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Foreword

With the availability of computers of increasing power and lower cost, computer-
based modeling is now a widespread approach to the analysis of complex scientific
and engineering systems. First-principles models and numerical simulation can be
used to investigate system dynamics, to perform sensitivity analysis, to estimate
unknown parameters or state variables, and to design model-based control
schemes. However, due to the usual gap between research and common practice,
scientists and engineers still often resort to conventional tools (e.g. low-order
approximate solutions), and do not make use of the full array of readily available
numerical methods.

Many systems from science and engineering are distributed parameter systems,
i.e., systems characterized by state variables (or dependent variables) in two or more
coordinates (or independent variables). Time and space are the most frequent
combination of independent variables, as is the case of the following (time-varying,
transient, or unsteady state) examples:

• temperature profiles in a heat exchanger
• concentration profiles in a sorptive packed column
• temperature and concentration profiles in a tubular reactor
• car density along a highway
• deflection profile of a beam subject to external forces
• shape and velocity of a water wave
• distribution of a disease in a population (spread of epidemics)

but other combinations of independent variables are possible as well. For
instance, time and individual size (or another characteristic such as age) occur in
population models used in ecology, or to describe some important industrial
processes such as polymerization, crystallization, or material grinding. In these
models, space can also be required to represent the distribution of individuals (of
various sizes) in a spatial region or in a nonhomogeneous reactor medium (due to
nonideal mixing conditions in a batch reactor, or to continuous operation in a
tubular reactor).

The preceding examples show that there exists a great variety of distributed
parameter systems, arising from different areas of science and engineering, which
are characterized by time-varying distributions of dependent variables. In view of
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the system complexity, a mathematical model, i.e., a mathematical description of
the physical (chemical, biological, mechanical, electrical, etc.) phenomena taking
place in the system, is often a prerequisite to system analysis and control. Such a
model consists of partial differential equations (PDEs), boundary conditions (BCs),
and initial conditions (ICs) describing the evolution of the state variables. In
addition, distributed parameter systems can interact with lumped parameter sys-
tems, whose state variables are described by ordinary differential equations
(ODEs), and supplementary algebraic equations (AEs) can be used to express
phenomena such as thermodynamic equilibria, heat and mass transfer, and reaction
kinetics (combinations of AEs and ODEs are also frequently termed differential-
algebraic equations, or DAEs). Hence, a distributed parameter model is usually
described by a mixed set of nonlinear AE/ODE/PDEs or PDAEs. Most PDAEs
models are derived from first principles, i.e., conservation of mass, energy, and
momentum, and are given in a state space representation which is the basis for
system analysis.

This book is dedicated to numerical simulation of distributed parameter systems
described by mixed systems of PDAEs. Special attention is paid to the numerical
method of lines (MOL), a popular approach to the solution of time-dependent
PDEs, which proceeds in two basic steps. First, spatial derivatives are approxi-
mated using finite difference, element, or volume approximations. Second, the
resulting system of semi-discrete (discrete in space continuous in time) equations
is integrated in time using an available solver. Besides conventional finite dif-
ference, element, and volume techniques, which are of high practical value, more
advanced spatial approximation techniques are examined in some detail, including
finite element and finite volume approaches.

Although the MOL has attracted considerable attention and several general-
purpose libraries or specific software packages have been developed, there is still a
need for basic, introductory, yet efficient, tools for the simulation of distributed
parameter systems, i.e., software tools that can be easily used by practicing sci-
entists and engineers, and that provide up-to-date numerical algorithms.

Consequently, a MOL toolbox has been developed within MATLAB/
OCTAVE/SCILAB. These environments conveniently demonstrate the usefulness
and effectiveness of the above-mentioned techniques and provide high-quality
mathematical libraries, e.g., ODE solvers that can be used advantageously in
combination with the proposed toolbox. In addition to a set of spatial approxi-
mations and time integrators, this toolbox includes a library of application
examples, in specific areas, which can serve as templates for developing new
programs. The idea here is that a simple code template is often more compre-
hensible and flexible than a software environment with specific user interfaces.
This way, various problems including coupled systems of AEs, ODEs, and PDEs
in one or more spatial dimensions can easily be developed, modified, and tested.

This text, which provides an introduction to some advanced computational
techniques for dynamic system simulation, is suitable as a final year undergraduate
course or at the graduate level. It can also be used for self-study by practicing
scientists and engineers.
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Preface

Our initial objective in developing this book was to report on our experience in
numerical techniques for solving partial differential equation problems, using
simple programming environments such as MATLAB, OCTAVE, or SCILAB.
Computational tools and numerical simulation are particularly important for
engineers, but the specialized literature on numerical analysis is sometimes too
dense or too difficult to explore due to a gap in the mathematical background. This
book is intended to provide an accessible introduction to the field of dynamic
simulation, with emphasis on practical methods, yet including a few advanced
topics that find an increasing number of engineering applications. At the origin of
this book project, some years ago, we were teaming up with Bill Schiesser (Lehigh
University) with whom we had completed a collective book on Adaptive Method
of Lines. Unfortunately, this previous work had taken too much of our energy, and
the project faded away, at least for the time being.

Time passed, and the book idea got a revival at the time of the post-doctoral
stay of Carlos in the Control Group of the University of Mons. Carlos had just
achieved a doctoral work at the University of Vigo, involving partial differential
equation models, finite element techniques, and the proper orthogonal decompo-
sition, ingredients, which all were excellent complements to our background
material.

The three of us then decided to join our forces to develop a manuscript with an
emphasis on practical implementation of numerical methods for ordinary and
partial differential equation problems, mixing introductory material to numerical
methods, a variety of illustrative examples from science and engineering, and a
collection of codes that can be reused for the fast prototyping of new simulation
codes.

All in one, the book material is based on past research activities, literature
review, as well as courses taught at the University of Mons, especially introductory
numerical analysis courses for engineering students. As a complement to the text, a
website (www.matmol.org) has been set up to provide a convenient platform for
downloading codes and method tutorials.

Writing a book is definitely a delicate exercise, and we would like to seize this
opportunity to thank Bill for his support in the initial phase of this project. Many of
his insightful suggestions are still present in the current manuscript, which has
definitely benefited from our discussions and nice collaboration.
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Of course, we also would like to express our gratitude to our colleagues at
UMONS and at IMM-CSIC (Vigo), and particularly Marcel, Christine, Antonio,
Julio, Eva, and Míriam, and all the former and current research teams, for the nice
working environment and for the research work achieved together, which was a
source of inspiration in developing this material. We are also grateful to a number
of colleagues in other universities for the nice collaboration, fruitful exchanges at
several conferences, or insightful comments on some of our developments:
Michael Zeitz, Achim Kienle, Paul Zegeling, Gerd Steinebach, Keith Miller, Skip
Thompson, Larry Shampine, Ken Anselmo, Filip Logist, to just name a few.

In addition, we acknowledge the support of the Belgian Science Policy Office
(BELSPO), which through the Interuniversity Attraction Program Dynamical
Systems, Control and Optimization (DYSCO) supported part of this research work
and made possible several mutual visits and research stays at both institutions
(UMONS and IIM-CSIC) over the past several years.

Finally, we would like to stress the excellent collaboration with Oliver Jackson,
Editor in Engineering at Springer, with whom we had the initial contact for the
publication of this manuscript and who guided us in the review process and
selection of a suitable book series. In the same way, we would like to thank
Charlotte Cross, Senior editorial assistant at Springer, for the timely publication
process, and for her help and patience in the difficult manuscript completion phase.

Mons, March 2014 Alain Vande Wouwer
Vigo Philippe Saucez

Carlos Vilas
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Chapter 1
An Introductory Tour

The computational study of mathematical models is an indispensable methodology in
science and engineering which is now placed on an equal footing with theoretical and
experimental studies. The most widely used mathematical framework for such studies
consists of systems of algebraic equations (AEs), ordinary differential equations
(ODEs), and partial differential equations (PDEs). In this introductory chapter, we
successively consider

• Some ODE applications, including the development of physical models and ODEs;
MATLAB programming; derivation of simple explicit ODE solvers (including the
Euler, leapfrog, and modified Euler methods), stability, and accuracy of numerical
methods with graphs of stability regions;

• An ODE/DAE application;
• A PDE application (briefly introducing the method of lines–MOL).

MATLAB has a number of high-quality library ODE integrators forming the so-called
MATLAB ODE SUITE [1]. Most of the application examples considered in this book
make use of these integrators. However, in this chapter and the following, we describe
some ODE solvers, including Euler, leap frog, modified Euler, Runge-Kutta, and
Rosenbrock methods, to facilitate the understanding of ODE integration algorithms.
These time integrators will also easily be translated into other software environments
such as OCTAVE and SCILAB.

We start the discussion of AE/ODE/PDE models with some modest examples that
illustrate basic concepts and their implementation within MATLAB.

1.1 Some ODE Applications

ODEs are characterized by a single independent variable, typically an initial value
variable such as time. For example, the ODE

dX

dt
= µmax X (1.1)

A. Vande Wouwer et al., Simulation of ODE/PDE Models with MATLAB�, 1
OCTAVE and SCILAB, DOI: 10.1007/978-3-319-06790-2_1,
© Springer International Publishing Switzerland 2014



2 1 An Introductory Tour

where X is the dependent variable, t the independent variable and µmax a given
constant.

Equation (1.1) also requires an initial condition

X (t0) = X0 (1.2)

where t0 is the specified (initial) value of t and X0 the specified (initial) value of X .
The solution to Eq. (1.1) is the dependent variable, X , as a function of the inde-

pendent variable, t . This function is

X (t) = X0e(µmax(t−t0)) (1.3)

Equation (1.3) can be easily confirmed as the solution of Eq. (1.1) subject to initial
condition (1.2).

We can note some interesting properties of the solution, Eq. (1.3):

• If µmax < 0, then X (t) decreases exponentially with t
• If µmax = 0, then X (t) is constant at X0
• If µmax > 0, then X (t) increases exponentially with t

Thus, the value of µmax leads to markedly different solutions. For example, for the
case of bacterial growth, µmax > 0, while for radioactive decay, µmax < 0.

Another important property of Eq. (1.1) is that it is linear. In other words, X and
dX /dt are to the first power. Generally, linear ODEs are relatively easy to solve in the
sense that analytical solutions such as Eq. (1.3) can be derived. Conversely, nonlinear
ODEs (for which X and/or dX/dt are not to the first power) generally are not easily
solved analytically (these conclusions, of course, depend on the number of ODEs
and the particular form of their nonlinearities).

Because analytical solutions are generally difficult, if not impossible, to derive,
we have to resort to numerical methods of solution which, in principle, can be used to
compute solutions to any system of ODEs, no matter how large (how many equations)
and how nonlinear the equations are. However, we will not obtain an analytical
solution (as a mathematical function, e.g., Eq. (1.3)). Rather, we will obtain the
dependent variables as a function of the independent one in numerical form. This
is the central topic of this book, i.e., the computation of numerical solutions. The
challenge then is to compute numerical solutions in reasonable time with acceptable
numerical accuracy.

As an illustration of how Eqs. (1.1) and (1.2) might be extended, we consider the
growth of bacteria (X ) on a single substrate (S) in a culture (see for instance, [2])

νS S → X

νS is a pseudo-stoichiometric coefficient (or yield coefficient representing the mass
of substrate consumed/number of cells produced).

For the culture, which we consider as the contents of a reactor operated in batch
mode (no feed or product streams), the dynamic model is described by two coupled
ODEs derived from two mass balances for X and S
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Table 1.1 Bacterial growth laws

Case Growth rate model Law

1 µ = µmax Zero-order (constant) law
2 µ(S) = µmax

S
Km+S Monod law: substrate limitation

3 µ(S) = µmax
S

Km+S+S2/Ki
Haldane law: substrate limitation and inhibition

4 µ(S, X) = µmax
S

Kc X+S Contois law: substrate limitation and biomass inhibition

dX

dt
= ϕ(S, X) (1.4)

dS

dt
= −νSϕ(S, X) (1.5)

where S denotes the concentration of substrate in the reactor (mass of substrate/
volume reactor) and X the concentration of biomass (number of cells/volume
reactor). The solution to Eqs. (1.4) and (1.5) will be the dependent variables, X
and S, as a function of t in numerical form.

The kinetics (rate equation for the reaction) can be written as

ϕ(S, X) = µ(S, X)X (t) (1.6)

where µ(S, X) denotes the specific growth rate. Depending on the expression of
µ(S, X), the two mass balance equations for X and S can be linear or nonlinear. For
example, the specific growth rate models in Table 1.1 are used to model bacterial
growth. Case 1 in Table 1.1 corresponds to a constant specific growth rate, and
therefore to the linear Eq. (1.1). Cases 2 to 4 are nonlinear specific growth rates
which if used in Eqs. (1.4) and (1.5) will preclude analytical solutions. Thus, we will
develop numerical solutions to Eqs. (1.4) and (1.5) when using cases 2–4.

The MATLAB function bacteria_odes and the MATLAB script
Main_bacteria can be used to compute numerical solutions to Eqs. (1.4) and
(1.5) for the four cases of Table 1.1. We can note the following points about the
function bacteria_odes:

1. The function named bacteria_odes is defined by function xt =
bacteria_odes(t,x) The inputs to the function are t, the independent vari-
able of Eqs. (1.4) and (1.5) (time), and x, the vector of dependent variables (X, S).
The function computes the derivatives from the RHS of Eqs. (1.4) and (1.5), and
returns these derivatives as a vector xt. Initially (at t = 0), X and S are available
from the initial conditions for Eqs. (1.4) and (1.5) (not yet specified). After the
integration of Eqs. (1.4) and (1.5) has progressed (by a numerical integration still
to be explained), the values of X and S are inputs to bacteria_odes from the
ODE integrator.

2. A set of global variables is defined, which can be shared between functions (such
as between the function bacteria_odes and the main program that will be
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described next). Note, also, that a line beginning with a % is a comment (and
therefore has no effect on the execution of the MATLAB code; rather, it is included
only for informational purposes).

3. Since ODE integrators, such as the one called by the main program, generally
require that the dependent variables be stored as a vector, the two dependent vari-
ables of Eqs. (1.4) and (1.5), X and S, are extracted from the dependent variable
vector x (again, recall that x is an input to the function bacteria_odes).

4. One of the growth functions in Table 1.1 is then selected by the switch utility
of MATLAB, that is controlled by the value of the variable kinetics which is
set in the main program and passed to the function bacteria_odess as a
global variable. This coding illustrates a very important feature of numerical
ODE solutions: The ODE complexity (in this case, the nonlinearity of the growth
function) is not a limitation. In other words, ODEs of any complexity can be
handled numerically; this is certainly not the case if we are attempting to derive
an analytical solution.

5. The RHS of Eqs. (1.4) and (1.5) are then computed. Note that we adopted a con-
venient convention for naming derivatives: We add a character (such as t) to the
dependent variable name, so that, for example, the derivative dX/dt becomes Xt.

6. Finally, the derivative vector consisting of the two elements Xt and St is returned
to the ODE integrator as a column vector. Note that the derivative vector [Xt
St] (two elements of the vector in a row delimited by square brackets) is inter-
preted by MATLAB as a row vector. To make it a column vector (as required by
the ODE integrator), we apply the transpose operator, which in MATLAB can be
denoted simply with an apostrophe (’). Other option would be to separate both
elements by a semicolon, i.e., [Xt; St].

function xt = bacteria_odes (t ,x )

% Global variables
global nu mumax Km Ki Kc kinetics

% Transfer dependent variables
X = x ( 1 ) ;
S = x ( 2 ) ;

% Select growth function
switch kinetics

% Constant
case ( 'constant ' )

mu = mumax ;
% Monod
case ( 'monod ' )

mu = mumax*S / (Km+S ) ;
% Haldane
case ( 'haldane ' )

mu = mumax*S / (Km+S+(S ^ 2 ) /Ki ) ;
% Contois
case ( 'contois ' )

mu = mumax*S / (Kc*X+S ) ;
end
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% ODEs
phi = mu*X ;
Xt = phi ;
St = −nu*phi ;

% Transfer temporal derivatives
xt = [Xt St ] ' ;

Function bacteria_odes Function defining the RHS of Eqs. (1.4) and (1.5)

% Culture of bacteria

close all ;
clear all ;

% Global variables
global nu mumax Km Ki Kc kinetics

% Model parameters
nu = 0 . 5e−11;
mumax = 1 . 4 ;
Km = 12;
Ki = 3 ;
Kc = 3e−11;

% Select growth function (comment /decomment one of the
% specific growth rate function )
%
% kinetics = 'constant '
% kinetics = 'monod '
% kinetics = 'haldane '

kinetics = 'contois '

% Initial , final time , plot interval
t0 = 0 ;
tf = 20;
Dtplot = 0 . 1 ;

% Initial conditions
ICs = 'case_1 '
% ICs = 'case_2 '
switch ICs

% case 1
case ( 'case_1 ' )

X = 1 . 4e11 ;
S = 9 ;

% case 2
case ( 'case_2 ' )

X = 1 . 4e11 ;
S = 12;

end
x0 = [X S ] ' ;
% Call to ODE solver
% method = 'ode45 '
method = 'ode15s '
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switch method
% ode45
case ( 'ode45 ' )

options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
options = odeset (options , 'Stats ' , ' on ' , . . .

'Events ' ,@events ) ;
t = [t0 :Dtplot :tf ] ;
[tout ,xout ] = ode45 (@bacteria_odes ,t ,x0 ,options ) ;

% ode15s
case ( 'ode15s ' )

options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
options = odeset (options , 'Stats ' , ' on ' , . . .

'Events ' ,@events ) ;
t = [t0 :Dtplot :tf ] ;
[tout ,xout ] = ode15s (@bacteria_odes ,t ,x0 ,options ) ;

end

% Plot results
figure ( 1 )
plot (tout ,xout ( : , 1 ) ) ;
xlabel ( 't ' ) ;
ylabel ( 'X (t ) ' ) ;
title ( 'Biomass concentration ' ) ;
figure ( 2 )
plot (tout ,xout ( : , 2 ) ) ;
xlabel ( 't ' ) ;
ylabel ( 'S (t ) ' ) ;
title ( 'Substrate concentration ' )

Script Main_bacteria Main program that calls integrator ode15s (or ode45)

This completes the programming of Eqs. (1.4) and (1.5). Now we consider the
main program Main_bacteria that calls the function bacteria_odes and
two integrators from the ODE SUITE:

1. A defining statement is not required at the beginning.
2. The same global variables are again defined so that they can be shared between the

main programMain_bacteria and the subordinate functionbacteria_ode.
3. The model parameters used in Eqs. (1.4) and (1.5) and the growth functions are

then defined numerically. The parameter values are taken from [3] and are given
in Table 1.2. The units are g (grams), l (liters), and h (hours). When these values
are substituted into the RHS of Eqs. (1.4) and (1.5) and the growth functions of
Table 1.1, the net units must be those of X and S per hour (the units of the LHS
derivatives of Eqs. (1.4) and (1.5)). Then, when these differential equations are
integrated, the resulting solution will have the units of X and S as a function of
time in hours.

4. The growth function is selected using the variable kinetics which is then passed
as a global variable to the function bacteria_odes to compute a particular
growth function. Note in this case the Contois growth function is selected since
it is not in a comment.
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Table 1.2 Bacterial growth
model parameters

Parameter Value units

νS 0.5 g(1011bacteria)−1

µmax 1.4 h−1

Ki 3 gl−1

Kc 3 g(1011bacteria)−1

Km 12 gl−1

5. The initial and final values of time and the ICs for Eqs. (1.4) and (1.5) are then
defined (again, using the MATLAB switch utility). Note in this case that the first
set of ICs is selected since the second set is within a comment (i.e., “commented
out”). Also, the ICs are converted from a row vector to a column vector using the
transpose, which is required by the library integrator.

6. An ODE integrator, either ode45 (a nonstiff integrator) or ode15s (a stiff
integrator for ODEs with widely separated eigenvalues or time scales), can be
selected. Before actually proceeding with time integration, several parameters
and options can be defined using the MATLAB utility odeset. In this case,
odeset first defines a relative error, RelTol, and gives it a numerical value
of 10−3. Similarly, an absolute error is defined through AbsTol with a value of
10−3. A second call to odeset defines some additional options:

a. Stats with “on” activates a count of the computational statistics when inte-
grating the ODEs, e.g., number of steps taken along the solution, number of
times the RHS of Eqs. (1.4) and (1.5) are evaluated, and in the case of a stiff
integrator, the number of times the Jacobian matrix of the ODEs is computed.

b. Events with the user supplied function @events (note the @ which desig-
nates another function named events) in this case is used to avoid negative
concentrations; function events is discussed subsequently.

7. A vector, t , is then defined to contain the times at which the numerical solution
is to be stored for subsequent output. In this case, t runs from 0 to tf in steps of
Dt plot= 0.1. Since tf = 20 (as set previously), a total of 201 output values
will be returned by the ODE integrator. This may seem like an excessive number,
which might be true if numerical values of the solution are the primary result;
however, the solution will be plotted, and 201 values are not excessive, i.e., they
will produce a smooth plot with significant detail.

8. Integrator ode15s is then called. The function bacteria_ode is an input to
ode15s (@bacteria_odes, recall again that a MATLAB function is denoted
with an @). Also, x0 is the initial condition vector set previously which is an input
to ode15s (the solution starts at this initial condition); ode15s knows that two
ODEs are to be integrated because the initial condition vector x0 has two elements,
the values X (0) and S(0). The options set previously are also an input toode15s.
The output is the numerical solution with the 201 values of t stored in tout and the
two dependent variables of Eqs. (1.4) and (1.5), X and S, stored in xout. Thus,
xout is a two-dimensional array with the first subscript running from 1 to 201
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for the 201 values of t and the second subscript running from 1 to 2 for the two
dependent variables X and S. As an example, x(21,2)would contain S(t = 2).

9. The solution to Eqs. (1.4) and (1.5) is now computed, so the next section of code
plots this solution. Two figures (plots) are drawn as specified by the MATLAB
statement figure. The plot command uses the vector of 201 output times in
array tout as the abscissa variable, and the array xout as the ordinate value. For
the latter, the particular dependent variable is specified as the second subscript (1
for X , 2 for S). The colon used as the first subscript specifies all values of the first
subscript are to be used, in this case 1 to 201. The x and y axis labels are written
as well as a title at the top of the plot.

The function events (called by the integrators ode45 and ode15s through
their argument list, i.e., options) is listed below

function [value ,isterminal ,direction ] = events (t ,x )

% Transfer dependent variables
X = x ( 1 ) ;
S = x ( 2 ) ;

% Check if substrate concentration becomes negative
value = S ; % monitor S and see if it vanishes
isterminal = 1 ; % stop integration when S vanishes
direction = −1; % S decreases from initial positive values

Function events Function events to monitorS

If S (from the integration of Eq. (1.5)) should become negative (which physically
is impossible since a concentration cannot be negative), the execution of the main
program Main_bacteria will stop. To this end, the integrators ode45 and
ode15s use the function events to monitor the variable value (which is assigned
to S in the example), and to check whether value is decreasing through zero
(direction=-1), increasing through zero (direction=+1), or vanishing in
either direction (direction=0). In the example, the substrate concentration starts
at an initial positive value, decreases, and could possibly cross zero as time evolves,
so that the former option is selected, i.e., direction=-1. When value becomes
zero, the integration is halted (isterminal=1), since negative concentrations are
unacceptable. In other examples, an event detection could be less critical (e.g., we
could simply be interested in detecting and recording the zero crossings of a variable
taking positive and negative values), so that the option isterminal=0 would be
selected (the event is recorded while time integration continues).

In fact, the use of an event function is required only when the first growth law
of Table 1.1 is considered. In this linear case, the biomass concentration can grow
unbounded and the substrate concentration can become negative, which is physically
impossible. However, the nonlinear growth laws, cases 2–4 in Table 1.1, intrinsically
avoid such situations and do not require the use of an event function. This stresses
the development of meaningful models, guaranteeing bounded input–bounded output
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Fig. 1.1 Evolution of the substrate (S) obtained by means of Eqs. (1.4) and (1.5) for the growth
laws in Table 1.1

behavior, or at least the use of simplified models (such as the linear growth model) in
restricted operating ranges only (a constant specific growth law can reproduce data
well when substrate is in abundance).

This completes the programming of Eqs. (1.4) and (1.5), and associated initial
conditions. The plots of S(t) vs. t are indicated in Fig. 1.1 for the four growth
functions. Note that the plots all start at the correct initial condition S(0) = 9 (a
good check for any numerical solution). Also, the time scale for the three nonlinear
growth functions (Cases 2, 3, 4 in Table 1.1) is 0 ≤ t ≤ 20 while for the linear
growth function (Case 1 in Table 1.1) it is 0 ≤ t ≤ 2. This is an important point, i.e.,
the time scale for an ODE integration must be selected by the analyst since the initial
value independent variable is essentially open-ended. The time scale can change for
the same ODE system with changes in the structure and parameters of the ODEs;
for example, the time scale changes by a factor of 10 when changing the growth
law from linear to nonlinear (which is logical since the nonlinear laws express that
growth slows down as substrate resources become scarce). If the time scale is not
selected carefully, the numerical solution may not be defined (only a small portion of
the solution is computed if the time scale it too short, or the essence of the solution
may be missed completely if the time scale is too long). Clearly, the choice of the
growth function has a significant effect on the solution. The challenge then would be
to select a growth function, and associated numerical parameters, that would give a
plot of S(t) vs. t which is in good agreement with experimental data.
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Table 1.3 Numerical
parameters for Eqs. (1.7)
to (1.11)

Parameter Value Units

C1 5 × 103 s−1

C−1 106 s−1

E1 10 kcal ·mol−1

E−1 10 kcal ·mol−1

ρC p 1 kcal · l−1 ·K−1

−ΔHR 5 kcal ·mol−1

R 1.987 cal ·mol−1 ·K−1

We described the MATLAB programming of Eqs. (1.4) and (1.5) in detail for the
reader who may not have programmed ODE solutions previously. In the subsequent
example applications, we will add a discussion of only those details which are specific
to a particular application.

We next consider another ODE example that will then be extended to include
other types of equations. The energy and material balances for a batch stirred tank
reactor (BSTR), taken from [4], include a reversible exothermic reaction A ↔ B. The
dynamic model is described by two mass balance ODEs and one energy balance ODE.

dA

dt
= −k1 A + k−1 B; A(0) = A0 (1.7)

dB

dt
= k1 A − k−1 B; B(0) = B0 (1.8)

Note that Eq. (1.8) can also be expressed in algebraic form as

B(t) = A0 + B0 − A(t) (1.9)

since dA/dt + dB/dt = 0, and therefore A(t) + B(t) = A0 + B0 = constant .

dT

dt
= −ΔHR

ρC p
(k1 A − k−1 B); T (0) = T0 (1.10)

with the Arrhenius temperature dependency of the reaction rate constants

k1 = C1 exp

(−E1

RT

)
; k−1 = C−1 exp

(−E−1

RT

)
(1.11)

where t is time, A(t), B(t) are the molar concentrations of components A and B,
respectively, and T (t) is the temperature of the liquid in the reactor. The constant
parameter values taken from [4] are given in Table 1.3.

A function to define the RHS of Eqs. (1.7), (1.9), (1.10), and (1.11) is listed in
Function bstr_odes_ae which has essentially the same format as the function
bacteria_odes.
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function xt = bstr_odes_ae (t ,x )

% Global variables
global A0 B0 rhocp Cd Cr Ed Er DH R B

% Transfer dependent variables
A = x ( 1 ) ;
T = x ( 2 ) ;

% Algebraic equations
B = A0 + B0 − A ;
kd = Cd*exp(−Ed / (R*T ) ) ;
kr = Cr*exp(−Er / (R*T ) ) ;

% ODE temporal derivatives
At = −kd*A+kr*B ;
Tt = (kd*A−kr*B )*DH / (rhocp ) ;

% Transfer temporal derivatives
xt = [At Tt ] ' ;

Function bstr_odes_ae Implementation of the ODEs (1.7) and (1.10) using the algebraic relations
(1.9) and (1.11)

We can note the following additional details:

1. Again, t and x are the two input arguments of bstr_odes_ae. Thus, since
the concentration A is set to x(1) and the temperature T is set to x(2), they are
available for use in the algebraic equations for B, kd and kr. In other words, all
of the algebraic variables that are used in the calculation of the derivatives must
be computed first before the derivative vector [At Tt] is computed.

2. As discussed before (for function bacteria_ode), the final output from
bstr_odes_ae must be a vector with the derivatives for all of the ODEs, in
this case, the vector containing At, Tt. In other words, the input to a derivative
function is the vector of dependent variables (x) and the independent variable (t).
The output from the function is the vector of derivatives in column format (xt).

The main program that calls Function bstr_odes_ae is listed in the MATLAB
script Main_bstr where, for the sake of brevity, the problem presentation, i.e., the
comments at the beginning of the main program, are not reproduced:

% Global variables
global A0 B0 rhocp Cd Cr Ed Er DH R B

% Model parameters
rhocp = 1000;
Cd = 5000;
Cr = 1000000;
Ed = 10000;
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Er = 15000;
DH = 5000;
R = 1 . 9 8 7 ;

% Initial conditions
A0 = 1 ;
B0 = 0 ;
T0 = 430;
x0 = [A0 T0 ] ' ;

% In−line Euler integrator
h = 0 . 5 ;
t = [0 : h : 1 0 0 ] ;
nout = 200;
tk = 0 ;
xout = [A0 B0 T0 ] ;
fprintf ( 'h = %5.2f \n \n ' ,h ) ;
fprintf ( ' %8.1f%10.4f%10.4f%8.1f \n ' ,tk , A0 ,B0 ,T0 ) ;
for iout = 1 :nout

[xt ] = bstr_odes_ae (tk ,x0 ) ;
x0 = x0+xt*h ;
tk = tk+h ;
xout = [xout ;x0 ( 1 ) 1−x0 ( 1 ) x0 ( 2 ) ] ;
fprintf ( ' %8.1f%10.4f%10.4f%8.1f \n ' ,tk ,x0 ( 1 ) , . . .

A0+B0−x0 ( 1 ) ,x0 ( 2 ) ) ;
end

% Plot the solution
subplot ( 3 , 1 , 1 )
plot (t ,xout ( : , 1 ) ) ;
ylabel ( 'A (t ) ' ) ;

subplot ( 3 , 1 , 2 )
plot (t ,xout ( : , 2 ) ) ;
ylabel ( 'B (t ) ' ) ;

subplot ( 3 , 1 , 3 )
plot (t ,xout ( : , 3 ) ) ;
xlabel ( 't ' ) ;
ylabel ( 'T (t ) ' ) ;

Script Main_bstr Main program that calls function bstr_odes_ae

Note that:

1. The same features are at the beginning as in the main program Main_bacteria,
i.e., definition of the model parameters (which are passed as global variables) and
the model initial conditions. An initial condition for B of Eq. (1.8) is set, but B
will actually be computed algebraically using (1.9) (not by integrating Eq. (1.8)).

2. Numerical integration of Eqs. (1.7) and (1.10) is performed by the Euler method.
To start the integration, the value of t (the independent variable), tk, is initialized
and the integration step, h, along the solution is set. The number of Euler steps
nout is defined numerically and an output vector xout is initialized with the
initial conditions set previously.



1.1 Some ODE Applications 13

3. nout steps are then taken along the solution using a for loop: the derivative
function, bstr_odes_ae, is first called to evaluate the derivative vector xt. A
step is next taken along the solution by the Euler method (note that the base value
of the dependent variable, x in the RHS, is replaced by the new or advanced value
of x at the next step along the solution, i.e.,x0 = x0 + xt*h;) the independent
variable is then incremented to reflect the next point along the solution. Finally, the
solution vector at the advanced point along the solution is added to the solution
vector to this point (in three-column format), i.e., xout = [xout; x0(1)
A0+B0-x0(1) x0(2)];

4. Execution of the for loop for nout steps along the solution generates the com-
plete solution which is now ready for plotting (since the entire solution has been
collected in array xout). The plotting is essentially self explanatory. subplot
subdivides a figure into separate graphs, i.e., subplot(3,1,p) defines a 3 by
1 array of graphs, and p is the handle to the current graph (e.g., p = 1, 2, 3). Note
that a particular dependent variable is selected for all t using the notation of MAT-
LAB, e.g., plot(t,xout(:,1)). This call to plot has as inputs the vector of
the independent variable set previously with t=[0:0.5:100]; followed by
the three-column vector xout (for which the first column A(t) is selected); the
colon symbol (:) indicates all rows (for all of the values of t) of the first column
are to be plotted. The resulting graphs are presented in Fig. 1.2 and the tabular
output from the program is summarized in Table 1.4.

We now use this output to demonstrate some of the essential features of the
Euler method. First, we note that the initial conditions are correct as set in the script
Main_bstr. Displaying the initial conditions is important to ensure that the solution
has the right starting point. Then, some physical reasoning can be applied to confirm
that the solutions have reasonable form. In this case, as expected, A(t) decreases with
t , while B(t) and T (t) increase (as shown in Fig. 1.2). Finally, the dependent variables
approach an equilibrium or a steady state (A(t) = 0.3753, B(t) = 0.6247, T =
433.1). We might then ask the question, why not A(t) = 0, B(t) = A0 + B0, the
answer is because the chemical reaction is equilibrium limited.

While these checks may seem obvious, they are nonetheless important, especially
when the size and complexity (numbers of ODEs) increase. If the solution does not
make sense at this point, there is no sense in continuing to work with it until the
apparent inconsistencies (with physical reasoning) are resolved.

At this point we ask an important question: How do we know that the numerical
solution is correct?, or in other words, since the Euler method provides a numerical
approximation to the exact solution, what accuracy does the numerical solution have?
If we have an exact solution, e.g., Eq. (1.3), then we can determine the exact error in
the numerical solution. However, this usually will not be the case, i.e., if we have an
exact solution, there is no need to calculate a numerical solution. In fact, numerical
methods are most useful for difficult problems for which an analytical solution is not
available.

The question then is how do we ascertain the accuracy of a numerical solution
when we do not have an exact solution. To answer this question, we start with the
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Fig. 1.2 Graphical output from the main program Main_bstr

Table 1.4 Partial output from
the script Main_bstr and
function bstr_odes_ae

h=0.50

0.0 1.0000 0.0000 430.0
0.5 0.9793 0.0207 430.1
1.0 0.9593 0.0407 430.2
1.5 0.9399 0.0601 430.3
2.0 0.9210 0.0790 430.4
2.5 0.9028 0.0972 430.5
3.0 0.8850 0.1150 430.6
3.5 0.8679 0.1321 430.7
4.0 0.8512 0.1488 430.7
4.5 0.8351 0.1649 430.8
5.0 0.8195 0.1805 430.9
.
.
.

.

.

.
.
.
.

.

.

.

98.0 0.3753 0.6247 433.1
98.5 0.3753 0.6247 433.1
99.0 0.3753 0.6247 433.1
99.5 0.3753 0.6247 433.1
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Taylor series. Thus, if we have an ODE

dx

dt
= f (x, t) (1.12)

with initial condition

x(t0) = x0 (1.13)

the solution to Eq. (1.12) can be expanded around the initial condition

x(t1) = x(t0) + h

1!
dx(t)

dt

∣∣∣∣
t=t0

+ h

2!
d2x(t)

dt2

∣∣∣∣
t=t0

+ . . . (1.14)

where h = t1 − t0. If h is small, the higher order terms in Eq. (1.14) can be neglected,
and therefore, it reduces to

x1 = x(t0) + h

1!
dx(t)

dt

∣∣∣∣
t=t0

(1.15)

which is Euler’s method (note that we use x1 to denote the numerical solution at
t1 = t0 + h resulting from truncation of the Taylor series, while x(t1) denotes the
exact solution at t1 = t0 + h).

In other words, we can step from the initial condition x(t0) to a nearby point along
the solution, x1, using Eq. (1.15) since the derivative dx(t)/dt |t=t0 is available from
the ODE, Eq. (1.12). The only other required arithmetic operations (in addition to
the evaluation of the derivative) in using Eq. (1.15) are multiplication (by h) and
addition (of x(t0) which is the initial condition).

Then we can use x1 in the RHS of Eq. (1.15) to compute x2, x2 to compute x3, etc.,

xk+1 = xk + h

1!
dx

dt

∣∣∣∣
t=tk

= xk + h f (xk, tk) (1.16)

until we have computed the entire numerical solution to some final value of t that we
specify. This stepping process is illustrated by the for loop in script Main_bstr
for 200 steps. An important point is to note that this stepping procedure is entirely
numerical (which a computer can do very well); knowledge of mathematical methods
for the analytical integration of ODEs is not required.

Note also that Eq. (1.16) can be applied to a system of ODEs if x is interpreted as a
vector of dependent variables. In the case of Eqs. (1.7) and (1.10), this vector has the
two components A and T . The vector of derivatives, dx/dt , is computed as required
by Eq. (1.16) by calling a derivative function, in the case of script Main_bstr,
function bstr_odes_ae.

The preceding discussion covers all of the essential details of integrating a system
of ODEs by the fixed step, explicit Euler method of Eq. (1.16). One additional point
we can note is that, during the integration, we evaluated three algebraic variables,
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B, kd, and kr , which were then used in the calculation of the derivative vector in
function bstr_odes_ae. These algebraic variables could be computed explicitly
using only the dependent variables A and T . However, we might also have a situation
where the calculation of the ODE derivatives and the algebraic variables cannot be
separated, and therefore they must be calculated simultaneously. Generally, this is
the requirement of a differential-algebraic (DAE) system. This simultaneous solution
requires a more sophisticated algorithm than the Euler method of Eq. (1.16). We will
subsequently consider some DAE algorithms.

We now return to the basic question of how do we determine the accuracy of the
numerical solution of Table 1.4 (and we have to assess the accuracy without having
an analytical solution). To address this question, one line of reasoning would be to ask
if the integration step h is small enough so that the truncation of Eq. (1.14) to (1.15)
provides sufficient accuracy when the numerical solution is computed by Eq. (1.15).
In other words, we might reduce h and observe any change in the numerical solution.
To this end, we modify the script Main_bstr by changing two statements

h = 0.25

and

fprintf(’ %8.2f%10.4f%10.4f%8.1f\n’,tk,x(1),A0+B0-x(1),x(2));

The only change in the second statement is to replace the format for t , 8.1f by
8.2f so that the additional figures in t due to a smaller change in t (from 0.5 to 0.25)
will be observed in the output. The output from the modified program is summarized
in Table 1.5 bstr_odes_ae.

Now, to assess the effect of the change in h, we can compare the outputs in Tables
1.4 and 1.5. For example, at t = 1.0 (see Table 1.6).

From these results, we can infer that the accuracy of the numerical solution is
approximately three significant figures. If we were unable to come to this conclusion
(because the results did not agree to three figures), we could execute the script
Main_bstr again with a smaller h and compare solutions. Hopefully we would
arrive at a small enough h that we could conclude that some required accuracy has
been achieved, e.g., three figures. This process of reducing h to establish an apparent
accuracy is termed h refinement. The process of arriving at a solution of a given
accuracy is termed convergence.

The procedure of stepping along the solution with a prescribed h is illustrated in
Fig. 1.3.
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Table 1.5 Partial output from
the script Main_bstr and
function bstr_odes_ae
with h = 0.25

h=0.25

0.00 1.0000 0.0000 430.0
0.25 0.9897 0.0103 430.1
0.50 0.9795 0.0205 430.1
0.75 0.9695 0.0305 430.2
1.00 0.9596 0.0404 430.2
1.25 0.9499 0.0501 430.3
1.50 0.9403 0.0597 430.3
1.75 0.9309 0.0691 430.3
2.00 0.9216 0.0784 430.4
2.25 0.9125 0.0875 430.4
2.50 0.9034 0.0966 430.5
.
.
.

.

.

.
.
.
.

.

.

.

47.75 0.3953 0.6047 433.0
48.00 0.3950 0.6050 433.0
48.25 0.3946 0.6054 433.0
48.50 0.3942 0.6058 433.0
48.75 0.3939 0.6061 433.0
49.00 0.3935 0.6065 433.0
49.25 0.3932 0.6068 433.0
49.50 0.3929 0.6071 433.0
49.75 0.3925 0.6075 433.0

Table 1.6 Partial output
from the script Main_bstr
and function bstr_odes_ae for
h = 0.25, 0.5

h=0.25

h=0.5 1.0 0.9593 0.0407 430.2
h=0.25 1.00 0.9596 0.0404 430.2

Exact Solution
(Unknown)

One-step numerical
(truncation) error

Numerical
Solution

T(0.5) = 430.1
(=430.10326)

T(t) T(t)

T(0) = 430.0

Slope = 0.2652

t=h=0.5 Time

T(0.5) = 430 +
0.05163 + 0.05086

Numerical
Solution

Exact Solution
(Unknown)

Two-steps (global)
truncation error

One-step (local)
truncation error

t=h=0.25 t=2h=0.5 Time

T(0.25) = 430
+ 0.05163

T(0) = 430.0
00

Slope = 0.20345

Slope = 0.2652

Fig. 1.3 Time stepping along the solution using Euler method
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Table 1.7 Partial output from the script Main_bstr (modified) with h = 0.5

h=0.5

0.00 1.0000 0.0000 430.0
-0.04130 -0.02065 0.20652 0.10326
0.50 0.9793 0.0207 430.1
-0.04007 -0.02004 0.20036 0.10018
1.0 0.9593 0.0407 430.2
-0.03887 -0.01943 0.19435 0.09717
1.5 0.9399 0.0601 430.3
2.0 0.9210 0.0790 430.4
2.5 0.9028 0.0972 430.5
3.0 0.8850 0.1150 430.6
.
.
.

.

.

.
.
.
.

.

.

.

98.0 0.3753 0.6247 433.1
98.5 0.3753 0.6247 433.1
99.0 0.3753 0.6247 433.1
99.5 0.3753 0.6247 433.1

The numbers required for Fig. 1.3 were produced by modifying the script
Main_bstr slightly:

for iout = 1:nout
fprintf(’ %10.1f%10.4f%10.4f%10.1f\n’,tk,x(1),A0+B0-...

x(1), x(2));
[xt] = bstr_odes_ae(tk,x);
if tk<=1.0

fprintf(’ %10.5f%10.5f%10.5f%10.5f\n\n’, xt(1),...
xt(1)*h,xt(2),xt(2)*h);

end
end

Now, in addition to displaying the solution vector, tk, x(1), A0+B0-x(1),
x(2), we also display the derivative vector, xt(1), xt(2), and the steps taken
along the solution according to Eq. (1.15),xt(1)*h, xt(2)*h, which are usually
called Euler steps. A sample of the output from this for loop is listed in Table 1.7,
for h = 0.5.

Note that the output for t = 0 is plotted in Fig. 1.3a. For h = 0.25, a sample of
the output from the program is given in Table 1.8.

The output for t = 0 and 0.25 is plotted in Fig. 1.3b. We can note the following
important points in comparing the two plots:

1. The error that results from the application of Eq. (1.15) is a one-step or local
error (one step is taken along the numerical solution) as illustrated in Fig. 1.3a
and the first step (from t = 0) in Fig. 1.3b.

2. This local error can accumulate (as inferred in the second step of Fig. 1.3b) to
produce a global error. Thus, at t = 0.5 in Fig. 1.3b, the global error is the result



1.1 Some ODE Applications 19

Table 1.8 Partial output from the script Main_bstr (modified) with h = 0.25

h=0.25

0.00 1.0000 0.0000 430.0
-0.04130 -0.02065 0.20652 0.10326
0.50 0.9793 0.0207 430.1
-0.04007 -0.02004 0.20036 0.10018
1.0 0.9593 0.0407 430.2
-0.03887 -0.01943 0.19435 0.09717
1.5 0.9399 0.0601 430.3
2.0 0.9210 0.0790 430.4
2.5 0.9028 0.0972 430.5
3.0 0.8850 0.1150 430.6
.
.
.

.

.

.
.
.
.

.

.

.

98.0 0.3753 0.6247 433.1
98.5 0.3753 0.6247 433.1
99.0 0.3753 0.6247 433.1
99.5 0.3753 0.6247 433.1

of taking two steps of length h = 0.25. Clearly as the number of steps increases,
this accumulation of the one-step errors to produce the global error could lead to
inaccurate solutions. In other words, we are really interested in controlling the
global error since this is the actual error in the numerical solution at any point
along the solution. Fortunately, this is generally possible by taking a small enough
integration step h.

3. We can infer from Eq. (1.14) that the local error is proportional to h2 if the
error from the truncation of the Taylor series in Eq. (1.14) to produce the Euler
method of Eq. (1.15) is essentially limited to the leading term after the point of

truncation, i.e., the term h2

2!
d2x(t0)

dt2 . This property of the local error proportional

to h2 is generally termed of order h2 or second order correct, and is denoted as
O(h2) where “O” (big-oh) denotes “of order”.

4. However, we are particularly interested in the global error since this is the actual
error after a series of n integration steps. As the neglected term for each step from
tk to tk+1 has the form h2

2!
d2x
dt2 , the global error will grow like the sum of the h2

terms, i.e.:

h2

2!
n∑

k=1

d2x(t0)

dt2

∣∣∣∣
t
= nh2

2!
d2x

dt2

∣∣∣∣
t
= t f − t0

2

d2x

dt2

∣∣∣∣
t

h = O(h)

an expression in which we assume that the derivative is smooth and the interme-
diate value theorem can be used. Hence, the Euler method is first order correct
with respect to the global error. In general, for the ODE integration algorithms
we will consider subsequently, the order of the global error is one less than the
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order of the local error, e.g., first and second order, respectively, for the Euler
method. A practical way to observe the first-order behavior of the Euler method
would be to compute numerical solutions to a problem with a known analytical
solution (so that the exact error is available) using a series of integration steps,
then plot the exact error versus the integration step size h at a particular value of
the independent variable, t . Generally, we would observe a straight line with a
slope of 1 (we cannot guarantee this first-order behavior for all problems since it
will depend on the properties of the problem, but generally the first-order behavior
will be observed).

This latter procedure suggests a method for computing a high accuracy numerical
solution to an ODE problem. Solutions for a series of integration steps can be com-
puted. Then the solutions can be plotted as a function of h (for a particular t) and
an extrapolation to h = 0 can be performed to arrive at the high accuracy solution.
This is known as a Richardson extrapolation. Its effectiveness is largely dependent
on the reliability of the extrapolation to h = 0 (which would be an extrapolation
using a straight line for a first-order method such as the Euler method). However,
this procedure does not require the use of an analytical solution, so it is quite general.
Also, the procedure can be efficiently organized in a computer program, and, in fact,
ODE integrators that use the Richardson extrapolation are available [5].

We can now appreciate the limited accuracy of the Euler method due to the trun-
cation of the Taylor series of Eq. (1.14) to arrive at Eq. (1.15). Thus, the resulting
integration error is generally termed the truncation error. More generally, the pre-
ceding discussion demonstrates the importance of an error analysis whenever we
compute a numerical solution to a problem; this is essential so that we have some
confidence that the solution is accurate and therefore reliable and useful. The chal-
lenge then is to do an error analysis without having an analytical solution so that we
can judge the error of the numerical solution. This might seem like an impossible
requirement, but the secret is to estimate the error with sufficient accuracy that we
have some confidence the estimated error does in fact indicate the accuracy of the
numerical solution. We have actually gone through this process for an ODE solution,
i.e., compute numerical solutions for a series of integration steps and observe if the
solutions appear to be converging to a certain number of significant figures.

The next logical step would be to look for a more accurate algorithm. From
Eq. (1.14), we see that Euler’s method uses a forward finite difference approximation
of the time derivative:

dx

dt

∣∣∣∣
k

= xk+1 − xk

h
+ O(h) (1.17)

If we now expand both xk+1 and xk−1 around xk

xk+1 = xk + h

1!
dx

dt

∣∣∣∣
k
+ h2

2!
d2x

dt2

∣∣∣∣
k
+ · · ·

xk−1 = xk − h

1!
dx

dt

∣∣∣∣
k
+ h2

2!
d2x

dt2

∣∣∣∣
k
+ · · ·
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and subtract the two expressions, we obtain a centered approximation

dx

dt

∣∣∣∣
k

= xk+1 − xk−1

2h
+ O(h2) (1.18)

which is more accurate (O(h2) rather than O(h)).
The leapfrog method corresponds to this more accurate approximation, i.e.

xk+1 = xk−1 + 2h
dx

dt

∣∣∣∣
k
+ 0(h3) = xk−1 + 2h f (xk, tk) + 0(h3) (1.19)

This method is third order correct with respect to the local error, and second order
correct with respect to the global error. This is a substantial improvement in accuracy
over Euler’s method. For example, if the integration step h is reduced by a factor of
two, the local error will decrease by a factor of four (leapfrog method) rather than
two (Euler’s method).

An apparent drawback of formula (1.19) however is that it requires two initial
values, e.g., x0 and x1, to start the stepping process (so that in practice it is necessary to
start integration with another method, e.g., Euler method, in order to get x1 from x0).
If we apply this algorithm without initialization procedure (i.e., we simply assume
x0 = x1) and with h = 0.05 (i.e., a small time step compared to the ones we have
used with the Euler method) to our batch reactor example (1.7)–(1.10), we obtain
the graphs of Fig. 1.4. Obviously, the numerical solution becomes unstable (and
reducing h cannot cure the problem).

Let us now initialize the stepping process using Euler’s method to compute the
second initial condition required by the leapfrog method. The integration results, also
with h = 0.05, are shown in Fig. 1.5. The solution has clearly improved, however,
we can observe high-frequency and low amplitude oscillations at the end of the
integration time. In both cases (with and without a proper initialization procedure),
the algorithm is unstable. In some sense, an error in the initial condition acts as a
perturbation which triggers the instability at an earlier stage. We will analyze stability
in more detail later in this chapter.

Rather than considering the centered approximation (1.18), which involves the
three points tk−1, tk and tk+1, let us try an alternative centered approximation evalu-
ated in the midpoint tk+1/2 of the interval [tk, tk+1]

dx

dt

∣∣∣∣
k+ 1

2

= xk+1 − xk

h
+ O(h2) (1.20)

This approximation, which is more accurate than (1.17) and has the same level of
accuracy than (1.18) can be obtained by subtracting two Taylor series expansions
around xk+1/2



22 1 An Introductory Tour

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100

A
(t
)

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100

B
(t
)

426

428

430

432

434

436

438

440

0 20 40 60 80 100

T
(t
)

Time

Fig. 1.4 Solution of the batch reactor problem (1.7)–(1.10) using the leapfrog method with h = 0.05
and x0 = x1

xk+1 = xk+ 1
2

+ h

2

dx

dt

∣∣∣∣
k+ 1

2

+ h2

4

d2x

dt2

∣∣∣∣
k+ 1

2

+ O(h3)

xk = xk+ 1
2

− h

2

dx

dt

∣∣∣∣
k+ 1

2

+ h2

4

d2x

dt2

∣∣∣∣
k+ 1

2

+ O(h3)

This yields the following numerical scheme

xk+1 = xk + h
dx

dt

∣∣∣∣
k+ 1

2

+ O(h3) = xk + h f (xk+ 1
2
, tk+ 1

2
) + O(h3) (1.21)

where the term f (xk+1/2, tk+1/2) is however unknown.
To estimate the solution at the midpoint tk+1/2, we can simply use Euler’s method

as a predictor
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Fig. 1.5 Solution of the batch reactor problem (1.7)–(1.10) using the leap frog method with h =
0.05 and a first step of the Euler method to start the stepping process

x̃k+ 1
2

= xk + h

2
f (xk, tk) (1.22)

which, when substituted in (1.21), gives

xk+1 = xk + h

2
f (x̃k+ 1

2
, tk+ 1

2
) (1.23)

This latter expression is known as the midpoint method since it uses the slope of the
solution evaluated in the midpoint tk+1/2 instead of the base point tk , as in the original
Euler’s method. This method, which is by one order more accurate than the Euler
method, is an example of predictor-corrector formula, i.e., Euler’s method (1.22) is
used to predict the solution in the midpoint tk+1/2 , and this prediction is then used
in the corrector (1.23).

Instead of estimating the slope of the solution in the midpoint tk+1/2, we could
also try to use an average slope over the interval [tk, tk+1]
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xk+1 = xk + 1

2

(
dx

dt

∣∣∣∣
k
+ dx

dt

∣∣∣∣
k+1

)
(1.24)

in the hope that this representation would lead to a more accurate result than Euler’s
method. This is indeed an interesting idea, which can be interpreted as an attempt to
include the second-order derivative term in the truncated Taylor series of the solution,
or at least a finite difference of this latter term

xk+1 = xk + h

1!
dx

dt

∣∣∣∣
k
+ h2

2!
d2x

dt2

∣∣∣∣
k
+ O(h3)

= xk + h

1!
dx

dt

∣∣∣∣
k
+ h2

2!

(
dx
dt

∣∣
k+1 − dx

dt

∣∣
k

)
h

+ O(h3)

= xk + h2

2!

(
dx
dt

∣∣
k+1 + dx

dt

∣∣
k

)
h

+ O(h3) (1.25)

As for the midpoint method, a predictor step is needed in the form

x̃k+1 = xk + h f (xk, tk) (1.26)

which can then be used in a corrector step

x̃k+1 = xk + h

2
( f (xk, tk) + f (x̃k+1, tk+1)) (1.27)

Equations (1.26)–(1.27) constitute what is generally referred to as Heun’s method
(in some texts, this predictor-corrector formula is also referred to as the modified
Euler method or the extended Euler method, whereas other authors use these terms
to designate the midpoint method). As with the leapfrog method, Heun’s method is
third order correct with respect to the local error, and second order correct with respect
to the global error. Note, however, that there is a computational price for the improved
accuracy. Whereas the Euler method (1.16) requires only one derivative evaluation for
each integration step, Heun’s method requires two derivative evaluations. In general,
this additional computational effort is well worth doing to improve the accuracy
of the numerical solution. If we apply this algorithm to our batch reactor example
(1.7)–(1.10), we obtain essentially the same results as with Euler’s method, but we
can now use much larger time steps, e.g., h = 2.

We could pursue the idea of including higher order derivative terms in the truncated
Taylor series expansion in order to improve the accuracy of the numerical solution.
This is actually what is done in a family of method called Taylor series methods, in
which the ODE function f (x, t) is successively differentiated with respect to t (at
this stage, it is necessary to use the chain rule to take account of the fact that x is
also a function of t). While this might be feasible for one or a few ODEs, it would
not be practical for large systems of ODEs, e.g., several hundreds or thousands of
ODEs. Thus, we need an approach by which we can get the higher order derivatives
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of the Taylor series without actually differentiating the ODEs. In fact, we have just
seen such an approach in Heun’s method, where the computation of the second-order
derivative has been replaced by the computation of a predicted point. This approach
is the basis of the ingenious Runge-Kutta (RK) methods [6], which can be of any
order of accuracy. In practice, fourth- and fifth-order RK methods are widely used. In
subsequent applications, we will demonstrate the use of general purpose MATLAB
functions that implement higher order ODE integration methods.

Finally, since we now have several methods for computing an ODE solution, e.g.,
Euler’s method, the midpoint method, Heun’s method (as well as the leapfrog method,
but we do not know yet in which cases this solver can be applied), we could compare
the results from two different methods to assess the accuracy of the solution. If the
numerical solutions produced by these different methods agree to within a certain
number of figures, we have some confidence that the solutions are accurate to this
number of figures. More generally, we could estimate the numerical error by com-
paring the solutions from two methods which are O(h p) and O(h p+q), respectively,
where q is the increase in order between the low- and high-order methods (p = 1 and
q = 1 for the comparison of the solutions from Euler’s and Heun’s method). Since
the basic order is denoted with p, the increased accuracy that can be obtained by using
higher order integration methods is generally termed p-refinement. The important
feature of this approach is again that we can infer the accuracy of numerical solutions
without knowing the analytical solution.

The preceding discussion is devoted primarily to the accuracy of a numerical
ODE solution. There is, however, another important consideration, the stability of the
solution. We have observed that stability of the numerical algorithm can be a severe
limitation when applying the leapfrog method to the batch reactor example. We will
not go into this subject in detail, but rather, just cover a few basic concepts. Much
more complete discussions of numerical ODE stability can be found in numerous
texts, e.g., [6].

The usual approach to the stability analysis of numerical ODE solutions is to use
the model equation

dx

dt
= λx; x(t0) = x0 (1.28)

Note that Eq. (1.28) is linear with a parameter λ (which is an eigenvalue). The
analytical solution is

x(t) = x0eλ(t−t0) (1.29)

An important feature of this solution is that it is stable (bounded) for Re(λ) ≤ 0
and asymptotically stable if Re(λ) < 0 (λ can be a complex number). Thus, we
would expect that a numerical solution to Eq. (1.28) would also be bounded for this
condition. However, it is not the case as the following reasoning shows:

(a) If λ < 0 ⇒ lim
t→∞x(t) = 0 from (1.29).

(b) The numerical solution is asymptotically stable if lim
k→∞xk = 0
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Fig. 1.6 Stability diagrams
for Euler, Heun, and higher
order RK methods (orders
3 and 4)

(c) From Eqs. (1.16) (Euler’s method) and (1.28), xk+1 = xk + h f (xk, tk) = xk +
hλxk , so that xk+1 = (1 + hλ)xk = (1 + hλ)k+1x0. In turn, lim

k→∞xk = 0 if

|1 + hλ| < 1 (1.30)

This latter condition defines a disk of unit radius centered on the point (−1, 0 j).
The boundary circle |1 + hλ| < 1 corresponds to stable (but not asymptotically
stable) solutions. This region is represented in Fig. 1.6. Note that if λ is a real
negative number (and h a positive time step), then condition (1.30) simplifies to
−2 < hλ < 0, i.e., a segment on the real axis. Inequality (1.30) places an upper limit
on the integration step h, above which the numerical integration by Euler’s method
will become unstable; in other words, the region outside the circle corresponds to an
unstable Euler integration. This stability limit on h was not a significant constraint
for the ODE problems considered previously since h was constrained by accuracy.
However, there is a class of problems for which the integration step is constrained
not by accuracy, but rather by stability. This class of problems is called stiff . For
example, a system of n linear ODEs will have n eigenvalues. If one (or more) of
these eigenvalues is large as compared to the other eigenvalues, it will require h to
be small according to inequality (1.30). This small h then requires many integration
steps for a complete numerical solution, and thus leads to a lengthy calculation. This
is a defining characteristic of a stiff system, i.e., a large separation in eigenvalues and
a prohibitively long calculation to maintain stability in the numerical integration.

In Fig. 1.6, which has been drawn using an elegant MATLAB code described
in [7], the stability contour just outside the circle is for second-order Runge-Kutta
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(RK) methods such as Heun’s method. While this region is somewhat larger than
for Euler’s method, using a second-order RK does not produce much of an improve-
ment in stability, only an improvement in accuracy. The remaining stability contours
are for the third- and fourth-order RK methods. Again, improvement in stability is
marginal (but improvement in accuracy can be very substantial).

We now turn to the stability analysis of the leapfrog method (1.19). If the numerical
solution of the model Eq. (1.28) is stable, we expect it to be of the form xk+1 =
αxk with |α| < 1, i.e., to decay exponentially. If this expression is substituted into
Eq. (1.19), then

xk+1 = αxk = α2xk−1 = xk−1 + f (xk, tk)2h = xk−1 +λxk2h = xk−1 +λαxk−12h

or

α2xk−1 − 2hλαxk−1 − xk−1 = 0

This second-order difference equation has the second-order characteristic equation
in α

α2 − 2hλα − 1 = 0 (1.31)

The solutions α1,2 of this equation determine the exponential decay of the numerical
solution xk , and for this latter solution to be stable, we expect |α1,2| ≤ 1. However, the
product α1α2 = −1 (i.e., the value of the constant term in the second-order equation),
so that if α1 is one solution, α2 = −1/α1 is the other solution. In turn, if |α1| < 1, then
|α2| > 1 and the numerical solution will be unstable (since the numerical solution
has a component α2xk which grows unbounded). Thus, stability requires that the
solutions lie on the unit circle and are distinct, i.e., |α1,2| = 1 and α1 �= α2, so that
α1,2 �= ± j . As the solutions to Eq. (1.31) are given by α1,2 = hλ ± ⎛

(hλ)2 + 1,
equation parameter λ (eigenvalue) must be purely imaginary, i.e., λ = ± jω, and
− j < hλ < j , so that α1,2 = ⎛

1 − (hω)2 lie on the unit circle and |α1,2| ± j ; see
Fig. 1.7a. The stability region, i.e., a segment on the imaginary axis − j < hλ < j ,
is drawn in Fig. 1.7b.

Hence, the leapfrog method is stable when applied to problems with pure imag-
inary eigenvalues. The simplest example of this class of systems is a spring-mass
system without damping and friction (i.e., an ideal mechanical oscillator), e.g.,

m
d2z

dt2 + kz = 0 (1.32)

where z is the horizontal mass position (it is assumed here that the mass is moving in
a horizontal plane, and that there are no external forces) and k is the spring constant.
This equation can equivalently be reformulated as two first-order ODEs

dz

dt
= v, m

dv

dt
= −kz (1.33)
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(a) (b)

Fig. 1.7 a Sketch of the solution to Eq. (1.31) and b stability region of the leapfrog method

We do not detail the code here, which is similar to the previous examples (the inter-
ested reader can find the code in the companion library), but concentrate on the
graphical outputs presented in Figs. 1.8 and 1.9. Figure 1.8 shows the periodic evo-
lution of the mass position and velocity in the time interval t ∈ [0, 90], whereas
Fig. 1.9 represents one system state against the other (the velocity against the posi-
tion), i.e., a phase portrait. These numerical results correspond to m = 1, k = 0.1,
i.e., ω2 = k/m = 0.1. Stability therefore requires h < 1/

√
0.1 = 3.16. Accuracy

however requires a much smaller time step, e.g., h = 0.01. Note that if there is
any damping, i.e., a term +cdx/dz in the RHS of Eq. (1.32), then the numerical
results would become unstable (since the eigenvalues are complex conjugates with
a nonzero real part).

As a general conclusion, using higher order explicit ODE integration methods
does very little to enhance the stability of a numerical integration. By an explicit
method we mean that we can step forward along the solution using only past values
of the dependent variable. For example, in the case of Eqs. (1.16), (1.19), (1.22),
(1.23), (1.26), (1.27), we can compute the solution xk+1 using only past values xk

and xk−1. While computationally this is an important convenience, it also means that
explicit methods are stability limited, i.e., we must limit h so that we are in the stable
region of the stability diagram. While this may not seem like a significant constraint
based on the algorithms and applications discussed previously, it is very important
for stiff ODEs to the extent that it can preclude the calculation of a stable numerical
solution with reasonable effort.

To circumvent the stability limit of explicit algorithms, we can consider implicit
algorithms. For example, a backward finite difference approximation could be used
instead of a forward or a centered finite difference approximation as in Eq. (1.16) or
Eq. (1.19), yielding
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Fig. 1.8 Position and velocity of the spring mass system with m = 1, k = 0.1, as predicted by the
leapfrog method with h = 0.01

Fig. 1.9 Velocity versus
position, i.e., phase portrait,
of the spring-mass system

xk+1 = xk + dx

dt

∣∣∣∣
k+1

h = xk + f (xk+1, tk+1)h (1.34)

Note that the solution at the advanced point xk+1 appears on both sides of the equation,
thus the name implicit Euler method.

If the derivative function f (x, t) is nonlinear, the solution of Eq. (1.34) for xk+1
requires the solution of a nonlinear equation (or systems of nonlinear equations for
systems of simultaneous ODEs). The question then arises whether this additional
computational requirement is worthwhile. The answer is YES if the ODE system is
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stiff. The reason for this conclusion is that the implicit Euler method possesses a
much larger stability domain than Euler’s method. From Eqs. (1.34) and (1.28) we
obtain:

xk+1 = xk + f (xk+1, tk+1)h = xk + hλxk+1

so that

xk+1 = xk

1 − hλ
= x0

(1 − hλ)k+1

In turn, lim
k→∞ (xk) = 0 if

|1 − hλ| > 1 (1.35)

The region of stability of the implicit Euler method is much larger than the region of
stability of the explicit Euler method since it corresponds to almost all the complex
plane, with the exception of the disk of unit radius centered on the point (+1, 0 j). The
circle |1 − hλ| = 1 corresponds to stable (but not asymptotically stable) solutions.
Note that if the real part of λ is a negative number (i.e., the physical system under
consideration is asymptotically stable) and h is a positive time step, then condition
(1.35) simplifies to Re(hλ) < 0, i.e., the method is stable over the entire left half of
the complex plane and is said to be unconditionally stable. In this case (Re(hλ) < 0),
there is no limit on h due to stability (only accuracy).

However, the implicit Euler method has the same accuracy limitation as the explicit
Euler method (1.16), i.e., it is first order accurate. Thus, for stiff ODE problems, we
would like to have a higher order method (for good accuracy) that is also implicit
(for good stability). Several classes of such algorithms are available, and probably
the best known are the Backward Differentiation Formulas (BDF) [8]. Their principle
is easy to understand. If we consider Eq. (1.12)

dx

dt
= f (x, t)

and assume that the numerical solution (ti , xi ) is known for i = 0, . . . , k, then
the solution xk+1 at tk+1 is obtained by defining an (m + 1)th order interpolation
polynomial pm+1, k+1(t) based on the points (tk−m, xk−m), . . . , (tk+1, xk+1) and by
requiring that

dpm+1, k + 1(tk+1)(tk+1)

dt
= f (xk+1, tk+1) (1.36)

This expression leads to the general form (BDF formula)

αm+1,k+1xk+1 + αm, k+1xk + · · · + α0,k+1xk−m = f (xk+1, tk+1) (1.37)

which has to be solved for xk+1 using a nonlinear solver such as Newton’s method.
The stability diagrams of BDF methods of orders 1–6 are represented in Fig. 1.10

(again this figure has been graphed using a MATLAB code from [7]).
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Fig. 1.10 Stability diagram
for the BDF methods of orders
1 to 6

The small circle of unit radius centered at (1, 0 j) is for the implicit Euler method
(1.34), which is also the first-order BDF. The region of stability is outside this circle.
Thus, as can be observed, most of the complex plane is the stable region for the
implicit Euler method, including the entire left half of the complex plane (for which
the ODE is stable). The next contour is for the second-order BDF; again the region of
stability is outside the contour. The next four contours are for BDFs of orders three
to six; the stability regions are again outside the contours. One detail, in particular,
should be observed. The BDFs of orders three to six have a section of the left half
of the complex plane along the imaginary axis which is unstable. Thus, these BDFs
are not unconditionally stable in the entire left half plane. While this may seem
like a minor point, in fact it can become quite important if the ODEs have any
eigenvalues near the imaginary axis, e.g., highly oscillatory systems. In this case,
the integration step h is limited by stability and if the ODE system is stiff, this can
impose a significant constraint on the step size, resulting in a lengthy calculation.
One approach to circumventing this problem is to limit the order of the BDF to two
or less. Another approach is to modify or extend the BDF methods to include in their
stability region more of the region along the imaginary axis [9, 10].

This completes the introductory discussion of the numerical integration of ODEs.
We now consider a second class of problems, differential-algebraic equations
(DAEs).
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1.2 An ODE/DAE Application

The basic ODE we considered previously, Eq. (1.12) was discussed essentially as a
single (scalar) equation. However, all of the discussion in Sect. 1.1 also applies to
systems of ODEs, and in fact, this reflects the power of the numerical methods that
were discussed in Sect. 1.1, i.e., they can be applied to ODE systems of essentially
any size (number or dimension) and complexity (e.g., nonlinearity).

To emphasize this point, we can write Eq. (1.12) as

dx
dt

= f(x, t) (1.38)

where a bold character now denotes a vector (or a matrix). Also, Eq. (1.38) can be
written as

I
dx
dt

= f(x, t) (1.39)

where I is the identity matrix (ones on the main diagonal and zeros everywhere else).
Note that (1.38), (1.39) denote a system of ODEs with only one derivative in each
equation, and is therefore called an explicit ODE system (not to be confused with an
explicit integration algorithm as discussed previously).

Equation (1.39) can then be generalized to

M
dx
dt

= f(x, t) (1.40)

where, if x is an n-vector (column vector of length n), M is a n × n matrix that
can bestow interesting properties on the differential equation system. For example,
if one or more off-diagonal elements of M is nonzero, the corresponding differential
equation will have more than one derivative. For example, if the fourth row in M
has two nonzero off-diagonal elements (and the diagonal element is not zero), the
fourth ODE in (1.40) will have three derivatives, one corresponding to the diagonal
element and two corresponding to the two off-diagonal elements. Such a differential
equation is called linearly implicit since the derivatives appear as linear combinations
(sums of derivatives with each derivative multiplied by a weighting coefficient from
M rather than having only one derivative in each differential equation). Another
description we could then use for such a differential equation is linearly coupled
(through the derivatives), and M is therefore termed a coupling matrix (or a mass
matrix, in analogy with model equations describing mechanical systems). We shall
shortly consider such a linearly implicit system of differential equations.

Another interesting case is when M has a row of all zero elements. The correspond-
ing equation actually has no derivatives and is therefore algebraic. Thus, depend-
ing on the structure (coefficients) of M, Eq. (1.40) can be a system of differential-
algebraic (DAE) equations, with the algebraic equations resulting from rows of zeros
in M, and the differential equations resulting from rows of M with some nonzeros
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Fig. 1.11 Linearized model of the control scheme (x1: deviation in the concentration of the outlet
tank, x2: deviation in the concentration of the inlet tank, z1: actuator first state variable, z2: actuator
second state variable, u: control signal, k1, k2: controller gains)

(and the latter can be linearly coupled). The numerical solution of such DAE sys-
tems is substantially more difficult than the explicit ODE system (1.39), but library
integrators are available for such systems, as illustrated in the example that follows.

Consider a two-tank chemical reaction system, where it is required to maintain
the concentration in the outlet tank at a desired level by the addition of reactant
in the inlet tank through a control valve [11]. A linearized model of the feedback
control system is illustrated in Fig. 1.11, where Cr = 0 is the deviation in the desired
concentration. The actuator block, i.e., the control valve, is represented by a transfer
function, using the Laplace transform variable s

1

(εs)2 + 2(εs) + 1
(1.41)

which has two real poles (s1,2 = − 1
ε
) that can be scaled using the parameter ε.

Using a change of variables, z2 = εż1, the complete model takes the singularly
perturbed form⎡

⎢⎢⎣
ẋ1
ẋ2
εż1
εż2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.2 0.2 0 0
0 −0.5 0.5 0
0 0 0 1
0 0 −1 −2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1
x2
z1
z2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ u (1.42)

The design objective is to select the state feedback controller gains k1 and k2 so
that the departure of x1 from the set point, Cr , is in some sense minimized.

The state equations (1.42) have a coupling matrix

M =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 ε 0
0 0 0 ε

⎤
⎥⎥⎦ (1.43)

If the parameter ε is set to zero, the third and fourth rows of M have entirely zeros.
In other words, the third and four equations of (1.42) are algebraic. Physically, this
means that the response of the actuator is instantaneous, as compared to the slow
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dynamics of the tank system. For this case, a solver for explicit ODEs cannot be used;
rather, a DAE solver is required. The MATLAB integrator ode15s will be used for
this purpose as explained in theMATLAB code to follow (Script Main_two_tanks;
see also the script Main_bacteria for a previous use of ode15s).

% Global variables
global A B eps K

% Model parameters (matrices and vectors )
A = [ −0.2 0 . 2 0 . 0 0 . 0 ;

0 . 0 −0.5 0 . 5 0 . 0 ;
0 . 0 0 . 0 0 . 0 1 . 0 ;
0 . 0 0 . 0 −1.0 −2.0] ;

B = [0 0 0 1 ] ' ;
K = [7 1 . 5 ] ;

% Initial conditions
t = [ 0 : 0 . 1 : 1 0 ] ;
x = [ 2 . 5 2 . 0 0 0 ] ' ;

% Call to ODE solver with eps = 0 . 1
eps = 0 . 1 ;
options = odeset ( 'Mass ' ,@mass , 'MassSingular ' , ' no ' , . . .

'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
[tout ,xout ] = ode15s (@two_tanks_odes ,t ,x ,options ) ;

% Plot for eps = 0 . 1
figure ( 1 )
subplot ( 2 , 1 , 1 )
plot (t ,xout ( : , 1 : 2 ) ) ;
xlabel ( 't ' ) ;
ylabel ( 'x1 (t ) and x2 (t ) ' ) ;
subplot ( 2 , 1 , 2 )
plot (t ,xout ( : , 3 : 4 ) ) ;
xlabel ( 't ' ) ;
ylabel ( 'x3 (t ) and x4 (t ) ' ) ;

% Next case : eps = 0.05
eps = 0 . 0 5 ;

% Call to ODE solver with eps = 0.05
options = odeset ( 'Mass ' ,@mass , 'MassSingular ' , ' no ' , . . .

'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
[tout ,xout ] = ode15s (@two_Tanks_odes ,t ,x ,options ) ;

% Plot for eps = 0.05 (superimposed on first plot )
figure ( 1 )
subplot ( 2 , 1 , 1 )
hold on
plot (t ,xout ( : , 1 : 2 ) , 'k ' ) ;
xlabel ( 't ' ) ;
ylabel ( 'x_1 (t ) and x_2 (t ) ' ) ;
title ( 'Singular perturbation problem ' ) ;
subplot ( 2 , 1 , 2 )
hold on
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plot (t ,xout ( : , 3 : 4 ) , 'k ' ) ;
xlabel ( 't ' ) ;
ylabel ( 'z_1 (t ) and z_2 (t ) ' ) ;

Script Main_two_tanks Main program that calls the function two_tanks_odes for the solu-
tion of Eq. (1.42)

If ε is small (the actuator dynamics is fast compared to the tank dynamics),
we would expect the corresponding solution would be close to that for ε = 0.
This conclusion will be confirmed by the numerical output from ode15s to be
subsequently discussed.

Reversely, this suggests another way to compute a solution to a DAE system, i.e.,
add derivatives to the algebraic equations with a small parameter, ε, to produce a
singularly perturbed system, then integrate the resulting system of ODEs (rather than
solve the original DAE system directly). This is an established approach for solving
DAE systems. However, since ε is small, the ODEs will be stiff, and therefore a stiff
solver (an implicit ODE integrator) will generally be required.

The function two_tanks_odes implements the RHS terms of Eq. (1.42) using
the vector-matrix facilities of MATLAB. K is a 1×2 vector (1 row, 2 columns) of the
controller gains k1, k1 is set in the main program that calls two_tanks_odes and
is passed as a global variable. A is a 4 × 4 matrix and B is a 4 × 1 matrix (column
vector) with the RHS coefficients of Eq. (1.42) set in the main program (discussed
subsequently) and passed as global variables. Note that xt is then a 4 × 1 column
vector defining the four derivatives of the state variables.

function xt = two_tanks_odes (t ,x )

% Global variables
global A B eps K

% Temporal derivatives
u = −K*x ( 1 : 2 ) ;
xt = A*x+B*u ;

Function two_tanks_odes Function xt to define the RHS of Eq. (1.42)

The function mass implements the mass matrix M with eps set in the main
program for the singular (ε = 0) and nonsingular (ε �= 0) cases.

function M = mass (t ,x )

% Global variables
global A B eps K

% Mass matrix
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M = [1 0 0 0 ;
0 1 0 0 ;
0 0 eps 0 ;
0 0 0 eps ] ;

Function mass MATLAB programming of Eq. (1.43)

Functions two_tanks_odes and mass are called by the main program
Main_two_tanks (in which the problem presentation, i.e., the comments at the
beginning of the main program, are not reproduced).

The main program Main_two_tanks shares many of the features of the script
Main_bacteria. The main additional feature is the use of the function mass to
compute the mass matrix M, and the specification of its characteristics (singular or
nonsingular) via odeset.

Note that two plots are produced (Fig. 1.12). The first is for the two concentrations,
x1, x2, as a function of t . The second is for the two control states (or singular
perturbation) variables, z1, z2. The coding can be repeated for ε = 0.05 and then for
the DAE case, ε = 0. If the cases ε = 0.1, 0.05 do correspond to “small” values of
the perturbation variable, all three solutions should be nearly the same. On inspection
of Fig. 1.12, it is clear that ε has little influence on the dynamics of the slow variables
x1, x2. On the other hand, the trajectories of the actuator variables z1, z2 exhibit a
two-time-scale behavior. They start with a fast transient and then settle down slowly.

To conclude this example, we considered the extension of the explicit ODE prob-
lem (1.38) to the linearly implicit and DAE problem (1.40). The later includes the
coupling matrix M that can be singular (the DAE problem). Solvers for the more
general problem (1.40) are available, such as ode15s. Beyond this, we can consider
the fully implicit ODE/DAE system

f
(

x,
dx
dt

, t

)
= 0 (1.44)

which can be significantly more difficult to solve than Eq. (1.40). The difficulty arises
from both the mathematical generality of (1.44) and the computational requirements.
We will not go into the details of solving Eq. (1.44) at this point other than to
mention that solvers are available that can handle certain classes of problems [12]. In
recent MATLAB versions, a new solver called ode15i has been included to handle
fully implicit systems of differential equations. Besides, the library SUNDIALS
[13] developed at LLNL provides several DAE solvers for explicit and implicit DAE
problems and has an interface to MATLAB (SUNDIALSTB). The solver DASSL
[12] is also available in OCTAVE and SCILAB.

The remaining application example in this chapter is a partial differential equation
(PDE) reformulated as a system of ODEs. By using this approach, we are able to
solve the PDE using the ODE methods discussed previously.
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Fig. 1.12 Solution of Eq. (1.42) for ε = 0 (dotted line), ε = 0.05 (dashed line), ε = 0.1 (solid line)

1.3 A PDE Application

The PDE to be numerically integrated in this section is known as Burgers’ equation
and it presents the following form:

∂u

∂t
= −u

∂u

∂z
+ µ

∂2u

∂z2 (1.45)

where t is the independent (initial value) variable, z represents the spatial (boundary
value) independent variable, and µ is a given constant parameter. The usual notation
in the literature for the dependent variable of Burgers equation is u, therefore, the
notation employed so far in this book will be slightly modified in this particular
example so that x = u.

We again mean by the solution of a PDE (as with an ODE), the dependent variable
as a function of the independent variables. Note that variables is plural since the
feature that distinguishes a PDE from an ODE is having more than one independent
variable, in this case, z and t . In other words, we seek u(z, t) in numerical form.

Since t is an initial value variable and appears in a first-order derivative ∂u/∂t ,
we require one initial condition (to be specified). z is a boundary value variable.
This name comes from the typical application of specification of conditions at the
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boundaries of a physical system. Since Eq. (1.45) is second order in z (from the
derivative ∂2u/∂z2), we require two boundary conditions (to be specified).

Equation (1.45) is a special case of the Navier Stokes equations of fluid mechanics.
It is also a widely used problem for testing numerical methods for the following
reasons:

1. It is a nonlinear PDE (due to the term u ∂u
∂z ) which has exact solutions, for instance:

ua(z, t) = 0.1ea + 0.5eb + ec

ea + eb + ec
(1.46)

where a = −(0.05/µ)(z − 0.5 + 4.95t), b = −(0.25/µ)(z − 0.5 + 0.75t),
c = −(0.5/µ)(z − 0.375). This exact solution can be used to assess the accuracy
of numerical solution (as we will do subsequently).

2. The difficulty of computing a numerical solution can be increased by reducing the
value of the parameterµ. In the limit asµ → 0, Burgers’ equation produces mov-
ing discontinuities that provide a very stringent test of any numerical procedure.
We will discuss more problems with moving fronts in Chap. 5.

3. Equation (1.45) can easily be extended to more than one spatial dimension, and
the analytical solutions for several dimensions are also available. Thus, Burgers’
equation can be used to test numerical methods in one, two, and three dimensions.

For the initial and boundary conditions for Eq. (1.45), we use the analytical solu-
tion, i.e.,

u(z, 0) = ua(z, 0) (1.47)

u(0, t) = ua(0, t) (1.48)

u(zL , t) = ua(zL , t) (1.49)

where zL is the right boundary of the spatial domain.
A function to implement Eqs. (1.45) and (1.47)–(1.49) is listed inburgers_pde.

function ut = burgers_pde (t ,u )

% Global variables
global mu z0 zL n D1 D2 ;

% Boundary condition at z = 0
u ( 1 ) = burgers_exact (z0 ,t ) ;

% Boundary condition at z = zL
u (n ) = burgers_exact (zL ,t ) ;

% Second−order spatial derivative
uzz = D2*u ;

% First−order spatial derivative

http://dx.doi.org/10.1007/978-3-319-06790-2_5
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fz = D1* ( 0 . 5 *u . ^ 2 ) ;

% Temporal derivatives
ut = −fz + mu*uzz ;
ut ( 1 ) = 0 ;
ut (n ) = 0 ;

Function burgers_pde Function for the MOL solution of Burgers’ equation (1.45)

This programming includes calls to the function burgers_exact that imple-
ments the exact solution (1.46).

function [u ] = burgers_exact (z ,t )
% This function computes an exact solution to Burgers '
% equation

% Global variables
global mu

% Analytical (exact ) solution
a = ( 0 . 0 5 /mu ) * (z−0.5+4.95*t ) ;
b = ( 0 . 2 5 /mu ) * (z−0.5+0.75*t ) ;
c = ( 0 . 5 /mu ) * (z−0 .375) ;
ea = exp(−a ) ;
eb = exp(−b ) ;
ec = exp(−c ) ;
u = ( 0 . 1 *ea+0.5*eb+ec ) / ( ea+eb+ec ) ;

Function burgers_exact Function for computing the exact solution to Burgers’ equation (1.46)

The second derivative in Eq. (1.45), ∂2u/∂z2, is computed as uzz. We follow a
subscript notation in expressing PDEs that facilitates their programming. With this
notation, Eq. (1.45) can be written as

ut = −uuz + µuzz (1.50)

The subscript denotes the particular independent variable. The number of times the
subscript is repeated indicates the order of the derivative. For example

ut ≡ ∂u

∂t
, uzz ≡ ∂2u

∂z2

Then it follows in the programming that ut = ut , uz = uz and uzz = uzz .
The second partial derivative uzz is computed by uzz=D2*u. D2 is a second-

order differentiation matrix (u is a vector and * denotes a matrix-vector multiply
using the special MATLAB utility for this operation). The theory and programming
of D2will be explained in detail in subsequent chapters. The net result of applyingD2
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to a vector is to compute a numerical second-order derivative of the vector (element
by element); in this case, the derivative is with respect to z.

The nonlinear (convective) term uuz = (1/2)(u2)z is also computed by the appli-
cation of a differentiation matrix D1. The square of a given variable x , i.e., x2, is
computed in MATLAB as x. ∧2, where x is a vector (one-dimensional array) and
its elements are squared individually. The additional (.) in x. ∧2 is the MATLAB
notation for an element by element operation; in this case the operation is squaring.

Now that all the partial derivatives in Eq. (1.45) -or Eq. (1.50)- have been com-
puted, it can be programmed as a system of ODEs, for which we can note the following
details:

• The close resemblance of the PDE, ut = −uuz + µuzz , and the programming of
the PDE ut=-fz+mu*uzz is apparent. In fact, this is one of the major advantages
of this approach of approximating a PDE as a system of ODEs (called the method
of lines or abbreviated as MOL).

• The RHS of ut=-fz+mu*uzz is a column vector (as a result of applying the
differentiation matrix D2). Of course, this means that the LHS, ut, is also a
column vector and, therefore, a transpose from a row vector to a column vector is
not required.

• Since the left and right hand boundary values of u are specified by constant Dirich-
let boundary conditions (1.48) and (1.49), their t derivatives are zeroed so that they
will not change, i.e., ut(1)=0; ut(n)=0;

• The variation of the dependent variable u with respect to z is accomplished by
using a grid with 201 points, i.e., u is an array of 201 values. At each of the grid
points (points in z), the derivative is calculated according to the RHS of Eq. (1.45);
the result is 201 values of ut stored in the array ut. These 201 values of ut can
then be integrated by an ODE solver (in this case ode15s) to produce the solution
vector u. This is the essence of the MOL.

In summary, the MOL programming of a PDE is a straightforward extension of
the programming of ODEs. The only additional requirement is the calculation of the
spatial (boundary value) derivatives in the PDE. This can usually be accomplished
by library utilities such as D1 and D2. The theory and programming of these spatial
differentiation utilities will be covered in detail in subsequent chapters. We include
the Burgers’ equation example here just to demonstrate the general MOL approach.

% Global variables
global mu z0 zL n D1 D2 ;

% Spatial grid
z0 = 0 . 0 ;
zL = 1 . 0 ;
n = 201;
dz = (zL−z0 ) / ( n−1);
z = [z0 :dz :zL ] ' ;
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% Model parameter
mu = 0 . 0 0 1 ;

% Initial condition
for i=1:n

u (i ) = burgers_exact (z (i ) , 0 ) ;
end

% Define differentiation matrix (convective term )
v = 1 ;
D1 = five_point_biased_upwind_uni_D1 (z0 ,zL ,n ,v ) ;

% Define differentiation matrix (diffusive term )
D2 = five_point_centered_uni_D2 (z0 ,zL ,n ) ;

% Call to ODE solver
t = [ 0 : 0 . 1 : 1 ] ;
options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e− 3 , . . .

'Stats ' , ' on ' ) ;
[tout ,uout ] = ode15s ( 'burgers_pde ' ,t ,u ,options ) ;

% Plot numerical solution
plot (z ,uout , 'k ' ) ;
xlabel ( 'z ' ) ;
ylabel ( 'u (z ,t ) ' ) ;
title ( 'Burgers equation ' )
hold on

% Superimpose plot of exact solution
for k = 1 :length (tout )

for i = 1 :n
uexact (i ) = burgers_exact (z (i ) ,tout (k ) ) ;

end
plot (z ,uexact , ' : k ' )

end

Script Main_burgers Script for the MOL solution of Burgers’ equation (1.45)

The main program that calls function burgers_pde is listed in the script
burgers (again, to save space, the introductory comments are not listed). This
main program has most of the features of the previous main programs, with a few
additional details:

1. The spatial grid in z is defined. First, the boundary values of the spatial domain
z0 ≤ z ≤ zL are set. For a grid of 201 points, the grid spacing dz is computed.
Finally, the 201 values of z are stored in a one-dimensional array z (a column
vector).

2. The parameter µ in Eq. (1.45) is then defined. µ is a critical parameter in deter-
mining the characteristics (features) of the solution. For largeµ, the diffusion term
µuzz dominates and Eq. (1.45) behaves much like a diffusion or parabolic equa-
tion, including smoothed (and therefore easily computed) solutions. For small
µ, the convective term −uuz dominates and Eq. (1.45) behaves much like a
convective or hyperbolic equation, including the propagation of steep moving
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fronts (which makes the calculation of numerical solutions relatively difficult).
The value used in the current case, µ = 0.001, is sufficiently small to make
Eq. (1.45) strongly convective and therefore the numerical solution will exhibit
steep moving fronts as we shall observe.

3. The analytical solution (1.46) is used to set the initial condition over the grid of
n (= 201) points in z.

4. A five-point biased upwind FD, which is especially well suited for strongly con-
vective PDEs, is selected for the approximation of the convective term −uuz in
Eq. (1.45). The differentiation matrix, D1, can be defined numerically using a
function D1 = five_point_biased_upwind_uni_D1(z0,zL,n,v)
(included in the companion software). The boundaries of the spatial domain
(z0, zL) are defined over a n point grid. The last argument basically defines
the sign of the term −uuz (this convective term is for flow in the positive z direc-
tion, so the fourth argument is given a positive value corresponding to a positive
velocity v = 1).

5. The differentiation matrix for the diffusion derivative, uzz , is also defined by
a call to a function D2 = five_point_centered_uni_D2(z0,zL,n)
(also included in the companion software). Note that in the use of centered approx-
imations, a fourth argument is not required since the centered approximation is
applied to diffusion (not convection) and a specification of a direction of flow is
not required.

6. The spatial differentiation matrices are now defined (D1, D2), so the ODEs on
the 201 point grid in z can be computed through function burgers_pde. These
201 ODEs can then be integrated by ode15s and the solution can be plotted.

Note that this code produces a plot of the solution u(z, t) vs z with t as a parameter
(this will be clear when considering the plotted output that follows). The analytical
solution is then superimposed on the plot for comparison with the numerical solu-
tion. The plot of the numerical and analytical solutions appears in Fig. 1.13. The
solution has 11 curves corresponding to the output times defined by the statement
t=[0:0.1:1]; just before the call to ode15s. The leftmost curve corresponds
to the initial condition at t = 0. The rightmost curve is for t = 1. The numeri-
cal and analytical solutions are essentially indistinguishable, with the exception of
small spurious oscillations near the front (as shown in the enlarged picture). We will
come back later on, in Chap. 5, to this observation. Thus, the numerical procedures
implemented in the programs burgers_pde and burgers have performed sat-
isfactorily for Burgers’ equation, and we have some confidence that they could be
applied effectively to other PDEs.

An important reason why the numerical solution has good accuracy is the choice
of the number of grid points, n = 201. Clearly if we reduce this number substantially,
the grid in z will become so coarse that the solution cannot be refined, particularly
where there are sharp spatial variations in z. The choice of 201 grid points was
selected essentially by trial and error, i.e., enough grid points to accurately resolve
the solution, but not an excessive number which would lead to a lengthy calculation
(because more ODEs would be integrated). Thus, the choice of the number of grid

http://dx.doi.org/10.1007/978-3-319-06790-2_5
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Fig. 1.13 Numerical (lines) and analytical (dots) solutions of Burgers’ equation (1.45)

points in a PDE solution is typically guided by some knowledge of the characteristics
(features) of the solution and by experience. However, in subsequent chapters, we
shall develop methods by which the number of grid points, and their placement, is
done by numerical algorithms, i.e., by the code itself. These are termed adaptive grid
methods.

Note that as the curves move from left to right (with increasing t), they sharpen
spatially (become more vertical). In fact, if µ = 0 and t progressed far enough, a
shock (discontinuity) would develop. The important point is that, due to the nonlinear
hyperbolic term−uuz in Eq. (1.50), the solution becomes progressively more difficult
to compute. This is handled to a degree by the use of the five-point biased upwind
approximation, but ultimately, it would fail for large t .

