6295041155.16915041155.169

Source

Tests of Between-Subjects Effects

Measure:MEASURE_1
Transformed Variable:Average

Neither the main effect with respect to the factor birth order nor the interaction
effect result in significance. We were not interested in the main effect with respect
to the factor residence; that, however, is significant.

If we were to be further interested in the main effect concerning residence, we could now
once again conduct a calculation in order to determine the means per respective factor
level. For this, we would have to click Options. . . in Figure 12.11 in order to drag and
drop the character residence into the field Display Means for: in the resulting window (not
shown here); by clicking Continue and OK, we obtain the required means. With the first
approach in Example 12.10, we get to the same results. However, one needs to rearrange
the data, as was shown above. The random factor family is now nested in the factor res-
idence; the b levels are respectively divided into b1 and b2 levels. We proceed with the
sequence of orders (Analyze – General Linear Model – Univariate. . .) as in, for example,
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Figure 12.12 SPSS-syntax for Example 12.12.

Table 12.11 SPSS-output of the two-way analysis of variance for observed values
associated with each other in Example 12.12.

Sig.FMean Squaredf
Type I Sum of

Squares

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Hypothesis

Error

Intercept

Index1

residence

id(residence)

Index1 * residence

202.186
b

31663890.633

.1381.992402.7272805.454

202.186
b

31663890.633

.792.891180.17215828467.229

180.172
a

15828467.229

.00027.8885024.60215024.602

202.186
b

31663890.633

.2591.355273.9562547.913

180.172
a

15828467.229

.00027979.6295041155.16915041155.169

SourceSource

Tests of Between-Subjects Effects

Dependent Variable:intelligence first-born

a. MS(id(residence))
b. MS(Error)

Example 10.8, and mark Dependent Variable: trans1, displayed as intelligence first-born
[trans1], in the window in Figure 10.7. Now, we drag and drop the characters Index1 as
well as residence into the field Fixed Factor(s):, and the character id into the field Random
Factor(s):. However, in order to specify that it is nested, we have to change the syntax. To
do this, we click – still in the window in Figure 10.7 – the button Paste, and obtain the
window in Figure 12.12. There, one has to replace the last line as follows: /DESIGN = Index1
residence id(residence) residence∗Index1. This has already been done in Figure 12.12. Now,
we click Run and select All, which causes the computation to be conducted. The results can
be found in Table 12.11.



P1: OTA/XYZ P2: ABC
JWST094-c12 JWST094-Rasch September 25, 2011 7:56 Printer Name: Yet to Come

398 ONE SAMPLE FROM ONE POPULATION

It has to be concluded that the birth order does not have a significant effect on
intelligence, either as a main effect or as an interaction effect with the residence
(‘city’ vs. ‘rural’).

12.3.2 Hypothesis testing concerning the position of
ordinal-scaled characters

When the observed characters y1, y2, . . . , ym are ordinal scaled, neither the procedures
from the preceding section nor Wilcoxon’s signed-ranks test, which has been discussed in
Section 8.5.5, come into question. The former assume characters of at least an interval scale
for the calculation of differences, and the latter forms only pair-wise differences of ranks. In
fact, a generalization of the binominal test discussed in Section 8.5.3 is required. Friedman’s
test is an example of such a generalization. In applying such a test, the idea is to provide the
tuples of outcomes per research unit v with ranks rv1, rv2, . . . , rvm; if ties appear, we proceed
as in Section 5.3.2. If all given ranks are summed per character q, all of these (Rq) should be
(approximately) equal when the null hypothesis is true. As the same number of observations
a is given for every character q, it is actually not necessary to determine the means of the
ranks R̄q ; however these can be regarded as estimations P̂ for the unknown mean ranks in
the population. Thus, the null hypothesis is: H0: Pq = Pl = P for all q and l; the alternative
hypothesis is HA: Pq �= Pl for at least one q �= l.

The calculation of the Friedman’s test is very simple using pertinent computer programs.

Master It can be shown that the test statistic

χ2 = 12

am (m + 1)

m∑
q=1

[
a∑

v=1

(
rvq − m + 1

2

)2
]

(12.10)

is asymptotically χ2-distributed with df = m − 1 degrees of freedom.

Bachelor Example 12.13 The influence of the birth order on the rating of intelligence (by
a parent)

We investigate this research question using the data set Example 12.11. We
have already tested the differences between the birth order with regard to objec-
tive test scores in an intelligence test in Example 12.11 and 12.12, respectively.
We are now interested in the parent’s subjective ratings in the same sample; thus
the characters rating intelligence first-born, rating intelligence second-born, and
rating intelligence third-born. The null hypothesis is: ‘There are no differences
in the rating of intelligence with regard to birth order.’ According to the expla-
nations in Chapter 5, ratings are generally ordinal-scaled data; we thus apply the
Friedman’s test. We choose a type-I risk of α = 0.05.
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In R, we use the rearranged database from Example 12.11 and type

> friedman.test(r1 ˜ time | id, data = Example_12.11.l)

i.e. we use the function friedman.test(), submitting to it the instruction that the
character r1 is to be analyzed with regards to the factor time; with | id, we state that
the character time is hierarchically subordinate to the factor of the observation units (id).
Finally, we state the database to be used with data = Example_12.11.l.

As a result, we get:

Friedman rank sum test

data: r1 and time and id
Friedman chi-squared = 2.9759, df = 2, p-value = 0.2258

For determining the middle ranks, we use the original database Example 12.11 again. We
type

> with(apply(apply(cbind(r1, r2, r3), 1, rank), 1, mean),
+ data = Example_12.11)

i.e. we use the function apply(); the first argument being the new matrix which we
create with cbind(r1, r2, r3) from the characters rating intelligence first-born
(r1), rating intelligence second-born (r2), and rating intelligence third-born (r3); the
second argument, 1, being the instruction that the ranking (rank) is to be conducted line
by line. We submit the result to the function apply() as the first argument; the second
argument, 1, stipulating that the mean (mean) is to be computed line by line. By applying
the function with(), we state the database to be used; namely Example_12.11.

As a result, we get:

r1 r2 r3
2.103125 1.981250 1.915625

In SPSS, we use the original database Example 12.11 and select

Analyze
Nonparametric Tests

Related Samples . . .

in order to select Fields in the upper bar in the resulting window (not shown here), so that
we arrive at a window very similar to the one in Figure 8.12. We mark the characters rating
intelligence first-born, rating intelligence second-born, and rating intelligence third-born, and
drag and drop them into the field Test Fields:. Now, we select Settings in the upper bar and
thus get to the window in Figure 8.13. There, we click the button Customize tests and set a
check mark at Friedman’s 2-way ANOVA by ranks (k samples). After clicking Run, we obtain
the table Hypothesis Test Summary in the output window (not shown here), which we simply
double-click; following this, a window opens, from which we extract the relevant result: the
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test value according to Formula (12.11) amounts to χ2 = 2.976, with df = 2 degrees of
freedom; the respective p-value being 0.226. Additionally, we can see the middle ranks in
this window: the middle rank for the first-born is 2.10, the one for the second-born 1.98 and
the one for the third-born is 1.92.

With a p-value of 0.226 the result is not significant. In other words, there is no
difference in the parent’s subjective rating of their children’s intelligence with
regard to their birth order.

Mult-way rank variance analyses for matched outcomes do not exist. This should therefore
be taken into consideration during the planning of a research study.

Summary
If at least three matched outcomes per research unit are given, then hypothesis testing is
fundamentally different to the case that the respective outcomes stem from different research
units. Nevertheless, certain variations of the analysis of variance apply. Friedman’s test exists
for ordinal-scaled characters.
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13

Samples from more than
one population

This chapter is about scenarios where at least two characters are observed on research units
of samples from at least two populations. Predominantly, the discussed methods can only be
used for quantitative characters. In particular, the generalization of the analysis of variance
with more than one character will be discussed. Thereby even noise factors are taken into
account. Finally, it will be shown how characters (in combination) can be selected, from
a relatively large pool of characters, in order to best discriminate between two or more
groups.

Basically, this chapter is about the generalizations of the research questions from Chapter 12;
that is, for the case of more than one sample or population, respectively. Further, it is about the
generalization of research questions from Chapter 10; that is, comparing more than one or two
samples with respect to at least two characters instead of only a single character. Regression
and correlation analysis will also be dealt with, since this is obligatory whenever at least two
characters are under consideration. First of all, the general linear model will be introduced,
as all of the respective methods can be incorporated there.

13.1 General linear model

So far, we considered, as one of the most complex cases of the general linear model, for
instance the three-way analysis of variance (see Table 10.23):

yijkv = μ + ai + b j + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + eijkv (13.1)

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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If we now label the vector of all main and interaction effects θ (a, b, (ab), etc.) as �θ , then the
general linear model1 can be written quite simply as ( �y and �e are also vectors):

�y = �θ + �e (13.2)

In the simplest case of one character in just a single random sample, the model can be written
as: yv = μ + ev; v = 1, 2, . . . , n.

The model in (13.2) can also be written as follows (with X as a matrix and β as a vector):

�y = X �β + �e (13.3)

For example, the simple analysis of variance (model I) can be written as: yiv = μ + ai + eiv;
i = 1, 2, . . . , a; v = 1, 2, . . . , ni (see Formula (10.1)).

Doctor For example, for a = 3 and ni = n = 2, �y is the vector of all yiv. In lexico-
graphical order, this is written (transposed) as: �yT = (y11, y12, y21, y22, y31, y32).
Analogously, �e is the vector of all eiv, and �β the vector of the four parameters μ,
a1, a2, a3. X has the form

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Formula (13.3) then is

⎛
⎜⎜⎜⎜⎜⎜⎝

y11
y12
y21
y22
y31
y32

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎝

μ

a1

a2

a3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎝

e11

e12

e21

e22

e31

e32

⎞
⎟⎟⎟⎟⎟⎟⎠

In analysis of variance, X is a matrix consisting of zeros and ones. In simple linear
regression, the model equation is yv = β0 + β1xv + ev ; v = 1, . . . , n; it follows

�β =
(

β0

β1

)
, and the matrix X has n rows and two columns, the vth line being

(1 xv). In the regression analysis, the matrix X thus contains the outcomes of
the regressor.

Despite the fact that – if one permits random factors and regressors – this covers a large
number of models, the general notation does offer some advantages. Most notably, estimation
by the method of least squares or derivation of the distribution of test statistics can be handled

1 The general linear model was defined mainly as model I of the analysis of variances, as well as of the regression
analysis, so that both approaches could be handled consistently.
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within the general model, but for specific cases then can be easily determined for special
models. The analysis of covariance, factor analysis, and discriminant analysis can also be
described using the general linear model.

13.2 Analysis of covariance

The analysis of covariance, a special case of the general linear model, is related to regression
analysis as well as to analysis of variance. The analysis of covariance is about the mean
differences between the (at least two) levels of a particular factor A with respect to the
character y; these factor levels can again be seen as different populations. It is also about the
assumption/fear that the differences between the factor levels A1, A2, . . . , Ai, . . . , Aa with
respect to the (means of) the character y (i.e. the relationship of y and E(y) = μ, respectively,
and A) are ‘disturbed’, ‘superimposed’, or ‘hidden’ by another character, z. In this respect,
the analysis of covariance differs from the partial correlation coefficient in Section 12.1.1
simply by replacing the quantitative character x by the qualitative factor A. In both cases, the
characters y and z are quantitative. The factor can be fixed or random. The character or to say
noise factor z, modeled as z, is called a covariate. This factor can be fixed (in that case we
write z instead of z) or random. In psychological applications it is, however, usually random.
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The characters y and z are modeled by the normally distributed random variables
y and z. For the purpose of hypothesis testing, a two-dimensional normal
distribution of these variables must be assumed. The data structure is shown in
Table 13.1. The difference from Table 10.1 is the additional column in which the
outcomes ziv are listed.

Table 13.1 Data structure of a (one-way) analysis of covariance

level A1 level A2 . . . level Aa

y11 z11 y21 z21 . . . ya1 za1

y12 z12 y22 z22 . . . ya2 za2...
...

...
...

...
...

...
y1n1 z1n1 y2n2 z2n2 . . . yana zana

We only consider the case of a fixed factor A. The model equation is derived
from formula (10.1); however, in the expression yiv = μ + ai + eiv, the ai is
co-determined by the ith of the a regression functions from z onto y: ai = a∗

i −
(β0i + β1i ziv) = β∗

0i+β1i ziv. Assuming β i1 = β1 it follows:

yiv = μ + β∗
0i + β1 ziv + eiv (i = 1, . . . , a; v = 1, . . . , ni ) (13.4)

With respect, for instance, to the analysis of variances, the following assumptions
are made:

� The eiv are normally distributed N (0, σ 2); therefore they all have the same
expectation 0 and the same variance σ 2.
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� The eiv are independent (from each other).

� The ziv and the eiv are independent (from each other).

� a ≥ 2, and, for all i, ni ≥ 2.

�
∑a

i=1 ai = 0.

Because β i1 = β1, it is particularly presupposed that the regression lines are
parallel. Therefore, they only differ in terms of the intercept β0i. It follows that
the a levels of the factor A only have influence on the intercept. This assumption
is certainly fulfilled if the variance–covariance matrix

Σ(i) =
(

σ 2
y(i) σyz(i)

σyz(i) σ 2
z(i)

)
(13.5)

is the same in all a populations, which means that they are independent from i
(if so, βi1 = σyz(i)

σ 2
z(i)

= β1 = σyz

σ 2
z

). This then is referred to as the homogeneity of the

variance–covariance matrix.
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Example 13.1 The influence of Latin courses on the development of the ability
of reasoning is to be examined

Teachers often argue that Latin courses in high school are important not
only because they are the basis for other languages, but also because they are
an excellent exercise in reasoning. There might be a study in which students
in the 11th level of education are tested with a pertinent psychological test for
measuring their reasoning ability. The factor in question, Latin courses, then
would have two levels: ‘from the 7th level of education with Latin courses’ and
‘without Latin courses’; thus the factor is fixed. The character of interest is the
test score in reasoning.

Bear in mind (see Section 3.1), that this is a so-called ex-post-facto design.
That is, the assignment to the two levels is not due to randomization. It follows
that, in the end, any effects detected may have existed from the very beginning:
students who choose Latin courses thus might differ fundamentally, and right
from the onset, from those who do not. Intelligence is one of the potential noise
factors. For this we might have measured the character intelligence, too; again
with an adequate psychological test. The idea is to ‘clean up’ the differences
between the levels of the factor Latin courses in the reasoning test scores from
the possible contribution of the factor intelligence. If the factor Latin courses
were a quantitative character like the two characters reasoning and intelligence,
we would compute a partial correlation coefficient. This then would adjust the
correlation between Latin courses and reasoning with respect to the noise factor
intelligence.

A comparison between the means of students with and without Latin courses
as concerns the character reasoning would be unfair, if all those with Latin courses
were more intelligent than those without Latin courses. To analyze the latter, we
assume that if there is any (positive) correlation between the character reasoning
(y) as the regressand and the character intelligence (z) as the regressor, then the
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slope of the regression line in both groups will be equal. Thus, the effect of Latin
courses could be estimated by the distance between the two parallel regression
lines for any value of the regressor variable, for example for an intelligence value
of 100. This estimation would then be adjusted with respect to the eventually
given difference in the means of intelligence in both groups. If we take the (from
the content point of view unrealistic) value 0 instead of 100, the estimation is just
the difference between the intercepts.

We now use the data set Example 13.1 (see Chapter 1 for its availability) to
answer the given research question. The null hypothesis is: eliminating the effects
of z, the means of y do not differ with respect to the factor levels Ai. Initially,
however, it is of importance whether the slopes of the regression lines are the
same for both factor levels or not.

In R, we first enable access to the database Example_13.1 (see Chapter 1) by using the
function attach(). Then we type

> coef(lm(rsng ˜ intelligence, subset = latin == "without Latin"))
> coef(lm(rsng ˜ intelligence, subset = latin == "with Latin"))

i.e. we use the function lm(), each time specifying that the character reasoning (rsng) is
to be analyzed with regards to the character intelligence as the first argument; in the
second arguments, we use subset, once to select the children ‘without Latin’ and
once to select the children ‘with Latin’. We apply the function coef()to the results.

This yields:

(Intercept) intelligence
32.0325187 0.6361691

(Intercept) intelligence
16.1740102 0.9057169

In SPSS, we first estimate the regression coefficients for each of the two levels of the
factor Latin course separately. In order to do this, we split the data by the factor Latin
courses by using the same sequence of commands (Data – Split File...) as shown in
Example 5.11 and, in the following window in Figure 5.23, click the button Compare
groups, after which we drag and drop Latin course into the field Groups Based on:. After
clicking OK, the following analysis will be conducted separately for children ‘without Latin’
and ‘with Latin’. Following the steps described in Example 11.5 (Analyze – Regression –
Linear...), we arrive at Figure 11.5, where we mark the character reasoning in order to drag
and drop it into the field Dependent:. We drag and drop the character intelligence into the
field Independent(s):. After clicking OK, we obtain the results in Table 13.2, among other
things.
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Table 13.2 SPSS-output of the regression coefficients in Example 13.1
(shortened output)

Std. ErrorB

Unstandardized Coefficients

(Constant)

intelligence

1

(Constant)

intelligence

1

without Latin

with Latin

.103.906

10.22016.174

.143.636

14.18432.033

Latin courses ModelLatin courses Model

Coefficients
a

a. Dependent Variable: reasoning

The estimated regression function from reasoning onto intelligence for students
without Latin courses is: ŷwithout Latin = 32.033 + 0.636z; for students with Latin
courses, ŷwith Latin = 16.174 + 0.906z. Although there is a test which could test
the hypothesis of equal slopes, we forgo such a test and illustrate the situation
only graphically, with a scatter plot.

In R, we thus type

> plot(intelligence, rsng, col = as.numeric(latin),
+ xlab = "intelligence", ylab = "reasoning")

i.e. we apply the function plot() and use intelligence and reasoning (rsng) as
arguments; we select the color of each data point with col = as.numeric(latin)
according to the character value of the factor latin, wherein we first have to convert
them into numeric values by using the function as.numeric(). Finally, we label the
axes accordingly with xlab and ylab.

As a result, we get a chart that exactly corresponds to the one in Figure 13.1.

In SPSS, we deactivate the partitioning of the data we needed earlier by using the same
sequence of commands (Data – Split File...) as before, and clicking the button Analyze all
cases, do not create groups. After clicking OK, the partitioning will be cancelled. Following
the steps described in Example 5.2, we open the Chart Builder (see Figure 5.5), where we
click the diagram type Scatter/Dot in the gallery tab in order to select a Grouped Scatter (the
second chart from the left in the first row; when the cursor hovers over this panel, Grouped
Scatter appears); we click on it and drag and drop it into the field Chart preview. Now, we
drag and drop the character reasoning into the field Y-Axis?, the character intelligence into
the field X-Axis?, and the character Latin courses into the field Set color. After clicking OK,
we obtain Figure 13.1 (which can be edited with the context menu Edit Content – In Separate
Window).
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Figure 13.1 SPSS-output showing the scatter plot of the characters reasoning and intelli-
gence in Example 13.1.

Although the two slopes, in numerical terms, clearly differ from each other, the
chart leaves the impression that the regression lines adapted to the two scatter
plots run almost parallel. Clearly, however, they run shifted by an additive con-
stant (intercept) on the ordinate. The dots of the students with Latin courses
are on average higher in the level of reasoning than those of students without
Latin courses.
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Obviously, answering the given research question requires more than descriptive
statistics. The null hypothesis is: H0: μi.z = μl.z for all i �= l; i, l = 1, 2, . . . , a,
and μi.z the mean value of yi with the effects of z eliminated. Basically, this is
about a null hypothesis just like that in the one-way analysis of variances. But
this time, a regression analysis has to be performed in advance. This is why we
do not explicitly give the sum of squares here. Testing this hypothesis is quite
simple with the assistance of pertinent computer programs. However, the user has
to bear in mind that the presumption of homogeneity of the variance–covariance
matrices has to be fulfilled.

The appropriateness of this presumption can be illustrated by looking at the
schematic representation in Figure 13.2. Remember the null hypothesis claims
that there is no difference between the factor levels of A with respect to the
character y – taking into account some dependence of y and A on z. It is tested by
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comparing two slopes. The first concerns the average slopes of all regression lines
between y and z for each factor level; that is the regression coefficient β̂1i . The
second concerns the slope resulting from the regression of the means of the factor
levels (ȳi on z̄i ). If these two kinds of slopes differ (a), then there are differences
between the means of the factor levels of Ai – even though the influence of z is
taken into account and eliminated, respectively. If these slopes do not differ (b),
the observed differences in the means of the factor levels Ai can only lead back to
the common dependence of y and A on z; thus, the factor levels Ai do not per se
produce the differences in the variable y. If, however, the regression lines for each
factor level are not parallel (c), it is obviously useless to determine a common
average slope for them.

(a) (b) (c)

Figure 13.2 Schematic representation of a two-dimensional scatter plot between the inter-
esting character y (ordinate) and the noise factor z (abscissa) for each of the three factor levels
A1 to A3. It includes the regression line per factor level (solid line) and the regression line for
the means of the factor levels (dashed line).

As with the (two-sample) t-test, this again brings along the problem that a pre-
test is necessary – apart from the hardly testable presumption of a two-dimensional
normal distribution. Despite the methodological inconsequence, combined with
the risk of a false decision with the pre-test, such a test is highly recommended here
(just think about the risk of an entirely artificial result given a situation like the one
in Figure 13.2c). The method of choice is the Box-M test. However, this test does
not (directly) test the equality (homogeneity) of the slopes of the regression lines,
but (in an indirect way via) the homogeneity of the variance–covariance matrices;
that is the null hypothesis H0: Σ (i) = Σ for every i (HA: Σ (i) �= Σ (l) for any i �= l).
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Note, however, that the slopes can be equal even if the variance–covariance
matrices differ. We do not go into detail here as concerns the exact test statistic
and its distribution; the calculation with pertinent computer programs is easy. The
problem is that it does not come at all close to maintaining the type-I error if the
presupposition of a two- (or in general: multi-) dimensional normal distribution is
violated. A significant result therefore always brings along a higher risk of falsely
rejecting the presupposition of homogeneous variance–covariance matrices than
stated by the nominal type-I risk α.
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Example 13.1 – continued
This is about testing the differences of the means of the character reasoning with
respect to the factor Latin courses. Thereby the effects of the character intelligence
will be eliminated. The null hypothesis, H0: μi.z = μl.z for all i �= l; i, l = 1, 2,
. . . , a, shall be tested with a type-I error of α = 0.05. Also the null hypothesis
H0: Σ (i) = Σ for all i is to be tested at this level of significance.

In R, we create a function in order to conduct the Box-M test by typing

> boxM.test <- function(X, group) {
+ levels <- levels(as.factor(group))
+ p <- length(levels)
+ n <- table(group)
+ m <- ncol(X)
+ N <- sum(n)
+ gamma <- 1 - (2*mˆ2+3*m-1)/(6*(m+1)*(p-1)) * (sum(1/(n-1)) -
+ (1/(N-p)))
+ s.k <- lapply(levels, function(i) cov(subset(X,
+ subset = group == i)))
+ s. <- 1/(N-p) * matrix(colSums(matrix(unlist(lapply(1:p,
+ function(k) +s.k[[k]]*(n[k]-1))),nrow=p,
+ byrow=T)),ncol=m)
+ M <- gamma*sum((n-1)*unlist(lapply(s.k,
+ function(x) log(det(solve(x)%*%s.,
+ "f")))))
+ correction = ((m-1)*(m+2))/(6*(p-1))*(sum(1/(n-1)ˆ2)
+ -(1/(N-p)ˆ2))
+ df1 <- (m*(m+1)*(p-1))/2
+ df2 <- trunc((df1+2)/abs(correction-(1-gamma)ˆ2))
+ F <- M/gamma*(1-(1-gamma)-(df1/df2))/df1
+ probf <- pf(F, df1, df2, lower=FALSE)
+ cat(" df1 df2 Box M F ProbF\n",
+ formatC(df1, width = 7), formatC(df2, width = 7),
+ formatC(M/gamma, format = "f", width=12, digits=5,
+ flag = " "),
+ formatC(F, format = "f", width=11, digits=5, flag = " "),
+ formatC(probf, format = "f", width = 11, digits=5,
+ flag=" "), "\n")
+ res <- list(Box.M = M/gamma, F = F, df1 = df1, df2 = df2,
+ probf = probf)
+ return(invisible(res))
+ }
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i.e. we use the function function() and set the matrix that is to be analyzed as the first
argument with X (which contains the observed values column by column), and add as a
second argument the factor of interest, with group. The sequence of commands inside the
curly brackets determines the application flow of the function and will not be discussed.
We assign this function to the object boxM.test. Now, we type

> boxM.test(cbind(rsng, intelligence), group = latin)

i.e. we use the function cbind() in order to define a matrix combining the character
reasoning(rsng) and the character intelligence and submit it as the first argument
to the function boxM.test(); with group = latin, we demand that the matrix is
to be analyzed with regards to the character Latin course.

As a result, we get:

df1 df2 Box M F ProbF
3 2.506e+06 6.08152 1.98995 0.11309

For the implementation of the analysis of covariance, we use the package car, which we
already installed in Example 10.18; we now type

> lm.cov <- lm(rsng ˜ intelligence + latin)
> Anova(lm.cov, type = 3)

i.e. we again use the function lm(), submitting to it the request that the character rea-
soning(rsng) is to be analyzed with regards to the character intelligence and the
factor Latin courses (latin); we assign the results of the analysis to the object lm.cov.
In the next step, we apply the function Anova() to the object lm.cov, selecting the type
III method of determining the squared sums of variances with type = 3.

As a result, we get (shortened output):

Anova Table (Type III tests)

Response: rsng
Sum Sq Df F value Pr(>F)

(Intercept) 375.0 1 4.0095 0.04756
intelligence 7551.9 1 80.7383 5.295e-15
latin 3472.3 1 37.1234 1.458e-08
Residuals 10943.6 117

In SPSS, we basically use the same sequence of commands (Analyze – General Linear
Model – Univariate...) as in Example 10.8 in order to open the window Univariate in
Figure 10.7. Although it is, at this point, possible to set a check mark at Homogeneity
tests in the respective window via Options..., this is not the order for conducting the Box-M
test. Instead, we have to select

Analyze
General Linear Model

Multivariate...
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in order to open the window in Figure 13.3. There, we drag and drop both characters: the
one of interest, reasoning, as well as the noise factor, intelligence, into the field Dependent
Variables:; we drag and drop the factor Latin courses into the field Fixed Factor(s):. Now,
we choose Options... (without figure here) and set a check mark at Homogeneity tests. After
choosing Continue, we return to the previous window, and after clicking OK, obtain various
results, of which we are only interested in the ones in Table 13.3.

Figure 13.3 SPSS-window for conducting the Box-M test.

Table 13.3 SPSS-output of the Box-M test for checking the
homogeneity of the variance–covariance matrix in Example 13.1

Box's M

F

df1

df2

Sig. .113

2506320.000

3

1.990

6.082

Box's Test of Equality
of Covariance

Matrices
a

Tests the null
hypothesis that the
observed
covariance
matrices of the
dependent
variables are equal
across groups.

a. Design:
Intercept + latin

Because the Box-M test does not yield a significant result, we can continue the calculations –
if this was not so, our research question would not be testable with the conventional methods.
Analogously to Example 10.8, we proceed to open the window Univariate in Figure 10.7 and
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conduct the analysis of covariance. In Figure 13.4, we have already dragged and dropped the
character reasoning into the field Dependent Variable:, the character Latin courses into the
field Fixed Factor(s):, and the character intelligence into the field Covariate(s):. In case of a
significant result, we also want to obtain the means for every factor level as adjusted by the
influence of the covariate according to the regression analysis; in order to do this, we click
the button Options. . . in the window in Figure 13.4, mark latin in the panel Factor(s) and
Factor interactions:, and drag and drop it into the field Display Means for:; if we also want
the estimated magnitude of effect η2, we have to set a check mark at Estimates of effect size
in this window. By clicking Continue, we get back to the previous window, where we obtain
the results in Tables 13.4 and 13.5 by clicking OK.

Figure 13.4 SPSS-window for conducting the analysis of covariance.

Table 13.4 SPSS-output of the table of variances in Example 13.1

Partial Eta
SquaredSig.FMean Squaredf

Type III Sum
of Squares

Corrected Model

Intercept

intelligence

latin

Error

To tal

Corrected Total 11921888.659

1201227076.319

93.53511710943.599

.241.00037.1233472.34113472.341

.408.00080.7387551.85817551.858

.056.0106.946649.7381649.738

.500.00058.5085472.530210945.060
a

SourceSource

Tests of Between-Subjects Effects

Dependent Variable:reasoning

a. R Squared = .500 (Adjusted R Squared = .491)



P1: OTA/XYZ P2: ABC
JWST094-c13 JWST094-Rasch September 26, 2011 8:59 Printer Name: Yet to Come

ANALYSIS OF COVARIANCE 413

Table 13.5 SPSS-output of the means in Example 13.1

Std. ErrorMean Upper BoundLower Bound

95% Confidence Interval

without Latin

with Latin 108.068103.1231.249105.595
a

97.30992.3641.24994.837
a

Latin coursesLatin courses

Latin courses

Dependent Variable:reasoning

a. Covariates appearing in the model are evaluated at the following
values: intelligence = 98.74.

As we can see, both the effect of intelligence on the character reasoning and the
(adjusted for the influence of intelligence) effect of Latin courses on reasoning
are significant. More precisely, we can see that reasoning is significantly higher
in the group with Latin courses.
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Of course, the analysis of covariance and the model of the Formula (13.4) can
be generalized. Even nonlinear regression approaches are possible but are rarely
used in psychology. In contrast, expanding to more than one factor and more
than one noise factor is of higher interest. So too are nested classifications
of factors possible, as well as taking into account covariates in multivariate
analysis of variances, as dealt with in the following section. In those analy-
ses, more than one character y is of simultaneous interest. Though the practical
calculation using computer programs is completely the same, we must warn
not to use too many factors, characters, and/or covariates: apart from the need
of extremely large sample sizes in such cases, the presumption of a multidi-
mensional normal distribution is not only not testable, but simply unrealistic.
Likewise unrealistic is the expectation that the variance–covariance matrices are
homogeneous.

Doctor As concerns the aspect of variance analysis and the aspect of regression analysis in
Formula (13.4), there are different combinations of model I and model II; that is,
different combinations of fixed and random factors and characters, respectively:

� The case of a fixed factor A, and where the measurement values of the
character z are fixed as well, is very rare in psychology. Besides, it is better
suited to Part IV, with only a single character modeled as a random variable.

� The case of a fixed factor A, and where the character z can be modeled as
random variable z, we have already dealt with in detail above.

� The case of a random factor A, and where the measurement values of the
character z are fixed, is also very rare in psychology.

� The case of a random factor A, and where the character z can be modeled
as random variable z, we did not in fact explicate by a formula; to proceed
accordingly is, however, easy when using a computer program.
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If a second or third factor is of interest, there are also cross and nested classifi-
cations, and there are also models I, II, and mixed models, analogous to Chapter
10. For further information see Rasch, Herrendörfer, Bock, Victor, & Guiard
(2008). Using computer programs, the application again is easy. One just has to
bear in mind that in the case of a multivariate analysis of variance where at least
one covariate is considered, the usage of random factors is not possible in SPSS.

13.3 Multivariate analysis of variance

Multivariate2analysis of variance is the generalization of one-way and multi-way analysis of
variance on at least two characters of interest, y1 and y2 – in general terms y1, y2, . . . , ym. We
will model these characters analogously as (multidimensional) normally distributed random
variables y1, y2, . . . , ym. Analogous to Chapter 10, the effect of one (fixed or random) factor
or more than one (fixed or random) factors can be analyzed simultaneously. When at least
two factors are given, both models can be used; that is models with fixed factors and models
with random factors, and also mixed models. The distinction between cross classification and
nested classification applies, too. However, similarly to the case of just a single character
using SPSS, one can (guided by the menu) only analyze factors in cross classification, but not
in nested classifications. With respect to Section 13.2, the multivariate analysis of variance
can be generalized to an analysis of covariance, but we will not discuss that in detail.
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Example 13.2 Do the test scores on the subtests of the intelligence test battery
(at test date 1) depend on the social status (Example 1.1)?

In contrast to similar questions (e.g. for instance Example 10.7), we now want
to analyze all of the five subtests simultaneously. That is, we do not just analyze
the effect of the factor social status on the test scores of a single subtest and on a
single variable, respectively.
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As soon as more than one character is of interest, it is not advisable to simply
perform the test numerous times for each one singly. Too much information could
remain unused as concerns the relationships between the characters in question. In
Section 10.3, which was about the multiple comparison of means, we already saw
that making numerous comparisons of data within the same research question
is problematic, at least with respect to the overall type-I risk. Here we have
an analogous problem. A further problem is that if statistical tests are used for
different characters, which are all ascertained from the same research units, the
tests could reveal significant results, which are then, as a pool, misinterpreted
as concerns the contents. That is because, if the characters are related closely
enough, then some ‘duplications’ of the significances occur which entail many
of the same consequences/conclusions without it being directly obvious from the
content point of view: in fact, the second, third, and so on significant result might
not be a new result with respect to the first one.

2 Often the word ‘variate’ is used within statistics instead of ‘random variable’.
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Example 13.2 – continued
If we apply the one-way analysis of variance as we did in Chapter 10 for all
the five subtests one after the other, five independently established significant
differences in the means might occur between the children of certain (or all)
measurement values of the social status – for example, a significant and relevant
difference regarding a disadvantage of the ‘lower classes’. A possible educational
policy consequence could then be that children of those ‘lower classes’ are to
be trained early in all abilities measured by the subtests Everyday Knowledge,
Applied Computing, Social and Material Sequencing, Immediate Reproducing –
numerical, and Coding and Associating. Such an enhancement policy does not
only mean an enormous national economic effort, but above all also a high
energetic-motivational burden for the children themselves and most likely for
their social environment, too.

