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Preface

I found while teaching the course in introductory aerodynamics at The University of Sydney
to third-year undergraduate aeronautical engineering students that I was frequently referring
to my shelf of classic texts (Glauert 1926; Lamb 1932; Prandtl and Tietjens 1957; Abbott
and von Doenhoff 1959; Batchelor 1967; Milne-Thomson 1973; Ashley and Landahl 1985;
Katz and Plotkin 2001; Moran 2003), to the extent and effect that the university’s Engineering
Library’s several copies of each of these were constantly out in use by some of the students
and therefore unavailable to the rest. Thus it was that I began to collect together a précis
of the relevant passages. This immediately necessitated a standardization of nomenclature,
which unconsciously evolved into an organization of the elements into something that began
to resemble a supporting theoretical framework for the course, something which had begun to
cohere. The lectures began to rely on this background, by relegating to it much of the rigour
and drudgery of detail in derivation so that they were more freed up to range over appeals to
intuition, evocative illustration, and imprecise image and analogy. This combined approach was
found to work well. Naturally some students took quickly to the printed notes and only attended
the lectures to ask questions, which was a good course for them, as they were usually rapid
learners; but the majority used the printed notes more as had been originally intended: these
students continued to take the lectures as their main access to the subject, availing themselves
of the carefully typeset equations to avoid having to squint at and transcribe so many squiggles
and Greek letters on the blackboard.

As the years went by, the course increasingly made use of the proliferation of excellent
computing facilities. Since all students had ready access to what were, despite really being
only off-the-shelf desktop machines, more powerful digital computers than Abbott and von
Doenhoff (1959) could have dreamed of, and since very good interactive software environ-
ments for matrix computation had become freely available, it was natural to exploit this. Other
introductory textbooks had appeared discussing computational methods (generally in FOR-
TRAN) as successors to the classical approaches (in some cases at the expense of the latter),
but the initial approach at Sydney was more first to use computers to speed up those more
laborious numerical parts of aerodynamics as already practised and only then, with the time
thus saved, to begin to assay such extensions of the old methods as had only become feasible
with automatic matrix computation. Then, following this path, it became apparent that the new
and old methods had more in common than had been thought. To take a single example, the
complex velocity, despite the ultimate simplicity of plane ideal flow in this form, had been
dropped from the textbooks of the 1980s, but modern computer languages work as easily with
complex variables as real. The concision of the complex-variable panel method presented in
Chapter 8 is testament to this. It should be noted that the neglect of the one-to-one analogy
between the Cauchy–Riemann equations and the equations of continuity and irrotationality to
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make way for monolithic FORTRAN programs was not universal, having retained its rightful
central place in the French language textbooks (Darrozes and François 1982; Bousquet 1990;
Paraschivoiu 1998).

This history is getting very close to giving an idea of this book: an introductory synthesis
of theoretical aerodynamics, in a classical spirit, but done as perhaps classical aerodynamics
might have been had modern matrix computation techniques and systems been available.

Thus, a few words on what this book is and isn’t: it is not a compendium of results, but an
introduction to methods and methodologies; and it is not the script to a course of lectures, but
an accompanying almost self-contained reference.

It does make many references to the literature, but this is rarely to delegate detail or derivation
but more partly out of respect to the authors that went before and moreover out of the firm belief
that no twenty-first-century aerodynamicist reading Glauert (1926), Milne-Thomson (1973),
the nine chapters of Abbott and von Doenhoff (1959) or anything written by Ludwig Prandtl
will be wasting their time—if not amidst the flurry of the third year of an undergraduate degree,
subsequently. That is, there is rarely any need to follow any of these pointers, rather the reader
is invited to at their later leisure.

An exception to this policy of referencing applies to experimental evidence adduced either in
validation of the theoretical models presented or to circumscribe their limits. These references
do invoke authoritative results from outside. This book is avowedly theoretical, but aerodynam-
ics is neither primarily theoretical nor primarily experimental, it is engineering and requires
both theoretical and experimental wings to bear it aloft. At Sydney, a coextensive course on
practical experimental aerodynamical measurement in wind tunnels was given simultaneously
with the theoretical course from which this text arose.

While numerous quantitative results for lift, pitching moment, and skin-friction coefficients
and similar quantities will be found throughout, these are only incidental: a numerical method
necessarily results in numerical output, and comparison with these forms one of the easiest
ways of verifying the correctness of an implementation or subsequent modification. Some
of the results might have indicative value, but all are derived from models simple enough to
fit into an introductory course; judgement on when models are applicable can only follow
validation of these results, necessarily involving rigorous comparison with experiment, and
very often depending on the details of the particular physical application. Where remarks of
some generality on the limits of applicability of the methods discussed can be made, they are,
but validation remains unfortunately and notoriously difficult to teach from a textbook; though
an exhortation as to its paramount importance in computational aerodynamics is not out of
place here—a modeller’s every second thought should be of validation.

And, as noted above, while it is as discursive as an introduction should be and a compendium
should not be, it is very far from being the transcript of a lecture course. It was and is envisaged
as accompanying a lecture course, either as delivered simultaneously, or perhaps following,
even years after, a remembered course, when a trained and practising engineer realizes that
there are aspects of the theoretical underpinnings that aren’t as well understood as they might
be, or that they are curious to see how to set about implementing some simple aerodynamical
models in the now so readily available interactive matrix computation systems.

Neither does it pretend to teach the design of lifting surfaces. Kuethe and Chow (1998)
gave their book Foundations of Aerodynamics the subtitle ‘Bases of Aerodynamic Design’,
which was perhaps reasonable, but more and more design involves conflicting requirements and
becomes multidisciplinary and specific to domains that are difficult to foresee at this remove.
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Given the number of constraints almost any practical project is subject to, it is almost always
the case that the designer is pushed onto the corners of limits rather than having the luxury of
optimizing within an open subset of the parameter space. This often means operating further
from ideal conditions and involving secondary effects, which cannot be adequately treated in
an introduction. Another aspect to the application of the theory of lift to design problems is that
the ideas originally conceived for wings of aircraft have applications far beyond them, from
the blades of wind turbines to Dyson’s Air MultiplierTMfans, and it seems unfair to favour one
area of application with coverage at the expense of the rest, including of course those not yet
thought of.

One of the organizing principles of this book is the combination, for each of the fundamental
problems addressed, of

1. the historical development of the subject, including the first successful model,
2. the classical formulation,
3. the simplest possible model that can reproduce the essential physics, and
4. a modern (interactive, scripted, matrix-based) computational model.

Actually in most instances this is a recombination, since the subsequent approaches grew up
amidst a knowledge of the history and are by no means such independent alternatives as one
might think from some presentations of the subject. We would argue that even if no-one were
ever to use Glauert’s expansion for the lifting line theory again, for example (though we expect
this eventuality remains a good few years off yet), learning it is of more use than merely as an
aid to understanding the aerodynamical literature of the twentieth century; on contemporary
reinspection, it also turns out to be an example of an orthogonal collocation technique for
solving the integral equation, and so in fact when we increase the accuracy of our modern
panel methods not merely by spatial refinement but also increase of order, we see that the old
and the new are related after all. Our hope is that this uncovering of forgotten relationships will
serve to demythologize both the sometimes seemingly arcane old ways and more importantly
the contemporary computational methods which can too easily be, and which too often are,
trusted blindly as black boxes while a knowledge of the classical foundations of the theory is
deemed a luxury.

However, such an organizing principle, which might be suitable for a comprehensive treatise
of the type that our subject is perhaps overdue in its current state of development—which one
hesitates to call maturity but possibly emergence from infancy—is here always subjugated to
the pedagogical imperative. This is a textbook and a broad introduction, and in many cases is
much more selective than comprehensive.

It does differ from other introductions though. An endeavour has been made to take each
element of the theory that has been presented far enough to enable the student to actually
use it to compute some quantity of practical engineering interest, even if the methods thus
arrived at are either not exactly in the same form as would be used in practice or if they are
only expected to be applied here to somewhat simplified cases. This has been preferred to
passive descriptions of, say finite-volume Euler or Reynolds-averaged Navier–Stokes solvers,
which while undeniably important in contemporary practical aerodynamics certainly cannot
be implemented in an undergraduate course. We firmly believe that engineers understand
best by doing, and are persuaded therefore that better users of the state-of-the-art codes will
ultimately be bred from students conversant with the mechanics of some small programs
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than from those whose first introduction to computational aerodynamics is by way of a
black box.

As to the interdependence of the sections of the book, the core consists of the plane ideal
theory of lift in Chapters 2–6, optionally extended by Chapters 7 and 8 on discrete singularity
methods. This core is then modified to take into account three factors: three-dimensionality
(Chapters 9–14), viscosity (Chapters 15–17), and compressibility (Chapters 18–19). Although
in practice these departures from ideality do interact, here in this introduction only first-order
corrections are attempted and so these any of these three modules can be taken in any order
after the core. The chapters of each should be taken in sequence but within each, the later
chapters may be omitted. Chapters 13 and 14 on three-dimensional discrete vortex methods
presuppose mastery of the two-dimensional methods in Chapters 7 and 8.

A note on the included computer programs

A note should be made here on the programs developed and presented in the text. These are
not intended to be production programs! They stand in relation to such as the chalkings on a
classroom blackboard stand to the real analysis or design calculations of a working engineer:
introduced intermediate quantities are not always defined, physical units of measurement are
omitted, side-cases are ignored, and checks are entirely absent. These snippets are purely
offered as educational illustrations of some of the key methods of computational aerodynamics.
To that end, they are necessarily clear and brief rather than robust, general, or even efficient.
No effort has been put into such essential aspects of software engineering as modularity, data
encapsulation and abstraction, input validation, exception handling, unit testing, integration
testing, or even documentation beyond the surrounding discussion in the text which they serve.
They do do what they are supposed to, with the inputs given, but very close behind that primary
goal of basic functionality have been brevity and clarity, since it is believed that these virtues
will best facilitate the conveying of the essential ideas embodied.

To write real aerodynamical computer programs— i.e. those to be saved and used at a later
date, perhaps by other than their author, perhaps by users who will not read let alone analyse
the source code, and perhaps even for some definite practical end—one requires not just an
understanding of the physics, which is what this book was written to provide an introduction
to, but also good grounding in numerical analysis and software engineering. The former is
touched on here, as there is often some true analogy between the refinement of a numerical
approximation and its closer approach to the underlying physics, but the latter is completely
neglected as sadly out of scope. Those who hope to write computer programs which will be
relied upon (this being perhaps the most significant criterion of merit) must not necessarily
themselves master The Art of Computer Programming (Knuth 1968, 1969, 1973, 2011) but at
least gain an appreciation of software engineering and most often also engage and collaborate
with those with more skills in that area. Real programs today, and this will be even more the
case in the future, are, as aircraft have been for many decades, composite machines of many
subassemblies and subsystems created and put together by many people at different times and
separate locations; even the little programs here provide a simple example of this last point in
that whereas those listed by Kuethe and Chow (1998), Katz and Plotkin (2001), and Moran
(2003) all contained the complete code for solving systems of linear equations, here we are
able to avail ourselves of the standard operations provided for this. Whereas William Henson
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and John Stringfellow might have constructed just about all of their Model of 1848 by hand
or at least in their own workshops (Davy 1931), only hobbyists would consider doing this for
any aircraft today.

Foremost, we trust that the little snippets served here will be more easily digested than the
slabs of FORTRAN to be found in the previous generation of textbooks on aerodynamics. They
might serve as points of departure or suggestions, or, without harm, left as mere illustrations of
discussions of physics. Those continuing into research into computational aerodynamics will
not be served far past their first steps with these training programs, but the hope is that having
learned to read, use, and modify these, it will be found easier to use and adapt real programs
and to craft the next generation of them.

Acknowledgements

My first debt is to my teachers, in particular the late Dr Jonathan Harris. I am also very grateful
to Professors Douglass Auld and Steven Armfield for first inviting me to give the introductory
aerodynamical course at Sydney, and then allowing me such scope in adapting the curriculum
to make use of contemporary computational systems.

This book was developed by the author entirely using free software, that is, not so much
software distributed free of charge, but software distributed along with its source code under
licences such as the Free Software Foundation’s General Public Licence. The programs used,
besides GNU Octave, include LATEX, GNU Emacs, GNU Make, Asymptote, and matplotlib.
The author is deeply appreciative of the skill and time that their several authors, distributed
around the world, have put into them, and equally appreciative of the power and elegance of
these programs, which now form a most useful part of the common intellectual patrimony of
the aeronautical engineering profession.

My last debt is to my readers, beyond the students of aerodynamics at Sydney such as
Sujee Mampitiyarachchi, David Wilson, Christopher Chapman, and Thomas Chubb. Here I
can only thank the earliest of these, João Henriques, Andreas Puhl, and Pierre-Yves Lagrée,
for bringing errors, inconsistencies, ambiguities, and obfuscations to my attention—I have
endeavoured to fix these and more, but apologize for the multitude that undoubtedly remain.

G. D. McBain
Dulwich Hill, New South Wales

References

Abbott, I.H. and von Doenhoff, A.E. (1959) Theory of Wing Sections. New York: Dover.
Ashley, H. and Landahl, M. (1985) Aerodynamics of Wings and Bodies. New York: Dover.
Batchelor, G.K. (1967) An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.
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Series Preface

The field of aerospace is wide ranging and multi-disciplinary, covering a large variety of
products, disciplines and domains, not merely in engineering but in many related supporting
activities. These combine to enable the aerospace industry to produce exciting and technolog-
ically advanced vehicles. The wealth of knowledge and experience that has been gained by
expert practitioners in the various aerospace fields needs to be passed onto others working in
the industry, including those just entering from University.

The Aerospace Series aims to be a practical and topical series of books aimed at engineering
professionals, operators, users and allied professions such as commercial and legal executives
in the aerospace industry, and also engineers in academia. The range of topics is intended to
be wide ranging, covering design and development, manufacture, operation and support of
aircraft as well as topics such as infrastructure operations and developments in research and
technology. The intention is to provide a source of relevant information that will be of interest
and benefit to all those people working in aerospace.

Aerodynamics is the key science that enables the aerospace industry world-wide – without
the ability to generate lift from airflow passing over wings, helicopter rotors and other lifting
surfaces, it would not be possible to fly heavier-than-air vehicles, or use wind turbines to
generate electricity. Much of the development of today’s highly efficient aircraft is due to
the ability to accurately model aerodynamic flows and thus design high-performance wings.
Although there are many readily available sophisticated CFD codes, a thorough understanding
of the fundamental aerodynamics that they are based upon is vital for engineers to comprehend
and also verify the results that are obtained from them.

This book, Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave,
provides an important addition to the Wiley Aerospace Series. Aimed at undergraduates and
engineers new to the field, it provides a comprehensive grounding to the fundamentals of
theoretical aerodynamics, illustrated using modern matrix based computational techniques. A
notable feature of the book is how each element of theory is taken far enough so that students
can use it to compute quantities of practical interest using the accompanying computer codes.

Peter Belobaba, Jonathan Cooper, Roy Langton and Allan Seabridge
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1
Preliminary Notions

1.1 Aerodynamic Force and Moment

An aircraft in flight is subject to several forces: gravity causes the weight force; the propulsion
provides a thrust, and the air the aerodynamic force A.1

The central problem of aerodynamics is the prediction of the aerodynamic force; as important
is its line of action, or equivalently its moment.

The motion of the aircraft through the air forces the air to move, setting up aerodynamic
stresses. In turn, by Newton’s Third Law of Motion, the stress in the air is transmitted back
across the surface of the aircraft. The stresses include pressure stresses and viscous stresses.
The aggregates of the stresses on the surface are the aerodynamic force and moment.

1.1.1 Motion of the Frame of Reference

Newton’s equations of motion are unchanged if the frame of reference is replaced with one
moving at a constant relative velocity; that is, the aerodynamic force can be computed or
measured equally well by an observer in the aircraft in steady flight as by an observer on
the ground. In the aeroplane’s frame of reference, it’s stationary and the air moves at a
velocity −V .

The equivalence is very useful in aerodynamics; e.g. instead of mounting models of wings
on force-measuring apparatus atop an express train as John Stringfellow did in the first half of
the nineteenth century, the aerodynamic force can be

• measured in a wind tunnel where a model of the aircraft is held fixed in an air-stream; or
• computed by a numerical solution of the governing equations on a grid fixed to the aircraft

surface.

Of course, other factors are involved in the interpretation of wind tunnel data (e.g. the effect
of the walls), or computational fluid dynamics (e.g. grid dependence).

1 Herein bold denotes a vector, italic a variable, and so bold italic a variable vector.

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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1.1.2 Orientation of the System of Coordinates

Various choices of coordinate system in the frame of reference are possible; e.g.

• a geocentric system with coordinates latitude, longitude, and altitude;
• a Cartesian system defined by the instantaneous velocity, curvature, and torsion of the

flight; or
• a Cartesian system fixed to the aircraft, moving and rotating with it.

Although all physical results obtained must be independent of the choice of orientation, in
aerodynamics we almost always use the last of these, after carefully and explicitly defining it
in each case.

Most aircraft have an approximate plane of symmetry naturally dividing the craft into left
and right halves. (This symmetry is deliberately broken during independent deployment of
the left and right control surfaces.) The reference line is always chosen within this plane, and
generally approximately coincides with the long direction of the craft and the usual direction
of travel.

Our system of coordinates then consists of:

• the aircraft reference line (x, longitudinal or axial, positive ‘downstream’ or ‘behind’ for
the usual direction of flight);

• one axis at right angles to the reference line but still in the plane of symmetry (y, positive
in the direction considered up by seated pilots and passengers); and

• a third perpendicular to the plane of symmetry (z, spanwise, positive left).

These definitions of ‘backwards’, ‘upwards’, and ‘leftwards’ for increasing x, y, and z give
a right-handed coordinate system.

1.1.3 Components of the Aerodynamic Force

In simple cases, symmetry considerations imply that the aerodynamic force acts parallel to
the plane of symmetry. In such cases, the aerodynamic force A can be resolved into two
perpendicular component forces in two different ways.

First, A = L + D. The drag D is opposed to the direction of motion V of the aircraft (or
parallel to the direction of the airstream relative to the aircraft, −V ). The lift L is directed at
right-angles to the direction of motion.

Second, we have the simple Cartesian components: A = Axi + Ayj; here Ax and Ay are the
longitudinal and normal components. The two decompositions are illustrated in Figure 1.1.
Remember that in both diagrams, the horizontal x-coordinate corresponds to the (backward)
aircraft reference line and is not necessarily the same as horizontal with respect to the ground.

1.1.4 Formulation of the Aerodynamic Problem

The basic task of aerodynamics is to predict the aerodynamic force A, or the lift and drag
forces.
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L

D
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-V

(a) (b)

A

Axi

Ayj

-V

Figure 1.1 Resolving the aerodynamic force into (a) lift and drag and (b) Cartesian components

Let’s see what we can say about this problem without knowing the details of the air flow
around the aircraft.

We assume:

• steady flight in a straight line;
• that the air extends to infinity in all directions around the aircraft, and that the air far from

the aircraft is otherwise undisturbed.

What then constitutes a specification of the problem?

• We need to know the geometry of the aircraft.
• We need to know the direction and magnitude of the aircraft velocity (or airstream velocity

relative to the aircraft).
• We need to know the properties of the air.

These three items are considered in Sections 1.2–1.4. In Section 1.5, we see how dimensional
analysis can be used to reduce the size of the problem, still without recourse to any detailed
fluid mechanics. Finally, in Section 1.6, we look at a real aerodynamical study and see how it
incorporates the preliminary notions presented in this chapter.

1.2 Aircraft Geometry

Aircraft have complicated shapes and require a lot of numbers for their complete specification.
A number of common terms are in use, e.g. the span and chord of the wings, but these don’t
always have standard definitions. For example, Milne-Thomson (1973) lists several definitions
of the chord of a two-dimensional wing section:

As a general definition the chord of any profile is an arbitrary fixed line drawn in the plane of the
profile.



6 Theory of Lift

(a)

(b)

(c)

Figure 1.2 Definitions of wing section chord: the line joining the leading edge centre of curva-
ture to the trailing edge (a); the line joining the ends of the camber line (b); and the double-tangent
to the lower surface (c). The NACA 2412 aerofoil (a, b) has no double-tangent to the lower sur-
face, so (c) is illustrated for a Clark Y profile. Dashed curve is the camber line and dot-dashed the
chord

The chord has direction, position, and length. The main requisite is that in each case the chord
should be precisely defined, since the chord enters into the constants which describe the aerodynamic
properties of the profile.

The official definition is the line which joins the centres of the circles of curvature of minimum
radius at the nose and tail.

Another definition is the longest line which can be drawn to join two points of the profile.
A third definition which is sometimes convenient is the projection of the profile on the double

tangent to its lower surface (i.e. the tangent which touches the profile at two distinct points).
This definition fails if there is no such point.

A fourth definition was used by NACA: NACA defined wing sections relative to a given
camber line (actually a curve) and then defined the chord as the straight line joining its ends.
For many wing sections, this will coincide at least approximately with the second of Milne-
Thomson’s definitions.

The definitions are illustrated in Figure 1.2. Notice that, apart from the double-tangent, the
other definitions give similar results; this is true for most typical aerofoils.

All of these are or have been in use, and we can do no better than warn of this and stress
that while how the chord is defined is relatively unimportant, it is essential that in each case
it be defined clearly and precisely. A similar state of affairs persists with regard to the other
dimensions of wings. Here we provide a list of common terms with rough definitions; see also
the Glossary and Section 1.8, Further Reading.

1.2.1 Wing Section Geometry

Of particular importance in the study of aerodynamics, as we shall see in Chapters 2–8, are
the two-dimensional sections of the wing parallel to the aircraft’s plane of symmetry; these are
called wing sections or aerofoils. Wing sections are parameterized by:
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mctc

pc

c

x

y

Figure 1.3 NACA 2412 wing section, showing: the camber line (dashed); chord defined as its se-
cant (dot-dashed); leading edge circle of curvature (solid); chord length c; maximum thickness ratio t;
maximum camber ratio m; and chordwise fractional position of maximum camber p

chord As above (Section 1.2); see Figure 1.2.
maximum camber The camber line is the curve lying halfway between the upper and lower

surfaces. The maximum camber is its greatest distance from the chord. The ‘halfway’ can
be measured perpendicular to either the chord or the camber line.

chordwise location of maximum camber
maximum thickness measured perpendicular to either the chord or camber line
location of maximum thickness
leading edge radius of curvature
trailing edge radius of curvature or angle if the radius is zero

These concepts are illustrated in Figures 1.2 and 1.3.

1.2.2 Wing Geometry

The wings are parameterized by:

span b, the length of the line joining the tips of the wings, being the points on the wings
furthest from the plane of symmetry

planform area the projection of the wings on the spanwise–longitudinal (z–x) plane, includ-
ing or excluding the area where the wings and fuselage coincide or meet

root chord cr, the chord where the wings meet the fuselage or c(0), the chord of the wing
section in the plane of symmetry (projected, if required)

tip chord ct = c(±b/2) the chord of the wing sections furthest from the plane of symmetry;
zero for a delta-wing

average chord c̄, the ratio of the planform area to the span
aspect ratio , the ratio of the span to the average chord
taper ratio the ratio of the tip and root chords; zero for a delta-wing, and typically ≤ 1
sweep angle of the wing backward from the spanwise (z) axis, which is perpendicular to the

root chord, can be measured at leading edge, trailing edge, or one-quarter of the way along
the chord

which are all properties of the wing’s planform; i.e. its projection on the z–x plane. See
Figure 1.4.
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cr/4

3cr/4c(z) b/2

sweep

z

x

Figure 1.4 Planform of a wing, showing a chord c(z), the root chord cr , the span b, and the angle of
sweep. The plan projection of all chords are parallel. The dashed line joins the quarter-chord points. In
this wing, the tip chord is zero

Some additional parameters describe three-dimensional properties:

dihedral angle the upward tilt of the wings relative to the longitudinal–spanwise plane (called
anhedral if negative)

twist variation of the angle of the chord to the root chord along the span, called wash in or
out as the angle increases or decreases towards the wing tip.

1.3 Velocity

As noted in Section 1.1.2, a reference line for the aircraft must be defined to specify the
coordinate system. The usual choice for a whole wing or aircraft is that of the root chord; for
a two-dimensional study of a wing section, the section’s chord may be used.

For two-dimensional motion (parallel to the plane of symmetry), the angle α between the
velocity and the aircraft reference direction is called the geometric angle of incidence or
geometric angle of attack. Note that it depends on the definition of the reference direction. The
sign of the angle is that of the y-component of the velocity of the air relative to the aircraft.

In terms of the incidence, and referring to Figure 1.1, the axial and normal components of
the aerodynamic force are related to the lift and drag by

L = Ay cos α − Ax sin α (1.1a)

D = Ax cos α + Ay sin α. (1.1b)

1.4 Properties of Air

After density, the two most important properties of air in aerodynamics are its compressibility
and its viscosity.

1.4.1 Equation of State: Compressibility and the Speed of Sound

The equation of state of a material relates its pressure and density. A material resists changes in
density by changing its pressure. The relevant material property is the compressibility. Using a
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Taylor series for the pressure as a function of density for small changes in density about some
reference level ρ0,

p(ρ) ≈ p(ρ0) + (ρ − ρ0)p′(ρ0)

≡ p(ρ0) + ρ − ρ0

ρ0

1

κ
(1.2)

where κ ≡ 1/ρ0p
′(ρ0) is the compressibility. (The Taylor series approximation to a function

matches at a given point first the value, then the derative, then the second derivative, and so on.)
Sound waves travel through the material with a speed a = 1/

√
ρ0κ. It is often more convenient

to use the speed of sound a as the parameter rather than κ, and we will do so here. In terms of
a, the first-order Taylor series approximation to pressure–density Equation (1.2) is

p(ρ) ≈ p(ρ0) + (ρ − ρ0)a2.

The Adiabatic Speed of Sound in an Ideal Gas

The compressibility of a gas depends on how quickly the compression occurs; specifically,
how the temperature varies, or is allowed to vary, during the compression. If the compression
is very fast, there may be insufficient time for heat transfer between the parcel of gas of interest
and its surroundings; this adiabatic compression applies to the passage of sound waves.

The work done during expansion by a unit mass is pδ(1/ρ), and the increase in internal
energy is cvδT . Without heat transfer, the conservation of energy implies that these sum to
zero and so dT = p dρ/cvρ

2.
This can be applied to the differential of the thermal equation of state of an ideal gas

p = ρRT, (1.3)

which besides the thermodynamic properties of pressure p, temperature T , and density ρ,
involves the gas constant R which for air is about 287.0 J/kg K.

dp = R(T dρ + ρ dT )

= R(T dρ + p dρ/cvρ)

= R(T + p/cvρ) dρ

ρ dp = pR(1/R + 1/cv) dρ

= p(1 + R/cv) dρ

= pγ dρ

κ = pγ

where we have defined the dimensionless number γ ≡ 1 + R/cv, a property of the gas, which
is independent of temperature and pressure insofar as the gas constant R and specific heat cv
are. When we return to this topic in more detail in Section 18.3.5 and Equation (18.9) we will
see that γ is the ratio of the isobaric and isochoric specific heat coefficients.

Thus,

a = 1√
ρκ

=
√

γp

ρ
=
√

γRT , (1.4)



10 Theory of Lift

Listing 1.1 speed of sound: compute the speed of sound in air in m/s at a temperature (or array
of temperatures) in Kelvin.

function a = speed of sound (T), a = sqrt (1.4 * T * 287.0);
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Figure 1.5 Variation of the speed of sound in air with temperature at atmospheric pressures, according
to Equation (1.4)

The theoretical value of γ for diatomic gases is 7
5 , and this is a good approximation for

air, which, as far as its mechanical properties are concerned, largely consists of diatomic
nitrogen and oxygen. Thus the speed of sound depends only on temperature, and at T = 15◦C
= 288.15 K is a

.= 340 m/s. Values at other (absolute) temperatures are conveniently calculated
with a one-line Octave function (Listing 1.1), which was used to generate Figure 1.5.

1.4.2 Rheology: Viscosity

The constitutive law of a material relates the stress and stain. A material resists deforma-
tion by changing its stress. A fluid has no preferred shape, but resists the rate of change
of shape.

Rheology in general is very complicated, but a good model for air is the linearly viscous fluid,
for which the stress is the sum of an isotropic part (the pressure) and a part proportional to the
rate of strain. Even for the linearly viscous fluid the constitutive law is complicated, as we shall
see in Section 15.2.2. The relevant point here is that the constitutive law introduces another
parameter: the coefficient of dynamic viscosity, µ, which has SI units of Pa s (or kg m−1 s−1).
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Listing 1.2 viscosity.m.

function m = viscosity (T)
m = 1.495e-6 * sqrt (T) ./ (1 + 120 ./ T);
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Figure 1.6 Variation of the coefficient of dynamic viscosity of air with temperature at atmospheric
pressures, according to Equation (1.5)

Correlating the Viscosity of Air with Sutherland’s Law

For sub-hypersonic aerodynamics within the lower parts of the atmosphere, it is usually ade-
quate to take the viscosity of air as depending only on the temperature. A simple correlation
is the Sutherland law

µ = S
√

T

1 + C
T

(1.5)

where T is the absolute temperature and S and C are coefficients determined from correlation
with experiments. Reasonable values are S = 1.495 µPa s/K−1/2 and C = 120 K. This is coded
in Octave as shown in Listing 1.2 and used to plot Figure 1.6.

Kinematic Viscosity

It is often more convenient to work with the coefficient of kinematic viscosity defined by

ν = µ

ρ
(1.6)

which evidently has SI units m2/s.
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1.4.3 The International Standard Atmosphere

For convenience in comparing data gathered at different times and places, an International
Standard Atmosphere has been defined. This specifies, among other properties, the pressure
p, density ρ, speed of sound a, and coefficients of dynamic µ and kinematic ν viscosity as
functions of altitude. These values are widely tabulated, but also easily computed.

The lowest layer of the International Standard Atmosphere is the troposphere. It begins at
sea level at 15◦C and 101.325 kPa and extends upwards to the base of the tropopause at 11 km
with the temperature decreasing by 6.5 K/km. The next lowest layer, up to 20 km, is the lower
part of the stratosphere, which is isothermal.

The variation of pressure and density with height is then computed from:

• the ideal gas Equation (1.3), relating pressure p, temperature T , and density ρ; and
• hydrostatic equilibrium, relating pressure, density, and altitude y.

1.4.4 Computing Air Properties

The speed of sound and viscosity can be computed directly from Equations (1.4) and (1.5),
respectively, and the temperature, so they’re easy. Computing the pressure and density requires
the solution of the differential equation of hydrostatic equilibrium – which is essentially what
remains of the Euler Equations (2.9) in the absence of velocity:

dp = −ρg dy. (1.7)

Troposphere

The temperature in the standard troposphere is defined to be

T (y) = T (0) − Γy, (1.8)

where T (0) = 15◦C = 288.15 K is the standard temperature at sea-level, and Γ = 6.5 K/km
is the standard constant lapse rate.

Expressing the density in terms of the ideal gas Equation (1.3) in the hydrostatic balance
with dy = −dT/Γ

dp = pg

RTΓ
dT

d ln p = g

ΓR
d ln T

p

p(0)
=
{

T

T (0)

}g/ΓR

,

where p(0) = 101325 Pa = 1 atm is the standard atmospheric pressure at sea level.
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Listing 1.3 atmosphere.m.

function [p, T, rho, a, mu] = atmosphere (y)

g = 9.80665; R = 287.0; cpcv = 7/5;
T0 = 15 + 273.15; p0 = 101325e0;
L = 6.5e-3; yt = 11e3; top = 20e3;

troposphere = y <= yt;
strat = ˜troposphere & (y <= top);
T = NaN (size (y)); p = T;

T(troposphere) = T0 - L * y(troposphere);
Ts = T0 - L * yt;
T(strat) = Ts;

p(troposphere) = p0 * (T(troposphere) / T0) .ˆ (g/L/R);
pt = p0 * (Ts / T0) ˆ (g/L/R);
p(strat) = pt * exp (g/R/Ts * (yt - y(strat)));

rho = p ./ (R * T);
a = speed of sound (T);
mu = viscosity (T);

Stratosphere

The lower part of the standard stratosphere is isothermal, so the hydrostatic balance reduces to

dp = −ρg dy

= −p

RT
g dy

d ln p = −g

RT
dy

p

pt
= exp

{ g

RT
(yt − y)

}
.

These properties for these two lowest layers of the atmosphere can be computed with an
Octave function (atmosphere.m, in Listing 1.3), as shown in Figure 1.7.

1.5 Dimensional Theory

Following the considerations in Section 1.1.4, we expect that the aerodynamic force A for
steady symmetrical flight in a straight line is a function of the airspeed and incidence, the
aircraft geometry, and the air properties. This involves a lot of parameters.
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Properties relative to those at sea level
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Figure 1.7 Relative variation of the lower International Standard Atmosphere with altitude

First, consider just the two-dimensional flow over a wing section of given shape but variable
size parameterized, say, by its chord length c. Then the lift (per unit span) is

� = f (V, α, c, ρ, µ, a).

This is still a lot of parameters to have to vary in an experimental program. Some further
reduction can by achieved using dimensional theory.

An equation like ‘two metres plus three seconds equals five kilograms’ doesn’t make any
sense. We can only add or compare for equality quantities that have like units. However, we
can multiply different physical quantities; e.g.

1 kg × 9.8 m/s = 9.8 N

does make sense, since 1 N ≡ 1 kg m/s2.
Say we attempt to correlate the aerodynamic force by a functional form like

� =
∑

kpqrstuV
pαqcrρsµtau

where p, q, . . . , u are undetermined powers and kpqrstu is a dimensionless coefficient. Then
every term in the summation must have the same units as �:

N

m
= (m/s)p(−)q(m)r(kg/m3)s(Pa s)t(m/s)u.

Reduce all derived units—those except the kilogram, metre, and second—to the fundamen-
tal ones using N = kg m/s2 and Pa = kg/m s2, and equate powers of kg, m, and s. This
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leads to

kg

s2 = (m/s)p(−)q(m)r(kg/m3)s(kg/m.s)t(m/s)u

= mp

sp
(−)qmr kgs

m3s

kgt

mtst

mu

su

= mp+r−3s−t+ukgs+ts−p−t−u

so

for kg: s + t = 1 (1.9a)

for m: p + r − 3s − t + u = 0 (1.9b)

for s: − u − p − t = −2. (1.9c)

This is three equations in five unknowns, so we have two free parameters; say t and u. In terms
of them, the solution for the other three is s = 1 − t, p = 2 − t − u, and r = 1 − t. Then the
formula for the force is

� =
∑

kqtuV
2−t−uαqc1−tρtau

=
∑

kqtuV
2αqcρ

(
µ

ρVc

)t ( a

V

)u

where the indices q, t, and u remain arbitrary. Divide through by ρV 2c to get

�

ρV 2c
=
∑

kqtuα
q

(
µ

ρVc

)t ( a

V

)u

.

Define

C� ≡ �
1
2ρV 2c

(coefficient of lift) (1.10)

Re ≡ ρVc

µ
≡ Vc

ν
(Reynolds number) (1.11)

Ma ≡ V

a
(Mach number). (1.12)

These three quantities have no units: i.e. are pure numbers or dimensionless quantities. Then

C� = 2
∑

kqtuα
qRe−tMa−u,

so that the lift coefficient must depend only on the incidence and Reynolds and Mach numbers

C� = C�(α, Re, Ma).

Similarly, for the drag coefficient

Cd = d
1
2ρV 2c

= Cd(α, Re, Ma),

where d is the drag per unit span.
In general, Buckingham’s 	 theorem states that a function of n parameters involving d

fundamental dimensions (e.g. mass, length, time) can be reduced to a dimensionless function
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of n − d dimensionless parameters. Here we reduced the lift correlation formula from n = 6
parameters to n − d = 6 − 3 = 3.

We see that the Reynolds number represents the influence of viscosity, and the Mach number
the influence of compressibility.

The same result can also be obtained by nondimensionalizing the full equations governing
the fluid motion: the Navier–Stokes equations.

To consider more general problems (e.g. other wing section shapes) we need more param-
eters. These should also be dimensionless, for example, quantities with dimensions of length
like

• maximum camber
• position of maximum camber
• maximum thickness
• position of maximum thickness

are usually introduced using their ratio to the chord length, as in Figure 1.3.
Another advantage of working with dimensionless quantities is that they have the same

value, regardless of whether the underlying dimensional quantities are measured in Imperial,
SI, or whatever other system of units.

1.5.1 Alternative methods

The 	 theorem can be exploited to derive simpler procedures for finding the dimensionless
parameters. A popular one is the Hunsaker–Rightmire method; here we present another, taken
from Bradshaw (1964).

For each of the relevant dimensions, e.g. mass, length, and time, choose a quantity involving
that dimension; e.g. ρ for mass, V for time, and c for length. Then take each of the remaining
quantities and multiply or divide by an appropriate power of each of these in turn to eliminate
the dimensions. Thus, writing [=] to indicate dimensional equivalence,

�

ρ
[=]m3.s−2

�

ρV 2 [=]m

�

ρV 2c
[=]1,

which leads us to the lift coefficient. Operating similarly on µ and a would lead us to the
Reynolds and Mach numbers, respectively.

1.5.2 Example: Using Octave to Solve a Linear System

Although the system of three linear Equations (1.9a) in five variables was easy enough to solve
by hand, this also makes it ideal for demonstrating the use of Octave for these problems. Much
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larger systems will be encountered later in the lumped vortex (Chapter 7), panel (Chapter 8),
and vortex lattice (Chapter 14) methods and they will really require automatic computation.

First, let us rewrite the three Equations (1.9a) as a single matrix equation.




0 0 1 1 0

1 1 −3 −1 1

−1 0 0 −1 −1







p

r

s

t

u




=




1

0

−2


 (1.13)

Then partition the five variables into those remaining free (t and u) and those that will be
expressed in terms of them (p, r, and s).


0 0 1

1 1 −3

−1 0 0






p

r

s


+




1 0

−1 1

−1 −1



{

t

u

}
=




1

0

−2




Now, hoping that the square matrix at the left is nonsingular, left-multiply through by its
inverse. (If it were singular this step would fail, which would indicate that the partitioning
should be reconsidered; this doesn’t apply in this example.)


p

r

s


 =




0 0 1

1 1 −3

−1 0 0




−1




1

0

−2


−




1 0

−1 1

−1 −1



{

t

u

} (1.14)

Carrying out the matrix solutions (omitting the details here since it will shortly be redone
automatically in Octave using its backslash operator)


p

r

s


 =




2

1

1


−




1 1

1 0

1 0



{

t

u

}
=




2 − t − u

1 − t

1 − t


 , (1.15)

which is exactly the answer obtained previously.
The matrix from Equation (1.13) can be set up and then Equation (1.14) executed in Octave

quite directly, as shown in Listing 1.4, with output in Listing 1.5.

Listing 1.4 Octave code for solving the 5 × 3 linear system, implementing Equation (1.14) for
reducing the number of governing parameters from 5 to 3.

A = [ 0, 0, 1, 1, 0;
1, 1, -3, -1, 1;

-1, 0, 0, -1, -1];
bound = 1:size (A, 2) <= size (A, 1);
A(:,bound) \ [1; 0; -2]
A(:,bound) \ A(:,˜bound)
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Listing 1.5 Octave output for Listing 1.4, being the 3 constants and 3 × 2 coefficients in
Equation (1.15).

ans =
2
1
1

ans =
1 1
1 0
1 0

1.6 Example: NACA Report No. 502

Here we look at an example of an actual wind-tunnel study of the aerodynamic force on a
wing.

Silverstein A 1935 Scale effect on Clark Y airfoil characteristics from NACA full-scale wind-tunnel
tests. Report 502, NACA.

It exhibits many of the points noted above.
Noting discrepancies in previously published wind-tunnel data, Silverstein (1935) carried

out a new set of force measurements on a wing in a wind-tunnel, using different airstream
speeds V , wing sizes (varying chord length c and span b), and geometric angle of incidence α.

Silverstein (1935, table I) defines the geometry of the Clark Y wing section using the
dimensionless ordinates of the upper yU and lower yL surfaces as functions of the dimensionless
distance along the chord. Using this data, reproduced here in Table 1.1, we can reconstruct the
profile and the camber line, as in Figure 1.8. We see that:

• The maximum camber is about 6% of the chord length, and occurs about 30% along the
chord from leading to trailing edge.

• The third of Milne-Thomson’s definitions of chord has been used: a line tangent to the
lower surface at two points. Note that if, instead, the chord had been defined as the straight
line joining the ends of the camber line, the chord would have a different angle, and so the
geometric incidence would be modified for the same airstream.

• The coordinates are all normalized by the chord.

Although the airspeed, chord length, and wing span were all varied, Silverstein enables easy
and meaningful comparison between the results of different runs by quoting and presenting
them in terms of the dimensionless Reynolds number and coefficient of lift (see e.g. his figure 5).
Also, although Silverstein measured airspeed in miles per hour and chord length in feet, the
dimensionless numbers are exactly the same as if he had used SI units.
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Table 1.1 Upper and lower surface ordinates for
the Clark Y aerofoil.

100x/c 100yU/c 100yL/c

0 3.50 3.50
1.25 5.45 1.93
2.5 6.50 1.47
5 7.90 0.93
7.5 8.85 0.63

10 9.60 0.42
15 10.68 0.15
20 11.36 0.03
30 11.70 0.00
40 11.40 0.00
50 10.52 0.00
60 9.15 0.00
70 7.35 0.00
80 5.22 0.00
90 2.80 0.00
95 1.49 0.00

100 0.12 0.00

Source: After Silverstein (1935, table I).

Figure 1.8 The Clark Y profile, from Silverstein (1935, table I); the upper nodes are marked with plus
signs

1.7 Exercises

1. A wing has span b and root chord cr, compute the planform area, mean chord, and aspect
ratio if the planform is
(a) elliptic;
(b) triangular, with zero tip chord;
(c) trapezoidal, with taper ratio t.

2. Invert Equations (1.1a) and (1.1b) to obtain the Cartesian components.
Ans.:

Ax = D cos α − L sin α

Ay = D sin α + L cos α.
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3. In the Introduction to NACA Report No. 463, Stack (1933) wrote

The advantages of model testing as an aid to the solution of full-scale problems are often
neutralized by the inaccurate reproduction of the full-scale flow in the model test. The conditions
which must be fulfilled in the model test so that the results may be directly applicable to the
full-scale problem are twofold. First, the model must be geometrically similar to the full-scale
object – a condition usually obtained – and second, the model flow pattern must be similar
to the full-scale flow pattern – a condition generally not fulfilled. The principal factors that
determine flow similarity and the Reynolds nuber ρVl/µ and the compressibility factor V/Vc

where Vc is the velocity of sound in the gas.

To what quantity in Section 1.5 does the ratio V/Vc correspond?

4. Consider a wing at 12◦ incidence. The lift and drag coefficients are 1.2 and 0.1092,
respectively. Calculate the axial and normal force coefficients. (These figures are from
Silverstein 1935, table II.)

5. (a) If Re = 1.12 × 106 for a wing section of chord c = 4 ft, what must the air-speed be,
assuming sea-level air? (Again, these figures are from Silverstein 1935, table II.)

(b) What would the free-stream Mach number have been?
(c) If the chord and span were c = 4 ft and b = 24 ft, the wing-planform was rectangular,

and the lift and drag coefficients were as given in Exercise 4, what must the lift and
drag forces have been?

(d) What would the Reynolds number be in water at the same speed?
(e) What speed in water would give the same Reynolds number?

6. Nondimensionalize the two-dimensional incompressible Navier–Stokes equations for con-
stant density and viscosity:

∂u

∂x
+ ∂v

∂y
= 0

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2 + ∂2u

∂y2

)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2 + ∂2v

∂y2

)
.

If the velocity is normalized by q∞ and the coordinates by c, how should the pressure
be nondimensionalized if the pressure term is to remain finite as the Reynolds number
Re ≡ ρq∞c/µ tends to: (a) 0; (b) ∞.

7. Golf balls (which have a standard minimum diameter of 42.7 mm) can exceed 300 km/h
when driven, although recreational players generally achieve less than half this. What are
the Reynolds and Mach numbers of the ball under these conditions, near sea level in the
standard atmosphere?

8. The normal altitude of Qantas’s A380-800 passenger aircraft is 10 700 – 13 100 m. How
much do the properties of air vary over this range, and how different are they from those
at sea level.
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What is the Mach number at the cruising speed of 920 km/h? What is the cruising
Reynolds number, based on the mean wing chord length of 10.6 m?

9. How does the coefficient of kinematic viscosity vary with altitude in the International
Standard Atmosphere? Graph and tabulate it at each kilometre from sea level up to the
top of the isothermal part of the stratosphere, both in absolute terms and as a ratio to the
value at sea level.

10. Between 20 and 32 km, the stratosphere has a lapse rate of Γ = −1 K/km. Extend List-
ing 1.3 and Figure 1.7 to this height.

11. Reaction Engines Ltd’s A2 hypersonic transport is envisaged as cruising at Mach five
at an altitude of 100 000 ft. The total length of the craft is 132 m. Using the results of
Exercise 10, what would be the A2’s air-speed? What would be its Reynolds number
(based on the given overall length)?

12. For each of the properties defined by the International Standard Atmosphere, how high can
one go above sea-level before it changes by 1%? By 10%? Given a steady cruising altitude
of 5 km, what variations in altitude correspond to these same variations in atmospheric
properties?

13. Does humidity affect the properties of air? Under atmospheric conditions, water vapour
and dry air combine together ideally; i.e. the water vapour and dry air sharing a given
volume of space have a common temperature and their (‘partial’) densities and pressures
are what they would be if they were alone, with each behaving as an ideal gas. The total
density and pressure is the sum of that for each component. The gas constant for water
vapour is about 461.5 J/kg K.

The ‘saturation pressure’ of water is a function of temperature, roughly

log10
p

mmHg
= 8.07131 − 1730.63

T/K − 39.724
,

where 760 mmHg = 101 325 Pa. The partial pressure of water at a given temperature and
relative humidity is the saturation pressure times the relative humidity. The partial pressure
of dry air, then, is the difference between the total pressure and the partial pressure of water
vapour.

Consider humid air at 101.325 kPa, 15◦C, and 50% relative humidity. What is the total
density? How different is this from the density of dry air at the same temperature and
(total) pressure?

14. If the partial pressure of water vapour in humid air exceeds the saturation pressure, the
moisture will begin to condense out as droplets.

Say a given volume of humid air at the conditions considered in the last question is raised
in altitude through the standard atmosphere, so that the temperature and total pressure fall,
while the composition (absolute humidity) is conserved. How does the relative humidity
of the parcel vary with height? At what height is saturation achieved?

15. What about the droplets of liquid water in a cloud, do they affect atmospheric properties?
Consider a typical cloud at 10 km above sea level consisting of 50 000 000 droplets per
cubic metre, each of diameter 10 �m. What mass do these droplets add to each unit volume
of air?
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1.8 Further Reading

The pioneering aeronautical experiments of Henson and Stringfellow were described by Davy
(1931). For an introduction to the use of wind tunnels, see Glauert (1926, chapter 14), Prandtl
and Tietjens (1957), Bradshaw (1964, chapter 2), and Liepmann and Roshko (1957).

For frames of reference and how to define the geometric angle of incidence, see Milne-
Thomson (1973) or Anderson (2007).

For alternative quantitative descriptions of wings and their sections, see Dommasch et al.
(1967), Kuethe and Chow (1998), Bertin (2002), Houghton and Carpenter (2003), or Anderson
(2007). Details on the NACA wing sections can be found in Abbott et al. (1945) and Abbott
and von Doenhoff (1959).

The Sutherland law is one of the most common forms of equations used to describe the
dependence viscosity on temperature (Glasstone 1946; Montgomery 1947).

The International Standard Atmosphere (ISO 1975), its predecessors, and their importance
in aerodynamics are discussed by Glauert (1926), Batchelor (1967), Milne-Thomson (1973),
Hoerner and Borst (1985), and Kuethe and Chow (1998); tables may be found in Bertin (2002)
and Anderson (2007).

The concept of dimensional analysis is fundamental and therefore difficult to reduce to
simpler terms. Once grasped it is obvious but until then it can appear abstract. Such funda-
mental concepts are best acquired by reading different explanations until the darkness sud-
denly clears; for dimensional analysis, try Glauert (1926), Hunsaker and Rightmire (1947),
Karamcheti (1966), Batchelor (1967), Milne-Thomson (1973), Streeter and Wylie (1983),
Kuethe and Chow (1998), or Anderson (2007). All textbooks on aerodynamics or fluid me-
chanics will contain some explanation of dimensional analysis, not least because of the utility
of dynamical similarity. Bertin (2002) demonstrates the approach mentioned of nondimen-
sionalizing the Navier–Stokes equations. For the method of Hunsaker and Rightmire (1947),
see Streeter and Wylie (1983) or Anderson (2007); the alternative method of Section 1.5.1 is
taken from Bradshaw (1964).
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2
Plane Ideal Flow

In Chapter 2 we look at the equations governing two-dimensional flow in aerodynamics. Such
a flow is defined by its components u and v with respect to a Cartesian x–y coordinate system
in a plane.

The velocity of a flow can be described by giving the velocity of each particle of fluid,
but these particles are many and difficult to label and keep track of. Instead of this material
description it is more convenient to describe the velocity of a flow by the velocity at a given
point in space; i.e. to give the velocity as a function of x and y:

u = u(x, y)

v = v(x, y).

The functions u and v specify a velocity field. This is called the spatial description and is used
throughout hereafter; nevertheless, it should be remembered that physical laws like those of
classical mechanics apply to particles of fluid and not to regions of space.

By classical mechanics here is meant the mechanics embodied in Newton’s three laws of motion, for
example, rather than the later developments of special and general relativity which blur the distinction
between space, time, and the ‘bodies’ which exist ‘in’ them, or quantum mechanics which blurs the
idea of a ‘particle’. Classical mechanics is adequate not merely for the introduction to aerodynamics
provided by this book, but well beyond that too, for very nearly all aerodynamics practised today.

Although the velocity here has two components, it is really a single physical thing, and so
it is often more apt to refer to it as a vector:

q(x, y) ≡ u(x, y)i + v(x, y)j,

where i and j are the unit-vectors in the positive x- and y-directions.

2.1 Material Properties: The Perfect Fluid

A perfect fluid is a ‘a continuous homogeneous medium within which no shearing stresses can
exist’ (Abbott and von Doenhoff 1959). This definition implies that

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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• density is constant (since the material is homogeneous);
• viscosity is zero (since no shearing stresses can exist); and
• fluid stress only produces normal forces on surfaces (i.e. the only stresses are pressure

stresses).

Many important problems in aerodynamics can be solved by treating air as a perfect fluid.

2.2 Conservation of Mass

2.2.1 Governing Equations: Conservation Laws

The two fundamental physical requirements that a flow must satisfy are:

• conservation of mass; and
• Newton’s Second Law of Motion: force equals mass times acceleration.

2.3 The Continuity Equation

Consider a fixed closed loop C in the xy-plane. If the loop is filled with perfect fluid, the mass
inside must remain constant, since it encloses a fixed area and the fluid density is constant.
This means that the net rate of outflow must vanish; i.e. the integral around C of the component
of velocity normal to C must be zero. ∮

C
q · n̂ ds = 0. (2.1)

A loop is shown in Figure 2.1 with a typical normal element; by convention, loop-integrals are
always traced anticlockwise. From the figure, or as q = ui + vj and

n̂ ds = i dy − j dx (2.2)

q · n̂ ds = u dy − v dx;

dx

dy

n̂ds

Figure 2.1 Relation between normal loop element and Cartesian coordinates: n̂ ds = i dy − j dx
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i.e. the horizontal component of velocity u contributes to the outflow through the segment in
proportion to its vertical height dy, and the vertical component in proportion to the horizontal
width dx. The signs correspond to the segment of the loop being traced anticlockwise.

By the divergence theorem, Equation (2.1) can be converted to an integral over the region
R enclosed by C:

∮
C
q · n̂ ds =

∫∫
R

∇ · q dA

or
∮
C
(u dy − v dx) =

∫∫
R

(
∂u

∂x
+ ∂v

∂y

)
dA.

Since Equation (2.1) has to hold for all closed loops in the fluid, the integrands on the right-hand
sides, the divergence, must vanish everywhere:

∇ · q ≡ Θ ≡ ∂u

∂x
+ ∂v

∂y
= 0. (2.3)

A two-dimensional flow satisfying Equation (2.3) is said to be divergence-free.

2.4 Mechanics: The Euler Equations

Newton’s Second Law of Motion states that the rate of change of momentum of a particle is
equal to the resultant of the forces acting on it.

2.4.1 Rate of Change of Momentum

Consider a particle of perfect fluid occupying a unit volume (and so possessing mass ρ) near
(x, y) at t. It moves with the prevailing velocity (u, v) so that a short time δt later the particle
has moved by uδt in the x-direction and vδt in the y-direction. At the new location and time,
the prevailing velocity is (u + δu, v + δv); see Figure 2.2.

Substantial Derivative

Say we have some field T = T (x, y, t) defined in the two-dimensional space and changing
in time (think of it as the temperature, say, which is why we’ve given it the symbol T ). If a
particle of fluid is at (x, y) at time t and has velocity components u and v there and then, it will

(x, y) at t

q

(x+ δx, y + δy)at  t+ δt

q+ δq

Figure 2.2 The change in position and velocity of a particle in time δt
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move by qδt = (ui + vj)δt; that is, the x-coordinate will change to x + uδt, the y-coordinate
to y + vδt, and of course the time increases to t + δt. Therefore, the value of T the particle
experiences at t + δt is T (x + uδt, y + vδt, t + δt). If δt is short, this is (using the first-order
Taylor series in each independent variable)

T (x + uδt, y + vδt, t + δt) ∼ T + u
∂T

∂x
δt + v

∂T

∂y
δt + ∂T

∂t
δt + O({δt}2)

= T +
{

u
∂T

∂x
+ v

∂T

∂y
+ ∂T

∂t

}
δt + O({δt}2)

≡ T + DT

Dt
δt + O({δt}2), (2.4)

where

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y

is the substantial derivative. It’s the derivative following the particle, since from Equation (2.4)

lim
δt→0

T (x + uδt, y + vδt, t + δt) − T (x, y, t)

δt
= DT

Dt
. (2.5)

Substantial Derivative of the Momentum Field

The acceleration field then, being the acceleration of the fluid particles, at a point and instant,
is given by

Dq

Dt

with components

Dq

Dt
= Du

Dt
i + Dv

Dt
j.

Since mass is conserved, the rate of change of momentum is just ρ times this; in vector form

ρ
Dq

Dt
.

2.4.2 Forces Acting on a Fluid Particle

In addition to any extraneous forces (fx, fy) per unit mass, a fluid particle experiences forces
acting across its surface from the stresses in the neighbouring fluid. For a perfect fluid, these
are due entirely to the pressure P , as in Figure 2.3.

The resultant (per unit volume) is

− ∂P

∂x
i − ∂P

∂y
j = −∇P.
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P − 1
2
∂P
∂y
δy δx

P + 1
2
∂P
∂y
δy δx

P − 1
2
∂P
∂x
δx δy

P + 1
2
∂P
∂x
δx δy

Figure 2.3 Pressure forces acting on an infinitesimal rectangle

2.4.3 The Euler Equations

Combining the results for the rate of change of momentum and the forces, Newton’s Second
Law of Motion for a unit volume of perfect fluid takes the form

ρ
Dq

Dt
= −∇P + ρf (2.6)

or

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂P

∂x
+ ρfx (2.7a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂P

∂y
+ ρfy. (2.7b)

These are known as either the Euler equation or the Euler equations, depending on whether it
is the vector or component nature that is to be emphasized. The equation never stands alone
but always with a corresponding equation for the conservation of mass.

2.4.4 Accounting for Conservative External Forces

If the external force per unit volume per unit span can be expressed as the gradient of a scalar
potential:

ρfx = −∂Φ

∂x

ρfy = −∂Φ

∂y
,

the force terms of Euler’s Equations (2.7), can be subsumed in the pressure terms:

−∂P

∂x
+ ρfx = −∂P

∂x
− ∂Φ

∂x
= − ∂

∂x
(P + Φ) = −∂p

∂x

−∂P

∂y
+ ρfy = −∂P

∂y
− ∂Φ

∂y
= − ∂

∂y
(P + Φ) = −∂p

∂y
,
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introducing the aerodynamic pressure

p ≡ P + Φ. (2.8)

Thus, provided all external forces are conservative, Euler’s equations can be expressed as if
there were no external forces so long as the pressure is interpreted as the aerodynamic pressure:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
(2.9a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
. (2.9b)

Gravity in a Perfect Fluid is Conservative

The most important application of the foregoing is the elimination of gravity from Euler’s
equations for a perfect fluid. If the density ρ is uniform, and say the y-axis is aligned vertically
up, the weight on a unit mass of fluid has components

fx = 0

fy = −g

which can be expressed in terms of the gravitational potential Φ ≡ ρgy, as obtained by inte-
grating the hydrostatic equilibrium Equation (1.7):

fx = 0 = − 1

ρ

∂(ρgy)

∂x

fy = −g = − 1

ρ

∂(ρgy)

∂y
,

or in vector form as

f = −gj = − 1

ρ
∇(ρgy).

The true pressure is recovered from the aerodynamic pressure using Equation (2.8):
P = p − ρgy.

Hereafter, gravity will be ignored, as is usual in aerodynamics.

2.5 Consequences of the Governing Equations

2.5.1 The Aerodynamic Force

Given Euler’s equations, the aerodynamic force on an object can be expressed as a surface-
integral.

Say we have an impermeable two-dimensional obstacle occupying region R bounded by a
closed curve C and held in place by an external force exactly balancing the aerodynamic force.
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Since C is impermeable, the velocity throughout R can be taken as zero. Then integrate the
vector form of Euler’s momentum Equation (2.6) over R:

ρ

∫∫
R

Dq

Dt
dA = −

∫∫
R

∇p dA + ρ

∫∫
R

f dA

0 = −
∮
C
pn̂ ds + ρ

∫∫
R

f dA.

Here we have used the fact that q = 0 throughout R to eliminate the left-hand side, and the
formula for the area-integral of a gradient, a.k.a. the gradient theorem:

∫∫
R

∇p dA =
∮
C
pn̂ ds

to convert the pressure term to a loop-integral.
The external force must be the integral over R of ρf ; thus the longitudinal and normal com-

ponents of its opposite, the aerodynamic force (per unit span), are, recalling from Equation (2.2)
that n̂ ds = i dy − j dx:

a = −ρ

∫∫
R

f dA = −
∮
C
pn̂ ds.

or

ax ≡ −ρ

∫∫
R

fxdA = −
∮
C
pi · n̂ ds = −

∮
C
p dy (2.10a)

ay ≡ −ρ

∫∫
R

fydA = −
∮
C
pj · n̂ ds = +

∮
C
p dx. (2.10b)

The Cartesian components, Equations (2.10), can then be combined according to
Equations (1.1a) and (1.1b) to get the lift and drag.

Integrals along the Chord

These integrals in Equations (2.10) around the surface of the wing section can be expressed
as integrals along the chord; i.e. with respect to x. Consider first the normal component of
aerodynamic force per unit span Equation (2.10b). Beginning the anticlockwise loop at the
trailing edge x = c, the integration passes over the upper surface as x decreases from c to 0,
then the integration passes along the lower surface as x increases from 0 to c again:

ay = +
∮
C
p dx

= +
∫ 0

c

pU dx +
∫ c

0
pL dx.
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Then swap the limits of integration on the upper surface integral and change its sign:

ay = −
∫ c

0
pU dx +

∫ c

0
pL dx

=
∫ c

0
(pL − pU) dx.

This has the physical interpretation that it’s not so much either the lower pressure that pushes
or the upper suction (negative pressure) that pulls the wing in the normal y direction, but their
sum, or the excess of the lower pressure over the upper pressure.

Similarly, after first changing the integration variable in Equation (2.10a):

ax = −
∮
C
p dy = −

∮
C
p

dy

dx
dx,

the axial component of force per unit span can be written as

ax =
∫ c

0

{(
p

dy

dx

)∣∣∣∣
U

−
(

p
dy

dx

)∣∣∣∣
L

}
dx.

Nondimensionalization and the Pressure Coefficient

Since the curveC is closed, the integral of any constant around it with respect to either coordinate
vanishes: ∮

dy = 0.

Thus we can integrate instead of the pressure its excess over the value in the far-stream:

ax = −
∮

(p − p∞) dy

ay =
∮

(p − p∞) dx.

For a wing section of chord c and airspeed q∞ ≡ | − V|, this is conventionally nondimen-
sionalized by dividing by the dynamic pressure ρq2∞c/2 and introducing the dimensionless
pressure coefficient

Cp ≡ p − p∞
1
2ρq2∞

(2.11)

to give

ax

1
2ρq2∞c

= −
∮

p − p∞
1
2ρq2∞

d
(y

c

)
=

∫ 1

0

[
Cp

d(y/c)

d(x/c)

]U

L
d

(x

c

)

ay

1
2ρq2∞c

=
∮

p − p∞
1
2ρq2∞

d
(x

c

)
=

∫ 1

0

[
Cp

]L
U d

(x

c

)
.
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2.5.2 Bernoulli’s Equation

Bernoulli’s equation is derived from Euler’s equations. It gives a very useful expression for
the pressure.

As a fluid particle moves along its trajectory, δx = uδt and δy = vδt. Therefore, eliminating
δt along a trajectory,

vδx = uδy. (2.12)

A velocity field independent of time is called steady. Multiplying the steady Euler
Equations (2.9),

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x

ρ

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
,

by δx and δy, adding, and using Equation (2.12), we obtain

dp + ρ d

(
1

2
q2

)
= 0, (2.13)

where

q ≡
√

u2 + v2

is the magnitude of velocity, or the speed. For a perfect fluid (using the constancy of density),
this reduces to

p + ρq2

2
= const. (2.14)

Note that Equation (2.14)

• applies only to perfect fluids (constant density, no shearing stress);
• applies only along a fluid trajectory;
• applies only to steady flows (u and v independent of time); and
• applies only in the absence of external body forces, or when all external body forces are

conservative.

2.5.3 Circulation, Vorticity, and Irrotational Flow

The circulation Γ around a circuit is defined as the negative of the integral of the anticlockwise
tangential component of velocity around the circuit:

Γ ≡ −
∮
C
q · τ̂ ds (2.15)

= −
∮

u dx −
∮

v dy.



34 Theory of Lift

+ u− 1
2
∂u
∂y
δy δx

+ v + 1
2
∂v
∂x
δx δy

− u + 1
2
∂u
∂y
δy δx

− v − 1
2
∂v
∂x
δx δy

Figure 2.4 Tangential components of flow around an infinitesimal anticlockwise loop; their sum is
minus the circulation, and proportional to the local vorticity

Here τ̂ is the unit vector tangent to the loop (taken anticlockwise), with (see Figure 2.1 again)

τ̂ ds = i dx + j dy.

Any region can be divided by a grid into rectangular cells. The circulation around the region
is the sum of the circulation around each cell. Letting the grid size become infinitesimal, we
find that the circulation in each cell is (Figure 2.4)

δΓ = −ζ δx δy

where

ζ ≡ ∂v

∂x
− ∂u

∂y
(2.16)

is the vorticity. It follows that for an area R with boundary curve C,

ΓC = −
∫∫

R
ζ dx dy.

An equation governing the vorticity in the flow can be obtained by cross-differentiating
and subtracting the vector-components of the Euler equations (without external body forces).
Using the conservation of mass Equation (2.3), we obtain

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
= 0.

This is the same as

Dζ

Dt
= 0,

which says that the vorticity of a fluid particle doesn’t change during a two-dimensional flow,
and implies that if a particle ever has zero vorticity, it has zero vorticity for all time; i.e. is
irrotational. This applies to the undisturbed air that an aircraft is flying into or the air in a
uniform stream. Thus irrotational flow is of great relevance to aerodynamics.
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2.5.4 Plane Ideal Flows

We are particularly interested in two-dimensional flows satisfying

Θ ≡ ∂u

∂x
+ ∂v

∂y
= 0 (2.17a)

ζ ≡ ∂v

∂x
− ∂u

∂y
= 0. (2.17b)

Any flow satisfying these two equations satisfies Euler’s equations (with no external body
force), and is called an ideal flow. The associated pressure is

p = const. − 1

2
ρq2, (2.18)

as may be easily verified by substitution.
Note that Equation (2.18) resembles Bernoulli’s Equation (2.14) but does not suffer the

restriction to particle trajectories; i.e. the constant in Equation (2.14) varies from streamline to
streamline, but in Equation (2.18) is the same for the whole flow.

