
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Numerical Recipes
in Fortran 77

The Art of Scientific Computing

Second Edition

Volume 1 of
Fortran Numerical Recipes

William H. Press
Harvard-Smithsonian Center for Astrophysics

Saul A. Teukolsky
Department of Physics, Cornell University

William T. Vetterling
Polaroid Corporation

Brian P. Flannery
EXXON Research and Engineering Company

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Copyright c© Cambridge University Press 1986, 1992
except for§13.10, which is placed into the public domain,
and except for all other computer programs and procedures, which are
Copyright c© Numerical Recipes Software 1986, 1992, 1997
All Rights Reserved.

Some sections of this book were originally published, in different form, inComputers
in Physicsmagazine, Copyrightc© American Institute of Physics,1988–1992.

First Edition originallypublished 1986; Second Edition originally published 1992 as
Numerical Recipes in FORTRAN: The Art of Scientific Computing
Reprinted with corrections, 1993, 1994, 1995.
Reprinted with corrections, 1996, 1997, asNumerical Recipes in Fortran 77: The Art of
Scientific Computing(Vol. 1 of Fortran Numerical Recipes)

This reprinting is corrected to software version 2.08

Printed in the United States of America
Typeset in TEX

Without an additional license to use the contained software, this book is intended as
a text and reference book, for reading purposes only. A free license for limited use of the
software by the individual owner of a copy of this book who personally types one or more
routines into a single computer is granted under terms described on p. xxi. See the section
“License Information” (pp. xx–xxiii) for information on obtaining more general licenses at
low cost.

Machine-readable media containing the software in this book, with included licenses
for use on a single screen, are available from Cambridge University Press. See the
order form at the back of the book, email to “orders@cup.org” (North America) or
“trade@cup.cam.ac.uk” (rest of world), or write to Cambridge University Press, 110
Midland Avenue, Port Chester, NY 10573 (USA), for further information.

The software may also be downloaded, with immediate purchase of a license
also possible, from the Numerical Recipes Software Web Site (http://www.nr.com).
Unlicensed transfer of Numerical Recipes programs to any other format, or to any computer
except one that is specifically licensed, is strictly prohibited. Technical questions,
corrections, and requests for information should be addressed to Numerical Recipes
Software, P.O. Box 243, Cambridge, MA 02238 (USA), email “info@nr.com”, or fax
781 863-1739.

Library of Congress Cataloging in Publication Data

Numerical recipes in Fortran 77 : the art of scientific computing / William H.Press
. . . [et al.]. – 2nd ed.

Includes bibliographical references (p.) and index.
ISBN 0-521-43064-X

1. Numerical analysis–Computer programs. 2. Science–Mathematics–Computer programs.
3. FORTRAN (Computer program language) I. Press, William H.
QA297.N866 1992
519.4′0285′53–dc20 92-8876

A catalog record for this book is available from the British Library.

ISBN 0 521 43064 X Volume 1 (this book)
ISBN 0 521 57439 0 Volume 2
ISBN 0 521 43721 0 Example book in FORTRAN
ISBN 0 521 57440 4 FORTRAN diskette (IBM 3.5′′)
ISBN 0 521 57608 3 CDROM (IBM PC/Macintosh)
ISBN 0 521 57607 5 CDROM (UNIX)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Contents

Plan of the Two-Volume Edition xiii

Preface to the Second Edition xv

Preface to the First Edition xviii

License Information xx

Computer Programs by Chapter and Section xxiv

1 Preliminaries 1
1.0 Introduction 1
1.1 Program Organization and Control Structures 5
1.2 Error, Accuracy, and Stability 18

2 Solution of Linear Algebraic Equations 22
2.0 Introduction 22
2.1 Gauss-Jordan Elimination 27
2.2 Gaussian Elimination with Backsubstitution 33
2.3 LU Decomposition and Its Applications 34
2.4 Tridiagonal and Band Diagonal Systems of Equations 42
2.5 Iterative Improvement of a Solution to Linear Equations 47
2.6 Singular Value Decomposition 51
2.7 Sparse Linear Systems 63
2.8 Vandermonde Matrices and Toeplitz Matrices 82
2.9 Cholesky Decomposition 89
2.10 QR Decomposition 91
2.11 Is Matrix Inversion anN3 Process? 95

3 Interpolation and Extrapolation 99
3.0 Introduction 99
3.1 Polynomial Interpolation and Extrapolation 102
3.2 Rational Function Interpolation and Extrapolation 104
3.3 Cubic Spline Interpolation 107
3.4 How to Search an Ordered Table 110
3.5 Coefficients of the Interpolating Polynomial 113
3.6 Interpolation in Two or More Dimensions 116

v

vi Contents

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

4 Integration of Functions 123
4.0 Introduction 123
4.1 Classical Formulas for Equally Spaced Abscissas 124
4.2 Elementary Algorithms 130
4.3 Romberg Integration 134
4.4 Improper Integrals 135
4.5 Gaussian Quadratures and Orthogonal Polynomials 140
4.6 Multidimensional Integrals 155

5 Evaluation of Functions 159
5.0 Introduction 159
5.1 Series and Their Convergence 159
5.2 Evaluation of Continued Fractions 163
5.3 Polynomials and Rational Functions 167
5.4 Complex Arithmetic 171
5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 172
5.6 Quadratic and Cubic Equations 178
5.7 Numerical Derivatives 180
5.8 Chebyshev Approximation 184
5.9 Derivatives or Integrals of a Chebyshev-approximated Function 189
5.10 Polynomial Approximation from Chebyshev Coefficients 191
5.11 Economization of Power Series 192
5.12 Pad́e Approximants 194
5.13 Rational Chebyshev Approximation 197
5.14 Evaluation of Functions by Path Integration 201

6 Special Functions 205
6.0 Introduction 205
6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 206
6.2 Incomplete Gamma Function, Error Function, Chi-Square

Probability Function, Cumulative Poisson Function 209
6.3 Exponential Integrals 215
6.4 Incomplete Beta Function, Student’s Distribution, F-Distribution,

Cumulative Binomial Distribution 219
6.5 Bessel Functions of Integer Order 223
6.6 Modified Bessel Functions of Integer Order 229
6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical

Bessel Functions 234
6.8 Spherical Harmonics 246
6.9 Fresnel Integrals, Cosine and Sine Integrals 248
6.10 Dawson’s Integral 252
6.11 Elliptic Integrals and Jacobian Elliptic Functions 254
6.12 Hypergeometric Functions 263

7 Random Numbers 266
7.0 Introduction 266
7.1 Uniform Deviates 267

Contents vii

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

7.2 Transformation Method: Exponential and Normal Deviates 277
7.3 Rejection Method: Gamma, Poisson, Binomial Deviates 281
7.4 Generation of Random Bits 287
7.5 Random Sequences Based on Data Encryption 290
7.6 Simple Monte Carlo Integration 295
7.7 Quasi- (that is, Sub-) Random Sequences 299
7.8 Adaptive and Recursive Monte Carlo Methods 306

8 Sorting 320
8.0 Introduction 320
8.1 Straight Insertion and Shell’s Method 321
8.2 Quicksort 323
8.3 Heapsort 327
8.4 Indexing and Ranking 329
8.5 Selecting theM th Largest 333
8.6 Determination of Equivalence Classes 337

9 Root Finding and Nonlinear Sets of Equations 340
9.0 Introduction 340
9.1 Bracketing and Bisection 343
9.2 Secant Method, False Position Method, and Ridders’ Method 347
9.3 Van Wijngaarden–Dekker–Brent Method 352
9.4 Newton-Raphson Method Using Derivative 355
9.5 Roots of Polynomials 362
9.6 Newton-Raphson Method for Nonlinear Systems of Equations 372
9.7 Globally Convergent Methods for Nonlinear Systems of Equations 376

10 Minimization or Maximization of Functions 387
10.0 Introduction 387
10.1 Golden Section Search in One Dimension 390
10.2 Parabolic Interpolation and Brent’s Method in One Dimension 395
10.3 One-Dimensional Search with First Derivatives 399
10.4 Downhill Simplex Method in Multidimensions 402
10.5 Direction Set (Powell’s) Methods in Multidimensions 406
10.6 Conjugate Gradient Methods in Multidimensions 413
10.7 Variable Metric Methods in Multidimensions 418
10.8 Linear Programming and the Simplex Method 423
10.9 Simulated Annealing Methods 436

11 Eigensystems 449
11.0 Introduction 449
11.1 Jacobi Transformations of a Symmetric Matrix 456
11.2 Reduction of a Symmetric Matrix to Tridiagonal Form:

Givens and Householder Reductions 462
11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix 469
11.4 Hermitian Matrices 475
11.5 Reduction of a General Matrix to Hessenberg Form 476

viii Contents

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

11.6 The QR Algorithm for Real Hessenberg Matrices 480
11.7 Improving Eigenvalues and/or Finding Eigenvectors by

Inverse Iteration 487

12 Fast Fourier Transform 490
12.0 Introduction 490
12.1 Fourier Transform of Discretely Sampled Data 494
12.2 Fast Fourier Transform (FFT) 498
12.3 FFT of Real Functions, Sine and Cosine Transforms 504
12.4 FFT in Two or More Dimensions 515
12.5 Fourier Transforms of Real Data in Two and Three Dimensions 519
12.6 External Storage or Memory-Local FFTs 525

13 Fourier and Spectral Applications 530
13.0 Introduction 530
13.1 Convolution and Deconvolution Using the FFT 531
13.2 Correlation and Autocorrelation Using the FFT 538
13.3 Optimal (Wiener) Filtering with the FFT 539
13.4 Power Spectrum Estimation Using the FFT 542
13.5 Digital Filtering in the Time Domain 551
13.6 Linear Prediction and Linear Predictive Coding 557
13.7 Power Spectrum Estimation by the Maximum Entropy

(All Poles) Method 565
13.8 Spectral Analysis of Unevenly Sampled Data 569
13.9 Computing Fourier Integrals Using the FFT 577
13.10 Wavelet Transforms 584
13.11 Numerical Use of the Sampling Theorem 600

14 Statistical Description of Data 603
14.0 Introduction 603
14.1 Moments of a Distribution: Mean, Variance, Skewness,

and So Forth 604
14.2 Do Two Distributions Have the Same Means or Variances? 609
14.3 Are Two Distributions Different? 614
14.4 Contingency Table Analysis of Two Distributions 622
14.5 Linear Correlation 630
14.6 Nonparametric or Rank Correlation 633
14.7 Do Two-Dimensional Distributions Differ? 640
14.8 Savitzky-Golay Smoothing Filters 644

15 Modeling of Data 650
15.0 Introduction 650
15.1 Least Squares as a Maximum Likelihood Estimator 651
15.2 Fitting Data to a Straight Line 655
15.3 Straight-Line Data with Errors in Both Coordinates 660
15.4 General Linear Least Squares 665
15.5 Nonlinear Models 675

Contents ix

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

15.6 Confidence Limits on Estimated Model Parameters 684
15.7 Robust Estimation 694

16 Integration of Ordinary Differential Equations 701
16.0 Introduction 701
16.1 Runge-Kutta Method 704
16.2 Adaptive Stepsize Control for Runge-Kutta 708
16.3 Modified Midpoint Method 716
16.4 Richardson Extrapolation and the Bulirsch-Stoer Method 718
16.5 Second-Order Conservative Equations 726
16.6 Stiff Sets of Equations 727
16.7 Multistep, Multivalue, and Predictor-Corrector Methods 740

17 Two Point Boundary Value Problems 745
17.0 Introduction 745
17.1 The Shooting Method 749
17.2 Shooting to a Fitting Point 751
17.3 Relaxation Methods 753
17.4 A Worked Example: Spheroidal Harmonics 764
17.5 Automated Allocation of Mesh Points 774
17.6 Handling Internal Boundary Conditions or Singular Points 775

18 Integral Equations and Inverse Theory 779
18.0 Introduction 779
18.1 Fredholm Equations of the Second Kind 782
18.2 Volterra Equations 786
18.3 Integral Equations with Singular Kernels 788
18.4 Inverse Problems and the Use of A Priori Information 795
18.5 Linear Regularization Methods 799
18.6 Backus-Gilbert Method 806
18.7 Maximum Entropy Image Restoration 809

19 Partial Differential Equations 818
19.0 Introduction 818
19.1 Flux-Conservative Initial Value Problems 825
19.2 Diffusive Initial Value Problems 838
19.3 Initial Value Problems in Multidimensions 844
19.4 Fourier and Cyclic Reduction Methods for Boundary

Value Problems 848
19.5 Relaxation Methods for Boundary Value Problems 854
19.6 Multigrid Methods for Boundary Value Problems 862