We can then come to the general conclusion that hyperbolic or strongly convective
(parabolic) PDEs are generally the most difficult PDEs to solve numerically (of the
three geometric classes, hyperbolic, parabolic, and elliptic).

1.4 Summary

In this chapter, we have given examples of the numerical solution of the three major
classes of differential equations, ODEs, DAEs, and PDEs. Within each of these
classes, we have observed special computational requirements as illustrated through
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example applications. A central idea in discussing these applications was the use of
library utilities that implement effective numerical methods. A few basic time inte-
grators, including Euler, modified Euler, and leapfrog methods, have been discussed,
whereas more sophisticated solvers, i.e., higher order Runge-Kutta (RK) and back-
ward differentiation formulas (BDF) methods, have been briefly sketched. The very
important concepts of accuracy, stability, and ODE stiffness have been introduced.
In the next chapters, some of these ideas are pursued further and illustrated with
additional example applications.
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Chapter 2
More on ODE Integration

In Chap. 1, we considered through examples several numerical ODE integrators,
e.g., Euler, leap-frog, Heun, Runge Kutta, and BDF methods. As we might expect,
the development and use of ODE integrators is an extensive subject, and in this
introductory text, we will only try to gain some overall perspective. To this end, we
will first focus our attention to the MATLAB coding of a few basic integrators, i.e.,
a fixed-step Euler’s method, a variable-step (nonstiff) Runge–Kutta (RK) method
and a variable-step (stiff) Rosenbrock’s method, and then turn our attention to more
sophisticated library integrators. Typically, library integrators are written by experts
who have included features that make the integrators robust and reliable. However,
the coding of library integrators is generally long and relatively complicated, so that
they are often used without a detailed understanding of how they work. A popular
library is theMATLAB ODE SUITE developed by Shampine et al. [1]. Other options
are provided by the use of MATLAB MEX-files and of readily available integrators
originally written in FORTRAN or C/C++ language. On the other hand, SCILAB
provides a library of solvers based on ODEPACK [2] whereas OCTAVE includes
LSODE [3] and DASSL [4]. We will explore these several options and discuss a few
more ODE applications.

2.1 A Basic Fixed Step ODE Integrator

We considered previously the Euler’s method—see Eqs. (1.15) and (1.16). A function
that implements Euler’s method with a fixed or constant integration step is listed in
function Euler_solver.

A. Vande Wouwer et al., Simulation of ODE/PDE Models with MATLAB�, 45
OCTAVE and SCILAB, DOI: 10.1007/978-3-319-06790-2_2,
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function [tout ,xout ] = euler_solver (odefunction , t0 , tf , x0 , . . .
Dt , Dtplot )

% This function solves first−order differential equations using
% Euler ' s method .
% [tout ,xout ] = euler_solver (@f ,t0 ,tf ,x0 ,Dt ,Dtplot )
% integrates the system of differential equations xt=f (t ,x ) from
% t0 to tf with initial conditions x0 . f is a string containing
% the name of an ODE file . Function f (t ,x ) must return a column
% vector . Each row in solution array x corresponds to a value
% returned in column vector t .
%
% Argument list
%
% f − string containing the name of the user−supplied problem
% call : xt = problem_name (t ,x ) where f = 'problem_name '
% t − independent variable (scalar )
% x − solution vector
% xt − returned derivative vector ; xt (i ) = dx (i ) /dt
% t0 − initial value of t
% tf − final value of t
% x0 − initial value vector
% Dt − time step size
% Dtplot − plot interval
% tout − returned integration points (column−vector ) .
% xout − returned solution , one solution row−vector per tout−value
% Initialization
plotgap = round (Dtplot /Dt ) ; % number of computation

% steps within a plot interval
Dt = Dtplot /plotgap ;
nplots = round ( (tf−t0 ) /Dtplot ) ; % number of plots
t = t0 ; % initialize t
x = x0 ; % initialize x
tout = t0 ; % initialize output value
xout = x0 ' ; % initialize output value

% Implement Euler ' s method
for i = 1 : nplots

for j = 1 : plotgap
% Use MATLAB ' s feval function to access the function
% file , then take Euler step
xnew = x + feval (odefunction ,t ,x )*Dt ;
t = t + Dt ;
x = xnew ;

end
% Add latest result to the output arrays
tout = [tout ;t ] ;
xout = [xout ;x ' ] ;

end

Function Euler_solver Basic Euler integrator
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We can note the following points about this code:

1. The operation of function Euler_solver, and its input and output arguments
are generally explained and defined in a block of comments.

2. The number of computation steps within a plot (output) interval, plotgap, the
fixed-length Euler step, Dt, and the number of plot points (outputs), nplots,
are first computed to take the integration from the initial value t0 to the final
value tf.

3. The initial conditions corresponding to Eq. (1.13) are then stored. Note that t,
t0 and tout are scalars while x, x0 and xout are one-dimensional vectors.

4. nplotsplot (output) steps are then taken using an outer for loop, andplotgap
Euler steps are taken within each plot step using an inner for loop.

5. The solution is then advanced by Euler’s method (1.16). Note that a MATLAB
function can be evaluated using the utility feval. In the present case, the RHS
of (1.12) is coded in function odefunction. The solution is then updated for
the next Euler step. Finally, this code completes the inner for loop to give the
solution at a plot point after plotgap Euler steps.

6. The solution is then stored in the arrays tout and xout. Thus, tout becomes a
column vector and xout is a two-dimensional array with a column dimension the
same as tout and each row containing the dependent variable vector for the cor-
responding tout (note that the latest solution is transposed into a row of xout).

The basic Euler integrator (see function Euler_solver) can now be called in
any new application, with the particular ODEs defined in a function. To illustrate
this approach, we consider the logistic equation which models population growth (N
represents the number of individuals):

dN

dt
= (a − bN)N = aN − bN2 (2.1)

first proposed by Verhulst in 1838 [5]. Equation (2.1) is a generalization of the ODE

dN

dt
= aN (2.2)

which for the Malthusian rate a > 0 gives unlimited exponential growth, i.e., the
solution to Eq. (2.2) is

N(t) = N0eat (2.3)

where N0 is an initial value of N for t = 0.
Since, realistically, unlimited growth is not possible in any physical process, we

now consider Eq. (2.1) as an extension of Eq. (2.2) to reflect limited growth. Thus,
instead of dN

dt → ≤ as N → ≤ according to Eq. (2.2), the solution now reaches the
equilibrium condition

dN

dt
= 0 = (a − bN)N

corresponding to N = a
b .

http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
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The approach to this equilibrium can be understood by considering the RHS of
Eq. (2.1). At the beginning of the solution, for small t and N , the term aN dominates,
and the solution grows according to Eqs. (2.2) and (2.3). For large t, N increases
so that −bN2 begins to offset aN and eventually the two terms become equal (but
opposite in sign), at which point dN

dt = 0. Thus, the solution to Eq. (2.1) shows rapid
growth initially, then slower growth, to produce a S-shaped solution.

These features are demonstrated by the analytical solution to Eq. (2.1), which can
be derived as follows. First, separation of variables can be applied:

dN

(a − bN)N
= dt (2.4)

The LHS of Eq. (2.4) can then be expanded into two terms by partial fractions

dN

(a − bN)N
=

dN

a
N

+
bdN

a
a − bN

= dt (2.5)

Integration of Eq. (2.5) gives

1

a
ln (N) − b

a
ln (|a − bN |) = t + c (2.6)

where c is a constant of integration that can be evaluated from the initial condition

N(0) = N0 (2.7)

so that Eq. (2.6) can be rewritten as

1

a
ln (N) − 1

a
ln (|a − bN |) = t + 1

a
ln (N0) − b

a
ln (|a − bN0|)

or, since a − bN0 and a − bN have the same sign,

ln

(
N

N0

)
+ ln

(
a − bN0

a − bN

)
= at

and thus the analytical solution of Eq. (2.1) is

(
N

N0

)(
a − bN0

a − bN

)
= eat
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or solving for N

N =
a
b

1 +
(

a−bN0
bN0

)
e−at

= K

1 +
(

K
N0

− 1
)

e−at
, K = a

b
(2.8)

Note again from Eq. (2.8) that for a > 0, b > 0, we have that as t → ≤, N → a
b = K ,

where K is called the carrying capacity.
Equation (2.8) can be used to evaluate the numerical solution from function

Euler_solver. To do this, a function must be provided to define the ODE.

function Nt = logistic_ode (t ,N )

% Global variables
global a b K N0

% ODE
Nt = (a−b*N )*N ;

Function logistic_ode Function to define the ODE of the logistic equation (2.1)

The coding of function logistic_ode follows directly from Eq. (2.1). Note
that this ODE function must return the time derivative of the state variable (Nt in
this case). The ODE function is called by Euler_solver, which is called by the
main program Main_logistic.

clear all
close all

% Set global variables
global a b K N0

% Model parameters
a = 1 ;
b = 0 . 5e−4;
K = a /b ;

% Initial conditions
t0 = 0 ;
N0 = 1000;
tf = 15;
Dt = 0 . 1 ;
Dtplot = 0 . 5 ;

% Call to ODE solver
[tout ,xout ] = euler_solver (@logistic_ode ,t0 ,tf ,N0 ,Dt ,Dtplot ) ;

% Plot results
figure ( 1 )
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plot (tout ,xout , 'k ' ) ;
hold on
Nexact = logistic_exact (tout ) ;
plot (tout ,Nexact , ' : r ' )
xlabel ( 't ' ) ;
xlabel ( 'N (t ) ' ) ;
title ( 'Logistic equation ' ) ;

Script Main_logistic Main program that calls functions Euler_solver and logistic_ode

This program proceeds in several steps:

1. After clearing MATLAB for a new application (via clear and close), the initial
and final value of the independent variable, t, and the initial condition for N (N0)
are defined.

2. The fixed integration step and plot (output) intervals are then defined. Thus, func-
tion Euler_solver will take (15 − 0)/0.1 = 150 Euler steps and the solution
will be plotted (15−0)/0.5+1 = 31 times (counting the initial condition). Within
each Dtplot step (outer for loop), Euler_solver will take 0.5/0.1 = 5
Euler steps (inner for loop).

3. Function Euler_solver is then called with the preceding parameters and the
solution returned as the one-dimensional column vector tout and the matrix
xout (one-dimensional with the number of rows equal to the number of ele-
ments of tout, and in each row, the corresponding value of x). Note that the name
of the function that defines the ODE, i.e., function logistic_ode, in the call to
Euler_solver, does not have to be the same as in function Euler_solver,
i.e., odefunction; rather, the name of the ODE function is specified in the call
to Euler_solver as @logistic_ode where @ specifies an argument that
is a function. This is an important detail since it means that the user of the script
Main_logistic can select any convenient name for the function that defines
the ODEs.

In order to evaluate the numerical solution from Euler_solver, the analytical
solution (2.8) is evaluated in the function logistic_exact.

function N = logistic_exact (t )

% Global variables
global a b K N0

% Analytical solution
N = K . / ( 1 + (K /N0−1)*exp(−a*t ) ) ;

Function logistic_exact Function to compute the analytical solution of the logistic equation.

The plot produced from the preceding program Main_logistic is shown in
Fig. 2.1.
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Fig. 2.1 Plot of the numerical
and analytical solutions from
Main_logistic
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Note that there is a small difference between the numerical solution (dotted line)
and the analytical solution (2.8) (solid line). This difference is due principally to
the limited accuracy of the Euler’s method and to the small number of Euler steps
taken during each output interval (5 steps). Thus, to improve the accuracy of the
numerical solution, we could use a more accurate (higher-order) integration algorithm
(p refinement discussed in Chap. 1) and/or more integration steps between each
output value. We will next consider a higher-order algorithm that generally gives
good accuracy with a modest number of integration steps.

2.2 A Basic Variable-Step Nonstiff ODE Integrator

The preceding example illustrates the use of an ODE integrator that proceeds along
the solution with a fixed step (constant h). Although this worked satisfactorily for
the modest example of Eq. (2.1) (particularly if we used more than five Euler steps
in each output interval), we can envision situations where varying the integration
step would be advantageous, e.g., the integration step might be relatively small at the
beginning of the solution when it changes most rapidly, then increased as the solution
changes more slowly. In other words, the integration step will not be maintained at an
excessively small value chosen to maintain accuracy where the solution is changing
most rapidly, when we would like to use a larger step where the solution is changing
less rapidly. The central requirement will then be to vary the integration step so as
to maintain a given, specified accuracy.

It might, at first, seem impossible to vary the integration step to maintain a pre-
scribed accuracy since this implies we know the exact solution in order to determine
the integration error and thereby decide if the error is under control as the integration
step is changed. In other words, if we require the exact solution to determine the inte-
gration error, there is no reason to do a numerical integration, e.g., we can just use
the exact solution. However, we can use an estimated error to adjust the integration

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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step that does not require knowledge of the exact solution, provided the estimated
error is accurate enough to serve as a basis for varying the integration step. Note
here the distinction between the exact integration error (generally unknown) and the
estimated integration error (generally known).

To investigate the use of an estimated error to adjust the integration step, we will
now consider RK methods. Representatives of this class of methods have already been
presented in Chap. 1, i.e., the Euler’s method, which is a first-order RK method, and
the modified Euler or Heun’s method, which is a second-order RK method. We are
now looking at higher-order schemes, which are based on Taylors series expansions
of the solution x(t) of Eq. (1.12), dx

dt = f (x, t), i.e.,

xk+1 = xk + h
dx

dt

∣∣∣∣
k
+ h2

2!
d2x

dt2

∣∣∣∣
k
+ · · · + hq

q!
dqx

dtq

∣∣∣∣
k
+ O

(
hq+1

)

= xk + hf (xk, tk) + h2

2!
df

dt

∣∣∣∣
k
+ · · · + hq

q!
dq−1f

dtq−1

∣∣∣∣
k
+ O

(
hq+1

)
(2.9)

The idea behind the RK methods is to evaluate the terms involving higher-order
derivatives in (2.9), without actually differentiating the ODEs, but using q inter-
mediate function evaluations f (xk, tk) (also called stages) between f (xk, tk) and
f (xk+1, tk+1), and selecting coefficients wi so as to match the Taylor series expansion
(2.9) with

xk+1 = xk + h
q∑

i=1

wif (xk,i, tk,i) + O
(

hq+1
)

= xk + h
q∑

i=1

wiki + O
(

hq+1
)

(2.10)

The intermediate stages can generally be expressed as:

tk,i = tk + hνi, xk,i = xk + h
q∑

j=1

ϕi,jkj (2.11)

so that

ki = f

⎛
⎡xk + h

q∑
j=1

ϕi,jkj, tk + hνi

⎢
⎣ (2.12)

with ν1 = 0 and ϕi,j = 0 ↔j ⇒ i an explicit RK method is derived (otherwise, the
solution of a nonlinear system of Eq. (2.12) is required to get the values of ki, yielding
an implicit RK method).

Note that RK methods are single-step methods, i.e., xk+1 is given in terms of xk
only (in contrast to multi-step methods, such as the BDF formulas (1.37), which give

http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
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Table 2.1 Maximum order pmax that can be obtained with a q-stage explicit RK method

q 1 2 3 4 5 6 7 8 9
p 1 2 3 4 4 5 6 6 7

xk+1 in terms of xk, . . . , xk−m). They are also called self starting, in the sense that
only the initial condition x0 is required to compute x1.

As a specific example of derivation, consider the explicit, second-order RK meth-
ods (q = 2), for which Eqs. (2.10)–(2.12) reduce to

xk+1 = xk + h
⎤
w1f (xk, tk) + w2f (xk + hϕ2,1f (xk, tk), tk + hν2)

⎥

= xk + hw1f (xk, tk) + hw2

(
f (xk, tk) + hν2

ρf

ρt

∣∣∣∣
k
+ hϕ2,1

ρf

ρx

∣∣∣∣
k

)
+ O

(
h3
)

= xk + h(w1 + w2)f (xk, tk) + h2w2ν2
ρf

ρt

∣∣∣∣
k

+ h2w2ϕ2,1
ρf

ρx

∣∣∣∣
k

f (xk, tk) + O
(

h3
)

(2.13)

Upon comparison with the truncated Taylor series expansion

xk+1 = xk + hf (xk, tk) + h2

2!
df

dt

∣∣∣∣
k
+ O

(
h3
)

= xk + hf (xk, tk) + h2

2!
ρf

ρt

∣∣∣∣
k
+ h2

2!
ρf

ρx

∣∣∣∣
k

f (xk, tk) + O
(

h3
)

(2.14)

we obtain

w1 + w2 = 1, w2ν2 = 1

2
, w2ϕ2,1 = 1

2
(2.15)

This is a system of three equations and four unknowns which, solved for w2 = Δ,
gives a one-parameter family of explicit methods

xk+1 = xk + h

(
(1 − Δ)f (xk, tk) + Δf

(
xk + h

2Δ
f (xk, tk), tk + h

2Δ

))
(2.16)

For Δ = 0, we find back the first-order Euler’s method (1.16), and for Δ = 1/2, the
second-order modified Euler or Heun’s method (1.26)–(1.27).

Deriving higher-order RK methods following the same line of thoughts would
however require laborious algebraic manipulations. Another approach, based on
graph theory (rooted tree theory), has been proposed by Butcher [6] among others
[7, 8]. This approach enables a systematic and an efficient derivation of higher-order
explicit and implicit methods. The maximum order pmax that can be obtained with a

http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
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q-stage explicit RK method is given in Table 2.1. For a q-stage implicit RK method,
pmax = 2q. Among the family of fourth- and fifth-order methods, a classical embed-
ded pair of explicit RK formulas is given by

xk+1,4 = xk + 25

216
k1 + 1408

2565
k3 + 2197

4104
k4 − 1

5
k5 (2.17)

xk+1,5 = xk + 16

135
k1 + 6656

12825
k3 + 28561

56430
k4 − 9

50
k5 + 2

55
k6 (2.18)

These formulas are said embedded as they share the same stages ki, i = 1, . . . , 5.
Such stages can be computed as follows:

k1 = f (xk, tk)h (2.19a)

k2 = f (xk + 0.25k1, tk + 0.25h) h (2.19b)

k3 = f

(
xk + 3

32
k1 + 9

32
k2, tk + 3

8
h

)
h (2.19c)

k4 = f

(
xk + 1932

2197
k1 − 7200

2197
k2 + 7296

2197
k3, tk + 12

13
h

)
h (2.19d)

k5 = f

(
xk + 439

216
k1 − 8k2 + 3680

513
k3 − 845

4104
k4, tk + h

)
h (2.19e)

k6 = f

(
xk − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5, tk + 0.5h

)
h (2.19f)

Returning to the idea of using an estimated error to adjust the integration step, we
can obtain an error estimate for the fourth-order result from

λk+1,4 = xk+1,5 − xk+1,4 (2.20)

that can be then used to adjust the integration step h in accordance with a user-
prescribed error tolerance.

Equation (2.17) fits the underlying Taylor series up to including the fourth-order

term d4xk
dt4

(
h4

4!
)

while Eq. (2.18) fits the Taylor series up to an including the fifth-

order term d5xk
dt5

(
h5

5!
)

. Thus, the subtraction (2.20) provides an estimate of the fifth-

order term.
The RK pair (2.17)–(2.18) is termed the Runge–Kutta–Fehlberg method [9],

usually designated RKF45. Note that an essential feature of an embedded pair as
illustrated by Eq. (2.19) is that the stages are the same for the lower and higher-
order methods (k1–k6 in this case). Therefore, the subtraction (2.20) can be used
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to combine terms of the same stages (since they are the same for the lower- and
higher-order methods and therefore have to be calculated only once for both of
them).

Two functions for implementing the RKF45 method, with the use of Eq. (2.20)
to estimate the truncation error and adjust the integration step, are ssrkf45 and
rkf45_solver listed below. The first function, ssrkf45, takes a single step
along the solution based on Eqs. (2.17)–(2.18):

1. After a block of comments explaining the operation of ssrkf45, the derivative
vector is computed at the base point and the first stage, k1, is evaluated according
to (2.19a). Note that k1 is a column vector with the row dimension equal to the
number of first order ODEs to be integrated. Each stage is just the ODE derivative
vector multiplied by the integration step h, so each xt0 is calculated by a call to
the derivative routine via feval.

2. The dependent variable vector and the independent variable are then evaluated to
initiate the calculation of the next stage, k2, according to (2.19b).

3. This basic procedure is repeated for the calculation of k3, k4, k5 and k6 according
to (2.19c)–(2.19f). Then the fourth- and fifth-order solutions are computed at
the next point by the application of Eqs. (2.17)–(2.18), and the error is estimated
according to (2.20).

4. The independent variable, the fifth-order solution and the vector of estimated
errors at the next point along the solution are then returned from ssrkf45 as t,
x, and e (the output or return arguments of ssrkf45).

function [t ,x ,e ] = ssrkf45 (odefunction ,t0 ,x0 ,h )
%
% This function computes an ODE solution by the RK Fehlberg 45
% method for one step along the solution (by calls to
% 'odefunction ' to define the ODE derivative vector ) . It also
% estimates the truncation error of the solution , and applies
% this estimate as a correction to the solution vector .
%
% Argument list
%
% odefunction − string containing name of user−supplied problem
% t0 − initial value of independent variable
% x0 − initial condition vector
% h − integration step
% t − independent variable (scalar )
% x − solution vector after one rkf45 step
% e − estimate of truncation error of the solution vector

% Derivative vector at initial (base ) point
[xt0 ] = feval (odefunction ,t0 ,x0 ) ;

% k1 , advance of dependent variable vector and independent
% variable for calculation of k2
k1 = h*xt0 ;
x = x0 + 0.25*k1 ;
t = t0 + 0.25*h ;

% Derivative vector at new x , t
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[xt ] = feval (odefunction ,t ,x ) ;

% k2 , advance of dependent variable vector and independent
% variable for calculation of k3
k2 = h*xt ;
x = x0 + ( 3 . 0 / 3 2 . 0 ) *k1 . . .

+ ( 9 . 0 / 3 2 . 0 ) *k2 ;
t = t0 + ( 3 . 0 / 8 . 0 ) *h ;

% Derivative vector at new x , t
[xt ] = feval (odefunction ,t ,x ) ;

% k3 , advance of dependent variable vector and independent
% variable for calculation of k4
k3 = h*xt ;
x = x0 + ( 1 9 3 2 . 0 / 2 1 9 7 . 0 ) *k1 . . .

− ( 7 2 0 0 . 0 / 2 1 9 7 . 0 ) *k2 . . .
+ ( 7 2 9 6 . 0 / 2 1 9 7 . 0 ) *k3 ;

t = t0 + ( 1 2 . 0 0 / 1 3 . 0 ) *h ;

% Derivative vector at new x , t
[xt ] = feval (odefunction ,t ,x ) ;

% k4 , advance of dependent variable vector and independent
% variable for calculation of k5
k4 = h*xt ;
x = x0 + ( 4 3 9 . 0 / 216 .0 ) *k1 . . .

− ( 8 . 0 )*k2 . . .
+ ( 3 6 8 0 . 0 / 513 .0 ) *k3 . . .
− ( 8 4 5 . 0 / 4 1 0 4 . 0 ) *k4 ;

t = t0 + h ;

% Derivative vector at new x , t
[xt ] = feval (odefunction ,t ,x ) ;

% k5 , advance of dependent variable vector and independent
% variable for calculation of k6
k5 = h*xt ;
x = x0 − ( 8 . 0 / 2 7 . 0 ) *k1 . . .

+ ( 2 . 0 )*k2 . . .
− ( 3 5 4 4 . 0 / 2 5 6 5 . 0 ) *k3 . . .
+ ( 1 8 5 9 . 0 / 4 1 0 4 . 0 ) *k4 . . .
− ( 1 1 . 0 / 4 0 . 0 ) *k5 ;

t = t0 + 0.5*h ;

% Derivative vector at new u , t
[xt ] = feval (odefunction ,t ,x ) ;

% k6
k6 = h*xt ;

% Fourth order step
sum4 = x0 + ( 2 5 . 0 / 216 .0 ) *k1 . . .

+ ( 1 4 0 8 . 0 / 2 5 6 5 . 0 ) *k3 . . .
+ ( 2 1 9 7 . 0 / 4 1 0 4 . 0 ) *k4 . . .
− ( 1 . 0 / 5 . 0 ) *k5 ;

% Fifth order step
sum5 = x0 + ( 1 6 . 0 / 135 .0 ) *k1 . . .

+ ( 6 6 5 6 . 0 / 1 2 8 2 5 . 0 ) *k3 . . .
+ ( 2 8 5 6 1 . 0 / 5 6 4 3 0 . 0 ) *k4 . . .
− ( 9 . 0 / 5 0 . 0 ) *k5 . . .
+ ( 2 . 0 / 5 5 . 0 ) *k6 ;

t = t0 + h ;

% Truncation error estimate
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e = sum5 − sum4 ;

% Fifth order solution vector (from 4 ,5 RK pair ) ;
% two ways to the same result are listed
% x = sum4 + e ;
x = sum5 ;

Function ssrkf45 Function for a single step along the solution of (1.12) based on (2.15)–(2.17)

We also require a function that calls ssrkf45 to take a series of step along the
solution. This function, rkf45_solver, is described below:

1. After an initial block of comments explaining the operation of rkf45_solver
and listing its input and output arguments, the integration is initialized. In partic-
ular, the initial integration step is set to h = Dtplot/2 and the independent
variable tout, the dependent variable vector xout and the estimated error vec-
tor eout are initiated for subsequent output. The integration steps, nsteps, and
the number of outputs, nplots, are also initialized.

2. Two loops are then executed. The outer loop steps through nplots outputs.
Within each pass through this outer loop, the integration is continued while the
independent variable t is less than the final value tplot for the current output
interval. Before entering the inner while loop, the length of the output interval,
tplot, is set.

3. Within each of the output intervals, a logic variable is initialized to specify a
successful integration step and a check is made to determine if the integration
step, h, should be reset to cover the remaining distance in the output interval.

4. ssrkf45 is then called for one integration step of length h.
5. A series of tests then determines if the integration interval should be changed.

First, if the estimated error (for any dependent variable) exceeds the error toler-
ances (note the use of a combination of the absolute and relative error tolerances),
the integration step is halved. If the integration step is reduced, the logic variable
fin1 is set to 0 so that the integration step is repeated from the current base point.

6. Next (for fin1 = 1), if the estimated error for all of the dependent variables
is less than 1/32 of the composite error tolerance, the step is doubled. The factor
1/32 is used in accordance with the fifth-order RK algorithm. Thus, if the inte-
gration step is doubled, the integration error will increase by a factor of 25 = 32.
If the estimated error for any dependent variable exceeds 1/32 of the composite
error tolerance, the integration step is unchanged (fin1 = 0).

7. Next, two checks are made to determine if user-specified limits have been reached.
If the integration step has reached the specified minimum value, the integration
interval is set to this minimum value and the integration continues from this point.
If the maximum number of integration steps has been exceeded, an error message
is displayed, execution of the while and for loops is terminated through the
two breaks, i.e., the ODE integration is terminated since the total number of
integration steps has reached the maximum value.
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8. Finally, at the end of the output interval, the solution is stored in arrays, which
are the return arguments for rkf45_solver. Note that the final end statement
terminates the for loop that steps the integration through the nplots outputs.

function [tout ,xout ,eout]=rkf45_solver (odefunction ,t0 ,tf ,x0 , . . .
hmin ,nstepsmax ,abstol , . . .
reltol ,Dtplot )

% This function solves first−order differential equations using
% the Runga−Kutta−Felhberg ( 4 , 5 ) method
% [tout , xout ] = rkf45_solver (@f ,t0 ,tf ,x0 ,hmin ,nstepsmax , . . .
% abstol ,reltol ,Dtplot )
% integrates the system of differential equations xt=f (t ,x )
% from t0 to tf with initial conditions x0 . f is a string
% containing the name of an ODE file . Function f (t ,x ) must
% return a column vector . Each row in solution array xout
% corresponds to a value returned in column vector t .
%
% rkf45_solver .m solves first−order differential equations
% using the variable step RK Fehlberg 45 method for a series of
% points along the solution by repeatedly calling function
% ssrkf45 for a single RK Fehlberg 45 step . The truncation error
% is estimated along the solution to adjust the integration step
% according to a specified error tolerance .
%
% Argument list
%
% f − String containing name of user−supplied problem description
% Call : xt = problem_name (t ,x ) where f = 'problem_name '
% t − independent variable (scalar )
% x − solution vector
% xt − returned derivative vector ; xt (i ) = dx (i ) /dt
%
% t0 − initial value of t
% tf − final value of t
% x0 − initial value vector
% hmin − minimum allowable time step
% nstepsmax − maximum number of steps
% abstol − absolute error tolerance
% reltol − relative error tolerance
% Dtplot − plot interval
% tout − returned integration points (column−vector )
% xout − returned solution , one solution row−vector per
% tout−value
% Start integration
t = t0 ;
tini = t0 ;
tout = t0 ; % initialize output value
xout = x0 ' ; % initialize output value
eout = zeros (size (xout ) ) ; % initialize output value
nsteps = 0 ; % initialize step counter
nplots = round ( (tf−t0 ) /Dtplot ) ; % number of outputs

% Initial integration step
h = 10*hmin ;

% Step through nplots output points
for i = 1 :nplots

% Final (output ) value of the independent variable
tplot = tini+i*Dtplot ;
% While independent variable is less than the final value ,
% continue the integration
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while t <= tplot*0.9999
% If the next step along the solution will go past the
% final value of the independent variable , set the step
% to the remaining distance to the final value
if t+h > tplot , h = tplot−t ; end

% Single rkf45 step
[t ,x ,e ] = ssrkf45 (odefunction ,t0 ,x0 ,h ) ;

% Check if any of the ODEs have violated the error
% criteria
if max ( abs (e ) > (abs (x )*reltol + abstol ) )

% Error violation , so integration is not complete .
% Reduce integration step because of error violation
% and repeat integration from the base point .
% Set logic variable for rejected integration step .
h = h / 2 ;

% If the current step is less than the minimum
% allowable step , set the step to the minimum
% allowable value
if h < hmin , h = hmin ; end

% If there is no error violation , check if there is
% enough "error margin" to increase the integration
% step

elseif max ( abs (e ) > (abs (x )*reltol + abstol ) / 3 2 )
% The integration step cannot be increased , so leave
% it unchanged and continue the integration from the
% new base point .
x0 = x ; t0 = t ;
% There is no error violation and enough "security
% margin"

else
% double integration step and continue integration
% from new base point
h = 2*h ; x0 = x ; t0 = t ;

end %if

% Continue while and check total number of integration
% steps taken
nsteps=nsteps+1;
if (nsteps > nstepsmax )

fprintf ( ' \n nstepsmax exceeded ; integration terminated \n ' ) ;
break ;

end
end %while

% add latest result to the output arrays and continue for
% loop
tout = [tout ; t ] ;
xout = [xout ; x ' ] ;
eout = [eout ; e ' ] ;

end % for
% End of rkf45_solver

Function rkf45_solver Function for a variable step solution of an ODE system

In summary, we now have provision for increasing, decreasing or not changing the
integration interval in accordance with a comparison of the estimated integration error
(for each dependent variable) with the composite error tolerance, and for taking some
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special action if user-specified limits (minimum integration interval and maximum
number of integration steps) are exceeded.

We can now apply ssrkf45 an rkf45_solver to the logistic equation (2.1).
We already have function logistic_ode and the exact solution in logistic_
exact, so all we now require is a main program, which closely parallels the
main program calling the fixed step Euler integrator (Main_logistic). The
complete code is available in the companion library. Here, we just note a few
points:

1. Since rkf45_solver is a variable step integrator, it requires error tolerances,
a minimum integration step and the maximum number of steps

abstol = 1e-3;
reltol = 1e-3;
hmin = 1e-3;
nstepsmax = 1000;

These parameters are inputs to rkf45_solver.

% Call to ODE solver
[tout,xout] = rkf45_solver(@logistic_ode,t0,tf,N0,...

hmin,nstepsmax,abstol,...
reltol,Dtplot);

2. In order to assess the accuracy of the numerical solution, the absolute and relative
errors are computed from the exact solution. These (exact) errors can then be
compared with the absolute and relative error tolerances

% Print results
fprintf(’ t x(t) xex(t) abserr relerr\n’);
for i = 1:length(tout)

fprintf(’%7.1f%10.2f%10.2f%10.5f%10.5f\n’,...
tout(i),xout(i,1),Nexact(i),xout(i,1)-Nexact(i),...
(xout(i,1)-Nexact(i))/Nexact(i));

end

The plot produced by the main program is shown in Fig. 2.2. The exact and numer-
ical solutions are indistinguishable (as compared with Fig. 2.1). This issue is also
confirmed by the numerical output reproduced in Table 2.2.

We can note the following features of the numerical solution:

1. The initial conditions of the numerical and exact solutions agree (a good check).
2. The maximum relative error is −0.00001 which is a factor of 0.01 better than the

relative error tolerance set in the main program, i.e., reltol = 1e-3;
3. The maximum absolute error is −0.02847 which exceeds the absolute error toler-

ance, i.e., abstol = 1e-3; this absolute error tolerance can be
considered excessively stringent since it specifies 0.001 for dependent variable
values between 1,000 (t = 0) and 20,000 (t = 15). To explain why this absolute
error tolerance is not observed in the numerical solution, consider the use of
the absolute and relative error tolerances in function rkf45_solver, i.e., if
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Table 2.2 Numerical output obtained with rkf45_solver (abstol = 1e-3)

t x(t) xex(t) abserr relerr

0.0 1000.00 1000.00 0.00000 0.00000
0.5 1596.92 1596.92 -0.00033 -0.00000
1.0 2503.21 2503.22 -0.00958 -0.00000
1.5 3817.16 3817.18 -0.01991 -0.00001
2.0 5600.06 5600.09 -0.02673 -0.00000
2.5 7813.65 7813.68 -0.02799 -0.00000
3.0 10277.71 10277.73 -0.02742 -0.00000
3.5 12708.47 12708.50 -0.02847 -0.00000
4.0 14836.80 14836.83 -0.02623 -0.00000
4.5 16514.30 16514.31 -0.01358 -0.00000
5.0 17730.17 17730.17 0.00552 0.00000
5.5 18558.95 18558.92 0.02088 0.00000
6.0 19100.47 19100.44 0.02777 0.00000
6.5 19444.59 19444.56 0.02766 0.00000
7.0 19659.41 19659.39 0.02385 0.00000
7.5 19792.03 19792.01 0.01888 0.00000
8.0 19873.35 19873.33 0.01416 0.00000
8.5 19922.99 19922.98 0.01023 0.00000
9.0 19953.22 19953.21 0.00720 0.00000
9.5 19971.60 19971.60 0.00497 0.00000
10.0 19982.77 19982.76 0.00338 0.00000
10.5 19989.54 19989.54 0.00227 0.00000
11.0 19993.66 19993.66 0.00151 0.00000
11.5 19996.15 19996.15 0.00100 0.00000
12.0 19997.67 19997.67 0.00065 0.00000
12.5 19998.58 19998.58 0.00043 0.00000
13.0 19999.14 19999.14 0.00028 0.00000
13.5 19999.48 19999.48 0.00018 0.00000
14.0 19999.68 19999.68 0.00012 0.00000
14.5 19999.81 19999.81 0.00007 0.00000
15.0 19999.88 19999.88 0.00005 0.00000

Table 2.3 Numerical output obtained with rkf45_solver (abstol=1)

t x(t) xex(t) abserr relerr

0.0 1000.00 1000.00 0.00000 0.00000
0.5 1596.92 1596.92 -0.00033 -0.00000
1.0 2503.21 2503.22 -0.00958 -0.00000
1.5 3817.16 3817.18 -0.01991 -0.00001
2.0 5600.06 5600.09 -0.02673 -0.00000
2.5 7813.65 7813.68 -0.02799 -0.00000
3.0 10277.71 10277.73 -0.02742 -0.00000
3.5 12708.47 12708.50 -0.02847 -0.00000
4.0 14836.80 14836.83 -0.02623 -0.00000
4.5 16514.30 16514.31 -0.01358 -0.00000
5.0 17730.17 17730.17 0.00552 0.00000
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Fig. 2.2 Plot of the
numerical (using the rkf45
IVP solver) and analyti-
cal solutions of the logistic
equation
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abs(e(i)) > (abs(x(i))*reltol + abstol). This composite error
is typically (1,000)*1.0e-03 + 1.0e-03 and therefore the contribution
of the absolute error tolerance (the second 1.0e-03) is small in comparison
to the contribution of the relative error tolerance (the first 1.0e-03). In other
words, the relative error tolerance controls the integration step in this case, which
explains why the absolute error tolerance in the output of Table 2.3 exceeds the
absolute error tolerance. This conclusion does emphasize the need to carefully
understand and specify the error tolerances.
To explore this idea a little further, if the absolute error tolerance had been specified
as abserr = 1, it would then be consistent with the relative error, i.e., both
the absolute error (=1) and the relative error of 1.0e-03 are 1 part in 1,000 for
the dependent variable N equal to its initial value of 1,000.
A sample of the output is given in Table 2.3. Note that this output is essentially
identical to that of Table 2.2 (thus confirming the idea that the absolute error
tolerance 1.0e-03 has essentially no effect on the numerical solution), but
now both error criteria are satisfied. Specifically, the maximum absolute error
−0.02847 is well below the specified absolute error (=1).
This example illustrates that the specification of the error tolerances requires some
thought, including the use of representative values of the dependent variable, in
this case N = 1,000 for deciding on appropriate error tolerances. Also, this
example brings to mind the possibility that the dependent variable may have a
value of zero in which case the relative error tolerance has no effect in the state-
ment if abs(e(i)) > (abs(x(i))*reltol + abstol) (i.e., x(i)
= 0) and therefore the absolute error tolerance completely controls the step
changing algorithm. In other words, specifying an absolute error tolerance of zero
may not be a good idea (if the dependent variable passes through a zero value).
This situation of some dependent variables passing through zero also suggests
that having absolute and relative error tolerances that might be different for
each dependent variable might be worthwhile, particularly if the dependent
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variables have typical values that are widely different. In fact, this idea is easy to
implement since the integration algorithm returns an estimated integration error
for each dependent variable as a vector (e(i) in the preceding program state-
ment). Then, if absolute and relative error tolerances are specified as vectors (e.g.,
reltol(i) and abstol(i)), the comparison of the estimated error with the
absolute and relative error tolerances for each dependent variable is easily accom-
plished, e.g., by using afor loop with indexi. Some library ODE integrators have
this feature (of specifying absolute and relative error vectors), and it could easily
be added torkf45_solver, for example. Also, the idea of a relative error brings
widely different values of the dependent variables together on a common scale,
while the absolute error tolerance should reflect these widely differing values, par-
ticularly for the situation when some of the dependent variables pass through zero.

4. As a related point, we have observed that the error estimator for the RKF45
algorithm (i.e., the difference between the fourth- and fifth-order solutions) is
conservative in the sense that it provides estimates that are substantially above
the actual (exact) error. This is desirable since the overestimate of the error means
that the integration step will be smaller than necessary to achieve the required
accuracy in the solution as specified by the error tolerances. Of course, if the error
estimate is too conservative, the integration step might be excessively small, but
this is better than an error estimate that is not conservative (too small) and thereby
allows the integration step to become so large the actual error is above the error
tolerances. In other words, we want an error estimate that is reliable.

5. Returning to the output of Table 2.2, the errors in the numerical solution actually
decrease after reaching maximum values. This is rather typical and very fortu-
itous, i.e., the errors do not accumulate as the solution proceeds.

6. The numerical solution approaches the correct final value of 20,000 (again, this
is important in the sense that the errors do not cause the solution to approach an
incorrect final value).

In summary, we now have an RKF45 integrator that can be applied to a broad
spectrum of initial value ODE problems. In the case of the preceding application to the
logistic equation, RKF45 was sufficiently accurate that only one integration step was
required to cover the entire output interval of 0.5 (this was determined by putting some
additional output statements in rkf45_solver to observe the integration step h,
which illustrates an advantage of the basic integrators, i.e., experimentation with
supplemental output is easily accomplished). Thus, the integration step adjustment
in rkf45_solver was not really tested by the application to the logistic equation.

Therefore, we next consider another application which does require that the inte-
gration step is adjusted. At the same time with this application, we will investigate
the notion of stiffness. Indeed, there is one important limitation of RKF45: it is an
explicit integrator which does not perform well when applied to stiff problems.

The next application consists of a system of two linear, constant coefficient ODEs

dx1

dt
= −ax1 + bx2 (2.21a)
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dx2

dt
= bx1 − ax2 (2.21b)

For the initial conditions

x1(0) = 0; x2(0) = 2 (2.22)

the analytical solution to Eq. (2.21) is

x1(t) = eΔ1t − eΔ2t (2.23a)

x2(t) = eΔ1t + eΔ2t (2.23b)

where

Δ1 = −(a − b); Δ2 = −(a + b) (2.24)

and a, b are constants to be specified.
We again use the RKF45 algorithm implemented in functions rkf45_solver

and ssrkf45. The main program, designated stiff_main, and associated func-
tions stiff_odes and stiff_odes_exact (which compute the exact solution
from Eq. (2.23) to (2.24)) can be found in the companion library and follows directly
from the previous discussion. Note that the absolute and relative error tolerances
are chosen as abstol=1e-4 and reltol=1e-4, which is appropriate for the
two dependent variables x1(t) and x2(t) since they have representative values of 1.
Further, since x1(t) has an initial condition of zero, the specification of an absolute
error tolerance is essential.

The numerical output from these functions is listed in abbreviated form in
Table 2.4. As we can see in the table, two rows are printed at each time instant.
The first row corresponds with the output for the first state variable (x1) while the
second row corresponds with the second state variable (x2). The error tolerances are
easily satisfied throughout this solution and the number of steps taken by the solver is
nsteps = 24. The plotted solution is shown in Fig. 2.3. The eigenvalues for this
solution with a = 1.5, b = 0.5 are Δ1 = −(a − b) = −1 and Δ2 = −(a + b) = −2.
As t increases, e−2t decays more rapidly than e−t and eventually becomes negligibly
small (in comparison to e−t). Therefore, from Eq. (2.21), the two solutions merge
(at about t = 5 from Fig. 2.3). In other words, the solution for both x1(t) and x2(t)
becomes essentially e−t for t > 5.

We can now vary a and b to investigate how these features of the solution change
and affect the numerical solution. For example, if a = 10.5, b = 9.5, the eigen-
values are Δ1 = −1 and Δ2 = −20 so that the exponential eΔ2t = e−20t decays
much more rapidly than eΔ1t = e−t . The corresponding plotted solution is shown in
Fig. 2.4. Note that the two solutions merge at about t = 0.5. Also, the specified error
criteria, abserr = 1.0e-04, relerr=1.0e-04, are satisfied throughout the
solution, but clearly, this is becoming more difficult for the variable-step algorithm to
accomplish because of the rapid change in the solution just after the initial condition.
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Table 2.4 Numerical output from stiff_main for a = 1.5, b = 0.5

t x(t) xex(t) abserr relerr

0.00 0.0000000 0.0000000 0.0000000 0.0000000
2.0000000 2.0000000 0.0000000 0.0000000

0.10 0.0861067 0.0861067 0.0000000 0.0000000
1.7235682 1.7235682 -0.0000000 -0.0000000

0.20 0.1484108 0.1484107 0.0000000 0.0000003
1.4890508 1.4890508 -0.0000000 -0.0000000

0.30 0.1920067 0.1920066 0.0000001 0.0000004
1.2896298 1.2896299 -0.0000001 -0.0000001

0.40 0.2209912 0.2209911 0.0000001 0.0000004
1.1196489 1.1196490 -0.0000001 -0.0000001

0.50 0.2386513 0.2386512 0.0000001 0.0000004
0.9744100 0.9744101 -0.0000001 -0.0000001

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

9.60 0.0000677 0.0000677 -0.0000000 -0.0000001
0.0000677 0.0000677 -0.0000000 -0.0000001

9.70 0.0000613 0.0000613 -0.0000000 -0.0000001
0.0000613 0.0000613 -0.0000000 -0.0000001

9.80 0.0000554 0.0000554 -0.0000000 -0.0000001
0.0000555 0.0000555 -0.0000000 -0.0000001

9.90 0.0000502 0.0000502 -0.0000000 -0.0000001
0.0000502 0.0000502 -0.0000000 -0.0000001

10.00 0.0000454 0.0000454 -0.0000000 -0.0000001
0.0000454 0.0000454 -0.0000000 -0.0000001

Practically, this manifests in an increased number of integration steps required to
meet the specified error tolerances, i.e., nsteps = 78.

If this process of separating the eigenvalues is continued, clearly the difficulty in
computing a numerical solution will increase, due to two causes:

• The initial “transient” (or “boundary layer”) in the solution just after the initial
condition will become shorter and therefore more difficult for the variable step
algorithm to resolve.

• As the eigenvalues separate, the problem becomes stiffer and the stability limit of
the explicit RKF45 integrator places an even smaller limit on the integration step to
maintain stability. The maximum allowable integration step to maintain stability
can be estimated from the approximate stability condition for RKF45 (see Fig. 1.6,
in particular the curve corresponding to the fourth-order method)

|Δh| < 2.7 (2.25)

Thus, for Δ2 = −20, h < 2.7
20 ∞ 0.135 which is still not very restrictive (relative to

the time scale of 0 ≤ t ≤ 5 in Fig. 2.4) so that for this case, accuracy still probably
dictates the maximum integration step (to meet the error tolerances).

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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Fig. 2.3 Plot of the
numerical and analytical
solutions (2.21)–(2.24) with
a = 1.5, b = 0.5
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Fig. 2.4 Plot of the
numerical and analytical
solutions (2.21)–(2.24) with
a = 10.5, b = 9.5
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We consider one more case in separating the eigenvalues, a = 5000.5, b = 4999.5,
for which Δ1 = −1, Δ2 = −10,000; thus, the stiffness ratio is 10,000/1. The output
for this case is incomplete since rkf45_solver fails at t = 0.33 with an error
message indicating nsteps has exceeded the limit nstepsmax=1,000. This is to
be expected since the maximum step size to still maintain stability is now determined
by Δ2 = −10,000, h < 2.7

10000 = 2.7 × 10−4. In other words, to cover the total time
interval 0 ≤ t ≤ 5, which is set by Δ1 = −1 (so that the exponential for Δ1 decays to
e−(1)(5)), the integrator must take at least 5

2.7×10−4 ∞ 2 × 104 steps which is greater
than nstepsmax=1,000 (i.e., the numerical solution only proceeded to t = 0.33
when nstepsmax=1,000 was exceeded).

Note in general that a stiff system (with widely separated eigenvalues) has the
characteristic that the total time scale is determined by the smallest eigenvalue (e.g.,
Δ1 = −1) while the maximum step allowed to still maintain stability in covering
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this total time interval is determined by the largest eigenvalue (e.g., Δ2 = −10,000);
if these two extreme eigenvalues are widely separated, the combination makes for a
large number of integration steps to cover the total interval (again, as demonstrated
by RKF45 which in this case could only get to t = 0.33 with 10,00 steps).

The preceding example illustrates the general limitation of the stability of explicit
ODE integrators for the solution of stiff systems. We therefore now consider implicit
ODE integrators, which generally circumvent this stability limit.

2.3 A Basic Variable Step Implicit ODE Integrator

Many implicit ODE integrators have been proposed and implemented in computer
codes. Thus, to keep the discussion to a reasonable length, we consider here only
one class of methods to illustrate some properties that clearly demonstrate the advan-
tages of using an implicit integrator. This type of integrator is generally termed as
Rosenbrock [10] or linearly implicit Runge–Kutta (LIRK) method.

Consider an autonomous function f (f does not depend explicitly on time) and
the following equation:

dx

dt
= f (x) (2.26)

The explicit RK methods developed earlier in this chapter (see Eqs. 2.10–2.12) are
given by

k1 = f (xk)

k2 = f (xk + hϕ2,1k1)

k3 = f (xk + h(ϕ3,1k1 + ϕ3,2k2))

... (2.27)

kq = f (xk + h(ϕq,1k1 + ϕq,2k2 + · · · + ϕq,q−1kq−1))

xk+1 = xk + h
q∑

i=1

wiki

whereas the general implicit formulas can be expressed by

k1 = f (xk + h(ϕ1,1k1 + ϕ1,2k2 + · · · + ϕ1,qkq))

k2 = f (xk + h(ϕ2,1k1 + ϕ2,2k2 + · · · + ϕ2,qkq))

k3 = f (xk + h(ϕ3,1k1 + ϕ3,2k2 + · · · + ϕ3,qkq))

... (2.28)

kq = f (xk + h(ϕq,1k1 + ϕq,2k2 + · · · + ϕq,qkq))
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xk+1 = xk + h
q∑

i=1

wiki

Diagonally implicit Runge–Kutta (DIRK) is a particular case of this general formu-
lation where ϕi,j = 0 for j > i, i.e.,

k1 = f (xk + hϕ1,1k1)

k2 = f (xk + h(ϕ2,1k1 + ϕ2,2k2))

k3 = f (xk + h(ϕ3,1k1 + ϕ3,2k2 + ϕ3,3k3))

... (2.29)

kq = f (xk + h(ϕq,1k1 + ϕq,2k2 + · · · + ϕq,qkq))

xk+1 = xk + h
q∑

i=1

wiki

LIRK methods introduce a linearization of stage ki

ki = f (xk + h(ϕi,1k1 + · · · + ϕi,i−1ki−1) + hϕi,iki)

ki ∞ f (xk + h(ϕi,1k1 + · · · + ϕi,i−1ki−1))

+ hϕi,i
ρf

ρx

∣∣∣∣
xk+h(ϕi,1k1+···+ϕi,i−1ki−1)

ki (2.30)

or, if we consider a system of ODEs dx
dt = f(x) (instead of a single ODE)

ki = f(xk + h(ϕi,1k1 + · · · + ϕi,i−1ki−1))

+ hϕi,i
ρf
ρx

∣∣∣∣
xk+h(ϕi,1k1+···+ϕi,i−1ki−1)

ki (2.31)

where the Jacobian ρf
ρx

∣∣∣
xk+h(ϕi,1k1+···+ϕi,i−1ki−1)

∞ ρf
ρx

∣∣∣
xk

is usually not evaluated

for each stage, but rather assumed constant across the stages, so as to keep the
computational expense at a reasonable level.

In addition, Rosenbrock’s methods replace stage ki in the preceding expression
by a linear combination of the previous stages (constructed so as to preserve the
lower-triangular structure, i.e., αi,j = 0 for j > i)

k1 = f(xk) + hϕ1,1Jkk1

k2 = f(xk + hϕ2,1k1) + hJk
⎤
α2,1k1 + α2,2k2

⎥
... (2.32)

kq = f(xk + h(ϕq,1k1 + ϕq,2k2 + · · · + ϕq,q−1kq−1))
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+ hJk
⎤
α2,1k1 + · · · + αq,qkq

⎥

xk+1 = xk + h
q∑

i=1

wiki

Therefore, each stage ki can be computed by solving a linear system of equations of
the form

⎤
I − hαi,iJk

⎥
ki = f

⎤
xk + h(ϕi,1k1 + ϕi,2k2 + · · · + ϕi,i−1ki−1)

⎥
+ hJk

⎤
αi,1k1 + · · · + αi,i−1ki−1

⎥
(2.33)

If the parameters αi,i are all given the same numerical values

α1,1 = · · · = αq,q = α (2.34)

then, the same LU decomposition can be used for all the stages, thus saving compu-
tation time.

In short form, the preceding equations which define a q-stage Rosenbrock’s
method for an autonomous system are given by

(I − hαi,iJk)ki = f

⎛
⎡xk + h

i−1∑
j=1

ϕi,jkj

⎢
⎣+ hJk

i−1∑
j=1

αi,jkj; xk+1 = xk + h
q∑

i=1

ωiki

(2.35)
If we now consider a nonautonomous system of equations (explicit dependence on t)

dx
dt

= f(x, t) (2.36)

then this system can be transformed into an autonomous form as

dx
dε

= f(x, t); dt

dε
= 1 (2.37)

and Eq. (2.35) lead to

(I − hαi,iJk)ki = f

⎛
⎡xk + h

i−1∑
j=1

ϕi,jkj, tk + hϕi

⎢
⎣

+ hJk

i−1∑
j=1

αi,jkj + h
ρf
ρt

∣∣∣∣
tk ,xk

αi (2.38)

with ϕi = ⎦i−1
j=1 ϕi,j and αi = ⎦i

j=1 αi,j.



70 2 More on ODE Integration

For instance, a first-order accurate Rosenbrock’s scheme for nonautonomous
equations is given by

(I − hJk)k1 = f (xk, tk) + h
ρf
ρt

∣∣∣∣
tk ,xk

(2.39)

xk+1 = xk + hk1 (2.40)

A second-order accurate Rosenbrock’s method developed for autonomous equa-
tions in [11], and called ROS2, is as follows:

(I − α hJk)k1 = f (xk) (2.41)

(I − α hJk)k2 = f (xk + hk1) − 2k1 (2.42)

xk+1 = xk + 1.5hk1 + 0.5hk2 (2.43)

with desirable stability properties for α ⇒ 0.25.
In the following, we will focus attention on a modified Rossenbrock’s method

originally proposed in [12] and specifically designed for the solution of nonlinear
parabolic problems, which will be of interest to us in the following chapters dedicated
to the method of lines solutions of partial differential equations. As we have just seen,
the main advantage of Rosenbrock’s methods is to avoid the solution of nonlinear
equations, which naturally arise when formulating an implicit method. In [12], the
authors establish an efficient third-order Rosenbrock’s solver for nonlinear parabolic
PDE problems, which requires only three stages. In mathematical terms, the method
described in [12] is stated in a transformed form, which is used in practice to avoid
matrix-vector operations

(
I

hα
− ρf

ρx
(xk, tk)

)
Xk,i = f

⎛
⎡xk +

i−1∑
j=1

ai,jXk,j, tk + hνi

⎢
⎣

+
i−1∑
j=1

ci,j

h
Xk,j + hdi

ρf
ρt

(xk, tk) i = 1, 2, 3 (2.44)

Two stepping formulas for a third- and a second-order methods, respectively, are
used to estimate the truncation error, i.e., can be computed by taking the difference
between the two following solutions

xk+1 = xk +
3∑

j=1

mjXk,j (2.45a)
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Table 2.5 Parameters of the ROS23P algorithm

α = 0.5 + ∈
3/6

a21 = 1.267949192431123 c21 = −1.607695154586736
a31 = 1.267949192431123 c31 = −3.464101615137755
a32 = 0 c32 = −1.732050807567788
ν1 = 0 d1 = 0.7886751345948129
ν2 = 1 d2 = −0.2113248654051871
ν3 = 1 d3 = −1.077350269189626
m1 = 2 m̂1 = 2.113248654051871
m2 = 0.5773502691896258 m̂2 = 1
m3 = 0.4226497308103742 m̂3 = 0.4226497308103742

x̂k+1 = xk +
3∑

j=1

m̂jXk,j (2.45b)

Note that the solutions at intermediate points, Xk,j, are the same for both orders
reflecting the embedding of the second-order method in the third-order method.

α , ai,j, ci,j, νi, di, mi, m̂i are parameters defined for a particular Rosenbrock’s
method. Particular values are listed in Table 2.5, which defines a method designated
as ROS23P. ROS denotes Rosenbrock, 23 indicates a second-order method embedded
in a third-order method in analogy with the fourth-order method embedded in a
fifth-order method in RKF45, and P stands for parabolic problems. This solver will
indeed be particularly useful for the time integration of ODE systems arising from
the application of the method of lines to parabolic PDE problems. The selection of
appropriate parameters, as in Table 2.5, confers desirable stability properties to the
algorithm, which can therefore be applied to stiff ODEs. To reiterate, the system of
Eq. (2.44) is linear in Xk,j which is a very favorable feature, i.e., a single application
of a linear algebraic equation solver is all that is required to take the next step along
the solution (from point k to k + 1). This is in contrast to implicit ODE methods
which require the solution of simultaneous nonlinear equations that generally is a
substantially more difficult calculation than solving linear equations (usually done
by Newton’s method, which must be iterated until convergence).

As in the case of RKF45, we program the algorithm in two steps: (1) a single
step function analogous to ssrkf45 and (2) a function that calls the single step
routine to step along the solution and adjust the integration step that is analogous to
rkf45_solver. We first list the single step routine, ssros23p

function [t ,x ,e ] = ssros23p (odefunction ,jacobian , . . .
time_derivative ,t0 ,x0 ,h ,gamma ,a21 , . . .
a31 ,a32 ,c21 ,c31 ,c32 ,d ,alpha ,m ,mc )

%
% Function ssros3p computes an ODE solution by an implicit
% third−order Rosenbrock method for one step along the
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% solution (by calls to 'odefunction ' to define the ODE
% derivative vector , calls to 'jacobian ' to define the
% Jacobian and calls to time_derivative if the problem is
% non autonomous ) .
%
% Argument list
%
% odefunction − string containing name of user−supplied problem
% jacobian − string containing name of user−supplied Jacobian
% time_derivative − sting containing name of user−supplied
% function time derivative
%
% t0 − initial value of independent variable
% x0 − initial condition vector
% h − integration step
% t − independent variable (scalar )
% x − solution vector after one rkf45 step
% e − estimate of truncation error of the solution vector
%
% gamma ,a21 ,a31 ,a32 ,c21 ,c31 ,c32 ,alpha ,d ,m ,mc are the
% method parameters

% Jacobian matrix at initial (base ) point
[Jac ] = feval (jacobian , t0 , x0 ) ;

% Time derivative at initial (base ) point
[Ft ] = feval (time_derivative , t0 , x0 ) ;

% Build coefficient matrix and perform L−U decomposition
CM = diag ( 1 / (gamma*h )*ones (length (x0 ) , 1 ) ) − Jac ;
[L ,U ] = lu (CM ) ;

% stage 1
xs = x0 ;
[xt ] = feval (odefunction , t0+alpha ( 1 ) *h , xs ) ;
rhs = xt + h*d ( 1 ) *Ft ;
xk1 = U \ (L \rhs ) ;

% stage 2
xs = x0 + a21*xk1 ;
[xt ] = feval (odefunction , t0+alpha ( 2 ) *h , xs ) ;
rhs = xt + (c21 /h )*xk1 + h*d ( 2 ) *Ft ;
xk2 = U \ (L \rhs ) ;

% stage 3
xs = x0 + a31*xk1 + a32*xk2 ;
[xt ] = feval (odefunction , t0+alpha ( 3 ) *h , xs ) ;
rhs = xt + (c31 /h )*xk1 + (c32 /h )*xk2 + h*d ( 3 ) *Ft ;
xk3 = U \ (L \rhs ) ;

% second−order step
x2 = x0 + mc ( 1 ) *xk1 + mc ( 2 ) *xk2 + mc ( 3 ) *xk3 ;

% third−order step
x3 = x0 + m ( 1 ) *xk1 + m ( 2 ) *xk2 + m ( 3 ) *xk3 ;

% error evaluation
t = t0 + h ;
e = x3 − x2 ;
x = x3 ;

Function ssros23p Routine for a single step along the solution
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We can note the following details about ssros23p:

1. The first statement defining function ssros23p has an argument list that
includes the parameters (constants) used in the ROS23P algorithm as defined
in Table 2.5.

2. After an initial set of comments explaining the operation of ssros23p and its
arguments, the Jacobian matrix of the ODE system is first computed

% Jacobian matrix at initial (base) point
[Jac] = feval(jacobian,t0,x0);

The user-supplied routine jacobian (to be discussed subsequently) is called to
compute the Jacobian matrix in Eq. (2.44), fx(xk, tk) , at the base point tk = t0,
xk = x0.

3. Then, the time derivative of the ODE function is computed

%...
%... Time derivative at initial (base) point

[Ft] = feval(time_derivative, t0, x0);

The user-supplied routine time_derivative is called to compute ft(xk, tk).
4. The LHS coefficient matrix of Eq. (2.44)

(
I

hα
− fx(xk, tk)

)

is then constructed

% Build coefficient matrix and perform L-U decomposition
CM = diag(1/(gamma*h)*ones(length(x0),1))-Jac;
[L,U] = lu(CM);

Note that the main diagonal of the identity matrix is coded as ones(length
(x0),1). Then subtraction of the Jacobian matrix,Jac, results in a square coef-
ficient matrix, CM, with dimensions equal to the length of the ODE dependent
variable vector (length(x0)). After CM is constructed, it is factored (decom-
posed) into L and U lower and upper triangular factors using the MATLAB
utility lu.

Just to briefly review why this decomposition is advantageous, if the coefficient,
A, of a linear algebraic system

Ax = b (2.46a)

is written in factored form, i.e., A = LU, Eq. (2.46a) can be written as

LUx = b (2.46b)
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Equation (2.46b) can be written as two algebraic equations

Ly = b (2.47)

Ux = y (2.48)

Note that Eq. (2.47) can be solved for y and Eq. (2.48) can then be solved for
x (the solution of Eq. (2.46a)). If matrix A can be decomposed into a lower tri-
angular matrix L and and upper triangular matrix U, then the solution of (2.47)
can be easily done by elementary substitution starting from the first equation to
the last one (forward substitution), whereas Eq. (2.48) can then be solved in the
same way from the last to the first equation (backward substitution). This is a
substantial simplification. Also, once the LU decomposition is performed, it can
be used repeatedly for the solution of Eq. (2.46a) with different RHS vectors, b,
as we shall observe in the coding of ssros23p. This reuse of the LU factor-
ization is an important advantage since this factorization is the major part of the
computational effort in the solution of linear algebraic equations.

5. We now step through the first of three stages, using i = 1 in Eq. (2.44)

% Stage 1
xs = x0;
[xt] = feval(odefunction,t0+alpha(1)*h,xs);
rhs = xt;
xk1 = U\(L\rhs);

Thus, the RHS of Eq. (2.44) is simply xt = f (xk, tk) (from Eq. 1.12). Finally,
the solution of Eq. (2.44) for Xk1 is obtained by using the MATLAB operator
twice, corresponding to the solution of Eqs. (2.47) and (2.48).

6. The second stage is then executed essentially in the same way as the first stage,
but with i = 2 in Eq. (2.44) and using Xk1 from the first stage

% Stage 2
xs = x0 + a21*xk1;
[xt] = feval(odefunction,t0+alpha(2)*h,xs);
rhs = xt + (c21/h)*xk1;
xk2 = U\(L\rhs);

Note in particular how the LU factors are used again (they do not have to be
recomputed at each stage).

7. Finally, the third stage is executed essentially in the same way as the first and
second stages, but with i = 3 in Eq. (2.44) and using Xk1 from the first stage and
Xk2 from the second stage

% Stage 3
xs = x0 + a31*xk1 + a32*xk2;
[xt] = feval(odefunction,t0+alpha(3)*h,xs);
rhs = xt + (c31/h)*xk1 + (c32/h)*xk2;
xk3 = U\(L\rhs);

Again, the LU factors can be used as originally computed.

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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8. Equations (2.45a) and (2.45b) are then used to step the second- and third-order
solutions from k to k + 1

% Second-order step
x2 = x0 + mc(1)*xk1 + mc(2)*xk2 + mc(3)*xk3;
% Third-order step
x3 = x0 + m(1)*xk1 + m(2)*xk2 + m(3)*xk3;

9. The truncation error can be estimated as the difference between the second- and
third-order solutions

% Estimated error and solution update
e = x3 - x2;
t = t0 + h;
x = x3;

The solution is taken to be the third-order result at the end of ssros23p.

In order to use function ssros23p, we require a calling function that will also
adjust the integration step in accordance with user-specified tolerances and the esti-
mated truncation error from ssros23p. A routine, analogous to rkf45_solver,
is listed in ros23p_solver.

function [tout , xout , eout ] = ros23p_solver (odefunction , . . .
jacobian ,time_derivative ,t0 ,tf , . . .
x0 ,hmin ,nstepsmax ,abstol ,reltol , . . .
Dtplot )

% [tout , yout ] = ros23p_solver ( 'f ' , ' J ' , ' Ft ' ,t0 ,tf ,x0 ,hmin , . . .
% nstepsmax ,abstol , reltol ,Dtplot )
% Integrates a non−autonomous system of differential equations
% y ' =f (t ,x ) from t0 to tf with initial conditions x0 .
%
% Each row in solution array xout corresponds to a value
% returned in column vector tout .
% Each row in estimated error array eout corresponds to a
% value returned in column vector tout .
%
% ros23p_solver .m solves first−order differential equations
% using a variable−step implicit Rosenbrock method for a
% series of points along the solution by repeatedly calling
% function ssros23p for a single Rosenbrock step .
%
% The truncation error is estimated along the solution to
% adjust the integration step according to a specified error
% tolerance .
%
% Argument list
%
% f − String containing name of user−supplied
% problem description
% Call : xdot = fun (t ,x ) where f = 'fun '
% t − independent variable (scalar )
% x − Solution vector .
% xdot − Returned derivative vector ;
% xdot (i ) = dx (i ) /dt
%
% J − String containing name of user−supplied Jacobian
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% Call : Jac = fun (t ,x ) where J = 'fun '
% t − independent variable (scalar )
% x − Solution vector .
% Jac − Returned Jacobian matrix ;
% Jac (i ,j ) = df (i ) /dx (j )
%
% Ft − String containing nam of user−supplied
% function time derivative
% Call : Ft = fun (t ,x ) where Ft = 'fun '
% t − independent variable (scalar )
% x − Solution vector .
% Ft − Returned time derivative ;
% Ft (i ) = df (i ) /dt
%
% t0 − Initial value of t
% tf − Final value of t
% x0 − Initial value vector
% hmin − minimum allowable time step
% nstepsmax − maximum number of steps
% abstol − absolute error tolerance
% reltol − relative error tolerance
% Dtplot − Plot interval
%
% tout − Returned integration points (column−vector ) .
% xout − Returned solution , one solution row−vector per
% tout−value .

% Initial integration step
h = 10*hmin ;

% method parameters
gamma = 0.5+sqrt ( 3 ) / 6 ;
a21 = 1.267949192431123;
a31 = 1.267949192431123;
a32 = 0 . 0 ;
c21 = −1.607695154586736;
c31 = −3.464101615137755;
c32 = −1.732050807567788;
d ( 1 ) = 7.886751345948129e−01;
d ( 2 ) = −2.113248654051871e−01;
d ( 3 ) = −1.077350269189626e+00;
alpha ( 1 ) = 0 ;
alpha ( 2 ) = 1 . 0 ;
alpha ( 3 ) = 1 . 0 ;
m ( 1 ) = 2.000000000000000e+00;
m ( 2 ) = 5.773502691896258e−01;
m ( 3 ) = 4.226497308103742e−01;
mc ( 1 ) = 2.113248654051871e+00;
mc ( 2 ) = 1.000000000000000e+00;
mc ( 3 ) = 4.226497308103742e−01;
% Start integration
t = t0 ;
tini = t0 ;
tout = t0 ; % initialize output value
xout = x0 ' ; % initialize output value
eout = zeros (size (xout ) ) ; % initialize output value
nsteps = 0 ; % initialize step counter
nplots = round ( (tf−t0 ) /Dtplot ) ; % number of outputs

% Initial integration step
h = 10*hmin ;

% Step through nplots output points
for i = 1 :nplots

% Final (output ) value of the independent variable
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tplot = tini+i*Dtplot ;
% While independent variable is less than the final value ,
% continue the integration
while t <= tplot*0.9999

% If the next step along the solution will go past the
% final value of the independent variable , set the step
% to the remaining distance to the final value
if t+h > tplot , h = tplot−t ; end
% Single ros23p step
[t ,x ,e ] = ssros23p (odefunction ,jacobian , . . .

time_derivative ,t0 ,x0 ,h ,gamma ,a21 ,a31 ,a32 , . . .
c21 ,c31 ,c32 ,d ,alpha ,m ,mc ) ;

% Check if any of the ODEs have violated the error
% criteria
if max ( abs (e ) > (abs (x )*reltol + abstol ) )

% Error violation , so integration is not complete .
% Reduce integration step because of error violation
% and repeat integration from the base point . Set
% logic variable for rejected integration step .
h = h / 2 ;

% If the current step is less than the minimum
% allowable step , set the step to the minimum
% allowable value
if h < hmin , h = hmin ; end

% If there is no error violation , check if there is
% enough "error margin" to increase the integration
% step

elseif max ( abs (e ) > (abs (x )*reltol + abstol ) / 8 )
% The integration step cannot be increased , so leave
% it unchanged and continue the integration from the
% new base point .
x0 = x ; t0 = t ;

% There is no error violation and enough "security
% margin"

else

% double integration step and continue integration
% from new base point
h = 2*h ; x0 = x ; t0 = t ;

end %if

% Continue while and check total number of integration
% steps taken
nsteps=nsteps+1;
if (nsteps > nstepsmax )

fprintf ( ' \ n nstepsmax exceeded ; integration terminated \n ' ) ;
break ;
end

end %while

% add latest result to the output arrays and continue for
% loop
tout = [tout ; t ] ;
xout = [xout ; x ' ] ;
eout = [eout ; e ' ] ;

end % for
%
% End of ros23p_solver

Function ros23p_solver Routine for a variable step solution of an ODE system
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ros23p_solver closely parallels rkf45_solver, so we point out just a few
differences:

1. After a set of comments explaining the arguments and operation of ros23p_
solver, the parameters for the ROS23P algorithm are set in accordance with
the values defined in Table 2.5.

2. The variable step algorithm is then implemented as discussed for rkf45_
solver, based on the estimated truncation error vector from a call tossros23p

function [t,x,e] = ssros23p(odefunction,jacobian,...
time_derivative,t0,x0,h,gamma,...
a21,a31,a32,c21,c31,c32,d,...
alpha,m,mc)

In order to apply this algorithm to an example we need function to define the
ODE model. If the logistic equation is chosen as an example, such function is the
same as in logistic_ode. The exact solution to the logistic equation is again
programmed in logistic_exact.

Since ROS23P requires the Jacobian matrix in ssros23p, we provide function
logistic_jacobian for this purpose.

function [Jac ] = logistic_jacobian(t , N )
% Set global variables
global a b K N0

% Jacobian of logistic equation Nt=(a−b*N )*N
Jac = a − 2*b*N ;

Function logistic_jacobian Routine for the computation of the Jacobian matrix of logistic equa-
tion (2.1)

Note that, in this case, the logistic equation has a 1 × 1 Jacobian matrix (single
element), which is just the derivative of the RHS of Eq. (2.1) with respect to N.
ROS23P also requires a function to compute the time derivative of the ODE function,
which is only useful for nonautonomous problems (so not in this case).

We now have all of the programming elements for the ROS23P solution of the
logistic equation. Execution of the main program gives the numerical output of
Table 2.6 (the plotted output is essentially identical to Fig. 2.2 and therefore is not
repeated here).

A comparison of Tables 2.3 and 2.6 clearly indicates that RKF45 in this case was
much more effective in controlling the integration error than ROS23P (all of the
integration parameters such as error tolerances were identical for the two integra-
tors, i.e., the parameters of Table 2.2). However, ROS23P did meet the relative error
tolerance, relerr = 1e-03. As explained previously, the large absolute error is
due to the dominance of the total error by the relative error, which produces a typical
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Table 2.6 Numerical output obtained with ros23p_solver for the logistic equation (2.1)

t x(t) xex(t) abserr relerr

0.0 1000.00 1000.00 0.00000 0.00000
0.5 1596.67 1596.92 -0.25079 -0.00016
1.0 2501.33 2503.22 -1.88884 -0.00075
1.5 3814.04 3817.18 -3.13425 -0.00082
2.0 5595.63 5600.09 -4.46446 -0.00080
2.5 7808.18 7813.68 -5.49428 -0.00070
3.0 10271.87 10277.73 -5.86125 -0.00057
3.5 12703.07 12708.50 -5.42835 -0.00043
4.0 14832.45 14836.83 -4.37216 -0.00029
4.5 16511.65 16514.31 -2.66122 -0.00016
5.0 17728.93 17730.17 -1.23181 -0.00007
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

15.0 19999.89 19999.88 0.00746 0.00000

term in the error test of ros23p_solver at t = 1.5 of 3814.04(0.001) =
3.814 whereas the absolute error (in absolute terms) was smaller, i.e., 3.13425.
Thus, although ROS23P did not control the integration error as tightly as RKF45, its
performance can still probably be considered acceptable for most applications, i.e.,
1 part in 1,000. This poorer error control can be explained by the lower order of the
error estimator of ROS23P relative to RKF45.

In other words, the error tolerances for ROS23P solver of abserr = 1e-03,
relerr = 1e-03 are rather loose. If they are tightened to abserr = 1e-05,
relerr = 1e-05 (i.e., 1 part in 105) the resulting output from ros23p_
solver is

t x(t) xex(t) abserr relerr
0.0 1000.00 1000.00 0.00000 0.00000
0.5 1596.92 1596.92 -0.00623 -0.00000
1.0 2503.20 2503.22 -0.01681 -0.00001
1.5 3817.15 3817.18 -0.03137 -0.00001
2.0 5600.04 5600.09 -0.04699 -0.00001
2.5 7813.62 7813.68 -0.05887 -0.00001
3.0 10277.67 10277.73 -0.06277 -0.00001
3.5 12708.44 12708.50 -0.05726 -0.00000
4.0 14836.78 14836.83 -0.04438 -0.00000
4.5 16514.29 16514.31 -0.02130 -0.00000
5.0 17730.19 17730.17 0.02374 0.00000
. .
. .
. .
15.0 19999.89 19999.88 0.00639 0.00000

The enhanced performance of ROS23P using the tighter error tolerances is evi-
dent (ROS23P achieved the specified accuracy of 1 part in 105). This example
illustrates the importance of error tolerance selection and the possible differences
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in error control between different integration algorithms. In other words, some
experimentation with the error tolerances may be required to establish the accuracy
(reliability) of the computer solutions.

Since ROS23P has a decided advantage over RKF45 for stiff problems (because
of superior stability), we now illustrate this advantage with the 2 × 2 ODE sys-
tem of Eq. (2.21) with again evaluating the numerical solution using the analytical
solution of Eq. (2.23). The coding of the 2 × 2 problem to run under ROS23P is
essentially the same as for RKF45 and can also be found in the companion library.
However, a routine for the Jacobian matrix is required by ROS23P (see function
jacobian_stiff_odes).

function Jac = jacobian_stiff_odes(t ,x )

% Set global variables
global a b

% Jacobian matrix
Jac = [−a b ;

b −a ] ;

Function jacobian_stiff_odes Jacobian matrix of 2 × 2 ODE Eq. (2.21)

Here we are evaluating the Jacobian matrix fx(xk, tk) in Eq. (2.44) as required in
ssros23p. For example, the first row, first element of this matrix is ρf1

ρx1
= −a. Note

that since Eq. (2.21) are linear constant coefficient ODEs, their Jacobian matrix is
a constant matrix, and therefore function jacobian_stiff_odes would only
have to be called once. However, since ros23p_solver and ssros23p are
general purpose routines (they can be applied to nonlinear ODEs for which the
Jacobian matrix is not constant, but rather is a function of the dependent variable
vector), jacobian_stiff_odes will be called at each point along the solution
of Eq. (2.21) through ros23p_solver.

We should note the following points concerning the Jacobian matrix:

1. If we are integrating an nth order ODE system (n first-order ODEs in n unknowns
or a n × n ODE system), the Jacobian matrix is of size n × n. This size increases
very quickly with n. For example, if n = 100 (a modest ODE problem), the
Jacobian matrix is of size 100 × 100 = 10,000.

2. In other words, we need to compute the n × n partial derivatives of the Jaco-
bian matrix, and for large n (e.g., n > 100), this becomes difficult if not essen-
tially impossible (not only because there are so many partial derivatives, but also,
because the actual analytical differentiation may be difficult depending on the
complexity of the derivative functions in the RHS of Eq. (1.12) that are to be
differentiated).

3. Since analytical differentiation to produce the Jacobian matrix is impractical for
large n, we generally have to resort to a numerical procedure for computing
the required partial derivatives. Thus, a numerical Jacobian is typically used in

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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Table 2.7 Numerical output from ssros23p for the stiff problem (2.21) with a = 500000.5 and
b = 499999.5

a = 500000.500 b = 499999.500

t x(t) xex(t) abserr relerr
0.00 0.0000000 0.0000000 0.0000000 0.0000000

2.0000000 2.0000000 0.0000000 0.0000000
0.10 0.9048563 0.9048374 0.0000189 0.0000208

0.9048181 0.9048374 -0.0000193 -0.0000213
0.20 0.8187392 0.8187308 0.0000084 0.0000103

0.8187187 0.8187308 -0.0000120 -0.0000147
0.30 0.7408210 0.7408182 0.0000028 0.0000038

0.7408101 0.7408182 -0.0000082 -0.0000110
0.40 0.6703187 0.6703200 -0.0000013 -0.0000020

0.6703128 0.6703200 -0.0000072 -0.0000108
0.50 0.6065277 0.6065307 -0.0000029 -0.0000049

0.6065246 0.6065307 -0.0000061 -0.0000100
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10.00 0.0000454 0.0000454 -0.0000000 -0.0007765
0.0000454 0.0000454 -0.0000000 -0.0007765

the solution of stiff ODE systems. The calculation of a numerical Jacobian for
Eq. (2.21) is subsequently considered.

The numerical output from these functions is listed in abbreviated form in
Table 2.7. As in the case of Table 2.4, two rows are printed at each time instant.
The first row corresponds with the output for the first state variable (x1) while the
second row corresponds with the second state variable (x2). This solution was com-
puted with good accuracy and modest computation effort (the number of calls to
IVP solver was nsteps = 14). Note how the two solutions, x1(t), x2(t), merged
almost immediately and were almost identical by t = 0.1 (due to the large eigen-
value Δ2 = −106 in Eq. (2.24) so that the exponential e−Δ2t decayed to insignifi-
cance almost immediately). This example clearly indicates the advantage of a stiff
integrator (RKF45 could not handle this problem with reasonable computational
effort since it would take an extremely small integration step because of the stiff-
ness). Clearly the solution of the simultaneous equations of Eq. (2.44) was worth
the effort to maintain stability with an acceptable integration step (the integration
step could be monitored by putting it in an output statement in ros23p_solver).
Generally, this example illustrates the advantage of an implicit (stiff) integrator (so
that the additional computation of solving simultaneous linear algebraic equations
is worthwhile).

There is one detail that should be mentioned concerning the computation of
the solution in Table 2.7. Initially ros23p_solver and ssros23p failed to
compute a solution. Some investigation, primarily by putting output statements in
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ros23p_solver, indicated that the problem was the selection of an initial inte-
gration interval in ros23p_solver according to the statement

% Initial integration step
h = Dtplot/10;

In other words, since Dtplot = 0.1 (see the output interval of Table 2.7), the
initial integration step is 0.01. Recall that ros23p_solver is trying to compute a
solution according to Eq. (2.24) in which an exponential decays according to e−106t .
If the initial step in the numerical integration is h = 0.01, the exponential would
be e−106(0.01) = e−104

and it therefore has decayed to insignificance. The auto-
matic adjustment of the integration step in ros23p_solver would have to reduce
the integration step from 0.01 to approximately 10−7 so that the exponential is
e−106(10−7) = e−0.1 and it apparently was unable to do this. By changing the initial
integration programming to

% Initial integration step
h = Dtplot/1.0e+5;

the numerical integration proceeded without difficulty and produced the numerical
solution of Table 2.7. This discussion illustrates that some experimentation with the
initial integration step may be required, particularly for stiff problems. An alternative
would be to use an available algorithm for the initial integration step, but this would
increase the complexity of ros23p_solver. We therefore opted to use a man-
ual adjustment of the initial integration interval to successfully start the numerical
integration.

As indicated previously, the use of an analytical Jacobian with a stiff integrator is
not practical for large ODE problems (i.e., n > 100), but rather, a numerical Jaco-
bian should be used. To illustrate this approach, we consider the use of a numerical
Jacobian for the solution of Eq. (2.21). For example, we can use the finite difference
approximations.

fx =




ρf1
ρx1

ρf1
ρx2

ρf2
ρx1

ρf2
ρx2


⎜⎜ ∞




f1(x1+∂x1,x2)−f1(x1,x2)
∂x1

f1(x1,x2+∂x2)−f1(x1,x2)
∂x2

f2(x1+∂x1,x2)−f2(x1,x2)
∂x1

f2(x1,x2+∂x2)−f2(x1,x2)
∂x2


⎜⎜ (2.49)

Application of Eq. (2.49) to Eq. (2.21) gives

fx ∞
[ −a(x1+∂x1)+bx2−(ax1+bx2)

∂x1

−ax1+b(x2+∂x2)−(−ax1+bx2)
∂x2

f2(x1+∂x1,x2)−f2(x1,x2)
∂x1

f2(x1,x2+∂x2)−f2(x1,x2)
∂x2

⎟
=
[−a b

b −a

]

Thus, Eq. (2.49) gives the exact Jacobian (see jacobian_stiff_odes)
because the finite differences are exact for linear functions (i.e., the linear functions of
Eq. (2.21)). However, generally this will not be the case (for nonlinear functions) and
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therefore the finite difference approximation of the Jacobian matrix will introduce
errors in the numerical ODE solution. The challenge then is to compute the numeri-
cal Jacobian with sufficient accuracy to produce a numerical solution of acceptable
accuracy. Generally, this has to do with the selection of the increments ∂x1, ∂x2.
But the principal advantage in using finite differences to avoid analytical differentia-
tion is generally well worth the additional effort of computing a sufficiently accurate
numerical Jacobian. To illustrate the programming of a numerical Jacobian, we use
routine jacobian_stiff_odes_fd instead of jacobian_stiff_odes.

function [Jac ] = jacobian_stiff_odes_fd (t ,x )
% Function jacobian_stiff_odes_fd computes the Jacobian matrix
% by finite differences

% Set global variables
global a b

% Jacobian of the 2 x 2 ODE system
% Derivative vector at base point
xb = x ;
xt0 = stiff_odes (t ,x ) ;

% Derivative vector with x1 incremented
dx1 = x ( 1 ) * 0 . 0 0 1 + 0 . 0 0 1 ;
x ( 1 ) = x ( 1 ) + dx1 ;
x ( 2 ) = xb ( 2 ) ;
xt1 = stiff_odes (t ,x ) ;

% Derivative vector with x2 incremented
x ( 1 ) = xb ( 1 ) ;
dx2 = x ( 2 ) * 0 . 0 0 1 + 0 . 0 0 1 ;
x ( 2 ) = x ( 2 ) + dx2 ;
xt2 = stiff_odes (t ,x ) ;

% Jacobian matrix (computed by finite differences in place of
% Jac = [−a b ; b −a ] ) ;
Jac ( 1 , 1 ) = (xt1(1)−xt0 ( 1 ) ) /dx1 ;
Jac ( 1 , 2 ) = (xt2(1)−xt0 ( 1 ) ) /dx2 ;
Jac ( 2 , 1 ) = (xt1(2)−xt0 ( 2 ) ) /dx1 ;
Jac ( 2 , 2 ) = (xt2(2)−xt0 ( 2 ) ) /dx2 ;

Function jacobian_stiff_odes_fd Routine for the computation of the Jacobian matrix of Eq. (2.21)
using the finite differences of Eq. (2.49)

We can note the following points about this routine:

1. While the Jacobian routine jacobian_stiff_odes_fd appears to be con-
siderably more complicated than the routine jacobian_stiff_odes, it has
one important advantage: analytical differentiation is not required. Rather, the
finite difference approximation of the Jacobian partial derivatives requires only
calls to the ODE routine, stiff_odes (which, of course, is already available
for the problem ODE system).

2. To briefly explain the finite differences as expressed by Eq. (2.49), we first need
the derivative functions at the base (current) point along the solution (to give
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the derivative functions f1(x1, x2), f2(x1, x2) in Eq. (2.49)). These derivatives are
computed by the first call to stiff_odes

3. Then we need the derivatives with x1 incremented by ∂x1, that is f1(x1+∂x1, x2),
f2(x1 + ∂x1, x2) which are computed by

% Derivative vector with x1 incremented
dx1 = x(1)*0.001 + 0.001;
x(1) = x(1) + dx1;
x(2) = xb(2);
xt1 = stiff_odes(t,x);

Note that in computing the increment dx1 we use 0.001x1 + 0.001; the second
0.001 is used in case x1 = 0 (which would result in no increment) as it does at
the initial condition x1(0) = 0.

4. Next, the derivatives with x2 incremented by ∂x2 are computed

% Derivative vector with x2 incremented
x(1) = xb(1);
dx2 = x(2)*0.001 + 0.001;
x(2) = x(2) + dx2;
xt2 = stiff_odes(t,x);

5. Then the four partial derivatives of the Jacobian matrix are computed. For exam-
ple, ρf1

ρx1
∞ f1(x1+∂x1,x2)−f1(x1,x2)

∂x1
is computed as

% Jacobian matrix (computed by finite differences in
% place of Jac = [-a b; b -a]);
Jac(1,1) = (xt1(1)-xt0(1))/dx1;

The numerical solution with jacobian_stiff_odes (analytical Jacobian)
replaced with jacobian_stiff_odes_fd (numerical Jacobian) gave the same
solution as listed in Table 2.7. This is to be expected since the finite difference
approximations are exact for the linear ODEs Eq. (2.21).

To summarize this discussion of ROS23P, we have found that this algorithm:

1. Has a reliable error estimate (the difference between the second- and third-order
solutions), but not as accurate as RKF45 (the difference between the fourth- and
fifth-order solutions).

2. Requires only the solution of linear algebraic equations at each step along the
solution (thus the name LIRK where “LI” denotes linearly implicit). We should
also note that the accuracy of the numerical solution is directly dependent on the
accuracy of the Jacobian matrix. This is in contrast with implicit ODE integrators
that require the solution of nonlinear equations, but the Jacobian can often be
approximate or inexact since all that is required is the convergence of the nonlin-
ear equation solutions, usually by Newton’s method or some variant, which can
converge with an inexact Jacobian.

3. Has excellent stability properties (which are discussed in detail in [12]).
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Table 2.8 MATLAB solvers for differential equations

Initial value problem solvers for ODEs (if unsure about stiffness, try ode45 first, then ode15s)
ode45 Solve nonstiff differential equations, medium-order method
ode23 Solve nonstiff differential equations, low-order method
ode113 Solve nonstiff differential equations, variable-order method
ode23t Solve moderately stiff ODEs and DAEs index 1, trapezoidal rule
ode15s Solve stiff ODEs and DAEs index 1, variable-order method
ode23s Solve stiff differential equations, low-order method
ode23tb Solve stiff differential equations, low-order method

Initial value problem solvers for fully implicit ODEs/DAEs F(t, y, y√) = 0
decic Compute consistent intial conditions
ode15i Solve implicit ODEs or DAEs i ndex 1

Initial value problem solver for delay differential equations (DDEs)
dde23 Solve delay differential equations (DDEs) with constant delays

Boundary value problem solver for ODEs
bvp4c Solve two-point boundary value problems for ODEs by collocation

1D Partial differential equation solver
pdepe Solve initial-boundary value problems for parabolic-elliptic PDE

Thus, we now have a choice of high accuracy nonstiff (RKF45) and stiff (ROS23P)
algorithms that are implemented in library routines for solution of the general n × n
initial value ODE problem. The ambition of these solvers is not to compete with
the high-quality integrators that are included in the MATLAB ODE Suite or within
SCILAB or OCTAVE, but they are easy to use and to understand and will also
be easily translated into various environments. Before testing them in additional
applications, we introduce briefly the MATLAB ODE Suite.

2.4 MATLAB ODE Suite

We have previously discussed the use of advanced integrators, which are part of the
MATLAB ODE suite or library. Examples include the use of ode45 and ode15s
in Main_bacteria, and ode15s in Main_two_tanks. The MATLAB ODE
integrators have options beyond the basic integrators; furthermore, there is an exten-
sive selection of integrators as given in Table 2.8. We cannot go into all of the features
available because of limited space. The code for these integrators is relatively long
and complex, so they are typically used without modification. Additional details
about the MATLAB integrators are available in [1].

The application examples described in the next section are used to compare some
of the time integrators developed in the previous sections, as well as several integra-
tors from the MATLAB ODE Suite.
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2.5 Some Additional ODE Applications

The ODE applications considered previously in this chapter were quite modest in
complexity and could therefore be solved analytically or numerically; comparison
of these two types of solutions was used to establish the validity of the numerical
algorithms and associated codes. Now that the numerical integrators have been devel-
oped and tested, we consider some ODE applications that are sufficiently complex to
preclude analytical solution; thus, we have only the numerical integrators as a viable
approach to solutions, which is the usual case in realistic applications, i.e., numerical
methods can be applied when analytical methods are not tractable.

2.5.1 Spruce Budworm Dynamics

The first application we consider is an ecological model of the interaction of spruce
budworm populations with forest foliage [13]. The full model is a 3 × 3 system
of logistic-type ODEs. However, before considering the full model, we consider a
simplified version that has only one ODE, but which exhibits interesting dynamics.
The idea of the simplified model is to consider that the slow variables (associated
with foliage quantity and quality, S(t)) are held fixed, and to analyze the long-term
behavior of the fast variable, i.e., the budworm density, B(t).

The budworm’s growth follows a logistic equation

dB

dt
= rBB

(
1 − B

kB

)
− g (2.50)

where the carrying capacity kB = kS is proportional to the amount of foliage avail-
able, i.e., proportional to S.

The effect of predation (consumption of budworms by birds) is represented by:

g = ϕB2

ν2 + B2 (2.51)

which has the following properties:

• The consumption of prey (budworms) by individual predators (birds) is limited by
saturation to the level ϕ; note that g → ϕ for large B.

• There is a decrease in the effectiveness of predation at low prey density (with the
limit g → 0, B → 0 , i.e., the birds have a variety of alternative foods).

• ν determines the scale of budworm densities at which saturation takes place, i.e.,
ν2 relative to B2.

Clearly g from Eq. (2.51) introduces a strong nonlinearity in ODE (2.50) which
is a principal reason for using numerical integration in the solution of Eq. (2.50).