It is not true that all solutions of Euler’s equations satisfying Equation (2.17a) satisfy
Equation (2.17b), but those that do are of particular interest in aerodynamics as explained
above.

2.6 The Complex Velocity

In Section 2.5.4 it was shown that plane ideal flows satisfying Equations (2.17a) and (2.17b)
satisfy the continuity and Euler equations for a perfect fluid. In Section 2.6, we discover a con-
nection with the theory of complex variables that provides many solutions to the flow equations.

2.6.1 Review of Complex Variables

A few useful properties of complex variables are collected here for convenience. These are all
standard formulae.

• An imaginary number is formed by multiplying a real number y by the imaginary unit i, a
constant with the special property

i2 = −1. (2.19)

• A complex number z is formed by adding a real number x to an imaginary number iy:
z = x + iy. This gives a one-to-one correspondence between points of the plane and complex
numbers; the complex number x + iy is called the complex coordinate of the point (x, y).

• We define, for z = x + iy:

�z ≡ x (real part), and

�z ≡ y (imaginary part).
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• Complex numbers can be added and subtracted by adding and subtracting the real and
imaginary parts.

(x1 + iy1) ± (x2 + iy2) = (x1 ± x2) + i(y1 ± y2).

• Complex numbers can be multiplied according to the usual rules of algebra, augmented by
Equation (2.19):

(x1 + iy1)(x2 + iy2) = x1x2 + i(x1y2 + y1x2) + i2y1y2

= (x1x2 − y1y2) + i(x1y2 + y1x2).

• Complex numbers are equal if and only if their real and imaginary parts are both equal.
• The polar coordinates in the plane are related to the Cartesian by

x = r cos θ y = r sin θ (2.20a)

r =
√

x2 + y2 θ = arctan
y

x
. (2.20b)

In terms of the polar coordinates,

z = x + iy = r cos θ + ir sin θ.

• De Moivre’s Theorem:

eiθ ≡ cos θ + i sin θ. (2.21)

• Therefore a complex number can also be expressed in polar form as:

z = x + iy = reiθ.

• Multiplication is easier in polar form:

r1eiθ1r2eiθ2 = r1r2ei(θ1+θ2).

• The modulus (or magnitude or absolute value) of a complex number is defined by

mod z ≡ |z| = |reiθ| = r.

• The argument (or phase) of a complex number is defined by

arg z ≡ arg(reiθ) = θ.

The value of the argument is nonunique in that any multiple of 2π can be added, since the
cosine and sine functions are periodic.

• The complex conjugate z∗ of a complex number z has the same real part and opposite
imaginary part, and same magnitude but opposite phase:

z∗ ≡ �z − i�z = |z|e−i arg z.
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• We have:

z + z∗ = 2�z

z − z∗ = i2�z

zz∗ = |z|2.
The last of these results is useful for rendering the denominator of a complex fraction real:

z1

z2
= z1z

∗
2

|z2|2 .

Analytic Functions

A complex function of a complex variable is said to be analytic if it possesses a well-defined
derivative. Say

f (z) ≡ f (x + iy) ≡ g(x, y) + ih(x, y),

where g(x, y) ≡ �f (z) and h(x, y) ≡ �f (z). Then the differential of f (z) is

df = ∂g

∂x
dx + ∂g

∂y
dy + i

(
∂h

∂x
dx + ∂h

∂y
dy

)
,

the differential of z is

dz = dx + idy,

and the derivative of f (z) is

df (z)

dz
=

∂g
∂x

dx + ∂g
∂y

dy + i
(

∂h
∂x

dx + ∂h
∂y

dy
)

dx + idy
.

When dy = 0, so that dz = dx, this becomes

df (z)

dz
= ∂g

∂x
+ i

∂h

∂x
,

and when dx = 0, so that dz = idy, it becomes

df (z)

dz
=

∂g
∂y

+ i ∂h
∂y

i
= ∂h

∂y
− i

∂g

∂x
.

For the derivative of f to be well defined, these two expressions must be equal. Equating the
real and imaginary parts then gives

∂g

∂x
= ∂h

∂y
(2.22a)

∂h

∂x
= −∂g

∂y
. (2.22b)
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These equations are the condition that a complex function be analytic; they are called the
Cauchy–Riemann equations.

All the elementary functions of z (powers of z, trigonometric functions, exponential function,
and hyperbolic functions) have the usual derivatives, e.g. dzk/dz = kzk−1, dez/dz = ez. These
are all analytic, except at points where the derivatives are undefined; e.g. for 1/z, the derivative
is

d

dz

1

z
= −1

z2

which is undefined at z = 0. Isolated points where an otherwise analytic function doesn’t have
a derivative are called singularities.

2.6.2 Analytic Functions and Plane Ideal Flow

Consider the analytic function

w(z) = u(z) − iv(z).

The Cauchy–Riemann Equations (2.22) require

∂u

∂x
= −∂v

∂y

∂v

∂x
= ∂u

∂y
,

which are seen to be identical to the requirements that the plane velocity field with components
u and v be divergence-free and irrotational; i.e. satisfy Equation (2.17a) and Equation (2.17b),
respectively. Therefore, any analytic function defines a solution of the two-dimensional conti-
nuity and Euler equations. We call w = u − iv the complex velocity.

The Polar Form of the Complex Velocity: Speed and Direction

For a complex velocity field w(z) = u − iv, the speed is given by

q(z) = |w| =
√

u2 + v2. (2.23)

The direction of the velocity at a point, expressed as its slope, is

v

u
= tan (− arg w) .

Thus the complex velocity can also be expressed as

w(z) = u − iv = qe−i arctan v/u ≡ qe−iβ,

where β(z) ≡ − arg w is the angle of the velocity at the point z to the positive x-axis.
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General Component

For any angle χ, the vector i cos χ + j sin χ has unit magnitude and is at an angle χ anticlockwise
from the positive x-axis. Therefore, the component of a vector q = ui + vj in this direction is

(i cos χ + j sin χ) · q = (i cos χ + j sin χ) · (ui + vj)

= u cos χ + v sin χ.

Now consider the product

eiχw = (cos χ + i sin χ)(u − iv)

= u cos χ + v sin χ + i(u sin χ − v cos χ).

Thus

�
(

eiχw
)

= u cos χ + v sin χ

gives the component of velocity in the direction χ and

−�
(

eiχw
)

= v cos χ − u sin χ (2.24)

the perpendicular component (reckoned positive in the direction rotated a quarter-turn an-
ticlockwise, i.e. making an angle χ + π/2 with the positive x-axis). These expressions are
useful in aerodynamics for finding the components of velocity tangential and normal to a
given surface.

In terms of the polar form:

eiχw = qe−i(β−χ)

�eiχw = q cos(β − χ)

−�eiχw = q sin(β − χ).

Polar Components

In particular, the radial and polar components of a velocity field are related to the Cartesian
components by

vr = u cos θ + v sin θ

vθ = v cos θ − u sin θ.

This can be expressed as

vr − ivθ = eiθw = qei(θ−β). (2.25)

Note that vr − ivθ , unlike u − iv, is not an analytic function. This is because the argument
θ isn’t and neither is the radial projection on the unit-circle eiθ; neither can be formed from
the complex number z by analytical processes and it may be verified that neither satisfy the
Cauchy–Riemann Equations (2.22).



40 Theory of Lift

2.6.3 Example: the Polar Angle Is Nowhere Analytic

1. Show that the argument θ of a complex number z = reiθ is not analytic; i.e. does not satisfy
the Cauchy–Riemann Equations (2.22). If w ≡ u − iv = θ were interpreted as a complex
velocity field, show that it would either have nonzero divergence or vorticity or both.

Solution: First express the complex function in terms of x and y, here using Equa-
tion (2.20b): θ = arctan y/x. Then find its real and imaginary parts; here this is trivial as θ

is real by definition, thus θ = u − iv = arctan y/x − i0, so u = arctan y/x and v = 0. The
divergence is ∇ · q = ∂u/∂x = −y/r2 and the vorticity is ζ = −∂u/∂y = −x/r2. Both of
these are undefined at the origin and nonzero everywhere else in the plane. �

Notes:
(a) To arrive at the result more intuitively, consider any point z in the plane other than the

origin. An infinitesimal step dz from the point along the ray from the origin doesn’t
change the polar angle θ, and so dθ = 0, but a step dz along the circle centred on the
origin and passing through the point (and so of radius r = |z|) does change θ according
to dz = r dθ.

2. Compute the outflow and circulation of that nonanalytic complex velocity for a loop, e.g.
a quarter-circle in the first quadrant centred on the origin.

Solution: Split the loop-integral into three parts: outwards from the origin along the positive
real axis, around the arc, and inwards along the positive imaginary axis.
On the arm of the quarter-circle along the positive real axis, θ = 0 and so there is no
contribution to either outflow or circulation: Q1 = Γ1 = 0.

To deal with the circular arc centred on the origin, the polar components of velocity will
be most convenient. Here these are vr − ivθ = θeiθ so vr = θ cos θ and vθ = −θ sin θ. On
the circle |z| = a, τ̂ds = adθ so (using integration by parts)

Q2 = a

∫ π/2

0
vr dθ

=
∫ π/2

0
θ cos θ dθ

=
∫ θ=π/2

θ=0
θd sin θ

= [θ sin θ]π/2
0 −

∫ π/2

0
sin θ dθ

= π

2
− [− cos θ]π/2

0

= a
(π

2
− 1

)
.

Similarly

Γ2 = a

∫ π/2

0
vθ dθ = a

∫ π/2

0
θ sin θ dθ = −a.
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Along the arm on the positive imaginary axis, θ = π/2 so the velocity is constant. The flow
is horizontal so there is no contribution to the circulation (Γ3 = 0) while the outflow is
Q3 = −aπ/2.
Thus, summing the contributions to the loop-integrals along the three parts of the loop, Q =
Q1 + Q2 + Q3 = 0 + a(π/2 − 1) − aπ/2 = −a /= 0 and Γ = Γ1 + Γ2 + Γ3 = 0 − a +
0 = −a /= 0. �

3. Obtain these results for the outflow and circulation by integrating the divergence and
vorticity over the interior of the loop.

Solution:

Q ≡
∫ a

0

∫ π/2

0

− sin θ

r
rdθ dr = −a

∫ π/2

0
sin θdθ = −a

Γ ≡
∫ a

0

∫ π/2

0

− cos θ

r
rdθ dr ≡ −a

∫ π/2

0
cos θdθ = −a. �

2.7 The Complex Potential

Define W(z) by the differential equation

dW

dz
= w (2.26)

where w(z) is the complex velocity w = u − iv. The function W(z) is called the complex
potential. It is evidently analytic, since it has a derivative: w. Adding any complex constant to
the complex potential has no effect on the aerodynamics; it is sometimes convenient for the
mathematics.

Let the real and imaginary parts of the complex potential W be φ and ψ:

W = φ + iψ. (2.27)

Using the definition Equation (2.26),

dW = w dz

d(φ + iψ) = (u − iv)d(x + iy)

so

dφ = u dx + v dy

dψ = u dy − v dx

and the velocity components can be expressed in terms of either φ or ψ as

u = ∂φ

∂x
= +∂ψ

∂y
(2.28a)

v = ∂φ

∂y
= −∂ψ

∂x
. (2.28b)
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Along a particle’s trajectory, dx = udt and dy = vdt, and the infinitesimal change in the
stream function during this time dt is

dψ = u dy − v dx = uv dt − vu dt = 0

so that ψ is constant along streamlines. It is called, therefore, the stream function. This gives
a convenient method of drawing flow fields: draw the curves along which ψ is constant.

The real part φ of the complex potential W = φ + iψ is simply called the potential.
Note that the velocity can be obtained from either φ or ψ; this holds whenever the velocity

is two-dimensional, divergence-free, and irrotational.

2.8 Exercises

1. Consider a uniform flow with velocity q∞. Show that this flow is a physically possible
flow for a fluid with constant density and that it is irrotational.

Choose a coordinate system and then express the velocity field in complex form.

2. Show that the radial projection on the unit circle, z/|z| ≡ eiθ , of an arbitrary nonzero
complex number z = |z|eiθ is not analytic; i.e. does not satisfy the Cauchy–Riemann
Equations (2.22).
(a) If w ≡ u − iv = z/|z| were interpreted as a complex velocity field, show that it would

be either have nonzero divergence or vorticity or both.
(b) Sketch the velocity field.
(c) Take a loop in the plane (e.g. a quarter-circle centred on the origin with radius a in

the first quadrant) and compute:

i the net outflow across it and
ii the circulation around it,

both by loop and area integrals.

Ans.:

Θ = − cos 2θ/r, ζ = − sin 2θ/r, Q = 0, Γ = −a/2.

3. Consider the flow for y > 0 over the ground y = 0. If the velocity is unidirectional and
everywhere parallel to the x-axis, say, what are the conditions that the distribution of the
velocity must satisfy:
(a) to have zero divergence,
(b) to be irrotational?
If the velocity is zero at the ground, show that it is either zero everywhere or rotational.

4. For the two-dimensional flow of incompressible air near the surface of a flat plate (in the
plane y = 0), the component of velocity parallel to the plate may be approximated by the
relation u = a1yx−1/2 − a2y

3x−3/2 where a1 and a2 are constants. Using the continuity
equation, what is the velocity component v in the y-direction? Evaluate the constant of
integration by noting that v = 0 at y = 0 if the plate is to be impermeable.
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5. (a) Show that wherever Bernoulli’s Equation (2.14) holds, the pressure coefficient as
defined by Equation (2.11) can be expressed as

Cp = 1 −
(

q

q∞

)2

.

(b) Show that the greatest increase in pressure relative to the free-stream value is 1
2ρq∞,

and that the pressure coefficient is bounded above by unity.
(c) Show that there is no lower bound on the pressure or its coefficient within the scope

of the theory developed thus far. (Actually increasing speed and decreasing pressure
without bound eventually causes the density to drop if compressibility is admitted;
see Chapter 18.)

(d) Say one wished to provide lift for a wing by arranging that the pressure beneath
should increase over its value in the free-stream by half the maximum possible
amount. By what fraction of its upstream speed should the air passing beneath be
retarded?

(e) If also the pressure above is to be decreased by the same absolute amount, what
fractional acceleration is required for the upper stream? [Ans.: qU = q∞

√
3/2.]

6. Given the velocity field

q = (x2y − xy2)i +
(

y3

3
− xy2

)
j,

(a) is it divergence-free?
(b) is it irrotational?
(c) for the triangle with vertices (0, 0), (1, 0), and (1, 1),

i. evaluate the outflow and circulation across the perimeter; and
ii. integrate the divergence and vorticity over the area.

7. Show that the dot product of a plane velocity and a plane vector f i + gj can be expressed
as the real part of the complex product of the complex velocity and the complex number
f + ig.

8. Hence show that the square of the speed can be obtained as

q2 = �(ww∗)

and therefore deduce Equation (2.23).

9. Also hence show that the component of velocity along an element of curve in Section 2.5.3
can be expressed as �(w dz), and therefore the circulation along the curve as

Γ = �
∫

w dz.
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10. Show that the imaginary part of the same complex product is the component of velocity
normal to an element of the curve, as given by Equation (2.2). Deduce that the net outflow
through a closed curve is

Θ = �
∮

w dz.

11. Derive Equation (2.25) from the preceding considerations and the complex product of the
complex velocity and the unit vector directed away from the origin.

12. Assuming the standard integral

∫ 1

0
arctan

t

1 − t
dt = π

4
,

show that if the quarter-circle in Section 2.6.3 were replaced by the right-angled isoceles
triangle with the same three vertices, so that the integral along the arc is replaced by
an integral along the hypoteneuse which would be πa(1 − i)/4 then the circulation and
outflow remain equal to each other but both change from −a to −πa/4.

13. Is r(z) ≡ |z| analytic? Describe the velocity field given by u(x, y) − iv(x, y) = |x + iy|.
14. Is z∗ analytic? Describe the velocity field given by u(x, y) − iv(x, y) = (x + iy)∗.

15. What are the conditions that a complex-valued function of x and y should have a well-
defined derivative with respect to z∗?

2.9 Further Reading

The divergence and gradient theorems will be revisited in Equations (9.7) and (9.8) in the
presentation of vector analysis required for three-dimensional flow; see also Bayin (2008) and
Karamcheti (1966).

The substantial derivative can be approached in different ways (Abbott and von Doenhoff
1959; Moran 2003; Anderson 2007), as can Bernoulli’s principle (Abbott and von Doenhoff
1959; Milne-Thomson 1973; Kuethe and Chow 1998; Bertin 2002; Anderson 2007).

The continuity Equation (2.3), can alternatively be derived from the mass balance on an
infinitesimal rectangle (Abbott and von Doenhoff 1959); i.e. requiring zero net outflow from a
rectangle with sides dx and dy. That approach is essentially a special rederivation the divergence
theorem (Truesdell and Rajagopal 2000).

For the treatment of conservative forces such as gravity in aerodynamics, see Milne-Thomson
(1973, section 2.11) and Karamcheti (1966, section 5.15).

Another brief summary of the parts of complex analysis required for aerodynamics was
given by Pope (2009). The complex velocity was introduced very early in the introductions
to the theory of wing sections and panel methods by Weissinger (1963) and Bousquet (1990),
respectively. The complex treatment of polar components can also be found in Ashley and
Landahl (1985). The complex potential is discussed by Abbott and von Doenhoff (1959),
Milne-Thomson (1973), Paraschivoiu (1998), and Pope (2009).
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3
Circulation and Lift

In Chapter 2, the equations governing plane ideal flow were presented and it was shown
that solutions to these equations representing physically possible flow could be obtained as
analytic functions of a complex variable. In Chapter 3, this discovery will be exploited to build
up a catalogue of divergence-free irrotational flows and then, with these available as definite
examples, some general properties are developed along with computational and analytical
tools, culminating in the remarkable short-cut to lift that is the Kutta–Joukowsky theorem.

3.1 Powers of z

As examples of flows generated by complex functions, consider the powers of z: w(z) = zk.
From w = zk = rkeikθ , we see that the speed and direction fields are:

q ≡ |zk| = rk (3.1a)

β ≡ − arg zk = −kθ. (3.1b)

From De Moivre’s Equation (2.21), we see that w = zk = rkeikθ = rk cos kθ + irk sin kθ

and the Cartesian components are

u = �zk = rk cos kθ

v = −�zk = −rk sin kθ.

From Equation (2.25), the polar components are given by vr − ivθ = eiθzk = rkei(k+1)θ so

vr = rk cos(k + 1)θ (3.2a)

vθ = −rk sin(k + 1)θ. (3.2b)

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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3.1.1 Divergence and Vorticity in Polar Coordinates

The continuity equation in polar coordinates is

1

r

∂(rvr)

∂r
+ 1

r

∂vθ

∂θ
= 0,

so that we can verify that these complex velocities satisfy conservation of mass:

1

r

∂

∂r

{
rk+1 cos(k + 1)θ

}
+ 1

r

∂

∂θ

{
−rk sin(k + 1)θ

}
= (k + 1)rk cos(k + 1)θ − (k + 1)rk cos(k + 1)θ = 0.

The vorticity in polar coordinates is

ζ = 1

r

{
∂(rvθ)

∂r
− ∂vr

∂θ

}
,

so for w = zk,

ζ = 1

r

{
∂(−rk+1 sin[k + 1]θ)

∂r
− ∂(rk cos[k + 1]θ)

∂θ

}

= 1

r

{
−(k + 1)rk sin(k + 1)θ + (k + 1)rk sin(k + 1)θ

}
= 0.

3.1.2 Complex Potentials

The complex potential for the complex velocity w(z) = zk is

W(z) =
∫

zk dz =
{

(k + 1)−1zk+1, (k /= − 1);

ln z, (k = −1).

Notice that the case w = z−1 is special. The logarithm of a complex number z satisfies

ln z = ln
(
reiθ

)
= ln r + ln

(
eiθ

)
= ln r + iθ. (3.3)

That is

� ln z = ln |z|
� ln z = arg z.

Thus for w = z−1,

φ = ln r

ψ = θ.
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Listing 3.1 cmeshgrid construct an n × n rectangular grid in the complex plane between
lower-left and upper-right corners ll and ur.

function Z = cmeshgrid (ll, ur, n)
x = linspace (real (ll), real (ur), n);
y = linspace (imag (ll), imag (ur), n);
[X, Y] = meshgrid (x, y);
Z = complex (X, Y);

3.1.3 Drawing Complex Velocity Fields with Octave

Octave is very useful for quickly drawing complex velocity fields.
First we need to define a grid of points. Octave has a meshgrid routine for this purpose, but

it returns the two lots of coordinates as separate real arrays so here we define a simple utility
function that converts these to complex form (Listing 3.1).

This will be used for drawing arrow plots and potential and streamlines for velocity fields
defined by complex functions.

Arrow Plots of Velocity

The most obvious way to depict a two-dimensional vector field is to draw an arrow at each point
of a grid, parallel to the field. This representation is similar to that which would be obtained
experimentally by holding an array of thin light short threads of silk in the flow.

Octave provides the function quiver for this purpose, except it makes the length of the
arrows proportional to the local magnitude of the field. This does provide more information,
but in many important flows the speed varies widely through the flow-field which makes it
difficult to choose a consistent scale for the arrows.

Here we define a function to generate a rectangular grid with given lower-left and upper-right
corners and the number of points and then evaluate a given complex velocity function on the
grid and pass it to Octave’s quiver. To obtain a depiction closer to the experimental field of
threads of fixed length, we normalize each arrow by dividing it by its modulus (Listing 3.2).

Listing 3.2 direction: plot the direction field on a 22 × 22 rectangular grid with defined
lower-left and upper-right corners ll and ur of a complex velocity function wf.

function direction (ll, ur, wf)
Z = cmeshgrid (ll, ur, 22);
w = wf (Z);
s = w ./ abs (w);
quiver (real (Z), imag (Z), real (s), -imag (s))
axis ([real(ll), real(ur), imag(ll), imag(ur)], ...

’off’, ’equal’)
box (’on’)



50 Theory of Lift

Listing 3.3 isopotentials: plot the level sets in a rectangle with corners ll and ur of the real
and imaginary parts of the complex potential function Wf.

function isopotentials (ll, ur, Wf)
Z = cmeshgrid (ll, ur, 1e3);
contour (real (Z), imag (Z), real (Wf (Z)), ’--’)
hold (’on’)
contour (real (Z), imag (Z), imag (Wf (Z)), ’k-’)
axis ([real(ll), real(ur), imag(ll), imag(ur)], ...

’off’, ’equal’)
box (’on’)
hold (’off’)

Isopotentials and Streamlines

Arrow plots are simple but can become cluttered. A useful alternative view is to draw the
isopotentials and streamlines.

The underlying tool here is Octave’s contour routine; here we define a function to generate
a grid, evaluate the complex potential defined by the given function on it, and then draw the
contours (Listing 3.3).

Note that Octave is not being asked here to integrate or differentiate the complex velocity or
complex potential (this kind of symbolic manipulation is possible, but beyond the scope of the
present discussion) so the complex velocity w passed to direction should be the derivative
of the complex potential W passed to isopotentials.

3.1.4 Example: k = 1, Corner Flow

Set w = z1 = z. The Cartesian components are u = x and v = −y. This is illustrated in
Figure 3.1 with an arrow plot.

Since the horizontal component u = x vanishes on the vertical y-axis and the vertical com-
ponent v = −y vanishes on the horizontal x-axis, w = z represents a flow with impermeable
walls along the x and y axes.

(a) (b)

Figure 3.1 The complex velocity field w = z: arrow plot (a) and level curves of the imaginary (solid)
and real (dashed) parts of the complex potential W = z2/2 (b)
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(a) (b)

Figure 3.2 The complex velocity field w = 1: its arrow plot (a) and level curves of the real (dashed)
and imaginary (solid) parts of its complex potential W = z (b)

From Equation (3.1a), we see that the speed of the flow increases without bound with distance
from the origin for positive k. We will therefore normally be more interested in nonpositive
powers of z in aerodynamical applications.

3.1.5 Example: k = 0, Uniform Stream

Set w = z0 = 1. Then the Cartesian components are u = 1 and v = 0; i.e. a uniform stream
in the x-direction with unit speed. The field is plotted in Figure 3.2.

3.1.6 Example: k = −1, Source

Set w = z−1. Then, referring to Equation (2.25), the polar components are given by

vr − ivθ = eiθw = eiθz−1 = eiθ
(
reiθ

)−1 = r−1;

i.e.

vr = 1/r

vθ = 0.

This could also have been obtained directly from Equations (3.2a) and (3.2b).
The velocity is purely radial out from the origin with a speed inversely proportional to the

distance. Since the circumference of a circle grows in proportion to its radius, the net flow out
of any circle centred at the origin is independent of the radius. This flow is called a source
at the origin. It satisfies the continuity equation everywhere except at the origin, where the
complex function z−1 is singular. The direction field is plotted in Figure 3.3a.

Since the magnitude of the velocity is unbounded at the origin, a simple quiver plot with
shafts proportional to speed would be less useful.
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(a) (b)

Figure 3.3 The complex velocity field w = z−1 (a) and its complex potential W = log z (b) of the
source (Section 3.1.6)

3.1.7 Example: k = −2, Doublet

Set w = z−2. The Cartesian and polar components of the velocity are:

u = x2 − y2(
x2 + y2

)2

v = 2xy(
x2 + y2

)2

vr = cos θ

r2 (3.4)

vθ = sin θ

r2 .

The flow, called a doublet, is plotted in Figure 3.4. Notice that unlike the isotropic source of
Figure 3.3, the doublet has a preferred direction: along the positive real axis.

(a) (b)

Figure 3.4 The complex velocity field w = z−2 (a) and its complex potential W = −1/z (b) of the
doublet of Section 3.1.7
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3.2 Multiplication by a Complex Constant

Say we have a complex velocity field w(z) expressed in polar form w = qe−iβ, where q is the
speed and β the angle to the positive x-axis. Multiplying an analytic function by a (complex)
constant Ae−iα gives another analytic function. The velocity field obtained is

w′ =
(
Ae−iα

)(
qe−iβ

)
= (Aq)e−i(β+α),

so that the effect of multiplying by the complex constant Ae−iα is to scale the speed to q′ = Aq

and increment the direction to β′ = β + α.
Thus, for example, noting that i = eiπ/2, multiplication by the imaginary unit i keeps the

speed the same but rotates the velocity vector at each point through a clockwise right-angle.

3.2.1 Example: w = const., Uniform Stream with Arbitrary Direction

The uniform horizontal (rightward) stream w(z) = 1 becomes, on multiplication by eiπ/2,
w′ = iw = i, with components u′ = 0 and v′ = −1. This is a uniform vertical downward
stream.

A uniform stream with speed q∞ and angle α is therefore obtained by multiplying the
complex velocity w = 1 by the complex constant q∞e−iα:

q∞e−iα = (q∞ cos α) − i (q∞ sin α) . (3.5)

This is plotted in Figure 3.5 for α = π
6 .

(a) (b)

Figure 3.5 The complex velocity field given by Equation (3.5), w = q∞e−iα (a) and its complex po-
tential W = q∞ze−iα (b) for α = π

6



54 Theory of Lift

(a) (b)

Figure 3.6 Arrow (a) and complex potential (b) fields for the complex velocity w = i/z

3.2.2 Example: w = i/z, Vortex

Since the velocity of a source is purely radial, multiplying its complex velocity z−1 by i rotates
the velocity at each point through a right-angle to become purely azimuthal:

w = iz−1 = ir−1e−iθ

vr − ivθ = eiθw = ir−1,

so vr = 0 and vθ = −1/r. This flow is called a vortex; it is plotted in Figure 3.6.

3.2.3 Example: Polar Components

Another example of multiplying the complex velocity by a constant to rotate the velocity
vectors at a point can be seen in the formula (2.25) for obtaining the polar components. This
is because the polar components can be thought of as the components relative to a pair of
perpendicular unit vectors that have been rotated so that one is directed away from the origin.

3.3 Linear Combinations of Complex Velocities

If f (z) and g(z) are analytic functions and α and β are complex constants, the linear combination
αf (z) + βg(z) is also analytic.

3.3.1 Example: Circular Obstacle in a Stream

From Equations (3.2a) and (3.4) the radial components of velocity for the uniform stream
vr = cos θ and the doublet vr = r−2 cos θ have the same dependence on the polar angle θ, and
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(a) (b)

Figure 3.7 The complex velocity field of Equation (3.6), w = 1 − z−2, (a) and its complex potential
(b); the field in the unit disk |z| < 1 is suppressed

are identical on the circle r = 1. Therefore, subtracting the complex velocity for a doublet
from the complex velocity for a uniform stream

w = 1 − 1

z2 (3.6)

gives a velocity field

vr =
(

1 − 1

r2

)
cos θ

vθ = −
(

1 + 1

r2

)
sin θ

that has zero radial component on the circle. This is as if the circle were an impermeable
barrier, and so w = 1 − z−2 for |z| > 1 is the complex velocity for a stream with a circular
obstacle. The field is plotted in Figure 3.7 using Listings 3.4 and 3.5.

Notice the trick we have used to zero the velocity inside the circle: ‘true’ logical values
count as unity in arithmetic computations in Octave and ‘false’ as zero; therefore multiplying
pointwise by a logical field preserves the values where the criterion is true and zeros it elsewhere,
which is exactly what is required here.

With this interpretation of the velocity field, the velocity given inside the circle by
Equation (3.6) is irrelevant.

Listing 3.4 Octave code to generate Figure 3.7a, using direction (Listing 3.2).

direction (-2-2i, 2+2i, @ (z) (abs(z)>1) .* (1 - z .ˆ -2))

Listing 3.5 Octave code to generate Figure 3.7b, using isopotentials (Listing 3.3).

isopotentials (-2-2i, 2+2i, @ (z) (abs(z)>1) .* (z + 1 ./ z))



56 Theory of Lift

3.4 Transforming the Whole Velocity Field

3.4.1 Translating the Whole Velocity Field

If we have an analytic function f (z) and form another by replacing z by z − z0, the effect is to
translate the whole velocity field.

3.4.2 Example: Doublet as the Sum of a Source and Sink

Consider for small real ε

1

z2 = lim
ε→0

1

z2 − ε2 = lim
ε→0

1

(z + ε)(z − ε)
.

Now an expansion in partial fractions,

1

z2 − ε2 = 1

(z + ε)(z − ε)
= a

z + ε
+ b

z − ε

= a(z − ε) + b(z + ε)

z2 − ε2

= (a + b)z + (b − a)ε

z2 − ε2 ,

is valid if a = −b (since the variable z doesn’t appear in the numerator on the left-hand side)
and then −a = b = 1/2ε so

1

z2 = lim
ε→0

(
1/2ε

z − ε
− 1/2ε

z + ε

)
,

which is the superposition of a source at z = +ε and a sink of the same strength at z = −ε;
i.e. at the position of its mirror-image in the y-axis.

3.4.3 Rotating the Whole Velocity Field

If we have an analytic function f (z) and form another by replacing z by e−iαz; i.e. g(z) =
f (e−iαz); and then form a third by h(z) = e−iαg(z) = e−iαf (e−iαz), the velocity field h(z) is
that of f (z) rotated through an anticlockwise angle α.

Verification of this using some of the examples above is left as an exercise. The vector
field obtained from the circular obstacle example of Figure 3.7 using α = π/6 is plotted in
Figure 3.8 using Listing 3.6.
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(a) (b)

Figure 3.8 The complex velocity field w = e−iπ/6
{

1 − (
e−iπ/6z

)−2
}

for |z| > 1

Listing 3.6 Octave code to generate Figure 3.8a.

r = exp (-1i * pi / 6);
w = @ (z) (abs (z) > 1) .* (1 - z .ˆ -2);
direction (-2-2i, 2+2i, @ (z) r * w (r * z))

3.5 Circulation and Outflow

3.5.1 Curve-integrals in Plane Ideal Flow

We have seen in Section 2.7 how both Cartesian components u = �w and v = −�w can be
recovered from either the real (φ = �W)

u = ∂φ

∂x
, v = ∂φ

∂y

or imaginary (ψ = �W)

u = +∂ψ

∂y
, v = −∂ψ

∂x

parts of the complex potential W defined in Equation (2.26) by dW/dz = w. We now investigate
recovering the scalar potential and the stream function from the velocity. This leads to important
and useful physical interpretations of φ and ψ.

Integrating Equation (2.26) between two points in the fluid gives

W(z2) − W(z1) =
∫ z2

z1

w dz. (3.7)
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Expanding Equation (3.7) into real and imaginary parts gives

φ(z2) − φ(z1) + i{ψ(z2) − ψ(z1)} =
∫ z2

z1

(u − iv) (dx + idy)

=
∫ z2

z1

(u dx + v dy) + i
∫ z2

z1

(u dy − v dx).

Now, as in the discussion of circulation in Section 2.5.3,

u dx + v dy = q · τ̂ ds;

i.e. the tangential component of velocity along an infinitesimal curve segment. And, as in the
discussion of conservation of mass in Section 2.3,

u dy − v dx = q · n̂ ds;

i.e. the component of velocity at right-angles to the same segment (reckoned positive when the
velocity crosses the segment from left to right). Thus

φ(z2) − φ(z1) = �
∫ z2

z1

w dz =
∫ z2

z1

q · τ̂ ds (3.8a)

ψ(z2) − ψ(z1) = �
∫ z2

z1

w dz =
∫ z2

z1

q · n̂ ds. (3.8b)

In words, change in scalar potential along a curve through the flow field gives minus the
circulation along that curve, and the difference in the stream function between two ends of the
curve gives the volumetric flow-rate (per unit span) across the curve from left to right.

Also, Equations (3.8) can be used to determine or measure either φ or ψ, up to an arbitrary
additive constant: the value at some reference point z1.

3.5.2 Example: Numerical Line-integrals for Circulation and Outflow

With these ideas, the example of Section 2.6.3 can now also be done numerically, using one
of Octave’s automatic quadrature routines for each of the legs of the loop. Again consider the
quarter in the first quadrant of a circle centred on the origin, of radius a so that the legs are:

1. z = x, dz = dx for 0 < x < a, with w ≡ θ = 0;
2. z = aeiθ, dz = aieiθ dθ for 0 < θ < π/2, with w ≡ θ = θ; and
3. z = iy, dz = i dy for a > y > 0, with w ≡ θ = π/2.

Since the integrand along the arc is complex (and in more general cases, all integrands
will be complex), we cannot use the basic quad integration routine, which only accepts real
integrands, but instead use quadgk which is not so restricted. To demonstrate that the closed-
form answer is correct for different values of a, it is not specified in the input Listing 3.7 but
generated randomly at run-time. From Equations (3.8), the real and imaginary parts of the
integral

∫
w dz are the circulation and outflow, respectively.
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Listing 3.7 Octave code to integrate a complex velocity along a broken curve.

a = rand ()
W = [quadgk(@ (x) 0*x, 0, a);

quadgk(@ (t) t .* exp (i*t), 0, pi/2) * 1i * a;
quadgk(@ (y) ones (size (y)) * pi/2, a, 0) * 1i ]

sum (W)

Listing 3.8 Octave output on integrating complex velocity along a broken curve.

a = 0.37662
W =

0.00000 + 0.00000i
-0.37662 + 0.21497i
-0.00000 - 0.59159i

ans = -0.37662 - 0.37662i

The output of this program is given in Listing 3.8, in which the real and imaginary parts of
each of the three line-integrals indeed agree with the exact results obtained in Section 2.6.3.

3.5.3 Closed Circuits

Now say we take the final point, z2, of the curve to coincide with the first point, z1; i.e. close
the curve to form a circuit C. Then the jump [W]C in W as it moves around the circuit C is

[W]C =
∮
C
w dz.

Of course, if W is a single-valued function of z, it will have the same value at the end of
the loop as it did at the start, and so [W]C is necessarily zero for any circuit C; however, we
will see shortly (in Section 3.7) that multivalued complex potentials are also of interest in
aerodynamics.

The real and imaginary parts of the jump involve the circulation ΓC around and outflow QC
through the circuit C,

[W]c ≡ [φ]C + i[ψ]C =
∮
C
(u dx + v dy) + i

∮
C
(u dy − v dx)

=
∮
C
q · τ̂ ds + i

∮
C
q · n̂ ds

≡ −ΓC + iQC. (3.9)
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If the circuit C is filled with fluid, the circuit integrals can be replaced with integrals of
vorticity and divergence over the contained region R (see Section 2.5.3 for the circulation and
Section 2.3 for the outflow):

[φ]C = −ΓC =
∫∫

R
ζ dx dy

[ψ]C = QC =
∫∫

R
Θ dx dy.

If the velocity field is irrotational in the region R, the integrand for the circulation ΓC vanishes,
and if it’s divergence-free, the integrand for the outflow QC vanishes.

If the circuit is not filled with fluid in plane ideal flow, say, for example, because it encloses
an obstacle such as an aerofoil, then the integrals over R are meaningless, the circulation and
outflow need not vanish, and the complex potential might be multivalued. The same conclusions
apply if the circuit contains a singular point at which the velocity is undefined.

3.5.4 Example: Powers of z and Circles around the Origin

Say we take w = Akz
k = Akr

keikθ , where Ak is a complex constant, and let the circuit C be a
circle of radius a, centred on the origin; i.e. on C, z = aeiθ . Then around the circuit,

dz = d(aeiθ) = aieiθ dθ

and w = Aka
keikθ with θ going from 0 to 2π, and the integral around the circuit is∮

C
w dz = Ak

∫ 2π

0
akeikθiaeiθ dθ

= iak+1Ak

∫ 2π

0
ei(k+1)θdθ.

Now if k /= − 1, this is

Ak

∮
C
zk dz = iak+1Ak

[
ei(k+1)θ

i(k + 1)

]2π

0

= 0,

since eiθ = cos θ + i sin θ is periodic in θ with period 2π.
For the special case k = −1 though, we have

A−1

∮
C

dz

z
= iA−1

∫ 2π

0
dθ

= 2πiA−1.

Notice that this result is independent of the radius of the circle used for integration. In fact,
though not proven here, the circulation Γ and outflow Q are both independent of the shape of
the circuit too, so long as the circuit encloses the same obstacles and singularities.
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In summary, for w = Akz
k, Γ = Q = 0 for k /= − 1. For w = A−1/z, Γ = 2πiA−1 and

Q = 2π�A−1. For this reason we usually represent a point source at the origin as

wsource = Q

2πz

and a point vortex as

wvortex = i
Γ

2πz
, (3.10)

and call Q and Γ the strengths of the source and vortex. For Q < 0, we call the source a sink;
or, if the sign of Q is yet to be determined, a source of strength −Q can be called a sink of
strength Q.

The results obtained here correspond to the fact that the complex potentials for w = Akz
k

are, as in Section 3.1.2,

W =
∫

Akz
k dz =

{
Ak(k + 1)−1zk+1, (k /= − 1);

A−1 ln z, (k = −1),

i.e. all single-valued except for when k = −1.

3.6 More on the Scalar Potential and Stream Function

3.6.1 The Scalar Potential and Irrotational Flow

We have seen that in an ideal flow, the difference in the scalar potential between two points is
equal to minus the circulation along a path though the fluid joining them. In general, any plane
velocity field derived from a scalar function φ by the operations

u = ∂φ

∂x
, v = ∂φ

∂y

will be irrotational, since

ζ ≡ ∂v

∂x
− ∂u

∂y
= ∂2φ

∂x∂y
− ∂2φ

∂y∂x
= 0.

On the other hand, if the scalar potential isn’t the real part of an analytic function, the derived
velocity field needn’t be divergence-free; the continuity Equation (2.3), ∇ · q = 0, becomes

∂2φ

∂x2 + ∂2φ

∂y2 = 0.

This second-order linear partial differential equation is called Laplace’s equation, and is often
written concisely as

∇2φ = 0. (3.11)
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3.6.2 The Stream Function and Divergence-free Flow

If a velocity field is derived from a scalar function ψ by

u = +∂ψ

∂y
, v = −∂ψ

∂x
,

it will automatically be divergence-free since

Θ ≡ ∂u

∂x
+ ∂v

∂y
= ∂2ψ

∂x∂y
− ∂2ψ

∂y∂x
= 0.

On the other hand, it needn’t be irrotational: the condition is

ζ ≡ ∂v

∂x
− ∂u

∂y
= −∂2ψ

∂x2 − ∂2ψ

∂y2 ≡ −∇2ψ = 0.

Thus, velocity fields derived from an analytic complex velocity are automatically divergence-
free and irrotational, those derived from a scalar potential are irrotational, and those from a
stream function divergence-free. Scalar potentials or stream functions can be used for ideal
flow, but only if they satisfy Laplace’s Equation (3.11).

For more general, nonideal, kinds of flow, it is still possible to define the complex velocity
by w = u − iv, but it won’t be analytic and so will be much less useful; however, these new
representations in terms of scalar potential or stream function can still be useful in less restricted
cases. Thus, the scalar potential can be used for irrotational flow of compressible fluids for
which generally the divergence is nonzero, and the stream function can be used for viscous flow
of incompressible fluids for which vorticity is generated at the flow boundaries. An example
of the latter may be found in the treatment of Blasius’s boundary layer in Section 16.4. An
example of the former is the disturbance potential in Section 19.4.

3.7 Lift

In this section, we derive an expression for the aerodynamic force per unit span on an imper-
meable object in a plane ideal flow in terms of the complex velocity. We then show that the
drag always vanishes while the lift is proportional to the circulation around the object.

3.7.1 Blasius’s Theorem

The Cartesian components of the aerodynamic force per unit span on an obstacle with contour
C are given by Equations (2.10). From them, form the complex quantity

ax − iay = −
∮
C
p (dy + i dx) = −i

∮
C
p dz∗
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and use Bernoulli’s Equation (2.18) for ideal flow, dropping the constant terms which integrate
to zero,

ax − iay = −i
∮
C

(
p∞ + ρq2∞

2
− ρq2

2

)
dz∗

= iρ

2

∮
C
q2 dz∗

= iρ

2

∮
C
ww∗ dz∗.

Now

w∗ dz∗ = (w dz)∗ = dW∗ = dφ − i dψ

but dψ = 0 along the outline of an impermeable obstacle, so we can replace dW∗ with its
complex conjugate dφ + i dψ = dW ≡ w dz and

ax − iay = iρ

2

∮
C
w2 dz (3.12)

which is Blasius’s Theorem.

3.7.2 The Kutta–Joukowsky Theorem

Now say, for example, the flow is composed of a uniform stream with speed q∞ and incidence
α and a vortex of strength Γ ; i.e.

w = q∞e−iα + i
Γ

2πz
. (3.13)

Then

w2 = q2
∞e−i2α + i

q∞Γ

πz
e−iα − Γ 2

4π2z2 ,

and using the results on the circuit integrals of powers of z from Section 3.5.4∮
C
w2 dz = 2πi ×

(
i

q∞Γ

π
e−iα

)
= −2q∞Γ e−iα.

Blasius’s theorem, Equation (3.12), then gives

ax − iay = −iρq∞Γ e−iα. (3.14)

Since the drag is measured in the direction of the airstream (α) and the lift is measured a
right-angle anticlockwise from the drag (α + π/2), we have (as in Section 2.6.2 for velocity
components)


 − i(−d) = 
 + id = ei(α+π/2)(ax − iay) = ρq∞Γ ;
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i.e.


 = ρq∞Γ (3.15a)

d = 0. (3.15b)

If the vortex is clockwise Γ > 0 and the lift is positive (ρ and q∞ are always positive).
These two results constitute the Kutta–Joukowsky Theorem, which actually holds for any flow

over any aerofoil and is perhaps the most important result in two-dimensional aerodynamics.
It means that instead of having to calculate the aerodynamic force by integrating contributions
from stresses around the surface, we can just calculate the circulation and use Equations (3.15).

The Kutta–Joukowsky Theorem is easily verified for plane ideal flow over a circular cylinder.
More general flows than that described by Equation (3.13) could be considered by adding

more terms to the series. Terms of the form zk with positive k should be excluded, however,
as they imply speeds increasing without bound in the far field (q ∼ |z|k). Terms of the form zk

with k = −2, −3, . . . on the other hand all only produce terms like zm with m � −2 in w2, and
none of these contribute to the contour integral: all zm terms vanish except those for m = −1.

The interpretation of the theorem is straightforward. We know that the pressure is related to
the kinetic energy of the fluid (i.e. the square of the velocity) by Bernoulli’s equation, and so it
is pairwise products of velocities that will be of interest. Of all possible pairs of velocities of the
type zk, the only combination giving an average speed difference between the upper and lower
surfaces is one varying like cos θ or sin θ or e±iθ , not einθ for any n /= ± 1. If the velocities are
restricted to have k � 0 (by the requirement of bounded velocity in the far field) this leaves
only the possibility 0 − 1 = −1 or −1 + 0 = −1, the uniform stream–vortex pairing. In this
pairing, the vortex on one side reinforces the stream and on the other retards it, and it is this that
generates the net difference in speeds, kinetic energies, and pressures, and therefore generates
the net lift. On the other hand, there exists no such mechanism for the generation of drag by
plane ideal flow.

3.8 Exercises

1. Using the rule for dot product of a complex velocity and a complex vector in the exercise
at the end of Chapter (2), rederive Equation (3.2a) from the complex velocity zk and the
unit vector directed away from the origin eiθ .

2. Write the Octave code to reproduce the silk-thread and streamline plots of the uniform
stream with arbitrary direction in Figure 3.5.

3. Show that the doublet z−2 can also be expressed as the sum of counterrotating vortices
on the y-axis, with equal strengths, equally displaced about the x-axis. [Hint: z2 + ε2 =
z2 − (iε)2.]

4. Show that, for z = x + iy and positive real constants q∞ and a, the complex velocity

w = q∞
(

1 − a2

z2

)

gives a plane ideal ideal flow outside the solid circle of radius a centred on the origin
x = y = 0.
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(a) Show that a plane ideal line vortex at the origin of any strength can be added to the
flow without violating the impermeability of the circle |z| = a.

(b) Compute the pressure around the surface of the circle, assuming the vortex strength
is S.

(c) Compute the aerodynamic force on the circle.
(d) What is the circulation around the boundary? Does the direct evaluation of the aero-

dynamic force by integrating the pressure agree with the result implied by the Kutta–
Joukowsky Theorem?

(e) Find the stagnation points (where w = 0). What is the pressure there?

5. Find the complex potential for the uniform stream with arbitrary direction plotted in
Figure 3.5.

6. Investigate the plane ideal flow generated by placing a source of strength Q in a uniform
flow of speed q∞.
(a) Find the stagnation point and describe all the streamlines passing through it.
(b) Take the curved streamline through the stagnation point as the boundary of a (semi-

infinite) solid. Find the pressure on this boundary.
(c) Discuss the aerodynamic force on the solid. (Warning: the integral ax = − ∮

p dy is
ugly.)

7. Employ the ’Waypoints’ option of Octave’s quadgk to repeat the numerical
path integration of Listing 3.7 over the right-angle isoceles triangle with the same
vertices; i.e.

quadgk (@angle, 0, 0, ’Waypoints’, [1, 1i] * a)

Verify that this agrees with the exact answer obtained in the exercise at the end of
Chapter 2.

8. Show that the complex conjugate of a product is the product of the complex conjugates of
its factors.

9. Show that, following Exercise 2.8.15, both the real and imaginary parts of a differentiable
function of x − iy satisfy Laplace’s Equation (3.11).

10. Show that if φ and ψ are the potential and stream function of the same plane flow then
W(x + iy) = φ(x, y) + iψ(x, y) satisfies the Cauchy–Riemann Equations (2.22).

3.9 Further Reading

For the governing equations in polar coordinates, see Thwaites (1987) and Bertin (2002).
Blasius’s theorem is derived by Glauert (1926), Milne-Thomson (1973), Paraschivoiu

(1998), and Pope (2009) using similar complex variable methods to those employed here;
Karamcheti (1966) shows that it is a special case of a three-dimensional theorem derived using
vector calculus methods more akin to those of Chapter 9.
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4
Conformal Mapping

In Chapter 2 it was shown that plane ideal flows could be readily obtained from analytic
complex functions and in Chapter 3 this was exploited to come up with several examples
of two-dimensional flow-fields satisfying the Euler equations; however, none of them much
resembled flow over an aerofoil.

In Section 4.1, a powerful means of combining and extending complex velocity fields by the
composition of analytic functions is introduced which does yield flow-fields around shapes as
complicated as aerofoils. In particular, it is used in Section 4.3 to find the exact solution for the
flow over a thin flat plate at an angle to the free-stream, and this will be shown in the following
chapters to contain many of the essential features of flow over a wing.

4.1 Composition of Analytic Functions

Another way to obtain more analytic functions is through composition of functions; e.g.
f (z(ζ)): the composition of two analytic functions, f and z, is analytic since by the chain
rule

df

dζ
= df

dz

dz

dζ
. (4.1)

On the other hand, given f (z(ζ)) as an analytic function of ζ, f (z) is analytic too since

df

dz
= df

dζ

dζ

dz
= df

dζ

(
dz

dζ

)−1

= df/dζ

dz/dζ
. (4.2)

This could have been obtained more easily by dividing Equation (4.1) by dz/dζ.
If the point z1 = z(ζ1) is mapped from the point ζ1, then the value of the function f at

z1 in the z-plane is the same as the value of f at ζ1 in the ζ-plane, since z1 = z(ζ1) implies
f (z1) = f (z(ζ1)).

This is particularly useful if for f we consider the complex potential W . If C is a streamline of
the flow in the ζ-plane, then ψ = �W is constant along it, and this also applies to the imaginary
part of W along the curve z(C) in the z-plane to which C is mapped by z = z(ζ). It follows that
z(C) is a streamline in the ζ-plane.

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



68 Theory of Lift

The complex velocities in the ζ- and z-planes are then given by applications of Equations (4.1)
and (4.2):

w(ζ) = dW

dζ
= dW

dz

dz

dζ

w(z) = dW

dz
= dW/dζ

dz/dζ
.

4.2 Mapping with Powers of ζ

A simple family of useful transformations is z = ζk, with k a real constant.

4.2.1 Example: Square Mapping

The mapping z = ζ2 takes the first quadrant of the ζ-plane into the first two quadrants of the
z-plane. Let us denote the coordinate-angle in the ζ-plane as

χ ≡ arg ζ

so that ζ has the polar form

ζ = |ζ|eiχ.

Then, since ζ2 = (|ζ|eiχ)2 = |ζ|2e2iχ, an effect of the mapping is to double the angle each
point makes with the positive real axis: arg z = 2 arg ζ. Also, it is no surprise that the square
of a positive real number is also real and positive, so that the positive real ζ-axis maps to
the positive real z-axis, while the square of an imaginary number is negative, so the positive
imaginary ζ-axis maps to the negative real z-axis.

Consider then the complex potential W = z from Figure 3.2b, which represents a simple
uniform horizontal velocity in the z-plane, with stream function ψ(z) = �W(z) = �z = y, and
horizontal streamlines ψ = y = const. The same complex potential represents the corner flow
of Figure 3.1b in the ζ-plane (apart from a scale factor of 2): ψ = �W = �ζ2. In terms of the
real and imaginary parts of ζ:

ζ ≡ ξ + iη, (4.3)

we have

ψ = �W = �ζ2 = �(ξ + iη)2 = �(ξ2 − η2 + 2iξη) = 2ξη.

Four streamlines are plotted in Figure 4.1: the same four in each case. The velocity in the
ζ-plane is given by

w(ζ) = dW

dζ
= 2ζ

which (apart from the scale factor 2) is the same as the complex velocity in Figure 3.1a.
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Figure 4.1 Mapping the upper-half z-plane (left) to the first quadrant of the ζ-plane (right) with z = ζ2,
to get the corner flow in the ζ-plane from a uniform horizontal flow in the z-plane with the complex
potential W = z

4.2.2 Conforming Mapping by Contouring the Stream Function

There are several different computational approaches to conformal mapping. One is to plot the
level-sets of the imaginary part of the complex potential in the z- and ζ-planes, using Octave’s
contour function, as in Listing 4.1; this is a natural extension of Listing 3.3.

As an example of its use, the code used to produce Figure 4.1 is given in Listing 4.2.

4.2.3 Example: Two-thirds Power Mapping

Just as z = ζ2 takes the first ζ-quadrant to the first two z-quadrants, z = ζ2/3 takes the first
three to the first two. If we consider the same flow in the z-plane as in the last example, i.e.

Listing 4.1 conformal streamlines: plot the level sets v of the imaginary parts of two
complex potential functions W1 and W2 in side-by-side copies of the same complex rectangle with
defined lower-left and upper-right corners ll and ur.

function conformal streamlines (ll, ur, W1, W2, v)
Z = cmeshgrid (ll, ur, 1e3);

subplot (1, 2, 1)
contour (real (Z), imag (Z), imag (W1 (Z)), v)
axis (’image’)

subplot (1, 2, 2)
contour (real (Z), imag (Z), imag (W2 (Z)), v)
axis (’image’)

Listing 4.2 Octave code to generate Figure 4.1, using Listing 4.1.

conformal streamlines (-2, 2+2i, @ (Z) Z, @ (Z) Z.2̂, 0:0.5:2)
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Figure 4.2 Mapping the upper-half z-plane (left) to the first three quadrants of the ζ-plane (right) with
z = ζ2/3, to get the external corner flow in the ζ-plane from a uniform horizontal flow in the z-plane with
the complex potential W = z

W = z, and apply z = ζ2/3, we get the flow around an external corner, as in Figure 4.2. The
velocity in the ζ-plane is

w(ζ) = dW

dz

dz

dζ
= 1 × 2

3
ζ−1/3 = 2

3
|ζ|−1/3e−iχ/3,

so that the direction of flow at any point makes an angle β = χ
3 , one-third that of the line from

the origin to the point; e.g. for all points on the positive η-axis, the flow is ‘two o’clock’, and
for all points on the negative ξ-axis, it’s one o’clock.

4.2.4 Branch Cuts

One difficulty with the above mapping functions is that they are not bijective. In the case of
z = ζ2, the third quadrant of the ζ-plane also maps to the upper-half z-plane; it is therefore not
injective. For z = ζ2/3, the mapping itself is multivalued; for example, should ζ = −1 = eiπ

go to e2iπ/3 or should ζ = −1 = e−iπ go to e−2iπ/3? In Section 4.2.3, we chose the branch that
maps ζ = |ζ|eiχ with 0 � χ � 3π

2 to z = reiθ = |ζ|2/3e2iχ/3, since it’s continuous in the first
three quadrants, which constitute the domain of the flow while the fourth quadrant represents
a solid obstacle.

Octave and many other computer programs, such as NumPy’s numpy.angle, take the
branch-cut in the power functions following from the rule that the argument of z is to be taken
between −π and +π. In Listing 4.3, this is got around that by using mod (angle (z), 2*pi)
to get the argument between 0 and 2π; i.e. with the branch-cut along the positive real axis,
which was suitable as it was a boundary in the example, whereas the negative real-axis is inside
the flow-field in the ζ-plane.

Another small numerical trick used in that program is using a very small value (1e-6) of the
stream function instead of zero, since the zero-streamline would lie ‘exactly’ on the branch-
cut, and ‘exactly’ is not a well-defined concept in floating-point arithmetic. The ambiguity is
avoided by slightly but definitely displacing the streamline away from the branch-cut.
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Listing 4.3 Octave script used to generate Figure 4.2.

powmag = @ (z, k) abs (z) .ˆ k;
powarg = @ (z, k) k * mod (angle (z), 2 * pi);
pow = @ (z, k) powmag (z, k) .* exp (1i * powarg (z, k));
conformal_streamlines (-2-2i, 2+2i, ...

@ (Z) Z, @ (Z) pow (Z, 2/3), ...
[1e-6, 0.5:0.5:2])

4.2.5 Other Powers

Other shapes can be obtained using other powers. Also, one can use a different complex
potential.

4.3 Joukowsky’s Transformation

The mapping function z = ζ + a2/ζ for a real constant a is called Joukowsky’s transformation.

4.3.1 Unit Circle from a Straight Line Segment

A shifted special case is

z = ζ + c

2
+ c2

16ζ
. (4.4)

Notice that both ζ and c2

16ζ
map to the same point: the mapping Equation (4.4) is not injective.

If 4|ζ| = c then both these points are on the circle in the ζ-plane, otherwise one is inside and
one outside, and both the interior and exterior of the circle in the ζ-plane map to the entire
z-plane. This means care must be taken in constructing the inverse transformation

ζ = c

4

{
2z

c
− 1 ± 2

√
z

c

(z

c
− 1

)}
= z − c

2 ± √
z(z − c)

2
. (4.5)

Usually for aerodynamical applications it is the exterior, 4|ζ| > c, that is of interest so this
condition should be checked to determine the appropriate sign in Equation (4.5).

The mapping of Equation (4.4) takes the circle 4|ζ| = c in the ζ-plane to the straight-line
segment joining zero and c in the z-plane. To see this, put 4ζ = ceiχ and let χ run from zero
to 2π:

z = ceiχ

4
+ c

2
+ c

4eiχ = c

2
(1 + cos χ) ≡ c cos2 χ

2
, (4.6)

so that z is real and confined to 0 � z � c.
As χ runs from zero to π, ζ moves anticlockwise around the upper unit semicircle and z

moves left from c to zero, and then as χ increases to 2π, ζ moves anticlockwise around the
lower unit semicircle and z moves right from zero back to c.
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In this double-tracing of the segment, it can help to think of the leftward tracing for 0 < χ < π

as corresponding to the upper side of the segment and the right tracing for π < χ < 2π as
corresponding to the lower surface. If the segment 0 < z < c is a streamline, there is no flow
across it and it can be replaced by an impermeable thin flat plate, and then differences in the
velocity or pressure between the upper and lower surfaces can be tolerated, even though the
plate thickness is neglected. Thus in talking about the pressure at x = c

2 , say, we should specify
whether we mean the upper or lower surface; i.e. z = c

2 ± iε as ε ↓ 0.

4.3.2 Uniform Flow and Flow over a Circle

Consider the complex potential W = q∞z in the z-plane (with q∞ a positive constant). Its
stream function is ψ(z) = �W(z) = q∞�z = q∞y; which is constant along horizontal lines.
This means the real z-axis is a streamline, and so is the segment from z = 0 to z = c. This
further means that the corresponding complex potential in the ζ-plane will have the circle
4|ζ| = c as a streamline. That potential is

W = q∞z = q∞
(

ζ + c

2
+ c2

16ζ

)
.

Instead, let’s shift some constants and consider

W = q∞
(
z − c

2

)
= q∞

(
ζ + c2

16ζ

)
. (4.7)

The corresponding stream functions

ψ = q∞y = q∞η

(
1 − c2

16|ζ|2
)

, (4.8)

where η ≡ �ζ, from Equation (4.3), which are evidently constant along both y = 0 and
4|ζ| = c, respectively, are plotted in Figure 4.3 using the Octave code of Listings 4.4 and 4.5.
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Figure 4.3 Flow over a thin plate at zero incidence (left), and flow over a circle (right), being z-
and ζ-plane representations of the complex potential W = q∞z with the Joukowsky transformation of
Equation (4.4)
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Listing 4.4 Octave code used to generate Figure 4.3, using Listing 4.5.

c = 1;
W = @ (zeta) zeta + (c/4)ˆ2 ./ zeta;
conformal_streamlines (-2-2i, 2+2i, ...

@ (z) W (joukowsky_inverse (z, c)), ...
W, -2:0.1:2 )

Listing 4.5 joukowsky inverse: compute the point in the ζ plane (outside the circle 4|ζ| = c)
corresponding to z in the Joukowsky transformation, implementing Equation (4.5).

function zeta = joukowsky inverse (z, c)
zeta = (z - c/2 + sqrt (z .* (z - c))) / 2;
flip = abs (zeta) < c/4;
zeta(flip) = cˆ2 ./ (16 * zeta(flip));

4.3.3 Thin Flat Plate at Nonzero Incidence

Nontrivial flows over the thin flat plate in the z-plane can now be obtained by modifying the
complex potential in the ζ-plane, provided the circle 4|ζ| = c remains a streamline. First, rotate
the whole streamline pattern in the ζ-plane by replacing ζ with e−iαζ:

W = q∞

(
ζ

eiα + c2eiα

16ζ

)
, (4.9)

and then recover the modified flow over the flat plate from the Joukowsky transformation
Equations (4.4)–(4.5).

Notice that as |ζ| → ∞, W ∼ q∞ζe−iα, which is the complex potential of a uniform stream
with speed q∞ inclined at an angle α to the positive real axis. Because the Joukowsky transfor-
mation Equation (4.4) far from the origin asymptotically approaches z ∼ ζ + c

2 , the velocity
far from the thin flat plate

w(z) = dW/dζ

dz/dζ
∼ q∞e−iα (|z| → ∞)

is a uniform stream with the same speed q∞ and the same direction α; this is plausible in
Figure 4.4.

Since the complex velocity for the thin flat plate is recovered from Equation (4.2), the con-
formal transformation can introduce a singularity in w(z) if the transformation has stationary
points for which dz/dζ vanishes. This occurs for the Joukowsky mapping in Equation (4.4) at

d

dζ

{
ζ + c

2
+ (c/4)2

ζ

}
= 1 −

(
c

4ζ

)2

= 0; (4.10)

i.e. 4ζ = ±c. These points map to z = c and z = 0, the ends of the thin flat plate.
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Figure 4.4 Flow over a thin plate at nonzero incidence (left), and flow over a circle (right), being z- and
ζ-plane representations of the complex potential of Equation (4.9) with the Joukowsky transformation
Equations (4.4)–(4.5)

Implemented in Octave as shown in Listing 4.6, this produces Figure 4.4. Changing the
incidence to α = π/2 produces Figure 4.5.

4.3.4 Flow over the Thin Flat Plate with Circulation

The flow can be further modified by adding a vortex from Equation (3.10) at the origin in the
ζ-plane, since this still preserves |ζ| = c/4 as a streamline. This changes the complex potential
of Equation (4.9) to

W = q∞c

4

(
4ζ

ceiα + ceiα

4ζ

)
+ iΓ

2π
ln

4ζ

ceiα . (4.11)

Note that ln ζ and ln(4ζ/ceiα) = ln ζ − (iα + ln c − ln 4) differ only by a physically irrelevant
complex constant.

The results are plotted in Figure 4.6 for the choice α = π
6 and Γ = q∞cπ sin α. The latter

choice happens to be exactly that which causes the flow in the z-plane to leave the trailing

Listing 4.6 Octave code to generate Figure 4.4.

alpha = pi/6; c = 1;
W = @ (zeta) zeta + (c/4)ˆ2 ./ zeta;
V = @ (zeta) W (zeta / exp (1i * alpha));
conformal_streamlines (-2-2i, 2+2i, ...

@ (z) V (joukowsky_inverse (z, c)), ...
V, -3:0.1:3 )

subplot (1, 2, 1)
hold (’on’)
plot ([0, 1], [0, 0], ’-’)
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Figure 4.5 Flow over a thin plate at incidence α = π

2 with zero circulation (z), and flow over a circle
(ζ), being z- and ζ-plane representations of the complex potential of Equation (4.11) with the Joukowsky
transformation of Equation (4.4)

Listing 4.7 Octave code to generate Figure 4.6.

alpha = pi/6; c = 1; Gamma = c * pi * sin (alpha);
W = @ (zeta) zeta + (c/4)ˆ2 ./ zeta;
V = @ (zeta) W (zeta) - Gamma * log (4 * zeta / c) / pi / 2i;
U = @ (zeta) V (zeta / exp (1i * alpha));
conformal streamlines (-2-2i, 2+2i, ...

@ (z) U (joukowsky inverse (z, c)), ...
U, -3:0.1:4 )

subplot (1, 2, 1)
hold (’on’)
plot ([0, 1], [0, 0], ’-’)

edge (z = c) of the plate smoothly, as can be seen in Figure 4.6, generated by Listing 4.7; the
significance of this choice will be explored in Chapter 5.

4.3.5 Joukowsky Aerofoils

The Joukowsky transformation Equation (4.4) maps the circle 4|ζ| = c to the thin flat plate
0 < z < c, but it also maps circles not centred on ζ = 0 to some very interesting shapes,
including some that look like aerofoils.