20 Less-Numerical Algorithms 881
20.0 Introduction 881
20.1 Diagnosing Machine Parameters 881
20.2 Gray Codes 886

x Contents

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

20.3 Cyclic Redundancy and Other Checksums 888
20.4 Huffman Coding and Compression of Data 896
20.5 Arithmetic Coding 902
20.6 Arithmetic at Arbitrary Precision 906

References for Volume 1 916

Index of Programs and Dependencies (Vol. 1) 921

General Index to Volumes 1 and 2

Contents of Volume 2: Numerical Recipes in Fortran 90

Preface to Volume 2 viii

Foreword by Michael Metcalf x

License Information xvii

21 Introduction to Fortran 90 Language Features 935

22 Introduction to Parallel Programming 962

23 Numerical Recipes Utilities for Fortran 90 987

Fortran 90 Code Chapters 1009

B1 Preliminaries 1010

B2 Solution of Linear Algebraic Equations 1014

B3 Interpolation and Extrapolation 1043

B4 Integration of Functions 1052

B5 Evaluation of Functions 1070

B6 Special Functions 1083

B7 Random Numbers 1141

B8 Sorting 1167

B9 Root Finding and Nonlinear Sets of Equations 1182

B10 Minimization or Maximization of Functions 1201

B11 Eigensystems 1225

B12 Fast Fourier Transform 1235

Contents xi

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

B13 Fourier and Spectral Applications 1253

B14 Statistical Description of Data 1269

B15 Modeling of Data 1285

B16 Integration of Ordinary Differential Equations 1297

B17 Two Point Boundary Value Problems 1314

B18 Integral Equations and Inverse Theory 1325

B19 Partial Differential Equations 1332

B20 Less-Numerical Algorithms 1343

References for Volume 2 1359

Appendices

C1 Listing of Utility M odules (nrtype and nrutil) 1361

C2 Listing of Explicit Interfaces 1384

C3 Index of Programs and Dependencies (Vol. 2) 1434

General Index to Volumes 1 and 2 1447

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

xii

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Plan of the Two-Volume Edition

Fortran, long the epitome of stability, is once again a language in flux. Fortran 90
is not just the long-awaited updating of traditional Fortran 77 to modern computing
practices, but also demonstrates Fortran’s decisive bid to be the language of choice
for parallel programming on multiprocessor computers.

At the same time, Fortran 90 is completely backwards-compatible with all
Fortran 77 code. So, users with legacy code, or who choose to use only older
language constructs, will still get the benefit of updated and actively maintained
compilers.

As we, the authors ofNumerical Recipes, watched the gestation and birth of
Fortran 90 by its governing standards committee (an interesting process described
by a leading Committee member, Michael Metcalf, in the Foreword to our Volume
2), it became clear to us that the right moment for moving Numerical Recipes from
Fortran 77 to Fortran 90 was sooner, rather than later.

On the other hand, it was equally clear that Fortran-77-style programming —
no matter whether with Fortran 77 or Fortran 90 compilers — is, and will continue
for a long time to be, the “mother tongue” of a large population of active scientists,
engineers, and other users of numerical computation. This is not a user base that
we would willingly or knowingly abandon.

The solution was immediately clear: a two-volume edition of the Fortran
Numerical Recipesconsisting of Volume 1 (this one, a corrected reprinting of the
previous one-volume edition), now retitledNumerical Recipes in Fortran 77, and
a completely new Volume 2, titledNumerical Recipes in Fortran 90: The Art of
ParallelScientific Computing. Volume 2 begins with three chapters (21, 22, and
23) that extend the narrative of the first volume to the new subjects of Fortran 90
language features, parallel programming methodology, and the implementation of
certain useful utility functions in Fortran 90. Then, in exact correspondence with
Volume 1’s Chapters 1–20, are new chapters B1–B20, devoted principally to the
listing and explanation of new Fortran 90 routines. With a few exceptions, each
Fortran 77 routine in Volume 1 has a corresponding new Fortran 90 version in
Volume 2. (The exceptions are a few new capabilities, notably in random number
generation and in multigrid PDE solvers, that are unique to Volume 2’s Fortran 90.)
Otherwise, there is no duplication between the volumes. The detailed explanation
of the algorithms in this Volume 1 is intended to apply to, and be essential for,
both volumes.

In other words:You can use this Volume 1 without having Volume 2, but you
can’t use Volume 2 without Volume 1.We think that there is much to be gained by
having and usingbothvolumes: Fortran 90’s parallel language constructions are not
only useful for present and future multiprocessor machines; they also allow for the
elegant and concise formulation of many algorithms on ordinary single-processor
computers. We think that essentiallyall Fortran programmers will want gradually
to migrate into Fortran 90 and into a mode of “thinking parallel.” We have written
Volume 2 specifically to help with this important transition.

Volume 2’s discussion of parallel programming is focused on those issues of
direct relevance to the Fortran 90 programmer. Some more general aspects of parallel
programming, such as communication costs, synchronization of multiple processers,

xiii

xiv Plan of the Two-Volume Edition

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

etc., are touched on only briefly. We provide references to the extensive literature
on these more specialized topics.

A special note to C programmers: Right now, there is no effort at producing
a parallel version of C that is comparable to Fortran 90 in maturity,acceptance,
and stability. We think, therefore, that C programmers will be well served by
using Volume 2, either in conjuction with this Volume 1 or else in conjunction with
the sister volumeNumerical Recipes in C: The Art of Scientific Computing, for an
educational excursion into Fortran 90, its parallel programming constructions, and
the numerical algorithms that capitalize on them. C and C++ programming have
not been far from our minds as we have written this two-volume version. We
think you will find that time spent in absorbing the principal lessons of Volume
2’s Chapters 21–23 will be amply repaid in the future, as C and C++ eventually
develop standard parallel extensions.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Preface to the Second Edition

Our aim in writing the original edition ofNumerical Recipeswas to provide a
book that combined general discussion, analytical mathematics, algorithmics, and
actual working programs. The success of the first edition puts us now in a difficult,
though hardly unenviable, position. We wanted, then and now, to write a book
that is informal, fearlessly editorial, unesoteric, and above all useful. There is a
danger that, if we are not careful, we might produce a second edition that is weighty,
balanced, scholarly, and boring.

It is a mixed blessing that we know more now than we did six years ago. Then,
we were making educated guesses, based on existing literature and our own research,
about which numerical techniques were the most important and robust. Now, we have
the benefit of direct feedback from a large reader community. Letters to our alter-ego
enterprise, Numerical Recipes Software, are in the thousands per year. (Please,don’t
telephoneus.) Our post office box has become a magnet for letters pointing out
that we have omitted some particular technique, well known to be important in a
particular field of science or engineering. We value such letters, and digest them
carefully, especially when they point us to specific references in the literature.

The inevitable result of this input is that this Second Edition ofNumerical
Recipesis substantially larger than its predecessor, in fact about 50% larger both in
words and number of included programs (the latter now numbering well over 300).
“Don’t let the book grow in size,” is the advice that we received from several wise
colleagues. We have tried to follow the intended spirit of that advice, even as we
violate the letter of it. We have not lengthened, or increased in difficulty, the book’s
principal discussions of mainstream topics. Many new topics are presented at this
same accessible level. Some topics, both from the earlier edition and new to this
one, are now set in smaller type that labels them as being “advanced.” The reader
who ignores such advanced sections completely will not, we think, find any lack of
continuity in the shorter volume that results.

Here are some highlights of the new material in this Second Edition:
• a new chapter on integral equations and inverse methods
• a detailed treatment of multigrid methods for solving elliptic partial

differential equations
• routines for band diagonal linear systems
• improved routines for linear algebra on sparse matrices
• Cholesky and QR decomposition
• orthogonal polynomials and Gaussian quadratures for arbitrary weight

functions
• methods for calculating numerical derivatives
• Pad́e approximants, and rational Chebyshev approximation
• Bessel functions, and modified Bessel functions, of fractional order; and

several other new special functions
• improved random number routines
• quasi-random sequences
• routines for adaptive and recursive Monte Carlo integration in high-

dimensional spaces
• globally convergent methods for sets of nonlinear equations

xv

xvi Preface to the Second Edition

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• simulated annealing minimization for continuous control spaces
• fast Fourier transform (FFT) for real data in two and three dimensions
• fast Fourier transform (FFT) using external storage
• improved fast cosine transform routines
• wavelet transforms
• Fourier integrals with upper and lower limits
• spectral analysis on unevenly sampled data
• Savitzky-Golay smoothing filters
• fitting straight line data with errors in both coordinates
• a two-dimensional Kolmogorov-Smirnoff test
• the statistical bootstrap method
• embedded Runge-Kutta-Fehlberg methods for differential equations
• high-order methods for stiff differential equations
• a new chapter on “less-numerical” algorithms, including Huffman and

arithmetic coding, arbitrary precision arithmetic, and several other topics.
Consult the Preface to the First Edition, following, or the Table of Contents, for a
list of the more “basic” subjects treated.

Acknowledgments

It is not possible for us to list by name here all the readers who have made
useful suggestions; we are grateful for these. In the text, we attempt to give specific
attribution for ideas that appear to be original, and not known in the literature. We
apologize in advance for any omissions.

Some readers and colleagues have been particularly generous in providing
us with ideas, comments, suggestions, and programs for this Second Edition.
We especially want to thank George Rybicki, Philip Pinto, Peter Lepage, Robert
Lupton, Douglas Eardley, Ramesh Narayan, David Spergel, Alan Oppenheim, Sallie
Baliunas, Scott Tremaine, Glennys Farrar, Steven Block, John Peacock, Thomas
Loredo, Matthew Choptuik, Gregory Cook, L. Samuel Finn, P. Deuflhard, Harold
Lewis, Peter Weinberger, David Syer, Richard Ferch, Steven Ebstein,and William
Gould. We have been helped by Nancy Lee Snyder’s mastery of a complicated
TEX manuscript. We express appreciation to our editors Lauren Cowles and Alan
Harvey at Cambridge University Press, and to our production editor Russell Hahn.
We remain, of course, grateful to the individuals acknowledged in the Preface to
the First Edition.

Special acknowledgment is due to programming consultant Seth Finkelstein,
who influenced many of the routines in this book, and wrote or rewrote many more
routines in itsC-language twin and the companion Example books. Our project has
benefited enormously from Seth’s talent for detecting, and following the trail of,
even very slight anomalies (often compiler bugs, but occasionally our errors), and
from his good programming sense.

We prepared this book for publication on DEC and Sun workstations run-
ning the UNIX operating system, and on a 486/33 PC compatible running
MS-DOS 5.0/Windows 3.0. (See§1.0 for a list of additional computers used in
program tests.) We enthusiastically recommend the principal software used: GNU
Emacs, TEX, Perl, Adobe Illustrator, and PostScript. Also used were a variety
of FORTRAN compilers — too numerous (and sometimes too buggy) for individual

Preface to the Second Edition xvii

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

acknowledgment. It is a sobering fact that our standard test suite (exercising all the
routines in this book) has uncovered compiler bugs in a large majority of the compil-
ers tried. When possible, we work with developers to see that such bugs get fixed;
we encourage interested compiler developers to contact us about such arrangements.

WHP and SAT acknowledge the continued support of the U.S. National Science
Foundation for their research on computational methods. D.A.R.P.A. support is
acknowledged for§13.10 on wavelets.

June, 1992 William H. Press
Saul A. Teukolsky
William T. Vetterling
Brian P. Flannery

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Preface to the First Edition

We call this bookNumerical Recipesfor several reasons. In one sense, this book
is indeed a “cookbook” on numerical computation. However there is an important
distinction between a cookbook and a restaurant menu. The latter presents choices
among complete dishes in each of which the individual flavors are blendedand
disguised. The former — and this book — reveals the individual ingredients and
explains how they are prepared and combined.

Another purpose of the title is to connote an eclectic mixture of presentational
techniques. This book is unique, we think, in offering, foreach topic considered,
a certain amount of general discussion, a certain amount of analytical mathematics,
a certain amount of discussion of algorithmics, and (most important) actual imple-
mentations of these ideas in the form of working computer routines. Our task has
been to find the right balance among these ingredients for each topic. You will
find that for some topics we have tilted quite far to the analytic side; this where we
have felt there to be gaps in the “standard” mathematical training. For other topics,
where the mathematical prerequisites are universally held, we have tilted towards
more in-depth discussion of the nature of the computational algorithms, or towards
practical questions of implementation.

We admit, therefore, to some unevenness in the “level” of this book. About half
of it is suitable for an advanced undergraduate course on numerical computation for
science or engineering majors. The other half ranges from the level of a graduate
course to that of a professional reference. Most cookbooks have, after all, recipes at
varying levels of complexity. An attractive feature of this approach, we think, is that
the reader can use the book at increasing levels of sophisticationas his/her experience
grows. Even inexperienced readers should be able to use our most advanced routines
as black boxes. Having done so, we hope that these readers will subsequently go
back and learn what secrets are inside.