Actually we can imagine that, in particular as concerns children from the
‘lower classes’, the test scores of the five subtests in question correlate very highly
(see the ‘general intelligence theory’ in which essentially just a single intelligence
dimension, the ‘general intelligence’, is responsible for intelligent performances).
If that were the case, the indicated enhancement program, with respect to all those
subtests (abilities) resulting in significance, means an unnecessarily high effort:
although some general enhancement would suffice, a fivefold enhancement of
one and the same ability would apply.
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Hence, when testing for differences in means, the relationships between the
characters in question have to be taken into account in order to avoid mutually
duplicated results.

On the other hand, differences in the means with respect to each character
could be too small to reveal a significant effect. Hence, repeatedly applied statis-
tical tests for different characters, all ascertained from the same research units,
would not reveal a single significant result. Whether the different characters corre-
late with each other or not, the cumulative difference in means, though marginal if
looked at individually, could in sum reach a relevant amount; expressed metaphor-
ically, ‘Constant dripping wears away stone.’ Thus, by carrying out an analysis
repeatedly instead of jointly, errors of interpretation from the content point of view
could occur in the other direction, too: relevant effects could remain undiscovered.

Master
Doctor

Example 13.2 – continued
If the given abilities are in fact largely independent from each other, and the
means do not differ with respect to the categories of social status in a relevant
and significant way, then one may argue for each subtest as follows: according
to experience, such a minimal difference does not bring along problems in the
(subsequent) school career. If, however, those minimal differences accumulate,
massive problems regarding school and development are to be faced.

Master
Doctor

To illustrate this, we look at the illustration in Figure 13.5. This shows the bivariate
normally distributed random variables y1 and y2. With respect to the factor of
interest A with a = 3 factor levels or with respect to a = 3 samples of the
corresponding populations, the result is a bivariate normal distribution as shown
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Figure 13.5 Horizontal as well as upright projection from two directions of a bivariate
normal distribution including the projection on an optimally discriminating plane.

in Figure 11.3. Illustrated in a horizontal projection, the result is the corresponding
density appearing like contour lines on a graphical map: the points along the line
(here in an elliptical shape) have the same density. This density is greater/higher
the closer the points (that is, the pairs of outcomes (y1v, y2v)) lie to the pair of means
(ȳ1, ȳ2) or, that is to say, to the bivariate mean point. In the horizontal projection
of Figure 13.5, the density of any bivariate normal distribution is, however, only
to be identified indirectly, through the concentration of individual points (around
the mean point). This is because the vertical projection lines are missing. In this
chart both upright projections are included; that is the density distribution for y1

and y2 – for a multidimensional normally distributed random variable the density
for each variable is a univariate normal distribution. Analogous to the (one-way)
analysis of variance and analogous to the analysis of covariance, for testing a
hypothesis the following assumptions need to be met. If at all, only the means of
the samples (populations) differ, but not their variances and covariances: N(μ1i,
μ2i; σ 2

y1i
, σ 2

y2i
;ρy1i y2i ) = N(μ1i, μ2i; σ 2

y1
, σ 2

y2
; ρy1 y2 ) for every i. Just for purposes

of vivid illustration, Figure 13.5 gives a chart with slightly different variances.
Finally, Figure 13.5 shows also a sheer plan.

Figure 13.5 shows that the univariate analysis using a one-way analysis of
variance with respect to the character y1 would hardly reveal a significant differ-
ence, and with respect to the character y2 significance could only be reached when
an appropriately high sample size is given. However, by applying the analysis of
variance on the data that are projected according to the line (in space) which goes
at a right angle to the three regression lines, then clear differences between the
means of the three populations (samples) are given.

Establishing such a line statistically in the space is the goal of (linear) dis-
criminant analysis. More clearly expressed, discriminant analysis tries to find
the line in space (or the projected line), g, within the multidimensional space,
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that discriminates best between the populations of interest. This analysis will be
discussed in detail in the next section.

The multivariate analysis of variance on the other hand only investigates if
there are any differences in the localization of the investigated population.

In the case of a one-way multivariate analysis of variance, we use a vector
of random variables �y with the vector of means �μ. For an easier notation we use
the transposed vector �yT = (y1, y2, . . . , ym) and �μT = (μ1, μ2, . . . , μm). The
variance–covariance matrix is a generalization of Formula (13.5) as follows:

Σ =

⎛
⎜⎜⎜⎜⎝

σ 2
y1

σy1 y2 . . . σy1 ym

σy2 y1 σ 2
y2

. . . σy2 ym

...
... . . .

...
σym y1 σym y2 . . . σ 2

ym

⎞
⎟⎟⎟⎟⎠

(13.6)

The structure of the data is analogous to that in Table 13.1. The only difference is
that, instead of two characters, m characters are observed.

As already indicated, for hypothesis testing not only the non-testable presump-
tion of a multidimensional or, in other words, multivariate normal distribution has
to be met, but also the homogeneity of the variance–covariance matrix. That is,
the matrices Σ (i) for each factor level i have to be the same: Σ (i) = Σ . As con-
cerns the vectors of means �μ(i) of each factor level, the null hypothesis thus is H0:
�μ(i) = �μ(l) = �μ, for every i and l, i �= l. The alternative hypothesis is HA: �μ(i) �=
�μ(l) for at least one i �= l. Therefore, the means of at least one character differ with
respect to at least two factor levels (samples).

We give, just exceptionally (because calculation by hand is practically impos-
sible), the formulas of the test statistics. Fundamentally, one can imagine that,
analogous to the univariate analysis of variance, this is about the comparison of
certain ‘deviations’ (or their squares). Again, particularly the deviations of the
sample means and the deviations within each sample are of interest. Computer
programs then calculate the respective test statistics, which are approximately dis-
tributed in a known way. This is true, for example, for Wilks’ Λ and for Hotelling’s
T2; the latter test statistic has already been mentioned in other Chapters.

Doctor First of all, the difference vector �d has to be calculated for �y and �μ, and �d(i) for
�y and �μ(i), respectively. Squaring the elements of those vectors, the elements of
them equal the squared differences as needed for the variances (sum of squares).

However, the covariances are of interest as well. This is why �dT ·�d and �dT
(i)·�d(i),

respectively, were calculated, as a consequence of which there are two types of
matrices. As both these matrices are defined for the vector of random variables,
both exist for every research unit v. We of course can sum up all these research
unit matrices – with every type taken separately. As a result there are two matrices
T and R; the former for ‘total’, the latter for ‘residual’. They are the matrices of
the sums of squares; apart from the missing division by their respective degrees
of freedom, these matrices are variance–covariance matrices. Analogous to the
univariate case, it can be shown that T = A + R, with A being the corresponding
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matrix of the squared deviations (sums of squares) of the vector of sample means
and the vector �μ. By determining the determinants for T and R, |T| and |R| (that
is, scalars), some test statistics can be derived. Most notable is Wilks’ test statistic
Λ; without specifying the degrees of freedom here, it is an approximately F- and
χ2-distributed test statistic, respectively:

Λ = |R|
|T| (13.7)

As can be shown, Λ is in a functional relationship with η2, that is the (estimated)
effect size of the analysis of variance: Λ = 1 − η̂2. Λ thus describes the percentage
of variance (and covariance) of all outcomes that is not caused by the variance
(and covariance) of the outcomes as concerns the different samples.

Hotelling’s test statistic T2 also is, in the general case, a possibility. We
already suggested this test statistic for the special case of only a single character
(and more than two samples) in Section 10.4.1.1, and for the special case of at
least two characters (observed in only a single sample). Most of the time both
test statistics reveal almost exactly the same p-values. They are also relatively
robust against deviations from the multivariate normal distribution of characters.
A practical presupposition for both test statistics is that, for each sample, ni >

m + 1 is valid.
Hotelling’s test statistic T2 is attractive for the case of just two samples,

because of the fact that planning a study can be done with it. For this, a vector
�δ has to be defined with the minimum difference for each character that is of
relevance; that is, �δT = (δ1, δ2, . . . , δm).

Planning a study according to a multivariate analysis of variance happens either with regard
to a certain character that is in some way ‘most important’, or the researcher calculates the
necessary sample size for each character on its own – given certain precision requirements –
and then chooses the largest one. However, neither type-I nor type-II risk will hold with regard
to the research as a whole (i.e. study-wise risk).

Doctor Though strongly recommended, but not derived in detail here using formulas, a
relatively new test for the case of just two samples is the principal component
test, going back to Läuter (1996) and Läuter, Glimm, & Kropf (1998). It is
based on a certain transformation of the vector �y for each sample; that is �y(i)

into scalars. Under the null hypothesis, these scalars are distributed in such a
way that they can be handled like normally distributed values. For these just
the t- and the Welch test, respectively, are applied. This approach entails the
advantage that – analogous to the univariate case concerning the Welch test –
non-homogeneous variance–covariance matrices can also be covered. This in
turn means that the (for many reasons) problematic testing of homogeneity of
the variance–covariance matrix can be omitted. Apart from that, this test has the
advantage, over the test statistics of Wilks and Hotelling, that one-sided testing
is also possible. Furthermore, in the case of a relatively small sample size with
respect to the number of characters m, the statistical power is higher. Also, it can
still be used even if the number of characters m is larger than the sample size n.
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Doctor Example 13.3 Numeric example for the principal component test without relation
to any content

The following data were given:

Sample 1 y11v 7 1 2 9 2 4 4 3 4
y21v 3 5 5 7 8 2 6 7 6

Sample 2 y12v 7 6 5 4 3 4 5 5 —
y22v 7 7 5 6 5 5 6 7 —

The null hypothesis, which is to be tested, is

H0 :

(
μ11

μ12

)
=

(
μ21

μ22

)

That is, the means of the two characters, y1 and y2, are equal in both populations.
The alternative hypothesis is two-tailed,

HA :

(
μ11

μ12

)
�=

(
μ21

μ22

)

The type-I risk is chosen to be α = 0.05.

In R, we create a new function by typing

> pc.t.test <- function(Y, group) {
+ Y <- t(scale(Y, center = TRUE, scale = TRUE))
+ d <- svd(Y)$u[, 1]
+ z <- crossprod(Y, d)
+ result <- t.test(z[group == 1], z[group == 0], var.equal = TRUE)
+ return(list(statistic = result$statistic,
+ p.value = result$p.value))
+ }

i.e. we apply the function function(), using the matrix Y (see below) and a vector
determining which observed values belong to which sample (group) as arguments. The
sequence of commands in the curly brackets determines the application flow of the function
and will not be discussed. Now, we create the matrix from the above table, thus typing

> y11 <- c(7, 1, 2, 9, 2, 4, 4, 3, 4)
> y21 <- c(3, 5, 5, 7, 8, 2, 6, 7, 6)
> y12 <- c(7, 6, 5, 4, 3, 4, 5, 5)
> y22 <- c(7, 7, 5, 6, 5, 5, 6, 7)
> pc.dat <- cbind(c(y11, y12), c(y21, y22))
> group <- c(rep(0, length = length(y11)),
+ rep(1, length = length(y12)))

i.e. we use the function c() to define the separate observed values as vectors and assign
them to one object each; using the functioncbind(), we create a matrix in which the lines
stand for the persons and the columns for the different characters. We assign the resulting
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matrix to the object pc.dat. Finally, we use the function rep() in order to create a
vector with the values 0 and accordingly 1, including the respective number (length).
We assign all this to the object group. Now, we conduct the analysis by typing

> pc.t.test(pc.dat, group = group)

i.e. we apply the function pc.t.test() and set the matrix pc.dat as the first and
group as the second argument.

As a result, we get:

$statistic
t

-1.118597

$p.value
[1] 0.2809066

Because of the p-value of 0.2809 the result is not significant; hence the null
hypothesis is to be accepted.

Master
Doctor

When using multivariate analysis of variance and the test statistics of both Wilks
and Hotelling, the homogeneity of the variance–covariance matrices is an explicit
presupposition that has to be met. Again, the Box-M test comes into question.
Indeed, the generalized Levene test (see Section 9.2.2) offered by SPSS is much
more robust against any violation of the multivariate normal distribution, but does
not test the essential assumption of homogeneity of the covariances.

Master
Doctor

Example 13.2 – continued This example was about whether the test scores (at
the first test date) in the subtests of the intelligence test battery in Example 1.1
depend on the social status of those tested. We attempt to answer this question in
the first instance just for the children with German as a native language, because
we suppose the character native language of the child to be a noise factor. The
null hypothesis H0: �μ(i) = �μ(l) = �μ, for all categories of social status i and l, i �=
l (HA: �μ(i) �= �μ(l)) is to be tested with a, say, type-I risk of α = 0.05. We test the
null hypothesis H0: Σ (i) = Σ for every i at this level of significance, too.

In R, we use the database Example_1.1.g (see Example 8.3), which contains exclu-
sively children with German as a native language. After having enabled access to the
database by applying the function attach() (see Chapter 1), we type

> y <- cbind(sub1_t1, sub3_t1, sub4_t1, sub5_t1, sub7_t1)
> boxM.test(y, group = social_status)

i.e. we apply the function cbind() to all subtests of the intelligence test battery (from the
first test date) and assign the resulting matrix to the object y, which we use as an argument
in the function boxM.test(); with group = social_status, we determine the
factor social status.

As a result, we get the error prompt:

Error in solve.default(x) :
system is computationally singular
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Thus, we have to take a look at the frequency distribution of the factor social status; in
order to do this, we type

> table(social_status)

i.e. we set the character social_status as an argument in the function table().
As a result, we get:

social_status
upper classes middle classes

10 13
lower middle class upper lower class

10 7
lower classes single mother in household

2 8

Now, it becomes obvious that only two children stem from the ‘lower classes’; such a
sparsely occupied factor level is apparently not analyzable. Thus, we exclude this category
of social status from further analysis. In order to do this, we type

> soc.ex <- factor(as.character(social_status),
+ exclude = "lower classes")

i.e. we use the function factor(), setting the character social_status as the
first argument, wherein we transform this character into a character string by means
of the function as.character(), thus explicitly defining the character values as non-
quantitative; with the second argumentexclude, we exclude the category ‘lower classes’.
We assign the new character to the object soc.ex.

Now, we once more conduct the Box-M test by typing

> boxM.test(y, group = soc.ex)

i.e. we use the matrix y as the first argument in the function boxM.test(), and with the
second argument group = soc.ex, we specify that the former character be analyzed
with regards to soc.ex.

The results are:

df1 df2 Box M F ProbF
60 2660 79.05417 0.94129 0.60465

In SPSS, following the steps described in Example 5.4 (Data – Select Cases...), we select
the children with German as a native language by choosing the option If condition is satisfied
in the window in Figure 5.14 and clicking the button If... in order to enter native_language = 1
in the resulting window (see Figure 5.15). We confirm this with Continue and OK. Using
the sequence of commands (Analyze – General Linear Model – Multivariate...) analogous to
Example 13.1, we open the window in Figure 13.3. There we drag and drop the characters
Everyday Knowledge, 1st test date; Applied Computing, 1st test date; Social and Material
Sequencing, 1st test date; Immediately Reproducing – numerical, 1st test date; and Coding
and Associating, 1st test date into the field Dependent Variables:. We drag and drop the
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character social_status into the field Fixed Factor(s): and, again analogous to Example 13.1,
click Options... and set a check mark at Homogeneity tests. By clicking Continue and OK,
we obtain the results. The Box-M test yields a p-value of 0.605.

Because of the non-significant result of the Box-M test (the p-value of 0.605
is higher than α = 0.05), application of multivariate analysis of variance is
warranted.

In R, we type

> manova.1 <- manova(y ˜ social_status)
> summary(manova.1, test = "Wilks")
> summary(manova.1, test = "Hotelling-Lawley")

i.e. we use the function manova(), submitting to it the request that the matrix y is to
be analyzed with regards to the factor social_status. We assign the results of this
analysis to the objectmanova.1. Finally, we submit the objectmanova.1 to the function
summary(); with test = "Wilks" and test = "Hotelling-Lawley", we
select Wilks’ Λ and, respectively, Hotelling’s T2.

As a result, we get (shortened output):

Df Wilks approx F num Df den Df Pr(>F)
social_status 5 0.3391 2.0288 25 150.10 0.005017
Residuals 44

Df Hotelling-Lawley approx F num Df den Df Pr(>F)
social_status 5 1.4283 2.1938 25 192 0.001583
Residuals 44

In SPSS, we have already conducted the respective calculation before anyway; if we
also wanted to determine the estimated magnitude of effect η2, we would, at the end,
retroactively (again) have to click Options... in the window in Figure 13.3 in order to set a
check mark at Estimates of effect size. We take Wilks’ Λ as well as Hotelling’s T2 from
Table 13.6.

Table 13.6 SPSS-output of the multivariate analysis of variance in Example 13.3
(shortened output)

Partial Eta
SquaredSig.Error dfHypothesis dfFValue

Wilks' Lambda

Hotelling's Trace

social_status

.222.002192.00025.0002.1941.428

.194.005150.09525.0002.029.339

EffectEffect

Multivariate Tests
c

c. Design: Intercept + social_status

The null hypothesis has to be rejected; the social status significantly influences
the test scores in the given intelligence test battery.
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Once the Box-M test is significant, the researcher only has the option of identifying the
responsible characters (and/or samples) by means of descriptive statistics. These one(s) are
to be excluded from further analysis. Calculating the correlation matrix (see Section 12.1.4)
for each sample is highly recommended. In this calculation, one looks for pairs of characters
that clearly differ in their Pearson’s correlation coefficients in at least two samples. At least
one of the two characters then has to be excluded. Bear in mind that in the case of a repeated
use of the Box-M test with an ultimately non-significant result, no statement about the type-II
risk can be made at all.

For the exact determination of between which levels of a (fixed) factor there are differences
in means, one can use the same post hoc tests as in the case of a significant result for a
multivariate analysis of variance, as mentioned in Section 10.4.1.2. However, bear in mind
that the type-II risk can only be determined as a comparison-wise one, but not as a study-
wise one. Furthermore, in the multivariate case even this can again only be done by multiple
processing; that is for each character. Thus, strictly speaking, the type-I risk is incalculable.
At any rate, an interpretation must not be made with respect to the nominal type-I risk as
applied to each pair of samples and each character as well.

Doctor One could also use Hotelling’s test statistic T2 as described in Section 10.4.1.1
as a multivariate post hoc test, now according to its original intention; that is
with respect to more than a single character. To do so, the researcher has to
compare all pairs of factor levels. Although he/she would simultaneously compare
all characters, one would have, unlike with the Newman–Keuls procedure, a
comparison-wise type-I risk – for this the study-wise type-I risk becomes quite
large for more than four factor levels.

Master
Doctor

Example 13.2 – continued
We also want to establish, for each character, to exactly what extent the means
differ with respect to the factor levels of the factor social status.

In R, we have already enabled access to the database Example_1.1.g by using the function
attach(); we load the package agricolae using the function library(), which
we already installed in Example 10.7. We type

> aov.u1 <- aov(sub1_t1 ˜ social_status)
> aov.u3 <- aov(sub3_t1 ˜ social_status)
> aov.u4 <- aov(sub4_t1 ˜ social_status)
> aov.u5 <- aov(sub5_t1 ˜ social_status)
> aov.u7 <- aov(sub7_t1 ˜ social_status)

> SNK.test(aov.u1, trt = "social_status")
> SNK.test(aov.u3, trt = "social_status")
> SNK.test(aov.u4, trt = "social_status")
> SNK.test(aov.u5, trt = "social_status")
> SNK.test(aov.u7, trt = "social_status")
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i.e. we conduct an analysis of variance for each character (all subtests from the first test
date) by using the function aov(), assigning the results to one object each, which we in
turn use as arguments in the functionSNK.test(); withtrt = "social_status",
we select the factor of interest.

As a result, we obtain groupings for the two traits Immediately Reproducing – numer-
ical, 1st test date and Coding and Associating, 1st test date (shortened output):

Study:

Student Newman Keuls Test
for sub5_t1

Different value for each comparison
Means with the same letter are not significantly different.

Groups, Treatments and means
a upper classes 58
ab middle classes 52.07692
ab single mother in household 49.75
ab lower middle class 46.9
b lower classes 43.5
b upper lower class 42

Study:

Student Newman Keuls Test
for sub7_t1

Different value for each comparison
Means with the same letter are not significantly different.
Groups, Treatments and means
a upper classes 63.6
ab middle classes 57.30769
ab lower middle class 52.4
ab single mother in household 51.25
b upper lower class 49.14286
c lower classes 34.5

Since groupings are only dispensed for two of the characters, this means that the other
characters show no significant differences in their means.

In SPSS, we click the button Post Hoc... in the window in Figure 13.3, drag and drop
social_status into the field Post Hoc Tests for: in the resulting window (not shown here), and
mark S-N-K. By clicking Continue and OK, we get to the results; however, groupings are only
displayed for the characters Immediately Reproducing – numerical, 1st test date and Coding
and Associating, 1st test date (see Table 13.7 and Table 13.8).
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Table 13.7 SPSS-output of the Newman–Keuls procedure in Example 13.2 (shortened
output)

N 21

Subset

upper lower class

lower classes

lower middle class

single mother in household

middle classes

upper classes

Sig. .112.240

58.0010

52.0852.0813

49.7549.758

46.9046.9010

43.502

42.007

social status (after Kleining & Moore
according to occupation of
father/alternatively of the single mother)

social status (after Kleining & Moore
according to occupation of
father/alternatively of the single mother)

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) = 66.405.

a. Uses Harmonic Mean Sample Size = 5.743.
b. Alpha = .05.

Student-Newman-Keuls
a ,b

Table 13.8 SPSS-output of the Newman–Keuls procedure in Example 13.2
(shortened output)

N 321

Subset

lower classes

upper lower class

single mother in household

lower middle class

middle classes

upper classes

Sig. .084.3811.000

63.6010

57.3157.3113

52.4052.4010

51.2551.258

49.147

34.502

social status (after Kleining & Moore
according to occupation of
father/alternatively of the single mother)

social status (after Kleining & Moore
according to occupation of
father/alternatively of the single mother)

Coding and Associating, 1st test date (T-Scores)

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) = 73.419.

a. Uses Harmonic Mean Sample Size = 5.743.
b. Alpha = .05.

Student-Newman-Keuls
a ,b
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In contrast to Example 10.7, there are no differences in the results of R and SPSS.
The Newman–Keuls procedure thus did not make a grouping with respect to

the characters Everyday Knowledge, Applied Computing, and Social and Material
Sequencing (all at the first test date). However, it made a grouping with respect to
the characters Immediate Reproducing – numerical and Coding and Associating
(at the first test date). The mean test score in the subtest Immediate Reproducing –
numerical is thus (study-wise but per character with a type-I risk of 5%) lower in
the ‘upper lower class’ and in the ‘lower classes’ than it is in the ‘upper classes’.
The same result occurs concerning the mean of the test scores of the subtest
Coding and Associating, but here the ‘lower classes’ additionally have a lower
mean than the ‘upper lower class’.

Doctor The principal component test described above was generalized to the case of more
than two samples (populations). However, this generalization indirectly implies
the presumption of homogeneity of the variance–covariance matrix; actually there
is the even stricter presumption that all m characters can be substantially absorbed
in some common character (a so-called ‘factor’ according to the factor analysis;
see Section 15.1.2). Therefore, we do not deal with this rarely used method here.

Master
Doctor

So far, we have just dealt with the one-way multivariate analysis of variance
(sometimes extended with the element of an analysis of covariance). Of course,
multivariate analysis of variance can also be designed as a multi-way one. In doing
so, there are cross classifications as well as nested classifications. The procedure
of analyzing the data is exactly the same as used in Chapter 10.

Doctor Recently, so-called multilevel models (also called hierarchical or nested linear
models (HLM)) began to play an important role in psychology. At second glance,
however, we see that such models are just complex designs of a multi-way mul-
tivariate analysis of variance, mostly with nested classifications.

Doctor Example 13.4 Testing the standards of education
As part of some nationally established standards of education, the level of

performance should be ascertained for students in the eighth level of education
using appropriate tests. For example, the performance in English and Mathemat-
ics. From the population of all pupils in the federal territory, which was stratified
into schools with sizes N1, N2, . . . , Ns (see Section 7.2.1), a schools (factor A) are
drawn. Within each school there are then bi eighth-level classes (factor B), which
again are either randomly drawn or acquired by means of cluster sampling (again
see Section 7.2.1). From these classes nij students were tested using the tests y
and x. Once more, these students might be selected either randomly or using the
cluster sampling method. Finally, the sex of each student is also of interest (factor
C). As a matter of fact, this results in a three-way classification analogous to Table
10.22, with the factor A, school, the factor B that is nested in A, class, and the
cross classified factor C, sex. The resulting test scores thus are: yijkv and xijkv; i =
1, 2, . . . , a; j = 1, 2, . . . , bi; k = 1, 2 = c; v = 1, 2, . . . , nijk. The difference from
Table 10.22 – apart from the fact that more than one character is investigated – is
unequal sample sizes nijk and, additionally, that this is either about a classification
(A � B) × C or (A � B) × C : the factor A is certainly random; the factor C is
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certainly fixed. But the factor B is either random or fixed, depending on whether
a random sample of the eighth-level classes of each school was drawn or all
eighth-level classes of each school were taken into account.

Doctor Multilevel linear models in the classical sense have different extensions that
entail special feasibilities of application. Apart from the fact that, realistically,
more than one character is observed for each research unit (see Example 13.4),
there is also the option to use regression models for several characters within
every combination of factor levels; that is one or more characters are regressors
onto any criterion character as the regressand. One must then examine to what
extent the regression coefficients differ with respect to the various factor levels
or combinations of factor levels. Often the effect of numerous characters is then
of interest, which can be modeled as in the (linear) structural equation models
(see Section 15.2.2). In the context of using hierarchical linear models, it is often
of interest to what degree the outcomes within a certain factor level or a certain
combination of factor levels come close to each other; in other words, whether
they have a smaller variance than the investigated characters in total; that is, over
all the factor levels. For doing so, the intra-class correlation coefficient should be
used, which was presented in Section 11.3.4.

Concerning more complex HLM approaches, see specialist literature (e.g.
Gelman & Hill, 2006).

13.4 Discriminant analysis

The (linear) discriminant analysis is based on the (one-way) multivariate analysis of variance.
Given significant differences between the samples and factor levels, respectively, with respect
to the characters’ means, it attempts to put all the characters in an optimal relation with a
linear function so that the sample differences become as distinct as possible.

Master
Doctor

As already mentioned above, discriminant analysis, in addition to the multivari-
ate analysis of variance, is looking for the line in space (projected line), that
discriminates optimally between the investigated populations (see Figure 13.5).
The projection of all the points in the multidimensional space onto this line reveals
a linear combination of all coordinates for each point and can be represented in
the so called (linear) discriminant function:

Dv = d1 yv1 + · · · + dm yvm (13.8)

yv1, . . . , yvm are the m outcomes for the m characters of research unit v. In the case
of Figure 13.5, present are three samples (populations), but only m = 2 characters.
If there are a > 2 samples (and m ≥ 3 characters) then a – 1 different discriminant
functions result, which are projection lines orthogonal to one another. For this,
the result of a discriminant analysis can easily and clearly be interpreted if there
are only two samples.

The results of a discriminant analysis are the weights dq, q = 1, 2, . . . , m of
the discriminant function(s).
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There are two reasons for using the discriminant function beyond the
multivariate analysis of variance:

1. Assigning future research units, with unknown affiliation to the populations
in question, as accurately as possible to one of them – using their outcomes
in the m characters.

Master
Doctor

Example 13.5 Personnel recruitment using psychological tests
Because of the test scores in m psychological tests, a job applicant for a

specific profession should be – in terms of a prediction – either assigned to the
population of qualified candidates or to the population of unqualified candidates.

Master
Doctor

2. Determining the relative contribution (weight) to the discrimination of all
the characters.

Master
Doctor

Example 13.6 Reasons for the dissolution of life partnerships
Given that several characters, which relate to socio-economic, psycho-social,

and emotional aspects of a life partnership could be ascertained quantitatively, then
their (explanatory) contributions to the dissolution of a (long-term) life partnership
are of interest. For this, partners that come from existing as well as from (recently)
dissolved partnerships would have to be investigated/interviewed. A possible
result could be that the existence of children is of great importance for maintaining
the partnership, but ‘alienation’ (measured using appropriate psychological tests)
and ‘work-related diverging development’ is of great importance for dissolving.
Also, for example, family income and the grade of ‘sexual fulfillment in the
partnership’ (again measured using appropriate psychological tests) could carry
weight in certain directions.

Master
Doctor

In the second case, the analysis comes to an end with the establishment of the
discriminant function, whereby the weights can be tested for their significance.
That is, testing the null hypothesis for each character of whether it is relevant
or irrelevant for the discrimination of the samples. Basically, this problem can
then be solved analogously to the multiple linear regression (see Section 12.1.3),
but with a qualitative character being the regressand. In the first case most of the
time a classification analysis follows. The gathered information using this method
goes beyond the information that there are significant differences at all between
the investigated samples (factor levels); it also goes beyond the knowledge of the
optimal discriminant function. Using the classification analysis, the researcher
can get an impression of how accurate the (retrospective) predictions based on
the discriminative function are – in terms of scored ‘hits’.

The original method of classification analysis uses the discriminant function to
retrospectively assign each research unit v to one of the factor levels (populations).
That is, Dv is calculated on the basis of the unit’s outcomes, and an assignment
is made to the population which has the highest density function at the point Dv.
This is called the resubstitution method. It is not a conclusive method, because
high hit scores will be achieved trivially; essentially, the predictive quality of
the discriminant function is tested on the basis of just those research units that
were themselves exclusively the basis for the actual discriminant function. It is
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more appropriate to proceed similarly to a cross-validation (see Section 14.2.3 for
more details) as follows: only a part of the given data is included in the discriminant
analysis; the remaining part is used for testing the obtained discriminant function’s
predictive fitness. The first part of the data is then called the training set; the second
part is called the testing set.

Classification analysis hence compares the predicted group- or population
assignment to the actual realized group membership with a contingency table.
This leads to a percentage of ‘hits’, the explanatory power of which, however,
should not be over interpreted. Given a = 2 and an equal number of research units
per sample (factor level), even guessing (for example by tossing a coin) would
very likely produce a hit rate of about 50%. Then, only a hit rate of at least, say,
70% would be important from the content point of view.

In terms of content, because of institutional interests, the two types of possible
hits are often of different importance and usefulness. In Example 13.5, there is a
hit if the m psychological tests either correctly assign a candidate to the population
of ‘eligible’ ones or correctly assign a candidate to the population of ‘not eligible’
ones. No hit, but a failure is produced, if the candidate is erroneously assessed as
‘eligible’ or if the candidate is erroneously assessed as ‘not eligible’ – failures are
actually completely analogous to the two types of errors in hypothesis testing. In
the terminology of medicine and clinical psychology, we talk about specificity,
which concerns the probability of a negative diagnosis given an actual negative
state; and we talk about sensitivity, which concerns the probability of a positive
diagnosis given an actual positive state (see Table 13.9). The classification analysis
as a part of discriminant analysis, however, does not differentiate in this regard.

Table 13.9 Sensitivity and specificity of diagnoses

Test diagnosis

positive negative

Actual state positive Sensitivity
negative Specificity

Master Example 13.5 – continued
In particular, this is not about recruitment for a specific job, but about the selection
of candidates for a special schooling; for example the training required to be an
animal keeper. Assume that we have data from a total of 120 students of three term
cohorts who were all taken into schooling without regard to their test scores in the
psychological test battery used. Of these, 55 were ‘unsuccessful’, quitting within
the first year of schooling; the others can be called, by definition, ‘successful’. The
test battery might consist of m = 8 subtests. For discriminant analysis the first 80
students from the data set Example 13.4 (see Chapter 1 for its availability) should
be used as the training set; the other students as the testing set. For hypothesis
testing we decide on a type-I risk of α = 0.05; the null hypothesis asserts that the
two groups, the ‘successful’ ones on the one hand and the ‘unsuccessful’ ones on
the other hand, do not, according to the discriminant function, differ with regard
to the characters’ means.
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In R, we use the package MASS, which we already installed in Example 12.9, as well as
the package car, which we already installed in Example 9.6. First, we split the research
units into a training and a testing set by typing

> train.dat <- Example_13.5[1:80, ]
> test.dat <- Example_13.5[81:120, ]

i.e. we select the first 80 and the last 40 data lines from the database Example_13.5with
[1:80,] and [81:120,] respectively, and assign them to the objects train.dat
and, respectively, test.dat. In order to conduct the Box-M test, we use our function
from Example 13.1. Hence, we type

> with(boxM.test(cbind(sub1, sub2, sub3, sub4, sub5, sub6, sub7,
+ sub8),
+ aptitude), data = train.dat)

i.e. we use the function cbind() to define the given subtests (sub1 through sub8)
as a matrix, which we submit to the function boxM.test() as the first argument; the
second argument determines the character to be analyzed as ‘unsuccessful’ vs. ‘successful’
(aptitude). By using the function with(), we state the database to be used, namely
train.dat.

As a result, we get:

df1 df2 Box M F ProbF
36 1.882e+04 42.37530 1.04645 0.39279

The Box-M test yields a non-significant result; thus, the application of the discriminant
analysis is legitimate.

Now, we conduct the discriminant analysis; in order to do this, we type

> train.lda <- lda(aptitude ˜ sub1 + sub2 + sub3 + sub4 +
+ sub5 + sub6 + sub7 + sub8, data = train.dat)
> print(train.lda)

i.e. we use the function lda(), submitting to it the instruction that the character apti-
tude is to be analyzed with regards to the given subtests (sub1 through sub8); with
data = train.dat, we limit the analysis to the training set. We assign the results of
this analysis to the object train.lda, which we submit to the function print() as a
next step.

As a result, we get:

Call:
lda(aptitude ˜ sub1 + sub2 + sub3 + sub4 + sub5 + sub6 + sub7 +

sub8, data = train.dat)

Prior probabilities of groups:
unsuccessful successful

0.55 0.45



P1: OTA/XYZ P2: ABC
JWST094-c13 JWST094-Rasch September 26, 2011 8:59 Printer Name: Yet to Come

DISCRIMINANT ANALYSIS 431

Group means:
sub1 sub2 sub3 sub4 sub5 sub6

unsuccessful 98.93182 99.43182 100.2727 100.1364 99.54545 94.2500
successful 109.58333 102.47222 100.9444 100.1944 96.30556 108.1111

sub7 sub8
unsuccessful 100.7500 99.88636
successful 105.6667 99.22222

Coefficients of linear discriminants:
LD1

sub1 0.067451948
sub2 0.002632161
sub3 0.017513645
sub4 0.007593686
sub5 -0.001907858
sub6 0.086368202
sub7 0.040055103
sub8 0.010686129

Now, we type

> Anova(lm(cbind(sub1, sub2, sub3, sub4, sub5, sub6, sub7, sub8) ˜
+ aptitude, data = train.dat), test.statistic = "Wilks")

i.e. we apply the function lm(), requesting that the characters of all eight subtests –
defined as a matrix with the help of the function cbind() – are to be analyzed with
regards to the character aptitude; with test.statistic = "Wilks", we select
the respective test value. We submit the results of this analysis to the function Anova().