4.4 Exercises

1. Derive Equation (4.8) for the stream functions over an aligned flat plate and around a
circular obstacle in plane ideal flow without circulation by taking the imaginary parts of
Equation (4.7) in the z- and ζ-planes.
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Figure 4.6 Flow with circulation over a thin plate at nonzero incidence with circulation (left), and
over a circle (right), being z- and ζ-plane, respectively, representations of the complex potential of
Equation (4.11) with the Joukowsky transformation of Equation (4.4)

2. (a) Show that the conformal transformation

W = z = i(ζ − 1)k (4.12)

where

k = π

2π − κ

and 0 < κ < π is a small positive angle, illustrated in Figure 4.7 for κ = π
6 , has a

streamline with a corner at the point ζ = 1, and which lies on the two rays from it
making angles κ

2 with the negative real axis in the ζ-plane.
(b) Produce the silk-thread velocity plot (of Section 3.1.3) for the ζ-plane.
(c) Show that velocity at the vertex ζ = 1 is infinite if κ < π. Show that the pressure is

negatively infinite.
(d) Describe the limiting case κ → π.
(e) What value of κ is required here to produce a flow in the ζ-plane congruent to (a pos-

sibly rotated and translated) Figure 4.2b. What subsequent conformal transformation
would accomplish the required rotation and translation?

(f) Beginning from Figure 4.2, what subsequent conformal transformation would modiy
it so that internal bisector of the solid wedge lay along the negative real axis of the
ζ-plane?

3. (a) For the same value of k as in the previous exercise, consider the flow in the ζ-plane
described by

W = z = (ζ − 1)2k. (4.13)

(b) Show that the two rays from ζ = 1 making angles ± κ
2 with the negative real axis in

the ζ-plane are again streamlines. See Figure 4.8.



Conformal Mapping 77

Figure 4.7 Antisymmetrical plane ideal flow around a wedge of angle κ = π

6 lying along the negative
real axis, as given by Equation (4.12)

(c) Show that a third ray emanates from ζ = 1 and that the stream function has the
same value along it. What angle does it make with the positive real axis in the
ζ-plane?

(d) Show that ζ = 1 is a stagnation point.

Figure 4.8 Symmetrical plane ideal flow around a wedge of angle κ = π

6 lying along the negative real
axis, as given by Equation (4.13)
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4. (a) Show that any linear combination of the flows in the ζ-plane in the preceding two
exercises also treats as impermeable the boundaries of the wedge.

(b) Under what conditions is there a stagnation point on the surface of the wedge? How
does its location depend on the relative contributions of the two basic flows in the
linear combination?

(c) Under what conditions are the velocity and pressure bounded everywhere along the
surface of the wedge in the vicinity of the vertex?

4.5 Further Reading

The theory of conformal mapping and the Joukowsky transformation in particular are much
discussed in classical works on aerodynamics such as those by Glauert (1926), Prandtl and
Tietjens (1957), Abbott and von Doenhoff (1959), Milne-Thomson (1973), Ashley and Landahl
(1985), Paraschivoiu (1998), Katz and Plotkin (2001), and Moran (2003); most of these also
go on to describe the Joukowsky aerofoils.

The matrix computation library NumPy is described by Oliphant (2006).
A flow-pattern similar to Figure 4.5 was derived slightly differently by Lamb (1932).
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5
Flat Plate Aerodynamics

5.1 Plane Ideal Flow over a Thin Flat Plate

From the conformal mapping of Section 4.3.4, the complex velocity (in the z-plane) for a
stream of speed q∞ at an angle α to a thin flat plate of length c is given by

w(z) = dW

dz
= dW/dζ

dz/dζ
(5.1)

where the complex potential W is given by Equation (4.11)

W = q∞c

4

(
4ζ

ceiα + ceiα

4ζ

)
+ iΓ

2π
ln

4ζ

ceiα ,

and the mapping by Equation (4.4)

z = ζ + c

2
+ c2

16ζ
.

The numerator of Equation (5.1) is

dW

dζ
= q∞c

4

(
4

ceiα − ceiα

4ζ2

)
+ iΓ

2πζ

and the denominator is

dz

dζ
= 1 − c2

16ζ2 .

Hence

w(z) =
q∞c

4

(
4

ceiα − ceiα

4ζ2

)
+ iΓ

2πζ

1 − c2

16ζ2

=
q∞

(
4ζ

ceiα − ceiα

4ζ

)
+ 2iΓ

πc

4ζ
c

− c
4ζ

. (5.2)

Notice that the denominator vanishes at 4ζ = ±c; i.e. z = 0 and c; so that the velocity will be
unbounded at both edges of the plate unless the numerator vanishes there too.

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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On the segment 0 < z < c (or in terms of ζ the circle |ζ| = c
4 ) we have from Equation (4.6)

z = c
2 (1 + cos χ), which is real and so equal to x. In a sense, χ can be thought of as an alternative

coordinate x for points along the plate; the forward and inverse coordinate transformations are

x(χ) = c

2
(1 + cos χ) (5.3a)

χ(x) = arccos

(
2x

c
− 1

)
. (5.3b)

In this context, χ is called the eccentric angle.
On the plate then the complex velocity is

w (x(χ)) = q∞
{

ei(χ−α) − ei(α−χ)
} + 2iΓ

πc

eiχ − e−iχ = q∞ sin(χ − α) + Γ
πc

sin χ
. (5.4)

This is real which means w = u and v = 0 and corresponds to no flow through the plate, v

being the component of velocity normal to the horizontal plate which lies in the x-axis.

5.1.1 Stagnation Points

The velocity given by Equation (5.4) on the plate vanishes when

πcq∞ sin(χ − α) + Γ = 0. (5.5)

For example, if α = π
2 and Γ = 0 (which corresponds to flow, without circulation, broadside

on to the plate as in Figure 4.5), the stagnation points occur at χ = ±π
2 ; i.e. x = c

2 on the upper
and lower sides of the plate; which makes sense on symmetry grounds.

As another example, in Figure 4.4 we had α = π
6 and Γ = 0 so that the stagnation points

were χ = π
6 and χ = −5π

6 ; i.e.

x

c
= 1 + cos χ

2
=




2 + √
3

4
.= 0.933, on the upper side

2 − √
3

4
.= 0.067, on the lower side.

This is plausible from the streamline pattern in the (left) z-plane in Figure 4.4.

5.1.2 The Kutta–Joukowsky Condition

Also, the velocity on the surface of the plate is undefined at the points for which sin χ = 0;
i.e. χ = 0 or π; i.e. x = c or 0, the trailing and leading edges. See the tilted and broadside
configurations of Figures 4.4 and 4.5. If the numerator is nonzero at these points, the velocity
is infinite; however, if the numerator vanishes at one of these points, as in Equation (5.5),
a finite velocity might be obtained—the limit would have to be investigated more carefully,
using l’Hôpital’s rule for example. This could be used as a condition to determine Γ :

Γ = πcq∞ sin α, (trailing edge) (5.6)
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or Γ = −πcq∞ sin α if the condition were enforced at the leading edge instead. The first of
these—the condition that the singularity at the trailing edge be cancelled—is known as the
Kutta–Joukowsky condition.

The streamlines for the thin flat plate with the Kutta–Joukowsky condition were shown in
Figure 4.6, where it is seen that the flow leaves the trailing edge smoothly.

Notice that the Kutta–Joukowsky condition leads to a positive circulation, and therefore,
by the Kutta–Joukowsky Equation (3.15a), a positive lift. Since this is a desirable thing, it
suggests that wing sections should have sharp trailing edges; to eliminate the leading edge
velocity singularity, wing section leading edges are rounded. Thus, in this treatment of the thin
plate, we are only interested in the Kutta–Joukowsky condition, and ignore the difficulty at the
leading edge, knowing that it doesn’t arise for real wing sections.

Reversed Aerofoils

Actually while the equation for circulation following from the leading-edge counterpart of the
Kutta–Joukowsky condition (Γ = −πcq∞ sin α) would lead to negative circulation at positive
incidence, it would give positive circulation and therefore positive lift at negative incidence.

Thus one might be led to wonder whether this phenomenon could be observed physically,
if one had a wing section with leading edge sharp and trailing edge rounded, to promote
the reverse Kutta–Joukowsky condition. Of course, this configuration does apply regularly in
practice: whenever a regular rounded-leading sharp-trailing aerofoil is subject to reverse flow,
as can happen for rotary-wing craft. The answer is negative, experiments still show a positive
lift/incidence slope; despite the sharpness of the leading edge, the overall flow pattern appears
much as in the usual case: at small positive incidence, the air hits the underside not too far
from the leading edge, moves forwards against the main flow and rounds the leading edge
before moving back along the upper side with the main flow towards the trailing edge which
it leaves smoothly. Merely sharpening the leading edge appears to be insufficient to attract the
forward stagnation point (from its usual position at small positive incidence) forwards along
the underside to the leading edge; similarly, a slight rounding the trailing edge does not stop
the flow from leaving the trailing edge smoothly.

Thus although it is consistent with the Kutta–Joukowsky condition, the conventional
rounded-leading sharp-trailing geometry is not necessary for it to apply. The reason for the
success of the geometry is that it maintains this overall flow pattern to higher incidence before
stall sets in. A detailed discussion of that lies outside beyond ideal flow theory and will be
deferred to Chapter 17. This is an early hint that flow contains an upstream–downstream asym-
metry which is not reflected in the ideal flow model. Nevertheless, since wings are generally
operated at such incidences as do not lead to stall, it remains useful to pursue a relatively simple
theory which is effective in the absence of stall.

5.1.3 Lift on a Thin Flat Plate

Notice that Γ is the circulation around any loop enclosing the thin flat plate. To see this, use
the rule in Equation (3.9)

ΓC = −�[W]C
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and the expression in Equation (4.11) for W ; as the outline of the plate is traced anticlockwise,
ζ = aeiχ goes from aei0 to aei2π which decreases W by Γ , because of the logarithmic term.

Now that the circulation is related to the incidence by the Kutta–Joukowsky condition,
Equation (5.6), the lift per unit span can be calculated from the Kutta–Joukowsky
Equation (3.15a) as

� = ρq∞Γ = πρq2
∞c sin α

and the two-dimensional lift coefficient from Equation (1.10) as

C� ≡ �
1
2ρq2∞c

= 2π sin α. (5.7)

Thus we have a simple and important result for the lift coefficient of a thin flat plate as a
function of incidence. The result agrees quite well with the experimentally measured lift for
flat plates for angles of incidence up to about 3◦. At higher incidence, the flow separates from
the upper surface of the plate and the vortex sheet model is no longer accurate. This arises
because of the infinite suction at the leading edge, and can be avoided till higher incidence
by rounding the leading edge; thus the characteristic shape of wing sections: rounded at the
leading edge and sharp at the trailing edge.

Since Equation (5.7) only holds for small values of α, it’s often convenient to invoke the
small-angle approximation for the sine (where α is expressed in radians)

sin α ∼ α (α → 0). (5.8)

5.1.4 Surface Speed Distribution

Accepting the Kutta–Joukowsky condition Equation (5.6), the velocity over the plate is

u = q∞ {sin(χ − α) + sin α}
sin χ

(5.9a)

= q∞ {cos α sin χ − sin α cos χ + sin α}
sin χ

= q∞ cos α

{
1 + tan α

1 − cos χ

sin χ

}
. (5.9b)

The first term, q∞ cos α, is just the x-component of velocity of the free-stream; the other is
the correction for the flat plate. The correction factor (1 − cos χ)/ sin χ does become infinite
at χ = π (the leading edge), but on the trailing edge the numerator vanishes too so, using
l’Hôpital’s rule,

lim
χ→0

1 − cos χ

sin χ

(
= 0

0

)
= lim

χ→0

sin χ

cos χ
= 0.

Thus, with the Kutta–Joukowsky condition, the velocity at the trailing edge should have a
horizontal component equal to that of the free-stream and a zero vertical component. The
surface speed distribution along the plate is plotted in Figure 5.1 for α = π

6 (the same case as
Figure 4.6). In the figure can be seen:
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R

R

Figure 5.1 The speed distribution Equation (5.9b) along a thin flat plate, with the Kutta–Joukowsky
condition, for incidence α = π

6

• just one stagnation point, on the underside at χ = 2α − π, x = c
2 (1 − cos 2α) = c

4 , which
is consistent with Equation (5.9b)

• infinite speed at the leading edge, left underneath and right above, as the fluid flows back-
wards along the underside from the stagnation point to the leading edge and then around to
the upper surface; and

• a speed u = q∞ cos α = √
3q∞/2

.= 0.866q∞ at the trailing edge, equal to the horizontal
component of the free-stream.

5.1.5 Pressure Distribution

Knowing the speed on the surface, the pressure distribution can be calculated using Bernoulli’s
Equation (2.18) for irrotational flow. With this, the pressure coefficient is

Cp ≡ p − p∞
1
2ρq2∞

= 1 − q2

q2∞
which on the surface (where q = |u|) is

Cp = 1 − u2

q2∞
= 1 − cos2 α

{
1 + tan α

1 − cos χ

sin χ

}2

(5.10)

and is plotted in Figure 5.2.
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Reduced position along chord

P

Figure 5.2 The pressure-coefficient distribution of Equation (5.10) along a thin flat plate, with the
Kutta–Joukowsky condition, for incidence α = π

6

5.1.6 Distribution of Circulation

Because of the infinite suction at the leading edge (Cp → −∞ as χ → π), it’s difficult to
calculate the aerodynamic force from the pressure distribution in this case, but we can use the
Kutta–Joukowsky theorem and get the lift from the circulation.

Consider an infinitesimal rectangular circuit around the point x = x′ on the plate, as in
Figure 5.3. There is no contribution to the circulation from the sides of the circuit piercing
the plate, since the plate is impermeable. If the sides parallel to the plate have length δx, the

0 c0 c

→ uU δx

−uL δx ←
0 ↑

↓ 0

Figure 5.3 Infinitesimal circuit around a point on the thin flat plate, showing that local vortex strength
is proportional to the difference in the tangential velocity across the plate; δΓ = (uU − uL)δx
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contribution from them is δΓ = (uU − uL)δx, where uU and uL are the horizontal components
of velocity on the upper and lower surfaces. Then

Γ =
∫ c

0
(uU − uL) dx

=
∫ 0

π

{u(χ) − u(−χ)} −c sin χ

2
dχ

= c

2

∫ π

0
{u(χ) − u(−χ)} sin χ dχ.

From Equation (5.9a), the integrand is

{u(χ) − u(−χ)} sin χ = q∞ {sin(χ − α) − sin(χ + α) + 2 sin α}
= q∞ {−2 sin α cos χ + 2 sin α}
= 2q∞ sin α {1 − cos χ}

so

Γ = q∞c sin α

∫ π

0
(1 − cos χ) dχ = πq∞c sin α (5.11)

� = ρq∞Γ = πρq2
∞c sin α

C� ≡ �
1
2ρq2∞c

= 2π sin α,

as obtained in Equation (5.7) from the jump in the complex potential around the plate.

5.1.7 Thin Flat Plate as Vortex Sheet

One way of interpreting the results of Section 5.1.6 is that the circulation arises from a distribu-
tion of circulation along the plate. Since circulation is associated with vortices (Section 3.5.4),
and we have amounts of circulation

δΓ = −cq∞ sin α(1 − cos χ) δχ

= 2q∞ sin α
1 − cos χ

sin χ
δx (5.12)

= 2q∞ sin α
1 − cos χ√
1 − cos2 χ

δx

= 2q∞ sin α

√
1 − cos χ

1 + cos χ
δx

= 2q∞ sin α

√
c

x
− 1 δx (5.13)

along the plate, we might think of this as being due to a vortex between z = x and z = x + δx

of strength δΓ = γ(x)δx. This vortex strength distribution is plotted in Figure 5.4.
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R

Figure 5.4 The distribution of circulation along a thin flat plate with the Kutta–Joukowsky condition
at arbitrary nonzero incidence, as given by Equation (5.13)

The vortex at x′ would have the complex velocity (at some other point z)

δw(z) = 2iq∞ sin α

2π(z − x′)

√
c

x′ − 1 δx′

or, since x = z on the plate, where all the vortices must be

δw(z) = iq∞ sin α

π(z − z′)

√
c

z′ − 1 δz′.

Adding in the free-stream q∞e−iα, the total flow field due to the free-stream and the vortex
sheet along the plate then has complex velocity

w(z) = q∞e−iα + iq∞ sin α

π

∫ c

0

1

z − z′

√
c

z′ − 1 dz′.

With a change of variables to facilitate the integration, this would eventually get us back to a
representation of the velocity field the same as Equation (5.2); however, the details of that do
not concern us here. What is of interest is the concept that a thin plate can be represented by a
vortex sheet.
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5.2 Application of Thin Aerofoil Theory to the Flat Plate

5.2.1 Thin Aerofoil Theory

For aerofoils typically in use, the camber and thickness are an order of magnitude smaller
than the chord. This separation of length scales is exploited in thin aerofoil theory. It is also
assumed in thin aerofoil theory that the incidence is small; i.e. the flight is more or less parallel
to the chord.

The basic idea of thin aerofoil theory is to model the flow over the aerofoil by adding a
uniform stream and a continuous distribution of vortices along the chord or camber line (these
two becoming equivalent in the thin aerofoil approximation).

The strengths of the vortices are determined by:

• the obvious requirement that there is no flow through the aerofoil; and
• the more subtle Kutta–Joukowsky condition, which stipulates that the flow leave the trailing

edge smoothly.

The lift on the aerofoil is then obtained from the Kutta–Joukowsky Equation (3.15a).
The circulation around the aerofoil is the integral of the strengths of the vortices distributed
along it.

In Section 5.2, thin aerofoil theory is introduced by its application to the flow over a thin
flat plate.

5.2.2 Vortex Sheet along the Chord

If vortices are distributed with (yet to be determined) strength γ(z′) at z′ along the chord of the
aerofoil, 0 � z′ � c, the complex velocity at z is

w(z) = q∞e−iα + i

2π

∫
C

γ dz′

z − z′ (5.14)

and along the chord is (noting that z = x + iy = x on the chord)

u(x) − iv(x) = q∞e−iα + i

2π

∫
C

γ dx′

x − x′ .

Thus the normal component of velocity to the surface of the aerofoil (y = 0) is minus the
imaginary part;

v(x) = q∞ sin α − 1

2π

∫ c

0

γ dx′

x − x′ ,

and the condition that there be no flow through the aerofoil is v(x) = 0:

∫ c

0

γ dx′

x − x′ = 2πq∞ sin α.
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To be consistent with the other approximations of thin aerofoil theory, the small-angle approx-
imation Equation (5.8) should be applied; thus∫ c

0

γ dx′

x − x′ = 2πq∞α. (5.15)

5.2.3 Changing the Variable of Integration

The integral in Equation (5.15) is fairly nasty and is more easily treated after the transformation
via Equation (5.3a) to the eccentric angle with a similar transformation for x′ to χ′. The
differential in the integral becomes

dx′ = −c sin χ′ dχ′

2
,

and Equation (5.15) becomes ∫ π

0

γ sin χ′ dχ′

cos χ − cos χ′ = 2πq∞α. (5.16)

This is the basic integral equation of thin aerofoil theory, as applied to a flat plate.

5.2.4 Glauert’s Integral

The integral in Equation (5.16) is still nasty, but can be solved by reference to Glauert’s integral∫ π

0

cos nχ′ dχ′

cos χ − cos χ′ = −π sin nχ

sin χ
, (5.17)

which holds for n = 0, 1, 2, . . ..
Setting n = 0 and n = 1 in Equation (5.17) gives∫ π

0

dχ′

cos χ − cos χ′ = 0,∫ π

0

cos χ′ dχ′

cos χ − cos χ′ = −π.

Thus, for any constant C, ∫ π

0

C + cos χ′

cos χ − cos χ′ dχ′ = −π.

Comparing this with Equation (5.16), we see that the solution for the distribution of vortex
strength is

γ(χ) = −2q∞α
C + cos χ

sin χ
. (5.18)



Flat Plate Aerodynamics 89

5.2.5 The Kutta–Joukowsky Condition

At the trailing edge x = c, χ = 0, and the vortex strength in Equation (5.18) is infinite un-
less C = −1. Therefore this special value of the constant is chosen. This is how the Kutta–
Joukowsky condition enters the problem in this formulation.

With the condition, the vortex strength distribution is

γ(χ) = 2q∞α
1 − cos χ

sin χ
, (5.19)

which is just as in Equation (5.12), with the small-angle approximation Equation (5.8).

5.2.6 Circulation and Lift

It follows that the circulation, lift (per unit span), and two-dimensional lift coefficient are

Γ = πcq∞α (5.20)

� = πcρq2
∞α

C� = 2πα.

Again, just as in Equation (5.7), with the small-angle approximation.

5.3 Aerodynamic Moment

Up till now we have mostly been concerned with the aerodynamic force on the aerofoil, but
the resulting line of action or moment associated with the distribution of this force is important
too.

Since the lift (per unit span) is given by

� = ρq∞Γ = ρq∞
∫ c

0
γ dx,

we can think of

δ� = ρq∞γ δx

as the distribution of the lift along the aerofoil. Each element of lift contributes to the moment
about the leading edge in proportion to its distance from that edge:

δml.e. = −xδ� = −ρq∞xγδx,

where the moment is reckoned positive when it tends to increase the pitch of the aerofoil; i.e.
to raise the leading edge and depress the trailing edge. Thus the pitching moment (per unit
length) is given by

ml.e. = −ρq∞
∫ c

0
xγ dx.
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For the flat plate, using Equation (5.19),

ml.e. = −2ρq2
∞α

∫ c

0
x

1 − cos χ

sin χ
dx

= −ρq2∞αc2

2

∫ π

0
(1 − cos χ)(1 + cos χ) dχ

= −ρq2∞c2α

4
.

Defining the leading-edge pitching moment coefficient as

Cml.e. ≡ ml.e.
1
2ρq2∞c2

, (5.21)

we have the result

Cml.e. = −πα

2
= −C�

4
.

5.3.1 Centre of Pressure and Aerodynamic Centre

The centre of pressure is the point through which the action of the resultant aerodynamic force
is equivalent to that of its total distribution. If the lift is placed at a point x, it produces a pitching
moment about the leading edge

−x�,

and this balances the actual leading edge pitching moment if −x� = ml.e., or

x

c
= −Cml.e.

C�

.

For the flat plate this gives x = c
4 ; i.e. the centre of pressure is at the quarter-chord point. Note

that this result is independent of the incidence.
It is left as an exercise to show that the only point about which the pitching moment is

independent of incidence—i.e. the aerodynamic centre—also occurs at the quarter-chord point
for the flat plate.

5.4 Exercises

1. (a) The aerodynamic centre of a flat plate. Derive the formula for pitching moment m(x)
about an arbitary point x on a flat plate is in terms of lift �, position x, and chord c.

(b) Show that since the lift � varies with the incidence α, the only point x about which
pitching moment is independent of incidence is the quarter-chord point; i.e. xa.c. = c/4.
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5.5 Further Reading

For the Kutta–Joukowksy condition (Section 5.1.2), see: Goldstein (1938), Abbott and von
Doenhoff (1959), Bertin (2002), and Houghton and Carpenter (2003).

An analysis of the leading edge suction, mentioned in Section 5.1.6, may be found in Milne-
Thomson (1973).

Thin aerofoil theory is a fundamental component of aerodynamics, and is treated extensively
in Chapter 6.

The definition of the eccentric angle given here in Equation (5.3b) is taken from Milne-
Thomson (1973). Glauert’s integral is treated (in varying levels of detail) by Glauert (1926),
Abbott and von Doenhoff (1959), Milne-Thomson (1973), Kuethe and Chow (1998), Bertin
(2002), Moran (2003, appendix A), and Anderson (2007); for a direct solution of the thin
aerofoil integral equation, not using Glauert’s integral, see Ashley and Landahl (1985).

For references to experimentally measured lift on thin flat plates, see Hoerner and Borst
(1985) and Anderson (2007); for reversed aerofoils, see Hoerner and Borst (1985, figure 14).
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6
Thin Wing Sections

In Chapter 5 we found the lift and pitching moment on a thin tilted flat plate by modelling the
flow as the sum of a uniform stream and a vortex sheet along the plate. By applying similar
ideas to a thin curved plate, we obtain a theory of thin wing sections. The basic notions are:

• thickness is ignored – the aerofoil is reduced to its camber line;
• the camber is assumed to be much less than the chord length;
• the incidence is small.

6.1 Thin Aerofoil Analysis

6.1.1 Vortex Sheet along the Camber Line

Spread a vortex sheet along the camber line; the complex velocity at a general point z = x + iy
is

w(z) = q∞e−iα +
∫ c

0

iγ(z′) dz′

2π(z − z′)
.

The integration here is along the camber line and so, unlike in the case of a flat plate, departs
from the real axis.

6.1.2 The Boundary Condition

The boundary condition on the flow is that the aerofoil, represented by its camber line, should
be impermeable; i.e. that the component of velocity normal to the camber line should vanish.
Recalling Equation (2.24) that the component of velocity normal to a line making an angle λ

with the positive x-axis is minus the imaginary part of eiλw, the impermeability condition is

−�
{

eiλw(z)
}

= 0 (6.1)

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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for z on the camber line and where the camber line slope is

tan λ = dy

dx
.

The free-stream contribution is

−�
(

eiλq∞e−iα
)

= q∞ sin(α − λ) (6.2)

and the contribution from the infinitesimal vortex at z′ is

−�
{

eiλ iγδz′

2π(z − z′)

}
. (6.3)

6.1.3 Linearization

Since it is assumed that the incidence is small, Equation (5.8) may be used; since it is fur-
ther assumed that the aerofoil is thin and the incidence and slope are small, the following
approximations may be added:

z ∼ x

δz ∼ δx

tan α ∼ sin α ∼ α

sin λ ∼ tan λ ∼ λ ∼ dy

dx

cos α, cos λ ∼ 1

eiλ ∼ 1 + iλ.

This means the free-stream contribution to the normal velocity component in Equation (6.2)
is approximately

q∞ sin(α − λ) ≡ q∞ sin

(
α − arctan

dy

dx

)
∼ q∞

(
α − dy

dx

)

and the infinitesimal vortex contribution of Equation (6.3) is approximately

−γδx′

2π(x − x′)
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Thus the condition of Equation (6.1) becomes

1

2πq∞

∫ c

0

γ dx′

x − x′ = α − dy

dx
. (6.4)

This is the thin aerofoil integral equation.

6.1.4 Glauert’s Transformation

As in the case of the flat plate, we introduce the transformation to the eccentric angle
x = c

2 (1 + cos χ), so that the thin aerofoil integral Equation (6.4) becomes

1

2πq∞

∫ π

0

γ sin χ′ dχ′

cos χ − cos χ′ = α − dy

dx
. (6.5)

6.1.5 Glauert’s Expansion

Comparing Equation (6.5) with the special case of the flat plate in Equation (5.16)

1

2πq∞

∫ π

0

γf.p. sin χ′ dχ′

cos χ − cos χ′ = α

which had the solution Equation (5.19)

γf.p. = 2q∞α
1 − cos χ

sin χ

suggests trying an expansion of the form

γ

2q∞
= A0

1 − cos χ

sin χ
+

∞∑
n=1

An sin nχ (6.6)

for the general cambered wing section. Note that, since sin(n × 0) = 0, the circulation at the
trailing edge χ = 0 remains zero, which is the Kutta–Joukowsky condition.

With the trigonometric identity

2 sin nχ sin χ ≡ cos{(n − 1)χ} − cos{(n + 1)χ},
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the numerator of the integrand of Equation (6.5) can be written as a cosine series:

γ sin χ′

2q∞
= A0 (1 − cos χ′) +

∞∑
n=1

An sin nχ′ sin χ′

= A0 (1 − cos χ′) +
∞∑

n=1

An

2

[
cos{(n − 1)χ′} − cos{(n + 1)χ′}]

= A0 (1 − cos χ′) +
∞∑

n=1

An

2
cos{(n − 1)χ′} −

∞∑
n=1

An

2
cos{(n + 1)χ′}

= A0 (1 − cos χ′) +
∞∑

n=0

An+1

2
cos nχ′ −

∞∑
n=2

An−1

2
cos nχ′

= A0 (1 − cos χ′) + A1

2
+ A2

2
cos χ′ +

∞∑
n=2

An+1 − An−1

2
cos nχ′

= A0 + A1

2
+

(
A2

2
− A0

)
cos χ′ +

∞∑
n=2

An+1 − An−1

2
cos nχ′. (6.7)

This means that Glauert’s integral (Equation 5.17)

∫ π

0

cos nχ′ dχ′

cos χ − cos χ′ = −π sin nχ

sin χ

can be used to integrate Equation (6.5) term by term:

1

2πq∞

∫ π

0

γ sin χ′ dχ′

cos χ − cos χ′ = A0 − A2

2
−

∞∑
n=2

(An+1 − An−1)
sin nχ

2 sin χ
.

This solves Equation (6.5) provided

α − dy

dx
= A0 − A2

2
−

∞∑
n=2

(An+1 − An−1)
sin nχ

2 sin χ

= A0 − A2

2
−

∞∑
n=2

An+1
sin nχ

2 sin χ
+

∞∑
n=2

An−1
sin nχ

2 sin χ

= A0 − A2

2
−

∞∑
n=3

An

sin(n − 1)χ

2 sin χ
+

∞∑
n=1

An

sin(n + 1)χ

2 sin χ

= A0 − A2

2
+ A1 sin 2χ + A2 sin 3χ

2 sin χ

+
∞∑

n=3

An

sin(n + 1)χ − sin(n − 1)χ

2 sin χ
.



Thin Wing Sections 97

Which, using the trigonometric identities

sin 2χ

2 sin χ
≡ cos χ

sin 3χ

2 sin χ
≡ cos 2χ + 1

2
sin(n + 1)χ − sin(n − 1)χ

2 sin χ
≡ cos nχ,

can be converted back to a cosine series

α − dy

dx
= A0 − A2

2
+ A1 cos χ + A2

(
cos 2χ + 1

2

)
+

∞∑
n=3

An cos nχ

= A0 + A1 cos χ + A2 cos 2χ +
∞∑

n=3

An cos nχ

=
∞∑

n=0

An cos nχ. (6.8)

6.1.6 Fourier Cosine Decomposition of the Camber Line Slope

The decomposition of the camber line slope implied by Equation (6.8) can be carried out by
multiplying each side by cos mχ and integrating over the chord:

∫ π

0

(
α − dy

dx

)
cos mχ dχ =

∞∑
n=0

An

∫ π

0
cos nχ cos mχ dχ,

since the cosine integrals are, for integer m and n,

∫ π

0
cos nχ cos mχ dχ =




π, (m = n = 0)
π
2 , (m = n /= 0)

0, (m /= n);

thus

∫ π

0

(
α − dy

dx

)
dχ = πA0∫ π

0

(
α − dy

dx

)
cos mχ dχ = πAm

2
, (m = 1, 2, . . .);



98 Theory of Lift

i.e. noting that the incidence α is independent of χ,

A0 = α − 1

π

∫ π

0

dy

dx
dχ (6.9a)

Am = −2

π

∫ π

0

dy

dx
cos mχ dχ, (m = 1, 2, . . .). (6.9b)

We will return to the evaluation of these integrals later (Sections 6.3 and 6.4), after considering
in Section 6.2 the general aerodynamic properties of a thin aerofoil with a vortex strength
distribution γ of the assumed type (Equation 6.6).

6.2 Thin Aerofoil Aerodynamics

6.2.1 Circulation and Lift

The circulation around the wing section is just the integral of the circulation density over the
vortex sheet:

Γ =
∫ c

0
γ dx = c

2

∫ π

0
γ sin χ dχ

(here and in the following, where we are concerned with global properties such as circulation
and lift, we drop the primes on x and χ) so on using Equation (6.7),

Γ = q∞c

∫ π

0

{
A0 + A1

2
+

(
A2

2
− A0

)
cos χ +

∞∑
n=2

An+1 − An−1

2
cos nχ

}
dχ

= πq∞c

(
A0 + A1

2

)
.

Thus, using the Kutta–Joukowsky Equation (3.15a), the lift per unit span is

� = ρq∞Γ = πρq2
∞c

(
A0 + A1

2

)

and the wing section lift coefficient is

C� ≡ �
1
2ρq2∞c

= 2π

(
A0 + A1

2

)
.

In terms of the incidence and the camber line slope distribution, using Equations (6.9a)
and (6.9b),

C� = 2π

{
α − 1

π

∫ π

0

dy

dx
(1 + cos χ) dχ

}
.

Introducing the zero-lift incidence

α0 = 1

π

∫ π

0

dy

dx
(1 + cos χ) dχ, (6.10)
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this can be written as

C� = 2π(α − α0), (6.11)

which is a simple linearized and offset generalization of the Equation (5.7) for a flat plate.
Thus, in thin aerofoil theory, all thin aerofoils have the same lift–incidence slope, and only

differ in the offset. The latter is given in Equation (6.10) by a weighted integral of the camber
line slope.

6.2.2 Pitching Moment about the Leading Edge

Since each element of lift δ� contributes −x cos αδ� ≈ −xδ� to the pitching moment about the
leading edge, the total (per unit span) is

ml.e. = −
∫ c

0
x

d�

dx
dx

= −ρq∞
∫ c

0
xγ dx

= −ρq∞c2

4

∫ π

0
(1 + cos χ)γ sin χ dχ.

In terms of the thin aerofoil theory vortex strength distribution of Equation (6.7)

ml.e. = −ρq2∞c2

2

∫ π

0
(1 + cos χ)

{
A0 + A1

2
+

(
A2

2
− A0

)
cos χ

+
∞∑

n=2

An+1 − An−1

2
cos nχ

}
dχ.

This nondimensionalizes to give the leading-edge pitching moment coefficient defined by
Equation (5.21) as

Cml.e. = −
∫ π

0
(1 + cos χ)

{
A0 + A1

2
+

(
A2

2
− A0

)
cos χ

+
∞∑

n=2

An+1 − An−1

2
cos nχ

}
dχ.

Of the trigonometrical integrals here, all vanish except the one involving the square of cos χ

which gives ∫ π

0
cos2 χ dχ = π

2

and the one not involving cosines at all; thus

Cml.e. = −π

(
A0 + A1

2

)
− π

2

(
A2

2
− A0

)
= −π

2

(
A0 + A1 + A2

2

)
.
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Notice a very convenient feature of Glauert’s expansion Equation (6.6): only the first three
expansion coefficients are required to compute the lift and pitching moment.

6.2.3 Aerodynamic Centre

To obtain instead the pitching moment about another point x1, we would have used

m1 =
∫ c

0
(x1 − x)

d�

dx
dx

= x1

∫ c

0

d�

dx
dx −

∫ c

0
x

d�

dx
dx

= x1� + ml.e.,

which is the usual formula for the transferral of moments from point to point. In dimensionless
terms,

Cm1 = x1

c
C� + Cml.e. ,

and so for the thin aerofoil,

Cm1 = 2πx1

c

(
A0 + A1

2

)
− π

2

(
A0 + A1 + A2

2

)

= π

{(
2x1

c
− 1

2

)
A0 +

(
x1

c
− 1

2

)
A1 − A2

4

}
.

Recalling that only A0 and not A1 nor A2 depends on the incidence α, we can find a point x1
about which the pitching moment is independent of incidence by setting the coefficient of A0
to zero. Thus the thin aerofoil has an aerodynamic centre at

xa.c. = c

4
.

The corresponding pitching moment coefficient is

Cmc/4 = −π

4
(A1 + A2).

In terms of the incidence and the camber line slope distribution, using Equations (6.9a)–
(6.9b),

Cmc/4 = −π

4

(−2

π

∫ π

0

dy

dx
cos χ dχ − 2

π

∫ π

0

dy

dx
cos 2χ dχ

)

= 1

2

∫ π

0

dy

dx
(cos χ + cos 2χ) dχ, (6.12)

which is independent of α, as claimed.
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6.2.4 Summary

The results of thin aerofoil theory may be summarized as follows:

• All thin aerofoils have lift coefficient C� = 2π(α − α0), where the zero-lift incidence α0 is
given by a weighted integral of the camber line slope distribution Equation (6.10)

α0 = 1

π

∫ π

0

dy

dx
(1 + cos χ) dχ.

• All thin aerofoils have an aerodynamic centre at the quarter-chord point.
• The pitching moment coefficient about the aerodynamic centre is given by another weighted

integral of the camber line slope distribution Equation (6.12)

Cmc/4 = 1

2

∫ π

0

dy

dx
(cos χ + cos 2χ) dχ.

• For an uncambered aerofoil (for which dy/dx ≡ 0), both the zero-lift incidence and aero-
dynamic centre pitching moment coefficient vanish (as expected by symmetry).

6.3 Analytical Evaluation of Thin Aerofoil Integrals

Some aerofoils have camber lines defined by an explicit formula; e.g. the NACA four- and
five-digit wing sections have a polynomial with coefficients that jump at a specified value
x = pc but are constant over 0 < x < pc and pc < x < c. For such camber lines, the slope
distribution can be expressed by a pair of cosine series of the form

dy

dx
=

{
f0 + f1 cos χ + f2 cos 2χ + . . . , x

c
< p

a0 + a1 cos χ + a2 cos 2χ + . . . , p < x
c

and the zero-lift incidence integral in Equation (6.10) as

α0 = 1

π

∞∑
k=0

{
fk

∫ π

χp

cos kχ (1 + cos χ) dχ + ak

∫ χp

0
cos kχ (1 + cos χ) dχ

}

where

χp = arccos(2p − 1).

Using the trigonometric identity

2 cos kχ cos χ ≡ cos(k + 1)χ + cos(k − 1)χ,

the indefinite integral that appears twice above is

∫
cos kχ(1 + cos χ) dχ =




χ + sin χ + const., k = 0

sin χ + sin 2χ
4 + χ

2 + const., k = 1
sin kχ

k
+ sin(k + 1)χ

2(k + 1) + sin(k − 1)χ
2(k − 1) + const., k > 1
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and hence the definite integrals are

∫ π

χp

cos kχ(1 + cos χ) dχ =




π − χp − sin χp, k = 0

− sin χp − sin 2χp

4 + π−χp

2 , k = 1

− sin kχp

k
− sin(k + 1)χp

2(k + 1) − sin(k − 1)χp

2(k − 1) , k > 1

∫ χp

0
cos kχ(1 + cos χ) dχ =




χp + sin χp, k = 0

sin χp + sin 2χp

4 + χp

2 , k = 1
sin kχp

k
+ sin(k + 1)χp

2(k + 1) + sin(k − 1)χp

2(k − 1) , k > 1

so

α0π = f0π + (a0 − f0)(χp + sin χp) + f1π

2

+ (a1 − f1)

(
sin χp + sin 2χp

4
+ χp

2

)

+ (a2 − f2)

(
sin 2χp

2
+ sin 3χp

6
+ sin χp

2

)
+ . . .

+ (ak − fk)

{
sin kχp

k
+ sin(k + 1)χp

2(k + 1)
+ sin(k − 1)χp

2(k − 1)

}
+ . . .

=
(

f0 + f1

2

)
π +

{
a0 − f0 + a1 − f1

2

}
χp

+
{

a0 − f0 + a1 − f1 + a2 − f2

2

}
sin χp

+
{

a1 − f1

4
+ a2 − f2

2
+ a3 − f3

4

}
sin 2χp + . . .

+
{

ak−1 − fk−1

2k
+ ak − fk

k
+ ak+1 − fk+1

2k

}
sin kχp + . . .

The same approach could be applied to compute the pitching moment:

Cmc/4 = 1

2

∞∑
k=0

{
fk

∫ π

χp

cos kχ(cos χ + cos 2χ) dχ

+ ak

∫ χp

0
cos kχ(cos χ + cos 2χ) dχ

}
.
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The indefinite integrals are:∫
(cos χ + cos 2χ) dχ = sin χ + sin 2χ

2∫
cos χ(cos χ + cos 2χ) dχ = χ

2
+ sin χ

2
+ sin 2χ

4∫
cos 2χ(cos χ + cos 2χ) dχ = χ

2
+ sin χ

2
+ sin 3χ

6
+ sin 4χ

8

and for k = 3, 4, . . .∫
cos kχ(cos χ + cos 2χ) dχ

= sin(k − 2)χ

2(k − 2)
+ sin(k − 1)χ

2(k − 1)
+ sin(k + 1)χ

2(k + 1)
+ sin(k + 2)χ

2(k + 2)
.

The definite integrals are∫ π

χp

(cos χ + cos 2χ) dχ = − sin χp − sin 2χp

2∫ π

χp

cos χ(cos χ + cos 2χ) dχ = π − χp

2
− sin χp

2
− sin 2χp

4
− sin 3χp

6∫ π

χp

cos 2χ(cos χ + cos 2χ) dχ = π − χp

2
− sin χp

2
− sin 3χp

6
− sin 4χp

8

and for k = 3, 4, . . .∫ π

χp

cos kχ(cos χ + cos 2χ) dχ

= − sin(k − 2)χp

2(k − 2)
− sin(k − 1)χp

2(k − 1)
− sin(k + 1)χp

2(k + 1)
− sin(k + 2)χp

2(k + 2)

and aft ∫ χp

0
(cos χ + cos 2χ) dχ = sin χp + sin 2χp

2∫ χp

0
cos χ(cos χ + cos 2χ) dχ = χp

2
+ sin χp

2
+ sin 2χp

4
+ sin 3χp

6∫ χp

0
cos 2χ(cos χ + cos 2χ) dχ = χp

2
+ sin χp

2
+ sin 3χp

6
+ sin 4χp

8

and for k = 3, 4, . . .∫ χp

0
cos kχ(cos χ + cos 2χ) dχ

= sin(k − 2)χp

2(k − 2)
+ sin(k − 1)χp

2(k − 1)
+ sin(k + 1)χp

2(k + 1)
+ sin(k + 2)χp

2(k + 2)
.
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So

2Cmc/4 = (f1 + f2)π

2
+ (a0 − f0)

(
sin χp + sin 2χp

2

)

+ (a1 − f1)

(
χp + sin χp

2
+ sin 2χp

4
+ sin 3χp

6

)

+ (a2 − f2)

(
χp + sin χp

2
+ sin 3χp

6
+ sin 4χp

8

)

+
∞∑

k=3

(ak − fk)

{
sin(k − 2)χp

2(k − 2)
+ sin(k − 1)χp

2(k − 1)

+ sin(k + 1)χp

2(k + 1)
+ sin(k + 2)χp

2(k + 2)

}

= (f1 + f2)π

2
+ (a1 − f1 + a2 − f2)

χp

2

+ {2(a0 − f0) + a1 − f1 + a2 − f2 + a3 − f3} sin χp

2

+ {2(a0 − f0) + a1 − f1 + a3 − f3 + a4 − f4} sin 2χp

4

+
∞∑

k=3

(ak−2 − fk−2 + ak−1 − fk−1 + ak+1 − fk+1 + ak+2 − fk+2)
sin kχp

2k

6.3.1 Example: the NACA Four-digit Wing Sections

The camber lines of the NACA four-digit wing sections have the formula (Jacobs et al. 1933;
Abbott and von Doenhoff 1959):

y

c
=




m
p2

(
2px
c

− x2

c2

)
, x

c
< p

m
(1−p)2

(
1 − 2p + 2px

c
− x2

c2

)
, p < x

c

(6.13)

so that the slope is

dy

dx
=




2m
p2

(
p − x

c

)
, x

c
< p

2m
(1−p)2

(
p − x

c

)
, p < x

c

(6.14)
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or in terms of the eccentric angle

dy

dx
=




2m
p2

(
p − 1

2 {1 + cos χ}
)

, x
c

< p

2m
(1 − p)2

(
p − 1

2 {1 + cos χ}
)

, p < x
c

=



m
p2 (2p − 1 − cos χ) , x

c
< p

m
(1 − p)2 (2p − 1 − cos χ) , p < x

c

so that the coefficients are

f0 = m(2p − 1)

p2 , a0 = m(2p − 1)

(1 − p)2

f1 = −m

p2 , a1 = −m

(1 − p)2

and their jumps are

a0 − f0 = m(2p − 1)2

p2(1 − p)2

a1 − f1 = −m(2p − 1)

p2(1 − p)2

and the zero-lift incidence is given by

α0

m
= 4p − 3

2p2 +
(2p − 1)

{(
2p − 3

2

)
χp − 2(1 − p) sin χp − sin 2χp

4

}
p2(1 − p)2π

; (6.15)

that it is proportional to the maximum camber m is a necessary consequence of the linearization.
This result is plotted in Figure 6.1. Note that the NACA 2412 example of Bertin (2002) gives
α0

.= −2.095◦, which is slightly out; the correct theoretical value for the 24 camber line to
three decimal places is α0

.= −2.077◦.
Similarly, the quarter-chord pitching moment coefficient is

Cmc/4

m
= −π

4p2 −
(2p − 1)

{
χp − (4p − 3)

(
sin χp + sin 2χp

2

)
+ sin 3χp

3

}
4p2(1 − p)2 . (6.16)

This is compared with the wind-tunnel measurements of Jacobs et al. (1933, table V) in
Figure 6.2. In this case, the value given by Bertin (2002) Cmc/4

.= −0.05309 is closer to the
correct value Cmc/4 = −0.05312.

6.4 Numerical Thin Aerofoil Theory

The analytical approach demonstrated in Section 6.3 is somewhat involved, and can’t be used
unless an explicit differentiable formula for the camber line is available. A more generally ap-
plicable approach is to approximate the weighted integrals of the camber line slope distribution
using a numerical quadrature rule, such as the trapezoidal rule.
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R

Figure 6.1 Movement of the zero-lift incidence α0 with position p of maximum camber m for the NACA
four-digit camber lines: comparison of theoretical Equation (6.15) with experiments at 12% thickness
from Jacobs et al. (1933, table III)

Consider the thin aerofoil theoretical zero-lift incidence integral in Equation (6.10)

α0 = 1

π

∫ π

0

dy

dx
(1 + cos χ) dχ.

Say we partitioned the domain with 0 = x1 < x2 < . . . xk < . . . < xn = c and corresponding
eccentric angles π = χ1 > χ2 > . . . > χk > . . . > χn = 0

α0 = −1

π

n−1∑
k=1

∫ χk+1

χk

dy

dx
(1 + cos χ) dχ

and treated the camber line slope as constant on each segment

α0
.= −1

π

n−1∑
k=1

∫ χk+1

χk

yk+1 − yk

xk+1 − xk

(1 + cos χ) dχ

= −1

π

n−1∑
k=1

yk+1 − yk

xk+1 − xk

[χ + sin χ]χk+1
χk

.
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R

Figure 6.2 Variation of the pitching moment with position of maximum camber for the NACA four-digit
camber lines: comparison of theoretical Equation (6.16), with experiments at 12% thickness from Jacobs
et al. (1933, table III) and camber as marked

Introducing the forward difference notation


yk ≡ yk+1 − yk,

this is

α0
.= −1

π

n−1∑
k=1


yk


xk


(χ + sin χ)k.

For the pitching moment, the corresponding numerical approximation is

Cmc/4

.= −1

2

n−1∑
k=1


yk


xk




(
sin χ + sin 2χ

2

)
k

.

These numerical approximation formulae can be conveniently calculated manually using a
table or semi-manually with spreadsheet, or better yet a matrix-oriented programming language
such as Octave (in which the forward difference operator is called diff). By exploiting the
matrix-oriented features, the program thin (Listing 6.1) turns out to be both very compact
and very similar in form to the mathematical formulae.
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Listing 6.1 thin.m.

function [alpha0, Cmac] = thin (x, y)
chi = acos (2 * x - 1);
slope = diff (y) ./ diff (x);
alpha0 = -slope’ * diff (chi + sin (chi)) / pi;
Cmac = -slope’ * diff (sin (chi) + sin (2 * chi) / 2) / 2;

Listing 6.2 naca4pars.m.

function [m, p, t] = naca4pars (n)
m = 0.01 * round (n / 1e3);
p = 0.1 * round (rem (n, 1e3) / 1e2);
t = 0.01 * rem (n, 1e2);

One such feature has been used to write the sum almost implicitly using matrix multiplica-
tion, as described in Appendix A.2.8. Here the inputs are assumed to be column-vectors and
the left factor is converted into row-vector by transposition with the apostrophe operator.

To demonstrate the program, we need a sample geometry; to this end we provide naca4pars

and naca4meanline in Listings 6.2 and 6.3.
A transcript demonstrating the use of these procedures is given in Listing 6.4.
The procedure, as implemented above and using the indicated x-values, predicts

α0
.= −2.052◦ and Cmc/4

.= −0.0524, which compare well with the exact thin aerofoil theoretic
values α0

.= −2.08◦ and Cmc/4

.= −0.0531 (Section 6.3); indeed, the agreement between the
numerical and exact thin aerofoil answers is better than the agreement of the exact values with
the experimental results α0

.= −1.7◦, Cmc/4

.= −0.042 (Jacobs et al. 1933).

Listing 6.3 naca4meanline.m.

function y = naca4meanline (x, m, p)
aft = x(:) >= p;
y(˜aft,1) = m / pˆ2 * (2*p*x(˜aft) - x(˜aft) .ˆ2);
y(aft,1) = m / (1-p)ˆ2 * (1-2*p + 2*p*x(aft) - x(aft).ˆ2);

Listing 6.4 Octave instructions to demonstrate thin.m from Listing 6.1.

x = [0, 1.25, 2.5:2.5:10, 15:5:25, 30:10:90, 95, 100]’/1e2;
[m, p] = naca4pars (2412);
y = naca4meanline (x, 0.02, 0.4);
[alpha0, Cmc4] = thin (x, y);
alpha0*180/pi, Cmc4
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6.5 Exercises

1. For the NACA 4-digit wing sections
(a) 0012,
(b) 1412,
(c) 2412, and
(d) 4412
apply the theory of thin wing sections to compute the distribution of circulation density
along the camber line as a function of incidence, and then the circulation, lift, and pitching
moment.

For the NACA 2412, compute the required integrals both analytically and numerically;
for the others, use either approach.

6.6 Further Reading

Thin aerofoil theory is discussed in most textbooks on aerodynamics (Glauert 1926; Abbott
and von Doenhoff 1959; Karamcheti 1966; Batchelor 1967; Milne-Thomson 1973; Ashley and
Landahl 1985; McCormick 1995; Kuethe and Chow 1998; Paraschivoiu 1998; Bertin 2002;
Houghton and Carpenter 2003; Moran 2003; Anderson 2007).

The formulae for the NACA four- and five-digit camber lines are given by Jacobs et al.
(1933) and Jacobs and Pinkerton (1936); see also Abbott and von Doenhoff (1959).
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7
Lumped Vortex Elements

7.1 The Thin Flat Plate at Arbitrary Incidence, Again

Recall that for a flat plate we obtained the solution to the flow field as Equation (5.14)

w(z) = q∞e−iα + i

2π

∫ c

0

γ(x′) dx′

z − x′

where γ = 2q∞ sin α
1 − cos χ

sin χ

and cos χ = 2x

c
− 1.

The total circulation is, by Equation (5.6),

Γ = πq∞c sin α.

7.1.1 Single Vortex

Using our knowledge of this solution, we attempt to model the flat plate using a single vortex.
Recalling (Section 5.3.1) that the aerodynamic force acts through the quarter-chord point
x = c/4, we place the vortex there. The complex velocity field due to the free-stream and the
single vortex is

w(z) = q∞e−iα + iΓ

2π(z − c/4)
= q∞

(
e−iα + i sin α

2z
c

− 1
2

)
.

7.1.2 The Collocation Point

The question then arises: how well does this single vortex model the flow? The criterion to
apply is that there should be no flow through the plate. On the plate y = 0 and the normal

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 7.1 Normal component of velocity on a flat plate due to a nonzero incidence and a corresponding
vortex lumped at the quarter-point, as computed from Equation (7.1)

component is

v(x) = −�w = q∞

{
sin α − sin α

2x
c

− 1
2

}
= q∞

(
1 − 1

2x
c

− 1
2

)
sin α, (7.1)

which, as shown in Figure 7.1, vanishes only at

x = 3c

4
.

We call this special point at which the boundary condition is satisfied the collocation point;
note that it is independent of the incidence α.

7.1.3 Lumped Vortex Model of the Thin Flat Plate

As an artificial and trivial application of the lumped vortex method, say we knew the correct
location for the vortex (x = c/4) and the collocation point (x = 3c/4), but didn’t know the
vortex strength Γ . The configuration of this single lumped vortex model of the plate is shown
in Figure 7.2.

c
4

c
2

c
4

Figure 7.2 Model of a flat plate consisting of a single lumped vortex at the quarter-chord and a collo-
cation point at the three-quarter-chord
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The complex velocity would be

w(z) = q∞e−iα + iΓ

2π(z − c/4)
,

and the normal velocity at the collocation point would be

v(3c/4) = q∞ sin α −
c
2Γ

2π
(

c
2

)2 = q∞ sin α − Γ

πc
.

Therefore, setting this to zero gives the circulation as

Γ = πcq∞ sin α,

in agreement with the results of conformal mapping in Equation (5.6) and the continuous
vortex sheet model in Equation (5.11).

The flow produced by the single lumped vortex is compared with the full solution of Sec-
tion 4.3.4 obtained from conformal mapping in Figure 7.3. The figures were produced by
plotting the level-sets of the stream function

ψ = �W = �
∫

w dz = �
{

q∞e−iαz + iΓ ln
(
z − c

4

)
2π

}

with the Octave functions in Listings 7.1 and 7.2.
Notice that far from the plate the agreement is very good, but it’s less good in the immediate

vicinity of points like the leading edge, z = 0, or the lumped vortex point, z = c
4 . Observe too

the horizontal streamlines near the collocation point, z = 3c
4 .
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Figure 7.3 Streamlines over a thin plate at nonzero incidence with circulation, exactly from conformal
mapping (a) and approximately with a single lumped vortex (b)
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Listing 7.1 streamlines plate.m.

alpha = pi/6; c = 1; Gamma = c * pi * sin (alpha);
W = @ (zeta) zeta + (c/4)ˆ2 ./ zeta;
W1 = @ (zeta) W (zeta) - Gamma * log (4 * zeta / c) / pi / 2i;
W2 = @ (zeta) W1 (zeta / exp (1i * alpha));
W3 = @ (z) W2 (joukowsky_inverse (z, c));
streamlines_W (-2-2i, 2+2i, W3, -3:0.1:4 )
hold (’on’)
plot ([0, 1], [0, 0], ’LineWidth’, 3, ’LineStyle’, ’-’)

Listing 7.2 streamlines lvm1.m.

alpha = pi/6; c = 1; Gamma = c * pi * sin (alpha);
W0 = @ (z) exp (-1i * alpha) * z;
W = @ (z) W0 (z) - Gamma * log (z - c/4) / pi / 2i;
streamlines_W (-2-2i, 2+2i, W, -3:0.1:4)
hold (’on’)
plot ([0, 1], [0, 0], ’+-’, ’LineWidth’, 3, ...

1/4, 0, ’o’, 3/4, 0, ’x’)
axis (’image’)

7.2 Using Two Lumped Vortices along the Chord

As a slightly more realistic example, say the plate is split at x = c/2 and each half represented
with a lumped vortex panel, as shown in Figure 7.4. This problem is still simple enough to
be worked exactly by hand, but begins to exhibit some of the structure of a general numerical
panel method.

The complex velocity field is

w(z) = q∞e−iα + iΓ1

2π
(
z − z

(v)
1

) + iΓ2

2π
(
z − z

(v)
2

) . (7.2)

Here the vortex points are the quarter-points of each panel:

z
(v)
1 = c

8

z
(v)
2 = 5c

8
.

c
8

c
8

c
8

c
8

c
4

c
4

Figure 7.4 Model of a flat plate consisting of two lumped vortex panels end-to-end
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On the plate z = x and the normal component of velocity reduces to

v(x) = q∞ sin α − 1

2π

(
Γ1

x − x
(v)
1

+ Γ2

x − x
(v)
2

)
,

where x
(v)
i is the real part of z

(v)
i .

The two unknown vortex strengths can be determined by enforcing the impermeability
condition (here v = 0) at the collocation points x

(c)
i : the three-quarter points of the panels.

Thus:

q∞ sin α − 1

2π

(
Γ1

x
(c)
1 − x

(v)
1

+ Γ2

x
(c)
1 − x

(v)
2

)
= 0

q∞ sin α − 1

2π

(
Γ1

x
(c)
2 − x

(v)
1

+ Γ2

x
(c)
2 − x

(v)
2

)
= 0,

where the collocation points are

x
(c)
1 = 3c

8

x
(c)
2 = 7c

8
.

This system can be written in matrix–vector form as

1

2π


 1

x
(c)
1 −x

(v)
1

1
x

(c)
1 −x

(v)
2

1
x

(c)
2 −x

(v)
1

1
x

(c)
2 −x

(v)
2




[
Γ1

Γ2

]
= q∞ sin α

[
1

1

]
. (7.3)

Inserting the numerical values for the coordinates of the vortex and collocation points gives

1

2πc

[
4 −4
4
3 4

][
Γ1

Γ2

]
= q∞ sin α

[
1

1

]
.

Solving the linear system gives

[
Γ1

Γ2

]
= 2πq∞c sin α

[
3
8
1
8

]
.

The streamlines are plotted in Figure 7.5.
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Figure 7.5 Streamlines over a thin plate at nonzero incidence with circulation, exactly from conformal
mapping (a) and approximately with two lumped vortices (b)

7.2.1 Postprocessing

Having calculated the strengths of the lumped vortices, the lift can be deduced, either:

• from the total circulation and the Kutta–Joukowsky theorem or
• by aggregrating the forces on individual vortices.

The total circulation is

Γ = Γ1 + Γ2 = πq∞c sin α,

the lift (per unit span) is

� = ρq∞Γ = ρπq2
∞c sin α,

and the lift coefficient is

C� = �
1
2ρq2∞c

= 2π sin α.

These three results agree with the exact results.
If we compute the pitching moment about the quarter-chord from the two-panel model, we

again get the correct answer, zero (Section 5.3.1):

mc/4 =
( c

4
− c

8

)
ρq∞Γ1 +

(
c

4
− 5c

8

)
ρq∞Γ2 = ρq∞c

8
(Γ1 − 3Γ2) = 0.
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Figure 7.6 Model of a flat plate consisting of n lumped vortex panels end-to-end

7.3 Generalization to Multiple Lumped Vortex Panels

If instead of two, we used n vortex panels, as shown in Figure 7.6 the matrix–vector Equa-
tion (7.3) would be:

1

2π




1
x

(c)
1 −x

(v)
1

1
x

(c)
1 −x

(v)
2

· · · 1
x

(c)
1 −x

(v)
n

1
x

(c)
2 −x

(v)
1

1
x

(c)
2 −x

(v)
2

· · · 1
x

(c)
2 −x

(v)
n

...
1

x
(c)
n −x

(v)
1

1
x

(c)
n −x

(v)
2

· · · 1
x

(c)
n −x

(v)
n







Γ1

Γ2

...

Γn


 = q∞ sin α




1

1
...

1


 , (7.4)

where x
(c)
i is the collocation (three-quarter) point of the ith panel and x

(v)
j is the lumped vortex

(one-quarter) point of the jth panel.

7.3.1 Postprocessing

Having obtained the lumped vortex strengths, the complex velocity at an arbitrary point z (not
coinciding with any of the vortices) is

w(z) = q∞e−iα +
n∑

j=1

iΓj

2π(z − z
(v)
j )

and the lift and quarter-chord pitching moment coefficients are

C� = 2
n∑

j=1

Γj

q∞c
(7.5)

Cmc/4 = 2 cos α

n∑
j=1

(
1

4
− x

(v)
j

c

)
Γj

q∞c
. (7.6)

7.4 General Considerations on Discrete Singularity Methods
• The use of two panels gave the same result for the lift coefficient as the use of one panel.

Both agreed with the exact result for this problem, since the lumped vortex panels are based
on the exact solution.

• The use of one panel gave only a result for the overall circulation, but the use of two panels
began to give information about the distribution of vortex strength along the plate.
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• The two-panel example exhibits the basic steps common to all numerical panel methods

1. select singularity element;
2. discretize geometry and generate grid;
3. compute matrix of influence coefficients;
4. establish right-hand side vector;
5. solve linear set of equations;
6. compute derived quantities (e.g. lift, pitching moment).

Here, these steps were:

1. Select singularity element: we chose to generate the flow perturbation with lumped vortex
panels.

2. Discretize geometry and generate grid: we split the plate into two, fore and aft, and put
vortices and collocation points at the quarter and three-quarter points of each panel.

3. Compute matrix of influence coefficients: enforcing the impermeability condition at the
collocation points required the calculation of the contribution to the normal velocity at
the ith collocation point from the jth lumped vortex. This appears as the coefficient in
the ith row and jth column of the matrix, and represents the influence of the jth panel
on the ith.

4. Establish right-hand side vector: here there were constant terms in the impermeability
condition equations due to the free-stream velocity; these formed the right-hand side of
the matrix–vector equation.

5. Solve linear set of equations: here the example was small (2 × 2) so that we could solve
it exactly by hand. For larger examples, it would be difficult to use exact fractions and
easier to use approximate decimals. For much larger examples (say bigger than 8 × 8),
the matrix–vector equation should be solved by a specialized computer program such as
Octave.

6. Compute derived quantities (e.g. lift): here we just added the vortex strengths to obtain the
circulation; however, we could also have gone back to the expression of Equation (7.2)
and computed the velocity field, then used Bernoulli’s equation to compute the pressure
field, etc.

• The method for two panels can easily be generalized to any number of panels and is well
suited to computer implementation, e.g. in Octave.

• With some modifications, the method can be generalized to cambered aerofoils. The advan-
tage of this over the use of thin aerofoil theory is that there is no need to assume either the
camber or incidence small. This is developed in Section 7.5.

• Let’s consider the main differences between the thin aerofoil type solution and the lumped
vortex panel solution to the flat plate problem. The thin aerofoil solution required a number
of difficult and slightly mysterious mathematical steps; e.g. Glauert’s transformation and
Glauert’s integral. The lumped vortex method is conceptually much simpler, but involves
the solution of a matrix–vector equation: this requires a computer if a realistic number of
panels are used.

• The real advantage of the lumped vortex panel method is that it can be systematically
generalized to handle much more complicated problems. Some of the generalizations are:
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– Instead of using lumped vortex panels, we can use panels with point sources or point
doublets, or other kinds of singularity.

– Instead of concentrating the singularity at a point on the panel, we can spread it out
over the panel. This must be done fairly simply so that the method remains suitable for
computer implementation. Common approaches include constant strength panels, panels
with strength varying linearly over the panel, panels with strength varying quadratically,
etc. The difficulty of using these distributed-strength panels as opposed to the lumped-
strength panels of the problem worked above is that a number of complicated integrals
(of the singularity strength over the panel) have to be solved to compute the influence
coefficients; however, these can usually be found in reference books and can be solved
once and for all when the computer program is written.

– Instead of using straight line segments as panels, we could use curved panels. Again, the
curvature must be kept simple if the method is to be implemented on a computer. One
approach is to allow each panel to be parabolic; another is to represent the camber line
with a spline.

– The method can be generalized to three-dimensional problems. The two-dimensional
surface of a three-dimensional body can be covered in quadrilateral panels and a variety
of flow singularities (source, doublets, vortices) attached to each.

– The computation of subsidiary quantities is often accompanied by the production of
graphical output, such as pressure plots or streamlines. This can be computationally in-
tensive, but is an excellent means of visualizing the aerodynamical problem and building
intuitive understanding.

7.5 Lumped Vortex Elements for Thin Aerofoils

7.5.1 Panel Chains for Camber Lines

Here we use a chain of lumped vortex elements to model a thin aerofoil. This provides an
alternative to thin aerofoil theory. The results obtained are similar.

Say we have the complex coordinates for n + 1 points along the camber line of an aerofoil:
z = z1, z2, . . . , zn+1, with z1 at the leading edge and zn+1 at the trailing edge. The camber
line can be modelled by putting a lumped vortex element on each line segment joining these
points; i.e. the jth element runs from zj to zj+1. This is illustrated in Figure 7.7.

With the forward difference notation

	zj ≡ zj+1 − zj,

z
(v)
1

z
(v)
2 z(v)

nz
(c)
1

z
(c)
2 z(c)

n

z1
z2 z3 zn zn+1

Figure 7.7 Model of a slightly cambered mean line consisting of n lumped vortex panels. As in
Figures 7.2, 7.4, and 7.6, circles and crosses represent vortices and collocation points, respectively;
the notches are the points defining the geometry
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the vortex points (quarter-points) are

z
(v)
j = zj + 1

4
	zj

and the collocation points (three-quarter-points) are

z
(c)
i = zi + 3

4
	zi.

We place vortices of strength Γj at the n vortex points. With a free-stream at incidence α,
the complex velocity field is then:

w(z) = q∞e−iα + i

2π

n∑
j=1

Γj

z − z
(v)
j

.

Evaluated at the ith collocation point, the complex velocity is

w
(
z

(c)
i

)
= q∞e−iα + i

2π

n∑
j=1

Γj

z
(c)
i − z

(v)
j

.

Write this as

w
(
z

(c)
i

)
= q∞e−iα +

n∑
j=1

iωijΓj,

where the

ωij = 1

2π
{

z
(c)
i − z

(v)
j

}

are the influence coefficients, being the contribution of a unit point source at z(v)
j to the complex

velocity at z
(c)
i .