If there is a single dominant theme in this book, it is that practical methods
of numerical computation can be simultaneously efficient, clever, and — important
— clear. The alternative viewpoint, that efficient computational methods must
necessarily be so arcane and complex as to be useful only in “black box” form,
we firmly reject.

Our purpose in this book is thus to open up a large number of computational
black boxes to your scrutiny. We want to teach you to take apart these blackboxes
and to put them back together again, modifying them to suit your specific needs.
We assume that you are mathematically literate, i.e., that you have the normal
mathematical preparation associated with an undergraduate degree in a physical
science, or engineering, or economics, or a quantitative social science. We assume
that you know how to program a computer. We do not assume that you have any
prior formal knowledge of numerical analysis or numerical methods.

The scope ofNumerical Recipesis supposed to be “everything up to, but
not including, partial differential equations.” We honor this in the breach: First,
we do have one introductory chapter on methods for partial differential equations
(Chapter 19). Second, we obviously cannot includeeverythingelse. All the so-called
“standard” topics of a numerical analysis course have been included in this book:

xviii

Preface to the First Edition xix

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

linear equations (Chapter 2), interpolation and extrapolation (Chaper 3), integration
(Chaper 4), nonlinear root-finding (Chapter 9), eigensystems (Chapter 11), and
ordinary differential equations (Chapter 16). Most of these topics have been taken
beyond their standard treatments into some advanced material which we have felt
to be particularly important or useful.

Some other subjects that we cover in detail are not usually found in the standard
numerical analysis texts. These include the evaluation of functions and of particular
special functions of higher mathematics (Chapters 5 and 6); random numbers and
Monte Carlo methods (Chapter 7); sorting (Chapter 8); optimization, including
multidimensional methods (Chapter 10); Fourier transform methods, including FFT
methods and other spectral methods (Chapters 12 and 13); two chapters on the
statistical description and modeling of data (Chapters 14 and 15); and two-point
boundary value problems, both shooting and relaxation methods (Chapter 17).

The programs in this book are included in ANSI-standardFORTRAN-77. Versions
of the book inC, Pascal, andBASIC are available separately. We have more to
say about theFORTRAN language, and the computational environment assumed by
our routines, in§1.1 (Introduction).

Acknowledgments

Many colleagues have been generous in giving us the benefit of their numerical
and computational experience, in providing us with programs, in commenting on
the manuscript, or in general encouragement. We particularly wish to thank George
Rybicki, Douglas Eardley, Philip Marcus, Stuart Shapiro, Paul Horowitz, Bruce
Musicus, Irwin Shapiro, Stephen Wolfram, Henry Abarbanel, Larry Smarr, Richard
Muller, John Bahcall, and A.G.W. Cameron.

We also wish to acknowledge two individuals whom we have never met:
Forman Acton, whose 1970 textbookNumerical Methods that Work(New York:
Harper and Row) has surely left its stylistic mark on us; and Donald Knuth, both for
his series of books onThe Art of Computer Programming(Reading, MA: Addison-
Wesley), and for TEX, the computer typesetting language which immensely aided
production of this book.

Research by the authors on computational methods was supported in part by
the U.S. National Science Foundation.

October, 1985 William H. Press
Brian P. Flannery
Saul A. Teukolsky
William T. Vetterling

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

License Information

Read this section if you want to use the programs in this book on a computer.
You’ll need to read the following Disclaimer of Warranty, get the programs onto your
computer, and acquire a Numerical Recipes software license. (Without this license,
which can be the free “immediate license” under terms described below, the book is
intended as a text and reference book, for reading purposes only.)

Disclaimer of Warranty

We make no warranties, express or implied, that the programs contained
in this volume are free of error, or are consistent with any particular standard
of merchantability, or that they will meet your requirements for any particular
application. They should not be relied on for solving a problem whose incorrect
solution could result in injury to a person or loss of property. If you do use the
programs in such a manner, it is at your own risk. The authors and publisher
disclaim all liability for direct or consequential damages resulting from your
use of the programs.

How to Get the Code onto Your Computer

Pick one of the following methods:

• You can type the programs from this book directly into your computer. In
this case, theonly kind of license available to you is the free “immediate
license” (see below). You are not authorized to transfer or distribute a
machine-readable copy to any other person, nor to have any other person
type the programs into a computer on your behalf. We do not want to hear
bug reports from you if you choose this option, because experience has
shown thatvirtually all reported bugs in such cases are typing errors!

• You can download the Numerical Recipes programs electronically from
the Numerical Recipes On-Line Software Store, located at our Web site
(http://www.nr.com). They are packaged as a password-protected
file, and you’ll need to purchase a license to unpack them. You can
get a single-screen license and password immediately, on-line, from the
On-Line Store, with fees ranging from$50 (PC, Macintosh, educational
institutions’ UNIX) to $140 (general UNIX). Downloading the packaged
software from the On-Line Store is also the way to start if you want to
acquire a more general (multiscreen, site, or corporate) license.

xx

License Information xxi

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• You can purchase media containing the programs from Cambridge Uni-
versity Press. Diskette versions are available in IBM-compatible format
for machines running Windows 3.1, 95, or NT. CDROM versions in ISO-
9660 format for PC, Macintosh, and UNIX systems are also available;
these include both Fortran and C versions (as well as versions in Pascal
and BASIC from the first edition) on a single CDROM. Diskettes pur-
chased from Cambridge University Press include a single-screen license
for PC or Macintosh only. The CDROM is available with a single-
screen license for PC or Macintosh (order ISBN 0 521 576083), or (at a
slightly higher price) with a single-screen license for UNIX workstations
(order ISBN 0 521 576075). Orders for media from Cambridge Univer-
sity Press can be placed at 800872-7423 (North America only) or by
email to orders@cup.org (North America) or trade@cup.cam.ac.uk (rest
of world). Or, visit the Web siteshttp://www.cup.org (North America)
or http://www.cup.cam.ac.uk (rest of world).

Types of License Offered

Here are the types of licenses that we offer. Note that some types are
automatically acquired with the purchase of media from Cambridge University
Press, or of an unlocking password from the Numerical Recipes On-Line Software
Store, while other types of licenses require that you communicate specifically with
Numerical Recipes Software (email: orders@nr.com or fax: 781 863-1739). Our
Web sitehttp://www.nr.com has additional information.

• [“Immediate License”] If you are the individual owner of a copy of this
book and you type one or more of its routines into your computer, we
authorize you to use them on that computer for your own personal and
noncommercial purposes. You are not authorized to transfer or distribute
machine-readable copies to any other person, or to use the routines on
more than one machine, or to distribute executable programs containing
our routines. This is the only free license.

• [“Single-Screen License”] This is the most common type of low-cost
license, with terms governed by our Single Screen (Shrinkwrap) License
document (complete terms available through our Web site). Basically, this
license lets you use Numerical Recipes routines on any one screen (PC,
workstation, X-terminal, etc.). You may also, under this license, transfer
pre-compiled, executable programs incorporating our routines to other,
unlicensed, screens or computers, providing that (i) your application is
noncommercial (i.e., does not involve the selling of your program for a
fee), (ii) the programs were first developed, compiled, and successfully
run on a licensed screen, and (iii) our routines are bound into the programs
in such a manner that they cannot beaccessed as individual routines and
cannot practicably be unbound and used in other programs. That is, under
this license, your program user must not be able to use our programs as
part of a program library or “mix-and-match” workbench. Conditions for
other types of commercial or noncommercial distribution may be found
on our Web site (http://www.nr.com).

xxii License Information

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• [“Multi-Screen, Server, Site, and Corporate Licenses”] The terms of
the Single Screen License can be extended to designated groups of
machines, defined by number of screens, number of machines, locations,
or ownership. Significant discounts from the corresponding single-screen
prices are available when the estimated number of screens exceeds 40.
Contact Numerical Recipes Software (email: orders@nr.com or fax: 781
863-1739) for details.

• [“Course Right-to-Copy License”] Instructors at accredited educational
institutions who have adopted this book for a course, and who have
already purchased a Single Screen License (either acquired with the
purchase of media, or from the Numerical Recipes On-Line Software
Store), may license the programs for use in that course as follows: Mail
your name, title, and address; the course name, number, dates, and
estimated enrollment; and advance payment of$5 per (estimated) student
to Numerical Recipes Software, at this address: P.O. Box 243, Cambridge,
MA 02238 (USA). You will receive by return mail a license authorizing
you to make copies of the programs for use by your students, and/or to
transfer the programs to a machine accessible toyour students (but only
for the duration of the course).

About Copyrights on Computer Programs

Like artistic or literary compositions, computer programs are protected by
copyright. Generally it is an infringement for you to copy into your computer a
program from a copyrighted source. (It is also not a friendly thing to do, since it
deprives the program’s author of compensation for his or her creative effort.) Under
copyright law, all “derivative works” (modified versions, or translations into another
computer language) also come under the same copyright as the original work.

Copyright does not protect ideas, but only the expression of those ideas in
a particular form. In the case of a computer program, the ideas consist of the
program’s methodology and algorithm, including the necessary sequence of steps
adopted by the programmer. The expression of those ideas is the program source
code (particularly any arbitrary or stylistic choices embodied in it), its derived object
code, and any other derivative works.

If you analyze the ideas contained in a program, and then express those
ideas in your own completely different implementation, then that new program
implementation belongs to you. That is what we have done for those programs in
this book that are not entirely of our own devising. When programs in this book are
said to be “based” on programs published in copyright sources, we mean that the
ideas are the same. The expression of these ideas as source code is our own. We
believe that no material in this book infringes on an existing copyright.

Trademarks

Several registered trademarks appear within the text of this book: Sun is a
trademark of Sun Microsystems, Inc. SPARC and SPARCstation are trademarks of
SPARC International, Inc. Microsoft, Windows 95, Windows NT, PowerStation,
and MS are trademarks of Microsoft Corporation. DEC, VMS, Alpha AXP, and

License Information xxiii

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ULTRIX are trademarks of Digital Equipment Corporation. IBM is a trademark of
International Business Machines Corporation. Apple and Macintosh are trademarks
of Apple Computer, Inc. UNIX is a trademark licensed exclusively through X/Open
Co. Ltd. IMSL is a trademark of Visual Numerics, Inc. NAG refers to proprietary
computer software of Numerical Algorithms Group (USA) Inc. PostScript and
Adobe Illustrator are trademarks of Adobe Systems Incorporated. Last, and no doubt
least, Numerical Recipes (when identifying products) is a trademark of Numerical
Recipes Software.

Attributions

The fact that ideas are legally “free as air” in no way supersedes the ethical
requirement that ideas be credited to their known originators. When programs in
this book are based on known sources, whether copyrighted or in the public domain,
published or “handed-down,” we have attempted to give proper attribution. Unfor-
tunately, the lineage of many programs in common circulation is often unclear. We
would be grateful to readers for new or corrected information regarding attributions,
which we will attempt to incorporate in subsequent printings.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Computer Programs
by Chapter and Section

1.0 flmoon calculate phases of the moon by date
1.1 julday Julian Day number from calendar date
1.1 badluk Friday the 13th when the moon is full
1.1 caldat calendar date from Julian day number

2.1 gaussj Gauss-Jordan matrix inversion and linear equation
solution

2.3 ludcmp linear equation solution,LU decomposition
2.3 lubksb linear equation solution, backsubstitution
2.4 tridag solution of tridiagonal systems
2.4 banmul multiply vector by band diagonal matrix
2.4 bandec band diagonal systems, decomposition
2.4 banbks band diagonal systems, backsubstitution
2.5 mprove linear equation solution, iterative improvement
2.6 svbksb singular value backsubstitution
2.6 svdcmp singular value decomposition of a matrix
2.6 pythag calculate(a2 + b2)1/2 without overflow
2.7 cyclic solution of cyclic tridiagonal systems
2.7 sprsin convert matrix to sparse format
2.7 sprsax product of sparse matrix and vector
2.7 sprstx product of transpose sparse matrix and vector
2.7 sprstp transpose of sparse matrix
2.7 sprspm pattern multiply two sparse matrices
2.7 sprstm threshold multiply two sparse matrices
2.7 linbcg biconjugate gradient solution of sparse systems
2.7 snrm used bylinbcg for vector norm
2.7 atimes used bylinbcg for sparse multiplication
2.7 asolve used bylinbcg for preconditioner
2.8 vander solve Vandermonde systems
2.8 toeplz solve Toeplitz systems
2.9 choldc Cholesky decomposition
2.9 cholsl Cholesky backsubstitution
2.10 qrdcmp QR decomposition
2.10 qrsolv QR backsubstitution
2.10 rsolv right triangular backsubstitution
2.10 qrupdt update a QR decomposition
2.10 rotate Jacobi rotation used byqrupdt