We can now use Eq. (2.50) to plot dB
dt versus B as in Fig. 2.5, termed a phase plane

plot. Note that there are three equilibrium points for which dB
dt = 0 (the fourth point
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Fig. 2.5 dB
dt as a function of B from Eq. (2.50), for increasing value of S (S evolves from 200 to

10,000 by steps of 200)

at the origin B = 0, t = 0 is not significant). These equilibrium points are the roots
of Eq. (2.50) (combined with Eq. (2.51)) with dB

dt = 0 i.e.,

0 = rBB

(
1 − B

KB

)
− ϕB2

ν + B2 (2.52)

The middle equilibrium point (at approximately B = 1.07 × 105) is not sta-
ble while the two outlying equilibrium points are stable. Figure 2.5 is parametrized
with increasing values of S (from 200 to 10,000, by steps of 200) corresponding to
increasing values of the carrying capacity KB = kS.

Qualitatively, the evolution of the system can be represented as in Fig. 2.6. Con-
sider the situation where there are three equilibrium points as in Fig. 2.5. In this case,
the intermediate point is unstable, whereas the upper and lower equilibrium points
are stable. Assume that the system is in a lower equilibrium point. As the forest
foliage, S(t), slowly increases, the system moves along the heavy lower equilibrium
line. This happens because the budworm density, B(t) is low (endemic population),
and the forest can grow under this good condition (low B(t)). At the end of this
slow process, the system moves quickly along a vertical arrow to reach the upper
equilibrium branch, which corresponds to a much higher budworm density (outbreak
population). Now, old trees are more susceptible to defoliation and die. As a conse-
quence, S(t) slowly decreases, and the system slowly moves along the heavy upper
equilibrium line. This continues up to a certain stage, where the system jumps along a
vertical line (budworm population collapses), and goes back to a status characterized
by a low budworm density.

In summary, slow processes are depicted by the heavy equilibrium lines, whereas
fast processes are represented by vertical arrows in Fig. 2.6. The interacting spruce
budworm population and forest follow limit cycles characterized by two periods of
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Fig. 2.6 Qualitative evolution of the budworm-forest system

slow change and two periods of fast change. An analysis of the system must include
the fast processes along with the slow processes. Even though the system dynamics
is dictated by the slow processes for most of the time (i.e., when the system moves
slowly along heavy equilibrium lines), fast transitions explain budworm population
outbreaks and collapses, which would be completely unforeseen if the fast dynamics
is neglected.

We now consider the full model in which the carrying capacity is given by

KB = kSE2

E2 + T2
E

(2.53)

i.e., it is again proportional to the amount of foliage available, S(t), but also depends
on the physiological condition (energy) of the trees, E(t); KB declines sharply when
E falls below a threshold TE .

The effect of predation is still represented by Eq. (2.51), but, in addition, the
half-saturation density ν is proportional to the branch surface area S, i.e., ν = aS.

The total surface area of the branches in a stand then follows the ODE

dS

dt
= rSS

(
1 − S

KS

KE

E

)
(2.54)

that allows S to approach its upper limit KS . An additional factor KE
E is inserted

into the equation because S inevitably decreases under stress conditions (death of
branches or even whole trees).
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Table 2.9 Spruce budworm
versus forest—parameter
values

Parameter Value Units

rB 1.52 year−1

rS 0.095 year−1

rE 0.92 year−1

k 355 larvae/branch
a 1.11 larvae/branch
ϕ 43,200 larvae/acre/year
KS 25,440 branch/acre
KE 1 –

The energy reserve also satisfies an equation of the logistic type

dE

dt
= rEE

(
1 − KE

E

)
− P

B

S
(2.55)

where the second term on the RHS describes the stress exerted on the trees by the
budworm’s consumption of foliage. In this expression B

S represents the number of
budworms per branch. The proportionality factor P is given by

P = pE2

E2 + T2
E

(2.56)

as the stress on the trees is related to the amount of foliage consumed (P declines
sharply when E falls below a threshold TE).

The initial conditions (ICs) are taken as:

B(t = 0) = 10; S(t = 0) = 7, 000; E(t = 0) = 1 (2.57)

The model parameters are given in Table 2.9, [13]. The 3 × 3 ODE model—
Eqs. (2.50)–(2.56)—are solved by the code in function spruce_budworm_odes.

function xt = spruce_budworm_odes(t ,x )

% Set global variables
global rb k beta a rs Ks re Ke p Te

% Transfer dependent variables
B = x ( 1 ) ;
S = x ( 2 ) ;
E = x ( 3 ) ;

% Model Parameters
Kb = k*S*E ^ 2 / (E^2+Te ^ 2 ) ;
alpha = a*S ;
g = beta*B ^ 2 / (alpha^2+B ^ 2 ) ;
P = p*E ^ 2 / (Te^2+E ^ 2 ) ;
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% Temporal derivatives
Bt = rb*B*(1−B /Kb ) − g ;
St = rs*S*(1−(S /Ks ) * (Ke /E ) ) ;
Et = re*E*(1−E /Ke ) − P*B /S ;

% Transfer temporal derivatives
xt = [Bt St Et ] ' ;

Function spruce_budworm_odes Function for the solution of Eqs. (2.50)–(2.56) and associated
algebraic equations

We can note the following details about this function:

1. After defining the global variables which are shared with the main program to
be discussed next, the dependent variable vector received from the integration
function, x, is transferred to problem oriente variables to facilitate programming

% Global variables
global rb k beta a rs Ks re Ke p Te

% Transfer dependent variables
B = x(1);
S = x(2);
E = x(3);

2. The problem algebraic variables are computed from the dependent variable vector
(B, S, E)T

% Temporal derivatives

Kb = k*S*Eˆ2/(Eˆ2+Teˆ2); alpha = a*S; g =
beta*Bˆ2/(alphaˆ2+Bˆ2); P = p*Eˆ2/(Teˆ2+Eˆ2);

Note the importance of ensuring that all variables and parameters on the RHS of
these equations are set numerically before the calculation of the RHS variables.

3. The ODEs, Eqs. (2.50), (2.54), (2.55) are then programmed and the resulting tem-
poral derivatives are transposed to a column vector as required by the integrator

% Temporal derivatives
Bt = rb*B*(1-B/Kb) - g;
St = rs*S*(1-(S/Ks)*(Ke/E));
Et = re*E*(1-E/Ke) - P*B/S;
%
% Transfer temporal derivatives
xt = [Bt St Et]’;

The main program that calls the ODE function spruce_budworm_odes is
shown in Budworm_main

close all
clear all
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% start a stopwatch timer
tic

% set global variables
global rb k beta a rs Ks re Ke p Te

% model parameters
rb = 1 . 5 2 ;
k = 355;
beta = 43200;
a = 1 . 1 1 ;
rs = 0 . 0 9 5 ;
Ks = 25440;
re = 0 . 9 2 ;
Ke = 1 . 0 ;
p = 0 . 0 0 1 9 5 ;
Te = 0 . 0 3 ;

% initial conditions
t0 = 0 ;
tf = 200;
B = 10;
S = 7000;
E = 1 ;
x = [B S E ] ' ;

% call to ODE solver (comment /decomment one of the methods
% to select a solver )

% method = 'Euler '
% method = 'rkf45 '
% method = 'ode45 '
method = 'ode15s '

%
switch method

% Euler
case ( 'Euler ' )

Dt = 0 . 0 1 ;
Dtplot = 0 . 5 ;
[tout , yout ] = euler_solver (@spruce_budworm_odes , . . .

t0 , tf , x , Dt , Dtplot ) ;
% rkf45
case ( 'rkf45 ' )

hmin = 1e−3;
nstepsmax = 1000;
abstol = 1e−3;
reltol = 1e−3;
Dtplot = 0 . 5 ;
[tout ,yout ,eout ] = rkf45_solver (@spruce_budworm_odes , . . .

t0 ,tf ,x ,hmin ,nstepsmax ,abstol , . . .
reltol ,Dtplot ) ;

figure ( 5 )
plot (tout ,eout )
xlabel ( 't ' ) ;
ylabel ( 'truncation error ' ) ;

% ode45
case ( 'ode45 ' )

options = odeset ( 'RelTol ' , 1e−6 , 'AbsTol ' , 1e−6);
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t=[t0 : 0 . 5 :tf ] ;
[tout , yout ] = ode45 (@spruce_budworm_odes ,t ,x , . . .

options ) ;
% ode15s
case ( 'ode15s ' )

options = odeset ( 'RelTol ' , 1e−6 , 'AbsTol ' , 1e−6);
t=[t0 : 0 . 5 :tf ] ;
[tout , yout ] = ode15s (@spruce_budworm_odes ,t ,x , . . .

options ) ;

end
% plot results
figure ( 1 )
subplot ( 3 , 1 , 1 )
plot (tout ,yout ( : , 1 ) , 'k ' ) ;
% xlabel ( 't [years ] ' ) ;
ylabel ( 'B (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
% title ( 'Budworm density ' ) ;
subplot ( 3 , 1 , 2 )
plot (tout ,yout ( : , 2 ) , 'k ' ) ;
% xlabel ( 't [years ] ' ) ;
ylabel ( 'S (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
% title ( 'Branch density ' )
subplot ( 3 , 1 , 3 )
plot (tout ,yout ( : , 3 ) , 'k ' ) ;
xlabel ( 't [years ] ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
ylabel ( 'E (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
set (gca , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
% title ( 'Energy ' ) ;
figure ( 2 )
plot3 (yout ( : , 1 ) ,yout ( : , 2 ) ,yout ( : , 3 ) , 'k ' )
xlabel ( 'B (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
ylabel ( 'S (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
zlabel ( 'E (t ) ' , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;
grid
title ( ' 3D phase plane plot ' , 'FontName ' , 'Helvetica ' , . . .

'FontSize ' , 1 2 ) ;
set (gca , 'FontName ' , 'Helvetica ' , 'FontSize ' , 1 2 ) ;

% read the stopwatch timer
tcpu=toc ;

Script Budworm_main Main program for the solution of Eqs. (2.50)–(2.56)

We can note the following points about this main program:

1. First, variables are defined as global so they can be shared with the ODE routine
2. The model parameters are then defined numerically
3. The time scale and the initial conditions of Eq. (2.57) are defined
4. The parameters of the integrator, e.g., error tolerances, are set and an integrator is

selected among four possible choices, e.g., euler_solver, rkf45_solver
(among the basic integrators introduced earlier in this chapter) or ode45 and
ode15s (among the integrators available in the MATLAB ODE suite). Table 2.10
shows a comparison of the performance of these and other IVP solvers applied to
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Table 2.10 Performance of different IVP solvers applied to the spruce budworm problem

Euler Heun rkf45 ros23p ode45 ode15s Adams BDF

N. steps 20,000 20,000 1,122 20,520 837 2,109 2,117
CPU time 2.5 4.9 1.0 4.24 1.1 2.2 2.2

Computational times are normalized with respect to the time spent by the most efficient solver, in
this example, rkf45

Eqs. (2.50)–(2.56). Absolute and relative tolerances were fixed to 10−6. For this
particular example, the most efficient solver is rkf45 while Heun’s method requires
the highest computational cost. These results show that the system of ODEs is not
stiff (rkf45 is an explicit time integrator) and that time step size adaptation is an
important mechanism to ensure specified tolerances and to improve computational
efficiency (we have used a conservatively small step size with fixed step integrators
such as Euler’s and Heun’s method).

5. After calculating the solution, a series of plots displays the numerical solution.

The plotted solutions correspond with Fig. 2.7, for the time evolution of the three
states, and Fig. 2.8, for the 3D phase plane. The oscillatory nature of the solution
resulting from the combination of slow and fast dynamics depicted in Fig. 2.7 is
clear. Also, the number of nonlinear ODEs (three) and associated algebraic equations
demonstrates the utility of the numerical solution; in other words, analytical solution
of this model is precluded because of its size and complexity.

2.5.2 Liming to Remediate Acid Rain

As a final ODE example application, we consider the modeling of an ecological
system described by a 3 × 3 system of nonlinear ODEs. Specifically, the effect
of acid rain on the fish population of a lake and the effect of remedial liming is
investigated. This model is described in [14].

The fish population N(t) is growing logistically, i.e.,

dN

dt
= r(C)N − r0N2

K(C)
− H, N(0) = N0 > 0 (2.58)

where r(C) is the specific growth rate, which depends on the acid concentration C(t)
in the following way:

r(C) =
⎧⎨
⎩

r0 if C < Clim
r0 − ν(C − Clim) if Clim < C < Cdeath
0 if Cdeath < C < Q/δ

, (2.59)
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Fig. 2.7 Evolution of the three state variables (B(t), S(t) and E(t)) from the problem described by
Eqs. (2.50), (2.54) and (2.55)

Fig. 2.8 Composite plot
of the dependent variable
vector from Eqs. (2.50), (2.54)
and (2.55)
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K(C) is the carrying capacity (i.e., the maximum population density that the eco-
system can support), which also depends on C(t)

K(C) =
⎧⎨
⎩

K0 if C < Clim
K0 − ϕ(C − Clime) if Clim < C < Cdeath
Klim if Cdeath < C < Q/δ

, (2.60)
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Table 2.11 Table of
parameter values for
Eqs. (2.58)–(2.62)

r0 = 0.02 Q = 2
Clim = 50 δ = 0.002
ν = 0.0001 δ0 = 0.005
ϕ = 0.05 η = 0.04
K0 = 100,000 η0 = 0.004
Klim = 100 H = 100

and H is the harvesting rate. In Eqs. (2.59)–(2.60), Clim denotes the critical value of
the acid concentration (between 0 and Clim, acid is harmless to the fish population)
and Cdeath = (r0 − νClime)/ν is the concentration above with the fish population
completely stops growing.

We suggest a careful study of the RHS of Eq. (2.58) and the switching functions
of Eqs. (2.59)–(2.60) since these functions reflect several features of the model.

The acid concentration C(t) is described by the ODE

dC

dt
= Q − δC − δ0E (2.61)

where Q is the inlet acid flow rate (due to acid rain), δ is the natural depletion rate,
while δ0 is the depletion rate due to liming. E is the liming effort applied to maintain
the lake at a permissible acid concentration Clim, and is given by the ODE

dE

dt
= η(C − Clim) − η0E (2.62)

where η represents the control action and η0 is the natural depletion rate of E.
Again, we suggest a careful analysis of the RHS functions of Eqs. (2.61) and

(2.62). The complexity of the model is clearly evident from Eqs. (2.58)–(2.62), e.g.,
the nonlinear switching functions of Eqs. (2.59) and (2.60). Thus, although some
analytical analysis is possible as we demonstrate in the subsequent discussion, a
numerical solution of Eq. (2.24) is the best approach to gain an overall understanding
of the characteristics of the model. In particular, we will compute the state space
vector (the solution of Eqs. (2.58), (2.61) and (2.62)), N(t), C(t), E(t) by numerical
ODE integration.

The initial conditions for Eqs. (2.58), (2.61) and (2.62) are taken as

N(t = 0) = 72,500; C(t = 0) = 80; E(t = 0) = 190 (2.63)

and the parameter values are given in Table 2.11.

If harvesting is below a certain threshold value, i.e., H <
K(C≡){r(C≡)}2

4r0
, there exist

two equilibrium points Pi(N≡, C≡, E≡) with i = 1, 2 in the state space. The notation
≡ indicates that the state is at equilibrium.

E≡ =
η
(

Q
δ

− Clim

)

η0 + η δ0
δ

(2.64)
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C≡ = Q − δ0E≡

δ
(2.65)

N≡
1 = K(C≡)r(C≡)

2r0

(
1 −

√
1 − 4r0H

K(C≡){r(C≡)}2

)
(2.66)

N≡
2 = K(C≡)r(C≡)

2r0

(
1 +

√
1 − 4r0H

K(C≡){r(C≡)}2

)
(2.67)

The equilibrium point P1 corresponding to N≡
1 of Eq. (2.66) is unstable (two

eigenvalues of the Jacobian matrix have negative real parts, but the third one is real
positive, so that P1 is a saddle point) whereas P2 corresponding to N≡

2 of Eq. (2.67)
is locally asymptotically stable (the three eigenvalues of the Jacobian matrix have
negative real parts). In fact, when C and E tends to their steady-state values C≡ and
E≡, it is possible to rewrite the ODE for N , Eq. (2.58), as follows

dN

dt
= − r0

K(C≡)
(N − N≡

1 )(N − N≡
2 ) (2.68)

Since N≡
2 > N≡

1 , the RHS of Eq. (2.68) expression shows that

dN

dt
< 0 if N < N≡

1 or N > N≡
2 (2.69)

dN

dt
> 0 if N≡

1 < N < N≡
2 (2.70)

In turn, the fish population tends to extinction if N(0) < N≡
1 , and tends to N≡

2 if
N(0) > N≡

1 . Therefore, the equilibrium point P2 is globally asymptotically stable in
the region

{
(N, C, E) : N≡

1 ≤ N ≤ K(0), 0 ≤ C ≤ Q

δ
, 0 ≤ E ≤ η

η0

(
Q

δ
− Clim

)}

(2.71)
For the parameter value of Table 2.11, the equilibrium points are [14]

N≡
1 = 6,671; N≡

2 = 75,069 (2.72)

The code fish_odes implements a solution to Eqs. (2.58)–(2.62) including
several variations. First, the function to define the model equations is listed.

function xt = fish_odes (t ,x )
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% Set global variables
global r0 Clim alpha Cdeath K0 Klim beta H Q delta delta0
global eta eta0

% x has three columns corresponding to three different
% column solution vectors (which can be used for
% numerical evalution of the Jacobian ) :
ncols = size (x , 2 ) ;

for j=1:ncols

% Transfer dependent variables
N = x ( 1 ,j ) ;
C = x ( 2 ,j ) ;
E = x ( 3 ,j ) ;

% Temporal derivatives
if C < Clim

r = r0 ;
elseif Clim <= C < Cdeath

r = r0−alpha*(C−Clim ) ;
else

r = 0 ;
end
%
if C < Clim

K = K0 ;
elseif Clim <= C < Cdeath

K = K0−beta*(C−Clim ) ;
else

K = Klim ;
end

Nt = r*N − r0*N^ 2 /K − H ;
Ct = Q − delta*C − delta0*E ;
Et = eta*(C−Clim ) − eta0*E ;

% Transfer temporal derivatives
% (One column for each column of x )
xt ( : ,j ) = [Nt Ct Et ] ' ;

end ;

Function fish_odes Function for Eqs. (2.58)–(2.62)

We can note the following points about fish_odes.

1. After defining a set of global variables, a 3× ncol matrix, x(3,1), is defined,
where the first index defines a row dimension of three for the state vector
(N, C, E)T , and the second index defines a column dimension of one for one
computed solution corresponding to a single set of parameters and initial condi-
tions defined in the main program that calls fish_odes (discussed next)

% x has three columns corresponding to three different
% column solution vectors
ncols = size(x,2);
% Step through the ncol solutions
for j=1:ncols

%
% Transfer dependent variables
N = x(1,j);



98 2 More on ODE Integration

C = x(2,j);
E = x(3,j);

2. The expressions (2.59) to (2.60) are then programmed

% Parameters r, K set
%
if C < Clim

r = r0;
elseif Clim <= C < Cdeath

r = r0-alpha*(C-Clim);
else

r = 0;
end
%
if C < Clim

K = K0;
elseif Clim <= C < Cdeath

K = K0-beta*(C-Clim);
else

K = Klim;
end

Note in particular the switching to three possible values of the parameters r and
k depending on the current value of C.

3. The temporal derivatives for the three solutions are then computed according to
ODEs, (2.58), (2.61), and (2.62)

% Temporal derivatives
Nt = r*N - r0*Nˆ2/K - H;
Ct = Q - delta*C - delta0*E;
Et = eta*(C-Clim) - eta0*E;

4. The temporal derivatives are then stored in a 3 × 1 matrix for return to the ODE
integrator (a total of 3 × 1 = 3 derivatives)

% Transfer temporal derivatives
% (One column for each column of x)
xt(:,j) = [Nt Ct Et]’;

Note the index for the solutions, j, is incremented by the for statement at the
beginning of fish_odes that is terminated by the end statement. In the present
case, ncol=1 (just one solution is computed). However, this approach to comput-
ing multiple solutions in parallel could be used to conveniently compare solutions,
generated, for example, for multiple sets of initial conditions or model parameters.
In other words, having the solutions available simultaneously would facilitate their
comparison, e.g., by plotting them together. This feature of computing and plotting
multiple solutions in a parametric study is illustrated subsequently in Fig. 2.11.

The main program that calls fish_odes is presented in fish_main.
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close all
clear all

% start a stopwatch timer
tic

% set global variables
global r0 Clim alpha Cdeath K0 Klim beta H Q delta delta0
global eta eta0 fac thresh vectorized

% model parameters
r0 = 0 . 0 2 ;
Clim = 50;
alpha = 0 . 0 0 0 1 ;
Cdeath = (r0+alpha*Clim ) /alpha ;
K0 = 100000;
Klim = 100;
beta = 0 . 0 5 ;
H = 100;
Q = 2 ;
delta = 0 . 0 0 2 ;
delta0 = 0 . 0 0 5 ;
eta0 = 0 . 0 0 4 ;

% select the control action 'eta ' (comment /decomment one
% of the actions )
action = 'strong '

% action = 'moderate '
% action = 'weak '
switch action

% strong
case ( 'strong ' )

eta = 0 . 5 ;
% moderate
case ( 'moderate ' )

eta = 0 . 1 ;
% weak
case ( 'weak ' )

eta = 0 . 0 4 ;
end

% equilibrium points
[N1star ,N2star ] = equilibrium_fish(r0 ,Clim ,alpha , . . .

Cdeath ,K0 ,Klim ,beta ,H ,Q ,delta , . . .
delta0 ,eta ,eta0 )

% initial conditions
t0 = 0 ;
tf = 3560;
N = 72500;
% N = 5000;
C = 80;
E = 190;
x = [N C E ] ' ;

% call to ODE solver (comment /decomment one of the methods
% to select a solver )
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% method = 'euler '
% method = 'midpoint '
% method = 'heun '
% method = 'heun12 '
% method = 'rk4 '
% method = 'rkf45 '
% method = 'ros3p '
method = 'ros23p '
% method = 'ode45 '
% method = 'ode15s '
% method = 'lsodes '
switch method

% Euler
case ( 'euler ' )

Dt = 0 . 1 ;
Dtplot = 20;
[tout ,xout ] = euler_solver (@fish_odes ,t0 ,tf ,x , . . .

Dt ,Dtplot ) ;
% midpoint
case ( 'midpoint ' )

Dt = 5 ;
Dtplot = 20;
[tout ,xout ] = midpoint_solver(@fish_odes ,t0 , . . .

tf ,x ,Dt ,Dtplot ) ;
% Heun
case ( 'heun ' )

Dt = 5 ;
Dtplot = 20;
[tout ,xout ] = heun_solver (@fish_odes ,t0 ,tf ,x , . . .

Dt , Dtplot ) ;
% Heun12
case ( 'heun12 ' )

hmin = 0 . 0 0 0 1 ;
nstepsmax = 1e5 ;
abstol = 1e−3;
reltol = 1e−3;
Dtplot = 20;
[tout ,xout ] = heun12_solver (@fish_odes ,t0 ,tf , . . .

x ,hmin ,nstepsmax , . . .
abstol ,reltol ,Dtplot ) ;

% rk4
case ( 'rk4 ' )

Dt = 5 ;
Dtplot = 20;
[tout , xout ] = rk4_solver (@fish_odes ,t0 ,tf ,x , . . .

Dt ,Dtplot ) ;
% rkf45
case ( 'rkf45 ' )

hmin = 0 . 0 0 0 1 ;
nstepsmax = 1e5 ;
abstol = 1e−3;
reltol = 1e−3;
Dtplot = 20;
[tout ,xout ,eout ] = rkf45_solver (@fish_odes ,t0 , . . .

tf ,x ,hmin ,nstepsmax , . . .
abstol ,reltol ,Dtplot ) ;

figure ( 2 )
plot (tout / 3 5 6 ,eout ( : , 1 ) , ' : r ' ) ;
hold on
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plot (tout / 3 5 6 ,eout( : ,2) , ' − −b ' ) ;
plot (tout / 3 5 6 ,eout( : ,3) , ' − −g ' ) ;
xlabel ( 't ' ) ;
ylabel ( 'e (t ) ' ) ;

% ros3p
case ( 'ros3p ' )

Dt = 1 ;
Dtplot = 20;
fac = [ ] ;
thresh = 1e−12;
[tout ,xout ] = ros3p_solver (@fish_odes , . . .

@jacobian_num_fish , . . .
t0 ,tf ,x ,Dt ,Dtplot ) ;

% ros23p
case ( 'ros23p ' )

hmin = 0 . 0 0 0 1 ;
nstepsmax = 1e5 ;
abstol = 1e−3;
reltol = 1e−3;
Dtplot = 1 ;
fac = [ ] ;
thresh = 1e−12;
[tout ,xout ,eout ] = ros23p_solver (@fish_odes , . . .

@jacobian_num_fish , . . .
@ft_fish ,t0 ,tf ,x , . . .
hmin ,nstepsmax , . . .
abstol ,reltol ,Dtplot ) ;

figure ( 2 )
plot (tout ,eout ( : , 1 ) , ' : r ' ) ;
hold on
plot (tout ,eout( : ,2) , ' − −b ' ) ;
plot (tout ,eout( : ,3) , ' − −g ' ) ;
xlabel ( 't ' ) ;
ylabel ( 'e (t ) ' ) ;

% ode45
case ( 'ode45 ' )

options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
Dtplot = 20;
t = [t0 :Dtplot :tf ] ;
[tout ,xout ] = ode45 (@fish_odes ,t ,x ,options ) ;

% ode15s
case ( 'ode15s ' )

options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
Dtplot=20;
t=[t0 :Dtplot :tf ] ;
[tout , xout ] = ode15s (@fish_odes ,t ,x ,options ) ;

% lsodes
case ( 'lsodes ' )

resname = 'fish_odes ' ;
jacname = ' [ ] ' ;
neq = 3 ;
Dtplot = 20;
tlist = [t0+Dtplot :Dtplot :tf ] ;
itol = 1 ;
abstol = 1e−3;
reltol = 1e−3;
itask = 1 ;
istate = 1 ;
iopt = 0 ;
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lrw = 50000;
rwork = zeros (lrw , 1 ) ;
liw = 50000;
iwork = zeros (liw , 1 ) ;
mf = 222;
[tout ,xout ] = lsodes (resname ,jacname ,neq ,x ,t0 , . . .

tlist ,itol ,reltol ,abstol , . . .
itask ,istate ,iopt ,rwork , . . .
lrw ,iwork ,liw ,mf ) ;

end

% plot results
figure ( 1 )
subplot ( 3 , 1 , 1 )
plot (tout / 3 5 6 ,xout ( : , 1 ) , ' − ' ) ;
% xlabel ( 't [years ] ' ) ;
ylabel ( 'N (t ) ' ) ;
% title ( 'Fish population ' ) ;
subplot ( 3 , 1 , 2 )
plot (tout / 3 5 6 ,xout ( : , 2 ) , ' − ' ) ;
% xlabel ( 't [years ] ' ) ;
ylabel ( 'C (t ) ' ) ;
% title ( 'Acid concentration ' )
subplot ( 3 , 1 , 3 )
plot (tout / 3 5 6 ,xout ( : , 3 ) , ' − ' ) ;
xlabel ( 't [years ] ' ) ;
ylabel ( 'E (t ) ' ) ;
% title ( 'Liming effort ' ) ;

% read the stopwatch timer
tcpu=toc ;

Script fish_main Main program that calls subordinate routine fish_odes

We can note the following points about fish_main.

1. First, global variables are defined and the model parameters are set.
2. An integrator is then selected from a series of basic or advanced integrators (also

including LSODES, which is a ODE solver from ODEPACK [2] transformed into
a MEX-file - we will give more details on how to create MEX-files in a subsequent
section) by uncommenting a line, in this case for ros23p_solver discussed
previously.

3. The degree of liming is then set by a switch function which in this case selects a
character string for “strong.”

4. Calls to the various integrators are listed. The call to ros23p is similar to
that of the main program Budworm_main. The details for calling the various
integrators are illustrated with the coding of the calls. Table 2.12 shows a compar-
ison of the performance of these solvers. Note that the performance of the solvers
increases as the control law becomes weaker, in particular, for Euler’s and Heun’s
methods.

5. The numerical solutions resulting from the calls to the various integrators are
plotted. Note in the case of ros23p, the estimated errors (given by the sub-
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Table 2.12 Performance of different IVP solvers applied to the liming to remediate acid rain
problem

ode15s
Control action Euler Heun rkf45 ros23p ode45 Adams BDF

Strong N. steps 17,800 1,780 212 213 101 281 271
CPU time 38.9 8.4 3.4 5.0 2.4 4.4 4.2

Moderate N. steps 3560 356 193 203 44 123 127
CPU time 8.0 1.8 3.2 4.9 1.4 2.8 2.6

Weak N. steps 1780 178 193 193 29 79 82
CPU time 4.0 1.0 3.2 4.6 1.2 2.2 2.1

Computational times are normalized with respect to the time spent by the most efficient solver, in
this example, Heun’s solver with weak control law

traction of Eq. (2.45a) and (2.45b) and implemented in ssros23p) are also
plotted.

To complete the programming of Eqs. (2.58)–(2.62), we require a function for
the calculation of the equilibrium points (called by fish_odes) and a function for
the Jacobian matrix (called by ssros23p). Function equillibrium_fish is a
straightforward implementation of Eqs. (2.64)–(2.67).

function [N1star ,N2star ] = equilibrium_fish(r0 ,Clim , . . .
alpha ,Cdeath ,K0 ,Klim ,beta , . . .
H ,Q ,delta ,delta0 ,eta ,eta0 )

%
Estar = eta*(Q /delta−Clim ) / ( eta0+eta*(delta0 /delta ) ) ;
Cstar = (Q−delta0*Estar ) /delta ;

%
if Cstar < Clim

r = r0 ;
elseif Clim <= Cstar < Cdeath

r = r0−alpha*(Cstar−Clim ) ;
else

r = 0 ;
end

%
if Cstar < Clim

K = K0 ;
elseif Clim <= Cstar < Cdeath

K = K0−beta*(Cstar−Clim ) ;
else

K = Klim ;
end

%
N1star = (K*r ) / ( 2 *r0)*(1−sqrt(1−(4*r0*H ) / ( K*r ^ 2 ) ) ) ;
N2star = (K*r ) / ( 2 *r0 )* (1+sqrt(1−(4*r0*H ) / ( K*r ^ 2 ) ) ) ;

Function equillibrium_fish Function for the calculation of the equilibrium points from Eq. (2.64)
to (2.67)
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Function jacobian_fish computes the analytical Jacobian of the ODE sys-
tem, Eqs. (2.58), (2.61) and (2.62)

function Jac = jacobian_fish (t ,x )
%
% Set global variables
global r0 Clim alpha Cdeath K0 Klim beta H Q delta delta0
global eta eta0
%
% Transfer dependent variables
N = x ( 1 ) ;
C = x ( 2 ) ;
E = x ( 3 ) ;
%
% Jacobian matrix
%
% Nt = r*N − r0*N^ 2 /K − H ;
% Ct = Q − delta*C − delta0*E ;
% Et = eta*(C−Clim ) − eta0*E ;
%
%
if C < Clim

r = r0 ;
K = K0 ;
Jac = [r−2*r0*N /K 0 0 ;

0 −delta −delta0 ;
0 eta −eta0 ] ;

elseif Clim <= C < Cdeath
r = r0−alpha*(C−Clim ) ;
K = K0−beta*(C−Clim ) ;
Jac = [r−2*r0*N /K −alpha*N+beta*r0*N^ 2 /K^2 0 ;

0 −delta −delta0 ;
0 eta −eta0 ] ;

else
r = 0 ;
K = Klim ;
Jac = [r−2*r0*N /K 0 0 ;

0 −delta −delta0 ;
0 eta −eta0 ] ;

end

Function jacobian_fish Function for the calculation of the Jacobian matrix of Eqs. (2.58), (2.61)
and (2.62)

Note that the Jacobian matrix programmed in jacobian_fish also has a set
of three switching functions, which give different elements of the Jacobian matrix
depending on the current value of C. To illustrate the origin of the elements of the
Jacobian matrix, consider the first case for C < Clim.

if C < Clim
r = r0;
K = K0;

Jac = [r-2*r0*N/K 0 0 ;
0 -delta -delta0 ;
0 eta -eta0 ];
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The first row has the three elements for the Jacobian matrix from Eq. (2.58). The
RHS function of Eq. (2.58) is:

r(C)N − r0N2

K(C)
− H

with r = r0, K = K0, the RHS function becomes

r0N − r0N2

K0
− H

We now have the following expressions for the derivative of this function with respect
to each of the state variables

ρ
(

r0N − r0N2

K0
− H

)
ρN

= r0 − 2r0N

K0
;

ρ
(

r0N − r0N2

K0
− H

)
ρC

= 0

ρ
(

r0N − r0N2

K0
− H

)
ρE

= 0

which are programmed as

Jac = [r-2*r0*N/K 0 0 ;

The remaining six elements of the Jacobian matrix follow in the same way from
the RHS functions of Eqs. (2.61) and (2.62).

We can note three important features of the programming of the Jacobian matrix:

• If the state vector is of length n (i.e., n ODEs), the Jacobian matrix is of size n ×n.
This size grows very quickly with increasing n. Thus for large systems of ODEs,
e.g., n > 100, the Jacobian matrix is difficult to evaluate analytically (we must
derive n × n derivatives).

• The Jacobian matrix can have a large number of zeros. Even for the small 3 × 3
ODE problem of Eqs. (2.58), (2.61), and (2.62), the Jacobian matrix has four zeros
in a total of nine elements. Generally, for physical problems, the fraction of zeros
increases rapidly with n and is typically 0.9 or greater. In other words, Jacobian
matrices tend to be sparse, and algorithms that take advantage of the sparsity by
not storing and processing the zeros can be very efficient. Therefore, scientific
computation often depends on the use of sparse matrix algorithms, and scientific
software systems such as MATLAB have sparse matrix utilities.

• Because the differentiation required for an analytical Jacobian is often diffi-
cult to develop, numerical methods for producing the required n × n partial
derivatives are frequently used, as illustrated with Eq. (2.49) and in function
jacobian_stiff_odes_fd. A routine for calculating the numerical Jacobian
for Eqs. (2.58), (2.61), and (2.62) is presented in functionjacobian_num_fish.
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function Jac = jacobian_num_fish(t ,x )
%
% Set global variables
global fac thresh vectorized
%
% numerical Jacobian matrix
tstar = t ;
xstar = x ;
xtstar = fish_odes (tstar ,xstar ) ;
threshv = [thresh ;thresh ;thresh ] ;
vectorized = 1 ;
[Jac , fac ] = numjac (@fish_odes ,tstar ,xstar ,xtstar ,threshv , . . .

fac ,vectorized ) ;

Function jacobian_num_fish Function for the numerical calculation of the Jacobian of
Eqs. (2.58), (2.61) and (2.62)

We will not consider the details of jacobian_num_fish, but rather, just point
out the use of fish_odes for ODEs (2.58), (2.61) and (2.62), and the MATLAB
routines threshv and numjac for the calculation of a numerical Jacobian. Clearly
calls to the MATLAB routines for a numerical Jacobian will be more compact than
the programming of the finite difference approximations for large ODE systems (as
illustrated by the small 2 × 2 ODE system in function jacobian_stiff_odes_fd).

Coding to call jacobian_num_fish is illustrated in the use of ros3p (fixed
step LIRK integrator) in fish_main.

This completes the coding of Eqs. (2.58), (2.61) and (2.62). We conclude this
example by considering the plotted output from the MATLAB code fish_main
given in Figs. 2.9 and 2.10. We note in Fig. 2.9 that the solution N(t) reaches a stable
equilibrium point N≡

2 = 93,115, which is the value for strong liming (η = 0.5) as set
in fish_main. This constrasts with the stable equilibrium point of Eq. (2.72) for
weak liming (η = 0.04). As might be expected, the equilibrium point for weak lim-
ing is below that for strong liming (increased liming results in a higher equilibrium
fish population).

Figure 2.10 indicates that the maximum estimated error for N(t) is about 3.6.
Since N(t) varies between 72,500 (the initial condition set in fish_main) and 93,115
(the final equilibrium value of N(t)), the maximum fractional error is 3.6/72500 =
0.0000496, which is below the specified relative error of reltol=1e-3 set in
fish_main. Of course, this error of 3.6 is just estimated, and may not be the actual
integration error, but this result suggests that the numerical solution has the specified
accuracy.

Also, the estimated errors for the other two state variables, C(t) and E(t), are so
small they are indiscernible in Fig. 2.10. This is to be expected since the magnitudes
of these variables are considerably smaller than for N(t) (see Fig. 2.9). In conclusion,
these results imply that the error estimate of the embedded LIRK algorithm performed
as expected in this application.
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Fig. 2.9 Solution of Eqs. (2.58), (2.61) and (2.62) from fish_main for a strong control action
η = 0.5

Fig. 2.10 Estimated error
from ros23p for Eqs. (2.58),
(2.61) and (2.62) from
fish_main
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Fig. 2.11 State variable plots for Eqs. (2.58), (2.61) and (2.62) for the three liming conditions
corresponding to η = 0.04, 0.1, 0.5

We conclude this discussion by including a few plots—see Fig. 2.11—with the
solutions for the three liming conditions (η = 0.04, 0.1, 0.5) superimposed so that
the effect of the liming is readily apparent.

As another result, we can mention that for the weak liming condition (η = 0.04),
if the initial fish population is lower than the first unstable equilibrium point
N≡

1 = 6,661 , e.g. N≡
1 = 5,000, the fish population decreases and eventually van-

ishes as predicted by the theoretical analysis. Also, for this case, an event detection is
necessary to prevent the fish population from becoming negative (a function
events.m monitors the value of N(t)). In this respect, the model equations are
not well formulated (they allow N(t) to become negative).
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2.6 On the Use of SCILAB and OCTAVE

As mentioned before, MATLAB has been selected as the main programming environ-
ment because of its convenient features for vector/matrix operations that are central
to the solution of AE/ODE/PDE systems. In addition, MATLAB provides a very
complete library of numerical algorithms (for numerical integration, matrix opera-
tions, eigenvalue computation,…), e.g., the MATLAB ODE SUITE [1], that can be
used advantageously in combination with the proposed MOL toolbox.

However, there exist very powerful open source alternatives, such as SCILAB
(for Scientific Laboratory) or OCTAVE, that can be used for the same purposes.
SCILAB and OCTAVE provide high-level, interpreted programming environments,
with matrices as the main data type, similar to MATLAB.

Initially named θlab (Psilab), the first software environment was created in 1990
by researchers from INRIA and École nationale des ponts et chaussées (ENPC) in
France. The SCILAB Consortium was then formed in 2003 [15] to broaden con-
tributions and promote SCILAB in academia and industry. In 2010, the Consor-
tium announced the creation of SCILAB Enterprises, which develops and maintain
SCILAB as an open source software but proposes commercial services to industry
(professional software and project development). With regard to the solution of ordi-
nary differential equations, SCILAB has an interface, called ode, to several solvers,
especially those from the FORTRAN library ODEPACK originally developed by
Alan Hindmarsh [2].

OCTAVE [16] was initially developed by John Eaton in the early 1990s, and then
developed further by many contributors following the terms of the GNU General
Public License (GPL) as published by the Free Software Foundation. The name
OCTAVE is inspired by Octave Levenspiel, former Chemical Engineering Professor
of John Eaton, who was known for his ability to solve numerical problems. OCTAVE
has a built-in ODE solver based on LSODE [3], and a DAE solver, DASSL, originally
developed by Linda Petzold [4]. Additional contributed packages are also available,
e.g., OdePkg, which has a collection of explicit and implicit ODE solvers and DAE
solvers.

An interesting feature of SCILAB and OCTAVE, as we will see, is the degree
of compatibility with MATLAB codes. In many cases, slight modifications of the
MATLAB codes will allow us to use them in SCILAB or OCTAVE.

Let us now show the programming of the spruce budworm dynamics—see
Eqs. (2.50)–(2.55)—in SCILAB highlighting the main differences with MATLAB.

The SCILAB script spruce_budworm_main.sci is the main program,
which now has an extension .sci instead of .m. The main features of this program are
the following:

• Commented lines (these lines are not read by the interpreter but are very useful to
explain the code) in SCILAB start with a double slash (//) as in C++, which is the
equivalent to the percentage symbol (%) in MATLAB.
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• The information to be displayed during the execution of the program can be
changed in SCILAB with the mode(k) command. With k=-1 the code runs
silently (no information is displayed).

• The stopwatch timer commands coincide with the MATLAB ones (tic, toc)
• Setting the global variables in SCILAB is slightly different than in MATLAB. In

SCILAB, each variable is inside quotation marks and it is separated from the other
variables by commas.

• One important difference with respect to the MATLAB codes is that the functions
must be loaded with the exec command. For instance, the ODEs are programmed
in function spruce_budworm_odes.sci and it is loaded with the command
exec(’spruce_budworm_odes.sci’). In MATLAB any function defined
in the path can be called.

• The definition of model parameters and initial conditions is exactly the same in
MATLAB and SCILAB.

• After the definition of the initial conditions, the ODE solver is chosen. In this case
two possibilities are offered, namely, Euler’s method and a Runge–Kutta–Fehlberg
implementation. Note that all our basic time integrators (presented in this chapter)
can easily be translated to SCILAB, and are provided in the companion software.
In the application example, Euler’s method is chosen by commenting out the line
method = ‘rkf45’. Then the select command with two different cases
is used. This command is equivalent to the switch command in MATLAB. As
’Euler’ is the method of choice, the code will run the lines corresponding to this
selection while the lines corresponding to’rkf45’will be blind to the execution.
An example of use of the SCILAB ODE library is included in Sect. 3.12.

• In order to use the Euler solver, it is required to load the function that implements
it: exec(’euler_solver.sci’). Then the function where the ODEs are
defined is called (spruce_budworm_odes.sci) practically in the same way
as in MATLAB. In this sense, in SCILAB we have

[tout,yout] = euler_solver(‘‘spruce_budworm_odes(t,x)’’,...
t0,tf,x,Dt,Dtplot);

while in MATLAB this line is written as:

[tout,yout] = euler_solver(@spruce_budworm_odes,...
t0, tf, x, Dt, Dtplot);

• Finally, the solution is plotted using the same commands as in MATLAB

/ / Display mode
mode( −1);

/ / Clear previous workspace variables
clear

/ / start a stopwatch timer

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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tic

/ / set global variables
global ( "rb " , "k " , "pbeta " , "a " , "rs " , "Ks " , "re " , "Ke " , "p " , "Te " )

/ / Load the subroutines
exec ( 'spruce_budworm_odes .sci ' )

/ / model parameters
rb = 1 . 5 2 ;
k = 355;
pbeta = 43200;
a = 1 . 1 1 ;
rs = 0 . 0 9 5 ;
Ks = 25440;
re = 0 . 9 2 ;
Ke = 1 ;
p = 0 . 0 0 1 9 5 ;
Te = 0 . 0 3 ;

/ / initial conditions
t0 = 0 ;
tf = 200;
B = 10;
S = 7000;
E = 1 ;
x = [B ,S ,E ] ' ;

/ / call to ODE solver (comment /decomment one of the methods
/ / to select a solver )
method = 'Euler '
/ / method = 'rkf45 '

select method ,
case 'Euler ' then

/ / Load the Euler solver subroutine
exec ( 'euler_solver .sci ' )
Dt = 0 . 0 1 ;
Dtplot = 0 . 5 ;
[tout ,yout ] = euler_solver ( "spruce_budworm_odes(t ,x ) " , . . .

t0 ,tf ,x ,Dt ,Dtplot ) ;
case 'rkf45 ' then

/ / Load the rkf45 solver subroutines
exec ( 'rkf45_solver .sci ' )
exec ( 'ssrkf45 .sci ' )
hmin = 0 . 0 0 1 ;
nstepsmax = 1000;
abstol = 0 . 0 0 1 ;
reltol = 0 . 0 0 1 ;
Dtplot = 0 . 5 ;
[tout ,yout ,eout ] = . . .

rkf45_solver ( "spruce_budworm_odes(t ,x ) " ,t0 ,tf ,x , . . .
hmin ,nstepsmax ,abstol ,reltol ,Dtplot ) ;

end

/ / Plot the solution
subplot ( 3 , 1 , 1 )
plot (tout ,yout ( : , 1 ) )
ylabel ( 'B (t ) ' , 'FontSize ' , 2 ) ;
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subplot ( 3 , 1 , 2 )
plot (tout ,yout ( : , 2 ) )
ylabel ( 'S (t ) ' , 'FontSize ' , 2 ) ;
subplot ( 3 , 1 , 3 )
plot (tout ,yout ( : , 3 ) )
xlabel ( 'Time [years ] ' , 'FontSize ' , 2 ) ;
ylabel ( 'E (t ) ' , 'FontSize ' , 2 ) ;

/ / read the stopwatch timer
tcpu = toc ( ) ;

Script spruce_budworm_main.sci Main program that calls functions Euler_solver.sci
and spruce_budworm_odes.sci

The other two SCILAB functions required to solve the problem are: spruce_
budworm_odes.sci (where the RHS of the ODEs are defined) and Euler_
solver.sci (containing the implementation of the Euler solver). These codes
are practically the same as in MATLAB, the main differences are those already
mentioned in the main script, i.e., the symbol used to comment the lines (//), the
way of setting the global variables and the mode command to select the information
printed during execution.

/ / Display mode
mode( −1);

function [xt ] = spruce_budworm_odes(t ,x )

/ / Output variables initialisation (not found in input
/ / variables )
xt= [ ] ;

/ / Set global variables
global ( "rb " , "k " , "pbeta " , "a " , "rs " , "Ks " , "re " , "Ke " , "p " , "Te " )

/ / Transfer dependent variables
B = x ( 1 ) ;
S = x ( 2 ) ;
E = x ( 3 ) ;

/ / Model Parameters
Kb = ( (k*S ) * (E ^ 2 ) ) / (E^2+Te^ 2 ) ;
alpha = a*S ;
g = (pbeta*(B ^ 2 ) ) / (alpha^2+B ^ 2 ) ;
P = (p*(E ^ 2 ) ) / (Te^2+E ^ 2 ) ;

/ / Temporal derivatives
Bt = (rb*B)*(1−B /Kb ) − g ;
St = (rs*S)*(1 −(S /Ks ) * (Ke /E ) ) ;
Et = ( (re*E)*(1−E /Ke)−(P*B ) /S ) ;

/ / Transfer temporal derivatives
xt = [Bt ,St ,Et ] ' ;
endfunction
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Function spruce_budworm_odes.sci Right hand side of the ODE system (2.50)–(2.55).

Finally, the SCILAB functionEuler_solver.sci contains another difference
with respect to MATLAB: the feval command

xnew = x + feval(odefunction,t,x)*Dt;

is substituted by

xnew = x+evstr(odefunction)*Dt;

where odefunction is an input parameter of type string.

/ / Display mode
mode( −1);

function [tout ,xout ] = euler_solver (odefunction ,t0 ,tf , . . .
x0 ,Dt ,Dtplot )

/ / Output variables initialisation (not found in input
/ / variables )
tout= [ ] ;
xout= [ ] ;

/ / Initialization
plotgap = round (Dtplot /Dt ) ; / / number of computation
/ / steps within a plot interval
Dt = Dtplot /plotgap ;
nplots = round ( (tf−t0 ) /Dtplot ) ; / / number of plots
t = t0 ; / / initialize t
x = x0 ; / / initialize x
tout = t0 ; / / initialize output value
xout = x0 ' ; / / initialize output value

/ / Implement Euler ' ' s method
for i = 1 :nplots
for j = 1 :plotgap

/ / Use MATLAB ' ' s feval function to access the
/ / function file , then take Euler step
xnew = x+evstr (odefunction)*Dt ;
t = t+Dt ;
x = xnew ;

end ;
/ / Add latest result to the output arrays
tout = [tout ;t ] ;
xout = [xout ;x ' ] ;
/ /

end ;
endfunction

Function Euler_solver.sci SCILAB version of the basic Euler ODE integrator

As mentioned before, SCILAB has an interface, called ode, to several solvers. The
use of function ode in SCILAB will be illustrated with a bioreactor example (see
Sect. 3.12). The different options for the solvers include: lsoda (that automatically

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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selects between Adams and BDF methods), adaptive RK of order 4, and Runge–
Kutta–Fehlberg.

On the other hand, OCTAVE comes with LSODE (for solving ODEs) and DASSL,
DASPK and DASRT (designed for DAEs). However, a whole collection of around
15 solvers is included in the package OdePkg http://octave.sourceforge.net/odepkg/
overview.html. This package include explicit RK solvers of different orders for ODE
problems, backward Euler method and versions of different FORTRAN solvers for
DAEs (as RADAU5, SEULEX, RODAS, etc.), as well as more sophisticated solvers
for implicit differential equations and delay differential equations which are out of
the scope of this book.

It must be mentioned that OCTAVE is even more compatible with MATLAB
than SCILAB. The main difference between MATLAB and OCTAVE is the call to
the ODE solvers when built-in functions are used. If time integration is carried out
using our solvers (Euler, rkf45, ros23p, etc.), the MATLAB codes developed in this
chapter can be directly used in OCTAVE. However, when built-in solvers are used,
slight modifications are required. For instance, the call to ode15s in MATLAB for
the spruce budworm problem is of the form:

options = odeset(’RelTol’,1e-6,’AbsTol’,1e-6);
t = [t0:0.5:tf];
[tout, yout] = ode15s(@spruce_budworm_odes,t,x,options);

where spruce_budworm_odes is the name of the function where the RHS of the
ODE equations is implemented, t is the time span for the integration, x are the initial
conditions and options is an optional parameter for setting integration parameters
as the tolerances or the maximum step size.

The call to the lsode solver in OCTAVE is carried out as follows:

lsode_options(’absolute tolerance’,1e-6);
lsode_options(’relative tolerance’,1e-6);
tout = [t0:0.5:tf];
[yout, istat, msg] = lsode(@spruce_budworm_odes, x, tout);

The most important difference with respect to MATLAB is the order of the depen-
dent and independent problem variables x and t. Note that in OCTAVE x is the second
input parameter and t the third. This also affects functionspruce_budworm_odes.
In MATLAB the first line of this code reads as:

function xt = spruce_budworm_odes(t,x)

while in OCTAVE we have

function xt = spruce_budworm_odes(x,t)

Note that if we want to reuse this code for integration with our solvers, they must
be slightly modified accordingly. For instance, in MATLAB, Euler solver make calls
to function spruce_budworm_odes

xnew = x + feval(odefunction,t,x)*Dt;

http://octave.sourceforge.net/odepkg/overview.html
http://octave.sourceforge.net/odepkg/overview.html
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Table 2.13 Performance of different IVP solvers in several environments for the spruce budworm
and liming to remediate acid rain problems

Spruce budworm Acid rain

MATLAB Euler 23.85 2.96
rkf45 10.00 2.53
ode45 10.77 1.77
ode15s 21.92 3.27

SCILAB Euler 117.31 224.61
rkf45 24.23 9.61
lsode (Adams) 10.38 5.00
lsode (BDF) 13.46 7.69

OCTAVE Euler 43.85 52.30
rkf45 19.23 5.00
lsode 6.15 1.00
dassl 13.46 1.77

In the acid rain problem a strong control law, which is the most challenging, is used. Times have
been normalized with respect to the most efficient case, i.e., LSODE in OCTAVE for the acid rain
problem

In OCTAVE this must be modified to

xnew = x + feval(odefunction,x,t)*Dt;

To conclude this section, a comparison of the performance of different solvers
in MATLAB, SCILAB, and OCTAVE is included in Table 2.13. When our simple
IVP solvers are used, i.e., euler and rkf45, MATLAB is by far the most efficient
environment for both problems. The computational cost in OCTAVE is clearly the
largest one. On the other hand, when built-in solvers are used, OCTAVE is the
most efficient alternative (especially with LSODE) while SCILAB and MATLAB
computational costs are of comparable magnitude (SCILAB is more efficient than
MATLAB for solving the spruce budworm problem and the reverse is true when
solving the acid rain problem). However, it should be noted that in general, when the
size and complexity of the problem increases, MATLAB will usually appear as the
most efficient alternative even when using built-in solvers.

2.7 How to Use Your Favorite Solvers in MATLAB?

This last section is intended for the reader with some background knowledge in
programming, and we suggest for the reader who is not interested in implementation
details to skip this material, and possibly to come back to it later on.

MATLAB EXecutable files (MEX-files) are dynamically linked subroutines
produced from C or FORTRAN source code that, when compiled, can be run
within MATLAB in the same way as MATLAB M-files or built-in functions www.
mathworks.com/support/tech-notes/1600/1605.html.

The main reasons for using MEX-files are listed below:

www.mathworks.com/support/tech-notes/1600/1605.html
www.mathworks.com/support/tech-notes/1600/1605.html
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1. During the last few decades, a huge collection of C and FORTRAN numerical
algorithms have been created and largely tested by different research and industrial
organizations. Such codes cover a large variety of fields such as linear algebra,
optimization, times series analysis among many others. Particularly interesting
for this chapter is the collection of efficient and reliable ODE solvers. Using the
MEX-files we can call these subroutines without the need of rewriting them in
MATLAB.

2. MATLAB is a high-level language and as such the programming is easier than in
low-level languages as C/C++ or FORTRAN. As a drawback, MATLAB codes
are, in general, slower than C and FORTRAN. MEX-files allow us to increase the
efficiency of MATLAB M-files or built-in functions.

In order to create a MEX-file, first a gateway routine is required. The gate-
way is the routine through which MATLAB accesses the rest of the routines in
MEX-files. In other words, it is the connection bridge between MATLAB and
the FORTRAN or C subroutines. The standard procedure for creating gateways is
described in http://www.mathworks.com/support/tech-notes/1600/1605.html?BB=
1. This procedure is, however, tiresome, prone to mistakes and with a complex debug-
ging only recommendable for those with good programming skills.

There is however a tool (OPENFGG) for generating semiautomatically the gate-
ways. This tool can be downloaded from the url http://www8.cs.umu.se/~dv02jht/
exjobb/download.html and includes a graphical user interphase. There are four steps
to create the gateway with this tool:

• Create a new project File → New
• Add the source files to parse. In this step we include the FORTRAN code for which

we want to generate the mex file (e.g. mycode.f)
• Select the inputs and the outputs of mycode.f
• Press the Compile buttom. The gateway mycodegw.f is generated

One of the main drawbacks of OPENFGG is that it does not allow to create reverse
gateways, this is, codes for calling MATLAB files from FORTRAN.

It must be noted that for creating a MEX file an adequate FORTRAN or C/C++
compiler must be installed.

Now we are ready to create the MEX-file. To that purpose we open a MATLAB
session and type:

mex -setup

And choose one of the installed compilers. This step is only required to be done once.
After this, type

mex mycode.f mycodegw.f

Which creates the MEX-file that can be used at the MATLAB command prompt in
the same way as any M-file or built-in function.

From the MATLAB version 7.2 (R2006a), it is possible to use open source FOR-
TRAN and C compilers (g95, gfortran, gcc) through the tool GNUMEX. GNUMEX

http://www.mathworks.com/support/tech-notes/1600/1605.html?BB=1
http://www.mathworks.com/support/tech-notes/1600/1605.html?BB=1
http://www8.cs.umu.se/~dv02jht/exjobb/download.html
http://www8.cs.umu.se/~dv02jht/exjobb/download.html
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allows to set up the Windows versions of gcc (also gfortran and g95) to compile mex
files. The procedure is described in detail at http://gnumex.sourceforge.net, However,
the main steps are summarized below:

• Install the packages for the gcc compiler. The easiest way is to Download Mingw
from http://www.mingw.org/ and install it. The installation path C:\mingw is
recommended.

• Download the g95 compiler from http://www.g95.org/downloads.shtml and install
it. The option Self-extracting Windows x86 (gcc 4.1, experimental) is recom-
mended.

• Download GNUMEX http://sourceforge.net/projects/gnumex/ unzip the files and
place the folder in a directory (e.g C:\gnumex).

• Open a MATLAB session, go to the path where gnumex was unzipped and
type gnumex. A window will open. Through this window we will modify the
mexopts.bat which contains the information about the compilers and options
used for creating the MEX-file.

• In the new window

– Indicate the place where mingw and g95 binaries are located
– In language for compilation chose C/C++ or g95 depending on if the

MEX-file will be created from a C or a FORTRAN subroutine.
– Press Make options file

Now we should be able to create the MEX-file using the command mex in
MATLAB.

A simple example of how to create a MEX-file is described in Sect. 2.7.1.

2.7.1 A Simple Example: Matrix Multiplication

In order to illustrate the procedure for constructing a MEX-file and how such MEX-
file can speed-up our code, we consider in this section the simple example of matrix
multiplication.

We first list the MATLAB algorithm for matrix multiplication matrix_mult.m

function C = matrix_mult (A ,B ,nrA ,ncA ,ncB )

% Code for matrix multiplication
C = zeros (nrA ,ncB ) ;
for ii = 1 :nrA

for jj = 1 :ncB
for kk = 1 :ncA

C (ii ,jj ) = C (ii ,jj ) + A (ii ,kk )*B (kk ,jj ) ;
end

end
end

http://gnumex.sourceforge.net
http://www.mingw.org/
http://www.g95.org/downloads.shtml
http://sourceforge.net/projects/gnumex/
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Function matrix_mult.m Simple MATLAB algorithm for matrix multiplication

It should be noted that the MATLAB symbol * contains a much more efficient
algorithm than matrix_mult.m thus matrix_mult.m is only used for illustra-
tion purposes.

The FORTRAN code for matrix multiplication is written in matmult.f

C matmult subroutine in FORTRAN

SUBROUTINE matmult (A ,B ,C ,nrA ,ncA ,ncB )

IMPLICIT NONE
INTEGER nrA ,ncA ,ncB
REAL*8 A (nrA ,ncA )
REAL*8 B (ncA ,ncB )
REAL*8 C (nrA ,ncB )

INTEGER I ,J ,K

DO I=1 ,nrA
DO J=1 ,ncB

C (I ,J ) = 0 . 0
DO K=1 ,ncA

C (I ,J ) = C (I ,J ) + A (I ,K )*B (K ,J )
END DO

END DO
END DO
RETURN
END

Function matmult.f Simple FORTRAN algorithm for matrix multiplication

The next step is to create the gateway for the FORTRAN subroutine. For that
purpose, we will employ the tool OpenFGG. In this tool, we must define the input
and output variables of the subroutine, so we define A,B,nrA,ncA, and ncB as input
variables and C as the output variable. After this step the gateway matmultgw.f is
generated.1 It must be noted here that the gateway matmultgw.f contains almost
700 lines of code which gives us an idea of the complexity of creating FORTRAN
gateways by hand.

The next step is to create the MEX-file using the following command in MATLAB:

mex -O matmult.f matmultgw.f

where the -O option is to optimize the code. This step creates the MEX-file whose
extension will depend on the platform and the version of MATLAB. In our case, we
obtain matmult.mexglx since we are runing MATLAB 2009b under a Linux 32
bits platform.

1 The code for the gateway matmultgw.f is not included in this document because of its length.
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Another option is to create the MEX file for a C function. The C code for matrix
multiplication is written in mmcsubroutine.c

void mmcsubroutine (
double C [ ] ,
double A [ ] ,
double B [ ] ,
int nrA ,
int ncA ,
int ncB

)
{

int i ,j ,k ,cont ;
cont = 0 ;
for (j=0; j<ncB ; j++) {

for (i=0; i<nrA ; i++) {
for (k=0; k<ncA ; k++) {

C [cont ] += A [nrA*k+i ]*B [k+j*ncA ] ;
}
cont++;

}
}
return ;

}

Function mmcsubroutine.c Simple C algorithm for matrix multiplication

There is no software for the automatic generation of the gateway thus we have
to create it by hand. In this particular case, this task is not too difficult but some
programming skills are required. The gateway is written in matmultc.c

/ * Gateway MATMULTC .C for matrix multiplication in C * /
#include <math .h>
#include "mex .h"

/ * Input Arguments * /
#define A_IN prhs [ 0 ]
#define B_IN prhs [ 1 ]
#define NRA_IN prhs [ 2 ]
#define NCA_IN prhs [ 3 ]
#define NCB_IN prhs [ 4 ]

/ * Output Arguments * /
#define C_OUT plhs [ 0 ]

/ * Mex function * /
void mexFunction ( int nlhs , mxArray *plhs [ ] ,

int nrhs , const mxArray*prhs [ ] )
{

double *C ;
double *A , *B ;
int nrA ,ncA ,ncB ;
mwSize m ,n ,nA ,mB ;

/ * Check for proper number of arguments * /
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if (nrhs != 5) {
mexErrMsgTxt ( "Five input arguments required . " ) ;
} else if (nlhs > 1) {
mexErrMsgTxt ( "Too many output arguments . " ) ;
}

/ * Check the dimensions of A and B * /
nA = mxGetN (A_IN ) ;
mB = mxGetM (B_IN ) ;
if ( (nA != mB ) ) {
mexErrMsgTxt ( "N cols . in A different from N rows in B . " ) ;
}

/ * Create a matrix for the return argument * /
m = mxGetM (A_IN ) ;
n = mxGetN (B_IN ) ;
C_OUT = mxCreateDoubleMatrix(m , n , mxREAL ) ;

/ * Assign pointers to the various parameters * /
C = mxGetPr (C_OUT ) ;
A = mxGetPr (A_IN ) ;
B = mxGetPr (B_IN ) ;
nrA = (int ) mxGetScalar (NRA_IN ) ;
ncA = (int ) mxGetScalar (NCA_IN ) ;
ncB = (int ) mxGetScalar (NCB_IN ) ;

/ * Do the actual computations in a subroutine * /
mmcsubroutine (C ,A ,B ,nrA ,ncA ,ncB ) ;
return ;

}

Function matmultc.c C gateway for the subroutine mmcsubroutine.c

We can note the following details about matmultc.c:

1. The code starts by defining the input and output arguments of the subroutine
mmcsubroutine.c.

/* Input Arguments */
#define A_IN prhs[0]
#define B_IN prhs[1]
#define NRA_IN prhs[2]
#define NCA_IN prhs[3]
#define NCB_IN prhs[4]
/* Output Arguments */
#define C_OUT plhs[0]

There are five inputs and one output. The part rhs in prhs[*] calls for the
right hand side while lhs in plhs[*] calls for the left hand side. The order of
the parameters when calling the subroutine is indicated by the number between
brackets.

2. After defining the inputs and outputs, we start by constructing the MEX function.

/* Mex function */
void mexFunction( int nlhs, mxArray *plhs[],

int nrhs, const mxArray*prhs[] )
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The name of the MEX function must always be mexFunction. This part is
common to all MEX-files.

3. Next the parameters used in the MEX function are defined

double *C;
double *A,*B;
int nrA,ncA,ncB;
mwSize m,n,nA,mB;

4. The matrix output is created

/* Create a matrix for the return argument */
m = mxGetM(A_IN);
n = mxGetN(B_IN);
C_OUT = mxCreateDoubleMatrix(m, n, mxREAL);

5. Then the pointers are assigned to the different input/output parameters

/* Assign pointers to the various parameters */
C = mxGetPr(C_OUT);
A = mxGetPr(A_IN);
B = mxGetPr(B_IN);
nrA = (int) mxGetScalar(NRA_IN);
ncA = (int) mxGetScalar(NCA_IN);
ncB = (int) mxGetScalar(NCB_IN);

6. At this point, the subroutine which performs the matrix multiplication computa-
tion is called

/* Do the actual computations in a subroutine */
mmcsubroutine(C,A,B,nrA,ncA,ncB);

7. Alternatively some code for checking the input/output arguments can be included

/* Check for proper number of arguments */
if (nrhs != 5) {
mexErrMsgTxt(‘‘Five input arguments required.’’);
} else if (nlhs > 1){
mexErrMsgTxt(‘‘Too many output arguments.’’);
}
/* Check the dimensions of A and B */
nA = mxGetN(A_IN); mB = mxGetM(B_IN);
if ((nA != mB)) {

mexErrMsgTxt(‘‘N cols. in A different from N rows in B.’’);
}

Finally, the MEX-file is created as in the previous case:

mex -O matmultc.c mmcsubroutine.c

Now we are ready to call the mex-file from MATLAB. In order to compare the
computational times obtained with the MATLAB function and with the MEX-file,
the MATLAB script main_matrix_mult will be used.
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% Main program calling the matrix_mult code and the mex file
clear all
clc

% Dimension of matrices
nrA = 200;
ncA = 1000;
ncB = 500;

% Create the matrices
A = rand (nrA ,ncA ) ;
B = rand (ncA ,ncB ) ;

% Call the MATLAB function
tt = cputime ;
C1 = matrix_mult (A ,B ,nrA ,ncA ,ncB ) ;
fprintf ( 'Matlab function time = %2.2f s \n ' ,cputime−tt ) ;

% Call the FORTRAN MEX−file
tt = cputime ;
C2 = matmult (A ,B ,nrA ,ncA ,ncB ) ;
fprintf ( 'Fortran Mex−file time = %2.2f s \n ' ,cputime−tt ) ;

% Call the C MEX−file
tt = cputime ;
C3 = matmultc (A ,B ,nrA ,ncA ,ncB ) ;
fprintf ( 'C Mex−file time = %2.2f s \n ' ,cputime−tt ) ;

Script main_matrix_mult Main program that calls MATLAB function matrix_mult.m and
mex-file matmult.mexglx

As a result, we obtain the following MATLAB screen-print:

MATLAB function time = 3.60 s
Fortran Mex-file time = 0.56 s
C Mex-file time = 0.45 s

showing that for this particular case, the MEX-file obtained from the FORTRAN
code is more than six times faster than the MATLAB function while the MEX-file
obtained from the C code is even faster.

2.7.2 MEX-Files for ODE Solvers

Efficient FORTRAN or C time integrators can also be exploited within MATLAB
using the concept of MEX-files. The creation of these MEX-files is too complex to
be detailed in this introductory text and we content ourselves with an application
example. A comparison against the IVP solver RKF45 is shown in Table 2.14, which
lists computational times normalized with respect to the smallest cost, i.e., that cor-
responding to the simulation of the logisticequation using the FORTRAN version.
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Table 2.14 Computation times required for solving different ODE systems considered in this
chapter with versions of the RKF45 solver implemented in FORTRAN and MATLAB

FORTRAN MATLAB

Logistic equation (Sect. 2.1) 1 1,500
Stiff ODEs (Sect. 2.2) 14.71 5882.4
Spruce budworm (Sect. 2.5) 229.4 56,971

As shown in the table, the FORTRAN MEX-file is orders of magnitude faster than
the MATLAB version. Several MEX-files are available in the companion software.
The details of their construction are omitted due to space limitation.

2.8 Summary

In this chapter, a few time integrators are detailed and coded so as to show the main
ingredients of a good ODE solver. First, fixed-step integrators are introduced, fol-
lowed by variable-step integrators that allow to achieve a prescribed level of accuracy.
However, stability appears as an even more important issue than accuracy, limiting the
time-step size in problems involving different time scales. A Rosenbrock’s method
is then considered as an example to solve efficiently this class of problems. After
the presentation of these several basic time integrators, we turn our attention to the
MATLAB ODE suite, a powerful library of time integrators which allow to solve
a wide range of problems. We then apply several of these integrators to two more
challenging application examples, i.e., the study of spruce budworm dynamics and
the study of liming to remediate the effect of acid rain on a lake. On the other hand,
we introduce the use of SCILAB and OCTAVE, two attractive open-source alter-
natives to MATLAB, to solve ODE and DAE problems, and we highlight the main
syntaxic differences. As MATLAB is an interpreted language, the computational cost
can however be an issue when computing the solution of large system of ODEs, or
when solving repeatedly the same problem (as for instance when optimizing a cost
function, involving the solution of a ODE model). The use of compiled functions
can be advantageous in this case, and this is why we end the presentation of ODE
integrators by the use of MATLAB MEX-files.
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Chapter 3
Finite Differences and the Method of Lines

As we recall from Chap. 1, the method of lines (MOL) is a convenient procedure for
solving time-dependent PDEs, which proceeds in two separate steps:

• approximation of the spatial derivatives using finite differences, finite elements or
finite volume methods (or any other techniques), and

• time integration of the resulting semi-discrete (discrete in space, but continuous
in time) ODEs.

William Schiesser has significantly contributed to the development and
popularization of the method and has written one of the first books on the subject [1].

In this chapter, we discuss this method in more details, considering mostly finite
difference approximations, and we successively address the following questions:

• Is the numerical scheme stable?
• How accurate is the numerical scheme?
• How can we implement the finite difference approximations efficiently?
• How can we translate mixed-type (possibly complex) boundary conditions?

The first question is of fundamental importance since an unstable numerical
scheme would be completely useless. However, stability analysis is a difficult sub-
ject that will only be sketched here, as a full investigation is out of the scope of
this introductory text. To support our analysis, we will consider a simple linear
convection-diffusion-reaction equation, which allows important properties related
to stability and dynamics of the semi-discrete ODE system to be introduced, and
use basic finite difference schemes (FDs) and time integrators. Then, more attention
will be paid to accuracy, and higher-order finite FDs will be derived and formulated
using the concept of a differentiation matrix. These higher-order FDs can be used
in conjunction with the higher-order time integrators reviewed in Chaps. 1 and 2. In
addition, alternative ways to take boundary conditions into account will be presented
and the computation of the Jacobian matrix of the ODE system will be revisited.
Finally, we discuss the use of SCILAB and OCTAVE to solve PDE problems using
the method of lines.

A. Vande Wouwer et al., Simulation of ODE/PDE Models with MATLAB�, 125
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3.1 Basic Finite Differences

FDs can be used to evaluate the derivatives of a function x(z) which is known only
at a set of N + 1 discrete points zi :

z x(z)
z0 x0
z1 x1
...

...

zi xi
...

...

zN xN

To simplify the presentation, we first consider that the points zi are regularly
distributed (uniformly spaced) between z0 and zN :

zi = z0 + iνz; νz = zN − z0

N
; i = 0, . . . , N (3.1)

The FD approximation of the nth-order derivative of x(z) in zi , i.e., dn x(zi )
dzn , is based

on Taylor series expansions of x(z) at points zk close to zi . As an example, consider
the evaluation of the first and second derivatives of x(z) at zi , and write the Taylor
series expansions at zi+1 and zi−1.

xi+1 = xi + νz

1!
dx

dz

∣∣∣∣
zi

+ νz2

2!
d2x

dz2

∣∣∣∣
zi

+ νz3

3!
d3x

dz3

∣∣∣∣
zi

+ νz4

4!
d4x

dz4

∣∣∣∣
zi

+ · · ·(3.2)

xi−1 = xi − νz

1!
dx

dz

∣∣∣∣
zi

+ νz2

2!
d2x

dz2

∣∣∣∣
zi

− νz3

3!
d3x

dz3

∣∣∣∣
zi

+ νz4

4!
d4x

dz4

∣∣∣∣
zi

− · · ·(3.3)

Subtracting Eq. (3.3) from Eq. (3.2), we obtain:

xi+1 − xi−1 = 2
νz

1!
dx

dz

∣∣∣∣
zi

+ 2
νz3

3!
d3x

dz3

∣∣∣∣
zi

+ · · ·

which can be rewritten as

dx

dz

∣∣∣∣
zi

= xi+1 − xi−1

2νz
− νz2

3!
d3x

dz3

∣∣∣∣
zi

− · · · (3.4)

so that for νz → 0,

dx

dz

∣∣∣∣
zi

= xi+1 − xi−1

2νz
+ O(νz2) (3.5)
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since the higher order terms in νz become negligibly small. O(νz2) denotes a term
“of order” or proportional to νz2.

Other useful approximations of the first-order derivative can be derived from
Eqs. (3.2)–(3.3), e.g.,

dx

dz

∣∣∣∣
zi

= xi+1 − xi

νz
− νz

2!
d2x

dz2

∣∣∣∣
zi

+ · · · = xi+1 − xi

νz
+ O(νz) (3.6)

and

dx

dz

∣∣∣∣
zi

= xi − xi−1

νz
+ νz

2!
d2x

dz2

∣∣∣∣
zi

+ · · · = xi − xi−1

νz
+ O(νz) (3.7)

Note that Eqs. (3.6)–(3.7) are less accurate than Eq. (3.5), since the error decreases
linearly with νz (rather than quadratically as in Eq. (3.5)). Note also that Eq. (3.5)
is a centered approximation (i.e., zi is between zi−1 and zi+1) whereas Eqs. (3.6)–
(3.7) are non-centered approximations. Depending on the direction of the “flow of
information”, informally called the “direction of the wind”, these latter formulas are
termed “upwind” or “downwind” .

To obtain an approximation of the second-order derivative, we add Eqs. (3.2) and
(3.3) to obtain

xi+1 + xi−1 = 2xi + 2
νz2

2!
d2x

dz2

∣∣∣∣
zi

+ 2
νz4

4!
d4x

dz4
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zi

+ · · ·

which can be rewritten as:

d2x

dz2

∣∣∣∣
zi

= xi+1 − 2xi + xi−1

νz2 − νz2

12

d4x

dz4

∣∣∣∣
zi

− · · · (3.8)

When νz → 0,

d2x

dz2

∣∣∣∣
zi

= xi+1 − 2xi + xi−1

νz2 + O(νz2) (3.9)

since the higher order terms in νz become negligibly small. As we shall see later
on in this chapter, this reasoning can be pursued in order to construct higher-order
approximations.

3.2 Basic MOL

To introduce the method of lines (MOL), we consider a simple example, i.e., the
linear advection equation

xt = −vxz (3.10)
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where x(z, t) is a function of space and time (for example, the concentration of a
component flowing through a pipe, or the density of cars along a highway); xt = ϕx

ϕt
and xz = ϕx

ϕz (these short, subscript notations will also be used in the following
computer codes). v is a real positive constant, representing the velocity (e.g., fluid
or car velocity) and z0 < z ≤ zN is the spatial domain over which this equation is
defined.

This PDE problem is supplemented with an initial condition (IC), i.e., the initial
distribution of x over space at time t = 0

x(z, 0) = x0(z) (3.11)

and a boundary condition (BC), e.g., the value of x (inlet concentration or number
of cars entering the highway) over time at z = z0

x(z0, t) = x0(t) (3.12)

This BC, that specifies the value of the field in the boundary, is of Dirichlet type.
Other types of boundary conditions will be considered in the sequel.

The MOL proceeds as follows:

1. A uniform spatial grid is defined over N intervals

zi = z0 + iνz; νz = zN − z0

N
= L

N
; i = 0, . . . , N (3.13)

2. The PDE (3.10) is expressed at each of the grid points, with the exception of the
point z0 where BC (3.12) is imposed

(xi )t = −v(xi )z i = 1, . . . , N (3.14)

3. The spatial derivative is replaced by a finite difference formula, e.g., Eq. (3.7)

(xi )z = xi − xi−1

νz
(3.15)

This approximation transforms Eq. (3.14) into a system of ODEs of the form




x1
x2
...

xi
...

xN


⎛

t

=




− v
νz (x1)

− v
νz (x2 − x1)

...

− v
νz (xi − xi−1)

...

− v
νz (xN − xN−1)


⎛

+




v
νz (x0)

0
...

0
...

0


⎛

(3.16)
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Note that the information provided by BC (3.12) (i.e., the value of x0, which is
imposed) appears explicitly in the second term of the RHS, i.e., as an external
input to the system.

4. The IC (3.11) provides the value of the unknown functions x1(t), . . . , xN (t) at
t = 0, and the system of Eq. (3.16) can therefore be integrated using one of the
methods reviewed in the previous chapters (e.g., Euler, Runge-Kutta, etc.).

Before actually solving Eq. (3.16), we ask the following question: Is the numerical
integration of Eq. (3.16) numerically stable?

3.3 Numerical Stability: Von Neumann and the Matrix Methods

Von Neumann stability analysis is a useful method for understanding the propagation
of errors in linear difference equations. These difference equations describe the
whole computational process required to calculate the values of the functions
x1(t), . . . , xN (t) at each integration time step. This scheme therefore depends on
the choice of a particular time integrator. For simplicity, we consider a fixed-step,
explicit Euler method. This method replaces (xi )t in Eq. (3.16) by

(xi )t = xi (t + νt) − xi (t)

νt
= xk+1

i − xk
i

νt
(3.17)

In this latter expression, we explicitly consider the discrete time steps of Euler’s
method tk = kνt and we note xi (kνt) = xk

i . In Chap. 1, we used h for the time-step
size. Here, we prefer the notation νt (as opposed to νz which is usually reserved for
a spatial increment), but these notations, i.e., h or νt , will be used interchangeably
in the following chapters.

Finally, Eqs. (3.14)–(3.15) and Eq. (3.17) give the following numerical scheme

xk+1
i − xk

i

νt
= −v

xk
i − xk

i−1

νz
(3.18)

which is now purely algebraic, i.e., it does not contain any of the original derivatives
of Eq. (3.10).

This scheme provides explicitly the value of xk+1
i as a function of xk

i and xk
i−1

xk+1
i = xk

i − v
νt

νz
(xk

i − xk
i−1) (3.19)

that is, we can explicitly move forward in t from k to k + 1.
Von Neumann’s stability analysis can be used to verify the stability of Eq. (3.19),

prior to the application of problem-specific BCs and ICs. This method is based on
spatial Fourier transforms (FTs), which convert the time-space difference Eq. (3.19)

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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into a time recursion in terms of the spatial FTs. This procedure can be introduced
in several ways. Here, we use the classical Fourier series expansion.

Assume that the solution at time tk = kνt , i.e., xk = (xk
0 , xk

1 , . . . , xk
N )T ,

represents a (spatial) period of a periodic signal extending from −↔ to +↔. For the
purpose of the stability analysis, the solution xk = (xk

0 , xk
1 , . . . , xk

N )T defined on the
spatial interval [z0, zN ], where zN = z0 + L , is therefore repeated on the intervals:

. . . , [z0 − 2L , z0 − L], [z0 − L , z0], [z0, zN ], [zN , zN + L], [zN + L , zN + 2L], . . .

This implicitly assumes that periodic boundary conditions apply, i.e., x(z0, t) =
x(zN , t).

This imaginary periodic signal, which has the solution we are examining over a
period L , can be expanded into a finite Fourier series (a finite Fourier series is the
discrete analog of the Fourier series, which is used for sampled signals—recall that
we consider spatial sampling at this stage)

xk
i =

+N⎡
n=−N

Ak
ne jnρ0(iνz) (3.20)

where j is the imaginary number such that j2 = −1, and

ρ0 = Δ

L
(3.21)

If we note the angles λn = nρ0(νz) = n Δ
L νz = n Δ

N , then

xk
i =

+N⎡
n=−N

Ak
ne j (λn) (3.22)

Substitution of Eq. (3.22) into Eq. (3.19) gives the evolution of the single Fourier
mode of wave number n

Ak+1
n e j (iλn) =

⎢
1 − vνt

νz

⎣
Ak

ne j (iλn) + vνt

νz
Ak

ne j((i−1)λn) (3.23)

At each time step, each Fourier mode is therefore amplified by a factor

Gn = Ak+1
n

Ak
n

(3.24)

which, if we note α = vνt
νz , can be written as

Gn = (1 − α) + αe− jλn (3.25)
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For the numerical scheme to be stable, the modulus of this amplification factor must
be less than unity for all n, i.e.,

|Gn| ≤ 1 (3.26)

otherwise some of the modes could grow up to infinity as k goes to infinity. Gn

represents a complex number Gn = ωn + jεn where

ωn = 1 − α(1 − cos λn)

εn = −α sin λn (3.27)

and λn varying in the interval [−Δ, Δ] (note that λn takes only 2N discrete values
in this interval), the geometric locus of Gn

[ωn − (1 − α)]2 + ε2
n = α 2 cos2 (λn) + α 2 sin2 (λn) = α 2 (3.28)

is a circle of radius α centered in (1 − α, 0). Thus, condition (3.26) is satisfied if the
radius of this circle is smaller or equal to 1, i.e.,

0 ≤ α = vνt

νz
≤ 1 (3.29)

This condition is the famous Courant-Friedrichs-Lewy condition (CFL condition).
At the limit α = 1, the amplification factors are Gn = e− jλn , i.e., they represent

2N points regularly distributed along the unit circle in the complex plane, given by
the angles λn .

In summary, von Neumann analysis verifies that no spatial Fourier component
in the system is growing exponentially with respect to time (i.e., verifies that no
amplification factor is larger than one).

We now turn our attention to an alternative stability analysis, sometimes referred
to as the matrix method. Consider again Eq. (3.19)

xk+1
i = xk

i − v
νt

νz

⎤
xk

i − xk
i−1

⎥
= (1 − α)xk

i + α xk
i−1 (3.30)

or in matrix form




x1
· · ·
· · ·
xN


⎛

k+1

=




1 − α 0 · · · 0

α
. . .

. . .
...

0
. . .

. . . 0
0 0 α 1 − α


⎛




x1
· · ·
· · ·
xN


⎛

k

+




α x0
0
· · ·
0


⎛

k

(3.31)

where xk
0 is defined by boundary condition (3.12). In compact format, Eq. (3.31) can

also be written as:

xk+1 = Axk + uk
C L (3.32)
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One way to analyze the stability of (3.32) is to check that the truncation errors ek do
not grow exponentially. If xk

e is the exact solution at time tk

xk = xk
e + ek (3.33)

and

xk+1
e = Axk

e + uk
C L (3.34)

By subtracting Eq. (3.34) from (3.32), and using Eq. (3.33), the following expression
for the propagation of the error is obtained

xk+1
e = Axk

e (3.35)

This latter operation cancels the second term on the RHS, uk
C L , which is related to

the boundary conditions (so that we can conclude that the BCs have no influence on
the dynamics of ek). The homogeneous system (3.35) is asymptotically stable if

lim
k→↔ ⇒xk

e⇒ = 0 (3.36)

A necessary and sufficient condition of stability of the discrete-time system (3.36)
is given by Owens [2]:

∂(A) = max
k

|δk | < 1 (3.37)

where δk are the eigenvalues of the matrix A (i.e., the eigenvalues must lie inside the
familiar unit circle in the complex plane).

In Eq. (3.31), the N eigenvalues of the matrix A are equal to the elements of the
main diagonal (and are therefore equal)

δk = 1 − α ; ∞k (3.38)

and condition (3.37) becomes

0 ≤ |1 − α | < 1 (3.39)

or

0 ≤ α < 2 (3.40)

which is less restrictive than (3.29), that restricts α to be in the interval [0, 1].
This apparent mismatch between the two analysis has a simple explanation: con-

dition (3.37) ensures the asymptotic stability of Eq. (3.35), i.e., that the truncation
error eventually vanishes as expressed in Eq. (3.36), but do not impose conditions
on the transient behaviour of ek . In fact, the values taken by ek are influenced by the
initial error e0 (which could be due to rounding errors when manipulating the initial
condition)
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Fig. 3.1 Evolution of ⇒(A)k⇒ for different values of α

ek = (A)ke0 (3.41)

where (A)k is the matrix A to the power k. The evolution of ⇒(A)k⇒ is illustrated in
Fig. 3.1 on two time scales (upper and lower plots) and for four different values of α .

• If α ≤ 1 (Von Neumann’s condition (3.29)), then ⇒ek⇒ do not grow at any time.
• If 1 < α < 2, ⇒ek⇒ first grows and then decreases toward zero (as condition (3.37)

is satisfied).
• If 2 ≤ α , then the errors grow unbounded.

Figure 3.1 was obtained for N = 20 (the graphs have the same qualitative behavior
for any value of N ). The (spectral) norm of the matrix A is computed using the
MATLAB function norm(A).

One of the basic assumptions of Von Neumann’s analysis is the existence of
periodic boundary conditions x(z0, t) = x(zN , t) or

xk
0 = xk

N (3.42)

If we introduce this condition into Eq. (3.31), we have




x1
· · ·
· · ·
xN


⎛

k+1

=




1 − α 0 · · · α

α
. . .

. . .
...

0
. . .

. . . 0
0 0 α 1 − α


⎛




x1
· · ·
· · ·
xN


⎛

k

= A′x (3.43)
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Fig. 3.2 Eigenvalue loci for
different values of α
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In this case, the stability condition (3.37) involves the computation of the eigenvalues
of the matrix A′, which can be expressed in the general the form

A′ =




c1 c2 c3 · cN−1 cN

cN c1 c2 c3 · cN−1
cN−1 cN c1 c2 c3 ·

· · · · · ·
c3 · cN−1 cN c1 c2
c2 c3 · cN−1 cN c1


⎛

(3.44)

These eigenvalues are given by Varga [3]

δk =
N−1⎡
i=0

ci+1 exp

⎢
j (k − 1)

i2Δ

N

⎣
; k = 1, . . . , N (3.45)

Applying this formula to Eq. (3.43), where c1 = 1 − α , ci = 0, i = 2, . . . , N − 1,
cN = α , we have

δk = (1 − α) + αe j (k−1)
(N−1)2Δ

N = (1 − α) + αe j (k−1)2Δe− j (k−1) 2Δ
N

= (1 − α) + αe− j (k−1) 2Δ
N (3.46)

The eigenvalues are located in the complex plane on a circle of radius α centered
in (1 − α, 0). Figure 3.2 shows these circles for α = 0.2, 0.4, . . . , 1.4. Clearly, the
stability limit is

α ≤ 1 (3.47)



3.3 Numerical Stability: Von Neumann and the Matrix Methods 135

since the eigenvalues must have a modulus strictly less than unity, in accordance
with the necessary and sufficient condition of stability (3.37). Condition (3.47) is
now equivalent to the results of Von Neumann’s analysis.

The advantage of the matrix method is that it is possible to decouple the influences
of spatial discretization and time integration. Returning to Eq. (3.43), where the time
derivative is not yet discretized

dx
dt

= A′x (3.48)

with

A′ = − v

νz




1 0 1
−1 1
0

1 0
0 0 −1 1


⎛ (3.49)

The stability of the semi-discrete system (3.48), which is continuous in time, is
determined by the location of the eigenvalues δk of A′, which should be such that [2]

Re(δk) ≤ 0; ∞k (3.50)

i.e., the eigenvalues are in the left half of the complex plane.
If rank(A′) = N , then the N eigenvectors

Avk = δkvk (3.51)

are linearly independent and form a basis in which the solution can be expressed as

x(t) =
N⎡

k=1

xk(t)vk (3.52)

where xk(t) are functions of time (yet to be determined).
If we introduce Eq. (3.52) into Eq. (3.48), we have

d

dt

⎦
N⎡

k=1

xk(t)vk

]
= A′

N⎡
k=1

xk(t)vk =
N⎡

k=1

xk(t)A′vk =
N⎡

k=1

xk(t)δkvk (3.53)

Each mode k is therefore governed by

dxk

dt
= δk xk (3.54)
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or in matrix form
dx
dt

= η x (3.55)

where x(t) = [x1(t), x2(t), . . . , xN (t)]T and η = diag(δ1δ2 . . . δN ) is the diagonal
matrix of eigenvalues.

The ODE system (3.48) can be integrated in time using a wide range of solvers,
some of which have been reviewed in Chaps. 1 and 2. These solvers can be clas-
sified as single step (e.g., the Runge-Kutta methods) or multistep integrators (e.g.,
the Backward Differentiation Formulas integrators). Figure 1.6 shows the stability
diagrams for the RK methods of orders 1–4, whereas Fig. 1.10 shows the stability
diagrams for BDF methods of orders 1–6. These diagrams constrain the values of
δkνt to lie in specific regions of the complex plane.

This latter analysis method is quite flexible, as it allows various space discretiza-
tion schemes and time integration methods to be considered. Such method is now
applied to the linear advection equation, for which we consider several alternative
spatial discretization and time integration methods.

3.4 Numerical Study of the Advection Equation

We consider again Eq. (3.10):
xt = −vxz (3.56)

with 0 ≤ z ≤ 1, t ∈ 0 and v = 1. The Dirichlet BC is given by:

x(z0, t) = 0 (3.57)

and the IC is taken as a wave of the form:

x(z, 0) = 5.7

exp (θ) + exp (−θ)
; θ = 100(z − 0.25) (3.58)

We first use a fixed-step explicit Euler integrator in combination with the alternative
FD schemes:

3-point cenetred: (xz)t = xi+1 − xi−1

2νz
(3.59)

2-point downwind: (xz)t = xi+1 − xi

νz
(3.60)

2-point upwind: (xz)t = xi − xi−1

νz
(3.61)

Note that Eq. (3.60) is a downwind scheme since x is flowing from left to right
(v = 1 is positive) and the point zi+1 is situated to the right of the point zi , where the

http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_2
http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1


3.4 Numerical Study of the Advection Equation 137

derivative is evaluated. In contrast, Eq. (3.61) is an upwind scheme since it makes
use of information at z = zi−1 (i.e. xi−1), to the left of the point zi .

The application of these schemes leads to the following semi-discrete systems
(where periodic boundary conditions are considered):

3-point centered:




x1
x2
x3
· · ·
xN


⎛

t

= v

2νz




0 1 −1
−1 0 1

−1 0 1
· · ·

1 −1 0


⎛




x1
x2
x3
· · ·
xN


⎛ (3.62)

2-point downwind:




x1
x2
x3
· · ·
xN


⎛

t

= v

2νz




−1 1
−1 1

−1 1
· · ·

1 −1


⎛




x1
x2
x3
· · ·
xN


⎛ (3.63)

2-point upwind:




x1
x2
x3
· · ·
xN


⎛

t

= v

2νz




1 −1
−1 1

−1 1
· · ·
−1 1


⎛




x1
x2
x3
· · ·
xN


⎛ (3.64)

These matrices are in the form (3.44) and their eigenvalues can be computed using
(3.45), i.e.,

• 3-point centered:

δk = − j
v

νz
sin

[
(k − 1)

2Δ

N

]
(3.65)

• 2-point downwind:

δk = v

νz

⎢
1 − cos

[
(k − 1)

2Δ

N

]⎣
− j

v

νz
sin

[
(k − 1)

2Δ

N

]
(3.66)

• 2-point upwind:

δk = v

νz

⎢
cos

[
(k − 1)

2Δ

N

]
− 1

⎣
− j

v

νz
sin

[
(k − 1)

2Δ

N

]
(3.67)

with k = 1, . . . , N . Figure 3.3 shows the location of these eigenvalues in the complex
plane. On inspection of this figure, it is apparent that a 2-point downwind scheme
leads to an unstable semi-discrete system (indeed the eigenvalues of Eq. (3.66) are
in the right half-plane), whereas a centered scheme yields a purely oscillatory sys-
tem (the eigenvalues are on the imaginary axis). Only a 2-point upwind scheme
yields a (marginally) stable system (the system is said to be “marginally” stable as
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Fig. 3.3 Advection equation—Eigenvalue loci for alternative FD schemes

it has a zero-eigenvalue). In order to the scheme to be asymptotically stable all the
eigenvalues must have negative real parts.