The n unknown vortex strengths Γj are determined by requiring that the n panels are im-
permeable at their collocation points; that is, that the velocity normal to the panel vanish at the
three-quarter point. The slope of the ith panel is

tan λi = tan arg 	zi ≡ 	yi

	xi

,

and the normal component of velocity at the collocation point of the ith panel, which has
direction λi, is

−�
(

eiλiw(z(c)
i )

)
= q∞ sin(α − λi) +

n∑
j=1

{
−�

(
eiλi iωij

)}
Γj.



Lumped Vortex Elements 121

Setting this to zero results in a system of n linear equations in n unknowns, and can therefore
be written as a matrix–vector equation

n∑
j=1

aijxj = bj (7.7)

where

aij = −�
(

eiλi iωijc
)

xj = Γj

cq∞
bi = sin(λi − α).

Once this has been solved for the unknown vortex strenths Γj , the lift and pitching moment
coefficients can be obtained from Equations (7.5) and (7.6).

7.5.2 Implementation in Octave

The lumped vortex method for thin aerofoils can be directly implemented in a computer
programming language that handles complex matrices such as Octave.

It’s convenient to first define a function lvmi.m (Listing 7.3) to compute the influence
factors from one point to another (or array of points to another), since as well as being required
in the assembly of the problem, this is used in postprocessing to evaluate the solution at points
of interest (e.g. on a grid for a silk-thread arrow plot).

Once this one-line influence coefficient subroutine is defined, the lumped-vortex method
program itself lvm.m (Listing 7.4) is only half a dozen lines.

Listing 7.3 lvmi: compute the lumped vortex influence coefficients for lvm of Listing 7.4.

function w = lvmi (z, zeta)
w = 1.0 ./ (2 * pi * bsxfun (@minus, z(:), zeta));

Listing 7.4 lvm: solve the lumped vortex model of a thin wing section with complex vertices z at
incidence alpha radians; requires lvmi from Listing 7.3.

function [zc, omega, Gamma] = lvm (z, alpha)
dz = diff (z);
lambda = angle (dz)’;
zc = (z(1:(end-1)) + dz*3/4).’;
omega = lvmi (zc, zc.’ - dz / 2);
Gamma = -imag (diag (exp (1i*lambda) * 1i) ...

* omega) \ sin (lambda-alpha);
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Listing 7.5 lvm demo: demonstrating naca4meanline and lvm of Listings 6.3 and 7.4.

x = linspace (0, 1, 21);
y = naca4meanline (x, 0.02, 0.4);
alpha = 0;
[zc, omega, Gamma] = lvm (complex (x, y’), alpha);
Cl = 2 * sum (Gamma)
Cmc4 = 2 * sum (Gamma .* real (1/4 - zc)) * cos (alpha)

The matrix–vector Equation (7.7) is solved there using Octave’s backslash operator, as in
Listing 1.4 in Section 1.5.2. With naca4meanline from Listing 6.3, the method can be applied
to the NACA 2400 camber line, as shown in Listing 7.5.

The zero-incidence lift, 0.21758, is within 10% of the exact thin aerofoil result
C� = −2πα0 = 0.228 (recalling α0 = −2.077◦, and Cmc/4 = −0.053 from Section 6.3.1).
The agreement of the result for the pitching moment, Cmc/4 = −0.059078, with the exact
theoretical value is less good, but still reasonable.

Better results can be obtained from the method by using more panels. Another possibility for
improvement is opened by not necessarily taking all panels of equal length—there is nothing
in either the lumped vortex element method or its implementation in Listing 7.4 that depends
on the abscissae being equally spaced. An opportunity to explore these avenues is given in the
exercises at the end of the chapter.

7.5.3 Comparison with Thin Aerofoil Theory

In the NACA 2412 example, we found that the lumped vortex panel method gave very similar
results to thin aerofoil theory. Let’s explore this further.

The matrix equation of the lumped vortex panel method is Equation (7.7). If we make the
thin aerofoil approximations:

sin λ ∼ tan λ ∼ λ ∼ dy

dx

cos λ ∼ 1

eiλ = cos λ + i sin λ ∼ 1 + iλ ∼ 1

z ∼ x,

the matrix Equation (7.7) becomes

n∑
j=1

−c

2π
{

x
(c)
i − x

(v)
j

} Γj

cq∞
= λi − α

n∑
j=1

Γj

2πq∞
{

x
(c)
i − x

(v)
j

} = α − λi
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which may be compared with the thin aerofoil integral equation,

∫ c

0

γ(x′) dx′

2πq∞(x − x′)
= α − dy

dx
.

Thus, when applied to the thin aerofoil problem, the lumped vortex panel method is equivalent
to a numerical approximation to the thin aerofoil integral equation, with Γj being the vortex
strength equivalent to γ(x′)δx′.

7.6 Disconnected Aerofoils

If the lumped vortex panel method served only as an alternative discretization of the thin
aerofoil theory it would still be of some interest, since it avoids the difficulty of having to solve
the integral equation via Glauert’s integral; however, it is much more important than that: it
permits generalization to problems that would be very much more difficult or impossible with
the analytic approach.

One important direction that the method can be generalized in is to allow multiple discon-
nected aerofoils, such as leading-edge slats and slotted flaps, and biplanes. We exemplify the
method by modelling a biplane with two lumped vortex panels. In particular, we choose the
simplest example of a biplane: equal aerofoils with no stagger; i.e. both aerofoils have chord
length c, with one running from (0, 0) to (c, 0) and the other from (0, h) to (c, h).

As shown in Figure 7.8, the vortex points are:

z
(v)
1 = c

4
+ i0

z
(v)
2 = c

4
+ ih

and the collocation points are

z
(c)
1 = 3c

4
+ i0

z
(c)
2 = 3c

4
+ ih.

z
(v)
1 z

(c)
1

z
(v)
2 z

(c)
2

Figure 7.8 Model of a biplane with two lumped vortex elements
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With vortices of strength Γ1 and Γ2 at z = z
(v)
1 and z

(v)
2 , respectively, the complex velocity field

is

w(z) = q∞e−iα + i

2π

{ (
x − c

4

) − iy(
x − c

4

)2 + y2
Γ1 +

(
x − c

4

) − i(y − h)(
x − c

4

)2 + (y − h)2
Γ2

}

and so the vertical component of velocity is

v(z) = q∞ sin α − 1

2π

{
x − c

4(
x − c

4

)2 + y2
Γ1 + x − c

4(
x − c

4

)2 + (y − h)2
Γ2

}
.

By requiring this to vanish at the two collocation points the unknown vortex strengths can be
determined. This leads to the matrix equation


2
c

2

c+ 4h2
c

2

c+ 4h2
c

2
c




[
Γ1

Γ2

]
= 2πq∞ sin α

[
1

1

]
,

which has the solution

Γ1 = Γ2 =
4

(
h
c

)2 + 1

4
(

h
c

)2 + 2
πq∞c sin α.

This may be compared with the circulation for a single thin flat plate aerofoil given by Equa-
tion (5.6):

Γ = πq∞c sin α.

It can be seen that each aerofoil is inhibited by the other for finite h
c

, with the results tending
to the value for isolated aerofoils when the separation h becomes much larger than the chord
length c. Further, as h → 0, the circulation around each aerofoil tends to half the value for an
isolated aerofoil, which is also a logical result.

A comparison with more detailed theoretical solutions for the biplane shows quite good
agreement. In practice, however, three-dimensional effects (the interference between the wing-
tip vortices) are important in biplane performance, so we don’t pursue the details of the com-
parison here; see Chapter 13.

7.6.1 Other Applications

Other simple applications of the lumped vortex panel method include:

• modelling tandem aerofoils;
• modelling ground effect;
• calculating wind-tunnel corrections.
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7.7 Exercises

1. The position of the vortex and the collocation point may be derived in another way: by
forcing the lumped vortex panel to give the correct thin-aerofoil theory result for a parabolic
camber line y = mx(c − x). Show that this gives the same result.

2. Model two wing sections with single lumped vortex panels. Formulate the general problem
of flow over them, assuming they don’t move relative to each other. (Don’t solve.)

3. Specialize the results of the previous question to the case where the two panels are parallel
and of equal length.

4. Specialize the results of the previous question to the cases where the panels are aligned
(a) horizontally
(b) vertically.
Solve the flow problem. How does the presence of the second wing section affect the
aerodynamics of the first?

5. Using panels of equal sizes, how does the error decrease as the number of panels increases?
Prepare a table and a graph, for both the lift and pitching moment coefficients. Does the
error decrease like one over the number of panels? Like one over its square?

6. Repeat the previous question, but instead of defining the panels in terms of equally spaced
values of the linear coordinate x, try using equally spaced values of the eccentric angle as
given by the Equation (11.11). Alternatively, try making the panels in the aft- or forward-
third half the length of those in the other two-thirds. Is it more efficient to cluster panels
nearer the leading or trailing edge? What other schemes for spacing the panels can you
come up with?

7. (a) Let the free-stream be parallel to the x-axis and place the lumped vortex panel entirely
above it, at arbitrary inclination, in the half-space y > 0. Then place the ‘mirror image’
of the panel below the x-axis with equal and opposite vortex strength. Show that the
x-axis is a streamline.

(b) How does the presence of this mirror image affect the force on the upper panel?

7.8 Further Reading

The single lumped vortex method with the vortex at the quarter chord and the collocation point
at the three-quarter chord was applied to the problem of ground effect by Pistolesi (1937) and
Katz and Plotkin (2001), as in Exercise 7. The importance and usefulness of the three-quarter
point is discussed by Weissinger (1947) and Ashley and Landahl (1985), among many others.

Milne-Thomson (1973) called the single lumped vortex approximation for an aerofoil
the ‘substitution vortex’ and applied it to estimate the lift generated by biplanes, as did
later Katz and Plotkin (2001), who also similarly analysed tandem aerofoils and wind-
tunnel corrections. Modelling a slatted and flapped aerofoil with three disconnected lumped
vortex panels was suggested as an exercise by Moran (2003); for more detailed discus-
sion of slats and experimental measurements, see Abbott and von Doenhoff (1959) and
Hoerner and Borst (1985, Chapters 5–6).



126 Theory of Lift

References

Abbott, I.H. and von Doenhoff, A.E. (1959) Theory of Wing Sections. New York: Dover.
Ashley, H. and Landahl, M. (1985) Aerodynamics of Wings and Bodies. New York: Dover.
Hoerner, S.F. and Borst, H.V. (1985) Fluid-Dynamic Lift, 2nd edn. Bakersfield, CA: Hoerner Fluid Dynamics.
Katz, J. and Plotkin, A. (2001) Low-Speed Aerodynamics, 2nd edn. Cambridge: Cambridge University Press.
Milne-Thomson, L.M. (1973) Theoretical Aerodynamics, 4th edn. New York: Dover.
Moran, J. (2003) An Introduction to Theoretical and Computational Aerodynamics. New York: Dover.
Pistolesi, E. (1937) Ground effect—theory and practice. Technical Memorandum 828, NACA.
Weissinger, J. (1947) The lift-distribution on swept-back wings. Technical Memorandum 1126, NACA.



8
Panel Methods for Plane Flow

The thin wing section theory of Chapter 6 and the lumped vortex panel method of Chapter 7
both neglect any effects of thickness. Arbitrarily shaped wing sections can be modelled using
panel methods that distribute the singularities (sources and vortices) around the profile, instead
of along the camber line.

Here we describe a method that breaks the profile up into a chain of line segments and
along each segment distributes a different uniform source strength density. For lift, there must
also be circulation and therefore vortices, so each segment is also given a uniform vortex
strength distribution. For n panels, the n unknown source strength densities are determined
by the n conditions that the panels should be impermeable, as approximated by collocation at
their midpoints. The additional condition that the flow leave the trailing edge smoothly—the
Kutta–Joukowsky condition of Section 5.1.2—is used to determine the vortex strength of
the panels; as this is a single condition, all panels are given the same vortex strength. This
method is essentially equivalent to that of Hess and Smith (1967). Here we derive the method
using the ideas of complex velocity and conformal mapping, and also present and discuss its
implementation in Octave. As the program is based on Complex Uniform Source Strength
Segment Panels, we call it CUSSSP.

8.1 Development of the CUSSSP Program

In the development of the method, we follow the six steps for any panel method from
Section 7.4.

8.1.1 The Singularity Elements

The panels of Hess and Smith (1967) are line segments, with each point on the segment being
an infinitesimal source and vortex such that the outflow and circulation of the whole panel is
finite. The source and vortex strength density is uniform along each panel. Since a vortex is a
source with an imaginary strength, it’s very convenient to treat sources and vortices together,
as ‘complex sources’.

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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The Canonical Uniform Source Strength Segment

A source of strength Q (a real number) at a point z′ induces a complex velocity field

w(z) = Q

2π(z − z′)
.

A vortex of strength Γ (another real number) at a point z′ induces a complex velocity

w(z) = iΓ

2π(z − z′)
.

Thus a complex source of strength Q + iΓ induces

w(z) = Q + iΓ

2π(z − z′)
.

If we allow Q to be complex rather than real, Γ isn’t needed and we have �Q as the (real)
source strength or outflow and �Q as the vortex strength or circulation.

Consider first uniformly distributing source strength along the real axis from z = 0 to z = 1.
Each infinitesimal segment from z′ to z′ + δz′, with unit strength density (and therefore unit
strength, as the segment has unit length) will induce a complex velocity field

δw(z) = δz′

2π(z − z′)
.

Integrating this along the segment gives

w(z) =
∫ 1

0

dz′

2π(z − z′)

= −1

2π

[
ln(z − z′)

]1
0

= ln z − ln(z − 1)

2π
. (8.1)

There is a difficulty with this integral, as the logarithm of a complex number is not single
valued. Recall from Equation (3.3) that

ln z = ln
(
reiθ

)
= ln r + iθ.

It is rendered single-valued by restricting θ = arg z to some range, e.g. −π < θ < π; i.e. making
a branch cut as in Section 4.2.4. This means that the complex velocity field ln z is discontinuous
along the line θ = ±π (the negative real axis); specifically, its imaginary part (corresponding
to the component of velocity in the negative y-direction) jumps by 2π. Wherever the branch
cut was laid, the logarithm ln z would be discontinuous across it. Also, similarly, the complex
velocity field ln(z − 1) is discontinuous along the part of the real axis less than z = 1; however,
in the combination of Equation (8.1), the jump discontinuities are such as to cancel over the
negative real axis. Thus, the velocity field of Equation (8.1) is only discontinuous along the
segment 0 < z < 1 itself.
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Conformal Mapping for Arbitrary Segments

The line segment from zero to one in the ζ-plane is mapped to the line segment from z1 to z2
in the z-plane with

ζ = z − z0

z1 − z0
.

So if we have the complex velocity

w(ζ) = ln ζ − ln(ζ − 1)

2π

in the ζ-plane, due to a unit uniform strength source segment on 0 < ζ < 1, this has the complex
potential

W(ζ) =
∫

w(ζ) dζ = ζ ln ζ − (ζ − 1) ln(ζ − 1)

2π
+ const.

The corresponding velocity in the z-plane is

w(z) = dW

dz
= dW

dζ

dζ

dz
(8.2)

= ln ζ − ln(ζ − 1)

2π
× 1

z1 − z0

=
ln z−z0

z1−z0
− ln z−z1

z1−z0

2π(z1 − z0)
.

This arrangement is such that provided the branch-cut of the logarithm function is taken along
the negative real axis, the velocity field is only discontinuous across the line segment from z0
to z1, and only unbounded at the ends of the segment.

8.1.2 Discretizing the Geometry

Say the profile is described by a sequence of n + 1 points from trailing edge anticlockwise
around to the trailing edge again.

Extensive collections of such descriptions can be found on the Internet (UIUC n.d., e.g.).
They are also easily generated for the NACA four- and five-digit wing sections.

The NACA 4-digit Sections

The NACA 4-digit formulae for the mean line and its slope have already been given in Equa-
tions (6.13) and (6.14) and the former was implemented in Octave in Listings 6.2 and 6.3; the
latter is given here in Listing 8.1.

In order to obtain the complete two-dimensional wing section shapes, the thickness must be
added. This is specified by the formulae in the references listed in the Further Reading section
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Listing 8.1 naca4slope: return the slope at the chordwise stations x for the NACA 4-digit wing
section with maximum camber m at p.

function s = naca4slope (x, m, p)
s = 2 * m / p ˆ 2 * (p - x);
s(x > p) = s(x > p) * (p / (1 - p)) ˆ 2;

Listing 8.2 naca4thickness: return the (dimensionless) half-thickness from the camber line of a
NACA 4-digit wing section at chordwise stations x.

function y = naca4thickness (x)
p = [0.10150, -0.28430, 0.35160, 0.12600, 0];
y = (0.29690 * sqrt (x) - polyval (p, x)) / 0.20;

at the end of the chapter and which in complex terms can be expressed for the upper and lower
surfaces

zU ≡ zc + irte
iλ

zL ≡ zc − irte
iλ,

where zc ≡ xc + iyc is the complex coordinate along the camber line, λ is related to its local
slope by

tan λ ≡ dyc

dxc

and the thickness function is given by

rt(x)

t
≡ 0.29690

√
x − 0.12600x − 0.35160x2 + 0.28430x3 − 0.10150x4

0.20
,

which is implemented in naca4thickness in Listing 8.2.

Resolving the Trailing Edge

It turns out that a very fine resolution is needed near the trailing edge, where the Kutta–
Joukowsky condition is applied, to obtain good results for the lift. This is achieved for NACA
4-digit sections, by function naca4z in Listing 8.3.

An example of the use of this code is given in Listing 8.4; it produces Figure 8.1.

Figure 8.1 The points describing the NACA 2412, as generated by the Octave code in Listing 8.4
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Listing 8.3 naca4z: return a vector of pts plus a few to better resolve the trailing edge complex
coordinates describing the NACA 4-digit wing section mptt.

function z = naca4z (pts, mptt)

[m, p, t] = naca4pars (mptt);

chi = linspace (0, 2*pi, pts);
x = (1 + cos (chi)) / 2;
xte = fsolve (@naca4thickness, 1.0);
nte = max (2, ceil ((xte - x(1)) / (x(1) - x(2))));
xx = linspace (xte, x(1), nte);
x = [xx, x(2:(end-1)), fliplr(xx)];
chi = [zeros(1, nte-1), chi, 2*pi*ones(1, nte - 1)];

z = (complex (x, naca4meanline (x, m, p)’) + ...
((2 * (chi < pi) - 1) * 1i * t .* ...

naca4thickness (x) .* ...
exp (1i * atan (naca4slope (x, m, p))) ) );

Listing 8.4 naca4z naca2412: demonstrate naca4z of Listing 8.3 by plotting a NACA 2412
wing section; see Figure 8.1 for output.

zp = naca4z (32, 2412);
plot (real (zp), imag (zp), ’o-’);
axis (’off’, ’image’);

Computing the Collocation Points

Given the complex row-vector of points {z1, z2 . . . , zn}, the complex length of the kth panel
is dk ≡ zk+1 − zk and so it makes an angle arg dk with the positive x-axis.

The impermeability of each panel is enforced at its midpoint, which can be computed as
z

(c)
k = zk + 1

2dk, or in Octave as (using zp for the ends of the panels and z for their midpoints):

dz = diff (zp);
n = length (dz);
lambda = angle (dz)’;
z = zp(1:n) + 0.5*dz;

8.1.3 The Influence Matrix

The velocity induced at the ith collocation point z
(c)
i by the jth panel, i.e. the panel running

from zj to zj + dj , is ωij(Qj + iΓj) where the influence coefficient ωij is obtained by putting
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Listing 8.5 cussspi: return the influence coefficients at complex collocation points zc for panels
from z with complex lengths d.

function w = cussspi (zc, z, d)
w = bsxfun (@ (x,y) (log(x./y)-log((x-y)./y))./(2*pi*y), ...

bsxfun (@minus, zc(:), z), d );

zj for z0 and zj + dj for z1 in Equation (8.2); i.e.

ωij ≡
ln

z
(c)
i

−zj

dj
− ln

z
(c)
i

−zj−dj

dj

2πdj

.

However, this needs correcting when the point at which the velocity is being evaluated lies
on the panel, since the velocity field induced by a panel is discontinuous across the segment
of the panel. The magnitude is predicted correctly whichever side of the panel the computer
thinks the midpoint is on, but if we force it to be considered as the right side (outside), the
direction due to pure source strength will then be simply the direction of the plate minus ninety
degrees; i.e. the diagonal influence coefficients satisify

ωii = |ωii|e−i(λi−π/2)

Thus, the influence matrix may be computed by calling cussspi from Listing 8.5, and sub-
sequently correcting the angle of the coefficients along the diagonal.

8.1.4 The Right-hand Side

The Impermeability Conditions

The total complex velocity at the ith collocation point, due to the free-stream and all n panels
is

wi = w
(
z

(c)
i

)
= q∞e−iα +

n∑
j=1

ωij(Qj + iΓj). (8.3)

If the ith panel has slope λi, then the component of velocity normal to the panel is −�eiλiw

and this should be zero for the plate to be impermeable; i.e. for i = 1, 2, . . . , n:

n∑
j=1

−�
{

eiλiωij(Qj + iΓj)
}

= q∞ sin(λi − α)

and as all the panels are taken to have equal vortex strength, Γ ,

n∑
j=1

−�
(

eiλiωij

)
Qj +




n∑
j=1

−�
(

ieiλiωij

)
 Γ = q∞ sin(λi − α).
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The Kutta–Joukowsky Condition

The Kutta–Joukowsky condition that the flow leave the trailing edge smoothly is enforced by
requiring that the tangential components of velocity on the first and last panels are equal, tracing
each panel in the same direction. But as the panels are traced in opposite directions—the first
forwards, the last aftwards, as the profile is described anticlockwise, beginning at the trailing
edge—the condition is that the tangential components should be opposite. The tangential
component at the ith collocation point is

�eiλiwi

so the condition is

�eiλ1w1 + �eiλnwn = 0;

i.e.

�
n∑

i=1

eiλi


 n∑

j=1

ωijQj +

 n∑

j=1

ωiji


 Γ


 = −�q∞

{
ei(λ1−α) + ei(λn−α)

}
.

Thus the whole problem can be written in block-matrix form as

[ −� [
eiλiωij

]
(n×n) −� [

ieiλi
∑n

j=1 ωij

]
(n×1)[∑n

i=1 �eiλiωij

]
(1×n)

[∑n
i=1 �ieiλi

∑n
j=1 ωij

]
(1×1)

] {{
Qj

}
(n×1)

Γ

}

= q∞

{ {
sin(λi − α)

}
(n×1)

− {
cos(λ1 − α) + cos(λn − α)

}
}

Having computed the influence matrix omega, the matrix equation is assembled by com-
puting A, k, B, and rhs, in sequence:

A = diag (exp (1i*lambda)) * omega;

k = A(1,:) + A(n,:);

B = [-imag(A), -sum(imag (1i * A), 2);
+real(k), sum(real (1i * k)) ];

rhs = [sin(lambda - alpha);
-(cos(lambda(1) - alpha) + cos(lambda(n) - alpha))];
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8.1.5 Solving the Linear System

Solving the linear system in Octave is easy; one just uses the backslash operator:

Q = B \ rhs;

This solution vector Q actually has the n values of the source strengths and the one value
of the vortex strengths, so we convert it to the complex source strengths with

Q = Q(1:n) + 1i*Q(n+1);

Summary of the CUSSSP Program

The complete pair of functions is given in Listings 8.6 and 8.5.
The input geometry will typically be prepared by a program like naca4z of Listing 8.3.

Examples interpreting the output will be discussed next.

Listing 8.6 cusssp: return the midpoints, influence matrix, and panel strengths for the CUSSSP
model of a wing section zp at incidence alpha; see Listing 8.7 for a demo.

function [z, omega, Q] = cusssp (zp, alpha)

dz = diff (zp);
n = length (dz);
lambda = angle (dz)’;
z = zp(1:n) + 0.5*dz;

omega = cussspi (z, zp(1:n), dz);

self = logical (eye (n));
omega(self) = abs (omega(self)) .* exp (-1i*(lambda-pi/2));

A = diag (exp (1i*lambda)) * omega;
k = A(1,:) + A(n,:);

B = [-imag(A), -sum(imag (1i * A), 2);
+real(k), sum(real (1i * k)) ];

rhs = [sin(lambda - alpha);
-(cos(lambda(1) - alpha) + cos(lambda(n) - alpha))];

Q = B \ rhs;
Q = Q(1:n) + 1i*Q(n+1);
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8.1.6 Postprocessing

Velocity at the Panel Midpoints

The complex velocity at each of the midpoints is given by Equation (8.3) as the sum of the
free-stream and the product of the influence matrix with the column-matrix of complex source
strengths; in Octave, and taking the free-stream velocity q∞ as the speed scale:

w = exp (-1i*alpha) + omega * Q;

Thus with the Octave code in Listing 8.7 we can produce Figure 8.2.
Notice that the velocity is tangential to the profile at each point, so that the panels are indeed

treated as impermeable.

Velocity at Other Points

If we want to calculate the velocity at points other than the collocation points, we need to
calculate a new influence matrix, or rather new rows of the influence matrix, since each row
of the influence matrix corresponds to an evaluation point while each column corresponds to
a panel. The Octave code in Listing 8.8 produces Figure 8.3.

Listing 8.7 cusssp midpoint w: simple graphical demonstration of cusssp of Listing 8.6; see
Figure 8.2 for output.

zp = naca4z (32, 2412);
alpha = 8 * pi / 180;
[z, omega, Q] = cusssp (zp, alpha);
w = exp (-1i*alpha) + omega * Q;
quiver (real (z), imag (z), real (w’), imag (w’), 9)
hold (’on’)
plot (real (z), imag (z), ’o’, real (zp), imag (zp), ’-’)
axis (’off’, ’image’)

Figure 8.2 The velocity vectors at the midpoints of the panels on the NACA 2412 discretized in
Figure 8.1, as computed by cusssp (Listing 8.6)
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Listing 8.8 cusssp w field: another graphical demonstration of cusssp of Listing 8.6; see
Figure 8.3 for output.

zp = naca4z (256, 2412);
alpha = 8 * pi / 180;
[z, omega, Q] = cusssp (zp, alpha);
ZP = cmeshgrid (-0.5-0.3i, 1.5+0.3i, 24);
ZP = ZP(:);
ZP = ZP(˜inpolygon (real (ZP), imag (ZP), ...

real (zp), imag (zp) ));
w = exp (-1i * alpha);
w = w + cussspi (ZP, zp(1:(end-1)), diff (zp)) * Q;
quiver (real (ZP), imag (ZP), real (w), -imag (w), 12);
hold (’on’)
plot (real (zp), imag (zp), ’-’)
axis (’off’, ’image’)

Figure 8.3 The velocity field around the NACA 2412 of Figures 8.1 and 8.2; plot generated by Listing 8.8

Lift

The lift is given by the Kutta–Joukowsky theorem: 	 = ρq∞Γ , where the circulation Γ is the
sum of the vortex strengths for each panel; i.e. the sum of the imaginary part of the complex
source strength. The lift coefficient is

C	 = 	
1
2ρq∞c

= 2Γ

q∞c
,

so that in Octave, assuming all speeds are nondimensionalized by q∞ and all lengths and
coordinates by c, the lift coefficient is computed by

Cl = 2 * sum (imag (Q))

For example, the code in Listing 8.9 produces the data for the graph in Figure 8.4. The lift–
incidence results in Figure 8.4 are compared with the prediction of thin wing section theory,
C	 = 2π(α − α0), where α0

.= −2.077◦, as in Chapter 6; notice:
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Figure 8.4 The lift–incidence curve for the NACA 2412, as computed by CUSSSP in Listing 8.9 and
thin wing section theory (taking the zero-lift incidence as α0

.= −2.077◦)

Listing 8.9 cusssp demo demonstrate Listing 8.6 by computing a lift–incidence table; the output
is graphed in Figure 8.4.

zp = naca4z (256, 2412);
alpha0d = -2.077;
alphad = -10
[z, omega, Q] = cusssp (zp, alphad*pi/180);
Cl = 2 * sum (imag (Q))
Cl_thin = 2 * pi * (alphad - alpha0d) * pi / 180

• the two predictions of zero-lift incidence agree closely; and
• the thickness increases the slope slightly.

The results may also be compared with experimental data (Abbott and von Doenhoff 1959).
In fact the slope of the experimental data is closer to the 2π of thin wing section theory; this is
due to a cancellation of errors: thickness does increase the slope but viscous effects, ignored
in both thin wing section theory and this simple panel method, reduce it.

8.2 Exercises

1. If a single line segment panel with real uniform source strength Q is immersed in a uniform
velocity field, what must Q be to stop the field passing through the centre of the panel. Show
that (except when the external field is parallel to the panel) the velocity will not vanish at
the midpoint on the other side of the panel; what is the velocity there (in terms of the length
of the panel and the speed and relative direction of the free-stream)?
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2. Modify the panel program CUSSSP to solve for the flow over an obstacle with specified
circulation.
(a) Check that for Γ = 0 it gives the same results as function cusssp for a (symmetri-

cally panelled) symmetric aerofoil at zero incidence, for which the Kutta–Joukowsky
condition should result in zero circulation.

(b) Use the modified program to compute the flow over a circle. Compare the results with
the known analytical solution (Section 3.3.1).

i. What is the pressure coefficient halfway around the perimeter between the stagnation
points? Is a more accurate answer for this obtained by using an odd or even number
of panels on the upper and lower semicircles? (That is, so that the midpoint falls
either on the joint or midpoint of a panel, respectively.)

3. (a) Extract the pressure coefficient at the collocation points associated with the velocities
computed by CUSSSP. Plot the pressure coefficient around the NACA 2412 as a function
of x.

(b) Modify Listing 8.7 to draw instead the pressure force on each collocation point, as a
vector acting on the midpoint and in its normal direction.

(c) Extend Listing 8.8 to produce the pressure (or pressure coefficient) field around the
aerofoil, e.g. using contour to plot the isobars.

4. Apply CUSSSP to three more aerofoils from Abbott et al. (1945) or Abbott and von Doen-
hoff (1959).

5. Apply CUSSSP the Clark Y aerofoil, with shape as given by Silverstein (1935) and quoted
in Table 1.1. Compare with the original experimental results in the report.

6. Apply CUSSSP to three aerofoils from the UIUC database.

8.2.1 Projects

1. The above modified program of Exercise 2 is useful for symmetric aerofoils, for which the
circulation is known to be zero. Modify it further by exploiting this symmetry; i.e. only
model the flow in the half-plane y > 0.
(a) How fine must the discretization of an obstacle be for this version to run noticeably

faster?
(b) For numbers of panels above this threshold, how do the run-times scale with the number

of panels?

2. Modify the panel program CUSSSP to use different kinds of panels.
(a) Let the source strength vary linearly along the panel, being continuous from panel to

panel, but with a jump in tangential derivative.
(b) Instead of distributing sources along the panels, distribute vortices.
(c) Consider a line segment panel with a uniform strength distribution of doublets. Show

that this has an identical influence to a panel with a combined point source–vortex, i.e.
a point source of complex strength, at each end (Bousquet 1990).
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8.3 Further Reading

The original journal paper on panel methods by Hess and Smith (1967) is still well worth
reading. An excellent—at once brisk, practical, and comprehensive—framework for panel
methods is developed by Bousquet (1990). The most important English-language compendium
of varieties of panel methods is that of Katz and Plotkin (2001), though the FORTRAN code
listings are somewhat cumbersome and unfortunately suffer from transcription errors. Good
working demonstration panel programs in FORTRAN are presented by Kuethe and Chow
(1998), Paraschivoiu (1998), and Moran (2003).

The complex velocity fields induced by real and imaginary uniform source strength segments
along the real axis are derived by Paraschivoiu (1998).

The thickness formulae for NACA four-digit wing sections are given by Jacobs et al. (1933)
and Abbott and von Doenhoff (1959).

References

Abbott, I.H. and von Doenhoff, A.E. (1959) Theory of Wing Sections. New York: Dover.
Abbott, I.H., von Doenhoff, A.E. and Stivers, L.S. (1945) Summary of airfoil data. Report 824, NACA.
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8.4 Conclusion to Part I: The Origin of Lift

This concludes the first part of this book, on plane ideal flow. Although, as will be dealt with
the next part, all real flows are necessarily three-dimensional, and as will be touched on in the
last part, none is ideal, there is a special significance to plane ideal flow in aerodynamics: it is
able to explain the origin of lift, which is the phenomenon without which there would almost
be no aeronautics—it would be reduced to such craft as can remain aloft by buoyancy or thrust,
aerostats and rockets. It is fitting therefore at this point, particularly after invoking so much
theoretical machinery and advanced mathematics, to pause and reflect on the physical origins
of lift.

It’s all about pressure, or rather the difference between the pressure below and above. This
was met very early in the book, in Section 2.5.1.

So where does the pressure difference come from? From the Bernoulli Equation (2.14),
which is an expression of the conservation of mechanical energy, we know it comes from a
speed difference: the speed above has to exceed that below.
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This implies that there will be positive circulation around the aerofoil; i.e. that there is such a
circulation implies a relative excess of speed above over below, and therefore a pressure excess
below over above, and therefore lift.

So where does circulation come from? In Chapters 6 and 8 it was posited as coming from
vortices bound inside the wing section, but these were merely (very) convenient fictions. Of
course aerodynamics happens only on the outside of the aerofoil, not inside it. In fact, the
air-stream is divided in two by the aerofoil into streams passing above and below. These will
be separated by semi-infinite streamlines terminating at stagnation points on the aerofoil. The
location of these stagnation points will vary with the incidence of the free-stream, but it has
been empirically learned that for reasonably thin aerofoils not inclined too much, a sharp
trailing edge will fix the downstream stagnation point and therefore allows the circulation to
be controlled monotonically by incidence, within a quite limited but usable range.

As Hoerner and Borst (1985) put it:

The airfoil is thus a device which forces certain stream tubes to go over the top.
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9
Finite Wings and
Three-Dimensional Flow

9.1 Wings of Finite Span

9.1.1 Empirical Effect of Finite Span on Lift

Up to now we have only considered two-dimensional flow over two-dimensional wing sections.
Thought of in three dimensions, this situation corresponds to a wing with an infinite span.
Experimental data for the variation of the lift coefficient with wing span (or aspect ratio, , as
defined in Section 1.2.2) show that the slope of the lift–incidence curve decreases as the aspect
ratio decreases from infinity. The zero-lift incidence α0, however, is approximately independent
of aspect ratio. The most famous set of experimental results demonstrating this behaviour is that
in figure 47 of Ludwig Prandtl’s report ‘Application of Modern Hydrodynamics to Aeronautics’
(Prandtl 1921), resketched in Figure 11.7 below and in many other texts on aerodynamics.

9.1.2 Finite Wings and Three-dimensional Flow

The reason why three-dimensional lift coefficients differ from two-dimensional ones (i.e. why
finite aspect ratio lift coefficients differ from infinite aspect ratio lift coefficients) is simple.
As explained by Prandtl (1921), the generation of lift by a wing of finite aspect ratio is not
compatible with a purely two-dimensional flow field.

As discussed in Section 8.4, the fact that a wing generates lift implies that the pressure
beneath it exceeds, in the mean, the pressure above it. Consider points A, B, and T , in the air
above, below, and near the tip of the wing, all in the same plane normal to the direction of flight
(see Figure 9.1). If the wing is generating lift, the pressure at B should exceed that at A. Now,
whether we proceed from B to T or from A to T , we must arrive at the same pressure at T , since
the pressure at a point is single-valued. Therefore, there is a drop in pressure moving outwards
along the lower surface and a rise in pressure moving outwards along the upper surface. Since
air is forced in the direction of decreasing pressure, it must be expected that air passing over
the left wing will be pushed inwards towards the plane of symmetry (in the direction from T to
A). Similarly, air passing under the left wing will be pushed outwards away from B towards T .

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 9.1 A wing of rectangular planform and spanwise-uniform thickness, viewed in oblique
projection, showing the three-dimensional Cartesian axes of Section 9.2.1

For air particles passing over and under the right wing, the directions are reversed, being still
towards and away from the symmetry plane, respectively, as illustrated in Figure 9.2. Stated
otherwise, the air passing over the wing drifts inboard and that under the wing outboard.

It is clear that the flow is not two-dimensional: there is both spanwise variation to the flow
and, except in the plane of symmetry (z = 0), a spanwise component of the velocity field. This
is why the finite aspect ratio wind tunnel data differs from the infinite aspect ratio limit.

Quantifying this dependence on aspect ratio is important. It can be done theoretically by the
Lanchester–Prandtl finite wing theory and the concept of the ‘lifting line’, but first we must
digress to discuss some fundamentals of the three-dimensional flow of perfect fluids.

x

y

z

Figure 9.2 Schematic three-dimensional motion relative to the wing of Figure 9.1 of air induced by
finite aspect ratio and the pressure difference associated with lift
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9.2 Three-Dimensional Flow

9.2.1 Three-dimensional Cartesian Coordinate System

In our description of two-dimensional flow we used an x-axis parallel to the wing-section
chord and directed positive aft. The y-axis was perpendicular to this, vaguely ‘up’. In three
dimensions we add to these a z-axis, with the direction chosen to form a right-handed system:
i.e. z increases along the left wing. The axes are illustrated in Figures 9.1 and 9.2.

The unit vectors for the x, y, and z axes are i, j, and k. The corresponding components of
velocity are u, v, and w.

9.2.2 Three-dimensional Governing Equations

As in two dimensions (Section 2.2.1), flow in three dimensions is governed by equations
derived from two basic physical principles:

• the conservation of mass; and
• Newton’s Second Law of motion.

For a perfect fluid (i.e. one with uniform density and free from shearing stresses), conservation
of mass leads to the continuity equation and Newton’s law leads to the Euler equation. The
derivations in three dimensions are similar to those for two dimensions in Chapter 2, but before
considering these equations in Section 9.4, we recall in Section 9.3 some vector notation and
vector identities.

9.3 Vector Notation and Identities

Vectors are quantities with magnitude and direction and can be expressed by their Cartesian
components: e.g.

v = vxi + vyj + vzk.

9.3.1 Addition and Scalar Multiplication of Vectors

The sum and difference of two vectors are also vectors:

v ± w = (vx ± wx)i + (vy ± wy)j + (vz ± wz)k.

A vector can be scaled by a real factor λ:

λv = λvxi + λvyj + λvzk.

This is called scalar multiplication.
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9.3.2 Products of Vectors

There are two products of two vectors: the scalar product and the vector product.
The scalar product is defined by

v · w ≡ vxwx + vywy + vzwz,

and is commutative:

w · v = v · w.

The scalar product of a vector with itself is the square of its magnitude

v · v = v2
x + v2

y + v2
z ≡ |v|2 ≡ v2.

The scalar product can be used to obtain the (cosine of the) angle between two vectors:

cos θ = v · w

|v||w| . (9.1)

The vector product is defined by

v × w ≡ (vywz − vzwy)i + (vzwx − vxwz)j + (vxwy − vywx)k

≡

∣∣∣∣∣∣∣
i j k

vx vy vz

wx wy wz

∣∣∣∣∣∣∣
,

and is anticommutative:

w × v = −v × w;

it can be used to get the sine of the angle between two vectors:

sin θ = |v × w|
|v||w| .

There are also two products of three vectors.
The triple scalar product is

(v × w) · u

and satisfies

(v × w) · u = (u × v) · w = (w × u) · v

(v × w) · u = −(w × v) · u.

The triple vector product is

(v × w) × u

and satisfies

(v × w) × u ≡ (u · v)w − (w · u)v
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and

(v × w) × u + (w × u) × v + (u × v) × w = 0.

9.3.3 Vector Derivatives

The gradient of a scalar s is a vector field defined by

∇s ≡ ∂s

∂x
i + ∂s

∂y
j + ∂s

∂z
k.

The Taylor expansion of a three-dimensional scalar field is

s(r + δr) ∼ s(r) + δr · ∇s + O(δr2),

so that for an infinitesimal change of position,

δs = s(r + δr) − s(r) = (∇s) · δr.

The chain rule leads directly to an expression for the gradient of a function of a scalar:

∇f (s) = f ′(s)∇s. (9.2)

The divergence of a vector field v is a scalar field defined by

∇ · v ≡ ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
.

The curl of a vector field is a vector field defined by

∇ × v ≡
(

∂vz

∂y
− ∂vy

∂z

)
i +

(
∂vx

∂z
− ∂vz

∂x

)
j +

(
∂vy

∂x
− ∂vx

∂y

)
k.

The Laplacian of a scalar field is a scalar field defined by

∇2s ≡ ∇ · ∇s = ∂2s

∂x2 + ∂2s

∂y2 + ∂2s

∂z2 . (9.3)

The Laplacian of a vector field is a vector field defined by

∇2v ≡ ∇(∇ · v) − ∇ × (∇ × v).

In terms of the Cartesian components this reduces to

∇2v = i∇2vx + j∇2vy + k∇2vz,

but this simple relation does not hold for components in non-Cartesian coordinate systems for
which the unit vectors are not uniform (and so cannot be taken outside the differentiations).
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Some identities relating vector derivatives are:

∇(st) = t∇s + (∇t)s

∇ · (sv) = (∇s) · v + s∇ · v (9.4)

∇ · (∇ × v) = 0 (9.5)

∇ × (∇s) = 0

∇ × (sv) = (∇s) × v + s∇ × v

∇ × (v × w) = v(∇ · w) − w(∇ · v) + (w · ∇)v − (v · ∇)w

∇(v · w) = (v · ∇)w + (w · ∇)v + v × (∇ × w) + w × (∇ × v)

v × (∇ × v) = ∇
( |v|2

2

)
− (v · ∇)v. (9.6)

9.3.4 Integral Theorems for Vector Derivatives

If the surface S encloses the three-dimensional region R, the divergence theorem is

∫∫∫
R

∇ · v dV =
∫∫

S
v · dS, (9.7)

where the infinitesimal surface area vector dS has the direction of the outward normal to the
surface.

The gradient theorem for scalars is

∫∫∫
R

∇s dV =
∫∫

S
s dS. (9.8)

Stokes’s theorem states

∫∫
S

(∇ × v) · dS = 0;

however, if the surface S is not closed but is bounded by a simple closed curve C,

∫∫
S

(∇ × v) · dS =
∮
C
v · ds. (9.9)

For such a surface there is no ‘outward’ direction, but giving it an arbitrary definition we
define the direction of C (and ds) so that the surface and its normal are kept on the left during
the circuit; e.g. if the surface is confined to the xy-plane and the normal is taken to be in
the positive z-direction (in a right-handed coordinate system), the circuit should be traversed
counterclockwise.
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9.4 The Equations Governing Three-Dimensional Flow

The velocity of the fluid at a point (x, y, z) in space is denoted q = ui + vj + wk.

9.4.1 Conservation of Mass and the Continuity Equation

In three dimensions just as in two (Section 2.3), the conservation of mass means that the
velocity must be divergence-free; i.e.

∇ · q ≡ ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (9.10)

This can be derived by considering the rate of change of mass in an infinitesimal box
fixed in space and aligned with the Cartesian axes, as shown for the x-component of velocity
in Figure 9.3, or by applying the divergence theorem (Equation 9.7) to an arbitrary control
volume.

9.4.2 Newton’s Law and Euler’s Equation

Again, just as in two dimensions (Section 2.4.1), the acceleration of a fluid particle is given
by the substantial derivative of the velocity field, which in three dimensions also accounts for
variations in the third (z) direction and for the w velocity component:

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
;

x

y

z

A

BC

D

E F

O

G−u δy δz
u + ∂u

∂x
δx δyδz

Figure 9.3 Contributions to the net outflow of an infinitesimal box fixed in space from the two faces
normal to the x-axis
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thus the acceleration is

Dq

Dt
= Du

Dt
i + Dv

Dt
j + Dw

Dt
k

=
(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
i

+
(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
j

+
(

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
k,

Euler’s Equation (2.6) asserts a balance between this and the net force per unit mass, and
conservative forces such as gravity in a uniform density fluid can be accounted for by modifying
the pressure (Section 2.4.4). Thus, the momentum balance is again given by the Euler equation

Dq

Dt
= − 1

ρ
∇p. (9.11)

The substantial derivative of the position is just the velocity:

D

Dt
(xi + yj + zk) = q. (9.12)

9.5 Circulation

9.5.1 Definition of Circulation in Three Dimensions

As in Equation (2.15) for two-dimensional flow, the circulation along a curve in the fluid is
defined as the integral of the tangential component of velocity along the curve:

Γ ≡
∫
C
q · ds.

Whereas in two dimensions in Section 2.5.3, the circuit was prescribed as clockwise (or
rather the circulation was defined as minus the integral around the anticlockwise circuit), there
is no absolute way of defining clockwise or anticlockwise in three dimensions; each circuit C
must have its own sense defined in terms of its context. If the circuit bounds a surface, and
that surface is pierced exactly once by a directed curve, a sense for the circuit can be derived
by applying the right-hand rule to the directed curve. With such a bound surface but without
reference to a piercing curve, a sense can be derived from the prescription that the surface be
kept on the left as the circuit is traced.
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9.5.2 The Persistence of Circulation

If the curve is allowed to drift with the fluid, an expression can be obtained for the time rate of
change of the circulation along it in terms of quantities just at the two ends of the curve:

DΓ

Dt
=

∫
C

D

Dt
(q · ds)

=
∫
C

(
q · D ds

Dt
+ Dq

Dt
· ds

)

=
∫
C

(
q · d

Ds

Dt
− 1

ρ
{∇p} · ds

)

=
∫
C

(
q · dq − 1

ρ
dp

)

=
∫
C

d

(
q2

2
− p

ρ

)

=
[
q2

2
− p

ρ

]
C
.

Here we have used Euler’s Equation (9.11) to replace the substantial derivative of the velocity
field with the pressure gradient, and Equation (9.12) to replace the substantial derivative of the
position vector field.

If the curve is a closed circuit so that the two ends coincide, this difference vanishes and
we have Kelvin’s theorem: the circulation around a circuit moving with an ideal fluid doesn’t
change, DΓ/Dt = 0.

9.5.3 Circulation and Vorticity

Consider the circulation around the infinitesimal circuit ABCDEFA in Figure 9.4. We have,
for the six legs of the circuit,

ΓAB = +
(

v + ∂v

∂x
δx

)
δy

ΓBC = −
(

u + ∂u

∂y
δy

)
δx

ΓCD = +
(

w + ∂w

∂y
δy

)
δz

ΓDE = −
(

v + ∂v

∂z
δz

)
δy

ΓEF = +
(

u + ∂u

∂z
δz

)
δx

ΓFA = −
(

w + ∂w

∂x
δx

)
δz,
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x
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z
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BC
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FE

O

Figure 9.4 Diagram for circulation around an infinitesimal three-dimensional simple closed circuit

and the total circulation is

Γ =
(

∂w

∂y
− ∂v

∂z

)
δy δz +

(
∂u

∂z
− ∂w

∂x

)
δz δx +

(
∂v

∂x
− ∂u

∂y

)
δx δy

= ξ δAx + η δAy + ζ δAz, (9.13)

where

ξi + ηj + ζk ≡ ω ≡ ∇ × q

is the vorticity and

δAx = δy δz

δAy = δz δx

δAz = δx δy,

are the areas of the projections of the surface normal to the x, y, and z axes, respectively. In
fact, Equation (9.13) is a simple instance of Stokes’s theorem, Equation (9.9).

Another way to calculate the circulation around this circuit is to note that it can be decom-
posed into the sum of the circulations around the three rectangles:

Γ = ΓABCOA + ΓOCDEO + ΓEFAOE,

since the contributions of the legs involving the point O cancel when they are traced twice,
once in each direction. See Figure 9.5. Here it is clear that the circulation around a circuit of
an elementary plane surface is the product of the component of vorticity normal to the surface
and the area of the surface. The generalization to arbitrarily oriented simple closed curves is
obtained by putting q in Stokes’s theorem, Equation (9.9):

ΓC ≡
∮
C
q · ds =

∫∫
S

ω · dS.
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Figure 9.5 Decomposition of the surface in Figure 9.4 into plane parts normal to the coordinate axes

It is this difference, that the vorticity is a scalar in two dimensions but a vector in three
dimensions, along with the essential connection between vorticity and lift, that is principally
responsible for making three-dimensional aerodynamics so much more complicated than two-
dimensional.

9.5.4 Rotational Form of Euler’s Equation

Using the vector identity Equation (9.6), the acceleration term of Euler’s Equation (9.11) can
be rewritten

Dq

Dt
≡ ∂q

∂t
+ q · ∇q = ∂q

∂t
+ ∇

(
q2

2

)
+ (∇ × q) × q,

so that Euler’s equation may be written in the so-called rotational form

∂q

∂t
+ ω × q = −1

ρ
∇

(
p + ρq2

2

)
. (9.14)

9.5.5 Steady Irrotational Motion

A vector field with zero curl is called irrotational. If the velocity is steady

∂q

∂t
= 0

and irrotational

∇ × q ≡ ω = 0,

Euler’s Equation (9.14) reduces to

0 = −1

ρ
∇

(
p + ρq2

2

)
;



154 Theory of Lift

i.e.

p + ρq2

2
= const., (9.15)

which is the form of Bernoulli’s equation for irrotational motion. Thus, the equations of
motion—the continuity Equation (9.10) and Euler’s Equation (9.11)—are satisfied if the ve-
locity is steady, divergence-free, and irrotational, and the pressure satisfies Bernoulli’s equation.

Conversely, if the fluid in a flow system all originates from an irrotational upstream (as is
usual in an aerodynamical problem, posed in the frame of reference of the aircraft), the circu-
lation around each circuit in the far upstream will be zero, since the vorticity passing through
any surface bounded by such a circuit will be zero (Stokes’s theorem). These circuits continue
to have zero circulation as they pass downstream over the aircraft (by Kelvin’s theorem), and
therefore continue to have zero vorticity through the surfaces closing them. Thus not only is an
irrotational flow a solution of the governing equations, irrotationality is to be expected when
the far upstream is irrotational.

Note that this does not imply that there can be no circulation around a loop encircling a
wing: no closed circuit from the far upstream will form such a circuit.

9.6 Exercises

1. Verify Equation 9.12 by expanding it in Cartesian components.

2. Show that a two-dimensional velocity field q possessing a stream function ψ as in Sec-
tion 3.6.2 can be derived from it by

q = ∇ × (ψk).

Hence (or otherwise) show that if φ and ψ are the potential and stream function of a plane
ideal flow then

∇φ = −k × ∇ψ.

3. Show that the gradient theorem of Equation (9.8) follows from applying vector identities
and the divergence theorem of Equation (9.7) to se, where e is any constant vector (Bousquet
1990).

4. Derive the two-dimensional divergence theorem from the three-dimensional one by apply-
ing the latter to a scalar field independent of z over a domain which is prismatic in the
z-direction.

5. By expanding in Cartesian components, show that

Dv

Dt
= ∂v

∂t
+ ∇

(
v2

2

)
+ (∇ × v) × v

for any differentiable three-dimensional vector field v with magnitude v ≡ √
v · v.
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9.7 Further Reading

Prandtl’s argument on the essentially three-dimensional nature of the aerodynamics of wings
has been repeated by Glauert (1926), Prandtl and Tietjens (1957), Milne-Thomson (1973),
Kuethe and Chow (1976), Bertin (2002), and Anderson (2007). In particular, his figure 47
(referred to in Section 9.1.1 and the model for Figure 11.7 here) has been reproduced many
times (Prandtl and Tietjens 1957, figure 173; Abbott and von Doenhoff 1959, figure 2; Kuethe
and Chow 1976, figure 8a; Bertin 2002, figure 7.10; Moran 2003, figure 5.19a; Anderson 2007,
figure 5.24).

The collection of vector identities given here is sufficient for most work in aerodynamics, and
covers the union of the collections in Weatherburn (1924), Milne-Thomson (1973, chapter 21),
Aris (1989, chapters 2–3), Bertin (2002, chapter 2), and Anderson (2007, chapter 2); for a truly
extensive set, see Bousquet (1990). For an introduction to vector analysis, see Pope (2009,
chapter 1) or for a complete treatment, Aris (1989).

More detailed derivations of the three-dimensional equations of motion have been given by
Milne-Thomson (1973), Bertin (2002), and Anderson (2007).

Kelvin’s theorem encapsulates much of the mechanics of three-dimensional ideal flow; it
can derived in a few superficially different but essentially equivalent ways (Milne-Thomson
1973; Bertin 2002; Moran 2003).
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10
Vorticity and Vortices

Vortices are as important in three-dimensional aerodynamics as in two-dimensional aerody-
namics; however, whereas in two dimensions a vortex is merely a point, in three dimensions it
is a line or curve. Some properties of three-dimensional vortices are considered here.

10.1 Streamlines, Stream Tubes, and Stream Filaments

We begin, however, with a discussion of a simpler concept in three-dimensional fluid kinemat-
ics: streamlines.

10.1.1 Streamlines

A streamline is a curve which is tangential to the velocity field along its length. Given a velocity
field (steady or at an instant)

q(x, y, z) = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k,

the streamline through a point r0 ≡ x0i + y0j + z0k can be traced by integrating the vector
ordinary differential equation:

dr

ds
= q(r) (10.1)

with the initial condition r = r0. The streamline is defined at an instant in time, and the
independent variable s is a parameter increasing along the curve.

If the velocity field is steady, the streamlines coincide with the actual particle trajectories in
time, since Equation (10.1) with t in place of s is the equation of motion of the particle.

If Equation (10.1) is written in the form

dr = q ds,

the condition that the streamline is tangential to the velocity field is obvious.
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10.1.2 Stream Tubes and Stream Filaments

Take a simple closed curve in the fluid, then the surface formed by all the streamlines passing
through points on the curve is called a stream tube.

A stream filament is a stream tube of infinitesimal cross-section.
Consider a segment of a stream filament bounded by two cross-sections with areas δA1 and

δA2. For conservation of mass (with uniform density), the volumetric flow-rate in at the area
δA1 has to match that out at the area δA2. If the speed at the ends is q1 and q2, this gives

q1 δA1 = q2 δA2, (10.2)

and in general the product of the speed and the area is constant along the stream filament. This
product is called the strength of the stream filament; it is the volume rate of flow along the
filament.

This implies that a stream filament cannot end within the fluid since that would mean the
cross-sectional area vanishing and therefore the speed becoming infinite, which is impossible.
Possible topologies for a streamline include a closed loop, or a curve with each end either
at infinity or on a boundary. Streamlines cannot intersect each other or themselves except at
a point of zero velocity, since there the direction of the velocity is moot. An impermeable
boundary consists of streamlines since no flow ever crosses it; if a streamline starts or ends on
a boundary, it must do so at a stagnation point.

A stream tube can be regarded as a bundle of stream filaments. Its strength is defined as the
aggregate (i.e. sum or integral) of the strengths of its component filaments and again gives the
volume rate of flow along the tube. It follows that:

• the strength of a stream tube or filament is constant along its length; and
• neither a stream tube nor filament can end at a point inside the fluid.

It also follows that a streamline cannot end in the fluid.
The first result here for a stream tube could also have been obtained by applying the diver-

gence theorem (Equation 9.7) to the velocity field and a segment of the tube:

∫∫∫
V

∇ · q dV =
∫∫

S
q · dS.

Here the volume-integral vanishes by the continuity Equation (9.10). The bounding surface S
consists of three parts: the two ends and the portion of the tube wall. The integral over the tube
wall portion vanishes since the wall is everywhere parallel to the velocity field, by definition.
Therefore, the divergence theorem reduces to

−
∫∫

S1

q · dS =
∫∫

S2

q · dS.

If the tube cross-section is taken infinitesimally small, this reduces to Equation (10.2); al-
ternatively that equation could be arrived at by applying the mean value theorem of integral
calculus.
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10.2 Vortex Lines, Vortex Tubes, and Vortex Filaments

A vortex line is a curve which is tangential to the vorticity field along its length; thus a vortex
line is to the vorticity as a streamline is to the velocity.

10.2.1 Strength of Vortex Tubes and Filaments

Continuing the analogy, the strength of a vortex filament is defined as the product of the
magnitude of the vorticity and the cross-sectional area, and the strength of a vortex tube as the
integral of the strengths of the filaments composing it.

If we apply Stokes’s theorem to the velocity field and a cross-section of a vortex tube,

∫∫
S

(∇ × q) · dS =
∮
C
q · ds

or

∫∫
S

ω · dS = ΓC,

which shows that the strength of a vortex tube is equal to the circulation around a circuit
enclosing it.

10.2.2 Kinematic Properties of Vortex Tubes

The vorticity field is divergence-free, as follows from the vector identity Equation (9.5). Thus,
all results about the velocity field that depend only on its being divergence-free carry over to
analogous results about the vorticity field.

• The strength of a vortex tube or filament is constant along its length.
• Neither a vortex tube nor filament can end inside the fluid.

10.3 Helmholtz’s Theorems

The preceding theorems all apply instantaneously, but two important theorems on the dynamics
of vortex tubes in flows of perfect fluid were derived by Helmholtz, using Kelvin’s theorem
that the circulation around a fluid circuit remains constant during the flow.

10.3.1 ‘Vortex Tubes Move with the Flow’

Take a vortex tube and consider a piece S of its wall, bounded by a simple closed curve C. No
vortex lines pierce S, so Stokes’s theorem, Equation (9.9), implies that there is no circulation
around C.
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Now let S and C drift with the flow. As it drifts, the circulation around C remains zero, by
Kelvin’s theorem. Therefore, no vortex filaments pierce it during the flow and it remains part
of the wall of the vortex tube; i.e.

vortex tubes move with the flow.

10.3.2 ‘The Strength of a Vortex Tube is Constant’

Now consider a simple closed curve around a vortex tube. The circulation around the curve is
equal to the vortex tube strength. As the tube and the circuit move with the flow, the circuit
remains on the tube (previous theorem) and its circulation remains constant (Kelvin’s theorem).
Therefore:

The strength of a vortex tube remains constant.

10.4 Line Vortices

10.4.1 The Two-dimensional Vortex

Every two-dimensional flow satisfying the continuity and Euler equations also satisfies the
three-dimensional continuity and Euler equations. In particular, the two-dimensional vortex
with strength Γ and centre x = x′, y = y′; i.e.

u − iv = iΓ

2π {(x + iy) − (x′ + iy′)}
or

u = +Γ

2π

y − y′

(x − x′)2 + (y − y′)2 (10.3a)

v = −Γ

2π

x − x′

(x − x′)2 + (y − y′)2 ; (10.3b)

is a valid three-dimensional flow. It is a vortex filament of strength Γ along the line x = x′,
y = y′, with the direction of the unit vector −k.

10.4.2 Arbitrarily Oriented Rectilinear Vortex Filaments

Section 10.4.1 described the velocity field induced by a vortex filament parallel to the z-axis.
This can be generalized for any rectilinear vortex filament by

q(r) = Γ �̂ × (r − r′)
2π|�̂ × (r − r′)|2 , (10.4)
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where �̂ is the unit vector in the direction of the filament, and r′ is any point on the filament;
the value of q(r) is independent of the choice of r′. To see that �̂ × (r − r′) is independent of
the choice of r, consider any other point on the filament, r′′, since it and r′ are both on the
filament, we can write

r′′ = r′ + λ�̂

for some scalar λ, and

�̂ × (r − r′′) = �̂ × (r − {r′ + λ�̂})
= �̂ × (r − r′) − �̂ × (λ�̂)

= �̂ × (r − r′) − 0,

as claimed.
The vector �̂ × (r − r′) is perpendicular to both the line vortex and the straight line from

the filament to the point. Its magnitude is the (perpendicular) distance of the point from the
filament. These two results follow from the basic properties of the vector cross product. Thus,
in general, the velocity induced by a straight filament at a point is perpendicular to the plane
containing the filament and the point and inversely proportional in magnitude to the distance
of the point from the filament.

For example, in one of the vortices of a two-dimensional flow, we’ll have �̂ = −k (and of
course r = xi + yj + zk) so that

�̂ × (r − r′) = −k × (r − r′)
= −k × {

(x − x′)i + (y − y′)j + (z − z′)k
}

= +(y − y′)i − (x − x′)j

and

Γ �̂ × (r − r′)
2π|�̂ × (r − r′)| = Γ

{
(y − y′)i − (x − x′)j

}
2π

{
(x − x′)2 + (y − y′)2

} ,

which matches Equation (10.3).

10.5 Segmented Vortex Filaments

10.5.1 The Biot–Savart Law

In three dimensions, a line vortex doesn’t have to be a straight line along its whole length. It
cannot end in the fluid, so must either be a loop, extend to infinity at either end, or perhaps
have one or both ends on a boundary of the fluid.

Curved or bent line vortices can be modelled by building them up out of short segments of
straight line vortices, and then the velocity field induced by the full line vortex obtained by
integrating over these segments. In doing this, it must be remembered that a segment of a line
vortex cannot exist in isolation, since vortex filaments cannot end in the fluid.
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The velocity field induced at a point r by a segment of line vortex of vector length d� and
strength Γ is

dq = Γ

4π

d� × (r − r′)
|r − r′|3 (10.5)

where r′ is now not any point on the vortex filament, but the location of the infinitesimal
segment in question. The direction of the velocity is perpendicular to the plane containing the
line of the line vortex and the point (a line and a point off the line define a plane). The sense
of the velocity is such that:

1. the line vortex segment (directed by the vorticity);
2. the perpendicular from the line vortex to the point; and
3. the induced velocity.

form a right-handed triad.
We do not prove Equation (10.5), called the Biot–Savart law; however, we will verify that

it is compatible with the known result for infinite rectilinear vortex filaments.

10.5.2 Rectilinear Vortex Filaments

Consider a finite segment straight line vortex at r′ with directed length d� = �̂d�, as in Fig-
ure 10.1, and compute the velocity at a point r off the line, i.e. an r for which �̂ × (r − r′) /= 0,
by integrating the Biot–Savart law, Equation (10.5).

Let � be the vector from the beginning of the segment to the infinitesimal segment under
consideration in the integrand, then

d� = �̂ d�

= −�̂ d(h cot β)

= �̂
h

sin2 β
dβ.

the vortex line
d , vortex segment

r - r ’

the point

h

β

Figure 10.1 Velocity induced by an infinitesimal segment of a rectilinear vortex filament
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Also,

|�̂ × (r − r′)| = |r − r′| sin β ≡ h,

the perpendicular distance of the point from the line.
Thus, the Biot–Savart law can be rewritten

dq = Γ

4π

d� × (r − r′)
|r − r′|3

= Γ

4π

h

sin2 β

�̂ × (r − r′)
|r − r′|3 dβ

= Γ

4π

h

sin2 β

�̂ × (r − r′)
(h/ sin β)3 dβ

= Γ

4π

sin β

h2 �̂ × (r − r′) dβ

= −Γ

4π

�̂ × (r − r′)
|�̂ × (r − r′)|2 d cos β.

For a straight line, h is independent of � (or β), and so is �̂ × (r − r′) as shown in Section 10.4.2.
Hence,

q = Γ

4π

�̂ × (r − r′)
|�̂ × (r − r′)|2 (cos β1 − cos β2) . (10.6)

Here β1 and β2 are the biangular coordinates of the point at which the velocity is evaluated,
with respect to the vortex segment, in the plane defined by the point and the vortex segment;
i.e. the values of the angle β between the vortex filament and the vector from the filament to
the point at which the velocity is evaluated, taken at the start and end of the filament; the angles
are illustrated in Figure 10.2.

In this integrated formula and the ones to follow such as Equations (10.8) and (10.9), r′ is
any point lying on the same (infinite straight) line as the finite rectilinear segment of vortex
filament. This arbitrariness can be exploited to simplify the vector algebra.

r - r 1 r - r 2h

β1 π − β2

Figure 10.2 Velocity induced by a finite segment of a rectinlinear vortex filament
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10.5.3 Finite Rectilinear Vortex Filaments

The cosines here can be expressed in terms of the position vectors of the start and end of the
segment, r1 and r2 (illustrated in Figure 10.2), using the dot-product Equation (9.1) for the
angle between two vectors:

cos β1 = �̂ · (r − r1)

|r − r1|

cos β2 = �̂ · (r − r2)

|r − r2|
cos β1 − cos β2 = �̂ ·

(
r − r1

|r − r1| − r − r2

|r − r2|
)

. (10.7)

10.5.4 Infinite Straight Line Vortices

If the line segment begins infinitely far away,β1 ∼ 0 and cos β1 ∼ 1, whereas if it ends infinitely
far away, β2 ∼ π and cos β2 ∼ −1, so Equation (10.7) becomes 2.