3.1 polint polynomial interpolation
3.2 ratint rational function interpolation
3.3 spline construct a cubic spline
3.3 splint cubic spline interpolation
3.4 locate search an ordered table by bisection

xxiv

Computer Programs by Chapter and Section xxv

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

3.4 hunt search a table when calls are correlated
3.5 polcoe polynomial coefficients from table of values
3.5 polcof polynomial coefficients from table of values
3.6 polin2 two-dimensional polynomial interpolation
3.6 bcucof construct two-dimensional bicubic
3.6 bcuint two-dimensional bicubic interpolation
3.6 splie2 construct two-dimensional spline
3.6 splin2 two-dimensional spline interpolation

4.2 trapzd trapezoidal rule
4.2 qtrap integrate using trapezoidal rule
4.2 qsimp integrate using Simpson’s rule
4.3 qromb integrate using Romberg adaptive method
4.4 midpnt extended midpoint rule
4.4 qromo integrate using open Romberg adaptive method
4.4 midinf integrate a function on a semi-infinite interval
4.4 midsql integrate a function with lower square-root singularity
4.4 midsqu integrate a function with upper square-root singularity
4.4 midexp integrate a function that decreases exponentially
4.5 qgaus integrate a function by Gaussian quadratures
4.5 gauleg Gauss-Legendre weights and abscissas
4.5 gaulag Gauss-Laguerre weights and abscissas
4.5 gauher Gauss-Hermite weights and abscissas
4.5 gaujac Gauss-Jacobi weights and abscissas
4.5 gaucof quadrature weights from orthogonal polynomials
4.5 orthog construct nonclassical orthogonal polynomials
4.6 quad3d integrate a function over a three-dimensional space

5.1 eulsum sum a series by Euler–van Wijngaarden algorithm
5.3 ddpoly evaluate a polynomial and its derivatives
5.3 poldiv divide one polynomial by another
5.3 ratval evaluate a rational function
5.7 dfridr numerical derivative by Ridders’ method
5.8 chebft fit a Chebyshev polynomial to a function
5.8 chebev Chebyshev polynomial evaluation
5.9 chder derivative of a function already Chebyshev fitted
5.9 chint integrate a function already Chebyshev fitted
5.10 chebpc polynomial coefficients from a Chebyshev fit
5.10 pcshft polynomial coefficients of a shifted polynomial
5.11 pccheb inverse ofchebpc; use to economize power series
5.12 pade Pad́e approximant from power series coefficients
5.13 ratlsq rational fit by least-squares method

6.1 gammln logarithm of gamma function
6.1 factrl factorial function
6.1 bico binomial coefficients function
6.1 factln logarithm of factorial function

xxvi Computer Programs by Chapter and Section

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

6.1 beta beta function
6.2 gammp incomplete gamma function
6.2 gammq complement of incomplete gamma function
6.2 gser series used bygammp andgammq
6.2 gcf continued fraction used bygammp andgammq
6.2 erf error function
6.2 erfc complementary error function
6.2 erfcc complementary error function, concise routine
6.3 expint exponential integralEn

6.3 ei exponential integral Ei
6.4 betai incomplete beta function
6.4 betacf continued fraction used bybetai
6.5 bessj0 Bessel functionJ0

6.5 bessy0 Bessel functionY0

6.5 bessj1 Bessel functionJ1

6.5 bessy1 Bessel functionY1

6.5 bessy Bessel functionY of general integer order
6.5 bessj Bessel functionJ of general integer order
6.6 bessi0 modified Bessel functionI0
6.6 bessk0 modified Bessel functionK0

6.6 bessi1 modified Bessel functionI1
6.6 bessk1 modified Bessel functionK1

6.6 bessk modified Bessel functionK of integer order
6.6 bessi modified Bessel functionI of integer order
6.7 bessjy Bessel functions of fractional order
6.7 beschb Chebyshev expansion used bybessjy
6.7 bessik modified Bessel functions of fractional order
6.7 airy Airy functions
6.7 sphbes spherical Bessel functionsjn andyn
6.8 plgndr Legendre polynomials, associated (spherical harmonics)
6.9 frenel Fresnel integralsS(x) andC(x)

6.9 cisi cosine and sine integrals Ci and Si
6.10 dawson Dawson’s integral
6.11 rf Carlson’s elliptic integral of the first kind
6.11 rd Carlson’s elliptic integral of the second kind
6.11 rj Carlson’s elliptic integral of the third kind
6.11 rc Carlson’s degenerate elliptic integral
6.11 ellf Legendre elliptic integral of the first kind
6.11 elle Legendre elliptic integral of the second kind
6.11 ellpi Legendre elliptic integral of the third kind
6.11 sncndn Jacobian elliptic functions
6.12 hypgeo complex hypergeometric function
6.12 hypser complex hypergeometric function, series evaluation
6.12 hypdrv complex hypergeometric function, derivative of

7.1 ran0 random deviate by Park and Miller minimal standard
7.1 ran1 random deviate, minimal standard plus shuffle

Computer Programs by Chapter and Section xxvii

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

7.1 ran2 random deviate by L’Ecuyer long period plus shuffle
7.1 ran3 random deviate by Knuth subtractive method
7.2 expdev exponential random deviates
7.2 gasdev normally distributed random deviates
7.3 gamdev gamma-law distribution random deviates
7.3 poidev Poisson distributed random deviates
7.3 bnldev binomial distributed random deviates
7.4 irbit1 random bit sequence
7.4 irbit2 random bit sequence
7.5 psdes “pseudo-DES” hashing of 64 bits
7.5 ran4 random deviates from DES-like hashing
7.7 sobseq Sobol’s quasi-random sequence
7.8 vegas adaptive multidimensional Monte Carlo integration
7.8 rebin sample rebinning used byvegas
7.8 miser recursive multidimensional Monte Carlo integration
7.8 ranpt get random point, used bymiser

8.1 piksrt sort an array by straight insertion
8.1 piksr2 sort two arrays by straight insertion
8.1 shell sort an array by Shell’s method
8.2 sort sort an array by quicksort method
8.2 sort2 sort two arrays by quicksort method
8.3 hpsort sort an array by heapsort method
8.4 indexx construct an index for an array
8.4 sort3 sort, use an index to sort 3 or more arrays
8.4 rank construct a rank table for an array
8.5 select find theN th largest in an array
8.5 selip find theN th largest, without altering an array
8.5 hpsel find M largest values, without altering an array
8.6 eclass determine equivalence classes from list
8.6 eclazz determine equivalence classes from procedure

9.0 scrsho graph a function to search for roots
9.1 zbrac outward search for brackets on roots
9.1 zbrak inward search for brackets on roots
9.1 rtbis find root of a function by bisection
9.2 rtflsp find root of a function by false-position
9.2 rtsec find root of a function by secant method
9.2 zriddr find root of a function by Ridders’ method
9.3 zbrent find root of a function by Brent’s method
9.4 rtnewt find root of a function by Newton-Raphson
9.4 rtsafe find root of a function by Newton-Raphson and bisection
9.5 laguer find a root of a polynomial by Laguerre’s method
9.5 zroots roots of a polynomial by Laguerre’s method with

deflation
9.5 zrhqr roots of a polynomial by eigenvalue methods
9.5 qroot complex or double root of a polynomial, Bairstow

xxviii Computer Programs by Chapter and Section

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

9.6 mnewt Newton’s method for systems of equations
9.7 lnsrch search along a line, used bynewt
9.7 newt globally convergent multi-dimensional Newton’s method
9.7 fdjac finite-difference Jacobian, used bynewt
9.7 fmin norm of a vector function, used bynewt
9.7 broydn secant method for systems of equations

10.1 mnbrak bracket the minimum of a function
10.1 golden find minimum of a function by golden section search
10.2 brent find minimum of a function by Brent’s method
10.3 dbrent find minimum of a function using derivative information
10.4 amoeba minimize inN -dimensions by downhill simplex method
10.4 amotry evaluate a trial point, used byamoeba
10.5 powell minimize inN -dimensions by Powell’s method
10.5 linmin minimum of a function along a ray inN -dimensions
10.5 f1dim function used bylinmin
10.6 frprmn minimize inN -dimensions by conjugate gradient
10.6 df1dim alternative function used bylinmin
10.7 dfpmin minimize inN -dimensions by variable metric method
10.8 simplx linear programming maximization of a linear function
10.8 simp1 linear programming, used bysimplx
10.8 simp2 linear programming, used bysimplx
10.8 simp3 linear programming, used bysimplx
10.9 anneal traveling salesman problem by simulated annealing
10.9 revcst cost of a reversal, used byanneal
10.9 revers do a reversal, used byanneal
10.9 trncst cost of a transposition, used byanneal
10.9 trnspt do a transposition, used byanneal
10.9 metrop Metropolis algorithm, used byanneal
10.9 amebsa simulated annealing in continuous spaces
10.9 amotsa evaluate a trial point, used byamebsa

11.1 jacobi eigenvalues and eigenvectors of a symmetric matrix
11.1 eigsrt eigenvectors, sorts into order by eigenvalue
11.2 tred2 Householder reduction of a real, symmetric matrix
11.3 tqli eigensolution of a symmetric tridiagonal matrix
11.5 balanc balance a nonsymmetric matrix
11.5 elmhes reduce a general matrix to Hessenberg form
11.6 hqr eigenvalues of a Hessenberg matrix

12.2 four1 fast Fourier transform (FFT) in one dimension
12.3 twofft fast Fourier transform of two real functions
12.3 realft fast Fourier transform of a single real function
12.3 sinft fast sine transform
12.3 cosft1 fast cosine transform with endpoints
12.3 cosft2 “staggered” fast cosine transform
12.4 fourn fast Fourier transform in multidimensions

Computer Programs by Chapter and Section xxix

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

12.5 rlft3 FFT of real data in two or three dimensions
12.6 fourfs FFT for huge data sets on external media
12.6 fourew rewind and permute files, used byfourfs

13.1 convlv convolution or deconvolution of data using FFT
13.2 correl correlation or autocorrelation of data using FFT
13.4 spctrm power spectrum estimation using FFT
13.6 memcof evaluate maximum entropy (MEM) coefficients
13.6 fixrts reflect roots of a polynomial into unit circle
13.6 predic linear prediction using MEM coefficients
13.7 evlmem power spectral estimation from MEM coefficients
13.8 period power spectrum of unevenly sampled data
13.8 fasper power spectrum of unevenly sampled larger data sets
13.8 spread extirpolate value into array, used byfasper
13.9 dftcor compute endpoint corrections for Fourier integrals
13.9 dftint high-accuracy Fourier integrals
13.10 wt1 one-dimensional discrete wavelet transform
13.10 daub4 Daubechies 4-coefficient wavelet filter
13.10 pwtset initialize coefficients forpwt
13.10 pwt partial wavelet transform
13.10 wtn multidimensional discrete wavelet transform

14.1 moment calculate moments of a data set
14.2 ttest Student’st-test for difference of means
14.2 avevar calculate mean and variance of a data set
14.2 tutest Student’st-test for means, case of unequal variances
14.2 tptest Student’st-test for means, case of paired data
14.2 ftest F -test for difference of variances
14.3 chsone chi-square test for difference between data and model
14.3 chstwo chi-square test for difference between two data sets
14.3 ksone Kolmogorov-Smirnov test of data against model
14.3 kstwo Kolmogorov-Smirnov test between two data sets
14.3 probks Kolmogorov-Smirnov probability function
14.4 cntab1 contingency table analysis using chi-square
14.4 cntab2 contingency table analysis using entropy measure
14.5 pearsn Pearson’s correlation between two data sets
14.6 spear Spearman’s rank correlation between two data sets
14.6 crank replaces array elements by their rank
14.6 kendl1 correlation between two data sets, Kendall’s tau
14.6 kendl2 contingency table analysis using Kendall’s tau
14.7 ks2d1s K–S test in two dimensions, data vs. model
14.7 quadct count points by quadrants, used byks2d1s
14.7 quadvl quadrant probabilities, used byks2d1s
14.7 ks2d2s K–S test in two dimensions, data vs. data
14.8 savgol Savitzky-Golay smoothing coefficients

15.2 fit least-squares fit data to a straight line

xxx Computer Programs by Chapter and Section

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

15.3 fitexy fit data to a straight line, errors in bothx andy
15.3 chixy used byfitexy to calculate aχ2

15.4 lfit general linear least-squares fit by normal equations
15.4 covsrt rearrange covariance matrix, used bylfit