How does an explicit Euler algorithm perform on these semi-discrete systems?
We know from Chap. 1 that δkνt must lie within a unit circle centered in (−1, 0)

(see Eq. (1.24) and Fig. 1.6). Obviously, this will work only for the 2-point upwind
scheme, for which we have to make sure that the points δkνt (which are located
on a circle as shown in Fig. 3.3) are inside the stability region of the explicit Euler
algorithm.

To show that this is feasible, we have to manipulate Eq. (3.67). Let us define

α = (k − 1)
2Δ

N
; α = vνt

νz
(3.68)

so that

δkνt = α(cos α − 1) − jα sin α = x + j y (3.69)

If we eliminate α from the two equations

x = α(cos α − 1)

y = −α sin α (3.70)

http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
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we get ⎢
x + α

α

⎣2

+
⎤ y

α

⎥2 = cos2 α + sin2 α = 1 (3.71)

which is a circle of radius α centered at (−α, 0) . This circle is included inside the
stability region of the explicit Euler algorithm if

α = vνt

νz
≤ 1 (3.72)

which is the CFL condition that we derived previously.
Now that we know the conditions under which we have a stable combination

of spatial discretization and time integration, we are in the situation where we can
actually solve Eq. (3.64). Figure 3.4 shows some results for α = {0.95, 1, 1.05}.
Several interesting observations can be made:

• For α ≤ 1, the solution is stable, whereas for α > 1, the solution becomes unstable
(this is a numerical check of (3.72)).

• For α = 1, the numerical results are excellent. The solution is traveling from left
to right at a velocity v = 1, preserving the shape of the initial condition. This is
the expected result since the advection equation has a known analytic solution in
the form

x(z, t) = x0(z − vt) (3.73)

starting from the initial condition x0(z) = x(z, 0) (i.e., the convection term −vxz

moves the initial profile at a constant velocity v).
• For α < 1, the solution is stable but not accurate since we observe an important

attenuation of the wave as it travels along the spatial domain.

Therefore, α = 1 appears as a critical value. Where does this come from? The
numerical scheme is given by

xk+1
i − xk

i

νt
= −v

xk
i − xk

i−1

νz

or

xk+1
i = xk

i − v
νt

νz
(xk

i − xk
i−1) = (1 − α)xk

i + α xk
i−1 (3.74)

which, with α = 1, corresponds to

xk+1
i = xk

i−1 (3.75)

This latter expression is called the shift condition, which exactly satisfies Eq. (3.73).
In summary, α = 1 is a very fortuitous situation where the numerical solution is

stable and exact. Any other value of α < 1 yields a stable but relatively inaccurate
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Fig. 3.4 Numerical solution of the initial boundary value problem (3.56)–(3.58) using 2-point
upwind FDs and an explicit Euler method. The plotted times are t = 0, 0.25, 0.5

solution. Also, the use of higher-order FDs (which are in principle more accurate
and will be detailed in the continuation of this chapter) will be less effective because
the shift condition will generally not be satisfied for these schemes.

We now consider another time integrator, e.g. the leap-frog method introduced in
Chap. 1 (see Eq. (1.19)). We know that the stability region of this method is a portion
of the imaginary axis between the points ± j (see Fig. 1.7). The leap-frog integrator is
therefore a good candidate to solve the semi-discrete system (3.62) which has purely
imaginary eigenvalues (see Fig. 3.3). The eigenvalues (3.65) will be such that

− j ≤ δkνt = − jα sin α ≤ j (3.76)

http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
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Fig. 3.5 Numerical solution of the initial boundary value problem (3.56–3.58) using 3-point cen-
tered FDs and a leap-frog method

if

α = vνt

νz
≤ 1 (3.77)

which is again the CFL condition.
Figure 3.5 shows various numerical results obtained with the combination:

“3-point centered FDs + leap-frog integrator”.
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The following observations can be made:

• For α = 1, the numerical results are excellent, even though the shift condition is
not satisfied in this case.

• For α < 1 , the solution is stable but not accurate when using νz = 0.01 (spurious
oscillations appear). However, accuracy can be significantly improved by reducing
νz to 0.001. Logically, the accuracy depends on the fineness of the spatial grid:
with a 3-point centered scheme, the truncation error is proportional to νz2, i.e. it
is reduced by a factor 100 when νz decreases from 0.01 to 0.001.

• When α > 1, the solution very quickly becomes unstable.

These examples show that a combination “spatial discretization + time integrator”
must be carefully selected. This combination of course depends on the equation to
be solved, so that it is difficult to draw general conclusions and to suggest universal
methods at this stage. In the following, we consider additional examples, and try
however to highlight “easy” choices.

3.5 Numerical Study of the Advection-Diffusion Equation

We now consider a PDE combining advection (plug-flow motion) and a diffusion
term, involving a second-order spatial derivative

xt = −vxz + Dxzz (3.78)

with 0 ≤ z ≤ 1, t ∈ 0.
This PDE is supplemented with two BCs of the Dirichlet-type (two BCs are

required as the PDE is second-order in space)

x(z0 = 0, t) = 0; x(zN = 1, t) = 0 (3.79)

Again, the IC is a wave in the form

x(z, 0) = 5.7

exp (θ) + exp (−θ)
; θ = 164.14(z − 0.25) (3.80)

We consider an approximation of the first-order derivative (advection term) using a 2-
point upwind scheme and an approximation of the second-order derivative (diffusion
term) using a 3-point centered scheme, i.e.

(xz)i = xi − xi−1

νz
(3.81)

(xzz)i = xi+1 − 2xi + xi−1

νz2 (3.82)
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The semi-discrete ODE system then takes the form




x1
· · ·
· · ·
xN


⎛

t

= − v

νz




1 −1
−1 1

−1 1
· · ·
−1 1


⎛




x1
x2
x3
· · ·
xN


⎛+ D

νz2




−2 1 1
1 −2 1

1 −2 1
· · ·

1 1 −2


⎛




x1
x2
x3
· · ·
xN


⎛

(3.83)

The eigenvalue spectrum of the resulting discretization matrix (sum of the two matri-
ces on the RHS) can be computed using formula (3.45), which gives

δk = −
⎢

v

νz
+ 2D

νz2

⎣
+ D

νz2 exp

⎢
j (k − 1)

2Δ

N

⎣

+
⎢

v

νz
+ D

νz2

⎣
exp

⎢
j (k − 1)

(N − 1)2Δ

N

⎣
(3.84)

or

δk =
⎢

v

νz
+ 2D

νz2

⎣⎢
cos

⎢
k − 1

N
2Δ

⎣
− 1

⎣
− j

v

νz
sin

⎢
k − 1

N
2Δ

⎣
(3.85)

These eigenvalues have negative real parts, for all positive values of v, D and νz. In
order to select an appropriate time integrator for solving (3.83), we first determine the
δkνt-locus in the complex plane. To this end, we use the same notation as in (3.68)

α = (k − 1)
2Δ

N
; α = vνt

νz
(3.86)

and, in addition,

β = Dνt

νz2 (3.87)

so that
δkνt = (α + 2β)(cos α − 1) − jα sin α = x + j y (3.88)

The δkνt-locus is therefore an ellipsis centered at (−α − 2β, 0) given by

⎢
x + α + 2β

α + 2β

⎣2

+
⎤ y

α

⎥2 = 1 (3.89)

If we decide to use an explicit Euler method, the ellipsis (3.89) must be completely
included inside the circle centered at

(x + 1)2 + y2 = 1 (3.90)
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for the solution to be stable. This implies that the half axis of the ellipsis (3.89) must
be smaller than the radius of the circle (3.90)

α + 2β < 1; α < 1 (3.91)

Since α and β are positive, the more severe condition is the first, which in terms of
νt and νz, can be written as

νt ≤ νtmax = 1
v

νz
+ 2D

νz2

(3.92)

Rigorously, we should also check that the ellipsis and the circle have only one inter-
section at (0, 0). In fact, this is the case if (3.92) is satisfied, and we skip the details
of these algebraic manipulations.

We now check the validity of the stability condition (3.92) in solving the IBVP
(3.78)–(3.80), using

v = 1; D = 0.005 (3.93)

and different values of νz, i.e., 0.01, 0.001, and 0.0001. On examination of the
numerical solutions, νz = 0.001 seems to be a good choice, and Fig. 3.6 shows
three solutions obtained respectively with νt = νtmax, νt = 0.1νtmax and νt =
1.003νtmax. From this figure, it is apparent that:

• νt may vary largely within the stability bounds, without much effect on the
solution.

• As soon as νt exceeds the predicted stability limit, the solution becomes unstable.

Using an upwind scheme for the first-order derivative in combination with the explicit
Euler method is probably the most natural choice (and we definitely recommend it).
However, we would like to stress that there are no general rules, and that a solution
is also possible using a 2-point downwind scheme

(xz)t = xi+1 − xi

νz
(3.94)

For the pure advection equation (studied in the previous section), this latter scheme
yields a semi-discrete equation system whose solution is unstable since the eigen-
values of the matrix of the semi-discrete system are in the right half-plane. Here, the
influence of the diffusion term will be beneficial, as the following reasoning shows.

The semi-discrete equation system can be written as




x1
· · ·
· · ·
xN


⎛

t

= − v

νz




−1 1
−1 1

−1 1
· · ·

1 −1


⎛




x1
x2
x3
· · ·
xN


⎛
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Fig. 3.6 Numerical solution of the initial boundary value problem (3.78–3.80) using 2-point upwind
FDs for the first-order derivative (advection term), 3-point centered FDs for the second order deriv-
ative (diffusion term) and an explicit Euler method

+ D

νz2




−2 1 1
1 −2 1

1 −2 1
· · ·

1 1 −2


⎛




x1
x2
x3
· · ·
xN


⎛ (3.95)

Again, formula (3.45) can be used to compute the eigenvalues of the spatial dis-
cretization matrix (sum of the two matrices on the RHS)
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δk =
⎢

v

νz
− 2D

νz2

⎣
+
⎢

− v

νz
+ D

νz2

⎣
exp

⎢
j (k − 1)

2Δ

N

⎣

+ D

νz2 exp

⎢
j (k − 1)

(N − 1)2Δ

N

⎣
(3.96)

or, with the notation (3.86)

δk =
⎢

2D

νz2 − v

νz

⎣
(cos α − 1) − j

v

νz
sin α (3.97)

For stability, it is therefore required that (eigenvalues must have negative real parts)

2D

νz2 − v

νz
∈ 0 (3.98)

This imposes a condition on spatial discretization

νz ≤ 2D

v
(3.99)

Note that, when using a 2-point upwind scheme, the eigenvalues (3.85) have negative
real parts, for all positive values of v, D and νz. Here, on the contrary, the spatial
grid must be fine enough to retain stability.

Assuming that condition (3.68) is satisfied, the δkνt-locus must lie inside the
circle (3.90). Based on the same algebraic manipulations as before, it is possible to
show that this locus is again an ellipsis of the form

⎢
x + 2β − α

2β − α

⎣2

+
⎤ y

α

⎥2 = 1 (3.100)

For this ellipsis to be included in the circle (3.90), several conditions have to be
achieved:

• The centre of ellipsis (−2β + α, 0) must lie in the left half-plane

2β − α > 0 (3.101)

• The two half axis must be less than 1

2β − α < 1; α < 1 (3.102)

or (combining with condition (3.101))

0 < 2β − α < 1; 0 < α < 1 (3.103)
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or

0 < α < 1

α

2
< β <

1 + α

2
(3.104)

• The only common point between the ellipsis and the circle must be (0, 0). Some
algebraic manipulations show that conditions (3.104) are then restricted to

0 < α < 1

α + α 2

2
< β <

1 + α

2
(3.105)

These conditions cannot be directly expressed in terms of admissible values of νz
and νt , but we can illustrate a particular situation. Assume arbitrarily that α = 0.5.

The second condition then gives
3

8
< β <

3

4
. In terms of νz and νt , this can be

translated into

νt = νz

2v
; 2D

3v
< νz <

4D

3v
. (3.106)

Figure 3.7 shows the δkνt-loci for
2D

3v
,

D

v
,

4D

3v
and the corresponding simulation

results. These three cases are stable, even though the quality (accuracy) is question-
able. Accuracy is in fact related to the value of νz, whose smallest value corre-

sponds to case 1, i.e. νz = D

3v
. With v = 1 and D = 0.005, the grid spacing is

νz = 0.00333. However, we have seen previously that the largest possible value
(for achieving satisfactory accuracy) is νz = 0.001.

To ensure satisfactory accuracy, we will impose νz and use conditions (3.105) to
determine the admissible values of νt . The first condition can be written as

νt <
v

νz
(3.107)

the second as

α + α 2

2
< β √≡ vνt

νz
+
⎢

vνt

νz

⎣2

< 2
Dνt

νz2 √≡ νt <
2D

v2 − νz

v
(3.108)

and the third as

β <
1 + α

2
√≡ Dνt

νz2 <
1

2

⎢
1 + vνt

νz

⎣
√≡ νt <

1
2D

v2 − v

νz

(3.109)
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Fig. 3.7 Numerical solution of the initial boundary value problem (3.78–3.80) using 2-point down-
wind FDs for the first-order derivative (advection term), 3-point centered FDs for the second order
derivative (diffusion term) and an explicit Euler method

The maximum admissible time-step size νtmax is therefore given by

νtmax = min


⎜ v

νz
,

2D

v2 − νz

v
,

1
2D

v2 − v

νz


⎟ (3.110)
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Fig. 3.8 Numerical solution of the initial boundary value problem (3.78–3.80) using 2-point down-
wind FDs for the first-order derivative (advection term), 3-point centered FDs for the second order
derivative (diffusion term) and an explicit Euler method

For the numerical values considered in the example (v = 1, D = 0.005 and νz =
0.001), νtmax = 10−3

9
. Figure 3.8 shows three different situations, e.g. νt = νtmax,

νt = 0.5νtmax and νt = 1.0035νtmax. We can note the following:

• For νt ≤ νtmax, the numerical simulation is very satisfactory (and is comparable
in quality with the results obtained with an upwind FD scheme, as presented in
Fig. 3.6).

• The numerical scheme becomes unstable as soon as νt exceeds νtmax.
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3.6 Numerical Study of the Advection-Diffusion-Reaction
Equation

In addition to advection and diffusion, we now consider a source term r(x), which
could for instance model a chemical reaction rate

xt = −vxz + Dxzz + r(x) (3.111)

with 0 ≤ z ≤ 1, t ∈ 0.
The simplest such model would be a linear reaction rate of the form r(x) = αx ,

yielding the PDE
xt = −vxz + Dxzz + αx (3.112)

If we use the same spatial discretization schemes as for the advection-diffusion
equation, i.e., Eqs. (3.81)–(3.82), the eigenvalues of the semi-discrete system are
given by

δk = α +
⎢

v

νz
+ 2D

νz2

⎣⎢
cos

⎢
k − 1

N
2Δ

⎣
− 1

⎣
− j

v

νz
sin

⎢
k − 1

N
2Δ

⎣
(3.113)

Compared to Eq. (3.85), this expression shows that the eigenvalues are shifted to
the left or to the right by α (depending on the sign of α). If α is positive (i.e., if
the quantity x is produced in the chemical reaction), then part of the eigenvalues
have positive real parts so that the system is unstable (whatever the value of νt). On
the other hand, if α is negative (i.e., if the quantity x is consumed in the chemical
reaction), the eigenvalue spectrum is shifted to left in the left half plane so that the
system is stable. However, the constraints on νt might be more stringent than for
the advection-diffusion problem as the following reasoning shows.

In the previous section, the study of the stability conditions for the advection-
diffusion equation showed that the δkνt-locus is an ellipsis given by Eq. (3.100).
Specifically, the stability condition (3.103) says that the half horizontal axis 2β − α

of the ellipsis must be smaller than the radius of the unit circle (so as to ensure
that the ellipsis lies inside the unit circle). The consideration of an additional reac-
tion term leads to essentially the same conclusions. After some (easy but technical)
manipulations, it is possible to show that the δkνt-locus is again an ellipsis

⎢
x + α + 2β − ανt

α + 2β

⎣2

+
⎤ y

α

⎥2 = 1 (3.114)

which intersects the real axis in two points

p1 = ανt

p2 = ανt − 2α − 4β (3.115)
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These two abscissa are negative when α is negative and p2 < p1, so that the stability
condition is

p2 = ανt − 2α − 4β ∈ −2 (3.116)

to ensure that the ellipsis lies in the unit circle. This can be rewritten as

νt ≤ νtmax = 1
v

νz
+ 2D

νz2 − α

2

(3.117)

which is indeed smaller than the maximum time step size predicted by Eq. (3.92)
when α is negative. This result is confirmed by simulation in Fig. 3.9, which repeats
the tests of Fig. 3.6 with an additional reaction term corresponding to α = −5.

3.7 Is it Possible to Enhance Stability?

As the previous examples show, both spatial discretization and time integration influ-
ence the stability of the numerical computation scheme.

The selection of a spatial discretization scheme influences the stability of the
semi-discrete ODE system. When considering the advection-diffusion example, we
saw that it is possible to use an upwind or a downwind FD scheme for approximat-
ing the first-order (advection) term. However, the use of an upwind scheme leads to
an unconditionally stable semi-discrete ODE system, whereas a downwind scheme
leads to a more restrictive stability condition (3.99). As mentioned before, it is dif-
ficult to draw general conclusions from a few examples concerning the choice of a
spatial discretization scheme, but a few practical guidelines can be proposed based
on experience:

• First-order spatial derivatives (representing advection or convection) are usu-
ally best approximated using upwind FD schemes (physically, useful informa-
tion on the solution is “sensed” in the upwind direction, from where the solution
“flows”).

• Second-order derivatives (representing diffusion or dispersion) are usually best
approximated using centered FD schemes (physically, diffusion has no preferential
direction, and information is “sensed” in both directions).

Once spatial discretization has been carried out and a stable semi-discrete ODE
system has been obtained, a sufficiently small time-step size νt must be selected
in order to remain inside the stability region imposed by the time integrator. This
is particularly true when using explicit ODE integrators, as in the previous exam-
ples where we used an explicit Euler method. However, we have seen in Chap. 1
that implicit time integrators have much larger stability regions, and it can be very
advantageous to use one.

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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Fig. 3.9 Numerical solution of the initial boundary value problem (3.111, 3.79–3.80) using 2-point
upwind FDs for the first-order derivative (advection term), 3-point centered FDs for the second order
derivative (diffusion term) and an explicit Euler method

To illustrate this latter statement, we return to the advection-diffusion problem
(3.78)–(3.80), that we approximate using the FD schemes (3.81–3.82)

(xz)i = xi − xi−1

νz
(3.118)

(xzz)i = xi+1 − 2xi + xi−1

νz2 (3.119)

i.e., we use an upwind FD scheme for the advection term.
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However, instead of using an explicit Euler method, we now apply an implicit
Euler method to the semi-discrete ODE system

xk+1
i − xk

i

νt
= −v(xz)

k+1
i + D(xzz)

k+1
i (3.120)

As discussed in Chap. 1, the implicit Euler method is unconditionally stable, i.e.,
there is no constraint on νt due to stability. In fact, the only constraint on νt is
due to accuracy, i.e., the quality of the approximation of the temporal derivative is

determined by
xk+1

i − xk
i

νt
.

These conclusions are illustrated in Fig. 3.10, which shows that satisfactory
numerical results are obtained with νt = νtexp, max (where νtexp, max is the
maximum time step size of the explicit Euler method), νt = 10νtexp, max, and
νt = 100νtexp, max.

In this latter case, the numerical accuracy slightly deteriorates due to the very
large time step size.

The use of higher-order implicit time integrators, such as the BDF methods of
order 1–6 reviewed in Chap. 1, can be beneficial to accuracy but can lead to stability
problems if the eigenvalues of the semi-discrete system lie close to the imaginary
axis. For example, the semi-discrete system (3.62) has purely imaginary eigenvalues
(see Fig. 3.3), and BDF methods of order larger than 2 will be unsuitable to solve
this problem as they are not unconditionally stable in the entire left half plane (see
Fig. 1.10 and the comments thereafter).

3.8 Stiffness

Up to now, we have mostly considered stability as a “yes” or “no” answer. There
is an additional system characteristic, called stiffness, related to the presence of
very different time scales, which can make time integration particularly delicate.
For instance, a system response to an external perturbation can display small-scales
features occurring on periods of a few seconds, and overall transients dominated
by large time constants of a few hours. In this case, the limited stability regions of
explicit time integrators will impose important restrictions on the time step size. In
fact, large eigenvalues (corresponding to small time constants) will require small
time steps, whereas numerical efficiency would require larger steps to compute the
complete solution with reasonable effort. Again, the use of an implicit ODE solver
will be the way around this problem.

To illustrate the concept of stiffness, we consider a classical example: the Brus-
selator, which was proposed by Prigogine [4, 5], as he was working in Brussels
(explaining the origin of the name)

ut = A − (B + 1)u + u2v + αuzz

vt = Bu − u2v + αvzz
; 0 ≤ z ≤ 1, t ∈ 0 (3.121)

http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
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Fig. 3.10 Numerical solution of the initial boundary value problem (3.78–3.80) using 2-point
upwind FDs for the first-order derivative (advection term), 3-point centered FDs for the second
order derivative (diffusion term) and an implicit Euler method

supplemented by Dirichlet BCs

u(0, t) = u(1, t) = 1 (3.122)

v(0, t) = v(1, t) = 3 (3.123)

and ICs

u(z, 0) = 1 + sin (2Δ z) (3.124)

v(z, 0) = 3 (3.125)

with the numerical parameter values: A = 1, B = 3, α = 0.02.
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Fig. 3.11 Numerical solution (u) of the Brusselator problem (3.121)–(3.125) using 3-point centered
FDs for the second-order derivative and a spatial grid with 101 points

In contrast with the previous examples, the PDEs (3.121) are nonlinear. If we
use a 3-point centered FD scheme, as in (3.119), to approximate the second-order
derivatives, we obtain a semi-discrete system in the form




u1
...

ui
...

uN−1
v1
...

vi
...

vN−1


⎛

t

=




A − (B + 1)u1 + u2
1v1 + α(−2u1 + u2)
...

A − (B + 1)ui + u2
i vi + α(ui−1 − 2ui + ui+1)

...

A − (B + 1)uN−1 + u2
N−1vN−1 + α(uN−2 − 2uN−1)

Bu1 − u2
1v1 + αα(−2v1 + v2)

...

Bui − u2
i vi + α(vi−1 − 2vi + vi+1)

...

BuN−1 − u2
N−1vN−1 + α(vN−2 − 2vN−1)


⎛

+




αu0
0
...

0
αuN

αv0
0
...

0
αvN


⎛

(3.126)
where the BCs give the values of u0, uN , v0 and vN .

Using the methods presented in the previous sections, stability could only be
studied locally, i.e., around a particular point in the (u, v) space. Indeed, as the semi-
discrete system (3.126) is nonlinear, it would be necessary to evaluate the Jacobian
matrix, and to compute the eigenvalues. We will not detail these computations here,
but instead, we will compare the performance of two integrators of the MATLAB
ODE Suite on this problem: (a) ode45, an explicit Runge-Kutta Fehlberg method
and (b) ode15s, an implicit method based on backward differentiation formulas.

Both solvers give satisfactory results, which are represented in Figs. 3.11 and 3.12
for 0 ≤ t ≤ 20. These solutions are computed on a spatial grid with N = 100 points,
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Fig. 3.12 Numerical solution (v) of the Brusselator problem (3.121)–(3.125) using 3-point centered
FDs for the second-order derivative and a spatial grid with 101 points

Table 3.1 Computational statistics of ode45 and ode15s (spatial grid with 101 points)

ode45 ode15s

Sucessful steps 4821 137
Failed attemps 322 16
Function evaluations 30859 923
CPU (s) 2.2 0.4

and tolerances on time integration defined by AbsTol = 10-3, and RelTol =
10-6.

Even though the two solvers give a satisfactory solution, the computational load
is quite different as apparent on inspection of Table 3.1

Clearly, ode15s performs much more efficiently on this problem, reducing the
CPU by a factor of almost 6. This is a clear sign that the limited stability region of the
explicit ODE integrator ode45 restricts the time step size to (much) smaller values.
In this example, stiffness mostly depends on the numerical values of two parameters:
the number of grid points and the selection of a FD scheme for the second-order
derivative. Table 3.2 shows the computational statistics when the number of grid
points is increased to 201 (instead of 101). While the number of steps taken by
ode15s remains unchanged, the number of steps taken by ode45 is multiplied by
4. As a result, the CPU required by ode15s is just multiplied by 1.5 (this is logical
since we are solving twice as much equations), whereas the CPU required by ode45
is multiplied by about 4.

Table 3.3 shows the influence of the FD scheme used to approximate the second-
order derivative. For instance, a 5-point centered scheme is used instead of a 3-point
centered scheme. Again, the performance of ode15s is unaffected, whereas the
CPU required by ode45 increases.



3.9 Accuracy and the Concept of Differentiation Matrices 157

Table 3.2 Computational statistics of ode45 and ode15s (spatial grid with 201 points)

ode45 ode15s

Sucessful steps 19282 137
Failed attemps 1265 16
Function evaluations 123283 1523
CPU (s) 9.3 0.6

Table 3.3 Computational statistics of ode45 and ode15s (spatial grid with 101 points and
5-point centered FD scheme for the second-order derivative)

ode45 ode15s

Sucessful steps 6425 137
Failed attemps 426 16
Function evaluations 41107 923
CPU (s) 2.82 0.5

3.9 Accuracy and the Concept of Differentiation Matrices

In previous sections, we focused attention on stability of the numerical scheme
resulting from spatial discretization and time integration (the two fundamental steps
in the MOL). In the following, we will assume that stability is achieved by a proper
choice of a FD scheme and time integrator, and turn to another consideration:
accuracy.

Accuracy can be influenced at two levels: spatial discretization and time integra-
tion. Spatial discretization itself has two tuning features: the number of spatial grid
points which determines the fineness or resolution of the spatial grid and the stencil of
the FD scheme, i.e., the pattern of points on which the FD scheme is built. Increasing
the number of spatial grid points, a procedure called h refinement (as h denotes the
spacing between two adjacent grid points in the mathematical literature) will usually
enhance the accuracy of the solution. Increasing the order of the finite difference
approximation, a procedure called p refinement, can also be beneficial to accuracy.

We will first consider a uniform spatial grid and return to the construction of
finite difference schemes using linear combination of Taylor series expansions. For
instance, a centered approximation of the first derivative of x(z) at zi can be obtained
by subtracting the Taylor series expansions at zi+1 and zi−1

xi+1 = xi + νz

1!
dx

dz

∣∣∣∣
zi

+ νz2

2!
d2x

dz2

∣∣∣∣
zi

+ νz3

3!
d3x

dz3

∣∣∣∣
zi

+ νz4

4!
d4x

dz4

∣∣∣∣
zi

+ · · ·

xi−1 = xi − νz

1!
dx

dz

∣∣∣∣
zi

+ νz2

2!
d2x

dz2

∣∣∣∣
zi

− νz3

3!
d3x

dz3

∣∣∣∣
zi

+ νz4

4!
d4x

dz4

∣∣∣∣
zi

− · · ·
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so as to get

dx

dz

∣∣∣∣
z
= xi+1 − xi−1

2νz
+ O(νz2) (3.127)

which is a second-order accurate formula.
Combining Taylor series at additional locations zi+1, zi+2, . . ., zi−1, zi−2, . . .,

allows more elaborate formulas to be obtained. For instance,

dx

dz

∣∣∣∣
z
= −xi−3 + 6xi−2 − 18xi−1 + 10xi + 3xi+1

12νz
+ O(νz4) (3.128)

is a fourth-order (five-point) biased-upwind finite difference approximation for the
first derivative. This latter formula is particularly useful to approximate strongly
convective terms, with a propagation from left to right (i.e., positive flow velocity
v > 0).

Formulas such as (3.127)–(3.128) can be used at all the grid points, with the
exception of a few points near the boundaries (the number of these boundary points
depends on the approximation stencil of the formula, i.e., the number and configura-
tion of the grid points involved in the formula). At those points, alternative formulas
have to be developed in order to avoid the introduction of fictitious grid points out-
side of the spatial domain. In the case of (3.127), these latter formulas are derived
by considering the Taylor series expansions at the boundary point z0 and zN .

Consider first the following expansions at z0

x1 = x0 + νz

1!
dx

dz

∣∣∣∣
z0

+ νz2

2!
d2x

dz2

∣∣∣∣
z0

+ νz3

3!
d3x

dz3

∣∣∣∣
z0

+ νz4

4!
d4x

dz4

∣∣∣∣
z0

+ · · ·

x2 = x0 + 2νz

1!
dx

dz

∣∣∣∣
z0

+ (2νz)2

2!
d2x

dz2

∣∣∣∣
z0

+ (2νz)3

3!
d3x

dz3

∣∣∣∣
z0

+ (2νz)4

4!
d4x

dz4

∣∣∣∣
z0

+ · · ·

These two expressions are combined using coefficients a and b so as to obtain

ax1 + bx2 = (a + b)x0 + (a + 2b)
dx

dz

∣∣∣∣
z0

+ (a + 4b)
d2x

dz2

∣∣∣∣
z0

νz2

2! + O(νz2)

In order to retain the first-order derivative, the term multiplying it, i.e. a + 2b, must
be different from zero, for instance

a + 2b = 1

and to cancel exactly the second-order term, coefficients a and b must be of the form

a + 4b = 0
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The previous equations form a system of linear equations whose solution is a = 2,
b = −1/2. The resulting formula at z0 is therefore

dx

dz

∣∣∣∣
z0

= −3x0 + 4x1 − x3

2νz
+ O(νz2) (3.129)

A similar procedure at zN yields

dx

dz

∣∣∣∣
zN

= 3xN − 4xN−1 + xN−2

2νz
+ O(νz2) (3.130)

These formulas are no longer centered formulas, but are still second order accurate.
For the MATLAB implementation of formulas such as (3.127)–(3.130), the con-

cept of a differentiation matrix is useful, i.e.,

xz = D1x = 1

2νz




−3 4 −1 0 · · · · · · 0
−1 0 1 0 · · · · · · 0

· · ·
0 · · · −1 0 1 · · · 0

· · ·
0 · · · · · · 0 −1 0 1
0 · · · · · · 0 1 −4 3


⎛




x0
x1
· · ·
xi

· · ·
xN−1
xN


⎛

(3.131)

so that a spatial derivative can be computed by a simple matrix operation (which is
the key operation in MATLAB).

Differentiation matrices allow higher-order spatial derivatives to be easily com-
puted in either of the following two ways:

• Stagewise differentiation: xz = D1x and xzz = D1xz

• Direct differentiation: xzz = D2x

where D1 and D2 are matrices for computing first- and second-order derivatives,
respectively. Other combinations are possible as well, e.g., xzzzz = D1(D1(D1(D1x)))

or xzzzz = D2(D2x) or xzzzz = D4x. Stagewise differentiation is a simple and very
flexible procedure, which should be applied with care, as an order of accuracy is lost
at each stage.

Even though FD schemes and the corresponding differentiation matrices can be
computed analytically in a number of cases, the developments become tedious for
high-order schemes and it is interesting to look for an automated, numerical pro-
cedure. Such a procedure exists and has been proposed by Fornberg [6, 7] for iter-
atively computing the weighting coefficients of finite difference formulas of arbi-
trary order of accuracy on arbitrarily spaced spatial grids (nonuniform grids). The
starting point of this procedure is the consideration of an interpolation polynomial
of a function x(z) which is known only at a set of N + 1 arbitrarily distributed
points zi :
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z x(z)
z0 x0
z1 x1
...

...

zi xi
...

...

zN xN

Interpolation can be achieved using a Lagrange polynomial given by

P0...N (z) =
N⎡

k=0

λNk(z)xk (3.132)

where λNk is a Lagrange coefficient of the form

λNk = (z − z0) · · · (z − zk−1)(z − zk+1) · · · (z − zN )

(zk − z0) · · · (zk − zk−1)(zk − zk+1) · · · (zk − zN )
(3.133)

The approximation of the nth-order derivative of x(z) in zi , i.e.,
dn x(zi )

dzn
can be

obtained by differentiating this interpolation polynomial

dn x

dzn

∣∣∣∣
z
=
⎢

dn P0...N (z)

dzn

⎣
z
=

n⎡
k=0

⎢
dnλNk(z)

dzn

⎣
z

xk =
n⎡

k=0

cn
Nk xk (3.134)

The idea behind Fornberg’s procedure is to derive an iterative algorithm for comput-
ing the coefficients cm

Nk for 1 ≤ m ≤ n, which allow the evaluation of the successive
derivatives

dx

dz

∣∣∣∣
z
=

n⎡
k=0

c1
Nk xk

d2x

dz2

∣∣∣∣
z
=

n⎡
k=0

c2
Nk xk

· · ·
dn x

dzn

∣∣∣∣
z
=

n⎡
k=0

cn
Nk xk

From (3.133) we deduce that

λNk(z) = λN−1k(z)
z − zN

zk − zN
(3.135)
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which is valid for all k, except k = N . For the latter, another expression is sought
starting from

λN N (z) = (z − z0) · · · (z − zN−1)

(zN − z0) · · · (zN − zN−1)
(3.136)

λN−1N−1(z) = (z − z0) · · · (z − zN−2)

(zN−1 − z0) · · · (zN−1 − zN−2)
(3.137)

which leads to

λN N (z) = λN−1N−1(z)
(zN−1 − z0) · · · (zN−1 − zN−2)

(zN − z0) · · · (zN − zN−1)
(z − zN−1) (3.138)

If we define

ρN (z) = (z − z0) · · · (z − zN ) (3.139)

Equation (3.138) can be written in a more compact way as

λN N (z) = λN−1N−1(z)
ρN−2 (zN−1)

ρN−1 (zN )
(z − zN−1) (3.140)

Let us now return to the expression of the polynomial λNk(z) which has degree N
and as such can be developed as follows

λNk(z) = α0 + α1 (z − zi ) + · · · + αN (z − zi )
N (3.141)

where

αm = 1

m!
⎢

dmλNk

dzm

⎣
zi

(3.142)

so that, using the notation of Eq. (3.134),

λNk(z) =
N⎡

m=0

1

m!
⎢

dmλNk

dzm

⎣
zi

(z − zi )
m =

N⎡
m=0

cm
Nk

m! (z − zi )
m (3.143)

This result can be used in Eq. (3.135) to give

N⎡
m=0

cm
Nk

m! (z − zi )
m =

N−1⎡
m=0

cm
N−1k

m! (z − zi )
m z − zN

zk − zN

=
N−1⎡
m=0

cm
N−1k

m! (z − zi )
m z − zi + zi − zN

zk − zN
(3.144)
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If we equate the coefficients of the terms in (z − zi )
m , we obtain an iterative formula

cm
Nk

m! = cm−1
N−1k

(m − 1)!
1

zk − zN
+ cm

N−1k

m!
zi − zN

zk − zN
(3.145)

or

cm
Nk = 1

zk − zN

[
mcm−1

N−1k + (zi − zN ) cm
N−1k

⎧
(3.146)

The particular case k = N has to be deduced from (3.140)

N⎡
m=0

cm
N N

m! (z − zi )
m =

N−1⎡
m=0

cm
N−1N−1

m! (z − zi )
m ρN−2 (zN−1)

ρN−1 (zN )

(z − zi + zi − zN−1) (3.147)

Again, the equality of the coefficients of the terms in (z − zi )
m in both expressions

leads to an iterative formula

cm
N N

m! = ρN−2 (zN−1)

ρN−1 (zN )

⎦
cm

N−1N−1

m! (zi − zN−1) + cm−1
N−1N−1

(m − 1)!

]
(3.148)

or

cm
N N = ρN−2 (xN−1)

ρN−1 (xN )

[
cm

N−1N−1 (zi − zN−1) + mcm−1
N−1N−1

⎧
(3.149)

Equations (3.146) and (3.149) are the iterative formulas proposed by Fornberg
[6, 7]. We can observe the iterative computation with respect to the order of the
derivative (superscript m) and with respect to the number of grid points (subscript
N ). These formulas are coded in function weights.

function [w ] = weights (zd ,zs ,ns ,m )
% This function computes the weights of a finite difference
% scheme on a nonuniform grid
%
% Input Parameters
% zd : location where the derivative is to be computed
% ns : number of points in the stencil
% zs (ns ) : stencil of the finite difference scheme
% m : highest derivative for which weights are sought
%
% Output Parameter
% w ( 1 :ns , 1 :m+ 1 ) : weights at grid locations z ( 1 :ns ) for
% derivatives of order 0 :m , found in
% w ( 1 :ns , 1 :m+1)

c1 = 1 . 0 ;
c4 = zs(1)−zd ;
for k = 0 : m
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for j = 0 : ns−1
w (j+1 ,k+1) = 0 . 0 ;

end
end
w ( 1 , 1 ) = 1 . 0 ;
for i = 1 : ns−1

mn = min (i ,m ) ;
c2 = 1 . 0 ;
c5 = c4 ;
c4 = zs (i+1)−zd ;
for j = 0 : i−1

c3 = zs (i+1)−zs (j+ 1 ) ;
c2 = c2*c3 ;
if (j = = i−1)

for k = mn : −1:1
w (i+1 ,k+1) = c1*(k*w (i ,k)−c5*w (i ,k+ 1 ) ) /c2 ;

end
w (i+1 ,1) = −c1*c5*w (i , 1 ) / c2 ;

end
for k = mn : −1 : 1

w (j+1 ,k+1) = (c4*w (j+1 ,k+1)−k*w (j+1 ,k ) ) / c3 ;
end
w (j+1 ,1) = c4*w (j+ 1 , 1 ) /c3 ;

end
c1 = c2 ;

end

Function weights Function weights for the iterative computation of finite difference weights
on arbitrarily spaced grids.

This function can be called by more specific functions computing particular dif-
ferentiation matrices. These latter functions automate the computation of the differ-
entiation matrices, and have names that explicit their purposes. For instance, func-
tion two_point_upwind_D1, computes a differentiation matrix for a first-order
derivative using a 2-point upwind formula. In the calling list, z is the vector con-
taining the grid points, which can be uniformly or non uniformly distributed, and v
is a parameter indicating the direction of the flow (positive from left to right, and
negative in the opposite direction).

function [D ] = two_point_upwind_D1(z ,v )
%
% function two_point_upwind_D1 returns the differentiation
% matrix for computing the first derivative , xz , of a
% variable x over a nonuniform grid z from upwind two−point ,
% first−order finite difference approximations
%
% the following parameters are used in the code :
%
% z spatial grid
%
% v fluid velocity (positive from left
% to right − only the sign is used )
%
% n number of grid points
%
% zs (ns ) stencil of the finite difference scheme
%
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% ns number of points in the stencil
%
% zd location where the derivative is to be
% computed
%
% m highest derivative for which weights are
% sought

m = 1 ;
ns = 2 ;

% sparse discretization matrix
n = length (z ) ;
D = sparse (n ,n ) ;

% ( 1 ) finite difference approximation for positive v
if v > 0

% boundary point
zs = z ( 1 :ns ) ;
zd = z ( 1 ) ;
[w ] = weights (zd ,zs ,ns ,m ) ;
D ( 1 , 1 : 2 ) = w ( 1 :ns ,m+ 1 ) ' ;
% interior points
for i = 2 :n ,

zs = z (i−1:i ) ;
zd = z (i ) ;
[w ] = weights (zd ,zs ,ns ,m ) ;
D (i ,i−1:i ) = w ( 1 :ns ,m+ 1 ) ' ;

end ;
end ;
% ( 2 ) finite difference approximation for negative v
if v < 0

% interior points
for i = 1 :n−1,

zs = z (i :i+ 1 ) ;
zd = z (i ) ;
[w ] = weights (zd ,zs ,ns ,m ) ;
D (i ,i :i+1) = w ( 1 :ns ,m+ 1 ) ' ;

end ;
% boundary point
zs = z (n−1: n ) ;
zd = z (n ) ;
[w ] = weights (zd ,zs ,ns ,m ) ;
D (n ,n−1: n ) = w ( 1 :ns ,m+ 1 ) ' ;

end ;

Function two_point_upwind_D1 Function to compute a first-order differentiation matrix using
a 2-point upwind finite difference scheme.

To conclude this section, and illustrate the use of various differentiation matrices,
with different orders of accuracy, we return to Burgers equation already presented in
Chap. 1 (Sect. 1.3).

ϕx

ϕt
= −x

ϕx

ϕz
+ μ

ϕ2x

ϕz2 (3.150)

We consider another exact solution given by

xexact(z, t) = 1

1 + e(z−0.5t)/2μ
(3.151)

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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This solution can be used to assess the accuracy of the numerical solution. The
code is given in the following listings (burgers_main, burgers_pde and
burgers_exact).

close all
clear all

% set global variables
global mu ;
global z0 zL n D1 D2 ;

% spatial grid
z0 = 0 . 0 ;
zL = 1 . 0 ;
n = 201;
dz = (zL−z0 ) / ( n−1);
z = [z0 :dz :zL ] ' ;

% model parameter
mu = 0 . 0 0 1 ;

% initial conditions
x = burgers_exact (z , 0 ) ;

% select finite difference (FD ) approximation of the spatial
% derivative
method = 'centered ' % three point centered approximation
% method = 'upwind 2 ' % two point upwind approximation
% method = 'upwind 3 ' % three point upwind approximation
% method = 'upwind 4 ' % four point upwind approximation
%
switch method

%
% three point centered approximation
case ( 'centered ' )

D1 = three_point_centered_D1 (z ) ;
% two point upwind approximation

case ( 'upwind 2 ' )
v = 1 ;
D1 = two_point_upwind_D1(z ,v ) ;
% three point upwind approximation

case ( 'upwind 3 ' )
v = 1 ;
D1 = three_point_upwind_D1(z ,v ) ;
% four point upwind approximation

case ( 'upwind 4 ' )
v = 1 ;
D1 = four_point_upwind_D1(z ,v ) ;

end

% differentiation matrix (diffusive term )
% D2=three_point_centered_D2 (z ) ;
D2 = five_point_centered_D2 (z ) ;

% call to ODE solver
t = [ 0 : 0 . 1 : 1 . 5 ] ;
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options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
%
[tout , yout ] = ode15s ( 'burgers_pde ' ,t ,x ,options ) ;

% Plot the numerical results
plot (z ,yout , 'k ' ) ;
xlabel ( 'z ' ) ;
ylabel ( 'x ' ) ;
title ( 'Burgers equation ' )

% compute exact solution
x_exact = [ ] ;
for k = 1 :length (tout )

x = burgers_exact (z ,tout (k ) ) ;
x_exact = [x_exact ; x ' ] ;

end

% compare with numerical solution
hold on
plot (z ,x_exact , 'r ' ) ;

Script burgers_main Main program for the solution of Burgers equation using various spatial
differentiation matrices.

function xt = burgers_pde (t ,x )

% set global variables
global mu ;
global z0 zL n D1 D2 ;

% boundary conditions at z = 0
x ( 1 ) = burgers_exact (z0 ,t ) ;

% boundary conditions at z = zL
x (n ) = burgers_exact (zL ,t ) ;

% second − order spatial derivative
xzz = D2*x ;

% first − order spatial derivative
xz = D1*x ;

% temporal derivatives
xt = −x . *xz + mu*xzz ;
xt ( 1 ) = 0 ;
xt (n ) = 0 ;

Function burgers_pde PDE function for the solution of Burgers equation using various spatial
differentiation matrices.
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Fig. 3.13 Numerical solution
of Burgers equation (3.150)
using 3-point centered FDs
for the first-order derivative,
5-point centered FDs for the
second-order derivative and a
spatial grid with 201 points
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function [x ] = burgers_exact (z ,t )

% This function computes an exact solution to Burgers ' equation

global mu

ex = exp ( (z−0.5*t ) / ( 2 *mu ) ) ;
x = 1 . / ( 1 +ex ) ;

Function burgers_exact Exact solution to Burgers equation

Note the possibility of testing different approximations for the first-order
derivative. As discussed earlier in the present chapter, the use of a centered scheme
leads to spurious oscillations (see Fig. 3.13, which has been produced with a spatial
grid of 201 points).

The application of a 2-point upwind scheme avoids oscillations, but does not
produce a satisfactory solution as the speed of the wave is not well estimated (the
numerical solution lags behind the exact solution—see Fig. 3.14).

A 3-point upwind scheme improves the results (Fig. 3.15), but a 4-point upwind
scheme produces much better results as shown in Fig. 3.16.

To get similar results with a 3-point upwind scheme, it is necessary to increase the
number of grid points up to 701, thus increasing significantly the computational load.

3.10 Various Ways of Translating the Boundary Conditions

At this stage, we know how to approximate the derivative operators in the partial
differential equations using a variety of finite difference schemes, on uniform and
nonuniform grids, and with different orders of accuracy. An important aspect of the
solution of an initial-boundary value problem that we have already touched upon,
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Fig. 3.14 Numerical solution
of Burgers equation (3.150)
using 2-point upwind FDs
for the first-order derivative,
5-point centered FDs for the
second-order derivative and a
spatial grid with 201 points
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Fig. 3.15 Numerical solution
of Burgers equation (3.150)
using 3-point upwind FDs
for the first-order derivative,
5-point centered FDs for the
second-order derivative and a
spatial grid with 201 points
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but not really studied in details, is the implementation of the boundary conditions.
The translation of the boundary conditions into the method of lines is a crucial step,
as boundary conditions are a very important part of the problem definition.

There are different approaches to this implementation, some of them are rather
crude approximations which can be convenient in some situations, whereas others
are more rigorous but require a closer analysis of the problem or a slightly more
sophisticated coding.

We first recall the main types of boundary conditions:

• Dirichlet BCs specify the values of the dependent variable at the boundary of the
spatial domain:
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Fig. 3.16 Numerical solution
of Burgers equation (3.150)
using 4-point upwind FDs
for the first-order derivative,
5-point centered FDs for the
second-order derivative and a
spatial grid with 201 points
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x(z0, t) = g0(t)

x(zL , t) = gL(t)
(3.152)

• Neumann BCs specify the values of the gradient in the normal direction to the
boundary surface, i.e. in one spatial dimension the value of the derivative at the
boundary

ϕx

ϕz
(z0, t) = g0(t)

ϕx

ϕz
(zL , t) = gL(t)

(3.153)

• Robin BCs are a combination of the first two:

ϕx

ϕz
(z0, t) + α0x(z0, t) = g0(t)

ϕx

ϕz
(zL , t) + αL x(zL , t) = gL(t)

(3.154)

The numerical implementation of the BCs will be discussed through a very simple
equation, e.g. a diffusion equation supplemented by Neumann and Robin BCs

ϕx

ϕt
= ϕ2x

ϕz2 ; 0 < z < 1; 0 < t < 2 (3.155)

with ICs

x(z, 0) = 1 (3.156)
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and BCs
ϕx

ϕz
(0, t) = 0 (3.157)

ϕx

ϕz
(1, t) + αx(1, t) = 0 (3.158)

3.10.1 Elimination of Unknown Variables

This approach is straightforward in the case of Dirichlet BCs, as they give the values
of the independent variables at the boundaries of the spatial domain. These variables
therefore do not appear any longer in the vector of variables to be computed through
the solution of a system of differential equations. We have already used this approach
in the treatment of the advection equation earlier in this chapter. Let us investigate
this situation again in the case of our current example, i.e. the diffusion equation,
and imagine that the BCs (3.157)–(3.158) would be replaced by

x(0, t) = g0(t) (3.159)

x(1, t) = g1(t) (3.160)

If the second-order spatial derivative in PDE (3.155) is approximated by a 3-point
centered scheme, the MOL yields the following system of ODEs




x1,t

x2,t
...

xN−2,t

xN−1,t


⎛

= 1

νz2




−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2


⎛




x1
x2
...

xN−2
xN−1


⎛

+ 1

νz2




g0(t)
0
...

0
g1(t)


⎛

Even though this approach seems limited to Dirichlet BCs, it can be adapted to the
other type of BCs. Consider now the original BCs (3.157)–(3.158) in discretized
form, using simple 2-point schemes

x1 − x0

νz
= 0; xN − xN−1

νz
+ αxN = 0

or
x0 = x1; xN = xN−1

1 + ανz
(3.161)

These expressions can be used in the computation of the finite difference approxi-
mation of the second-order derivative operator in node 1 and N − 1
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x1,t = x0 − 2x1 + x2

νz2 = −x1 + x2

νz2

xN−1,t = xN−2 − 2xN−1 + xN

νz2 = 1

νz2

⎢
xN−2 + xN−1

⎢
1

1 + ανz
− 2

⎣⎣

= 1

νz2 (xN−2 + γ xN−1)

with γ =
⎢

1

1 + ανz
− 2

⎣
. The MOL therefore yields the following system of

ODEs 


x1,t

x2,t
...

xN−2,t

xN−1,t


⎛

= 1

νz2




−1 1
1 −2 1

1 −2 1
1 −2 1

1 γ


⎛




x1
x2
...

xN−2
xN−1


⎛

(3.162)

This solution is coded in the main program diffusion_main and function
diffusion_pde. This code implements the spatial differentiation matrix at the
interior points (1 to N −1), solves the system of ODEs (3.162), and finally computes
the values at the boundary points using Eq. (3.161).

clear all
close all

% set global variables
global alpha
global n D2 dz

% model parameter
alpha = 2 ;

% spatial domain
z0 = 0 . 0 ;
zL = 1 . 0 ;

% uniform spatial grid
n = 201;
dz = (zL − z0 ) / ( n−1);
z = [z0 :dz :zL ] ' ;

% initial conditions (interior points )
x = ones (n−2 ,1) ;

% differentiation matrix (interior points )
D2 = diag(+1*ones (n−3 ,1) , −1) + . . .

diag(−2*ones (n−2 ,1) ,0) + . . .
diag(+1*ones (n−3 , 1 ) , 1 ) ;

D2 ( 1 , 1 : 2 ) = [−1 + 1 ] ;
gamma = 1 / (1+alpha*dz) −2;
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D2 (n−2,n−3:n−2) = [+1 gamma ] ;
D2 = D2 / (dz*dz ) ;

% call to ODE solver
options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
[tout , xout ] = ode15s (@diffusion_pde , [ 0 : 0 . 2 : 2 ] , x ,options ) ;

% boundary conditions at z = z0
x0 = xout ( : , 1 ) ;

% boundary conditions at z = zL
xn = xout ( : ,n−2)/(1+alpha*dz ) ;

% plot results
xsol = [x0 xout xn ] ;
plot (z ,xsol ) ;
xlabel ( 'z ' ) ;
ylabel ( 'x (z ,t ) ' ) ;
title ( 'Diffusion equation ' )

Script diffusion_main Main program for the evaluation of the MOL discretization of IBVP
(3.155)–(3.158) using the approach based on the elimination of variables for the treatment of the
BCs

function xt = diffusion_pde (t ,x )

% set global variables
global alpha
global n D2 dz

% second − order spatial derivative
xzz = D2*x ;

% temporal derivatives
xt = xzz ;

Function diffusion_pde Function diffusion_pde for the evaluation of the MOL discretiza-
tion of IBVP (3.155)–(3.158) using the approach based on the elimination of variables for the
treatment of the BCs.

Numerical simulation results for α = 2 are shown in Fig. 3.17.
More sophisticated schemes than in (3.161) can be used for approximating the

BCs, for instance 3-points non-centered schemes

−3x0 + 4x1 − x2

2νz
= 0; 3xN − 4xN−1 + xN−2

2νz
+ αxN = 0 (3.163)

leading to

x0 = 1

3
(4x1 − x2) ; xN = 4xN−1 − xN−2

3 + 2ανz
(3.164)
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Fig. 3.17 Numerical solution
of the diffusion problem
(3.155)–(3.158) using
3-point centered FDs for the
second-order derivative and
elimination of the boundary
values, with a spatial grid of
201 points, and a time span of
2 (plot interval of 0.2)
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and

x1t = x0 − 2x1 + x2

νz2 = 2

3

−x1 + x2

νz2 (3.165)

xN−1t = xN−2 − 2xN−1 + xN

νz2

= 1

νz2

⎢
xN−2

⎢
1 − 1

3 + 2ανz

⎣
− 2xN−1

⎢
1 − 2

3 + 2ανz

⎣⎣

= 1

νz2 (βxN−2 − δxN−1) (3.166)

The MOL then yields the following system of ODEs




x1t

x2t
...

xN−2t

xN−1t


⎛

= 1

νz2




−2/3 2/3
1 −2 1

1 −2 1
1 −2 1

β −δ


⎛




x1
x2
...

xN−2
xN−1


⎛

(3.167)

The only changes in the main program diffusion_main are in the computation
of the differentiation matrix

% differentiation matrix (interior points)
D2 = diag(+1*ones(n-3,1),-1)

+ diag(-2*ones(n-2,1),0) +...
diag(+1*ones(n-3,1),1);

D2(1,1:2) = [-2/3 +2/3];
beta = 1-1/(3+(2*alpha*dz));
lambda = 2-4/(3+(2*alpha*dz));
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D2(n-2,n-3:n-2) = [beta -lambda];
D2 = D2/(dz*dz);

and in the explicit computation of the dependent variables at the boundary nodes

% boundary conditions at z = z0
x0 = 4*xout(:,1)/3 - xout(:,2)/3;

% boundary conditions at z = zL
xn = (4*xout(:,n-2) - xout(:,n-3))/(3+(2*alpha*dz));

More accurate schemes at the boundaries can influence the overall accuracy of the
solution, particularly in problems where there are dynamic changes in the value and
slope of the solution at the boundaries. However, in our simple IVP problem, the
numerical simulation results are basically the same as in Fig. 3.17.

3.10.2 Fictitious Nodes

The idea behind the second approach is to develop an approximation of the PDE at
the boundary nodes, using “fictitious nodes” located outside the spatial domain

x0t = 1

νz2 (x−1 − 2x0 + x1)

xNt = 1

νz2 (xN−1 − 2xN + xN+1)

(3.168)

The fictitious nodes with index −1 and N + 1, respectively, are associated with
unknown values of the independent variables x−1 and xN+1 which can be eliminated
using approximations of the BCs (3.157–3.158) constructed using these fictitious
nodes as well

x1 − x−1

2νz
= 0; xN+1 − xN−1

2νz
+ αxN = 0 (3.169)

or

x−1 = x1; xN+1 = xN−1 − 2ανzxN (3.170)

so that (3.168) can be rewritten as

x0t = 2

νz2 (−x0 + x1)

xNt = 2

νz2 (xN−1 − (1 + ανz) xN ) = 2

νz2 (xN−1 − δxN )

(3.171)

The MOL therefore yields the following system of ODEs



3.10 Various Ways of Translating the Boundary Conditions 175




x0t

x1t
...

xN−1t

xNt


⎛

= 1

νz2




−2 2
1 −2 1

1 −2 1
1 −2 1

2 −2δ


⎛




x0
x1
...

xN−1
xN


⎛

(3.172)

This method, implemented in diffusion_main_2, has an obvious advantage
over the former one: the system of ODEs is expressed in all the N + 1 nodes of
the spatial grid, and it is no longer required to explicitly compute the value of the
dependent variables at the boundary nodes.

clear all
close all

% set global variables
global alpha
global n D2 dz

% model parameter
alpha = 2 ;

% spatial domain
z0 = 0 . 0 ;
zL = 1 . 0 ;

% uniform spatial grid
n = 201;
dz = (zL − z0 ) / ( n−1);
z = [z0 :dz :zL ] ' ;

% initial conditions
x = ones (n , 1 ) ;

% differentiation matrix
D2 = diag(+1*ones (n−1 ,1) , −1) + diag(−2*ones (n , 1 ) , 0 ) + . . .

diag(+1*ones (n−1 , 1 ) , 1 ) ;
D2 ( 1 , 1 : 2 ) = [−2 + 2 ] ;
delta = 1 + alpha*dz ;
D2 (n ,n−1: n ) = [+2 −2* delta ] ;
D2 = D2 / (dz*dz ) ;

% call to ODE solver
options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e−3);
[tout , xout ] = ode15s (@diffusion_pde , [ 0 : 0 . 2 : 2 ] , x ,options ) ;

% plot results
plot (z ,xout ) ;
xlabel ( 'z ' ) ;
ylabel ( 'x (z ,t ) ' ) ;
title ( 'Diffusion equation ' )

Script diffusion_main_2 Main program for the evaluation of the MOL discretization of IVP
(3.155)–(3.158) using the approach based on the introduction of fictitious nodes for the treatment
of the BCs.
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It is also possible to avoid defining explicitly matrix D2 and to use one of the library
functions provided in the companion software.

% differentiation matrix
D2 = three_point_centered_uni_D2(z0,zL,n);
D2(1,:) = [-2 +2 zeros(1,n-2)]/(dz*dz);
delta = 1 + alpha*dz;
D2(n,:) = [zeros(1,n-2) +2 -2*delta]/(dz*dz);

3.10.3 Solving Algebraic Equations

Boundary conditions can be viewed as algebraic equations. Indeed a Dirichlet
condition

x(z0, t) = g0(t) (3.173)

can be written as
0 = g0(t) − x(z0, t) = g0(t) − x0(t) (3.174)

and a Neumann boundary condition of the form

ϕx

ϕz
(z0, t) = g0(t) (3.175)

can be approximated as

0 = ϕx

ϕz
(z0, t) − g0(t) ∧ x1(t) − x0(t)

νz
− g0(t) (3.176)

In our application example, the BCs can therefore be expressed as

0 = x1(t) − x0(t)

νz
; 0 = − xN − xN−1

νz
− αxN (3.177)

or

0 = 0
dx0

dt
(t) = −x0(t) + x1(t)

νz
; 0 = 0

dxN

dt
(t) = xN−1 − (1 + ανz)xN

νz
(3.178)

MOL therefore yields the following differential-algebraic system (when using three-
point centered FDs)
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⎜⎜⎜⎜⎜

0
1

. . .

1
0


⎟⎟⎟⎟⎟


⎜⎜⎜⎜⎜

x0t

x1t
...

xN−1t

xNt


⎟⎟⎟⎟⎟

= 1

νz2


⎜⎜⎜⎜⎜

−νz νz
1 −2 1

. . .
. . .

. . .

1 −2 1
νz −ενz


⎟⎟⎟⎟⎟


⎜⎜⎜⎜⎜

x0
x1
...

xN−1
xN


⎟⎟⎟⎟⎟

(3.179)

with ε = 1 + ανz.
The system of Eq. (3.179) is in the form

Mẋ = f(x) (3.180)

which can be solved using a DAE solver such as ode15s. Here the RHS f(x) is
a linear expression of the form Ax since the spatial operator representing diffusion
is linear, but more general nonlinear terms could appear (as for instance a chemical
reaction term in a tubular reactor; an example is provided later on in Sect. 3.10.5).
The coding of the main program requires the definition of a mass matrix M, see
the main script diffusion_main_5 and functions diffusion_pde_5 and
mass_diffusion.

clear all

% set global variables
global alpha eta
global n D2 dz

% model parameter
alpha = 2 ;

% spatial domain
z0 = 0 . 0 ;
zL = 1 . 0 ;

% uniform spatial grid
n = 201;
dz = (zL − z0 ) / ( n−1);
z = [z0 :dz :zL ] ' ;
eta = 1 + alpha*dz ;

% initial conditions
x = ones (n , 1 ) ;

% differentiation matrix
D2 = three_point_centered_uni_D2 (z0 ,zL ,n ) ;
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% call to ODE solver
options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e− 3 , . . .

'Mass ' ,mass_diffusion (n ) ) ;
[tout ,xout ] = ode15s (@diffusion_pde_5 , 0 : 0 . 2 : 2 ,x ,options ) ;

% plot results
plot (z ,xout ) ;
xlabel ( 'z ' ) ;
ylabel ( 'x (z ,t ) ' ) ;
title ( 'Diffusion equation ' )

Script diffusion_main_5 Main program for the evaluation of the MOL discretization of IVP
(3.155)–(3.158) using the approach based on the formulation of the BCs as AEs.

function xt = diffusion_pde_5 (t ,x )

% set global variables
global alpha eta
global n D2 dz

% second − order spatial derivative
xzz = D2*x ;

% temporal derivatives
xt = xzz ;

% boundary condition at z = z0
xt ( 1 ) = (x(2)−x ( 1 ) ) /dz ;

% boundary conditions at z = zL
xt (n ) = (x (n−1)−eta*x (n ) ) / dz ;

Function diffusion_pde_5 Functiondiffusion_pde for the evaluation of the MOL discretiza-
tion of IVP (3.155)–(3.158) using the approach based on the formulation of the BCs as AEs.

function M = mass_diffusion (n )

% Mass matrix
M = eye (n ) ;
M ( 1 , 1 ) = 0 ;
M (n ,n ) = 0 ;
M = sparse (M ) ;

Function mass_diffusion Function defining the mass matrix.

The equations representing the BCs in function diffusion_pde_5 require
some knowledge about the numerical approximation schemes. A simpler way to
represent them is based on their definition (3.157)–(3.158) and the use of the
library of differentiation matrices provided in the companion software to com-
pute the spatial operators in the boundary conditions. In our simple application
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example, this can be accomplished by computing the first-order derivative using, for
instance, the function three_point_centered_uni_D1, as shown in func-
tion diffusion_pde_5_bis. To make the code simple, the second-order deriv-
ative can be computed using stagewise differentiation (but this is of course not
mandatory).

function xt = diffusion_pde_5_bis(t ,x )

% set global variables
global alpha
global n D1 dz

% first and second − order spatial derivatives
xz = D1*x ;
xzz = D1*xz ;

% temporal derivatives
xt = xzz ;

% boundary condition at z = z0
xt ( 1 ) = xz ( 1 ) ;

% boundary conditions at z = zL
xt (n ) = xz (n ) + alpha*x (n ) ;

Function diffusion_pde_5_bis Function diffusion_pde for the evaluation of the MOL dis-
cretization of IVP (3.155)–(3.158) using the approach based on the formulation of the BCs as AEs
and differentiation matrices.

3.10.4 Tricks Inspired by the Previous Methods

When there is not much temporal and spatial activity at the boundaries, the previous
approaches can be simplified, at the price of some approximation, to handle the BCs
in a fast, yet effective way.

The first “trick” is based on the first two approaches, i.e., the substitution of the
BCs in the expression of the finite difference approximation of the spatial deriv-
atives in the PDEs. This substitution can be effected in a convenient way using
stagewise differentiation. To illustrate this, let us consider again our diffusion equa-
tion, where the approximation of the second-order derivative can be computed
by the successive application of a first-order differentiation matrix; see function
diffusion_pde_6 where the differentiation matrix D1 is computed using func-
tion three_point_centered_uni_D1. The Neumann or mixed-type (Robin)
BCs can be incorporated between the two differentiation stages. The resulting code
is simple, easy to write and to understand for an external reader. However, remember
that this approach is an approximation. Indeed, the values of the derivatives at the
boundaries are reset to the values imposed by the BCs at intervals depending on time
integration (each time the ODE solver calls the function), but the error introduced
by this procedure is not controlled.
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function xt = diffusion_pde_6 (t ,x )

% set global variables
global alpha
global n D1 dz

% second − order spatial derivative (stagewise )
xz = D1*x ;
xz ( 1 ) = 0 ;
xz (n ) = −alpha*x (n ) ;
xzz = D1*xz ;

% temporal derivatives
xt = xzz ;

Function diffusion_pde_6 Functiondiffusion_pde for the evaluation of the MOL discretiza-
tion of IVP (3.155)–(3.158) using substitution of the BCs in a stagewise differentiation

The second “trick” is based on the third approach and avoids the use of a DAE
solver, and the definition of a mass matrix. It considers expression (3.178) and
replaces the zero-factor by a small epsilon factor, i.e.

0 = 0
dx0

dt
(t) = −x0(t) + x1(t)

νz
; 0 = 0

dxN

dt
(t) = xN−1 − (1 + ανz)xN

νz

become

ε
dx0

dt
(t) = −x0(t) + x1(t)

νz
; ε

dxN

dt
(t) = xN−1 − (1 + ανz)xN

νz
(3.181)

so that the ODE system resulting from the MOL takes the form


⎜⎜⎜⎜⎜

x0t

x1t
...

xN−1t

xNt


⎟⎟⎟⎟⎟

= 1

νz2


⎜⎜⎜⎜⎜

−νz/ε νz/ε
1 −2 1

. . .
. . .

. . .

1 −2 1
νz/ε −ενz/ε


⎟⎟⎟⎟⎟


⎜⎜⎜⎜⎜

x0
x1
...

xN−1
xN


⎟⎟⎟⎟⎟

(3.182)

However this ODE system is stiff and requires an implicit ODE solver. Function
diffusion_pde_5 changes slightly and is given in function
diffusion_pde_7, where the epsilon factor appears in the equations defining
the BCs. The use of a mass function - see function mass_diffusion- is no
longer required. Of course the use of the more physical representation of the BCs,
as in function diffusion_pde_5_bis, is also possible.
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function xt = diffusion_pde_7 (t ,x )

% set global variables
global alpha eta epsilon
global n D2 dz

% second − order spatial derivative
xzz = D2*x ;

% temporal derivatives
xt = xzz ;

% boundary condition at z = z0
xt ( 1 ) = (x(2)−x ( 1 ) ) / ( epsilon*dz ) ;

% boundary conditions at z = zL
xt (n ) = (x (n−1)−eta*x (n ) ) / ( epsilon*dz ) ;

Function diffusion_pde_7 Functiondiffusion_pde for the evaluation of the MOL discretiza-
tion of IVP (3.155)–(3.158) using the approach based on the formulation of the BCs as singularly
perturbed ODEs

3.10.5 An Illustrative Example (with Several Boundary Conditions)

To illustrate the coding of a more complex model, and in particular the implementation
of the BCs, we consider a tubular fixed bed reactor consisting of three sections: an
inert entrance section, an active catalyst section, and an inert outlet section [8]. A
dynamic model is developed to study benzene hydrogenation (an exothermic reac-
tion) and the poisoning kinetics of thiophene on a nickel catalyst. This model includes
material balance equations for benzene and thiophene, an energy balance, and an
equation accounting for catalyst deactivation. Since hydrogen is in great excess in all
the experiments considered in [8], the hydrogen concentration is essentially constant.

ϕcB

ϕt
= −v

ϕcB

ϕz
+ DB

ϕ2cB

ϕ2z
+ ∂c

ε
rB(θA, cB , T ) (3.183)

ϕcT

ϕt
= −v

ϕcT

ϕz
+ DT

ϕ2cT

ϕ2z
+ ∂c

ε
rT (θA, cT , T ) (3.184)

ϕT

ϕt
= −εv

∂GcpG

∂̄c̄p

ϕT

ϕz
+ δe f f

∂̄c̄p

ϕ2T

ϕ2z
+ 2α

R∂̄c̄p
(Tw − T )

− (−νH)

∂̄c̄p
∂crB(θA, cB , T ) (3.185)

ϕθA

ϕt
= rd(θA, cT , T ) (3.186)

where cB and cT are the concentrations of benzene and thiophene, T is the temper-
ature, and θA is the catalyst activity.
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In these expressions, v is the gas velocity, DB and DT are diffusion coefficients,
δe f f is the bed effective thermal conductivity, ∂c and ∂G are the catalyst and gas
densities, ∂̄c̄p is the average volumetric heat capacity, ε is the bed void fraction,
rB , rT and rd are the rates of hydrogenation, thiophene chemisorption and poi-
soning, (−νH) is the heat of benzene hydrogenation, α is the wall heat transfer
coefficient, Tw is the wall temperature, R and L are the reactor radius and length.
The numerical values of all these parameters can be found in [8] and in the code
three_zone_reactor_main.

As the reactor is subdivided into three sections, Eqs. (3.183)–(3.185) have to be
solved with rB = 0 and rT = 0 in the inert sections. The complete set of Eqs. (3.183)–
(3.186) has to be solved in the catalyst section. A total of 10 PDEs have therefore to
be solved simultaneously.

In z = 0, and z = L (reactor inlet and outlet), Dirichlet boundary conditions
apply

cB(t, z = 0) = cB,in(t); cT (t, z = 0) = cT,in(t) (3.187)

T (t, z = 0) = Tin(t) (3.188)

cBz(t, z = L) = 0; cT z(t, z = L) = 0 (3.189)

Tz(t, z = L) = 0 (3.190)

At the section interfaces z = L1 and z = L1 + L2 (where L1 is the length of the
entrance section, and L2 is the length of the catalyst section -note that L1/L = 0.28
and (L1 + L2)/L = 0.47), special continuity boundary conditions apply, e.g.,

cB(t, z = L−
1 ) = cB(t, z = L+

1 ); cT (t, z = L−
1 ) = cT (t, z = L+

1 ) (3.191)

T (t, z = L−
1 ) = T (t, z = L+

1 ) (3.192)

cBz(t, z = L−
1 ) = cBz(t, z = L+

1 ); cT z(t, z = L−
1 ) = cT z(t, z = L+

1 ) (3.193)

Tz(t, z = L−
1 ) = Tz(t, z = L+

1 ) (3.194)

where L−
1 denotes the rightmost limit of the entrance section, and L+

1 denotes the left-
most limit of the catalyst section. Equations (3.191)–(3.192) express concentration
and temperature continuity between sections, whereas Eqs. (3.193)–(3.194) express
the continuity of mass and energy fluxes (here, diffusion and heat conduction are the
same in both sections so that the diffusion and thermal conductivity coefficients do
not appear). Similar expressions hold at z = L1 + L2.

If abrupt time variations are expected in the inlet (forcing) variables cB,in(t),
cT,in(t), Tin(t), then BCs (3.187)–(3.188) are best implemented as ODEs, e.g.

dT

dt
(z = 0, t) = 1

χ
(Tin(t) − T (z = 0, t)) (3.195)
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Fig. 3.18 Numerical solution
of the IBVP (3.183)–(3.194)
using 5-point centered FDs for
the second-order derivative
and 5-point biased upwind
FDs for the first-order
derivative—preheating
followed by normal operation
(benzene hydrogenation)
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where χ is a small time constant (equivalent to the epsilon factor introduced earlier)
representing the dynamics of a temperature change at the reactor inlet. In fact, abrupt
time variations are always the results of mathematical idealization, and χ models, in
a very simple way, the actuator dynamics.

The 15 other boundary and continuity conditions can be implemented as algebraic
equations, leading, after approximation of the spatial derivatives in the PDEs and BCs,
to a large system of DAEs. Here, finite differences (five-point biased-upwind FDs
for first derivatives and five-point centered FDs for second derivatives) are used with
n1 = 71, n2 = 71 and n3 = 21 grid points in the first, second and third reactor section,
respectively. The resulting 560 DAEs can be solved efficiently using ode15s.

Figure 3.18 shows the evolution of the temperature profile inside the reactor
operated in two distinct modes: (a) reactor pre-heating with Tin(t) = 160 ◦C (for
0 < t ≤ 20 min), and (b) benzene hydrogenation with Tin(t) = 160 ◦C and cB,in(t)
corresponding to a mole fraction xB,in(t) = 0.066 (for 20 < t ≤ 40 min). During
phase (a), the temperature gradually decreases from the inlet to the outlet of the
reactor, due to heat exchange with the reactor jacket. During phase (b), an exothermic
reaction takes place, leading to the formation of a “hot-spot” at about one third of
the reactor length.

Figures 3.19, 3.20 and 3.21 illustrate the effect of catalyst poisoning. From t =
40 min, a small quantity of thiophene is fed to the reactor. Consequently, catalyst
activity decays (Fig. 3.21), and traveling waves of concentration and temperature
form (Figs. 3.19 and 3.20).
The MATLAB codes for solving this problem arethree_zone_reactor_main,
three_zone_reactor_pdes and mass_react.
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Fig. 3.19 Numerical solution
of the IBVP (3.183)–(3.194)
using 5-point centered FDs for
the second-order derivative
and 5-point biased upwind
FDs for the first-order
derivative—evolution of
concentration during catalyst
poisoning
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Fig. 3.20 Numerical solution
of the IBVP (3.183)–(3.194)
using 5-point centered FDs for
the second-order derivative
and 5-point biased upwind
FDs for the first-order
derivative—evolution of
temperature during catalyst
poisoning
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Fig. 3.21 Numerical solution
of the IBVP (3.183)–(3.194)
using 5-point centered FDs for
the second-order derivative
and 5-point biased upwind
FDs for the first-order
derivative—evolution of
catalyst activity during
catalyst poisoning
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close all
clear all

% start a stopwatch timer
tic

% set global variables
global v DB DT rhocp cpg rhog Tw Rr DH lH2 Dp leff eps ;
global ki0 K0 Q EB R_kcal R_J kd0 Ed MT ;
global Ptot cBin cTin Tin cHin xHin ;
global z01 zL1 z02 zL2 z03 zL3 n1 n2 n3 z1 z2 z3 ;
global D1_1 D2_1 D1_2 alpha rhoc ;
global D2_2 D1_3 D2_3 ;

% model parameters
% experiment G3 (catalyst pretreatment first )
Ptot = 1e5 ; % total pressure (Pa )
Tin = 160 + 2 7 3 . 1 6 ; % inlet temperature (K )
T0 = 160 + 2 7 3 . 1 6 ; % initial temperature (K )
Tw = 29 + 2 7 3 . 1 6 ; % wall temperature (K )
xBin = 0 ; % mole fraction benzene
R_kcal = 1 . 9 8 7 ; % gas constant (kcal /kmol K )
R_J = 8.314e3 ; % gas constant (J /kmol K )
cBin = xBin*Ptot / (R_J*Tin ) ;
xHin = 1 ; % mole fraction hydrogen
cHin = xHin*Ptot / (R_J*Tin ) ;
xTin = 0 ; % mole fraction thiophene
cTin = xTin*Ptot / (R_J*Tin ) ;
flow = 1551.5e−6/60; % total flow rate (m^ 3 /s )
theta0 = 1 ;
%
DB = 4e−5; % diffusion coefficients (m^ 2 /s )
DT = 4e−5;
eps = 0 . 6 ; % void fraction
%
MW = 2.106*xHin + 78.12*xBin ; % molar weight of the gas

% mixture (kg /kmol )
rhog = MW*273.16*Ptot*0 .0075 / (22 .41*760*Tin ) ; % gas dens

% (kg /m^3)
cpg = 6.935*xHin + 23.15*xBin ; % heat capacity of the gas

% (kcal /kg K )
rhocp = 175; % average heat capacity

% (kcal /m^3 K )
lH2 = 7 3 3 * 0 . 0 1 9 / ( 1 0 0 * 3 6 0 0 ) ; % thermal conductivity of the

% gas (kcal /s m K )
rhoc = 354*2 /3 ; % catalyst density (kg /m^3) with a

% dilution factor of 2
Dp = 1.25e−3; % particle diameter (m ) (average between

% 0.75 and 1 . 8 mm )
Rr = 0.822e−2; % reactor radius (m )
SA = pi*Rr^ 2 ; % cross−section area (m^2)
v = flow / (eps*SA ) ; % intersticial velocity (m /s )
leff = 7*lH2 + 0.8*rhog*cpg*v*eps*Dp ; % effective thermal

% conductivity (kcal /s m K )
alpha = 2 .6e−3; % heat transfer coefficient (kcal /m^2 K )
%
% benzene hydrogenation kinetics
EB = 13770; % activation energy (kcal /kmol )
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ki0 = 4 . 2 2 * 0 . 0 0 7 5 ; % rate constant (kmol /kg s Pa )
Q = −16470; % heat of adsorption (kcal /kmol )
K0 = 4.22e−11*0.0075; % adsorption constant ( 1 /torr )
%
% thiophene poisoning kinetics
Ed = 1080; % activation energy (kcal /kmol )
kd0 = ( 2 . 4 0e−2)*0.0075; % pre−exponential factor ( 1 /Pa s )
MT = 1.03e−3; % catalyst adsorption capacity for

% thiophene (kmol /kg )
DH = 49035; % heat of reaction (kcal /kmole )

% spatial grid
L = 0 . 5 ; % reactor length (m )
z01 = 0 . 0 ;
zL1 = 0 . 1 4 ; % entrance (inert ) section
z02 = zL1 ;
zL2 = z02 + 0 . 0 9 5 ; % catalyst section
z03 = zL2 ;
zL3 = L ; % exit (inert ) section
n1 = 71;
n2 = 71;
n3 = 71;
dz1 = (zL1 − z01 ) / ( n1−1);
dz2 = (zL2 − z02 ) / ( n2−1);
dz3 = (zL3 − z03 ) / ( n3−1);
z1 = [z01 :dz1 :zL1 ] ' ;
z2 = [z02 :dz2 :zL2 ] ' ;
z3 = [z03 :dz3 :zL3 ] ' ;
z = [z1 ;z2 ;z3 ] ;

% differentiation matrix in zone 1 (convective and
% diffusive terms )
D1_1 = five_point_biased_upwind_D1 (z1 ,v ) ;
D2_1 = five_point_centered_D2 (z1 ) ;

% differentiation matrix in zone 2 (convective and
% diffusive terms )
D1_2 = five_point_biased_upwind_D1 (z2 ,v ) ;
D2_2 = five_point_centered_D2 (z2 ) ;

% differentiation matrix in zone 3 (convective and
% diffusive terms )
D1_3 = five_point_biased_upwind_D1 (z3 ,v ) ;
D2_3 = five_point_centered_D2 (z3 ) ;

% initial conditions
cB1 = cBin*ones (size (z1 ) ) ;
cT1 = cTin*ones (size (z1 ) ) ;
T1 = T0*ones (size (z1 ) ) ;
cB2 = cBin*ones (size (z2 ) ) ;
cT2 = cTin*ones (size (z2 ) ) ;
T2 = T0*ones (size (z2 ) ) ;
theta = theta0*ones (size (z2 ) ) ;
cB3 = cBin*ones (size (z3 ) ) ;
cT3 = cTin*ones (size (z3 ) ) ;
T3 = T0*ones (size (z3 ) ) ;

% initial conditions in x
x ( 1 : 3 : 3 *n1−2 ,1) = cB1 ;
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x ( 2 : 3 : 3 *n1−1 ,1) = cT1 ;
x ( 3 : 3 : 3 *n1 , 1 ) = T1 ;
x(3*n1+1:4 :3*n1+4*n2−3 ,1) = cB2 ;
x(3*n1+2:4 :3*n1+4*n2−2 ,1) = cT2 ;
x(3*n1+3:4 :3*n1+4*n2−1 ,1) = T2 ;
x(3*n1+4:4 :3*n1+4*n2 , 1 ) = theta ;
x(3*n1+4*n2+1:3 :3*n1+4*n2+3*n3−2 ,1) = cB3 ;
x(3*n1+4*n2+2:3 :3*n1+4*n2+3*n3−1 ,1) = cT3 ;
x(3*n1+4*n2+3:3 :3*n1+4*n2+3*n3 , 1 ) = T3 ;

% Time span
t = 6 0 * [ 0 : 1 : 3 0 ] ; % sec

% call to ODE solver
M = mass_react ;
options = odeset ( 'Mass ' ,M , 'MassSingular ' , ' yes ' , . . .

'RelTol ' , 1e−3, 'AbsTol ' , 1e−3);
[tout ,yout ] = ode15s (@three_zone_reactor_pdes_preheat , . . .

t ,x ,options ) ;

% Recover the temperature in the three zones
T1_out = yout ( : , 3 : 3 : 3 *n1 ) ;
T2_out = yout ( : , 3 *n1+3:4 :3*n1+4*n2−1);
T3_out = yout ( : , 3 *n1+4*n2+3:3 :3*n1+4*n2+3*n3 ) ;

% Assembly of temperature and spatial coordinates
T_out = [T1_out T2_out T3_out] −273.16;
zz = [z1 ; z2 ; z3 ] /L ;

% Plot the solution
plot (zz ,T_out )

% read the stopwatch timer
tcpu=toc ;

Script three_zone_reactor_main Main program for the solution of IVP (3.183) using the
approach based on the formulation of the BCs as AEs and singularly perturbed ODEs.

function xt = three_zone_reactor_pdes_preheat (t ,x )

% set global variables
global v DB DT rhocp cpg rhog Tw Rr DH lH2 Dp leff eps ;
global ki0 K0 Q EB R_kcal R_J kd0 Ed MT ;
global Ptot cBin cTin Tin cHin xHin ;
global z01 zL1 z02 zL2 z03 zL3 n1 n2 n3 z1 z2 z3 ;
global alpha rhoc D1_1 D2_1 D1_2 ;
global D2_2 D1_3 D2_3 ;

% Transfer dependent variables
cB1 = x ( 1 : 3 : 3 *n1−2 ,1) ;
cT1 = x ( 2 : 3 : 3 *n1−1 ,1) ;
T1 = x ( 3 : 3 : 3 *n1 , 1 ) ;
%
cB2 = x(3*n1+1:4 :3*n1+4*n2−3 ,1) ;
cT2 = x(3*n1+2:4 :3*n1+4*n2−2 ,1) ;
T2 = x(3*n1+3:4 :3*n1+4*n2−1 ,1) ;
theta = x(3*n1+4:4 :3*n1+4*n2 , 1 ) ;
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%
cB3 = x(3*n1+4*n2+1:3 :3*n1+4*n2+3*n3−2 ,1) ;
cT3 = x(3*n1+4*n2+2:3 :3*n1+4*n2+3*n3−1 ,1) ;
T3 = x(3*n1+4*n2+3:3 :3*n1+4*n2+3*n3 , 1 ) ;

% spatial derivatives − 1st zone
cB1z = D1_1*cB1 ;
cT1z = D1_1*cT1 ;
T1z = D1_1*T1 ;
%
cB1zz = D2_1*cB1 ;
cT1zz = D2_1*cT1 ;
T1zz = D2_1*T1 ;

% spatial derivatives − 2nd zone
cB2z = D1_2*cB2 ;
cT2z = D1_2*cT2 ;
T2z = D1_2*T2 ;
%
cB2zz = D2_2*cB2 ;
cT2zz = D2_2*cT2 ;
T2zz = D2_2*T2 ;

% spatial derivatives − 3rd zone
cB3z = D1_3*cB3 ;
cT3z = D1_3*cT3 ;
T3z = D1_3*T3 ;
%
cB3zz = D2_3*cB3 ;
cT3zz = D2_3*cT3 ;
T3zz = D2_3*T3 ;

% several operating conditions

% 1) catalyst pretreatment with hydrogen at 160 Celsius
% (for 20 min )
rB = 0 ; % reaction rates in 2nd zone
rd = 0 ;
rT = 0 ;

% 2) benzene hydrogenation (experiment G3 )
if (t > 20*60) & (t < 30*60)

%
Tin = 160 + 2 7 3 . 1 6 ; % inlet temperature (K )
xBin = 2 * 0 . 0 3 3 ; % mole fraction benzene
cBin = xBin*Ptot / (R_J*Tin ) ;
xHin = 1−xBin ; % mole fraction hydrogen
cHin = xHin*Ptot / (R_J*Tin ) ;
xTin = 0 ; % mole fraction thiophene
cTin = xTin*Ptot / (R_J*Tin ) ;
%
MW = 2.106*xHin + 78.12*xBin ; % gas mixture molar

% weight (kg /kmol )
rhog = MW*273.16*Ptot*0 .0075 / (22 .41*760*Tin ) ; % density
cpg = 6.935*xHin + 23.15*xBin ; % heat capacity of the

% gas (kcal /kg K )
leff = 7*lH2 + 0.8*rhog*cpg*v*eps*Dp ;
%
xB2 = cB2 . / ( cB2+cT2+cHin ) ; % reaction rates 2nd zone
rB = ki0*K0*Ptot^2*(xHin*xB2 . *theta . *exp((−Q − EB ) . / . . .

(R_kcal*T2 ) ) ) . / ( 1 + K0*Ptot*xB2 . * . . .
exp(−Q . / ( R_kcal*T2 ) ) ) ;

rd = 0 ;
rT = 0 ;

% 3) catalyst poisoning (experiment G3 )
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elseif t > 60*120
Tin = 160 + 2 7 3 . 1 6 ; % inlet temperature (K )
xBin = 2 * 0 . 0 3 3 ; % mole fraction benzene
cBin = xBin*Ptot / (R_J*Tin ) ;
xHin = 1−xBin ; % mole fraction hydrogen
cHin = xHin*Ptot / (R_J*Tin ) ;
xTin = 1.136*xBin / 1 0 0 ; % mole fraction thiophene
cTin = xTin*Ptot / (R_J*Tin ) ;
%
MW = 2.106*xHin + 78.12*xBin ; % gas mixture molar

% weight (kg /kmol )
rhog = MW*273.16*Ptot*0 .0075 / (22 .41*760*Tin ) ; % gas

% density
cpg = 6.935*xHin + 23.15*xBin ; % heat capacity of the

% gas (kcal /kg K )
leff = 7*lH2 + 0.8*rhog*cpg*v*eps*Dp ;
xB2 = cB2 . / ( cB2+cT2+cHin ) ; % reaction rates 2nd zone
xT2 = cT2 . / ( cB2+cT2+cHin ) ;
rB = ki0*K0*Ptot^2*(xHin*xB2 . *theta . *exp((−Q− . . .

EB ) . / ( R_kcal*T2 ) ) ) . / ( 1 + K0*Ptot*xB2 . * . . .
exp(−Q . / ( R_kcal*T2 ) ) ) ;

rd = kd0*Ptot*xT2 . *theta . *exp(−Ed . / ( R_kcal*T2 ) ) ;
rT = MT*rd ;

end

% temporal derivatives
cB1t = −v*cB1z + DB*cB1zz ;
cT1t = −v*cT1z + DT*cT1zz ;
T1t = −((eps*v*rhog*cpg ) /rhocp)*T1z + . . .

(leff /rhocp)*T1zz + 2*alpha*(Tw − T1 ) / ( Rr*rhocp ) ;
%
cB2t = −v*cB2z + DB*cB2zz − rhoc*rB /eps ;
cT2t = −v*cT2z + DT*cT2zz − rhoc*rT /eps ;
T2t = −((eps*v*rhog*cpg ) /rhocp)*T2z + . . .

(leff /rhocp)*T2zz + 2*alpha*(Tw − T2 ) / ( Rr*rhocp ) + . . .
(DH /rhocp)*rhoc*rB ;

thetat = −rd ;
%
cB3t = −v*cB3z + DB*cB3zz ;
cT3t = −v*cT3z + DT*cT3zz ;
T3t = −((eps*v*rhog*cpg ) /rhocp)*T3z + . . .

(leff /rhocp)*T3zz + 2*alpha*(Tw − T3 ) / ( Rr*rhocp ) ;

% boundary conditions at z = z01
cB1t ( 1 ) = cBin − cB1 ( 1 ) ;
cT1t ( 1 ) = cTin − cT1 ( 1 ) ;
T1t ( 1 ) = Tin − T1 ( 1 ) ;

% boundary conditions at z = zL1 = z02
cB1t (n1 ) = cB2z ( 1 ) − cB1z (n1 ) ;
cT1t (n1 ) = cT2z ( 1 ) − cT1z (n1 ) ;
T1t (n1 ) = T2z ( 1 ) − T1z (n1 ) ;
%
cB2t ( 1 ) = cB1 (n1 ) − cB2 ( 1 ) ;
cT2t ( 1 ) = cT1 (n1 ) − cT2 ( 1 ) ;
T2t ( 1 ) = T1 (n1 ) − T2 ( 1 ) ;

% boundary conditions at z = zL2 = z03
cB2t (n2 ) = cB3z ( 1 ) − cB2z (n2 ) ;
cT2t (n2 ) = cT3z ( 1 ) − cT2z (n2 ) ;
T2t (n2 ) = T3z ( 1 ) − T2z (n2 ) ;
%
cB3t ( 1 ) = cB2 (n2 ) − cB3 ( 1 ) ;
cT3t ( 1 ) = cT2 (n2 ) − cT3 ( 1 ) ;
T3t ( 1 ) = T2 (n2 ) − T3 ( 1 ) ;
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% boundary conditions at z = zL
cB3t (n3 ) = − cB3z (n3 ) ;
cT3t (n3 ) = − cT3z (n3 ) ;
T3t (n3 ) = − T3z (n3 ) ;

% Transfer temporal derivatives
xt ( 1 : 3 : 3 *n1−2 ,1) = cB1t ;
xt ( 2 : 3 : 3 *n1−1 ,1) = cT1t ;
xt ( 3 : 3 : 3 *n1 , 1 ) = T1t ;
%
xt(3*n1+1:4 :3*n1+4*n2−3 ,1) = cB2t ;
xt(3*n1+2:4 :3*n1+4*n2−2 ,1) = cT2t ;
xt(3*n1+3:4 :3*n1+4*n2−1 ,1) = T2t ;
xt(3*n1+4:4 :3*n1+4*n2 , 1 ) = thetat ;
%
xt(3*n1+4*n2+1:3 :3*n1+4*n2+3*n3−2 ,1) = cB3t ;
xt(3*n1+4*n2+2:3 :3*n1+4*n2+3*n3−1 ,1) = cT3t ;
xt(3*n1+4*n2+3:3 :3*n1+4*n2+3*n3 , 1 ) = T3t ;

Function three_zone_reactor_pdes Function for the for the solution of IBVP (3.155)–(3.158)
using the approach based on the formulation of the BCs as AEs and singularly perturbed ODEs.

function M = mass_react

% set global variables
global n1 n2 n3 ;

% Assemble mass matrix
M = diag ( [ 1 1 1 ones (1 ,3*n1−6) 0 0 0 0 0 0 1 . . .

ones (1 ,4*n2−8) 0 0 0 1 0 0 0 ones (1 ,3*n3−6) . . .
0 0 0 ] , 0 ) ;

Function mass_react Mass matrix used in the solution of IBVP (3.155)–(3.158) using the
approach based on the formulation of the BCs as AEs and singularly perturbed ODEs.