If the line vortex becomes infinitely long at both ends,

q ∼ Γ

4π

�̂ × (r − r′)
|�̂ × (r − r′)|2 (1 − {−1})

= Γ

2π

�̂ × (r − r′)
|�̂ × (r − r′)|2 , (10.8)

which is exactly the Equation (10.4) for a two-dimensional vortex.

10.5.5 Semi-infinite Straight Line Vortex

A case of practical interest later in lifting line theory is the velocity induced by a semi-infinite
straight line vortex at a point in the plane perpendicular to the line vortex and containing
the end of the semi-infinite segment. In this case, β1 ∼ 0 but β2 = π/2, so that cos β2 = 0,
Equation (10.7) becomes 1 and

q ∼ Γ

4π

�̂ × (r − r′)
|�̂ × (r − r′)|2 (1 − 0)

= Γ

4π

�̂ × (r − r′)
|�̂ × (r − r′)|2 , (10.9)

This result could also have been deduced by a symmetry argument, since it is half the Equa-
tion (10.8) for an infinite line vortex and that result could be considered as being due to the
sum of the contributions from the two semi-infinite line vortices on either side.
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10.5.6 Truncating Infinite Vortex Segments

Infinite quantities are easy enough to handle in manual calculations, indeed are often easier
since the neglect of accompanying finite quantities leads to simplifications; however, they can
be a nuisance in computer programs, necessitating checks against floating point overflow and
then special cases. Since the influence of an element of vortex segment diminishes, according
to Equation (10.5), like the square of distance, the more remote elements are less important
and a practical alternative approach is simply to truncate the infinite leg at some great distance
from the region of interest.

If the vortex line segment begins infinitely far away, in the −�̂ direction, one could say
r1 ∼ r − Λ�̂ as the length Λ → ∞; thus

r − r1 ∼ Λ�̂

|r − r1| ∼ Λ

r − r1

|r − r1| ∼ �̂

�̂ · r − r1

|r − r1| ∼ 1,

which is the exact answer without truncation used in Equations (10.8) and (10.9).
Similarly, if the distant end r2 is approximated by r + Λ�̂,

lim
Λ→∞

�̂ · r − r2

|r − r2| = −1,

which too was used in Equation (10.8).
The question of how large Λ needs to be taken is a practical one. It depends a little on the

problem and the accuracy sought. Katz and Plotkin (2001) suggest ‘at least twenty wing spans’
but use 100 to be safe in their FORTRAN code (p. 580). Unlike adding panels, increasing Λ to
more closely approach infinity does not increase the computational cost of the model, so there
is little incentive to economize. A good idea, if time permits, is to experiment with changing
this value and see how much it influences the flow near the wing and particularly the predictions
of quantities of interest.

On the other hand, having distinct formulae for the trailing vortices does not unduly com-
plicate a computer program; Moran (2003) lists an equivalent FORTRAN code not exploiting
this approximation.

10.5.7 Implementing Line Vortices in Octave

Although the preceding discussion has edged towards issues of implementation, the details are
deferred until Section 13.4, since it is only for multiple vortices that a computer program is
required; nevertheless, this forward-notice is placed here as those programs can be useful in
checking and experimenting with the exercises of the present chapter.
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10.6 Exercises

1. Find the two points in the two-dimensional velocity field outside the unit circle with complex
velocity given by Equation (3.6) at which streamlines intersect.

2. Show that the velocity q induced at a point r by a rectilinear vortex segment of strength Γ

running from −bk/2 to +bk/2 is

q(r) = Γ

4π

(
z + b

2

|r + b
2 k| − z − b

2

|r − b
2 k|

)
r × k

|r × k|2 .

3. Show that the velocity induced by a semi-infinite rectilinear vortex segment of strength Γ

running in the negative x-direction to bk/2 is

q(r) = Γ

4π

(
1 + x

|r − b
2 k|

)
r × i − b

2 j

|r × i − b
2 j|2 .

4. Show that the velocity field derived in the preceding exercise reduces
(a) on the z-axis to

q(zk) = Γ j

4π
(
z − b

2

) ,

and
(b) in particular at the origin to

q(0) = −Γ j
2πb

.

5. Since

|�̂ × (r − r′)| = h

and

|(r − r1) × (r − r2)| = h |r2 − r1| ,

and both vectors point in the same direction (out of the page in Figure 10.2), show that
Equations (10.6), (10.8), and (10.9) for the velocity induced by the segments finite, infinite,
and semi-infinite, can be rewritten using

�̂ × (r − r′)
|�̂ × (r − r′)|2 = (r − r1) × (r − r2)

|r2 − r1|2|(r − r1) × (r − r2)|2 ,

if it is more convenient. Bertin (2002) recommended this form.
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10.7 Further Reading

For other references to line vortices in three dimensions, see Glauert (1926), Karamcheti (1966),
Batchelor (1967), Milne-Thomson (1973), Bousquet (1990), Kuethe and Chow (1998), Bertin
(2002), or Anderson (2007).

Milne-Thomson (1973) warns that the Biot–Savart law can be misleading since it refers to an
infinitesimal segment of a vortex line, which is something that cannot exist independently but
only as part of a vortex line not ending in the fluid. Bousquet (1990) avoids this awkwardness
by dealing only with an integral form of the law; this is perhaps to be preferred, though it
requires some facility with the theory of multidimensional distributions—a distribution being
a generalized function (Lighthill 1958) which is defined not in terms of its values at points
but rather by the values of line (or surface or volume) integrals of products of it with other
functions, the classic example being Dirac’s delta δ(x), defined by

∫ ∞
−∞ δ(x)f (x) dx = f (0)

for any function f smooth at the origin.
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11
Lifting Line Theory

The first successful quantitative model used for predicting the aerodynamic force on a wing
of finite span was the lifting line theory.

11.1 Basic Assumptions of Lifting Line Theory

Lifting line theory in its simplest form assumes that:

• the thickness and chord are much shorter than the span;
• the wing is unswept; and
• the flight is steady and perpendicular to the span.

With the above assumptions, the wing is modelled (on the length scale of the span) as the
line segment

x = y = 0,
−b

2
� z � b

2
. (11.1)

This line segment is called the lifting line.

11.2 The Lifting Line, Horseshoe Vortices, and the Wake

If the wing is to be producing lift, the Kutta–Joukowsky theorem (3.15a) leads us to expect that
there will be circulation around it in circuits lying in planes parallel to the plane of symmetry
(i.e. planes of constant z) and encircling the wing.

11.2.1 Deductions from Vortex Theorems

Stokes’s theorem (Section 10.2.1) then requires that there are vortex filaments running along
the wing. In the lifting line theory, these filaments are assumed to run along the lifting line,
given by Equation (11.1).

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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However, vortex filaments cannot end in the fluid (Section 10.2.2) so this description is
physically incomplete. Since, by Helmholtz’s theorems, vortex filaments move with the fluid,
the simplest consistent model is that wherever each filament would end on the lifting line,
it instead trails behind the wing (back to a spanwise starting vortex at the take-off strip, or,
essentially, to infinity).

11.2.2 Deductions from the Wing Pressure Distribution

This picture of vortex filaments trailing behind the wing is consistent with the difference in
the spanwise flow components over and under the wing induced by the pressure differences
associated with the generation of lift (Section 9.1.2). When the upper and lower streams
reunite at the trailing edge, they have the same speed (by Bernoulli’s equation, as the pressure
is single-valued) and also the same u and v components (by the Kutta–Joukowsky condition);
however, their spanwise components are different: inboard for the upper stream and outboard
for the lower. Thus there forms a surface in the air behind the trailing edge across which the
tangential (specifically spanwise) component of velocity is discontinuous. This is a vortex
sheet, composed of vortex filaments, being the trailing legs of the vortex filaments inferred
above from the vortex theorems.

11.2.3 The Lifting Line Model of Air Flow

The model of the wing therefore consists of a collection of horseshoe vortices, each of which
consists of a segment on the lifting line called a bound vortex (since it is constrained to move
with the wing rather than allowed to drift in the flow) and two semi-infinite vortex filaments
behind the wing called the trailing vortices. Together, the bound vortices of all the horseshoe
vortices constitute the lifting line and represent the wing, and the collection of trailing vortices
represent the wake.

The flow around the wing is then taken as the sum of the contributions from the free stream

q∞ = q∞(i cos α + j sin α) (11.2)

and the horseshoe vortices constituting the lifting line and the wake.

11.2.4 Horseshoe Vortex

The horseshoe vortices are significant insofar as they affect the flow near the wing (that is,
significant in the theory of lift—they can also be significant to things behind the wing, and so
are an important consideration in air traffic control).

The bound vortex part of the horseshoe doesn’t induce any velocity on the lifting line on
which it lies, but the trailing vortices do.

Consider as an example, a horseshoe vortex filament of strength Γ running from ∞i + z′k
to z′k to −z′k to ∞i − z′k, as illustrated in Figure 11.1. The unit vectors of the three legs are
−i, −k, and +i, respectively. The strength, Γ , must be common to the three legs, by the vortex
laws (Section 10.2.2).
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x

y

z

(0 0 z )

(0,

, ,

,0 −z )

Figure 11.1 A rectangular horseshoe vortex, lying in the zx-plane with vertices at ±z′k

The velocity induced on the line of the bound vortex (x = y = 0) can be calculated from
two applications of the Equation (10.9) for points in the perpendicular plane of the end of a
semi-infinite rectilinear vortex filament

q = Γ

4π

�̂ × (r − r′)
|�̂ × (r − r′)|2 .

Here, we can take �̂ = ∓i and r′ = ±z′k for the two trailing vortices so that, for some point
on the lifting line r = zk,

�̂ × (r − r′) = ∓i × (z ∓ z′)k = ±(z ∓ z′)j.

Therefore,

q(zk) = Γ

4π

{
z − z′

|z − z′|2 − z + z′

|z + z′|2
}

j

= Γ

4π

{
(z + z′)2(z − z′) − (z − z′)2(z + z′)

(z + z′)2(z − z′)2

}
j

= Γ

4π

{
(z + z′) − (z − z′)

(z + z′)(z − z′)

}
j

= −Γz′j
2π

(
z′2 − z2

) . (11.3)

Notice that, having assumed that the trailing vortices lie in the zx-plane (the y = 0 plane),
the velocity induced at the bound vortex by the trailing vortices is purely perpendicular to this
plane; i.e. vertical. For |z| < z′ (i.e. on the bound vortex), v ≡ j · q < 0, so that this velocity
is called downwash and denoted vw. The downwash is plotted in Figure 11.2.

11.2.5 Continuous Trailing Vortex Sheet

A difficulty with using a single horseshoe vortex to model a wing is that the downwash given
by Equation (11.3) is infinite at z = ±z′. This difficulty can be obviated by using a continuous
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vw(z)

The vortex line

Figure 11.2 The downwash induced along the lifting line by a horseshoe vortex (like the one in Fig-
ure 11.1), according to Equation (11.3)

trailing sheet of vortex filaments. If the trailing vortex filament from z′k to ∞i + z′k has
strength γ(z′)δz′, it contributes

δq(zk) = γ(z′)δz′i × (z − z′)k
4π(z − z′)2

= −γ(z′)j
4π(z − z′)

δz′

to the downwash at r = zk. The total downwash vw is

vw(z) ≡ j · q(zk) = − 1

4π

∫ b/2

−b/2

γ(z′) dz′

z − z′ . (11.4)

Since vortex filaments cannot end in the fluid, and since it is the strength of the bound vortex
filaments that makes up the circulation around a section of the wing, the strength of the trailing
vortex filament arriving at the lifting line at z = z′ must be related to the circulation there by

Γ (z′) + γ(z′) δz′ = Γ (z′ + δz′) ∼ Γ (z′) + dΓ

dz′ δz′ (11.5a)

γ(z′) ∼ dΓ

dz′ ; (11.5b)

as in Figure 11.3. Thus, in terms of the circulation distribution, the downwash is

vw(z) = −1

4π

∫ b/2

−b/2

dΓ

dz′
dz′

z − z′ . (11.6)

11.2.6 The Form of the Wake

In lifting line theory, the wake is assumed to be confined to a plane strip behind the wing. In fact,
the situation is not so simple. We have seen (Section 11.2.4) that the horseshoe vortex filaments
constituting the wake generate a downwash inside the horseshoe. Outside the horseshoe, they
generate an upwash. Since vortex filaments move with the fluid, the effect of this is that the
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Γ(z + δz )

γ(z )δz

Γ(z )

x

y

z

Figure 11.3 Relation between the local combined strength of the trailing vortex filaments in a strip of
spanwise width δz′ and the distribution of circulation along the lifting line, as given by Equation (11.5)

outer filaments of the sheet drift upwards and the edges of the sheet curl inwards. These curled
edges form what are called the two wing-tip vortices, and are clearly visible when there is dust
in the air; e.g. in crop-spraying (Kuethe and Chow 1998, figure 6.5). They are also made visible
very commonly because, being regions of concentrated vorticity and therefore high speed and,
via Bernoulli’s equation, low pressure, they cause atmospheric moisture to condense into liquid
droplets (Bertin 2002, figure 7.3).

In spite of this very visible phenomenon, the model of a flat wake is still appropriate for
computing the downwash on the wing because the curling occurs while the air is passing
downstream behind the wing, so that immediately behind the wing the wake is flatter than
implied by the photographs. From the Biot–Savart law (Section 10.5.1), the importance of a
piece of a vortex filament decreases like the inverse square of the distance; therefore, it is the
nearer part of the wake that is more important.

11.3 The Effect of Downwash

We have established that the system of trailing vortex filaments in the wake causes a downwash
at the wing. What effect does this have on the aerodynamics?

Basically, instead of experiencing the free-stream velocity given by Equation (11.2), the
section at r = zk experiences that plus the downwash; i.e.

q(z) = (q∞ cos α)i + {q∞ sin α + vw(z)} j.

11.3.1 Effect on the Angle of Incidence: Induced Incidence

One effect is that instead of experiencing the geometric angle of incidence

α ≡ arctan
q∞ sin α

q∞ cos α
= α,

the section experiences

α′(z) = arctan
q∞ sin α + vw(z)

q∞ cos α
,
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which is called the effective incidence. For small angles (tan α ∼ α) and small downwash
(vw � q∞) this reduces to

α′(z) ∼ α + vw(z)

q∞
.

The angle

αi(z) ≡ α − α′(z) = −vw(z)

q∞
(11.7)

is called the induced incidence.
Equation (11.7) may be combined with Equation (11.6) to give

αi(z) = −1

4πq∞

∫ b/2

−b/2

dΓ

dz′
dz′

z′ − z
. (11.8)

11.3.2 Effect on the Aerodynamic Force: Induced Drag

In lifting line theory, we assume that the aerodynamics of each two-dimensional section is
basically the same as in two dimensions, except that the section experiences the free stream
modified by the addition of the downwash.

Since the free stream is rotated by the induced incidence αi, the lift and drag components of
the aerodynamic force per unit span are altered in accordance with Equations (1.1a)–(1.1b) to

C′
� = C� cos αi − Cd sin αi

C′
d = C� sin αi + Cd cos αi,

where the unprimed coefficients refer to two-dimensional conditions and the primed to three-
dimensional. For perfect fluid flow Cd = 0, and even when viscous effects are accounted for,
Cd � Cl for a functioning wing section below stall incidence. With the small angle approxi-
mation for αi,

C′
� = C� (11.9a)

C′
d = C�αi. (11.9b)

Essentially, since the effective free stream has been rotated downwards and the aerodynamic
force acts, in accordance with the Kutta–Joukowsky theorem, at right-angles to this, some of
the two-dimensional lift force has been rotated backwards and acts as a drag; this drag is called
the induced drag.

11.4 The Lifting Line Equation

In Equation (11.8), we can substitute for the local circulation using the Kutta–Joukowsky
Equation (3.15a):

Γ = �(z)

ρq∞
= 1

2
q∞c(z)C�(z)
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to get Prandtl’s lifting line equation

αi(z) = − 1

8π

∫ b/2

−b/2

d(cC�)

dz′
dz′

z′ − z
. (11.10)

11.4.1 Glauert’s Solution of the Lifting Line Equation

The lifting line Equation (11.10) is more easily solved by changing the variable integration
from the spanwise coordinate z to the eccentric angle θ via

θ ≡ arccos
−2z

b
(11.11)

z ≡ −b

2
cos θ,

as illustrated in Figure 11.4, the lifting line Equation (11.10) in terms of the eccentric angle is

αi = −1

π

∫ π

0

d
(

cC�

4b

)
dθ′

dθ′

cos θ − cos θ′ . (11.12)

Comparing this with Glauert’s integral (Equation 5.17)∫ π

0

cos nθ′ dθ′

cos θ − cos θ′ = −π sin nθ

sin θ
,

we see that if we can expand the spanwise lift loading as

cC�

4b
=

∞∑
j=1

Aj sin jθ (11.13)

E

S

Figure 11.4 The eccentric angle defined by Equation (11.11) and used to describe spanwise lift loadings
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so that

d

dθ

cC�

4b
=

∞∑
j=1

jAj cos jθ, (11.14)

then the lifting line Equation (11.12) gives the induced incidence as

αi = −1

π

∫ π

0

∞∑
j=1

jAj cos jθ′ dθ′

cos θ − cos θ′

=
∞∑

j=1

jAj

{−1

π

∫ π

0

cos jθ′dθ′

cos θ − cos θ′

}

=
∞∑

j=1

jAj sin jθ

sin θ
. (11.15)

Note that the lift loading Equation (11.13) goes to zero at the wing tips z = ± b
2 (i.e. θ = 0

and π), which makes sense since the pressure difference has to vanish there. Any function over
− b

2 < z < + b
2 could be represented by a trigonometric series like Equation (11.13) but with

cosines as well as sines, but the cosines wouldn’t vanish at the tips and so the coefficients of
the cosine terms would have to be zero for a function vanishing at the tips.

Note also that if the lift loading is symmetric, Aj must be zero for all even j.

11.4.2 Wing Properties in Terms of Glauert’s Expansion

Lift

Assuming we were able to determine Glauert’s expansion coefficients Aj in Equation (11.13),
we could then compute the wing’s lift coefficient from

CL ≡
∫ b/2
−b/2 � dz

1
2ρq2∞bc̄

= 1

bc̄

∫ b/2

−b/2
cC� dz

= 4b

2c̄

∫ π

0

cC�

4b
dθ

= 2
∞∑

j=1

Aj

∫ π

0
sin jθ sin θ dθ,

where is the aspect ratio from Section 1.2.2

≡ b

c̄
. (11.16)
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Using the trigonometric integrals (for integer m and n)

∫ π

0
sin mθ sin nθ dθ =

{
π
2 , m = n;

0, m /= n,

the lift coefficient is simply

CL = π A1. (11.17)

Rolling Moment

Similarly, the lift distribution Equation (11.13) could be used to compute the rolling moment
(the component of the moment about the x-axis); of course, this vanishes when the lift distri-
bution is symmetric:

c(−z)C�(−z) = c(z)C�(z).

Induced Drag Coefficient

Using Equation (11.9b) for the sectional induced drag coefficient, the wing’s induced drag
coefficient is

CD = D
1
2ρq2∞bc̄

=
∫ b/2
−b/2 d dz

1
2ρq2∞bc̄

=
∫ b/2
−b/2

1
2ρq2∞cCd dz

1
2ρq2∞bc̄

=
∫ b/2
−b/2 cCd dz

bc̄

= 1

bc̄

∫ b/2

−b/2
cClαi dz

= 4

c̄

∫ b/2

−b/2

cCl

4b
αi dz

= 2
∫ π

0

cCl

4b
αi sin θ dθ

= 2
∫ π

0

(∑
n

An sin nθ

) (∑
m

mAm

sin mθ

sin θ

)
sin θ dθ

= 2
∑
m

∑
n

mAmAn

∫ π

0
sin mθ sin nθ dθ

= 2
∑

n

nA2
n

π

2
;
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i.e.

CD = π
∑

n

nA2
n. (11.18)

Thus while only the first term of Glauert’s expansion (Equation 11.13) contributes to the lift,
all terms induce drag; moreover, each term induces a positive amount of drag since squares
are nonnegative.

11.5 The Elliptic Lift Loading

Solving the lifting line equation for the lift distribution is quite difficult, but an easier problem
is the investigation of a given lift distribution. Since only the first term in Glauert’s expansion
as given by Equation (11.13) contributes to the lift, let’s examine first the lift distribution just
consisting of this term:

cC�

4b
= A1 sin θ = CL

π
sin θ = CL

π

√
1 −

(
2z

b

)2

,

or in dimensional terms

� = 4L

πb

√
1 −

(
2z

b

)2

, (11.19)

as plotted in Figure 11.5. It is called the elliptic lift loading.
The corresponding induced incidence is given by the lifting line Equation (11.15) as

αi = CL

π
, (11.20)

(z)

x

y

z

Figure 11.5 Elliptic lift loading, as given by Equation (11.19)
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which is uniform across the span. The elliptic lift loading is therefore the only lift loading with
this property.

11.5.1 Properties of the Elliptic Lift Loading

By Equation (11.18), an elliptically loaded wing’s induced drag coefficient is

CD = π A2
1 = π

(
CL

π

)2

= C2
L

π
, (11.21)

Drag polars of Equation (11.21) are plotted in Figure 11.6.

Same Lift Coefficient, Different Aspect Ratio

If we take two elliptically loaded wings with different aspect ratios ( 1 and 2) and vary
their geometric incidences (α1 and α2) so that they have the same lift coefficients CL, the
induced incidences αi,1 and αi,2 must be related by

αi,1 − αi,2 = CL

π

(
1

1
− 1

2

)
.

This follows by forming Equation (11.20) for each wing and subtracting the two equations.
Similarly, on forming Equation (11.21) and subtracting, the induced drag coefficients must be

Figure 11.6 Theoretical drag–lift polars for elliptic lift loading and = 1, 2, 3, . . . , 7. N.B.: drag
includes only induced drag, not profile drag (skin friction and form drag); cf. Prandtl (1921, figure 46)
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related by

CD,1 − CD,2 = C2
L

π

(
1

1
− 1

2

)
.

These two equations, given by Prandtl (1921), are extremely useful: they allow the predic-
tion of the properties of a wing with one aspect ratio from measurements or computations
of the properties at another aspect ratio. For example, (slightly generalized as discussed in
Section 11.7.1) versions of these were used by Silverstein (1935) to transform experimental
results at = 6 to an equivalent infinite aspect ratio basis.

Elliptic Lift Loading Minimizes Induced Drag

The induced drag coefficient for the general lift loading Equation (11.18) can be expressed as

CD = π

∞∑
n=1

nA2
n = π A2

1

∞∑
n=1

n

(
An

A1

)2

= CD,ell

{
1 +

∞∑
n=2

n

(
An

A1

)2
}

,

where

CD,ell = π A2
1

is the induced drag coefficient of a wing with the same lift coefficient but with elliptic lift
loading. Since the sum contains only nonnegative terms and vanishes for elliptic loading (for
which A1 is the only nonzero sine coefficient), a most important result follows:

The induced drag coefficient is a minimum for elliptic loading.

11.6 Lift–Incidence Relation

Say we know the lift–incidence relation for infinite aspect ratio:

CL,∞ = f (α∞).

Then for a finite aspect ratio, , with elliptic loading the induced incidence is

αi = CL

π
,

and at geometric incidence α the lift coefficient is that for the infinite aspect ratio at geometric
incidence

α∞ = α − αi.

Since, for elliptic loading, the downwash and induced incidence are uniform along the span,
if the wing is untwisted, the sectional lift coefficient C� will be too and the total lift coefficient
CL will change proportionally.
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11.6.1 Linear Lift–Incidence Relation

If the infinite aspect ratio (two-dimensional) lift–incidence relation is linear,

CL = m(α − αi − α0),

but if the induced incidence is given by Equation (11.20) then

CL = m

1 + m

π

(α − α0); (11.22)

thus, if the two-dimensional lift–incidence slope is m, the finite aspect ratio slope is

dCL

dα
= m

1 + m

π

. (11.23)

For 0 � � ∞, this is less than m. Note also in Equation (11.22) that the zero-lift incidence
α0 is independent of aspect ratio. The result of Equation (11.22) for a thin aerofoil (m = 2π)
is illustrated in Figure 11.7.

L

G

Figure 11.7 Theoretical lift–incidence relations for thin wings with zero-lift incidence α0 = −5◦ and
aspect ratio = 1, 2, 3, . . . , 7, as indicated; cf. Prandtl (1921, figure 47)
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11.7 Realizing the Elliptic Lift Loading

If the effective wing section lift coefficient is the same function of the effective incidence across
the span (i.e. no twist), C� is uniform too:

C� = CL.

For this to be compatible with the elliptical lift loading, since

c(z) ≡ �(z)
1
2ρq2∞C�

,

the chord c(z) must vary like Equation (11.19)

�(z) = 2

π
ρq2

∞c̄CL

√
1 −

(
2z

b

)2

;

i.e. elliptically

c(z)

c̄
= 4

π

√
1 −

(
2z

b

)2

.

11.7.1 Corrections to the Elliptic Loading Approximation

Practical wings are rarely constructed with an elliptic variation of chord length, since this is
more expensive to manufacture than rectangular or trapezoidal planforms. Nevertheless, the
simple results for elliptic loading are appealing and useful at least as a first approximation.
They are frequently used in a generalized form, with correction factors. For example, in place
of the elliptic loading induced drag coefficient Equation (11.21), Abbott and von Doenhoff
(1959) recommend a corrected formula which for untwisted unswept wings reduces to

CD = C2
L

π u

where u is an ‘induced-drag factor’ which depends on the taper ratio and aspect ratio. The
values of u may be read off the charts of Abbott and von Doenhoff (1959, figure 10), or
computed by the methods in the Chapter 12. Rectangular-planform correction factors of this
type were used in the report of Silverstein (1935) cited in Sections 1.6 and 11.5.1.

It should be noted that these correction factors don’t change the induced drag coefficient
by more than about a tenth over the practical range of taper ratio and aspect ratio (Anderson
2001), so that even the uncorrected formulae are sometimes useful for obtaining rough initial
estimates.

11.8 Exercises

1. Derive an expression for the rolling moment, analogous to Equation (11.18) for the induced
drag. Show that it does vanish when the spanwise distribution of lift is symmetric.
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11.9 Further Reading

Lifting line theory is covered in most texts on aerodynamics; e.g. Glauert (1926), Jones (1942),
Prandtl and Tietjens (1957), Abbott and von Doenhoff (1959), Karamcheti (1966), Batchelor
(1967), Milne-Thomson (1973), Ashley and Landahl (1985), Thwaites (1987), Kuethe and
Chow (1998), Paraschivoiu (1998), Bertin (2002), Moran (2003), and Anderson (2007).
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12
Nonelliptic Lift Loading

12.1 Solving the Lifting Line Equation

12.1.1 The Sectional Lift–Incidence Relation

The pair of Equations (11.15) and (11.13) giving the trigonometric expansions for the induced
incidence and the spanwise lift loading can be closed by introducing a relation between C� and
αi, typically via the effective incidence α′ = α − αi. This could be nonlinear, coming from ex-
perimental data, such as the graphs of Abbott et al. (1945) or Abbott and von Doenhoff (1959),
or from theoretical models or numerical simulations, such as those developed in Chapters 6–8.

12.1.2 Linear Sectional Lift–Incidence Relation

Assume a linear sectional lift–incidence relation

C� = m(α′ − α0) = m(α − αi − α0),

rewrite this as

4b

mc

cC�

4b
+ αi = α − α0

and the system becomes

∞∑
j=1

{(
4b

mc
+ j

sin θ

)
sin jθ

}
Aj = α − α0. (12.1)

12.1.3 Finite Approximation: Truncation and Collocation

Now truncate the summation at r − 1 terms

r−1∑
j=1

{(
4b

mc
+ j

sin θ

)
sin jθ

}
Aj = α − α0. (12.2)

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
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186 Theory of Lift

and enforce the equation at r − 1 points, equally spaced in eccentric angle along the span,

θi = iπ

r
(i = 1, 2, . . . , r − 1), (12.3)

to get the linear system

r−1∑
j=1

βijAj = (α − α0)i (i = 1, 2, . . . , r − 1) (12.4)

with coefficient matrix

βij =
(

4b

mici

+ j

sin iπ
r

)
sin

ijπ

r
,

where mi, ci, αi, and (α0)i are the values of the lift–incidence slope, chord, geometric incidence,
and zero-lift incidence, respectively, at the spanwise station θ = θi = iπ/r. These quantities
are assumed to be known.

Just as in the lumped vortex method of Chapter 7, the idea of obtaining a numerical solution
to an equation like Equation (12.2) by requiring it to be satisfied exactly at a finite number of
discrete points is called collocation. Notice that the points given by Equation (12.3), illustrated
in Figure 12.1 for r = 8, are the zeros of the first neglected mode:

sin rθi = sin iπ = 0 (i = 1, 2, . . . , r − 1).

If the wing is untwisted, so that α is constant (no geometric twist) and α0 is constant (no
aerodynamic twist), the equation can be solved for unit aerodynamic incidence α − α0 = 1,
and results for other incidences obtained by scaling. This is equivalent to dividing each of

Spanwise position,

Figure 12.1 Construction of the collocation points by Equation (12.3) for r = 8



Nonelliptic Lift Loading 187

Listing 12.1 lline.m: Octave implementation of Glauert’s method for lifting line equation. The
chord lengths are normalized by span, and the loading sine coefficients by the aerodynamic incidence
(which is assumed uniform).

function A = lline (c)
r = length (c) + 1;
J = 1:(r - 1);
S = sin (J’ * J * pi / r);
B = bsxfun (@plus, 2/pi ./ c, 1 ./ S(:,1) * J) .* S;
A = B \ ones (r - 1, 1);

the sine coefficients An by α − α0. That is, for constant α − α0, Equation (12.4) can be
rewritten as

r−1∑
j=1

βij

(
Aj

α − α0

)
= 1 (i = 1, 2, . . . , r − 1).

12.1.4 Computer Implementation

The system can be coded and solved in Octave. The special case of a thin wing, for which
m = 2π is given in Listing 12.1.

Once the expansion coefficients An have been obtained, the lift and induced drag coeffi-
cients can be computed using Equations (11.17) and (11.18), either for arbitrary incidence,
or for a particular incidence. These are concisely implemented in Octave in Listing 12.2 and
demonstrated in the following example.

Listing 12.2 lline CLCD: Octave implementation of the lifting line theory Equations (11.17) and
(11.18) for computing the lift and drag coefficients.

function [CL, CD] = lline_CLCD (AR, A)
CL = pi * AR * A(1);
CD = pi * AR * (1:length (A)) * A.ˆ2;

12.1.5 Example: a Rectangular Wing

Kuethe and Chow (1998) computed the lift and induced drag coefficients for a thin
(m = 2π) flat (α0 = 0) rectangular wing with = 6 using r = 8 as CL = 4.5273α and

Listing 12.3 rectlline.m: Simple Octave function to specialize llline.m from Listing 12.1
to rectangular wings. The chord lengths are normalized by span, and the loading sine coefficients by the
aerodynamic incidence (which is assumed uniform).

function [CL, CD] = rectlline (AR, r)
[CL, CD] = lline_CLCD (AR, lline (ones (r-1, 1) / AR));
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Listing 12.4 Octave code to calculate CL and CD for a thin untwisted tapered wing.

AR = 9; lambda = 0.4;
aalpha = (4 - (-1.2)) * (pi/180);
r = 8; theta = (1:(r-1))’ * pi/r;
cr = 2 / AR / (1 + lambda);
c = cr * (1 - (1 - lambda) * (abs (cos (theta))));
A = lline (c);
[CL, CD] = lline_CLCD (AR, A);
CL * aalpha, CD * aalphaˆ2

CD = 1.1378α2. These results can be reproduced using rectlline.m from Listing 12.3, with
which [CL, CD] = rectlline (6, 8) returns CL=4.5273 and CD=1.1378.

In comparison, the elliptic loading approximation of Equation (11.23) would predict a lift–
incidence slope of

m

1 + m

π

= 2π

1 + 2
6

= 3π

2
.= 4.712 . . . .

Thus for the same absolute incidence α − α0, the rectangular wing would generate nearly 4%
less lift than an elliptically loaded wing with the same planform area and aspect ratio.

Bertin (2002) computed the lift and induced drag for a thin cambered (α0 = −1.2◦) untwisted
tapered wing with = 9 and taper ratio λ ≡ ct/cr = 0.4. Using r = 8, he found that at
geometric incidence α = 4◦ the lift and induced drag coefficients are CL = 0.4654 and
CD = 0.00776.

The chord length distribution for a tapered wing can be calculated from:

c

b
=

2
{

1 − (1 − λ)
∣∣∣ 2z

b

∣∣∣}
(1 + λ)

.

Using this and lline.m (Listing 12.1), the results (CL
.= 0.46538 and CD

.= 0.0077661) are
reproduced with the code in Listing 12.4.

12.2 Numerical Convergence

For quick hand calculations, r = 8 is usually regarded as sufficient (Glauert 1926;
Milne-Thomson 1973; Kuethe and Chow 1998) though r = 20 was conventional in NACA
work (Sivells and Neely 1947; Abbott and von Doenhoff 1959).

The method was applied to a thin untwisted rectangular wing of aspect ratio 6 for increasing
r and the absolute relative error in the aerodynamic force coefficients plotted in Figure 12.2.
The exact answer is not known, so the error is estimated by taking the values at r = 200 as
reference; i.e. CL/α

.= 4.530424981 and CD/α2 = 1.141453135.
Note that the drag coefficient converges slightly more slowly than the lift coefficient, since

it depends on all of the sine coefficients and moreover gives an increasing weighting to sine
coefficients of higher order.
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Figure 12.2 Convergence plot for the lift coefficient predicted by Glauert’s method for a thin untwisted
rectangular wing of aspect ratio 6

12.3 Symmetric Spanwise Loading

The above method works for an arbitrary spanwise loading, but very often (as in the two exam-
ples of Section 12.1.5) we are most interested in spanwise symmetric cases. As may be inferred
from the graphs of the first few shape functions from Glauert’s expansion Equation (11.13) in
Figure 12.3, in these cases, only the odd terms in Glauert’s expansion are required:

cC�

4b
=

∞∑
j=1

A2j−1 sin(2j − 1)θ.

Exploiting this leads to a considerable reduction in work. The number of arithmetic operations
required to solve a linear system is proportional to the cube of the number of equations;
therefore, halving the number means an eighth the work. This is particularly important for
hand calculations.

Analogous to Equations (11.14), (11.15), and (12.1), we have

d

dθ

cC�

4b
=

∞∑
j=1

(2j − 1)A2j−1 cos(2j − 1)θ

αi =
∞∑

j=1

(2j − 1)A2j−1 sin(2j − 1)θ

sin θ
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Eccentric angle, θ Eccentric angle, θ

Figure 12.3 The first few modes of Glauert’s expansion as given by Equation (11.13) for the spanwise
lift loading on the span b

2 > z > −b

2 , showing the even and odd symmetry of the odd and even modes
respectively

and
∞∑

j=1

{(
4b

mc
+ 2j − 1

sin θ

)
sin(2j − 1)θ

}
A2j−1 = α − α0,

respectively.
For even r, we truncate the series at j = r/2 (i.e. 2j − 1 = r − 1) and enforce the equation

at

θi = iπ

r
, (i = 1, 2, . . . , r/2).

These collocation points lie on the right wing (with the last on the plane of symmetry, z = 0).
The discrete linear system is then

r/2∑
j=1

β
(s)
ij A2j−1 = (α − α0)i

where the coefficients are now

β
(s)
ij =

(
4b

mici

+ 2j − 1

sin iπ
r

)
sin

(2j − 1)iπ

r
.

The Octave function lline.m (Listing 12.1) is easily modified for this special case, as in
Listing 12.5.
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Listing 12.5 lline symmetric: modification of lline.m (Listing 12.1) for the special case of
symmetric spanwise lift loading.

function [A, B] = lline_symmetric (c)
n = length (c);
I = 1:n;
J = 2 * I - 1;
S = sin (I’ * J * pi / 2 / n);
B = bsxfun (@plus, 2/pi ./ c, 1 ./ S(:,1) * J) .* S;
A = [B \ ones(n, 1), zeros(n, 1)]’;
A = A(:);

12.3.1 Example: Exploiting Symmetry

For the thin untwisted rectangular wing of aspect ratio 6 from Section 12.1.5, with r = 8, the
coefficient matrix is

B(s) =




+2.4617 +10.7716 +15.6000 +8.4617

+3.7009 +5.7009 −7.7009 −9.7009

+4.5290 −2.7044 −3.5328 +10.5290

+4.8197 −6.8197 +8.8197 −10.8197


 ,

so that the linear system for arbitrary absolute incidence α − α0 is


+2.4617 +10.7716 +15.6000 +8.4617

+3.7009 +5.7009 −7.7009 −9.7009

+4.5290 −2.7044 −3.5328 +10.5290

+4.8197 −6.8197 +8.8197 −10.8197







A1

A3

A5

A7




= (α − α0)




1

1

1

1




which has the solution 


A1

A3

A5

A7




= (α − α0)




0.2401797

0.0288983

0.0057044

0.0010011




.

The predicted force coefficients are then

CL = π A1
.= 4.527(α − α0)

CD = π
(
A2

1 + 3A2
3 + 5A2

5 + 7A2
7 + · · ·

)
(α − α0)2 .= 1.138(α − α0)2.

Both coefficients are correct to three significant figures.
In this case, the magnitude of the sine coefficients An decreases rapidly with increasing

n. This means that the spanwise loading is mostly elliptical (the contribution from A1), even
though the wing planform is rectangular. Also, it suggests that the truncation at r = 8 is
reasonable (the omitted sine coefficients are probably smaller still).
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For r = 4,

B(s) =
[

3.7009 5.7009

4.8197 −6.8197

]
,

{
A1

A3

}
= (α − α0)

{
0.237510

0.021222

}
,

and CL
.= 4.477(α − α0) and CD

.= 1.089(α − α0)2; so the coefficients are still correct to two
significant figures.

12.4 Exercises

1. Show that the numerical results of Section 12.3.1 can be obtained with the Octave code in
Listing 12.6.

Listing 12.6 Octave code for Exercise 12.4.1.

AR = 6;
for r = [8, 4]

[A, B] = lline_symmetric (ones (r/2, 1) / AR)
[CL, CD] = lline_CLCD (AR, A)

end%for
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13
Lumped Horseshoe Elements

Chapter 7 on lumped vortex elements stepped back from the infinite trigonometric series
expansions of thin aerofoil theory in Chapter 6 to see how much of the mechanics of a wing
section could be mimicked with a single lumped vortex of the type previously encountered in
the preliminary fundamental work on plane ideal flow in Chapter 3, and then extended this
by spacing two and then several lumped vortices along the camber line. In this chapter, an
analogous approach is taken to the three-dimensional aerodynamics of wings of finite span;
that is, a step back from the infinite series expansions of lifting line theory in Chapters 11 and 12
to see what can be done with one or a few discrete horseshoe vortices of the type discussed in
the preliminary fundamental work on three-dimensional ideal flow in Chapter 10.

13.1 A Single Horseshoe Vortex

Recall from Equation (11.3) that a single horseshoe vortex of strength Γ with bound segment

−bh

2
< z <

bh

2

and parallel free vortices running from and to +∞i, as drawn in Figure 13.1, induces the
velocity at the origin, the midpoint of its bound vortex,

qh(0) = −Γ j
πbh

. (13.1)

Note that this discrete horseshoe vortex has been given its own breadth bh, which may not
necessarily coincide with that of the wing it represents.

Let this single discrete horseshoe vortex be placed in a uniform stream at incidence α,

q∞ = q∞ cos αi + q∞ sin αj,

then the total velocity at the origin is

q(0) = q∞ cos αi +
(

q∞ sin α − Γ

πbh

)
j.

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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(0,0,−bh/2)

(0,0,bh/2)

(0,0,0)

Figure 13.1 Single horseshoe vortex of span bh and semi-infinite legs in the x-direction. A collocation
point is marked at the midpoint of the central finite segment

If the wing, as represented by this lifting line lumped as a single horseshoe vortex, is to be
impermeable, the y-component of this must vanish, so we have one relation for the strength of
the horseshoe vortex:

Γ = πbhq∞ sin α.

In the context of lifting line theory, only small angles of incidence are entertained so again
using Equation (5.8) for the sine,

Γ ∼ πbhq∞α. (13.2)

The lift per unit spanwise section of the horseshoe is given by the Kutta–Joukowsky Theorem
of Equation (3.15a) as � = ρq∞Γ . Integrating this along the breadth of the bound vortex gives
the total lift as

L = ρbhq∞Γ = πρb2
hq

2
∞ sin α. (13.3)

Now let’s try and relate this to a wing with elliptic spanwise loading; from Equation (11.22),

CL ≡ 2L

ρq2∞bc̄
= m

1 + m

π

(α − α0)

so

L = ρq2∞bc̄m(α − α0)

2
(

1 + m

π

) (13.4)

is the lift for the wing to be modelled. Equating Equation (13.4) to the Equation (13.3) of the
lift of the horseshoe, for:

• α0 = 0, since the horseshoe can only model wings without camber, and
• m = 2π, as predicted by thin aerofoil theory in Equation (6.11)

yields

bh =
√

b2c̄

b + 2c̄
. (13.5)

Notice that the breadth of the bound vortex segment has to take into account the chord as
well as the span; the former was hidden in the lifting line theory, but its influence remained
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in the normalization used for the lift coefficient and so explicitly reappeared once we reverted
from lift coefficient to lift.

13.1.1 Induced Incidence of the Lumped Horseshoe Element

The induced incidence for this lumped horseshoe element is given as usual by Equation (11.7),
so at the collocation point, using Equation (13.1) and Equation (13.2),

αi = −vw

q∞
= Γ

πbhq∞

= πbhq∞α

πbhq∞
= α.

The simplicity of this result is not a coincidence, it is necessary; that is, for a single lumped
horseshoe to provide sufficient circulation to stop the free-stream passing through the wing,
it must provide an induced incidence exactly equal to the geometric incidence. This is just
as in Section 7.1.3 where the two-dimensional lumped vortex element repredicted the correct
circulation after it had been calibrated by choosing its collocation point.

13.2 Multiple Horseshoes along the Span

If two horseshoe vortices of equal strength were placed together, as shown in Figure 13.2, so
that their two bound vortex segments were collinear, their four semi-infinite rectilinear trailing

(0,0,0)

(0,0,0)

+

=

(0,0,−bh/2)

(0,0,−bh/2)

(0,0,bh/2)

(0,0, bh/2)

(0,0,0)

(0,0,−bh/2)

(0,0,bh/2)

Figure 13.2 The inboard trailing vortices of two identical discrete horseshoe vortices abreast mutually
cancel, leaving a single discrete horseshoe
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vortices parallel and coplanar, and the right side of the left one coincided with the left side of
the right, then the two inside trailing vortex legs would mutually cancel and the two bound
vortex segments would coalesce into one of twice the span; the two outside vortices legs would
be unaffected. That is to say, if the first horseshoe had corners

(
0, 0, b

2

)
and (0, 0, 0) and the

second (0, 0, 0) and
(
0, 0, −b

2

)
, while the four legs either start from or tend towards (∞, 0, 0),

then their effective sum would have corners
(
0, 0, b

2

)
and

(
0, 0, −b

2

)
and the same infinite

origin and terminus.
This cancellation means that the model has not gained any degrees of freedom and does not

really refine the resolution of the spanwise lift loading; however, we might ask ourselves to
what extent it models the flight of two planes abreast, tip-to-tip.

To avoid this cancellation, let’s try adding abreast two of the single horseshoe vortex models
from Section 13.1. Since these try to model elliptic loading, which is a loading that vanishes at
the wing-tips (since the pressure above and below must agree there where the wing terminates),
their bound vortex segments don’t extend all the way across the span; therefore, their two inside
trailing vortices will not exactly cancel. To be specific, say the left horseshoe represents a wing
spanning b > z > 0 along the z-axis and the right 0 > z > −b, then their bound segments each
have breadth b as given by Equation (13.5) (and depending also on the mean chord or aspect
ratio). This is perhaps a better model of flight abreast, but not a better model of a broader wing;
i.e. does not provide a more realistic picture of the spanwise loading.

What if we placed side-by-side along the z-axis three or four horseshoes, symmetrically
about the x-axis, but possibly permitting the strength of the inner one or two to differ from
that of the outer two? If two parallel coplanar horseshoes of different strength are placed
exactly side by side, the coincident trailing vortices will only partially cancel, and the resulting
combined bound vortex segment will have a finite step in its strength. This is starting to get
interesting: this begins to have degrees of freedom; this begins to permit modelling of spanwise
loading—this is, of course, the beginnings of a finite analogue of the continuous lifting line of
Chapter 11.

For a symmetric spanwise loading, the use of three and four horseshoes is really equivalent,
since if four, the middle pair will have equal strengths and so are indistinguishable from a
single horseshoe of twice the span. Given the equivalence, we henceforth consider only even
numbers of horseshoes, because this leads more simply to a treatment of such symmetrical
cases: we can then consider only those horseshoes of one half (with influences augmented by
their missing mirror images), but do not have to split a central horseshoe straddling the plane
of symmetry.

So, consider then a row of four horseshoe vortices with collinear bound vortex segments
end to end along the z-axis representing a wing with spanwise symmetric loading. How many
degrees of freedom does this system have? There are the two vortex strengths (inboard and
outboard), and the two breadths (again inboard and outboard). If the total breadth of the four is
fixed as the span, that reduces the number of parameters to three. As an aside, note that this four-
horseshoe model also includes as a special case the single-horseshoe model of Section 13.1,
since it reduces to it if the strengths of the two outboard vortices are set to zero. Actually
though, the way the vortex strengths should be set is so that the downwash at the collocation
points balances the oncoming free-stream. That supplies exactly as many conditions as there
are horeshoes, and so only the choice of horseshoe breadths remains indeterminate.
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A simple choice is not to exploit this freedom to improve the model but just choose some-
thing convenient, like equal breadths, or perhaps panels with equal breadth in terms not
of the spanwise Cartesian coordinate z but the eccentric angle θ of Equation (11.11) and
Figure 11.4.

13.2.1 A Finite-step Lifting Line in Octave

To get started with implementing horseshoe vortices in Octave, let’s consider just this problem
of a row of equal-breadth horseshoes as a finite-step representation of a lifting line, as shown
in Figure 13.3. Say we have n horseshoes, with the jth running from z

(v)
j to z

(v)
j+1 where

z
(v)
j

b
≡ 1

2
− j − 1

n
(j = 1, 2, . . . , n + 1) (13.6)

so that z
(v)
1 and z

(v)
n+1 correspond to the left and right wing-tips, respectively. The n collocation

points at the midpoints of the bound vortex segments bisect these:

z
(c)
i

b
≡ z

(v)
i − 1

2n
(i = 1, 2, . . . , n). (13.7)

The downwash induced by the semi-infinite vortex segment running back from the jth point
of Equation (13.6) at the ith collocation point of Equation (13.7) can be deduced from
Equation (10.9) as

Γj − Γj−1

4π
{

z
(c)
i − z

(v)
j

} . (13.8)

The difference in the numerator here is to be understood as simply Γ1 for j = 1 and −Γn for
j = n + 1, i.e. as if Γ0 = Γn+1 = 0. This vector of n + 1 unknown trailing vortex strengths

(0,0,b/2)

(0,0,−b/2)

Γ1

Γ2−Γ1Γ1

Γ2

Γn−Γn−1

Γn −Γn

Figure 13.3 Finite-step lifting-line model of Section 13.2.1, using n lumped horseshoe vortex elements
of equal breadth but different strengths to be determined by collocation at the midpoints of their bound
vortex segments on the z-axis
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Listing 13.1 Demonstration of the use Octave’s function toeplitz to generate the bidiagonal
matrix converting n horseshoe strengths to n + 1 trailing vortex strengths, as in Equation (13.9). See
Listing 13.2 for the output.

n = 4; toeplitz ([1; -1; zeros(n-1, 1)], [1, zeros(1, n-1)])

{
Γj − Γj−1

}n+1
j=1 can be constructed from the vector of n unknown horseshoe vortex strengths{

Γj

}n

j=1 by a matrix–vector product:




1 0 . . .

−1 1 0 . . .

0 −1 1 0 . . .

...
. . .

. . .
. . .

0 −1 1

0 −1







Γ1

Γ2

...

Γn




=




Γ1

Γ2 − Γ1

...

−Γn




. (13.9)

The bidiagonal (n + 1) × n matrix here, with its two constant nonzero diagonals, is a Toeplitz
matrix, which Octave can generate from its first column and row with the zeros and toeplitz

functions; e.g. as in Listing 13.1 for n = 4, which produces the output shown in Listing 13.2.
The rest of the influence coefficient is very similar to that appearing in the matrix–vector

Equation (7.3) for the lumped vortex element method and so can be constructed in Octave in
the same way.

The condition to be enforced is that the combined downwash at the collocation points
balances the vertical component of the free-stream, i.e. q∞ sin α ∼ q∞α, if camber and twist
are neglected.

Note that this is already implying that the downwash will be uniform along the span, which
is known to be a property of elliptic loading—see Equation (11.20). The present model is
very highly simplified and in particular hasn’t any resolution along the chord, so it doesn’t
have any way of representing taper or twist; recall from Section 11.6 that these were brought
back in to the classical lifting line model via the external relation between the sectional lift
coefficient and the effective incidence. In the discrete context, information on the planform is
better incorporated by also discretizing in the chordwise direction, along the lines of the lumped
vortex method of Chapter 7 in two dimensions. That is taken up in shortly in Section 13.3 and

Listing 13.2 Octave output from Listing 13.1; cf. the Toeplitz matrix in Equation (13.9).

ans =

1 0 0 0
-1 1 0 0

0 -1 1 0
0 0 -1 1
0 0 0 -1
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then seriously in Chapter 14, but for the moment let us complete the implementation of the
finite-step lifting line with a single spanwise row of horseshoes.

Without twist or camber, the system of equations is

1

4π

n∑
j=1

aijΓj = −q∞bα (i = 1, 2, . . . , n)

where the matrix of influence coefficients is defined by Equation (13.8) (with the constant
factor b moved here to the right-hand side)




1
z

(c)
1 −z

(v)
1

1
z

(c)
1 −z

(v)
2

. . . 1
z

(c)
1 −z

(v)
n+1

1
z

(c)
2 −z

(v)
1

1
z

(c)
2 −z

(v)
2

. . . 1
z

(c)
2 −z

(v)
n+1

. . .
1

z
(c)
n −z

(v)
1

1
z

(c)
n −z

(v)
2

. . . 1
z

(c)
n −z

(v)
n+1







1 0 . . .

−1 1 0 . . .

0 −1 1 0 . . .

...
. . .

. . .
. . .

0 −1 1

0 −1




and computed by the product of a matrix with the above Toeplitz matrix. A complete stand-
alone Octave function to solve this problem for a lifting line with span divided equally into n

horseshoes is given in Listing 13.3; since the right-hand side is constant, the computed vortex
strengths are those for q∞α = 1 and the full values can be recovered by subsequent rescaling.

The spanwise variation predicted by the model can be inspected by plotting the computed
normalized horseshoe vortex strengths at their collocation points, which produces Figure 13.4,
which may be compared with the exact elliptic lift loading in Figure 11.5.

The normalized horseshoe vortex strengths calculated in Listing 13.3 can be related to the
sectional lift coefficient by the Kutta–Joukowsky theorem in the usual way:

Γ

q∞bα
= �

ρq2∞bα
= cC�

2bα
,

where c is the chord (which reappears here via the defintion of C�). Thus the lift coefficient
can be recovered from

CL

α
= 2

n

n∑
j=1

Γj

q∞bα
.

Listing 13.3 line horseshoe.m.

function [Gamma, zc] = line_horseshoe (n)
zv = 0.5 - (0:n) / n;
zc = zv(1:n)’ - 0.5 / n;
A = 0.25 ./ bsxfun (@minus, zc, zv) / pi ...

* toeplitz ([1; -1; zeros(n-1, 1)], [1, zeros(1, n-1)]);
Gamma = A \ -ones (n, 1);
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Figure 13.4 The spanwise loading predicted by a row of n = 50 horseshoe vortices of equal breadth,
as implemented in Listing 13.3

Listing 13.4 Demonstrating the convergence of the lift coefficient predicted by function
line horseshoe from Listing 13.3 in comparison with Equation (11.20).

for n = 2 .ˆ (1:9)
C = 2 * mean (line_horseshoe (n));
fprintf (’%3d %5.3f %5.3f\n’, n, C, C - pi)

end%for

According to Equation (11.20) of the continuous lifting-line theory, the quantity on the left-
hand side here is π for elliptic loading. The present numerical result does approach π as n

is increased, but only linearly (i.e. the product of n and the error is roughly constant as n is
increased) and about a hundred horseshoe vortices are required to get within 1% of the exact
answer. This is demonstrated in Listing 13.4, which was used to produce Table 13.1.

13.3 An Improved Discrete Horseshoe Model

A suggestion for improving the single horseshoe model developed in Section 13.1 may have
occurred to the reader of Chapter 7: even though the lifting-line model was designed for wings
of high aspect ratio, so that the chord is insignificant in comparison with the span, why not
impose the condition of impermeability at the three-quarter chord point instead of right at the
bound vortex? Correspondingly, if the chord is not to be neglected altogether, the bound vortex
might be put along the quarter-chord line. This is illustrated in Figure 13.5.

Thus, let us shift the bound vortex from x = 0 to x = c
4 , where c is the chord, the horseshoe

vertices to
(

c
4 , 0, ± b

2

)
, and the collocation point to

( 3c
4 , 0, 0

)
. We need to calculate the velocity
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Table 13.1 Convergence of the numerical single
row of equal-breadth horseshoe vortices

n CL

α

CL

α
− π

2 4.712 1.571
4 3.927 0.785
8 3.534 0.393

16 3.338 0.196
32 3.240 0.098
64 3.191 0.049

128 3.166 0.025
256 3.154 0.012
512 3.148 0.006

Source: Using Listing 13.4.

induced at the collocation point by the three legs of the horseshoe vortex. Equation (10.9) cannot
be used for the two semi-infinite legs since the collocation point is no longer in their terminal
normal plane; instead we need to go back to the general Equation (10.6).

For the incoming leg, we have �̂ = −i, r = 3c
4 i, and, say, r′ = r + b

2 k if for convenience we
take the representative point r′ on the vortex line as the one closest to the collocation point.
Thus

r − r′ = −b

2
k

�̂ × (r − r′) = −b

2
j

�̂ × (r − r′)
|�̂ × (r − r′)|2 = −2

b
j

cos β1 = 1

cos β2 = −1√
1 +

(
b
c

)2

q(r) = −Γ j
2πb

(
1 + 1√

1 + 2

)
,

where we have introduced the aspect ratio ≡ b
c
.

(c/4,0, b/2)

(c/4,0,−b/2)

(3c/4,0,0)

(0,0,−b/2)

(0,0,b/2)

Figure 13.5 Modification of the single lumped horseshoe of Figure 13.1 by separating and shifting the
bound vortex segment and the collocation point chordwise
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The outgoing semi-infinite segment contributes the same, by symmetry.
For the bound vortex segment we have �̂ = −k, and

r − r′ = c

2
i

�̂ × (r − r′) = −c

2
j

�̂ × (r − r′)
|�̂ × (r − r′)|2 = −2j

c

cos β1 = √
2 + 1

cos β2 = − cos β1 (by symmetry)

q(r) = −Γ j
πc

(
√

2 + 1

)
.

Adding the three contributions at the three-quarter chord point, which are all pure down-
washes, gives:

q(r) = −Γ

πb

(
1 + 1√

1 + 2

)
j + −Γ

πc

(
√

2 + 1

)
j

= −Γ

πc

{
1 +

√
1

2 + 1

}
j

The oncoming free-stream has velocity q∞(i cos α + j sin α), so the circulation required to
balance that is

Γ = πq∞cα

−1 +
√ −2 + 1

.

This tends to the two-dimensional flat-plate result for the circulation around a given by
Equation (5.20), Γ = πcq∞α, as the wingspan tends to infinity, as it should.

Notice that by introducing the chord into the model by shifting the collocation point off the
bound vortex, we have not had to import the two-dimensional Kutta–Joukowsky theorem to
determine the circulation.

Further multiplying this circulation by ρq∞ to get the lift per unit span and then b to get the
total lift force, and finally normalizing by ρq∞bc/2 to get the lift coefficient, we get

� = πρq2∞cα

−1 +
√ −2 + 1

L = πρq2∞bcα

−1 +
√ −2 + 1

CL = 2πα

−1 +
√ −2 + 1

.
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Expressed as the ratio of the lift–incidence slope at finite aspect ratio to that at infinity, this is

CL( )

CL(∞)
= 1

−1 +
√ −2 + 1

which is of the same form as Helmbold’s equation (Anderson 2007),

dCL( )/dα

dCL(∞)/dα
= 1

m

π
+

√(
m

π

)2 + 1

,

which was formerly much used as a quick approximation for the effect of aspect ratio on
lift–incidence slope for small aspect ratios ( < 4) instead of Equation (11.23) from lifting
line theory.

13.4 Implementing Horseshoe Vortices in Octave

The calculation via the formulae of Section 10.5.2 of the velocity induced by a polygonal
chain of finite or infinite rectilinear vortex segment is straightforward but tedious and therefore
ideally suited to automatic computation.

Once the semi-infinite leading and trailing segments have been handled, as discussed in
Section 10.5.6, either by truncation or with proper formulae, the only special cases to watch
for are any evaluation points collinear with inducing segments. This may be handled by first
computing the cross product �̂ × (r − r′) of the unit vector along the segment and the vector
from any convenient point on the segment to the point in question, this cross product being
required in any case to compute the velocity, and then checking that the magnitude (or square
magnitude) is sufficiently above zero; that it should be zero would mean that the cross product
has vanished which means collinearity. With an eye to subsequent developments (Chapter 14),
the subroutine should be able to accept multiple segments and evaluation points.

Say we have p points at which to evaluate the velocity and s segments (each of which has
two terminal points) of vortex lines inducing it, and so 3(p + 2s) coordinates. Let’s store these
in one 3 × p array (r) and two 3 × s arrays (r1 and r2). The columns of these arrays then are
3 × 1 column vectors, representing (x, y, z). The difference r2 - r1 is a 3 × s array of the s

column vectors representing the segments.
One operation we’ll need to be able to do a few times is normalize an array of column

vectors. This is done with normalize, as defined in Listing 13.5.
With this in hand, the velocity induced at any number of points by any number of segments

of unit strength can be implemented in Octave fairly directly from Equations (10.6) and (10.7).
This is Listing 13.6. The reason for omitting the vortex strength is because in many cases

Listing 13.5 normalize: divide a matrix of columns by their norms.

function u = normalize (v)
u = bsxfun (@rdivide, v, sqrt (dot (v, v)));
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Listing 13.6 vortex segment: compute the velocity induced at the points in the columns of r by
the unit-strength rectilinear vortex segments running from the points in the columns of r1 to the points
in the corresponding columns of r2.

function q = vortex_segment (r, r1, r2)
lhat = normalize (r2 - r1);
h = cross (lhat, r - r1);
normh2 = dot (h, h);
q = repmat (dot (lhat / 4 / pi, ...

normalize(r - r1) - normalize(r - r2)) ...
./ normh2, [3, 1, 1] ) .* h;

q(repmat (normh2 < eps, [3, 1, 1])) = 0; % r collinear

Listing 13.7 vortex semiinf: compute the velocity induced at the points in the columns of r by
the unit-strength semi-infinite rectilinear vortex segments beginning from the points in the columns of v
and extending indefinitely in the directions in the columns of l.

function q = vortex_semiinf (r, v, l)
q = vortex_segment (r, v, v + 1e3 * l);

the strengths are to be determined as part of the problems, as in Listing 13.3, and so it is the
influence coefficients (analogous to those of Listings 7.3 and 8.5) that are required.

A variant for the semi-infinite case, for which the second point of segment is defined instead
by a direction from the first, is given in Listing 13.7. It uses the truncation approximation, but its
internals could be modified to use Equation 10.9 while preserving its interface and therefore
not necessitating any revision of any of the other functions, such as vortex segment of
Listing 13.6 or vortex horseshoe of Listing 13.8. (See Exercise 5 at the end of the chapter.)

Now, if we have p points and h horseshoes, this means p × h influence coefficients, ex-
cept that in three dimensions each influence coefficient is a vector of three components, so a
3 × p × h array is required. These p × h columns are most conveniently dealt with by

Listing 13.8 vortex horseshoe: compute the velocity induced at the points in the columns of r
induced by the unit-strength horseshoe vortices with corners in the columns of r1 and r2 and trailing
direction lhat; calls vortex segment and vortex semiinf from Listings 13.6 and 13.7.

function q = vortex_horseshoe (r, r1, r2, lhat)
vsize = [1, 1, size(r, 2)];
R = repmat (r, [1, 1, size(r1, 2)]);
R1 = permute (repmat (r1, vsize), [1, 3, 2]);
R2 = permute (repmat (r2, vsize), [1, 3, 2]);
LHAT = permute (repmat (lhat, vsize), [1, 3, 2]);
q = vortex_segment (R, R1, R2) ...

- vortex_semiinf (R, R1, LHAT) ...
+ vortex_semiinf (R, R2, LHAT);
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Table 13.2 4π times the downwash influence coefficients
of three ‘yawed’ horseshoe vortices

−x ψ = 30◦ 45◦ 60◦

−60.00 −0.2664 −0.2664 −0.2664
−10.00 −.2577 −.2577 −.2576
−5.00 −.2395 −.2395 −.2391
−3.00 −.2172 −.2176 −.2175
−2.00 −.1980 −.1991 −.1999
−1.00 −.1715 −.1737 −.1765
−.20 −.1454 −.1486 −.1535

.20 −.1314 −.1351 −.1409
1.00 −.1038 −.1077 −.1147
2.00 −.0742 −.0773 −.0838
3.00 −.0526 −.0546 −.0592

Source: after Campbell (1951, table I, at p. 17).

replicating the array of points h times and the arrays of the quantities defining the horseshoes
p times, using Octave’s repmat and permute built-in functions. This is done in Listing 13.8.

13.4.1 Example: Yawed Horseshoe Vortex Coefficients

The real motivation for building such generality into Listing 13.8 will only become apparent in
Chapter 14, but it is still quite usable for simpler problems, as the reader may verify by trying
the exercises at the end of this chapter.

As a test of the correctness of the functions, and to demonstrate their usage, they may be
used to reproduce the downwash coefficients tabulated by Campbell (1951, table I) for ‘yawed’
horseshoe vortices, having corners at

( ± 1
2 tan ψ, 0, ± 1

2

)
and trailing vortices extending in the

x-direction, for angles ψ = 30◦, 45◦ and 60◦, for various points in the zx-plane.
For example, the subtable for z = −4 at the bottom of p. 17 is extracted here in Table 13.2

and reproduced in Octave using Listing 13.9 as Listing 13.10.

Listing 13.9 campbell51TableI.m: Octave script to reproduce Table 13.2.

x = [60, 10, 5, 4, 2, 1, 0.2, -[0.2, 1:3]];
r = [x; zeros(size (x)); -4*ones(size (x))];
psi = pi ./ [6, 4, 3];
r2 = [tan(psi); repmat([0; 1], [1, length(psi)])];
q = vortex_horseshoe (r, -r2, r2, ...

repmat ([1; 0; 0], [1, size(r2, 2)]));
reshape (4 * pi * q(2,:)’, size (r, 2), length (psi))
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Listing 13.10 Octave output for Listing 13.9; cf. the rightmost three columns of Table 13.2.

ans =

-0.266391 -0.266391 -0.266391
-0.257747 -0.257724 -0.257628
-0.239490 -0.239495 -0.239143
-0.230401 -0.230517 -0.230193
-0.198000 -0.199069 -0.199941
-0.171478 -0.173704 -0.176455
-0.145362 -0.148647 -0.153472
-0.131375 -0.135058 -0.140883
-0.103775 -0.107657 -0.114745
-0.074207 -0.077285 -0.083850
-0.052589 -0.054560 -0.059206

Campbell (1951) concluded sixty years ago:

Solutions of this type are somewhat cumbersome if performed with the usual type of manually
operated computing equipment but are readily adaptable to relay-type digital computing machines.

and today we can only agree.

13.5 Exercises

1. (a) Show that the two arguments passed to the toeplitz function in Listing 13.1 do
generate the leading column and row, respectively of the matrix in Equation (13.9) and
Listing 13.2.

(b) Write an Octave function (of integer n) to generate the same bidiagonal toeplitz matrix
without using toeplitz; e.g. by adding two calls to diag.