As a result, we get (shortened output):

Type II MANOVA Tests: Wilks test statistic
Df test stat approx F num Df den Df Pr(>F)

aptitude 1 0.46432 10.239 8 71 2.156e-09

We now create a contingency table in which the group membership that was predicted by
the discriminant function is opposed to the actual group membership; in order to do this,
we type

> train.cl <- predict(train.lda, newdata = train.dat)
> table(train.cl$class, train.dat$aptitude)

i.e. we apply the function predict() and set the object train.lda as the first ar-
gument; with newdata = train.dat, we classify the training sample by means
of the obtained discriminant function. We assign the results of this analysis to the
object train.cl. By applying the function table(), we create a two-dimensional
frequency table containing the predicted group membership, which we extract from the
object train.cl with $class, and the actual group membership according to the
character aptitude.
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This yields:

unsuccessful successful
unsuccessful 39 10
successful 5 26

wherein the lines refer to the predicted group membership and the columns to the actual
ones.

Next, we repeat the process, although now using the testing set; hence, we type

> test.cl <- predict(train.lda, newdata = test.dat)
> table(test.cl$class, test.dat$aptitude)

i.e. in the predict() function we merely replace the argument newdata =
train.dat by newdata = test.dat and, also, in the table() function, re-
place train.cl$class by test.cl$class, and train.dat$aptitude by
test.dat$aptitude.

As a result, we get:

unsuccessful successful
unsuccessful 10 9
successful 1 20

In SPSS, we first create a new character, sample, by typing the value 1 into the first 80
lines and the value 2 into the last 40 lines of an additional column in the Data view. In
order to confirm the given precondition of the variance–covariance matrix analogously to
the multivariate analysis of variance with the Box-M test, we now have to conduct the
discriminant analysis. This is accomplished with the steps

Analyze
Classify

Discriminant...

which open the window in Figure 13.6. We mark the character aptitude and drag and drop
it into the field Grouping Variable:, then click the button Define Range... in order to type 0
into the field Minimum and 1 into the field Maximum in the resulting window (not shown
here). With Continue, we get back to the previous window, where we drag and drop the
characters subtest 1 through subtest 8 into the field Independents:. Finally, we drag and drop
the character sample into the field Selection Variable: and click Value... in order to type 1 in
the resulting window (without figure here). With Continue, we get back to the window shown
in Figure 13.6. Now, we click Statistics... and set a check mark at Box’s M? in the resulting
window (without figure here). In case of the discriminant analysis yielding a significant
result, one could also have the means per group, the sample of the ‘unsuccessful’ and the
sample of the ‘successful’ students and per character, dispensed by setting a check mark at
Means; or, one could conduct a one-way analysis of variance per character by setting a check
mark at Univariate ANOVAs. However, we set a check mark at Unstandardized in order to
not only get the automatically dispensed standardized discriminant function coefficients but
also the unstandardized ones. With Continue, we get back to Figure 13.6. If we want to save
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the group membership as predicted by the discriminant function as a new character within
the data, we also have to click the button Save... In the resulting window (not shown here),
we set a check mark at Predicted group membership. With Continue, we get back again, now
clicking Classify... in order to open the window in Figure 13.7. There, we click Summary
table. With Continue and OK, we obtain the results displayed in Tables 13.10 through 13.14.

Figure 13.6 SPSS-window for computing the discriminant analysis.

Figure 13.7 SPSS-window for computing the classification analysis.
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Table 13.10 SPSS-output of the Box-M test for
checking the homogeneity of the variance–
covariance matrix in Example 13.5

Box's M

Approx.

df1

df2

Sig.

F

.393

18823.908

36

1.046

42.375

Test Results

Tests null hypothesis of
equal population
covariance matrices.

First of all, Table 13.10 shows the results of the Box-M test. Because it does not yield a
significant result, the application of the discriminant analysis is legitimate.

Table 13.11 SPSS-output of the significance check of the discriminant
function in Example 13.5

Sig.dfChi-square
Wilks'

Lambda

1 .000856.771.464

Test of Function(s)Test of Function(s)

Wilks' Lambda

Table 13.12 SPSS-output of the standardized
discriminant function coefficients in Example 13.5

1

Function

subtest 1

subtest 2

subtest 3

subtest 4

subtest 5

subtest 6

subtest 7

subtest 8 .118

.345

.846

-.019

.071

.168

.028

.691

Standardized Canonical
Discriminant Function

Coefficients
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Table 13.13 SPSS-output of the unstandardized discriminant
function coefficients in Example 13.5

1

Function

subtest 1

subtest 2

subtest 3

subtest 4

subtest 5

subtest 6

subtest 7

subtest 8

(Constant) -23.464

.011

.040

.086

-.002

.008

.018

.003

.067

Canonical Discriminant
Function Coefficients

Unstandardized
coefficients

Table 13.14 SPSS-output of the classification analysis for the training sample
(Cases Selected) and for the testing sample (Cases Not Selected) in Example 13.5
(shortened output)

successfulunsuccessful To tal

Predicted Group Membership

unsuccessful

successful

CountOriginal

unsuccessful

successful

CountOriginal

Cases Selected

Cases Not Selected

29218

1129

36288

44539

aptitudeaptitude

Classification Results
a ,b

a. 83.8% of selected original grouped cases correctly classified.
b. 75.0% of unselected original grouped cases correctly classified.

Most important, first of all we realize that Wilks’ test statistic Λ for the multi-
variate analysis of variance is significant. SPSS further shows (in Table 13.12)
the m = 8 standardized weights dq of the discriminant function. The absolute
largest contribution for the discrimination of the two groups in question is made
by the subtests 6 and 1 (in that order); in particular, the subtests 5, 2, and 4
hardly contribute to discrimination. In Table 13.13, SPSS also indicates those
weights, including a constant, by which the outcomes per person have to be
weighted and summed up in order to determine the retrospectively predicted group
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membership. In the case of a positive value, the student has to be assigned to the
group which has the larger measurement value; in our case that is 1, namely the
group of ‘successful’ students. In the case of a negative value, the student has to
be assigned to the other group. Using R, we certainly obtain the same (unstan-
dardized) weights, but not the aforementioned constant. Thus, it is not as easy
with R, as it is with the results of SPSS, to predict the group membership of future
research units.

The results of the classification analysis using R and SPSS do not entirely
coincide. We focus on the results of SPSS in the following. Table 13.14 shows
the comparison of the actual membership of one of the two groups, and the group
assignment that was (retrospectively) predicted by the discriminant function –
separately for the training set as well as for the testing set. As concerns the training
set, 39 plus 29 students were assigned correctly by the discriminant function; 5
plus 8 persons were mismatched; i.e., the hit rate is 83.8%. As concerns the testing
set, 9 plus 21 students were assigned correctly and 2 plus 8 were mismatched by
the discriminant function obtained independently from another sample; the hit
rate here is 75%. This result is not noticeably worse than the hit rate observed
in the training set applying the resubstitution method. As a matter of fact, the
resulting discriminant function is, for that reason, safeguarded against a merely
random fit of the data.

Doctor Regarding the maximum error of the predicted assignment to one of the groups,
even planning a study is possible; i.e., given some probabilities of erroneous
assignments, the necessary sample size can be calculated. We will not, how-
ever, discuss this here in detail (see Rasch, Herrendörfer, Bock, Victor, &
Guiard, 2008).

Master
Doctor

Regarding the question of how many of all given characters have to be taken
into the discriminant function, in practice the approach of stepwise discriminant
analysis is often used. In this, the discriminant analysis is repeated either using
the backward method, namely by successive removal of the character which
contributes the least to discrimination; or – considerably more illustrative – using
the forward method, where successive characters are included for the discriminant
function; that is, as long as the character in question still makes a (significant)
additional contribution to the discrimination. In this way the researcher obtains
a hierarchy of characters with respect to their discriminatory contribution. In the
first step of the forward method, the character is selected that has the maximum
F-value in the one-way analysis of variance. In the second step, it may occur
that not the character with the second largest F-value will be chosen, because
this one may correlate highly with the first one. If the (forward) stepwise method
breaks down, because no significant additional contribution to discrimination can
be obtained for any remaining character, the latter are, from the content point of
view, identified as irrelevant. When future research units need to be assigned to
the populations in question, these characters can be ignored.
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Doctor The described stepwise approach is not necessarily optimal. It would be better
to try all possible variants of combinations of characters to identify the best
combination of (as few as possible) characters with regard to the discrimination
between the groups. The method of choice would hence be full enumeration.

For m characters, this means that we have to determine the respective target
function (e.g. Wilks’ Λ) for all single-element subsets of characters (i.e. a single
character at any one time) as well as for all two-element subsets up to all (m–1)-
element subsets of characters, and finally for the total pool of characters. We
demonstrate full enumeration for the case of m = 4 characters 1, 2, 3, and 4.
We thus obtain: [{1},{2},{3},{4}]; [{1,2}]; [{1,3}]; [{1,4}]; [{2,3}]; [{2,4}];
[{3,4}]; [{1,2,3}]; [{1,2,4}]; [{1,3,4}]; [{2,3,4}]; [{1,2,3,4}]. Hence, there are
15 possible partitions. The number of possible combinations of characters grows
exponentially with n; in terms of m characters, it amounts to Em = 2m − 1. For
example, we have E5 = 31, E6 = 63, and E7 = 127. Full enumeration for
a large number of characters cannot be handled with the computing power of
conventional computers at the moment. However, it should be possible with up to
m = 50 characters.

Master Example 13.5 – continued
Aiming for maximum efficiency, we want to shorten the given test battery of

eight subtests as far as empirically justifiable. For this, we use the data of all 120
students and choose the forward method for a stepwise discriminant analysis. The
criterion for a further character to include into the discriminant function will be
Wilks’ test statistic Λ in each step.

In R, we use the package SDDA, which we load by applying the function library()
after installing it (see Chapter 1). Now, we type

> with(sdda(cbind(sub1, sub2, sub3, sub4, sub5, sub6, sub7, sub8),
+ aptitude), data = Example_13.5)

i.e. we use the function cbind() to define the observed values of all subtests (sub1
through sub8) as a matrix and submit it to the function sdda() as the first argument;
the second argument determines the character that is to be analyzed with ‘unsuccessful’
vs. ‘successful’ (aptitude). By applying the function with(), we specify the desired
database; namely Example_13.5.

In contrast to what was described above, this package selects the one character that
minimizes the error of predicted group memberships.

As a result, we get:

SDDA using dlda.
n = 2 samples and p = 8 variables.
Group levels are: successful unsuccessful
1 variables are chosen in total.
Variables are sub6
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In SPSS, we now choose the option Use stepwise method instead of Enter independents
together in the window in Figure 13.6. We click Method... and thus get to the window in
Figure 13.8, where we keep the original settings and, after clicking Continue and OK, obtain
the results displayed in Tables 13.15 through 13.17.

Figure 13.8 SPSS-window for computing a stepwise discriminant analysis.

Table 13.15 SPSS-output of the stepwise-selected characters of the discriminant
analysis in Example 13.5 (shortened output)
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Table 13.16 SPSS-output of Wilks’ test value Λ of the stepwise discriminant
analysis in Example 13.5

df3df2df1Lambda
Number of
Variables Sig.df2df1Statistic

Exact F

1

2

3 .000116.000334.30611813.5303

.000117.000247.83911812.5502

.000118.000149.23811811.7061

StepStep

Wilks' Lambda

Table 13.17 SPSS-output of the classification analysis at only three
stepwise-obtained characters in Example 13.5 (shortened output)

successfulunsuccessful To tal

Predicted Group Membership

unsuccessful

successful

CountOriginal

655015

551045

aptitudeaptitude

Classification Results
a

a. 79.2% of original grouped cases correctly classified.

The results of R and SPSS differ because of different selection criteria. Whereas
only one subtest is included in the analysis with the given package in R, there
are three subtests with the traditional procedure in SPSS; namely those given
in Table 13.15. It can be seen from Table 13.16 that the subtests 6, 1 and 7 are
successively included in the analysis until Wilks’ test statistic Λ finally results
with 0.53; this means all in all a significant discrimination. The estimated effect
size is η̂2 = 0.6856. Table 13.17 finally shows that, instead of the hit rate of 83.8%
in terms of using the whole test battery, still 79.2% hits can be achieved using
only three subtests.

Master
Doctor

It has already been pointed out in Section 13.2 that the presumption of a multi-
variate normal distribution is not testable (satisfactorily). Basically, as concerns
discriminant analysis, optimization of the discriminant function as a method of
(only) descriptive statistics is actually unaffected by this presumption – at least, if
the observations in all investigated populations have the same distribution. That
is to say, classification analysis would also in any case be interpretable given
a serious violation of the multivariate normal distribution; the significance test
possibly not.

Conversely, it could be concluded from Figure 13.5 that equal covariances
(parallel regression lines, tested using the Box-M test) are essential: if the regres-
sion lines per population happened to not be parallel, then the multidimensional
mean point would not be meaningful enough. Hence, once the Box-M test is
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significant, we have the following options. Either the researcher uses descriptive
statistics methods in order to identify those characters (and/or samples) respon-
sible for this significance and therefore excludes these from the further analysis
(see above in Section 13.3). Or he/she uses alternative statistical tests.

For this the logistic regression in its generalized form especially comes into
consideration – it has already been described in Section 11.3.6. Unlike in Formula
(11.16), we now have the special case of the regressand being a nominal-scaled
character. Since, as mentioned above, research questions for discriminant analysis
are, anyway, easiest to analyze and to interpret for only two groups (populations)
that have to be discriminated, we limit ourselves to the case of a = 2 in the
following. Thus, we can postulate the estimated probability for one of the two
group memberships as a logistic function as follows:

p̂v = 1

1 + x
= 1

1 + e−(d0+d1 yv1+···+dm yvm )
(13.9)

The analysis, as well as the asymptotically χ2-distributed test statistic, result
analogously to the (linear) discriminant analysis. A partition of the data into a
training and a testing set is likewise possible.

What is so special about the logistic regression as a discriminant analytic
method is the fact that the regressors can also be dichotomous characters.

Master
Doctor

Example 13.6 – continued
We now want to answer the given research question with the data set Example
13.6 (see Chapter 1 for its availability) using the logistic regression. The m = 3
characters alienation, work-related diverging development, and sexual fulfillment
in the partnership are all quantitative characters. The total sample size of women
from existing partnerships and from (recently) dissolved partnerships is n1 +
n2 = 50. The null hypothesis was: ‘The three investigated characters do not differ
between the two groups of existing and dissolved partnerships.’ We decide on a
type-I risk of α = 0.05.

In R, we enable access to the database Example_13.6 by using the function attach()
and type

> glm.1 <- glm(partnership ˜ 1, family = "binomial")
> glm.step <- step(glm.1, scope = ˜ p1 + p2 + p3,
+ direction = "forward")
> summary(glm.step)

i.e. we apply the function glm() and, as the first argument, specify that the character
‘dissolved’ vs. ‘existing’ (partnership) is to be analyzed stepwise (˜ 1) and, because
of family = "binomial", by means of the logistic regression analogous to Formula
(13.9). We assign the results of this analysis to the object glm.1, which we submit to the
function step() as the first argument in the next step. With the second argument, we
specify that the character partnership is to be analyzed stepwise and in accordance
with the ascending procedure (direction = "forward") with regards to the char-
acters alienation (p1), work-related diverging development (p2) and sexual fulfillment in
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the partnership (p3). We assign the results to the object glm.step, after which we apply
the function summary() to it in order summarize the results.

This yields (shortened output):

Start: AIC=63.09
partnership ˜ 1

Df Deviance AIC
+ p1 1 44.922 48.922
<none> 61.086 63.086
+ p2 1 60.971 64.971
+ p3 1 61.004 65.004

Step: AIC=48.92
partnership ˜ p1

Df Deviance AIC
+ p2 1 40.051 46.051
<none> 44.922 48.922
+ p3 1 44.871 50.871

Step: AIC=46.05
partnership ˜ p1 + p2

Df Deviance AIC
+ 40.051 46.051
+ p3 1 39.949 47.949

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -32.54884 10.47850 -3.106 0.00189
p1 0.19585 0.05975 3.278 0.00105
p2 0.10594 0.05222 2.029 0.04250

Now, we create a contingency table which opposes the group membership as predicted by
the logistic function to the actual group membership; hence, we type

> glm.fit <- fitted(glm.step)
> table(round(glm.fit), partnership)

i.e. we apply the function fitted() to the object glm.step; thus causing the predicted
probabilities to be dispensed. We assign these to the object glm.fit. Using the function
table(), we oppose the actual values of the character partnership to the predicted
ones, wherein the functionround() rounds up the values inglm.fit to whole numbers.

As a result, we get:

partnership
dissolved existing

0 32 6
1 3 9
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In SPSS, we select the sequence of commands

Analyze
Regression

Binary Logistic...

and proceed to apply the steps analogously to the ones already taken in Figure 13.9. There,
we also change to Forward: LR after clicking Method:. After clicking the button Save..., we
get to the window in Figure 13.10, where we set a check mark at Group membership. With
Continue and OK, we obtain the results displayed in the Tables 13.18 and 13.19.

Figure 13.9 SPSS-window for conducting the logistic regression.

Figure 13.10 SPSS-window for determining the group membership as computed by the
logistic regression.
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Table 13.18 SPSS-output of the regression coefficients for the stepwise-selected
characters in the logistic regression in Example 13.6

Exp(B)Sig.dfWaldS.E.B

p1

Constant

p1

p2

Constant

Step 1
a

Step 2
b

.000.00219.64910.478-32.549

1.112.04214.115.052.106

1.216.001110.745.060.196

.000.001110.4665.028-16.265

1.153.00219.855.045.142

Variables in the Equation

a. Variable(s) entered on step 1: p1.
b. Variable(s) entered on step 2: p2.

Table 13.19 SPSS-output of the classification analysis at two stepwise-obtained
characters in Example 13.6

existingdissolved
Percentage

Correct

partnership

Predicted

dissolved

existing

Overall Percentage

partnership

dissolved

existing

Overall Percentage

partnership

Step 1

Step 2

82.0

60.096

91.4332

76.0

46.778

88.6431

ObservedObserved

Classification Table
a

a. The cut value is .500

Unlike SPSS, where the best discriminating character is selected stepwise by an
approximately χ2-distributed test statistic (see more details in Section 14.2.2), R
selects characters using the smallest coefficient AIC (see more details in Section
14.2.2). Since the two criteria can be converted into each other, the results are
congruent.

It can be seen from Table 13.18 that firstly alienation and then work-related
diverging development were selected; not sexual fulfillment in the partnership.
From Table 13.18 it follows that the discrimination is significant. Thereby,
alienation makes the greatest contribution. It certainly can be recognized from
the equal sign of the regression coefficients of both selected characters that
the effect goes in the same direction, but it cannot be seen in which direction.
Finally, in Table 13.19 we find the result of the classification analysis according
to the resubstitution method, which shows that 82.0% would be assigned
correctly.
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For the case of the m characters of interest not all being quantitative, but at least one
of them being (multi-categorical) nominal or ordinal scaled, the logistic regression
also fails, except by introducing so-called dummy variables for the categories
of the qualitative characters, whereby, however, we lose the information of the
categories’ ranking, given an ordinal-scaled character. As a dummy variable,
we define a separate dichotomous variable for each category; namely with the
realizations ‘true’ and ‘not true’.

Master
Doctor

Example 13.7 Recoding a c-categorical character into c dummy variables
In Example 1.1, we can recode the multi-categorical character marital status

of the mother, with the c = 4 character values ‘never married’ (1), ‘married’
(2), ‘divorced’ (3), ‘widowed’ (4), into four (dichotomous) dummy variables
as follows: never married, with the measurement values 0 and 1 for ‘no, not
never married’ and ‘yes, never married’; married, with the measurement values
0 and 1 for ‘no, not married’ and ‘yes, married’; divorced, with the measurement
values 0 and 1 for ‘no, not divorced’ and ‘yes, divorced’; and widowed, with the
measurement values 0 and 1 for ‘no, not widowed’ and ‘yes, widowed’.

Master
Doctor

If there is (also) interest in multi-categorical nominal-scaled or ordinal-scaled
characters, Kubinger (1983) suggested a universally applicable non-parametric
discriminant analysis; there, the information of the categories’ ranking in the
case of an ordinal-scaled character is kept. However, this method is not included
in relevant computer programs, and thus will not be discussed here (but see
Section 14.2.3).

Summary
Any variants of one-way and multi-way analysis of variance can be applied as multivariate
analysis of variance if there are at least two characters. For this, the essential presumption
is homogeneity of the variance–covariance matrix, which is best tested by the Box-M test. If
some noise factors are suspected and if there are also observations of them for each research
unit, they can be taken into account using an analysis of covariance; their influence on one or
several characters and on one or several factors, respectively, can be eliminated.

The discriminant analysis is a method to determine the contribution of each investigated
character that is made by them (collectively) in order to discriminate between two or more
groups of research units and populations, respectively. Thereby, besides hypothesis testing
on the basis of multivariate analysis of variance, often a classification analysis is performed,
which establishes how many research units can be predicted correctly with regard to their
group affiliation, by those weights obtained with the discriminant function. Most often used in
discriminant analysis is a stepwise approach; for example, the characters are successively
included for the discriminant function until the discrimination cannot be improved any further.
For the case of nominal-scaled characters, the logistic regression should be used for the
same problem.
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Part VI

MODEL GENERATION AND
THEORY-GENERATING
PROCEDURES

Up to this point, basically, we have been discussing methods of statistics (for the purposes
of planning as well as for analyzing) that serve not only to answer a particular research
question (see Chapter 3), but are, in their application, based on a (specific psychological)
theory. Often enough, this ‘theory’ may be not much more than an everyday heuristic.1 It
would be heuristic, for example, to assume a relationship between learning efforts and learning
success. But, psychology as a science is often aimed at (newly) constructing an empirically
based theory for certain observable phenomena. For this purpose, special statistical methods
are suited.

Because of this, we will look at the general basics of such theory-generating approaches
in this Part. Then, we will show specific theory-generating and model-based methods, partic-
ularly distinguishing between methods of descriptive and inferential statistics.

1 Heuristic, from the Greek (εuρ́ıσκω, to find), is a method of cognition which is based on speculations and
assumptions, not on fixated algorithms.
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Model generation

In this chapter, we will first introduce the generalized linear model and explain the principle
of models with latent variables. Then, we will look at different methods of determining the
quality and excellence of a model. And last, we will show how statistical problems can be
solved by simulation studies when a solution is not possible by analytical means.

14.1 Theoretical basics of model generation

We have already generated quite a few statistical models. This was in connection with modeling
the interesting character as a (multivariate) normally distributed random variable. For many
statistical methods, however, the presumption of normal distribution has proved to be not that
essential; either they prove to be quite robust against violation of this presumption, or testing
it seemed unpractical or even impossible. This statistical model generation had, however, with
regards to content little or no consequences for psychology as a science.

This is different when generating statistical models in connection with the methods of
regression analysis or analysis of variance. For regression analysis with only a single regressor,
as well as for multiple regression analysis, we mostly model linear relationships between
two characters or between one character and a group of other characters; for the canonical
correlation coefficient, between two groups of characters. Such a determination of a model
is indeed influential to the finding which is gained through the empirical results, and thus
with regards to contents; that is to psychological theories. The same is true for the (linear)
discriminant analysis and, because the effects are linearly modeled, also for the logistic
regression in Section 13.4. All in all, these methods offer four ways of judging the quality
and excellence of a defined model. Either the linear model is not questioned at all; this is, for
example, true for the discriminant analysis if no classification analysis is applied on a testing
set (see Section 13.4); then, one merely tries to determine the (significant) contributions of
each character, so that they explain the group memberships in a linearly optimal manner. Or

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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as a second way, one estimates at least a determinant (the effect size in terms of the coefficient
of determination) to asses the generalized validity of the model-based results; but, then very
often results have been used for binding conclusions which explain the data rather poorly –
apart from the fact that a linear relationship is assumed unchecked. Then, there is a third
way; that is to compare a model, e.g. linear modeling, with an alternative model in order
to recognize a better or the best fit of the model to the data; we only demonstrated this
once, in Section 11.3.6 in Example 11.12, by comparing the linear regression model with the
quadratic and the logistic one. And finally, there is basically a fourth way, which is to actually
test the model in itself; this will be discussed in Section 15.2.2.1. This is concerned with the
(absolute) validity of the model and not only with the (relative) validity in relation to other,
competing models (and also not only in relation to how well the model is able to describe
the data).

With analysis of variance, we are basically dealing with the third technique, though
once again focused more on the definition of a statistical model. Again, this is about linear
models. This time, though, it is about opposing two hypotheses and thus about comparing two
‘models’. Depending on whether the hypothesis is accepted or rejected, this contributes to the
generation of psychological theories in one or the other direction. Here, interaction effects are
essential: most of the time, their existence is allowed but their non-existence is hypothesized
(modeled); if the statistical analysis leads to accepting the respective hypothesis, a model of
content has been established which states that the investigated factors are generating additive,
non-interdependent effects. In the analysis of covariance (which is based on the analysis of
variance), covariances are also modeled; depending on whether these exist or not, this again
contributes to the generation of theories within psychology.

As we can see from these examples, the general linear model is of crucial importance for
psychological scientific research. Linear statistical models gain additional meaning because,
for the case of nominally scaled characters, it is possible to use them through certain trans-
formations of statistics and parameters. This leads to the generalized linear model. In the
following, we give a more specific definition of these, as is done elsewhere, in order to clearly
distinguish the approach from those which also consider so-called latent variables. The latter
concern cases in which observable characters are not directly modeled as random variables,
but are ascribed to non-observable, hypothesized (modeled) characters.

14.1.1 Generalized linear model

Given the factors A, B, and C and, therefore, the factor combinations AiBjCk with nijk outcomes
from as many research units, and a frequency hijk, by which one of the two measurement values
of a certain (dichotomous) character has been observed; then, for the relative frequency

fijk = hijk

nijk

the presumptions for linear models are violated. Applying (three-way) analysis of variance is
not justified. In this case, the generalized linear model according to McCullagh and Nelder
(1989) may serve (see there for more extensive information). Basically, it is a matter of
transformation the parameters of the distribution as well as of the given measurement values
and observed frequencies of them, respectively, with a link function. With this, one can use
procedures that are designed for normally distributed variables for discrete distributions, too.
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Doctor For a binomial distributed character (see Formula (6.4)), for example, the link
function concerning the (unknown) parameter p looks like:

η = ln
p

1 − p

This link function is called the logit transformation. This, in turn, means for p as
a function of η:

p = eη

1 + eη

– the logistic function (see also the logistic regression of Formula (11.16) or of
Formula (13.9)). In order to avoid numerical problems associated with observed
frequencies of zero or n, there is an adjusted version of this link function,

z = ln
y + 1

2

1 − y + 1

2

With data transformed like this, one proceeds as described in the previous chapters;
especially as in the one about the (linear) models as analyses of variance.

Doctor Example 14.1 The influence of noise and exhaustion on attention efforts
An experiment of work psychology applies a test for signal detection (see

Example 4.3) for assessing how far noise and exhaustion are influential on atten-
tion efforts. A strong attention effort with respect to signal detection is especially
crucial for officers for control monitoring. It is especially of interest whether
there are interaction effects between noise and exhaustion. There are three levels
of factor A, noise (‘40db’, ‘60db’, ‘80db’), and two levels of factor B, exhaustion
(‘first hour of work’, ‘eighth hour of work’).

If the resulting test scores of the test for signal detection were to be modeled
as a normally distributed random variable, the analysis could be planned and
processed as in Chapter 10. However, now we deal with a character which follows
a Poisson distribution: within half an hour, a very large number of different on-
screen patterns of configurations of points – which change every five seconds –
is to be judged on whether the stimulus configuration of a ‘small square built
up by four points’ pops up; which happens, unsystematically, about 100 times.
Omissions (y), which happen on average about three to five times, are being
counted.

The Poisson distribution of a random variable y has the mean/expectation
value μ and the frequency function

p(y) = μy · e−μ

y!
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For this data, we use the link function z = ln(y + 1/2), and for the parameter
η = ln μ.

Suppose there are, for nij = n = 2 subjects per factor-level combinations, the
following absolute frequencies:

Levels of the factor noise
40 db 60 db 80 db

Levels of the factor exhaustion First hour of work 3 8 12
4 9 11

Eighth hour of work 6 7 16
5 6 20

In R, we first create a vector for the data of the character omissions; thus, we type

> omiss <- c(3, 4, 8, 9, 12, 11, 6, 5, 7, 6, 16, 20)

i.e. we apply the function c() to combine the observed values into a vector, which we
assign to the object omiss. Then, we transform these values by typing

> z <- log(omiss + 0.5)

i.e. we use the function log(), which calculates the logarithms of omiss + 0.5, and
assign the result to the object z. Now, we create a new data set by typing

> Example_14.1 <- data.frame(exhau = gl(2, k = 6, length = 12),
+ noise = gl(3, k = 2, length = 12),
+ z = z)

i.e. we create two factors by using the function gl(), namely the factor exhaustion
(exhau), with 2 levels and k = 6 observed values each and so 12 (length = 12)
values in total on the one hand, and the factor noise with 3 levels and k = 2 observed
values each on the other hand. We submit both factors and the transformed values in the
object z as arguments to the function data.frame(). We assign the newly created data
set to the object Example_14.1. Using this data set, we can conduct a two-way analysis
of variance in accordance to Example 10.12.

In SPSS, we open a new data sheet (File – New – Data) and type in the values for the
characters exhaustion (exhau), noise (noise), and omissions (omiss) column by column.
Then, we create the link function per yijv by following the steps described in Example 5.3
(Transform – Compute Variable...) and input the new variable z as Target Variable: in Figure
5.9. Next, we select Arithmetic from the panel Function group:, as a consequence of which a
list appears in Functions and Special Variables: from which we select Ln. Hence, a text box
is opened on the left, above which one can find an upwards arrow, which is to be clicked. By
doing so, the line LN(?) appears, beneath Numeric Expression. We replace the question mark
accordingly with omiss + 1/2. By clicking OK, the data sheet will be complemented with the
variable z.
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With the thusly obtained values, we are able to conduct a two-way analysis of variance
analogously to Example 10.13.

Because the given data constitute a very small sample, which is a rather unrealistic
case, we will not perform the calculation.

Universality of the generalized linear model comes from the fact that the presumption of
normally distributed error terms with equal variances, given for the traditional linear models,
is not necessary.

Doctor In the Poisson distribution, for example, the mean equals the variance; thus, the
error terms are not distributed with equal variance.

Master
Doctor

Incidentally, the logistic regression in Formula (13.9) is a special case of the
generalized linear model.

14.1.2 Model with latent variables

With reference to the previously described methods, a simple description of the concept of
latent variables can be given as follows. Imagine the problem of partial correlation. Instead
of, as illustrated in Section 12.1.1, knowing one or more noise factors, for example z, and
having sampled data accordingly for each research unit as well, we now just hypothesize
variables: thus, one models certain dependencies between the observed (manifest) and the
non-observable (latent) variables. In this, the effect of those dependencies is unknown most
of the time. Sometimes, these dependencies are even considered to be causally directed.

Master
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Example 14.2 The dependency of solving item x as well as item y of an intelli-
gence test on the testees’ degree of ability

Most of the time, the items of an intelligence (sub-) test are constructed so that
each of them can be solved completely independently from one another. Thus,
they do not build on each other. A testee may solve or not solve the task x: ‘father :
mother = son : ?’ (? = ‘daughter’), independent from whether he/she previously
solved the task y: ‘right : left = up : ?’ (? = ‘down’); the situation would be
different for the items i: ‘father : mother = son : X’ and the item l: ‘X : niece = ? :
nephew’, because the solution of item i (‘X = daughter’) is necessary to get to
the solution of item l (? = ‘son’). Now, given some testees, if one calculates
the φ-coefficient (see Section 11.3.5) with respect to correct and wrong answers
between the items x and y, there would generally be found a rather high resulting
value, despite the independence of the two items (characters). The reason is model
based; that is, the event or measurement value ‘solved’, respectively, depends for
both items on a modeled ability parameter (for example ξ ), which is different for
every testee. Thus, the two random variables x and y, for which outcomes are
given, are in some modeled association with the non-observable latent random
variable ξ . Then, the methodological challenge lies in ascertaining the values of
ξ based on the knowledge of the data for x and y; or to ascertain the percentage
of explained variance of x and y through ξ .
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14.2 Methods for determining the quality and excellence
of a model

Within the sections on regression analysis, we first realized that, although a certain model
can be used on observed data and that it is possible to get results from it, the model may
be improper (see Figure 11.13 of Example 11.6, wherein a linear regression is ascertained,
but the scatter plot of the data points covers the circumference of a circle rather than a
straight line). We stipulated, hence, that for the linear regression as a quite specific model,
one should determine the extent of model fit before using the results – i.e. before using the
regression function to predict (future) values of the character of interest. This was managed
by (Pearson’s) correlation coefficient and the coefficient of determination, respectively; thus,
this is the second approach for determining the quality and excellence of a model described in
Section 14.1. In particular, using the approach described in Section 11.4 as well, where the idea
is to test the hypothesis of whether (Pearson’s) correlation coefficient (and the coefficient of
determination, respectively) fall in the population below a certain cut-off value, the researcher
can test a model’s fit according to his/her own conceptualized criterion. Basically, it is about
the decision of whether or not the model fits the data in a sufficient way. For that approach,
we have already offered all needed equipment in detail. This especially concerns planning a
study and its analysis, in which the effect size is some coefficient of determination.

The concept of examining whether the empirically obtained data sufficiently conform to
the respective model is directly realized by so-called goodness of fit tests.