3.11 Computing the Jacobian Matrix of the ODE System

At this stage, we know how to solve an IBVP using the MOL and finite difference
approximations. As we have seen, the semi-discrete system of ODEs resulting from
the MOL can be stiff and require the use of an implicit solver such as ode15s.
This kind of solvers make use of the Jacobian matrix of the ODE system, and it is
interesting to take a closer look at the structure of this matrix and at how it can be
computed in practice. To this end, we will consider a simple example taken from
[9], which represents a tubular bioreactor where bacteria (biomass X ) grows on a
single substrate S while producing a product P . Biomass mortality is also taken into
account. The macroscopic reaction scheme is given by

ν1S
ϕ1−→ X + ν2 P

X
ϕ2−→ Xd
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The biomass grows on a fixed bed while the substrate S is in solution in the flowing
medium. Mass balance PDEs can be written as

St = −vSz − ν1
1 − ε

ε
ϕ1

Xt = ϕ1 − ϕ2

0 ≤ z ≤ L; t ∈ 0 (3.196)

In the substrate mass balance PDE, v = F/(εA) is the superficial velocity of the
fluid flowing through the bed, ε is the total void fraction (or bed porosity), and ϕ1 is
the growth rate given by a model of Contois

ϕ1 = μmax
S

kc X + S
(3.197)

where μmax is the maximum specific growth rate and kc is the saturation coefficient.
This kinetic model represents the effects of substrate limitation and biomass inhibi-
tion. In the biomass balance ODE (note that it is an ODE and not a PDE as biomass
is fixed on the bed, and there is neither convection nor diffusion), ϕ2 is the death rate
given by a simple linear law

ϕ2 = kd X (3.198)

The model is supplemented by a Dirichlet boundary condition in z = 0

S(t, z = 0) = Sin(t) (3.199)

and initial conditions
S(t = 0, z) = S0(z) (3.200)

X (t = 0, z) = x0(z) (3.201)

The numerical values of the model parameters are: L = 1 m, A = 0.04 m2, ε = 0.5 ,
F = 2 l · h−1, ν1 = 0.4 , μmax = 0.35 h−1, kc = 0.4 , kd = 0.05 h−1.

This problem is solved using a spatial grid with 101 points and 2-point upwind
finite differences. The code of this example is available in the companion software.
Here, we focus attention on the call to ode15s in the main program:

% compute the Jacobian matrix
options = odeset(options,’Jacobian’,@jacobian_num);
% options = odeset(options,’Jacobian’,@jacobian_complex

_diff);

% or compute the sparcity pattern
% S = jpattern_num
% S = jpattern_complex_diff
% options = odeset(options,’JPattern’,S)
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%
[tout, yout] = ode15s(@bioreactor_pdes,[t0:Dtplot:tf],

x,options);

Several options are coded. The first options consists in providing a Jacobian to
ode15s, which is evaluated numerically in function jacobian_num.

function Jac = jacobian_num (t ,x )

% numerical Jacobian matrix
xt = bioreactor_pdes (t ,x ) ;
fac = [ ] ;
thresh = 1e−6;
threshv = thresh*ones (length (x ) , 1 ) ;
vectorized = 0 ;
[Jac , fac ] = numjac (@bioreactor_pdes ,t ,x ,xt ,threshv , . . .

fac ,vectorized ) ;

Function jacobian_num Function to numerically evaluate the Jacobian.

This function calls the PDE function bioreactor_pdes to evaluate the RHS
of the ODE system at a base point (t, x) and then calls the MATLAB function
numjac to compute numerically the Jacobian matrix ϕ f (t, x)/ϕx using forward
finite difference approximations

ϕ f (t, x)/ϕx = f (t, x + ν) − f (t, x)

ν

with adaptive step ν. The coding of numjac is rather complex and not very well
documented as it is intended to be called by implicit solvers.

The second option uses an alternative method for evaluating the Jacobian matrix
based on complex step differentiation [10, 11] inspired from a code by Cao [12] (see
function jacobian_complex_diff).

function Jac = jacobian_complex_diff(t ,x )

% Jacobian through complex step differentiation

n = length (x ) ;
Jac = zeros (n ,n ) ;
h = n*eps ;
for k = 1 :n

x1 = x ;
x1 (k ) = x1 (k)+h*i ;
xt = bioreactor_pdes (t ,x1 ) ;
Jac ( : ,k)=imag (xt ) /h ;

end

Function jacobian_complex_diff Function to numerically evaluate the Jacobian.
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In finite difference approximations, such as the one used in numjac, a compromise
has to be reached between a small step ν to minimize the truncation error and a
larger step ν to avoid large subtractive errors (as the step ν is reduced, f (t, x + ν)

and f (t, x) get very close). The idea of complex step differentiation is to replace the
real step ν by an imaginary number ih (where i2 = −1). If we consider the Taylor
series expansion around x .

f (t, x + ih) = f (t, x) + ih
ϕ f (t, x)

ϕx
− h2

2

ϕ2 f (t, x)

ϕx2 − ih3

6

ϕ3 f (t, x)

ϕx3 + · · ·

Taking the imaginary part of both sides and dividing by h leads to

Im [ f (t, x + ih)]

h
= ϕ f (t, x)

ϕx
− h2

6

ϕ3 f (t, x)

ϕx3 + · · ·

So that a second-order approximation of the first-order derivative is given by

ϕ f (t, x)

ϕx
= Im [ f (t, x + ih)]

h
+ O(h2)

which is the formula implemented in function jacobian_complex_diff. The
main advantage of this formula is that it is not subject to subtractive cancellation so
that a very small step h can be taken (for instance related to the spacing of floating
point numbers defined in MATLAB as eps).

A third option consists of computing the sparcity pattern of the Jacobian, i.e.
compute a map of the Jacobian where nonzero elements are indicated by “1” and
zero elements by “0”. This map can be used by ode15s to compute more efficiently
the Jacobian (see function jpattern_num).

function S = jpattern_num

% Set global variables
global nz

% sparsity pattern of the Jacobian matrix based on a
% numerical evaluation
tstar = 0 ;
Sstar = linspace ( 5 , 3 ,nz ) ;
Xstar = linspace ( 0 , 100 ,nz ) ;
xstar ( 1 : 2 : 2 *nz−1 ,1) = Sstar ' ;
xstar ( 2 : 2 : 2 *nz , 1 ) = Xstar ' ;
xtstar = bioreactor_pdes (tstar ,xstar ) ;
fac = [ ] ;
thresh = 1e−6;
vectorized = 0 ;
[Jac , fac ] = numjac (@bioreactor_pdes ,tstar ,xstar , . . .

xtstar ,thresh ,fac ,vectorized ) ;

% replace nonzero elements by "1"
% (so as to create a "0−1" map of the Jacobian matrix )
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S = spones (sparse (Jac ) ) ;

% plot the map
figure
spy (S , 'k ' ) ;
xlabel ( 'dependent variables ' ) ;
ylabel ( 'semi−discrete equations ' ) ;

% compute the percentage of non − zero elements
[njac ,mjac ] = size (S ) ;
ntotjac = njac*mjac ;
non_zero = nnz (S ) ;
non_zero_percent = non_zero /ntotjac*100;
stat = . . .
sprintf ( 'Jacobian sparsity pattern−nonzeros %d (%.3f ) ' , . . .

non_zero ,non_zero_percent ) ;
title (stat ) ;

Function jpattern_num Function to numerically evaluate the Jacobian.

This function is called once in the main program, before the call to ode15s,
so as to define the structure of the Jacobian matrix. It uses the PDE function
bioreactor_pdes to evaluate the RHS of the ODE system at a base point
(t∗, x∗)—nonzero values are arbitrarily defined for the biomass and substrate spatial
profiles using linspace—and then calls the MATLAB function numjac to com-
pute numerically the Jacobian matrix ϕ f (t, x)/ϕx using forward finite difference
approximations. The MATLAB function spones is then used to create the “0-1”
map. A plot of the matrix can be obtained using the function spy (see Fig. 3.22).

As we can see, this matrix has a nice banded structure, i.e., the nonzero elements
are concentrated near the main diagonal. This is due to the fact that the dependent
variables containing the biomass and substrate values are stored according to the
grid point order, i.e., S(1), X (1), S(2), X (2), S(3), X (3),…, as indicated in the PDE
function bioreactor_pdes.

function xt = bioreactor_pdes (t ,x )

% set global variables
global v nu1 eps mumax Kc kd ;
global Sin gamma
global z0 zL z nz D1z ;

% transfer dependent variables
S = x ( 1 : 2 : 2 *nz−1 ,1) ;
X = x ( 2 : 2 : 2 *nz , 1 ) ;

% Temporal derivatives
%
% Entering conditions (z = 0)
S_t ( 1 , 1 ) = gamma*(Sin − S ( 1 ) ) ;
%
% kinetics
phi1 = mumax*S . *X . / ( Kc*X+S ) ;
phi2 = kd*X ;

% spatial derivatives
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Fig. 3.22 Sparcity pattern of the Jacobian matrix of the bioreactor example when using variable
storage according to the spatial grid points

%
% Sz (by two − point upwind approximations )
Sz = D1z*S ;

% Rest of bioreactor
S_t ( 2 :nz , 1 ) = −v*Sz ( 2 :nz ) − nu1*(1−eps)*phi1 ( 2 :nz ) /eps ;
X_t = phi1 − phi2 ;

% transfer temporal derivatives
xt ( 1 : 2 : 2 *nz−1 ,1) = S_t ;
xt ( 2 : 2 : 2 *nz , 1 ) = X_t ;

Function bioreactor_pdes Programming of the PDE equations for the bioreactor system

If these variables would have been stored in another way, for instance one vector
after the other

S = x(1:nz,1);
X = x(nz+1:2*nz,1);

then the structure of the Jacobian would have been altered (see Fig. 3.23).
The first coding gives a more elegant structure to the Jacobian matrix which could

be more easily exploited in ODE solvers with computational procedures adapted to
banded Jacobian matrices.

In all cases, note that the Jacobian matrix is a quite empty matrix, i.e., most of the
elements are zero, and it is of course advantageous to take this fact into account when
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Fig. 3.23 Sparcity pattern of the Jacobian matrix of the bioreactor example when using storage of
the variable vectors one after the other

evaluating the Jacobian. It is indeed a waste of computational resources to evaluate
repeatedly elements that are known in advance to be zero.

We conclude this section in mentioning that the Jacobian information can also be
exploited in our implementation of the Rosenbrock method ros23p:

% call to ODE solver
%
t0 = 0.0;
tf = 50.0;
hmin = 1e-3;
nstepsmax = 1000;
abstol = 1e-3;
reltol = 1e-3;
Dtplot = 1.0;
%
[tout, yout] = ros23p_solver(@bioreactor_pdes,...

@jacobian_complex_diff,@ft,t0,tf,
x,hmin,...
nstepsmax, abstol, reltol,Dtplot);
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3.12 Solving PDEs Using SCILAB and OCTAVE

The tubular bioreactor example (see Eqs. (3.196)–(3.201)) is now used to illustrate
the solution of PDE models using SCILAB and OCTAVE.

Most of our home-made methods for time integration and spatial discretization
can can easily be translated to SCILAB and OCTAVE, as, for instance, the library of
FD differentiation matrices or the complex differentiation method introduced in the
previous sections. OCTAVE is very close to MATLAB so that the translation usually
requires minimal efforts. The syntax of SCILAB departs more from MATLAB and
the translation can be facilitated using a tool called mfile2sci.

Let us first consider the SCILAB implementation. The main scriptbioreactor_
main.sci, which shares many of the features already presented in Sect. 2.6, has
the following structure:

• The script begins by setting the global variables to be passed to the SCILAB
functions

• The functions are loaded with the SCILAB command exec
• The main difference with respect to the example in Sect. 2.6 is that now we are

considering a PDE system instead of an ODE system. Therefore, a spatial grid has
to be defined, which is used by function two_point_upwind_uni_D1.sci
to obtain the first order differentiation matrix.

• Next, the model parameters and initial conditions are defined. Since dependent
variables are spatially distributed, initial conditions must be defined for each point
of the spatial grid. Also, the dependent variables are stored according to the spatial
grid point order so as to obtain a banded sparcity pattern of the Jacobian matrix.

• Once the initial conditions are imposed, the time span is defined and the ODE
integrator is called. In the previous chapter, we made use of our basic time integra-
tors. Now, we explore the possibilities offered by the ODE solvers (ODEPACK)
already implemented in SCILAB. The calling sequence of the function ode is
somewhat different from the Matlab counterpart.

yout = ode(x0,tl(1),tl,list(bioreactor_pdes),...
jacobian_complex_diff);

The first input parameter corresponds to the initial conditions. Then, initial time
and the list of times at which the solution has to be returned are passed to the
function. The next input argument is the name of the function where the PDEs
are defined (in this example bioreactor_pdes). The last argument in this call
corresponds to the function where the jacobian matrix is computed through com-
plex differentiation.

By default, the ode function makes use of the lsoda solver (that automatically
selects between Adams and BDF methods). Other solvers like Runge-Kutta of
order 4 or the Shampine and Watts solver can be used. In this case, the call is

http://dx.doi.org/10.1007/978-3-319-06790-2_2
http://dx.doi.org/10.1007/978-3-319-06790-2_2
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yout = ode("method",x0,tl(1),tl,list(bioreactor_pdes),
... jacobian_complex_diff);

where method can be: adams, stiff (that uses the BDF method), rk, rkf,
among others. Other options include the relative and absolute integration toler-
ances, maximum and minimum step sizes, etc. It is not the intent of this example
to describe all of the possibilities available for calling the ode function and the
reader is referred to the SCILAB help.

• Finally, the solution is drawn using the plot function.

clear

/ / Display mode
mode( −1);

/ / set global variables
global ( "v " , "nu1" , "peps " , "mumax " , "Kc " , "kd " ) ;
global ( "Sin " , "pgamma " )
global ( "z0 " , "zL " , "z " , "nz " , "D1z " ) ;

/ / Load the subroutines
exec ( 'bioreactor_pdes .sci ' ) ;
exec ( 'two_point_upwind_uni_D1 .sci ' ) ;
exec ( 'jacobian_complex_diff .sci ' ) ;

/ / model parameters
peps = 0 . 5 ;
A = 0 . 0 4 ;
F = 0 . 0 0 2 ;
v = F / (peps*A ) ;
nu1 = 0 . 4 ;
mumax = 0 . 3 5 ;
Kc = 0 . 4 ;
kd = 0 . 0 5 ;

/ / inlet concentration
Sin = 5 ;
pgamma = 10;

/ / grid in axial direction
z0 = 0 ;
zL = 1 ;
nz = 101;
dz = (zL − z0 ) / ( nz−1);
z = (z0 :dz :zL ) ' ;

/ / differentiation matrix in z (convective term )
D1z = two_point_upwind_uni_D1 (z0 ,zL ,nz ,A ) ;

/ / initial conditions
S0 = 0 ;
X0 = 10;
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/ / Distribution of initial conditions
S = S0*ones (nz , 1 ) ;
X = X0*ones (nz , 1 ) ;

/ / transfer dependent variables
x0 ( 1 : 2 : 2 *nz−1) = S ;
x0 ( 2 : 2 : 2 *nz ) = X ;

/ / call to ODE solver
t0 = 0 ;
tf = 50;
Dtplot = 1 ;
tl = t0 :Dtplot :tf ;

/ / read the stopwatch timer
tic

/ / Call the integrator
yout = ode ( "stiff" ,x0 ,tl ( 1 ) ,tl ,list (bioreactor_pdes ) , . . .

jacobian_complex_diff ) ;

/ / read the stopwatch timer
tcpu = toc ( ) ;

/ / Plot the solution
plot (tl ,yout ( 1 : 2 : 2 *nz−1 , : ) )

Script bioreactor_main.sci Main program for the implementation of the bioreactor problem, Eqs.
(3.196)–(3.201), in SCILAB.

The programming in SCILAB of functions two_point_upwind_uni_D1
.sci, bioreactor_pdes.sci and jacobian_complex_diff.sci is
similar to their MATLAB counterparts.

Regarding the OCTAVE codes for simulation, as explained in the previous chapter,
the only difference with respect to MATLAB is the call to the ODE solver. Using
MATLAB, the call to ode45 is of the form

options = odeset(’RelTol’,1e-3,’AbsTol’,1e-3);
tout = [t0:Dtplot:tf];
[tout, yout] = ode45(@bioreactor_pdes,tout,x,options);

while in OCTAVE the call to lsode reads as

lsode_options(’absolute tolerance’,1e-3);
lsode_options(’relative tolerance’,1e-3);
tout = [t0:Dtplot:tf];
[xout, istat, msg] = lsode(@bioreactor_pdes_oct,

x, tout);
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Table 3.4 Performance of different IVP solvers in several environments for the distributed biore-
actor problem

N MATLAB SCILAB OCTAVE
ode45 ode15s rkf Adams lsode dassl

CPU time 100 1.50 1.50 1.00 1.75 2.25 2.75
300 3.25 5.25 3.75 10.50 11.00 12.25
700 8.00 40.25 12.50 47.25 68.75 48.50

Times have been normalized with respect to the most efficient case, i.e., rkf in SCILAB

Note also that the order of the input variables in the ODE function changes from
MATLAB to OCTAVE

function xt = bioreactor_pdes(t,x)
function xt = bioreactor_pdes_oct(x,t)

To conclude this section, a comparison of the performance of different solvers in
MATLAB, SCILAB and OCTAVE, for the tubular bioreactor problem—Eqs. (3.196)–
(3.201)—is included in Table 3.4. Different numbers of grid points were used in the
comparison. MATLAB appears as the most efficient alternative, especially with the
solver ode45. This indicates that the ODE system resulting from the application of the
MOL to the tubular bioreactor problem is non stiff. Indeed ode45 is five times faster
than ode15s whith N = 700. For a small number of discretization points, i.e. 101
grid points, the rkf solver of SCILAB is faster than its MATLAB counterpart. How-
ever, as N increases SCILAB becomes gradually less efficient. On the other hand,
OCTAVE, which was the most efficient environment for the example of Chap. 2 (see
Table 2.13), shows now the worst performance. This issue becomes more evident as
N increases.

It is of course impossible to draw general conclusions from a single example,
and for other PDE problems, the selection of an appropriate solver and spatial dis-
cretization method can lead to different comparison results. A recent comparative
evaluation of MATLAB, SCILAB, OCTAVE as well as FreeMat [13], concludes that
OCTAVE is an excellent alternative to MATLAB, being able to solve problems of
the same size and with equivalent efficiency.

3.13 Summary

In this chapter, finite difference (FD) approximations and the method of lines, which
combine FD with available time integrators, are discussed. First, a convection-
diffusion-reaction PDE is used to introduce a few basic FD schemes and address
the concept of stability of the numerical scheme. As a rule of thumb, centered FD
schemes appear as good choices for approximating second-order (diffusion) opera-
tors, whereas upwind FD schemes are preferable for first-order (convection) opera-
tors. Once stability is ensured, accuracy can be adjusted by selecting appropriately

http://dx.doi.org/10.1007/978-3-319-06790-2_2
http://dx.doi.org/10.1007/978-3-319-06790-2_2
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the fineness of the spatial grid and the order of the FD approximation (i.e. the stencil
of points on which the FD approximation is built). The calculation of FD approxima-
tion can be conveniently organized using differentiation matrices, which are easy to
manipulate in MATLAB, SCILAB or OCTAVE. FD can also be efficiently computed
on arbitrarily spaced grids using an algorithm due to Fornberg [6, 7]. We continue
this chapter with a presentation of different methods to take the boundary conditions
into account. Boundary conditions are an essential part of the IBVP definition, and
several methods for translating the BCs in the code implementation are presented.
Finally, attention is paid to the computation of the Jacobian matrix of the ODE
system, which is used by various solvers.
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Chapter 4
Finite Elements and Spectral Methods

In Chap. 3, one of the most popular techniques for solving PDE systems, the FD
method, has been presented. Finite differences are easy to use and allow to address
a large class of IBVPs, but also suffer from a few drawbacks. In particular, FDs
are not very convenient when dealing with problems in several spatial dimensions
with irregular domains (in this book, we mostly consider 1-D problems so that this
drawback is not apparent, but more on 2-D problems will be said in Chap. 6). In this
chapter, a new family of techniques, the methods of weighted residuals (WRM), will
be described paying special attention to the finite element method (FEM), orthogonal
collocation and the proper orthogonal decomposition.

The starting point of this family of methods is the generalized Fourier series
theorem. Essentially, this theorem establishes that, given an orthogonal basis set on a
Hilbert space L2, ν = {ϕi (z)}→i=0, any function f (z, t) ≤ L2(V ) can be expanded
in convergent series of the form:

f (z, t) =
→∑

i=0

mi (t)ϕi (z). (4.1)

There exists a large range of options for the selection of the basis set, for instance,
Legendre, Hermite, or Chebyshev polynomials; the eigenfunctions obtained from the
laplacian operator or the proper orthogonal decomposition, to name a few. Depending
on the problem under consideration and on the desired accuracy some of them will
be more appropriate than others. Let us first illustrate this concept with a simple
example: the heat equation in 1D.

For the sake of clarity, we will focus on the simplest form of the heat equation
where the spatial domain is isolated (leading to homogeneous Neumann boundary
conditions) and no source term is considered. Under these conditions, the mathemat-
ical equation describing the system is:

ρT

ρt
= Δ

ρ2T

ρz2 (4.2)

A. Vande Wouwer et al., Simulation of ODE/PDE Models with MATLAB�, 203
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with boundary and initial conditions of the form:

ρT

ρz

∣∣∣∣
z=0

= ρT

ρz

∣∣∣∣
z=L

= 0 (4.3)

T (z, 0) = g(z), (4.4)

where L is the length of the spatial domain, Δ is the diffusivity parameter, and T (z, t)
is the temperature field. The analytical solution to this problem can be computed
using the method of separation of variables [1]. In this method, we will assume that
the solution, which depends on time and spatial coordinates, can be expressed as the
product of functions depending only on time and functions depending only on the
spatial coordinates so that:

T (z, t) = R(z)S(t) (4.5)

It follows that:

ρT (z, t)

ρt
= R(z)

dS(t)

dt
and

ρ2T (z, t)

ρz2 = d2 R(z)

dz2 S(t) (4.6)

Introducing these expressions into Eq. (4.2), we have

R(z)
dS(t)

dt
= Δ

d2 R(z)

dz2 S(t)

Rearranging terms and using the compact notation for the derivatives

St

ΔS
= Rzz

R

Since the LHS does not depend on z and the RHS does not depend on t , both sides
must be independent of z and t and equal to a constant:

St

ΔS
= Rzz

R
= −λ (4.7)

where the minus sign is introduced for convenience, anticipating the fact that the
constant (−λ) will be negative as we explain in the following. Considering the part
of Eq. (4.7) involving R, which is an eigenvalue problem, we have

Rzz + λR = 0 (4.8)

and we distinguish three cases:
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• λ < 0.
Equation (4.8) has a characteristic equation r2 + λ = 0 whose solutions are real
r = ±↔−λ. The general solution is R(z) = A exp

(↔−λz
) + B exp

(−↔−λz
)
.

Computing the first derivatives in z = 0 and z = L and using the boundary
conditions leads to

Rz(0) = A
↔−λ − B

↔−λ = 0

Rz(L) = A
↔−λ exp

(↔−λL
)

− B
↔−λ exp −

(↔−λL
)

= 0

The first expression shows that A = B, whereas the second then imposes A =
B = 0. The solution of (4.8) is thus trivial R ⇒ 0.

• λ = 0.
Equation (4.8) simplifies to Rzz = 0 which has the general solution R(z) = Az +
B. Using the boundary conditions, we find that A = 0, and the solution reduces
to R ⇒ B.

• λ > 0.
The characteristic equation has imaginary roots r = ± j

↔
λ (with j2 = −1)

and the general solution of (4.8) is R(z) = A cos
(↔

λz
)

+ B sin
(↔

λz
)

. Again,

computing the first derivatives in z = 0 and z = L and using the boundary
conditions, we obtain:

Rz(0) = B
↔

λ = 0

Rz(L) = −A
↔

λ sin
(↔

λL
)

+ B
↔

λ cos
(↔

λL
)

= 0

The first condition implies that B = 0 and the second that either A = 0 (triv-
ial solution) or λi = iα/L , with i = 1, 2, 3, . . . These latter values define the
eigenvalues corresponding to the eigenfunctions Ri (z) = Ai cos (iα/Lz).

The part of Eq. (4.7) involving variable S, i.e., St = −λΔS, has solutions of the
form

Si (t) = exp (−λiΔt) = exp

⎛
−

⎡
iα

L

⎢2

Δt

⎣

Accordingly, the temperature field is given by:

T (z, t) =
→∑

i=0

Ti (z, t) =
→∑

i=0

exp

⎡
− i2α2

L2 ωt

⎢
Ai cos

⎡
iα

L
z

⎢
(4.9)

Note that this expression is equivalent to (4.1) with ϕi (z) = Ai cos
( iα

L z
)

and mi (t) =
exp

(
− i2α2

L2 ωt
)

. From the initial condition T (z, 0) = g(z) and
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Table 4.1 Maximum and
mean relative errors for the
analytical solution of the heat
equation using different
number of terms N in the
series (4.9)

N Maximum Mean
error (%) error (%)

1 3.30 2.8
2 0.59 3.0 × 10−2

3 0.20 6.2 × 10−3

4 9.8 × 10−2 2.0 × 10−3

Fig. 4.1 Analytical solution
of the heat equation computed
using the method of separation
of variables
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T (z, 0) = A0 +
→∑

i=1

Ai cos

⎡
iα

L
z

⎢
(4.10)

we deduce that

A0 = 1

L

L⎤
0

g(z)dz; Ai = 2

L

L⎤
0

g(z) cos

⎡
iα z

L

⎢
dz (4.11)

As shown in Table 4.1, for L = 1, the series converge very rapidly to the exact
solution and using only four terms in Eq. (4.9) is enough to obtain relative errors
below 0.1 %.

Figure 4.1 represents the analytical solution of the heat equation computed by
means of the method of separation of variables. As shown in this figure, the initial
temperature spatial distribution becomes homogeneous with time as a result of the
effects of the diffusion operator.

In the previous example, the basis functions in expansion (4.9) were obtained
analytically (they correspond to the eigenfunctions). However, in general, it will not
be possible to compute an analytical solution. In those cases, the functions for the
series expansion must be selected a priori. To illustrate this point, let us use, for
instance, the Legendre polynomials whose recursive formula in the spatial domain
ε(z) ≤ [0, 1] is given by the Rodrigues representation:

ϕi (z) = 1

i !
d

dz

(
z2 − z

)i
(4.12)
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Fig. 4.2 Shape of the first
five Legendre polynomials
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So the first five polynomials, represented in Fig. 4.2, are of the form:

ϕ0 = 1; ϕ1 = 2z − 1; ϕ2 = 6z2 − 6z + 1;

ϕ3 = 20z3 − 30z2 + 12z − 1; ϕ4 = 70z4 − 140z3 + 90z2 − 20z + 1

The expansion (4.1) is exact for smooth functions, however it requires an infinite
number of terms. In practice, the series are truncated so that function f (z, t) is
approximated as:

f (z, t) ∞
N∑

i=0

mi (t)ϕi (z). (4.13)

In order to compute the coefficients mi of the series expansion, (4.13), we project
the nonlinear function f (z, t) onto the polynomials ϕi (z).

Let us first define the inner product and the norm of two functions g(z) and h(z)
as:

〈g(z), h(z)∈ =
⎤
V

g(z)h(z)dz; √g√2 = ⎥〈g(z), g(z)∈ (4.14)

The projection is, then, expressed by the inner product as:

mi (t) =
⎤
V

ϕi (z) f (z, t)dz = 〈ϕi (z), f (z, t)∈ (4.15)

Depending on the form of f (z, t) it may be quite difficult or even impossible, to
find an analytical solution for this integral. Therefore, we will have to make use of
numerical techniques such as the Simpson’s rule or the Gauss-Legendre quadrature
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formula. Note that, at this point, the basis set ({ϕi (z)}→i=0) is known (as we have
already defined it as the set of Legendre polynomials) and the coefficients mi (t) are
computed through (4.15) so function f (z, t) can be obtained using (4.13).

We now apply the series expansion (4.13) to the heat equation using the previously
presented Legendre polynomials as basis functions. Substitution of Eq. (4.13) into
(4.2) leads to:

ρ
⎦N

i=0 mi (t)ϕi (z)

ρt
= Δ

ρ2 ⎦N
i=0 mi (t)ϕi (z)

ρz2 (4.16)

or, rearranging terms

N∑
i=0

ϕi (z)
dmi (t)

dt
= Δ

N∑
i=0

mi (t)
d2ϕi (z)

dz2 (4.17)

The only information required to obtain the solution are the time dependent coef-
ficients mi (t). These are computed by projecting (4.17) onto the first N Legendre
polynomials, i.e.,

⎤
ε(z)

ϕ j

N∑
i=0

ϕi (z)
dmi (t)

dt
dz = Δ

⎤
ε(z)

ϕ j

N∑
i=0

mi (t)
d2ϕi (z)

dz2 dz

≡
N∑

i=0

dmi

dt

⎤
ε(z)

ϕ jϕi dz = Δ

N∑
i=0

mi

⎤
ε(z)

ϕ j
d2ϕi

dz2 dz (4.18)

To include the boundary conditions in this computation we make use of Green’s
first identity which expresses that, for a twice continuously differentiable function
f (z) and a once continuously differentiable function g(z):

⎤
ε(z)

g(z)
d2 f (z)

dz2 dz =
⎤

∂(z)

g(z)
d f (z)

dn
dz −

⎤
ε(z)

dg(z)

dz

d f (z)

dz
dz (4.19)

where ∂(z) is the boundary of the spatial domain ε(z) and n represents a unitary
vector pointing outwards the spatial domain.

The use of Green’s first identity in the integral term in the RHS of Eq. (4.18)
leads to:

⎤
ε(z)

ϕ j
d2ϕi

dz2 dz =
⎤

∂(z)

ϕ j
dϕi

dn
dz −

⎤
ε(z)

dϕ j

dz

dϕi

dz
dz

and since homogeneous Neumann BCs (4.3) are considered in this problem:
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Table 4.2 Maximum and
mean relative errors for the
numerical solution of the heat
equation using Legendre
polynomials

N Maximum Mean
error (%) error (%)

3 10.7 1.97
5 0.18 5.3 × 10−2

7 1.7 × 10−2 1.4 × 10−3

⎤
ε(z)

ϕ j
d2ϕi

dz2 dz = −
⎤

ε(z)

dϕ j

dz

dϕi

dz
dz (4.20)

Substituting Eq. (4.20) into (4.18) and taking into account that Legendre polyno-
mials are orthonormal over the spatial domain ε(z) = [0, 1], we have that:

dm
dt

= −ΔA m (4.21)

where m = [m1, m2, . . . , m N ]T and each element of matrix A is of the form Ai, j =∫
ε(z)

dϕ j
dz

dϕi
dz dz. The coefficients of the series expansion are then computed by solving

the ODE system (4.21).
The maximum and mean relative errors between the analytical solution and the

series approximation using Legendre polynomials are presented in Table 4.2. As
shown in the table, the number of elements required to obtain a given accuracy is
larger than with the problem eigenfunctions (see Table 4.1). The advantage of using
a previously defined basis set is that no analytical solution is required.

We now turn our attention to a more challenging example, e.g., Burgers’ equation
already introduced in Chap. 1. Depending on the initial conditions, different analyti-
cal solutions are available, as already discussed in Chaps. 1 and 3. For convenience,
we rewrite the one considered in Chap. 1 (using the notation x(z, t) for the solution
instead of u(z, t)):

xa(z, t) = 0.1ea + 0.5eb + ec

ea + eb + ec
(4.22)

where

a = −(0.05/μ)(z − 0.5 + 4.95t);

b = −(0.25/μ)(z − 0.5 + 0.75t);

c = −(0.5/μ)(z − 0.375)

Depending on the value of μ different solution behaviors are obtained. In this
connection, the larger the value of μ, the smoother the resulting spatial profiles
whereas low values for μ will result into steep profiles which are a challenge for any
numerical technique.

http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_1
http://dx.doi.org/10.1007/978-3-319-06790-2_3
http://dx.doi.org/10.1007/978-3-319-06790-2_1
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Fig. 4.3 Analytical solution of Burgers’ equation at t = 0.8 with μ = 0.05 (top figure). Relative
errors between the analytical solution and the Fourier series approximation with different numbers
of terms (bottom figure)

Let us compare the analytical solution with the truncated series expansion. We start
with μ = 0.05 which will result into smooth profiles and we simplify the problem
by considering the solution of Burgers’ equation at time t = 0.8 (in this way, we
eliminate the time dependency). As in (4.15) the coefficients are computed by:

mi =
1⎤

0

ϕi xa(z, 0.8)dz

For this particular example, the spatial integral will be computed using the trape-
zoidal rule.

Figure 4.3 presents the analytical solution (top figure) and the relative errors
between such solution and the series expansion approximation (bottom figure). As
we can see, with only five terms in the series expansion, the maximum relative error
is lower than 3 % and, as we increase the number of elements, the error decreases
very rapidly. In fact, with 10 elements the error is around 0.1 %.

Let us now consider the solution of Burgers’ equation using μ = 0.001 (this
solution develops front sharpening and steep moving fronts) at time t = 0.8.
A comparison between the analytical solution and the series expansion is repre-
sented in Fig. 4.4. Note that a larger number of terms are required (as compared with
the smooth profile case) to reproduce with satisfactory accuracy the solution. Also,
even if we increase the number of terms, the oscillations near the steep front remain.
These oscillations, which appear in steep fronts or in discontinuities, are known as
the Gibbs phenomenon. They will not disappear even if we use an infinite number
of elements in the series.
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Fig. 4.4 Comparison between the analytical solution of Burgers’ equation with μ = 0.001 at
t = 0.8 and the series approximation with different number of elements

One possible solution to this problem is to discretize the spatial domain into a
number of smaller spatial domains, also called elements, and to use functions locally
defined on these elements (this will become clearer later on when describing the
finite element method).

Let us now, before starting with the description of the finite element method,
introduce the basics of the weighted residuals methods (WRM) for solving PDE
systems.

4.1 The Methods of Weighted Residuals

The methods of weighted residuals constitute a whole family of techniques for devel-
oping approximate solutions of operator equations. The starting point for all these
methods is the series expansion approximation (4.13). The basis functions are chosen
based on various criteria to give the “best” approximation for the selected family.
These methods are applicable for arbitrary operators and boundary conditions.
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Let us begin the discussion with the following general equation:

xt = Δ0x + Δ1xz + Δ2xzz + f (x) (4.23)

where the first three terms on the RHS constitute the linear part of the equation and, as
we will show, their treatment by the finite element method leads to the computation of
matrix operators analogous to the differentiation matrices used in the finite difference
method. The last term, f (x), known as source term will require further numerical
treatment. The system must be completed with appropriate boundary and initial
conditions. Denoting by ∂ the boundary of the spatial domain ε, the following
general expression can be used to define the boundary conditions:

δ1
ρx

ρz
+ δ0x + g(x) = 0

∣∣∣∣
∂

(4.24)

where g(x) is a given nonlinear function.
The first step is to approximate the original solution x(z, t) by a truncated series

expansion of the form

x(z, t) ∞ x̃(z, t) =
N∑

i=1

mi (t)ϕi (z)

Since x̃(z, t) is only an approximation, its substitution into Eq. (4.23) will result
into the following residual:

x̃t − (Δ0 x̃ + Δ1 x̃z + Δ2 x̃zz + f (x̃)) = R.

The best approximation can be found by making the residual R close to zero
in some average sense. To this end, N weighting functions (w(z) : R ∧ R) are
introduced, and weighted residuals are forced to zero. This procedure leads to the
following system of ODEs:

⎤
ε

R(z, t)wi (z)dz = 0; i = 1, . . . , N . (4.25)

The name of the family of methods based on weighted residuals (WR) now
becomes clear, i.e., the residual resulting from the substitution of the truncated Fourier
series into the original PDE is multiplied by a number of weighting functions.

We are concerned with the problem of choosing a linear space in which the WRM
is formulated. The WRM should apply to any linear space X to which the solution
x(z, t) belongs and on which the weighted integrals make sense.

Depending on the selection of the weighting functions different methods arise.
Among them, the most popular ones are briefly described below.
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4.1.1 Interior Method

The basis functions ϕi (z) are chosen such that the approximation x̃ automatically
satisfies the boundary conditions. However, it does not immediately satisfy the dif-
ferential equation. Substitution of the approximation x̃ into the differential equation
produces an error function RE (x̃), which is called the residual equation:

x̃t − (Δ0 x̃ + Δ1 x̃z + Δ2 x̃zz + f (x̃)) = RE (x̃) (4.26)

and substitution into the initial conditions yields an initial residual:

x0(z) −
N∑

i=1

mi (0)ϕi (z) = RI (x̃) (4.27)

These residuals are measures of how well the approximation x̃(z, t) satisfies the
equation and the initial conditions, respectively. They are equal to zero for the exact
solution but not for the approximation. The functions mi (t) are determined in such a
way that the residuals are zero in some average sense: we set the N weighted integrals
of the equation and initial residuals to zero, i.e.

〈RE (x̃) , w j ∈ = 0; j = 1, 2, . . . , N (4.28)

〈RI (x̃) , w j ∈ = 0

Equation (4.28) represents a system of N differential equations while (4.27) repre-
sents the initial conditions of coefficients mi , i.e., mi (0).

4.1.2 Boundary Method

If the approximate solution, also called trial solution, is selected so as to satisfy the
differential equation but not the boundary conditions, the procedure is called the
boundary method. Substitution of x̃ into the boundary conditions yields a boundary
residual RB(x̃). As in the interior method, the residual is forced to be zero in an
average sense:

〈RB (x̃) , w j ∈ = 0; j = 1, 2, . . . , N (4.29)

4.1.3 Mixed Method

The trial solution does not satisfy neither the equation nor the boundary conditions.
Substitution of x̃ into the initial boundary value problem produces now an equation,
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a boundary and an initial residual. We can attempt to balance the equation residual
and the boundary residual:

〈RE (x̃) , w j ∈ = 〈RB (x̃) , w j ∈; j = 1, 2, . . . , N (4.30)

4.1.4 Galerkin Method

In the Galerkin scheme, the weighting functions wi are the same as the basis functions
ϕi which, recall, form a complete set for the N dimensional subspace where the
approximated solution is sought. Imposing that the weighted residuals vanish thus
makes the residual error orthogonal to the basis function space. The larger the number
N , the better the approximation, so that in the limit when N ∧ → it follows that
x = x̃ . The basis functions in this method can be locally or globally defined. Among
the Galerkin schemes with locally defined functions, the most popular is the finite
element method (FEM). Flexibility when solving problems with irregular spatial
domains or with non homogeneous boundary conditions makes the FEM a versatile
and an efficient method. This technique will be described in more details in Sect. 4.2.

4.1.5 Collocation Method

Whereas all the methods introduced so far require the computation of spatial integrals,
the collocation method drastically simplifies this procedure.

Indeed, the weighting functions are selected as the Dirac delta, i.e., w j = η(z−z j ),
thus:

〈RE , w j ∈ =
⎤
ε

REη
(
z − z j

)
dε = RE

(
x̃
(
z j , t

)) = 0 j = 1, . . . , N

Therefore, the collocation method appears as the simplest WRM to apply. The
main issue in this technique is the selection of the collocation points. Even though an
obvious choice is to take N points evenly distributed in the spatial domain, this choice
is not the best possible regarding the accuracy of the approximation and the possible
occurrence of oscillations (a phenomenon highlighted in 1901 by Carl Runge [2]
that we will discuss more in the section on orthogonal collocation).

4.1.6 Orthogonal Collocation Method

It is possible to speed up the convergence (and to make the collocation method
competitive with the Galerkin method) by carefully selecting the collocation points
at the roots of orthonormal polynomials (i.e., polynomials forming an orthonormal
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basis, such as the Legendre or Chebyshev polynomials). The procedure is then called
orthogonal collocation.

The method of orthogonal collocation dates back at least to Lanczos [3]. Chebyshev
polynomials and collocation at Legendre points were used to approximate solutions
to initial value problems. Chemical engineers have used the method extensively to
solve initial and boundary value problems arising in reactor dynamics and other
systems (see [4]). Existence, uniqueness, and error estimates for one-dimensional
orthogonal collocation using splines rather than full polynomials was first presented
in the paper of de Boor and Swartz [5]. We will come back to this method later on
in Sect. 4.9.

4.2 The Basics of the Finite Element Method

As the finite difference method, the FEM is based on the discretization of the spatial
domain (see Fig. 4.5) to transform the original PDE into a set of ODEs. Each of the
segments ei obtained after discretization is known as finite elements and the points
where two elements coincide are the nodes.

As mentioned in the introduction of this chapter, the FEM belongs to the family
of methods of weighted residuals (MWR) and as such, the implementation makes
use of different concepts, namely, truncated Fourier series, weighted residuals and
the weighting/basis functions. The underlying idea of FEM is that it will be easier
to represent parts of the solution of the PDE, corresponding to each of the finite
elements, using truncated Fourier series. For instance, if polynomials are used, lower-
order polynomials will probably be able to do the job of representing parts of the
solution, whereas high-order polynomials would be required to represent the full
solution, with the associated risk of oscillation (Gibbs phenomenon). In this context,
the basis functions will therefore have a compact support (i.e., they are defined on
each element).

• Truncated Fourier series The first step is to approximate the solution of the PDE
(4.23) by a truncated Fourier series of the form:

x(z, t) ∞ x̃(z, t) =
N∑

i=1

Xi (t)ϕi (z) (4.31)

where the time-dependent coefficients Xi (t) correspond with the values of vari-
able x̃(z, t) at nodes zi . The basis functions ϕi (z) are defined a priori and, in
the case of the FEM are selected as low-order polynomials on a compact sup-
port. The substitution of approximation x̃(z, t) into Eq. (4.23) yields an equation
similar to (4.26):

x̃t − (Δ0 x̃ + Δ1 x̃z + Δ2 x̃zz + f (x̃)) = RE (z, t) (4.32)

that we have to minimize.
The above expression is an equation residual, which implicitly assumes that the
boundary conditions will be satisfied in some way. Alternatively, a mixed method
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Fig. 4.5 Spatial discretization of a one-dimensional spatial domain

could be considered according to (4.30), which involves the sum of equation and
boundary residuals. The treatment of boundary conditions deserves special atten-
tion and will be discussed later on.

• Weighted residuals The residual RE is multiplied by N weighting functions {wi }N
i=1

and the result is integrated over the spatial domain ε(z):

⎤
ε(z)

wi x̃t dz = Δ0

⎤
ε(z)

wi x̃dz + Δ1

⎤
ε(z)

wi x̃zdz + Δ2

⎤
ε(z)

wi x̃zzdz

+
⎤

ε(z)

wi f (x̃)dz; i = 1, . . . , N (4.33)

Note that x̃ = ⎦N
i=1 Xi (t)ϕi (z), so that the problem translates into finding the

time-dependent coefficients Xi (t) which fulfill Eq. (4.33).
• Weighting function selection In the FEM, as in other methods known as Galerkin

methods, the weighting functions are the same as the basis functions, i.e., Wi = ϕi ,
◦i = 1, . . . , N . In the framework of the method of lines, we will consider the
following cases:

– Galerkin method over linear Lagrangian elements
– Galerkin method over linear Hermitian elements of class C1 on two nodes.

4.3 Galerkin Method Over Linear Lagrangian Elements

The basis functions in the FEM are locally defined, in other words, a given basis
function ϕi (z) takes a given value (typically 1) at node zi (in contrast with the
notation used for introducing finite difference schemes the numbering of the nodes
is from 1 to N ) and zero in the rest of the nodes (see Fig. 4.6).

Mathematically, this is expressed by:

ϕi (z j ) = ηi, j (4.34)

where ηi, j is the Kronecker delta.
With linear Lagrangian basis, only two basis functions, namely ϕi and ϕi+1, are

defined (with values different from zero) at element ei . Therefore, for convenience
a local notation will be used. Let us denote by ϕ

ei
1 and ϕ

ei−1
2 the parts of function ϕi
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Fig. 4.6 Linear basis functions at the finite element ei

which are defined over elements ei and ei−1, respectively. Over the element ei the
following functions are defined as:

ϕ
ei
1 (z) = zi+1 − z

zi+1 − zi
= zi+1 − z

θz
; ϕ

ei
2 (z) = z − zi

zi+1 − zi
= z − zi

θz
(4.35)

with θz being the length of element ei .
In order to simplify the formulation, particularly in view of the weighted residual

(integral) computation, the following coordinate change is proposed:

ξ = 2

θz
(z − zc) =≡ dξ

dz
= 2

θz
(4.36)

where zc is the abscissa of the midpoint of ei . In this new coordinate system, the
basis functions are of the form:

ϕ
ei
1 (ξ) = 1 − ξ

2
; ϕ

ei
2 (ξ) = 1 + ξ

2
(4.37)

It is clear that ϕ
e1
1 = ϕ

e2
1 = · · · = ϕ

ei−1
1 = ϕ

ei
1 = · · · and ϕ

e1
2 = ϕ

e2
2 = · · · =

ϕ
ei−1
2 = ϕ

ei
2 = · · · . To further simplify the notation, we define ϕ1 = ϕ

ei
1 and ϕ2 = ϕ

ei
2

for all i = 1, . . . , N so that the solution can be expressed, within element ei , as:

x̃ ei (ξ, t) = ϕ1(ξ)Xi (t) + ϕ2(ξ)Xi+1(t) (4.38)

With some abuse of notation let us write Xei
1 (t) = Xi (t) and Xei

2 (t) = Xi+1(t),
so that Eq. (4.38) becomes:

x̃ ei (ξ, t) = ϕ1(ξ)Xei
1 (t) + ϕ2(ξ)Xei

2 (t) (4.39)

We will now analyze separately the different terms of Eq. (4.33) starting with the
LHS of the equation.
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4.3.1 LHS of the Weighted Residual Solution

We take advantage of the fact that, inside each finite element, only two basis functions
have values different from zero. As a consequence, all the integrals i = 1, . . . , N in
the LHS term of Eq. (4.33) will be zero except two of them (those corresponding to
the projection onto the basis functions Wi = ϕ1 and Wi+1 = ϕ2). Therefore, one
element (for instance ei ) will contribute to two rows (rows i and i +1) of the equation
system resulting from the method of lines. Let us denote by εei (z) the portion of the
spatial domain ε(z) in which element ei is defined. The projection of the LHS term
of Eq. (4.33) onto ϕ1, leads to:

⎤
εei (z)

ϕ1(z)x̃ ei
t dz =

1⎤
−1

ϕ1(ξ)

⎡
ϕ1(ξ)

dXei
1

dt
+ ϕ2(ξ)

dXei
2

dt

⎢
θz

2
dξ (4.40)

The limits of the integral come from the fact that in the new coordinate system
ξ

ei
1 = 2

θz (zi − zc) = −1 and ξ
ei
2 = 2

θz (zi+1 − zc) = 1. The projection onto ϕ2
yields

⎤
εei (z)

ϕ2(z)x̃ ei
t dz =

1⎤
−1

ϕ2(ξ)

⎡
ϕ1(ξ)

dXei
1

dt
+ ϕ2(ξ)

dXei
2

dt

⎢
θz

2
dξ (4.41)

We will use, for convenience, an abbreviated notation for the spatial integrals:

〈ϕ1, ϕ2∈ =
1⎤

−1

ϕ1(ξ)ϕ2(ξ)dξ (4.42)

With this notation, the previous two equations can be rewritten as:

θz

2


 〈ϕ1, ϕ1∈ 〈ϕ1, ϕ2∈

〈ϕ2, ϕ1∈ 〈ϕ2, ϕ2∈


⎜




dXei
1

dt

dXei
2

dt


⎜ = θz

6


2 1

1 2


⎜




dXei
1

dt

dXei
2

dt


⎜ (4.43)

As mentioned previously, Eq. (4.43) is the contribution of one element to the
whole system of equations. Now we have to take account of all elements of the
spatial domain. This procedure is known as the assembly and it is depicted in Fig. 4.7.
The black and gray squares represent, respectively, the contribution of odd and even
elements to the whole matrix. Such contribution corresponds to the matrix appearing
in Eq. (4.43). As shown in the figure, black and gray squares overlap as odd and even
elements share one spatial node. For example, the nodes defining element e1 are z1



4.3 Galerkin Method Over Linear Lagrangian Elements 219

Fig. 4.7 Assembly of the contribution of all elements to the mass matrix

and z2 while those defining element e2 are z2 and z3, so these two elements share
z2. In the common points, the contribution of both elements is added.

Noting that Xe1
1 = X1, Xe1

2 = Xe2
1 = X2, Xe2

2 = Xe3
1 = X3, etc. and after the

assembly, the discrete FEM version of the LHS of Eq. (4.33), using linear Lagrangian
elements, is:

M
dx̃
dt

= θz

6




2 1
1 4 1

. . .
. . .

. . .

1 4 1
1 2


⎜




X1
X2
...

X N−1
X N


⎜

t

(4.44)

where matrix M is known as the mass matrix.

4.3.2 First Term in the RHS of the Weighted
Residual Solution

In a similar way, one element will contribute to two rows (rows i and i + 1) of the
equation system resulting from the method of lines. In this case, the projection of
this term onto ϕ1 and ϕ2 yields
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⎤
εei (z)

ϕ1(z)Δ0 x̃ ei dz =
1⎤

−1

ϕ1(ξ)Δ0
(
ϕ1(ξ)Xei

1 + ϕ2(ξ)Xei
2

) θz

2
dξ (4.45)

⎤
εei (z)

ϕ2(z)Δ0 x̃ ei dz =
1⎤

−1

ϕ2(ξ)Δ0
(
ϕ1(ξ)Xei

1 + ϕ2(ξ)Xei
2

) θz

2
dξ (4.46)

or, in the compact notation defined in (4.42):

θz

2


 〈ϕ1, ϕ1∈ 〈ϕ1, ϕ2∈

〈ϕ2, ϕ1∈ 〈ϕ2, ϕ2∈


⎜


 Xei

1

Xei
2


⎜ = θz

6


 2 1

1 2


⎜


 Xei

1

Xei
2


⎜ (4.47)

The extension to all the finite elements (assembly) leads to the zeroth-order dif-
ferentiation matrix D0:

D0x̃ = θz

6




2 1
1 4 1

. . .
. . .

. . .

1 4 1
1 2


⎜




X1
X2
...

X N−1
X N


⎜

(4.48)

which coincides with the mass matrix computed in the previous section, i.e., D0 = M.

4.3.3 Second Term in the RHS of the Weighted
Residual Solution

We now consider the first spatial derivative x̃z , whose series expansion is given by:

x̃z = ρ

ρz

⎛
N∑

i=1

Xi (t)ϕi (z)

⎣
=

N∑
i=1

Xi (t)ϕi,z(z) = X1(t)ϕ1,z(z) + X2(t)ϕ2,z(z)

Using the transformed coordinates, we obtain:

dϕi

dz
= dϕi

dξ

dξ

dz
= dϕi

dξ

2

θz
=≡ ϕi,z = ϕi,ξ

2

θz

Noting that dz = θz
2 dξ , the projection of the second term on the RHS of Eq. (4.33)

onto the basis functions ϕ1(ξ) and ϕ2(ξ) can be expressed as:
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⎤
εei (z)

ϕ1(z)Δ1 x̃ ei
z dz =

1⎤
−1

ϕ1(ξ)Δ1
(
ϕ1,ξ (ξ)Xei

1 + ϕ2,ξ (ξ)Xei
2

)
dξ (4.49)

⎤
εei (z)

ϕ2(z)Δ1 x̃ ei
z dz =

1⎤
−1

ϕ2(ξ)Δ1
(
ϕ1,ξ (ξ)Xei

1 + ϕ2,ξ (ξ)Xei
2

)
dξ (4.50)

which, using the compact notation, becomes:

1

2


 〈ϕ1, ϕ1,ξ ∈ 〈ϕ1, ϕ2,ξ ∈

〈ϕ2, ϕ1,ξ ∈ 〈ϕ2, ϕ2,ξ ∈


⎜


 Xei

1

Xei
2


⎜ = 1

2


−1 1

−1 1


⎜


 Xei

1

Xei
2


⎜ (4.51)

The assembly leads to the first-order differentiation matrix D1:

D1x̃ = 1

2




−1 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 1


⎜




X1
X2
...

X N−1
X N


⎜

(4.52)

The form of matrix D1 is exactly the same as a three-point centered finite difference
method for the first derivative.

4.3.4 Third Term in the RHS of the Weighted
Residual Solution

Since x̃ is a piece-wise linear function, it would in principle not be possible to use
it to represent the solution of PDEs with second-order derivative terms (since these
terms would vanish as a result of the approximation). To alleviate this apparent
impossibility, the PDE can be expressed in a so-called weak form where the second-
order derivative no longer appears. To this end, Green’s first identity, which has
already been introduced in (4.19), is applied to the third term of Eq. (4.33):

Δ2

⎤
εei (z)

ϕi (z)x̃ ei
zzdz = Δ2




⎤
∂(z)

ϕi
ρ x̃ ei

ρn
dz −

⎤
ε(z)

dϕi

dz

ρ x̃ ei

ρz
dz


⎜

= Δ2



⎟
ϕi

ρ x̃ ei

ρn

]zR

zL

−
zR⎤

zL

dϕi

dz

ρ x̃ ei

ρz
dz


⎜ (4.53)
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The first term in the RHS of Eq. (4.53) refers to the boundary points. Let us, for
the moment, focus our attention on the second term in the RHS of Eq. (4.53). In order
to compute the contribution of one element ei to this term, it is convenient to use the
transformed variable ξ so that

⎤
ε(z)

dϕi

dz

ρ x̃

ρz
dz =

1⎤
−1

dϕi

dξ

ρξ

ρz

ρ x̃

ρξ

dξ

dz

θz

2
dξ =

1⎤
−1

2

θz

dϕi

dξ

ρ x̃

ρξ
dξ with i = 1, 2

Therefore, the following expression can be obtained

− Δ2

⎤
ε(z)

dϕi

dz

ρ x̃

ρz
dz = −Δ2

1⎤
−1

2

θz

dϕi

dξ

⎡
X1

dϕ1

dξ
+ X2

dϕ2

dξ

⎢
dξ (4.54)

or, using the compact notation

−2Δ2

θz


 〈ϕ1,ξ , ϕ1,ξ ∈ 〈ϕ1,ξ , ϕ2,ξ ∈

〈ϕ2,ξ , ϕ1,ξ ∈ 〈ϕ2,ξ , ϕ2,ξ ∈


⎜


 Xei

1

Xei
2


⎜ = − Δ2

θz


 1 −1

−1 1


⎜


 Xei

1

Xei
2


⎜

The assembly of this matrix yields:

Dint
2 = 1

θz




−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1


⎜

(4.55)

where the super-index, int, calls for interior points.
A popular approach to take account of the boundary conditions is to substitute

them, whenever possible, in the first term of the RHS of Eq. (4.53), i.e.,

⎟
ϕi

ρ x̃ ei

ρn

]zR

zL

(4.56)

Boundary conditions that specify the value of the gradient (Neumann and Robin)
enter “naturally” into the formulation and are often referred to as natural boundary
conditions. For instance, the following boundary conditions which are common in
heat and mass transfer problems:

ρx

ρn
= q(x − x inf)

∣∣∣∣
z=zL

; ρx

ρn
= q(x − x inf)

∣∣∣∣
z=zR
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where x inf is the value of the dependent variable in the surrounding media. This
expression can be substituted into Eq. (4.56) to yield:

ϕN (zR)q(xR − x inf) − ϕ1(zL)q(xL − x inf)

This latter expression can easily be introduced into the FEM formulation (for
a detailed explanation about this way of implementing the boundary condition the
reader is referred to [6]). However, handling Dirichlet boundary conditions (so-called
essential boundary conditions) can be a bit more tricky, and they will be explained
through different examples in Sect. 4.11.3 and Chap. 6.

We will prefer, for the moment, an approach where the expression of the boundary
conditions is not introduced at this stage, but rather a generic expression of the second-
order spatial differentiation operator is developed. The boundary conditions will be
enforced at a later stage using a mixed method according to Eq. (4.30).

Let us consider the first element e1, i.e., the one located at the left end of the
spatial domain. The term corresponding to the boundary point is—see Eq. (4.56)

⎟
ϕi

ρ x̃

ρn

]
zL

= −
⎟
ϕi

ρ x̃

ρz

]
zL

with i = 1, 2

The minus sign comes from the fact that n is a unitary vector pointing outwards
the spatial domain. On a 1D spatial domain, positively oriented from left to right, it
points to the left at the left end and to the right at the right end. Hence, we have the
following equivalences:

ρ

ρn

∣∣∣∣
zL

= − ρ

ρz

∣∣∣∣
zL

(4.57)

ρ

ρn

∣∣∣∣
zR

= ρ

ρz

∣∣∣∣
zR

(4.58)

The contribution of element e1 is given by

−
⎟
ϕi

ρ x̃

ρz

]
zL

= − 2

θz

⎟
ϕi

ρ x̃

ρξ

]
−1

= − 2

θz

⎡
Xe1

1
dϕ1

dξ
+ Xe1

2
dϕ2

dξ

⎢
ξ=−1

≡ −
⎟
ϕi

ρ x̃

ρz

]
zL

= − 1

θz

(−1 1
) ⎡ Xe1

1
Xe1

2

⎢
(4.59)

The same steps can be followed to find the contribution of the last element eN−1
to the boundary conditions:

⎟
ϕi

ρ x̃

ρz

]
zR

= − 1

θz

(
1 −1

) ⎡ XeN−1
1

XeN−1
2

⎢
(4.60)

http://dx.doi.org/10.1007/978-3-319-06790-2_6
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Now Eqs. (4.59) and (4.60) must be added, respectively, to the first and last rows
of matrix Dint

2 defined in (4.55). As a result the second-order differentiation matrix
D2 is obtained:

D2x̃ = 1

θz




0 0
1 −2 1

. . .
. . .

. . .

1 −2 1
0 0


⎜




X1
X2
...

X N−1
X N


⎜

(4.61)

Again, we stress the fact that the specificities of the boundary conditions have not
been addressed yet. This step will be described in Sect. 4.4 using a weighted residual
formulation.

4.3.5 Fourth Term in the RHS of the Weighted
Residual Solution

The function f (x) appearing in the last term of the RHS can be any given nonlinear
function. In principle, the integrals involved in this term can be numerically computed
using any quadrature formula such as Simpson’s rule or the Gauss formula with
n points, to name a few. However, a more natural scheme can be derived based on
the finite element discretization and functional approximation itself, see Fig. 4.8.

In the same way as x is approximated by x̃ = ⎦n
i=1 ϕi Xi , the nonlinear func-

tion f (x) can be approximated by f (x̃) = f (
⎦n

i=1 ϕi Xi ). On the element ei ,
f (x̃) = f (ϕi Xi + ϕi+1 Xi+1) which, as shown in the figure, is equivalent to
f (x̃) = ϕi f (Xi ) + ϕi+1 f (Xi+1). The projection of f (x) onto the basis functions
ϕi (x) and ϕi+1(x), therefore yields, using the transformed coordinates ξ and the
local notation:




⎤ 1

−1
ϕ1(ξ) f (x̃)

θz

2
dξ

⎤ 1

−1
ϕ2(ξ) f (x̃)

θz

2
dξ


⎜ = θz

2


 〈ϕ1(ξ), f (x̃)∈

〈ϕ2(ξ), f (x̃)∈


⎜ = θz

2


 〈ϕ1, ϕ1 f1 + ϕ2 f2∈

〈ϕ2, ϕ1 f1 + ϕ2 f2∈


⎜

= θz

2


 〈ϕ1, ϕ1∈ 〈ϕ1, ϕ2∈

〈ϕ2, ϕ1∈ 〈ϕ2, ϕ2∈


⎜


 f1

f2


⎜ = θz

6

⎡
2 1
1 2

⎢
 f1

f2


⎜

(4.62)

where f1 = f
(
Xei

1

)
and f2 = f

(
Xei

2

)
. The assembly over the whole domain gives:
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Fig. 4.8 FEM approximation of a given nonlinear function f (x)

θz

6




2 1
1 4 1

. . .
. . .

. . .

1 4 1
1 2


⎜




f1
f2
...

fN−1
fN


⎜

= M f̃N L (4.63)

With this new result, Eq. (4.33) can be rewritten as:

M
ρ x̃
ρt

= Δ0D0x̃ + Δ1D1x̃ + Δ2D2x̃ + M f̃NL (4.64)

It is important to mention that in some occasions, for instance with highly non-
linear functions, a more accurate numerical integration method may be required. If
we return to the first part of Eq. (4.62)




1⎤
−1

ϕ1(ξ) f (x̃)
θz

2
dξ

1⎤
−1

ϕ2(ξ) f (x̃)
θz

2
dξ


⎜

= θz

2


 〈ϕ1(ξ), f (x̃)∈

〈ϕ2(ξ), f (x̃)∈


⎜ = θz

2


 〈ϕ1, f (ϕ1 x̃1 + ϕ2 x̃2)∈

〈ϕ2, f (ϕ1 x̃1 + ϕ2 x̃2)∈


⎜

the assembly over the whole domain results in



226 4 Finite Elements and Spectral Methods

θz

2




〈ϕ1, f (ϕ1 x̃1 + ϕ2 x̃2)∈

〈ϕ2, f (ϕ1 x̃1 + ϕ2 x̃2)∈ + 〈ϕ1, f (ϕ1 x̃2 + ϕ2 x̃3)∈

〈ϕ2, f (ϕ1 x̃2 + ϕ2 x̃3)∈ + 〈ϕ1, f (ϕ1 x̃3 + ϕ2 x̃4)∈
...

〈ϕ2, f (ϕ1 x̃N−2 + ϕ2 x̃N−1)∈ + 〈ϕ1, f (ϕ1 x̃N−1 + ϕ2 x̃N−2)∈

〈ϕ2, f (ϕ1 x̃N−1 + ϕ2 x̃N )∈


⎜

(4.65)

We can distinguish two terms inside this vector: those including the projection
onto ϕ1 and those with the projection performed onto ϕ2. A quadrature formula such
as the Gauss-Legendre (see function Gauss-Legendre) quadrature can be used to
compute the integrals.

function I = gauss (f ,n )
% This code computes the integral of a given function f over the
% interval x = [ −1 ,1] using the Gauss−Legendre quadrature
% Input parameters :
% f : matlab function with the expression of the function to be
% integrated
% n : Number of points to be employed in the formula
% Output parameter :
% I : Numerical value of the integral

% Computation of the abcissa
beta = 0 . 5 . /sqrt(1 − (2*(1:n ) ) . ^ ( − 2 ) ) ;
T = diag (beta , 1 ) + diag (beta , −1) ;
[V ,D ] = eig (T ) ;
xquad = diag (D ) ;
[xquad ,i ] = sort (xquad ) ;

% Computation of the weights
w = 2*V ( 1 ,i ) . ^ 2 ;

% Integral value
I = w*feval (f ,xquad ) ;

Function Gauss-Legendre Function Gauss-Legendre to numerically compute integrals

Table 4.3 shows a comparison between the Gauss-Legendre quadrature and the
integral computed using the finite element structure. Although the integration based
on the FEM structure is more natural, it also requires a much larger number of points
to achieve the same accuracy. For the integration of smooth nonlinear functions, the
FEM approach will be quite accurate with a small number of points. Therefore, since
its implementation is easier, it will be preferable to the Gauss-Legendre quadrature.
When the results with the FEM approach are not satisfactory, the Gauss-Legendre
procedure should be used.
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Table 4.3 Comparison between the Gauss-Legendre quadrature and the finite element method

Method Number of points in the scheme

1⎤
−1

exp (z) sin (3z)dz = 0.7416161

FEM 6 0.6532869
25 0.7378264

100 0.7413935
400 0.7416024

Gauss-Legendre 2 0.6926873
4 0.7416127
5 0.7416154
6 0.7416161

In order to close the system and obtain the final version of the equations, boundary
conditions must be introduced into Eq. (4.64).

4.4 Galerkin Method Over Linear Lagrangian Elements:
Contribution of the Boundary Conditions

We now introduce the boundary conditions into Eq. (4.33) using the mixed weighted
residuals approach—see Eq. (4.30):

⎤
ε(z)

wi x̃t dz =Δ0

⎤
ε(z)

wi x̃dz + Δ1

⎤
ε(z)

wi x̃zdz + Δ2

⎤
ε(z)

wi x̃zzdz

+
⎤

ε(z)

wi f (x̃)dz −
⎤

∂(z)

wi

⎡
δ1

ρ x̃

ρn
+ δ0 x̃ + g(x̃)

⎢
dz; i = 1, . . . , N

(4.66)

Since the spatial domain (ε) is in 1D and using the Lagrange polynomials (ϕi ) as the
weighting functions (wi ), Eq. (4.66) can be rewritten as:

⎤
ε(z)

ϕi x̃t dz = Δ0

⎤
ε(z)

ϕi x̃dz + Δ1

⎤
ε(z)

ϕi x̃zdz + Δ2

⎤
ε(z)

ϕi x̃zzdz +
⎤

ε(z)
ϕi f (x̃)dz

− ϕi

⎡
δ1

ρ x̃

ρn
+ δ0 x̃ + g(x̃)

⎢∣∣∣∣
z=zL

− ϕi

⎡
δ1

ρ x̃

ρn
+ δ0 x̃ + g(x̃)

⎢∣∣∣∣
z=zR

; i = 1, . . . , N

(4.67)

Note that the only nonzero basis function at zL is ϕ1, and ϕ1(z = zL) = 1. Therefore,

the term ϕi

(
δ1

ρ x̃
ρn + δ0 x̃ + g(x̃)

)∣∣∣
z=zL

= δ1
ρ x̃L
ρn + δ0 x̃L + g(x̃L) affects only the first
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row of system (4.64). The only nonzero basis function at zR is ϕN (zR) = 1 so that

ϕi

(
δ1

ρ x̃
ρn + δ0 x̃ + g(x̃)

)∣∣∣
z=zR

= δ1
ρ x̃R
ρn + δ0 x̃R + g(x̃R) affects only the last row of

system (4.64).

4.4.1 Dirichlet Boundary Conditions

As mentioned before, this kind of boundary conditions specifies the value of the dependent
variable at the boundary (in expression (4.24) they are defined by setting δ1 = 0 and
δ0 = 1), i.e.:

x(zL , t) = gL(t); x(zR, t) = gR(t) (4.68)

The term x̃L + g(x̃L) in Eq. (4.67) can be substituted with −(x1 − gL) and added to
the first row of system (4.64). Similarly, the last equation is modified by including the
term −(xN − gR) which comes from x̃R + g(x̃R) in Eq. (4.67). Defining the vector:

g =




−(x1 − gL)

0
...

0
−(xN − gR)


⎜

(4.69)

the final FEM system of equations can be written as

M
ρ x̃
ρt

= (Δ0D0 + Δ1D1 + Δ2D2) x̃ + M f̃NL + g (4.70)

4.4.2 Neumann Boundary Conditions

In this case, the boundary conditions specify the value of the gradient, i.e.:

ρ x̃

ρn

∣∣∣∣
zL

= gL(t); ρ x̃

ρn

∣∣∣∣
zR

= gR(t) (4.71)

where n is a normal vector pointing outwards the boundary. At the left side boundary
n and the gradient are vectors with opposite directions. On the other hand, at right side
boundary both vectors are in the same direction. As a consequence, ρ

ρz

∣∣
zL

= − ρ
ρn

∣∣
zL

and ρ
ρz

∣∣
zR

= ρ
ρn

∣∣
zR

and the previous expressions can be rewritten as:

ρ x̃

ρz

∣∣∣∣
zL

= −gL(t); ρ x̃

ρz

∣∣∣∣
zR

= gR(t) (4.72)

The approach to implement this kind of boundary conditions is very similar to the
Dirichlet case. The main difference is that an expression for the derivative is required.
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Using the expression for the first derivative obtained using the Lagrangian elements:

− ρ x̃

ρz

∣∣∣∣
z1

− gL(t) = − x̃2 − x̃1

θz
− gL(t) (4.73)

ρ x̃

ρz

∣∣∣∣
zN

− gR(t) = x̃N − x̃N−1

θz
− gR(t) (4.74)

The vector g in Eq. (4.70) becomes:

g =




− x̃2 − x̃1

θz
− gL

0
...

0
x̃N − x̃N−1

θz
− gR


⎜

(4.75)

and the complete system of equations can be rewritten as:

M
ρ x̃
ρt

= (Δ0D0 + Δ1D1 + Δ2D2) x̃ + M f̃N L + g. (4.76)

4.5 The Finite Element Method in Action

In this section, we will use Burgers’ equation to illustrate the MATLAB implementation
of the finite element method. Let us rewrite for convenience the set of equations:

ρx

ρt
= μ

ρ2x

ρz2 − x
ρx

ρz
= μxzz − xxz (4.77)

defined over the spatial domain z ≤ [0, 1] with t � 0. Initial and boundary conditions
are of the form:

x(z, 0) = xa(z, 0) (4.78)

x(0, t) = xa(0, t) (4.79)

x(1, t) = xa(1, t) (4.80)

where xa is the analytical solution—see Eq. (4.22).
The application of the finite element method yields a system of ordinary differential

equations of the form (4.70):

M
ρ x̃
ρt

= μD2x̃ − f̃NL + g (4.81)
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where f̃NL represents the nonlinear term xxz . Let us now describe the different elements
required for the implementation of this set of equations. We will start, as in Sect. 1.3, with
the function implementing the ODE set which is listed in burgers_pdes.

function xt = burgers_pdes (t ,x )
global mu
global wquad xquad
global n z0 zL D2 xx

% Second spatial derivative xzz computed through the
% second differentiation matrix
xzz = D2*x ;

% Rename state variable x
xx = x ;

% Spatial integration of the integrands in the nonlinear
% term of Burgers equation . Nonlinear term : fx = x*xz
y1 = feval ( 'integrand1 ' ,xquad ' ) *wquad ' ;
y2 = feval ( 'integrand2 ' ,xquad ' ) *wquad ' ;
fx = y1+y2 ;

% Boundary conditions
gL = burgers_exact (z0 ,t ) ;
gR = burgers_exact (zL ,t ) ;
gv ( 1 , 1 ) = x(1)−gL ;
gv (n , 1 ) = x (n)−gR ;

% System of ordinary differential equations
xt = mu*xzz − fx − gv ;

Function burgers_pdes Function burgers_pdes to define the ODE set for Burgers equation

We can note the following details in the implementation of Eq. (4.81):

• The function starts with the definition of the global variables.
• First, the second derivative of the dependent variable xzz is computed using the

second-order differentiation matrix D2—see (4.61).
• Then, the current value of the dependent variable x is stored into a new vector xx

which is passed to other functions as a global variable.
• The most involved part of the implementation is the computation of the finite element

version of the nonlinear term (remember that it requires the computation of spatial
integrals). In this case, the Gauss-Legendre quadrature is used to compute such integrals
and it is divided into two parts:
y1 = feval(’integrand1’,xquad’)*wquad’
where the projection onto the basis functions ϕ1 is computed and
y2 = feval(’integrand2’,xquad’)*wquad’;
where the projection onto the basis functions ϕ2 is computed. Functions integrand1
and integrand2 compute the terms inside the integral (4.65).

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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function out = integrand1 (z )
% Computation of the first integrand on the nonlinear term
% for Burgers equation . This term corresponds with
% y1 = phi_1*(xfem*xfem_z )

global xx n

% Dependent variable values with the FEM local
% nomenclature
x1 = xx ( 1 :n−1);
x2 = xx ( 2 :n ) ;

% Preallocation of memmory for the output
out = zeros (n ,length (z ) ) ;

% Computation of the integrand
for i = 1 :length (z )

% Basis function computation
[phi_1 , phi_2 ] = trialfunctionslagrlin(z (i ) ) ;
% Finite element approximation of the dependent
% variable
xfem = phi_1*x1 + phi_2*x2 ;
% Finite element approximation of the first spatial
% derivative of the dependent variable
xfem_z = 1/2*( −x1 + x2 ) ;
% Final output
out ( 1 :n−1,i ) = phi_1* ( (xfem ) . * (xfem_z ) ) ;

end

Function integrand1 Function integrand1 to evaluate the integrand in (4.65) dealing with the
projection onto the basis function ϕ1

function out = integrand2 (z )
% Computation of the sencond integrand on the nonlinear
% term for Burgers ' equation . This term correspond with
% y2 = phi_2*(xfem*xfem_z )

global xx n

% Dependent variable values with the FEM local
% nomenclature
x1 = xx ( 1 :n−1);
x2 = xx ( 2 :n ) ;

% Preallocation of memmory for the output
out = zeros (n ,length (z ) ) ;

% Computation of the integrand
for i = 1 :length (z )

% Basis function computation
[phi_1 , phi_2 ] = trialfunctionslagrlin(z (i ) ) ;
% Finite element approximation of the dependent
% variable
xfem = phi_1*x1 + phi_2*x2 ;
% Finite element approximation of the first spatial
% derivative of the dependent variable
xfem_z = 1/2*( −x1 + x2 ) ;
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% Final output
out ( 2 :n ,i ) = phi_2* ( (xfem ) . * (xfem_z ) ) ;

end

Function integrand2 Function integrand2 to evaluate the integrand in (4.65) dealing with the
projection onto the basis function ϕ2

• Next, the boundary conditions are implemented as in (4.69)
• Finally, the set of ODEs is developed. As in Sect. 1.3, we can notice a close resemblance

of the PDE xt = μxzz−xxz and the programming of the PDExt = mu*xzz-fx-gv

The main program that calls the MATLAB function burgers_pdes is listed in the script
main_burgers_FEM.

% Main program . FEM solution of Burgers ' equation

close all
clear all

% Global variables (shared by other files )
global mu
global wquad xquad
global n dz z0 zL D2

% Finite element spatial grid
z0 = 0 ;
zL = 1 ;
n = 201;
nel = n−1;
dz = (zL − z0 ) / ( n−1);
z = (z0 :dz :zL ) ' ;

% Second order differentiation matrix
D2 = lagrlinD2 (dz ,n ) ;

% Problem parameters
mu = 0 . 0 1 ;

% Computation of the weigths and the abcissa used in the
% numerical integration via the Gauss−Legendre quadrature
nquad = 2 ;
beta = 0 . 5 . /sqrt(1 − (2*(1:nquad ) ) . ^ ( − 2 ) ) ;
T = diag (beta , 1 ) +diag (beta , −1) ;
[V ,D ] = eig (T ) ;
xquad = diag (D ) ;
[xquad ,i ] = sort (xquad ) ;
wquad = 2*V ( 1 ,i ) . ^ 2 ;

% Initial conditions
x = zeros ( 1 ,n ) ;
for ii = 1 :n

x (ii ) = burgers_exact (z (ii ) , 0 ) ;
end

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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% Time instants at which the IVP solver will save the
% solution
dt = 0 . 1 ;
time = ( 0 :dt : 1 ) ;
nt = length (time ) ;

% Time integration with the IVP solver
ne = 1 ;
M = lagrlinmass (dz ,n ,ne ) ; % FEM mass matrix
options = odeset ( 'Mass ' ,M , 'RelTol ' , 1e−6 , 'AbsTol ' , 1e−6);
[tout ,yout]= ode15s (@burgers_pdes , time , x , options ) ;

% Plot the results
figure
hold
plot (z ,yout , ' . −k ' )
yexact = zeros (n ,length (tout ) ) ;
for k = 1 :length (tout )

for i = 1 :n
yexact (i ,k ) = burgers_exact (z (i ) ,tout (k ) ) ;

end
end
plot (z ,yexact , 'r ' )

Script main_burgers_FEM Main script to call function burgers_pdes

We can note the following points about this main program:

• The program begins with the definition of the global variables which will be passed to
other functions.

• As in Sect. 1.3, the spatial grid is defined. In this case, the number of discretization
points is set to 201, i.e., the number of finite elements is 200. All the discretization
points are equidistant.

• The next step is the construction of the second-order differentiation matrix (4.61) using
function lagrlinD2.

function out = lagrlinD2 (h ,n )
% Computation of the second−order differentiation matrix
% of the finite element method with linear lagrangian
% elements

% Main diagonal of the second−order differentiation matrix
d0 = [0 −2*ones ( 1 ,n−2) 0 ] ;
% Upper first diagonal of the second−order differentiation
% matrix
dp1 = [0 ones ( 1 ,n−2) ] ;
% Lower first diagonal of the second−order differentiation
% matrix
dm1 = [ones ( 1 ,n−2) 0 ] ;
% Second order differentiation matrix
out = sparse ( ( 1 /h ) * (diag (d0 , 0 ) +diag (dp1 , 1 ) +diag (dm1 , −1 ) ) ) ;

Function lagrlinD2 Function lagrlinD2 to compute the finite element second-order differen-
tiation matrix using linear Lagrangian elements

http://dx.doi.org/10.1007/978-3-319-06790-2_1
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• The model parameter μ is defined
• The abscissae xquad and the weights wquad of the Gauss-Legendre quadrature (to

be used in the projection of the nonlinear term) are computed
• The initial conditions x(z, 0) are defined for all the discretization points
• The time-span for the output solution is defined
• Then, the finite element mass matrix (4.44) is constructed using the MATLAB function

lagrlinmass and is passed to the ODE solver through the MATLAB function odeset.

function M = lagrlinmass (h ,n ,ne )
% Computation of the mass matrix of the finite element
% method with linear Lagrangian elements

% Main diagonal of the mass matrix
d0 = diag (repmat ( ( [ 2 repmat ( 4 , 1 ,n−2) 2 ] ) , 1 ,ne ) , 0 ) ;

% First upper diagonal of the mass matrix
d1 = diag ( [repmat ( [ones ( 1 ,n−1) 0 ] , 1 ,ne−1) ones ( 1 ,n−1 ) ] , 1 ) ;

% First lower diagonal of the mass matrix
dm1 = diag ( [repmat ( [ones ( 1 ,n−1) 0 ] , 1 ,ne− 1 ) , . . .

ones ( 1 ,n−1)] , −1);

% Mass matrix
M = sparse ( (h / 6 ) * (d0 + d1 + dm1 ) ) ;

Function lagrlinmass Function lagrlinmass to compute the finite element mass matrix using
linear Lagrangian elements

The third input argument of this latter function,ne, is the number of PDEs to be solved.
The output will be the mass matrix of the whole system of equations. We will come back
to this feature later on when a system with more than one variable is considered.

• The integration is performed with the IVP solver ode15swhich requires the definition
of the output time instants, the initial conditions and a set of options which in this case
include the mass matrix.

The analytical and numerical (using the codes just presented) solutions to Burgers’
equation are plotted in Fig. 4.9 showing that this numerical scheme produces very satis-
factory results. Depending on the value of parameter μ in Burgers’ equation, it might be
required to change the number of discretization points and the type of basis functions in
order to obtain a good approximation.
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Fig. 4.9 Comparison
between the analytical
solution (continuous lines)
and numerical solution
(marks) computed using
the finite element method
with Lagrangian elements for
Burgers’ equation
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4.6 The Finite Element Method Applied
to Systems of PDEs

Consider now the following system of PDEs:

x1,t = Δ1,0x1 + Δ1,1x1,z + Δ1,2x1,zz + f1(x1, x2, . . . , xne )

x2,t = Δ2,0x2 + Δ2,1x2,z + Δ2,2x2,zz + f2(x1, x2, . . . , xne )
...

xne,t = Δne,0xne + Δne,1xne,z + Δne,2xne,zz + fne (x1, x2, . . . , xne )

(4.82)

with given boundary and initial conditions. Applying the previous procedure to each of
these PDEs, the following system of ODEs is obtained:

M
dx̃1

dt
= (

Δ1,0D0 + Δ1,1D1 + Δ1,2D2
)

x̃1 + M f̃1,NL + g1

M
dx̃2

dt
= (

Δ2,0D0 + Δ2,1D1 + Δ2,2D2
)

x̃2 + M f̃2,NL + g2

...

M
dx̃ne

dt
= (

Δne,0D0 + Δne,1D1 + Δne,2D2
)

x̃ne + M f̃ne,NL + gne (4.83)

or, in a more compact form
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⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎨

M 0 0 · · · 0

0 M 0 · · · 0

0 0
. . .

. . . 0

0 0
. . . M 0

0 0 0 · · · M

⎩


︸ ︷︷ ︸
Ms


⎧⎧⎧⎧⎧⎧⎧⎧⎨

x̃1,t

x̃2,t

.

.

.

x̃ne−1,t

x̃ne ,t

⎩


=


⎧⎧⎧⎧⎧⎧⎧⎧⎨

(
Δ1,0D0 + Δ1,1D1 + Δ1,2D2

)
x̃1 + M f̃1,NL + g1(

Δ2,0D0 + Δ2,1D1 + Δ2,2D2
)

x̃2 + M f̃2,NL + g2

.

.

.(
Δne−1,0D0 + Δne−1,1D1 + Δne−1,2D2

)
x̃ne−1 + M f̃ne−1,NL + gne−1(

Δne ,0D0 + Δne ,1D1 + Δne ,2D2
)

x̃ne + M f̃ne ,NL + gne

⎩


(4.84)

where matrix Ms is the mass matrix of the whole system which can be directly constructed
using function lagrlinmass, included in the companion software. This matrix has to be
passed to the ODE solver as already highlighted in the previous application example. For
instance, if two PDEs (ne = 2) are considered:

ne = 2;
M = lagrlinmass(dz,n,ne);
options = odeset(’Mass’,M);

An alternative way is to use function lagrlinmass with ne = 1 to find the mass matrix
M corresponding to a single equation

ne = 1;
M = lagrlinmass(dz,n,ne);

The inverse (M−1) can then be computed. Multiplying both sides of each of Eq. (4.83)
by M−1, the following expression is obtained:

dx̃1

dt
= M−1 (Δ1,0D0 + Δ1,1D1 + Δ1,2D2

)
x̃1 + f̃1,NL + M−1g1

dx̃2

dt
= M−1 (Δ2,0D0 + Δ2,1D1 + Δ2,2D2

)
x̃2 + f̃2,NL + M−1g2 (4.85)

...

dx̃ne

dt
= M−1 (Δne,0D0 + Δne,1D1 + Δne,2D2

)
x̃ne + f̃ne,NL + M−1gne

The mass matrix does not need to be passed to the ODE solver any longer, and more
basic time integrators could therefore be used, which would not be capable of solving
linearly implicit system of ODEs. The dependent variables can also be stored in various
ways so as to confer the Jacobian matrix a desirable structure. In particular, the discretized
variables can be stored in the solution vector according to the order of the FEM nodes.
In this case, the first elements of the solution vector correspond to the values of the
dependent variables at the first node. The next elements correspond to the variable values
at the second node and so on, i.e., [x̃1,1, x̃2,1, . . ., x̃ne,1, x̃1,2, x̃2,2, . . ., x̃ne,2, x̃1,N , x̃2,N ,
. . ., x̃ne,N ]T . This way of sorting the solution vector may appear a bit intricate, but as
shown in Sect. 3.11, the Jacobian matrix will have a banded structure which could be
efficiently exploited by specific time integrators.

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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4.7 Galerkin Method Over Hermitian Elements

Linear Lagrangian elements provide the simplest form of finite element method. The basis
functions linearly interpolate the function values in the several discretization points. Is it
possible to use more sophisticated (and hopefully more accurate) interpolation functions?
The answer is of course positive and a possible option is given by Hermite polynomials.
Four basis functions are used to approximate the solution on one element so that, in terms
of the transformed variable ξ , we have:

x̃(ξ, t) = X1(t)ϕ1(ξ) + X1,ξ (t)ϕ2(ξ) + X2(t)ϕ3(ξ) + X2,ξ (t)ϕ4(ξ) (4.86)

where the terms X1,ξ and X2,ξ are of the form:

X1,ξ = ρ X

ρξ

∣∣∣∣
ξ=−1

; X2,ξ = ρ X

ρξ

∣∣∣∣
ξ=1

The Hermitian basis functions ϕi with i = 1, 2, 3, 4 are given by:

ϕ1(ξ) = 1

4
(1 − ξ)2(2 + ξ) (4.87)

ϕ2(ξ) = 1

4
(1 − ξ2) (1 − ξ) (4.88)

ϕ3(ξ) = 1

4
(1 + ξ)2(2 − ξ) (4.89)

ϕ4(ξ) = 1

4
(−1 + ξ2) (1 + ξ) (4.90)

A remarkable feature of the Hermite basis functions is that they make use not only of
the function values in the several nodes but also of the solution slopes. We will follow here
the same procedure as in the case of linear Lagrangian elements to develop the different
terms of Eq. (4.33).

4.7.1 LHS Term of the Weighted Residual Solution

Recall that, when considering Lagrangian elements, only two basis functions were dif-
ferent from zero inside each finite element ei . Now, with Hermitian elements, four basis
functions have values different from zero inside each element. Therefore, one element
(for instance ei ) will contribute to four rows of the equation system resulting from the
method of lines.

This contribution is of the form
∫
ε(z) wi x̃t dz. Substituting the weighting function wi

with each of the nonzero basis functions (ϕ1, ϕ2, ϕ3 and ϕ4) and using the series expansion
(4.86) we have, for element ei :
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⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎨

1⎤
−1

ϕ1

⎛
dXei

1

dt
ϕ1 + dXei

1,ξ

dt
ϕ2 + dXei

2

dt
ϕ3 + dXei

2,ξ

dt
ϕ4

⎣
θz

2
dξ

1⎤
−1

ϕ2

⎛
dXei

1

dt
ϕ1 + dXei

1,ξ

dt
ϕ2 + dXei

2

dt
ϕ3 + dXei

2,ξ

dt
ϕ4

⎣
θz

2
dξ

1⎤
−1

ϕ3

⎛
dXei

1

dt
ϕ1 + dXei

1,ξ

dt
ϕ2 + dXei

2

dt
ϕ3 + dXei

2,ξ

dt
ϕ4

⎣
θz

2
dξ

1⎤
−1

ϕ4

⎛
dXei

1

dt
ϕ1 + dXei

1,ξ

dt
ϕ2 + dXei

2

dt
ϕ3 + dXei

2,ξ

dt
ϕ4

⎣
θz

2
dξ

⎩


or, using the compact notation and rearranging terms:

θz

2




〈ϕ1, ϕ1∈ 〈ϕ1, ϕ2∈ 〈ϕ1, ϕ3∈ 〈ϕ1, ϕ4∈

〈ϕ2, ϕ1∈ 〈ϕ2, ϕ2∈ 〈ϕ2, ϕ3∈ 〈ϕ2, ϕ4∈

〈ϕ3, ϕ1∈ 〈ϕ3, ϕ2∈ 〈ϕ3, ϕ3∈ 〈ϕ3, ϕ4∈

〈ϕ4, ϕ1∈ 〈ϕ4, ϕ2∈ 〈ϕ4, ϕ3∈ 〈ϕ4, ϕ4∈


⎜




dXei
1

dt

dXei
1,ξ

dt

dXei
2

dt

dXei
2,ξ

dt


⎜

which, after the computation of the integrals, can be written as:

θz

210




78 22 27 −13

22 8 13 −6

27 13 78 −22

−13 −6 −22 8


⎜




dXei
1

dt

dXei
1,ξ

dt

dXei
2

dt

dXei
2,ξ

dt


⎜

The procedure for the assembly is very similar to the one presented in the case of
Lagrangian elements. The main difference is that Xei

2,ξ = Xei+1
1,ξ in addition to Xei

2 = Xei+1
1

so that the overlap between the submatrices corresponding to the different finite elements
is larger. The assembly leads to
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M = θz

210




78 22 27 −13
22 8 13 −6
27 13 156 0 27 −13

−13 −6 0 16 13 −6
27 13 156 0 27 −13

−13 −6 0 16 13 −6
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

27 13 156 0 27 −13
−13 −6 0 16 13 −6

27 13 78 −22
−13 −6 −22 8


⎜

To summarize, we have
⎤

ε(z)

wi
ρx

ρt
dz ⇒ M

dx̃
dt

, with i = 1, . . . , 2N (4.91)

where the vector of dependent variables is x̃ = [X1, X1,ξ , X2, X2,ξ , . . . , X N−1,

X N−1,ξ , X N , X N ,ξ ]T . The variable ordering naturally results from the previous devel-
opments, and corresponds to an arrangement according to the FEM nodes. Other
arrangements could be considered as well. For instance, it would be possible to sep-
arate the solution values Xi from their derivatives Xi,ξ (with i = 1, 2, . . . , N ), i.e.,

x̃ = [
X1, X2, . . . , X N−1, X N , X1,ξ , X2,ξ , . . . , X N−1,ξ , X N ,ξ

]T . Of course, the struc-
ture of the FEM matrices is then different and the construction of these matrices has to
be adapted accordingly. In the sequel we will continue the method description using the
first, natural, ordering of the variables.