2. Identify the steps of a general discrete singularity method from Section 7.4 in Listing 13.3.

3. Modify Listing 13.3 to:
(a) exploit the symmetry of the spanwise loading;
(b) account for twist.

4. Use the Octave code of Listing 13.6 to verify numerically the results obtained analytically
for Exercise 10.6.2. Check at at least one point collinear with the segment and two not.

5. Write a version of Listing 13.7 that has the same interface but using Equation (10.9) instead
of truncating. Compare the answers for Exercise 10.6.3 for some representative points to
assess the difference in implementations.

6. Using the improved discrete horseshoe model of Section 13.3, with a single discrete horse-
shoe per wing, consider the mutual influence of:
(a) two wings flying abreast, with collinear bound vortices;
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(b) two wings flying in tandem, with collinear trailing vortices;
(c) two wings in a biplane arrangement, as in Section 7.6 but now taking into account the

three-dimensional effects arising from finite span
(d) three wings in a coplanar vee-formation, with neighbouring trailing vortices collinear.

7. Obtain a copy of NACA Research Memorandum No. L50L13 (Campbell 1951) and repro-
duce table I in its entirety.

13.6 Further Reading

Several deductions about the case of uniform spanwise loading, which is equivalent to the
assumption of a single lumped horseshoe vortex, are discussed by Milne-Thomson (1973,
Chapter 11).

The discrete representation of a lifting line by a row of horseshoe vortices was originally
know as a ‘finite-step’ method (Campbell 1951; Blackwell 1969). Today it is more important
as a predecessor of the vortex lattice method, and it is in this context that its implementation
was discussed by Katz and Plotkin (2001, section 12.1) and Bertin and Smith (1979).
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14
The Vortex Lattice Method

14.1 Meshing the Mean Lifting Surface of a Wing

The vortex horseshoe program given in Listing 13.8 for computing influence coefficients
is very general, being able to handle an arbitrary number of independently aligned horseshoe
vortices and an arbitrary number of evaluation points, but to put it to proper use, the grid of
horseshoe vortices and collocation points has to be generated; since the layout of the horseshoe
vortices has to follow that of the wing they are used to model, this can get arbitrarily com-
plicated. Here a short demonstration program is developed that allows taper, sweep, dihedral,
twist, and camber, as follows:

• constant linear spanwise taper from root to tip, with positive tip chord (so avoiding the
coalescence of leading and trailing edges at the zero tip chord of a triangular wing)

• constant linear sweep, Λ, measured along the leading edge
• dihedral, as constant linear spanwise variation of the elevation of the leading edge, and again

measured along the leading edge
• geometric twist, as constant linear variation of the angle between the sectional chord and

the root chord, which is taken as the x-axis
• a camber line for each spanwise section as described by an arbitrary function (provided by

the caller) of position along the chord.

The construction begins from the origin (0, 0, 0) at the leading edge of the root chord.
The first step is laying the root chord along the positive x-axis, out to (cr, 0, 0).
The second step is to draw the leading edge rightwards over 0 > z > −b

2 and leftwards over
0 < z < b

2 , using the absolute value of z for left–right symmetry, sweeping the leading edge
back along the direction of the root chord with x

|z| = tan Λ, and similarly y
|z| given by the

tangent of the constant leading edge dihedral angle. Note that a dihedral angle does not mean
so much a rotation of the half-wing about the root chord as a shear, since the semispan is not
measured along the wing itself but rather on its projection in the zx-plane, and the sections are
still taken as parallel to the xy-plane of symmetry. In Octave, if z holds a row-vector of spanwise
stations, the x- and y-coordinates of the points along the leading edge can be computed from
the z-coordinate with:

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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lex = tan (sweep) * abs (z);
ley = tan (dihedral) * abs (z);

The third step is to draw chords back from the leading edge, roughly in the positivex-direction
parallel to the root chord, but twisted by an angle linearly varying along the semispans. Also the
length of the chords (which are measured along them rather than their projections) are allowed
to vary similarly. The chord lengths are computed with (the verification of this formula is left
as Exercise 14.4.2):

c = 2 * (1 - 2 * abs (z) * (1 - taper)) / (1 + taper) / AR;

but the laying out of the chord lines themselves is deferred since they will be bent into the
camber lines.

The fourth step is to trace the camber line for each of the chords. Let xi be a coordinate
(or rather a column vector of values of this coordinate) running from zero to one along the
universal chord, and assume the user has provided a function camber to compute the (normal-
ized) camber line ordinate as a function of this. Then the normalized universal camber line is
computed with:

meanline = [xi, camber(xi)];

and this is twisted and tapered with

c = 2 * (1 - 2 * abs (z) * (1 - taper)) / (1 + taper) / AR;
twists = 2 * twist * abs (z);
dx = meanline * ([c; c] .* [cos(twists); -sin(twists)]);

Finally, these sectional camber lines are added to the leading edge (suitably replicated using
repmat), in the last three lines of the complete Listing 14.1.

This system only permits geometric rather than aerodynamic twist, since the camber line is
the same function of chord in each section, while the local chord does have its own inclination;
generalization to let the camber function also depend on z would not be difficult, but is not
required to deal with the preliminary examples presented here.

14.1.1 Plotting the Mesh of a Mean Lifting Surface

A quick check of the correctness of the implementation of Listing 14.1 and of the input in
any particular application can be made by plotting a set of three third-angle orthographic
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Listing 14.1 meshwing: construct a rectangular grid for a lifting surface.

function [x, y, z] = meshwing (AR, nchord, nspan, sweep, ...
dihedral, taper, twist, ...
camber)

z = linspace (0.5, -0.5, nspan + 1);
lex = tan (sweep) * abs (z);
ley = tan (dihedral) * abs (z);
xi = linspace (0, 1, nchord + 1)’;
meanline = [xi, camber(xi)];
c = 2 * (1 - 2 * abs (z) * (1 - taper)) / (1 + taper) / AR;
twists = 2 * twist * abs (z);
dx = meanline * ([c; c] .* [cos(twists); -sin(twists)]);
dy = meanline * ([c; c] .* [sin(twists); +cos(twists)]);
x = repmat (lex, size (xi)) + dx;
y = repmat (ley, size (xi)) + dy;
z = repmat (z, size (xi));

projections of the spanwise and chordwise lines, as shown in Listing 14.2, the former being the
columns of the arrays returned by meshwing and the latter being the rows, and so the columns
of the transposes. Alternatively, one could use plot3 to obtain axonometric projections. Flat
wings (without dihedral, twist, or camber) don’t have useful yz elevations or xy end elevations,
so only their plan is drawn. Note that meshwing plot deliberately does not draw the axes
to scale since the default unequal stretching tends to give a clearer picture. As an example,
Figure 14.1 was produced by Listing 14.3.

Listing 14.2 meshwing plot: draw three third-angle orthographic projections of a lifting surface
mesh produced by meshwing of Listing 14.1.

function meshwing_plot (x, y, z)
Y = [min(y(:)), max(y(:))];
if (Y(2) - Y(1) < eps) % flat

plot (x, z, ’ko-’, x’, z’, ’kx-’) % planform
xlabel (’x’)
ylabel (’z’)

else % third-angle ortho.
subplot (2, 2, 1), plot (z, x, ’ko-’, z’, x’, ’kx-’)
ylabel (’x’)

subplot (2, 2, 3), plot (z, y, ’ko-’, z’, y’, ’kx-’)
xlabel (’z’), ylabel (’y’)

subplot (2, 2, 4), plot (x, y, ’ko-’, x’, y’, ’kx-’)
xlabel (’x’)

end%if
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Figure 14.1 Third-angle orthographic projections of the mesh of the mean surface of a swept tapered
twisted uncambered wing with dihedral, produced by Listing 14.3

Listing 14.3 Script used to produce Figure 14.1, demonstrating Listings 14.1 and 14.2.

[x, y, z] = meshwing (6.0, 4, 20, pi/12, ...
pi/48, 0.5, pi/24, ...
@ (x) 0*x);

meshwing_plot (x, y, z);

14.2 A Vortex Lattice Method

A vortex lattice method consists of representing the wing with a finite rectangular array of
horseshoe vortices with strengths determined by enforcing impermeability by collocation at
an equal number of points. There are several variants of the method, as described in the
references in the Further Reading section at the end of the chapter, but here we describe a
simple effective method, well suited to implementation in Octave.

The layout follows directly from the meshing of the wing implemented in Section 14.1.
The mean surface of the wing is now divided into a lattice of quadrilaterals. One horseshoe is
placed on each. Both trailing vortices are taken in the i direction, which is assumed to be that
of the flow off the trailing edge—far downstream it must be parallel to the oncoming stream
but it is the nearer parts of the wake which most influence the downwash on the lifting surface
and at small angles of incidence it makes little difference anyway.
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Listing 14.4 meshwing vlm: set up the collocation points and bound vortex segment vertices for
the vortex lattice method, using lattice points from meshwing in Listing 14.1.

function [r, r1, r2] = meshwing_vlm (x, y, z)
xyz = permute (cat (3, x, y, z), [3, 1, 2]);
r1 = (3*xyz(:,1:(end-1),1:(end-1)) ...

+ xyz(:,1:(end-1),2:end) ) / 4;
r1 = (3*xyz(:,1:(end-1),1:(end-1)) ...

+ xyz(:,2:end,1:(end-1)) ) / 4;
r2 = (3*xyz(:,1:(end-1),2:end) + xyz(:,2:end,2:end)) / 4;
r = ((r1 + r2)/2 + xyz(:,2:end,1:(end-1)) ...

+ xyz(:,2:end,2:end) ) / 3;

As in the two-dimensional lumped vortex method of Chapter 7 and the improved discrete
horseshoe model of Section 13.3, the bound vortex segment is laid along the quarter-line. This
is found by linearly interpolating one quarter of the way from each of the two forward points
towards the two aft points. That is, in the three coordinate arrays returned by meshwing of
Listing 14.1, the ijth element refers to the ith chordwise position (counted from leading to
trailing, with x increasing) and the jth spanwise position (counted from left edge to right edge,
with z decreasing). Thus the ijth panel has ri,j and ri+1,j as its leading and trailing left points
and ri,j+1 and ri+1,j+1 as its leading and trailing right points, and its bound vortex segment
runs from

r
(1)
ij ≡ 3ri,j + ri+1,j

4

to

r
(2)
ij ≡ 3ri,j+1 + ri+1,j+1

4
.

Again as in Chapter 7 and Section 13.3, the collocation point is placed at the three-quarter
point. This is computed by going two-thirds of the way from the midpoint of the bound vortex
(just computed) to the midpoint of the trailing edge of the panel; i.e.

r
(c)
ij ≡

r
(1)
ij

+r
(2)
ij

2 + ri+1,j + ri+1,j+1

3

If the arrays x, y, and z are as computed by meshwing in Listing 14.1, then the colloca-
tion points and bound segment vertices can be computed using these formulae, as shown in
Listing 14.4.

14.2.1 The Vortex Lattice Equations

The vortex lattice equations are equal in number to the horseshoes and to the collocation points;
they are that the lifting surface be impermeable, i.e. that the normal component of the sum of
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the velocities induced by all the horseshoes balances the normal component of the free-stream.
Now it will be convenient in solving the problem to store the vortex strengths in a column vector
rather than the two-dimensional array reflecting their geometrical layout, so the horseshoes
are renumbered with a single index rather than two, e.g. let the index J of the J th horseshoe,
being previously described as the ijth, be given by

J = i + (j − 1)nchord,

but hereafter it will be referred to in lowercase again as j. Then, if

• q∞ = q∞(i cos α + j sin α) is the free-stream,
• n̂i is the unit normal to the lifting surface at the ith collocation point, and
• qijΓj the velocity induced at the ith collocation point by the jth horseshoe vortex, which

has strength Γj ,

then the velocity at the ith collocation point is

q∞(i cos α + j sin α) +
n∑

j=1

qijΓj,

and the vanishing of the normal component of this is

n∑
j=1

(n̂i · qij)Γj = −q∞(n̂i · i cos α + n̂i · j sin α),

i.e.

n∑
j=1

aijΓj = bi,

where the matrix coefficients are

aij = n̂i · qij

and the elements of the right-hand side vector are

bi = −q∞(n̂i · i cos α + n̂i · j sin α).

If the wing is flat in the zx-plane then n̂i = j for all i, and if the incidence is small these
coefficients are approximately

aij = vij

and the elements of the right-hand side vector are

bi = −q∞α.
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This is the form that we will work with here. Note its similarity to the matrix–vector Equation 7.4
of the two-dimensional lumped vortex method.

14.2.2 Unit Normals to the Vortex-lattice

In the general case next we should construct a normal vector to the panel at the collocation
point so as to enforce the impermeability condition there, but in the examples to follow we
shall, for simplicity, only consider flat lifting surfaces; i.e. as generated by Listing 14.1 with
zero dihedral, twist, and camber. As a hint for further work in this direction, a vector normal
to a surface can be constructed from the cross-product of two nonparallel vectors tangent to it;
e.g. chordwise and spanwise vectors, or the diagonals of the quadrilateral.

14.2.3 Spanwise Symmetry

Although both left and right halves of the wing have been constructed symmetrically in List-
ing 14.1, and it is simple to pass the whole mesh of points to Listing 14.4 to compute the
locations of the bound vortices and collocation points, the usual spanwise symmetry should
be exploited before solving for the vortex strengths.

A simple way to do that using the above routines is to assemble one matrix which gives the
influence of the (say) right horseshoes on the right collocation points and then another for the
influence of the left horseshoes on the same right collocation points. Then knowing that the
strengths of the left horseshoes will just be the same as their right mirror images, this second
influence matrix can be rearranged and added to the first.

14.2.4 Postprocessing Vortex Lattice Methods

The first result required from a vortex lattice method is its estimate of the lift. This is most
easily and directly calculated by applying a slight three-dimensional generalization of the
Kutta–Joukowsky theorem to each of the bound vortex segments. That is, each bound vortex
segment of strength Γi and spanwise extent bi contributes an amount ρq∞Γibi to the total lift
force and so

L = ρq∞
∑

i

Γibi

CL ≡ L
1
2ρq2∞bc̄

= 2
∑

i

(
Γi

q∞b

) (
bi

b

)
. (14.1)

Note that it is only the spanwise extent of the bound vortex segment that contributes, rather
than its actual length. The chordwise component of its length, due to sweep, is too parallel
to the free-stream to induce any force in the linear approximation. The y-component, due to
dihedral, induces a inboard side-force, but this will be cancelled by the equal and opposite
contribution from the other wing in a spanwise symmetric configuration and so not pursued
further here.
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Figure 14.2 Planform of the flat wing with = 5, taper ratio 0.6, and Λc/4 = 45◦, as considered by
Campbell (1951), here generated from Listings 14.5 and 14.2

14.3 Examples of Vortex Lattice Calculations

14.3.1 Campbell’s Flat Swept Tapered Wing

In an early report on the use of the vortex lattice method, Campbell (1951, tables II, III)
presented detailed results of a vortex lattice calculation for a single row of twenty yawed
horseshoe vortices a wing with taper ratio 0.6, = 6, and sweep measured at the quarter-
chord of Λc/4 = 45◦, as shown in Figure 14.2 which was produced by the call meshwing plot

(x,y,z) in Listing 14.5.
With the machinery developed in Chapters 13 and 14, this example can now easily be

replicated, e.g. as shown in Listing 14.5. Note that in the implementation of the lift coefficient
Equation (14.1):

• the leading-edge sweepback angle Λ is computed in terms of that at the quarter-chord, Λc/4,
using a simple trigonometic formula (see Exercise 14.4.1)

• the lift coefficient has a leading factor 4 rather than 2 to account for the equal contribution
of the wing omitted by symmetry; and

• the dimensionless spanwise extent of each bound vortex is bi

b
= 1

n
.

The results are shown in Listing 14.6, with the vortex strengths multiplied by two to agree
with the slightly different nondimensionalization used by Campbell (1951). The original results
are reproduced in Table 14.1. The slight differences, occurring typically in the third decimal
place, are most likely due to the higher round-off error the computers of Campbell (1951)
would have incurred by retaining less precision in the intermediate steps of the solution of the
linear system of equations; nevertheless, the final lift coefficient–incidence slopes, 3.548 and
3.563, agree to within 0.5%.
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Listing 14.5 vlm demo campbell.m: Octave code to demonstrate Listing 14.4 and calculate the
vortex strengths and lift–incidence slope for a flat wing with = 6, taper ratio 0.6, and Λc/4 = 45◦

quarter-chord sweep using 1 × 20 horseshoes, chordwise by spanwise; see Figure 14.2 and Listing 14.6
for output.

AR = 6.0;
taper = 0.6;
sweep = atan ((1-taper)/(1+taper)/AR + tan (pi/4));
n = 2 * 10;
[x, y, z] = meshwing (AR, 1, n, sweep, 0, taper, ...

0, @ (z) 0*z);
meshwing_plot (x, y, z);
[r, r1, r2] = meshwing_vlm (x, y, z);
ihat = repmat ([1; 0; 0], 1, n);
qrr = vortex_horseshoe (r(:,n/2+1:n), ...

r1(:,n/2+1:n), ...
r2(:,n/2+1:n), ...
ihat(:,1:n/2) );

vrr = squeeze (qrr(2,:,:));
qrl = vortex_horseshoe (r(:,n/2+1:n), ...

fliplr (r1(:,1:n/2)), ...
fliplr (r2(:,1:n/2)), ...
ihat(:,1:n/2) );

vrl = squeeze (qrl(2,:,:));
Gamma = (vrr + vrl) \ -ones (n/2, 1);
disp (reshape (2 * flipud (Gamma), n/4, 2))
CLa = 4 * AR * sum (Gamma) / n

Listing 14.6 Octave output for Listing 14.5.

0.38735 0.64522
0.50738 0.65563
0.56634 0.65848
0.60276 0.65224
0.62786 0.63562

CLa = 3.5633

Table 14.1 Vortex strengths
reported for Figure 14.2

2Γ

bq∞α

2Γ

bq∞α

0.3860 0.6429
0.5049 0.6542
0.5634 0.6578
0.5936 0.6516
0.6241 0.6368

Source: after Campbell (1951,
table III).



218 Theory of Lift

14.3.2 Bertin’s Flat Swept Untapered Wing

In his presentation of the vortex lattice method, Bertin (2002) carried out in even more detail
a very similar example for a flat untapered wing with = 5 and Λ = 45◦. One times eight
horseshoes were taken along the chord and span, with symmetry again assumed so only the
strengths of the four right horseshoes were calculated explicitly. This example can be repeated
here with Listing 14.7, using exactly the same code from Listing 14.5 used to reproduce the
example of Campbell (1951) with just the variation of the first four lines defining the input.

For further demonstration of the use of the vortex horseshoe function of Listing 13.8
in vortex lattice methods, the same calculation without exploiting spanwise symmetry is per-
formed with the code shown in Listing 14.8. Of course the answers for vortex strengths and lift
coefficients, as given in Listing 14.9, are indistinguishable. Bertin (2002) quotes the four vor-
tex strengths (normalized by bq∞α, as here) as 4π times 0.0273, 0.0287, 0.0286, and 0.0250;
these agree to their three significant figures with the output of the present program.

Listing 14.7 First four lines of vlm demo bertin, for reproducing Bertin’s vortex lattice example;
the rest is as in Listing 14.5.

AR = 5.0;
taper = 1.0;
sweep = pi/4;
n = 2 * 4;

Listing 14.8 Redoing Bertin’s example from Listing 14.7 (which is invoked here as
vlm demo bertin) without exploiting spanwise symmetry.

vlm_demo_bertin
q = vortex_horseshoe (r(:,:), ...

r1(:,:), ...
r2(:,:), ...
ihat );

v = squeeze (q(2,:,:));
Gamma = v \ -ones (n, 1);
disp (Gamma(n/2+1:n) / 4 / pi)
CLa = 2 * AR * sum (Gamma) / n

Listing 14.9 Output of Listing 14.8, for Bertin’s vortex lattice method example.

0.027302
0.028733
0.028636
0.024962

CLa = 3.4442
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14.3.3 Spanwise and Chordwise Refinement

The vortex lattice is easily refined spanwise by increasing the third argument of meshwing from
20 in Listing 14.5. Chordwise refinement isn’t much more difficult and is demonstrated here
in Listing 14.10 for two by eight lattice panels, following the pattern of Listing 14.8 and not
exploiting symmetry. The exploitation of symmetry requires a small amount of bookkeeping
with multidimensional array indices and is left as Exercise 14.4.5. The increasing refinement
does not much affect the final answer for the slope of the lift coefficient with respect to incidence,
going from 3.4442 to 3.4389 to 3.4369 as the number of vortices chordwise increases from
one to three, but it does begin to illustrate the chordwise distribution of lift loading, as shown
in Figure 14.3, generated as in Listing 14.11. Notice that the chordwise lift loading begins
to qualitatively resemble the exact two-dimensional distribution obtained for a flat plate from
conformal mapping in Equation (5.13) and plotted in Figure 5.4.

Listing 14.10 vlm demo bertin2: extending Listing 14.8 by doubling the lattice chordwise.

AR = 5.0;
taper = 1.0;
sweep = pi/4;
nchord = 2;
nspan = 8;
[x, y, z] = meshwing (AR, nchord, nspan, sweep, ...

0, taper, 0, @ (z) 0*z);
meshwing_plot (x, y, z);
[r, r1, r2] = meshwing_vlm (x, y, z);
ihat = repmat ([1; 0; 0], 1, nchord * nspan);
q = vortex_horseshoe (r(:,:), r1(:,:), r2(:,:), ihat);
v = squeeze (q(2,:,:));
Gamma = v \ -ones (nchord * nspan, 1);
CLa = 2 * AR * sum (Gamma) / nspan

Listing 14.11 Octave code to produce the upper drawing in Figure 14.3; the vlm demo bertin2
referred to is Listing 14.10.

vlm_demo_bertin2

plot3 (z, x, y, ’k-’, z’, x’, y’, ’k-’)
hold (’on’)
rv = (r1 + r2) / 2;
quiver3 (rv(3,:), rv(1,:), rv(2,:), ...

0*r(3,:), 0*r(1,:), Gamma, ’ko-’)
xlabel (’z’), ylabel (’x’), zlabel (’y’)
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Figure 14.3 The aerodynamic force vectors acting on the midpoints of the bound vortex segments
of the lattice for two (above, as plotted by Listing 14.11) and three (below) panels chordwise. The true
inclination rotates downstream with incidence but is drawn here in the vertical limit approached for α ∼ 0

14.4 Exercises

1. The sweep angle Λ is defined above in terms of the leading edge; however some author-
ities (Campbell 1951; Bertin 2002, figure 7.23) use the quarter-chord line, though not all
(Belotserkovskii 1967; Bertin 2002, figures 7.24 and 7.31).

Verify that the leading edge sweep Λ is given in terms of the quarter-chord sweep Λc/4 by

Λ = arctan

{
1 − λ

(1 + λ)
+ tan Λc/4

}
,

for taper ratio λ and aspect ratio .
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2. Verify that the chord c in the section z of a linearly tapering wing is given in terms of the
span b, aspect ratio , and taper ratio λ by

c

b
=

2
{

1 − 2|z|
b

(1 − λ)
}

(1 + λ)
.

3. Modify Listing 14.1 to mesh the upper and lower surfaces of a wing rather than its mean
surface. Work by analogy with the two-dimensional case in Section 8.1.2; i.e. assume
the caller will provide a function giving the thickness as a function of position along the
chord. (This is not required for a vortex-lattice method but might generate input for a
three-dimensional panel method.)

4. Write an alterative lifting-surface mesh generator to that of Exercise 3 which takes the
universal wing section in the form of an array of points, as in Table 1.1 or in the UIUC
(n.d.) Airfoil Database, and extrudes them left and right along the span, accounting for
sweep, dihedral, taper, and twist.

5. Rewrite Listing 14.10 to exploit spanwise symmetry in the same way that Listing 14.5 does.

6. Having in Exercise 5 fixed Listing 14.10 to exploit spanwise symmetry, investigate the
convergence of the lift coefficient with the refinement of the vortex lattice along the lines
of Figure 12.2, except that now there are two independent variables for the discretization:
the number of vortices chordwise and spanwise.

Does chordwise or spanwise refinement have more effect on the predicted lift–incidence
slope? For a given number of unknowns, what is the optimal choice of chordwise and
spanwise refinement? Say for definiteness that 128 horseshoes shall be used; compare
1 × 128, 2 × 64, 4 × 32, . . . , chordwise–spanwise lattices. (Note that if this optimum is
found with respect to lift–incidence slope, it might not be the optimum for other measures,
such as those related to the pitching moment, and often vortex lattice methods are used to
predict those too.)

14.5 Further Reading

A brief early history of the vortex-lattice method was given by DeYoung (1976a) along with
commentary, analysis, and extensions by DeJarnette (1976), Hough (1976), and DeYoung
(1976b). Anderson (2007) gives an overview of the method, but no details or quantitative ex-
amples; he defers to Bertin and Smith (1979) for ‘a worked example that clearly illustrates the
salient points of the technique’. The vortex lattice method described in the present text is essen-
tially the one of Campbell (1951) (using the ‘yawed’ bound vortex segments), Belotserkovskii
(1967) (who called them ‘oblique’), and Bertin (2002). All three of these last references give
thoroughly detailed elementary descriptions of the method, as do Gray and Schenk (1953),
who used rectangular (rather than yawed/oblique) horseshoe vortices.

Educational FORTRAN programs for vortex-lattice methods are listed by Moran (2003) for
a flat rectangular wing and by Katz and Plotkin (2001) for a more general case. A program
intended for serious use is listed by Margason and Lamar (1971). More recent implementations
of the vortex lattice method, much more elaborate than that presented here, include LinAir
Durstan (1993), TORNADO (Melin 2000), and AVL (Drela and Youngren n.d.).
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14.5.1 Three-dimensional Panel Methods

The natural combination of the ideas of the vortex lattice methods developed in Chapters 13–14
with the two-dimensional panel methods of Chapter 8 is a three-dimensional panel method.
There are numerous possibilities for this, but a simple and effective idea is to replace the infinite
line vortices of Chapter 8 with horseshoes of finite breadth and then stack a number of these
panel models along the span, extruding the segments of the boundary in two dimensions into
quadrilaterals in three; this plan is described in detail by Hess (1972). For references to this
and several variants, see Paraschivoiu (1998) and Katz and Plotkin (2001), who also provide
a FORTRAN implementation.
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Viscous Flow

The models based on ideal flow discussed thus far have done surprisingly well in explaining
and quantitatively predicting the generation of lift by two-dimensional aerofoils and three-
dimensional wings; however, that discussion has had to remain within certain bounds which
it was not able to explain. No drag was predicted in two dimensions, which is at odds with
experience. An important source of two-dimensional drag is skin friction which arises from
viscosity. Further, the ideal theories have been restricted to small angles of incidence because
of the phenomenon of stall. Stall arises when the flow fails to follow the contour of the aerofoil
into regions of higher pressure because near the wall the air is retarded by viscous skin friction.
Both these important aerodynamical effects can be explained by the large effects that even a
small amount of viscosity can have on a flow in the vicinity of a solid wall. This extension to
ideal aerodynamics is called boundary layer theory and is introduced in Chapters 15–17.

15.1 Cauchy’s First Law of Continuum Mechanics

In the derivation in Chapter 2 of Euler’s Equation (2.6), which governs the flow of a perfect
fluid, we began from the principle that the rate of change of momentum of a particle is equal to
the resultant of the forces acting on it. These forces can be external, such as gravity, or internal.

We assume that the fluid is such that internal forces are only transmitted by contact, rather
than by action at a distance. Therefore, they act on a fluid particle only through its surface;
i.e. as stresses. This was the case for the pressure forces in a perfect fluid, pressure being an
isotropic stress, but here we consider more general fluids; in particular, we relax the assumption
that the fluid cannot sustain shearing stresses.

Stress is a second-order tensor. Just as velocity, a vector (i.e. a first-order tensor), is a quantity
with magnitude and direction, stress has a magnitude and two directions. If we specify (i) the
orientation of a surface and (ii) a particular direction, the stress gives us the component of
force in direction (ii) from the internal fluid forces acting through a surface with orientation (i).
Stresses are described in a coordinate system with a double set of components; thus σxy gives
the component of force (per unit area) acting on a surface perpendicular to the x-axis and
acting in the y-direction. Another way of thinking about this is that the stress is a vector-valued
function of direction: given one direction (the orientation of a surface element), it gives a
vector, being the resultant force from the internal fluid interactions across the surface.

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Stresses are conventionally reckoned positive in tension (although this is not universal).
If we consider again the fluid initially occupying an infinitesimal rectangle in two dimensions

from Figure 2.3, there we had that the only contributions to the force in the x-direction were

from the pressure on the left face pδxδy and from the right face −
(
p + ∂p

∂x
δx

)
δy, giving a

resultant − ∂p
∂x

per unit area. For a perfect fluid, the Cartesian components of the stress in two
dimensions are simply given by

σxx = −p σxy = 0

σyx = 0 σyy = −p,

or in matrix form [
σxx σxy

σyx σyy

]
= −p

[
1 0

0 1

]
. (15.1)

The appearance of the identity matrix here is equivalent to the statement above that pressure
stresses are isotropic.

For a more general fluid, with a general anisotropic stress state, the contributions to the
x-component of force on an infinitesimal two-dimensional particle are −σxxδy from the left

face,
(
σxx + ∂σxx

∂x
δx

)
δy from the right face, −σyxδx from the bottom, and

(
σyx + ∂σyx

∂y

)
δx

from the top. The component of the resultant in the x-direction is therefore

(
∂σxx

∂x
+ ∂σyx

∂y

)
δxδy.

Similarly, stresses acting over the four faces produce a component of force

(
∂σxy

∂x
+ ∂σyy

∂y

)
δxδy

in the y-direction. Notice the pattern: the first index of the stress component matches the
direction of differentiation while the second matches the direction of action of the resulting
force.

Replacing the pressure terms in the Euler Equations (2.6) with these more general stress
terms gives

ρ
Dq

Dt
= −∇P + ρf (15.2)

or ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ∂σxx

∂x
+ ∂σyx

∂y
+ ρfx

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= ∂σxy

∂x
+ ∂σyy

∂y
+ ρfy.

These are (the two-dimensional form of) Cauchy’s First Law of continuum mechanics.
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15.2 Rheological Constitutive Equations

To apply Cauchy’s First Law of continuum mechanics to actual problems, we need a relation
between the stress and the motion of the material; such a relation is called a rheological
equation of state or a rheological constitutive equation.

15.2.1 Perfect Fluid

For a perfect fluid, the stress is given by Equation (15.1), and substituting Equation (15.1) into
Equation (15.2) leads us back to the Euler Equation (2.6).

15.2.2 Linearly Viscous Fluid

Aerodynamics, at least at low and moderate speeds, is concerned with fluids that are almost
perfect, but imperfect in that they have a slight viscosity. It is convenient then to write the stress
as a perfect fluid part and an extra part, called the deviatoric stress:

[
σxx σxy

σyx σyy

]
= −p

[
1 0

0 1

]
+

[
τxx τxy

τyx τyy

]
.

This split is rendered unique by requiring τxx + τyy = 0 (i.e. that the trace of the deviatoric
stress is zero).

To accord with the elementary definition of viscosity, the shear component τyx of the devi-
atoric stress should reduce to

τyx = µ
∂u

∂y

in a one-dimensional shear flow q = u(y)i. Here, as in Section 1.4.2, µ is the coefficient of
viscosity.

The proper generalization of this to two dimensions is

[
τxx τxy

τyx τyy

]
= µ


 2 ∂u

∂x

(
∂u
∂y

+ ∂v
∂x

)
(

∂v
∂x

+ ∂u
∂y

)
2 ∂v

∂y


 , (15.3)

which is called the linear viscous stress tensor. The derivation of Equation (15.3) is beyond
the scope of this course; see the suggestions for further reading at the end of the chapter.

Notice that the stress tensor is symmetric: τxy = τyx. That the stress tensor is generally
symmetric is a consequence of Cauchy’s Second Law of continuum mechanics. Notice too
that τxx + τyy is proportional to the divergence and does vanish, as required.
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15.3 The Navier–Stokes Equations

Once the linear viscous stress tensor as given by Equation (15.3) is introduced into Cauchy’s
Equation (15.2), we obtain the (two-dimensional) Navier–Stokes equations. The x-component
is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fx = 1

ρ

(
∂σxx

∂x
+ ∂σyx

∂y

)

= 1

ρ

(
∂

∂x

{
−p + 2µ

∂u

∂x

}
+ µ

∂

∂y

{
∂v

∂x
+ ∂u

∂y

})

= − 1

ρ

∂p

∂x
+ µ

ρ

(
∂

∂x

{
2
∂u

∂x

}
+ ∂

∂y

{
∂v

∂x
+ ∂u

∂y

})

= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2 + ∂2u

∂x2 + ∂2v

∂x∂y
+ ∂2u

∂y2

)

= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2 + ∂

∂x

{
∂u

∂x
+ ∂v

∂y

}
+ ∂2u

∂y2

)
,

where we have introduced the coefficient of kinematic viscosity ν ≡ µ
ρ

, from Equation (1.6).
Now, the expression in braces here is just the two-dimensional divergence, and so vanishes

for any flow of a fluid of uniform density (any incompressible fluid), in which case

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fx = − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2 + ∂2u

∂y2

)
. (15.4a)

Similarly the y-component of the Navier–Stokes equation for an incompressible fluid is

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− fy = − 1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2 + ∂2v

∂y2

)
. (15.4b)

These must be supplemented with the conservation of mass Equation (2.3)

∂u

∂x
+ ∂v

∂y
= 0,

just as the Euler equation is.

15.4 The No-Slip Condition and the Viscous Boundary Layer

If the fluid is only slightly viscous, so that ν is small, Equation (15.4) is close to the Euler
Equation (2.6) in the sense that they only differ by a term that must be small as it contains the
small coefficient ν as a factor.

The big difference though is that with the inclusion of the viscous terms, the equations are
second-order in the velocity rather than first, and therefore require two boundary conditions on
the velocity instead of one. For the inviscid fluid, the usual condition at a solid is impermeability;
this still has to hold for a viscous fluid. The new condition is zero slip: if the fluid has any
viscosity at all, and so can sustain some shearing stress, then the tangential component of
velocity must be continuous across a solid–fluid interface.
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This means that although the Euler and Navier–Stokes equations are close for slightly viscous
fluids, the flow of an inviscid and a slightly viscous fluid in the same geometry might be quite
different, as the slightly viscous fluid has to adhere to all solid boundaries whereas the inviscid
fluid can slip over them freely.

Since the viscous stress is proportional to the velocity gradient, the action of viscosity is
to oppose or reduce velocity gradients. If the fluid is very viscous, as molasses and oils are,
velocity gradients are quickly eliminated, or are only sustained by the application of significant
external tractions. On the other hand, if the fluid is only slightly viscous, as air and water are,
steep velocity gradients are possible. Thus, given a geometry, the flow of a slightly viscous
fluid might be almost the same as that of an inviscid fluid almost everywhere with the exception
of a thin layer along the no-slip boundaries, within which the component of velocity tangential
to the solid surface steeply changes from zero (at the wall) to a value similar to that prevailing
near the wall in the inviscid fluid. Such a layer is called a viscous boundary layer.

The difference between a fluid with zero viscosity and one with some finite viscosity is
illustrated by a special example in Section 15.6, below.

15.5 Unidirectional Flows

The Navier–Stokes Equation (15.4) is very difficult to solve, in general, even numerically;
however, some progress can be made for unidirectional flows, i.e. flows of the form

u = u(y, t)

v = 0.

The fact that u is independent of x is a necessary consequence of the incompressibility
Equation (2.3). With these restrictions on the velocity components, the y-component of the
Navier–Stokes equation reduces to

−fy = − 1

ρ

∂p

∂y
,

so that in the absence of external forces, the pressure is independent of y. Further, since no
value of x is different to any other, there is no reason to suppose that the pressure shouldn’t be
anything other than a constant, or perhaps that the pressure gradient in the x-direction should
be constant (in which case it can be included in fx). The x-component reduces to

∂u

∂t
− fx = ν

∂2u

∂y2 . (15.5)

Notice that the nonlinear acceleration terms have disappeared; this makes the equation much
easier to solve, as demonstrated in Sections 15.5.1 and 15.6.

15.5.1 Plane Couette and Poiseuille Flows

For example,

u = Uy

h
(15.6)
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describes steady flow between a stationary plate at y = 0 and a plate at y = h sliding in the
direction of increasing x with speed U. This is called plane Couette flow, and is important in
the theory of lubrication.

As a second example,

u = U(h2 − y2) (15.7)

satisfies the unidirectional Navier–Stokes equation if the external force is f = 2νUi. This is
called plane Poiseuille flow, and describes the gravity-driven flow through a vertical fissure.

15.6 A Suddenly Sliding Plate

Consider a fluid of kinematic viscosity ν occupying the half-space y > 0 above a solid plane
y = 0 and free from any external forces. Assume that the fluid is initially stagnant but that
at t = 0, the solid plane begins to move parallel to itself in the direction of increasing x with
constant speed U.

If we assume that v = 0 in the fluid for all time, the remaining component u has to satisfy
the initial–boundary value problem

∂u

∂t
= ν

∂2u

∂y2 (15.8a)

u(0, t) = U (t > 0) (15.8b)

u(∞, t) ∼ 0 (t > 0)

u(y, 0) = 0 (y > 0).

Of course, if the fluid were perfect, we could drop the no-slip condition implied by
Equation (15.8b) and then u ≡ 0 would be a solution; the plate could freely slip under the
fluid without disturbing it.

15.6.1 Solution by Similarity Variable

Although this problem can be solved by separating variables, since there is no explicit length
scale, it seems possible that the two independent variables might be combined into one. This
indeed works. The technique is called similarity transformation. It is something like a powerful
version of dimensional analysis.

To begin with, we have u depending on y, t, U, and ν. The obvious choice for nondimen-
sionalizing u is

u∗ = u

U
,

in terms of which the problem becomes

∂u∗

∂t
= ν

∂2u∗

∂y2 (15.9)

u∗(0, t) = 1 (t > 0)

u∗(∞, t) ∼ 0 (t > 0)

u∗(y, 0) = 0 (y > 0).



Viscous Flow 231

Now we have u∗ depending on y, t, and ν, which is three quantities involving two dimensions:
length and time. (Mass is absent.) Thus, Buckingham’s �-Theorem states that we should be
able to eliminate two of these and have u∗ as a function of a single variable. This is very
appealing, as it would mean the partial differential Equation (15.9) would have to be reduced
to an ordinary differential equation.

Let’s begin using dimensional analysis, as in Section 1.5.1, with y[=]m. We have t[=]s and
ν[=]m2/s, which means νt[=]m2 and

√
νt[=]m. Therefore,

η ≡ y

δ(t)
(15.10)

is a dimensionless coordinate with the time-dependent length scale

δ(t) ≡ 2
√

νt.

The numerical factor 2 here isn’t necessary, but is introduced for later convenience.
Alternatively, if we began instead with Equation (15.10), then the differential operators

become

∂

∂t
= ∂η

∂t

d

dη
= −y

{δ(t)}2

dδ(t)

dt

d

dη

∂2

∂y2 =
(

∂η

∂y

d

dη

) (
∂η

∂y

d

dη

)
=

(
1

δ(t)

d

dη

) (
1

δ(t)

d

dη

)
= 1

{δ(t)}2

d2

dη2

and the differential Equation (15.9) becomes

−y

{δ(t)}2

dδ(t)

dt

du∗

dη
= ν

{δ(t)}2

d2u∗

dη2(−y

ν

dδ(t)

dt

)
du∗

dη
= d2u∗

dη2 .

This works provided y and t don’t appear explicitly (only via the similarity variable η); this
depends on the factor in parentheses:

−y

ν

dδ(t)

dt
= −δ(t)η

ν

dδ(t)

dt

= −η

ν

d
[

1
2 {δ(t)}2

]
dt

;

and will occur if

d
[

1
2 {δ(t)}2

]
dt

= ν × const.

1

2
{δ(t)}2 = νt × const.

δ(t) ∝ √
νt,
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and so again the form of Equation (15.10) is indicated. With Equation (15.10), the governing
partial differential Equation (15.9) is indeed reduced to an ordinary differential equation:

−2η
du∗

dη
= d2u∗

dη2 . (15.11)

Note that the initial condition at t = 0 and the far-field condition at y → ∞ both correspond
to η → ∞, so it’s necessary that u∗ ∼ 0 in both cases, which it does; otherwise the method
wouldn’t be applicable. Thus the two boundary conditions for Equation (15.11) are

u∗(0) = 1

u∗(∞) ∼ 0.

Although the ordinary differential Equation (15.11) is second-order in u∗, it is only first-order
in du∗

dη
. It can therefore be integrated easily enough to get:

d2u∗/dη2

du∗/dη
= −2η

d

dη
ln

(
du∗

dη

)
= −2η

ln

(
du∗

dη

)
= −η2 + const.

du∗

dη
= const. × e−η2

u∗ = const. ×
∫

e−η2
dη.

To match the boundary condition at infinity, we choose the limits of integration as

u∗(η) = const. ×
∫ ∞

η

e−t2 dt,

and then since ∫ ∞

0
e−t2 dt =

√
π

2
,

we must have the constant as 2/
√

π; thus

u∗(η) = 2√
π

∫ ∞

η

e−t2 dt.

This function arises so often, in applications ranging from thermal conduction to statistics, that
it has a special name: the complementary error function:

erfc η ≡ 2√
π

∫ ∞

η

e−t2 dt.
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Figure 15.1 Tangential velocity profile on a suddenly started sliding infinite plate in a viscous fluid, as
given by Equation (15.12), in terms of the similarity variable defined by Equation (15.10)

It is built in to most modern scientific programming languages, including Octave. Using erfc,
the solution is

u∗(η) = erfc η (15.12)

or in dimensional terms

u(y, t) = U erfc
y

2
√

νt
.

The velocity profile is plotted in Figure 15.1.

15.6.2 The Diffusion of Vorticity

The important thing to observe in the similarity solution is not so much the shape of the
tangential velocity profile but the fact that if we consider the distance from the plate at which
fluid is moving at, say, half the velocity of the plate, this distance increases with the square-root
of the time.

Since for η > 1 (or 2), erfc η < 0.16 (or 0.005), we can more or less say that the fluid
outside the layer 0 < η < 1 (or 2) is unaffected by the slipping of the plate and hence is the
same whether or not the fluid is viscous. In terms of y this condition is

y < δ(t)

(or 2δ). Thus we have a layer of thickness one or two δ(t) along the boundary which is affected
by viscosity. As the viscosity tends to zero, the layer vanishes, and outside the layer the fluids
acts as though it were inviscid. It is a simple explicit example of a viscous boundary layer.
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15.7 Exercises

1. Show that the perfect fluid’s constitutive Equation (15.1) indeed converts the Cauchy
Equation (15.2) into the Euler Equation (2.6).

2. Stream function for incompressible plane viscous flow. Show that if a two-dimensional
velocity field is derived from a stream function ψ then it is divergence-free. Express the
vorticity in terms of the stream function and deduce that the flow is not necessarily irrota-
tional. What is the condition on the stream function that the flow be irrotational?

3. Construct stream functions for:
(a) plane Couette flow and
(b) plane Poiseuille flow.

4. A plate oscillating in its plane. Show that if the partial differential Equation (15.8a) has a
solution of the form

u(y, t) ∝ e−2πy/δ cos {2π(ft − y/δ)}

where f is a constant frequency, and δ a constant length then there must be a relation
between δ and f :

fδ2 = 4νπ

What is the velocity at the plate? What is the velocity far from the plate? How far from
the plate is it that the fluid never moves with 1% of the maximum velocity of the plate?

5. Pressure-driven Poiseuille flow. Show that the plane Poiseuille parabolic velocity profile
given by Equation (15.7) can also apply in the absence of external body forces (or if these
are conservative and treated as described in Section 2.4.4) if there is a constant uniform
pressure gradient. What is the relation between the rate of flow (per unit span) and the
pressure drop per unit length?

6. Combined plane Couette and Poiseuille flow. Show that a linear combination of
Equations (15.6) and (15.7) still satisfies the partial differential Equation (15.5) and
therefore describes the flow in a fissure with a longitudinal pressure gradient and relative
sliding motion between the two walls.

7. Skin friction. What is the shear stress on a unit area of each of the two walls in plane Couette
and plane Poiseuille flow? Carry out a force balance on the fluid contained in a unit span
and length of channel in each case.

15.8 Further Reading

Properties of the stream function in incompressible plane viscous flow are derived by Abbott
and von Doenhoff (1959).

For other introductions to the linear model of viscous rheology, see Kuethe and Chow (1998);
Bertin (2002); or Anderson (2007). More detailed derivations are given by Stokes (1851), Lamb
(1932), Schlichting (1960), Truesdell and Rajagopal (2000), and Moran (2003).
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For classical treatments of plane Couette and Poiseuille flows, with references to the original
experiments, see Lamb (1932).

The most cited texts on boundary layer theory are the ones by Goldstein (1938) and Schlicht-
ing (1960).

The problem of the suddenly sliding plate (Section 15.6) and its solution are discussed
by many writers on Navier–Stokes flow, including Lamb (1932), Dryden, Murnaghan and
Bateman (1956), Whitham (1963), Lagerstrom (1964), and Truesdell and Rajagopal (2000).
It is sometimes called Stokes’s first problem, after G. G. Stokes, who first considered it in
1850, and sometimes Rayleigh’s problem, after Lord Rayleigh, who realized its usefulness as
an illustrative example in the present context.

For the thermal and statistical applications of the complementary error function, see,
e.g. Carslaw and Jaeger (1959) and Weatherburn (1949).
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16
Boundary Layer Equations

16.1 The Boundary Layer over a Flat Plate

Consider steady plane flow of a linearly viscous incompressible fluid at speed u∞ parallel
to a solid surface lying in the plane y = 0. The flow will be governed by the conservation of
mass Equation (2.3) and the Navier–Stokes Equation (15.4) without the terms involving partial
derivatives with respect to time and without the body-force terms:

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2 + ∂2u

∂y2

)
(16.1a)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2 + ∂2v

∂y2

)
(16.1b)

Following the solution for the suddenly started sliding plate (Section 15.6), it’s plausible that
the effects of viscosity might be largely limited to a thin layer along the plate, 0 < y < δ,
where the thickness δ may depend on x. Outside this layer (δ � y), we expect the flow to be
essentially the same as that of a perfect fluid.

Assume that any changes in the flow in the tangential (x) direction occur over a length scale
comparable to the distance from the leading edge; i.e. x.

16.1.1 Scales in the Conservation of Mass

In Equation (2.3) for the conservation of mass, if the free-stream speed u∞ is a representative
scale for the tangential speed, then ∂u/∂x should be of order u∞/x (by application of the mean
value theorem, for example). Similarly if V is a typical magnitude of the normal component
of velocity, then (expressing the same idea in mathematical notation)

∂v

∂y
= O

(
V

δ

)

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
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where δ is again the boundary layer thickness scale. If the two terms of the continuity equation
are to balance each other, they must have comparable magnitudes and therefore

O

(
∂u

∂x

)
+ O

(
∂v

∂y

)
= 0

O
(u∞

x

)
+ O

(
V

δ

)
= 0.

It follows that the velocity scales are related to the length scales by

V

u∞
= O

(
δ

x

)
. (16.2)

There is an obvious geometric interpretation of this relation in terms of the slope of the stream-
lines (V/u∞) and the shape of the boundary layer (δ thick and x long).

If the boundary layer is thin, so that δ � x, then Equation (16.2) implies V � u∞, which
means that the flow is basically parallel to the solid surface, as expected.

16.1.2 Scales in the Streamwise Momentum Equation

Now apply the same technique, scale analysis, to the streamwise (x) component of the steady
Navier–Stokes momentum Equation (16.1a). Let �p be the pressure scale, then the terms of
Equation (16.1a) have scales:

u
∂u

∂x
= O

(
u2∞
x

)

v
∂u

∂y
= O

(
u∞V

δ

)
= O

(
u2∞
x

)
1

ρ

∂p

∂x
= O

(
�p

ρx

)

ν
∂2u

∂x2 = O
(νu∞

x2

)
(16.3)

ν
∂2u

∂y2 = O
(νu∞

δ2

)
. (16.4)

If the boundary layer is thin (δ � x) then the streamwise viscous term as given in Equa-
tion (16.3) must be smaller than the transverse viscous term in Equation (16.4); dropping it
gives the boundary layer momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν

∂2u

∂y2 . (16.5)
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16.1.3 The Reynolds Number

Now, if we are to have a balance between the viscous term (of magnitude νu∞/δ2) and the
inertial terms (of magnitude u2∞/x) in the tangential momentum balance Equation (16.5), then

O
(νu∞

δ2

)
= O

(
u2∞
x

)

so that the boundary layer thickness scale must satisfy

δ

x
= O

{(u∞x

ν

)−1/2
}

. (16.6)

The dimensionless quantity in parentheses on the right-hand side is the Reynolds number
based on tangential length scale x:

Rex ≡ u∞x

ν
.

This Reynolds number is typically large in aerodynamical applications—consider flight of
a wing section of chord c = 1 m at u∞ = 100 m/s in air of kinematic viscosity ν = 1.5 ×
10−5 m2/s, for which it is Rex ≈ 7 × 106 × x

c
therefore the assumption that the boundary

layer is thin is supported by Equation (16.6): this value of Rex implies that the boundary layer
thickness at the trailing edge is of order 4 × 10−4 times the tangential length scale c.

In summary, the boundary layer shape and the streamline slopes scale with the inverse
square-root of the Reynolds number:

δ(x)

x
= O

(
V

u∞

)
= Re−1/2

x .

16.1.4 Pressure in the Boundary Layer

If the pressure term in the tangential momentum balance Equation (16.5) is to be comparable
with the inertial terms, the pressure must be of magnitude

�p = O(ρu2
∞), (16.7)

as may have been expected from Bernoulli’s Equation (2.14). Numerical factors like the half
in Bernoulli’s equation are usually omitted in order relations like Equation (16.7).

16.1.5 The Transverse Momentum Balance

The pressure term in the transverse (y) component of the steady Navier–Stokes Equation (16.1b)
is then of order:

1

ρ

∂p

∂y
= O

(
�p

ρδ

)
= O

(
u2∞Re1/2

x

x

)
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whereas the inertial terms are of order

u
∂v

∂x
= O

(
u∞V

x

)
= O

(
u2∞

xRe1/2
x

)

v
∂v

∂y
= O

(
V 2

δ

)
= O

(
u2∞

xRe1/2
x

)

and so negligible for large Reynolds numbers. Further, the viscous terms have scales:

ν
∂2v

∂x2 = O

(
νV

x2

)
= O

(
u2∞

xRe3/2
x

)

ν
∂2v

∂y2 = O

(
u2∞

xRe1/2
x

)
.

Thus for large Reynolds numbers, all terms are small except the pressure term which implies

0 = −1

ρ

∂p

∂y
;

i.e. that the pressure is uniform across the boundary layer.
This is an extremely useful result. It means that p is only a function of x; i.e. that the pressure

at any point in the boundary layer is the same as that at the same longitudinal position x outside
the boundary layer, and is therefore the same as that which would prevail near the surface if
the fluid were perfect. Assuming we can solve the flow problem for the perfect fluid in the
given geometry, the pressure term in the tangential momentum equation is then known.

16.1.6 The Boundary Layer Momentum Equation

Since the boundary layer momentum Equation (16.5) is second-order in y, two boundary
conditions are required in the normal direction; these are usually that the fluid adhere to the
solid surface and that the boundary layer flow smoothly merge with the external inviscid flow
outside the boundary layer

u = 0, (y = 0)

u ∼ u∞, (y � δ)

where u∞ is the tangential component of velocity at x that would be obtained by a perfect fluid
in the same geometry.

Note that the tangential velocity and pressure obtained as outer conditions on the boundary
layer analysis (y � δ) are those at y = 0 in the perfect fluid analysis. This is because the
boundary layer is very thin, on any meaningful scale in the perfect fluid flow. One way to
make this clearer is to use y in the perfect fluid analysis and introduce a new stretched normal
coordinate η = y/δ in the boundary layer analysis, as was done in Section 15.6.

Since the equation is first-order in x, only one boundary condition is required in the tangential
direction. Usually information is prescribed about the upstream state and then the equations
integrated downstream to study the longitudinal development of the boundary layer. This
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situation is quite different to the full Navier–Stokes equations which are second-order in all
directions and require boundary conditions both upstream and downstream. This simplification
is an essential feature of the boundary layer approximation.

16.1.7 Pressure and External Tangential Velocity

Since the flow outside the viscous boundary layer is presumed to be the same as that of a
perfect fluid, the pressure and velocity there are related by Bernoulli’s Equation (2.14), so,
since q = u for y = 0 in the perfect fluid (as the surface is impermeable),

−1

ρ

dp

dx
= u∞

du∞
dx

. (16.8)

This is often more convenient; with it, the boundary layer momentum Equation (16.5) becomes

u
∂u

∂x
+ v

∂u

∂y
= u∞

du∞
dx

+ ν
∂2u

∂y2 . (16.9)

16.1.8 Application to Curved Surfaces

Although the analysis thus far has been for a plane surface, provided the radius of curvature of
the surface is much less than the boundary layer thickness, it applies well to curved surfaces.
In this case, x is to be interpreted as the tangential coordinate and y the normal. This means
that acceptable results can be obtained for typical wing sections by using the present model.

16.2 Momentum Integral Equation

Although the boundary layer momentum Equation (16.9) can be solved analytically in special
configurations using various mathematical techniques, or numerically for almost any geometry,
much of the most useful information about the boundary layer (such as the skin friction) can
be approximated from the momentum integral equation. We consider this for steady boundary
layers.

To obtain the momentum integral equation, integrate both sides of Equation (16.9) normal
to the surface from 0 to ∞ (by which we mean to a distance far outside the boundary layer
on the scale of the boundary layer thickness, but still very near the surface on the scale of the
perfect fluid flow):∫ ∞

0
u

∂u

∂x
dy +

∫ ∞

0
v
∂u

∂y
dy =

∫ ∞

0
u∞

du∞
dx

dy + ν

∫ ∞

0

∂2u

∂y2 dy.

We want to eliminate v from this, which we can do, using the conservation of mass: integrate
Equation (2.3) from 0 to y: ∫ y

0

(
∂u

∂x
+ ∂v

∂y

)
dy′ = 0∫ y

0

∂u

∂x
(x, y′) dy′ + v = 0,
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(noting that v = 0 at y = 0 for impermeability) so that

∫ ∞

0
v
∂u

∂y
dy = −

∫ ∞

0

{∫ y

0

∂u

∂x
(x, y′) dy′

}
∂u

∂y
dy

which can be integrated by parts to give

−
∫ ∞

0

{∫ y

0

∂u

∂x
(x, y′) dy′

}
∂u

∂y
dy

= −
[{∫ y

0

∂u

∂x
(x, y′) dy′

}
u

]∞

0
+

∫ ∞

0
u

∂u

∂x
dy

= − u∞
∫ ∞

0

∂u

∂x
dy +

∫ ∞

0
u

∂u

∂x
dy.

For the viscous term,

ν

∫ ∞

0

∂2u

∂y2 dy = ν

[
∂u

∂y

]∞

0
= −ν

∂u

∂y

∣∣∣∣
y=0

since ∂u/∂y ∼ 0 for y � δ. The right-hand side can be written as −τw/ρ, where τw stands for

the shear stress component τxy at the wall (w for wall). In general τxy = µ
(

∂v
∂x

+ ∂u
∂y

)
, but v

vanishes along the impermeable solid surface so that on y = 0 we have τxy = µ∂u
∂y

, as asserted.
Thus, the integrated momentum equation is

∫ ∞

0

(
2u

∂u

∂x
− u∞

∂u

∂x
− u∞

du∞
dx

)
dy = −τw

ρ
.

Now,

∂

∂x
{u(u − u∞)} = 2u

∂u

∂x
− u∞

∂u

∂x
− u

du∞
dx

so the momentum integral equation can be rewritten

∫ ∞

0

{
∂

∂x
[u(u − u∞)] + (u − u∞)

du∞
dx

}
dy = −τw

ρ

d

dx

∫ ∞

0
u(u − u∞) dy + du∞

dx

∫ ∞

0
(u − u∞) dy = −τw

ρ

d

dx

{
u2

∞
∫ ∞

0

u

u∞

(
1 − u

u∞

)
dy

}
+ u∞

du∞
dx

∫ ∞

0

(
1 − u

u∞

)
dy = τw

ρ
.



Boundary Layer Equations 243

16.3 Local Boundary Layer Parameters

16.3.1 The Displacement and Momentum Thicknesses

Let’s define

δ∗ ≡
∫ ∞

0

(
1 − u

u∞

)
dy (16.10)

θ ≡
∫ ∞

0

u

u∞

(
1 − u

u∞

)
dy. (16.11)

We call δ∗ the displacement thickness and θ the momentum thickness. In terms of them, the
momentum integral equation can be written as

d

dx
(u2

∞θ) + δ∗u∞
du∞
dx

= τw

ρ
.

Both δ∗ and θ depend on x, and both parameterize the boundary layer tangential velocity
profile u(y), at that value of x.

The physical significance of the displacement thickness can be understood as follows. If the
fluid were perfect, the tangential velocity throughout the boundary layer right down to the solid
surface would be u∞, and the volume flow (per unit span) along the boundary layer would be∫ δ

0 u∞ dy; however, in the boundary layer the actual value is
∫ δ

0 u dy so that the difference is∫ ∞

0
(u∞ − u) dy = u∞δ∗

(using the fact that the integrand is negligible for y > δ). Thus, the retardation of the flow in
the boundary layer causes a defect in the volumetric flow-rate the same as the subtraction of a
layer of thickness δ∗.

For almost all boundary layer profiles u(y), the tangential velocity remains in 0 < u < u∞;
therefore, the momentum thickness will be less than the displacement thickness, since the
integrand of θ contains the additional weighting factor u

u∞ . The ratio of the two thicknesses

H ≡ δ∗

θ
,

called the shape factor, is therefore greater than one. This is illustrated in the examples of
Section 16.3.3.

16.3.2 The Skin Friction Coefficient

Define a dimensionless version of the shear stress at the wall as

cf ≡ τw
1
2ρu2∞

=
2ν ∂u

∂y

∣∣∣
y=0

u2∞
;

cf is called the (local) skin-friction coefficient.
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Expressing the wall shear stress in terms of cf , the momentum integral equation is

dθ

dx
+ θ

u∞
(2 + H)

du∞
dx

= cf

2
. (16.12)

This is the most common and useful form of the Kármán integral relation. It provides one
equation linking the three unknown local boundary layer parameters, H , θ, and cf , to the
known external speed variation u∞(x).

To proceed further, another two relations between the boundary layer thicknesses and skin
friction are required. Two popular approaches for deriving these are:

• the assumption of a velocity profile;
• the use of (possibly empirical) correlations.

Local Skin Friction in a Turbulent Boundary Layer

Although the above derivation of the Kármán integral relation was in the context of laminar
flow, the relation holds as well for turbulent boundary layers. In the laminar case, the local skin
friction can be obtained from an assumed velocity profile simply by evaluating its derivative at
the wall; in the turbulent case it’s more difficult, as turbulent boundary layers contain a number
of different sublayers and a profile function accurately describing the variation of the tangential
velocity over most of the boundary layer thickness might be of no use at all in determining the
skin friction coefficient. An example is the much-used one-seventh profile, discussed below in
Section 16.3.3. Basically, if one takes a velocity profile approach to turbulent boundary layer
momentum integral analysis, a separate correlation is required for the local skin friction.

16.3.3 Example: Three Boundary Layer Profiles

Example: Linear Profile

Consider the linear profile:

u

u∞
=

{
y
δ
, 0 < y < δ

1, δ < y.

The displacement and momentum thicknesses are

δ∗ =
∫ ∞

0

(
1 − u

u∞

)
dy =

∫ 1

0
(1 − η) dη × δ = δ

2

θ =
∫ ∞

0

u

u∞

(
1 − u

u∞

)
dy =

∫ 1

0
η(1 − η) dη × δ = δ

6

and the shape factor is therefore H = 3. The integrands are plotted in Figure 16.1.
The local skin friction coefficient of the linear profile is

cf =
2ν ∂u

∂y

∣∣∣
y=0

u2∞
= 2ν u∞

δ

u2∞
≡ 2

Reδ

,
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Figure 16.1 Linear boundary layer velocity profile: the displacement thickness is the area to the right
of the solid curve (the velocity profile), the momentum thickness to the right of the dashed curve

where

Reδ ≡ u∞δ

ν

is a Reynolds number based on the boundary layer thickness.

Example: Error Function Profile

Consider the error function profile, which arose in the suddenly started sliding plate problem:

u

u∞
= erf

y

δ
.

(Note that we use erf η instead of erfc η as here we take the plate to be fixed and the far fluid
to be moving at u∞.)

The displacement thickness can be carried out analytically (Gautschi 1965):

δ∗

δ
=

∫ ∞

0
(1 − erf η) dη =

∫ ∞

0
erfc η dη = 1√

π

.= 0.56419.

The (dimensionless) momentum thickness (θ/δ) can be obtained by integrating numerically,
as shown in Listing 16.1, which prints
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deltastar = 0.56419
theta = 0.23369
H = 2.4142

Listing 16.1 Octave code to calculate the boundary layer parameters for the error function profile.

deltastar = quadgk (@ (y) 1 - erf (y), 0, Inf)
theta = quadgk (@ (y) erf (y) .* (1 - erf (y)), 0, Inf)
H = deltastar / theta

The thickness integrands are illustrated in Figure 16.2.
To calculate the skin friction, note:

d erf η

dη
= 2e−η2

√
π

∂

∂y

(
u∞ erf

y

δ

)∣∣∣∣
y=0

= 2u∞√
πδ

;

thus

cf = 4/
√

π

Reδ

.
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Figure 16.2 Boundary layer velocity profile u = u∞ erf y/δ: the displacement thickness is the area to
the right of the solid curve (the velocity profile), momentum thickness to the right of dashed curve
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Just as for the linear profile, the local skin friction coefficient is inversely proportional to
Reδ. In each case it would also have been proportional to the Reynolds number based on the
local boundary layer momentum thickness

Reθ ≡ u∞θ

ν

and this latter result applies to many laminar boundary layers; it is exploited in Thwaites’s
method for solving the momentum integral equation (ibid.; see also Section 17.3, below).

Example: One-seventh Profile

A popular simple profile used to describe turbulent boundary layers is

u

u∞
=

{(
y
δ

)1/7
, y < δ

1, y > δ.

The displacement and momentum thicknesses are

δ∗

δ
=

∫ 1

0

(
1 − η1/7

)
dη = 1

8

θ

δ
=

∫ 1

0
η1/7

(
1 − η1/7

)
dη = 7

72

which means the shape function is H = 9
7 . The profile, illustrated in Figure 16.3, is much

‘fuller’ than the two previous, which are more typical of laminar profiles. This is apparent in
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Figure 16.3 Boundary layer velocity profile u = u∞(y/δ)1/7: the displacement thickness is the area to
the right of the solid curve (the velocity profile), momentum thickness to the right of dashed curve



248 Theory of Lift

the much smaller shape factor. This fullness is caused by the effectiveness of the turbulent
eddies in transferring momentum across the boundary layer. A consequence, and another
apparent feature, is the steeper relative gradient at the wall; however, while this is qualitatively
realistic, the one-seventh profile is useless for estimating the local skin friction, since it implies
an infinite velocity gradient at the wall.

16.4 Exercises

1. Blasius’s boundary layer. Consider a semi-infinite flat plate lying on the positive x-axis,
parallel to a free-stream of speed u∞ of an incompressible fluid of kinematic viscosity ν.
The pressure gradient is zero and there are no external forces.

Assume the flow field has a steady two-dimensional boundary layer structure and so,
as in the suddenly slid plate problem (Section 15.6) try nondimensionalizing the normal
coordinate y by forming

η ≡ y

δ
,

but allow the boundary layer thickness δ to vary with x rather than t.
Show by dimensional analysis (Section 1.5) that δ(x) must have the form x times some

function of

Rex ≡ u∞x

ν
.

Assuming it has the form δ(x) = xReb
x for some constant b, show that the equation governing

the dimensionless stream function f ≡ ψ/u∞δ(x) (the boundary layer momentum equation,
with the velocity components expressed in terms of the stream function) is an ordinary
differential equation in the similarity coordinate η, if b is chosen appropriately. Show that
the boundary conditions u = v = 0 on y = 0 and u ∼ u∞ as y � δ(x) can also be written
purely in terms of f and η.

Why is u∞δ(x) a logical choice for the scale of the stream function?
Show that the zero pressure gradient condition is consistent with the pressure variation

far from the plate (outside the viscous boundary layer).