14.2.1 Goodness of fit tests

Basically, these can be characterized as tests which compare the frequencies that would be
hypothetically expected by a certain model with the frequencies we actually observed, by
testing the resulting differences as to whether they are significant or not.
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This almost always leads to some variation of the χ2-test from Formula (9.3).
In practice, this is about Formula (8.11) most of the time, which we introduced
in order to test the parameters pj of a multi-categorical, nominal-scaled char-
acter, which we modeled with a hypothetical distribution (for example that the
probabilities of all categories are equal to each other), for their fit to the data.

Herein, it is not important whether the interesting character is actually nominal
scaled or even interval-scaled after all; in the latter case, the measurement values
would have to be merged into categories within fixed intervals.

Master
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Example 14.3 Numeric example without relation to any content
By means of a given sample and concerning a certain character y, we want

to test the null hypothesis that the corresponding modeled random variable y is
normally distributed in the population. For illustration, we use the data from Ex-
ample 1.1 and examine the character Everyday Knowledge, 1st test date; because
of information already indicated on this character, the null hypothesis is substan-
tiated as H0: ‘y is distributed as N(μ = 50, σ 2 = 100)’. But, it would be just as
possible to use H0: ‘y is distributed as N(μ̂ = ȳ, σ̂ 2 = s2)’. We decide to use the
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second variant, due to its higher relevance to praxis. The alternative hypothesis
is given, consequentially. We will use the χ2-test in accordance with Formula
(8.11); the type-I risk is α = 0.01.

In R, we activate the data set Example_1.1 (see Chapter 1) by using the function at-
tach(), and ascertain the deciles by typing

> decile <- quantile(sub1_t1, seq(0.1, to = 0.9, by = 0.1),
+ type = 6)
> print(decile)

i.e. we submit the character Everyday knowledge, 1st test date (sub1_t1) as the first
argument to the function quantile(); as the second argument we use a numerical series
from 0.1 to 0.9 incremented by 0.1, which is generated with the function seq(), and
as a third argument we select, with type = 6, the same procedure as in SPSS. We
assign the result to the object decile and set it as an argument in the function print().

As a result, we get:

10% 20% 30% 40% 50% 60% 70% 80% 90%
37.0 44.0 48.6 50.0 54.0 58.0 60.0 61.0 65.0

Now, we ascertain the absolute frequencies within each of these intervals; we type

> n.e <- table(cut(sub1_t1, c(min(sub1_t1), decile, max(sub1_t1)),
+ include.lowest = TRUE))
> print(n.e)

i.e. we apply the function cut(), using the character Everyday knowledge, 1st test date
(sub1_t1) as the first argument and a vector created with the function c() as the
second argument, which, with the help of the functions min() and max(), includes the
minimum and maximum as well as the decile and states the desired allocation. With
include.lowest = TRUE, we always add the lowest value to the allocation; we
submit the results, as deciles and allocated values to the function table(). The results
of this operation are assigned to the object n.e, which we submit as an argument to the
function print().

This results in

[25,37] (37,44] (44,48.6] (48.6,50] (50,54] (54,58]
12 9 9 14 11 9

(58,60] (60,61] (61,65] (65,71]
13 10 8 5

These are the desired absolute frequencies hj, j = 1, . . . , c = 10, which we have to insert
into Formula (8.11); for them: I1: –∞ < yv ≤ 37, I2: 37 < yv ≤ 44, I3: 44 < yv ≤ 48.6, I4:
48.6 < yv ≤ 50, I5: 50 < yv ≤ 54, I6: 54 < yv ≤ 58, I7: 58 < yv ≤ 60, I8: 60 < yv ≤ 61,
I9: 61< yv ≤ 65, I10: 65 < yv ≤ ∞. Now, we type
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> decile.p <- pnorm(decile, mean = mean(sub1_t1),
+ sd = sd(sub1_t1)) ∗ 100
> n.p <- c(decile.p, 100) - c(0, decile.p)
> print(n.p)

i.e. we calculate the probabilities of the normal distribution (pnorm) that one would
expect under the assumption of the null hypothesis, per decile (decile) for a given mean
(mean) and a given standard deviation (sd). In order to obtain the expected (absolute
accumulative) frequencies, we multiply the results by 100 and assign them to the object
decile.p. As a next step, we ascertain the expected values ej, j = 1, 2, . . . , 10, and
assign them to the object n.p, which we in turn submit to the function print().

As a result, we get:

10% 20% 30% 40% 50% 60% 70%
6.548019 13.778956 14.761726 5.162071 15.391149 14.575182 6.361338

80% 90%
2.874075 9.252364 11.295120

[Note: the R-output does not print 100% above the last entry 11.295120]
Now, we type

> chi.e <- sum((n.e - n.p)ˆ2/n.p)
> pchisq(chi.e, df = 7, lower.tail = FALSE)

i.e. we insert these results into Formula (8.11), thus ascertaining the empirical χ2-value,
which we assign to object chi.e. Next, we use the object chi.e as the first argument
and df = c – 3 = 10 – 3 = 7 degrees of freedom as the second argument in the function
pchisq() (one additionally loses two degrees of freedom, because it was necessary to
estimate two parameters, the mean and the variance).

As a result, we get

[1] 1.338433e-09

Because of a p-value of 0.000, the result of the test is significant. Thus, the null hypothesis
has to be rejected. The data does not stem from a normal distribution.

In SPSS, we proceed analogously to Example 5.2 (Analyze – Descriptive Statistics – Fre-
quencies...) and select the character Everyday Knowledge, 1st test date. We compute the
necessary deciles, namely the 0.10-quantile, the 0.20-quantile etc. by clicking on Statistics...
and selecting Cut points for: in the resulting window of Figure 5.24, where the default value
10 appears. We also set check marks at Mean and Std. deviation. By clicking Continue and
OK, we obtain the results in Table 14.1. Additionally, we take note of : μ̂ = ȳ = 52.54 and
σ̂ = s = 10.289.



P1: OTA/XYZ P2: ABC
JWST094-c14 JWST094-Rasch September 25, 2011 13:45 Printer Name: Yet to Come

QUALITY AND EXCELLENCE OF A MODEL 457

Table 14.1 SPSS-output of the deciles in Example 14.3.

Cumulative
PercentValid PercentPercentFrequency

25

27

31

33

35

37

41

42

44

46

48

50

52

54

56

58

60

61

63

65

69

71

Total

Valid

100.0100.0100

100.02.02.02

98.03.03.03

95.07.07.07

88.01.01.01

87.010.010.010

77.013.013.013

64.07.07.07

57.02.02.02

55.06.06.06

49.05.05.05

44.014.014.014

30.02.02.02

28.07.07.07

21.02.02.02

19.04.04.04

15.03.03.03

12.04.04.04

8.02.02.02

6.02.02.02

4.02.02.02

2.01.01.01

1.01.01.01

Everyday Knowledge, 1st test date (T-Scores)

From Table 14.1, we take the absolute frequencies hj, j = 1, . . . , c of the intervals I1: –∞
< yv ≤ 37, I2: 37 < yv ≤ 44, I3: 44 < yv ≤ 48.6, I4: 48.6 < yv ≤ 50, I5: 50 < yv ≤ 54,
I6: 54 < yv ≤ 58, I7: 58 < yv ≤ 60, I8: 60 < yv ≤ 61, I9: 61< yv ≤ 65, and I10: 65 < yv ≤
∞, which are 12, 9, 9, 14, 11, 9, 13, 10, 8, and 5. These are the ones we have to insert into
Formula (8.11). Now, we still need the frequencies expected assuming the null hypothesis
is valid. We obtain them by following the steps (Transform – Compute Variable...) described
in Example 5.3. By doing this, we get to the window in Figure 5.9, where we type in a new
Target Variable:, for example DF1 for distribution function; then, we select CDF & Noncentral
CDF from Function group:. This opens a list in Functions and Special Variables: from which
we select Cdf.Normal; after this, a text box opens on the left side, above which we find
an upwards arrow, which we click. Subsequently, CDF.NORMAL(?,?,?) appears as Numeric
Expression. For the first interval, we replace the question marks with: 37,52.54,10.289. By
clicking OK, the variable DF1 is added to the data frame – respectively, for every elementary
unit with the same value. Now, we proceed analogously for every one of the remaining nine
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intervals, defining DF2 etc. and replacing the question marks with the respective observed
frequency and the mean and the standard deviation.

From the Data View, we extract the 10 expected relative cumulative frequencies: 0.07;
0.20; 0.35; 0.40; 0.56; 0.70; 0.77; 0.79; 0.89; and 1.00. Multiplied with n = 100, we get the
expected absolute cumulative frequencies, from which one can easily calculate the expected
values ej, j = 1, 2, . . . , 10: 7, 13, 15, 5, 16, 14, 7, 2, 10, 11. Inserted into Formula (8.11), this
amounts to χ2 = 67.57, with df = c – 3 = 10 – 3 = 7 degrees of freedom (two degrees of
freedom are additionally lost due to the necessity of estimating two parameters, the mean and
the variance). In Table B3 in Appendix B, we look up the 0.95-quantile of the χ2-distribution,
which is 14.07; since this value is smaller than the computed value of the test statistic, the
null hypothesis has to be rejected. The data does not stem from a normal distribution.

Instead of the χ2-test, one can also use several other tests to test a random variable’s normal
distribution; the best-known test among these is the Kolmogorov–Smirnov test. Because of
reasons we have already discussed (see for example Section 8.5.5), we will not expand on this
test here.

14.2.2 Coefficients of goodness of fit

Instead of solving the problem of evaluating how well the empirical data conform to the
respective model by methods of inferential statistics, quite often just methods of descriptive
statistics are used. Thus, here there are no longer any goodness of fit tests but – similar to the
case of correlation coefficients and coefficients of determination – just some coefficients for
describing the goodness of fit.

Master
Doctor

Mainly, this deals with so-called ‘measures of information’, based on (mathemat-
ical) information theory.2 Best known are the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC).3 Both correspond to the likelihood
function (see Section 6.5) of the data given that the respective model is true. If
L(y | θ̂ ) is the respective likelihood – y being, quite generally, defined as the
data observed from n research units, and θ̂ being generally defined as the vector
of k (estimated) parameters of the model, the error variance included – then the
following applies:

AIC = 2 · k − 2 · ln L(y|θ̂) (14.1)

BIC = k · ln n − 2 · ln L(y|θ̂ ) (14.2)

Basically, these criteria quantify the loss of information that results by not com-
municating the data with their full complexity but (simply) via the respective
model. That is, the smaller the value of the criterion, the better the model fits

2 Within this, ‘information’ is defined as a quantitative measure which results through the mutual exchange of
signs/symbols between a transmitter and a receiver.

3 Within statistics, there exists the approach of Bayes (Thomas Bayes, an English monk from the nineteenth
century). It is founded on the assumption that the parameters of a distribution are themselves random variables,
which follow a distribution as well; in particular, this concerns expectation value and variance. In this book, we will
not discuss this further, but refer to Bolstad (2007).
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the data. The preference for one criterion over the other depends on whether
the sample size should be taken into account. The larger it is, the larger the
coefficient BIC.

Obviously, the statistical coefficients AIC and BIC are not interpretable in an
absolute way. They are only suited for the case in which one wants to compare
(at least) two concurrent models with respect to their fit. In this way, they refer to
the third approach to ascertain the quality and excellence of a model mentioned
in Section 14.1.

As always when one exclusively uses descriptive statistics, a certain insecurity
concerning their interpretation remains in their application: when exactly is a
model’s quality high or higher? Actually, AIC and BIC are not much more than
relatively new coefficients with regards to a test. If one wants to compare two
concurrent models, the likelihood-ratio test is a universal instrument. With this,
one merely puts the likelihood of both models into relation, basically like this (the
index of θ̂ refers to the corresponding model):

k = −2 · ln
L( y|θ̂1)

L( y|θ̂2)
(14.3)

Here, the model with the higher number of parameters is put into the denominator –
actually, always the saturated model (see Section 12.1.5), i.e. the one with
maximal parameterization. As can be shown, the test statistic k can, in prin-
ciple, be approximated by a χ2-distributed test statistic, with df = k2 – k1 degrees
of freedom. However, bear in mind, that in praxis this approximation is taken for
granted most of the time, without actually proving it (see, for example, Hohensinn,
Kubinger, & Reif, in press).

Doctor Incidentally, both concurrent models can be interpreted as null hypothesis on the
one hand and as alternative hypothesis on the other hand. For this, practically
every test can be formulated as a likelihood-ratio test.

Given in regression analysis the two characters, x and y, are to be modeled as
normally distributed variables, Formula (14.1) becomes:

AI C = 2k + n ln (2π ) + n + n ln

[
(n − k + 1)MSres

n

]
(14.4)

wherein MSres means the mean sum of squares according to Table 10.10 in Section
10.4.4.1, or that is to say: MSres = s2

y .
Especially if one wants to compare models with different numbers of parame-

ters (for example whilst comparing linear, quadratic, and logistic regressions), the
coefficient AIC is superior to the estimated error variance as a measure of good-
ness of fit. Indeed, since models always fit the data better when they incorporate
more parameters (see the example for multiple regression in Section 14.2.3), it is
recommendable to use a coefficient for describing the goodness of fit which takes
the number of estimated parameters into account. This is the case for the AIC, but
not for the error variance as a criterion.
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Doctor Example 11.12 – continued
This was about the comparison between the linear regression and two curvilinear
regressions, specifically the quadratic and the logistic regression, on the basis
of the two characters Applied Computing, 1st test date and Applied Computing,
2nd test date from Example 1.1. We now want to determine which of the three
models explains the data best. For didactic reasons, we add a fourth model:
the cubic regression. This is: yv = β0 + β1xv + β2x2

v + β3x3
v + ev . We calculate

the AIC only.

In R, we compute the regression functions by typing

> lm.lin <- lm(sub3_t2 ˜ sub3_t1)
> lm.quad <- lm(sub3_t2 ˜ sub3_t1 + I(sub3_t1ˆ2))
> lm.cub <- lm(sub3_t2 ˜ sub3_t1 + I(sub3_t1ˆ2) + I(sub3_t1ˆ3))
> nls.log <- nls(sub3_t2 ˜ SSlogis(sub3_t1, Asym, xmid, scacl))

i.e. we submit the formulas of the linear, quadratic, cubic, and logistic regression to the
function lm() and nls() (see, apart from the cubic, the earlier work on Example 11.12
in Chapter 11) and assign the results to one object each. Now, we compute the error
variance of all the regression models by entering

> anova(lm.lin)$Mean
> anova(lm.quad)$Mean
> anova(lm.cub)$Mean
> sum(residuals(nls.log)ˆ2)/df.residual(nls.log)

i.e. we use the respective regression function in the corresponding objects as an argument
in the function anova() and select, with $Mean, among other statistics the looked-for
error variance. As concerns the logistic regression function, we compute the error variance
on its own, using the functions sum(), residuals(), and df.residual().

As a result, we get (shortened output):

[1] 30.36833
[1] 30.20032
[1] 30.24328
[1] 30.3273

Now, we calculate the coefficient AIC by typing

> AIC(lm.lin)
> AIC(lm.quad)
> AIC(lm.cub)
> AIC(nls.log)

i.e. we submit each of the respective regression models to the function AIC().
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This yields

[1] 629.1075
[1] 629.527
[1] 630.6329
[1] 629.9466

(see also these results in Table 14.2).

Table 14.2 Determining the model quality and excellence for the linear, the quadratic, the
cubic, and the logistic regression in Example 11.12.

Regression
function

Coefficient of
determination MSres

Number of
parameters AIC

Linear 0.609 30.368 3 629.108
Quadratic 0.615 30.200 4 629.527
Cubic 0.618 30.243 5 630.633
Logistic 0.613 30.327 4 629.947

In SPSS, we obtain the error variance in the same way as in Example 11.5; back then, in
the window in Figure 11.5, we dragged and dropped the character Applied Computing, 2nd
test date into the field Dependent: and the character Applied Computing, 1st test date into
the field Independent(s):. Now, repeating this sequence, clicking OK suffices. In Example
11.5, we did not display the full results, which we will now make up for in Table 14.3. Thus,
we realize that, within a regression analysis, decomposing the sums of squared deviations
analogously to the analysis of variance is possible. In order to describe the goodness of fit of
the linear regression to the data, we need the error variance MSres = 30.368. The smaller its
value, the better the fit of the model.

Table 14.3 SPSS-Output of the error variance MSres in Example 11.5 (shortened output).

Sig.FMean Squaredf
Sum of
Squares

Regression

Residual

To tal

1

997608.760

30.368982976.097

.000
a

152.5494632.66314632.663

ModelModel

ANOVA
b

a. Predictors: (Constant), Applied Computing, 1st test date (T-Score)
b. Dependent Variable: Applied Computing, 2nd test date (T-Scores)

In order to obtain the error variances for the other regression functions, we follow
the command sequence (Analyze – Regression – Curve Estimation...) analogously to
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Example 11.5 to open the window in Figure 11.8. There, we select, in addition to Lin-
ear (in that, the previous calculation has been redundant) Quadratic, but do not select Cubic
and Logistic since SPSS, by this function (Analyze – Regression – Curve Estimation...), does
not yield the results we are looking for. Now, we also select Display ANOVA table and, after
clicking OK, arrive at the result that is given in Table 14.2. The coefficient of determination
is also displayed there. For the cubic regression function, we use the sequence of commands
analogous to Example 11.12 in Section 11.3.6 concerning the logistic regression function;
that is we program the function by ourselves. As a result, we get MSres = 30.243 for the cubic,
and MSres = 30.327 for the logistic regression function. The coefficient of determination is
0.618 for the cubic and 0.613 for the logistic regression function. We manually calculate the
coefficient AIC according to Formula (14.4). The result is displayed in Table 14.2 as well.

Obviously, the coefficient of determination is not very successful in differentiating
the several given regression models. If one in turn examines the coefficient AIC,
it is clear that the linear regression fits best.

14.2.3 Cross-validation

Goodness of fit tests are often not compelling enough, especially if a high number of param-
eters is to be estimated (as in, for example, the multiple linear regression; see Section 12.1.3)
and/or certain strategies of parameter estimation are applied that are extremely dependent on
the concrete data (for example the stepwise linear discriminant analysis). That is, though a
model might fit the data according to goodness of fit tests, the generalizability of the results
is to be doubted. For this, there are additional methods.

Master
Doctor

This includes the procedure in connection with the (linear) discriminant analysis
already described in Section 13.3; that is to use only the data of a part of the given
research units for the analysis, as a training set, and to use the rest of the data as a
testing set for the classification analysis in order to examine the predictive value
of the discriminant function obtained.

A special method of examining the generalizability of a result is proposed by cross-validation.
In a traditional manner, one splits the data into parts, most often two halves, and conducts the
respective analysis separately for each part of the data. Then, one uses each of the estimated
parameters to describe or predict the respective other part(s) of the data. Only if this succeeds
in an acceptable manner, is the desired generalizability justified. The validity of the results is
established crosswise, so to speak. Diverging from this classic procedure, one could of course
also sample two sets of data consecutively and cross-validate them afterwards.

For Lecturers:

For demonstration that fitting given data by models with a vast amount of pa-
rameters can lead to completely misleading results, the lecturer might ascertain
data from his students for the calculation of multiple linear regression, multiple
linear correlation coefficient included. First, the regressand might be the score of
a short repetition test in statistics (or of any mathematical school performance
test). Secondly, as regressors the following characters might serve: size of shoe,
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street number of the home address, mobile number, income from (side-) jobs,
commuting time in minutes, and social insurance number. As experience teaches
us, this will result in a relatively strong (linear) relationship with a relatively high
multiple correlation coefficient. If the chosen regressors were not that obviously
meaningless, one might be inclined to try to predict the score of a student in the
respective test with the outcomes of the regressor characters through the obtained
regression function.

Thus, given a sufficiently large number of parameters, a regressand can be
accurately described (predicted) by the regressors, even if there is no systematic
relationship between them at all. If one chooses the degree of a nonlinear re-
gression (i.e. a polynomial function) in such a way that the number of regression
coefficients equals the number of the observed research units, then the resulting
curve will go exactly through every point of the scatter plot – simply analogous
to the case where two points can always be described by a line that goes through
both of them.

A cross-validation – for example by partitioning the research units (students)
into the ones in the front rows on the one hand and the ones in the back rows
on the other hand – would reveal that the regression coefficients merely use a
randomly given portion of the error variance which happens to be unequal to zero
within a certain (part of a) sample. The correlation coefficients between observed
score and predicted score are almost zero for each of the parts of the sample, if
one uses the regression coefficients of the respective other part of the sample for
the prediction.

Doctor Example 14.4 The technique of cross-validation as statistical test’s concept
The non-parametric discriminant analysis by Kubinger (1983; see Sec-

tion 13.4) is heavily based on the method of cross-validation. For one of the
two randomly-split halves of research units of the sample, one looks (stepwise)
for those measurement values per character which, at least in one of the groups
(populations) that are to be discriminated, are not (or considerably less often)
realized, but are indeed realized in the other(s). The resulting allocation rules
are then used for allocating the other half of the research units to the groups in
question. The (averaged) number of hits, that is the number of correct allocations,
is then tested using the binomial test, to see whether the respective rate of hits is
significantly higher than the rate that would be expected if only random allocation
applies.

Master
Doctor

Sometimes, reference to cross-validation is taken without there actually being
one. This mostly happens when result-based changes are made to a model in
contrast to the original model (see for example in connection with the calibration
of a psychological test according to the Rasch model in Section 15.2.3.1). In
such a context, often the claimed ‘cross-validations’ refer to the concept that the a
posteriori obtained model structure and model fit, respectively, are to be confirmed
with new, independent data. However, in this there is no objective of explaining
data from a certain study by the parameter estimates from another study (and
vice versa). Unfortunately, there is no common notation for the thus-described
procedure, so that it is just called a ‘kind of cross-validation’.
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Doctor Another approach to examine the generalizability of results is jackknifing. This
procedure first partitions the research units into a fixed number of sub-samples.
Then it estimates the desired parameters or a function thereof in each one of
the sub-samples. From the thus-resulting distribution of estimates, their variance
or standard error can be calculated; if applied to the classification analysis of
discriminant analysis, one would have to determine the discriminant function for
one of the sub-samples and then use it to predict the group membership for all the
other research units. In the extreme case, one applies the strategy of excluding
one research unit after the other from analysis, using all of the remaining ones
to estimate the desired parameters (‘leaving one out’ method). Again, transferred
to the classification analysis of discriminant analysis, one would predict every
single research unit by the remaining ones.

14.3 Simulation – non-analytical solutions
to statistical problems

We already have often seen that simulation studies4 can be used to obtain profound knowledge
in statistics; aside from the fact that we have, for didactic reasons, used multiple simulations
in order to demonstrate certain issues (see for example Section 7.2.1). Especially the high
complexity of theory-generating statistical methods makes it a necessity to capture the basi-
cally not (or not easily) analytically obtainable distribution function of the test statistic via
simulation studies.

The basic idea of this is simple, although the practical feasibility depends largely on
contemporary computer qualities.

Doctor The basis for most simulation studies is the generation of (pseudo-) random
numbers (see Section 7.2.1). For this, most often the set of real numbers within
the interval [0,1] is used. However, because of the finite (though very large) word
length of number representation within computers, only a finite set of numbers is
producible.

Doctor Example 14.5 Generation of random numbers
In the following, we show how to get a random variable of a certain type of

distribution; namely how to get factitious generated measurement values for a
normal distribution.

In R, we type

> rnorm(100, mean = 100, sd = 10)

i.e. we set the number of observations 100 as the first argument in the function rnorm();
with the second argument, we set the mean to100, and with the third argument the standard

4 Even to this day, this is sometimes called ‘Monte Carlo simulation’; the historical background for this dates back
to 1946, where a secret research project with this codename incorporated this method; John (Johann) von Neumann
chose the name for the project with regards to the casino in Monte Carlo.
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deviation to 10, in order to define the normal distribution from which the observed data is
to stem.

As a result, we get (shortened output):

[1] 96.14798 97.82836 96.94690 97.58045 93.44530 99.80330
. . .

[97] 108.02885 109.74393 110.82786 95.45455

In R, we are able to generate random numbers of any desired distribution. At this point, we
want to refer to the help pages of the respective functions: for example help(rbinom)
for the binomial distribution, help(rchisq) for the χ2-distribution, help(rexp) for
the exponential distribution, help(rf) for the F-distribution, and help(rt) for the
t-distribution.

In SPSS, we select

Transform
Random Number Generators. . .

and select Set Active Generator and Set Starting Point in the resulting window (Figure 14.1);
by doing this, the default option Random will become active. After clicking OK, we follow
the steps (Transform – Compute Variable. . .) described in Example 5.3, and get to Figure
5.9, where we enter a new, arbitrary Target Variable:. Then, we select Random Numbers
from Function group: and Rv.Normal from Functions and Special Variables:. Then a text box
opens on the left; next, we click the upward arrow above it. Subsequently, RV.NORMAL(?,?)
appears as Numeric Expression:, and we substitute the desired mean and standard deviation
for the question marks. By clicking OK, the new variable will be added to the SPSS Data
View.

Figure 14.1 SPSS-window for generating random numbers.
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Doctor Example 14.6 Generating distributions that deviate from the normal distribution,
using normally distributed random numbers

Starting from random numbers that are distributed as N(0,1), we call the
respective random variable u. We are interested in deviations from the normal
distribution concerning skewness and kurtosis. With help of the so-called Fleish-
man transformation (Fleishman, 1978), it is possible to ascertain the coefficients
of the polynomial y = a + bu + cu2 + du3 in u in such a way that the resulting
random variable y has a mean of zero, a variance of 1, the skewness γ1, and the
kurtosis γ2.

Doctor Example 14.7 Simulation study on the two-sample t-test’s power if the pre-
sumption of variance homogeneity is violated (Rasch, Kubinger, & Moder, 2011)

First, the parameters μ1, μ2, σ 1, and σ 2, as well as the type-I risk α were
determined for several cases; also, different distributions were chosen, wherein
the extent of their deviation from the normal distribution was specified via skew-
ness and kurtosis (see Section 5.3.3). Finally, also different sample sizes n1 and
n2 were used. Basically two kinds of cases were under consideration: on the
one hand those cases in which the null hypothesis H0: μ1 = μ2 is valid, and
on the other hand those in which the alternative hypothesis HA: μ1 �= μ2 is
valid (with respect to different values of δ = μ1 – μ2). Then, with the help of a
random number generator, 100 000 runs of simulation were performed for each
parameter configuration; i.e. 100 000 sets of data consisting of random samples
with outcomes y11, y12, . . . , y1n1 and y21, y22, . . . , y2n2 . For each set of data, the
two-sample t-test was calculated, and how often it resulted in significance was
counted. For cases for which the null hypothesis was valid, the actual type-I risk
αact could be established, being the relative frequency of observed significant
results – this actual type-I risk was then compared with the nominal type-I risk
α. For cases for which the alternative hypothesis was valid, the type-II risk β

could be estimated, being one minus the relative frequency of observed
significant results.

Doctor Today, the quality of such a simulation, that is of generating data which are
randomly taken from a given population, does not really depend on the quality
of the random-number generator anymore (see Section 7.2.1). Within statistics,
it is recognized as standard to simulate 100 000 runs. However, due to high
computing time, this is not feasible for some methods, for example within item
response theory (see Section 15.2.3); but, even there, simulations with less than
10 000 runs are not the standard.

With the emergence of simulation studies, another procedure became feasible;
a procedure that is not based on a certain theoretical distribution (population),
but is indeed based on empirical data: so-called bootstrapping.5 It is appropriate
in all cases where nothing (at all) is known about the distribution of a given
test statistic. Contrary to jackknifing, where the research units are partitioned

5 The name stems from a tale about a count named Münchhausen (coincidentally, the procedure is called Münch-
hausen procedure in German), who claimed that he pulled himself out of a swamp by his own bootstraps. Here, the
population is simulated on the basis of the actually observed result.
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into an arbitrary number of non-overlapping sub-samples that include all units,
bootstrapping repeatedly draws equally sized samples with replacement (man
spricht von resampling) from the total sample. Through this it is possible to
establish much more precisely the distribution and standard error, respectively, of
the estimator of the respective parameter or the respective test statistic.

Doctor Example 14.8 Bootstrapping for determining the confidence interval of ρ

We start from the data of the subtests Everyday Knowledge and Applied
Computing from Example 1.1, both from the first test date. In Example 11.13,
we calculated Pearson’s correlation coefficient (r = ρ̂ = 0.432), as well as the
confidence interval by the (approximation) Formula (11.18). The limits 0.26 and
0.58 resulted.

In R, we create a new function by typing

> cor.boot <- function(x, y, nrep, alpha = 0.05) {
+ size <- length(x)
+ data <- numeric(nrep)
+ for(i in 1:nrep) {
+ index <- sample(1:size, size = size, replace = TRUE)
+ data[i] <- cor(x[index], y[index])
+ }
+ r <- cor(x, y)
+ CI.u <- r + (sd(data) ∗ qt(alpha/2, df = nrep-1))
+ CI.o <- r + (sd(data) ∗ qt(1 - alpha/2, df = nrep-1))
+ cat((1 - alpha)∗100, "%", "confidence interval of r =",
+ round(r, digits = 3),"\n",
+ "lower bound: ", round(CI.u, digits = 3), "\n",
+ "upper bound: ", round(CI.o, digits = 3), "\n")
+ return(invisible(list(data = data, r = r, CI = c(CI.u, CI.o))))
+ }

i.e. we use the function function() and set the variables x and y, the number of runs
nrep, and alpha = 0.05, as the value for the type I risk, as the arguments of the new
function. The sequence of commands inside the curly brackets specifies the inner working
of the function and will not be discussed.

Now, we type

> cor.boot(sub1_t1, sub3_t1, nrep = 50, alpha = 0.05)

i.e. we use the characters Everyday knowledge, 1st test date (sub1_t1) and Applied
computing, 1st test date (sub3_t1) as arguments in the function cor.boot() and,
with nrep = 50 request 50 samples to be drawn.

As a result, we get:

95 % confidence interval of r = 0.432
lower bound: 0.226
upper bound: 0.637
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In SPSS, we select

Analyze
Correlate

Bivariate. . .

and, in the resulting window in Figure 11.14, drag and drop the two characters Everyday
Knowledge, 1st test date and Applied Computing, 1st test date into the field Variables:;
we remove the check mark at Flag significant correlations. Now, we click on the button
Bootstrap. . ., which opens the window in Figure 14.2, where we select Perform bootstrapping
and set the Number of samples: to 50; the default settings of 95 as the Level (%): of the
confidence coefficient, and Simple in the panel Sampling, are appropriate for our purpose.
After clicking Continue and OK, we get the results displayed in Table 14.4.

Figure 14.2 SPSS-window for conducting the bootstrapping procedure.
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Table 14.4 SPSS-output of the bootstrapping procedure for determining the confidence
interval of ρ (shortened output).

Applied
Computing,
1st test date
(T-Scores)

Everyday
Knowledge,
1st test date
(T-Scores)

Pearson Correlation

Sig. (2-tailed)

N

Bias

Std. Error

Lower

Upper

95% Confidence Interval

Bootstrap
a

Everyday Knowledge, 1st
test date (T-Scores)

.5971

.2441

.0920

.0230

100100

.000

.432
**

1

Correlations

**. Correlation is significant at the 0.01 level (2-tailed).
a. Unless otherwise noted, bootstrap results are based on 50 bootstrap samples

Both results, with R as well as with SPSS according Table 14.4, differ enormously
from the approximated result of Example 11.13 with the limits of 0.26 and 0.58.
Even if we raise the number of drawn samples from 50 to 1000, we obtain
(according to SPSS), with the limits 0.192 to 0.622, similarly big deviations;
though, for bootstrapping the results agree quite well. As to which of the methods
produces the more exact results, it cannot be said.

Doctor Example 14.9 Applying the test statistic χ2 in the case of a not-quite-sufficient
approximation to the χ2-distribution

For the χ2-test, which we first introduced in Section 9.2.3, we gave the rule of
thumb that, given a certain large sample, the approximation to the χ2-distribution
is sufficiently good. If this rule is not met, instead one can randomly draw very
many samples from the data with replacement, thus re-simulating samples under
the assumption that the actual observed data represent the population(s) in question
in the best possible way.

In the case of having two independent samples with sizes n1 and n2, for which
the dichotomous character, y, has been ascertained, the null hypothesis H0: p1 =
p2 might be tested according to Formula (9.3) against the alternative hypothesis
HA: p1 �= p2. If we now actually sample by bootstrapping from one (best: the
larger) sample appropriately many (pairs of) samples of sizes n1 and n2 (that
is the null hypothesis is true), then for each of these (pairs of) samples the test
statistic of Formula (9.3) is to be calculated. As a result, one gains an ‘empirical’
distribution of that test statistic given the null hypothesis, this distribution being
fairly exact. This will deviate considerably from the χ2-distribution. By means of
this ‘empirical’ distribution, the looked-for (1 − α)-quantile can be ascertained,
which serves for the comparison with the empirical (χ2-test) statistic, observed
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for the original data; as a consequence, the null hypothesis is either to be accepted
or rejected.

Summary
In psychology, we are often interested in statistical models with latent variables. Generally,
there are different methods of determining the quality and excellence of a model. Very often,
goodness of fit tests apply; regardless of these, there are several coefficients for describing
the goodness of fit. Of these, the coefficient AIC is very common. If one wants to compare
two concurrent models, the likelihood-ratio test is a universal method. If the generalizability of
results, which were obtained via a certain model, is doubtful, then there are special procedures
for examining this. In psychology, the method of cross-validation is a common one.
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Theory-generating methods

In this chapter, various analysis methods for classifying research units by numerous characters
are presented; exploratory and confirmatory factor analysis, which reduces multiple correlat-
ing characters to a few independent ones, is introduced. Additionally, the chapter describes
path analysis and (linear) structural equation models, with which directed relationships can
be analyzed. At the end, models of item response theory, particularly the Rasch model, are
presented.

15.1 Methods of descriptive statistics

As concerns theory-generating methods, there are analysis methods, which classify research
units according to similarities in the investigated characters, and there are methods that are
based on intercorrelations of the investigated characters. The latter either aim to reduce
the set of observed characters to a small number of latent, unobservable variables due to the
characters’ correlations; or they attempt to quantify one-sided, directed dependencies between
the observed characters.