4.7.2 First and Second Terms of the RHS Term of the Weighted
Residual Solution

Again one element will contribute to four rows of the equation system resulting from the
method of lines. We consider the first term, Δ0

∫
ε(z)ei Wl x̃dz and use the basis functions

ϕi with i = 1, 2, 3, 4 as weighting functions to build

Δ0
θz

2




〈ϕ1, ϕ1∈ 〈ϕ1, ϕ2∈ 〈ϕ1, ϕ3∈ 〈ϕ1, ϕ4∈

〈ϕ2, ϕ1∈ 〈ϕ2, ϕ2∈ 〈ϕ2, ϕ3∈ 〈ϕ2, ϕ4∈

〈ϕ3, ϕ1∈ 〈ϕ3, ϕ2∈ 〈ϕ3, ϕ3∈ 〈ϕ3, ϕ4∈

〈ϕ4, ϕ1∈ 〈ϕ4, ϕ2∈ 〈ϕ4, ϕ3∈ 〈ϕ4, ϕ4∈


⎜




Xei
1

Xei
1,ξ

Xei
2

Xei
2,ξ


⎜
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The assembly of these elementary matrices to take account of the other finite elements
results in the zeroth-order derivation matrix D0 which is exactly the same as the mass
matrix and

⎤
ε(z)

wiΔ0
ρx

ρz
dz ⇒ Δ0D0x̃, with i = 1, . . . , 2N (4.92)

The second term, Δ1
∫
ε(z)ei Wl x̃zdz, is given by

Δ1




〈ϕ1, ϕ1,ξ ∈ 〈ϕ1, ϕ2,ξ ∈ 〈ϕ1, ϕ3,ξ ∈ 〈ϕ1, ϕ4,ξ ∈

〈ϕ2, ϕ1,ξ ∈ 〈ϕ2, ϕ2,ξ ∈ 〈ϕ2, ϕ3,ξ ∈ 〈ϕ2, ϕ4,ξ ∈

〈ϕ3, ϕ1,ξ ∈ 〈ϕ3, ϕ2,ξ ∈ 〈ϕ3, ϕ3,ξ ∈ 〈ϕ3, ϕ4,ξ ∈

〈ϕ4, ϕ1,ξ ∈ 〈ϕ4, ϕ2,ξ ∈ 〈ϕ4, ϕ3,ξ ∈ 〈ϕ4, ϕ4,ξ ∈


⎜




Xei
1

Xei
1,ξ

Xei
2

Xei
2,ξ


⎜

which, after the computation of the spatial integrals, results in

Δ1
1

30




−15 6 15 −6

−6 0 6 −2

−15 −6 15 6

6 2 −6 0


⎜




Xei
1

Xei
1,ξ

Xei
2

Xei
2,ξ


⎜

The assembly leads to the first order differentiation matrix D1:

D1 = 1

30




−15 6 15 −6
−6 0 6 −2
−15 −6 0 12 15 −6

6 2 −12 0 6 −2
−15 −6 0 12 15 −6

6 2 −12 0 6 −2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

−15 −6 0 12 15 −6
6 2 −12 0 6 −2

−15 −6 15 6
6 2 −6 0


⎜

which allows the integral over the complete spatial domain to be computed as
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⎤
ε(z)

wiΔ1
ρx

ρz
dz ⇒ Δ1D1x̃, with i = 1, . . . , 2N (4.93)

4.7.3 Third Term of the RHS Term of the Weighted
Residual Solution

When considering Langrangian (linear) elements it was required to use the so-called
weak form. In this case, since Hermitian polynomials are twice differentiable this step is
no longer necessary. The evaluation of Δ2

∫
ε(z) wi x̃zzdz on the finite element ei yields

Δ2
2

θz




〈ϕ1, ϕ1,ξξ ∈ 〈ϕ1, ϕ2,ξξ ∈ 〈ϕ1, ϕ3,ξξ ∈ 〈ϕ1, ϕ4,ξξ ∈

〈ϕ2, ϕ1,ξξ ∈ 〈ϕ2, ϕ2,ξξ ∈ 〈ϕ2, ϕ3,ξξ ∈ 〈ϕ2, ϕ4,ξξ ∈

〈ϕ3, ϕ1,ξξ ∈ 〈ϕ3, ϕ2,ξξ ∈ 〈ϕ3, ϕ3,ξξ ∈ 〈ϕ3, ϕ4,ξξ ∈

〈ϕ4, ϕ1,ξξ ∈ 〈ϕ4, ϕ2,ξξ ∈ 〈ϕ4, ϕ3,ξξ ∈ 〈ϕ4, ϕ4,ξξ ∈


⎜




Xei
1

Xei
1,ξ

Xei
2

Xei
2,ξ


⎜

which, after the computation of the spatial integrals and derivatives, results in:

Δ2
1

15θz




−18 −33 18 −3

−3 −8 3 2

18 3 −18 33

−3 2 3 −8


⎜




Xei
1

Xei
1,ξ

Xei
2

Xei
2,ξ


⎜

The assembly of the elementary matrices leads to the second-order differentiation
matrix D2

D2 = 1

15θz




−18 −33 18 −3
−3 −8 3 2
18 3 −36 0 18 −3
−3 2 0 −16 3 2

18 3 −36 0 18 −3
−3 2 0 −16 3 2

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

18 3 −36 0 18 −3
−3 2 0 −16 3 2

18 3 −18 33
−3 2 3 −8


⎜
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⎤
ε(z)

wiΔ2
ρ2x

ρz2 dz ⇒ Δ2D2x̃, with i = 1, . . . , 2N (4.94)

4.7.4 Fourth Term of the RHS Term of the Weighted
Residual Solution

The evaluation of the term
∫
ε(z) wi f (x̃)dz on the finite element ei is carried out in a

similar way as for Lagrangian basis functions, i.e.,

θz

2




〈ϕ1, f (x̃ ei )∈

〈ϕ2, f (x̃ ei )∈

〈ϕ3, f (x̃ ei )∈

〈ϕ4, f (x̃ ei )∈


⎜

= θz

2




〈ϕ1, f (Xei
1 ϕ1 + Xei

1,ξ ϕ2 + Xei
2 ϕ3 + Xei

2,ξ ϕ4)∈

〈ϕ2, f (Xei
1 ϕ1 + Xei

1,ξ ϕ2 + Xei
2 ϕ3 + Xei

2,ξ ϕ4)∈

〈ϕ3, f (Xei
1 ϕ1 + Xei

1,ξ ϕ2 + Xei
2 ϕ3 + Xei

2,ξ ϕ4)∈

〈ϕ4, f (Xei
1 ϕ1 + Xei

1,ξ ϕ2 + Xei
2 ϕ3 + Xei

2,ξ ϕ4)∈


⎜

The assembly over all the elements leads to1

f̃N L(x̃) =
⎤

ε(z)

wi f (x̃)dz ⇒ θz

2




〈ϕ1, f (x̃ e1)∈

〈ϕ2, f (x̃ e1))∈

〈ϕ3, f (x̃ e1)∈ + 〈ϕ1, f (x̃ e2)∈

〈ϕ4, f (x̃ e1)∈ + 〈ϕ2, f (x̃ e2)∈

〈ϕ3, f (x̃ e2)∈ + 〈ϕ1, f (x̃ e3)∈

〈ϕ4, f (x̃ e2)∈ + 〈ϕ2, f (x̃ e3)∈
...

〈ϕ3, f (x̃ eN−2)∈ + 〈ϕ1, f (x̃ eN−1)∈

〈ϕ4, f (x̃ eN−2)∈ + 〈ϕ2, f (x̃ eN−1)∈

〈ϕ3, f (x̃ eN−1)∈

〈ϕ4, f (x̃ eN−1)∈


⎜

(4.95)

1 The notation using the series expansion makes the expression of this vector too long to fit into one
page, therefore we will use a more compact notation, i.e., f (x̃ ei ) = f (Xi ϕ1 + Xi,ξ ϕ2 + Xi+1ϕ3 +
Xi+1,ξ ϕ4)
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where the integrals can be evaluated using the FEM structure or numerical quadrature
formulas.

Using Eqs. (4.91–4.95) we can rewrite Eq. (4.33), without the contribution of the
boundary conditions, as:

M
dx̃
dt

= (Δ0D0 + Δ1D1 + Δ2D2)x̃ + f̃N L (x̃) (4.96)

Note that the number of ordinary differential equations resulting from the application
of the finite element method with Hermitian elements is twice as much as with Lagrangian
finite elements for the same number of nodes.

The last task to close the system is to include the contribution of the boundary condi-
tions. This will be discussed in the following section.

4.7.5 Galerkin Method Over Hermitian Elements:
Contribution of the Boundary Conditions

In this case the only nonzero function at zL and zR are, respectively, functions ϕ1 of
element e1 and function ϕ3 of element eN−1.

4.7.5.1 Dirichlet Boundary Conditions

Recall the form of these boundary conditions:

x(zL , t) = gL(t); x(zR, t) = gR(t) (4.97)

The BCs will only affect the first and the (2N − 1)th rows of system (4.96) with
respectively, the term −(x1 − gL) and the term −(xN − gR). If we define the following
vector,

g =




−(x1 − gL)

0

...

0

−(xN − gR)

0


⎜

(4.98)
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the final system of equations can be written as:

M
ρ x̃
ρt

= (Δ0D0 + Δ1D1 + Δ2D2) x̃ + M f̃NL + g (4.99)

4.7.5.2 Neumann Boundary Conditions

Neumann boundary conditions indicate the value of the gradient, i.e.,

ρ x̃

ρz

∣∣∣∣
zL

= −gL(t); ρ x̃

ρz

∣∣∣∣
zR

= gR(t) (4.100)

The former expressions can be rewritten in terms of variable ξ as:

− ρ x̃

ρz

∣∣∣∣
zL

− gL(t) = − ρ x̃

ρξ

∣∣∣∣
zL

− θz

2
gL(t) (4.101)

ρ x̃

ρz

∣∣∣∣
zR

− gR(t) = ρ x̃

ρξ

∣∣∣∣
zR

− θz

2
gR(t) (4.102)

Note that in contrast with the Lagrangian elements, spatial derivatives belong to the
vector of dependent variables (i.e., coefficients of the basis functions) so that

− ρ x̃

ρξ

∣∣∣∣
zL

− θz

2
gL = −X1,ξ − θz

2
gL (4.103)

ρ x̃

ρξ

∣∣∣∣
zR

− θz

2
gR = X N ,ξ − θz

2
gR (4.104)

and the vector g in Eq. (4.70) takes a simple form:

g =




−X1,ξ − θz

2
gL

0

...

0

X N ,ξ − θz

2
gR

0


⎜

(4.105)
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4.8 An Illustrative Example

Again Burgers’ equation will be used to illustrate the methodology and MATLAB imple-
mentation of the finite element method with Hermitian elements.

As in the previous section, let us start with the ODE function. This function is listed
in burgerspdes_hermite and we can note the following:

function xt = burgerspdes_hermite(t ,x )
global mu
global wquad xquad
global n z0 zL D2 xx

% Second spatial derivative xzz computed through the
% second differentiation matrix
xzz = D2*x ;

% Rename state variable x to pass it to integrands
% functions
xx = x ;

% Spatial integration of the integrands in the nonlinear
% term of Burgers equation . Nonlinear term : fx = x*xz
y1 = feval ( 'integrand1_hermite ' ,xquad ' ) *wquad ' ;
y2 = feval ( 'integrand2_hermite ' ,xquad ' ) *wquad ' ;
y3 = feval ( 'integrand3_hermite ' ,xquad ' ) *wquad ' ;
y4 = feval ( 'integrand4_hermite ' ,xquad ' ) *wquad ' ;
fx = y1+y2+y3+y4 ;

% Boundary conditions
gL = burgers_exact (z0 ,t ) ;
gR = burgers_exact (zL ,t ) ;
gv ( 1 , 1 ) = x(1)−gL ;
gv(2*n−1 ,1) = x(2*n−1)−gR ;
gv(2*n , 1 ) = 0 ;

% ODEs
xt = mu*xzz − fx − gv ;

Function burgerspdes_hermite Function burgerspdes_hermite to define the ODE set for
Burgers equation with Hermitian elements

• Four terms (y1, y2, y3, and y4) are used to construct the FEM approximation of the
nonlinear function. Each one corresponds to the projection onto the basis functions ϕ1,
ϕ2, ϕ3, and ϕ4, respectively.

• Instead of having n equations we have 2*n equations since the spatial derivatives of
the field at the discretization points are also expansion coefficients of the Hermitian
basis functions.

• The last boundary condition is introduced in row 2*n-1.
• The integrand functions have changed. As an example, we include the listing of the

first one (integran1_hermite) where the MATLAB codes trialfunction
sher2n and trialfunctionsher2np compute, respectively, the basis functions
(4.87–4.90) and their first derivatives.
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function out = integrand1_hermite(xi )
% Computation of the first integrand on the nonlinear term
% for the Burgers ' equation . This term corresponds with
% y1 = phi_1*(xfem*xfem_z )

global xx n

% Dependent variable values and their derivatives with the
% FEM local nomenclature
x1 = xx ( 1 : 2 : 2 *n−3);
x1_xi = xx ( 2 : 2 : 2 *n−2);
x2 = xx ( 3 : 2 : 2 *n−1);
x2_xi = xx ( 4 : 2 : 2 *n ) ;

% Preallocation of memmory for the output
out = zeros(2*n ,length (xi ) ) ;

for i = 1 :length (xi )
% Basis function computation
[phi1 , phi2 , phi3 , phi4 ] = trialfunctionsher2n(xi (i ) ) ;
% First derivative of the basis function computation
[phi1p ,phi2p ,phi3p ,phi4p ] = trialfunctionsher2np(xi (i ) ) ;
% Finite element approximation of the dependent
% variable
xfem = phi1*x1 + phi2*x1_xi + phi3*x2 + phi4*x2_xi ;
% Finite element approximation of the first spatial
% derivative of the dependent variable
xfem_z = phi1p*x1+phi2p*x1_xi+phi3p*x2+phi4p*x2_xi ;
out ( 1 : 2 : 2 *n−3,i ) = phi1*(xfem . *xfem_z ) ;

end

Function integran1_hermite Function integrand1_hermite to compute the first integrand
of the nonlinear term for Burgers equation with Hermitian elements

function [phi1 ,phi2 ,phi3 ,phi4 ] = trialfunctionsher2n(xi )
% Computation of the hermitian basis functions of the
% finite element method
phi1 = ( (xi . ^2 −3) .*xi+ 2 ) / 4 ;
phi2 = ( ( ( xi−1).*xi−1).*xi+ 1 ) / 4 ;
phi3 = ((−xi . ^ 2 + 3 ) . *xi+ 2 ) / 4 ;
phi4 = ( ( (xi+ 1 ) . *xi−1).*xi−1) /4 ;

Function trialfunctionsher2n Function trialfunctionsher2n to compute the Hermitian
basis functions

function [phi1p ,phi2p ,phi3p ,phi4p ] = trialfunctionsher2np(x )
% Computation of the derivative of the hermitian basis
% functions of the finite element method
phi1p = 3*(x^2 −1)/4;
phi2p = ( ( 3 *x−2)*x−1) /4 ;
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phi3p = −3*(x^2 −1)/4;
phi4p = ( ( 3 *x+2)*x−1) /4 ;

Function trialfunctionsher2np Function trialfunctionsher2np to compute the first spa-
tial derivative of the Hermitian basis functions

The main program calling function burgerspdes_hermite is listed in main_
burgers_FEM_hermite.

close all
clear all
global mu
global wquad xquad
global n dz z0 zL D2

% Finite element spatial grid
z0 = 0 ;
zL = 1 ;
n = 101;
nel = n−1;
dz = (zL − z0 ) / ( n−1);
z = linspace (z0 ,zL ,n ) ;

% Second order differentiation matrix
D2 = hermiteD2 (dz ,n ) ;

% Problem parameters
mu = 0 . 0 0 1 ;

% Computation of the weigths and the abcissa to be
% employed in the numerical integration via the
% Gauss−Legendre quadrature
nquad = 2 ;
beta = 0 . 5 . /sqrt(1 − (2*(1:nquad ) ) . ^ ( − 2 ) ) ;
T = diag (beta , 1 ) +diag (beta , −1) ;
[V ,D ] = eig (T ) ;
xquad = diag (D ) ;
[xquad ,i ] = sort (xquad ) ;
wquad = 2*V ( 1 ,i ) . ^ 2 ;

% Initial conditions
x = zeros ( 1 ,n ) ;
xz = zeros ( 1 ,n ) ;
for i = 1 :n

x (i ) = burgers_exact (z (i ) , 0 ) ;
xz (i ) = derburgers_exact(z (i ) , 0 ) ;

end
xx ( 1 : 2 : 2 *n−1)=x ;
xx ( 2 : 2 : 2 *n)=dz*xz / 2 ;

% Time instants at which the IVP solver will save the
% solution
dt = 0 . 1 ;
time = ( 0 :dt : 1 ) ;
nt = length (time ) ;
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% Time integration with the IVP solver
M = hermitemass (dz ,n ) ; % Finite element mass matrix
options = odeset ( 'Mass ' ,M , 'RelTol ' , 1e−6 , 'AbsTol ' , 1e−6);
[tout ,xout ] = ode15s (@burgerspdes_hermite ,time ,xx ,options ) ;

% Recovering the states from the ode15s output (xout )
x_direct = xout ( : , 1 : 2 : 2 *n−1);

% Recovering the solution using the hermitian polynomials
figure
dzvis = 0 . 5 ;
zvis = −1:dzvis : 1 ;
nvis = length (zvis ) ;
% Basis functions
[phi1 , phi2 , phi3 , phi4 ] = trialfunctionsher2n(zvis ) ;
z_absc = linspace (z0 ,zL , ( n−1)*(nvis−1)+1);

for k=1:nel
xx = xout ( : , 2 *k−1)*phi1+xout ( : , 2 *k )*phi2 + . . .

xout ( : , 2 *k+1)*phi3+xout ( : , 2 *k+2)*phi4 ;
if k == 1

n1 = 1 ;
n2 = 5 ;
ordo ( : ,n1 :n2 ) = xx ;

else
n1 = n2+1;
n2 = n2+4;
ordo ( : ,n1 :n2 ) = xx ( : , 2 :end ) ;

end
end

% Plot the results
figure
hold
ztheor= ( 0 : . 0 0 1 : 1 ) ;
ntheor=length (ztheor ) ;
for k=1:length (tout )

for i=1:ntheor
yexact (k ,i)= burgers_exact (ztheor (i ) ,tout (k ) ) ;

end
end
plot (z ,x_direct, ' −k ' )
hold on
plot (ztheor ,yexact , 'r ' )
axis ( [ 0 1 0 1 . 4 ] )
hold off

plot (z_absc ,ordo, ' −k ' )
hold on
plot (ztheor ,yexact , 'r ' )
axis ( [ 0 1 0 1 . 4 ] )
hold off

Script main_burgers_FEM_hermite Main script calling function burgerspdes_hermite
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Table 4.4 Comparison in terms of efficiency and accuracy of the FEM using Lagrange and Hermite
polynomials for Burgers’ equation

N Maximum error (%) Mean error (%) CPU time

Lagrange 101 36.80 0.42 1
201 14.04 0.07 1.8
401 3.49 0.02 8.7

Hermite 51 36.99 0.33 2.8
101 5.67 0.04 3.5
151 1.53 0.005 8.5

CPU time was normalized with respect the most efficient test (Lagrange polynomials with 101
discretization points)

We can notice the following differences with respect to the program with linear
Lagrangian elements:

• Both the second-order differentiation matrix and the mass matrix are computed using
functions hermiteD2 and hemitemass which can be found in the companion
software.

• Initial conditions are given for the dependent variables x and their spatial derivatives
xz. Therefore we end up with 2*n ODEs.

• The final solution can be computed directly from the output of ode15s, i.e. xout or
using the Hermitian basis functions (which will give a more precise solution).

Accuracy and efficiency of the FEM using Lagrange and Hermite polynomials for
Burgers’ equation with μ = 0.001 are summarized in Table 4.4. As expected, increas-
ing the number of discretization points (N ) improves the accuracy and increases the
computational effort. Also, for the same N , Hermite polynomials allow a more accurate
solution to be obtained at the price of a higher computational cost. However, it should be
noted that, for comparable computation times (N = 401 and N = 151 for Lagrange and
Hermite polynomials, respectively), FEM with Hermite polynomials appears as a more
accurate scheme for this particular problem.

4.9 The Orthogonal Collocation Method

As mentioned before, orthogonal collocation belongs to the family of the WRM. In
this technique, the weighting functions are chosen as Dirac impulses located at given
collocation points. The main difference with respect to the classical collocation method
is that, the collocation points are distributed in the spatial domain so as to maximize the
accuracy of the results. The advantage with respect to other WRM is that the computation
of spatial integrals is no longer required (in fact this computation is trivial and does not
require any numerical procedure). The Hermitian elements that we have introduced in the
previous sections are a popular choice in conjunction with the collocation method. Let
us rewrite, for the sake of clarity, the expressions of the four Hermitian basis functions:
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ϕ1(ξ) = 1

4
(1 − ξ)2(2 + ξ)

ϕ2(ξ) = 1

4
(1 − ξ2) (1 − ξ)

ϕ3(ξ) = 1

4
(1 + ξ)2(2 − ξ)

ϕ4(ξ) = 1

4
(−1 + ξ2) (1 + ξ)

The approximation of the field using the truncated series is of the form:

x̃(ξ, t) = X1(t)ϕ1(ξ) + X1,ξ (t)ϕ2(ξ) + X2(t)ϕ3(ξ) + X2,ξ (t)ϕ4(ξ) (4.106)

As in the previous section, we will use the following generic PDE to illustrate the
procedure

xt = Δ0x + Δ1xz + Δ2xzz + f (x)

The contribution of an Hermitian element ei to the system of equations in the orthog-
onal collocation method is given by:

⎤
εei

η(zcol)x̃t dz = Δ0

⎤
εei

η(zcol)x̃dz + Δ1

⎤
εei

η(zcol)x̃zdz

+ Δ2

⎤
εei

η(zcol)x̃zzdz +
⎤

εei

η(zcol) f (x̃)dz (4.107)

Since η(zcol) represents the Dirac delta, Eq. (4.107) can be rewritten as:

x̃t (zcol) = Δ0 x̃ (zcol) + Δ1 x̃z (zcol) + Δ2 x̃zz (zcol) + f (x̃ (zcol)) (4.108)

The spatial domain is subdivided into N elements, and the definition of the Hermitian
polynomials on these elements involve 2N + 2 unknow coefficients. Hence, two col-
location points per element are required to provide 2N residual ODEs, which can be
completed by two equations related to the boundary conditions.

A popular choice for the location of the two collocation points is the so-called Legendre
points (i.e., they are the roots of the second-order Legendre polynomial 1/2(3z2 − 1)).
Further discussion about this choice is given in Sect. 4.10. Here we will just use this result
and proceed with the evaluation of the residual equations.

ξ1 = − 1↔
3
; ξ2 = 1↔

3
(4.109)

Let us now treat all the terms in Eq. (4.108) separately.
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4.9.1 LHS Term of the Collocation Residual Equation

One element will contribute to two rows (one per collocation point) of the final system.
For the first collocation point, denoted by ξ1 in the transformed coordinates, we have

x̃t (ξ1) = dX1

dt
ϕ1(ξ1) + dX1,ξ

dt
ϕ2(ξ1) + dX2

dt
ϕ3(ξ1) + dX2,ξ

dt
ϕ4(ξ1)

where the series expansion (4.106) has been used. Likewise, we have for the second
collocation point, ξ2:

x̃t (ξ2) = dX1

dt
ϕ1(ξ2) + dX1,ξ

dt
ϕ2(ξ2) + dX2

dt
ϕ3(ξ2) + dX2,ξ

dt
ϕ4(ξ2)

In matrix form, these two terms can be rewritten as:

x̃t (zcol) ≡
⎡

ϕ1 (ξ1) ϕ2 (ξ1) ϕ3 (ξ1) ϕ4 (ξ1)

ϕ1 (ξ2) ϕ2 (ξ2) ϕ3 (ξ2) ϕ4 (ξ2)

⎢




dX1

dt

dX1,ξ

dt

dX2

dt

dX2,ξ

dt


⎜

The assembly procedure is simpler as compared to the Galerkin method. In the latter,
the coefficients in the basis functions correspond to the values of the solution at the
edges of the finite elements. As these points are shared by two elements, the elementary
matrices overlap. In the orthogonal collocation, the collocation points belong only to one
element and, therefore, there is no overlapping between two elementary matrices. Hence,
the assembly results in:

Mx̃t =




a b c d
c −d a −b

a b c d
c −d a −b

. . . . . . . . . . . .

. . . . . . . . . . . .

a b c d
c −d a −b

a b c d
c −d a −b


⎜




X1

X1,ξ

X2

X2,ξ

...

X N−1

X N−1,ξ

X N

X N ,ξ


⎜

t

(4.110)
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where

ϕ1(ξ1) = ϕ3(ξ2) = a = 3
↔

3 + 4

6
↔

3
; ϕ2(ξ1) = −ϕ4(ξ2) = b =

↔
3 + 1

6
↔

3
;

ϕ3(ξ1) = ϕ1(ξ2) = c = 3
↔

3 − 4

6
↔

3
; ϕ4(ξ1) = −ϕ2(ξ2) = d = −↔

3 + 1

6
↔

3
(4.111)

Equation (4.110) constitutes a system with 2N equations and 2N + 2 unknowns.
The missing equations are provided by the boundary conditions. The equations for the
boundary conditions are added to the previous ones as algebraic equations, arbitrarily
located at the first and last rows of the final system. It follows that the mass matrix M is:

M =




0 0 0 0
a b c d
c −d a −b

a b c d
c −d a −b

. . . . . . . . . . . .

. . . . . . . . . . . .

a b c d
c −d a −b

a b c d
c −d a −b
0 0 0 0


⎜

(4.112)

4.9.2 First Three Terms of Collocation Residual Equation

As in the LHS term, each element will contribute, for these three terms, to two rows of
the final system.

(a) Since x̃ = X1ϕ1 + X1,ξ ϕ2 + X2ϕ3 + X2,ξ ϕ4—see Eq. (4.106) we have Δ0 x̃ =
Δ0

(
X1ϕ1 + X1,ξ ϕ2 + X2ϕ3 + X2,ξ ϕ4

)
. Evaluating this term in the collocation

points, ξ1 and ξ2 results in:

Δ0 x̃(ξ1) = Δ0
(
X1ϕ1(ξ1) + X1,ξ ϕ2(ξ1) + X2ϕ3(ξ1) + X2,ξ ϕ4(ξ1)

)
Δ0 x̃(ξ2) = Δ0

(
X1ϕ1(ξ2) + X1,ξ ϕ2(ξ2) + X2ϕ3(ξ2) + X2,ξ ϕ4(ξ2)

)
,

respectively. In matrix from, this gives:

Δ0 x̃ (zcol) ≡ Δ0

⎡
ϕ1 (ξ1) ϕ2 (ξ1) ϕ3 (ξ1) ϕ4 (ξ1)

ϕ1 (ξ2) ϕ2 (ξ2) ϕ3 (ξ2) ϕ4 (ξ2)

⎢



X1

X1,ξ

X2

X2,ξ


⎜

Following the same procedure as for the LHS term, the assembly leads to the fol-
lowing matrix:
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Δ0D0 x̃ = Δ0




0 0 0 0
a b c d
c −d a −b

a b c d
c −d a −b

. . . . . . . . . . . .

. . . . . . . . . . . .

a b c d
c −d a −b

a b c d
c −d a −b
0 0 0 0


⎜

x̃ (4.113)

Note once more that D0 = M.
(b) The first step in the treatment of the term Δ1 x̃z (zcol) is to transform the spatial

derivative in the coordinates z, this is x̃z , into the spatial derivative in the transformed
coordinates x̃ξ

x̃z = ρ x̃

ρξ

dξ

dz
= ρ x̃

ρξ

2

θz

Also, for the collocation points, ξ1 and ξ2, we have

Δ1 x̃ξ (ξ1) = Δ1
(
X1ϕ1,ξ (ξ1) + X1,ξ ϕ2,ξ (ξ1) + X2ϕ3,ξ (ξ1) + X2,ξ ϕ4,ξ (ξ1)

)
Δ1 x̃ξ (ξ2) = Δ1

(
X1ϕ1,ξ (ξ2) + X1,ξ ϕ2,ξ (ξ2) + X2ϕ3,ξ (ξ2) + X2,ξ ϕ4,ξ (ξ2)

)

or in matrix form:

Δ1 x̃ξ (zcol)
2

θz
= Δ1

2

θz

⎡
ϕ1ξ (ξ1) ϕ2ξ (ξ1) ϕ3ξ (ξ1) ϕ4ξ (ξ1)

ϕ1ξ (ξ2) ϕ2ξ (ξ2) ϕ3ξ (ξ2) ϕ4ξ (ξ2)

⎢



X1

X1,ξ

X2

X2,ξ


⎜

The assembly leads to

Δ1D1 x̃ = Δ1
1

θz




0 0 0 0
−1 e 1 −e
−1 −e 1 e

−1 e 1 −e
−1 −e 1 e

. . . . . . . . . . . .

. . . . . . . . . . . .

−1 e 1 −e
−1 −e 1 e

−1 e 1 −e
−1 −e 1 e
0 0 0 0


⎜

x̃ (4.114)

with e = 1↔
3

.
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(c) For the term Δ2 x̃zz (zcol) we also have to use the transformed coordinates:

x̃zz = ρ2 x̃

ρξ2

⎡
2

θz

⎢2

and the expression for this term in matrix form becomes:

Δ2 x̃ξξ (zcol)

⎡
2

θz

⎢2
= Δ2

⎡
2

θz

⎢2
⎛

ϕ1,ξξ (ξ1) ϕ2,ξξ (ξ1) ϕ3,ξξ (ξ1) ϕ4,ξξ (ξ1)

ϕ1,ξξ (ξ2) ϕ2,ξξ (ξ2) ϕ3,ξξ (ξ2) ϕ4,ξξ (ξ2)

⎣ 


X1
X1,ξ

X2
X2,ξ


⎜

The assembly leads to

Δ2D2 x̃ = Δ2
2

θz2




0 0 0 0
− f −g f h

f −h − f g
− f −g f h

f −h − f g
. . . . . . . . . . . .

. . . . . . . . . . . .

− f −g f h
f −h − f g

− f −g f h
f −h − f g
0 0 0 0


⎜

x̃

(4.115)
with f = ↔

3 ; g = 1 + ↔
3 ; h = 1 − ↔

3.

4.9.3 Fourth Term of the RHS of the Collocation
Residual Equation

Each element will contribute to two rows of the final system. The term f (x̃ (zcol))

becomes
⎡

f (x̃ (ξ1))

f (x̃ (ξ2))

⎢

the assembly leads to:
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0
f (xe1 (ξ1))

f (xe1 (ξ2)) + f (xe2 (ξ1))
...

f (xeN−2 (ξ2)) + f (xeN−1 (ξ1))

f (xeN−1 (ξ2))

0


⎜

(4.116)

4.9.4 Contribution of the Boundary Conditions

As previously stated, the boundary conditions are introduced in the RHS members of the
first and last rows of the global system. Let us use Burgers’ equation to illustrate how to
introduce the boundary conditions in the system.

The MATLAB function to implement the resulting system of ODEs is presented in
burgerspdes_ortcol.

function xt = burgerspdes_ortcol(t ,u )
global mu
global n z0 zL D2 u1

u1 = u ;

% Linear part
ut = mu*D2*u ;

% Nonlinear part
y1 = feval ( 'integrand_ortcol ' , −1/sqrt ( 3 ) ) ;
y2 = feval ( 'integrand_ortcol ' , 1 /sqrt ( 3 ) ) ;

% Time derivative
ut ( 2 : 2 : 2 *n−2 ,1) = ut ( 2 : 2 : 2 *n−2,1)−y1 ;
ut ( 3 : 2 : 2 *n−1 ,1) = ut ( 3 : 2 : 2 *n−1,1)−y2 ;

% Boundary conditions and construction of xt
xt ( 1 , 1 ) = u(1)− burgers_exact (z0 ,t ) ;
xt ( 2 : 2 *n−1 ,1) = ut ( 2 : 2 *n−1 ,1) ;
xt(2*n , 1 ) = u(2*n−1) − burgers_exact (zL ,t ) ;

Function burgerspdes_ortcol Function to implement Burgers PDEs with the orthogonal collo-
cation method

Nonlinear terms are computed using the MATLAB function integrand_ortcol.
Finally, boundary conditions are implemented as in Eq. (4.98).
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function out = integrand_ortcol(x )

global u1 n dz

% Basis function
[N1 N2 N3 N4 ] = trialfunctionsher_1(x ) ;
[N1p N2p N3p N4p ] = der1trialfunctionsher_1 (x ) ;

% Output
out ( 1 :n−1 ,1) = ( 2 /dz ) * (N1*u1 ( 1 : 2 : 2 *n−3) + . . .

N2*u1 ( 2 : 2 : 2 *n−2) + . . .
N3*u1 ( 3 : 2 : 2 *n−1) + . . .
N4*u1 ( 4 : 2 : 2 *n ) ) . * . . .
(N1p*u1 ( 1 : 2 : 2 *n−3) + . . .
N2p*u1 ( 2 : 2 : 2 *n−2) + . . .
N3p*u1 ( 3 : 2 : 2 *n−1) + . . .
N4p*u1 ( 4 : 2 : 2 *n ) ) ;

Function integrand_ortcol Function to compute the basis functions in the orthogonal collocation
method.

4.9.5 A Brief Benchmark

As an indication, the solution of Burgers equation, with the usual parameters (101 grid
points and μ = 0.001) and four different methods, gives the statistics shown in Table 4.5,
where the error is computed as:

err = ∥∥x̄exact(ξ̄ , 1) − x̄num(ξ̄ , 1)
∥∥

In the finite difference solution, the first and second spatial derivatives are computed
using a two point upwind and a three point centered method, respectively.

4.10 Chebyshev Collocation

In the previous section, we have introduced the basic principle of the orthogonal col-
location method using the finite element method with Hermite polynomial basis func-
tions. Of course, all the weighted residual methods, including Galerkin and orthogonal
collocation, can be used on several interconnected spatial elements (which is the essence
of FEM methods) or on the global spatial domain, when the solution is sufficiently smooth
and does not require the discretization of the spatial domain. We now consider a particu-
larly efficient method in this context: Chebyshev collocation. An excellent treatment of
this method and very elegant MATLAB codes can be found in the book by Trefethen
[7]. In the following, we present some basic information and a code, available in the
companion software, largely inspired from [7].

As already stressed, the selection of interpolation functions and the location of the
collocation points have a significant effect on the accuracy of the numerical solution. The
theory of interpolation tells us that:
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Table 4.5 Comparison between the different techniques presented in this chapter

Method err CPU Time

Finite differences 0.329 1
Finite elements (Lagrangian) 0.172 3
Orthogonal collocation 0.085 7
Finite elements (Hermitian) 0.012 11

CPU time is normalized with respect to the fasted method (finite differences)

• Interpolation with trigonometric polynomials in equidistributed points (i.e., finite linear
combinations of cos (nz) and sin (nz) functions, n being natural numbers) suffers from
the Gibbs phenomenon (spurious oscillations near jumps of the function to interpolate)
as already illustrated in Fig. 4.4.

• Interpolation with conventional polynomials in equally spaced points (i.e., finite combi-
nations of zn terms, with n natural) suffers from the Runge phenomenon (interpolating
polynomials with increasing orders will develop oscillations near the boundaries of
the spatial domain).

To avoid these undesirable effects, we have already explored the possibility to dis-
cretize the spatial domain into small spatial elements on which low-order interpolation
polynomials can be used (the FEM). Another option is to use specific, nonuniform, dis-
tribution of the interpolation points. Whereas the density of N + 1 evenly spaced points
on the spatial domain [−1,+1] is given by:

d(z) = N

2

the density of Legendre or Chebyshev points is

d(z) = N

α
↔

1 − z2

i.e., the points are more densely located near the boundaries.
For instance, the Chebyshev points are the projection on the interval [−1,+1] of

equally spaced points on the unit circle . On an interval [a, b], these points are given by

z j = a + b

2
+ b − a

2
cos

⎡
jα

N

⎢
; j = 0, 1, 2, . . . , N

their distribution for N = 11 is represented in Fig. 4.10.
Another choice is given by the Legendre points (or Gauss-Legendre points), which

are the zeroes of Legendre polynomial. So-called extreme points can also be used, i.e.,
the Gauss-Lobatto-Legendre points are the extrema of the Legendre polynomials, and
the Gauss-Lobatto-Chebyshev points are the extrema of the Chebyshev polynomials.

These specific choices lead to a vanishing interpolation error for an increasing number
of interpolation points, if the function is Lipschitz, i.e., if the function is smooth (i.e., it
is limited in how fast it can change).

The above-mentioned Runge phenomenon was originally discovered by Carl Runge
in 1901 [2]. The occurrence of this phenomenon can be conveniently illustrated with the
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Fig. 4.10 N = 11 Chebyshev collocation points on the interval [−1 + 1]
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Fig. 4.11 Interpolation of the Runge function using 21 equidistant points

nowadays so-called Runge function 1
1+25z2 on the interval [−1,+1]. When interpolated

with equidistant points, the interpolation polynomial (computed in Fig. 4.11 with the
MATLAB function polyfit) gives rise to large oscillations at the boundaries. When
using Chebyshev points, the interpolating polynomial converges for an increasing number
of points (see Fig. 4.12). In both Figs. 4.11 and 4.12, N = 21 has been used.
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Fig. 4.12 Interpolation of the Runge function using 21 Chebychev points

The first Chebyshev polynomials on the interval [−1,+1] are given by

T0(z) = 1

2

(
ξ0 + ξ−0) = 1

T1(z) = 1

2

(
ξ1 + ξ−1) = z

T2(z) = 1

2

(
ξ2 + ξ−2) = 1

2

(
ξ1 + ξ−1)2 − 1 = 2z2 − 1

T3(z) = 1

2

(
ξ3 + ξ−3) = 1

2

(
ξ1 + ξ−1)3 − 3

2

(
ξ1 + ξ−1) = 4z3 − 3z

with

ξ = exp (iθ); z = Re(ξ) = 1

2

(
ξ1 + ξ−1) = cos (θ)

or more generally

Tn(z) = Re(ξn) = 1

2

(
ξn + ξ−n) = cos (nθ)

Figure 4.13 shows the graphical interpretation of the variables ξ , z and θ .
Using Chebyshev collocation, it is possible to define differentiation matrices so that

x̃z = D1 x̃ (4.117)

and
x̃zz = D1 (D1 x̃) (4.118)



260 4 Finite Elements and Spectral Methods

Fig. 4.13 Graphical interpretation of symbols z, ξ and θ

The computation of the differentiation matrix can be achieved using Fast Fourier
Transform (FFT) so as to reduce the computation order to O(N log (N )) instead of
O
(
N 2

)
. Very elegant and compact codes are provided by Trefethen [7] which have been

adapted in the companion software (see function chebyshev_spectral_D1).

function [D ,z ] = chebyshev_spectral_D1(z0 ,zL ,n )
% function chebishev_spectral_D1 returns the differentiation
% matrix for computing the first derivative , x_z , of a variable
% x over the spatial domain z0 < x < zL from a spectral method on
% a clustered grid .
% This code is a slight adapatation of a code taken from
% (Trefethen , 2000)
%
% argument list
% z0 left value of the spatial independent variable (input )
% zL right value of the spatial independent variable (input )
% n number of spatial grid points , including the end points
% (input )
% D differentiation matrix (output )
% z Chebishev points (output )

% compute the spatial grid
L = zL−z0 ;
n = n−1; % zi , i = 0 , . . . , n−1
z = cos (pi*(n : −1 : 0 ) /n ) ' ; % Chebishev points on [−1 , 1]

% discretization matrix
Z = repmat (z , 1 ,n+ 1 ) ; % create a (nxn ) square matrix by

% replicating each Chebishev point in a
% line of the matrix

dZ = Z−Z ' ; % create a matrix whose elements represent the
% distance to the diagonal elements

c = [ 2 ; ones (n−1 ,1) ; 2 ] . * ( − 1 ) . ^ ( 0 :n ) ' ;
D = (c * ( 1 . /c ) ' ) . / ( dZ+(eye (n+ 1 ) ) ) ; % compute off−diagonal entries
D = D − diag (sum (D ' ) ) ; % adjust diagonal entries
z = z0+(z+1)*(zL−z0 ) / 2 ; % convert to interval [z0 , zL ]
D = 2 / (zL−z0 )*D ;

Function chebyshev_spectral_D1 Function to numerically compute the differentiation matrix D1
using the Chebyshev collocation points
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We now illustrate the use of this function for the solution of a simple PDE model
describing an algae bloom.

Plankton blooms that appear as patches on the surface of water can be modeled
by Beltrami [8]:

ρx

ρt
= μ

ρ2x

ρz2 + r x
(

1 − x

K

)
(4.119)

where μ is the diffusion coefficient, r represents the maximum specific growth rate and K
the carrying capacity (logistic growth). The boundary conditions model the unfavorable
conditions outside the island-like patch

x(z0, t) = x(zL , t) = 0 (4.120)

There is a minimal size for a patch if the population is not to die out: zL > α
↔

(μ/r).
Here, twice this critical size is considered. Finally, the initial conditions are taken as

x(z, 0) = x0 (4.121)

The MATLAB implementation of this problem is not very different from the other
application examples presented so far in this chapter. The main difference is the compu-
tation of the first-order differentiation matrix D1 used in Eq. (4.117). In this case D1 is
computed using function chebyshev_spectral_D1.

The second-order differentiation matrix is obtained by stage-wise differentiation as
in Eq. (4.118), i.e., D2 = D1D1. After the application of the collocation method, the
following system of ODEs is obtained:

dx̃

dt
= μx̃zz + r x̃

⎡
1 − x̃

K

⎢
(4.122)

where x̃ is the discretized version of the dependent variable x , i.e., x̃ = [x1, x2, . . . , xN ]T

and xzz is computed as x̃zz = D2 x̃ .
The ODE system (4.122) is implemented in function algae_bloom_pde:

function xt = algae_bloom_pde (t ,x )

% set global variables
global mu r K kd ;
global z0 zL z n D1 ;

% boundary conditions at z = 0
x ( 1 ) = 0 ;

% boundary conditions at z = L
x (n ) = 0 ;

% spatial derivatives (stagewise differentiation )
xz = D1*x ;
xzz = D1*xz ;
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% temporal derivatives
xt = mu*xzz + r*x.*(1 −x /K ) ;
xt ( 1 ) = 0 ;
xt (n ) = 0 ;

Function algae_bloom_pde MATLAB implementation of the ODE system (4.122).

The code begins with the definition of the global variables which are passed to this
function and/or will be passed to other programs. After this, the values of the dependent
variable x in the first and the last points are imposed according to boundary conditions
(4.120). The next step is the computation of the second-order derivative of x̃ . Finally, the
ODE system is constructed and the time derivatives in the first and last points are zeroed
due to the nature of the BCs. Note the close resemblance between Eq. (4.122) and its
implementation.

Figures 4.14 and 4.15 show the numerical results obtained with an extremely small
number of nodes. Only the values of the solution at the four Chebyshev points is displayed
in the figures, using the linear interpolation provided by the MATLAB function plot. A
polynomial interpolation should be used to get a better picture of the solution profile.
Chebyshev collocation appears therefore as a very powerful method to solve parabolic
PDEs.

4.11 The Proper Orthogonal Decomposition

The application of the classical numerical techniques for PDEs, such as finite differ-
ences or the FEM previously described may lead to a large system of ODEs. This is
particularly critical when considering 2D or 3D spatial domains, where the number of
equations necessary to obtain a satisfactory result may increase to tens or hundreds of
thousands. Fortunately, it is possible to derive reduced order models (ROMs), which are
much cheaper from a computational point of view. Basically, model reduction techniques
neglect solution features with very fast dynamics, as compared to other features which
occur in the dynamical range of interest. In some sense, this idea is similar to the con-
cept of data compression used nowadays to store images or music (jpg, mp3) where non
relevant features (information that cannot be captured by the human eye or the ear) are
neglected.

Many efforts have been spent in the development of techniques for the reduction of
linear models. Amongst them one can find the Balance and Truncate [9] or the Hankel
approximation [10].With regard to nonlinear distributed parameter systems, many tech-
niques for model reduction are based on the Galerkin method with globally defined basis
functions and have been applied to the simulation of a wide range of systems during the
last six decades.

In this section, we will focus on one of the most efficient order reduction techniques,
the proper orthogonal technique (POD). This method, first proposed in [11], arose in
the context of turbulence simulation. Since then, this technique has been used in many
different fields including atmospheric modeling [12], chemical systems [13–15] , fluid
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Fig. 4.14 Solution of the Algae bloom problem with a large diameter of the algae patch using the
Chebyshev collocation method
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Fig. 4.15 Solution of the Algae bloom problem with a small diameter of the algae patch using the
Chebyshev collocation method

dynamics [16–18], biological systems [19] or thermal treatment of canned food [20]
among others.

As in the other methods presented in this chapter, the first step is to expand the solution
of the PDE in a truncated series of the form of Eq. (4.13), i.e.,

x(z, t) ∞ x̃(z, t) =
N∑

i=1

mi (t)ϕi (z)
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The main difference between order reduction techniques lies in the selection of basis
functions (ϕi (z)) in the Galerkin method. In the POD, such basis functions are obtained
from experimental data (either in silico or in vitro). The experiments provide us with a
set of measurements of the time evolution and spatial distribution of the relevant fields
(temperature, compound concentration, population density, etc.). For example, consider a
tubular reactor where 10 temperature sensors are distributed along the reactor length and
the sensors send the temperature measurements every minute. If we keep measuring for
1 h, we could sort all the temperature data in a matrix with 10 rows (one per sensor) and
60 columns (one per measurement time). This matrix is then used in the POD technique
to obtain the set of basis functions in an optimal way. The measurement obtained for a
given field at a given time and different spatial locations is called snapshot.

The main idea behind the POD technique is to find the set of basis functions which
minimize the distance from the experimental data to the subspace defined by the basis
functions. This is equivalent to maximizing the projection of the data set x(z, t) onto the
basis functions. Mathematically this can be expressed as [21]:

max
ϕ

J : J =

⎪
⎪

∣∣∣∣∣∣
⎤
ε

xϕdz

∣∣∣∣∣∣
2
⎫⎪⎬
⎪⎭ − λ


⎤

ε

ϕϕdz − 1


⎜ (4.123)

where |·| indicates the modulus and {·} is an averaging operation. It can be shown that
finding the maximum of J in (4.123) is equivalent to solving the following eigenvalue
problem [21, 22]:

λiϕi (z) =
⎤
ε

K (z, z′)ϕi (z
′)dz′ (4.124)

where the kernel K (z, z′) is constructed as a two point correlation kernel of the form:

K = 1

k

k∑
i=1

xi xT
i . (4.125)

where xi ≤ R
N is the vector of values of the field x at a finite number N of spatial points

and at a given time ti (snapshot). Since the kernel K is real symmetric, its eigenvalues λi

are real numbers [1] and may be arranged so that |λi | ≥ |λ j | for i < j [1]. Furthermore,
it can be shown that λp ∧ 0 as p ∧ → [23, 24].

Since the basis functions in the (POD) method are obtained by solving an optimization
problem, they form a set of empirical basis functions which are optimal with respect to
other possible expansions. This set is optimal in the sense that for a given number of basis
functions, it captures most of the relevant dynamic behavior of the original distributed
system in the range of initial conditions, parameters, inputs, and/or perturbations of the
experimental data [25].

It should be stressed that the eigenvalues λi can be used as an a priori measurement
of the accuracy of the approximation. Indeed, the total energy captured by the full set
of PODs is computed through the eigenvalues as E = ⎦N

i=1 λi . Thus the percentage of
energy captured by a given number p of PODs is:
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E(%) =
⎦p

i=1 λi⎦N
i=1 λi

100. (4.126)

The more the energy captured, the better the quality of the approximation.

4.11.1 The Method of Snapshots

When the number of discretization points (or measurement points) of variable x in
Eq. (4.125) is large, i.e., N is large, solving Eq. (4.124) can be computationally involved.
In order to avoid this problem and save computation time, a useful alternative, proposed
by Sirovich [11] and known as the method of snapshots or indirect method, is briefly
discussed. In this method, each eigenfunction is expressed in terms of the original data
as:

ϕ j =
k∑

i=1

w j
i xi , (4.127)

where w j
i are the weights to be computed. To this purpose, a new matrix is defined as:

Si j = 1

k

⎤
ε

xi x j dξ. (4.128)

Introducing Eqs. (4.127) and (4.128) in the eigenvalue problem (4.124), results in:

SW j = λ jW j , (4.129)

where the eigenvectors W j have as elements the weights in Eq. (4.127) so that W j =
[w j

1, w j
2, . . . , w j

k ]T .
Both the direct and the snapshot methods are implemented in function matpod.m

available in the companion software. Let us illustrate now the use of this function.
Consider a 1D process where 11 temperature sensors are equidistributed along the
process spatial length L = 1 m. Sensors are therefore located at positions sp =
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] m. Consider also that the sensors have reg-
istered five measurements at times tm = [0, 0.5, 1.0, 1.5, 2.0] s. Table 4.6 collects in a
matrix form all the data taken by the sensors

In the following, this 11 × 5 matrix will be denoted by V and it will be used to
describe the different steps for the derivation of the POD basis, in function matpod.m.
For the sake of clarity, function matpod.m was simplified here with respect to the one
in the companion software which can handle several fields (temperature, compounds
concentration, bacteria population, etc) at the same time. By considering only one field
(in this case temperature), the code becomes much simpler to describe.
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Table 4.6 Experimental data taken by the temperature sensors at different spatial locations and
time instants

s_p t=0 t=0.5 t=1.0 t=1.5 t=2.0

0.0 1.000 0.657 0.367 0.205 0.115
0.1 1.000 0.654 0.365 0.204 0.114
0.2 1.000 0.643 0.360 0.201 0.112
0.3 1.000 0.624 0.349 0.195 0.109
0.4 1.000 0.598 0.334 0.187 0.104
0.5 1.000 0.565 0.316 0.177 0.099
0.6 1.000 0.526 0.294 0.164 0.092
0.7 1.000 0.480 0.268 0.150 0.084
0.8 1.000 0.429 0.239 0.134 0.075
0.9 1.000 0.373 0.208 0.116 0.065
1.0 1.000 0.312 0.174 0.097 0.054

The code of matpod.m begins, as any other MATLAB function, by defining input
and output parameters.

function [pods] = matpod(V , M , mth , ener)
switch (nargin)

case {2}
mth = ’d’;
ener = 99.99;

case {3}
ener = 99.99;

end

Mandatory input parameters are the matrix containing the experimental data V and
the mass matrix resulting from the finite element method M. This matrix will be used to
perform the spatial integrals involved in the method although any other quadrature formula
could be exploited as well. Of course, the spatial grid used to obtain the experimental
measurements of V must coincide with the grid underlying the definition of matrix M.
The other two input parameters correspond to the selection of the method, direct (’d’)
or indirect (’i’), and the energy level to be captured. These two input arguments are
optional. If the number of input arguments nargin is 2 then default values for mth and
ener are used. On the other hand if nargin= 3 then ener is set to its default value.

The paths to obtain the POD basis in the direct and indirect methods are different.
The MATLAB function switch-case is used to distinguish between both techniques.
The first step is to construct the matrices used in the eigenvalue problem. For instance,
in the case of the indirect method, each element of this matrix is computed through
Eq. (4.128). As shown previously, the mass matrix of the FEM can be used to compute
spatial integrals, so that, matrix S in Eq. (4.128) can be numerically computed as S =
1/L*X’*M*X where X is the matrix of snapshots. In the direct method, the kernel K is
constructed as in Eq. (4.125). The following piece of code is used to compute matrix S
in the indirect method and K in the direct method.
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switch (mth)
case {’i’}

S = 1/L*X*M*X;
case {’d’}

K = 1/L*X*X’;
S = K*M;

end

Now MATLAB function eig is used to compute the eigenfunctions of the relevant
matrices.

% Computation of Eigenfunctions and eigenvalues
[W , lambda_nn] = eig(full(S));
switch (mth)

case {’i’}
phi_nn = X*W;

case {’d’}
phi_nn = W;

end

In the indirect method, such eigenfunctions are the weights used in Eq. (4.127) to compute
the POD basis. In matrix form, Eq. (4.127) can be written as ϕ j = X W j . In the direct
method, the eigenfunctions coincide with the POD basis.

The next part of the code selects the most representative POD basis according to the
energy criterion. The total energy is computed as the sum of all eigenvalues while the
energy of a given number j of POD basis is computed as the sum of the eigenvalues
corresponding with such POD basis. When the value of energy selected by the user is
reached, the loop stops.

% Selection of the more representative POD
tot_ener = sum(diag(lambda_nn));
for j = 1 : L

par_ener(j) = sum( diag( lambda_nn(1:j , 1:j) ) );
cap_ener = par_ener(j)/tot_ener*100;
if (cap_ener >= ener)

phinn = phi_nn(: , 1:j);
pods.lambda = lambda_nn(1:j , 1:j);
break

end
end

% Eigenfunctions normalization
for ii = 1 : size(P(i).phinn,2)

cc.par(ii) = phinn(:,ii)’*MM*phinn(:,ii);
pods.phi(:,ii) = 1/sqrt(cc.par(ii))*phinn(:,ii);

end

In order to illustrate the procedure, advantages, and weaknesses of the POD approach,
several examples will be considered next.
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4.11.2 Example: The Heat Equation

The heat equation has already been presented at the beginning of this chapter. Let us, for
the sake of clarity, rewrite the equation for this problem:

ρT

ρt
= Δ

ρ2T

ρz2 , (4.130)

with Δ = 0.1 and the length of the spatial domain is L = 1. Homogeneous Neumann
boundary conditions are considered:

ρT

ρn

∣∣∣∣
z=0

= ρT

ρn

∣∣∣∣
z=L

= 0. (4.131)

and initial conditions are given by:

T (z, 0) = 5

⎡
z2

2
− z4

4

⎢
+ 1;

The analytical solution for this simple example has already been obtained using the
method of separation of variables, see Eqs. (4.9) and (4.11). It will be used to check the
accuracy of the POD technique.

As pointed out before, the first step to obtain the PODs basis is the construction of a
representative set of data (snapshots). In this example such a set will be obtained from
the analytical solution. To this purpose the time domain t = [0, 4] is divided into three
parts. This separation is based on the dynamic behavior of the system:

• First interval t = [0, 0.5]: the temperature changes relatively fast so that the time
interval (ηt) between two consecutive measurements should be short enough. In this
case ηt = 0.05, i.e., 11 time measurements.

• Second interval t = [0.5, 2]: the temperature approaches steady-state so that the mea-
surement interval may increase ηt = 0.1, i.e., 14 time measurements.

• Third interval t = [2, 4]: the temperature has reached steady state. A couple of mea-
surements are enough (ηt = 0.5).

The basis functions are now computed following the methodology described in the
previous section. Figure 4.16 shows the shape of the four more representative basis func-
tions, i.e., those associated with the largest eigenvalues. Note that the number of spatial
oscillations in the basis functions decreases as they are more representative (i.e., more
energy is captured). In general, the number of spatial oscillations of the basis function
can be used to determine their contribution to the dynamic behavior of the system in a
qualitative manner.

The value of the eigenvalues and the energy captured by the POD basis functions is
represented in Table 4.7. Note that the value of the first eigenvalue is orders of magnitude
larger than the second one, the second is orders of magnitude larger than the third and
so on. In this case, two basis functions are able to capture more than the 99.99 % of the
energy. This is because we are only considering diffusion in 1D in this example. When
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Fig. 4.16 Representation of
the four more representative
POD basis functions for
the heat diffusion problem
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Table 4.7 Value of the
eigenvalues for the heat
diffusion problem and energy
captured by them

λ Energy (%)

First 2.5453 99.3507
Second 1.6621 × 10−2 0.6488
Third 1.3914 × 10−5 5.4310 × 10−4

Fourth 1.2166 × 10−7 4.7489 × 10−6

source terms or more spatial dimensions are considered, the value of the eigenvalues will
be closer and more POD basis will be necessary to approximate the solution with a given
level of accuracy.

Let us now project Eq. (4.130) over a given basis function. Mathematically this is
performed by multiplying Eq. (4.130) by the POD basis functions and integrating the
result over the spatial domain, i.e.,

⎤
ε

ϕi
ρT

ρt
dz =

⎤
ε

ϕiΔ
ρ2T

ρz2 dz = Δ

⎤
ε

ϕi
ρ2T

ρz2 dz

Green’s theorem allows us to express the RHS of the previous relation in terms of the
boundary integral, i.e.,

Δ

⎤
ε

ϕi
ρ2T

ρz2 dz = Δ

⎤
∂

ϕi
ρT

ρn
dz − Δ

⎤
ε

dϕi

dz

ρT

ρz
dz

It is easy to see that, due to the boundary conditions of this problem—Eq. (4.131) the
first term of the RHS is zero so that

⎤
ε

ϕi
ρT

ρt
dz = −Δ

⎤
ε

dϕi

dz

ρT

ρz
dz
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Approximating the temperature field by a truncated Fourier series, we have

⎤
ε

ϕi

ρ
(∑p

j=1
m jϕ j

)
ρt

dz = −Δ

⎤
ε

dϕi

dz

ρ
(∑p

j=1
m jϕ j

)
ρz

dz

Since the POD basis functions (ϕi ) do not depend on time and the coefficients of the
expansion (mi ) do not depend on the spatial coordinates, the previous equation can be
rewritten as:

p∑
j=1

dm j

dt

⎤
ε

ϕiϕ j dz = −Δ

p∑
j=1

m j

⎤
ε

dϕi

dz

dϕ j

dz
dz

The basis functions are orthonormal, so that the integral
∫
ε

ϕiϕ j dz = 1 if i = j and∫
ε

ϕiϕ j dz = 0 otherwise, and

dmi

dt
= −Δ

p∑
j=1

m j

⎤
ε

dϕi

dz

dϕ j

dz
dz

The expressions resulting from the projection of the POD basis functions ϕi , with
i = 1, 2, . . . , p, can be collected onto the following matrix form.

dm
dt

= ΔA m (4.132)

where m = [m1, . . . , m p]T and A is the projection of the Laplacian operator. That is,
the elements of matrix A are computed as:

Ai, j =
⎤

ε

dϕi

dz

dϕ j

dz
dz (4.133)

The solution of this integral can be obtained in two different ways:

• Using a numerical approach like a quadrature formula or the FEM approach. In the
latter case matrix Dint

2 —see Eq. (4.55) is used:
⎤

ε

dϕi

dz

dϕ j

dz
dz ∞ ϕi Dint

2 ϕ j

• Fitting the POD data to polynomials of given order which are easy to integrate and
differentiate (see [20] for details).

The reduced-order model, i.e., Eq. (4.132), is implemented in function pde_
dif_pod. Note the close resemblance of the ODE system—Eq. (4.132)- mt = ΔA m
and the programming of the ODE system m_t = kappa*A*m;.
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function m_t = pde_dif_pod (t , m , A , kappa )

% PDE
m_t = kappa*A*m ;

Function pde_dif_pod Function to implement Eq. (4.132)

Functionpde_dif_pod is called from the main programmain_diffusion_rom

% The diffusion problem solved using the fem

clear all
clc

% Spatial coordinates
nd = 101; % Discretization points
z = linspace ( 0 , 1 ,nd ) ' ;

% Parameters
kappa = 0 . 1 ;

% FEM matrices
[MM , D2_int ] = matfem (z , 'neu ' , 'neu ' , 'MM ' , 'DM ' ) ;

% Load the POD data
load fig_pod_diff
neig = 5 ;
phi = pods .phi ( : , 1 :neig ) ;

% Initial conditions
x0 = 5*(z . ^ 2 / 2 − z . ^ 4 / 4 ) + 1 ;
m0 = phi ' *MM*x0 ;

% Projection of the laplacian operator
A = −phi ' *D2_int*phi ;

% Time span
tlist = 0 : 0 . 1 : 4 ;

% ODE integration
options = odeset ( 'RelTol ' , 1e−6, 'AbsTol ' , 1e−6);
[tout ,m ] = ode15s (@pde_dif_pod ,tlist ,m0 ,options ,A ,kappa ) ;

% Recovery the field
x_num = phi*m ' ;

% Plot the results
mesh (z , tout , x_num ' )

Script main_diffusion_rom Main script to call function pde_dif_pod
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Fig. 4.17 Evolution of the
first six coefficients, computed
using the POD method, for the
heat diffusion problem
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The structure of this script is very similar to those already presented in this chapter.

• First, the spatial coordinates and the relevant parameters of the system are defined.
• Then, the mass and second-order differentiation matrices for the FEM are computed.

These matrices will be used to perform the projection (which requires to compute
spatial integrals) and to construct the discrete version of the Laplacian operator.

• The next step is to load the POD basis functions previously computed. Initial conditions
are first defined for all the spatial domain, x0 = 5 ∗ (z.2/2 − z.4/4) + 1, and then they
are projected onto the basis functions, using the mass matrix of the FEM, in order to
obtain the initial conditions for the time dependent coefficients.

• Next, the projection of the spatial operator is numerically computed using the second-
order differentiation matrix A=-phi’*D2_int*phi.

• Then, the output times are defined and the ODE system is solved using the MATLAB
ODE suite in order to obtain the time evolution of the coefficients used in the series
expansion.

• Finally, the temperature field is recovered by multiplying the POD basis by the time-
dependent coefficients and the solution is plotted.

The time evolution of the first six coefficients is represented in Fig. 4.17. The plot
shows that, as expected, the first three coefficients are much more important than the
remaining ones, which rapidly converge to zero. Hence, using p = 3 should be enough
to accurately represent the solution T (z, t), see Fig. 4.18.

A quantitative comparison between the accuracy of the FEM with Lagrangian elements
and the POD technique is presented in Table 4.8.2 Three POD basis functions are enough
to obtain a level of accuracy comparable to the FEM with 10 finite elements. Four basis
functions allow to reach a level of accuracy corresponding to 30 elements.

2 The accuracy is computed as the error between the numerical technique and the analytical solution.
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Fig. 4.18 Numerical solution to the Fourier equation computed with the POD method (p = 3)

Table 4.8 Errors obtained with the numerical techniques POD and FEM as compared with the
analytical solution for the diffusion equation and for different number of ODEs

Number of ODEs FEM ROM
11 21 31 3 4 5

Maximum error 0.131 0.033 0.014 0.12 0.016 0.0024
Mean error 0.048 0.012 0.0053 0.015 0.0021 0.00057

4.11.3 Example: The Brusselator

Let us now consider another classical example already presented in Chap. 3, the Brusse-
lator. The system is described by the following set of two PDEs:

ut = Δuzz + f (u, v), f (u, v) = a − (b + 1)u + u2v

vt = Δvzz + g(u, v), g(u, v) = bu − u2v (4.134)

with 0 ≤ z ≤ 1 and t ≥ 0. Note that, in contrast with the heat equation, this system has
a nonlinear term u2v in both equations. Dirichlet conditions are considered at both sides
of the spatial domain:

u(0, t) = u(1, t) = 1; v(0, t) = v(1, t) = 3 (4.135)

and initial conditions are given by:

u(z, 0) = 1 + sin (2α z); v(z, 0) = 3 (4.136)

with parameter values: a = 1, b = 3, Δ = 0.02.
The solution (u, v) of the problem is approximated by a truncated Fourier series of the
form:

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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Table 4.9 Value of the first eigenvalues and energy captured for the brusselator system

State u State v
λ Energy (%) λ Energy (%)

First 1.11 94.64 9.99 98.96
Second 3.36 × 10−2 2.85 7.27 × 10−2 0.72
Third 2.87 × 10−2 2.43 3.06 × 10−2 0.31
Fourth 7.83 × 10−4 6.47 × 10−2 1.48 × 10−3 1.47 × 10−2

Fifth 7.18 × 10−5 6.10 × 10−3 7.87 × 10−5 7.79 × 10−4

u ∞
pu∑

i=1

mu,i (t)ϕu,i (z)

v ∞
pv∑

i=1

mv,i (t)ϕv,i v(z) (4.137)

The POD basis functions ϕu and ϕv are computed following the procedure previously
described. Once these basis are available, they are used to project the original PDE system
and, in this way, obtain the time-dependent coefficients mu and mv. The procedure is
described below.

The first step to obtain the POD basis is to collect a set of data representative of the
dynamic behavior of the system. For this particular example, the analytical solution is
unknown, therefore we will use the FEM solution to obtain the snapshots and to check
the accuracy of the POD method. The time interval between two consecutive snapshots
is θt = 0.1 and the last snapshot is taken at t = 20 units of time.

Since two dependent variables, u and v, are considered in this example, two different
sets of PODs, ϕu and ϕv should be computed. To this purpose, function matpod.m,
included in the companion software, is used.

The value of the first five eigenvalues for states u and v as well as the associated energy
are presented in Table 4.9. In order to capture 99.99 % of the energy, four basis functions
per state variable are enough.

The reduced-order model is derived by projecting the first and second equations onto
(4.134) over the POD basis ϕu and ϕv, respectively. Let us start with the projection of the
first equation in (4.134) onto a given POD basis function ϕu,i .⎤

ε

ϕu,i ut dz =
⎤
ε

ϕu,iΔuzzdz +
⎤
ε

ϕu,i f (u, v)dz, (4.138)

As in the heat equation example, ut is approximated using the truncated Fourier
series—see (4.137). Taking into account that POD basis functions are orthogonal, it is
easy to see that the RHS term of the previous equation can be expressed as:

⎤
ε

ϕu,i ut dz = dmu,i

dt
(4.139)
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The second term on the RHS of (4.138) is numerically computed. As mentioned
before, different options are available including the use of a quadrature formula or the
mass matrix of the FEM M. For simplicity, this term will be denoted by Fi , i.e..

Fi =
⎤
ε

ϕu,i f (u, v)dz (4.140)

Green’s theorem is used to deal with the remaining term in (4.138):

Δ

⎤
ε

ϕu,i
ρ2u

ρz2 dz = Δ

⎤
∂

ϕu,i
ρu

ρz
dz − Δ

⎤
ε

dϕu,i

dz

ρu

ρz
dz (4.141)

The first term on the RHS of the previous equation represents the contribution of the
boundary conditions. Note that Neumann and Robin boundary conditions enter naturally
in this formulation since they fix the value of the field spatial derivative ρu/ρz. When
Dirichlet boundary conditions are considered, as it is the case in this example, the “trick”
described in Sect. 3.10—see Eq. (3.181) can be used. Note that boundary conditions in
(4.135) can be expressed as

0
ρu

ρz

∣∣∣∣
z=0

= 1 − u(0, t), 0
ρu

ρz

∣∣∣∣
z=L

= 1 − u(L , t)

The “trick” consists of substituting the zero-factor in the previous expression by a
small epsilon factor, i.e.,

ε
ρu

ρz

∣∣∣∣
z=0

= 1 − u(0, t), ε
ρu

ρz

∣∣∣∣
z=L

= 1 − u(L , t)

or

ρu

ρz

∣∣∣∣
z=0

= 1

ε
(1 − u(0, t)),

ρu

ρz

∣∣∣∣
z=L

= 1

ε
(1 − u(L , t)) (4.142)

which can be easily introduced, as Robin boundary conditions, into the formulation. It
must be mentioned that the lower the value of ε, the better the approximation. However,
extremely low values of ε will result in numerical problems when solving the system of
equations.

Using the Fourier expansion on the second term on the RHS of Eq. (4.141) and since
the coefficients mu,i do not depend on the spatial coordinates, we obtain

Δ

⎤
ε

dϕu,i

dz

ρu

ρz
dz = Δ

⎤
ε

dϕu,i

dz

ρ
⎦pu

i= j mu, jϕu, j

ρz
dz = Δ

pu∑
i= j

mu, j

⎤
ε

dϕu,i

dz

dϕu, j

dz
dz

(4.143)
Substituting expressions (4.139–4.143) into (4.138) results in

http://dx.doi.org/10.1007/978-3-319-06790-2_3
http://dx.doi.org/10.1007/978-3-319-06790-2_3
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Fig. 4.19 Numerical solution
(u) of the Brusselator problem
(4.134)–(4.136) using the
POD technique with 6 and 4
POD basis for the states u and
v, respectively
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dmu,i

dt
= 1

ε

(
ϕu,i (L)(1 − u(L , t)) − ϕu,i (0)(1 − u(0, t))

)

− Δ

pu∑
i= j

mu, j

⎤
ε

dϕu,i

dz

dϕu, j

dz
dz + Fi (4.144)

or, in a more compact form:

dmu

dt
= ΔA umu + F + 1

ε
(ϕu(L)(1 − u(L , t)) − ϕu(0)(1 − u(0, t))) (4.145)

where mu = [mu,1, mu,2, . . . , mu,pu ]T , ϕu = [ϕu,1, ϕu,2, . . . , ϕu,pu ], F =
[F1, F2, . . . , Fpu ]T and

A u
i, j = −

⎤
ε

dϕu,i

dz

dϕu, j

dz
dz (4.146)

The same procedure is followed with the second equation in (4.134) to obtain:

dmv

dt
= ΔA vmv + G + 1

ε
(ϕv(L)(3 − v(L , t)) − ϕv(0)(3 − v(0, t))) (4.147)

We can note that matrices A u and A v do not depend on time—see Eq. (4.146),
therefore they can be computed beforehand. This is not the case for the projection of
the nonlinear term, Fu , therefore, such projection must be performed in the ODE file
defining the ODE system.

The solution obtained with the reduced-order model is represented in Figs. 4.19 and
4.20. One can qualitatively see that the dynamic behavior is the same as the one predicted
by the finite differences scheme of Chap. 3 (see Figs. 3.11 and 3.12).

A more quantitative idea of the accuracy of the method can be obtained by using the
mean and maximum relative errors between the POD technique and the FEM with 500
finite elements (see Table 4.10). Three different cases are considered:

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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Fig. 4.20 Numerical solution (v) of the Brusselator problem (4.134)–(4.136) using the POD tech-
nique with 6 and 4 POD basis for the states u and v, respectively

Table 4.10 Relative errors between the FEM solution (501 discretization points) and the POD
technique with different number of basis functions for the Brusselator problem

State u State v
Max. error (%) Mean error(%) Max. error (%) Mean error (%)

Case 1 16.29 0.86 5.78 0.44
Case 2 12.68 0.64 5.93 0.42
Case 3 9.29 0.48 6.38 0.37

• Case 1 where pu = pv = 4
• Case 2 where pu = 5 and pv = 4
• Case 3 where pu = 6 and pv = 4

where pu and pv are the number of POD basis functions used in the projection for the
state variables u and v, respectively. In all the considered cases, the mean relative errors
are below 1 %.

4.12 On the Use of SCILAB and OCTAVE

In this section, the numerical solution of Burgers’ Eq. (4.77) using the finite element
method with linear Lagrangian elements is developed. The Gauss-Legendre quadrature
is chosen to perform spatial integration and the procedure described in (4.4) is used to
implement the boundary conditions.

Several SCILAB functions were written to implement the different parts of the method.
Let us begin the description with the main file main_burgers_FEM.sci. The fol-
lowing points can be highlighted:

• The program begins by defining the global variables and the set of functions will be
used in the solution procedure.

• Then, as it would be the case in the MATLAB implementation, the problem parameters
are defined (in this case μ = 0.01).
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• The next step is to define the FEM spatial grid and use it to construct the mass (M) and
the second-order (D2) differentiation matrices. To this purpose, the SCILAB functions
lagrlinmass.sci and lagrlinD2.sci are used. Function lagrlinmass.
sci is described below while function lagrlinD2.sci is only included in the
companion software since its code is similar to function lagrlinmass.sci.
The inverse of the mass matrix is also computed since it will be used in function
burgers_pdes.sci.

• Since the Gauss-Legendre quadrature is used to perform the required spatial integration,
the weights and the abscissa required for this procedure are computed in the next part
of the code. Such code is similar to its MATLAB counterpart, the main difference is
the use of function spec to compute the eigenvalues instead of eig and function
gsort instead of sort to order the values of xquad.

nquad = 2;
pbeta = 0.5./sqrt(1-(2*(1:nquad)).ˆ(-2));
T = diag(pbeta,1) +diag(pbeta,-1);
[V,D] = spec(T);
xquad = diag(D);
[xquad,i] = gsort(xquad);
wquad = 2*(V(1,i) .ˆ2);

Two points (nquad = 2) are used in the quadrature. Function diag constructs a
diagonal matrix using the values of the first argument (pbeta). These values are
placed in one of the diagonals of the resulting matrix according to the value of the
second argument (0 for the the main diagonal; 1 and −1 for the first upper and lower
diagonals, respectively; 2 and −2 for the second upper and lower diagonals and so on).

• Before the call to the IVP solver, initial conditions and integration time are defined.
• As in the example of Chap. 3, the ODEPACK package is used to numerically compute

the solution of the ODE system. The BDF method is chosen by the first input parameter
“stiff”

yout = ode("stiff",x0,tl(1),tl,list(burgers_pdes));

• Finally, the numerical and analytical solutions are plotted. In order to compute the
exact solution, function burgers_exact.sci is used. This function is included in
the companion software.

clear

/ / Display mode
mode( −1);

/ / Global variables (shared by other files )
global ( "mu " )
global ( "wquad " , "xquad " )
global ( "n " , "dz " , "z0 " , "zL " , "D2 " )
global ( "iM " )

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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/ / Load the subroutines
exec ( 'lagrlinD2 .sci ' ) ;
exec ( 'lagrlinmass .sci ' ) ;
exec ( 'burgers_exact .sci ' ) ;
exec ( 'burgers_pdes .sci ' ) ;
exec ( 'integrand1 .sci ' ) ;
exec ( 'integrand2 .sci ' ) ;
exec ( 'trialfunctionslagrlin .sci ' ) ;

/ / Problem parameters
mu = 0 . 0 1 ;

/ / Finite element spatial grid
z0 = 0 ;
zL = 1 ;
n = 201;
nel = n−1;
dz = (zL−z0 ) / ( n−1);
z = (z0 :dz :zL ) ' ;

/ / FEM mass matrix
ne = 1 ;
M = lagrlinmass (dz ,n ,ne ) ;
iM = inv (M ) ;

/ / Second order differentiation matrix
D2 = lagrlinD2 (dz ,n ) ;

/ / Computation of the weigths and the abscissa used in the
/ / numerical integration via the Gauss−Legendre quadrature
nquad = 2 ;
pbeta = 0 . 5 . /sqrt(1 − (2*(1:nquad ) ) . ^ ( − 2 ) ) ;
T = diag (pbeta , 1 ) +diag (pbeta , −1) ;
[V ,D ] = spec (T ) ;
xquad = diag (D ) ;
[xquad ,i ] = gsort (xquad ) ;
wquad = 2*(V ( 1 ,i ) . ^ 2 ) ;

/ / Initial conditions
x0 = zeros (n , 1 ) ;
for ii = 1 :n
x0 (ii ) = burgers_exact (z (ii ) , 0 ) ;

end ;

/ / Time instants at which the IVP solver will save the solution
dt = 0 . 1 ;
tl = 0 :dt : 1 ;
nt = length (tl ) ;

/ / Time integration with the IVP solver
tic
yout = ode ( "stiff" ,x0 ,tl ( 1 ) ,tl ,list (burgers_pdes ) ) ;

/ / read the stopwatch timer
tcpu = toc ( ) ;

/ / Plot the solution
plot (z ,yout )
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set (gca ( ) , "auto_clear" , "off " )
yexact = zeros (n ,length (tl ) ) ;
for k = 1 :length (tl )

for i = 1 :n
yexact (i ,k ) = burgers_exact (z (i ) ,tl (k ) ) ;

end ;
end ;
plot (z ,yexact , ' * ' )

Script main_burgers_FEM.sci Main program for the implementation of the burgers equation
(4.77) with the finite element method in SCILAB. This program calls the functions

Function lagrlinmass.sci is used to compute the mass matrix of the finite ele-
ment method according to Eq. (4.44). Note that the only elements different from zero in
this matrix are those of the main diagonal (d0 in the code) as well as the first upper and
lower (d1 and dm1 in the code) diagonals. The operator .*. is used to compute the
Kronecker tensor product of two matrices. Since most of the elements of the mass matrix
are zero, the command sparse is used to store only the elements different from zero.

/ / Display mode
mode( −1);

function [M ] = lagrlinmass (h ,n ,ne )

/ / Output variables initialisation (not found in input variables )
M= [ ] ;

/ / Computation of the mass matrix of the finite element method
/ / with linear Lagrangian elements

/ / Main diagonal of the mass matrix
d0 = diag (ones ( 1 ,ne ) . * . [ 2 4*ones ( 1 ,n−2) 2 ] , 0 ) ;

/ / First upper diagonal of the mass matrix
d1 = diag ( [ones ( 1 ,ne−1 ) . * . [ones ( 1 ,n−1) 0] ones ( 1 ,n−1 ) ] , 1 ) ;

/ / First lower diagonal of the mass matrix
dm1 = diag ( [ones ( 1 ,ne−1 ) . * . [ones ( 1 ,n−1) 0] ones ( 1 ,n−1)] , −1);

/ / Mass matrix
M = sparse ( (h / 6 ) * (d0 + d1 + dm1 ) ) ;

endfunction

Function lagrlinmass.sci SCILAB function to construct the finite element mass matrix from a
given uniform spatial grid.

The ODE system resulting from the FEM methodology:

M
dx̃
dt

= (μD2) x̃ + f̃NL + g (4.148)
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is implemented in function burgers_pdes.sci. To this purpose, the second-order
derivative of the dependent variable x(z, t) is numerically computed using matrix D2.
After this, the finite element version of the nonlinear term (x · xz), i.e.,

fNL = y1 + y2; with yi =
⎤

ϕi (xxz)dz

is computed using the Gauss-Legendre quadrature. Boundary conditions are defined as
in (4.69) and the system of ODEs is constructed. The mass matrix is not used as such by
the ODE solver, but an explicit formulation in the spirit of (4.85) is preferred where the
inverse of the matrix M is computed.

/ / Display mode
mode( −1);

function [xt ] = burgers_pdes (t ,x )

/ / Output variables initialisation (not found in input variables )
xt= [ ] ;

/ / Global variables
global ( "mu " )
global ( "wquad " , "xquad " )
global ( "n " , "z0 " , "zL " , "D2 " , "xx " )
global ( "iM " )

/ / Second spatial derivative xzz computed through the second
/ / differentiation matrix
xzz = D2*x ;

/ / Rename state variable x to pass it to integrands functions
xx = x ;

/ / Spatial integration of the integrands in the nonlinear term of
/ / Burgers equation . The nonlinear term is fx = x*xz
y1 = integrand1 (xquad ' ) *wquad ' ;
y2 = integrand2 (xquad ' ) *wquad ' ;
fx = y1+y2 ;

/ / Boundary conditions
gL = burgers_exact (z0 ,t ) ;
gR = burgers_exact (zL ,t ) ;
gv ( 1 , 1 ) = x(1)−gL ;
gv (n , 1 ) = x (n)−gR ;

/ / System of ordinary differential equations
xt = mu*xzz − fx − gv ;

/ / Multiplication by the inverse of the mass matrix
xt = iM*xt ;

endfunction

Function burgers_pdes.sci Implementation of the ODE system resulting from the application of
the finite element methodology to the Burgers PDE system.
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Functions integrand1.sci and trialfunctionslagrlin.sciwill not be
described here as they are very similar to their MATLAB counterparts. The interested
reader can find them in the companion software.

4.13 Summary

In this chapter, we have introduced weighted residual methods, which represent the
solution as a series of basis functions whose coefficients are determined so as to make
the PDE (and BC) residuals as small as possible (in some average sense). In particular,
we have focused attention on the Galerkin and collocation methods, and have discussed
global and local basis functions, the latter leading to the famous Finite Element Method—
FEM. Together with finite difference methods, FEM is one of the most popular methods
for solving IBVP. Various basis functions can be used in conjunction with the FEM,
especially Lagrange or Hermite polynomials. The construction of the FEM matrices is
presented in detail for these two types of polynomials, when using a Galerkin method,
and for Hermite polynomials, when using an orthogonal collocation approach. It is also
possible to compute, using experimental or simulation data, optimal basis functions, i.e.,
the ones that are able to capture most of the solution features with a limited number of
functions. This is the essence of the proper orthogonal decomposition (POD). Several
examples are studied including the heat equation, and the Brusselator.

References

1. Courant R, Hilbert D (1937) Methods of mathematical physics. Wiley, New York, USA
2. Runge C (1901) Über empirische funktionen und die interpolation zwischen äquidistanten

ordinaten. Zeitschrift für Mathematik und Physik 46:224–243
3. Lanczos C (1938) Trigonometric interpolation of empirical and analytic functions. J Math Phys

17:123–199
4. Finlayson BA (1971) Packed bed reactor analysis by orthogonal collocation. Chem Eng Sci

26:1081–1091
5. de Boor C, Swartz B (1973) Collocation at Gaussian points. SIAM J Numer Anal 10:582–606
6. Reddy JN (1993) Introduction to the finite element method, 2nd edn. McGraw Hill, New York
7. Trefethen LN (2000) Spectral methods in matlab. SIAM.
8. Beltrami E (1998) Mathematics for dynamic modeling. Academic Press, Massachusetts
9. Tombs MS, Postlethwaite I (1987) Truncated balanced realization of stable, non-minimal state-

space systems. Int J Control 46:1319–1330
10. Lemouel A, Neirac F, Maisi N (1994) Heat-transfer equation–modeling by rational Hankel

approximation methods. Revue Generale de Thermique 33(389):336–343
11. Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I: Coherent struc-

tures. Quaterly Appl Math 45(3):561–571.
12. Lorenz EN (1960) Energy and numerical weather prediction. Tellus 12(4):364–373
13. Alonso AA, Frouzakis CE, Kevrekidis IG (2004) Optimal sensor placement for state recon-

struction of distributed process systems. AIChE J 50(7):1438–1452
14. García MR, Vilas C, Santos LO, Alonso AA (2012) A robust multi-model predictive controller

for distributed parameter systems. J Process Control 22(1):60–71



References 283

15. Vilas C, Vande A (2011) Wouwer. combination of multi-model predictive control and the wave
theory for the control of simulated moving bed plants. Chem Eng Sci 66:632–641

16. Berkooz G, Holmes P, Lumley L (1993) The proper orthogonal decomposition in the analysis
of turbulent flows. Ann Rev Fluid Mech 25:539–575

17. Holmes P, Lumley JL, Berkooz G (1996) Turbulence, coherent structures, dynamical systems
and symmetry. Cambridge University Press, Cambridge

18. García MR, Vilas C, Banga JR, Alonso AA (2007) Optimal field reconstruction of distributed
process systems from partial measurements. Ind Eng Chem Res 46(2):530–539

19. Vilas C, García MR, Banga JR, Alonso AA (2008) Robust feed-back control of travelling
waves in a class of reaction-diffusion distributed biological systems. Physica D: Nonlinear
Phenomena 237(18):2353–2364

20. Balsa-Canto E, Alonso AA, Banga JR (2002) A novel, efficient and reliable method for thermal
process design and optimization. Part II: applications. J Food Eng 52(3):235–247

21. Holmes PJ, Lumley JL, Berkooz G, Mattingly JC, Wittenberg RW (1997) Low-dimensional
models of coherent structures in turbulence. Phys Rep 287(4):338–384

22. Ravindran SS (2000) A reduced-order approach for optimal control of fluids using proper
orthogonal decomposition. Int. J Numer Meth Fluids 34(5):425–448

23. Smoller J (1994) Shock waves and Reaction-Diffusion equations, 2nd edn. Springer, New york
24. Reddy BD (1998) Introductory functional analysis: with applications to boundary value prob-

lems and finite elements. Springer, New York
25. Balsa-Canto E, Alonso AA, Banga JR (2004) Reduced-order models for nonlinear distrib-

uted process systems and their application in dynamic optimization. Ind Eng Chem Res
43(13):3353–3363

26. Buchanan GR (1995) Schaum’s outlines of theory and problems of finite element analysis.
McGraw Hill, New York

27. Courant R, Hilbert D (1937) Methods of mathematical physics. Wiley, New York
28. Lapidus L, Pinder GF (1999) Numerical solution of partial differential equations in science

and engineering. Wiley, New York
29. Pozrikidis C (2005) Introduction to finite and spectral element methods using Matlab. Chapman

& Hall/CRC, Boca Raton
30. Reddy JN (1993) Introduction to the finite element method, 2nd edn. McGraw Hill, New York
31. Sirovich L (1987) Turbulence and the dynamics of coherent structures. Part I: Coherent struc-

tures. Quaterly of Appl Math 45(3):561–571.
32. Trefethen LN (2000) Spectral methods in Matlab. SIAM



Chapter 5
How to Handle Steep Moving Fronts?

As we have seen in previous chapters, some IBVPs have solutions which can develop
steep spatial gradients and in some cases, steep fronts traveling through the spatial
domain. For instance, Burgers equation, which was our first PDE example in Chap. 1.

xt = −xxz + µxzz (5.1)

has a solution

xa(z, t) = 0.1ea + 0.5eb + ec

ea + eb + ec
(5.2)

with

a = 0.05

µ
(z − 0.5 + 4.95t); b = 0.25

µ
(z − 0.5 + 0.75t); c = 0.5

µ
(z − 0.375)

which displays front sharpening, i.e., the solution front becomes sharper and sharper
as it travels from left to right (see Fig. 5.1).

The numerical solution of such problems is delicate as classical discretization
schemes will usually suffer from spurious oscillations (as already outlined in Chap. 3,
when studying the convection-diffusion-reaction equation). The objective of this
chapter is to introduce a few methods that can be useful in dealing with problems
with steep moving fronts. We will first briefly discuss the concept of conservation laws
and describe an analytical solution procedure called the method of characteristics,
which can be applied to a certain class of problems (hyperbolic conservation laws).
After the review of these theoretical concepts, which will allow us to have a better
grasp of the origin of moving fronts and nonlinear waves, we will focus attention on
several numerical schemes which can provide good numerical solutions, depending
on the problem characteristics, among which:

• Upwind finite difference schemes (which have already been touched upon in
Chap. 3)

• Alternating methods

A. Vande Wouwer et al., Simulation of ODE/PDE Models with MATLAB�, 285
OCTAVE and SCILAB, DOI: 10.1007/978-3-319-06790-2_5,
© Springer International Publishing Switzerland 2014
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Fig. 5.1 Front sharpening
effect in Burgers equation
(with a viscosity µ = 0.001)
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• Finite volume methods, slope limiters, and centered schemes
• Moving grid methods.

The first category of methods are finite difference schemes on dedicated stencils
(i.e., stencils oriented in the upwind direction). They can achieve satisfactory results
for problems with mild fronts. The second group of methods use a divide and conquer
approach by decomposing the original problem into subproblems that can be more
easily handled by one of the previously introduced techniques (mixing the results of
the method of characteristics with finite difference techniques). The third group is
based on finite volume methods, i.e., they make use of cell averaging and significantly
depart from the finite difference methods as they are nonlinear in essence. Finally,
moving or adaptive grid methods use a spatial discretization grid with a nonuniform
density, which is adapted so as to concentrate the grid points in regions of high
spatial activity. The grid points can be moved continuously or only at discrete times,
following some front tracking algorithm.

5.1 Conservation Laws

The conservation of mass, energy or momentum are fundamental principles that are
at the root of the derivation of many PDEs. Let x(z, t) be, for instance, the density of
cars on a highway. The number of cars in the road segment [zL , zR] is then given by

zR∫
zL

x(z, t)dz

and the variation of this number of cars can be expressed as
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d

dt

zR∫
zL

x(z, t)dz =
zR∫

zL

dx(z, t)

dt
dz = f (x(zL , t)) − f (x(zR, t))

where the function f (x) represents the flux of cars entering and exiting the highway.
This expression can be rewritten in an integral form using the divergence theorem

zR∫
zL

[
dx(z, t)

dt
+ d f (x(z, t))

dz

]
dz = 0

As this expression is valid whatever the road segment [zL , zR] under consideration,
the integrand must be exactly zero

dx(z, t)

dt
+ d f (x(z, t))

dz
= 0

This latter PDE is in the form of a conservation law. It can be generalized for the case
where there are sources or sinks in the spatial domain. For the car traffic example,
this would correspond to highway entrances or exits:

dx(z, t)

dt
+ d f (x(z, t))

dz
= S(x(z, t))

Let us consider some particular examples:
Example 1 car traffic with a velocity v(x(z, t)) depending on the car density (with
reasonable drivers, one can imagine that the velocity of the cars decreases with
increasing car density on the road). In this case, the flux f (x) = v(x)x and

xt + (v(x)x)z = 0

If the car velocity is constant (independent of the car density), then the equation
reduces to a simple advection equation

xt + vxz = 0

Example 2 Burgers equation. Up to now, we have written Burgers equation in the
so-called advection form xt = −xxz+µxzz . It is possible to express Burgers equation
as a conservation law with f (x) = 0.5x2 − µxz :

xt + (0.5x2 − µxz)z = 0.

Actually, Burgers equation expresses the conservation of momentum. It is a simpli-
fied version of the Navier–Stokes equation, where it is assumed that the pressure is
uniform and there is no external force. The inviscid Burgers equation corresponds to
a zero kinematic viscosity µ = 0, and reduces to a hyperbolic conservation law
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xt + (0.5x2)z = 0

Inviscid Burgers equation can be derived directly when considering a gas with free,
noninteracting, particles.

Example 3 Wave equation. This equation models sound waves, water waves, and
light waves. It is a second-order linear PDE with f (x) = −c2xz

xtt − (c2xz)z = 0.

5.2 The Methods of Characteristics and of Vanishing Viscosity

The method of characteristics [1] is an analytical procedure which allows the
derivation of exact solutions for hyperbolic conservation laws, i.e., conservation
laws where only first-order spatial derivatives appear, or in other words where there
is no viscous, dissipative, terms.

The idea behind the method is to change coordinates from (z, t) to a new
coordinate system (ν, t) where the PDE becomes an ODE along certain curves (the
characteristics) in the (z, t) plane. Each characteristic curve is associated to a partic-
ular value of ν .

To introduce this method we consider the advection equation with constant
velocity

xt + vxz = 0; x(z, 0) = x0(z)

The total derivative of x with respect to time can be decomposed into

dx

dt
= xz

dz

dt
+ xt

If we introduce the characteristic equation

dz

dt
= v

with the initial condition z(0) = ν (which represents a set of initial spatial locations),
then the original PDE reduces to a simple ODE

dx

dt
= 0; x(0) = x0(ν)

i.e., the solution x(z, t) is constant along the characteristic curves z = vt + ν , and
can be expressed as x(z, t) = x0(ν) = x0(z − vt). Thus, the initial solution profile
travels through the spatial domain at a constant velocity without change in shape.

This is shown in Fig. 5.2 for x0(z) = e−100(z−0.1)

1+e−100(z−0.1) and v = 2.
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Fig. 5.2 Solution of
the advection equation
with x0(z) =
e−100(z−0.1)/1 + e−100(z−0.1)

and v = 2 at times
t = 0, 0.05, . . . , 4
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Fig. 5.3 Characteristic curves
for the advection equation with
v = 2
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In a time-space diagram, such as Fig. 5.3, the characteristic curves can be rewritten
as t = (z − ν)/2 . They are straight lines with slope 1/v (i.e., with slope 1/2 in the
considered example).

Figure 5.4 summarizes all the results by showing a 3D representation of the
solution along with the characteristic lines. Clearly a point of the solution profile,
which corresponds to a particular value of the dependent variable, moves along a
characteristic line.