15.4 svdfit linear least-squares fit by singular value decomposition
15.4 svdvar variances from singular value decomposition
15.4 fpoly fit a polynomial usinglfit or svdfit
15.4 fleg fit a Legendre polynomial usinglfit or svdfit
15.5 mrqmin nonlinear least-squares fit, Marquardt’s method
15.5 mrqcof used bymrqmin to evaluate coefficients
15.5 fgauss fit a sum of Gaussians usingmrqmin
15.7 medfit fit data to a straight line robustly, least absolute deviation
15.7 rofunc fit data robustly, used bymedfit

16.1 rk4 integrate one step of ODEs, fourth-order Runge-Kutta
16.1 rkdumb integrate ODEs by fourth-order Runge-Kutta
16.2 rkqs integrate one step of ODEs with accuracy monitoring
16.2 rkck Cash-Karp-Runge-Kutta step used byrkqs

16.2 odeint integrate ODEs with accuracy monitoring
16.3 mmid integrate ODEs by modified midpoint method
16.4 bsstep integrate ODEs, Bulirsch-Stoer step
16.4 pzextr polynomial extrapolation, used bybsstep
16.4 rzextr rational function extrapolation, used bybsstep
16.5 stoerm integrate conservative second-order ODEs
16.6 stiff integrate stiff ODEs by fourth-order Rosenbrock
16.6 jacobn sample Jacobian routine forstiff
16.6 derivs sample derivatives routine forstiff
16.6 simpr integrate stiff ODEs by semi-implicit midpoint rule
16.6 stifbs integrate stiff ODEs, Bulirsch-Stoer step

17.1 shoot solve two point boundary value problem by shooting
17.2 shootf ditto, by shooting to a fitting point
17.3 solvde two point boundary value problem, solve by relaxation
17.3 bksub backsubstitution, used bysolvde
17.3 pinvs diagonalize a sub-block, used bysolvde
17.3 red reduce columns of a matrix, used bysolvde
17.4 sfroid spheroidal functions by method ofsolvde
17.4 difeq spheroidal matrix coefficients, used bysfroid
17.4 sphoot spheroidal functions by method ofshoot
17.4 sphfpt spheroidal functions by method ofshootf

18.1 fred2 solve linear Fredholm equations of the second kind
18.1 fredin interpolate solutions obtained withfred2
18.2 voltra linear Volterra equations of the second kind
18.3 wwghts quadrature weights for an arbitrarily singular kernel
18.3 kermom sample routine for moments of a singular kernel
18.3 quadmx sample routine for a quadrature matrix

Computer Programs by Chapter and Section xxxi

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

18.3 fredex example of solving a singular Fredholm equation

19.5 sor elliptic PDE solved by successive overrelaxation method
19.6 mglin linear elliptic PDE solved by multigrid method
19.6 rstrct half-weighting restriction, used bymglin, mgfas
19.6 interp bilinear prolongation, used bymglin, mgfas
19.6 addint interpolate and add, used bymglin
19.6 slvsml solve on coarsest grid, used bymglin
19.6 relax Gauss-Seidel relaxation, used bymglin
19.6 resid calculate residual, used bymglin
19.6 copy utility used bymglin, mgfas
19.6 fill0 utility used bymglin
19.6 maloc memory allocation utility used bymglin, mgfas
19.6 mgfas nonlinear elliptic PDE solved by multigrid method
19.6 relax2 Gauss-Seidel relaxation, used bymgfas
19.6 slvsm2 solve on coarsest grid, used bymgfas
19.6 lop applies nonlinear operator, used bymgfas
19.6 matadd utility used bymgfas
19.6 matsub utility used bymgfas
19.6 anorm2 utility used bymgfas

20.1 machar diagnose computer’s floating arithmetic
20.2 igray Gray code and its inverse
20.3 icrc1 cyclic redundancy checksum, used byicrc

20.3 icrc cyclic redundancy checksum
20.3 decchk decimal check digit calculation or verification
20.4 hufmak construct a Huffman code
20.4 hufapp append bits to a Huffman code, used byhufmak

20.4 hufenc use Huffman code to encode and compress a character
20.4 hufdec use Huffman code to decode and decompress a character
20.5 arcmak construct an arithmetic code
20.5 arcode encode or decode a character using arithmetic coding
20.5 arcsum add integer to byte string, used byarcode
20.6 mpops multiple precision arithmetic, simpler operations
20.6 mpmul multiple precision multiply, using FFT methods
20.6 mpinv multiple precision reciprocal
20.6 mpdiv multiple precision divide and remainder
20.6 mpsqrt multiple precision square root
20.6 mp2dfr multiple precision conversion to decimal base
20.6 mppi multiple precision example, compute many digits ofπ

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 1. Preliminaries

1.0 Introduction

This book, like its predecessor edition, is supposed to teach you methods of
numerical computing that are practical, efficient, and (insofar as possible) elegant.
We presume throughout this book that you, the reader, have particular tasks that you
want to get done. We view our job as educating you on how to proceed. Occasionally
we may try to reroute you briefly onto a particularly beautiful side road; but by and
large, we will guide you along main highways that lead to practical destinations.

Throughout this book, you will find us fearlessly editorializing, telling you
what you should and shouldn’t do. This prescriptive tone results from a conscious
decision on our part, and we hope that you will not find it irritating. We do not
claim that our advice is infallible! Rather, we are reacting against a tendency, in
the textbook literature of computation, to discuss every possible method that has
ever been invented, without ever offering a practical judgment on relative merit. We
do, therefore, offer you our practical judgments whenever we can. As you gain
experience, you will form your own opinion of how reliable our advice is.

We presume that you are able to read computer programs inFORTRAN, that
being the language of this version ofNumerical Recipes(Second Edition). The
bookNumerical Recipes in C(Second Edition) is separately available, if you prefer
to program in that language. Earlier editions ofNumerical Recipes in Pascaland
Numerical Recipes Routines and Examples in BASICare also available; while not
containing the additional material of the Second Edition versions inC andFORTRAN,
these versions are perfectly serviceable ifPascal or BASIC is your language of
choice.

When we include programs in the text, they look like this:

SUBROUTINE flmoon(n,nph,jd,frac)
INTEGER jd,n,nph
REAL frac,RAD
PARAMETER (RAD=3.14159265/180.)

Our programs begin with an introductory comment summarizing their purpose and explain-
ing their calling sequence. This routine calculates the phases of the moon. Given an integer
n and a code nph for the phase desired (nph = 0 for new moon, 1 for first quarter, 2 for
full, 3 for last quarter), the routine returns the Julian Day Number jd, and the fractional
part of a day frac to be added to it, of the nth such phase since January, 1900. Greenwich
Mean Time is assumed.

INTEGER i
REAL am,as,c,t,t2,xtra
c=n+nph/4. This is how we comment an individual line.
t=c/1236.85
t2=t**2

1

2 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

as=359.2242+29.105356*c You aren’t really intended to understand this al-
gorithm, but it does work!am=306.0253+385.816918*c+0.010730*t2

jd=2415020+28*n+7*nph
xtra=0.75933+1.53058868*c+(1.178e-4-1.55e-7*t)*t2
if(nph.eq.0.or.nph.eq.2)then

xtra=xtra+(0.1734-3.93e-4*t)*sin(RAD*as)-0.4068*sin(RAD*am)
else if(nph.eq.1.or.nph.eq.3)then

xtra=xtra+(0.1721-4.e-4*t)*sin(RAD*as)-0.6280*sin(RAD*am)
else

pause ’nph is unknown in flmoon’ This is how we will indicate error conditions.
endif
if(xtra.ge.0.)then

i=int(xtra)
else

i=int(xtra-1.)
endif
jd=jd+i
frac=xtra-i
return
END

A few remarks about our typographical conventions and programming style
are in order at this point:

• It is good programming practice to declare all variables and identifiers in
explicit “type” statements (REAL, INTEGER, etc.), even though the implicit
declaration rules ofFORTRAN do not require this. We will always do
so. (As an aside to non-FORTRAN programmers, the implicit declaration
rules are that variables which begin with the lettersi,j,k,l,m,n are
implicitly declared to be typeINTEGER, while all other variables are
implicitly declared to be typeREAL. Explicit declarations override these
conventions.)

• In sympathy with modular and object-oriented programming practice,
we separate, typographically, a routine’s “public” or “interface” section
from its “private” or “implementation” section. We do this even though
FORTRAN is by no means a modular or object-oriented language: the
separation makes sense simply as good programming style.

• The public section contains the calling interface and declarations of its
variables. We find it useful to considerPARAMETER statements, and their
associated declarations, as also being in the public section, since a user
may want to modify parameter values to suit a particular purpose.COMMON

blocks are likewise usually part of the public section, since they involve
communication between routines.

• As the last entry in the public section, we will, where applicable, put a
standardized comment line with the wordUSES (not aFORTRAN keyword),
followed by a list of all external subroutines and functions that the routine
references, excluding built-inFORTRAN functions. (For examples, see the
routines in§6.1.)

• An introductory comment, set in type as an indented paragraph, separates
the public section from the private or implementation section.

• Within the introductorycomments, as well as in the text, we will frequently
use the notationa(1:m) to mean “the array elementsa(1), a(2), . . . ,
a(m).” Likewise, notations likeb(2:7) or c(1:m,1:n) are to be

1.0 Introduction 3

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

interpreted as ranges of array indices. (This use of colon to denote ranges
comes fromFORTRAN-77’s syntax for array declarators and character
substrings.)

• The implementation sectioncontains the declarations of variables that are
used only internally in the routine, any necessarySAVE statements for static
variables (variables that must be preserved between calls to the routine),
and of course the routine’s actual executable code.

• Case is not significant inFORTRAN, so it can be used to promote readability.
Our convention is to use upper case for two different, nonconflicting,
purposes. First, nonexecutable compiler keywords are in upper case (e.g.,
SUBROUTINE, REAL, COMMON); second, parameter identifiers are in upper
case. The reason for capitalizing parameters is that, because their values
are liable to be modified, the user often needs to scan the implementation
section of code to see exactly how the parameters are used.

• For simplicity, we adopt the convention of handling all errors and excep-
tional cases by thepause statement. In general, we do not intend that you
continue program execution after a pause occurs, butFORTRAN allows you
to do so — if you want to see what kind of wrong answer or catastrophic
error results. In many applications, you will want to modify our programs
to do more sophisticated error handling, for example to return with an
error flag set, or call an error-handling routine.

• In the printed form of this book, we take some special typographical
liberties regarding statement labels, anddo . . . continue constructions.
These are described in§1.1. Note that no such liberties are taken in the
machine-readableNumerical Recipesdiskettes, where all routines are in
standard ANSIFORTRAN-77.

Computational Environment and Program Validation

Our goal is that the programs in this book be as portable as possible, across
different platforms (models of computer), across different operating systems, and
across differentFORTRAN compilers. As surrogates for the large number of possible
combinations, we have tested all the programs in this book on the combinations
of machines, operating systems, and compilers shown on the accompanying table.
More generally, the programs should run without modification on any compiler that
implements the ANSIFORTRAN-77 standard. At the time of writing, there are not
enough installed implementations of the successorFORTRAN-90 standard to justify
our using any of its more advanced features. SinceFORTRAN-90 is backwards-
compatible withFORTRAN-77, there should be no difficulty in using the programs in
this book onFORTRAN-90 compilers, as they become available.

In validating the programs, we have taken the program source code directly
from the machine-readable form of the book’s manuscript, to decrease the chance
of propagating typographical errors. “Driver” or demonstration programs that we
used as part of our validations are available separately as theNumerical Recipes
Example Book (FORTRAN), as well as in machine-readable form. If you plan to
use more than a few of the programs in this book, or if you plan to use programs
in this book on more than one different computer, then you may find it useful to
obtain a copy of these demonstration programs.

4 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Tested Machines and Compilers

Hardware O/S Version Compiler Version

IBM PC compatible 486/33 MS-DOS 5.0 Microsoft Fortran 5.1

IBM RS6000 AIX 3.0 IBM AIX XL FORTRAN Compiler/6000

IBM PC-RT BSD UNIX 4.3 “UNIX Fortran 77”

DEC VAX 4000 VMS 5.4 VAX Fortran 5.4

DEC VAXstation 2000 BSD UNIX 4.3 Berkeley f77 2.0 (4.3 bsd, SCCS lev. 6)

DECstation 5000/200 ULTRIX 4.2 DEC Fortran for ULTRIX RISC 3.1

DECsystem 5400 ULTRIX 4.1 MIPS f77 2.10

Sun SPARCstation 2 SunOS 4.1 Sun Fortran 1.4 (SC 1.0)

Apple Macintosh System 6.0.7 / MPW 3.2 Absoft Fortran 77 Compiler 3.1.2

Of course we would be foolish to claim that there are no bugs in our programs,
and we do not make such a claim. We have been very careful, and have benefitted
from the experience of the many readers who have written to us. If you find a new
bug, please document it and tell us!