All these methods will be demonstrated in the following as far as they concern descriptive
statistics. That is, no hypothesis testing applies; often hypotheses are not even contemplated.
Data will instead only be analyzed or structured to elucidate relationships. Thus, these are to
be characterized as ‘exploratory’ methods.

15.1.1 Cluster analysis

While multivariate analysis of variance and discriminant analysis, respectively, try to dif-
ferentiate between the levels of a fixed factor with reference to m > 1 characters, i.e. to
examine the null hypothesis that there are no respective differences, cluster analysis – the best
known method of this type of analysis – aims to classify the research units of an originally

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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undifferentiated sample as a whole into groups or subgroups of research units, which (or who)
are ‘similar’ to one another. ‘Similar’ means that the outcomes within each of the subgroups
of all m characters only show small differences.

Cluster analysis is appropriate for quantitative characters; no presumption about the char-
acters’ distribution is necessary because the analysis does no hypothesis testing. Nevertheless,
the cluster analysis works analogously to the logistic regression from Section 13.4, even if
there (also) are dichotomous characters and even multi-categorical or ordinal-scaled charac-
ters; for these last two, dummy variables need to be used.

If dealing only with dichotomous characters, there are two analysis methods that are better
suited: configuration frequency analysis and latent class analysis. For both these analyses,
statistical tests are available that can examine several hypotheses about the existence of groups
and the goodness of data fit for a certain classification. Both methods are suited for multi-
categorical characters, but not for quantitative ones – and also not for ordinal-scaled ones (for
both methods see Section 15.2.1).

Master Cluster analysis is based on graphical visualization of the data within the multidi-
mensional space. For only three characters, y1, y2, and y3, using the three outcomes
as coordinates, a single point within the three-dimensional space represents any
research unit. In fact, the first approaches to cluster analysis were heuristic ones;
they tried to achieve a disjunctive grouping on the basis of graphical visual-
ization. In Figure 15.1, for example, one can clearly split the scatter plot into
two ovoids.

In general, cluster analysis concerns ascertainment of similarities between
each of the research units, or rather the measurement of distances between them.
Of all the numerous distance measures, the Euclidian distance is surely the most
illustrative one. It deals with the rectangular coordinates of the m-dimensional
space and the respective (diagonal) straight line in this space. The length of the line
between two points quantifies the distance. In Figure 15.2, only two characters
y1 and y2 are given, and these only for the two persons v and w. Thus, there are
only two pairs of outcomes, (y1v, y1w) and (y2v, y2w). Obviously, the distance dvw

between the two research units v and w, defined via the respective straight line,
constitutes the length of the diagonal of a square. In general, for the m-dimensional

y
1

y
2

y
3

Figure 15.1 Twenty research units with their outcomes as coordinates, represented as points
in the three-dimensional space.
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y1

y2

0 1 2 3 4
0

1

2

3

4
(y1w,y2w)

(y1v,y2v)

Figure 15.2 Ascertainment of the similarity of two research units according to the Euclidean
distance within the two-dimensional space spanned by two characters.

case, the Euclidian distance is defined as

dvw =
√
√
√
√

m
∑

q=1

(yqv − yqw )2

– the square root being always positive. We will not discuss any other distance
measures.

Master
Doctor

It is important to note that, in SPSS, one should not choose Euclidian distance
but instead Squared Euclidian distance in order to actually base calculations on
the Euclidian distance. This conceptual misunderstanding in SPSS is due to
the following: basically, statistics suggest some ‘thinking based on variances’
(or squared sums, respectively). Thus, all

( n
2

)

Euclidian distances within the
m-dimensional space for all pairs of n research units, as deviations, still have
to be squared and summed up in order to correspond to the square sum ‘total’
(in the terminology of analysis of variance). In this sense, it is not just about
the Euclidian distances, but it is about their squares; nonetheless, this method is
intended to measure the deviations as Euclidian distances.

Once a certain grouping has been found, the sum of squared distances can be
decomposed into two parts (again, in analogy to the analysis of variance): one
component as concerns the distances between all central points of the a groups
obtained, A1, A2, . . ., Aa (in the sense of factor levels of a factor ‘A’), and one
‘residual’-component (corresponding to the distances between all the research
units and their respective center point within each group). In this way, the main
principle of cluster analysis can be stated using the following target function: the
quotient of the sum of squared distances ‘A’ and of the sum of squared distances
‘residual’ is to be maximized. When this is achieved, the means of the groups are
maximally different, while the distances within each group are minimal.
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In order to optimize this target function without having previously defined
the number of groups, it can only be optimized for either all or for an arbitrarily
fixed number of groups. Certainly, the most reliable approach – though also most
laborious to calculate – would be a full enumeration of all possible groupings.

Doctor In analogy to full enumeration as dealt with in Section 13.4 for the discriminant
analysis, this means that for n research units we ascertain the target function for
all n one-element-sized groups, then for all n – 2 sets of one-element-sized groups
with every respective remaining two-element-sized group, and so on until we come
to a single group, i.e. the total sample. We will demonstrate this for the case of
n = 4 research units, 1, 2, 3, and 4. In this case, we get 15 different group-
ings: [{1},{2},{3},{4}]; [{1},{2},{3,4}]; [{1},{3}{2,4}]; [{2},{3},{1,4}];
[{1},{4},{2,3}]; [{2},{4},{1,3}]; [{3},{4},{1,2}]; [{1,2},{3,4}]; [{1,3},{2,4}];
[{1,4},{2,3}]; [{1,2,3},{4}]; [{1,2,4},{3}]; [{1,3,4},{2}]; [{2,3,4},{1}];
[{1,2,3,4}]. Bell’s number Bn calculates the number of possible groupings; it
increases exponentially with n. For example, B5 = 52, B6 = 203, B7 = 4140, B8

= 21 147. Assuming sample sizes which are practically relevant, full enumeration
is therefore not manageable for cluster analyses given contemporary conventional
computer performance.

Master
Doctor

Thus, in today’s praxis, the optimal number of groups cannot be unequivocally
ascertained. One uses simple but not necessarily optimal strategies for obtaining
a pleasing number of groups. Here, we only present the hierarchical approach,
which basically consists of two strategies. Either we begin with as many groups
as research units (i.e. n groups) and successively merge two of the previous
groups, or we begin with the total set of all research units, that is with a single
group, and successively demerge one research unit or group. Usually, these two
methods do not lead to the same results. We find the first way to be more easily
understood.

Just as there are numerous distance measures in the context of cluster analysis,
there are also numerous strategies for merging the groups. An especially practical
one is Ward’s method. This method consists of a stepwise merging of the two
groups whose central points lie closest to each other in terms of the Euclidian
distance. Additionally, the distance between two central points of the classes i
and l containing research units ni and nl is weighted in such a way that when two
group pairs have the same distance, the pair containing fewer research units will
be merged, or the pair which contains the smallest group, respectively. Thus, the
weighting coefficient is:

ni nl

(ni + nl )

After this, the only problem remaining for the researcher is to decide on the
number of groups. A proper decision criterion analogous to the scree plot exists
(see Section 15.1.2 on factor analysis): one visualizes the progress of the sum
of squared distances within the groups (‘residual’-component) for all resulting
numbers of groups (we recommend looking at the range from roughly 20 groups
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down to a single one). As long as the increase of this ‘residual’-component
progresses in a (flat) linear way along with the decrease of the number of groups,
one can argue that the increase is negligible and that similarity within the groups
is still high. However, at the point where a leap occurs, the extent of research
units’ similarities within each group obviously shifts in the direction of (clear)
dissimilarity: at this point, the number of groups is one group too small. As
experience teaches us, this decision criterion is not always unambiguous.

It is very important to add that all characters must be standardized (see Sec-
tion 6.2.2) before analysis. If the characters are analyzed without being previously
standardized, then those with large standard deviations will be dominant – charac-
ters with a small standard deviation or with a small range of measurement values
will represent an ineffectual dimension, since all the research units have rather
similar coordinates with respect to this character. This means that such char-
acters will hardly differentiate between groups in relation to other dimensions
(characters).

Master Example 15.1 Are there different learning types, and what characterizes them?
Computerized tests with complex learning scenarios can explore the strategic

learning behavior of testees as well as their need for structure and repetition
of learning content. With the help of appropriate test scores, we now want to
ascertain whether there are typical behavioral patterns; that is, whether some
testees resemble one another whereas other groups of testees behave entirely
differently within the given learning scenario. We use the data of Example 15.1
(see Chapter 1 for its availability). There are 86 testees and the test scores number
of runs, sum of correctly revised answers, sum of falsely revised answers, total
duration, and total mistakes.

In R, we first standardize all characters by typing

> Example_15.1.z <- scale(Example_15.1)

i.e. we apply the function scale() to the data set Example_15.1 and assign the
resulting data set with the standardized values to the object Example_15.1.z. Next,
we determine the Euclidian distance between all the research units by typing

> distance <- dist(Example_15.1.z, method = "euclidean")ˆ2

i.e. we set the standardized data set Example_15.1.z as the first argument in the func-
tion dist() and, with method = "euclidean", compute the Euclidian distances;
with ˆ2, we square the computed distances and assign the results to the object distance.
Now, we conduct a (hierarchical) cluster analysis. To do this, we type

> cluster <- hclust(distance, method = "ward")



P1: OTA/XYZ P2: ABC
JWST094-c15 JWST094-Rasch September 28, 2011 11:59 Printer Name: Yet to Come

476 THEORY-GENERATING METHODS

i.e. we apply the function hclust() to the Euclidian distances (distance); with
method = "ward", we request the desired method. We assign the results to the object
cluster. Next, we calculate the ‘residual’-component by typing

> coef <- cumsum(cluster$height/2)

i.e., in the function cumsum(), we specify cluster$height/2 – these are the in-
dividual distances between the fused clusters, divided by two. We assign the results
of this calculation to the object coef. In order to illustrate the progression of the
‘residual’-component over numerous relevant numbers of groups, we type

> plot(76:85, coef[76:85], type = "b", xlab = "Stage",
+ ylab = "‘Residual’-component")
> axis(1, at = 76:85)

i.e. we use the function plot() and set 76:85 as the first argument, thus fixing steps
76 to 85 of the group fusion (they constitute the abscissa of the resulting graphic; see
Figure 15.3a). With coef[76:85], we concordantly define the second argument, which
gives us the last 10 values of the ‘residual’-component as the ordinate; through type =
"b", we instruct the program to display lines as well as points, and with xlab and ylab,
we define the coordinate axes labels. Finally, we set 1 as the first argument in the function
axis() to define the scale of the abscissa; with at = 76:85 we establish the location
of the tick-marks; namely 76 to 85 on the abscissa.

The results are visualized in Figure 15.3a.
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Figure 15.3a R-output of the ‘residual’-component progression as the number of groups
is reduced from 10 to 1, according to the cluster analysis in Example 15.1
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In SPSS, we use the sequence of commands

Analyze
Classify

Hierarchical Cluster. . .

and get to the window shown in Figure 15.4. We highlight all characters and move them to
the box Variables(s):. Now, we click on the button Method. . ., and proceed in the next win-
dow (Figure 15.5) by choosing Ward’s method under Cluster Method:, as well as changing
to Z scores under Standardize: (the necessary standardization is not preset within SPSS).
After clicking Continue and OK, we get a first result in Table 15.1. There, we are espe-
cially interested in the column Coefficients, which are the ‘residual’-components for the
respective numbers of groups (for example, Stage 85 means that, in this last step, the last
two remaining groups are merged into one). In order to illustrate the sums of the squared
distances within the groups (the ‘residual’-components) for the numerous relevant numbers
of groups, we have to double-click the table Agglomeration Schedule in the results-output.
That opens a new window Pivot Table Agglomeration Schedule. There, in the column Co-
efficients, we highlight the last 10 values; thus, we exclude the possibility of more than 10
groups from the very beginning. Now, we right-click on the highlighted items, thus bring-
ing up another menu (not shown here), where we click on Create Graph; through this, we
open the next menu (without figure here), where we choose Line. After closing the win-
dow Pivot Table Agglomeration Schedule, the graphic of Figure 15.3b can be found in the
resulting output.

Figure 15.4 SPSS-window for computing cluster analysis.
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Figure 15.5 SPSS-window for decision on a method within cluster analysis.

Table 15.1 SPSS-output for the progression of the ‘residual’-component as the number
of groups is reduced from 10 to 1, according to the cluster analysis in Example 15.1
(shortened output)

Cluster 2Cluster 1 Coefficients Cluster 2Cluster 1 Next Stage

Stage Cluster First AppearsCluster Combined

76

77

78

79

80

81

82

83

84

85 08483425.00021

857982172.95642

85776578.55331

84788146.050252

82807439.50162

8107535.087616

84677631.771244

82666929.0152825

83537226.487133

79687324.089154

StageStage

Agglomeration Schedule
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Figure 15.3b SPSS-output of the ‘residual’-component progression as the number of
groups is reduced from 10 to 1, according to the cluster analysis in Example 15.1.

Looking at Figure 15.3a (as well as Figure 15.3b) from left to right, a first
noticeable leap in the progression of the ‘residual’-component occurs from Step 82
to Step 83, which is the step from a four- to a three-group solution. In accordance
with the abovementioned decision criterion – whereupon that step after a leap
signals that the number of groups is one too small because the relatively high
similarity within each group shifts to dissimilarity within each group – we would
have to choose a four-group solution. If, however, we do not interpret any leaps
as sufficiently evident until the leap between Step 83 and Step 84, we obtain a
three-group solution. In this case, we decided on the four-group solution.

Master
Doctor

Once the number of groups is ascertained, a question arises: in which of the
character(s) are the research units of each group especially similar, and by which
character(s) do the groups mainly differ from each other? The following approach
has proven useful in answering this question: determine the standard deviation
for each character within each group, and divide these standard deviations by the
standard deviation of the respective character in the total sample. This is expedient
because, if a character is typical for a group so that all research units in that group
have almost the same outcome, these outcomes should vary less within that group
than all outcomes vary in the total sample. Thus, if sqi is the standard deviation
of character q in group Ai, and sq is the standard deviation of character q in the
total sample, then the ratio

Qqi = sqi

sq
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should be as small as possible in order to define character q as being typical for
group Ai. Using the rule of thumb Qqi ≤ 0.5 ensures that the character varies at
most half as much within the group as it does within the total sample. Thus, the
group’s mean for that character characterizes this group (maybe in conjunction
with other characters).

Master Example 15.1 – continued After having decided on the four-group solution, we
now want to identify the groups and exactly characterize them.

In R, we type

> group <- cutree(cluster, k = 4)

i.e. we apply the function cutree() using the results of the cluster analysis stored in
cluster as the first argument to define the group membership for each of the research
units; with k = 4, we request the four-group solution. We assign the new character group
membership to the object group.

Now, in order to obtain the values Qqi, we type

> sapply(1:4, function(y) sapply(1:5, function(x)
+ tapply(Example_15.1[, x], group, sd))[y, ]/
+ apply(Example_15.1, 2, sd))

i.e. we use the function sapply() two times, once with the instruction to conduct the
following analysis for the first up to the fourth group (1:4), and once with the same anal-
ysis for the first up to the fifth character (1:5). With the help of the function tapply(),
we calculate the standard deviation (sd) separately for each group (group). We divide
this result by the standard deviation (sd)that we calculate for each column-wise arranged
character (2) for all groups together, with the help of the function apply().

As a result, we get

[,1] [,2] [,3] [,4]
runs 0.19225373 0.3475614 0.4549612 0.3707825
correct 0.14346225 0.3805198 0.2785858 0.4237522
false 0.05004249 0.5869595 0.2227576 0.3588045
duration 0.09805329 0.5543949 0.1851657 0.4130926
mistakes 0.06910112 0.5648816 0.1776249 0.3718529

In SPSS, we first have to repeat the entire analysis method. In the window shown in
Figure 15.4 we choose the button Statistics. . ., by which we get to a new window (without
figure here); there, we activate the point Single solution and enter the number 4 into the box
Number of clusters:. With Continue, we return to the previous window. There, we choose
Save. . . in order to save the group membership of each research unit as a new character for
further analysis in the data sheet. In the resulting window (without figure here), we again
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choose Single solution and type 4 into the box Number of clusters:. With Continue and OK,
we get to the same results in the output. In the data sheet, however, we get the new character
CLU4_1.

In order to obtain the values Qqi, we first determine the standard deviation for each
character within the total sample, then separately for each of the groups. With the sequence
of commands (Analyze – Descriptive Statistics – Frequencies. . .) of Example 5.4 we get to
the window shown in Figure 5.4, where we transfer all our characters number of runs, sum of
correctly revised answers, sum of falsely revised answers, total duration, and total mistakes
into the box Variable(s):, then click on the button Statistics. . . and thus arrive at the window
shown in Figure 5.24; there, we (merely) click Mean and Std. deviation. With Continue and
OK, we obtain the result as illustrated in Table 15.2

Table 15.2 Mean and standard deviation of all characters for the total sample in
Example 15.1 (shortened output)

total mistakestotal duration

sum of falsely
revised
answers

sum of
correctly
revised
answers

number of
runs

Mean

Std. Deviation 29.506556.18716.1847.51215.116

30.55735.9519.3410.1023.91

Statistics

Now, we use the series of orders (Data – Split File. . .) of Example 5.11 with the help
of Figure 5.23 to split up the analysis by the group variable CLU4_1: there, we activate
the button Compare groups, transferring Ward Method into the window Groups Based
on: and click on OK. We again follow the sequence of commands (Analyze – Descrip-
tive Statistics – Frequencies. . .) of Example 5.4 and click on OK in the window shown in
Figure 5.24. With this, we obtain the means and variances of all four groups as depicted
in Table 15.3.

Table 15.3 Means and standard deviations of all characters for the groups 1 through 4 in
Example 15.1 (shortened output)

total mistakestotal duration

sum of falsely
revised
answers

sum of
correctly
revised
answers

number of
runs

Mean

Std. Deviation

Mean

Std. Deviation

Mean

Std. Deviation

Mean

Std. Deviation

1

2

3

4

10.972229.7575.8073.1835.605

27.07793.1422.2124.8633.79

5.241102.9873.6052.0936.877

19.06602.1715.9411.5619.00

16.667308.3479.4992.8585.254

74.611520.6141.658.4842.65

2.03954.536.8101.0782.906

6.10205.653.453.818.39

Ward  Method

Statistics
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The values Qqi have to be calculated manually:

Q11 = 2.906

15.116
= 0.19 Q21 = 5.254

15.116
= 0.35 Q31 = 6.877

15.116
= 0.45 Q41 = 5.605

15.116
= 0.37

Q12 = 1.078

7.512
= 0.14 Q22 = 2.858

7.512
= 0.38 Q32 = 2.093

7.512
= 0.28 Q42 = 3.183

7.512
= 0.42

Q13 = 0.810

16.184
= 0.05 Q23 = 9.499

16.184
= 0.59 Q33 = 3.605

16.184
= 0.22 Q43 = 5.807

16.184
= 0.36

Q14 = 54.536

556.187
= 0.10 Q24 = 308.347

556.187
= 0.55 Q34 = 102.987

556.187
= 0.19 Q44 = 229.757

556.187
= 0.41

Q15 = 2.039

29.506
= 0.07 Q25 = 16.667

29.506
= 0.56 Q35 = 5.241

29.506
= 0.18 Q45 = 10.972

29.506
= 0.37

We thus establish that there are four learning types:

� For Learning Type 1, all characters are typical (with Qqi < 0.20); members
of this type need the fewest runs, revise their answers least often (correctly
as well as incorrectly), need the least time and make the fewest mistakes.

� For Learning Type 2, only the characters number of runs and sum of correctly
revised answers are typical (with Qqi < 0.50); whilst having an almost
average sum of correctly revised answers, members of this type need the
most runs.

� For Learning Type 3, all characters are typical (with Qqi < 0.50); members
of this type manage to obtain relatively good or average test scores in all
characters.

� For Learning Type 4, all characters are typical (with Qqi < 0.50); members
of this type need very many runs, have the most correct revisions of their
answers and a rather large number of incorrect revisions, need a rather long
time, and make an average number of mistakes.

Master
Doctor

The vast arbitrariness in deciding the number of groups is one of the essential
points of criticism concerning cluster analysis. Therefore, in order to give the
established grouping some support, sometimes a multivariate analysis of variance
is applied, using the several groups as factor levels. A significant result indeed
increases the explanatory power of the given grouping. However, this significance
might be artificial, since the test does not compare random samples from well-
defined populations: all research units were grouped in an optimal way with regard
to the given data, which can produce differences that actually do not stem from a
systematic base (in this context, see the phenomenon of ‘regression towards the
mean’, known since Sir Francis Galton; e.g. Stigler, 1997).

15.1.2 Factor analysis

Psychologists have played a major role in the development of factor analysis. Especially in
the construction of psychological tests and, in earlier days, in fundamental research – for



P1: OTA/XYZ P2: ABC
JWST094-c15 JWST094-Rasch September 28, 2011 11:59 Printer Name: Yet to Come

METHODS OF DESCRIPTIVE STATISTICS 483

example in ascertaining the number of factors that constitute ‘intelligence’ – it is a frequently
used instrument.

Factor analysis is a method of ‘dimensional analysis’, i.e. we postulate that the m observed
characters are not completely independent from each other but actually intercorrelate (quite
strongly), so that (considerably) fewer than m dimensions suffice to describe all the research
units’ outcomes. In essence, the (directly observable) characters are to be reduced on the
basis of their mutual (more or less pronounced) relationships to few, not directly observable,
mutually independent and thus not correlated so-called ‘factors’ (meta-characters; supra-
variables). The problem can be seen in analogy to partial correlation (see Section 12.1.1): the
relationship of two characters is assumed to be merely caused by the correlation of both with
(at least) a third character; with the difference that here, in contrast to the partial correlation,
this third character or further characters are neither known nor observable. It is assumed that
only a few of these latent, not manifest characters, factors, suffice to explain all relationships
between the observed characters. Once these factors are ascertained, the observed complex of
characters can be quite easily explained.

Given, indeed, m manifest characters y1, y2, . . ., ym, which are modeled by the random
variables y1, y2, . . ., ym, factor analysis suggests the following linear model between these
m characters and x latent characters (factors). All characters, manifest as well as latent, are
presupposed to be quantitative:

yq =
x

∑

l=1

aql f l + bq sq ; q = 1, . . . , m (15.1)

Every random variable yq is thus represented by the weighted sum of x random variables fl,
l = 1, . . ., x, being the common factors, as well as by the random variable sq, being some
specific factor. The latter fulfills the function of the error term of the generalized linear model
(see for example regression analysis and analysis of variance). The weights aql are called
factor loadings (or simply loadings). They stand for correlation coefficients between factor
l and character q. The common factors affect at least two characters; i.e. at least two factor
loadings aql and apl have to be unequal to zero. All factors are presupposed to be independent
from each other and thus do not correlate. A further assumption, which, however, does not
constrain the method’s universal applicability, is that the factors are standardized (see Section
6.2.2) to have a mean of 0 and a variance of 1. Also, without loss of generalizability, we
presuppose in the following that all random variables yq are standardized as well.

Bachelor
Master

As can easily be shown, the presupposition of standardization of all characters and
factors means that all variances of all variables yq are equal to

∑x
l=1 a2

ql + b2
q = 1.

The first summand is called the communality; it describes that part of the variance
of yq that is explained by the x common factors. The second summand is called
the specificity. Obviously, it is desirable to ascertain few, but enough factors in
such a way that the communality grows as large as possible for all characters.

Ascertaining the number of factors is the first essential problem within factor analysis. Anal-
ogous to ascertaining the number of groups in cluster analysis, we will try to establish some
rules of thumb in accordance with the given mathematical target function of the method.
Today, it is no longer necessary to differentiate between several approaches regularly falling
under the term ‘factor analysis’, since the term almost always refers to principal component
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analysis. This name stems from the fact that the analysis determines the mathematically de-
fined so-called principal components (basically the eigenvectors) of a square matrix, here the
empirical m × m correlation matrix R = ((rlh)). Within mathematics, this determination is
called ‘principal component method’. Using the principal component method, m linearly inde-
pendent linear combinations (the principal components) are generated from the m characters
in such a way that the sum of their dyadic products results in the original matrix.

Bachelor Every symmetrical m × m matrix has m real eigenvalues λq, q = 1, 2, . . ., m; these
are all solutions to the equation |R − λIm | = 0, with Im as the m × m identity
matrix. The solutions �xq , q = 1, 2, . . ., m of the equation (R − λIm)�x = 0 are called
eigenvectors; they are not unequivocally determined, because for every positive
constant k, it holds that (R − λIm)k �x = 0. Thus, one can choose k in such a way
that, for each of the m eigenvectors �x , it is true that �xT �x = 1. Multiplying the thus-
standardized eigenvectors �x∗

q with
√

λq , one obtains the principal components.
The product of all eigenvalues equals the determinant of the matrix, |R|, and their
sum,

∑m
q λq , is equal to the sum of all elements of the principal diagonal,

∑m
q rqq

(i.e. the trace of the matrix R).

So far, of course, the factor analysis’ goal of using the (considerably) smaller number of x
(not directly observable) factors instead of the m observed characters in order to explain the
given data (the correlation matrix R) is not yet fulfilled. Up to now, instead of m characters, we
have merely obtained m principal components. The next step aims, therefore, at reducing the
number of eigenvectors and thus also the number of eigenvalues in such a way that the matrix
of all aql still explains all the data or all correlations between the m characters as exactly as
possible. In other words, the empirical matrix R is to be reproduced by the model-based m ×
x matrix A = ((aql)) in the best possible manner. Thus, instead of all eigenvalues λq, q = 1,
2, . . . , m, and all eigenvectors �x∗

q , q = 1, 2, . . . , m, we are now looking for an appropriate x
< m eigenvalues λl, l = 1, 2, . . . , x, and their eigenvectors �x∗

l , l = 1, 2, . . . , x.

Bachelor
Master

By the way, factor loadings aql and eigenvalues λl relate to one another as follows:
λl =

∑m
q=1 a2

ql , l = 1, 2, . . ., x; that is, because of the presupposed standardization,
the eigenvalue λl is nothing but the amount of variance of all m characters being
explained by factor l. If there were a single factor, that is to say a general factor, that
explained the total variance, then l = 1 and λ1 = m. Thus, only those eigenvalues
(and therefore factors) are of interest which are larger than 1. Their number is
probably the most common rule of thumb for ascertaining the number of factors.

Arranging all m eigenvalues by size, that is by explained amount of the vari-
ance of all m characters, results in a second rule of thumb. Graphically representing
their progress, we look from the smallest to largest eigenvalue (from right to left)
for a breaking point in the almost linear curve: until this point, the eigenvalues
meet the abscissa asymptotically. All factors with eigenvalues after this breaking
point (i.e. towards the left) are taken to be meaningful; all others are discarded as
meaningless, because a minimal increase/decrease happens to occur even when
variance is only explained by chance, but not systematically. This rule of thumb
is called the ‘scree test’.
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For the interpretation of content of a given factor analysis solution, we recommend ascertaining
the percentage of total variance of all characters that can be explained by the resulting factors.
Also the examination of communalities is of some help: if they are all close to 1 (and thus,
the specificities b2

q = 1 − ∑x
l=1 a2

ql are close to zero), this can be interpreted as the variance
of the characters actually being mainly explained by the x factors.

Labeling the factors, or defining their meaning with regard to content, is a second problem
within factor analysis. Because the factors are extracted in a sequence according to the amount
of variance they explain, practically all characters load rather high in the first factors. For clear
interpretation, the factors (or, more precisely, the axes representing them within a multidimen-
sional rectangular coordinate system) have to be rotated; one conducts a factor rotation. At
best, this happens in accordance with the simple structure principle by Thurstone. The points
within the multidimensional space where all characters are represented by their loadings per
factor as coordinates remain unmodified, but only the axis system of the coordinates is rotated
in such a way that each factor has (a few) very high loadings as well as (many) very small
loadings. When formalized, this criterion comes very close to the varimax criterion by Kaiser
(1958): the variability of loadings within each factor is maximized. Thus, if there is basically
only a single character with a very high loading per factor, this ‘marker variable’ can be used
for labeling that factor.

Bachelor
Master

Example 15.2 The factor structure of the intelligence test battery for children
with Turkish as native language from Example 1.1

The five subtests Everyday Knowledge, Applied Computing, Social and
Material Sequencing, Immediately Reproducing – numerical, and Coding and
Associating may – especially for children with Turkish as native language – cor-
relate among one another in such an extensive way (see also Example 12.7) that
basically fewer than five independent factors may be responsible for the observed
test scores. Maybe even a single, a general factor, suffices to explain the given
data. In order to ascertain the respective factor structure, we use the test scores
for these five subtests on the first and second test date. This means that m = 10.

In R, we first activate the data set Example_1.1, using the function attach() (see
Chapter 1). Then, we create a data set that only includes children with Turkish as their
native language. We type

> fact.data <- subset(Example_1.1[, 12:21],
+ subset = native_language == "Turkish")

i.e. we use the function subset() to choose those persons that fulfill the condition
native_language == "Turkish"; additionally, we choose all five subtests for
both points in time by transferring the data from the columns 12 to 21 to the object
fact.data.

Now, we conduct a factor analysis by typing

> fact <- prcomp(fact.data, scale = TRUE)
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i.e. we submit the objectfact.data to the functionprcomp(); withscale = TRUE,
we standardize all variables. We assign the results of this analysis to the object fact.
Next, we determine the number of factors to be extracted. We type

> summary(fact)

and obtain the results:

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.056 1.374 1.244 0.990 0.7622 0.640 0.3661
Proportion of Variance 0.423 0.189 0.155 0.098 0.0581 0.041 0.0134
Cumulative Proportion 0.423 0.611 0.766 0.864 0.9223 0.963 0.9767

PC8 PC9 PC10
Standard deviation 0.3495 0.24709 0.22310
Proportion of Variance 0.0122 0.00611 0.00498
Cumulative Proportion 0.9889 0.99502 1.00000

Now, we create a scree plot by typing

> screeplot(fact, type = "lines", main = "")

i.e. we apply the function screeplot(), to which we submit the result of the factor
analysis from the object fact; with type = "lines", we order a line diagram and
with main = "" we suppress the headline.

The results are depicted in Figure 15.6.
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87654321 109

Figure 15.6 R-output of the scree test in Example 15.2. The abscissa shows the factors
of the complete factor solution; the ordinate gives the respective eigenvalues.
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Since exactly three factors have eigenvalues greater 1, we have to conduct the factor
rotation like this: we install and load the package psych (see Chapter 1) using the
function library() and type

> principal(fact.data, nfactors = 3, rotate = "varimax")

i.e. we use the function principal(), adding the data set fact.data as the first
argument, and specify a three-factor solution with nfactors = 3; with rotate =
"varimax", we choose the varimax criterion.

As a result, we get (shortened output):

Principal Components Analysis
Call: principal(r = fact.data, nfactors = 3, rotate = "varimax")
Standardized loadings based upon correlation matrix

RC3 RC2 RC1 h2 u2
sub1_t1 0.68 0.00 0.43 0.66 0.34
sub3_t1 0.78 0.18 0.09 0.66 0.34
sub4_t1 0.18 0.00 0.89 0.82 0.18
sub5_t1 0.08 0.61 0.53 0.66 0.34
sub7_t1 0.15 0.92 -0.06 0.87 0.13
sub1_t2 0.77 0.08 0.27 0.68 0.32
sub3_t2 0.85 0.20 -0.01 0.76 0.24
sub4_t2 0.26 0.03 0.89 0.86 0.14
sub5_t2 0.01 0.68 0.60 0.83 0.17
sub7_t2 0.25 0.91 -0.03 0.89 0.11

RC3 RC2 RC1
SS loadings 2.59 2.58 2.49
Proportion Var 0.26 0.26 0.25
Cumulative Var 0.26 0.52 0.77

In SPSS, we choose

Analyze
Dimension Reduction

Factor. . .

and, in the window shown in Figure 15.7, select all the mentioned m = 10 characters in
order to transfer them into the box Variables:. Then, we select the character native language
and transfer it into the box Selection Variable:; now, we click on the button Value. . . and, in
the resulting window (not shown here), enter 2. With Continue, we get back to the previous
window. If we now click on the button Extraction. . ., we get to the window in Figure 15.8,
where, firstly, we do not change the preset Principal components, and secondly, remove the
check mark at Unrotated factor solution and instead set one at Scree plot; as a third step we
leave the value 1 at Eigenvalues greater than: (all this has already been done in Figure 15.8).
With Continue, we are back at the window shown in Figure 15.7, where we now choose the
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button Rotation. . . . In the resulting window (without figure here), we mark Varimax in the
field Method. With Continue and OK, we obtain the results as depicted in the Tables 15.4 and
15.5; the resulting scree plot corresponds to Figure 15.6.

Figure 15.7 SPSS-window for calculation of factor analysis.

Figure 15.8 SPSS-window for determining the number of factors in factor analysis.
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Table 15.4 SPSS-output of the eigenvalues from Example 15.2.

Cumulative %of% VarianceTotal Cumulative %of% VarianceTotal

Rotation Sums of Squared LoadingsInitial Eigenvalues

1

2

3

4

5

6

7

8

9

10 100.000.498.050

99.502.611.061

98.8921.221.122

97.6701.340.134

96.3304.096.410

92.2345.810.581

86.4249.800.980

76.62424.8862.48976.62415.4751.548

51.73925.8272.58361.14918.8671.887

25.91125.9112.59142.28242.2824.228

Component

Total Variance Explained
a

Extraction Method: Principal Component Analysis.

a. Only cases for which native language of the child = Turkish are used in the analysis phase.