Let us now consider an advection equation with space-dependent velocity v(z) =
ϕz:

xt + v(z)xz = 0; x(z, 0) = x0(z)

The characteristic equation is now

dz

dt
= v(z) = ϕz
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Fig. 5.4 3D representation of the solution of the advection equation with v = 2. Black lines in the
plane (z, t) correspond with the characteristic curves
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Fig. 5.5 Solution of the advection equation with x0(z) = e−100(z−0.1)/1 + e−100(z−0.1) and with
v = 2z at times t = 0, 0.1, . . . , 0.8

with the initial condition z(0) = ν , and solution z = νeϕt .
Again the solution is constant along the characteristic curves, which are no longer

straight lines, and x(z, t) = x0(ν) = x0(ze−ϕt ). The solution and characteristic
curves are shown in Figs. 5.5 and 5.6.

Finally, we consider the inviscid Burgers equation

xt + (0.5x2)z = 0; x(z, 0) = x0(z)
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Fig. 5.6 Characteristic curves
for the advection equation with
v = 2z
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The characteristic equation is now

dz

dt
= x(z, t)

The solution is constant along these characteristic lines, as the total derivative of
x(z, t) is

dx

dt
= xz

dz

dt
+ xt = xz

dz

dt
− (0.5x2)z = xz

dz

dt
− xz x = xz

(
dz

dt
− x

)
= 0

Considering these latter two equations,

dz

dt
= x

dx

dt
= 0

with the initial condition z(0) = ν , then the solution is given by z = x0(ν)t + ν .
The characteristic curves are straight lines as for the advection equation with

constant velocity, but these lines are no longer parallel as they have different slopes
1/x0(ν). Depending on the initial condition, they can therefore intersect, as shown
in Fig. 5.7, which is drawn with an initial condition computed using Eq. (5.2).

Before the characteristics intersect, the solution to the PDE problem is given
by x(z, t) = x0(z − xt), which is in an implicit form and is therefore difficult to
use. When the characteristics intersect, the method is no longer valid as it would
lead to nonphysical, multivalued, functions. In fact, the solution parts with larger
initial conditions move faster than the ones with smaller initial conditions, and a
so-called wave breaking phenomenon occurs. The breaking time is easy to predict.
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Fig. 5.7 Characteristic curves
for Burgers equation with an
initial condition based on (5.2)
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If we consider two characteristic lines starting from zi and z j , they will intersect at
time tb when

zi + x0(zi )tb = z j + x0(z j )tb

so that

tb = zi − z j

x0(z j ) − x0(zi )
= − ρz

ρx0
; lim

ρz→0

(
− ρz

ρx0

)
= − 1

x0,z(zi )

In reality, there are not only two characteristic lines but a whole bunch of them,
and the breaking time corresponds to the smallest intersection time, i.e., tb =
minz

(−1/x0,z(z)
⎛
. After the breaking time, discontinuities, also called shocks, may

appear in the solution. To handle this phenomenon, an approach is to introduce in
the equation a small dispersion term µxzz , which counteracts the steepening effect of
the nonlinear term. The presence of this dispersion term is natural in many realistic
applications. In some sense, mathematical idealization leads to the inviscid Burgers
equation, and the existence of solution displaying shocks. As µ → 0, we can expect
that the solution to our modified PDE problem will approach the solution of the
original inviscid problem. This approach is called the vanishing viscosity method,
and has been proposed first by Oleinik [2] in one space dimension and extended by
Kruzkov [3] in several space dimensions. This method ensures the uniqueness of the
solution, and the shocks constructed by the vanishing viscosity method are physi-
cal shocks (in particular they satisfy the so-called entropy condition which states in
mathematical terms that the entropy of the solution is a nondecreasing quantity, as
thermodynamics tells us - more on the entropy condition can be found for instance
in the nice book by LeVeque [4]).
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5.3 Transformation-Based Methods

The consideration of a dispersion term in Burgers equation leads to the equation
already introduced, i.e.,

xt + (0.5x2 − µxz)z = 0

which can be solved analytically using specific transformations. The earliest method
is the Cole-Hopf transformation [5]. The idea is to introduce a transformation which
eliminates the nonlinearity. We consider the function

Δ(z, t) = exp

(
− 1

2µ

∫
xdz

)

so that
x(z, t) = −2µ

Δz

Δ

Substituting in Burgers equation, and evaluating term by term

xt = −2µ(Δz,tΔ − ΔzΔt )

Δ2 ; xxz = 4µ2Δz(ΔzzΔ − Δ2
z )

Δ3 ;

µxzz = −2µ2(2Δ3
z − 3ΔΔzzΔz + Δ2Δzzz)

Δ3

gives
−ΔΔz,t + Δz(Δt − µΔzz) + µΔΔzzz = 0 ≤

Δz(Δt − µΔzz) = ΔΔz,t − µΔΔzzz = Δ(Δz,t − µΔzzz) = Δ(Δt − µΔzz)z

If Δ(z, t) is solution to the heat equation Δt − µΔzz = 0, then x(z, t) is solution of
Burgers equation. The original problem is thus transformed into

Δt = µΔzz; Δ(z, t = 0) = exp

⎡
⎢− 1

2µ

z∫
0

x(ν, t = 0)dν

⎣
⎤ = Δ0(z)

This latter problem is easy to solve using Fourier transform (in the previous chapter
we have already seen how to solve the heat equation using Fourier series). Let us
denote by F the Fourier transform applied to Δ considered as a function of the space
variable:

F(Δ(z, t)) = Δ̂(λ, t) = 1↔
2α

⇒∫
−⇒

Δ(z, t) exp (−iλz)dz
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The heat equation can be transformed to

F(Δt ) = dF(Δ)

dt
= Δ̂t

F(µΔzz) = µ(iλ)2 F(Δ) = −µλ2Δ̂

so that the PDE problem is transformed into an ODE problem

Δ̂t = −µλ2Δ̂

Δ̂(λ, t = 0) = Δ̂0(λ)

whose solution is simply Δ̂(λ, t) = Δ̂0(λ) exp (−µλ2t).
The inverse transform then gives the sought solution

Δ(z, t) = F−1(Δ̂(λ, t)) = F−1(Δ̂0(λ) exp (−µλ2t)) = Δ0(z) ∞ F−1(exp (−µλ2t))

= 1↔
4αµt

+⇒∫
−⇒

Δ0(s) exp

(
− (z − s)2

4µt

)
ds

where ∞ denotes the convolution product, and

F−1(exp (−µλ2t)) = g(z, t) = 1↔
2α

1↔
2µt

exp

(
− z2

4µt

)

Note that this latter function, g(z, t), also called a heat kernel, is the solution of
the heat equation when considering an initial heat point source (an initial condition
defined as a Dirac delta function). The solution of the heat equation to an arbitrary
initial condition is the convolution product of this initial condition with the heat
kernel.

Now that we have the solution to the heat equation, we can return to the solution
of Burgers equation applying the transformation in the reverse way

x(z, t) =

∫ +⇒

−⇒
z − s

t
Δ0(s) exp

(
− (z − s)2

4µt

)
ds

∫ +⇒

−⇒
Δ0(s) exp

(
− (z − s)2

4µt

)
ds

This approach is elegant, and not restricted to Burgers equation (see [6] for the
extension of this approach to a class of nonlinear parabolic and hyperbolic equations,
and [7] for the derivation of solution to a seventh-order Korteweg-de-Vries equation).
The integrals appearing in the exact solution are however not trivial to evaluate.
Numerical schemes have been proposed, for instance by Sakai and Kimura [8].
Other transformations have been introduced, such as the tanh method [9] or the exp-
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Fig. 5.8 Numerical solution
of Burgers equation
(µ = 0.001) at times
t = 0, 0.1, . . . , 1 with
N = 200 and a 3-point cen-
tered FD scheme for the first
spatial derivative and a 5-point
centered FD scheme for the
second spatial derivative. Red
curves exact solution. Black
curves numerical solution

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x
( z

,t
)

z

function method [10], which have allowed several exact solutions to be obtained [11].
These methods are particularly convenient for an implementation using a symbolic
manipulation language [12].

Here, we will not follow this direction, which provides very interesting insight
in the solution of nonlinear wave problems, but rather turn back to general purpose
numerical techniques, and first have a look at what classical numerical methods
can give.

5.4 Upwind Finite Difference and Finite Volume Schemes

We consider the viscid Burgers equation in the form

xt = −xxz + µxzz

with a viscosity µ = 0.001 and an initial condition as in Fig. 5.1, and we first apply
several finite difference schemes as introduced in Chap. 3. It is important to recall that
first-order derivative terms are better approximated using upwind schemes, whereas
centered schemes are appropriate for second-order spatial derivatives. Indeed, if we
use a 3-point centered FD scheme for the first spatial derivative and a 5-point centered
FD scheme for the second spatial derivative (on a grid with 201 nodes) then we get
the results of Fig. 5.8. The front sharpening effect is relatively well captured, but
spurious oscillations appear at the front edges. If a 2-point upwind scheme is applied
to the convective term, the picture changes to Fig. 5.9. Oscillations have disappeared,
but significant numerical dissipation and dispersion has been introduced, i.e., the
fronts are smoothed off artificially, and eventually the speed of the front wave is not
well-estimated leading to a significant phase shift of the fronts.

The wrong estimation of the wave velocity can be alleviated by considering the
equation in conservation form, i.e.,

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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Fig. 5.9 Numerical solution of Burgers equation (µ = 0.001) at times t = 0, 0.1, . . . , 1 with
N = 200 and 2-point upwind FDs for first-order spatial derivatives and 5-point centered FDs for
second-order spatial derivatives. Red curves exact solution. Black curves numerical solution
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Fig. 5.10 Numerical solution of Burgers equation (µ = 0.001) in conservation form at times
t = 0, 0.1, . . . , 1 with N = 200 (right) and N = 400 (left), 2-point upwind FDs for first-order
spatial derivatives and 5-point centered FDs for second-order spatial derivatives. Red curves exact
solution. Black curves numerical solution

xt = (−0.5x2)z + µxzz

and applying numerical discretization directly to the corresponding terms. The much
improved results are shown in Fig. 5.10.

The use of numerical schemes written in conservation form, i.e.,

dxi

dt
= − F(xi+p, . . . , xi−q) − F(xi+p−1, . . . , xi−q−1)

ρz

where F represents a numerical approximation of the flux function, appears to be of
paramount importance to obtain a satisfactory solution, with the correct speed.

The formulation of the discretization scheme in conservation form appears natu-
rally when deriving a basic finite volume scheme. The idea is to compute cell averages
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by integrating the PDE over a cell extending between intermediate points zi−1/2 and
zi+1/2 (our grid points zi are the centers of each of these cells).

∫ zi+1/2

zi−1/2

xt dz =
⎥
−0.5x2 + µxz

⎦zi+1/2

zi−1/2
= [− f ]

zi+1/2
zi−1/2

If xt is continuous on the interval [zi−1/2, zi+1/2] then the mean-value theorem allows
us to write ∫ zi+1/2

zi−1/2

xt dz = xt (νi , t)ρz = xt (zi , t)ρz + O(ρz2)

where νi is a point in the interval
[
zi−1/2, zi+1/2

]
, which is approximately taken as

the mid-point zi . Thus,

xt (zi , t) = [− f ]
zi+1/2
zi−1/2

ρz
= f (zi−1/2) − f (zi+1/2)

ρz
+ O(ρz)

To evaluate the terms at the cell interfaces zi−1/2 and zi+1/2 we can use averages based
on the values in the grid points zi−1, zi , zi+1, as well as a centered approximation of
derivatives, e.g.,

xz(zi+1/2, t) = x(zi+1) − x(zi )

ρz
+ O(ρz2)

xz(zi−1/2, t) = x(zi ) − x(zi−1)

ρz
+ O(ρz2)

so that

xt (zi , t) = 0.5
x2(zi−1/2) − x2(zi+1/2)

ρz
+ µ

xz(zi+1/2) − xz(zi−1/2)

ρz
+ O(ρz)

= 0.5
x2(zi−1) + x2(zi ) − x2(zi ) − x2(zi+1)

2ρz

+ µ

ρz

(
x(zi+1) − x(zi )

ρz
− x(zi ) − x(zi−1)

ρz

)
+ O(ρz)

= 0.5
x2(zi−1) − x2(zi+1)

2ρz
+ µ

x(zi+1) − 2x(zi ) + x(zi−1)

ρz2 + O(ρz)

This scheme is quite simple, the main difference with the previous FD schemes
being that the nonlinear flux function is evaluated at intermediate points. This scheme
can be applied for i = 1, . . . , N − 1, which corresponds to entire cells. At the
boundaries, i = 0, and i = N , the BCs inspired from the exact solution can be
applied. Figure 5.11 shows results with N = 400 points.

As apparent in Figs. 5.10 and 5.11, numerical dissipation can be decreased using
additional grid points (and the finite volume scheme performs a bit better in this
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Fig. 5.11 Numerical
solution of Burgers equa-
tion (µ = 0.001) at times
t = 0, 0.1, . . . , 1 with
N = 400, and a first-order
accurate finite volume scheme.
Red curves exact solution.
Black curves numerical solu-
tion
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Fig. 5.12 Numerical
solution of Burgers equa-
tion (µ = 0.001) at times
t = 0, 0.1, . . . , 1 with
N = 200, 3-point upwind
FDs for first-order spatial
derivatives, and 5-point cen-
tered FDs for second-order
spatial derivatives. Red curves
exact solution. Black curves
numerical solution
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respect). Alternatively higher order schemes can be used. Figure 5.12 shows results
with a 3-point upwind finite difference scheme and N = 200. Numerical dissipation
is much smaller than with a 2-point upwind scheme, but spurious oscillations appear.

Better results can be obtained with a 5-point biased-upwind FD scheme, as shown
in Fig. 5.13.

This approach can cope with smaller viscosities but will be limited by the presence
of spurious oscillations. If we consider for instance a viscosityµ = 0.0000001, which
is a much harder problem, Fig. 5.14 shows the results with N = 700.

5.5 A Divide and Conquer Approach

A general approach when tackling a difficult problem, is whenever possible to
decompose it into a sequence of easier tasks. This is the underlying idea of the
so-called operator splitting methods.
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Fig. 5.13 Numerical
solution of Burgers equa-
tion (µ = 0.001) at times
t = 0, 0.1, . . . , 1 with
N = 200, 5-point upwind
FDs for first-order spatial
derivatives, and 5-point cen-
tered FDs for second-order
spatial derivatives. Red curves
exact solution. Black curves
numerical solution
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Fig. 5.14 Numerical
solution of Burgers equa-
tion (µ = 0.0000001) at
times t = 0, 0.1, . . . , 1
with N = 700, 5-point
upwind FDs for first-order
spatial derivatives and
5-point centered FDs
for second-order spatial
derivatives. Red curves exact
solution. Black curves numer-
ical solution
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The rationale behind operator splitting, also called time splitting methods or frac-
tional step methods, is to split the original convection-reaction-diffusion PDE studied
in Chap. 3.

xt = −vxz + Dxzz + r(x)

into different subproblems which are solved sequentially within each time step, in
order to take advantage of solution techniques that are adapted to each of the different
subproblems [13]. This is true for the spatial discretization techniques, but also for
time integration. In general, splitting algorithms can be classified into two- and three-
step procedures. Traditional two-step schemes involve the isolation of the reaction
term, yielding a linear convection-diffusion PDE, and a system of nonlinear ODEs:

1. xt = −vxz + Dxzz

2. xt = r(x).

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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Typically, the linear convection-diffusion equation is solved using the MOL with a
standard finite difference scheme, while the reaction part is solved with an appropriate
ODE integrator. Chemical reaction systems can be very stiff so that an implicit solver
might be required for the second subproblem. However, for convection-dominated
problems, this strategy can be computationally expensive due to the fine grid required
for solving the convection-diffusion PDE. As an alternative, [14] has proposed to con-
sider first a linear diffusion equation, followed by a nonlinear convection-reaction
equation,

1. xt = Dxzz

2. xt = −vxz + r(x).

The heat equation is an easy problem that can be solved by a variety of methods
(Fourier series, Fourier transform, finite differences, finite elements), but the nonlin-
ear hyperbolic convection-reaction PDE can be significantly more difficult to solve.

Three-step splitting algorithms separate all phenomena, i.e., diffusion, convection
and reaction, yielding two linear PDEs, and a nonlinear system of ODEs

1. xt = Dxzz

2. xt = −vxz

3. xt = r(x).

Each of these steps can be solved by a dedicated technique.
A question naturally arises on how to select a particular sequence and on its poten-

tial influence on the solution. In [13, 15], necessary conditions for commutativity
are given:

• Convection commutes with diffusion, if the velocity v and the diffusion coefficient
D do not explicitly depend on the spatial coordinate z.

• Convection commutes with reaction, if the velocity v and the reaction r(x) do not
explicitly depend on the spatial coordinate z.

• Diffusion commutes with reaction, if the reaction r(x) is linear in x , and indepen-
dent of the spatial coordinate z.

In general, the first two necessary conditions are satisfied. The third condition
is, however, often not fulfilled, which may lead to different solutions for different
sequences. However, the correct sequence can be found by comparison with a low-
order finite differences method.

As a particular implementation of this latter approach, we will consider the
sequencing method proposed by Renou et al. [16]. This method uses the above-
mentioned 3-step philosophy, in the following order:

1. xt = −vxz

2. xt = r(x)

3. xt = Dxzz .

At time t = 0, the convection PDE is solved for a time step ρt with as initial
condition the original profile x0(z), yielding a profile x∞(z). This latter profile is then
used as initial condition for solving the reaction ODE over time step ρt , resulting in
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a profile x∞∞(z). This new profile is again used as an initial condition, but now for the
diffusion PDE. This provides the final solution x∞∞∞(z) for the current time interval.
This solution is used as starting point to repeat the three-step solution procedure on
the next time step from ρt to 2ρt , and so on.

Back to numerical methods, the first step, i.e., the solution of the advection
equation can be easily determined using the method of characteristics described
in Sect. 5.2. With a constant velocity v, the initial profile is simply moved through
the spatial domain of a distance vρt without change of shape. This corresponds to
a transportation lag. The second step is the solution of a system of ordinary differ-
ential equations. If the reaction rates are linear, this system could even be solved
analytically. If they are nonlinear, then the full range of solvers is available from a
simple explicit Euler method to, for instance, an implicit Rosenbrock method for
stiff ODEs. The last step is the solution of the heat equation which can be achieved
using Fourier transformation, by convolution of the initial condition with the heat
kernel. In [16] another approach is preferred, which is based on the discretization of
the heat equation using a finite difference matrix D2.

ẋ = Dxzz = D(D2x); x(t0) = x∞∞

and an analytic solution of the resulting linear system of ODEs

x(t0 + ρt) = exp (D(D2x)ρt)x∞∞

Note that the transition matrix ω(t0, t0 + ρt) = ω(ρt) = exp (D(D2x)ρt) does
not depend on t0, and once a discretization matrix D2 and a time step size ρt have
been chosen, can be computed once and for all. Hence the solution of the diffusion
equation on a time step, can be simply implemented by a vector-matrix multiplication

x(t0 + ρt) = ωx∞∞

To illustrate the use of this solution procedure, we consider a fixed bed bioreactor
[17], for instance an anaerobic digester for waste water treatment. Bacterial popula-
tion forming a biomass X [g/L] is attached to the reactor bed of length L [m], and
grows on a limiting substrate S [g/L] that is fed at the reactor inlet:

εS

εt
= − v

εS

εz
+ D

ε2S

εz2 − kµ(S, X)X

ε X

εt
= −µ(S, X)X − kd X

where the specific growth rate [1/h] involves substrate activation as well as both
biomass and substrate inhibition at higher concentration:

µ(S, X) = µ0
S

K X X + S + S2/KS
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Fig. 5.15 Numerical solution
of the fixed bed biore-
actor example at times
t = 0, 0.1, 0.2, . . . for v = 1
m/h, D = 0.0001 m2/h, with
N = 100, 3-point centered
FDs for second-order spatial
derivatives, and ode45
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In this expression, K X is the biomass inhibition constant and KS the substrate inhibi-
tion constant. The biomass growth is partly counterbalanced by a decay phenomenon
(mortality and detachment from the bed) with rate kd .

The boundary and initial conditions are given by

D
εS

εz
(0, t) = v (S(0, t) − Sin)

D
εS

εz
(L , t) = 0

S(z, 0) = S0(z) = Sin = 20 g/ l

X (z, 0) = X0(z) = 300 g/ l

Figure 5.15 shows the evolution of the substrate profile at times t = 0, 0.1, . . . cor-
responding to a Peclet number Pe = vL/D = 10000 , i.e., a convection-dominated
problem. The procedure uses 100 grid points, a 3-point centered scheme for finite
difference approximation, and the explicit solver ode45. The sequencing method
is extremely powerful, providing accurate results with very modest computational
load. A more detailed evaluation of the method, including additional tests and com-
parisons with alternative methods can be found in [18]. Codes for various examples,
including the fixed-bioreactor, are available in the companion software.
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5.6 Finite Volume Methods and Slope Limiters

As we have seen in the previous sections, the solution of conservation laws, such as
Burgers equation

xt = (−0.5x2)z + µxzz

is very challenging as the solution can develop a front sharpening phenomenon, and
classical methods are unable to resolve the steep slopes without excessive numerical
dissipation or spurious oscillations.

The question that comes to mind is therefore: is it possible to preserve the
monotonic character of the solution, i.e., avoid the appearance of spurious local
extrema and the amplification of existing local maxima/minima, without introduc-
ing too much artificial dissipation?

The starting point to answer this question is an important result established by
Lax in 1973 [19] who showed that for a scalar conservation law

εx

εt
+ ε f (x)

εz
= 0

the total variation of any physically possible solution

T V =
∫ ∥∥∥∥εx

εz

∥∥∥∥ dz

does not increase with time.
If we consider a discrete-space solution

T V (x) =
∑

i

‖xi+1 − xi‖

a numerical scheme is said total variation diminishing if the T V of the numerical
solution is not growing with time, i.e.,

T V (xk+1) � T V (xk)

If a numerical scheme preserving the solution monotonicity is called monotone, then
[20] showed that a monotone scheme is TVD, and a TVD scheme is monotonicity
preserving.

In fact, the simple 2-point upwind finite difference and finite volume schemes
of Sect. 5.4 are first-order TVD schemes which can be used to solve, for instance,
Burgers equation but introduces ample numerical dissipation. The development of
higher order TVD schemes is based on the finite volume discretization that we will
now derive in more details. For this, we come back to the scalar conservation law

xt + fz = 0
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and integrate it over time between t0 and t to obtain

x(z, t) = x(z, t0) −
∫ t

t0
fzdt

We now integrate this latter expression over a finite volume (usually called cell)
[zi−1/2, zi+1/2] and define the cell average value x̄i as

x̄i (t) = 1

ρz

∫ zi + ρz
2

zi − ρz
2

x(z, t)dz = 1

ρz

∫ zi + ρz
2

zi − ρz
2

[
x(z, t0) −

∫ t

t0
fzdt

]
dz

= x̄i (t0) − 1

ρz

∫ t

t0

[
f

(
zi + ρz

2

)
− f

(
zi − ρz

2

)]
dt

Differentiating with respect to time gives

ε x̄i (t)

εt
= f (zi−1/2) − f (zi+1/2)

ρz

where the values of the flux at the cell interfaces have to be refined in order to achieve
a higher accuracy (this is a major difference with finite difference schemes where
higher order approximation is achieved by increasing the stencil of the formula).

Note that in Sect. 5.4, we have used x(zi ), which is the value of the dependent
variable in the mid-point of the cell [zi−1/2, zi+1/2], and can be viewed as a first-order
approximation of a cell-average value

x(zi ) = 1

ρz

∫ zi + ρz
2

zi − ρz
2

x(z)dz + O(ρz) = x̄i (t) + O(ρz)

To get a more detailed picture of the error term (represented by the big O), we replace
the dependent variable by its Taylor series development

x(z) = x(zi ) + (z − zi )
dx

dz

⎜⎜⎜⎜
zi

+ (z − zi )
2

2!
d2x

dz2

⎜⎜⎜⎜
zi

+ · · ·

and obtain

x̄i = 1

ρz

∫ zi + ρz
2

zi − ρz
2

x(z)dz = 1

ρz

∫ zi + ρz
2

zi − ρz
2

[
x(zi ) + (z − zi )

dx

dz

⎜⎜⎜⎜
zi

+ (z − zi )
2

2!
d2x

dz2

⎜⎜⎜⎜
zi

+ · · ·
]

dz

= x(zi ) + ρz2

24

d2x

dz2

⎜⎜⎜⎜
zi

+ · · ·

We see more clearly the distinction between x̄i , the cell-average value, and x(zi ),
the mid-cell value (the two are exactly the same if the solution profile is a straight
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line, but they will in general differ depending on the solution curvature). Let us now
eliminate x(zi ) in the Taylor series

x(z) = x̄i + (z − zi )
dx

dz

⎜⎜⎜⎜
zi

+
(

(z − zi )
2

2! − ρz2

24

)
d2x

dz2

⎜⎜⎜⎜
zi

+ · · ·

and replace the derivatives in this latter equation by well-known finite difference
formulas

dx

dz

⎜⎜⎜⎜
zi

= x(zi+1) − x(zi−1)

2ρz
− ρz2

3!
d3x

dz3

⎜⎜⎜⎜
zi

+ · · ·

d2x

dz2

⎜⎜⎜⎜
zi

= x(zi+1) − 2x(zi ) + x(zi−1)

ρz2 − ρz2

12

d4x

dz4

⎜⎜⎜⎜
zi

+ · · ·

that we would like to also express in terms of cell-average values

x̄i−1 = x(zi−1) + ρz2

24

d2x

dz2

⎜⎜⎜⎜
zi−1

+ · · ·

x̄i = x(zi ) + ρz2

24

d2x

dz2

⎜⎜⎜⎜
zi

+ · · ·

x̄i+1 = x(zi+1) + ρz2

24

d2x

dz2

⎜⎜⎜⎜
zi+1

+ · · ·

The first formula thus becomes

dx

dz

⎜⎜⎜⎜
zi

= x(zi+1) − x(zi−1)

2ρz
− ρz2

3!
d3x

dz3

⎜⎜⎜⎜
zi

+ · · ·

= x̄i+1 − x̄i−1

2ρz
− ρz2

48

⎟
d2x

dz2

⎜⎜⎜⎜
zi+1

− d2x

dz2

⎜⎜⎜⎜
zi−1

)
− ρz2

3!
d3x

dz3

⎜⎜⎜⎜
zi

+ · · ·

whereas the second one can be written as

d2x

dz2

⎜⎜⎜⎜
zi

= x(zi+1) − 2x(zi ) + x(zi−1)

ρz2 − ρz2

12

d4x

dz4

⎜⎜⎜⎜
zi

+ · · ·

= x̄i+1 − 2x̄i + x̄i−1

ρz2 − 1

24

⎟
d2x

dz2

⎜⎜⎜⎜
zi+1

− 2
d2x

dz2

⎜⎜⎜⎜
zi

+ d2x

dz2

⎜⎜⎜⎜
zi−1

)
− ρz2

12

d4x

dz4

⎜⎜⎜⎜
zi

+· · ·
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These latter expressions can be simplified by considering the Taylor series develop-
ments

d2x

dz2

⎜⎜⎜⎜
zi−1

= d2x

dz2

⎜⎜⎜⎜
zi

− ρz
d3x

dz3

⎜⎜⎜⎜
zi

+ ρz2

2!
d4x

dz4

⎜⎜⎜⎜
zi

d2x

dz2

⎜⎜⎜⎜
zi+1

= d2x

dz2

⎜⎜⎜⎜
zi

+ ρz
d3x

dz3

⎜⎜⎜⎜
zi

+ ρz2

2!
d4x

dz4

⎜⎜⎜⎜
zi

giving

dx

dz

⎜⎜⎜⎜
zi

= x̄(zi+1) − x̄(zi−1)

2ρz
− 5ρz2

24

d3x

dz3

⎜⎜⎜⎜
zi

+ · · · = x̄(zi+1) − x̄(zi−1)

2ρz
+ O(ρz2)

d2x

dz2

⎜⎜⎜⎜
zi

= x̄(zi+1) − 2x̄(zi ) + x̄(zi−1)

ρz2 − ρz2

8

d4x

dz4

⎜⎜⎜⎜
zi

+ · · ·

= x̄(zi+1) − 2x̄(zi ) + x̄(zi−1)

ρz2 + O(ρz2)

second-order accurate formulas based on the cell-average values.
If we now come back to our initial Taylor series development of the solution, we

can make use of these results to write

x(z) = x̄i +(z−zi )
x̄i+1 − x̄i−1

2ρz
+
⎟

(z − zi )
2

2! − ρz2

24

)
x̄(zi + 1) − 2x̄(zi ) + x̄(zi − 1)

ρz2 +· · ·

From this expression we can deduce a first-order approximation

x(z) = x̄i

a second-order approximation

x(z) = x̄i + (z − zi )
x̄i+1 − x̄i−1

2ρz

and a third-order approximation

x(z) = x̄i+(z−zi )
x̄i+1 − x̄i−1

2ρz
+
(

(z − zi )
2

2! − ρz2

24

)
x̄(zi + 1) − 2x̄(zi ) + x̄(zi − 1)

ρz2

These results can be summarized into a single formula whose accuracy can be varied
thanks to an adjustable coefficient ∂

x(z) = x̄i + (z − zi )
x̄i+1 − x̄i−1

2ρz
+ ∂

⎟
(z − zi )

2

2! − ρz2

24

)
x̄(zi+1) − 2x̄(zi ) + x̄(zi−1)

ρz2
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We can now compute the value of x(z) in any point of the cell
[
zi − ρz

2 , zi + ρz
2

]
,

and in particular at the cell interfaces

x(zi−1/2) = x̄i − x̄i+1 − x̄i−1

4
+ ∂

x̄i+1 − 2x̄i + x̄i−1

12

= x̄i −
(

1

4
+ ∂

12

)
(x̄i − x̄i−1) −

(
1

4
− ∂

12

)
(x̄i+1 − x̄i )

x(zi+1/2) = x̄i + x̄i+1 − x̄i−1

4
+ ∂

x̄i+1 − 2x̄i + x̄i−1

12

= x̄i +
(

1

4
− ∂

12

)
(x̄i − x̄i−1) +

(
1

4
+ ∂

12

)
(x̄i+1 − x̄i )

These values could be used to evaluate the flux functions in the discretized equation

ε x̄i (t)

εt
= f (zi−1/2) − f (zi+1/2)

ρz

However, before proceeding with this computation, we have to observe a few impor-
tant points:

• If we consider the neighboring intervals
[
zi−1 − ρz

2 , zi−1 + ρz
2

]
and

[
zi+1 − ρz

2 ,

zi+1 + ρz
2

]
, similar formulas can also be derived at the cell interfaces. We

will therefore distinguish the values of x+(zi−1/2) computed from the interval[
zi − ρz

2 , zi + ρz
2

]
and x−(zi−1/2) computed from the interval

[
zi−1 − ρz

2 , zi−1

+ ρz
2

]
. In total, we have 4 formulas for the values at the two interface points of

cell i

x−(zi−1/2) = x̄i−1 +
(

1

4
− ∂

12

)
(x̄i−1 − x̄i−2) +

(
1

4
+ ∂

12

)
(x̄i − x̄i−1)

x+(zi−1/2) = x̄i −
(

1

4
+ ∂

12

)
(x̄i − x̄i−1) −

(
1

4
− ∂

12

)
(x̄i+1 − x̄i )

x−(zi+1/2) = x̄i +
(

1

4
− ∂

12

)
(x̄i − x̄i−1) +

(
1

4
+ ∂

12

)
(x̄i+1 − x̄i )

x+(zi+1/2) = x̄i+1 −
(

1

4
+ ∂

12

)
(x̄i+1 − x̄i ) −

(
1

4
− ∂

12

)
(x̄i+2 − x̄i+1)

• The coefficient ∂ can be selected so as to obtain upwind formulas (which are
formulas we are interested in, as we consider problem with steep moving fronts).
If we select ∂ = −3 , then the above expressions become
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x−(zi−1/2) = x̄i−1 + 1

2
(x̄i−1 − x̄i−2)

x+(zi−1/2) = x̄i − 1

2
(x̄i+1 − x̄i )

x−(zi+1/2) = x̄i + 1

2
(x̄i − x̄i−1)

x+(zi+1/2) = x̄i+1 − 1

2
(x̄i+2 − x̄i+1)

The choice of the “+” or “−” values will depend on the direction of flow. To assess
the flow direction, the sign of ε f

εx has to be evaluated. Indeed

εx

εt
= −ε f (x)

εz
= −d f

dx

εx

εz

If d f
dx > 0, then we will choose

x−(zi−1/2) = x̄i−1 + 1

2
(x̄i−1 − x̄i−2)

x−(zi+1/2) = x̄i + 1

2
(x̄i − x̄i−1)

Otherwise, if d f
dx < 0

x+(zi−1/2) = x̄i − 1

2
(x̄i+1 − x̄i )

x+(zi+1/2) = x̄i+1 − 1

2
(x̄i+2 − x̄i+1)

Figure 5.16 shows, for the case d f
dx > 0, the above second-order approxima-

tion and compares it with the first-order approximation x−(zi−1/2) = x̄i−1 and
x−(zi+1/2) = x̄i . Clearly, the second-order approximation is prone to oscillations,
and to alleviate this problem, a slope limiter ω(r) is introduced

x−(zi−1/2) = x̄i−1 + ω(ri )

2
(x̄i−1 − x̄i−2)

x−(zi+1/2) = x̄i + ω(ri )

2
(x̄i − x̄i−1)

This slope limiter senses the relative variation in the solution slope
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zi

xi

xi+ 1
2

xi− 1
2

Fig. 5.16 Comparison of first- and second-order approximations

ri =
x̄i+1 − x̄i
zi+1 − zi

x̄i − x̄i−1
zi − zi−1

= x̄i+1 − x̄i

x̄i − x̄i−1

and will allow to use a low-order approximation in spatial regions where there is a
high solution activity and a higher order approximation in regions where the solu-
tion is smoother. More specifically, the slope limiter has properties imposed by the
requirement that the resulting numerical scheme has to be TVD:

• ω(r) � 0 if r � 0. Indeed r � 0 expresses the solution monotonicity which could
be destroyed by ω(r) < 0.

• ω(r) = 0 if r < 0. Indeed r < 0 is the signal that there is an abrupt change
in the sign of the solution slope, and in this case the approximation is limited to
first-order.

More specifically, a TVD requirement can be expressed by (see [21, 22], for more
details)

0 � ω(r) � min(2r, 2)

which is represented in Fig. 5.17. A smaller portion of this TVD region corresponds
to second-order schemes

• r � ω(r) � 2r for 0 � r < 1
• ω(1) = 1 for r = 1
• 1 � ω(r) � r for 0 � r � 1
• 1 � ω(r) � 2 for r > 2
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Fig. 5.17 Colored TVD
regions—purple corresponds
to second-order schemes—
and representation of 6 popu-
lar slope limiters
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2
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φ
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r

Van Leer
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Minmod
Superbee

Smart
Koren

Fig. 5.18 Comparison of
first-order, plain second-
order, and Koren-limited
approximations

2nd order
Koren

A list of a few popular limiters (there are many more, see for instance the nice
report by Zijlema and Wesselin [23]) is given in the following:

• Van Leer [24]: ω(r) = r+|r |
1+|r |

• Monotonized central (MC) [25]: ω(r) = max
(
0, min

(
2r, 1+r

2 , 2
⎛⎛

• Minmod [26]: ω(r) = max (0, min (1, r))

• Superbee [26]: ω(r) = max (0, min (2r, 1) , min (r, 2))

• Smart [27]: ω(r) = max
(

0, min
(

4r, 1+3r
4 , 2

⎧⎧

• Koren [28]: ω(r) = max
(

0, min
(

2r, 1 + 2r
3 , 2

⎧⎧

In analogy with Fig. 5.16, the effect of the Koren limiter on the solution profile is
shown in Fig. 5.18. As expected, the slope limiter avoids the appearance of oscilla-
tions, while allowing increased accuracy.
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As an example, the code of the Koren flux limiter is given inkoren_slope_limiter_
fz.m, in the generalized case of a possibly nonuniform grid. This code is used to
solve Burgers equation with a small viscosity coefficient µ = 0.000001.

function [fz ] = koren_slope_limiter_fz (n , z , t , x , flux ,dflux_dx )

delta = 1 . 0e−05;
dz = zeros (n , 1 ) ;
dz ( 1 ) = (z(2)−z ( 1 ) ) / 2 ;
dz ( 2 :n−1) = (z ( 3 :n)−z ( 1 :n−2 ) ) / 2 ;
dz (n ) = (z (n)−z (n−1 ) ) / 2 ;
valdfdx = feval (dflux_dx , t , x ) ;

% computation of the fz derivative at the first left
% boundary point
fz ( 1 ) = (feval (flux ,t ,x ( 2 ) ) − . . .

feval (flux ,t ,x ( 1 ) ) ) / ( z(2)−z ( 1 ) ) ;

% computation of the fz derivative at the second left
% boundary point : fz ( 2 ) depends on the sign of valdfdx ( 2 )
if valdfdx ( 2 ) >= 0

fz ( 2 ) = (feval (flux ,t ,x ( 2 ) ) − . . .
feval (flux ,t ,x ( 1 ) ) ) / ( z(2)−z ( 1 ) ) ;

else
% computation of r ( 2 ) and phi ( 2 )
if abs (x(2)−x ( 3 ) ) < delta

phi ( 2 ) = 0 ;
else

r ( 2 ) = ( (x(1)−x ( 2 ) ) / ( z(1)−z ( 2 ) ) ) / . . .
( (x(2)−x ( 3 ) ) / ( z(2)−z ( 3 ) ) ) ;

phi ( 2 ) = max ( 0 , min ( [ 2 *r ( 2 ) (1+2*r ( 2 ) ) / 3 2 ] ) ) ;
end
% computation of r ( 3 ) and phi ( 3 )
if abs (x(3)−x ( 4 ) ) < delta

phi ( 3 ) = 0 ;
else

r ( 3 ) = ( (x(2)−x ( 3 ) ) / ( z(2)−z ( 3 ) ) ) / . . .
( (x(3)−x ( 4 ) ) / ( z(3)−z ( 4 ) ) ) ;

phi ( 3 ) = max ( 0 , min ( [ 2 *r ( 3 ) (1+2*r ( 3 ) ) / 3 2 ] ) ) ;
end
% computation of xL and xR for the second left boundary point
xL = x(2)−dz ( 2 ) * (x(3)−x ( 2 ) ) *phi ( 2 ) / ( dz (2 )+dz ( 3 ) ) ;
xR = x(3)−dz ( 3 ) * (x(4)−x ( 3 ) ) *phi ( 3 ) / ( dz (3 )+dz ( 4 ) ) ;
fz ( 2 ) = (feval (flux ,t ,xR)−feval (flux ,t ,xL ) ) / dz ( 2 ) ;

end
% computation of the fz derivative at the interior points 3 ,
% . . . , n−2 : fz (i ) depends on the sign of valdfdx (i )
for i=3:n−2

if valdfdx (i ) >= 0
% computation of r (i ) and phi (i )
if abs (x (i)−x (i−1)) < delta

phi (i ) = 0 ;
else

r (i ) = ( (x (i+1)−x (i ) ) / ( z (i+1)−z (i ) ) ) / . . .
( (x (i)−x (i−1 ) ) / (z (i)−z (i−1 ) ) ) ;

phi (i ) = max ( 0 , min ( [ 2 *r (i ) (1+2*r (i ) ) / 3 2 ] ) ) ;
end
% computation of r (i−1) and phi (i−1)
if abs (x (i−1)−x (i−2)) < delta

phi (i−1) = 0 ;
else

r (i−1) = ( (x (i)−x (i−1 ) ) / (z (i)−z (i− 1 ) ) ) / . . .



312 5 How to Handle Steep Moving Fronts?

( (x (i−1)−x (i−2 ) ) / (z (i−1)−z (i−2 ) ) ) ;
phi (i−1) = max ( 0 , min ( [ 2 *r (i− 1 ) . . .

(1+2*r (i−1)) /3 2 ] ) ) ;
end
% computation of xL and xR for the interior points
xL = x (i−1) + dz (i−1)*(x (i−1)−x (i−2))*phi (i− 1 ) / . . .

(dz (i−1)+dz (i−2) ) ;
xR = x (i)+dz (i ) * (x (i)−x (i−1))*phi (i ) / . . .

(dz (i)+dz (i−1) ) ;
fz (i ) = (feval (flux ,t ,xR)−feval (flux ,t ,xL ) ) / dz (i ) ;

else
% computation of r (i ) and phi (i )
if abs (x (i)−x (i+1) ) < delta

phi (i ) = 0 ;
else

r (i ) = ( (x (i−1)−x (i ) ) / ( z (i−1)−z (i ) ) ) / . . .
( (x (i)−x (i+ 1 ) ) / (z (i)−z (i+ 1 ) ) ) ;

phi (i ) = max ( 0 , min ( [ 2 *r (i ) (1+2*r (i ) ) / 3 2 ] ) ) ;
end
% computation of r (i+1) and phi (i+1)
if abs (x (i+1)−x (i+2) ) < delta

phi (i+1) = 0 ;
else

r (i+1) = ( (x (i)−x (i+ 1 ) ) / (z (i)−z (i + 1 ) ) ) / . . .
( (x (i+1)−x (i+ 2 ) ) / (z (i+1)−z (i+ 2 ) ) ) ;

phi (i+1) = max ( 0 , min ( [ 2 *r (i + 1 ) . . .
(1+2*r (i+ 1 ) ) / 3 2 ] ) ) ;

end
% computation of xL and xR for the interior points
xL = x (i)−dz (i ) * (x (i+1)−x (i ) ) *phi (i ) / . . .

(dz (i)+dz (i+ 1 ) ) ;
xR = x (i+1)−dz (i+1)*(x (i+2)−x (i + 1 ) ) * . . .

phi (i+ 1 ) / (dz (i+1)+dz (i+ 2 ) ) ;
fz (i ) = (feval (flux ,t ,xR)−feval (flux ,t ,xL ) ) / dz (i ) ;

end
end
% computation of the fz derivative at the penultimate
% point : fz (n−1) depends on the sign of valdfdx (n−1)
if valdfdx (n−1) < 0

fz (n−1) = (feval (flux ,t ,x (n ) ) − . . .
feval (flux ,t ,x (n− 1 ) ) ) / (z (n)−z (n−1) ) ;

else
% computation of r (n−1) and phi (n−1)
if abs (x (n−1)−x (n−2)) < delta

phi (n−1) = 0 ;
else

r (n−1) = ( (x (n)−x (n−1 ) ) / (z (n)−z (n− 1 ) ) ) / . . .
( (x (n−1)−x (n−2 ) ) / (z (n−1)−z (n−2 ) ) ) ;

phi (n−1) = max ( 0 , min ( [ 2 *r (n− 1 ) . . .
(1+2*r (n−1)) /3 2 ] ) ) ;

end
% computation of r (n−2) and phi (n−2)
if abs (x (n−2)−x (n−3)) < delta

phi (n−2)=0;
else

r (n−2) = ( (x (n−1)−x (n−2 ) ) / (z (n−1)−z (n− 2 ) ) ) / . . .
( (x (n−2)−x (n−3 ) ) / (z (n−2)−z (n−3 ) ) ) ;

phi (n−2) = max ( 0 , min ( [ 2 *r (n− 2 ) . . .
(1+2*r (n−2)) /3 2 ] ) ) ;

end
% computation of xL and xR for the penultimate point
xL = x (n−2)+dz (n−2)*(x (n−2)−x (n−3))*phi (n− 2 ) / . . .

(dz (n−2)+dz (n−3) ) ;
xR = x (n−1)+dz (n−1)*(x (n−1)−x (n−2))*phi (n− 1 ) / . . .

(dz (n−1)+dz (n−2) ) ;
fz (n−1) = (feval (flux ,t ,xR)−feval (flux ,t ,xL ) ) / dz (n−1);
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end
% computation of the fz derivative at the right boundary
% point
fz (n ) = (feval (flux ,t ,x (n))−feval (flux ,t ,x (n− 1 ) ) ) / . . .

(z (n)−z (n−1) ) ;
fz = fz ' ;

Function koren_slope_limiter_fz.m Implementation of the ODE system

A satisfactory solution can be obtained with 300 finite volumes (cells), which is
much less than the number of points required by a finite difference scheme (see for
instance Fig 5.14 which uses 701 grid points). The solution is also well behaved,
capturing the sharp fronts without introducing too much artificial dissipation, nor
spurious oscillations. The price to pay is an increased computational load, as the
discretization of the spatial operators can no longer be formulated with simple matrix
multiplications as in FD schemes. Figures 5.19 and 5.20 shows this numerical solu-
tion in a 2D and 3D plot, respectively. Although upwind schemes are very efficient,
they require the determination of the direction of flow. This determination is easy in
scalar problems, such as the one studied in this section, but more intricate for systems
of equations. Whereas for linear systems, it is possible to compute the eigenvalues
(this corresponds to a diagonalization of the system), nonlinear problems require the
determination of the characteristic structure through the solution of Riemann prob-
lems. We will not enter into details here, but just mention that Riemann problems
correspond to problems with piecewise constant initial conditions, as the first-order
approximation shown in Fig. 5.16. The Russian mathematician Godunov proposed in
1959 [29] an efficient first-order upwind scheme based on a finite volume discretiza-
tion, and the solution of Riemann problems corresponding to averaged values in each
cells. The method consists of determining the kind of waves emanating from each
cell interface, and in reconstructing a global solution by piecing together the set of
local solutions. The solution of the local Riemann problems have to be computed on
a limited time interval, such that the characteristic lines do not intersect (this corre-
sponds to the CFL condition of Courant, Friedrichs and Lewy). When applied to the
linear advection equation, the method of characteristics shows that Godunov method
is equivalent to a 2-point upwind finite difference scheme. For Burgers equation, it
is also possible to find exact solutions using more advanced concepts including the
Rankine-Hugoniot condition and the entropy condition (see [30], for an analysis of
Burgers equation).

If we consider the inviscid Burgers equation

xt = −xxz

with initial conditions (defining a Riemann problem)

x(z, 0) =
⎨

x L z < 0
x R z > 0
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Fig. 5.19 Numerical solution of Burgers equation in conservation form (µ = 0.000001) at times
t = 0, 0.1, . . . , 1 with N = 300 finite volume and a Koren slope limiter. Red curves exact solution.
Black curves numerical solution
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Fig. 5.20 3D representation of the numerical solution of Burgers equation in conservation form
(µ = 0.000001) with N = 300 using the finite volume method and a Koren slope limiter

there are two possible cases:

(a) xL > xR . The solution is unique and is given by

x(z, t) =
⎨

xL z < st
xR z > st

with s = xL + xR

2
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(b) xL < xR . The solution is not unique, but the vanishing viscosity solution is given
by

x(z, t) =
⎩


xL z < xL t
z/t xL t � z � xRt
xR z > xRt

This leads to a simple numerical scheme in conservation form (given in a fully
discrete form, i.e., both time and space are discretized)

xk+1
i − xk

i

ρt
= − F(xk

i , xk
i+1) − F(xk

i−1, xk
i )

ρz

where the flux function F(xL , xR) = F(x̃) with

(a) xL > xR

x̃ =
⎨

xL s > 0
xR s < 0

(b) xL < xR

x̃ =
⎩


xL xL > 0
0 xL � 0 � xR

xR xR < 0

A numerical solution (inspired from a MATLAB code by Landajuela [31]) for a
Riemann problem with initial condition x(z, 0) = 0.5 for z < 0.5 and x(z, 0) = 1 for
z > 0.5 is represented in Fig. 5.21, for N = 200 and ρt = 0.01. For other hyperbolic
conservation laws and higher order schemes, Riemann solvers are required (see
the books by LeVeque and Toro [4, 32, 33]) as well as a reconstruction of the
solution using piecewise polynomial approximation, that we will not discuss in this
introductory-level text.

To avoid the solution of Riemann problems, nonoscillatory central schemes have
been proposed, which are simpler, yet very efficient. We will briefly discuss a family
of methods [34] that can be viewed as an extension of the first-order Lax-Friedrich
scheme [35].

xk+1
i = xk

i+1 + xk
i−1

2
− ρt

2ρz

(
f
(

xk
i+1

⎧
− f

(
xk

i−1

⎧⎧

and their further extension by Kurganov and Tadmor [36] to a semi-discrete (i.e.,
in the MOL framework) second-order scheme. This latter scheme can be used as
a convenient general purpose MOL solver for nonlinear convection-diffusion PDE
systems, as it is not tied to the eigenstructure of the problem. The only information
that is required is the local propagation speed of the wave at the cell interfaces zi ± ρz

2 .

ak
i± 1

2
= max

⎨
δ

[
ε f

εx

(
x−

i± 1
2

)]
, δ

[
ε f

εx

(
x+

i± 1
2

)]}
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Fig. 5.21 Numerical solution of inviscid Burgers equation with N = 200 finite volume and
Godunov method

where δ denotes the spectral radius , i.e., the largest modulus of the eigenvalues of
the Jacobian matrix evaluated in

x+
i+ 1

2
= xk

i+1 − ρz

2
(xz)

k
i+1

x−
i+ 1

2
= xk

i + ρz

2
(xz)

k
i

The scheme is given by (see [36] for the derivation):

dxi

dt
= − 1

2ρz

⎨[
f

(
x+

i+ 1
2

)
+ f

(
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i+ 1
2

)]
−
[
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(
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i− 1
2

)
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(
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i− 1
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− ai+ 1
2

[
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2

− x−
i+ 1

2

]
+ ai− 1

2

[
x+

i− 1
2

− x−
i− 1

2

]}

with
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2
= xi+1 − ρz

2
(xz)i+1 x−
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= xi + ρz

2
(xz)i
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(xz)i x−

i− 1
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= xi−1 + ρz

2
(xz)i−1
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Fig. 5.22 Numerical solution
of Burgers equation in conser-
vation form µ = 0.000001 at
times t = 0, 0.1, . . . , 1 with
N = 200 finite volume and
Kurganov-Tadmor centered
scheme. Red curves exact
solution. Black curves numer-
ical solution
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This scheme can be proved to be TVD in the 1D scalar case, using a minmod
limiter

(xz)i = min mod

(
η

xi+1 − xi

zi+1 − zi
,

xi+1 − xi−1

zi+1 − zi−1
, η

xi − xi−1

xi − zi−1

)
1 � η � 2

min mod (θ1, θ2, . . .) =

⎩


min
j

(
θ j
⎛

if θ j > 0 ∈ j

max
j

(
θ j
⎛

if θ j < 0 ∈ j

0 otherwise

Figure 5.22 shows the solution to Burgers equation with a small viscosity coef-
ficient µ = 0.000001. A quite accurate solution can already be obtained with 200
finite volumes (cells).

We now consider a few additional PDE applications, in the form of systems of 2 or
3 PDEs, in order to illustrate some additional features of the methods introduced in
this chapter. We start with a jacketed tubular reactor in which an irreversible, exother-
mic, first-order reaction takes place. The jacket with water temperature Tw(z, t)
includes a heating and a cooling section [37].

εT

εt
=−v

εT

εz
+ D1

ε2T

εz2 − ρH

δcp
k0ce− E

RT + 4h

δcpd
(Tw − T )

εc

εt
= −v

εc

εz
+ D2

ε2c

εz2 − k0ce− E
RT

In these energy- and mass-balance equations, c [mol/L] and T [K ] denote respec-
tively the reactant concentration and the temperature, D1 [m2/s] and D2 [m2/s] are
the thermal diffusion and mass dispersion coefficients, v [m/s] is the fluid veloc-
ity, −ρH [J/kmol] is the heat of reaction (ρH < 0 for an exothermic reaction)
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Fig. 5.23 Evolution of the
temperature profile in the
jacketed tubular reactor with
Pe = 106 at t = 0, 1, . . . , 50
computed using an upwind
scheme and Van Leer slope
limiter with 600 finite volumes
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and δ [kg/m3], cp [J/(kgK )], k0 [1/s], E [J/mol], R [J/(mol K )], h [W/(m2 K )]
and d [m] are the fluid density, the specific heat, the kinetic constant, the activation
energy, the ideal gas constant, the heat transfer coefficient, and the reactor diameter,
respectively. The tubular reactor has a length L = 1 [m]. The jacket fluid tem-
perature Tw [K ] is a piecewise constant function with a change from a maximum
value Tw,max = 400 [K ] to a minimum Tw,min = 280 [K ] at a transition location
zsw = 0.54 [m]. The code and full set of parameters can be found in the companion
software.

These PDEs are supplemented by boundary and initial conditions [38]

D1
εT (0,t)

εz = v(T (0, t) − Tin)
εT (L ,t)

εz = 0
D1

εc(0,t)
εz = v(c(0, t) − cin)

εc(L ,t)
εz = 0

with Tin = 340 [K ] and cin = 0.02 [mol/ l].

T (z, 0) = T0(z) = Tin

C(z, 0) = c0(z) = 0

The PDEs are nonlinear and coupled because of the source terms which include
the reaction kinetics, but the transportation terms are linear and uncoupled. We are
therefore in a situation—quite frequent in chemical engineering applications—where
the convective terms can be approximated using any of the flux limiters that we
have discussed. We consider a high Peclet number corresponding to a convection-
dominated problem, i.e., Pe = 106, and first present results obtained with 600 finite
volumes and an upwind scheme with a Van Leer limiter (Figs. 5.23 and 5.24) followed
by results obtained with the same number of finite volumes and a centered limiter of
Kurganov-Tadmor (Fig. 5.25). The results obtained with the latter are quite similar
but requires much less computational expense (about half the computation time).
Time integration is achieved with the explicit solver ode45.
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Fig. 5.24 Evolution of the
concentration profile in the
jacketed tubular reactor with
Pe = 106 at t = 0, 1, . . . , 50
computed using an upwind
scheme and Van Leer slope
limiter with 600 finite volumes
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Fig. 5.25 Evolution of the
temperature profile in the
jacketed tubular reactor with
Pe = 106 at t = 0, 1, . . . , 50
computed using an upwind
scheme and Kurganov-
Tadmor centered scheme
with 600 finite volumes
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We now consider a nonlinear system of conservation laws, for which the use of
our upwind slope limiters is no longer adequate (our MATLAB functions are appro-
priate only for scalar problems, or linear systems, as in the previous test examples).
This system of PDEs corresponds to the so-called Sod shock tube problem, named
after Gary Sod [39], and which is a popular test for the accuracy of computational
fluid codes. Shock tubes are experimental devices used to study gas flow (compress-
ible flow phenomena and blast waves) under various conditions of temperature and
pressure. The underlying model is given by Euler equations which represent the
conservation of mass, momentum, and energy, and corresponds to the Navier-Stokes
equations for an inviscid flow. In one spatial dimension (as all our PDE examples so
far), these PDEs are given by

εδ

εt
+ εm

εz
= 0
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εm

εt
+ ε

εz

[
m2

δ
+ p

]
= 0

εe

εt
+ ε

εz

[
m

δ
(e + p)

]
= 0

where δ(z, t) denotes gas density, m(z, t) = δ(z, t)u(z, t) represents momentum
(u(z, t) is the gas velocity), p(z, t) = (γ − 1)(e − (m2/2δ)) is pressure and e(z, t)
is energy per unit length.

Introducing the expression of the pressure in the PDEs as well as small linear dif-
fusion terms to regularize the problem and ease the numerical solution (the diffusion
terms avoid the formation of true shocks which would be difficult to resolve), we can
write the PDEs in the following form:

εδ

εt
= −εm

εz
+ ε

ε2u

εz2

εm

εt
= − ε

εz

[
(γ − 1)e − (γ − 3)

m2

2δ

]
+ ε

ε2m

εz2

εe

εt
= − ε

εz

[
m

δ

(
γ e − (γ − 1)

m2

2δ

)]
+ ε

ε2e

εz2

The parameter values are γ = 1.4 (ideal gas) and ε = 0.001. The initial conditions
considered by Sod [39] define a Riemann problem

δ(z, 0) =
⎨

1 z √ 0.5
0.125 z > 0.5

m(z, 0) = 0

e(z, 0) =
⎨

2.5 z √ 0.5
0.25 z > 0.5

This corresponds to the situation where the tube is divided in two equal parts by
a diaphragm. The gas is initially at rest (i.e., m(z, 0) = 0), and has higher density
and pressure in the left part of the tube (the pressure to the left is p(z, 0) = 1,
while p(z, 0) = 0.1 to the right, giving the above-mentioned values for e(z, 0)). At
time t = 0, the diaphragm is broken and waves propagate through the tube. The
representation of a closed tube is achieved thanks to reflection boundary conditions

δz(0, t) = 0 δz(1, t) = 0
m(0, t) = 0 m(1, t) = 0
ez(0, t) = 0 ez(1, t) = 0



5.6 Finite Volume Methods and Slope Limiters 321

Fig. 5.26 Evolution of the
density profile in the tube at
t = 0, 0.15, 0.23, 0.28, 0.32,
computed using Kurganov-
Tadmor centered scheme with
800 finite volumes
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Fig. 5.27 Evolution
of the momentum pro-
file in the tube at t =
0, 0.15, 0.23, 0.28, 0.32,
computed using Kurganov-
Tadmor centered scheme with
800 finite volumes
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Waves will therefore propagate while interacting and “bounce” on the boundaries.
Figs. 5.26, 5.27 and 5.28 show the numerical solution obtained with a centered
scheme of Kurganov-Tadmor and a discretization into 800 finite volumes.

5.7 Grid Refinement

Another approach to deal with steep moving fronts is to adapt the spatial grid in
such a way that the grid points are concentrated in regions of high solution activity
and are not “wasted” in smoother parts. There are a variety of mechanisms for grid
adaptation, leading to what could be called Adaptive Method of Lines (as reviewed
in the book edited by the first two authors [40]). In this section, we will introduce a
grid refinement method based on the equidistribution principle.
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Fig. 5.28 Evolution of the
energy profile in the tube at
t = 0, 0.15, 0.23, 0.28, 0.32,
computed using Kurganov-
Tadmor centered scheme with
800 finite volumes
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Fig. 5.29 Representation of a
spatial profile using a uniform
grid
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The underlying idea is to rearrange the grid point location at a time t in such a
way that a specified quantify is equidistributed. For instance, if we consider a wave
that we would like to discretize using a grid with regular spacing as in Fig. 5.29, we
see that the resolution in the steep fronts is much coarser than in the flat parts of the
solution. To increase the resolution in the steep fronts, and get an equivalent level of
discretization everywhere, one could relocate the grid points so as to equidistribute
the arc-length of the solution profile, i.e.,

m(x) =
√

(θ + ‖xz‖2
2

where θ > 0 ensures that the function m(x) is strictly positive and acts as a regular-
ization parameter which forces the existence of at least a few nodes in flat parts of
the solution.
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Fig. 5.30 Representation
of a spatial profile using a
nonuniform grid concentrated
in the wave fronts
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This leads to the grid distribution shown in Fig. 5.30, where each interval on the z
axis corresponds to an interval on the solution graph which has a (more or less—due
to regularization of the grid) equal length.

The equidistribution principle consists in enforcing that on each spatial grid
interval ∫ zi

zi−1

m(x)dz =
∫ zi+1

zi

m(x)dz = c, 1 √ i √ N − 1

where c is some constant.
The function m(x) is called a monitor function. It can involve the first-derivative

as in the above example, but also second-order derivative terms (taking account of
the solution curvature).

To solve an IBVP problem, the procedure is as follows:

• Definition of an initial spatial grid
• Approximation of the spatial derivatives on the spatial grid;
• Time integration of the resulting semi-discrete ODEs on a time interval;
• Adaptation of the spatial grid at the end of the time interval;
• Interpolation of the solution on the new grid to produce new initial conditions for

the next time interval.

The adaptation of the grid points is therefore not continuous in time, but requires
time integration to be halted periodically to update the grid.

This procedure has several advantages. Especially, the PDE solution and grid
adaptation mechanisms are uncoupled and can be programmed in separate MATLAB
functions. Furthermore, grid adaptation can involve a change in the location of the
grid points but also a change in their numbers (grid refinement). Grid refinement
allows spatial accuracy to be controlled as grid points are added or deleted depending
on the evolution of spatial activity of the solution. For instance, the birth of new
moving fronts can be easily accommodated, whereas a dynamic moving grid with a
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fixed number of grid points can be unable to resolve unforeseen spatial activity with
enough accuracy.

However, the procedure also has drawbacks. As the grid movement is not con-
tinuous in time, grid points are suboptimally located, i.e., they can for instance lag
behind the front if the grid is not updated sufficiently frequently. Moreover, periodic
solver restarts (each time the grid is adapted/refined) involve some computational
overhead (and usually one-step solvers, such as implicit Runge-Kutta or Rosenbrock
algorithms, which do not require the past solution history, will perform better than
multistep solvers). Finally, interpolation to produce new initial conditions is an addi-
tional source of errors.

All in one, the procedure is simple to implement and will work successfully on
problems of moderate complexity. In the following, we use an algorithm proposed
in [40–42], which allows to refine the spatial grid based on the equidistribution of a
monitor function, and a regularization mechanism proposed in [43]. Regularization
ensures that the grid is locally bounded with respect to a constraint,

1

K
√ ρzi

ρzi−1
√ K , 1 √ i √ N , K ≡ 1

To ensure this property, the monitor function is modified, keeping its maximal val-
ues, but increasing its minimum values, in a procedure called padding. The resulting
padded monitor function is then equidistributed yielding a grid whose ratios of con-
secutive grid steps are bounded as required. In practice, the padding is chosen (there
is, in principle, an infinity of possibilities to achieve padding) so that the equidistrib-
uting grid has adjacent steps with constant ratios equal to the maximum allowed.

The MATLAB implementation involves the following issues:

• The Rosenbrock solver ode23s is usually the preferred algorithm as it does not
require the past solution history;

• The solver is periodically halted, after a fixed number of time steps, using an
Events function, which monitors the evolution of the number of steps;

• The solution is interpolated using cubic splines as implemented in function
spline in order to generate initial conditions on the new grid.

As an example, we consider the computation of the solution to the classical Korteweg-
de-Vries equation, which was originally introduced by Korteweg and deVries [44] to
describe the behavior of small amplitude shallow-water waves in one space dimension

xt = −6xxz − xzzz, −⇒ � z � ⇒, t � 0, x(z, 0) = x0(z)

which combines the effect of nonlinearity and dispersion. In the following, the prop-
agation of a single soliton

x(z, t) = 0.5 s sech2 [0.5
↔

s(z − st)
]
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Fig. 5.31 Propagation of a single soliton solution of the Korteweg-de Vries equation, graphed at
t = 0, 5, . . . , 100. Red curves exact solution. Blue curves numerical solution. Grid adaptation is
shown in the lower subplot

is studied. The first-order derivative term is computed using with a three-point cen-
tered differentiation matrix D1, whereas the third-order derivative term is computed
using stagewise differentiation, i.e., xzzz = D1(D1(D1x))).

For grid refinement, a monitor in the form

m(x) =
√

(θ + ‖xz‖2
2

is used, where the parameter θ can be used to avoid that too few grid points are
allocated to flat parts of the solution.

Figure 5.31 shows the propagation of a single soliton with s = 0.5 on the time
interval [0, 100].

Time integration is performed using ode23s with AbsTol=10̂{-3} and
RelTol=10̂{-3}. Grid refinement occurs every 10 integration steps and the fol-
lowing parameter values are selected for regularization: θ = 0.0, c = 0.005 and
K = 1.1. The average number of grid points for this simulation is 155. The grid refine-
ment evolution is shown in the lower part of Fig. 5.31. The grid points are concentrated
in the soliton and follow its progression. Script main_korteweg_devries.m
shows the main program, which calls the grid refinement function agereg. This
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latter function is not shown due to its size and the calls to additional functions. The
library of codes is available in the companion software.

close all
clear all

% Start a stopwatch timer
tic

% Set global variables
global s
global z0 zL nz D1
global nsteps maxsteps tprint tflag tout

% Spatial grid
z0 = −30.0;
zL = 7 0 . 0 ;
nz = 201;
nzout = nz ;
dz = (zL−z0 ) / ( nz−1);
z = [z0 :dz :zL ] ' ;

% Initial conditions
s = 0 . 5 ;
x = kdv3_exact (z , 0 ) ;

% parameters of the adaptive grid
npdes = 1 ;
nzmax = 1001;
alpha = 0 ;
beta = 100;
tolz = 0 . 0 0 5 ;
bound = 1 . 1 ;
imesh = 0 ;
ilim = 0 ;

% refine the initial grid
[z_new , nz_new , ier , tolz_new ] = agereg (z ,x ,npdes , . . .

nzmax ,alpha ,beta ,tolz ,bound ,imesh ,ilim ) ;

% interpolate the dependent variables
x_new = spline (z ,x ,z_new ) ;
x = x_new ' ;
z = z_new ' ;
nz = nz_new ;
tolz = tolz_new ;

% differentiation matrix
D1 = three_point_centered_D1 (z ) ;

% call to ODE solver
t0 = 0 ;
tf = 100;
dt = 5 ;
yout = x ;
zout = z ;
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nzout = [nzout ; nz ] ;
tout = t0 ;

% solver to stop after this many steps :
maxsteps = 10;

% initial situation
figure ( 1 )
subplot ( 'position ' , [ 0 . 1 0 . 3 0 . 8 0 . 6 ] )
plot (z ,x ) ;
ylabel ( 'x (z ,t ) ' ) ;
axis([−30 70 0 0 . 3 ] )
hold on
subplot ( 'position ' , [ 0 . 1 0 .08 0 . 8 0 . 1 7 ] )
plot (z ,t0*ones (nz , 1 ) , ' . b ' )
ylabel ( 't ' ) ;
xlabel ( 'z ' ) ;
axis([−30 70 0 tf ] )
hold on

%
tk = t0 ;
tspan = [t0 tf ] ;
tprint = dt ;
while tk <= tf−1.e−5

% initialize step counter
nsteps = 0 ;

% do the integration for maxsteps steps in a loop
% until t becomes larger than tf
options = odeset ( 'RelTol ' , 1e−3 , 'AbsTol ' , 1e−6);
options = odeset (options , 'Events ' ,@count_steps ) ;
options = odeset (options , 'JPattern ' ,jpattern (nz ) ) ;
[t ,y ,te ,ye ,ie ] = ode23s (@kdv3_adaptive_pde ,tspan , . . .

x ,options ) ;
%
tk = t (end ) ;
tspan = [tk tf ] ;
x = [ ] ;
x = y (end , : ) ;

% refine the grid
[z_new ,nz_new ,ier ,tolz_new]=agereg (z ,x ,npdes ,nzmax , . . .

alpha ,beta ,tolz ,bound ,imesh ,ilim ) ;

% interpolate the dependent variables
x_new = spline (z ,x ,z_new ) ;
x = x_new ' ;
yout = [yout ; x ] ;

%
z = z_new ' ;
nz = nz_new ;
tolz = tolz_new ;
zout = [zout ; z ] ;
nzout = [nzout ; nz ] ;
tout = [tout ; tk ] ;
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% plot intermediate results
if tflag >= 0

figure ( 1 )
subplot ( 'position ' , [ 0 . 1 0 . 3 0 . 8 0 . 6 ] )
plot (z ,x ) ;
%
yexact=kdv3_exact (z ,tk ) ;
plot (z ,yexact ( 1 :length (z ) ) , 'r ' )
%
subplot ( 'position ' , [ 0 . 1 0 .08 0 . 8 0 . 1 7 ] )
plot (z ,tk*ones (nz , 1 ) , ' . b ' )
tprint = tprint + dt ;

end

% compute a new differentiation matrix
D1 = three_point_centered_D1 (z ) ;

end

% read the stopwatch timer
tcpu=toc
nav = sum (nzout ) /length (nzout )

Script main_korteweg_devries.m Main program to solve Korteweg–de Vries equation with a
grid refinement method.

The code in count_steps.m shows the function Events that allows the solver
to be halted periodically, after a given number of integration steps, or at a plot instant.

function [value ,isterminal ,direction ] = count_steps (t ,x )
%
global maxsteps tprint tflag nsteps
%
% update step counter
nsteps = nsteps + 1 ;

if nsteps < maxsteps | | t < tprint
value = 1 ;

else
value = 0 ;
tflag = t − tprint ;

end
isterminal = 1 ;
direction = 0 ;

Function count_steps.m “Events” function to halt periodically the time integrator.

We now consider another example, which consists of a system of two cou-
pled PDEs modeling flame propagation, as originally discussed by Dwyer and
Sanders [45].
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Fig. 5.32 Propagation of a density wave (from left to right) graphed at t = 0, . . . , 0.006 (with
time intervals 0.006/50), computed on a uniform grid with 401 grid points

δt = δzz − ND Aδ

Tt = Tzz + ND Aδ
, 0 < z < 1, t > 0

where δ(z, t) is the gas density, T (z, t) the temperature and ND A = 3.52×106e−4/T .
In this problem, a heat source located at one end of the spatial domain generates

a moving flame front. The initial conditions are given by

δ(z, 0) = 1
T (z, 0) = 0.2

, 0 � z � 1

whereas the boundary conditions include Neumann and Dirichlet conditions

δz(0, t) = 0 δz(1, t) = 0
Tz(0, t) = 0 T (1, t) = f (t)

, t � 0

The function f (t) represents the heat source located on the left end

f (t) =
{

0.2 + t

2 × 10−4 if t � 2 × 10−4

1.2 if t > 2 × 10−4

This heat source generates a flame front that propagates from left to right at an
almost constant speed. This problem is not very difficult to solve but would require
a relatively fine grid in order to resolve the flame front, as shown in Figs. 5.32 and
5.33 where 401 grid points are used together with a 3-point centered finite difference
approximation.

Grid refinement can be used to track the flame front. This is shown in Figs. 5.34
and 5.35 where the equidistribution of a monitor function related to the solution
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Fig. 5.33 Propagation of a temperature wave (from left to right) graphed at t = 0, . . . , 0.006 (with
time intervals 0.006/50), computed on a uniform grid with 401 grid points
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Fig. 5.34 Propagation of a density wave (from left to right) graphed at t = 0, . . . , 0.006 (with
time intervals 0.006/50), computed with a grid refinement algorithm. Grid adaptation is shown in
the lower subplot

curvature is used
m(x) = √θ + ‖xzz‖⇒

where ‖xzz‖⇒ represents the maximum value taken by the second-order derivative in
the spatial domain (it represents the infinity-norm). The lower subplots show that the
grid points nicely concentrate in the front region. An average number of nodes of 152
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Fig. 5.35 Propagation of a temperature wave (from left to right) graphed at t = 0, . . . , 0.006 (with
time intervals 0.006/50), computed with a grid refinement algorithm. Grid adaptation is shown in
the lower subplot

is used. As in the previous example, time integration is performed using ode23s
with AbsTol = 10̂-3 and RelTol=10̂-3. The following parameter values are
selected for regularization: θ = 0.05, c = 0.02, and K = 1.4. A major difference
with respect to the previous example is that grid adaptation occurs at regular time
intervals (t f /50) instead of an adaptation after a specified number of integration
steps. The grid update interval has to be selected short enough so that the grid adapts
well and does not lag too much behind of the front movement. Figure 5.36 shows
what would happen if the grid adaptation interval is too long, e.g., t f /10.
The algorithm is still able to compute a solution, but the spatial profiles suffer from
important distortion.

5.8 An Additional PDE Application

We conclude this chapter with an application related to 2-phase flow in porous
medium as described by Buckley-Leverett equation [46]

εx

εt
+ f (x) = 0

with the flux function f (x) = x2

x2+M(1−x)2 .
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Fig. 5.36 Propagation of a density wave (from left to right) graphed at t = 0, . . . , 0.006 (with
time intervals 0.006/10), computed with a grid refinement algorithm. Grid adaptation is shown in
the lower subplot

This mass balance equation finds applications in the petroleum industry, as a
model of secondary recovery by water drive in oil reservoir. In this context, x(z, t)
represents water saturation (x = 1 corresponds to pure water and x = 0 corresponds
to oil only). The flux function f is the water fractional flow function and M > 0
is the water over oil viscosity ratio. When a capillarity diffusion term is taken into
account, the mass balance becomes

εx

εt
+ f (x) = ε

ε

εz

[
ν(x)

ε

εz
x

]

with a diffusion coefficient, vanishing in x = 0 and x = 1, ν(x) = 4x(1 − x) and a
small parameter ε = 0.01.

If now gravitational effects are also taken into account, the flux function becomes
(with M = 1)

f (x) = x2

x2 + (1 − x)2 (1 − 5(1 − x)2)

We first solve the problem with the s-shaped flux function f (x) = x2

x2+M(1−x)2 ,
and with an initial condition

x(z, 0) =
⎨

1 − 3z if 0 � z � 1/3
0 if 1/3 < z � 1
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Fig. 5.37 Flux function f (x) = x2

x2+M(1−x)2 with M = 1 and its derivative
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Fig. 5.38 Solution of Buckley-Leverett using an upwind Superbee limiter with 200 finite volumes
graphed at t = 0, 0.1, . . . , 0.6

The flux function has a derivative equal to f ∧(x) = 2Mx(1 − x)/
(
x2 + M(1 − x)2

⎛2
which is always positive (see Fig. 5.37).

This information is exploited in the numerical solution using a slope limiter.
Figure 5.38 shows the solution obtained with an upwind Superbee slope limiter and
200 finite volumes.

The flux function f (x) = x2

x2+(1−x)2 (1−5(1−x)2) is more delicate to handle as the

derivative f ∧(x) = 2x(1−x)(((10x−15)x+15)x−4)

(x2+M(1−x)2
⎛2 changes sign, as shown in Fig. 5.39.

It is therefore convenient to use a centered limiter of Kurganov-Tadmor, as shown
in Fig. 5.40. Of course, an upwind scheme does also the job very well, but requires
the information on the “direction of the wind” (which is given by the sign of the
derivative of the flux function, and is easy to compute in this scalar example).
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5.9 Summary

In this chapter, dedicated to problems with traveling wave solutions, we have first
reviewed a few important theoretical concepts including conservation laws, the
method of characteristics, the method of vanishing viscosity, and transformation-
based methods. Then, we have focused attention on several numerical schemes:

• The classical upwind finite difference schemes;
• An operator splitting approach exploiting in a sequential way the previous con-

cepts;
• Slope limiters which ensure an oscillation-free solution (TVD schemes);
• Grid refinement which allows to concentrate grid points in spatial regions where

they are needed.

Although upwinding is central to the solution of convection-dominated problems,
there also exists a class of centered schemes, reminiscent to Lax-Wendroff scheme,
which has a very broad applicability and avoids the use of Riemann solvers for
general nonlinear hyperbolic conservation laws.
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These methods are tested with various application examples, including Burgers
equation, a tubular bioreactor, a jacketed chemical reactor with an exothermic reac-
tion, Sod shock tube problem, Korteweg-de Vries equation, a flame propagation
problem, and Buckley-Leverett equation.
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Chapter 6
Two Dimensional and Time Varying Spatial
Domains

So far in this book, we have focused attention on initial-boundary value problems
defined on time-invariant spatial domains in one spatial dimension. These problems
are common in practice and are easier to handle than problems in more spatial
dimensions. They are also best suited for introducing various numerical techniques.
In addition, a 1D formulation can be a good approximation of a more complex
problem in many instances, which can be advantageous when using the simulation
program in contexts such as optimization or control, where a small computational
load is of paramount importance.

In this chapter, we will depart from this simple definition of the spatial domain,
and first consider problems in two spatial dimensions, and their treatment with finite
difference and finite element approximations. FDs are easily extended on spatial
domains with simple geometries such as squares, rectangles, cylinders, etc., but are
not appropriate for spatial domains with more complex shapes, where finite element
methods are the first choice. We also consider through examples the use of the slope
limiters and of the proper orthogonal decomposition technique introduced earlier in
this book.

We then briefly address problems defined on time-varying spatial domains. This
situation occurs in many practical situations, for instance, a melting snowman whose
volume is decreasing due to positive temperatures, or a biofilm on the wall of a
tubular reactor whose boundary layer is moving as bacterial population develops and
colonizes the available space. In this chapter, this problematic is introduced based
on a freeze-drying application example.

6.1 Solution of Partial Differential Equations in More than 1D
Using Finite Differences

In this section we would like to introduce a few simple finite difference methods that
can be used to solve problems in two spatial dimensions on domains with simple
geometries. What we mean by a simple geometry is a convex domain in Cartesian
or polar coordinates, such as a square, a rectangle, a quadrilateral, a disk. Finite

A. Vande Wouwer et al., Simulation of ODE/PDE Models with MATLAB�, 339
OCTAVE and SCILAB, DOI: 10.1007/978-3-319-06790-2_6,
© Springer International Publishing Switzerland 2014
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difference schemes are easy to understand and to apply in 1D but unfortunately they
cannot be extended efficiently on spatial domains with complex shapes.

We will depart from the notation used in the previous chapters where x is the
dependent variable and z the spatial coordinate (which is a notation inspired from
systems theory where the state variable is usually denoted x) to avoid using a sub-
script notation for the several spatial coordinates z1, z2, . . .. In agreement with the
notational habits in the numerical analysis community, we will use u to denote the
dependent variable, and x, y, z for the Cartesian coordinates. This way, the general
problem under consideration in this chapter reads

ut = f
(
u, ux , uy, uxx , uyy, . . . , x, y, t

)
(6.1)

where u(x, y, t) can be scalar or vector. The spatial domain ν(x, y) is assumed
convex and time invariant, i.e, the spatial boundary ϕ does not move or change shape
along time.

PDE (6.1) is complemented by an initial condition

u(x, y, 0) = u0(x, y) (6.2)

and by conditions along the boundary ϕ. These conditions can basically be of three
types:

• Dirichlet
u(xϕ, yϕ, t) = gD(t) (6.3)

• Neumann

→u(xϕ, yϕ, t) = gN (t) (6.4)

• Robin
k0→u(xϕ, yϕ, t) + k1u(xϕ, yϕ, t) = gR(t) (6.5)

where (xϕ, yϕ, t) is an arbitrary point along ϕ and → is the gradient operator (i.e. in
1D, →u = ρu

ρz ). A mix of these conditions can be used on different portions of ϕ.
We will now study a few examples of increasing complexity and use finite differ-

ence methods to elaborate a solution.

6.1.1 The Heat Equation on a Rectangle

Consider the heat equation on a rectangular spatial domain

Tt = k(Txx + Tyy) (6.6)

with k = 10, defined on

ν = {(x, y) : 0 � x � 1; 0 � y � 2} (6.7)
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for 0 � t � 0.01, and with the following initial conditions:

T (x, y, 0) = 0 (6.8)

and boundary conditions

T (x, 0, t) = T (0, y, t) = 0 (6.9)

T (x, 2, t) = T (1, y, t) = TM = 100 (6.10)

We assume that in the points (1, 0) and (0, 2), BC (6.10) prevails.
The coding of the solution to this problem is analog to the codes previously

detailed: a main program defines the model parameters, the spatial domain, the
finite difference matrices, calls an ODE solver, then displays the results, whereas
an ODE function computes the time derivatives of the dependent variables based on
the model equations, and the finite difference operators. The codes are listed in the
script heat_equation_main and heat_equation_pde.

close all
clear all

% start a stopwatch timer
tic

% set global variables
global k TM
global nx ny D2x D2y

% model parameters
TM = 100;
k = 10;

% spatial grid
x = [ 0 : 0 . 0 1 : 1 ] ;
y = [ 0 : 0 . 0 2 : 2 ] ;
nx = length (x ) ;
ny = length (y ) ;
nv = nx*ny ;

% initial conditions
T0 ( 1 :nv , 1 ) = zeros (nv , 1 ) ;

% finite difference (FD ) approximation of the spatial derivatives
D2x = five_point_centered_D2 (x ) ;
D2y = five_point_centered_D2 (y ) ;

% call to ODE solver
t = [ 0 : 0 . 0 1 / 3 : 0 . 0 1 ] ;
[tout ,Tout ] = ode45 (@heat_equation_pde ,t ,T0 ) ;

% impose BCs
for k = 1 :length (tout )
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Tout (k , 1 :nx ) = 0 ;
Tout (k , 1 :nx :nx*(ny−1)+1) = 0 ;
Tout (k ,nx :nx :nx*ny ) = TM ;
Tout (k ,nx*(ny−1)+1:nx*ny)= TM ;

end

% plot results
for j = 1 :length (tout )

figure
u (ny : −1 : 1 , : ) = reshape (Tout (j , 1 :nv ) ,nx , [ ] ) ' ;
surf (x ,y (ny : −1:1 ) ,u , 'EdgeColor ' , 'none ' ) ;
axis ( [ 0 1 0 2 0 100 ] )
xlabel ( 'x ' , 'FontSize ' , 1 4 ) ;
ylabel ( 'y ' , 'FontSize ' , 1 4 ) ;
zlabel ( 'T (x ,y ) ' , 'FontSize ' , 1 4 )
set (gca , 'FontSize ' , 1 4 )

end

% isotherms
for j = 1 :length (t )

figure
u (ny : −1 : 1 , : ) = reshape (Tout (j , 1 :nv ) ,nx , [ ] ) ' ;
[C ,h ] = contour (x ,y (ny : −1:1 ) ,u ) ;
set (h , 'ShowText ' , ' on ' , 'TextStep ' ,get (h , 'LevelStep ' ) * 2 )
axis( [ − .1 1 . 1 −.1 2 . 1 ] )
xlabel ( 'x ' , 'FontSize ' , 1 4 ) ; ylabel ( 'y ' , 'FontSize ' , 1 4 )
set (gca , 'FontSize ' , 1 4 )

end

% read the stopwatch timer
toc

Script heat_equation_main Main program for the solution of the heat equation on a rectangular
domain.

function Tt = heat_equation_pde(t ,T )

% set global variables
global k TM
global nx ny D2x D2y

% boundary conditions
T ( 1 :nx , 1 ) = 0 ;
T ( 1 :nx :nx*(ny−1)+1 ,1) = 0 ;
T (nx :nx :nx*ny , 1 ) = TM ;
T (nx*(ny−1)+1:nx*ny , 1 ) = TM ;

% spatial derivatives
[Txx Tyy ] = second_order_derivatives_2D (T ,nx ,ny ,D2x ,D2y ) ;

% temporal derivatives
Tt = k*(Txx+Tyy ) ;

Function heat_equation_pde PDE function for the solution of the heat equation on a rectangular
domain.
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We can note the following points, which are specific to the 2D nature of the
problem:

1. The rectangular spatial domain is easily defined by

% spatial grid
x = [0:0.01:1];
y = [0:0.02:2];
nx = length(x);
ny = length(y);
nv = nx*ny;

2. The discretized solution is a matrix with ny lines and nx columns, which is stored
as a column vector u with nv elements. The storage proceeds line by line, the
first line corresponding to the bottom limit of the spatial domain, and the last one
(the nyth line) to the upper limit.

This column-vector storage is initiated by the definition of the initial condition:

% initial conditions
T0(1:nv,1) = zeros(nv,1);

and leads to some index manipulation when handling the boundary conditions in
the PDE function:

% boundary conditions
T(1:nx,1) = 0;
T(1:nx:nx*(ny-1)+1,1) = 0;
T(nx:nx:nx*ny,1) = TM;
T(nx*(ny-1)+1:nx*ny,1) = TM;

It also necessitates reshaping the output of the solver for further graphing:

u(ny:-1:1,:) = reshape(Tout(j,1:nv),nx,[])’;
surf(x,y(ny:-1:1),u,’EdgeColor’,’none’);

3. The construction of the finite difference approximation is essentially based on the
1D finite differences library that has been developed in Chap. 3

D2x = five_point_centered_D2(x);
D2y = five_point_centered_D2(y);

There is flexibility in the selection of the discretization scheme in each direction,
and for instance an alternative to the previous choice would be:

D2x = five_point_centered_D2(x);
D2y = three_point_centered_D2(y);

The differentiation matrices D2x and D2y are used by the function second
_order_derivatives_2D, which uses an intermediate matrix v, and pro-
vides column vectors uxx and uyy with the appropriate storage order.

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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function [uxx uyy ] = second_order_derivatives_2D (u ,nx ,ny ,D2x ,D2y )

% use finite differences in 1D along x and along y
v = reshape (u ,nx , [ ] ) ;
uxx = reshape (D2x*v ,nx*ny , 1 ) ;
uyy = reshape (v*D2y ' ,nx*ny , 1 ) ;

Function second_order_derivatives_2D Function to compute the second-order derivatives on
the 2D spatial domain.

Figure 6.1 shows the 3D plot of the solution at time t = 0.01 s while Fig. 6.2 is a
2D graph displaying isotherms of the solution at the same time.

6.1.2 Graetz Problem with Constant Wall Temperature

The first example has shown the possibility to use 1D finite difference approximations
to compute derivatives on rectangular domains. This possibility of course also exists
for other domains defined by orthogonal coordinates, such as the following problem
defined in a cylinder. This problem initially considered by Graetz [1] describes the
energy balance of an incompressible Newtonian fluid entering a tube with a wall at
constant temperature (which can be larger or lower than the initial fluid temperature).
It is assumed that the flow is laminar. In normalized variables, the problem can be
written as

Tt = −Pev(r)Tz + Tzz + 1

r
Tr + Trr (6.11)

where T (r, z, t) denotes the temperature, v(r) = 2(1 − (r/R)2) is the parabolic
velocity profile, and Pe = Rv0/Δ is Peclet number, where R is the tube radius, v0
is the velocity on the center line (the maximum fluid velocity) and Δ = λ/(αcp) is
the thermal diffusivity. As a particular example, we will consider R = 1, L = 30,
Pe = 60.

Figure 6.3 represents the spatial domain for this problem.
The previous energy balance PDE is supplemented with the following initial

conditions:

T (r, z, 0) = 0 (6.12)

and boundary conditions

Tr (0, z, t) = 0 (radial symmetry) (6.13)
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Fig. 6.1 Numerical solution of the 2D heat equation at time t = 0.01—3D representation
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Fig. 6.2 Numerical solution of the 2D heat equation at time t = 0.01—isotherm representation

Fig. 6.3 Spatial domain for Graetz problem
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T (R, z, t) = Tw = 1 (constant wall temperature) (6.14)

T (r, 0, t) = 0 (constant inlet temperature) (6.15)

Tz(r, L , t) = 0 (zero diffusion at outlet) (6.16)

The first boundary condition expresses the fact that the temperature profile is radially
symmetric, an important characteristic, which allows the consideration of two spatial
coordinates only. As a consequence, the term Tr/r of Eq. (6.11) is undeterminate
(0/0) on the tube axis. The application of L’Hôpital’s rule leads to

lim
r≤0

= 1

r
Tr = lim

r≤0
Trr (6.17)

so that PDE (6.11) can be expressed as

Tt = −Pev(r)Tz + Tzz + 2Trr (6.18)

along the center line.
The program structure is very similar to the previous example. The code is avail-

able in the companion library. Here, we just stress a few points:

• The spatial grid is defined by

% spatial grid
z0 = 0; zL = 30;
nz = 101; dz = (zL-z0)/(nz-1); z = [z0:dz:zL];
%
r0 = 0; rR = 1;
nr = 101; dr = (rR-r0)/(nr-1); r = [r0:dr:rR];

• The finite difference schemes are selected according to the nature (convective or
diffusive) of the material transportation phenomena

% finite difference (FD) approximation of the spatial
derivatives
D1z = four_point_biased_upwind_D1(z,1);
D1r = five_point_centered_D1(r);
D2z = five_point_centered_D2(z);
D2r = five_point_centered_D2(r);

• The first-order derivatives are computed with the function listed in first_order
_derivatives_2D (which is almost identical to the functionsecond_order
_derivatives_2D, but it is used for clarity and convenience).
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function [ux uy ] = first_order_derivatives_2D (u ,nx ,ny , . . .
D1x ,D1y )

% Use finite differences in 1D along x and along y
v = reshape (u ,nx , [ ] ) ;
ux = reshape (D1x*v ,nx*ny , 1 ) ;
uy = reshape (v*D1y ' ,nx*ny , 1 ) ;

Function first_order_derivatives_2D Function to compute the first-order derivatives on the 2D
spatial domain.