Compatibility with the First Edition

If you are accustomed to theNumerical Recipesroutines of the First Edition, rest
assured: almost all of them are still here, with the same names and functionalities,
often with major improvements in the code itself. In addition, we hope that you
will soon become equally familiar with the added capabilities of the more than 100
routines that are new to this edition.

We have retired a small number of First Edition routines, those that we believe
to be clearly dominated by better methods implemented in this edition. A table,
following, lists the retired routines and suggests replacements.

First Edition users should also be aware that some routines common to
both editions have alterations in their calling interfaces, so are not directly “plug
compatible.” A fairly complete list is:chsone, chstwo, covsrt, dfpmin, laguer,
lfit, memcof, mrqcof, mrqmin, pzextr, ran4, realft, rzextr, shoot, shootf.
There may be others (depending in part on which printing of the First Edition is taken
for the comparison). If you have written software of any appreciable complexity
that is dependent on First Edition routines, we donot recommend blindly replacing
them by the corresponding routines in this book. We do recommend that any new
programming efforts use the new routines.

About References

You will find references, and suggestions for further reading, listed at the
end of most sections of this book. References are cited in the text by bracketed
numbers like this[1].

Because computer algorithms often circulate informally for quite some time
before appearing in a published form, the task of uncovering “primary literature”

1.1 Program Organization and Control Structures 5

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Previous Routines Omitted from This Edition

Name(s) Replacement(s) Comment

ADI mglin or mgfas better method

COSFT cosft1 or cosft2 choice of boundary conditions

CEL, EL2 rf, rd, rj, rc better algorithms

DES, DESKS ran4 now usespsdes was too slow

MDIAN1, MDIAN2 select, selip more general

QCKSRT sort name change (SORT is nowhpsort)

RKQC rkqs better method

SMOOFT useconvlvwith coefficients fromsavgol

SPARSE linbcg more general

is sometimes quite difficult. We have not attempted this, and we do not pretend
to any degree of bibliographical completeness in this book. For topics where a
substantial secondary literature exists (discussion in textbooks, reviews, etc.) we
have consciously limited our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as
complete bibliographies for the field.

The order in which references are listed is not necessarily significant. It reflects a
compromise between listingcited references in theorder cited, and listingsuggestions
for further reading in a roughly prioritized order, with the most useful ones first.

The remaining two sections of this chapter review some basic concepts of
programming (control structures, etc.) and of numerical analysis (roundoff error,
etc.). Thereafter, we plunge into the substantive material of the book.

CITED REFERENCES AND FURTHER READING:

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [1]

1.1 Program Organization and Control
Structures

We sometimes like to point out the close analogies between computer programs,
on the one hand, and written poetry or written musical scores, on the other. All
three present themselves as visual media, symbols on a two-dimensional page or
computer screen. Yet, in all three cases, the visual, two-dimensional,frozen-in-time
representation communicates (or is supposed to communicate) something rather

1.1 Program Organization and Control Structures 5

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Previous Routines Omitted from This Edition

Name(s) Replacement(s) Comment

ADI mglin or mgfas better method

COSFT cosft1 or cosft2 choice of boundary conditions

CEL, EL2 rf, rd, rj, rc better algorithms

DES, DESKS ran4 now usespsdes was too slow

MDIAN1, MDIAN2 select, selip more general

QCKSRT sort name change (SORT is nowhpsort)

RKQC rkqs better method

SMOOFT useconvlvwith coefficients fromsavgol

SPARSE linbcg more general

is sometimes quite difficult. We have not attempted this, and we do not pretend
to any degree of bibliographical completeness in this book. For topics where a
substantial secondary literature exists (discussion in textbooks, reviews, etc.) we
have consciously limited our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as
complete bibliographies for the field.

The order in which references are listed is not necessarily significant. It reflects a
compromise between listingcited references in theorder cited, and listingsuggestions
for further reading in a roughly prioritized order, with the most useful ones first.

The remaining two sections of this chapter review some basic concepts of
programming (control structures, etc.) and of numerical analysis (roundoff error,
etc.). Thereafter, we plunge into the substantive material of the book.

CITED REFERENCES AND FURTHER READING:

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [1]

1.1 Program Organization and Control
Structures

We sometimes like to point out the close analogies between computer programs,
on the one hand, and written poetry or written musical scores, on the other. All
three present themselves as visual media, symbols on a two-dimensional page or
computer screen. Yet, in all three cases, the visual, two-dimensional,frozen-in-time
representation communicates (or is supposed to communicate) something rather

6 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

different, namely a process thatunfolds in time. A poem is meant to be read; music,
played; a program, executed as a sequential series of computer instructions.

In all three cases, the target of the communication, in its visual form, is a human
being. The goal is to transfer to him/her, as efficiently as can be accomplished,
the greatest degree of understanding, in advance, of how the processwill unfold in
time. In poetry, this human target is the reader. In music, it is the performer. In
programming, it is the program user.

Now, you may object that the target of communication of a program is not
a human but a computer, that the program user is only an irrelevant intermediary,
a lackey who feeds the machine. This is perhaps the case in the situation where
the business executive pops a diskette into a desktop computer and feeds that
computer a black-box program in binary executable form. The computer, in this
case, doesn’t much care whether that program was written with “good programming
practice” or not.

We envision, however, that you, the readers of this book, are in quite a different
situation. You need, or want, to know not justwhata program does, but alsohow
it does it, so that you can tinker with it and modify it to your particular application.
You need others to be able to see what you have done, so that they can criticize or
admire. In such cases, where the desired goal ismaintainableor reusablecode, the
targets of a program’s communication are surely human, not machine.

One key to achieving good programming practice is to recognize that pro-
gramming, music, and poetry — all three being symbolic constructs of the human
brain — are naturally structured into hierarchies that have many different nested
levels. Sounds (phonemes) form small meaningful units (morphemes) which in turn
form words; words group into phrases, which group into sentences; sentences make
paragraphs, and these are organized into higher levels of meaning. Notes form
musical phrases, which form themes, counterpoints, harmonies, etc.; which form
movements, which form concertos, symphonies, and so on.

The structure in programs is equally hierarchical. Appropriately, good pro-
gramming practice brings different techniques to bear on the different levels[1-3].
At a low level is theascii character set. Then, constants, identifiers, operands,
operators. Then program statements, likea(j+1)=b+c/3.0. Here, the best pro-
gramming advice is simplybe clear, or (correspondingly)don’t be too tricky. You
might momentarily be proud of yourself at writing the single line

k=(2-j)*(1+3*j)/2

if you want to permute cyclically one of the valuesj = (0, 1, 2) into respectively
k = (1, 2, 0). You will regret it later, however, when you try to understand that
line. Better, and likely also faster, is

k=j+1
if (k.eq.3) k=0

Many programming stylists would even argue for the ploddingly literal

if (j.eq.0) then
k=1

else if (j.eq.1) then
k=2

1.1 Program Organization and Control Structures 7

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

else if (j.eq.2) then
k=0

else
pause ’never get here’

endif

on the grounds that it is both clear and additionally safeguarded from wrong assump-
tions about the possible values ofj. Our preference among the implementations
is for the middle one.

In this simple example, we have in fact traversed several levels of hierarchy:
Statements frequently come in “groups” or “blocks” which make sense only taken
as a whole. The middle fragment above is one example. Another is

swap=a(j)
a(j)=b(j)
b(j)=swap

which makes immediate sense to any programmer as the exchange of two variables,
while

sum=0.0
ans=0.0
n=1

is very likely to be an initialization of variables prior to some iterative process. This
level of hierarchy in a program is usually evident to the eye. It is good programming
practice to put in comments at this level, e.g., “initialize” or “exchange variables.”

The next level is that ofcontrol structures. These are things like the
if. . .then. . .else clauses in the example above,do loops, and so on. This
level is sufficiently important, and relevant to the hierarchical level of the routines
in this book, that we will come back to it just below.

At still higher levels in the hierarchy, we have (inFORTRAN) subroutines,
functions, and the whole “global” organization of the computational task to be
done. In the musical analogy, we are now at the level of movements and complete
works. At these levels,modularizationand encapsulationbecome important
programming concepts, the general idea being that program units should interact
with one another only through clearly defined and narrowly circumscribed interfaces.
Good modularization practice is an essential prerequisite to the success of large,
complicated software projects, especially those employing the efforts of more than
one programmer. It is also good practice (if not quite as essential) in the less massive
programming tasks that an individual scientist, or reader of this book, encounters.

Some computer languages, such as Modula-2 andC++, promote good modular-
ization with higher-level language constructs, absent inFORTRAN-77. In Modula-2,
for example, subroutines, type definitions, and data structures can be encapsulated
into “modules” that communicate through declared public interfaces and whose
internal workings are hidden from the rest of the program[4]. In theC++ language,
the key concept is “class,” a user-definable generalization of data type that provides
for data hiding, automatic initialization of data, memory management, dynamic
typing, and operator overloading (i.e., the user-definable extension of operators like
+ and* so as to be appropriate to operands in any particular class)[5]. Properly
used in defining the data structures that are passed between program units, classes

8 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

can clarify and circumscribe these units’ public interfaces, reducingthe chances of
programming error and also allowing a considerable degree of compile-time and
run-time error checking.

Beyond modularization, though depending on it, lie the concepts ofobject-
oriented programming. Here a programming language, such asC++ or Turbo Pascal
5.5 [6], allows a module’s public interface toaccept redefinitions of types or actions,
and these redefinitions become shared all the way down through the module’s
hierarchy (so-calledpolymorphism). For example, a routine written to invert a
matrix of real numbers could — dynamically, at run time — be made able to handle
complex numbers by overloading complex data types and corresponding definitions
of the arithmetic operations. Additional concepts ofinheritance(the ability to define
a data type that “inherits” all the structure of another type, plus additional structure
of its own), andobject extensibility(the ability to add functionality to a module
withoutaccess to its source code, e.g., at run time), also come into play.

We have not attempted to modularize, or make objects out of, the routines in
this book, for at least two reasons. First, the chosen language,FORTRAN-77, does
not really make this possible. Second, we envision that you, the reader, might want
to incorporate the algorithms in this book, a few at a time, into modules or objects
with a structure of your own choosing. There does not exist, at present, a standard or
accepted set of “classes” for scientific object-oriented computing. Whilewe might
have tried to invent such a set, doing so would have inevitably tied the algorithmic
content of the book (which is itsraison d’être) to some rather specific, and perhaps
haphazard, set of choices regarding class definitions.

On the other hand, we are not unfriendly to the goals of modular and object-
oriented programming. Within the limits ofFORTRAN, we have therefore tried to
structure our programs to be “object friendly,” principally via the clear delineation of
interface vs. implementation (§1.0) and the explicit declaration of variables. Within
our implementation sections, we have paid particular attention to the practices of
structured programming, as we now discuss.

Control Structures

An executing program unfolds in time, but not strictly in the linear order in
which the statements are written. Program statements that affect the order inwhich
statements are executed, or that affect whether statements are executed, are called
control statements. Control statements never make useful sense by themselves. They
make sense only in the context of the groups or blocks of statements that they in turn
control. If you think of those blocks as paragraphs containing sentences, then the
control statements are perhaps best thought of as the indentation of the paragraph
and the punctuation between the sentences, not the words within the sentences.

We can now say what the goal of structured programming is. It isto make
program control manifestly apparent in the visual presentation of the program. You
see that this goal has nothing at all to do with how the computer sees the program.
As already remarked, computers don’t care whether you use structured programming
or not. Human readers, however,do care. You yourself will also care, once you
discover how much easier it is to perfect and debug a well-structured program than
one whose control structure is obscure.

1.1 Program Organization and Control Structures 9

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

You accomplish the goals of structured programming in two complementary
ways. First, you acquaint yourself with the small number of essential control
structures that occur over and over again in programming, and that are therefore
given convenient representations in most programming languages. You should learn
to think about your programming tasks, insofar as possible, exclusively in terms of
these standard control structures. In writing programs, you should get into the habit
of representing these standard control structures in consistent, conventional ways.

“Doesn’t this inhibit creativity?” our students sometimes ask. Yes, just
as Mozart’s creativity was inhibited by the sonata form, or Shakespeare’s by the
metrical requirements of the sonnet. The point is that creativity, when it is meant to
communicate, doeswell under the inhibitions of appropriate restrictions on format.