2. The momentum thickness integral. Each of the curves for the momentum integrands in
Figures 16.1, 16.2, and 16.3 displays a turning point, i.e. a minimum with respect to the
normal coordinate, though it is a little harder to see with the last because it is so close to
the wall. Show that this turning point occurs where the tangential velocity passes through
one-half its freestream value, and so that it is a general feature for any tangential velocity
profile increasing continuously (though not even necessarily monotonically) from zero to
the freestream value.

Calculate its location for each of these three profiles, exactly for the linear and one-
seventh laws and numerically for the error function. [Ans.: For the linear and one-seventh
profiles, it occurs at y/δ = 1/2 and 1/128, respectively; and for the error function near
0.47694.]
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3. (a) Write an Octave function which computes the displacement thickness, momentum
thickness, and shape factor, given a function generating the profile; that is, the call

[deltastar, theta, H] = blparams (@erf)

should produce output equivalent to that of Listing 16.1.
(b) Demonstrate the function on the linear and one-seventh profiles, checking the answers

against the exact ones given in Section 16.3.3.

4. Piecewise linear profile. Calculate the displacement and momentum intergrals for a tan-
gential velocity profile composed of two linear parts, i.e.

u

u∞
=




u1/2
u∞

y
δ
, 0 <

y
δ

< 1
2

u1/2
u∞ +

(
y
δ

− 1
2

)(
1 − u1/2

u∞

)
, 1

2 <
y
δ

< 1

1, y > δ,

where u1/2 is a parameter, being the tangential velocity halfway through the boundary layer.
Prepare a plot of the shape factor H as a function of the fraction u1/2/u∞; for what

halfway velocity values does this piecewise profile match the shape factor of the error
function and one-seventh profiles?

16.5 Further Reading

The ‘asymptotic matching principle’ which provides the outer boundary condition in
Section 16.1.6 is a key concept in boundary layer theory; see Ashley and Landahl (1985).

The Blasius boundary layer is treated in many more general books on the mechanics of
viscous fluids as well as such aerodynamical textbooks as Abbott and von Doenhoff (1959),
Kuethe and Chow (1998), Anderson (2007), and Bertin (2002).

The boundary layer momentum equation, and associated concepts such as

• displacement and momentum thicknesses
• shape factor
• (local) skin-friction coefficient
• Kármán integral relation

are treated by Abbott and von Doenhoff (1959) and Moran (2003). This integral approach is
very powerful and in particular can be extended to turbulent boundary layers. That lies beyond
the scope of this text, but laminar boundary layers are studied along these lines in Chapter 17.
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17
Laminar Boundary Layers

17.1 Boundary Layer Profile Curvature

If we evaluate the boundary layer momentum Equation (16.9)

u
∂u

∂x
+ v

∂u

∂y
= u∞

du∞
dx

+ ν
∂2u

∂y2 ,

right at the wall (y = 0) so that u = v = 0 (for no-slip and impermeability), it reduces to

0 = u∞
du∞
dx

+ ν
∂2u

∂y2 , (17.1)

or, replacing the free-stream acceleration term with the free-stream pressure gradient via
Bernoulli’s Equation (16.8),

0 = −1

ρ

dp

dx
+ ν

∂2u

∂y2 ,

so that the profile curvature ∂2u
∂y2 at the wall has the same sign as the pressure gradient given by

Bernoulli’s Equation (16.8)

dp

dx
= µ

∂2u

∂y2 .

Towards the outer edge of the boundary layer, u will generally be increasing asymptotically

up to its free-stream value u∞, so (assuming u∞ > 0), u > 0 and ∂u
∂y

> 0 but ∂2u
∂y2 < 0 there.

This means that if the pressure gradient is positive, there must be an inflexion point in the

velocity profile, somewhere between the wall and the outside of the boundary layer, where ∂2u
∂y2

changes sign.

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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17.1.1 Pressure Gradient and Boundary Layer Thickness

In Kármán’s integral Equation (16.12)

dθ

dx
+ θ

u∞
(2 + H)

du∞
dx

= cf

2
,

neglecting the possibility of boundary layer separation for the moment, the skin friction co-
efficient will be positive. Basically this tends to make the boundary layer thickness increase
with x, corresponding to the first term on the left-hand side, but in general this quantity is to
be balanced by both terms on the left-hand side. If the free-stream is decelerating, which, via
Bernoulli’s Equation (16.8), implies a positive or adverse pressure gradient, the second term is
negative and the boundary layer thickness increases more rapidly with x; if the free-stream is
accelerating (favourable pressure gradient), the second term is positive and the boundary layer
thickness will increase more slowly or may even decrease if the favourable pressure gradient
is large enough.

17.2 Pohlhausen’s Quartic Profiles

From Equation (17.1), there is a simple direct link between the curvature of the boundary
layer profile at the wall and the local pressure gradient. To explore the effect of this using the
assumed-velocity method in the Kármán integral relation, we need a family of profiles with
curvature at the wall. Such a family was developed by Pohlhausen (1921) based on quartic
polynomials. The other four coefficients of the quartic were chosen to satisfy

• the no-slip condition at the wall u(0) = 0,
• the matching condition at the edge of the boundary layer u(δ) = u∞,
• a smoothness condition there ∂u

∂x
= 0, and

• another smoothness condition there ∂2u
∂x2 = 0.

With η ≡ y/δ, the requisite dimensionless quartic is

u

u∞
= 2η − 2η3 + η4 + Λ

6
η(1 − η)3,

which satisfies

u = 0 (η = 0)

∂2u

∂y2 = −u∞Λ

δ2 (η = 0)

u = u∞ (η = 1)

∂u

∂y
= ∂2u

∂2y
= 0 (η = 1).
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Figure 17.1 The two ingredients of Pohlhausen’s quartic profile: 2η − 2η3 + η4 which is 1 at η = 1
and η(1 − η)3/6 which has -1 curvature at η = 0

The pressure gradient parameter defined here is

Λ ≡ − δ2

u∞µ

dp

dx
= δ2

ν

du∞
dx

. (17.2)

Pohlhausen’s profile consists of two parts, 2η − 2η3 + η4 which accounts for the nonzero
free-stream velocity and the part multiplied by Λ which accounts for the curvature at the wall.
The two parts are plotted in Figure 17.1 and various combinations are shown in Figure 17.2.

The various boundary layer parameters are

δ∗

δ
= 36 − Λ

120
θ

δ
= 5328 − 48Λ − 5Λ2

45360

so that the shape factor is

H = 378(Λ − 36)

5Λ2 + 48Λ − 5328
.

The local skin friction coefficient is

cf ≡
2 ∂

∂η
u

u∞
Reδ

= 12 + Λ

3Reδ

.
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Figure 17.2 Some of Pohlhausen’s quartic profiles, including that for zero pressure gradient Λ = 0
and the separation profile Λ = −12

Thus at Λ = −12, the skin friction is zero, and if Λ < −12, it’s negative which corresponds to
reversed flow and boundary layer separation. This is illustrated in Figure 17.2 for Λ = −24.

Whenever Λ < 0, the pressure gradient is adverse and the free-stream is decelerating. When-
ever Λ > 0, the pressure gradient is favourable and the free-stream is accelerating.

17.3 Thwaites’s Method for Laminar Boundary Layers

In Pohlhausen’s family of quartic profiles, δ∗, θ, H , and cf are all functions of the local pressure
gradient, via Pohlhausen’s pressure gradient parameter Λ. It turns out that if the shape factor
H is plotted against another pressure gradient parameter

λ ≡ θ2

ν

du∞
dx

= −θ2

u∞µ

dp

dx
(17.3)

for several profiles obtained from exact laminar solutions of the boundary layer equations, then
H(λ) seems to be a universal function. Notice that Thwaites’s pressure gradient parameter
defined by Equation (17.3) differs from Pohlhausen’s, as given by Equation (17.2), only in
using the momentum thickness θ instead of the plain boundary layer thickness δ (which is
always somewhat arbitrary):

λ ≡
(

θ

δ

)2

Λ.
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Further, the dimensionless skin friction parameter

l ≡ Reθ cf

2
≡ θ

u∞
∂u

∂y

∣∣∣∣
y=0

(17.4)

also seems to be a universal function of λ for laminar boundary layers.
To apply Thwaites’s ideas to Kármán’s integral Equation (16.12), first substitute l for cf

from Equation (17.4) and multiply through by Reθ

u∞θ

ν

dθ

dx
+ θ2

ν
(2 + H)

du∞
dx

= l,

and then replace the free-stream velocity gradient using Equation (17.3)

u∞θ

ν

dθ

dx
+ (2 + H)λ = l,

and rearrange

u∞
ν

d
(
θ2

)
dx

= 2{l − (2 + H)λ}. (17.5)

So far this is equivalent to Kármán’s integral relation; the novel part of Thwaites’s method
is assuming that the right-hand side is a universal function of λ (which is known, at least
approximately).

17.3.1 F (λ) ≈ 0.45 − 6λ

A simple choice that performs well is

2{l − (2 + H)λ} ≈ 0.45 − 6λ.

Substituting this into Equation (17.5) gives

u∞
d

(
θ2

)
dx

= 0.45ν − 6θ2 du∞
dx

u∞
d

(
θ2

)
dx

+ 6θ2 du∞
dx

= 0.45ν

u6
∞

d
(
θ2

)
dx

+ 6θ2u5
∞

du∞
dx

= 0.45νu5
∞

d
(
θ2u6∞

)
dx

= 0.45νu5
∞. (17.6)

For known u∞(x), this can be integrated downstream (analytically or numerically) to get
θ(x), then λ(x) can be calculated from Equation (17.3). Finally, the other parameters of interest,
such as the shape factor H and in particular the skin friction parameter l are obtained from
approximations to their universal functions of λ.
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17.3.2 Correlations for Shape Factor and Skin Friction

The functions H(λ) and l(λ) have been tabulated, but more convenient are the formulae:

H(λ) ≈
{

2.088 + 0.0731
0.14+λ

, −0.1 < λ < 0

2.61 − 3.75λ + 5.24λ2, 0 < λ < 0.1

l(λ) ≈
{

0.22 + 1.402λ + 0.018λ
0.107+λ

, −0.1 < λ < 0

0.22 + 1.57λ − 1.8λ2, 0 < λ < 0.1.

Notice that the skin friction parameter l(λ) vanishes near λ = −0.090, and recall that l = 0
corresponds to boundary layer separation.

17.3.3 Example: Zero Pressure Gradient

As a simple example, let’s apply Thwaites’s method to a flat plate with zero pressure gradient;
assume the boundary layer begins with zero thickness at the leading edge

θ(0) = 0.

The zero pressure gradient corresponds to the boundary layer on a thin flat plate at zero
incidence.

In the ordinary differential equation

d(θ2u6∞)

dx
= 0.45νu5

∞,

u∞ is constant so

d(θ2)

dx
= 0.45ν

u∞

which can be integrated to give

θ =
√

0.45νx

u∞
,

the constant of integration being zero if the boundary layer thickness begins at zero at the
leading edge (this is the case for a sharp leading edge on a flat plate).

This can be written nondimensionally as

θ

x
= 0.671√

Rex

or

Reθ = 0.671Re1/2
x .
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From the correlations of Section 17.3.2, noting that λ = 0 throughout for zero pressure
gradient, we have H ≈ 2.61 and l ≈ 0.22; the latter means the skin friction coefficient is

cf ≈ 0.44

Reθ

= 0.656√
Rex

.

This turns out to be very close to the exact answer, 0.664Re−1/2
x , which can be obtained by a

similarity transformation (see the exercise in Section 16.4).

17.3.4 Example: Laminar Separation from a Circular Cylinder

The full aerodynamics of viscous flow over a circular cylinder is very complicated, involving
large-scale unsteadiness in the form of vortex shedding; however, Thwaites’s method can be
used to show that the laminar boundary layer will fail to reach the rear stagnation point.

The complex velocity for the flow without circulation with free-stream speed q∞ over a
circular cylinder of radius a is (cf. Equation 3.6)

w = q∞
(

1 − a2

z2

)
, (17.7)

so that the azimuthal velocity on the surface |z| = a is

vθ = −�
{

eiθw(aeiθ)
}

= −2q∞ sin θ

(here, for the moment, θ is the polar coordinate).
Take the longitudinal boundary layer coordinate x to begin at the forward stagnation point

(z = −a) and to follow the upper surface; i.e. x = a(π − θ). It is convenient to nondimension-
alize this as ξ ≡ x/a. Then, relative to this, the external tangential speed for the boundary layer
is

u∞(ξ) = 2q∞ sin (π − ξ) ≡ 2q∞ sin ξ.

Thus over the forward part of the upper surface (0 < ξ < π
2 ) the inviscid surface speed is

accelerating,

du∞
dξ

= 2q∞ cos ξ

and so the pressure gradient

dp

dξ
= −ρu∞

du∞
dξ

= −2ρq∞ sin 2ξ

is favourable (negative) whereas it becomes unfavourable (positive) thereafter (π
2 < ξ < π).

Notice that x and ξ follow the curve of the boundary, and similarly the profiles and thicknesses
are measured normal to the boundary; as mentioned in Section 16.1.8, this curvature does not
introduce any new terms into the equations provided the radius of curvature is much greater
than the boundary layer thickness.
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In terms of ξ, Thwaites’s form of the momentum integral Equation (17.6) is (hereafter θ is
the momentum thickness again)

d(θ2u6∞)

dξ
= 0.45νau5

∞

d(θ2 sin6 ξ)

dξ
= 0.45νa

2q∞
sin5 ξ

which can be integrated to give

θ2 sin6 ξ = −0.45νa

2q∞

(
cos ξ − 2

3
cos3 ξ + 1

5
cos5 ξ + const.

)

θ2 = −0.45νa

2q∞
cos ξ − 2

3 cos3 ξ + 1
5 cos5 ξ + const.

sin6 ξ
.

The integration constant must be −8
15 if θ is to be finite at the forward stagnation point ξ = 0,

so

θ2 = −0.45νa

2q∞
cos ξ − 2

3 cos3 ξ + 1
5 cos5 ξ + 8

15

sin6 ξ

θ2

a2 = 0.015

Rea

(
8 − 15 cos ξ + 10 cos3 ξ − 3 cos5 ξ

sin6 ξ

)
, (17.8)

where

Rea ≡ q∞a

ν

is the Reynolds number based on the cylinder’s radius. The predicted momentum thickness is
displayed around the cylinder in Figure 17.3.

Given this solution for θ(ξ), Thwaites’s pressure gradient parameter as defined by Equa-
tion (17.3) can be computed as

λ(ξ) = 0.03

{
8 − 15 cos ξ + 10 cos3 ξ − 3 cos5 ξ

sin6 ξ

}
cos ξ,

and then the variation along the boundary layer of the shape factor H and skin friction factor
l computed; the results are plotted in Figure 17.4. It can be seen that the skin friction factor l

vanishes near 103◦. At this point the boundary layer would separate.
That the boundary layer separates means that the outer supposedly inviscid region is changed.

This invalidates the procedure used, since our assumption of a perfect fluid solution holding
everywhere except in a thin layer near the boundary is untrue. This means that we do not obtain
a realistic prediction for the laminar boundary layer which does occur on the forward part of
a circular cylinder, neither for the location of the separation point. What we do obtain is a
very good argument that the flow picture cannot consist of the basic perfect fluid flow plus
thin laminar boundary layers. In fact, the displacement of the exterior irrotational flow by the
separated region pushes the points of minimum pressure forwards from 90◦, and the actual
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Figure 17.3 Growth of the laminar boundary layer (momentum) thickness circular cylinder in a uniform
stream (moving from left-to-right), as predicted by Equation (17.8) for Rea = 100. The model assumes,
wrongly, that the external flow is given by the complex velocity of Equation (17.7), w = q∞

{
1 − (a/z)2

}
laminar separation points forwards too. The failure to obtain a quantitative result should not be
attributed to Thwaites’s method, but rather to the assumption about the surrounding inviscid
flow; any boundary layer method requires an accurate description of the prevailing longitudinal
pressure gradient as input.
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Figure 17.4 Variation of shape factor and skin friction factor along laminar boundary layer on a circular
cylinder (assuming attached flow)
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Another question to be addressed in this and similar flow configurations is whether and
where the laminar boundary layers undergo transition to turbulence. This is outside the scope
of this course; see the suggestions for further reading in Section 17.5.

In a sense only a negative result has been obtained here, but it does highlight the importance
of adverse pressure gradients in aerodynamics. Notice that in the circular cylinder problem,
where the minimum pressure was supposed to occur at 90◦, the laminar boundary layer did
not proceed far past this into the adverse region without separating.

17.4 Exercises

1. Plot the following velocity profiles:

(a)
u

u∞
= erf η

(b)
u

u∞
= 1 − e−η

and use them to solve Kármán’s integral relation for a flat plate at zero incidence.
(c) Which of Pohlhausen’s quartics is appropriate for this problem? Use it.

2. For constant η0 which of the conditions satisfied by Pohlhausen’s quartic boundary layer
velocity profiles are satisfied by

u

u∞
=




sin
π(η−η0)
2(1−η0) +sin

πη0
2(1−η0)

1+sin
πη0

2(1−η0)
, 0 < η < 1;

1 1 < η < ∞?

(a) Give a relation between the constant η0 and the pressure gradient.
(b) What value of η0 should be used for the flat plate at zero incidence? Use it to solve

Kármán’s integral relation.

3. Consider the steady plane ideal flow

u − iv = κ(x + iy),

with a positive real κ constant.
(a) What are the dimensions of κ?
(b) Show that y = 0 is a streamline.
(c) How does the pressure vary along y = 0?

4. Assume y = 0 is a solid surface. Show that if we assume a Pohlhausen quartic profile
with constant thickness δ then the pressure gradient parameter is constant too. Show that
Kármán’s integral relation reduces to a polynomial in the pressure gradient parameter. Show
that this polynomial has a root in the range 0 < Λ < 10, and try and locate it more closely.

5. The plane ideal flow outside a solid two-dimensional wedge occupying the sector
(2 − β)π < θ < 2π with 0 < β ≤ 1, should satisfy the boundary condition that there be
no flow component normal to the surface of the wedge.
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If r and θ are the polar coordinates in the plane (the latter measured anticlockwise from
the positive x-axis so that 0 < θ < 2π) and a is a constant, consider the two-dimensional
velocity field defined for 0 < θ < (2 − β)π with speed√

u2 + v2 = arβ/(2−β)

and directional slope

v

u
= tan

−βθ

2 − β
.

(a) Sketch the flow.
(b) What are the dimensions of a?
(c) Show that it is irrotational, divergence-free, and satisfies the boundary conditions.
(d) Describe the variation of velocity over the surface.
(e) Using Thwaites’s method, show that the viscous boundary layer along the surface y = 0

grows away from the vertex with momentum thickness θ(x) such that the pressure
gradient parameter

λ ≡ θ2

ν

du∞
dx

is constant. Assume for the purpose of calculating θ(x) that θ(0) is finite.
Does Pohlhausen’s pressure gradient parameter vary along the boundary layer?

(f) Assuming that the skin friction coefficient cf is related to the pressure gradient pa-
rameter λ in such a way that cf is positive whenever λ > −0.09, show that laminar
separation is not to be expected for any wedge, regardless of the angle it includes.

(g) How do the skin friction coefficient and surface shear stress vary with distance from
the vertex?
Show that

√
Rexcf is uniform along the surface.

6. (a) Try developing a family of cubic profiles, dropping the second smoothness condition
at the outside of the boundary layer.

(b) What about quadratic?
(c) The only reasonable linear profile is that of Section 16.3.3; analyse it in this light.

17.5 Further Reading

See also Goldstein (1938) for the application of Pohlhausen’s quartic profiles to laminar bound-
ary layers.

For Thwaites’s method, see Thwaites (1987) and Moran (2003).
The transition from laminar to turbulent in aerodynamical boundary layers is discussed by

Abbott and von Doenhoff (1959), Thwaites (1987), Kuethe and Chow (1998), Bertin (2002),
Moran (2003), and Anderson (2007).

For descriptions of the varieties of viscous flow over circular cylinders possible at different
Reynolds numbers, including vortex shedding, see Goldstein (1938), Kuethe and Chow (1998),
or Anderson (2007).
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18
Compressibility

While restricting speeds to a small fraction of that of sound might render the flow incompress-
ible and the aerodynamics more susceptible to analysis, there are practical imperatives for
increasing the speed of flight—passengers and payload want to get where they’re going and
proprietors want to maximize the utilization of their aircraft—and therefore the theory must be
extended. The primary weakness of the model developed thus far as the speed increases is its
assumption of uniform density. It is apparent from the differential Bernoulli Equation (2.13)
that increasing speed leads to decreasing pressure, and, except for the fictitious ‘perfect fluid’
of Section 1.4.1 or equally the fictitious linearly viscous incompressible fluid of Section 15.2.2,
a reduction in the pressure on a body allows it to expand. That is, unless the density is artifi-
cially constrained in the model to be constant, decreasing pressure should lead to decreasing
density. In general, pressure is linked to density by the equation of state and this limitation of
the incompressible theory is expected. This chapter introduces the additional physics required
for extensions to the theory to permit the raising of its speed limit.

18.1 Steady-State Conservation of Mass

At steady-state, the net mass of fluid inside a given fixed region R will be constant; therefore
the net flux of mass through its bounding surface S must be zero; i.e.∫

S
n̂ · (ρq) dS = 0,

or by the divergence theorem (Equation 9.7)∫
R

∇ · (ρq) dV = 0.

Since the region R is arbitrary, this can only hold if ρq is divergence-free:

∇ · (ρq) = 0. (18.1)
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Expand the steady conservation of mass Equation (18.1) using the product rule for the
divergence (Equation 9.4):

ρ∇ · q + q · ∇ρ = 0.

Then take the steady Euler Equation (9.11) and assume that the pressure is some function
of density (i.e. the fluid is barotropic) and use the vector-calculus chain-rule Equation (9.2) to
expand the gradient of that function:

ρq · ∇q = −∇p = −dp

dρ
∇ρ.

Now eliminate the density gradient between the last two equations,

∇ · q =
(

dp

dρ

)−1

q · (∇q) · q.

The left-hand side is the divergence of the velocity field, the vanishing of which was the
Equation (2.3) of the conservation of mass in the incompressible case. The right-hand side is
divided by the derivative of pressure with respect to density. This factor can also be expressed
in terms of the compressibility κ, which is defined as the fractional rate of change of density
with respect to pressure:

κ ≡ 1

ρ

dρ

dp
; (18.2)

thus:

∇ · q = ρκ q · (∇q) · q.

If the compressibility is low, i.e. the density varies little with pressure, the right-hand side will
be small.

Further, the dimensions of the rate of change of pressure with respect to density are the
square of those of velocity; thus it can be called the square of a speed. This speed is called the
speed of sound and is denoted by a.

∇ · q ≡ 1

a2 q · (∇q) · q. (18.3)

where a2 ≡ dp

dρ
. (18.4)

Acoustics is not of central interest here, but this speed is. It is not necessary to digress into
the analysis of the propagation of sound waves, which are oscillations of pressure and density,
to appreciate the importance of this speed in aerodynamics. For the present purposes, the name
is a conventional convenience. The significance applies equally to the steady-state flows of
present interest, since, pressure signals travel at the speed of sound, so if the flow from one
point to another further down its streamline is supersonic, there will be neither convective
nor compressive information from the second point back to the first, and so no influence
whatever from the second point to the first. This is in strong contradistinction to the modelling
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of incompressible flows in Chapters 3–12 by means of sources and vortices with fields of
influence extending to infinity in all directions (as shown in Figures 3.3 and 3.6).

Observe that the conservation of mass reduces to the divergence-free Equation (2.3) when
the speed of sound tends to infinity, which is another way of interpreting incompressibility.
This reinforces the idea that the divergence-free condition is a good approximation when the
relevant speeds are much less than the speed of sound. In an incompressible fluid, the pressure
signals are propagated instantaneously throughout the domain and can propagate upstream
against any flow no matter how fast.

It is important to note that in Equation (18.3), the speed of sound a is not a constant but
depends on the pressure or density, both of which are variables in compressible flow (though
linked together by some definite function if the fluid can be treated as barotropic).

18.2 Longitudinal Variation of Stream Tube Section

In order to conserve mass, the mass flow-rate is constant along any stream tube, so if its
cross-sectional area is A and the average velocity over that section is q,

d(ρAq) = 0

ρAdq + ρqdA + qAdρ = 0.

If the fluid is barotropic, the speed of sound may be introduced, and then Bernoulli’s differential
Equation (2.13), to reduce this to a relation between the change in speed and the change in
area:

ρAdq + ρqdA + qA

a2 dp = 0

Adq + qdA − q2A

a2 dq = 0

A
(

1 − Ma2
)

dq + qdA = 0,

where, as in Equation 1.12,

Ma ≡ q

a

is the Mach number: the ratio of the speed to the speed of sound.
For subsonic flow Ma < 1 and a decrease in area corresponds to an increase in velocity.

This is called the Venturi effect and applies as well in incompressible flow (Ma = 0) in which
dρ = 0 and so the velocity is inversely proportional to the stream tube sectional area of the
stream tube, as in Equation (10.2). A particularly relevant instance is the air passing over a
thick cambered wing section: the obstruction to the stream tube posed by the aerofoil causes
acceleration and a corresponding decrease in pressure.

As the speed and Mach number increase from zero, the increase in velocity into the contrac-
tion is no longer inversely proportional the area, as the coefficient 1 − Ma2 decreases. In fact,
the same contraction causes more acceleration at higher (though still subsonic) Mach number.
This is because if the fluid is compressible, the decrease in pressure with acceleration leads
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to a decrease in density and therefore even more volume of fluid must be passed through the
section to maintain the constant mass flow-rate.

For supersonic flow, Ma > 1 and the sign of the differential coefficient changes; i.e. when
flowing faster than the speed of sound, a stream tube expands if the fluid is accelerating. An
immediate consequence of this simple analysis is that thickness and camber are of no use in
generating suction above the wing in supersonic flight, and indeed, wings designed for high
speeds are generally thinner and flatter.

18.2.1 The Design of Supersonic Nozzles

Another practical application of these considerations is in the design of high-speed nozzles,
e.g. for turbines or rockets. It follows that the shape of a nozzle through which fluid is to issue
from a compressed reservoir must first converge and then diverge, if the fluid is to finally exit
at a speed above that of sound. In such a converging–diverging nozzle shape, the speed of
sound can only be attained at the throat, or section of minimum area, and then only if the inlet
pressure is sufficient; moreover, the speed at the throat cannot exceed that of sound, which
phenomenon is called choking and can be exploited in the analysis of supersonic nozzles.

18.3 Perfect Gas Thermodynamics

The thermodynamics of incompressible fluids are rather trivial, which is another way of saying
that the incompressible model is only capable of reproducing a limited range of behaviours,
but the behaviour of flows in which the density varies dynamically is strongly dependent on
the thermal and caloric equations of state.

18.3.1 Thermal and Caloric Equations of State

As noted, in barotropic fluids, the pressure depends only density, but the pressure and density
of a substance are more generally related by a thermal equation of state, which also involves
the temperature.

A thermally perfect gas obeys as equation of state the ideal gas equation

p = ρRT, (18.5)

where R is a constant for each gas, being the ratio of the universal gas constant
(≈ 8314.472 J/K kmol) to the molar mass. For air the latter is about 28.97 kg/kmol so
R ≈ 287.0 J/kg K.

A thermally perfect gas also has an isochoric specific heat cv which is independent of
pressure. If the gas is also calorically perfect, this coefficient is independent of temperature too,
so changes in the specific internal energy u are simply proportional to changes in temperature:

du = cvdT.

The internal energy is a quantity defined by the equivalence between heat and mechanical
work; i.e. the First Law of Thermodynamics.
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18.3.2 The First Law of Thermodynamics

The First Law of Thermodynamics states that the increase in internal energy is the sum of the
heat δQ and work added to a system. The work done in ideal flow is the product of the pressure
and the decrease in volume, i.e. for a unit mass, for which the volume is the reciprocal of the
density, the work done is

−pd

(
1

ρ

)
= +

(
p

ρ2

)
dρ,

so for a system consisting of a unit mass of calorically perfect gas,

cvdT = δQ + pdρ

ρ2 . (18.6)

18.3.3 The Isochoric and Isobaric Specific Heat Coefficients

If the unit mass system of gas is held in a rigid container, no work is done because the walls
cannot move. Equivalently, its volume cannot change and the density is constant (dρ = 0);
either way, δQ = cvdT , which is why cv is called the isochoric specific heat: it is the amount
of energy in the form of heat required to raise the temperature of a unit mass of the substance
by one unit under conditions of constant volume.

So how does the amount of heat which is required to raise the temperature by a fixed amount
change if the gas is subject to constant pressure rather than held in a container of fixed volume?
In general the density changes, in fact in accordance with the thermal Equation (18.5) of state,

dp = RρdT + RTdρ, (18.7)

but in an isobaric process dp = 0 so this reduces to

Tdρ = −ρdT,

and so the First Law (Equation 18.6) becomes

cvdT = δQ − pdT

ρT(
cv + p

ρT

)
dT = δQ

(cv + R) dT = δQ.

Thus the isobaric specific heat cp of a perfect gas is

cp = cv + R (18.8)

18.3.4 Isothermal and Adiabatic Processes

In certain circumstances, the variation of temperature can be related to the variation of pressure
and density and so eliminated from the equation of state, leaving it barotropic.



268 Theory of Lift

The simplest example would be isothermal processes, for which the temperature is constant
and therefore the pressure would simply be proportional to the density: p(ρ) = RTρ.

However, for a process to be isothermal, any heat generated must be instantaneously con-
ducted away to the environment, i.e. on a timescale which is short compared to those of
interest—isothermal processes are slow processes, or processes are asymptotically isothermal
in the limit that they are carried out ever more slowly. Since air is a fairly poor conductor, this
tends not to be a good model for aerodynamics; instead, a much better description is that the
parcels of air flow by a wing (increasing in pressure as it approaches a stagnation point, or
decreasing in pressure as it passes over the wing) before any appreciable thermal conduction
has had time to occur. This leads to a consideration of the opposite limit: the adiabatic process.

18.3.5 Adiabatic Expansion

Without the addition of heat, δQ = 0 and the First Law for a perfect gas (Equation 18.6)
reduces to

cvdT = pdρ

ρ2 .

The temperature differential can be expressed in terms of those of pressure and density using
the differential thermal equation of state (Equation 18.7), so

cv

(
1

Rρ
dp − T

ρ
dρ

)
= pdρ

ρ2

cv

Rρ
dp = T

ρ

(
cv + p

ρT

)
dρ

= Tcp

ρ
dρ

cv dp = RTcp dρ.

Then using the thermal Equation (18.5) of state and defining the ratio of specific heats

γ ≡ cp

cv
, (18.9)

the pressure and density are related adiabatically by

ρ dp = γp dρ. (18.10)

The ratio of specific heats for air is very near 7
5 at conditions relevant for lower atmospheric

flight. It decreases slightly with heating, but remains within a few percent of that value up
to temperatures of several hundred degrees (Celsius or Kelvin). Insofar as γ can be taken to
be independent of temperature, Equation (18.10) is a differential equation between pressure
and density and so a fluid obeying it is barotropic, as required above in the derivation of the
nonlinear continuity Equation (18.3).
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18.3.6 The Speed of Sound and Temperature

From the definition of the speed of sound in Equation (18.4)

a ≡
√

dp

dρ
,

the adiabatic differential Equation (18.10)

dp

dρ
= γp

ρ
,

and the ideal gas Equation (18.5)

p

ρ
= RT,

it may be seen that the speed of sound in a given gas depends solely on temperature:

a =
√

γRT . (18.11)

18.3.7 The Speed of Sound and the Speed

Where possible, however, the introduction of temperature as an another dependent variable
is avoided, so it is more convenient to try and express the speed of sound in terms of purely
mechanical variables.

Differentiating the definition of the speed of sound (Equation 18.4), using the quotient rule,
and finally using the adiabatic differential Equation (18.10) gives

da2 = d

(
dp

dρ

)
= d

(
γp

ρ

)
= γ

ρ2 (ρdp − pdρ) = (γ − 1)
dp

ρ
.

This can be combined with the differential Bernoulli Equation (2.13) to express the adiabatic
variation of the speed of sound in terms of the local velocity.

dq2

2
= −dp

ρ

= −da2

γ − 1
.

If the streamlines originate from a uniform upstream where q = q∞ and a = a∞, this can be
integrated from there to any point downstream in the flow to give

q2 − q2∞
2

= a2∞ − a2

γ − 1
. (18.12)
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18.3.8 Thermodynamic Characteristics of Air

At very high (hypersonic) speeds, the extreme temperatures generated dynamically lead to
chemical changes in the nature of the air and so its gas constant R is no longer constant; also
these additional modes of energy conversion lead to dramatic changes in the specific heats.
Thus over high temperature ranges, air is neither thermally nor calorically perfect; however,
in the troposphere and stratosphere, below hypersonic speeds, air behaves much as a perfect
gas with a constant molar mass and a constant ratio of specific heats.

18.3.9 Example: Stagnation Temperature

If a stream of air at 900 km/hr, 9 km up in the International Standard Atmosphere, is brought
to rest adiabatically, what temperature does it attain?

Solution: Recall that from Equation (18.11) the speed of sound is just a function of temper-
ature for a given gas. This function can be inverted:

T = a2

γR
.

The speed of sound at rest, a = a0, can be computed from the free-stream speed q∞ and speed
of sound a∞ using Equation (18.12), with q = q0 = 0. The free-stream speed is q∞ = 900
km/hr = 250 m/s, and the free-stream speed of sound at the temperature 229.65 K prevailing
at an altitude of 9 km according to Equations (1.8) and (1.4) is a∞ = 303.77 m/s, so:

a0 =
√

a2∞ + γ − 1

2
q2∞ = 323.69 m/s.

Thus T0 = 260.76 K; i.e. the air is heated by a little over 30 K.

18.4 Exercises

1. Show that the dimensions of the rate of change of pressure with respect to density are the
square of those of velocity.

2. From its definition in Equation (18.2), what would be the SI units of compressibility?

3. The compressibility of condensed phases (i.e. liquids and solids as opposed to gases) is
often tabulated in terms of its reciprocal, the bulk modulus.
(a) Look up the compressibility or bulk modulus and density of liquid water at normal

conditions (e.g. 1 atmosphere and 15◦C). What would be the speed of sound in water?
(b) Find typical values of the compressibility of some common solids, e.g. steel, and esti-

mate their speed of sound.

4. Derive from Equation (1.4) and Equation (18.12) a formula for the temperature along an
adiabatic streamline in terms of the free-stream velocity and temperature, the local speed,
the ratio of specific heats, and the gas constant. [Ans.: T = T∞ + (γ − 1)(q2∞ − q2)/2γR.]
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5. How hot might the forward stagnation point of a wing get flying steadily at 920 km/hr,
8800 m up? (Neglect viscous dissipation, which adds to the heating, on the one hand and
thermal conduction, which reduces it, on the other.)

6. While the isochoric and isobaric specific heat coefficients of air (and many other gases) are
well tabulated, show that for any perfect gas they can be simply computed from the gas
constant and ratio of specific heats by

cv = γR

γ − 1

and then Equation (18.9). [Hint: Use Equation (18.8).]

7. Say you would like to raise the temperature of your 3 m × 4 m × 5 m study from 15 to
25◦C. Assuming the walls are sealed, rigid, and well insulated, and neglecting the heat
capacity of the furnishings and occupants, as well as any heat generated by the latter, how
long would you have to run a 2 kW heater?

8. If the air at an adiabatic stagnation point not far above sea-level in the International Standard
Atmosphere has reached 25◦C, what must the speed and Mach number be in the free-stream?
[Ans.: 141 m/s, Ma = 0.42.]

18.5 Further Reading

Other cursory outlines of theories of the effects of compressibility in aerodynamics are given
by Abbott and von Doenhoff (1959), Milne-Thomson (1973) and Moran (2003). More detail
may be found in Jones and Cohen (1960), Kuethe and Chow (1998), and Anderson (2007).

Deeper investigations of compressbility necessarily more closely intertwine aerodynamics
and thermodynamics (Liepmann and Roshko 1957; Bers 1958). An excellent general introduc-
tion to thermodynamics is given by Callen (1960); see also Van Wylen and Sonntag (1985).
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Linearized Compressible Flow

Although somewhat simplistic in its thermodynamics, Chapter 18 has provided a sufficient
basis to allow the extension of our theoretical aerodynamical framework to very much higher
speeds, certainly well past the speed of sound. The key pieces to be taken from it are the
nonlinear continuity Equation (18.3) for the scalar potential and Equation (18.12) to express
the local speed of sound in terms of the local velocity.

While we now have enough thermodynamics for this raising of the speed limit, we content
ourselves in the final chapter of this book, with showing that in fact the effort put into the
fictitious incompressible perfect fluid in Chapters 2–14 was not merely a mathematical training
exercise for real aerodynamics since a simple transformation converts a streamlined subsonic
flow into a related incompressible flow.

The two pillars of aerodynamics are the conservation of mass and momentum. In the ideal
theory these are represented by the velocity’s being divergence-free and irrotational, and in
plane ideal flow by the existence of an analytic complex velocity, or of a stream function and a
potential. The potential can also be defined for three-dimensional flow, and requires only that
the circulation of loops moving with the flow is preserved. In fact, Kelvin’s theorem on the
persistence of circulation (Section 9.5.2) follows from the Euler momentum Equation (9.11)
and does not rely on the uniformity of density. That is, so long as the fluid is inviscid, it
still holds that circulation persists, and so aerodynamical flows originating from irrotational
uniform free-streams will still be irrotational and therefore possess a potential.

For an ideal flow, the potential is governed by the conservation of mass which leads to the
Laplace Equation (9.10). Its derivation took the conservation of mass in terms of density and
velocity and expressed the latter in terms of the potential. Its generalization for compressibility
through Equation (18.1) to Equation (18.3) followed this same path but without assuming
uniform density. In Chapter 19, we set about solving this generalized continuity equation.

19.1 The Nonlinearity of the Equation for the Potential

The great difference which enters when compressibility is admitted is not that the full continuity
Equation (18.3) has a few more terms than its incompressible counterpart, Equation (9.10); it
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is that it is nonlinear. Even without the immense trove of analytic complex velocity solutions
immediately opened up by the link with the Cauchy–Riemann Equations (2.22), it might still be
possible to find a few simple solutions, more or less comparable to those of the incompressible
case in Chapter 3, as for example the two-dimensional line-vortex was extended and deformed
into the third dimension in Chapter 10, but these will be much less useful because nonlinearity
means that it is no longer possible to combine multiple fundamental solutions to generate new
solutions.

As discussed in Section 3.3, a linear operator L has the property of additivity: if φ1 and
φ2 are operands (e.g. velocity potentials) and k1 and k2 are constants then L(k1φ1 + k2φ2) =
k1Lφ1 + k2Lφ2. Thus if φ1 and φ2 are solutions of the linear equation Lφ = 0 then so is their
linear combination:

L(k1φ1 + k2φ2) = k1Lφ1 + k2Lφ2

= k1 × 0 + k2 × 0

= 0.

Partial derivatives are linear, which is why the Cauchy–Riemann Equations (2.22) and the
three-dimensional incompressible continuity Equation (9.10) are too. Here, for the nonlinear
compressible potential Equation (18.3), attempting to substitute a linear combination for the
potential falls foul of the triple product in the second term, not to mention the speed-dependent
Equation (18.12) for the speed of sound a.

This loss of linearity is very debilitating to the analysis, but it turns out that linearity can
be recovered for the important case of the thin wing approximation as already used in the
incompressible limit in two dimensions with the thin aerofoil theory of Chapter 6 and in three
dimensions with the lifting line of Chapters 11 and 12 and the horseshoe vortex lattices of
Chapters 13 and 14.

19.2 Small Disturbances to the Free-Stream

If a wing disturbs the free-stream only slightly, the properties of the air might be nearly constant
at their free-stream values throughout the flow-field. Although a very severe restriction on the
range of all possible compressible flows, this tiny subset is of particular practical interest in
aerodynamics; as Jones (1947) put it:

The theory of potential flows with small disturbances is particularly suited for application to aero-
nautical problems because the assumptions of small disturbances and isentropic flows on which
this theory is based agree with the requirements for efficient flight. Theories of large disturbances,
which deal with the formation of shock waves, are of lesser practical importance since such theories
describe the losses of energy and the large drags associated with unsuitable forms.

Today this must be regarded as an overstatement since the imperative to faster flight has
pushed regular commercial intercontinental flight into the transonic regime, but nevertheless
the framework for linearized compressible flows that Jones referred to does serve well for
subsonic and supersonic flight-speeds and so is developed in detail in this section.
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19.3 The Uniform Free-Stream

If the speed of sound depends only the speed—e.g. via Equation (18.12)—then the speed of
sound will be constant in a uniform stream. Therefore any uniform stream q = q∞ is a solution
of the full continuity Equation (18.3), with its associated speed of sound a∞, since the velocity
gradient ∇q∞ vanishes, by definition.

Of course, that the general uniform stream of Equation (3.5) and Figure 3.5 is still a valid
solution is a necessary consequence of the invariance of the equations of motion with a constant
velocity of the frame of reference (Section 1.1.1). Yet another way to show that the uniform
stream is a valid solution is that it satisfies Equation (18.1) because the density will be uniform
and so can be moved outside the divergence.

19.4 The Disturbance Potential

Now consider a thin wing placed in such a flow at a small incidence such as to only disturb it
slightly. Thus the total flow might be of the form

q∞ + ∇φ, (19.1)

if the disturbance has a potential (i.e. is irrotational) where |∇φ| � q∞. The conditions under
which the total velocity will have a potential are the same as in the incompressible case: the
circulation is preserved, and so, being irrotational in the uniform free-stream upstream, remains
irrotational past the wing.

Substitute the above expression for the total velocity into the full continuity Equation (18.3)
and drop terms quadratic or of higher order in the small disturbance potential.

∇2φ = 1

a2∞
q∞ · ∇(∇φ) · q∞.

If, as usual, the coordinate system is chosen so that q∞ = q∞(i cos α + j sin α) then

∇2φ = Ma2
∞

∂2φ

∂x2

where the small angle approximations have been applied to the incidenceα, as in incompressible
thin aerofoil theory (Section 6.1.3), and

Ma∞ ≡ q∞
a∞

is the Mach number of the free-stream.
Expressing the Laplacian in terms of the Cartesian coordinates, the linearized compressible

continuity equation becomes

(
1 − Ma2

∞
) ∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0. (19.2)

Again we see that for small Mach numbers, i.e. free-stream velocity much less than the speed
of sound, this reduces to the Laplace Equation (9.10). We can also see that the coefficient of the
longitudinal second derivative changes sign relative to the other derivative terms if the Mach
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number exceeds unity. This is a mathematical indication (within the linearized framework) of
the qualitatively different regime called supersonic.

19.5 Prandtl–Glauert Transformation

The linearized compressible potential Equation (19.2) differs from the Laplace Equation (9.10)
only by the constant multiplier on the x-derivative term. Therefore compressible potentials can
be obtained from incompressible solutions by dilating the dependence on x; i.e. consider, for a
constant dimensionless dilation factor µ (not to be confused with the coefficient of viscosity)

φ(x, y, z) = �(µx, y, z) ≡ �(X, Y, Z) (19.3)

The transverse partial derivatives are identical:

∂φ

∂y
= ∂�

∂y
,

∂2φ

∂y2 = ∂2�

∂y2

∂φ

∂z
= ∂�

∂z
,

∂2φ

∂z2 = ∂2�

∂z2

but the derivatives with respect to x, via the chain rule, generate a constant factor:

∂φ

∂x
= dX

dx

∂�

∂X
= µ

∂�

∂X
,

∂2φ

∂x2 =
(

µ
∂

∂X

)2

� = µ2 ∂2�

∂X2 ,

so the continuity Equation (19.2) becomes

(
1 − Ma2

∞
)

µ2 ∂2�

∂X2 + ∂2�

∂Y2 + ∂2�

∂Z2 = 0,

and this can be reduced to the Laplace equation

∂2�

∂X2 + ∂2�

∂Y2 + ∂2�

∂Z2 = 0 (19.4)

for the distorted potential � with the choice

µ ≡ 1√
1 − Ma2∞

.

This means that any known potential � which is a solution of the incompressible continuity
equation generates a family of solutions at different free-stream Mach numbers

φ(x, y, z) = �


 x√

1 − Ma2∞
, y, z


 ;

� is the incompressible Ma∞ = 0 member of the family.
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19.5.1 Fundamental Linearized Compressible Flows

This dilation can be applied to any of the many two- or three-dimensional irrotational solutions
obtained in Chapters 2–14.

To get an idea of what this dilation looks like, let’s consider, as a first example, the
zero Mach number two-dimensional point source of Section 3.1.6. Its complex velocity was
u − iv = 1/(x + iy) and its complex potential φ + iψ = ln(x + iy), so its scalar potential is
φ = ln |x + iy| = ln

√
x2 + y2 = 1

2 ln
∣∣x2 + y2

∣∣. Therefore the dilated scalar potential

φ = 1

2
ln

∣∣∣∣ x2

1 − Ma2∞
+ y2

∣∣∣∣
satisfies the linearized compressible potential Equation (19.2).

The character of the flow represented by this potential strongly depends on the Mach number.
In the subsonic case, the absolute value bars are not required since their contents are neces-
sarily nonnegative and the corresponding velocity perturbation is easily obtained by partial
differentiation, in accordance with Equation (2.28):

u = ∂φ

∂x
= 2x/(1 − Ma2∞)

x2

1−Ma2∞
+ y2

v = ∂φ

∂y
= 2y

x2

1−Ma2∞
+ y2

.

Therefore the slope of the perturbation streamlines is

v

u
= (1 − Ma2

∞)
y

x

tan β = (1 − Ma2
∞) tan θ,

where β = arctan v
u

is the polar angle of the velocity (as in Section 2.6.2) and θ ≡ arctan y
x

is the
usual polar coordinate from Equation (2.20b). When Ma∞ = 0, β = θ the streamlines are rays
from the point source, as in Figure 3.3. As Ma∞ increases, tan β < tan θ, the velocity vectors
point below the rays, and the streamlines curve towards the x-axis. As Ma∞ tends upwards
towards unity tan β → 0, so β tends towards zero or π and the streamlines are asymptotically
horizontal.

In the supersonic case, Ma∞ > 1, the denominator in the first term is negative and the
absolute value bars have a very important effect: the gradient of the solution is discontinuous
across

x2

1 − Ma2∞
+ y2 = 0

y2

x2 = 1

Ma2∞ − 1

tan2 θ = tan2 µ′.
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This new angle µ′ defined by

µ′ ≡ arctan
1√

Ma2∞ − 1
≡ arcsin

1

Ma∞
(19.5)

for Ma∞ > 1 is called the Mach angle.

19.5.2 The Speed of Sound

The significance of the Mach angle is not restricted to this special solution; indeed, the second
part of Equation (19.5) permits a sense to be given to the idea of the ‘speed of sound’ introduced
in Section 18.1, since it can be rearranged to give:

a∞ ≡ q∞
Ma∞

≡ q∞ sin µ′.

Consider, as in Figure 19.1, a particle of fluid travelling from left to right with the steady uni-
form stream along the x-axis through the point source at the origin (remember that the velocity
disturbances generated by the disturbance potential φ here are supposed small compared to
the velocity of the free-stream). A time t later it is at x = q∞t on the x-axis and its perpen-
dicular distance from the two rays tan θ = ± tan µ′ along which the perturbation solution is
discontinuous is

q∞ sin µ′ ≡ q∞
Ma∞

≡ a∞,

the ‘speed of sound’.
The mathematics of the discontinuity of the solution may seem somewhat mysterious—

mostly because they are so different to those applicable to subsonic flows. There is a good
framework for dealing with supersonic flows, but it is completely different to the one for

O xµ

q∞ t

a∞t

y =
x tan

µ

y = −x tanµ

q∞

Figure 19.1 A two-dimensional linearized disturbance in a uniform stream, obtained from the incom-
pressible point source (at O) by the Prandtl–Glauert transformation, at a Mach number greater than one,
Ma∞ = cosec µ′
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O xµ

q∞t

a∞t

y =
x tan

µ

y = −x tanµ

q∞

Figure 19.2 Another representation of Figure 19.1, showing three of the circles centred on fluid particles
which have passed with the free-stream through the disturbing point, and with radius equal to the product
of the speed of sound and the time elapsed since the passage. The Mach rays form the envelope to this
family of circles

incompressible flows and so it is not developed here. Instead, experimental observations come
to our aid. Wing sections with sharp leading edges placed in supersonic wind tunnels (as the
point source here could be considered a model of) also display these ‘Mach rays’ emanating
from the leading edge at the Mach angle from the flow direction downstream. Upstream of the
rays, the oncoming stream is just as if there were no disturbance downstream of it; only inside
the sector bounded by the rays is the influence of the disturbance felt. It is as if influence of the
disturbance travelled outward from the point on the free-stream passing through the disturbing
point in circles of radius a∞t, and to which the Mach rays form an envelope; a sequence of
such circles is sketched in Figure 19.2.

19.6 Application of the Prandtl–Glauert Rule

Although, as shown in Section 19.5.1 it is possible to find solutions of the linearized continuity
Equation (19.2), a simpler approach is to transform the geometry of interest via the longitudinal
dilation of Section 19.5, solve a Laplace equation for the distorted disturbance potential by
any one of the techniques already developed for incompressible aerodynamics, and then re-
transform the results to the finite subsonic Mach number of interest.

19.6.1 Transforming the Geometry

The first step is to transform the geometry by stretching all the x-coordinates by the factor
µ = (

1 − Ma2∞
)−1/2. For 0 < Ma∞ < 1, this factor exceeds one and is therefore a proper

stretching rather than a compression.
The next question is how the thickness and camber of the geometry should be transformed in

the y-direction, since it is already being treated as thin in the linearized theory of compressibil-
ity. The essential property of the geometry in inviscid flow is impermeability; i.e. the surface
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should be composed of streamlines, or, the component of velocity normal to the surface should
vanish. This boundary condition was used in various ways in Chapters 6, 7, 8, 11, and 14,
but not in terms of a velocity potential, so this is briefly derived here. In two dimensions, say
the slope of the surface at the point under consideration is dy

dx
≡ tan λ, then the unit outward

normal will be n̂ = −i sin λ + j cos λ and so the normal component of velocity is

n̂ · {q∞(i cos α + j sin α) + ∇φ}
= (−i sin λ + j cos λ) · {q∞(i cos α + j sin α) + ∇φ}
= −q∞ sin λ cos α − ∂φ

∂x
sin λ + q∞ cos λ sin α + ∂φ

∂y
cos λ

∼ q∞(α − λ) + ∂φ

∂y

and so its vanishing gives the condition

∂φ

∂y
= q∞(α − λ),

for the linearized compressible potential which implies

∂�

∂Y
= q∞(α − λ),

for the transformed Prandtl–Glauert potential. These two boundary conditions are formally
identical so the corresponding profiles in the two spaces will be geometrically similar. Note
though that to keep λ the same, the y-coordinates of the profile (or camber line) have to be

dilated as the x-coordinates were; i.e. by
(
1 − Ma2∞

)−1/2
.

Since the Laplace equation is linear and isotropic, its solution about an impermeable scaled
object in a free-stream at incidence is the same, subject to the same scaling; i.e. the potentials are
geometrically similar too. There is a subtle point here in that the Prandtl–Glauert transformation
is not isotropic, the points on the two surfaces do not correspond under the transformation;
however, the whole Prandtl–Glauert theory is part of the broader idea of thin aerofoil and
wing theory, so the thicknesses or distances from the chord are neglected and in that sense the
nominally corresponding points do correspond.

19.6.2 Computing Aerodynamical Forces

Aerodynamical forces can be computed directly from pressures or indirectly from circulations
and the Kutta–Joukowsky thereom.

Circulation

In solving the Laplace equation for the potential with the same free-stream and geometrically
similar but dilated boundary, the potential field will come out to be geometrically similar but
also scaled. The scalings of some quantities are easily inferred from dimensional analysis.
Circulation is defined as a path integral of velocity and so scales in proportion with both
velocity and length; this may be verified by inspection of the exact solution in Equation 5.6
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Figure 19.3 The Prandtl–Glauert Equation (19.6) for the effect of compressibility on lift

for the thin flat plate with Kutta–Joukowsky condition at the trailing edge, Γ = πcq∞ sin α –
the circulation is proportional to the product of the velocity and the length, q∞c. Similarly
observe that in our numerical methods the vortex strengths have come out proportional to the
same product of free-stream velocity and length-scale; see e.g.

• the matrix–vector Equation (7.3) of the lumped vortex method;
• Section 8.1.6 for the CUSSSP program; or
• Equation (14.1) for the calculation of the lift coefficient in the vortex lattice method.

In the Prandtl–Glauert transformation under consideration, the velocity is unchanged but

the length is scaled by
(
1 − Ma2∞

)−1/2
. Therefore, by the Kutta–Joukowsky theorem, the lift

coefficient will be increased by the same amount:

C�(Ma∞) = C�(0)√
1 − Ma2∞

. (19.6)

This simple result, known as the Prandtl–Glauert rule and plotted in Figure 19.3, says that
the first-order effect of compressibility as speeds increase from zero Mach number while still
remaining strictly subsonic is that the lift coefficient increases monotonically and without
bound as the Mach number tends towards one.

Pressure Coefficient

The pressure coefficient, as originally given by Equation (2.11), was quadratic in the ve-
locity; therefore for use with a velocity field obtained from a linearized approximation like
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Equation (19.2), it should be linearized too. From the differential Bernoulli Equation (2.13),

δp = −ρδ

(
q2

2

)

and then using the basic decomposition of the flow into free-stream and disturbance potential
by Equation (19.1):

q2 = |q∞(i cos α + j sin α) + ∇φ|2

= q2
∞ + 2q∞

(
∂φ

∂x
cos α + ∂φ

∂y
sin α

)
+ |∇φ|2

∼ q2
∞ + 2q∞

∂φ

∂x

for small disturbances and so, since the first term is constant, to leading order the difference is
like

δ

(
q2

2

)
∼ δ

(
q∞

∂φ

∂x

)
,

and the Bernoulli equation becomes

δp ∼ −ρq∞δ

(
∂φ

∂x

)
.

The appropriately approximated pressure coefficient is

Cp ≡ p − p∞
1
2ρq2∞

= −ρq∞ ∂φ
∂x

1
2ρq2∞

= −2

q∞
∂φ

∂x
.

Alternatively, in terms of the Prandtl–Glauert transformed potential � of Equation (19.3)
which satisfies the Laplace Equation (19.4) in the dilated (X, Y, Z) coordinates,

Cp = −2

q∞
√

1 − Ma2∞

∂�

∂X
. (19.7)

Thus the pressure coefficient also scales with Mach number according to the Prandtl–Glauert
Equation (19.6).

19.6.3 The Prandlt–Glauert Rule in Two Dimensions

That Equation (19.7) for the pressure coefficient contains the same scaling factor as the
Equation (19.6) for the lift coefficient, derived from dimensional analysis of circulation in
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the Prandtl–Glauert transformation, is as it should be, since it should be equally possible to
compute the aerodynamic forces from pressures as well as from circulations, and the answers
obtained should be the same.

From this uniform scaling of the pressure coefficient around the profile, it may be deduced
that the theoretical drag coefficient increases in the same proportion; being zero in the incom-
pressible limit it remains zero within the scope of the Prandtl–Glauert theory.

Experimentally, when streamlined two-dimensional aerodynamics is approximated, e.g. by
extending the wing span right across the wind tunnel into the walls, the measured drag does
indeed remain low as the Mach number is increased, and the measure lift coefficient does
increase in line with Equation (19.6), but the lift coefficient does not increase to infinity as the
speed of sound is approach. Quite suddenly the lift drops or even reverses and the drag jumps.
The reason is that the flow over a lifting surface is always accelerated somewhere, usually on
the upper surface to induce suction, i.e. negative pressure coefficient. As this negative pressure
coefficient in this region of suction will scale in magnitude according to the Prandtl–Glauert
Equation (19.6), it becomes large and negative which means the velocity there is increased
in proportion and eventually locally reaches the speed of sound. This is accompanied by the
generation of shock waves, and a ‘compressibility burble’ (Stack 1933, 1935) related to the
discontinuities sketched in Figures 19.1 and 19.2. These discontinuities violate the assumptions
on which the Blasius’s theorem (Equation 3.12) was based; the shock waves do significantly
rearrange the pressure field and cause wave drag.

The free-stream Mach number at which the local Mach number somewhere on the aerofoil
reaches unity is called the critical Mach number for the given profile and incidence. Although
this is a precisely defined quantity, the experimental curves are not so severe, at least for thin
aerofoils.

For example, Figure 19.4 shows data extracted from figure 8 of NACA Report No. 463 (Stack
1933) on the measured lift coefficient and Mach number for a wing with Clark Y section of
thickness ratio 0.06. This test piece was said to have a zero-lift incidence of about α0 = −2.5◦
and was placed for this sequence of measurements at an incidence of α = 2◦. For comparison
with the experimental data, Figure 19.4 also contains the theoretical curve based on thin aerofoil
theory Equation 6.11 for the zero-Mach number lift coefficient and Equation 19.6 for the effect
of Mach number, i.e.

CL = 2π(α − α0)√
1 − Ma2∞

. (19.8)

Note here in comparing the experimental measurements with theory that the effects of span
are not quite clear and so the use of the theoretical two-dimensional lift–incidence slope of
2π from Equation 6.11 is only a first guess. A slightly lower value might account for this
and reduce the overall vertical offset. The main point to take from Figure 19.4 is that the
lift coefficient does indeed increase with Mach number at low Mach numbers, with a similar
slope and curvature to that predicted by the Prandtl–Glauert Equation (19.6), but that this only
persists up to some Mach number below unity (here about 0.75) above which the measured
lift falls sharply rather than increasing without bound as in the theory. The discrepancy due to
the unknown incompressible lift–incidence coefficient can be largely removed by dividing the



284 Theory of Lift

Mach number,

Li
ft 

co
ef

fic
ie

nt
,

1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

theory (thin)
theory (         )
experiment

Figure 19.4 Data extracted from Figure 8 of Stack (1933) for the lift coefficient of a 6% thick Clark Y
wing section in a compressible wind tunnel. The curves are Equations (19.8) and (19.9)

Prandtl–Glauert Equation (19.6) for the rest of the data by its value for the first member of the
sequence, which gives

CL = CL,1

√
1 − Ma2

∞,1

1 − Ma2∞
, (19.9)

which also appears in Figure 19.4.

19.6.4 The Critical Mach Number

Since the pressure coefficient distribution can be estimated from the incompressible flow
solution and the Prandtl–Glauert Equation (19.7), it is possible to estimate this critical Mach
number for any given profile and incidence. These do correlate reasonably well with the
experimental Mach numbers at which the sudden loss of lift and jump in drag is observed, but
this is not pursued here.

19.7 Sweep

When the vortex lattice method was developed in Chapter 14, it was important to give it
the generality to handle swept wings (as in Figures 14.1–14.3), but within the context of
incompressible flow, there is no reason to use swept wings. Indeed, wings designed for flight
at low Mach numbers are generally kept straight. However, the few preliminary ideas about
compressible flow introduced in this chapter are enough to suggest the reasons for sweep.
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If the flow is supersonic so that the nose of the aircraft sheds a bow wave, or Mach cone, the
axially symmetric three-dimensional analog of the two-dimensional Mach rays of Figure 19.1,
the wings can be pulled back inside the cone by sweeping them at an angle greater than the Mach
angle, defined by Equation (19.5). However, not enough else has been said about supersonic
aerodynamics to make it worthwhile developing this idea any further here; see the references
in the Further Reading section at the end of this chapter.

In the subsonic regime, the intention is the same: to keep the local speed everywhere less
than the speed of sound; i.e. to increase the critical Mach number. In the subsonic regime
though there is no Mach angle, since it is evident that the definition in Equation (19.5) does
not return a real angle unless the Mach number is greater than one. Instead the idea is that in
relating the three-dimensional wing to the two-dimensional Prandtl–Glauert theory developed
in Section 19.6, it is only the component of the free-stream velocity normal to the leading edge
that counts; i.e. q∞ cos Λ, if Λ is the angle of leading edge sweep, as in Section 14.1. Since
the free-stream speed of sound is unaffected by geometry, it remains constant and the apparent
local free-stream Mach number then is not Ma∞ = q∞/a∞ but Ma∞ cos Λ. This approach
can be taken further, leading to the incorporation of factors of cos Λ into the Prandtl–Glauert
transformation (Jones 1947; Jones and Cohen 1960), but this is not pursued here.

19.8 Exercises

1. (a) Show that φ(x, y, z) = ln
√

x2 + y2 + z2 is a three-dimensional point source solution
of the incompressible continuity Equation (9.10).

(b) What is its flow rate?
(c) Find the corresponding disturbance potential solution of the linearized compressible

continuity Equation (19.2) by the Prandtl–Glauert transformation.
(d) Show that for Ma∞ > 1, the gradient of the disturbance potential solution is discon-

tinuous across a cone making the Mach angle µ′ = arcsin Ma−1∞ with the downstream
x-axis. This is called a Mach cone.

2. Find the solution of Equation (19.2) corresponding to the two-dimensional incompressible
doublet of Section 3.1.7.

3. In Exercise 1.7.5b, the free-stream Mach number was calculated for one of the wind tunnel
experiments reported by Silverstein (1935). What Prandtl–Glauert correction factor would
this imply for the lift coefficients?

19.9 Further Reading

The Prandtl–Glauert small-disturbance theory of linearized compressible flow is discussed
by Liepmann and Roshko (1957), Jones and Cohen (1960), Belotserkovskii (1967), Milne-
Thomson (1973), Ashley and Landahl (1985), Kuethe and Chow (1998), Katz and Plotkin
(2001), Bertin (2002), Moran (2003), and Anderson (2007). It has been much used in practice
(DeYoung and Harper 1948; Gray and Schenk 1953; Margason and Lamar 1971).

Many more examples of two- and three-dimensional fundamental solutions of the linearized
potential Equation (19.2) are given by Bousquet (1990).
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For proper treatments of supersonic flow in terms of Prandtl–Meyer expansions, shock
waves, and the method of characteristics, see Liepmann and Roshko (1957), Carafoli et al.
(1969), Milne-Thomson (1973), Kuethe and Chow (1998), Bertin (2002), and Anderson (2007).

Further experimental measurements of lift and drag showing agreement with the Prandtl–
Gluaert rule at small Mach numbers and a sudden departure more or less in the vicinity of
the critical Mach number are repeated and discussed by Jones and Cohen (1960), Kuethe and
Chow (1998), Bertin (2002), and Moran (2003).
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Carafoli, E., Mateescu, D. and Nastase, A. (1969) Wing Theory in Supersonic Flow. Oxford: Pergamon.
DeYoung, J. and Harper, C.W. (1948) Theoretical symmetric span loading at subsonic speeds for wings having

arbitrary plan form. Report 921, NACA.
Gray, W.L. and Schenk, K.M. (1953) A method for calculating the subsonic steady-state loading on an airplane with

a wing of arbitrary plan form and stiffness. Technical Note 3030, NACA.
Jones, R.T. (1947) Wing plan forms for high-speed flight. Technical Report 863, NACA.
Jones, R.T. and Cohen, D. (1960) High Speed Wing Theory vol. 6 of Princeton Aeronautical Paperbacks. New Jersey:

Princeton University Press.
Katz, J. and Plotkin, A. (2001) Low-Speed Aerodynamics, 2nd edn. Cambridge: Cambridge University Press.
Kuethe, A.M. and Chow, C.Y. (1998) Foundations of Aerodynamics, 5th edn. New York: John Wiley & Sons, Ltd.
Liepmann, H.W. and Roshko, A. (1957) Elements of Gasdynamics. New York: John Wiley & Sons, Ltd.
Margason, R.J. and Lamar, J.E. (1971) Vortex-lattice FORTRAN program for estimating subsonic aerodynamic

characteristics of complex planforms. Technical Note TN D-6142, NASA.
Milne-Thomson, L.M. (1973) Theoretical Aerodynamics, 4th edn. New York: Dover.
Moran, J. (2003) An Introduction to Theoretical and Computational Aerodynamics. New York: Dover.
Silverstein, A. (1935) Scale effect on Clark Y airfoil characteristics from N.A.C.A. full-scale wind-tunnel tests. Report

502, NACA.
Stack, J. (1933) The N.A.C.A. high-speed wind tunnel and tests of six propeller sections. Report 463, NACA.
Stack, J. (1935) The compressibility burble. Technical Note 543, NACA.



Appendix A
Notes on Octave Programming

A.1 Introduction

Programs written in interpreted programming languages such as Octave are generally slower to
run than those written in compiled programming languages such as Fortran, since the compiler
can rewrite the instructions beforehand to make them simpler and more suited to the computer’s
architecture whereas the interpreter can only try doing that a line at a time, during execution.