Table 15.5 SPSS-output of factor loadings after rotation, from Example 15.2

321

Component

Everyday Knowledge, 1st
test date (T-Scores)

Applied Computing, 1st
test date (T-Scores)

Social and Material
Sequencing, 1st test date
(T-Scores)

Immediately Reproducing

(T-Scores)

Coding and Associating,
1st test date (T-Scores)

Everyday Knowledge, 2nd
test date (T-Scores)

Applied Computing, 2nd
test date (T-Scores)

Social and Material
Sequencing, 2nd test date
(T-Scores)

Immediately Reproducing

(T-Scores)

Coding and Associating,
2nd test date (T- Scores)

.220.089.883

.089.351.812

.107.886.254

.864.100.218

.519.590.148

.181.022.885

.154.319.748

.015.904.180

.866.043.189

.567.565.089

Rotated Component Matrix
a

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 5 iterations.
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From Table 15.4, it follows that factor analysis basically establishes the
‘complete’ solution, i.e. it extracts as many factors as there are characters. How-
ever, examining the results more closely, only three factors with an eigenvalue
larger than 1 emerge. The three factors explain almost 77% of the variance of all
ten investigated characters. In the scree plot of Figure 15.6, there is a breaking
point at the second-largest eigenvalue, which speaks for a general factor solution.
Table 15.5 shows the loadings per factor and character after rotating the three-
factor solution. Here the highest loading of 0.918 is given for the character Coding
and Associating, 1st test date, for Factor 2; the character Coding and Associating,
2nd test date also has a high weight in this factor, namely with loading 0.908.
Thus, Factor 2 is described relatively well by these subtests. Another relatively
high-loading subtest for Factor 2 is Immediately Reproducing – numerical; though
this subtest also shows high loadings in Factor 3, so that the factor structure loses
some concision: not all characters are primarily defined by a single factor. With a
value of 0.89, Factor 3 has its highest loadings in the subtest Social and Material
Sequencing. The loadings in Factor 1 are lower; nevertheless, this factor is clearly
qualified by the subtests Applied Computing and Everyday Knowledge (just in
this sequence). All in all, it can be judged that these five subtests measure in a
rather ‘high dimensional’ way.

Doctor At least rudimentary inferential statistics can be applied by testing the hypothesis
that (even) the xth eigenvalue is larger than 1; for this, one can use the bootstrapping
method (see Section 14.3).

Doctor Example 15.2 – continued
Since in this example the fourth eigenvalue is merely a bit smaller than 1, we
want to calculate a one-sided confidence interval for the observed value of y =
0.98 in the upper direction. Since the distribution of the respective eigenvalues
is unknown, we use the bootstrapping method. For this, we draw 10 000 random
samples from the data and apply factor analysis for each of them as described
above. We are not interested in all the details of the resulting distribution, but
only in the standard deviation σ . With it, we can calculate the desired confidence
interval: O = y + z(1 − α

2 )·σ . If the result shows that O ≤ 1, the fourth eigenvalue
is judged not to be significant (not larger than 1), and the three-factor solution is
appropriate.

In many research works, especially within the construction of psychological tests, the reader
will find – instead of the above described orthogonal rotation – the so-called oblique rotation.
This approach results in factors that are hardly interpretable, particularly with regard to their
mutual interdependences: the rectangular coordinate system, and thus the idea of independent
and as such uncorrelated factors is of course lost when rotating the coordinate axis in an
oblique manner. We will therefore not deal with it any further here.

Once a psychological test is constructed according to factor analysis, a test score should
describe every testee for each of the obtained factors. These test scores must serve to quantify
the trait or aptitude which is measured by the respective factor. That is, it is about the realized
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values in the factors fl in Formula (15.1), for each testee v; these values, flv, are called
factor scores. Unfortunately, the inventory of psychological tests often uses the following
methodological artifact: instead of calculating such factor scores per testee, each task or
question is weighted equally and scored according to some arbitrary scoring rule (and finally
added up), given that it has a minimum loading in the respective factor at all. This scoring
method disregards the fact that the tasks or questions do contribute with differing intensities
to the model equation in Formula (15.1).

Example 15.3 Determining the factor scores without relation to any content
A test battery with m subtests was shown, through factor analysis, to be based on x factors.

For each of the n testees, we now ascertain the x factor scores (we will use the data from
Example 15.2).

In R, we use exclusively the data of children with Turkish as a native language in the object
fact.data (see in Example 15.2). We set

> fact.2 <- principal(fact.data, nfactors = 3,
+ rotate = "varimax", score = TRUE)

i.e. we conduct the factor analysis, again using the function principal() from the
package psych, but this time we add score = TRUE as an additional argument, which
causes the factor scores to be calculated. We assign the results to the object fact.2. We
print the factor scores with

> fact.2$scores

As a result, we get (shortened output):

RC3 RC2 RC1
3 0.0316104402 -0.04213481 -0.31718716
4 0.2673120415 -0.38041647 0.43467948
7 0.3507505324 -0.43657538 -1.28321479
8 0.0056456323 1.20273484 1.19403540
55 0.4780072472 0.06939621 -0.75794551
. . .

In SPSS, we proceed analogously to Example 15.2, except now we additionally choose
the button Scores. . . in the window shown in Figure 15.7; this leads to the window shown
in Figure 15.9. Here, we click Save as variables as well as Display factor score coefficient
matrix. This has two effects: firstly, the desired factor scores for each person will be added to
the Data View in a separate column for each factor, ready for further analysis; and, secondly,
all coefficients will be displayed, which have to be (manually) multiplied with the test scores
of future, not yet tested persons in this test battery in order to determine their factor scores.
With Continue and OK, we set all this into action.
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Figure 15.9 SPSS-window for calculating the factor scores.

Again and again, one finds factor analysis applied to ordinal-scaled characters as well as to
dichotomous characters. However, if this application does not include the use of appropriate
correlation coefficients, the common factor analysis produces artificial results. While Spear-
man’s correlation coefficient is suited for ordinal-scaled data, dichotomous characters are best
dealt with using the tetrachoric correlation coefficient:

rtet = cos
180◦

1 +
√

bc
ad

with the denotations from Table 11.6 (for more details, see for example Kubinger, 2003).1

15.1.3 Path analysis

Path analysis can be seen formally as a ‘bundle’ of multiple linear regressions. It is used
to research questions where relationships (correlations) between interesting characters are
not undirected but where instead directed or even causal relationships are suggested. Based
on some modeled system of directed so-called paths, path coefficients such as regression
coefficients are estimated from empirical data. The size of these coefficients describes the
influence of the observed characters on each other.

Master
Doctor

Example 15.4 Determinants for (cognitive) high performance potential
The ‘Viennese model for the assessment of high achievement potential’ (see

Holocher-Ertl, Kubinger, & Hohensinn, 2008) suggests several determinants for

1 A not yet published computer program by Joachim Häusler, which computes the tetrachoric correlation coef-
ficient for a set of dichotomous characters and directly imports the resulting matrix into SPSS, is available in the
download section of the website http://psychologie.univie.ac.at/eppd.
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academic high performance. Among many others, these are cognitive abilities (e.g.
intelligence, retentiveness, attentiveness), the parental stimulative environment,
the degree of achievement motivation, and emotional stability.

From the content point of view, it is not at all plausible that, for example, the
extent of high performance potential influences the parental stimulative environ-
ment, but indeed the opposite is true. The same applies for numerous relationships
between the other mentioned determinants or, that is to say, characters. The cited
content model specifies the directions of such relationships; whereby all the de-
terminants are thought to show some compensatory effects. This means that they
act linearly additively; thus, non-optimal outcomes in certain determinants do not
necessarily result in a low potential for high performances.

The actual path model is best visualized graphically. There, directed arrows symbolize directed
relations. From this, it is easy to derive the respective (multiple) regression functions, in
analogy to Formula (12.5).

Master
Doctor

Example 15.4 – continued
From the ‘Viennese model for the assessment of high achievement potential’ one
can, for example, derive the path model in Figure 15.10 – it consists of the follow-
ing characters modeled as interval-scaled random variables: y (high performance
potential), x1(intelligence), x2(retentiveness), x3(attentiveness), x4(parental stim-
ulative environment), x5(achievement motivation), and x6 (emotional stability).

From this, the following system of equations can be created (v = 1, 2, . . ., n):

x3v = β∗
3 + β1(3)x1v + e3v

x5v = β∗
5 + β4(5)x4v + e5v

x6v = β∗
6 + β4(6)x4v + e6v

x2v = β∗
2 + β1(2)x1v + β3(2)x3v + e2v

yv = β∗ + β1x1v + β2x2v + β3x3v + β4x4v + β5x5v + β6x6v + ev

All symbols are defined in analogy to (multiple) regression; here, too, the
presumptions from Section 11.2 apply. In order to be able to compare the path

x6

x5

x4

x1

x3

x2

y

Figure 15.10 Path model of the ‘Viennese model for the assessment of high achievement
potential’.
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coefficients to each other, it is best to use standardized characters (as in factor
analysis); when this is done, all intercepts of the linear equations equal 0.

The path coefficients are estimated as (standardized) regression coefficients using the least
squares method or the maximum likelihood method (see Section 6.5), for example with the
help of computer packages for so-called (linear) structural equation models, which include
path analysis as a special case. We will come back to this in Section 15.2.1. As dealt with
up to now, path analysis is (just) a method of descriptive statistics. But, within the (linear)
structural equation models, it is also possible to compare two concurrent models using – apart
from coefficients of goodness of fit – inferential statistics, to test whether one model better
fits the data.

From all above concerning regression and correlation analysis, it follows that exclusively
quantitative (i.e. at least interval-scaled) characters are required.

15.2 Methods of inferential statistics

Other theory-generating methods aim at testing hypotheses; they do not merely explore, but
also try to show that the obtained results are not due only to chance. In other words, these
methods examine whether the results might be based on systematic principles; in the best
case, they test whether results support an existing theory. This applies to two further analysis
methods for classifying research units, the (linear) structural equation models, and methods
for calibrating psychological tests (and the like).

15.2.1 Further analysis methods for classifying research units

In Section 15.1.1, we already mentioned the analysis method of configuration frequency
analysis on the one hand and latent class analysis on the other hand. Both of these methods are
appropriate for nominal-scaled characters, above all for dichotomous ones. In the following,
we will restrict ourselves to considering the case of dichotomous characters, because the
number of necessary research units increases exponentially with each additional measurement
value, so that practical applications for multi-categorical data become rather unrealistic.

15.2.1.1 Configuration frequency analysis

Configuration frequency analysis (CFA) rests upon the phenomenon of Meehl’s paradox. This
states that, given nominal-scaled characters, there might be (in contrast to quantitative char-
acters) no pair-wise relationships, though there is indeed a (three-dimensional) relationship
between, for instance, three characters (see Figure 15.11). That is, there are actually typical
patterns (configurations) of all combinations of the given measurement values, which cannot
be identified with any association measure for bivariate random variables. However, such
patterns are especially interesting when they emerge unexpectedly often (or unexpectedly
rarely). In this case, they constitute a so-called type (or an antitype). CFA ascertains the
extent to which certain patterns deviate in their frequency from that which is expected given
the null hypothesis – the latter claiming that all characters are completely independent from
one another.



P1: OTA/XYZ P2: ABC
JWST094-c15 JWST094-Rasch September 28, 2011 11:59 Printer Name: Yet to Come

METHODS OF INFERENTIAL STATISTICS 495

y1 y2

y3

0
01

1

0

1

Figure 15.11 Three-dimensional contingency table for illustration of Meehl’s paradox.
There are three dichotomous characters y1, y2, and y3 (with measurement values 0 and 1),
which do not correlate pair-wise. If we insert, into every gray-shaded sub-cube, for instance
the frequency 20 (leaving the white sub-cubes with frequency 0) and then sum the frequencies
up with respect to the third character, a result of 20 is found for each pair, (0, 0), (1, 1),
(0, 1), and (1, 0) as well. Hence, the φ-coefficient is zero. Nevertheless, there are indeed typ-
ical patterns for these three characters: (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1) occur equally
often, while all other combinations are never realized (in this figure, the hidden sub-cube at
the back left is considered to be white).

Master
Doctor

Example 15.5 Symptom patterns after the consumption of LSD (from Krauth &
Lienert, 1995, p. 18 et seqq.)

The so-called psychotoxic basic syndrome consists of the symptoms clouding
of consciousness (y1), mental disorder (y2), and disturbance of affectivity (y3).
The following data were observed (1 for ‘present’, 0 for ‘not present’):

y1 y2 y3 hijk

1 1 1 20
1 1 0 1
1 0 1 4
1 0 0 12
0 1 1 3
0 1 0 10
0 0 1 15
0 0 0 0

All φ-coefficients equal zero, as can easily be calculated.
Given the null hypothesis, every pattern (i, j, k) should be observed with the

frequency n · pi · pj · pk, where pi states the probability for the value ‘1’ in
the character y1, pj for y2, and pk for y3; hijk/n estimates pijk (with n = 65). The
resulting expected frequencies eijk can then be tested one by one as to whether
they differ significantly from the observed frequencies, using the test statistic
from Formula (8.11) analogously (df = 1). We decide that α = 0.05.
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In R, we first create a matrix with the eight different combinations of character values in
analogy to the above table. We type

> cfa.mat <- cbind(c(1, 1, 1, 1, 0, 0, 0, 0),
+ c(1, 1, 0, 0, 1, 1, 0, 0),
+ c(1, 0, 1, 0, 1, 0, 1, 0))

i.e. we use the function c() to create the separate columns, with which we create three
vectors; then, we link them into a matrix with the function cbind(); we assign this data
to the object cfa.mat. Next, we use c() to create a vector with the frequencies of the
eight different combinations of character values; thus, we type

> h.ijk <- c(20, 1, 4, 12, 3, 10, 15, 0)

wherein we assign the resulting vector to the object h.ijk.
For the analysis, we apply the package cfa, which we load after its installation (see

Chapter 1) using the function library(). Now, we conduct the configuration frequency
analysis by typing

> cfa(cfa.mat, h.ijk, sorton = "label", sort.descending = TRUE,
+ bonferroni = FALSE)

i.e. we use cfa.mat, the combinations of character values, as the first argument for the
function cfa(); as the second argument, we use h.ijk for the respective frequencies.
With sorton = "label" and sort.descending = TRUE, we request that the
results be displayed in order of the character values in the above table, and, finally, we
use the argument bonferroni = FALSE to determine that the analysis be conducted
without being adjusted using the Bonferroni method (see below).

For results, we get (shortened output):

*** Analysis of configuration frequencies (CFA) ***

label n expected Q chisq p.chisq
1 1 1 1 20 12.505562 0.14276632 4.491329 0.03406718
2 1 1 0 1 6.848284 0.10056941 4.994306 0.02543085
3 1 0 1 4 11.402130 0.13810493 4.805377 0.02837106
4 1 0 0 12 6.244024 0.09796410 5.306076 0.02125117
5 0 1 1 3 9.463669 0.11638631 4.414674 0.03563109
6 0 1 0 10 5.182485 0.08053686 4.478247 0.03432892
7 0 0 1 15 8.628639 0.11302478 4.704594 0.03008211
8 0 0 0 0 4.725207 0.07839441 4.725207 0.02972360

Summary statistics:

Total Chi squared = 37.91981
Total degrees of freedom = 4
p = 7.371295e-10
Sum of counts = 65
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We see that, additionally, a global χ2-test with reference to Formula (9.3) is determined,
with df = 2m – m – 1 degrees of freedom, where m is the number of observed alternative
characters.

Because of a p-value of almost zero, the global χ2-test is significant: at least
one pattern occurs, compared to the null hypothesis (‘the three characters are
independent from one another’), unexpectedly often (or unexpectedly rarely).
Every pattern results in a significant test statistic. When we compare the column
of observed frequencies (n) to the column of expected frequencies (expected),
there are four typical patterns that occur unexpectedly often and four antitypical
patterns that occur unexpectedly rarely. The typical patterns are (1, 1, 1), (1, 0,
0), (0, 1, 0), and (0, 0, 1). Thus, three mono-symptomatic syndromes and one
tri-symptomatic syndrome emerge.

Master
Doctor

Strictly speaking, configuration frequency analysis as discussed so far belongs
to descriptive statistics, despite the application of a significance test. Due to the
comparison-wise type-I risk which leads to a severely high study-wise type-I risk
when using more than three characters, the researcher will most likely only refer
to the highest (configuration-specific) χ2-values as (descriptive) statistics for
interpretation of the analysis. From the methodological point of view, the better
approach for testing certain types of patterns of combinations of measurement
values for significance is using log-linear models (see Section 12.1.6). For more
complex analysis methods that are based on CFA, see for example von Eye,
Mair, & Mun (2010).

Doctor Seen historically, the CFA was probably the method that introduced the
technique of alpha correction to psychology. Obviously, the type-I risk ac-
cumulates if more than one test with some nominal α is applied within the
same research question. If the tests are independent of one another – which
is not the case if, as in the CFA, they are applied to the same data – m tests
would have the probability 1 – (1 – α)m of not resulting in a type-I error. For
α = 0.05 and m = 8, for example, this results in 0.3366. As a workable adjust-
ment, one can deduce a comparison-wise type-I risk of αcomparison = 1 – m

√
1 − α.

For α = 0.05 and m = 8, this results in αcomparison = 0.0064. The better-known
adjustment is the Bonferroni correction, which takes into account the fact
that the tests are not independent; it adjusts αcomparison = α / m.

In fact, none of the alpha corrections solve the given problem because they
all fail to consider type-II risk. This risk is (comparison-wise) higher than in the
case of no alpha correction. Thus, global tests with a study-wise type-I risk are
always to be preferred, or, when these are not compelling enough, it is preferable
to apply only a single or at most very few tests with a comparison-wise type-I
risk, those determined based on the theory of content in question.

Doctor Example 15.5 – continued
Adjusting the comparison-wise type-I risk αcomparison in accordance with the
Bonferroni correction, we must divide the actually given study-wise type-I risk
α = 0.05 as suggested; thus, αcomparison = 0.05 / 8 = 0.0063. Using this α, no
pattern would be considered either typical or antitypical. However, since the
global χ2-test is significant, the largest deviation, this being 12 – 6.2440 (χ2 =
5.3061) for the pattern (1, 0, 0), may be interpreted as a type.
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15.2.1.2 Latent class analysis

Latent class analysis (LCA) essentially is based on the same data structure as CFA. It models
the actual pattern of outcomes for all characters per research unit as some probability function.
We assume that there are latent and thus unobservable groups (classes) of research units,
which do not differ within their groups. The number of groups is unknown, as well as
their sizes. Within each of these groups, the investigated characters have a group-specific
probability (which is to be estimated) that a research unit belonging to this group realizes a
certain measurement value. The goals of LCA are to ascertain the optimal number of groups
necessary to achieve proper data fit, to estimate the unknown parameters of group size, to
estimate the group-specific probability of realization per measurement value and per character,
to calculate the probability of group membership to any group for every research unit, and,
finally, to determine rules for how the probability of group membership can be assessed for
new research units. The latter goal is not considered in cluster analysis.

Doctor Assume that the measurement values ‘1’ and ‘0’ of all characters y1, y2, . . .,
ym are, within each group, independent events; as mentioned earlier, we only
deal with dichotomous characters in the following. This assumption does not
exclude correlations between the characters per group; however, such correlations
are interpreted like those in partial correlation (see Section 12.1.1), which are
only constituted via a third random variable (noise factor): in this case, group
membership.

LCA models the probability for a certain pattern sv to be realized by person v
through certain outcomes with respect to m dichotomous characters as follows: i
serves as an index for the a groups; π i states the probability for a randomly drawn
person (from the sample) to belong to group Ai; piq is the probability for a ‘1’ in
character q within the group i; and yqv = 1 or yqv = 0:

P(sv ) =
a

∑

i=1

⎧

⎨

⎩
πi

m
∏

q=1

[

p
yqv

iq · (1 − piq )1−yqv

]

⎫

⎬

⎭
(15.2)

The unknown parameters can be estimated according to the maximum like-
lihood method. However, it is obvious that this is only possible if the number,
a, of groups is arbitrarily fixed, or if the analysis is applied according to several
different values of a (see the same problem for factor analysis as well, in Section
15.1.2). In any case, fit of the model of LCA – i.e. the respective solution in terms
of parameter estimates for any given number of groups – must be tested for the
data or, respectively, the goodness of fit must be compared with some concurrent
model. The latter is possible via a likelihood-ratio test (see Section 14.2.2); the
former can be done either using the conventional χ2-test according to Formula
(8.11), over all c patterns, or likewise with a likelihood-ratio test in which the
denominator gives the likelihood of the realized polynomial distribution over all
patterns:

L0 =
c

∏

g=1

(
hg

n

)hg
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(each with df = 2m – a(m + 1) degrees of freedom). Naturally, a classification
analysis like that used in discriminant analysis is possible.

Doctor Example 15.6 Knowledge about lung cancer and the way of gaining further
information (from Goodman, 1970; but see, especially, Formann, 1984)

There are m = 5 characters: reading newspapers (1 for ‘yes’; 0 for ‘no’),
listening to the radio, reading books and magazines, attending lectures (all analo-
gous to the first character), as well as knowledge about lung cancer (1 for ‘good’;
0 for ‘poor’). For all the patterns, the following frequencies were observed:

11111 11110 11101 11100 11011 11010 11001 11000 10111 10110 10101
23 8 102 67 8 4 35 59 27 18 201

10100 10011 10010 10001 10000 01111 01110 01101 01100 01011 01010
177 7 6 75 156 1 3 16 16 4 3

01001 01000 00111 00110 00101 00100 00011 00010 00001 00000
13 50 3 8 67 83 2 10 84 393

The question arises as to which types of persons, i.e. which typical patterns exist.
In the case of only five characters, a larger number than a = 3 groups does not
seem meaningful; even using four groups, almost every character might end up
defining a group alone. On the other hand, the cases of a = 2 groups and a = 1
group are interesting as well; the latter means that no different types exist. For the
goodness of fit test, α = 0.01 should be applied.

We use the data set from Example 15.6 (see Chapter 1 for its availability).

In R, we start by creating two objects, one for all combinations of character values, and
one for the respective frequencies. Thus, we type

> lca.mat <- Example_15.6[, 1:5]
> freq <- Example_15.6[, 6]

i.e. we assign the columns 1 through 5 from the data set Example_15.6 to the object
lca.mat with [, 1:5], and with [, 6] the column 6 to the object freq. Now, we
use the package randomLCA, which we load after its installation (see Chapter 1) using
the function library(). In order to conduct a latent class analysis, we type

> lca.1 <- randomLCA(lca.mat, freq, nclass = 1, calcSE = FALSE)
> lca.2 <- randomLCA(lca.mat, freq, nclass = 2, calcSE = FALSE)
> lca.3 <- randomLCA(lca.mat, freq, nclass = 3, calcSE = FALSE)
> lca.4 <- randomLCA(lca.mat, freq, nclass = 4, calcSE = FALSE)
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i.e. we use the patterns within the object lca.mat, as well as their frequencies within the
object freq, as arguments for the function randomLCA(); with nclass, we define the
desired numbers of groups, and with calcSE = FALSE, we suppress the calculation of
the standard errors. So, we conduct the LCA for each number of groups a = 1 through a
= 4, and assign the results to the objects lca.1 through lca.4.

Next, we test the goodness of fit of the respective model with a certain number of
groups via a likelihood-ratio test. For this purpose, we type

> pchisq(lca.1$deviance, df = 2ˆ5 - 1*(5+1), lower.tail = FALSE)
> pchisq(lca.2$deviance, df = 2ˆ5 - 2*(5+1), lower.tail = FALSE)
> pchisq(lca.3$deviance, df = 2ˆ5 - 3*(5+1), lower.tail = FALSE)
> pchisq(lca.4$deviance, df = 2ˆ5 - 4*(5+1), lower.tail = FALSE)

i.e. we transfer three arguments to the function pchisq(); for the first one, the empirical
χ2-value, accessed by $deviance; and as a second one, the degrees of freedom, for
example 2ˆ5 - 4*(5+1) for df = 25 – 4 × (5+1) degrees of freedom; with lower.
tail = FALSE as a third argument, we request the corresponding p-value.

As a result, we get:

[1] 2.712471e-109
[1] 0.002521027
[1] 0.09423195
[1] 0.2618086

The results are not (any longer) significant for the solution with three groups (0.0942);
because of this, we request the result of this solution by typing

> summary(lca.3)

As a result, we get:

Classes AIC BIC logLik
3 9373.626 9466.367 -4669.813

Class probabilities
Class 1 Class 2 Class 3
0.3202 0.4405 0.2393

Outcome probabilities
it1 it2 it3 it4 it5

Class 1 0.8652 5.844e-01 0.70727 0.15634 0.5909
Class 2 0.2499 1.161e-01 0.08433 0.02264 0.1589
Class 3 0.7338 3.040e-10 0.88013 0.07539 0.5313

First of all, the interviewed persons are about equally distributed in the three
groups (23.9% to 44.0%). Furthermore, the characters reading newspapers and
reading books and magazines strongly differentiate between Groups 1 and 3 on
the one hand and Group 2 on the other hand. People who belong to Group 2 do
these things significantly less often than people from the other two groups (25.0%
versus 0.08%). This relationship between the groups also applies to the character



P1: OTA/XYZ P2: ABC
JWST094-c15 JWST094-Rasch September 28, 2011 11:59 Printer Name: Yet to Come

METHODS OF INFERENTIAL STATISTICS 501

knowledge about lung cancer, although to a lesser extent; individuals in Group
2 show such knowledge less often than those in Groups 1 or 3. These two latter
groups are only differentiated by the character attending lectures, which members
of Group 3 do about twice as often as members of Group 1.

Doctor For more complex approaches to LCA, see Formann (1984), as well as
Collins & Lanza (2010).

15.2.2 Confirmatory factor analysis

While (exploratory) factor analysis is, as a method of descriptive statistics, theory-generating,
confirmatory factor analysis tests an already theory-based factor structure for its fit to
given data.

Just as the path analysis before, confirmatory factor analysis can be viewed as a special
case of (linear) structural equation models (SEMs). Thus, we will briefly introduce them at
this point.

The main characteristic of structural equation models is that (linear) dependencies, directed
or undirected, are being modeled between several latent variables. Additionally, these latent
variables are assumed to be responsible for some observed characters, modeled as random
variables. In order to take random effects for them into account, unknown random errors are
modeled for each observed character. These can, again, be correlated or not correlated with
one another. The goal is to estimate the unknown modeled regression coefficients in a way
that can optimally reproduce the given correlations between the investigated characters.

Master
Doctor

Figure 15.12 gives an arbitrary example of a structural equation model. In this
case, f1, f2, f3 and f4 are latent variables that predict the investigated characters
y1 through y10 to a yet unknown degree of strength, but in accordance with the
illustrated paths; f3 is the latent error of f4. The two latent variables f1 and f2

correlate with each other. The errors for the random variables yq modeling the
characters yq are eq, q = 1, 2, . . ., 10. Errors e8, and e10 are assumed to correlate.

e1 y1

f1e2 y2

e3 y3

e4 y4

y9

y8

y11

y10

e5 y5

e6 y6

e7

e8

e8

e10

y7

f2

f4

f3

Figure 15.12 Example of a structural equation model (see the detailed description within
the text).
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Finally, there is also a manifest character, y11, that influences a latent variable,
namely f4.

Numerous (linear) equations may be derived from Figure 15.12. For example
(if all variables are standardized): y4 = β f2 y4 · f 2 + e4 and f4 = β f1 f4 · f 1 +
f3 + βy11 f4 · y11; β are the regression coefficients (correlations), indexed with the
respective paths. Both of these equations show that some regression coefficients
are (necessarily) modeled with a weight of 1. In these equations, there are in total
(inclusive the error variances of each manifest variable) less unknown parameters
– in particular if, for each latent variable, we fix any regression coefficient at
1 – than there are correlation coefficients, that is

( 11
2

) = 55. For this reason the
given structural equation model is identifiable.

Generally, the maximum likelihood method is used for estimating the un-
known parameters; in this case, a certain multidimensional type of distribution of
the modeled random variable has to be assumed. The question of model quality
is, in this context, answered in several diverse ways. Basically, this is due to the
fact that the pertinent goodness of fit test is almost always significant (using some
χ2-distributed test statistic T, essentially the deviation is ascertained between the
given correlation matrix and the one that results for the estimated parameters (for
more details, see e.g. Kline, 2010)). Thus, researchers are traditionally content
with fairly high indexes or coefficients of goodness of fit. Besides AIC (see Sec-
tion 14.2.2), mostly some kind of coefficient based on the test statistic T is used.
Very often, this is the root mean square error of approximation (RMSEA) in the
form of

√

T − d f

n · d f

If the model holds, this term corresponds to the standard error of the model
equation’s estimator. Also often used is the index CFI (comparative fit index):

(T0 − df) − (T − df)

T0 − df

with T0 as the value of the test statistic T where all correlations are set to zero; ide-
ally, it amounts to 1. Model-immanent benchmarks that define numerical criteria
for determining when a structural equation model explains the data sufficiently
are not available – there are merely a few conventions. Certainly, these are most
compelling when compared for several concurrent models (or that is to say: model
specifications).

Confirmatory factor analysis is now based on a given factor structure which
most often stems from the results of an earlier exploratory factor analysis. It is
a special case of structural equation models insofar as: (1) the latent variables
(factors) are not modeled as the target of a single-edged, directed path, and thus
do not show a latent error; (2) all latent variables (factors) are modeled as being
uninfluenced by manifest characters; (3) all manifest characters are modeled as
being dependent on at least one latent variable (factor) and thus all have been
modeled with an error; and (4) all these errors are assumed to be uncorrelated.
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y1 ... Everyday Knowledge

y2 ... Competence in Realism

y3 ... Applied Computing

y4 ... Social and Material Sequencing

y5 ... Producing Synonyms

y6 ... Verbal Abstraction

y7 ... Social Understanding and Material Reflection

y8 ... Anticipating and Combining–figural

y9 ... Anticipating and Combining–abstract

y10 ... Immediately Reproducing–numerical ‘forwards’

y11 ... Immediately Reproducing–numerical ‘backwards’

y12 ... Codingand Associating–number of coded

y13 ... Coding and Associating–associations
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Figure 15.13 Linear structural equation model of confirmatory factor analysis for the test
battery AID 2-Turkish.

Master
Doctor

Example 15.7 Can the factor structure of the applied intelligence test battery be
confirmed for children with Turkish as native language (Example 1.1)?

In Example 1.1, the intelligence test battery AID 2 was used. As a continuation
of Example 15.2, the research question now is whether the factor structure that
was ascertained in the standardization sample of AID 2 also holds within the
population of children with Turkish as native language.

Apart from the 5 subtests used in this book, the AID 2 consists of numerous
other subtests; together, they provide 13 test scores per child. The factor structure
that was obtained for them using (exploratory) factor analysis consists of four
factors. Factor I is mainly represented by the subtests Everyday Knowledge,
Applied Computing, and Social and Material Sequencing; Factor II by Coding
and Associating; and Factor III by Immediately Reproducing – numerical (subtests
that represent Factor IV were not covered in Example 1.1).

Though exploratory factor analysis ascertained a three-factor-solution in Ex-
ample 15.2, the respective highest loadings are not completely in congruence with
the factor structure of children with German as native language. With confirmatory
factor analysis we now examine whether the same factor structure nevertheless
underlies this data. However, it is not possible to estimate the parameters of the
respective model (see Figure 15.13). Thus, we will use the original data – available
as Example 15.7 (see Chapter 1 for its availability) – that was given for calibration
and standardization of the version AID 2-Turkish (Kubinger, 2009a). This data
set contains the test scores of 355 children with Turkish as native language.
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In R, we use the package sem, which we load after its installation (see Chapter 1) using
the function library(). Next, we create a variance–covariance matrix of the characters
we want to analyze by typing

> S <- cov(Example_15.7)

i.e. we apply the function cov(), to which we submit the data set Example_15.7; we
assign the results to the object S.

Now, we have to specify the model from Figure 15.13; to do this, we type

> model <- specify.model()

i.e. we use the function specify.model() without adding an argument; we assign the
results to the object model. After computing this instruction, a ‘1:’ comes up; this is a
prompt to add further instructions. Now, we have to define the model line by line; we type

F1 -> sub1, NA, 1
F1 -> sub2, lam12, NA
F1 -> sub3, lam13, NA
F1 -> sub4, lam14, NA
F1 -> sub6, lam15, NA
F1 -> sub9, lam16, NA
F1 -> sub11, lam17, NA
F2 -> sub8, NA, 1
F2 -> sub10, NA, 1
F3 -> sub5f, NA, 1
F3 -> sub5b, NA, 1
F4 -> sub7c, NA, 1
F4 -> sub7a, NA, 1
sub1 <--> sub1, e12, NA
sub2 <--> sub2, e12, NA
sub3 <--> sub3, e13, NA
sub4 <--> sub4, e14, NA
sub6 <--> sub6, e15, NA
sub9 <--> sub9, e16, NA
sub11 <--> sub11, e17, NA
sub8 <--> sub8, e21, NA
sub10 <--> sub10, e22, NA
sub5f <--> sub5f, e31, NA
sub5b <--> sub5b, e32, NA
sub7c <--> sub7c, e41, NA
sub7a <--> sub7a, e42, NA
F1 <--> F1, var.F1, NA
F2 <--> F2, var.F2, NA
F3 <--> F3, var.F3, NA
F4 <--> F4, var.F4, NA

Every line consists of three arguments: in the first argument, the relationships between
characters are being defined, wherein a one-headed arrow ‘->‘ specifies a directed
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relationship, and a two-headed arrow ‘<-->‘ requests the covariance if there are two
different characters, or, alternatively, requests the variance if the two indicated characters
are actually the same one. With the second argument, we choose a label for the respective
parameter; if this parameter is to be fixed to a certain value, this line should read NA. With
the help of the third argument, an optional starting value can be defined for the parameter
estimation, or the parameter can be fixed to a certain value; if NA is typed in here, the
parameter will be estimated freely, letting the program define the starting value. If we want
to fix a parameter, we type in the desired value as a third argument (after having typed NA
as a second one). In the case at hand, the first 13 lines serve the purpose of defining the
relationships between the 13 manifest and the four latent characters. The factor loading
of the character sub1 is being fixed to the value 1 and serves as a reference variable
for the latent character F1. Also, every loading of the latent characters F1 through F4 is
fixed to 1. In the lines 14 through 26, we request a residual variance for every manifest
character. Finally, the statements in the last 4 lines order the estimation of the variance
of each factor. After entering the last line, we add an empty line to signal the end of the
model specifications to the program. Now, we estimate the model parameters by typing

> sem.model <- sem(model, S = S, N = nrow(Example_15.7))

i.e. we use the function sem(), assigning the specified model in the object model, the
variance–covariance matrix in the object S, and the sample size (N) (with nrow()) to it
as arguments. We assign the results of the calculation to the object sem.model. Finally,
we instruct the program to print the results by typing

> summary(sem.model)

i.e. we submit the object sem.model to the function summary() as an argument.
As a result, we get (shortened output):

Model Chisquare = 324.1 Df = 69 Pr(>Chisq) = 0
Chisquare (null-model) = 1431.2 Df = 78
RMSEA index = 0.10219 90% CI: (0.091128, 0.11354)
Bentler CFI = 0.81148

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

lam12 0.50104 0.063992 7.8297 4.8850e-15 UT2tw <--- F1
lam13 0.96933 0.085426 11.3470 0.0000e+00 UT3tw <--- F1
lam14 0.64166 0.084397 7.6028 2.8866e-14 UT4tw <--- F1
. . .

e12 75.20702 4.467940 16.8326 0.0000e+00 UT1tw <--> UT1tw
e13 95.76359 8.150359 11.7496 0.0000e+00 UT3tw <--> UT3tw
e14 131.22587 10.231441 12.8257 0.0000e+00 UT4tw <--> UT4tw
e42 36.89773 4.725225 7.8087 5.7732e-15 UT7astw <--> UT7astw
. . .

var.F1 74.37218 10.324548 7.2034 5.8709e-13 F1 <--> F1
var.F2 52.39293 6.876891 7.6187 2.5535e-14 F2 <--> F2
var.F3 22.36371 3.802350 5.8816 4.0644e-09 F3 <--> F3
var.F4 54.73555 5.618461 9.7421 0.0000e+00 F4 <--> F4
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The parameters we just obtained are not standardized yet. In order to get the standardized
coefficients, we type

> std.coef(sem.model)

i.e. we submit the object sem.model to the function std.coef().
This results in (shortened output):

Std. Estimate
1 0.7051307 UT1tw <--- F1
2 lam12 0.4459594 UT2tw <--- F1
3 lam13 0.6495144 UT3tw <--- F1
4 lam14 0.4349664 UT4tw <--- F1
. . .