Second, youavoid, insofar as possible, control statements whose controlled
blocks or objects are difficult to discern at a glance. This means, in practice, that
you must try to avoid statement labels andgoto’s. It is not thegoto’s that are
dangerous (although they do interrupt one’s reading of a program); the statement
labels are the hazard. In fact, whenever you encounter a statement label while
reading a program, you will soon become conditioned to get a sinking feeling in
the pit of your stomach. Why? Because the following questions will, by habit,
immediately spring to mind: Where did control comefrom in a branch to this label?
It could be anywhere in the routine! What circumstances resulted in abranch to
this label? They could be anything! Certainty becomes uncertainty, understanding
dissolves into a morass of possibilities.

Some older languages, notably 1966FORTRAN and to a lesser extentFORTRAN-
77,requirestatement labels in the construction of certain standard control structures.
We will see this in more detail below. This is a demerit for these languages. In
such cases, you must use labels as required. But you should never branch to them
independently of the standard control structure. If you must branch, let it be to an
additional label, one that is not masquerading as part of a standard control structure.

We call labels that are part of a standard construction and never otherwise
branched totame labels. They do not interfere with structured programming in any
way, except possibly typographically as distractions to the eye.

Some examples are now in order to make these considerations more concrete
(see Figure 1.1.1).

Catalog of Standard Structures

Iteration. In FORTRAN, simple iteration is performed with ado loop, for
example

do 10 j=2,1000
b(j)=a(j-1)
a(j-1)=j

10 continue

Notice how we always indent the block of code that is acted upon by the control
structure, leaving the structure itself unindented. The statement label10 in this
example is a tame label. The majority of modern implementations ofFORTRAN-77
provide a nonstandard language extension that obviates the tame label. Originally

10 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

yes

no

DO iteration
(a)

false

true

DO WHILE iteration
(b)

true

false

BREAK iteration
(d)

false

true

DO UNTIL iteration
(c)

iteration
complete?

block

increment
index

while
condition

until
condition

block

break
condition

block

block

block

Figure 1.1.1. Standard control structures used in structured programming: (a)DO iteration; (b) DO
WHILE iteration; (c) DO UNTIL iteration; (d) BREAK iteration; (e) IF structure; (f) obsolete form of
DO iteration found inFORTRAN-66, where the block is executed once even if the iteration condition
is initially not satisfied.

1.1 Program Organization and Control Structures 11

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if
condition

block

true

else if
condition

block

false

true

. . .

. . .

false

else block

else if
condition

block

false

true

IF structure
(e)

iteration
complete?

increment
index

no

block

FORTRAN-66 DO (obsolete)
(f)

yes

Figure 1.1.1. Standard control structures used in structured programming (seecaption on previouspage).

12 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

introduced in Digital Equipment Corporations’s VAX-11FORTRAN, the “enddo”
statement is used as

do j=2,1000
b(j)=a(j-1)
a(j-1)=j

enddo

In fact, it was a terrible mistake that the American National Standard forFORTRAN-77
(ANSI X3.9–1978) failed to provide anenddo or equivalent construction. This
mistake by the people who write standards, whoever they are, presents us now,
more than 15 years later, with a painful quandary: Do we stick to the standard, and
clutter our programs with tame labels? Or do we adopt a nonstandard (albeit widely
implemented)FORTRAN construction likeenddo?

We have adopted a compromise position. Standards, even imperfect standards,
are terribly important and highly necessary in a time of rapid evolution in computers
and their applications. Therefore, all machine-readable forms of our programs (e.g.,
the diskettes that you can order from the publisher — see back of this book) are
strictly FORTRAN-77 compliant. (Well,almoststrictly: there is a minor anomaly
regarding bit manipulation functions, see below.) In particular,do blocks always
end with labeledcontinue statements, as in the first example above.

In the printed version of this book, however, we make use of typography to
mitigate the standard’s deficiencies. The statement label that follows thedo is printed
in small type — as a signal that it is a tame label that you can safely ignore. And,
the word “continue” is printed as “enddo”, which you may regard as averypeculiar
change of font! The example above, in our adopted typographical format, is

do 10 j=2,1000
b(j)=a(j-1)
a(j-1)=j

enddo 10

(Notice that we also take the typographical liberty of writing the tame label after the
“continue” statement, rather than before.)

A nesteddo loop looks like this:

do 12 j=1,20
s(j)=0.
do 11 k=5,10

s(j)=s(j)+a(j,k)
enddo 11

enddo 12

Generally, the numerical values of the tame labels are chosen to put theenddo’s
(labeledcontinue’s on the diskette) into ascending numerical order, hence thedo 12

before thedo 11 in the above example.

IF structure. In this structure theFORTRAN-77 standard is exemplary. Here
is a working program that consists dominantly ofif control statements:

1.1 Program Organization and Control Structures 13

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION julday(mm,id,iyyy)
INTEGER julday,id,iyyy,mm,IGREG
PARAMETER (IGREG=15+31*(10+12*1582)) Gregorian Calendar adopted Oct. 15, 1582.

In this routine julday returns the Julian Day Number that begins at noon of the calendar
date specified by month mm, day id, and year iyyy, all integer variables. Positive year
signifies A.D.; negative, B.C. Remember that the year after 1 B.C. was 1 A.D.

INTEGER ja,jm,jy
jy=iyyy
if (jy.eq.0) pause ’julday: there is no year zero’
if (jy.lt.0) jy=jy+1
if (mm.gt.2) then Here is an example of a block IF-structure.

jm=mm+1
else

jy=jy-1
jm=mm+13

endif
julday=int(365.25*jy)+int(30.6001*jm)+id+1720995
if (id+31*(mm+12*iyyy).ge.IGREG) then Test whether to change to Gregorian Calen-

dar.ja=int(0.01*jy)
julday=julday+2-ja+int(0.25*ja)

endif
return
END

(Astronomers numbereach 24-hour period, starting and ending atnoon, with
a unique integer, the Julian Day Number[7]. Julian Day Zero was a very long
time ago; a convenient reference point is that Julian Day 2440000 began at noon
of May 23, 1968. If you know the Julian Day Number that begins at noon of a
given calendar date, then the day of the week of that date is obtained by adding
1 and taking the result modulo base 7; a zero answer corresponds to Sunday, 1 to
Monday, . . . , 6 to Saturday.)

Do-While iteration. Most good languages, exceptFORTRAN, provide for
structures like the followingC example:

while (n<1000) {
n=2*n;
j++; In C this has the meaning j=j+1.

}

In fact, manyFORTRAN implementations have the nonstandard extension

do while (n.lt.1000)
n=2*n
j=j+1

enddo

Within theFORTRAN-77 standard, however, the structure requires a tame label:

17if (n.lt.1000) then
n=2*n
j=j+1

goto 17

endif

14 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

There are other ways of constructing a Do-While inFORTRAN, but we try to use
the above format consistently. You will quickly get used to a statement like17if as
signaling this structure. Notice that the two final statements are not indented, since
they are part of the control structure, not of the inside block.

Do-Until iteration. In Pascal, for example, this is rendered as

REPEAT
n:=n DIV 2; Pascal’s integer divide is DIV.
k:=k+1;

UNTIL (n=1);

In FORTRAN we write

19 continue
n=n/2
k=k+1

if (n.ne.1) goto 19

Break. In this case, you have a loop that is repeated indefinitely until some
conditiontested somewhere in the middle of the loop(and possibly tested in more
than one place) becomes true. At that point you wish to exit the loop and proceed
with what comes after it. StandardFORTRAN does not make this structure accessible
without labels. We will try to avoid using the structure when we can. Sometimes,
however, it is plainly necessary. We do not have the patience to argue with the
designers of computer languages over this point. InFORTRAN we write

13 continue
[statements before the test]
if (· · ·) goto 14

[statements after the test]
goto 13

14 continue

Here is a program that uses several different iteration structures. One of us was
once asked, for a scavenger hunt, to find the date of a Friday the 13th on which the
moon was full. This is a program which accomplishes that task, giving incidentally
all other Fridays the 13th as a by-product.

PROGRAM badluk
INTEGER ic,icon,idwk,ifrac,im,iybeg,iyend,iyyy,jd,jday,n,

* julday
REAL TIMZON,frac
PARAMETER (TIMZON=-5./24.) Time zone −5 is Eastern Standard Time.
DATA iybeg,iyend /1900,2000/ The range of dates to be searched.

C USES flmoon,julday
write (*,’(1x,a,i5,a,i5)’) ’Full moons on Friday the 13th from’,

* iybeg,’ to’,iyend
do 12 iyyy=iybeg,iyend Loop over each year,

do 11 im=1,12 and each month.
jday=julday(im,13,iyyy) Is the 13th a Friday?
idwk=mod(jday+1,7)
if(idwk.eq.5) then

n=12.37*(iyyy-1900+(im-0.5)/12.)
This value n is a first approximation to how many full moons have occurred
since 1900. We will feed it into the phase routine and adjust it up or down until

1.1 Program Organization and Control Structures 15

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

we determine that our desired 13th was or was not a full moon. The variable
icon signals the direction of adjustment.

icon=0
1 call flmoon(n,2,jd,frac) Get date of full moon n.

ifrac=nint(24.*(frac+TIMZON)) Convert to hours in correct time zone.
if(ifrac.lt.0)then Convert from Julian Days beginning at noon

to civil days beginning at midnight.jd=jd-1
ifrac=ifrac+24

endif
if(ifrac.gt.12)then

jd=jd+1
ifrac=ifrac-12

else
ifrac=ifrac+12

endif
if(jd.eq.jday)then Did we hit our target day?

write (*,’(/1x,i2,a,i2,a,i4)’) im,’/’,13,’/’,iyyy
write (*,’(1x,a,i2,a)’) ’Full moon ’,ifrac,

* ’ hrs after midnight (EST).’
Don’t worry if you are unfamiliar with FORTRAN’s esoteric input/output
statements; very few programs in this book do any input/output.

goto 2 Part of the break-structure, case of a match.
else Didn’t hit it.

ic=isign(1,jday-jd)
if(ic.eq.-icon) goto 2 Another break, case of no match.
icon=ic
n=n+ic

endif
goto 1

2 continue
endif

enddo 11

enddo 12

END

If you are merely curious, there were (or will be) occurrences of a full moon
on Friday the 13th (time zone GMT−5) on: 3/13/1903, 10/13/1905, 6/13/1919,
1/13/1922, 11/13/1970, 2/13/1987, 10/13/2000, 9/13/2019, and 8/13/2049.

Other “standard” structures. Our advice is to avoid them. Every
programming language has some number of “goodies” that the designer just couldn’t
resist throwing in. They seemed like a good idea at the time. Unfortunately they
don’t stand thetestof time! Your program becomes difficult to translate into other
languages, and difficult to read (because rarely used structures are unfamiliar to the
reader). You can almost always accomplish the supposed conveniences of these
structures in other ways. Try to do so with the above standard structures, which
really are standard. If you can’t, then use straightforward, unstructured, tests and
goto’s. This will introduce real (not tame) statement labels, whose very existence
will warn the reader to give special thought to the program’s control flow.

In FORTRAN we consider the ill-advised control structures to be
• assignedgoto andassign statements
• computedgoto statement
• arithmeticif statement

16 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

About “Advanced Topics”

Material set in smaller type, like this, signals an “advanced topic,” either one outside of
the main argument of the chapter, or else one requiring of you more than the usual assumed
mathematical background, or else (in a few cases) a discussion that is more speculative or an
algorithm that is less well-tested. Nothing important will be lost if you skip the advanced
topics on a first reading of the book.

You may have noticed that, by its looping over the months and years, the programbadluk

avoids using any algorithm for converting a Julian Day Number back into a calendar date. A
routine for doing just this is not very interesting structurally, but it is occasionallyuseful:

SUBROUTINE caldat(julian,mm,id,iyyy)
INTEGER id,iyyy,julian,mm,IGREG
PARAMETER (IGREG=2299161)

Inverse of the function julday given above. Here julian is input as a Julian Day Number,
and the routine outputs mm,id, and iyyy as the month, day, and year on which the specified
Julian Day started at noon.

INTEGER ja,jalpha,jb,jc,jd,je
if(julian.ge.IGREG)then Cross-over to Gregorian Calendar produces

this correction.jalpha=int(((julian-1867216)-0.25)/36524.25)
ja=julian+1+jalpha-int(0.25*jalpha)

else if(julian.lt.0)then Make day number positive by adding in-
teger number of Julian centuries, then
subtract them off at the end.

ja=julian+36525*(1-julian/36525)
else

ja=julian
endif
jb=ja+1524
jc=int(6680.+((jb-2439870)-122.1)/365.25)
jd=365*jc+int(0.25*jc)
je=int((jb-jd)/30.6001)
id=jb-jd-int(30.6001*je)
mm=je-1
if(mm.gt.12)mm=mm-12
iyyy=jc-4715
if(mm.gt.2)iyyy=iyyy-1
if(iyyy.le.0)iyyy=iyyy-1
if(julian.lt.0)iyyy=iyyy-100*(1-julian/36525)
return
END

(For additional calendrical algorithms, applicable to various historical calendars, see[8].)