• Neumann BCs (6.13) and (6.16) can be expressed—in an approximate way—as
Dirichlet BCs using two-point finite difference schemes (a zero slope means that
the values of the variable in the two neighboring grid points are the same). With
BCs (6.14–6.15) they form the following set of Dirichlet BCs:

% boundary conditions
T(1:nz,1) = T(nz+1:2*nz,1);
T(nv-nz+1:nv,1) = 1;
T(1:nz:nv-nz+1,1) = 0;
T(nz:nz:nv,1) = T(nz-1:nz:nv-1,1);

• The PDE is coded so as to take account of the initial undetermination along the
central line, and the use of l’Hôpital rule (the vector r_inv contains the values
of 1/r )

% temporal derivatives
Tt = -Pe*v.*Tz + Tzz + Trr;
Tt(nz+1:nz*nr,1) = Tt(nz+1:nz*nr,1) +...

r_inv(nz+1:nz*nr,1).*Tr(nz+1:nz*nr,1);
Tt(1:nz,1) = Tt(1:nz,1) + Trr(1:nz,1);

• The problem symmetry leads us to express the solution on half of the actual spatial
domain (i.e. for 0 � r � R), and at the time of plotting the results a mirror image
around the r -axis has to be created

[Z R] = meshgrid(z,r(nr:-1:1));
[Z1 R1] = meshgrid(z,-r);

and in a loop

u(nr:-1:1,:) = reshape(Tout(j,1:nv),nz,[])’;
%
surf(Z,R,u,’EdgeColor’,’none’)%[.95 .95 .95]
hold
surf(Z1,R1,u(nr:-1:1,:),’EdgeColor’,’none’)
%[.95 .95 .95]

The solution at time t = 0.05, t = 0.15 and t = 0.35 is displayed in Figs. 6.4,
6.5 and 6.6, respectively.
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Fig. 6.4 Numerical solution of the Graetz problem at t = 0.05
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Fig. 6.5 Numerical solution of the Graetz problem at t = 0.15

6.1.3 Tubular Chemical Reactor

Based on the results obtained with Graetz problem, we can now consider a more
challenging IBVP related to a tubular chemical reactor, represented in Fig. 6.7, and
for which we will study the numerical simulation results both in 1D and 2D. In
2D, the reactor equations consist of one mass-balance PDE, including convection,
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Fig. 6.6 Numerical solution of the Graetz problem at t = 0.35

Fig. 6.7 Tubular reactor spatial domain

diffusion and chemical reaction, and one energy balance PDE with the counterpart
terms.

ct = −v(r)cz + D

(
czz + crr + 1

r
cr

)
− r(c, T )

Tt = −v(r)Tz + λ

αcp

(
Tzz + Trr + 1

r
Tr

)
+ −ωH

αcp
r(c, T )

(6.19)

where r(c, T ) = k0 exp
(− E

RT

)
c2 and with a fluid flow velocity profile, which can

be parabolic as in Graetz problem, v(r) = vmax
(
1 − (r/R)2

)
or constant, v(r) =

vmax/2. These equations are supplemented by initial conditions

c(r, z, 0) = c0(r, z)
T (r, z, 0) = T0(r, z)

(6.20)
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and boundary conditions

cr (0, z, t) = 0
Tr (0, z, t) = 0

(radial symmetry) (6.21)

cr (R, z, t) = 0 (no mass transfer)
Tr (R, z, t) = h

λ
(Tw − T (R, z, t)) (heat exchange with wall)

(6.22)

c(r, 0, t) = cin (constant inlet concentration)
T (r, 0, t) = Tin (constant inlet temperature)

(6.23)

cz(r, L , t) = 0
Tz(r, L , t) = 0

(zero diffusion at outlet) (6.24)

Again the use of l’Hôpital’s rule with BCs (6.21) allows expressing the PDEs along
the center line as

ct = −vcz + D (czz + 2crr ) − r(c, T )

Tt = −vTz + λ

αcp
(Tzz + 2Trr ) − ωH

αcp
r(c, T )

in r = 0 (6.25)

There is obviously no mass transfer through the wall, as expressed by BC (6.22),
so that the mass-balance PDE at the wall (r = R) reduces to:

ct = −v(r)cz + D(czz + crr ) − r(c, T )

This way, some of the BCs are naturally accounted for. As for BC (6.22) describing
the heat exchange at the wall, different coding could be used as introduced in Chap. 3.
In our implementation, we have used a transformation of the BCs into an ODE with
fast dynamics (adjustable via the parameter gamma).

T_t(nr,j) = gamma * ((h/lambda) * (Tw-T(nr,j))-Tr(nr,j));

In 1D, the reactor equations can be written as follows

ct = −vcz + Dczz − r(c, T )

Tt = −vTz + λ

αcp
Tzz − ωH

αcp
r(c, T ) + 1

αcp

2h

R
(Tw − T )

(6.26)

with initial and boundary conditions

c(z, 0) = c0(z)
T (z, 0) = T0(z)

(6.27)

c(0, t) = cin

T (0, t) = Tin
(constant inlet temperature and concentration) (6.28)

http://dx.doi.org/10.1007/978-3-319-06790-2_3
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Fig. 6.8 Steady-state concentration profiles in the tubular reactor with a parabolic velocity profile

cz(L , t) = 0
Tz(L , t) = 0

(zero diffusion at outlet) (6.29)

We see that the heat exchange phenomenon is no longer formulated as a bound-
ary condition, but as a source term in the energy-balance PDE. The multiplicative
coefficient 2/R expresses the ratio of an elementary surface area (i.e. heat flows
through an element of the wall surface 2ε Rωz) to the corresponding volume of the
tube section (i.e. the PDE is obtained by expressing balances around an element of
volume ε R2ωz).

Figures 6.8 and 6.9 show the steady state-concentration and temperature profiles
corresponding to a parabolic velocity profile, whose influence is clearly recognizable
in the shape of the profiles, whereas Figs. 6.10 and 6.11 shows the same information
in the case of a constant velocity. These results are obtained with 101 grid points in
the axial direction and 11-points in the radial direction.

On the other hand, Fig. 6.12 presents the time evolution of the temperature profile
inside the reactor, modeled as a 1D system. It is apparent that this evolution is close
to the temperature on the reactor center line, as predicted by the 2D model. As
already mentioned, a 1D representation of a distributed parameter system can be
advantageous in terms of simplicity and computational efficiency. In the context of
the tubular reactor problem, this approximation will be accurate if the reactor length
is large as compared to its radius (in our example this ratio is 50), and if the thermal
conductivity is high.



352 6 Two Dimensional and Time Varying Spatial Domains

0
20

40
60

80
100

0

0.5

1

1.5

2
300

350

400

450

500

550

z

Temperature

r

T
(r

,z
,t)

Fig. 6.9 Steady-state temperature profiles in the tubular reactor with a parabolic velocity profile
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Fig. 6.10 Steady-state concentration profiles in the tubular reactor reactor with a constant velocity
profile

6.1.4 Heat Equation on a Convex Quadrilateral

We now consider a more challenging problem: the heat equation previously presented
(see Eq. 6.6)

Tt = k(Txx + Tyy)
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Fig. 6.11 Steady-state temperature profiles in the tubular reactor with a constant velocity profile
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Fig. 6.12 Evolution of the temperature profile at t = 0, 20, . . . , 300 in the tubular reactor, modeled
as a 1D system

with k = 10 , defined on a convex quadrilateral ν with vertices (−3,−2), (2,−5),
(1, 4), (−2, 1) (see Fig. 6.13) The following initial conditions are imposed:

T (x, y, 0) = 0 ↔(x, y) ⇒ ν (6.30)
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Fig. 6.13 Spatial domain and
boundary conditions for the
heat equation. Boundaries ϕ1
and ϕ2 are marked in black
and blue, respectively

Fig. 6.14 Spatial domain
and the spatial grid in the
coordinate system (x ∞, y∞)

Also, the boundary conditions considered are of the form:

T (ϕ1, t) = 0 (6.31)

T (ϕ2, t) = TM (6.32)

The first step in the numerical solution is the definition of a spatial grid. Unfortu-
nately, a standard grid (in Cartesian coordinates (x, y)) will not match the boundary
ϕ of the spatial domain ν. The idea is therefore to build a grid in a new coordinate
system (x ∞, y∞), as shown in Fig. 6.14, so as to fit well the shape of the spatial domain
ν and its boundary ϕ.
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With such a grid, it will be easy to evaluate the spatial derivatives, for instance

Tx ∞,x ∞ = Ti−1, j − 2Ti, j + Ti+1, j

ωx ∞2

However, we still need to find a systematic way to build the grid, and to compute the
original derivatives.

This computation will be made possible by considering a reference spatial domain
νref in a normalized coordinate system ∂ and δ:

νref = {(∂, δ) : 0 � ∂ � 1, 0 � δ � 1}

Each point (x, y) ⇒ ν will be associated to a point (∂, δ) ⇒ νref through an injective
transformation, so that the following relations exist:

x = x(∂, δ); y = y(∂, δ)

∂ = ∂(x, y); δ = δ(x, y)
(6.33)

These relations are obtained by matching the vertices of ν and νref , starting with S1
(see Fig. 6.14) which is the left-most vertice (if there are two vertices with the same
x-coordinate, then the one with the smaller y-coordinate is selected) and is associated
to the vertice (0, 0) of νref . The other vertices are associated in the anti-clockwise
direction (S1 ↔ (0, 0), S2 ↔ (1, 0), S3 ↔ (1, 1), S4 ↔ (0, 1),)

If (xi , yi ) are the coordinates of Si with i = 1, . . . , 4, the change of variables can
be expressed by

x = a0 + a1∂ + a2δ + a3∂δ

y = b0 + b1∂ + b2δ + b3∂δ
(6.34)

so that

a0 = x1; a1 = x2 − x1; a2 = x4 − x1; a3 = (x3 + x1) − (x4 + x2)

b0 = y1; b1 = y2 − y1; b2 = y4 − y1; b3 = (y3 + y1) − (y4 + y2)
(6.35)

The change of variables (6.34) allows us to express the dependent variable u(x, y)

as u(∂, δ) = u(∂(x, y), δ(x, y)), and the derivatives

ux = u∂ ∂x + uδδx

uy = u∂ ∂y + uδδy
(6.36)

uxx = u∂∂ (∂x )
2 + uδδ(δx )

2 + u∂δ(2∂xδx ) + u∂ (∂xx )uδ(δxx )

uyy = u∂∂ (∂y)
2 + uδδ(δy)

2 + u∂δ(2∂yδy) + u∂ (∂yy)uδ(δyy)
(6.37)

To evaluate these expressions, we need ∂x , ∂y , ∂xx , ∂yy and δx , δy , δxx , δyy which
are given by Pozrikidis [2]
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∂x = yδ

d(∂, δ)
; ∂y = − xδ

d(∂, δ)
; δx = − y∂

d(∂, δ)
; δy = x∂

d(∂, δ)
(6.38)

with

d(∂, δ) = x∂ yδ − xδ y∂ (6.39)

Using (6.34), we can find

d(∂, δ) = (a1b2 − a2b1) + (a1b3 − a3b1)∂ + (a3b2 − a2b3)δ (6.40)

yδ = b2 + b3∂

xδ = a2 + a3∂

y∂ = b1 + b3δ

x∂ = a1 + a3δ

The evaluation of the second-order derivatives, such as ∂xx = ρ
ρx

(
yδ

d(∂,δ)

)
, is a bit

laborious, but leads to

∂xx = 2yδ y∂

d3 (a3b2 − a2b3)

∂yy = 2xδx∂

d3 (a3b2 − a2b3)

δxx = 2yδ y∂

d3 (a1b3 − a3b1)

δyy = 2xδx∂

d3 (a1b3 − a3b1)

(6.41)

We now have all the tools required to tackle the solution of Eq. (6.6) on ν:

• Based on the location of the vertices of ν, and the selection of a grid of points on
the unit square (∂, δ), use Eqs. (6.35) and (6.38–6.41) to evaluate ∂x , ∂y , ∂xx , ∂yy

and δx , δy , δxx , δyy

• Compute Txx and Tyy using (6.37), and replacing T∂∂ , Tδδ, T∂ , Tδ, T∂δ with classical
finite difference formulas.

The full code is given in the companion software. Here we just list in heat
_equation_quadrilateral_domain_pde the function used to compute the
time derivatives based on Eqs. (6.36, 6.37), as well as a function (mixed_second
_order_derivatives_2D) used to evaluate the mixed derivatives appearing in
Eq. (6.37), i.e. u∂δ.

function Tt = heat_equation_quadrilateral_domain_pde (t ,T )

% set global variables
global k TM
global nksi neta D1_ksi D1_eta D2_ksi D2_eta
global ksi_x ksi_y eta_x eta_y ksi_xx ksi_yy eta_xx eta_yy

% boundary conditions
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T ( 1 :nksi , 1 ) = 0 ;
T ( 1 :nksi :nksi*(neta−1)+1 ,1) = 0 ;
T (nksi :nksi :nksi*neta , 1 ) = TM ;
T (nksi*(neta−1)+1:nksi*neta , 1 ) = TM ;

% spatial derivatives
[Tksi Teta ] = first_order_derivatives_2D (T ,nksi ,neta ,D1_ksi , . . .

D1_eta ) ;
[Tksiksi Tetaeta ] = second_order_derivatives_2D (T ,nksi ,neta , . . .

D2_ksi ,D2_eta ) ;
Tksieta = mixed_second_order_derivatives_2D (T ,nksi ,neta ,D1_ksi , . . .

D1_eta ) ;
%
Txx = Tksiksi . * (ksi_x . ^ 2 ) + 2*Tksieta . *ksi_x . *eta_x + . . .

Tetaeta . * (eta_x . ^ 2 ) + Tksi . *ksi_xx + Teta . *eta_xx ;
Tyy = Tksiksi . * (ksi_y . ^ 2 ) + 2*Tksieta . *ksi_y . *eta_y + . . .

Tetaeta . * (eta_y . ^ 2 ) + Tksi . *ksi_yy + Teta . *eta_yy ;

% temporal derivatives
Tt = k*(Txx+Tyy ) ;

Function heat_equation_quadrilateral_domain_pde Function to evaluate the right-hand side
of the heat equation on a quadrilateral domain.

function uxy = mixed_second_order_derivatives_2D (u ,nx ,ny ,D1x ,D1y )

% use finite differences in 1D along x and along y
v = reshape (u ,nx , [ ] ) ;
uxy = reshape ( (D1x*v )*D1y ' ,nx*ny , 1 ) ;

Function mixed_second_order_derivatives_2D Function to compute mixed derivatives on the
2D spatial domain.

6.1.5 A Convection-Diffusion Equation on a Square

So far, it was relatively easy to select an appropriate finite difference scheme depend-
ing on the convective or diffusive nature of the phenomena. We will now consider
a more complex situation, where caution has to be exercised in this selection. The
problem under consideration is taken from [3].

ut = −b1ux − b2uy + v(uxx + uyy) + f (6.42)

on the spatial domain ν = {(x, y) : 0 � x � 200, 0 � y � 200} and the time span
0 � t � 1. The initial and boundary conditions are of the form:

u(x, y, 0) = 0 ↔(x, y) ⇒ ν (6.43)

u(ϕ, t) = 0 (6.44)
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Fig. 6.15 Numerical convection-diffusion problem with η = 0 at t = 0.25, 0.5, 0.75, 1

where ϕ is the boundary of ν. The model parameters are v = 0.001, b1 = 0.5 cos (η),
b2 = 0.5 sin (η) with −ε/2 < η < ε/2, and f = 1. An interesting feature of this
problem is the possibility of changing the angle η , and in turn the direction of the
convective terms. This will allow us to discuss the selection of different finite differ-
ence schemes, i.e. centered or non centered schemes, in relation with the direction
of these terms. We first consider η = 0, so that the equation reduces to

ut = −ux + v
(
uxx + uyy

) + f

i.e. convection is in the x-direction only. The first order-derivative is computed using a
2-point upwind scheme and the second-order derivatives are computed using 5-point
centered schemes. Some results at t = 0.25, 0.5, 0.75, 1 are shown in Fig. 6.15.

We next consider η = ε/2, so that the equation reduces to

ut = −uy + v
(
uxx + uyy

) + f

i.e. convection is in the y-direction only. Again, the first order-derivative is computed
using a 2-point upwind (a higher-order scheme would increase the computational
load) scheme and the second-order derivatives are computed using 5-point centered
schemes. Some results at t = 0.25, 0.5, 0.75, 1 are shown in Fig. 6.16.
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Fig. 6.16 Numerical convection-diffusion problem with η = ε/2 at t = 0.25, 0.5, 0.75, 1

We now consider η = ε/4, so that both convection terms are present in the equa-
tion, i.e. convection is in the x- and y-directions. These derivatives can be computed
using a 2-point upwind scheme. If η = −ε/4, the derivatives have to be computed
with 2-point downwind schemes. In fact, the idea is to program the selection of the
schemes using the coefficients b1, b2 to indicate the correct direction of the fluid
velocity.

D1x_up = two_point_upwind_D1(x,b1)
D1y_up = two_point_upwind_D1(y,b2)

[ux uy] = first_order_derivatives_2D(u,nx,ny,D1x_up,
D1y_up);

Some results at t = 0.25, 0.5, 0.75, 1 are shown in Fig. 6.17 for η = ε/4 and
Fig. 6.18 for η = −ε/4.

What happens if we make the wrong choice for the upwind-downwind schemes?
Spurious oscillations will occur as demonstrated in our last example where we pick
η = −ε/3.25 ∈ −55√. Figure 6.19 first shows the results obtained when the choice
is well done, i.e. upwind in x and downwind in y (as implemented automatically in
the coding lines above). On the other hand, Fig. 6.20 shows the dramatical con-
sequences of reversing the assumed direction in y (i.e. we wrongly assume an
upwind scheme for uy by changing the sign of b2 in the coding line D1y_up =
two_point_upwind_D1(y,-b2)).
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Fig. 6.17 Numerical convection-diffusion problem with η = ε/4 at t = 0.25, 0.5, 0.75, 1

However, in nonlinear problems, the direction of the movement will depend on
the eigenvalues of the Jacobian of the flux function, which can vary with time, so
that it will be impossible to choose the correct direction once and for all as we have
done in this linear problem. The following example illustrates further this situation.

6.1.6 Burgers Equation on a Square

The following example is a generalized version of Burgers equation [4]:

ut = −
(

u2
)

x
−

(
u2

)
y
+ θ (v(u)ux )x + θ

(
v(u)uy

)
y (6.45)

We consider an IBVP defined on a spatial domain ν = {(x, y) : −1.5 � x � 1.5,

−1.5 � y � 1.5} and the time span 0 � t � 0.6, with the model parameters θ = 0.5
and

v(u) =
⎛

1 if |u| � 0.5
0 otherwise
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Fig. 6.18 Numerical convection-diffusion problem with η = −ε/4 at t = 0.25, 0.5, 0.75, 1

The initial condition is shown in Fig. 6.21: u(x, y, 0) = 0 except in two disks,
one centered in (−0.5,−0.5) with a radius of 0.4, where u(x, y, 0) = 1, and the
other centered in (0.5, 0.5), also with a radius of 0.4, where u(x, y, 0) = −1.

The boundary conditions impose u(x, y, t) = 0 along the border ϕ.
Figure 6.22 shows the results obtained with finite differences on a square grid of

101 × 101 grid points, when using 3-point centered finite difference schemes for the
first and second-order derivatives.

Spurious oscillations appear from the beginning of the simulation and increase in
the course of time. It is therefore appealing to resort to the TVD schemes introduced in
Chap. 5 , and in particular the central scheme of Kurganov and Tadmor. Figures 6.23,
6.24 and 6.25 show the nice results obtained at 3 different time instants.

6.2 Solution of 2D PDEs Using Finite Element Techniques

After having discussed several simple 2D PDE problems and their solution with finite
difference schemes, we now consider the use of finite elements in 2 spatial dimen-
sions. Finite elements are quite flexible and can accommodate complex geometries. In
the following we introduce the basic concepts through a particular example, namely

http://dx.doi.org/10.1007/978-3-319-06790-2_5
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Fig. 6.19 Numerical convection-diffusion problem with η = −ε/3.25 at t = 0.25, 0.5, 0.75, 1

Fig. 6.20 Numerical
convection-diffusion prob-
lem with η = −ε/3.25 at
t = 1 when using the wrong
scheme for uy

FitzHugh–Nagumo model [5, 6], which is a simplified version of Hodgkin-Huxley
model [7] that describes the activation and deactivation dynamics of a spiking neuron.
The price to pay for the flexibility of the FEM in 2D is a higher level of complexity
of the algorithm, which requires the discretization of the spatial domain into finite
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Fig. 6.21 Initial condition of the generalized Burgers equation problem
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Fig. 6.22 Numerical solution of the generalized Burgers equation problem using centered finite
differences at t = 0.1

elements (possibly with different geometries), the evaluation of integrals and the con-
struction of several matrices. The ambition of the following example is to explain
the general procedure, but not to provide the reader with a library of codes that can
easily be adapted to other examples.
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Fig. 6.23 Numerical solution of the generalized Burgers equation problem using centered nonoscil-
latory schemes at t = 0.1
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Fig. 6.24 Numerical solution of the generalized Burgers equation problem using centered nonoscil-
latory schemes at t = 0.3

6.2.1 FitzHugh-Nagumo’s Model

The spatio-temporal evolution of chemical or electrochemical signals is at the origin
of many biological phenomena related with cell growth and distribution as well as
with cell communication—see [8]. For example, nervous signals or normal heart
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Fig. 6.25 Numerical solution of the generalized Burgers equation problem using centered nonoscil-
latory schemes at t = 0.6

activity are represented in the form of periodic flat pulses (fronts) traveling along
neural axons and tissues [7]. On the other hand, heart arrhythmia and other nervous
dysfunctions are produced by a regular front being broken into a wandering spiral. In
the last instance and after a chain breaking process, the spiral waves would transform
into a disorganized set of multiple spirals continually created and destroyed, forming
the characteristic pattern of fibrillation [9]. FitzHugh–Nagumo’s (FHN) model [5,
6] is able to explain, at least at a qualitative level, these phenomena.

The model equations are of the form:

ρu

ρt
= κ

(
ρ2u

ρx2 + ρ2u

ρy2

)
+ g(u) − v, g(u) = u(a − u)(u − 1), (6.46)

ρv

ρt
= κα

(
ρ2v

ρx2 + ρ2v

ρy2

)
+ θ(βu − γ v + δ). (6.47)

where u is associated with the membrane potential while v is associated with the
contribution to the membrane current of some ions like Na+, K +, etc. Parameter κ

corresponds to the diffusion coefficient while α represents the ratio of the diffusivities
of v and u. As pointed out in [10], in biological systems α ∈ 0, thus the diffusion
term in Eq. (6.47) can be neglected. In this model, zero-flux boundary conditions are
considered:

|n · →u = n · →v = 0|ϕ . (6.48)
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The spatial domain for this problem is the square surface ν = {(x, y)/0 < x <

200 ↔ yand 0 < y < 200 ↔x} with boundary ϕ = {(x, y)/x = ±200 ↔y and y =
±200 ↔x}.

As explained in Chap. 4, several steps can be distinguished in the construction of
the finite element solution, namely:

• Derivation of the variational or weak form
• Element-wise approximation of the solution
• Extension to the whole domain
• Spatial discretization
• Definition of the basis functions and construction of the several matrices.

These steps are also applied when 2D and 3D spatial domains are considered. The
main differences are the discretization of the spatial domain and the solution of the
spatial integrals involved in this technique. Let us now see how these steps apply to
the 2D FitzHugh-Nagumo system.

6.2.1.1 Derivation of the Variational or Weak Form

As explained in Sect. 4.3.4 the FEM makes use of the so-called weak form to reduce
the order of the second-order spatial derivatives. The general procedure in 2D is
essentially the same as in the 1D case. For the sake of clarity, focus will be on the
derivation of the FEM for Eq. (6.46). The same procedure is easily applied to Eq.
(6.47). As in the 1D case, the model equations (in this case Eq. (6.46)) are multiplied
by an arbitrary test function w, the result is integrated over the spatial domain and
Green’s first identity is applied to the terms with second-order spatial derivative:

⎡⎡
ν

w
ρu

ρt
dxdy =

⎡⎡
ν

wκ

(
ρ2u

ρx2 + ρ2u

ρy2

)
dxdy +

⎡⎡
ν

w (g(u) − v + p) dxdy

(6.49)
By means of Green’s first identity, the first term of the RHS of Eq. (6.49) can be
expressed as:

⎡⎡
ν

wκ

(
ρ2u

ρx2 + ρ2u

ρy2

)
dxdy =

⎡
ϕ

wn · κ→udϕ −
⎡⎡
ν

→w · (κ→u) dxdy,

Substituting this expression into Eq. (6.49), yields

⎡⎡
ν

w
ρu

ρt
dxdy +

⎡⎡
ν

→w · (κ→u) dxdy =
⎡
ϕ

wn · κ→udϕ +
⎡⎡
ν

w (g(u) − v + p) dxdy,

http://dx.doi.org/10.1007/978-3-319-06790-2_4
http://dx.doi.org/10.1007/978-3-319-06790-2_4
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and introducing the zero-flux boundary conditions (6.48), gives:
⎡⎡
ν

w
ρu

ρt
dxdy +

⎡⎡
ν

→w · (κ→u) dxdy =
⎡⎡
ν

w (g(u) − v + p) dxdy, (6.50)

Note that the second-order spatial derivatives have been eliminated from the formu-
lation.

6.2.1.2 Element-Wise Approximation of the Solution

In order to construct the FEM solution in a systematic way, it is more convenient to
consider the weak form over an arbitrary finite element ei , with volume νei , rather
than the whole domain ν. Accordingly, the weak form can be expressed as:

⎡⎡
νei

wei
ρuei

ρt
dxdy +

⎡⎡
νei

→wei · (κ→uei
)

dxdy =
⎡⎡
νei

wei
(
g(u)ei − vei + pei

)
dxdy,

(6.51)
where wei is the test function in the element ei and the solution uei is approximated
over each element, so that:

uei (x, y) =
n⎢

j=1

U ei
j φ

ei
j (x, y), (6.52)

with U ei
j being the values of the solution at the nodes of the finite element ei . φ

ei
i

corresponds to the basis functions over the same element and n is the number of nodes
of element ei which is n = 3 in the case of linear Lagrange triangular elements.

Substituting expression (6.52) into (6.51) and choosing the test functions w so as
to coincide with the basis functions φei (as it is the case in the Galerkin formulation),
the following set of n equations is obtained:

⎡⎡
νei

φ
ei
k

ρ
⎣n

j=1 U ei
j φ

ei
j

ρt
dxdy +

⎡⎡
νei

→φ
ei
k ·

⎤
⎥κ→

n⎢
j=1

U ei
j φ

ei
j

⎦
 dxdy

=
⎡⎡
νei

φ
ei
k

(
g(u)ei − vei + pei

)
dxdy; k = 1, 2, . . . , n,

or in a more compact (matrix) form:

n⎢
j=1

Mei
k j

dU ei
j

dt
+

n⎢
j=1

κDei
2,k jU

ei
j = Fei

k ; k = 1, 2, . . . , n, (6.53)
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where the matrices in the former expression are, as in the 1D case:

Mei
k j =

⎡⎡
νei

φ
ei
k φ

ei
j dxdy; Dei

2,k j =
⎡⎡
νei

→φ
ei
k · →φ

ei
j dxdy;

F ei
k =

⎡⎡
νei

φ
ei
k

(
g(u)ei − vei + pei

)
dxdy; k = 1, . . . , n. (6.54)

6.2.1.3 Extension to the Whole Domain

The formulation presented in the previous step was derived for an arbitrary iso-
lated element of the mesh (ei ). In order to obtain the desired solution of Eqs.
(6.46)–(6.48), such formulation must be extended to the whole domain. To this pur-
pose, all the isolated elements must be first ordered (numbered) and then assembled.
The first part consists of assigning a number (e1, e2, . . . , ep) to each element and
to each node. Although the numbers can be arbitrarily assigned to each element, an
appropriate order may help to improve the efficiency of the algorithms when solving
the final ODE system.

Finally, in order to assemble the elements, one should note that the value of the
field in the shared nodes must be the same (continuity of the solution). This step and
the subsequent ones (spatial discretization and the shape of the basis functions) will
be illustrated in the sequel.

6.2.1.4 Spatial Discretization

Let us first use, for illustrative purposes, an extremely coarse spatial discretization
of the spatial domain. Different types of finite elements can be used (triangular,
square,…). Triangular elements will be chosen in the following because of their
versatility to represent irregular domains. The procedure can be extended to other
kind of finite elements.

Figure 6.26 presents the coarse spatial discretization consisting of six finite
elements (denoted as ei with i = 1, 2, . . . , 6) and seven spatial nodes. Of course the
numerical solution obtained with this discretization would not be accurate enough
and a much larger number of finite elements would be necessary. In this figure, red is
used to enumerate the nodes using the global notation (element independent) while
blue numbers indicate the node number inside a given finite element (local notation).
In general, the nodes inside a finite element are numbered counterclockwise.

Following the notation of previous sections, state variables in the whole spa-
tial domain will be denoted by u(x, y, t) and v(x, y, t). The notation uei (x, y, t),
vei (x, y, t) is used to indicate the state variables inside a given finite element ei . The
value of the fields at a given spatial node (x j , y j ) of element ei is denoted by U ei

j (t),

V ei
j (t).
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Fig. 6.26 Coarse spatial dis-
cretization for the FitzHugh-
Nagumo problem used for
illustrative purposes
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6.2.1.5 Assembly of Elements

Note in Fig. 6.26, that the first global node (marked in red with number (1) coincides
with a) the first local node of element e1 (marked in blue with number 1 inside e1)
and b) the first local node of element e2 (marked in blue with number 1 inside e2).
Both elements must be taken into account.

Let us now focus on the first node (k = 1) of the element e1. From now on, the
arguments of the variables will be omitted for clarity purposes. In this particular case,
Eq. (6.53) reads:

Me1
11

dU e1
1

dt
+Me1

12
dU e1

2

dt
+Me1

13
dU e1

3

dt
+κ

(
De1

2,11U e1
1 + De1

2,12U e1
2 + De1

2,13U e1
3

)
= F e1

1

(6.55)

Similarly, when considering the first local node (k = 1) of the element e2, Eq. (6.53)
leads to the following equation:

Me2
11

dU e2
1

dt
+Me2

12
dU e2

2

dt
+Me2

13
dU e2

3

dt
+κ

(
De2

2,11U e2
1 + De2

2,12U e2
2 + De2

2,13U e2
3

)
= F e2

1

(6.56)

Furthermore, in order to ensure continuity of the solution, the following relations
must be satisfied (see Fig. 6.26)

U1 = U e1
1 = U e2

1

U2 = U e2
2 = U e3

2

U3 = U e1
2 = U e2

3 = U e3
1 = U e4

2 = U e6
1

U4 = U e1
3 = U e4

1 = U e5
1 (6.57)
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U5 = U e4
3

U6 = U e4
2 = U e5

3 = U e6
3

U7 = U e3
3 = U e6

2

Using expressions (6.57), Eqs. (6.55) and (6.56) can be rewritten as:

Me1
11

dU1

dt
+ Me1

12
dU3

dt
+ Me1

13
dU4

dt
+ κ

(
De1

2,11U1 + De1
2,12U3 + De1

2,13U4

)
= F e1

1

(6.58)

Me2
11

dU1

dt
+ Me2

12
dU2

dt
+ Me2

13
dU3

dt
+ κ

(
De2

2,11U1 + De2
2,12U2 + De2

2,13U3

)
= F e2

1

(6.59)
Adding Eqs. (6.58) and (6.59) results into:

(
Me1

11 + Me2
11

) dU1

dt
+ Me2

12
dU2

dt
+ (

Me1
12 + Me2

13

) dU3

dt
+ Me1

13
dU4

dt

+ k
[(

De1
2,11 + De2

2,11

)
U1 +

(
De2

2,12

)
U2

+
(

De1
2,12 + De2

2,13

)
U3 +

(
De1

2,13

)
U4

]
= F e1

1 + F e2
1 (6.60)

This expression constitutes one of the seven equations required to obtain the solu-
tion (the spatial domain discretization consists of seven nodes which gives us seven
unknowns, one per node). The second equation is obtained through the second global
node. Note that this node is shared by the second local node (k = 2) of e2 and the
second local node (k = 2) of e3. In this case, Eq. (6.53) leads to the following set of
equations:

Me2
21

dU e2
1

dt
+Me2

22
dU e2

2

dt
+Me2

23
dU e2

3

dt
+κ

(
De1

2,21U e2
1 + De2

2,22U e2
2 + De2

2,23U e2
3

)
= F e2

2

(6.61)

Me3
21

dU e3
1

dt
+Me3

22
dU e3

2

dt
+Me3

23
dU e3

3

dt
+κ

(
De3

2,21U e3
1 + De3

2,22U e3
2 + De3

2,23U e3
3

)
= F e3

2

(6.62)
Using the global notation and adding Eqs. (6.61) and (6.62) the second of the seven
equations is obtained

Me2
21

dU1

dt
+ (

Me2
22 + Me3

22

) dU2

dt
+ (

Me2
23 + Me3

21

) dU3

dt
+ Me3

23
dU7

dt
+

k
[
De2

2,21U1 +
(

De2
2,22 + De3

2,22

)
U2 +

(
De2

2,23 + De3
2,21

)
U3 + De3

2,23U7

]
= F e2

2 +F e3
2

(6.63)
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In order to obtain the third equation, the third global node is used. This node is shared
by: the second node (k = 2) of e1; the third node (k = 3) of e2; the first node (k = 1)
of e3; the second node (k = 2) of e5 and the first node (k = 1) of e6. Applying the
same procedure the following equation is derived:

(
Me1

21 + Me2
31

) dU1

dt
+ (

Me2
32 + Me3

12

) dU2

dt
+ (

Me1
22 + Me2

33 + Me3
11 + Me5

22 + Me6
11

) dU3

dt

+ (
Me1

23 + Me5
21

) dU4

dt
+ (

Me5
23 + Me6

13

) dU6

dt
+ (

Me3
13 + Me6

12

) dU7

dt

+ k
[(

De1
2,21 + De2

2,31

)
U1 +

(
De2

2,32 + De3
2,12

)
U2 +

(
De1

2,22 + De2
2,33 + De3

2,11 + De5
2,22 + De6

2,11

)
U3

+
(

De1
2,23 + De5

2,21

)
U4 +

(
De5

2,23 + De6
2,13

)
U6 +

(
De3

2,13 + De6
2,12

)
U7

]

= F
e1
2 + F

e2
3 + F

e3
1 + F

e5
2 + F

e6
1 (6.64)

The remaining equations are derived by applying the same methodology to the rest
of global nodes. The final result is:
For the fourth global node

Me1
31

dU1

dt
+ (

Me1
32 + Me5

12

) dU3

dt
+ (

Me1
33 + Me5

11 + Me4
11

) dU4

dt
+ Me4

13
dU5

dt
+ (

Me5
13 + Me4

12

) dU6

dt

+ k
[
De1

2,31U1 +
(

De1
2,32 + De5

2,12

)
U3 +

(
De1

2,33 + De5
2,11 + De4

2,11

)
U4 + De4

2,13U5

+
(

De5
2,13 + De4

2,12

)
U6+

]
= F e1

3 + F e4
1 + F e5

1 (6.65)

For the fifth global node

Me4
31

dU4

dt
+ Me4

33
dU5

dt
+ Me4

32
dU6

dt
+ k

[
De4

2,31U4 + De4
2,33U5 + De4

2,32U6

]
= F e4

3

(6.66)
For the sixth global node

(
Me5

32 + Me6
31

) dU3

dt
+ (

Me4
21 + Me5

31

) dU4

dt
+ Me4

23
dU5

dt
+ (

Me4
22 + Me5

33 + Me6
33

) dU6

dt
+ Me6

32
dU7

dt

+ k
[(

De5
2,32 + De6

2,31

)
U3 +

(
De4

2,21 + De5
2,31

)
U4 + De4

2,23U5 +
(

De4
2,22 + De5

2,33 + De6
2,33

)
U6

+ De6
2,32U7

]
= F

e4
2 + F

e5
3 + F

e6
3 (6.67)

For the seventh global node

Me3
32

dU2

dt
+ (

Me6
21 + Me3

31

) dU3

dt
+ Me6

23
dU6

dt
+ (

Me6
22 + Me3

33

) dU7

dt
+

k
[
De3

2,32U2 +
(

De6
2,21 + De3

2,31

)
U3 + De6

2,23U6 +
(

De6
2,22 + De3

2,33

)
U7

]
= F e6

2 +F e3
3

(6.68)
Equations (6.60), (6.63) and (6.64)–(6.68) form a system of seven equations

with seven unknown quantities which can be solved given that initial conditions are
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provided. Note also that this system can be rewritten into a more compact form:

M
dU

dt
+ kD2U = F (6.69)

where

M =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

(
M

e1
11 + M

e2
11

)
M

e2
12

(
M

e1
12 + M

e2
13

)
M

e1
13 0 0 0

M
e2
21

(
M

e2
22 + M

e3
22

) (
M

e2
23 + M

e3
21

)
0 0 0 M

e3
23(

M
e1
21 + M

e2
31

) (
M

e2
32 + M

e3
12

) (
M

e1
22 + M

e2
33+

(
M

e1
23 + M

e5
21

)
0

(
M

e5
23 + M

e6
13

) (
M

e3
13 + M

e6
12

)

+M
e5
21

)

M
e1
31 0

(
M

e1
32 + M

e5
12

) (
M

e1
33 + M

e5
11 + M

e4
11

)
M

e4
13

(
M

e5
13 + M

e4
12

)
0

0 0 0 M
e4
31 M

e4
33 M

e4
32 0

0 0
(

M
e5
32 + M

e6
31

) (
M

e4
21 + M

e5
31

)
M

e4
23

(
M

e4
22 + M

e5
33 + M

e6
33

)
M

e6
32

0 M
e3
32

(
M

e6
21 + M

e3
31

)
0 0 M

e6
23

(
M

e6
22 + M

e3
33

)


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

(6.70)

U =


⎜⎜⎜⎜⎜

U1
U2
U3
U4
U5
U6
U7


⎟⎟⎟⎟⎟

;

D2 =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

(
D

e1
2,11 + D

e2
2,11

)
D

e2
2,12

(
D

e1
2,12 + D

e2
2,13

)
D

e1
2,13 0 0 0

D
e2
2,21

(
D

e2
2,22 + D

e3
2,22
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D
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e3
2,23(

D
e1
2,21 + D

e2
2,31

) (
D

e2
2,32 + D

e3
2,12

) (
D

e1
2,22 + D

e2
2,33

(
D
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D
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2,23 + D
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D
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+D
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D

e1
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D

e1
2,33 + D
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D
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2,32 0

0 0
(

D
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D

e4
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e5
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D

e4
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D

e4
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e5
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e6
2,32

+D
e6
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2,32

(
D

e6
2,21 + D
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

F =


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

;

The same procedure is followed to obtain the equations for the field v(x, y, t):

M
dV

dt
= H (6.71)
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Fig. 6.27 Equivalence between a triangular element in the x , y coordinates and the right-angled
triangle in ∂ , δ

6.2.1.6 Definition of the Basis Functions and Construction
of the Several Matrices

In this example, three nodes per element (triangular elements) are defined. Also the
edges of the triangle are straight lines. In order to establish a systematic procedure
for finding the form of the basis functions and to perform the integrals involved in Eq.
(6.54) every triangular element is mapped from the original coordinate system x, y to
a right-angled triangle with vertices in the transformed coordinates (∂1, δ1) = (0, 0),
(∂2, δ2) = (1, 0), (∂3, δ3) = (0, 1) (see Fig. 6.27 where element e3 is considered).
The mapping is always performed in the same way, i.e, the first node in the original
coordinates (x, y) is mapped to (∂1, δ1), the second node is mapped to (∂2, δ2) and
the third node is mapped to (∂3, δ3).

The relation between the original coordinates and the transformed ones is com-
puted through the finite element interpolation functions φi (∂, δ). In this way, for a
given finite element ei :

x = xei
1 φ1(∂, δ) + xei

2 φ2(∂, δ) + xei
3 φ3(∂, δ)

y = yei
1 φ1(∂, δ) + yei

2 φ2(∂, δ) + yei
3 φ3(∂, δ)

(6.72)

where the value of the interpolation functions at the element nodes is the Kronecker’s
delta, i.e, φi (∂ j , δ j ) = δi j .

Considering a single degree of freedom per node, the value of the interpolation
functions inside a given element is expressed as a linear combination of the trans-
formed coordinates, i.e,

φi (∂, δ) = ai + bi∂ + ciδ (6.73)
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In order to compute the values of the unknowns ai , bi , ci with i = 1, 2, 3 three
algebraic linear systems are solved. Such linear systems are obtained from Eq. (6.73),
i.e. 

φ1(∂1, δ1)

φ1(∂2, δ2)

φ1(∂3, δ3)


 =


1 ∂1 δ1

1 ∂2 δ2
1 ∂3 δ3




a1

b1
c1




which, by substituting the value of the node coordinates and the value of the basis
functions at those coordinates results in:


 1

0
0


 =


1 0 0

1 1 0
1 0 1




a1

b1
c1


 =≡

a1 = 1
b1 = −1
c1 = −1

Replacing the values of a1, b1 and c1 into Eq. (6.73):

φ1(∂, δ) = 1 − ∂ − δ (6.74)

Repeating this procedure with the other two nodes, the following expressions are
obtained:

φ2(∂, δ) = ∂ (6.75)

φ3(∂, δ) = δ (6.76)

The mapping (x, y) � (∂, δ) is therefore obtained by substituting expressions
(6.74)–(6.76) into Eq. (6.72):

x = xei
1 + (xei

2 − xei
1 )∂ + (xei

3 − xei
1 )δ

y = yei
1 + (yei

2 − yei
1 )∂ + (yei

3 − yei
1 )δ

(6.77)

The integrals in Eq. (6.54) can be expressed as integrals in the transformed coor-
dinates (∂, δ) [2]. To this purpose, let us first obtain the relation between dxdy and
d∂dδ using the Jacobian of Eq. (6.77):

dxdy = det(J )d∂dδ, with J =
[

(xei
2 − xei

1 ) (xei
3 − xei

1 )

(yei
2 − yei

1 ) (yei
3 − yei

1 )

⎧

Note that det(J ) = 2Aei where Aei is the area of element ei . In this way, integrals
in the mass and diffusion matrices can be computed as:

Mei
k j =

⎡⎡
νei

φ
ei
k φ

ei
j dxdy = 2Aei

⎡⎡
φ

ei
k φ

ei
j d∂dδ (6.78)
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Dei
2,k j =

⎡⎡
νei

→φ
ei
k · →φ

ei
j dxdy = 2Aei

⎡⎡
→φ

ei
k · →φ

ei
j d∂dδ (6.79)

Let us begin with the contribution of one element ei to the mass matrix, i.e.,
Eq. (6.78), where expressions (6.74)–(6.76) will be exploited. Variable χ defined as
χ = 1 − ∂ − δ will be used for convenience. Note that for k = j = 1 in (6.78), we
obtain φ1φ1 = χ2, also for k = 1, j = 2 we have φ1φ2 = χ∂ . Going through all
k = 1, 2, 3 and j = 1, 2, 3 the following expression can be derived:

Mk j = 2Aei

⎡⎡ 
 χ2 χ∂ χδ

∂χ ∂2 ∂δ

δχ δ∂ δ2


 d∂dδ = Aei

12


2 1 1

1 2 1
1 1 2


 (6.80)

with the help of the integration formula [2]:

⎡⎡
χ p∂qδr d∂dδ = p!q!r !

(p + q + r + 2)!
In order to compute the contribution of one element to the diffusion matrix D2,

the gradients of the basis functions must be computed. For the first basis function
the following relations are obtained using the chain rule:

ρφ1

ρ∂
= ρφ1

ρx

ρx

ρ∂
+ ρφ1

ρy

ρy

ρ∂

ρφ1

ρδ
= ρφ1

ρx

ρx

ρδ
+ ρφ1

ρy

ρy

ρδ

=≡
⎨

ρφ1

ρ∂

ρφ1

ρδ

⎩
= →φ1


⎜⎜⎜

ρx

ρ∂

ρx

ρδ

ρy

ρ∂

ρy

ρδ


⎟⎟⎟

which, using the expressions (6.74)–(6.77) results in:

[−1 −1
] = →φ1


 (xei

2 − xei
1 ) (xei

3 − xei
1 )

(yei
2 − yei

1 ) (yei
3 − yei

1 )




︸ ︷︷ ︸
Q

(6.81)

The inverse of the 2 × 2 matrix Q is:

Q−1 = 1

|Q|


 (yei

3 − yei
1 ) −(yei

2 − yei
1 )

−(xei
3 − xei

1 ) (xei
2 − xei

1 )


 with |Q| = 2Aei
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Multiplying both sides of Eq. (6.81) by Q−1 we obtain:

→φ1 = 1

2Aei


−(yei

3 − yei
2 )

(xei
3 − xei

2 )


 (6.82)

The same logic is applied to find the gradients of φ2 and φ3:

→φ2 = 1

2Aei


−(yei

1 − yei
3 )

(xei
1 − xei

3 )


 (6.83)

→φ3 = 1

2Aei


−(yei

2 − yei
1 )

(xei
2 − xei

1 )


 (6.84)

Choosing k = j = 1 in Eq. (6.79) and using expression (6.82)

Dei
2,11 = 2Aei

⎡⎡
→φ

ei
1 · →φ

ei
1 d∂dδ = 1

2Aei

[
(y3 − y2)

2 + (x3 − x2)
2
] ⎡⎡

d∂dδ

= 1

4Aei

[
(y3 − y2)

2 + (x3 − x2)
2
]

Extending this to all k = 1, 2, 3 and j = 1, 2, 3 we find

Dei
2 = 1

4Aei


q11 q12 q13

q21 q22 q23
q31 q32 q33


 (6.85)

where q11 = (y3 − y2)
2 + (x3 − x2)

2, q22 = (y1 − y3)
2 + (x1 − x3)

2, q33 =
(y2 − y1)

2 + (x2 − x1)
2, q12 = q21 = (y3 − y2)(y1 − y3) + (x3 − x2)(x1 − x3),

q13 = q31 = (y3 − y2)(y2 − y1) + (x3 − x2)(x2 − x1), q23 = q32 = (y1 − y3)(y2 −
y1) + (x1 − x3)(x2 − x1).

Let us now see how the assembly procedure previously described to obtain the
global matrices can be implemented in MATLAB. To this purpose the extremely
coarse spatial discretization of Fig. 6.26 (including node and element numeration)
will be used.

The code starts by defining the connectivity matrix. In this matrix, each row
corresponds to a given finite element (ordered from the first to the last one) and
contains the global node numbers, stored in the counterclockwise direction. In this
way, as indicated in Fig. 6.26 the first element is defined by the global nodes 1, 3
and 4.

% Conectivity matrix
CM = [1, 3, 4;

1, 2, 3;
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3, 2, 7;
4, 6, 5;
4, 3, 6;
3, 7, 6];

ne = size(CM,1); % Number of elements

For each element, the node order in fact follows the local node numbering (1, 2,
3 in the counterclockwise direction). For instance, the third row of the connectivity
matrix (corresponding to the third element) will be 3 (third global node and first local
node of element e3), 2 (second global node and second local node of element e3) and
7 (seventh global node and third local node of element e3). The number of elements
in the grid coincides with the number of rows of the connectivity matrix.

The next information required to compute the element matrices and to assemble
them is the matrix containing coordinates of the global nodes.

% Node coordinate matrix

% x y

NC = [ 0, 0; % First global node

200, 0; % Second global node

100, 100; % Third global node

0, 100; % Fourth global node

0, 200; % Fifth global node

100, 200; % Sixth global node

200, 200]; % Seventh global node

x = NC(:,1); % x-axis coordinates for the global nodes

y = NC(:,2); % y-axis coordinates for the global nodes

nd = length(x); % Number of discretization points (global nodes)

Rows correspond to the global nodes (ordered from the first one to the last one)
while the columns are the x-axis and the y-axis coordinates.

In order to compute the element matrices, the area of the finite elements have also
to be computed. Different formulas can be used, for instance, Heron’s formula:

A = √
(s(s − a)(s − b)(s − c))

where a, b and c are the length of the triangle edges and s is the semi-perimeter of
the element s = (a + b + c)/2.

% Triangle elements area (they are stored in a column vector A)
for ii = 1:ne

p = CM(ii,:); % global nodes defining finite element ii
a = sqrt( (x(p(1))-x(p(2)))ˆ2 + (y(p(1))-y(p(2)))ˆ2);
b = sqrt( (x(p(1))-x(p(3)))ˆ2 + (y(p(1))-y(p(3)))ˆ2);
c = sqrt( (x(p(2))-x(p(3)))ˆ2 + (y(p(2))-y(p(3)))ˆ2);
s = (a+b+c)/2;
A(ii,1) = sqrt( (s*(s-a)*(s-b)*(s-c)) ); % Element area

end
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The next step is to compute the contribution of each element to the mass matrix
using Eq. (6.80). The code is divided in two parts, first the part which is the same for
all elements is computed and, then, it is multiplied by each element area. The result
is stored into an array of matrices (Mat).

% Element mass matrices
Mi = 1/12*[2 1 1; 1 2 1; 1 1 2];

% Multiplication by the element area
for ii = 1:ne
Mat(ii).M = A(ii)*Mi;
end

The more elaborated part of the code is the assembly of the elementary matrices.
The global mass matrix will be stored in variable M, which is first initialized (this
will accelerate the code, especially when the number of grid nodes is large). We have
to cover all nodes and for each node:

• First, we have to find the elements that share a given node i i . The command
find(CM==ii) will find all the elements equal to i i where i i = 1, 2, . . . , 7,
and will give us the rows of CM where they are found (corresponding to the global
node numbers) and the columns (corresponding with the local node position). The
results are stored in the variables gne and lnp. For instance, the fourth global
node is shared by the first, the fourth and the fifth finite elements. The command
find(CM==4) will give us two vectors: gne=[4,5,1] (fourth, fifth and first
finite elements) and lnp=[1,1,3] (fourth global node corresponds with: (i) first
local node in finite element e4, (ii) first local node in finite element e5 and (iii)
third local node in finite element e1).

• Recall that the contribution of each node to the global matrix was previously stored
in an array of 3×3 matricesMat.M. Now each element of Mat.Mmust be ordered
according to (6.70). The ordered elements of Mat.M will be stored in matrix Me
where:

– the number of rows will be the number of elements that share the global node.
For instance for global node 4 the number of rows will be 3

– the number of columns will be 3 since triangular elements have three nodes

For instance, for the fourth global node, the first row of Me is:

Me(1, :) = [
0 0 0 833.3 416.7 416.7 0

]

because the global nodes of element e4 are 4, 6 and 5. The second row of Me is:

Me(2, :) = [
0 0 416.7 833.3 0 416.7 0

]

because the global nodes of element e5 are 4, 3 and 6. The third row of Me is:
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Me(3, :) = [
416.7 0 416.7 833.3 0 0 0

]

because the global nodes of element e1 are 1, 3 and 4.
• Finally, all the contributions are added, i.e., the rows of Me are added. For the

fourth global node (fourth row in the global mass matrix), the result is:

M(4,:) = [
416.7 0 833.3 2500 416.7 833.3 0

]

% Assembly of element mass matrices
M = zeros(nd,nd); % Mass matrix initialization
for ii = 1:nd % Number of nodes

% Find the indexes in the connectivity matrix for shares nodes
[gne, lnp] = find(CM==ii);
% Contribution of each element to the mass matrix
Me = zeros(length(gne),nd);
for jj = 1:length(gne) % Elements that share this node

for kk = 1:3 % Number of nodes per element
Me(jj,CM(gne(jj),kk)) = Mat(gne(jj)).M(lnp(jj),kk);

end
end
M(ii,:) = sum(Me,1);

end

The final result for the mass matrix using the coarse discretization of Fig. 6.26 is:

M =


⎜⎜⎜⎜⎜⎜⎜⎜

2500 833.3 1250 416.7 0 0 0
833.3 3333.3 1666.7 0 0 0 833.3
1250 1666.7 5833.3 833.3 0 833.3 1250
416.7 0 833.3 2500 416.7 833.3 0

0 0 0 416.7 833.3 416.7 0
0 0 833.3 833.3 416.7 2500 416.7
0 833.3 1250 0 0 416.7 2500


⎟⎟⎟⎟⎟⎟⎟⎟

The same logic is followed to compute the diffusion matrix. The main difference
is the computation of the contribution of each element following expression (6.85).

% Element diffusion matrices
for ii = 1:ne

% Find the global nodes defining this element
p = CM(ii,:);
% Find the coordinates (x,y) of the global nodes
x1 = NC(p(1),1); % x-coordinate of node 1
y1 = NC(p(1),2); % y-coordinate of node 1
x2 = NC(p(2),1); % x-coordinate of node 2
y2 = NC(p(2),2); % y-coordinate of node 2
x3 = NC(p(3),1); % x-coordinate of node 3
y3 = NC(p(3),2); % y-coordinate of node 3
% Matrix quantities (according to the book formula)
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q11 = (y3-y2)ˆ2 + (x3-x2)ˆ2;
q22 = (y1-y3)ˆ2 + (x1-x3)ˆ2;
q33 = (y2-y1)ˆ2 + (x2-x1)ˆ2;
q12 = (y3-y2)*(y1-y3) + (x3-x2)*(x1-x3);
q13 = (y3-y2)*(y2-y1) + (x3-x2)*(x2-x1);
q23 = (y1-y3)*(y2-y1) + (x1-x3)*(x2-x1);
Mi = [q11, q12, q13;

q12, q22, q23;
q13, q23, q33];

Mat(ii).D2 = 1/(4*A(ii))*Mi;
end

% Assembly of element diffusion matrices
D2 = zeros(nd,nd); % Diffusion matrix initialization
for ii = 1:nd % Number of nodes

% Find the indexes in the connectivity matrix for shares nodes
[gne,lnp] = find(CM==ii);
% Contribution of each element to the mass matrix
De = zeros(length(gne),nd);
for jj = 1:length(gne) % Elements that share this node

for kk = 1:3 % Number of nodes per element
De(jj,CM(gne(jj),kk)) = Mat(gne(jj)).D2(lnp(jj),kk);

end
end
D2(ii,:) = sum(De,1);

end

6.2.1.7 Simulation of FitzHugh-Nagumo’s Model Using a Fine Grid

As mentioned above, the coarse discretization of Fig. 6.26 will not be enough to obtain
accurate results (it is only used for illustration purposes). In this section, a much finer
grid containing around 2,000 points (see Fig. 6.28) has been used to numerically solve
the PDE system (6.46)–(6.48). Coarser grids result into a front-type solution with
low resolution while finer grids result essentially into the same solution.

The value of the parameters of system (6.46)–(6.48) considered in this simulation
experiment are: κ = 1, a = 0.1, θ = 0.01, β = 0.5, γ = 1, δ = 0. Initial conditions
are taken as:

u0 =



1 if 0 � x � 10

0 if 10 � x � 200
(6.86)

v0 = 0, ↔x, y (6.87)

The final time chosen for the simulation is t = 220. The solution for the dependent
variable u at different times is represented in Fig. 6.29. Such solution has the form
of a plane front that moves along the x-coordinate. As mentioned at the beginning of
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Fig. 6.28 Fine finite element
mesh employed to numerically
solve the FitzHugh-Nagumo
problem
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this section, such behavior relates to the normal behavior of the heart. The front, rep-
resenting an electrical current, moves along the heart tissue producing the contraction
of the muscle.

Under some circumstances, for instance if the front encounters an obstacle, the
behavior may change. In this application example, such obstacle is simulated by
resetting the upper half plane at a given time, i.e, we let the front evolve till t = 180
and then we fix u = 0 for y > 100 and ↔x and continue the simulation. The behavior
from that time instant is represented in Fig. 6.30. Figure 6.30a represents the result
of resetting the upper half plane creating the initial condition for the new simulation.
The other figures are snapshots taken at different times after the perturbation. In this
case variable u takes the form of a spiral which is typical of heart problems like
arrhythmia.

Practical note: In order to draw 3D figures in MATLAB (using for instance the
commands mesh or surf) a particular grid is required. In this grid, every x spatial
coordinate must have the same number of nodes. For instance, if for x = 10 we have
20 nodes, the other x-values in the grid must have also 20 nodes. The same holds for
the y spatial coordinate.

In order to draw the figure, we first define new spatial coordinates following the
previous rule.

% Sorted spatial coordinates
xsi = 0:2:200;
ysi = 0:2:200;

where for x = 0, 2, 4, . . . , 200 we have 100 nodes (y = 0, 2, 4, . . . , 200). Then we
use these new coordinates to construct new arrays that can be used with the mesh
command. Finally, griddata is used to interpolate the FEM solution obtained in
a given grid into the new structures grid.
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Fig. 6.29 Solution of the FitzHugh-Nagumo problem: spatial distribution of u(x, y, t) at times a
t = 0, b t = 75, c t = 150, d t = 220

% New spatial coordinates
[xi,yi] = meshgrid(xsi,ysi);

% Interpolate in the new grid the solution
vvi = griddata(XX,YY,vv(:,100),xi,yi);
mesh(xi,yi,vvi)

Note that, since two dependent variables are considered, such grid implies solving
around 4,000 ODEs which requires a large computational effort. In order to overcome
such limitation an accurate reduced-order model derived using the POD technique
will be developed next.

6.2.2 Reduced-Order Model for FitzHugh-Nagumo Model

The POD methodology presented in detail in Chap. 4 begins by approximating the
dependent variables by truncated series of the form [11]:

http://dx.doi.org/10.1007/978-3-319-06790-2_4


6.2 Solution of 2D PDEs Using Finite Element Techniques 383

Fig. 6.30 Solution of the FitzHugh-Nagumo problem: spatial distribution of u(x, y, t) at times a
t = 0, b t = 105, c t = 215, d t = 320 after resetting the upper half plane

u(t, x, y) ∈
pu⎢

i=1

mu,i (t)φu,i (x, y) (6.88)

v(t, x, y) ∈
pv⎢

i=1

mv,i (t)φv,i (x, y) (6.89)

The basis functions in the POD method (φu,i (x, y), φv,i (x, y)) are obtained using
experimental data as explained in Sect. 4.11. Then, time dependent coefficients are
computed by projecting the original PDE system onto the POD basis.

First, a set of snapshots (experimental data) must be constructed. This is a critical
point in the POD technique. In order to obtain an accurate reduced-order model,
the snapshots must be representative of the system behavior. Unfortunately, there
is no systematic approach to decide the conditions that better represent the system
behavior. However, the idea is to capture as much information as possible from a
limited set of snapshots that may be obtained either through simulation of the original
model or through appropriate experimental setups.

http://dx.doi.org/10.1007/978-3-319-06790-2_4
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In this case all the snapshots are obtained from simulation of system (6.46)–
(6.48) using the complete finite element model previously developed. The first set of
snapshots aims at capturing the front-type behavior, so that the simulation starts with
initial conditions of the form (6.86)–(6.87). The simulation runs till t = 200 and one
snapshot is taken each ωt = 10 (21 snapshots). A second set is computed to capture
the spiral behavior, such behavior is induced by resetting the upper half plane at a
given instant. Snapshots are taken each ωt = 10 till t = 200 (also 21 snapshots).

Once the snapshots are available they are used to construct the kernel K
(x, y, x ∞, y∞) as in Eq. (4.125). In fact two kernels (Ku(x, y, x ∞, y∞) and
Kv(x, y, x ∞, y∞)) are constructed from the snapshots of the state variables u and
v, respectively. The adaptation of Eq. (4.125) to the FHN system is now presented
for the sake of clarity:

Ku = 1

k

k⎢
i=1

ui u
T
i ; Kv = 1

k

k⎢
i=1

vi v
T
i .

Then the basis functions are computed by solving the integral eigenvalue problem
(4.124) which, for the case of the FHN system, reads as:

λu,iφu,i (x, y) =
⎡⎡
ν

Ku(x, y, x ∞, y∞)φu,i (x ∞, y∞)dxdy∞,

λv,iφv,i (x, y) =
⎡⎡
ν

Kv(x, y, x ∞, y∞)φv,i (x ∞, y∞)dxdy∞

The mass matrix obtained from the application of the finite element method can be
exploited to numerically compute the previous spatial integrals (see section 4.3.5).
As a result of this step, two basis sets (�u = [φu,1, φu,2, . . . , φu,pu ] and �v =
[φv,1, φv,2, . . . , φv,pv ]) are obtained.

At this point the basis functions are available and the only information required
to recover the dependent variables u and v are the time dependent modes mu and
mv. To this end, the original PDE system (6.46)–(6.48) is projected onto the basis
functions. Projection is carried out by multiplying the PDE system with the basis
functions and integrating the result over the spatial domain V . Let us now describe
the projection procedure for the dependent variable u. The same steps are followed
for variable v:

⎡⎡
ν

φu,i
ρu

ρt
dxdy =

⎡⎡
ν

φu,iκωudxdy +
⎡⎡
ν

φu,i g(u) − vdxdy (6.90)

where ω represents the Laplacian operator.

http://dx.doi.org/10.1007/978-3-319-06790-2_4
http://dx.doi.org/10.1007/978-3-319-06790-2_4
http://dx.doi.org/10.1007/978-3-319-06790-2_4
http://dx.doi.org/10.1007/978-3-319-06790-2_4
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Using the series expansion (6.88) the LHS term in (6.90) can be rewritten as:

⎡⎡
ν

φu,i
ρu

ρt
dxdy =

⎡⎡
ν

φu,i

ρ

pu⎢
j=1

mu, jφu, j

ρt
dxdy =

pu⎢
j=1

dmu,i

dt

⎡⎡
ν

φu,iφu, j

Since the basis functions are orthogonal

⎡⎡
ν

φu,i
ρu

ρt
dxdy = dmu,i

dt

and extending this expression for i = 1, . . . , pu

⎡⎡
ν

φu
ρu

ρt
dxdy = dmu

dt
(6.91)

where mu = [mu,1, mu,2, . . . , mu,pu ]T .
Now, the first term on the RHS of Eq. (6.90) can be rewritten as:

κ

⎡⎡
ν

φu,iωudxdy = κ

⎡⎡
ν

→(φu,i→u)dxdy − κ

⎡⎡
ν

→φu,i→udxdy

where → represents the gradient operator. Applying Green’s theorem

κ

⎡⎡
ν

φu,iωudxdy = κ

⎡⎡
ρν

nφu,i→udxdy − κ

⎡⎡
ν

→φu,i→udxdy

Using expression (6.48) in the boundary term we obtain:

κ

⎡⎡
ν

φu,iωudxdy = −κ

⎡⎡
ν

→φu,i→udxdy

Expanding u in a truncated Fourier series

κ

⎡⎡
ν

φu,iωudxdy = −κ

⎡⎡
ν

→φu,i→
pu⎢

j=1

mu, jφu, j dxdy

= −κ

pu⎢
j=1

mu, j

⎡⎡
ν

→φu,i→φu, j dxdy
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This latter equation can be expressed in matrix form

κ

⎡⎡
ν

φu,iωudxdy = −κA mu (6.92)

where the elements of matrix A are given by:

Ai, j =
⎡⎡
ν

→φu,i→φu, j dxdy.

Finally, denoting by F the second term of RHS of Eq. (6.90), i.e. F =⎪⎪
ν

φu,i g(u) − vdxdy and using expressions (6.91) and (6.92)

dmu

dt
= A mu + F , (6.93)

The same steps are followed in the case of dependent variable v to obtain:

dmv

dt
= G (6.94)

where

G =
⎡
V

φvθ(βu − γ v + δ)dxdy

The number of basis functions employed in the projection will determine the
dimension of the reduced-order model. Several trial and error tests show that 85 and
28 basis functions for the projection of dependent variables u and v, respectively, is
enough to accurately represent the system behavior.

Initial conditions are also projected as follows:

mu0 =
⎡
V

�uu0dξ (6.95)

mv0 =
⎡
V

�vv0dξ (6.96)

As a result a system with 113 ODEs (more than 40 times smaller than the original
FE system) is obtained.

The solution of (6.93)–(6.96) can be computed with a standard initial value prob-
lem solver (see Chap. 2).

The time evolution of the first four time dependent coefficients for this problem
is represented in Fig. 6.31. The vertical continuous line indicates the time at which
the front is broken, i.e., when the system begins to behave as a wandering spiral.
Continuous lines correspond to the projection of the FEM solution onto the basis

http://dx.doi.org/10.1007/978-3-319-06790-2_2
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Fig. 6.31 Numerical solution, in terms of the first four time dependent coefficients, of the FitzHugh-
Nagumo problem

functions, i.e., they are the time dependent coefficients of the FEM solution. Marks
correspond to the results of three ROMs. The difference between the ROMs is the
number of basis functions used in the projection. In this sense, in ROM 1, 30 and
17 basis functions are used for the projection of u and v, respectively, i.e. pu = 30,
pv = 17. In ROM 2 pu = 40, pv = 18 while in ROM 3 pu = 80, pv = 30.
As apparent in the figure, ROM1 can only capture the front behavior in a qualitative
way. When the perturbation is introduced in the system to induce the wandering spiral
(t = 180), the behavior of ROM 1 is completely different from the FEM solution.
On the other hand, ROM 2 is able to capture in a qualitative manner the behavior
of the FEM solution. The spiral part of the behavior seems to be reproduced quite
well but it seems that the coefficients of ROM 2 are ahead of the FEM ones. Finally,
ROM 3 is able to capture in a quantitative manner the FEM solution and as shown
in the figure, the coefficients evolution coincides with the FEM ones.

Figure 6.32 shows the spatial distribution of dependent variable u at different
times as predicted by ROM 3, in agreement with the behavior shown in Fig. 6.30.
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Fig. 6.32 Solution, in terms of variable u, of the FitzHugh-Nagumo problem using the POD
technique (ROM 3). Plotting times are (a) t = 0, (b) t = 105, (c) t = 215, (d) t = 320 after
resetting the upper half plane

6.3 Solution of PDEs on Time-Varying Domains

In the previous two sections, we have covered the basic concepts involved in the
solution of PDEs on 2D spatial domains using either FDs or FEs. In the present
section, we now introduce the situation where the spatial domain definition can
change in time, i.e., the boundaries of a 1D spatial domain moves (or the shape
of a 2D domain changes, but we will not consider this case in this introductory
text). The approach that we will follow is based on a transformation of the spatial
coordinates, so as to define a new, fixed, system of coordinates where the problem is
easier to solve. The approach is introduced and illustrated with a concrete example
of freeze drying (or lyophilization) in the food processing industry. Freeze-drying
is a dehydration process used to preserve food, which consists in first freezing the
material and then reducing the surrounding pressure to allow the frozen water in the
material to sublimate directly from the solid phase to the gas phase.
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Chamber

Dried

Frozen

Shelf

Fig. 6.33 Schematic representation of the freeze-drying chamber. Grey line indicates the front
position at a given time and w denotes its velocity. The product is heated using the shelf. Chamber
pressure and shelf temperature are controlled

6.3.1 The Freeze-Drying Model

At the beginning of the process the product is completely frozen (one phase).
When the process starts ice sublimates and, as a consequence, a dried phase appears
at the top of the product and increases as the process evolves (see Fig. 6.33). The
interphase between both phases is known as the front. In our particular example,
product height is much smaller than its width and length, therefore, the original 3D
domain can be approximated by an equivalent 1D domain taking only product height
into account.

The temperature in the dried and frozen zones is described using the Fourier
equation:

αdr cp,dr
ρTdr

ρt
= κdr

ρ2Tdr

ρz2 (6.97)

α f r cp, f r
ρT f r

ρt
= κ f r

ρ2T f r

ρz2 (6.98)

where subindices dr and f r refer to dried and frozen regions, respectively. T is the
temperature and z is the spatial coordinate. Parameters α, cp and κ represent the
density, the specific heat and heat conductivity, respectively.

Denoting the front position by S(t), the spatial domain for Eq. (6.97) is 0 ∧ z ∧
S(t) while for Eq. (6.98) is S(t) ∧ z ∧ L with L being the product height.

In order to solve Eqs. (6.97)–(6.98) boundary conditions are required. At z = 0
radiation is considered as the main heat transfer phenomena:

κdr
ρTdr

ρz

∣∣∣∣
z=0

= σep f p(T
4
ch − Tdr |4z=0) (6.99)

where σ is the well known Stefan-Boltzmann constant, ep is the emissivity, f p is
a geometric correction factor and Tch is the chamber temperature at the top of the
sample.

Boundary conditions at z = L are considered as a combination of radiation,
convection and gas conduction which depends on the chamber pressure [12, 13]
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κ f r
ρT f r

ρz

∣∣∣∣
z=L

= hL(Tsh − T f r
∣∣
z=L) (6.100)

In this equation Tsh is the shelf temperature. The heat transfer coefficient hL con-
taining the chamber pressure dependency takes the form [12]:

hL = hL ,1 + hL ,2 Pc

1 + Pc

34.4

(6.101)

where hL ,1 and hL ,2 are given constant parameters and Pc represents the chamber
pressure.

The third boundary condition required to solve the freeze-drying equations is
located at z = S(t), i.e. the front. Dirichlet boundary conditions are considered here:

Tdr |z=S(t) = Tfront; T f r
∣∣
z=S(t) = Tfront (6.102)

The front temperature (Tfront) is another process variable. In order to compute it, we
use a combination between Darcy’s law [14], which describes the movement of water
vapor through a porous media, and Clausius-Clapeyron equation [15, 16], describing
the relation between pressure and temperature in a phase change process.
From Darcy’s equation we have, after a finite differences discretization:

Pf ront = Pc + (α f r − αdr )w

Kd
(6.103)

where Pc is the chamber pressure, w = d S
dt represents the front velocity while Kd

denotes the mass resistance which is computed through

Kd = 1

k1 Pc + k2S
(6.104)

The front pressure is used in the Clapeyron equation to obtain the temperature:

Tfront = 1
1

273.11
− Kclap log

(
Pf front

611.72

) (6.105)

Finally, the description of the front motion is obtained by a heat balance at the
interface. This balance considers the heat fluxes from the dried region to the interface
and from the interface to the frozen region as well as the heat absorbed due to
sublimation. Such balance results into the Stefan equation [17, 18]

(α f r − αdr )ωHsw =
(

κ f r
ρT f r

ρz

∣∣∣∣
z=x+

− κdr
ρTdr

ρz

∣∣∣∣
z=x−

)
(6.106)
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Table 6.1 Parameters
employed in the freeze-drying
model

Parameter Value Units

αdr 200.31 kg · m−3

α f r 1001.6 kg · m−3

cp,dr 1254 J · kg−1 · K−1

cp, f r 1818.8 J · kg−1 · K−1

κdr 0.0129 W · K−1 · m−1

κ f r 2.4 W · K−1 · m−1

L 0.02 m
σ 5.6704 × 10−8 W · m−2 · K−4

ep 0.78 −
f p 0.99 −
Kclap 1.6548 × 10−4 K−1

hL ,1 3.85 W · m−2 · K−1

hL ,2 0.352 W · m−2 · K−1 · Pa−1

k1 4.75 × 103 m · s−1

k2 6.051 × 107 s−1

ωHs 2791.2 × 103 J · kg−1

where ωHs is the sublimation heat. The parameter values are given in Table 6.1.
Note that the front boundary is moving, therefore we have two moving domains.

When dealing with this kind of problems it is common to use complex techniques
such as the Arbitrary Lagrangian-Eulerian (ALE) method [17] for which specialized
software is required. In this method the spatial grid moves with arbitrary motion.
Details about this technique can be found in [17, 19, 20]. In order to avoid the use of
such complex techniques and specialized software, a change of coordinates (Landau
transform) is proposed here.

6.3.2 The Landau Transform

The Landau transform [21, 22] consists of a change of coordinates which allows to
define fixed spatial domains in the transformed coordinates.

6.3.2.1 Transformation in the Dried Region

In this phase the following transformation is defined:

z � ∂\z = S(t)∂ ; or ∂ = z

S(t)
(6.107)

Note that ∂ ⇒ [0, 1]. The time coordinate is not transformed although we will rename
it to avoid confusion t � η\t = η . In the new coordinate system, the temperature
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will be denoted by R, this is: Tdr (t, z) � Rdr (η, ∂). The following expressions for
the partial derivatives can be derived from Eq. (6.107):

ρ∂

ρη
= − zSη

S2 = −∂w

S
; ρ∂

ρz
= 1

S
; ρ2∂

ρz2 = 1

S2 (6.108)

The different time and spatial derivatives in Eq. (6.97) are rewritten, using the pre-
vious relations, as follows

ρTdr

ρt
= ρ Rdr

ρη

ρη

ρt
+ ρ Rdr

ρ∂

ρ∂

ρt
= ρ Rdr

ρη
− ∂w

S

ρ Rdr

ρ∂

ρTdr

ρz
= ρ Rdr

ρη

ρη

ρz
+ ρ Rdr

ρ∂

ρ∂

ρz
= 1

S

ρ Rdr

ρ∂

ρ2Tdr

ρz2 = 1

S2

ρ2 Rdr

ρ∂2

Therefore an expression equivalent to Eq. (6.97) is found in the new coordinate
system where the spatial domain is fixed:

αdr cp,dr
ρ Rdr

ρη
= κdr

S2

ρ2 Rdr

ρ∂2 + αdr cp,dr
∂w

S

ρ Rdr

ρ∂

Dividing the equation by αdr cp,dr

ρ Rdr

ρη
= Δdr

S2

ρ2 Rdr

ρ∂2 + ∂w

S

ρ Rdr

ρ∂
(6.109)

where Δdr = κdr

αdr cp,dr
. Note that the price to pay to fix the domain is the addition of

a fictitious negative convection term ( ∂w
S

ρ Rdr
ρ∂

). Furthermore there is an indeterminate
form at S = 0, thus the simulation must start at S = θ > 0 where θ must be small
enough to obtain a good approximation to the real solution.

6.3.2.2 Transformation in the Frozen Region

In this phase the transformation is defined as:

z � δ\z = δ(L − S) + S; or δ = z − S

L − S
(6.110)

Note that δ ⇒ [0, 1]. As in the case of the dried region, the temperature will be
denoted by R, this is, T f r (t, z) � R f r (η, δ). The following expressions for the
partial derivatives can be derived from Eq. (6.110):
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ρδ

ρη
= −w

1 − δ

L − S
; ρδ

ρz
= 1

L − S
; ρ2δ

ρz2 = 1

(L − S)2 (6.111)

Again, time and spatial derivatives in Eq. (6.98) can be rewritten in the new coordinate
system with fixed domain as:

ρT f r

ρt
= ρ R f r

ρη

ρη

ρt
+ ρ R f r

ρδ

ρδ

ρt
= ρ R f r

ρη
− w

1 − δ

L − S

ρ R f r

ρδ

ρT f r

ρz
= ρ R f r

ρη

ρη

ρz
+ ρ R f r

ρδ

ρδ

ρz
= 1

L − S

ρ R f r

ρδ

ρ2T f r

ρz2 = 1

(L − S)2

ρ2 R f r

ρδ2

Substituting the previous expressions into Eq. (6.98):

α f r cp, f r
ρ R f r

ρη
= κ f r

(L − S)2

ρ2 R f r

ρδ2 + α f r cp, f r w
1 − δ

L − S

ρ R f r

ρδ

and, dividing the equation by α f r cp, f r

ρ R f r

ρη
= Δ f r

(L − S)2

ρ2 R f r

ρδ2 + w
1 − δ

L − S

ρ Rdr

ρδ
(6.112)

where Δ f r = κ f r

α f r cp, f r
. As in the previous case, a fictitious convection term appears

as a consequence of the application of the Landau transform. The indeterminate form
appears now at S = L so that the simulation has to be halted before arriving to this
point.

The transformation must be also applied to the expressions in the boundary and
the front.

6.3.2.3 Transformation in the Boundaries and the Front

Boundary conditions at the top and the bottom of the sample—Eqs. (6.99) and
(6.100)—are transformed into:

κdr

S

ρ Rdr

ρ∂

∣∣∣∣
∂=0

= σep f p(R4
ch − Rdr |4z=0) (6.113)

κ f r

L − S

ρ R f r

ρδ

∣∣∣∣
δ=1

= hL(Rsh − R f r
∣∣
δ=1) (6.114)
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while Stefan equation in the new coordinate system reads as follows:

(α f r − αdr )ωHsw =
(

κ f r

L − S

ρ R f r

ρδ

∣∣∣∣
δ=0

− κdr

S

ρ Rdr

ρ∂

∣∣∣∣
∂=1

⎫
(6.115)

With this transformation, we therefore have arrived at an equivalent system formed
by two fixed spatial domains (dried and frozen) linked by Eq. (6.115).

6.3.3 The Finite Element Representation

In this section the FEM developed in Chap. 4 is used to compute the numerical
solution of the freeze-drying model. The general form for the finite element repre-
sentation of a given nonlinear diffusion-convection system using lagrangian elements
is presented in Sect. 4.3 and the result is given in Eq. (4.76). The main points to note
with respect to this formulation are:

• Two PDEs are considered.
• The freeze-drying model is linear, therefore the nonlinear part in Eq. (4.76) is

avoided.
• The “trick” described in Sects. 3.10 and 4.11.2 to approximate Dirichlet

boundary conditions (defined as an algebraic relation) by Robin boundary condi-
tions (defined as an ODE) is used here to implement the boundary conditions.

The FEM version of the freeze-drying model is, therefore

M
dRdr

dt
=

(
Δ1,dr D1 + Δ2,dr Dint

2

)
Rdr + gdr (6.116)

M
dR f r

dt
=

(
Δ1, f r D1 + Δ2, f r Dint

2

)
R f r + g f r (6.117)

where

Δ1,dr = w∂

S
; Δ2,dr = kdr

αdr cp,dr S2 ; Δ1, f r = w(1 − δ

L − S
; Δ2, f r = k f r

α f r cp, f r (L − S)2 ;

gdr =


⎜⎜⎜⎜⎜⎜⎜⎜⎜

σep f p
T 4

ch − Rdr (1)4

Sαdr cp,dr
0
...

0
1

θ
(T f ront − Rdr (n∂ ))


⎟⎟⎟⎟⎟⎟⎟⎟⎟

; g f r =


⎜⎜⎜⎜⎜⎜⎜⎜

1

θ
(T f ront − R f r (1))

0
...

0

hL
Tsh − R f r (nδ)

(L − S)α f r cp, f r


⎟⎟⎟⎟⎟⎟⎟⎟

; (6.118)

http://dx.doi.org/10.1007/978-3-319-06790-2_4
http://dx.doi.org/10.1007/978-3-319-06790-2_4
http://dx.doi.org/10.1007/978-3-319-06790-2_4
http://dx.doi.org/10.1007/978-3-319-06790-2_4
http://dx.doi.org/10.1007/978-3-319-06790-2_3
http://dx.doi.org/10.1007/978-3-319-06790-2_4
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and n∂ and nδ are the number of discretization points in the dried and frozen regions,
respectively. The first point in gdr as well as the last point in g f r correspond to
Robin type boundary conditions so they enter naturally in the formulation. On the
other hand, the last point in gdr as well as the first point in g f r correspond with
Dirichlet boundary conditions and they are therefore multiplied by the inverse of a
close to zero factor (θ).

For the sake of simplicity, notation for matrices M, D1 and Dint
2 is the same in

Eqs. (6.116) and (6.117) since the same discretization scheme was applied in the
dried and frozen regions. However, we should keep in mind that depending on the
problem, different discretization schemes could be employed for both regions.

The RHS of Eqs. (6.116) and (6.117) is coded in the MATLAB function ode_fd.
We can note the following details:

1. The input parameters of the function are: the independent variable t, the depen-
dent variable y (which contains the dependent states Rdr, Rfr and x) and a set
of constants (that can be matrices, vectors or scalars).

2. The first block of the code focuses on the separate the dependent variables grouped
in the input vector y and computing the gradients of the temperature related vari-
ables. Such gradients are computed using matrices Adv_op_dr = Adv_op_fr
= M−1

1 D1.
3. The second block of the program applies the algebraic relations (6.101), (6.103)

and (6.105) in order to compute the heat transfer coefficient and the front tem-
perature. The latter equation is coded in function funcclapeyron. Then the
front velocity is computed using Stefan equation (6.106).

4. After this, boundary conditions are computed according to Eq. (6.118). Note that,
at the end of this block boundary conditions are multiplied by the inverse of the
mass matrices corresponding to both the dried and frozen regions.

5. Finally, Eqs. (6.116) and (6.117) are implemented. As a matter of fact, Eqs.
(6.116) and (6.117) are multiplied by the inverse of the mass matrix before the
implementation. Another option (already used in this book) is to pass the mass
matrix to the IVP solver using function odeset.

function dy = ode_fd (t , y , Adv_op_dr , Adv_op_fr , Lap_op_dr , . . .
Lap_op_fr , inv_MMdr , inv_MMfr , ze , ye , . . .
ndz , ndy , L , alpha , Kfr , Kdr , sigma , ep , . . .
fp , Tcl , rhodr , cpdr , rhofr , cpfr , kd1 , . . .
kd2 , hL1 , hL2 , hL3 , Pc , Tcr )

% The states
Rdr = y ( 1 :ndz ) ;
Rfr = y(1+ndz :ndz+ndy ) ;
x = y (ndz+ndy+ 1 ) ;

% States gradients
Rdrz = Adv_op_dr*Rdr ;
Rfry = Adv_op_fr*Rfr ;

% Diffusivities
difdr = Kdr / (rhodr*cpdr ) ;
diffr = Kfr / (rhofr*cpfr ) ;
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% Heat transfer coefficient
hL = hL1 + hL2*Pc / ( 1 +Pc /hL3 ) ;

% Permeability
Kd = 1 / (kd1*Pc+kd2*x ) ;

% Front pressure and temperature
Pfront = Pc + ( (rhofr−rhodr)*w ) / ( Kd ) ;
Tfront = funcclapeyron (Pfront , 'T ' ) ;

% Front velocity
w = alpha*(Kfr / ( L−x )*Rfry ( 1 ) − Kdr /x*Rdrz (ndz ) ) ;

% Boundary conditions
Gdr = zeros (ndz , 1 ) ;
Gdr ( 1 ) = sigma*ep*fp*(Tcl^4−Rdr ( 1 ) ^ 4 ) / (x*rhodr*cpdr ) ;
Gdr (ndz ) = 1e6*(Tfront−Rdr (ndz ) ) ;
Gfr = zeros (ndy , 1 ) ;
Gfr ( 1 ) = 1e6*(Tfront−Rfr ( 1 ) ) ;
Gfr (ndy ) = hL*(Tcr−Rfr (ndy ) ) / ( ( L−x )*rhofr*cpfr ) ;
BVdr = inv_MMdr*Gdr ;
BVfr = inv_MMfr*Gfr ;

% ODEs
dRdr = w /x*ze . *Rdrz + (difdr /x^2*Lap_op_dr)*Rdr + BVdr ;
dRfr = w / (L−x)*(1−ye ) . *Rfry+ (diffr / ( L−x)^2*Lap_op_fr)*Rfr+ BVfr ;
dx = w ;
dy = [dRdr ; dRfr ; dx ] ;

Function ode_fd Function to evaluate of the RHS of the Freeze-Drying problem—Eqs. (6.116)
and (6.117)—after the application of the Landau transform.

As mentioned before, Clausius-Clapeyron equation is coded in function
funcclapeyron. Two input arguments are used in this function: the second one
is a string variable indicating the output parameter (T for temperature and P for
pressure), the first parameter is the value of the pressure if temperature is the output
parameter of the value of temperature if the pressure is the output parameter.

function varargout = funcclapeyron (varargin )

K = 8 3 1 4 / ( 2 7 9 1 . 2e3* 1 8 ) ;

% Output
switch varargin{2}

case { 'T ' }
% Output parameter is T . Input parameter is P
P = varargin{1} ;
T = 1 . / ( 1 / 2 7 3 . 1 1 − K*log (P / 6 1 1 . 7 3 ) ) ;
varargout{1} = T ;

case { 'P ' }
% Output parameter is P . Input parameter is T
T = varargin{1} ;
P = 611.73*exp ( 1 /K*( 1 / 2 7 3 . 1 1 −1 . /T ) ) ;
varargout{1} = P ;

end

Function funcclapeyron Function to implement Clausius-Clapeyron equation (6.105).
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The main file to solve the Freeze-Drying problem in MATLAB is coded in
fd_model.

1. As usual, the script begins with the definition of the model parameters.
2. After this, control inputs, time span and initial conditions are defined. Note that

the initial conditions for temperature must be defined in the coordinate system
resulting from the Landau transform.

3. Then the mass matrix as well as first and second order differentiation matrices
are computed with the MATLAB function matfem, included in the companion
sofware.

4. The integration is performed using the IVP solver ode15s.
5. Finally, the transformation is undone in order to recover the original temperature

variable and the solution is plotted.

clear all
clc

% Fixed parameters
% Dried region parameters
ep = 0 . 7 8 ; % Emisivity on the product top
fp = 0 . 9 8 ; % Geometrical correction factor on the top
rhodr = 2 0 0 . 3 1 ; % Density
cpdr = 1254; % Specific heat
Kdr = 0 . 0 1 2 9 ; % Heat conductivity in the dried region
ndz = 13; % Dried region discretization points
% Frozen region parameters
Kfr = 2 . 4 ; % Heat conductivity
rhofr = 1 0 0 1 . 6 ; % Density
cpfr = 1 8 1 8 . 8 ; % Specific heat
ndy = 13; % Dried region discretization points
% Other parameters
L = 5.75e−3; % Sample length
DHs = 2791.2e3 ; % Sublimation heat
sigma = 5.6704e−8; % Stefan−Boltzmann constant
alpha = 1 / ( (rhofr−rhodr)*DHs ) ;
Tcl = 20+273 .15 ; % Chamber temperature
kd1 = 4.75e3 ; % Parameter in the mass resistance equation
kd2 = 6.051e7 ; % Parameter in the mass resistance equation
hL1 = 3 . 8 5 ; % Parameter in the heat transfer coefficient
hL2 = 0 . 3 5 2 ; % Parameter in the heat transfer coefficient
hL3 = 34; % Parameter in the heat transfer coefficient

% Control variables
Pc = 20; % Chamber pressure
Tcr = 273.15+20; % Shelf temperature

% Time data
tf = 26000; % final time
tl = linspace ( 0 ,tf , 2 0 0 ) ;

% Initial conditions (read experiments )
T_ini = 244*ones ( 2 5 , 1 ) ; % Dried region initial temperature
x0 = L* 0 . 0 1 5 ; % Initial front position (x0>0)
xi = linspace ( 0 ,L ,length (T_ini ) ) ;
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ze = linspace ( 0 , 1 ,ndz ) ' ; % Dryed region (Landau )
% transformed coordinates

ye = linspace ( 0 , 1 ,ndy ) ' ; % Frozen region (Landau )
% transformed coordinates

% Initial conditions (adaptation to Landau )
xi_ndz = linspace ( 0 ,x0 ,ndz ) ;
xi_ndy = linspace (x0 ,L ,ndy ) ;
Rdr0 = interp1 (xi , T_ini , xi_ndz , 'pchip ' ) ' ;
Rfr0 = interp1 (xi , T_ini , xi_ndy , 'pchip ' ) ' ;
y0 = [Rdr0 ; Rfr0 ; x0 ] ;
clear T0 T_ini

% FEM matrices
[MMdr , DMdr , CMdr ] = matfem (ze , 'neu ' , ' neu ' , ' MM ' , ' DM ' , ' CM ' ) ;
[MMfr , DMfr , CMfr ] = matfem (ye , 'neu ' , ' neu ' , ' MM ' , ' DM ' , ' CM ' ) ;
inv_MMdr = MMdr \eye (size (MMdr ) ) ;
inv_MMfr = MMfr \eye (size (MMfr ) ) ;
% Spatial operators
Lap_op_dr = −inv_MMdr*DMdr ;
Adv_op_dr = inv_MMdr*CMdr ;
Lap_op_fr = −inv_MMfr*DMfr ;
Adv_op_fr = inv_MMfr*CMfr ;

%% Problem integration with ode15s
% Call the integrator
atol = 1e−6;
rtol = 1e−6;
optionspd = odeset ( 'AbsTol ' ,atol , 'RelTol ' ,rtol ) ;
[tpd ,ypd ] = ode15s (@ode_fd , tl , y0 , optionspd , Adv_op_dr , . . .

Adv_op_fr , Lap_op_dr , Lap_op_fr , inv_MMdr , . . .
inv_MMfr , ze , ye , ndz , ndy , L , alpha , Kfr , . . .
Kdr , sigma , ep , fp , Tcl , rhodr , cpdr , rhofr , . . .
cpfr , kd1 , kd2 , hL1 , hL2 , hL3 , Pc , Tcr ) ;

% Store the data
Rdr = ypd ( : , 1 :ndz ) ' ;
Rfr = ypd ( : , 1 +ndz :ndz+ndy ) ' ;
xx = ypd ( : ,ndz+ndy+ 1 ) ' ;

% Transformed spatial coordinates
ntpd = length (tl ) ;
zdr = zeros (ndz ,ntpd ) ;
zfr = zeros (ndy ,ntpd ) ;
for ii = 1 :length (xx )

zdr ( : ,ii ) = xx (ii )*ze ;
zfr ( : ,ii ) = (L−xx (ii ) ) *ye+xx (ii ) ;

end

% Computation of the temperature (undo the landau transform )
ndxi = 11;
pts = linspace ( 0 ,L ,ndxi ) ;
zz = [zdr ;zfr ( 2 :end , : ) ] ;
RR = [Rdr ;Rfr ( 2 :end , : ) ] ;
Tpd = zeros (ndxi ,size (zz , 2 ) ) ;
for jj = 1 : size (zz , 2 )

Tpd ( : ,jj ) = interp1 (zz ( : ,jj ) ,RR ( : ,jj ) ,pts , 'pchip ' ) ;
end
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Fig. 6.34 Comparison in
terms of the product tem-
perature between the ALE
technique (continuous lines)
and the Landau transform
(marks)
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% Plot the solution
plot (tl ( 1 : 1 0 :end ) / 3 6 0 0 ,Tpd ( 1 : 2 :end , 1 : 1 0 :end ) )
xlabel ( 'Time [h ] ' , 'Fontsize ' , 1 6 )
ylabel ( 'Temperature [K ] ' , 'Fontsize ' , 1 6 )

Script fd_model Main program for the solution of the Freeze-Drying problem using the Landau
transform.

Figure 6.34 shows the comparison between the results (evolution of the product
temperature at different spatial locations) obtained with an advanced simulation
technique (ALE) [17] implemented in a specialized software (COMSOL, http://www.
comsol.com/) and the Landau transform. The values of the control inputs (chamber
temperature and pressure) are Tsh = 293.15K and Pc = 20Pa. As shown in the
figure, the different approaches produce the same numerical results confirming the
validity of the approach based on Landau transformation. The latter has the advantage
of simplicity. Additional applications of the Landau transformation in combination
with finite difference approximation can be found in [22].

6.4 Summary

Whereas the previous chapters are exclusively dedicated to lumped systems (systems
of dimension 0 described by ODEs) and distributed parameter systems in one spatial
dimension, this chapter touches upon the important class of problems in more space
dimensions, as well as problems with time-varying spatial domains. Both are difficult
topics and the ambition of this chapter is just to give a foretaste of possible numer-
ical approaches. Finite difference schemes on simple 2D domains, such as squares,
rectangles or more generally convex quadrilaterals, are first introduced, including
several examples such as the heat equation, Graetz problem, a tubular chemical reac-
tor, and Burgers equation. Finite element methods, which have more potential than

http://www.comsol.com/
http://www.comsol.com/
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finite difference schemes when considering problems in 2D, are then discussed based
on a particular example, namely FitzHugh-Nagumo model. This example also gives
the opportunity to apply the proper orthogonal decomposition method (presented in
Chap. 4) to derive reduced-order models. Finally, the problematic of time-varying
domains is introduced via another particular application example related to freeze
drying. The main idea here is to use a transformation so as to convert the original
problem into a conventional one with a time-invariant domain.
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