14 e12 0.5027906 UT1tw <--> UT1tw
15 e12 0.8011202 UT2tw <--> UT2tw
16 e13 0.5781310 UT3tw <--> UT3tw
17 e14 0.8108042 UT4tw <--> UT4tw
. . .

27 var.F1 1.0000000 F1 <--> F1
28 var.F2 1.0000000 F2 <--> F2
29 var.F3 1.0000000 F3 <--> F3
30 var.F4 1.0000000 F4 <--> F4

Due to the p-value of almost zero, the global χ2-test results in significance;
thus, describing the observed correlation matrix by one reproduced using the
model is not successful. The coefficients of goodness of fit (RMSEA = 0.102 and
CFI = 0.811) reveal that, according to conventional appraisal criteria (for details,
see Kline, 2010), our model does not explain the data sufficiently.

15.2.3 Models of item response theory

In the context of psychometrics, special theory-generating methods for psychology, especially
for psychological assessment, have been developed. They attempt to model how reactions
(answers) to a task, a question, or a statement (generally: item) of a psychological test (or
questionnaire) come about. This has been the starting point for a new (sub-) field of scientific
research, item response theory (IRT). Essentially, IRT is based on the logistic function (see
Section 13.4). To be more precise, IRT deals with a probability function that postulates the
probability for the occurrence of a certain reaction category in dependence of the respective
aptitude or trait of a given person as well as in dependence of the respective characteristics of
a given item.

15.2.3.1 Rasch model

The basic model for all other models of IRT is the (dichotomous logistic test-) model by
Rasch.2 For simplicity’s sake, it is just called the Rasch model (see Example 5.7). It postulates

2 Georg Rasch, Danish statistician.
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the probability of the solution of a certain task in a performance test (mostly with an unknown
difficulty) in dependence of the (unknown, but to be estimated) ability of a certain testee. Given
testee v and task i, the observable (manifest) character yiv is to be modeled as random variable
yiv with the measurement values –/0 (‘not solved’) and +/1 (‘solved’). The outcome depends
on two unobservable (latent) character: the character ability, in the form of realization ξ v, and
the character difficulty, in the form of realization σ i. The distribution of all three characters
is of no interest here: this concerns the sample of testees v = 1, 2, . . ., n, and the population
of testees v = 1, 2, . . ., N, as well as the tasks of a task pool i = 1, 2, . . ., k or the tasks
in a task universe i = 1, 2, . . ., K. In this sense, ξ v and σ i represent fixed, but unknown,
values (or parameters), which, in general, are to be estimated. It is merely presupposed that
all ξ v and σ i are one-dimensional and express different degrees of realizations of the same
dimension. Thus, the Rasch model models the probability for the task i being solved by testee
v as follows:3

P(+|ξv , σi ) = eξv −σi

1 + eξv −σi
(15.3)

Doctor Naturally, the Rasch model is a special case of the generalized linear model. The
fact that makes the Rasch model so special in comparison to many other mod-
els of the IRT is that the estimation of parameters is, aside from random errors,
independent of the chosen sample. Specifically, the difficulty parameters σ i are
(or can be) estimated independently of the testees: no matter which sample of
persons is used, the estimates of every difficulty parameter σ i are statistically
the same. This is a quality immanent to the model (for a proof, see, for exam-
ple, Kubinger, 2009b); it refers to a special estimation method, the conditional
maximum likelihood estimation method (CML). This method applies under the
condition that the unknown ability parameters are replaced by their exhaustive
statistics (see Section 6.5). From this property of the model, an examination of
model appropriateness can be deduced; i.e. the (absolute) validness of the model
can be tested in the sense of a model test, and not merely the fit in compar-
ison to concurrent models or the general fit of the model to the data can be
evaluated (see Section 14.1). The Rasch model implies that the estimates of the
difficulty parameters are (aside from random deviations) equal, no matter which
(sub-) sample was used for estimation. Given empirical data and a psychological
test for which we want to know (for reasons we will discuss later) whether its
tasks behave in conformity with the model, all estimates of the difficulty param-
eters σ i should be equal for any (say two) arbitrarily split sub-samples of the
total sample.

The easiest method to examine this is the graphical model check, a means of
descriptive statistics. Since all estimates σ̂i are best standardized to

∑k
i=1 σ̂i = 0

(in every sub-sample), one can, for each task i, plot the two corresponding param-
eter estimates against each other in a rectangular coordinate system. If all resulting

3 In the American literature, θ and b are often used instead of ξ and σ . This is, for the general case, illogical
because, in the general case, the difficulty parameters are not known values; we always label (unknown) parameters
with Greek symbols. Also, within statistics, θ is used to describe the general case for any parameter. Here, we join
Georg Rasch in his original labeling.



P1: OTA/XYZ P2: ABC
JWST094-c15 JWST094-Rasch September 28, 2011 11:59 Printer Name: Yet to Come

508 THEORY-GENERATING METHODS

points lie on or very close to the 45◦ line through the origin, then the estimates
σ̂i of both sub-samples (largely) match each other, as is the case for the Rasch
model; hence, the tasks conform to the Rasch model. Intrinsically, also belonging
to descriptive statistics, is the test statistic z (‘z-test’), originally conceptualized by
Fischer and Scheiblechner (1970). Here, the difference of the two sub-samples’
parameter estimates for each task is divided by their standard deviation – which
is the root of the sum of the two reciprocal values of the so-called Fisher’s in-
formation. Although the test statistic z is asymptotically normally distributed for
each task, the vast number of corresponding results makes this approach inap-
propriate for hypothesis testing: the type-I risk would be drastically increased.
As a method of inferential statistics, there is a special likelihood-ratio test (see
Section 14.2.2), Andersen’s likelihood-ratio test. Simplified, this test compares
the likelihood of the data – in accordance with Section 6.5, this corresponds to
the plausibility of the data – for two hypotheses. On the one hand, there is the null
hypothesis, which states the same difficulty parameters for both sub-samples, and
on the other hand there is the alternative hypothesis, which states that different
difficulty parameters are given in each of the two sub-samples. The correspond-
ing test statistic is approximately χ2-distributed (with df = k – 1 degrees of
freedom).

The importance of the Rasch model for the construction of psychological
tests lies in a mathematical proof (see Fischer, 1995). This proof shows that the
Rasch model must hold for the tasks of a test, in order to justify the regularly
implemented scoring rule of summing up the ‘number of solved tasks’ to obtain a
test score. In this context, ‘justified’ means that the measurement of the ability in
question according to this score is actually empirically founded and that it is fair
to compare different testees based on this score. Therefore, for tests that do not
conform with the Rasch model, the ‘number of solved tasks’ does not express the
empirically observable behavioral relations between testees in an adequate and
hence fair way. Thus, it must be the goal of psychological test development to
ensure that the tasks of a test are calibrated in conformity with the Rasch model; in
this way, it is possible to measure one-dimensionally, and moreover to measure or
score using the ‘number of solved tasks’. Usually, such a calibration is achieved
by excluding those tasks from the pool (item pool), which do not conform to the
Rasch model. Kubinger (2005) shows how to do this in an optimal manner.

Doctor Planning a study for the calibration of a psychological test according to the Rasch
model has only recently been basically solved (see Kubinger, Rasch, & Yanagida,
2009; see also Example 10.16). For a few selected cases (see also Kubinger, Rasch,
& Yanagida, in press), the necessary number of testees now can be ascertained in
order to avoid overlooking relevant deviations between the parameter estimates
of different sub-samples – given a fixed type-I risk and a fixed type-II risk. For
k = 20 tasks that are equally distributed with respect to their difficulties between
–3 and 3, given α = 0.05, β = 0.20, and a certain relevant effect, a sample size
of two times 101 testees is needed. The relevant effect defined here was that two
tasks (of average difficulty) show a difference in their parameter estimates from
two sub-samples that is sized a sixth of the range of all difficulty parameters.



P1: OTA/XYZ P2: ABC
JWST094-c15 JWST094-Rasch September 28, 2011 11:59 Printer Name: Yet to Come

METHODS OF INFERENTIAL STATISTICS 509

Example 15.8 Calibrating a psychological test in accordance with the Rasch model
The matter at hand is a new performance test x, for which we created k = 20 tasks; 202

testees were tested. The test is to be calibrated in accordance with the Rasch model.
We use the data from Example 15.8 (see Chapter 1 for its availability). It contains the

characters gender (0 for ‘female’; 1 for ‘male’), age (0 for ‘< 30’; 1 for ‘≥ 30’), and native
language (0 for ‘German’; 1 for ‘not German’) as well as the k tasks y1, y2, . . ., yk (0 for
‘not solved’; 1 for ‘solved’) for each testee. The calibration will be conducted according to
Kubinger (2005), whereby four characters are used to partition the total sample into pairs of
sub-samples, which are used to conduct Andersen’s likelihood-ratio test (comparison-wise
type-I risk α = 0.05): number of solved items, i.e. the partition of the total sample into testees
with a high number of solved items vs. testees with a low number of solved items, as well
as gender (‘male’ vs. ‘female’), age (‘age group 0’ vs. ‘age group 1’), and native language
(‘German’ vs. ‘not German’). In the case of significance of Andersen’s likelihood-ratio test,
the graphical model check or the ‘z-test’ will be used to exclude tasks consecutively until a
new calculation of the likelihood-ratio test produces non-significant results; when this occurs,
a posteriori conformity with the Rasch model will be given.

In R, we apply the package eRm (see Mair, Hatzinger, & Maier, 2010), which we load
after its installation (see Chapter 1) using the function library(). First, we create one
object which contains the tasks that are to be analyzed as well as one with the characters
by which we will split the total sample into partial samples. We type

> items <- Example_15.8[, 1:20]
> split <- Example_15.8[, 21:23]

i.e. we assign the columns 1 through 20 from the data set Example_15.8 to the object
items with [, 1:20], and the columns 21 through 23 with the partition criteria to the
object split with [, 21:23]. Now we calculate the Rasch model by typing

> items.RM <- RM(items)

i.e. we use the function RM(), to which we submit the tasks from the object items as an
argument, and assign the results to the object items.RM.

Next, we compute the likelihood-ratio test for the program package’s default criterion
for the partition into partial samples, which is the number of solved items, and one more
for each of our especially collected characters gender, age, and first language. We type

> items.RM.m <- LRtest(items.RM, splitcr = "median")
> items.RM.g <- LRtest(items.RM, splitcr = split[, 1])
> items.RM.a <- LRtest(items.RM, splitcr = split[, 2])
> items.RM.l <- LRtest(items.RM, splitcr = split[, 3])

i.e. we use the function LRtest(), to which we submit items.RM as the first argument
and, as the second one, through splitcr = , the character by which the sample is to be
partitioned; unfortunately, the package eRm uses the label "median" instead of number
of solved items inside its programming structure.
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When calculating the partition criterion number of solved items, a notice appears which
tells us that task 2 was solved by all persons within a partial group and thus cannot be
included in the analysis. We assign the results to one separate object each, namely to
items.RM.m (for number of solved items), items.RM.g (for gender), items.RM.a
(for age) and items.RM.l (for native language); in order to retrieve the results,
we type

> summary(items.RM.m)
> summary(items.RM.g)
> summary(items.RM.a)
> summary(items.RM.l)

As a result, we get the test values including the p-values as clearly arranged in Table
15.6 (together with other results).

Table 15.6 (row ‘Before’) reveals that Andersen’s likelihood-ratio test results in significance
when the sample is split along the character gender. Thus, we use the graphical model check
to examine whether the deletion of some few tasks might lead to Rasch model conformity of
performance test x.

Table 15.6 Results of the calibration in accordance with the Rasch model in Example
15.8 (tasks that were solved by everyone in a certain sub-sample or not solved by anyone
are not included in the respective analysis)

Number of solved
items Gender Age Native language

χ2

(LRT) df
p-

value
χ2

(LRT) df
p-

value
χ2

(LRT) df
p-

value
χ2

(LRT) df
p-

value

Before 13.235 18 0.777 56.165 19 0.000 18.900 19 0.463 23.852 19 0.202
After 15.161 16 0.513 8.639 17 0.951 17.428 17 0.426 22.631 17 0.162

So, in R, we type

> plotGOF(items.RM.g, xlab = "male", ylab = "female",
+ xlim = c(-4, 4), ylim = c(-4, 4))

i.e. we use the function plotGOF() and set the results for the partition criterion of gender,
items.RM.g, as the first argument; we label the axes with xlab and ylab, and define
the displayed interval for the difficulty parameters as −4 to +4 with xlim and ylim. The
resulting graphics are shown in Figure 15.14a.
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Figure 15.14a Graphical model check with respect to the character gender for all tasks
in Example 15.8.

i1 i2
i3

i4i5

i6
i8

i10
i11

i13

i14i15
i17

i16 i18

i19

i20

i7

(b)

Graphical Model Check

–4

–4
–2

0
2

4

F
em

al
e

–2 0
Male

2 4

Figure 15.14b Graphical model check with respect to the character gender after the
deletion of the tasks 9 and 12 (Example 15.8).

As can be seen in Figure 15.14a, the tasks with the numbers 9 and 12 have considerably
different difficulties within the two sub-samples. In comparison to the rest of the tasks, task 12
is disproportionately easier for female testees than for male persons; for task 9, the opposite
is true.

Thus, we remove these two tasks from the test and repeat the analysis for the remain-
ing tasks.
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In R, we again create an object which contains the tasks that are to be analyzed, this time
excluding the two which do not conform to the Rasch model. We type

> items2 <- items[, -c(9, 12)]

i.e. we exclude the columns 9 and 12 from the object items with [, -c(9, 12)] and
assign the results to the object items2. Next we repeat the analysis with the reduced data
set by typing

> items2.RM <- RM(items2)
> items2.RM.m <- LRtest(items2.RM, splitcr = "median")
> items2.RM.g <- LRtest(items2.RM, splitcr = split[, 1])
> items2.RM.a <- LRtest(items2.RM, splitcr = split[, 2])
> items2.RM.l <- LRtest(items2.RM, splitcr = split[, 3])
> plotGOF(items2.RM.g, xlab = "male", ylab = "female",
+ xlim = c(-4, 4), ylim = c(-4, 4))

The result of these analyses is given in Table 15.6 as well.

Now, no significant LRT is to be seen. The graphical model check (see Fig-
ure 15.14b) also emphasizes that the model holds. Only the task numbered 16 is con-
spicuous; the difference between the two parameter estimates is a little more than a
sixth of the range of the difficulty parameters. We decide in favor of a posteriori model
validness.

In a case like this, when the model holds only a posteriori, the ‘kind of cross-
validation’ (also see Section 14.2.3) as suggested by Kubinger (2005) is recommended:
a new set of data should be used to test whether the remaining 18 tasks conform to the
Rasch model.

Doctor Example 15.8 – continued Because we used the approach of Kubinger, Rasch, &
Yanagida (2009) for planning the study, we now can indeed apply their new model
test (see Example 10.16; there, a three-way analysis of variance of the type (A �
B) × C was conducted in order to calibrate a psychological test in accordance
with the Rasch model). However, this approach – testing the interaction effect
A × C – is only useful if the main effect A has proved (in advance) to be
non-significant.

Here, this is the case for partitioning the sample into two sub-samples with
reference to the character gender (see Table 15.7a, which is reached by proceeding
in accordance with Example 10.16).

Since the interaction is significant, we can, for example, try to identify and
delete non-conforming tasks using the graphical model check described earlier.
If we delete the tasks with the numbers 9 and 12 again, we get the results
shown in Table 15.7b. For the remaining 18 tasks, a posteriori model validness
is given.
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Table 15.7a Results of the calibration in accordance with the
Rasch model by a three-way analysis of variance of the type
(A � B) × C concerning the character gender for all tasks of
Example 15.8

p (F-Test)

A Gender
B(A)

Testees C Tasks A × C

0.269 0.000 0.000 0.000

The essential point of this approach is that only a single model test is conducted
(i.e. only concerning a single partition of the total sample), because planning the
study was based only on a study-wise type-I risk (α = 0.05). Bear in mind that, in
this context, when traditionally calibrating a psychological test (according to the
Rasch model; see Kubinger, 2005), no conclusions about the study-wise type-I
and type-II risk can be made because of the usage of a comparison-wise type-I
risk.

Table 15.7b Results of calibrating in accordance with the Rasch
model using a three-way analysis of variance of the type
(A � B) × C concerning the character gender after deleting the
tasks 9 and 12 (Example 15.8)

p (F-test)

A Gender
B(A)

Testees C Tasks A × C

0.198 0.000 0.000 0.937

15.2.3.2 Generalizations of the Rasch model

We will now discuss the most pertinent generalizations of the Rasch model. This specifically
concerns the case of dichotomous characters; for more complex models and especially for
multi-categorical characters as items (tasks), we refer to further literature (see, for example,
Kubinger, 1989, or Bond & Fox, 2007).

One possibility of generalization concerns adding further item parameters, i.e. modeling
item characteristics additionally to the difficulty parameter. With, all in all, three kinds of
item parameters, the so-called Birnbaum or, to be more exact, three-parameter logistic model
(3-PL model) is a quite general one:

P(+|ξv ; σi , αi , βi ) = βi + eαi (ξv −σi )

1 + eαi (ξv −σi )
(15.4)
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with αi for the item-discrimination parameter of task i – this corresponds to the different
weightings of correct responses when calculating the test score – and β i as the item-guessing
parameter which corresponds to the effect of (merely) guessing the right answer, which can
occur when tasks offer prewritten options for the response (so-called multiple choice tests).
Setting all β i = 0 results in the 2-PL model; additionally setting all αi = 1 leads to the Rasch
model, which can thus also be called 1-PL model. Modeling all αi = 1, but not all β i = 0
leads to the difficulty-plus-guessing PL model of Kubinger & Draxler (2006).

Doctor All these models are also to be interpreted as special cases of the generalized
linear model.

In contrast to the Rasch model, a CML estimation (of the item parameters) is not possible
for the other models mentioned here (nor for most of the other IRT models not mentioned).
This also means that a model test is not possible; only the model’s fit to the data or its fit in
comparison to some concurrent model can be ascertained. Appropriate goodness of fit tests
(likelihood-ratio tests) or coefficients of goodness of fit, especially AIC and BIC (see Section
14.2.2), are used in this context. Parameter estimation (of the item parameters) is carried out
by assuming a certain distribution function of the also unknown ability parameters (marginal
maximum likelihood method, MML). Aside from the R-package, there are numerous, mostly
commercially distributed computer packages for this calculation. We will not deal with them
here in detail.

Master
Doctor

The other possibility for generalizing the Rasch model when dealing with items
as dichotomous characters, is to decompose the item difficulty parameters into
a linear combination of so-called basic parameters: σ i = ∑p

j=1 qijη j – here the
qij are fixed values which are hypothesized and thus modeled as weights for the
parameters ηj which are to be estimated (p < k). This linear logistic test model
(LLTM) by Fischer (1973) can indeed also be seen as a special case of the Rasch
model, especially because the validness of the latter is a pre-condition for the
validness of the LLTM. In the case where a psychological test conforms to the
Rasch model, a likelihood-ratio test in terms of a goodness of fit test can be
applied in order to examine whether the data are explained significantly worse
by the LLTM with fewer parameters than by the Rasch model with substantially
more parameters (see the number of degrees of freedom in Section 14.2.2; for
more details, see for example Kubinger, 2008).

Master
Doctor

Example 15.8 – continued
Assume here that performance test x is a test assessing computing-related cogni-
tive performances (word problems like: ‘Five children are sitting on a bus; two
more get on at the next stop. How many children are on the bus then?’). For the 18
items, which conform to the Rasch model, we hypothesize difficulty parameters
η1, η2, η3, η4 specific to the arithmetic operations involved (adding, subtract-
ing, multiplying, dividing) as well as a difficulty parameter η5 (for crossing the
barrier of tens). Concretely, this results in the following matrix ((qij)), where qij

is the number of times the respective arithmetic operation has to be used in the
respective task:
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1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 0 0 0 1
1 1 0 0 0
2 0 0 0 0
2 0 0 0 1
0 0 1 0 0
0 0 1 0 1
0 0 0 1 0
1 0 1 0 0
0 1 1 0 0
0 0 1 1 0
0 0 1 1 1
1 0 1 1 0
1 1 1 0 0
1 1 1 1 1

The question now is whether the data are sufficiently well explained by the
corresponding modeled LLTM; i.e. whether the data are not explained signifi-
cantly worse than by the Rasch model. If this is the case, we are mostly interested
in the basic parameters – that is the difficulty parameters specific to the arithmetic
operations – and in their relation to one another. The type-I risk is chosen as
α = 0.05.

In R, we start by creating the matrix ((qij)). For this, we type

> q.ij <- matrix(c(1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 0, 1, 0, 0, 0,
+ 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,
+ 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
+ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0,
+ 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1),
+ ncol = 5)

i.e. we use the function c() with which we create a vector containing all entries of the
matrix; we submit this vector to the function matrix(), and with ncol = 5, we state
that the matrix has 5 columns; these are assigned to the object q.ij.

Now, using the function LLTM() from the package eRm, we calculate the linear
logistic test model. In doing so, we use the reduced set of data created earlier in Example
15.8, which we assigned to the object items2. To do this, we type

> items2.LLTM <- LLTM(items2, q.ij)
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i.e. submit the items in the object items2 that are in conformity with the model as the first
argument; as the second one, we set the matrix ((qij)) with q.ij. We assign the results to
the object items2.LLTM. Finally, we use a likelihood-ratio test to check if the data are
not explained significantly worse by the modeled LLTM than by the Rasch model. This
happens by typing

> 2*(items2.RM$loglik - items2.LLTM$loglik)

i.e. we request the values of the log-likelihoods for the Rasch model and the LLTM with
$loglik; form the difference of the two and finally multiply it by 2. As a result, we get

[1] 129.2612

With

> items2.RM$npar - items2.LLTM$npar

we get to the sought-after degrees of freedom, through calculating the difference between
the number of parameters of the Rasch model and the number of parameters of the LLTM
with the function $npar. The result is

[1] 12

Next, we have to calculate the 0.95 quantile of the χ2-distribution with df = 12. For this,
we type

> qchisq(0.95, df = 12)

i.e. we use the function qchisq() and enter the respective values. As a result, we get

[1] 21.02607

Then, we calculate the correlation between the difficulty-parameter estimates of the Rasch
model and the difficulty-parameter estimates that can be re-calculated from the basic
parameters of the LLTM; in order to do this, we type

> cor(items2.RM$betapar, items2.LLTM$betapar)

i.e. we use the function cor(), to which we transfer the respective parameter estimates –
which are ordered via $betapar for each object, once for the Rasch model and once for
the LLTM. The result is

[1] 0.9563887

Now we create a diagram that opposes the difficulty-parameter estimates of the Rasch
model to the difficulty-parameter estimates that were re-calculated from the basic param-
eters of the LLTM. For this, the latter ones have to be normed analogous to the first ones,
so that their sum equals 0. To do this, we type
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> betapar.LLTM <- items2.LLTM$betapar - mean(items2.LLTM$betapar)

i.e. we subtract their mean from every parameter in the object items2.LLTM$betapar
and assign the results to the object betapar.LLTM. Next, we type

> plot(items2.RM$betapar, betapar.LLTM, xlim = c(-4, 4),
+ ylim = c(-4, 4),
+ xlab = "Item difficulty parameter RM",
+ ylab = "Item difficulty parameter LLTM")
> abline(0, 1)

i.e. we apply the function plot(), to which we submit the difficulty-parameter estimates
of the Rasch model in the object items2.RM$betapar as the first argument and the
now normed difficulty-parameter estimates of the LLTM in the object betapar.LLTM
as its second one; with xlim and ylim, we define the benchmark of the axes and then
label them with xlab and ylab. With the help of the function abline(), we draw the
45◦ line through origin.

The results are displayed in Figure 15.15.
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Figure 15.15 R-output of the graphical comparison between the item difficulty param-
eters according to the Rasch model on the one side and the item difficulty parameters as
re-calculated from the basic parameters of the LLTM (Example 15.8).
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Because the calculated value of the likelihood-ratio test’s test statistic is larger
than the value of the 0.95-quantile of the χ2-distribution, the result is significant;
it is to be concluded that the psychological complexity of the respective tasks
cannot be easily reduced to the (difficulties of the) arithmetic operations that were
hypothesized as being necessary to solve the task. Although the tasks do measure
one-dimensionally, their different difficulties are surely also determined by dif-
ferent and manifold required thinking processes. The relatively high correlation
coefficient cannot hide this fact.

Doctor Formann (1984) had the idea of beginning Rasch model analysis by grouping
the persons in advance using latent class analysis (see Section 15.2.1.2). The
aim is that the investigated characters (items of a psychological test) measure in
conformity with the Rasch model within each of the groups. This can be done via
a special case of the so-called ‘linear logistic LCA’. This approach facilitates that,
within different (latent) groups of persons, a psychological test actually measures
one-dimensionally, but either per group another dimension of aptitude or trait
is measured or only the item parameters’ relations are different between these
groups. Nowadays, this approach is known as the mixed Rasch model. For more
details, see especially Rost (2004).

Summary
In order to group research units into respectively similar sub-groups (types) according to the
outcomes of the investigated characters, cluster analysis can be used for quantitative char-
acters and latent class analysis for nominal-scaled ones. Factor analysis serves the purpose
to identify fewer latent variables than observed characters, with which all research units can
nevertheless be approximately equally well described. Path analysis and, in general, (linear)
structural equation models, try to quantify directed dependencies between several characters.
Above all, the models of item response theory are useful when constructing psychological
tests; here, the Rasch model plays a special role insofar as the items of a test must conform
to this model if the number of solved items is to be used as a test score.
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Appendix A

Data input

Below we describe how the data of Example 1.1 can be used in R or SPSS.

Data input in R

We generate a data matrix in R, but only exemplify the procedure for the first 10 observa-
tions. First we construct a vector for each character; we type

> no <- 1:10
> native_language <- factor(c(1, 1, 2, 2, 1, 1, 2, 2, 1, 1),
+ levels = c(1, 2),
+ labels = c("German", "Turkish"))
> age <- c(6, 7, 8, 9, 8, 9, 6, 7, 9, 8)
> sex <- factor(c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2),
+ levels = c(1, 2),
+ labels = c("female", "male"))
> age_birth <- c(39, 40, 38, 36, 37, 40, 39, 36, 40, 41)
> no_siblings <- c(1, 2, 3, 2, 3, 0, 1, 4, 0, 2)
> pos_sibling <- factor(c(1, 2, 3, 1, 2, 1, 1, 5, 1, 2),
+ levels = c(1, 2, 3, 4, 5, 6),
+ labels = c("first-born", "second-born",
+ "third-born", "fourth-born",
+ "fifth-born", "sixth-born"))
> social_status <- factor(c(2, 3, 3, 2, 4, 1, 2, 3, 6, 1),
+ levels = c(1, 2, 3, 4, 5, 6),
+ labels = c("upper classes",
+ "middle classes",
+ "lower middle class",
+ "upper lower class",
+ "lower classes",
+ "single mother in household"))

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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> urban_rural <- factor(c(1, 1, 3, 1, 1, 1, 1, 1, 1, 1),
+ levels = c(1, 2, 3),
+ labels = c("city (over 20000 inhabitants)",
+ "town (5000 to 20000 inhabitants)",
+ "rural (up to 5000 inhabitants)"))
> marital_mother <- factor(c(2, 2, 2, 2, 3, 2, 2, 2, 3, 3),
+ levels = c(1, 2, 3, 4),
+ labels = c("never married", "married",
+ "divorced", "widowed"))
> test_set <- factor(c(1, 1, 2, 3, 1, 1, 2, 3, 1, 1),
+ levels = c(1, 2, 3),
+ labels = c("German speaking child",
+ "Turkish speaking child tested in German at first test date",
+ "Turkish speaking child tested in Turkish at first test date"))
> sub1_t1 <- c(52, 54, 46, 58, 37, 50, 48, 60, 56, 56)
> sub3_t1 <- c(56, 59, 55, 47, 50, 59, 53, 49, 61, 62)
> sub4_t1 <- c(43, 52, 47, 59, 38, 55, 40, 62, 53, 53)
> sub5_t1 <- c(55, 57, 40, 47, 36, 52, 36, 57, 55, 57)
> sub7_t1 <- c(50, 64, 50, 50, 50, 64, 47, 64, 57, 68)
> sub1_t2 <- c(50, 56, 54, 60, 38, 52, 50, 60, 58, 60)
> sub3_t2 <- c(55, 62, 47, 48, 48, 60, 52, 50, 59, 65)
> sub4_t2 <- c(45, 53, 52, 57, 38, 57, 43, 64, 57, 57)
> sub5_t2 <- c(55, 59, 55, 45, 36, 50, 45, 67, 57, 48)
> sub7_t2 <- c(54, 65, 50, 54, 46, 61, 46, 69, 61, 65)

Here we have to differentiate between three cases:

1. The character testee number (no) represents a sequence of integers (here) from 1
to 10, that we generate using a colon (:).

2. For example the character native language of the child (native_language),
which we generate by the functionfactor(); thereby we use, as the first argument,
a vector – generated using the function c() – containing the outcomes; as a second
argumentlevels (1 or2) for the character’s levels; and as third argumentlabels
for the codes of the levels’ labels ("German" and "Turkish").

3. For example the character age of the child (age), for which we assign the observed
values to the function c().

We hand each of the vectors to an object according to the character label in Table 1.1. We
now type

> Example_1.1 <- data.frame(no, native_language, age, sex,
+ age_birth, no_siblings, pos_sibling, social_status,
+ urban_rural, marital_mother, test_set,
+ sub1_t1, sub3_t1, sub4_t1, sub5_t1, sub7_t1,
+ sub1_t2, sub3_t2, sub4_t2, sub5_t2, sub7_t2)
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i.e. we use the function data.frame()and hand to it all characters stored in the
aforementioned objects; we pass this generated data to the object Example_1.1. Fi-
nally, we type

> rm(no, native_language, age, sex, age_birth, no_siblings,
+ pos_sibling, social_status, urban_rural, marital_mother,
+ test_set, sub1_t1, sub3_t1, sub4_t1, sub5_t1, sub7_t1,
+ sub1_t2, sub3_t2, sub4_t2, sub5_t2, sub7_t2)

i.e. we hand all objects to the function rm() (except the object Example_1.1); as a
consequence these objects are deleted from the Workspace.

Another possibility is to generate the data in another format and afterwards to import
the data into R. If we actually generate and save the data using SPSS, we can import
the corresponding file using the package foreign, which we load after installation (see
Chapter 1) using the function library(). We type

> choose.dir()

using this function without any argument we end up at the window Select folder
containing the folder overview of the hard disc. We select the folder containing the data
file and click OK. We now type

> Example_1.1 <- read.spss("Example_1.1.sav", to.data.frame = TRUE)

i.e. we hand the name of the data file as a first argument to the function read.spss()
and request a data matrix import, using to.data.frame = TRUE; we then pass all
this to the object Example_1.1.

For reading data sets generated by other programs one may use help files of the
corresponding functions; e.g. read.table() is to be used for text files of different
formats; read.xls() in the package gdata for Excel files; and read.csv2()for
CSV files.

Data input in SPSS

In SPSS we first of all have to specify the features of the characters. For this we use, in the
menu

File
New

Data

and choose, in the bottom menu bar on the left side, the second entry Variable View. In the
resulting window shown in Figure A.1, for each character in the column Name we fill in
the corresponding notation from the column Name in SPSS from Table 1.1 In the column
Label we insert the full name of the character from the first column from Table 1.1, ‘Name
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of the character’. If there are entries in the column ‘Coded values’ of Table 1.1 for a certain
character, as for instance for the character native language of the child, we write these into
the column Values. For this we first have to click at the corresponding cell and get the
symbol . . . which we click as well. This results in the window in Figure A.2. In the case
of the character native language of the child, we insert the value 1 in the column beside
Value:, and the text German beside Label:. Using Add empties the fields Value: and Label:,
so that we can insert the next coded value including its label. At the end we confirm with
OK, where after – again in the window Variable View – we can proceed analogously for
the next character. Afterwards we need to specify the scale type of each character in the
column Measure in the window Variable View (Figure A.1). SPSS only distinguishes among
the scale types Scale, for quantitative characters (see Section 5.2.3 for more details), the
type Ordinal, for ordinal-scaled characters (see Section 5.2.2 for more details), and the type
Nominal, for nominal-scaled characters (see Section 5.2.1 for more details). We can specify
the number of presented decimal places in column Decimals; for the Example 1.1 we insert
0 for all characters. If the data contains missing values, we can define their coding in column
Missing. All of the remaining columns in the Variable View are unused in our case. After
inserting all of the characters in Variable View, we obtain Figure A.3.