This disadvantage is compensated for by programs in interpreted languages being generally
easier and quicker to write, and if we value our time as programmers more highly than that
of the computer’s in executing, this compensation might be decisive. Further, the run-time for
many small programs, such as all of those considered in this book, is quite short so that the
difference between interpreted and compiled implementations wouldn’t be noticed. Indeed, in
assessing speed for such programs which are only intended to be run once, or at most a few
times, one must include the time of compilation as well as of execution; for small programs
this will tilt the balance in favour of interpreters.

Nevertheless, there is a single key to making interpreted programs run faster and it is so
important in scientific programming that it has been consistently exploited throughout this
text. It is to ensure that most of the work is done inside the precompiled subroutines which
are called by operators built in to the language. For example, it would not be difficult, and it
might even be deemed instructive, to write an Octave function for solving a system of linear
equations using Gaussian elimination; however, Octave possesses the backslash operator for
this purpose and on seeing it Octave will pass all the work to an appropriate compiled and
optimized binary library function, which will have originally been written in a language like
Fortran or C++. This step will then run as fast in Octave as it would in the compiled language,
and if this is the dominant computational step, we need only look to ensuring that it is not
eclipsed by overheads in other parts of the program.

A.2 Vectorization

The main things to look for in this regard are explicit iterations at the interpreted level over
the elements of arrays. For example, preparing a graph like Figure 1.5 requires evaluating

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Listing A.1 Explicit iteration to compute the speed of sound at each of a collection of temperatures:
speed of sound for.m.

n = 1e6;
t = linspace (-60, 100, n);
tic
for i = 1:n

a(i) = speed_of_sound (t(i) + 273.15);
end
toc

the scalar Equation (1.4) for enough values of temperature to enable a smooth curve to be
interpolated. This is a very common task.

A.2.1 Iterating Explicitly

This could be done in a for-loop as shown in Listing A.1, but (for the admittedly large number
n = 1e6 of abscissae) this takes 34 seconds on my laptop.

A.2.2 Preallocating Memory

Part of the time here is taken by having to repeatedly allocate memory to store the values of
the speed of sound. This can be removed by prefilling the result array with dummy values,
e.g. as generated by the built-in function zeros by adding the line before the for-loop.

a = zeros (size (t));

With this improvement, the program takes slightly under thirty seconds.

A.2.3 Vectorizing Function Calls

Avoiding repeated memory allocation for a single array saved over a tenth of the run-time,
which is some improvement, but much more can still be achieved. The key is already visible
in the first two versions of the program: notice that the built-in functions linspace and
zeros have returned complete arrays rather than single numbers. What if speed of sound

could return the whole array? Then it would only need to be called once. The beauty of matrix-
languages like Octave is that that is exactly what they are designed to do. We can indeed simply
pass the whole array of abscissae to the function and get back the whole array of ordinates
from a single call; see Listing A.2.

In this case there is no need to preallocate since the result vector is not resized.
The new program is not only equivalent in terms of answers but also arguably much more

clearly and naturally expressed; moreover, it takes only 34 milliseconds, a thousand times less
than the original program.
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Listing A.2 Vectorizing Listing A.1.

n = 1e6;
t = linspace (-60, 100, n);
tic
a = speed_of_sound (t + 273.15);
toc

Five seconds is long enough to make an interactive program begin to seem unresponsive;
thirty seconds will likely induce thoughts that it is broken. It is true that one million points
are not required to draw Figure 1.5, but a million degrees of freedom are by no means large
in contemporary computational aerodynamics, and since elementwise functions of scalars are
common and natural operations in the same field, this technique is worth mastering, and worth
mastering early. There are many more like it, some of which are exploited in this book and
explained below.

A.2.4 Many Functions Act Elementwise on Arrays

The first thing to know is that most of the functions built in to Octave act on arrays and not just
scalars. Mathematical functions that really only make sense for scalars, such as sqrt or exp

or sin, are typically applied elementwise to arrays. For example, while sqrt (-1) will return
0 + 1i, as expected, sqrt (-1:1) will return the array [1i, 0, 1]. This was exploited
above in ListingA.2, which was only able to return an array of outputs for an array of inputs
because sqrt can.

Actually there is another way that scalar functions have been generalized to act on matrices,
using the Taylor series representation of the function (Moler and Van Loan 1978); however,
where such matrix functions are implemented in Octave and there is a corresponding element-
wise version, the matrix version is given a different name; e.g. expm, logm, and sqrtm. While
these matrix functions do have uses, they are not required for any of the problems in this book.

A.2.5 Functions Primarily Defined for Arrays

Of course there are also many functions which are primarily defined for arrays or matrices as
a whole; e.g. max, det, or flipud. These generally treat a scalar argument as a singleton; i.e.
as an array containing a single element, a vector of length one, or a one-by-one matrix. In the
three examples mentioned, this leads to rather trivial results since the maximum element of an
array of length one is just the sole element, the determinant of a one-by-one matrix is again
the sole entry, and a vector of length one looks the same after flipping as it did before.

A.2.6 Elementwise Arithmetic with Single Numbers

Often in writing a function which is essentially scalar but which, in accordance with
Section A.2.3, we would like to be able to act elementwise on array inputs, it is necessary
to vectorize arithmetic. This works naturally for scalar multiplication or division; i.e. the mul-
tiplication or division of every element of an array by the same real or complex number.
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An operation which resembles scalar multiplication (but without the fundamental mathe-
matical significance) is the addition of the same number to each element of an array. This
arose in Listing A.2 in converting the temperatures from degrees Celsius to kelvins: 273.15 K
was added to each entry. The syntax for this (or the corresponding subtraction of a common
subtrahend) is simple; in particular note that the syntax is identical whether the addend (or
minuend) is a matrix or a single number.

Raising an array to a power which is a number or a number to a power which is an array is
different, because these operations can have a special meaning for square matrices (analogous
to that of expm). To specify elementwise exponentiation, one precedes the operator with a dot;
e.g. pi .ˆ [1, 2] or [1, 2] .ˆ pi.

The same dot-prefix is required when dividing a single number by an array; e.g.
pi ./ [1, 2].

A.2.7 Elementwise Arithmetic between Arrays

Since vector and matrix addition and subtraction are defined elementwise in mathematics,
there is no difficulty with these operations.

Matrix multiplication and division are defined specially though, with matrix division being
used to solve linear systems of equations as exploited in Listings 1.4, 7.4, 8.6, 12.1, and
14.5, for example. Elementwise multiplication or division of two arrays with identical shapes
is indicated by preceding the operator with a dot, as in A .* B or A ./ B. Elementwise
multiplication was used in cusssp.m to correct the direction of the velocity at the midpoint
of a panel due to the panel’s own strength. Elementwise division was used in Listing 1.3 to
calculate the density from the ideal gas law for multiple altitudes each with their own pressure
and temperature.

Raising each element of an array to a different power can be done with .ˆ, as in Listing 1.3.

A.2.8 Vector and Matrix Multiplication

In Octave, the operator * denotes multiplication, and more specifically matrix multiplication,
so that if the symbol is proceded by a row-vector and followed by a column-vector, the answer
will be a scalar, being the sum of the products of the corresponding elements. This was used
in Listing 6.1.

Multiplying a column by a row gives a rectangular matrix, which can be useful too.

A.3 Generating Arrays

Arrays of any shape and size with all elements equal may be generated using the built-in
function ones and then multiplying by the required value. The special case zeros is also
provided.

A.3.1 Creating Tables with bsxfun

One way of generating a rectangular matrix was noted in Section A.2.8: as the product of
column-vector and a row-vector. The elements of the product matrix are all the possible pairwise
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products of the elements of the factors. A generalization of this operation to other pairwise
operations is provided in Octave by bsxfun; see e.g. Listings 7.3 and 8.5.

A.4 Indexing

A.4.1 Indexing by Logical Masks

Sometimes the same operation is done to every element of an array, as in the speed-of-sound
example discussed above, in which case indexing can and should be left to the internal work-
ings of the interpreter or compiler; however, special cases often intrude, for which no single
overarching operation suffices. An example of this was met early in the book, in Listing 1.3:
the thermal variation of the atmosphere is defined piecewise, and so it was necessary to clas-
sify the input altitude according to whether they were in the troposphere, (lower) stratosphere,
etc. Similarly, the four-digit NACA camber lines have piecewise definitions and so chordwise
stations had to be classified in Listing 6.3 as fore or aft. To access just the elements of an
array satisfying some condition, one forms a logical array which has true or false elements
in the corresponding positions and then indexes the original array with it using parentheses;
examples may be spotted in the two cited listings.

The required logical ‘mask’ can be formed beforehand and stored in a variable, like
troposphere and strat in Listing 1.3, or even just formed temporarily inside the
reference-parentheses of the array using an array logical operation like greater-than, as in
Listing 8.1. If the mask is only required once, this is both more compact and clearer, since the
definition is present right where it is used.

A.4.2 Indexing Numerically

Other times, the locations of the elements in the array are known to begin with and it isn’t
necessary to compute a logical array to find them. For example, in Listing 8.6 which implements
the two-dimensional panel method, there were n panels defined by n + 1 nodes (the last being
a repeat of the first), so the starting points of the panels were all those points but the last; this
subarray can be extracted, by passing the numerical index range 1:n to the array, in parentheses,
as in zp(1:n).

That requires n to be known, and in that example it was computed and stored using the
length built-in function by n = length (dz).

If the required numerical range involves the end of the array, as in this example, there is even
a special numerical indexing keyword end (which automatically knows how long the relevant
array is) with z(1:(end-1)). This was used in Listing 7.4; however, since the value n was
required several times in Listing 8.6, it was not used there.

A.5 Just-in-Time Compilation

A different approach to the problem of vectorization is that the interpreter could be taught to
spot patterns like the above simple for-loop and automatically replace them with the same fixes
that have been implemented manually here. This would mimic what compilers for languages
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like Fortran did (before, influenced by interpreted array languages like Lisp and APL, Fortran
90 introduced array operations), and so is called ‘just-in-time’ compilation. This is an ongoing
area of research and goes back to the earliest Lisp interpreters (McCarthy 1960).

Just-in-time compilation involves compromise, since the more patterns the interpreter tries
to spot, the longer it takes analysing the code before processing it. Spotting the patterns is not
trivial, since if the functions called inside the for-loop include functions defined by the user,
they might depend on external or persistent data which they in turn could modify, so while
each call might look the same, it might not be the same. Since an interpreter should not change
the effect of code, it must check that each iterated call is equivalent.

In practice, just-in-time compilers tend to accelerate very impressively simple test examples
like the above but may not do so well on real code; hence this is one reason why programmers
should avoid developing a reliance on a just-in-time compiler.

The main advantage of array programming should be though that it permits expression in
the computer language of the idea in the mathematics and the physics, which very often is in
terms of collections of values conceived collectively and not as individuals. Thus, thinking in
the computer language becomes closer to thinking in the terms of the intrinsic theory of the
phenomenon. The features of an array programming language which permit the development
of such idioms should therefore be exploited and not avoided, whereas it is primarily the latter
avoidance that just-in-time compilation facilitates, encouraging adherence to old-fashioned
and obsolete programming paradigms.

A.6 Further Reading

The canonical reference for Octave is Eaton et al. (2008); another popular and excellent guide
is Quarteroni et al. (2010).

Most works dealing with either Octave or MATLAB® e.g. Trefethen (2000) or Higham and
Higham (2005), are usable more or less interchangeably with the other program.
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Glossary

This glossary is for terms which are defined in one part of the book but used in others; terms
used only in the vicinity of their definition are not glossed.

adiabatic without heat transfer; flows in which a fluid parcel is deformed rapidly are nearly
adiabatic, since the transfer of heat takes time; the adiabatic approximation permits the
treatment of compressible flow without a partial differential equation for temperature

adverse (of pressure) increasing in the direction of flow (Section 17.1.1); an adverse pres-
sure gradient retards the flow and if strong enough may lead to separation; opposite to
favourable

aerodynamic centre point along the chord of an aerofoil about which the pitching moment
is independent of incidence (Section 5.3.1)

aerodynamic force part of the force exerted by air on a body immersed in it which is associated
with relative motion, i.e. excluding buoyancy or mean compression (Section 1.1)

aerodynamic pressure sum of the true pressure and the potentials of any conservative exter-
nal forces such as gravity (Section 2.4.4); using aerodynamic pressure means that the
conservative external forces can be ignored

aerofoil wing section or profile; called airfoil in American English

analytic possessing a well-defined derivative; wherever a function of a complex variable is
analytic, it corresponds to a plane ideal velocity field (Section 2.6); a function of a
complex variable is analytic if it satisfies the Cauchy–Riemann Equations (2.22)

anhedral negative dihedral; like the wings of most moths at rest, as opposed to butterflies

anticommutative like commutative but involving a change of sign; e.g. as in subtraction and
the vector product (Section 9.3.2)

argument the argument of a complex number is the arctangent of the ratio of the imaginary
and real parts; also called phase; the argument of a complex coordinate of a point in the
plane is its angle from the positive x-axis (Section 2.6)

Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave, First Edition. G. D. McBain.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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the word argument is also used to refer to the input to a mathematical or computational
function; these senses are not connected

aspect ratio geometric parameter of the planform of a wing, roughly corresponding to the
ratio of span to chord (Section 1.2.2)

barotropic of a fluid in which the pressure is a function of the density; this is a generaliza-
tion of incompressibility which still has many important properties, such as persistance
of circulation and a well-defined speed of sound; air is barotropic in particular in adi-
abatic processes, which includes subsonic and supersonic flow over wings, to a good
approximation

Bernoulli’s equation a relation between the pressure and the magnitude of velocity in a parcel
of irrotational fluid, or along a streamline in a flow of ideal fluid satisfying Euler’s
equation even if the vorticity is nonzero

Blasius’s theorem a relation holding in plane ideal flow between the aerodynamic force on
an aerofoil and a complex integral of the square of the complex velocity around it,
Equation (3.12)

bound vortex segment of a horseshoe vortex conceptually fixed inside a wing

boundary layer momentum equation simplified form of the Navier–Stokes momentum
equation applying approximately to the layer along a nonslip boundary of an almost
inviscid fluid

Buckingham’s � theorem that a function of n physical quantities involving d independent
physical dimensions can be expressed as a function of n − d dimensionless quantities;
one of the main results in dimensional analysis (Section 1.5)

camber deviation of the camber line of a wing section from its chord

camber line of a wing section, a line or curve halfway between the upper and lower surfaces,
curved if section is cambered; the chord is sometimes (e.g. for the NACA 4- and 5-digit
sections) defined as the line segment joining the ends of the mean; see Figure 1.2

Cauchy’s First Law of continuum mechanics that the product of the density and the accel-
eration of an infinitesimal piece of continuous matter is equal to the difference between
the externally imposed forces and the divergence of the internal stress; the continuum-
mechanical equivalent of Newton’s Second Law of motion

Cauchy–Riemann equations relations equivalent to the analyticity of a complex function of
a complex variable

centre of pressure the intersection with the chord or camber line of the line of action of the
resultant of the aerodynamic force (Section 5.3.1)

chord reference line segment characterizing an aerofoil, e.g. by joining the ends of the camber
line, though several slightly different definitions exist (Section 1.2)

circulation the integral of the tangential component of velocity around an circuit, traced
clockwise in two dimensions (Section 2.5.3)
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collocation procedure for determining an unknown quantity by enforcing a condition (which
holds more broadly) at a definite point (Ashley and Landahl 1985); used in finite repre-
sentations of continuous systems such as the lumped vortex method of Chapter 7 and the
panel method of Chapter 8, and not only in spatial discretizations but also for truncated
series such as the lifting line theory as shown in Figure 12.1; collocation points are also
known as ‘pivotal’ (Falkner 1946) and ‘control’ points (Van Dorn and DeYoung 1947;
Margason and Lamar 1971; Hess 1972; Anderson 2007)

commutative said of a binary operation which is not affected by switching the operands;
e.g. for numbers, addition and multiplication are commutative but subtraction (which is
anticommutative) and division aren’t; multiplication is generally not commutative for
matrices though addition is

complex coordinate complex number uniquely representing a point in the Cartesian plane
(Section 2.6)

complex potential an analytic complex function of the complex coordinate representing the
potential and stream function of a plane ideal flow; an antiderivative of the complex
velocity

complex velocity complex number uniquely representing a two-dimensional velocity; the
complex velocity is analytic if and only if the velocity field is divergence-free and
irrotational

compressible of a substance which responds to an increase of pressure with an increase of
density; the relative rate of decrease of density along a particle trajectory is proportional to
the divergence; effects of compressibility on flow remain negligible if the Mach number
is small; opposite to incompressible

continuity the conservation of mass, which for an incompressible fluid means a divergence-
free velocity field

cross product vector product of two three-dimensional vectors (Section 9.3.2)

curl vector formed with components from the limiting ratios of the circulations to areas of three
infinitesimal plane loops normal to the Cartesian coordinate axes in three dimensions
(Section 9.3.3)

dihedral the angle by which each wing of a pair is raised from the longitudinal–spanwise
plane (Section 1.2.2); like the wings of a butterfly at rest, as opposed to those of most
moths; called anhedral if negative

deviatoric of a second-order tensor (such as stress), having had an isotropic tensor subtracted
so as to leave zero trace; the deviatoric stress is basis of the rheology of the linearly
viscous fluid (Section 15.2.2)

difference, forward amount by which a term of a sequence is surpassed by the one following
it (Section 6.4); the backward difference, which is not required here but is very useful in
constructing numerical schemes for unsteady aerodynamics (Moran 2003), is the amount
by which a term exceeds the one before it
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dimension dimension has three related but distinct meanings in aerodynamics

1. the irreducible non-numerical aspect of a physical quantity; quantities of different di-
mension are incommensurate; it is to this sense that dimensional analysis (Section 1.5)
or theory, or dimensionless or nondimensional refer

2. the number of independent such dimensions of length that a domain possesses, and
thus the number of coordinates required to define a point in it; e.g. a plane is two-
dimensional but space is three-dimensional

3. the quantitative extent of a object in one of these dimensions; e.g. the chord of a wing
section or the span of a pair of wings; this usage is less formal and not found in this
book

dimensionless dimensionless never means of zero extent, or relating to a point rather than a
line, plane, or space, but rather that the physical statement in question has been expressed
in such a way as to be independent of the units used to attach numbers to the quantities in
each dimension; physical quantities are generally rendered dimensionless by choosing
as unit not an arbitrary standard quantity like metre or second but a quantity of that
dimension which is relevant to and characteristic of the problem (Section 1.5)

displacement thickness amount a nonslip surface would have to be thickened into the fluid
to explain the reduction in flow-rate it causes due to boundary layer friction; see
Equation (16.10)

divergence the net efflux per unit volume of a vector field from an infinitesimal volume; the
divergence of the velocity field of an incompressible fluid should be zero everywhere,
which is Equation (2.3)

divergence theorem equivalence between the net efflux of a vector field though a closed
surface and the integral of the divergence over the enclosed volume; see Equation 9.7

dot product scalar product of two vectors

doublet an ideal flow singularity having zero net outflow and circulation but which entrains
fluid in one direction; can be conceived as the coalescing limit of a source–sink pair or
of a counterrotating vortex pair; see Figure 3.4

downwash vertical component of velocity experienced by a wing of finite span, induced by
trailing vortices

drag component of aerodynamic force parallel to the free-stream (Section 1.1.3); composed
of induced drag and profile drag

drag coefficient drag rendered dimensionless by the product of the free-stream dynamic pres-
sure and a characteristic area; e.g. the planform area of a wing

drag polar the plane curve with x- and y-coordinates traced out by the lift and drag coefficients
as the angle of incidence is varied

dynamic pressure kinetic energy per unit volume, which according to Bernoulli’s
Equation (2.14) can be interchanged with pressure; i.e. the sum of the pressure and
the dynamic pressure is constant along a streamline for a perfect fluid (Section 1.5)
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eccentric angle a transformed coordinate running along the chord in thin aerofoil theory in
two dimensions (Equation 5.3b), or along the lifting line in three (Equation 11.11)

effective incidence angle of incidence corrected for the addition of the downwash to the
apparent free-stream (Section 11.3.1)

elliptic lift loading spanwise variation of lift per unit span which is optimal, according to
lifting line theory, in that it leads to the least induced drag (Figure 11.5)

equation of state relation between the pressure and density of a substance, possibly involving
the temperature, and for mixtures the composition ratios; the equation of state supple-
ments the equations of continuity and momentum balance which feature density and
pressure and velocity and so have more unknowns than equations; the two most im-
portant equations of state in aerodynamics are incompressibility in which the density is
constant (while pressure remains free to be determined by continuity and the momentum
balance) and the ideal gas equation, which does involve the temperature and therefore
requires another equation to close the system, the energy or heat equation

Euler equations coupled nonlinear partial differential equations governing the evolution of
the velocity and pressure fields, expressing in the spatial description continuity, Equa-
tion (2.3), and a force balance, Equation (2.6); compressible fluids further require a
relation between pressure and density; for an incompressible fluid, these equations are
complete and require only initial and boundary conditions for full specification of a
problem

favourable (of pressure) decreasing in the direction of flow (Section 17.1.1); opposite to
adverse

gradient vector indicating the steepest increase of a scalar function of position (Section 9.3.3);
irrotational vector fields can be defined as the gradient of a potential

horseshoe vortex infinite vortex line consisting of a segment, typically along the lifting line,
extended indefinitely downstream from both ends (Section 11.2.4)

ideal flow a velocity field which is both divergence-free and irrotational (Section 2.5.4)

incidence angle between the chord of an aerofoil and the free-stream velocity it is immersed
in; also called attack

incompressible having a density which is constant, in particular not being influenced by
variations in aerodynamic pressure; perfect fluids are incompressible; air may be treated
as incompressible if the Mach number is small; opposite to compressible

induced drag drag resulting from the tilting backwards of lift by the tilting downwards of the
free-stream by downwash (Section 11.3.2)

induced incidence correction to the angle of incidence due to downwash

inner product scalar product (Section 9.3.2)

influence coefficient ‘effect’ of some kind at one place of a unit ‘cause’ of another kind at a
second place; e.g. the velocity induced at a test point by a unit vortex somewhere else,
as in Section 7.5
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irrotational for a velocity field, having zero vorticity; for a general vector field, having zero
curl. Irrotational vector fields can be expressed as the gradient of a scalar potential.
Parcels of irrotational ideal fluid remain irrotational and obey Bernoulli’s equation.

isobaric at constant pressure

isochoric at constant volume

isothermal at constant temperature (Section 18.3.4); cf. adiabatic

isotropic independent of direction; pressure is an isotropic stress (Section 1.4.2); a perfect
fluid supports only isotropic stresses (Section 2.1)

Joukowsky’s transformation conformal mapping taking the exterior of the unit circle to the
entire complex plane slit by a line segment, and other nearby circles to shapes somewhat
reminiscent of aerofoils (Section 4.3)

Kármán integral relation form of the momentum integral equation in terms of the displace-
ment and momentum thicknesses (Chapter 16)

Kutta–Joukowsky condition condition that the velocity leave smoothly from the sharp trail-
ing edge of an aerofoil (Section 5.1.2); sometimes known as the ‘Kutta condition’ (Kuethe
and Chow 1998; Anderson 2007) or ‘Joukowski’s hypothesis’ (Glauert 1926; Milne-
Thomson 1973).

Kutta–Joukowsky theorem that an aerofoil in plane ideal flow experiences no drag and a lift
proportional to the circulation around it; Equations (3.15a) and (3.15b)

lapse rate negative vertical component of temperature gradient in the atmosphere
(Section 1.4.4)

lifting line simple model of a wing as a segment of vortex line, leading to quantitative estimates
of the dependence of induced drag on aspect ratio (Chapters 11–12)

longitudinal in general, running the direction of the long axis of a body; for a wing section,
in the direction of the chord, and of the root-chord for a wing, from leading to trailing
edge; typically chosen as the x-axis herein (Section 1.1.2)

Mach number ratio of the speed to the speed of sound; Mach numbers less than and greater
than one are called subsonic and supersonic, respectively; in the small Mach number
limit, aerodynamic pressure variations do not lead to significant density variations and
so the air may be treated as incompressible

material description of motion description of flow using tags identifying definite pieces of
fluid as the independent variables (Chapter 2); an alternative to the spatial description;
the laws of motion apply to matter rather than space and so are generally more naturally
expressed in material terms; sometimes called the Lagrangean description (misleadingly,
accordingly to Truesdell and Rajagopal 2000)

maximum camber greatest perpendicular distance of the camber line from the chord
(Section 1.2.1)

mean line camber line
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modulus square root of the sum of the squares of the real and imaginary parts of a complex
number; also called magnitude and absolute value (Section 2.6); the distance from the
origin of the point which a complex number represents; the modulus of the complex
velocity is the speed

momentum integral equation result of integrating the momentum equation along a path
through the boundary layer from the nonslip surface to the ideal free-stream

momentum thickness amount a nonslip surface would have to be thickened into the fluid to
explain the reduction in momentum-transfer it causes due to boundary layer friction; see
Equation (16.11)

nonslip of the interface between a viscous fluid and a solid surface: not admitting any discon-
tinuity in tangential component of velocity

one-seventh profile popular approximation for the transverse profile of tangential velocity in
a turbulent boundary layer (Section 16.3.3)

perfect fluid a continuous homogeneous substance incapable of supporting shear stress; an
inviscid incompressible substance; see Section 2.1

pitch rotation about the spanwise axis, taken positive to raise the leading edge, i.e. negative
rotation about the z-axis (Section 5.3)

polar form description of a position in the plane in terms of distance from a fixed point and
angle (anticlockwise) from a fixed ray emanating from that point; description of velocity
in the plane in terms of magnitude and direction; description of a complex number by
modulus and argument (Section 2.6)

potential in general a field from which another field can be derived in such a way that the
derived field will automatically satisfy some property; in particular, a scalar field of
which the gradient is the (necessarily irrotational) velocity (Section 3.6.1); in plane
ideal flow, the potential is the real part of the complex potential (Section 2.7); also, a
conservative force field has a potential (Section 2.4.4)

pressure coefficient the aerodynamic pressure, relative to the far-field, and nondimensional-
ized by the far-field dynamic pressure; see Equation (2.11)

profile usually wing section (Section 1.2); but also the variation of some quantity along a line,
e.g. as in the one-seventh profile

profile drag that part of the drag attributable to the profile (i.e. two-dimensional wing section)
and therefore not attributable to finiteness of the span, i.e. the drag minus the induced
drag; profile drag is itself the combination of form drag (due to aerodynamic pressure,
and which vanishes in unseparated ideal flow) and skin friction

Reynolds number dimensionless number indicating the relative importance of viscosity in
an aerodynamical flow; for complete dynamical similitude, the Reynolds number of the
model should match that of the application, although often simply having the Reynolds
number large in both cases suffices; while a high Reynolds number corresponds to
small viscosity, there will always be a viscous boundary layer along any nonslip surface
immersed in a viscous flow, so the rules for ignoring viscosity are rather involved
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rheology study of the mechanical behaviour of matter, the main goal being to relate the
stress to the flow or deformation via a constitutive law; in choosing a rheological model,
consideration needs to be given to the type of flow as well as simply the composition
of the fluid; important rheological models in aerodynamics include the perfect fluid and
the incompressible linearly viscous fluid (Section 15.1)

right-handed system triad of mutually orthogonal directions ordered as are east, north, and
up, or backwards, up, and left; any cyclic permutation of a right-handed system is also
right-handed; a right-handed rotation is like that of the Earth about its axis (taken as
running from the south to the north pole), or that of hands of a clock about its axis
directed into its face (Section 1.1.2); ropes are conventionally described as ‘S’ or ‘Z’
depending on which upper case letter’s central diagonal lines up with the strands of a
vertical length—a Z-twist is right-handed

roll rotation about longitudinal or x-axis (Section 11.4.2)

scalar multiplication multiplication of each element of a vector or matrix by the same num-
ber; not to be confused with scalar product

scalar product sum of the products of corresponding elements of two vectors of equal length
(Section 9.3.2); not to be confused with scalar multiplication

scale analysis the rational approach to neglecting terms in an equation based on order-of-
magnitude arguments, as in boundary layer theory (Chapter 16)

separation failure of a flow to tangentially follow the surface of an aerofoil or other obstacle.
Separation implies a curve on the surface from which a sheet of limiting separating
streamlines emanates. The viscous shear stress vanishes at this curve.

shape factor ratio of displacement thickness to momentum thickness in a viscous boundary
layer (Section 16.3.1)

similarity representation in terms of a single coordinate of the variation of a dependent variable
in two directions, or one and time (Section 15.6.1)

singularity point (or curve or surface) at which an otherwise smooth function is ill-defined,
discontinuous, or not differentiable; by extension, point (etc.) at which velocity field
which elsewhere satisfies the governing equations involves a source of mass or circula-
tion; important examples in aerodynamics include sources, sinks, vortices, vortex sheets,
and doublets

sink the opposite of a source (Section 3.5.4)

skin-friction viscous shear stress on a nonslip surface

skin-friction coefficient skin-friction normalized by the dynamic pressure

slip a perfect fluid is unable to sustain shear stress and therefore can slip over a solid surface;
a viscous fluid can’t

small-angle approximation representation of the trigonometric functions by the first terms
of their Taylor expansions about zero
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source point, line, or other concentrated region from which fluid issues; typically fictitious
and therefore needing to be placed outside the physical domain of flow

span distance between wing-tips

spanwise from right to left, in particular between a pair of wing-tips

spatial description of motion description of flow using a system of coordinates positioned
relative to space, e.g. fixed relative to the aircraft or the ground, as the independent
variables (Chapter 2); an alternative to the material description; if the laws of motion can
be expressed spatially, they are often more easily solved in that form; sometimes called
the Eulerian description (misleadingly, according to Truesdell and Rajagopal 2000)

stagger longitudinal offset of aerofoils, e.g. in a biplane (Section 7.6); also called décalage

stagnation condition (e.g. at a point or along a curve, particularly but not necessarily on a
surface) of vanishing velocity; if Bernoulli’s differential Equation (2.13) holds, this will
be a maximum point of the pressure

stall state in which the flow over a lifting surface massively separates, typically because the
angle of incidence has become too high, resulting in a severe loss of lift and increase in
drag

stationary of a real function of a real variable, at a point, neither increasing nor decreasing,
and therefore having zero derivative if differentiable; of an analytic function of a complex
variable, as in Equation (4.10), having zero derivative

steady a flow is steady in the spatial description if the velocity at each point remains constant;
moving particles may still experience acceleration in a steady flow

Stokes’s theorem that the integral over a surface of the normal component of a curl of a vector
field is equal to the integral over its boundary of the tangential component of the vector
field (Equation 9.9); Stokes’s theorem relates the local differential property of vorticity
to the integral property of circulation.

stream function volumetric flow-rate per unit span across a curve between the point in ques-
tion and a fixed reference point whenever this flow-rate is independent of the curve
joining the two points, which holds whenever the velocity is divergence-free through the
region; the imaginary part of the complex potential of a plane ideal flow

strength (of a singularity) an integral measure of effect; e.g. the strength of a point source is
the net rate of fluid issuing from it (Section 3.5.4); for a line or surface source it would be
the net rate per unit length or area, respectively; an integral measure might be required if
the usual local flow properties such as velocity are unbounded at or along the singularity

substantial derivative substantial is a synonym for material; the substantial derivative is the
rate of change experienced by a (possibly moving) particle; see Equation (2.4)

substitution vortex early name for the lumped vortex of Chapter 7

Taylor series approximation of a function in the vicinity of a point in terms only of its value
and those of its derivatives at the point (Section 9.3.3)
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thin aerofoil theory approximation of a wing section by its camber line, ignoring thickness,
and assuming the Kutta–Joukowsky condition (Chapter 6)

trace sum of the diagonal coefficients of a second order tensor; the deviatoric part of a tensor
has zero trace; the trace of the deviatoric stress tensor (Equation 15.3) of an incompress-
ible linearly viscous fluid is twice the viscosity times the divergence

trailing vortices semi-infinite vortex lines, extending indefinitely downstream from the bound
vortex; each horseshoe vortex contains a pair of parallel but counter-rotating trailing
vortices

twist spanwise variation of the angle of the chord

vector product a vector perpendicular to both of two given vectors and forming a right-handed
system with the first and the projection of the second onto the first; the magnitude is pro-
portional to the area of the parallelogram defined by the two given vectors (Section 9.3.2);
the vector product is anticommutative

velocity field velocity is fundamentally defined as the rate of change of position of a particle,
but a velocity field is the spatial description, referring the velocity to the point in space
that the particle is passing through (Chapter 2); alternatively, to begin from a spatial
description, velocity is the limiting ratio of the volumetric flow-rate through a surface to
its area as the area shrinks to zero

viscosity tending to resist relative internal motion; a linearly viscous fluid has a contribution
to the stress which is proportional to the rate of strain; the proportionality constant (or
constants, though only one is required for incompressible linearly viscous fluids) is the
coefficient of viscosity

vortex a singular region of concentrated vorticity or circulation in a flow, being point-like
or tube-like in two and three dimensions, respectively; see Figure 3.6 for a plane ideal
vortex

vortex sheet singular concentration over a surface of vorticity in an otherwise irrotational
flow; surface inside a flow-field across which the tangential components of velocity are
discontinuous (Section 5.1.7)

vorticity curl of velocity; local differential quantity corresponding, via Stokes’s theorem, to
circulation; see Equation (2.16) for vorticity in plane flow

wake region of flow downstream of a wing or other obstacle. In idealized theories of aerody-
namics, the wake is sometimes pictured as a vortex sheet, consisting of trailing vortices.

wing section intersection of a wing with a plane parallel to the plane of left–right symmetry
(Section 1.2); also called aerofoil (or airfoil) and profile

wing-tip point on the wing furthest from its left–right plane of symmetry, usually one of a
left–right pair (Section 1.2.2)

wing-tip vortices pair of bundles of trailing vortices emanating from the ends of the bound
vortex associated with a wing of finite span; curling up of the vortex sheet constituting
a wake
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zero-lift incidence attitude in which a wing or wing section generates no lift; the thin-aerofoil
theoretic formula is Equation (6.10); the excess of the angle of incidence of this reference
value is sometimes called the absolute incidence (Kuethe and Chow 1998)
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Nomenclature

A aerodynamic force, Section 1.1

A area, with its normal direction, as a vector; for a closed surface the normal is usually taken
as outward by convention

A area, e.g. the cross-sectional area of a stream tube in Equation (10.2)

A with positive integer subscript, one of the coefficients in Glauert’s expansion for the chord-
wise distribution of circulation in thin aerofoil theory in Equation (6.6) or for the spanwise
loading in lifting line theory in Equation (11.13)

aspect ratio, Section 1.2.2 and Equation (11.16)

a speed of sound, Equation (18.4)

b span, Section 1.2

C with a subscript L or D, a nondimensionalized aerodynamic force coefficient, corresponding
to one of its components; with a subscript � or d, the two-dimensional analogue of the
same, in a plane perpendicular to the span

c chord, Section 1.2

cv isochoric specific heat, Section 18.3.1

cp isobaric specific heat, Equation (18.8)

D drag force, Section 1.1

d two-dimensional drag force (per unit span), Section 3.7

� imaginary part of a complex number, Section 2.6

i unit vector in x-direction, Section 1.1

i an integer index, e.g. for the ith element of a column vector; for a matrix more often used to
indicate the row than the column

i imaginary unit, defined by i2 = −1
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j unit vector in y-direction, Section 1.1

j an integer index, e.g. for the jth element of a column vector; for a matrix more often used
to indicate the column than the row, e.g. in the lifting line matrix Equation (12.4), βij

refers to the coefficient in the ith row and jth column

k unit vector in z-direction, Section 9.2.1

L lift force, Section 1.1

� two-dimensional lift force (per unit span), Section 3.7

�̂ unit vector defining the direction of a rectilinear vortex line, Equation 10.4

Ma Mach number, Equation 1.12

m maximum camber of a wing section, expressed as a fraction of chord, Figure 1.2

m slope of lift–incidence curve, Equation (11.22); thin aerofoil theory predicts m = 2π in
Equation (6.2.1)

p pressure

Q heat, only ever appearing as δQ, in the First Law of Thermodynamics, Equation 18.6

q relative chordwise position of maximum camber of an wing section, Figure 1.2

q speed, Chapter 2

� real part of a complex number, Section 2.6

R gas constant, Equation (18.5)

r distance from the origin, magnitude of a complex number

r one more than the number of collocation points used to solve the lifting line problem in
Equation (12.4)

Re Reynolds number, Equation (1.11)

T temperature, Section 1.4

t wing section thickness as a fraction of chord, Figure 1.2

u x-component of velocity

u specific internal energy, Section 18.3

V velocity of an aircraft, Section 1.1

v y-component of velocity

W complex potential, Equations 2.26

w complex velocity, Section 2.6

w z-component of velocity in three dimensions

x longitudinal coordinate, positive along the chord in the direction from the leading to the
trailing edge, Section 1.1
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y upward coordinate, at a right angle to x, but still in the plane of symmetry, Section 1.1

z spanwise coordinate, at right angles to x and y and increasing from right to left, Section 1.1

Greek letters

α geometric angle of incidence, Section 1.3

β angle between (two-dimensional) velocity and positive x-axis, Section 2.6.2

Γ lapse rate in the troposphere, Section 1.4.4

Γ circulation, Equation (2.15)

γ ratio of specific heats of a gas, Section 1.4.1

γ (two-dimensional) vortex sheet strength density, Section 5.2.2

δ small change operator: δx is a small change in x

δ boundary layer thickness, Chapter 16

δ∗ boundary layer displacement thickness, Equation 16.10

ε a small quantity, Section 3.4.2

ζ two-dimensional vorticity (Equation 2.16), or in three dimensions the z-component of
vorticity (Equation (9.13))

ζ a second complex variable, after z, Equation 4.3

η imaginary part of complex variable ζ, Equation (4.3)

η similarity coordinate, Equation (15.10)

Θ divergence, Equation (2.3)

θ polar angle, argument of complex number, Equation (2.20b)

θ momentum thickness of a viscous boundary layer, Equation (16.11)

κ compressibility, Equation (18.2)

λ angle of a panel-segment, Chapters 7, 8

λ the parameter representing pressure gradient in Thwaites’s method for laminar boundary
layers, Equation (17.3)

λ taper ratio, Chapters 12 and 14

µ coefficient of dynamic viscosity, Section 1.4.2

µ longitudinal dilation factor for the linearized compressible potential Equation (19.2)

ν coefficient of kinematic viscosity, defined by Equation (1.6) and used in the Navier–Stokes
Equation (15.4)

ξ real part of complex variable ζ, Equation (4.3)
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π ratio of circular circumference to diameter (3.141592653589793. . . )

ρ density

σ stress, Section 15.1

τ deviatoric (Section 15.2.2) or shear (Section 16.2) stress

τ̂ tangent vector to a curve, Equation 2.15

Φ energy potential of a conservative external force, Section 2.4.4

Φ dilated velocity potential for linearized compressible flow, Section 19.5

φ velocity potential; in plane ideal flow, real part of complex velocity potential, Equation (2.27)

χ the argument of the auxiliary complex variable ζ (e.g. Section 4.2.1); hence thin aerofoil
theory’s eccentric angle coordinate of Equation (5.3b)

ψ stream function; in plane ideal flow, the imaginary part of the complex velocity
potential (2.27)

ω influence coefficient, e.g. in a lumped vortex (Section 7.5) or panel (Section 8.1.3) method

ω vorticity vector, Section 9.5.3

Super- and Subscripts

0 at rest (stagnation)

0 the zeroth term in a expansion such as a power series

∞ in the free-stream, at an infinite distance from the aerofoil

r radial component, defined by Equation (2.25) and used in Equation (3.2a), for example

x component in the x-direction (Section 1.1)

y component in the y-direction (Section 1.1)

α geometric angle of incidence (Section 1.3)

β angle of velocity (Section 2.6.2)

δ with reference to boundary layer thickness (Chapter 16)

ζ auxiliary complex coordinate, Equation (4.3), related to z by a conformal mapping

θ azimuthal component, defined by Equation (2.25) and used in Equation (3.2a), for example

θ in Section 16.3.3, with reference to the momentum thickness of Equation (16.11)



Index

Abbott, I. H., see also NACA Report No. 824
lift, measured, 185
nonelliptic loading, 182
perfect fluid, definition of, 25

abs, 49, 55, 57, 71, 73, 134, 188, 210
adiabatic

compression, 9, 271
process, 268, 293–4
speed of sound, 269

aerofoil, 6, 293–4
Clark Y, 6, 18, 139, 283
discretization, 129
Joukowsky, 75, 298
NACA, 6, 22

2412, 6, 105, 122, 130, 135
five-digit, 101, 109, 129, 294
four-digit, 101, 104, 109, 129–130, 139, 294

reversed, 81
air

gas constant, 9, 266
humidity, 21
ideal gas, as, 9
molar mass, 266
specific heat ratio, 268
viscosity, 11

analytic, 37–8, 40–41, 47, 62, 293–5, 301,
see also Cauchy–Riemann equations

angle
attack, see incidence
eccentric, 80, 91, 95, 105–106, 125, 175, 197,

297, 308
small, approximation, 82, 88–9, 122, 194, 300

angle, 65, 70, 121, 131, 134
anhedral, 8, 293, 295, see also dihedral

anticlockwise, 26, 71, 82
aerofoil discretization, 129
plane polar angle, 299

anticommutative, 146, 293, 295, 302
approximation, see angle: small; boundary layer;

compressibility: linearized; profile:
boundary layer; scale analysis; Taylor
Series; thin aerofoil theory

arg, see angle
argument

complex, 36, 40, 70, 293, 299, 307–308, see
also angle

function, 206, 219, 294
symmetry, 80, 101, 138, 164, 176–7, 202

aspect ratio, 7, 143, 182, 188, 191, 294
atmosphere, 11, 298

International Standard, 12, 20–22, 270
atmosphere, 13, 21, 291
AVL, 221

barotropic, 264–6, 294
Bernoulli

equation, 33, 294, 301
boundary layer, 239, 241, 251–2
compressibility, 263, 265, 269, 282
three-dimensional, 154
trailing edge, 170
vortex core, in, 173

Bertin, J. J.
lifting line calculation, 188
thin aerofoil calculation, 105
vortex lattice method, 218, 221

Biot–Savart law, 161, 163, 173
biplane, 123, 301
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Blasius
boundary layer, 62, 248, 249
theorem, 62–3, 65, 283, 294

boundary layer, 229, 299, see also profile;
separation; turbulence

momentum equation, 238, 251, 294
scale analysis, 238
theory, 225, 241

branch cut, 70, 128–9
bsxfun, 121, 132, 187, 199, 203, 291
Buckingham’s � theorem, 15–16, 231, 294
bulk modulus, 270
buoyancy, 139, 293
burble, compressibility, 283
butterfly, evincing dihedral, 293, 295

camber, 209, 265, 294
line, 7, 209–10, 294, 302

NACA four-digit, 104, 122
slope, 94, 98, 120
thin aerofoil theory, 93–4

maximum, 7, 18, 298
Campbell, G. S.

finite-step method, 207
vortex lattice method, 216, 221
yawed horseshoe vortex, 205

campbell51TableI, 205
Cauchy

Laws of continuum mechanics, 225, 227–8,
234, 294

first, 226
second, 227

Cauchy–Riemann equations, 38–40, 65, 274,
293–4

centre
aerodynamic, 90, 293
of pressure, 90, 294

chain rule, 67, 147, 264, 276
chord, 5, 7, 293–4, 298, 302

definition, 18, 294
incidence, and, 8, 297
spanwise variation, 210, see also taper

circulation, 65, 152, 294, 300, 302, 307
integral

complex velocity, 58
tangential velocity, 33, 150
vortex strength, 85, 89, 98
vorticity, 34, 295, 301–302

lift, and, 84, see also Kutta–Joukowsky
theorem

persistence, 151, see also Kelvin’s theorem
barotropic, 273, 294

potential difference, 60
singularity, arising from, 300

clockwise, 294, 300, see also velocity: complex:
rotated

circulation, 33
cmeshgrid, 49, 69
coefficient

downwash, 205
drag, see drag: coefficient
influence, 120, 199, 204, 209, 297, see also

matrix: influence
collocation, 186, 195–6, 295

point, 115, 120, 209, 215, 306, see also
three-quarter chord

midpoint, 127
commutative, 146, 293, 295
complex, see also argument; coordinate;

function; number; potential; product;
source; velocity

conjugate, 36, 63, 65
complex, 49, 122, 131
compressibility, 9, 295, 297

linearized, 274, 285
condition

boundary, 93, 228, see also impermeability;
nonslip

boundary layer, upstream, 240
far-field, 232

initial, 297
sliding plate, 232
streamline, 157

conformal streamlines, 69, 75
conformal mapping, 67–8, 79, 113, 298, see also

Joukowsky: transformation
panel methods, for deriving, 129
powers, by, 68, 71

constitutive law, 10, 227, 234, 300
continuity equation, 26, 295, 297

compressible, 273–5
three-dimensional, 274

contour, 50, 69
contour integration, 62, 64
convergence

nozzle, 266
numerical

lifting line, 188, 200
vortex lattice method, 221

coordinate
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boundary layer, 241, 257
complex, 35, 49, 295
dimensionless, 16, 231
polar, 36, 257
similarity, 231, 300

corner, 68, 70
Couette flow, 230
cross, 204
curl

operator, 147, 295, 298, 301–302
trailing vortex sheet, 173, 302

cusssp, 127–37, 290
cusssp demo, 137
cusssp midpoint w, 135
cusssp w field, 136
cussspi, 132, 134, 204, 291

d’Alembert’s paradox, see drag: plane ideal
décalage, see stagger, 301
density, 308

atmospheric, 12
barotropic, 264, 294
change in, requires work, 267
compressible, 263, 295
constant, 20, 26, 30, 228, 297
equation of state, 263, 297
gas, ideal, 9, 12, 290
partial, 21
vortex sheet, 307

deviatoric, 295, 302
stress, 227

diag, 121, 133–4, 206
diff, 107, 121, 131, 134
difference

backward, 295
forward, 107, 295

dihedral, 8, 209, 215, 293, 295
dimensional analysis, 5, 14, 22, 230–31, 248,

280, 294, 296
dimensionless, 15, 231, 296, see also number;

coordinate
force coefficient, 174, 180
friction coefficient, 243

direction, 49, 50, 55, 57
discontinuity, see also branch cut

panel, velocity across, 128–9, 132
shock wave, 277, 286
singularity, 300
slip, 299
vortex sheet, 170, 302

divergence, 147, 227–8, 295–7, 301–302
stress trace, 302
theorem, 158, 296

three-dimensional, 148–9, 154
two-dimensional, 27, 154

dot, 203
doublet, 52, 64, 296, 300
downwash, 171, 180, 196, 205, 212, 296–7
drag, 31, 296, 301

coefficient, 15, 20, 296
form, 179
induced, 177, 182, 187–8, 296–7, 299

elliptic loading, 180
plane ideal, 62, 64, 225

linearized compressible, 283
polar, 179, 296
profile, 179, 296, 299
wave, 283

elliptic
loading, 178–9, 200, 297

optimality, 180
realizing, 182

end, 121, 131, 136, 213, 291
energy, 267

conservation of, 9, 267
internal, 9, 266, 306
kinetic, 64, 296

erf, 246
erfc, 233
error

function, 245
complementary, 232, 235, 245

numerical, 188, 200, 216, see also
floating-point

Euler
equation, 30, 33, 35, 227–9, 234,

294, 297
three-dimensional, 145, 154, 160, 273

Eulerian, 301, see also spatial description
experiment

aerodynamic force, 3, 108
aspect ratio, 143, see also NACA Report

No. 116
Mach number, 286, see also Stack, J.
numerical, to assess error, 165
pitching moment, 105
reversed aerofoil, 81
visualization

wing-tip vortices, 173
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fliplr, 131, 217
flipud, 217, 289
floating-point, 70, 165
flow

ideal, 35, 225, 297
irrotational, 34, 302
over a circular cylinder

plane ideal, 55
viscous, 257

three-dimensional, 145
two-dimensional, 25
viscous, 225

fluid
incompressible, 42, 62, 228, 295
perfect, 25, 30, 225, 230, 296–300
viscous, 10, 228, 295

nonslip, 299–300
force

aerodynamic, 62, 64–5, 89–90, 293–4,
296

as aggregate of stress, 3, 84
as central problem, 3
correlation, 13–14

conservative, 29–30, 293, 299
external, 29–30, 35, 225

Fortran
a compiled language, 287, 292
Fortran, 90, 292
panel method, 139
vortex lattice method, 165

friction
skin, 179, 225, 254

fsolve, 130
function

complex, see analytic
error, see error: function
generalized, 167
stream, see stream function

gas
constant, 9, 266, 271

water vapour, 21
ideal, 9, 12, 266, 290

mixture, 21
Glauert, see also Prandtl–Glauert

integral, 88, 91, 123, 175
lifting line

calculation, 188
solution, 175–6, 178, 189

transformation, 95

gradient, 147, 297, 299
temperature, see lapse rate
theorem, 148, 154

gravity, 30, 225, 230, 293
grid (numerical)

for velocity plots, 49–50
for vortex lattice method, 209
optimum, 221

Helmbold equation, 203
Hess, J. L., 127, 222
Hoerner, S. F., 91, 140
hydrostatic, see pressure

impermeability
aerodynamic force, 30, 62
boundary condition, 93, 115, 120, 127, 135,

194, 212, 215
kinematics, 50, 55, 63, 158, 279

viscous, 241–2, 251
slip discontinuity, 72, 84

incidence, 8, 296–7, 301, see also drag polar; stall
absolute, 188, 303
aerodynamic centre, 293
effective, 174, 182, 297
geometric, 8, 22, 173, 307
induced, 174, 185, 297
zero-lift, 98, 143, 283, 303

incompressibility, 294, 297
air, of, 298
stream-function, 62

integration, 58, see also circulation; divergence
theorem; force: aerodynamic: as
aggregate of stress; Glauert integral;
Kármán integral relation; momentum
integral equation; Stokes theorem

irrotationality, 34, 153, 298
Bernoulli’s equation, 294
complex velocity, 38, 295
ideal flow, 35, 297
potential, 62, 273, 297, 299

isobaric, 267, 298, see also specific heat
isochoric, 298, see also specific heat
isopotentials, 50, 55, 69
isothermal, 12, 268, 298
isotropic, 10, 225–6, 280, 295, 298

Jacobs, E. N., see NACA Report Nos 460, 537
Joukowsky, see also aerofoil; Kutta–Joukowsky

transformation, 71, 298
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joukowsky inverse, 73–4, 114

Kármán integral relation, 244, 252, 255, 298
Katz, J.

panel method, 139, 222
truncating vortex lines, 165
vortex lattice method, 221

Kelvin, see also temperature; units: SI
theorem, 151, 154, 273

kinematics, 157
Kutta–Joukowsky

condition, 80, 82, 127, 130, 170, 298, 302
theorem, 47, 63–4, 298

Lagrangean, 298, see also material description
Lanchester, F. W., 144
Laplace

equation, 61–2, 65
Prandtl–Glauert, 276, 282
three-dimensional, 273

Laplacian, 147, 275
lapse rate, 298, 307

stratospheric, 21
tropospheric, 12

length, 131, 134
lift, 140

aspect ratio, effect of, 143
coefficient

wing section, 98
from circulation, 64
from pressure, 31
lifting line, 176
linearized compressible, 281
loading, spanwise, 175
lumped vortex method, 116
panel method, 136
plane ideal, 62, 64, see also

Kutta–Joukowsky: theorem
thin aerofoil theory, 98–9
thin flat plate, 81
vortex lattice method, 215

lifting line, 169, 178, 200, 297–8
finite step, 197
theory, 295

LinAir, 221
line horseshoe, 199, 204
linearity, 54, 274
linspace, 49, 131, 211, 288
lline, 187–8, 192, 290
lline CLCD, 187–8, 192

lline symmetric, 191–2
longitudinal, 4, 7, 295, 298, 300–301

development (of boundary layer), 240
viscosity (in boundary layer), 238

lubrication, 230
lumped vortex method, 112, 117, 119, 122
lvm, 121–2, 290
lvm demo, 122
lvmi, 121, 204, 291

Mach
angle, 278, 279, 285
cone, 285
number, 15, 295, 297–8

critical, 283–5
free-stream, 275

ray, 279, 285
mass

conservation of, 26, 48, 58, 145, 149
compressible, 264, 273

material description, 25, 298, 301
matrix

bidiagonal, 198
diagonal, 132
equation, 17, see also system: linear

lifting line, 187, 199
lumped vortex method, 115, 122
panel method, 133
solution, 17, 122

function, 289
influence, 132, 215, see also coefficient:

influence
Toeplitz, 198–9

mean line, see camber line
memory (computer), 288
meshgrid, 49
meshwing, 209–11, 213, 217, 219
meshwing plot, 211–12, 217,

219
meshwing vlm, 213, 217, 219
Milne-Thomson, L. M.

Biot–Savart law, on, 167
chord definitions, 5–6, 18
eccentric angle, 91
lifting line calculations, 188

mod, 71
modulus

arithmetic, see mod
bulk, see bulk modulus
complex, 36, 49, 299
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moment, 3
pitching, 89–90, 93, 221, 293
rolling, 177

momentum, see also thickness: boundary layer
integral equation, 243, 298–9

Moran, J.
panel method, 139
Thwaites’s method, 261
vortex lattice method, 165, 221

moth, evincing anhedral, 293, 295
multiplication

scalar, 145, 300

NACA, see also aerofoil
lifting line calculations, 188
Report No. 116, 143, 180
Report No. 460, 104, 109, 139
Report No. 463, 20, 283
Report No. 502, 18–19, 23, 139, 180, 182
Report No. 537, 109
Report No. 824, 22, 139, 185
RM L50L13, 205, 207, 216, 221

naca4meanline, 108, 122, 131
naca4pars, 108, 131
naca4thickness, 131
naca4z, 131, 135
naca4z naca2412, 131
NaN, 13
Navier–Stokes equation, 228–9, 237–9, 241, 294,

307
nondimensionalization, 16, 20, 22
one-dimensional, 229

Neely, R. H., see Sivells, J. C.
Newton

Laws of motion, 25
second, 26, 29, 145, 149, 294
third, 3

nondimensionalization, 20, 32, 296, 299
boundary layer, 248, 257
suddenly sliding plate, 230

nonlinearity, 273
compressible continuity equation, 268
disappearance of in parallel incompressible

flow, 229
lift–incidence data for lifting-line theory,

185
nonslip, 228–30, 294, 296, 299–300
normalize, 203–4
nozzle, 266
number

complex, 35, 295
dimensionless, 9, 16, 239

NumPy, 70

Octave
apostrophe, 108
backslash, 17, 121–2, 134, 187, 199, 217–19
elementwise operations, 209, 287, 290
language

matrix-oriented, 107, 121
modern, scientific, 233

linear systems, solving, 16, 122, 134
lumped vortex method, 121–2
matrix-oriented, 288
panel method, 127–35
plotting

level set, 64, 69, see also contour
vector, 49, 64, see also quiver

quadrature, 58–9, 65, 246
vortex lattice method, 216–19

ones, 59, 131, 187, 191–2, 199, 205,
217–19, 290

panel method, 127–37
as sectional component of lifting line, 185
general structure, 114, 117
matrix equation, 17
three-dimensional, 222

partition
variables into free and dependent, 17

perfect
calorically, 266
fluid, see fluid, perfect
gas, see gas, ideal
thermally, 266

permute, 204–20
Pinkerton, R. M., see NACA Report Nos 460,

537
pitch, 89, 299, see also moment: pitching
plate

suddenly sliding, 230–3, 237, 245, 248
thin flat, 79

model for thin aerofoil, 93, 99
plot, 74–5, 114, 131, 135–6, 211
plot3, 211, 219
Pohlhausen

pressure gradient parameter, 253–4
quartic profiles, 252

Poiseuille flow, 230
polar, see also drag: polar
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component, 39–40, 44, 47, 51–2, 299
coordinate, see coordinate, polar
form, 36, 38–9, 53, 68, 277, 299

polyval, 130
potential, 42, 295, 297–9

complex, 41, 48–9, 295, 299, 301
multivalued, 59

force, 29
gravitational, 30

scalar, 61, 295
velocity, 42

three-dimensional, 273
Prandtl, see also boundary layer: theory, see also

NACA Report No. 116
finite wing theory, 143–4
lifting line equation, 175
Prandtl–Glauert

rule, 279
transformation, 276, 278

pressure, see also centre of pressure
aerodynamic, 30, 293, 297–9
coefficient, 32, 43, 83, 138, 281–4, 299
dynamic, 32, 296, 300
gradient

adverse, 252, 254, 260, 293, 297
favourable, 252, 254, 257, 293, 297
longitudinal, 234, 240

hydrostatic, 12–13, 30
partial, 21

product
complex, 36, 39, 53, 65
cross, 203, 215, see also product: vector
dot, see product, scalar
matrix–vector, 108, 135, 198, 290
scalar, 146, 296–7, 300
triple

scalar, 146
vector, 146

vector, 146, 161, 293, 302
profile, 5–6, 18–19, 127–35, 299, see also

aerofoil
boundary layer

error function, 245–6, 248
linear, 244, 248
one-seventh, 244, 247–8, 299
Pohlhausen quartic, 252

velocity, 233

quad, 58
quadgk, 58–9, 65, 246

quarter-chord, 90, 200
lumped vortex method, 111, 120
sweep, 7, 216, 220
vortex lattice method, 213

quiver, 49, 51, 135–6
quiver3, 219

rand, 59
Rayleigh’s problem, 235, see also plate: suddenly

sliding
rectlline, 187
repmat, 204, 210–11, 217, 219
reshape, 205, 217
Reynolds number, 15, 20, 299, 306

boundary layer
length, 239–40, 256–7
thickness, 245, 253

cylinder, 258
rheology, 10, 227, 300
Riemann, see Cauchy–Riemann equations
roll, 300, see also moment: rolling
rope, 300

scale analysis, 300
boundary layer, 237–8
self-similarity, and, 230

separation, 254, 260, 293, 300–301
shape factor, 243, 300
silk thread, 49, 64, 121
Silverstein, A., see NACA Report No. 502
similarity

dynamical, see also similitude: dynamical
transformation, 230, 248, 300

similitude
dynamical, 22, 299

singularity, 73, 81, 117, 296, 300–301, see also
doublet; source; vortex

sink, 56, 61, 300
Sivells, J. C., 188
size, 13, 17, 59, 205, 211
skin friction

coefficient, 243–4, 299–300
slip, 229–30, 300
Smith, A. M. O., see Hess, J. L.
sound

propagation, 264
speed of, 9, 12, 263–70, 273–85, 288

source, 51, 56, 61, 65, 119–20, 300–301
complex, 127–36
linearized compressible, 277
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span, 5–8, 14–15, 18, 143, 169, 294, 301
spanwise, 144, 170–5, 185–90, 295, 301
spatial description, 25, 297–8, 301–302
specific heat

isobaric, 9, 267
isochoric, 9, 266–7
ratio, 9, 268, 271

speed of sound, 10, 13, 288
squeeze, 217–19
Stack, J., 20, 283
stagger, 123, 301
stagnation, 65, 77–8, 80–83, 138, 140, 158,

257–8, 268, 301
temperature, 270

stall, 81, 174, 225, 301
state

equation of, 297
rheological, 227, see also constitutive law
thermal, 9, 263–6, see also gas: ideal

Stokes, see also Navier–Stokes equation
First Problem, 235, see also plate: suddenly

sliding
theorem, 148, 301

vortex tubes, 159
vorticity and circulation, 152–4, 169, 302

stratosphere, 12–13, 21, 270, 291
stream filament, 158
stream tube, 158
streamline, 157

Bernoulli’s equation, 35
plotting, 42, 50

stream function, 42, 57–62, 295, 301
strength

lumped vortex, 112
panel, 127
singularity, 301
source, 61
stream filament, 158
vortex, 61, 85, 159, 162, 281

horseshoe, 193, 204, 212, 218
stress, 3, 10, 26, 225–8, 300, 308

shearing, 25
Stringfellow, John, 3, 22
subsonic, 265, 285, 294, 298
substantial derivative, 27–8, 44, 149–51, 301
suction

above wing, 32, 266, 283
leading edge, 82, 84, 91

sum, 59, 122, 134–7, 217–19
supersonic, 264, 266, 274, 277, 285, 294, 298

Sutherland law, 11, 22
sweep, 7–8, 209–21, 284–5
symmetry

axial, 285
spanwise, 4, 7, 176–7, 189, 196, 302

vortex lattice method, in, 215–18
tensor, 227

system
coordinate, 4, 25, 42, 225, 275
linear, 185–6, 199, 216

solution, 16–17, 115, 187
right-handed, 4, 145, 148, 162, 300, 302
thermodynamic, 267
units, see units

taper, 7, 182, 188, 209–16
Taylor

series, 9, 28, 147, 289, 300–301
temperature, 12, 298, 306, see also lapse rate

absolute, 10–11, see also atmosphere
advected quantity, as an example of an, 27
partial differential equation, 293
specific heat ratio, effect on, 268
speed of sound, effect on, 9–10
viscosity, effect on, 11, 22

tensor, 225, 295
thermodynamics, 9, 266
thickness

boundary layer, 233, 245
displacement, 243–5, 296, 298, 300
momentum, 243–5, 298–9, 300, 307

momentum, 298–9, 307
wing, 129–30, 139, 221, 306

ignored, 87, 93, 169, 302
thin, 107–108, 290
thin aerofoil theory, 87–90, 93, 99, 297, 301

lumped vortex method comparison, 122
three-quarter chord, 112, 120–25, 200, 202
Thwaites

momentum integral equation, 247, 255, 259
pressure gradient parameter, 254

toeplitz, 198–9, 206
topology (streamline), 158
TORNADO, 221
trace

camber line, 210
loop-integral, 26–7, 294

three-dimensional, 150
streamline, 157
tensor, 227, 295, 302
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transpose (matrix), 108, 211
triad, right-handed, 162, 300, see also system:

right-handed
tropopause, 12
troposphere, 12–13, 291, 307
turbulence

boundary layer, 244, 247, 299
transition, 260

twist, 8, 302
aerodynamic, 210
geometric, 209–10

UIUC
Airfoil Coordinates Database, 129, 221

units
Imperial, 16
SI, 10–11, 16, 270

vector
column, 108, 214, 290, 305
component, 39
Euler equation, 29
hydrostatic force, 30
identity, 145–8
momentum, rate of change, 28
normal, 148, 215
notation, 3, 145–8
row, 108, 131, 209, 290
unit, 25, 44, 54, 64, 145, 160, 170, 203,

305–306
normal, 26
tangent, 34

velocity, 25
vectorization, 287–91
velocity

complex, 38, 79, 295
aerodynamic force, 62–4
drawing with Octave, 49
integer power, 48, 50, 64
rotated, 53–4

field, 25
Venturi, 265
viscosity, 10–11, 26, 225, 299, 302

kinematic, 11–12, 228, 239, 248, 307
viscosity, 11, 13
vlm demo bertin, 218
vlm demo bertin2, 219
vlm demo campbell, 216, 290

Von Doenhoff, A. E., see Abbott, I. H.
vortex

bound, 170, 193, 213, 294
counter-rotating, 296, 302
horseshoe, 170, 294, 297

Octave, 165, 197
lattice method, 212, 218
line, 159, 164

segment, 161, 165, 213–15, 298
plane ideal, 54
sheet, 86, 93, 300, 302–303, 307

thin aerofoil as, 82, 85, 87, 93, 98, 113
wake as, 170

substitution, see vortex, lumped
trailing, 170, 173, 302

numerical, 165
tube, 159–60
wing-tip, 173, 302

vortex horseshoe, 204–205, 217–18
vortex segment, 203–204
vortex semiinf, 204
vorticity, 34, 40–43, 48, 59, 62, 152, 294, 302,

308

wake, 170, 173, 302
Ward, K. E., see NACA Report No. 460
water

compressibility, 270
vapour, 21
viscosity, 20, 229

’Waypoints’ (quadgk), 65
wind tunnel, 3, 22, 105, 144, 279
wing

delta, 7
planform, 7, 182, 296

elliptic, 182
rectangular, 187, 191

section, 5–7, 14, 31–2, 293, 299
wing-tip, 7, 143, 176, 196, 301–302

vortex, see vortex: wing-tip
work (thermodynamic), 9, 266–7

yaw
horseshoe vortex, of a, 205, 216, 221

zero-lift incidence, see incidence: zero-lift
zeros, 131, 191, 198–9, 205, 288, 290