Figure A.1 SPSS Variable View.
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Figure A.2 SPSS -window for coding and labeling values of a character.

Figure A.3 SPSS Variable View after specification of the characters’ features according to
Table 1.1.

If we change to Data View, we see that now in the heading row all characters have the
corresponding Name in SPSS. Now we type all observed values from Data list 1.1.
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1 1 6 1 39 1 1 2 1 2 1 52 56 43 55 50 50 55 45 55 54
2 1 7 2 40 2 2 3 1 2 1 54 59 52 57 64 56 62 53 59 65
3 2 8 1 38 3 3 3 3 2 2 46 55 47 40 50 54 47 52 55 50
4 2 9 2 36 2 1 2 1 2 3 58 47 59 47 50 60 48 57 45 54
5 1 8 1 37 3 2 4 1 3 1 37 50 38 36 50 38 48 38 36 46
6 1 9 2 40 0 1 1 1 2 1 50 59 55 52 64 52 60 57 50 61
7 2 6 1 39 1 1 2 1 2 2 48 53 40 36 47 50 52 43 45 46
8 2 7 2 36 4 5 3 1 2 3 60 49 62 57 64 60 50 64 67 69
9 1 9 1 40 0 1 6 1 3 1 56 61 53 55 57 58 59 57 57 61

10 1 8 2 41 2 2 1 1 3 1 56 62 53 57 68 60 65 57 48 65
11 1 9 1 36 4 5 2 1 2 1 37 43 40 35 47 38 38 36 35 46
12 1 6 2 38 1 1 3 1 3 1 50 47 55 50 57 48 50 59 53 61
13 1 8 1 40 0 1 2 1 1 1 60 52 64 55 68 58 53 59 53 73
14 1 9 2 41 0 1 3 1 1 1 54 50 64 36 47 54 52 67 36 42
15 1 6 1 38 1 2 1 2 2 1 60 61 64 67 75 62 57 59 64 73
16 1 8 2 36 2 1 4 1 3 1 31 43 50 36 50 34 40 48 38 31
17 1 7 1 40 3 4 2 1 2 1 65 58 65 50 54 66 57 62 53 61
18 1 9 2 37 2 2 6 1 3 1 58 47 55 59 54 54 50 52 59 50
19 1 8 1 39 0 1 6 1 3 1 50 43 40 43 54 50 45 36 50 58
20 1 7 2 35 0 1 4 1 2 1 61 37 42 35 47 60 36 43 42 54
21 1 6 1 38 4 5 1 1 2 1 54 40 53 59 64 52 42 52 57 69
22 1 9 2 40 1 1 2 1 3 1 60 52 36 59 57 58 53 42 62 54
23 1 7 1 41 1 1 3 1 3 1 46 52 48 38 40 48 50 36 43 46
24 1 6 2 35 0 1 6 2 1 1 61 53 50 50 54 60 55 52 50 61
25 1 8 1 40 3 4 6 1 3 1 52 56 53 47 33 46 52 45 42 27
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Data list 1.1 – continued
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26 1 9 2 37 2 1 2 1 2 1 58 52 53 55 47 56 50 52 57 50
27 1 6 1 39 1 2 1 1 2 1 50 56 52 64 61 46 59 57 67 65
28 1 8 2 40 2 2 2 1 2 1 69 58 69 62 71 70 62 69 65 69
29 1 7 1 37 3 4 5 1 3 1 50 52 35 35 29 46 50 36 33 23
30 1 9 2 32 1 2 4 1 2 1 35 37 42 33 36 30 33 35 38 39
31 1 8 1 39 0 1 1 1 1 1 63 56 52 64 68 60 52 57 64 65
32 1 7 2 39 1 2 2 1 2 1 60 50 57 52 54 62 53 55 52 54
33 1 6 1 40 1 1 3 1 4 1 50 53 67 52 54 54 52 64 50 54
34 1 9 2 41 2 3 2 1 1 1 54 61 64 55 54 50 64 60 57 54
35 1 7 1 40 1 2 3 1 2 1 33 43 50 52 54 40 40 48 50 54
36 1 6 2 39 2 3 2 3 2 1 60 64 36 53 61 58 64 38 50 54
37 1 9 1 37 3 1 6 1 3 1 61 53 57 52 50 60 50 55 50 54
38 1 7 2 40 0 1 1 1 2 1 65 53 57 60 68 70 59 53 65 69
39 1 6 1 37 1 2 2 1 2 1 69 38 64 52 68 72 35 64 50 65
40 1 8 2 38 3 3 1 1 4 1 60 50 42 50 57 56 50 50 53 54
41 1 7 1 39 1 2 6 3 4 1 71 38 64 50 54 70 42 62 47 50
42 1 6 2 40 0 1 2 1 2 1 65 59 53 35 50 62 59 50 33 46
43 1 8 1 34 0 1 3 1 3 1 54 38 35 33 29 50 35 33 30 23
44 1 9 2 39 4 3 4 1 2 1 50 52 53 50 54 50 52 53 55 54
45 1 6 1 40 0 1 6 1 3 1 35 62 35 42 54 30 59 38 47 50
46 1 8 2 40 1 1 5 1 3 1 41 43 53 52 40 46 45 50 47 50
47 1 7 1 39 2 2 1 3 2 1 65 59 62 50 57 62 64 65 59 58
48 1 6 2 40 1 2 2 1 1 1 60 53 35 59 64 52 50 42 52 61
49 1 8 1 38 3 1 4 1 2 1 50 56 53 52 57 54 55 53 52 58
50 1 9 2 35 0 1 3 1 2 1 41 38 52 53 64 42 33 50 55 58
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Data list 1.1 – continued
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51 1 9 1 40 2 2 1 1 3 1 50 52 60 57 54 48 53 64 64 61
52 1 8 2 36 4 5 3 1 2 1 46 53 52 62 68 50 53 57 64 61
53 1 7 1 39 0 1 4 1 3 1 48 62 57 52 50 46 65 59 53 54
54 1 6 2 40 2 1 3 3 3 1 41 50 52 36 47 34 48 52 38 46
55 2 9 1 40 3 3 2 1 2 2 52 56 47 40 47 50 53 48 50 61
56 2 7 2 36 1 1 3 1 2 2 42 53 53 36 68 60 45 52 40 65
57 2 6 1 39 0 1 1 1 2 2 61 58 53 70 68 54 48 57 62 69
58 2 9 2 37 1 2 6 1 1 2 42 49 59 42 64 60 45 59 50 65
59 2 7 1 39 5 6 3 1 2 2 52 53 50 57 61 50 45 48 47 65
60 2 6 2 40 2 2 2 1 2 2 61 56 57 70 68 60 53 64 60 65
61 2 8 1 41 3 3 4 1 2 2 46 43 50 57 47 40 28 52 53 50
62 2 7 2 38 1 1 3 1 2 2 65 64 52 70 64 54 55 50 62 65
63 2 6 1 40 2 3 2 1 2 2 71 71 53 64 64 64 59 59 59 69
64 2 9 2 38 1 2 6 1 4 2 42 43 50 60 54 50 53 52 53 50
65 2 7 1 37 4 5 4 1 2 2 61 58 52 43 33 52 45 50 33 35
66 2 6 2 39 1 2 3 1 2 2 58 55 53 40 29 50 45 52 36 23
67 2 8 1 37 1 1 4 1 2 2 61 43 36 62 50 52 38 33 50 50
68 2 7 2 38 2 1 2 1 2 2 46 41 50 42 50 60 53 52 48 50
69 2 9 1 40 3 4 3 1 2 2 42 43 50 43 68 66 53 53 55 69
70 2 8 2 39 1 1 2 1 2 2 58 49 50 43 54 62 59 50 47 54
71 2 9 1 37 2 3 4 1 2 2 44 44 50 35 50 48 45 52 50 50
72 2 6 2 35 0 1 6 1 1 2 61 56 52 70 54 60 59 67 67 61
73 2 8 1 40 1 2 3 1 2 2 58 49 50 57 50 60 53 50 52 54
74 2 7 2 39 2 3 2 1 2 2 61 58 59 67 50 52 45 62 59 54
75 2 6 1 39 1 2 3 1 2 2 44 44 50 35 50 60 60 50 50 54
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Data list 1.1 – continued
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76 2 9 2 38 2 3 2 1 2 2 37 43 50 42 61 70 62 47 43 61
77 2 7 1 39 1 1 2 1 1 2 52 41 53 36 33 68 45 55 42 39
78 2 6 2 37 2 3 4 1 2 2 37 38 33 43 33 40 45 36 42 42
79 2 9 1 40 3 3 4 1 2 3 60 50 57 53 54 58 59 59 50 54
80 2 7 2 39 5 5 2 1 2 3 50 52 53 57 61 54 52 53 59 61
81 2 6 1 35 2 1 6 1 3 3 46 43 36 35 40 50 42 38 33 39
82 2 8 2 39 1 2 2 1 2 3 60 59 64 53 33 62 64 67 53 31
83 2 9 1 38 2 1 3 1 2 3 50 37 36 64 54 52 36 35 59 54
84 2 6 2 37 1 1 1 1 2 3 50 62 36 42 47 52 60 35 40 46
85 2 8 1 40 2 3 3 1 2 3 46 50 64 52 54 50 47 60 50 54
86 2 7 2 41 1 2 2 1 3 3 54 52 64 64 61 52 50 62 60 61
87 2 9 1 39 3 4 3 1 2 3 60 55 33 47 61 50 53 35 50 61
88 2 8 2 37 4 4 4 1 2 3 69 67 70 69 68 72 70 74 67 73
89 2 6 1 40 1 2 3 1 2 3 65 37 57 47 33 60 35 59 47 35
90 2 7 2 41 2 1 4 1 2 3 31 38 59 36 50 32 36 57 50 39
91 2 9 1 39 3 4 5 1 2 3 25 38 42 50 54 30 35 40 47 50
92 2 6 2 38 4 1 2 1 2 3 50 37 53 55 57 46 42 50 52 61
93 2 8 1 40 5 6 3 1 2 3 65 52 57 62 36 60 47 59 60 31
94 2 7 2 41 2 3 5 1 2 3 33 38 50 33 57 30 36 52 42 50
95 2 9 1 39 1 1 2 1 2 3 60 56 52 28 54 58 59 52 33 54
96 2 6 2 37 3 1 2 1 2 3 61 52 47 36 36 54 52 50 33 50
97 2 8 1 39 0 1 3 1 3 3 58 50 67 70 57 60 59 64 67 65
98 2 7 2 38 4 4 5 1 3 3 27 50 35 42 43 30 47 42 40 39
99 2 9 1 37 3 3 4 1 2 3 60 53 62 35 33 60 48 64 36 31

100 2 6 2 41 4 1 2 1 2 3 50 37 67 52 26 46 36 64 59 31
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Appendix B

Tables

Table B.1 Distribution function of the standard normal distribution N(0, 1).

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Table B.1 (Continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

Table B.2 P-quantiles of the t-distribution with df degrees of freedom (for df = ∞, the
quantiles of the standard normal distribution).

P

df 0.60 0.70 0.80 0.85 0.90 0.95 0.975 0.99 0.995

1 0.3249 0.7265 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567
2 0.2887 0.6172 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248
3 0.2767 0.5844 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409
4 0.2707 0.5686 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041
5 0.2672 0.5594 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321

6 0.2648 0.5534 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074
7 0.2632 0.5491 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995
8 0.2619 0.5459 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554
9 0.2610 0.5435 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498

10 0.2602 0.5415 0.8791 1.0931 1.3722 1.8125 2.2281 2.7638 3.1693

11 0.2596 0.5399 0.8755 1.0877 1.3634 1.7959 2.2010 2.7181 3.1058
12 0.2590 0.5386 0.8726 1.0832 1.3562 1.7823 2.1788 2.6810 3.0545
13 0.2586 0.5375 0.8702 1.0795 1.3502 1.7709 2.1604 2.6503 3.0123
14 0.2582 0.5366 0.8681 1.0763 1.3450 1.7613 2.1448 2.6245 2.9768
15 0.2579 0.5357 0.8662 1.0735 1.3406 1.7531 2.1314 2.6025 2.9467

16 0.2576 0.5350 0.8647 1.0711 1.3368 1.7459 2.1199 2.5835 2.9208
17 0.2573 0.5344 0.8633 1.0690 1.3334 1.7396 2.1098 2.5669 2.8982
18 0.2571 0.5338 0.8620 1.0672 1.3304 1.7341 2.1009 2.5524 2.8784
19 0.2569 0.5333 0.8610 1.0655 1.3277 1.7291 2.0930 2.5395 2.8609
20 0.2567 0.5329 0.8600 1.0640 1.3253 1.7247 2.0860 2.5280 2.8453
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Table B.2 (Continued)

P

df 0.60 0.70 0.80 0.85 0.90 0.95 0.975 0.99 0.995

21 0.2566 0.5325 0.8591 1.0627 1.3232 1.7207 2.0796 2.5176 2.8314
22 0.2564 0.5321 0.8583 1.0614 1.3212 1.7171 2.0739 2.5083 2.8188
23 0.2563 0.5317 0.8575 1.0603 1.3195 1.7139 2.0687 2.4999 2.8073
24 0.2562 0.5314 0.8569 1.0593 1.3178 1.7109 2.0639 2.4922 2.7969
25 0.2561 0.5312 0.8562 1.0584 1.3163 1.7081 2.0595 2.4851 2.7874

26 0.2560 0.5309 0.8557 1.0575 1.3150 1.7056 2.0555 2.4786 2.7787
27 0.2559 0.5306 0.8551 1.0567 1.3137 1.7033 2.0518 2.4727 2.7707
28 0.2558 0.5304 0.8546 1.0560 1.3125 1.7011 2.0484 2.4671 2.7633
29 0.2557 0.5302 0.8542 1.0553 1.3114 1.6991 2.0452 2.4620 2.7564
30 0.2556 0.5300 0.8538 1.0547 1.3104 1.6973 2.0423 2.4573 2.7500

40 0.2550 0.5286 0.8507 1.0500 1.3031 1.6839 2.0211 2.4233 2.7045
50 0.2547 0.5278 0.8489 1.0473 1.2987 1.6759 2.0086 2.4033 2.6778
60 0.2545 0.5272 0.8477 1.0455 1.2958 1.6706 2.0003 2.3901 2.6603
70 0.2543 0.5268 0.8468 1.0442 1.2938 1.6669 1.9944 2.3808 2.6479
80 0.2542 0.5265 0.8461 1.0432 1.2922 1.6641 1.9901 2.3739 2.6387
90 0.2541 0.5263 0.8456 1.0424 1.2910 1.6620 1.9867 2.3685 2.6316

100 0.2540 0.5261 0.8452 1.0418 1.2901 1.6602 1.9840 2.3642 2.6259
300 0.2536 0.5250 0.8428 1.0382 1.2844 1.6499 1.9679 2.3451 2.5923
500 0.2535 0.5247 0.8423 1.0375 1.2832 1.6479 1.9647 2.3338 2.5857

∞ 0.2533 0.5244 0.8416 1.0364 1.2816 1.6449 1.9600 2.3263 2.5758
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Table B.4 95% quantiles of the F-distribution with df 1 and df 2 degrees of freedom.

df 1

df 2 1 2 3 4 5 6 7 8 9

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 1.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.89 3.49 3.27 3.11 3.00 2.91 2.85 2.80
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88
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Table B.4 (Continued)

df 1

df 2 10 12 15 20 24 30 40 60 120 ∞
1 241.88 243.91 245.95 248.01 249.05 250.10 251.14 252.20 253.25 254.31
2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36
6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54
11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71
26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64
30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25
∞ 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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Table B.4 (Continued)

df 1

df 2 1 2 3 4 5 6 7 8 9

1 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41
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Table B.4 (Continued)

df 1

df 2 10 12 15 20 24 30 40 60 120 ∞
1 6055.85 6106.32 6157.28 6208.73 6234.63 6260.65 6286.78 6313.03 6339.39 6365.86
2 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13
4 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46
5 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02
6 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91
11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87
16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49
20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42
21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17
26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03
30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
∞ 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00
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Appendix C

Symbols and notation

1 − α Confidence coefficient
1 − β Power of a test
A � B, B ≺ A The factor B is nested within factor A
A × B The factors A and B are cross-classified
A, B, C, . . . Matrices
AIC Akaike information criterion
B = r2 = ρ̂2 Coefficient of determination
bi, β̂ i Sample regression coefficient, estimator for β i

BIB Balanced incomplete block design
BIC Bayesian information criterion
C Contingency coefficient
Ccorr Corrected contingency coefficient
CDF Cumulative density function
CFA Configuration frequency analysis
CFI Comparative fit index
CML Conditional maximum likelihood
df Degrees of freedom
E Effect size
E Event
e Error
Ê Estimate of the effect size
E(MS) Expectation of the MS
E(y) = μy = μ Expectation (mean) of the random variable y

b∫

a

f (x) dx Defined integral of the function f with respect to x from a to b

F(df 1;df 2;P) P-quantile of the F distribution with df 1 and df 2 degrees of freedom

Statistics in Psychology Using R and SPSS, First Edition. Dieter Rasch, Klaus D. Kubinger and Takuya Yanagida.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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f (y) Density function of a continuous random variable y

g1
m3

m3/2
2

Sample skewness, estimator for γ1

g2
m4

m2
2

− 3 Sample kurtosis, estimator for γ2

H0 Null hypothesis
HA Alternative hypothesis
HLM Hierarchical linear models

I = E

(
∂ ln L

∂θ

)2

Fisher’s information

IQ Intelligence quotient
IRT Item response theory
L Likelihood

L =
n∏

i=1

f (xi , θ ) Likelihood of n observations, x1, x2, . . . , xn, with probability
distribution f (x, θ )

L Lower limit
LCA Latent class analysis
LLTM linear logistic test model
LSD Least significant difference

mr = 1

n

n∑
i=1

(yi − ȳ)r r-th central sample moment, estimator for μr

Md Median
MLM Maximum likelihood method
MS Mean square (of deviations from the mean)
n Sample size
N Size of a finite population, total size of several samples
N(0;1) Abbreviation for the standard normal distribution (μ = 0, σ 2 = 1)
N(μ;σ 2) Abbreviation for a normal distribution with expectation (mean) μ

and variance σ 2(
n

k

)
Binomial coefficient; is to be read as ‘n choose k’

p Probability of a single event, general probability, the parameter of
a binomial distribution

P(E) Probability of event E
PDF Probability density function
q(j; P) The jth P-quantile
r Pearson’s correlation coefficient in the sample, estimator for ρ

RMSEA Root mean square error of approximation
rS = ρ̂S Spearman’s rank correlation coefficient in the sample
rtet Tetrachoric correlation coefficient
rxy.z Sample partial correlation coefficient of x and y given the noise

factor z
s =

√
s2 Estimate of σ =

√
σ 2

s2
a, σ̂

2
a Estimator for the variance component of factor A

SEM Structural equation model
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SS Sum of squares of the deviations from the mean (corrected sum of
squares) of the variable x

sxy Sample covariance, estimator for σxy

sy = s Estimator for σ y

t t-distributed random variable
t(df ;P) P-quantile of the t distribution with df degrees of freedom
U Upper limit
x, y, χ2, F, s2, r Random variables are printed bold; their realizations are indicated

by the same letters printed not bold
|x | Modulus of x

ȳ. = ȳ = 1

n

n∑
i=1

yi Arithmetic mean of n sample values

ȳ. = 1

n

n∑
i=1

yi Arithmetic mean of the random variables yi, estimator for μ

yi. =
ni∑

j=1

yij A dot in the place of a suffix indicates summation over that suffix

z = y − μ

σ
Standardized normally distributed random variable

z(1 – α) P-quantile of the standardized normal distribution, which seperates
the acceptance region of the null hypothesis from the rejection
region

z(P) P-quantile of the N(0;1) distribution
α Type-I risk
β Type-II risk

γ1 =
μ3

μ3/2
2

Skewness

γ2 = μ4

μ2
2

− 3 Kurtosis

δ Least difference of practical relevance
η2 Fisher’s correlation ratio; eta squared
θ Notation for an unknown parameter.
θ̂ Estimate of θ (realization of θ̂ )
θ̂ Estimating function for (estimator for) θ

κ Kappa coefficient
μ Mean
μr = E[(y-μ)r] r-th central moment of a univariate random variable
�μ Vector
�μT Transposed Vector
ρ Pearson’s (product-moment) correlation coefficient
ρs Spearman’s rank correlation coefficient
ρxy.z Partial correlation coefficient of x and y given the noise factor z∑

Summation;
n∑

i=1
ai means sum of ai over all i from 1 to n

σ 2
a Variance component of factor A

σ xy Covariance of two random variables x and y
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σ y = σ Standard deviation of the random variable y
σ 2

y = σ 2 Variance of the random variable y
τ Kendall’s τ

Φ(z) Distribution function of the standard normal distribution
ϕ(z) Density function of the standard normal distribution
χ2(f ;P) P-quantile of the χ2-distribution with df degrees of freedom
| Given; e.g. (A|B) means A given B
÷ Is defined as; is equal by definition to
! Factorial; n! means 1·2·3·. . .·n
∩ And, intersection; e.g. P(A ∩ B) is probability that both events A

and B happen
∪ Or, union; e.g. P(A ∪ B) means probability of either event A, B or

both
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absolute frequency 50
acceptance region 157, 169
Akaike information criterion 458
alpha correction 497
alternative character 35
alternative hypothesis 130, 131, 539
analysis of covariance 403, 413
analysis of variance for matched samples

389, 390, 394, 396
analysis of variance table 244, 245, 258,

268, 269, 283
analysis of variance 236, 241, 242, 252, 253,

254, 299

balanced block design 142
bar chart 55, 63, 74
Bayesian information criterion 458
Bell’s number 474
bias 133, 139
bimodal distribution 91, 159
binary character, see alternative character
binomial coefficient 109
binomial distribution 109, 110, 123, 184,

192, 538
binomial test 192, 398
Birnbaum model, see three-parameter

logistic model
bivariate random variable 308
block design 141, 143
block size 141

Bonferroni correction 497
bootstrapping 466, 467, 469
box-M test 408, 420, 439
box-plot 88, 89, 90

calibration 296, 508, 513
canonical correlation coefficient 377
censored sample 40
census 32, 33, 130
central limit theorem 121, 123, 176
central moment 91, 93, 539
certain event 104
chance 30
character 12, 33
chi-square (χ2)-distribution 123, 189, 193,

222, 469, 538
chi-square (χ2)-test 193, 195, 222, 381, 454
class interval 67
classification analysis 428, 439, 464
closed sequential test 180
cluster analysis 471, 472, 473, 484
cluster sampling 139
coefficient of determination 320, 321, 332,

341, 373
communality 483, 485
comparative fit index 502
comparison group 23
comparison-wise risk 239, 497
complementary event 104
complete cross classification 266, 275
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completely randomized design 140
conditional event 105
conditional maximum likelihood estimation

method 507
conditional probability 106
conditional relative frequency 105
confidence coefficient 150, 539
confidence interval 147, 150, 178, 349
configuration frequency analysis 472, 494
confirmatory factor analysis 501, 502
connected block design 143
consistent 127
content analysis 19
contingency coefficient 336, 339
contingency table 335, 338, 377, 495
continuous random variable 108, 116
correlation coefficient 318, 322, 353, 357
correlation 318, 352, 353, 492
covariance matrix 385, 404, 417
covariance 310, 539
covariance analysis, see Analysis of

covariance
covariate 403
critical region, see rejection region
cross classification 266, 267, 275, 282, 289
cross-validation 462
cubic regression 460
cumulative frequency 50
cumulative staircase 67

degree of freedom 150, 151, 538
density function 109, 116, 538
dependent events 105
dependent variable 304
descriptive statistics 43
determination coefficient, see coefficient of

determination
dichotomous character, see alternative

character
dichotomous response format 18
difficulty-plus-guessing PL model 514
disconnected block design 143
discrete random variable 108, 126
discriminant analysis 416, 427, 436, 439,

464
discriminant function 427, 439
disjunctive 141

distribution function 124, 464, 514, 538
distribution 79, 83, 91, 93, 174, 450, 466
distribution-free test, see non-parametric

tests
dot diagram 55, 63, 74
dummy variable 444
Duncan test 257
Dunnett procedure 257

effect size 172, 173, 177, 333, 334, 335,
343, 352, 538

efficient estimator 128
eigenvalue 484, 490
eigenvector 484
empirical distribution function 50, 74
empirical distribution 50
equivalence test 230
error variance 245, 459
estimate 43, 126, 150, 539
estimation function 127
estimation 127, 147
estimator 127, 148, 150, 467, 538
eta (η)-squared, see Fisher’s correlation ratio
Euclidian distance 472, 473
event 30, 101, 104, 105
expectation 126, 538
expected value 79
experiment 32, 132, 134
experimental design 140, 141
experimental unit 33
ex-post-facto design 26

factor analysis 482, 483, 485, 492
factor level 41, 253, 408, 427, 473
factor loading 483, 484, 490
factor rotation 485
factor score 491
factor 41, 241, 473, 483, 485, 490, 502
fairness 7, 39
F-distribution 538
Fisher’s correlation ratio 330, 331, 332, 334
Fisher’s information 508
fixed factor 242
Fleishman transformation 466
fourfold table 335
free response format 17
frequency distribution 50, 63
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frequency polygon 74
Friedman’s test 398
F-test 108, 220, 245
full enumeration 437
functional relationship 19, 304, 306

general linear model 241, 401
generalized linear model 450, 453
global test 497
goodness of fit test 381, 454
graphical model check 507, 511
Greenhouse–Geisser correction 394

haphazard sampling 132, 133
heritability coefficient 331
heterogeneous variances 208
hierarchical linear model, see multilevel

model
histogram 63, 67, 74
homological method 196, 236
Hotelling’s distribution 386
Hotelling’s T2 249, 252, 385, 418
hypothesis testing 147, 169, 237, 381,

494
hypothesis 130, 131

impossible event 104
incomplete block design 142, 143
incomplete cross classification 266, 275
independent events 105
independent variable 304
inferential statistics 43, 99, 147
intelligence quotient 38, 125
intelligence test 14, 38, 165
interaction effect 266, 269, 270, 271, 380,

450
interaction 266
intercorrelation 374, 375
interquartile range 84
inter-rater reliability 343, 354
interval scale 36, 37, 40, 50
intra-class correlation coefficient 258,

331
investigational result 33
item response theory 506

jackknifing 464

kappa coefficient 343
Kendall’s τ 326, 328
Kolmogorov–Smirnov test 458
Kruskal–Wallis H-test 252, 263
kurtosis 91, 93, 466, 539

large scale assessment 145
latent class analysis 472, 498
latent variable 450, 501
least significant difference test 240, 254
least squares method 127, 128, 244, 307
leaving one out method 464
left-steep distribution 91
Levene’s test 219, 220, 252
likelihood function 128
likelihood-ratio test 459, 508
linear logistic test model 514
link function 450
logistic model 513
logistic regression function 345
logit transformation 451
log-linear model 378, 380, 381, 497
LSD test, see least significant difference test

main effect 267
manifest 453
matched samples 165
Mauchly’s sphericity test 394
maximum likelihood estimate 129
maximum likelihood estimator 129
maximum likelihood method 128
McNemar test 189, 192
mean (arithmetic) 41, 45, 48, 77, 80, 93,

126, 127, 150, 237, 538, 539
mean squares 244, 269, 284
measure 12, 14
measure of association 318, 338
measure of kurtosis 91
measure of location 48, 77, 79, 81, 91, 93,

253
measure of scale 48, 49, 77, 79, 84, 91
measure of skewness 91
measurement unit, see research unit
measurement value 33
measurement 12
median 81, 83, 84, 93, 195, 196
method of pair-wise comparison 19
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mixed-model 266, 281, 299
mode 93
model I 242, 243, 266, 269, 299, 307, 324
model II 242, 257, 258, 266, 280, 299, 307
moderator 141
most powerful α-test 171
multi-center study 25, 137
multilevel model 426, 427
multimodal distribution 91, 93
multiple choice response format 18, 514
multiple comparison of means 236, 237,

238, 254
multiple correlation coefficient 372
multiple linear regression 372
multivariate analysis of variance 414, 417,

418, 420, 426
multi-way analysis of variance 241, 267,

269
mutually exclusive events 106

nested classification 266, 282, 285, 289,
539

nested linear model, see multilevel model
Newman-Keuls procedure 254
noise factor 41, 130, 136, 367, 369
nominal scale 35, 36
non-centrality parameter 171, 202
nonlinear regression 349, 463
non-parametric discriminant analysis 444,

463
non-parametric test 195
non-random sampling 132
normal distribution 78, 79, 91, 93, 116, 119,

121, 123, 202, 310, 458, 538
null hypothesis 130, 131, 539

objective personality test 14
objectivity 16, 39, 343
oblique rotation 490
observation, see observed value
observational unit, see research unit
observed value 23, 32, 33, 43, 179
odds ratio 106
omnibus test 236
one-sample t-test 160
one-sided confidence interval 150, 152
one-sided problem 156, 164

one-way analysis of variance 241, 243, 249,
252

open sequential test 180
ordinal scale, see rank scale
orthogonal rotation 490
outlier 80, 93
overall test, see omnibus test

paired sample t-test 168
parameter 77, 125, 126, 450
partial correlation coefficient 369, 371
path analysis 492
path coefficient 492, 493
path model 493
Pearson’s correlation coefficient 318, 319,

350, 367, 539
percentile rank 75
permutation 109
personality questionnaire 14, 16
pie chart 50
planning a study 22, 172, 176, 177, 179
point-biserial correlation 330
point-estimation 148, 150
Poisson distribution 451, 453
polynomial regression function 345
population size 33
population 26, 32, 33, 43, 77, 133
positive skewness 91
post hoc test 257, 269, 423
power function 171, 172, 173
power 172, 466, 539
P-quantile 84, 124, 150, 161, 538
precision of measurement 354
precision requirements 26, 172, 208
predicted value 318
principal component analysis 484
principal component test 418, 426
probability function 108
probability theory 99, 104, 105
probability 101, 104, 105, 116, 538
product-moment correlation coefficient, see

Pearson’s correlation coefficient
projective technique 15, 16
pseudo-random number generator 135
psychological assessment 13, 16
psychometric quality criteria 13, 16
psychometrics 14, 16, 39, 76, 330, 354, 506
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Q-sort 18
quadratic regression function 345
qualitative data 36
quantitative data 36
quartile 84
quota sampling 136, 139

r x c table 335
random event 31
random factor 242
random number generator 135
random sample 32, 131, 134
random sampling method 134
random sampling with replacement 134
random sampling without replacement

134
random sampling 137
random variable 107, 121
randomization 134
randomized test 159
rank scale 35, 36
rank 81, 82
Rasch model 76, 296, 506, 507, 508, 513
rating 18
ratio scale 36, 37, 38, 40
regressand 308
regression analysis 307
regression coefficient 539
regression function 308, 318, 345, 372
regression line 307, 309, 318, 321
regressor 308
rejection region 157, 160, 169
relative frequency 50, 101, 104, 106
reliability 16
replication 141
resampling 466
research design 26
research study 22
research unit 32, 33, 34, 140, 141
residual analysis 310
residual variance, see error variance
residual 310
resubstitution method 428
retest reliability 375
retrospective study 26
right-skewed distribution 91, 93
robust 202

sample size 33, 176, 538
sample 32, 130, 135,172,173,175,178ff,

202ff, 237ff, 246, 354
sampling method 134
Satterthwaite procedure 281, 285
saturated model 380
scale type 34, 41
scale 33, 40
scaling 34, 39
scatter plot 305, 306
scree test 484, 490
selection procedure 236, 237
semantic differential 19
semi-interquartile range 84
sensitivity 429
sequential testing 179, 208, 214
sequential triangular test 180, 208, 218
significance level 160
significance 160
significant 160
simple structure principle 485
simulation study 464
skewness 91, 466, 539
sociogram 17
Spearman’s rank correlation coefficient 325,

326
specificity 429, 483
standard deviation 77, 79, 539
standard error 148, 349, 467
standard normal distribution 116, 124, 160
standardization sample 38, 74
standardization 16, 74
standardized random variable 538
statistical test 131, 156, 160, 165, 178,

239
statistics 44, 45, 48, 77, 91, 343, 382
step curve 108
stochastic dependency 304
strata 134, 136
stratified population 134
stratified random sampling 134, 139
structural equation model 494, 501
student distribution 151
study 29, 30, 41, 179
study-wise risk 239, 254, 497
subject 32
sufficient 128
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sum of squared deviations, see sum of
squares

sum of squares 151, 244, 275, 309, 333,
539

survey questionnaire 17
survey 32, 132
systematic bias 41
systematic sampling 136
systematical behavior observation 16, 17

t-distribution 123, 150, 151, 169, 196,
538

test booklet 145
test of significance 160, 231
test person 14
test score 9, 32, 33, 74, 76
test statistic 160, 464, 466
testee 32, 38, 75, 76, 184
tetrachoric correlation 492
theoretical distribution function 75, 108
theoretical distribution 50, 77, 108, 125,

126, 127, 192
ties 81, 215
trace 385, 388
training set 429
t-test 170, 172, 173, 206, 214
two-sample t-test 202, 203, 466
two-sided alternative hypothesis 173
two-sided confidence interval 150
two-sided problem 156
type-I error 156, 169, 171, 203, 239,

497

type-I risk 156, 160, 161, 164, 169, 171,
178, 539

type-II error 156, 169, 171, 173, 203
type-II risk 169, 170, 171, 177, 539

unbiased test 172
unbiased 127
unfakeability 16, 296
uniformly most powerful unbiased α-test

171
uniformly most powerful α-test 171
unimodal distribution 91
unrestricted random sampling 135
U-test 206, 214, 216, 218, 241, 252, 263,

329

validity 16, 208, 239
variance component 258, 269
variance homogeneity 249, 252
variance 77, 79, 126, 218, 321, 539
variance-covariance matrix, see covariance

matrix
varimax criterion 485

Ward’s method 474
Welch test 203, 206, 207, 208, 214, 240,

252, 329
Wilcoxon rank-sum test, see U-test
Wilcoxon’s signed-ranks test 196
Wilk’s test statistic Λ 418

Yates’ continuity correction 222