Some Habits and Assumed ANSI Extensions

Mentioning a few of our programming habits here will make it easier for you
to read the programs in this book.

• We habitually usem andn to refer to the logical dimensions of a matrix,
mp andnp to refer to the physical dimensions. (These important concepts
are detailed in§2.0 and Figure 2.0.1.)

• Often, when a subroutine or procedure is to be passed some integern, it
needs an internally preset value for the largest possible value that will be
passed. We habitually call thisNMAX, and set it in aPARAMETER statement.
When we say in a comment, “largest value ofn,” we do not mean to imply
that the program will fail algorithmically for larger values, but only that
NMAX must be altered.

• A number represented byTINY, usually a parameter, is supposed to be
much smaller than any number of interest to you, but not so small that it
underflows. Its use is usually prosaic, to prevent divide checks in some
circumstances.

1.1 Program Organization and Control Structures 17

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

As a matter of typography, the printedFORTRAN programs in this book, if typed
into a computer exactly as written, would violate theFORTRAN-77 standard in a few
trivial ways. The anomalies, which arenotpresent in the machine-readable program
distributions, are as follows:

• As already discussed, we useenddo followed by the statement label
instead ofcontinue preceded by the label.

• StandardFORTRAN reads no more than 72 characters on a line and ignores
input from column 73 onward. Longer statements are broken up onto
“continuation lines.” In the printed programs in this book, some lines
contain more than 72 characters. When the break to a continuation line
is not shown explicitly, it should be inserted when you type the program
into a computer.

• In standardFORTRAN, columns 1 through 6 oneach line are used variously
for (i) statement labels, (ii) signaling a comment line, and (iii) signaling
a continuation line. We simplify the format slightly: To the left of the
“program left margin,” an integer is a statement label (not a “tame label”
as described above), an asterisk (*) indicates a continuation line, and a “C”
indicates a comment line. Comment lines shown in this way are generally
eitherUSES statements (see§1.0), or else “commented-out program lines”
that are separately explained in each instance.

A small number of routines in this book require the use of functions that act
bitwise on integers, e.g., bitwise “and” or “exclusive or”. Unfortunately, although
these functions are available in virtually all modernFORTRAN implementations, they
are not a part of theFORTRAN-77 standard. Even more unfortunate is the fact that
there are two different naming conventions in widespread use. We use the names
iand(i,j), ior(i,j), not(i), ieor(i,j), andishft(i,j), for and, or, not,
exclusive-or, and left-shift, respectively, as well as the subroutinesibset(i,j),
ibclr(i,j), and the logical functionbtest(i,j) for bit-set, bit-clear, andbit-test.
Some (mainly UNIX)FORTRAN compilers use a different set of names, with the
following correspondences:

Us. . . Them. . .
iand(i,j) = and(i,j)

ior(i,j) = or(i,j)

not(i) = not(i)

ieor(i,j) = xor(i,j)

ishft(i,j) = lshft(i,j)

ibset(i,j) = bis(j,i) Note reversed arguments!
ibclr(i,j) = bic(j,i) Ditto!
btest(i,j) = bit(j,i) Ditto!

If you are one of “Them,” you can either modify the small number of programs
affected (e.g., by insertingFORTRAN statement function definitions at the beginning
of the routines), or else link to an object file into which you have compiled the
trivial functions that define “our” names in terms of “yours,” as in the above table.
Standards really are important!

Hexadecimal constants, for which there is no standard notation inFORTRAN

compilers, occur at three places in Chapter 7: a program fragment at the endof §7.1,

18 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and routinespsdes andran4 in §7.5. We use a notation likeZ’3F800000’, which
is consistent with the newFORTRAN-90 standard, but you may need to change this
to, e.g.,x’3f800000’, ’3F800000’X, or even16#3F800000. In extremis, you can
convert the hex values to decimal integers; but note that most compilers will require
a negativedecimal integer as the value of a hex constant with its high-order bit set.

As already mentioned in§1.0, the notationa(1:m), in program comments and in
the text, denotes the array element rangea(1), a(2), . . . , a(m). Likewise, notations
like b(2:7) orc(1:m,1:n) are to be interpreted as denoting ranges of array indices.

CITED REFERENCES AND FURTHER READING:

Kernighan, B.W. 1978, The Elements of Programming Style (New York: McGraw-Hill). [1]

Yourdon, E. 1975, Techniques of Program Structure and Design (Englewood Cliffs, NJ: Prentice-
Hall). [2]

Meissner, L.P. and Organick, E.I. 1980, Fortran 77 Featuring Structured Programming (Reading,
MA: Addison-Wesley). [3]

Hoare, C.A.R. 1981, Communications of the ACM, vol. 24, pp. 75–83.

Wirth, N. 1983, Programming in Modula-2, 3rd ed. (New York: Springer-Verlag). [4]

Stroustrup, B. 1986, The C++ Programming Language (Reading, MA: Addison-Wesley). [5]

Borland International, Inc. 1989, Turbo Pascal 5.5 Object-Oriented Programming Guide (Scotts
Valley, CA: Borland International). [6]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [7]

Hatcher, D.A. 1984, Quarterly Journal of the Royal Astronomical Society, vol. 25, pp. 53–55; see
also op. cit. 1985, vol. 26, pp. 151–155, and 1986, vol. 27, pp. 506–507. [8]

1.2 Error, Accuracy, and Stability

Althoughwe assume no prior trainingof the reader in formal numerical analysis,
we will need to presume a common understanding of a few key concepts. We will
define these briefly in this section.

Computers store numbers not with infinite precision but rather in some ap-
proximation that can be packed into a fixed number ofbits (binary digits) orbytes
(groups of 8 bits). Almost all computers allow the programmer a choice among
several different suchrepresentationsor data types. Data types can differ in the
number of bits utilized (thewordlength), but also in the more fundamental respect
of whether the stored number is represented infixed-point(also calledinteger) or
floating-point(also calledreal) format.

A number in integer representation is exact. Arithmetic between numbers in
integer representation is also exact, with the provisos that (i) the answer is not outside
the range of (usually, signed) integers that can be represented, and (ii) that division
is interpreted as producing an integer result, throwing away any integer remainder.

18 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and routinespsdes andran4 in §7.5. We use a notation likeZ’3F800000’, which
is consistent with the newFORTRAN-90 standard, but you may need to change this
to, e.g.,x’3f800000’, ’3F800000’X, or even16#3F800000. In extremis, you can
convert the hex values to decimal integers; but note that most compilers will require
a negativedecimal integer as the value of a hex constant with its high-order bit set.

As already mentioned in§1.0, the notationa(1:m), in program comments and in
the text, denotes the array element rangea(1), a(2), . . . , a(m). Likewise, notations
like b(2:7) orc(1:m,1:n) are to be interpreted as denoting ranges of array indices.

CITED REFERENCES AND FURTHER READING:

Kernighan, B.W. 1978, The Elements of Programming Style (New York: McGraw-Hill). [1]

Yourdon, E. 1975, Techniques of Program Structure and Design (Englewood Cliffs, NJ: Prentice-
Hall). [2]

Meissner, L.P. and Organick, E.I. 1980, Fortran 77 Featuring Structured Programming (Reading,
MA: Addison-Wesley). [3]

Hoare, C.A.R. 1981, Communications of the ACM, vol. 24, pp. 75–83.

Wirth, N. 1983, Programming in Modula-2, 3rd ed. (New York: Springer-Verlag). [4]

Stroustrup, B. 1986, The C++ Programming Language (Reading, MA: Addison-Wesley). [5]

Borland International, Inc. 1989, Turbo Pascal 5.5 Object-Oriented Programming Guide (Scotts
Valley, CA: Borland International). [6]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [7]

Hatcher, D.A. 1984, Quarterly Journal of the Royal Astronomical Society, vol. 25, pp. 53–55; see
also op. cit. 1985, vol. 26, pp. 151–155, and 1986, vol. 27, pp. 506–507. [8]

1.2 Error, Accuracy, and Stability

Althoughwe assume no prior trainingof the reader in formal numerical analysis,
we will need to presume a common understanding of a few key concepts. We will
define these briefly in this section.

Computers store numbers not with infinite precision but rather in some ap-
proximation that can be packed into a fixed number ofbits (binary digits) orbytes
(groups of 8 bits). Almost all computers allow the programmer a choice among
several different suchrepresentationsor data types. Data types can differ in the
number of bits utilized (thewordlength), but also in the more fundamental respect
of whether the stored number is represented infixed-point(also calledinteger) or
floating-point(also calledreal) format.

A number in integer representation is exact. Arithmetic between numbers in
integer representation is also exact, with the provisos that (i) the answer is not outside
the range of (usually, signed) integers that can be represented, and (ii) that division
is interpreted as producing an integer result, throwing away any integer remainder.

1.2 Error, Accuracy, and Stability 19

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
=
=
=
=
=
=

1

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

1

1

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

(a)

(b)

(c)

(d)

(e)

(f)

1⁄ 2

3
1⁄ 4

10−7

3 + 10−7

. . .

23
-b

it m
an

tis
sa

th
is

bit
 co

uld

be
 “p

ha
nt

om
”

sig
n

bit

8-
bit

 e
xp

on
en

t

Figure 1.2.1. Floating point representations of numbers in a typical 32-bit (4-byte) format.(a) The
number1/2 (note the bias in the exponent); (b) the number3; (c) the number1/4; (d) the number
10−7, represented to machine accuracy; (e) the same number10−7, but shifted so as to have the same
exponent as the number3; with this shifting, all significance is lost and10−7 becomes zero; shifting to
a common exponent must occur before two numbers can be added; (f) sum of the numbers3 + 10−7,
which equals3 to machine accuracy. Even though10−7 can be represented accurately by itself, it cannot
accurately be added to a much larger number.

In floating-point representation, a number is represented internally by a sign bit
s (interpreted as plus or minus), an exact integer exponente, and an exact positive
integer mantissaM . Taken together these represent the number

s×M × Be−E (1.2.1)

whereB is the base of the representation (usuallyB = 2, but sometimesB = 16),
andE is thebias of the exponent, a fixed integer constant for any given machine
and representation. An example is shown in Figure 1.2.1.

Several floating-point bit patterns can represent the same number. IfB = 2,
for example, a mantissa with leading (high-order) zero bits can be left-shifted, i.e.,
multiplied by a power of 2, if the exponent is decreased by a compensating amount.
Bit patterns that are “as left-shifted as they can be” are termednormalized. Most
computers always produce normalized results, since these don’t waste any bits of
the mantissa and thus allow a greater accuracy of the representation. Sincethe
high-order bit of a properly normalized mantissa (whenB = 2) is alwaysone, some
computers don’t store this bit at all, giving one extra bit of significance.

Arithmetic among numbers in floating-point representation is not exact, even if
the operands happen to be exactly represented (i.e., have exact values in the form of
equation 1.2.1). For example, two floating numbers are added by first right-shifting
(dividing by two) the mantissa of the smaller (in magnitude) one, simultaneously
increasing its exponent, until the two operands have the same exponent. Low-order
(least significant) bits of the smaller operand are lost by this shifting. If the two
operands differ too greatly in magnitude, then the smaller operand is effectively
replaced by zero, since it is right-shifted to oblivion.

The smallest (in magnitude) floating-point number which, when added to the
floating-point number 1.0, produces a floating-point result different from 1.0 is
termed themachine accuracyǫm. A typical computer withB = 2 and a 32-bit
wordlength hasǫm around3 × 10−8. (A more detailed discussion of machine

20 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

characteristics, and a program to determine them, is given in§20.1.) Roughly
speaking, the machine accuracyǫm is the fractional accuracy to which floating-point
numbers are represented, corresponding to a change of one in the least significant
bit of the mantissa. Pretty much any arithmetic operation among floating numbers
should be thought of as introducing an additional fractional error of at leastǫm. This
type of error is calledroundoff error.

It is important to understand thatǫm is not the smallest floating-point number
that can be represented on a machine.Thatnumber depends on how many bits there
are in the exponent, whileǫm depends on how many bits there are in the mantissa.

Roundoff errorsaccumulate with increasing amounts of calculation. If, in the
course of obtaining a calculated value, you performN such arithmetic operations,
you mightbe so lucky as to have a total roundoff error on the order of

√
Nǫm, if

the roundoff errors come in randomly up or down. (The square root comes from a
random-walk.) However, this estimate can be very badly off the mark for two reasons:

(i) It very frequently happens that the regularities of your calculation, or the
peculiarities of your computer, cause the roundoff errors toaccumulate preferentially
in one direction. In this case the total will be of orderNǫm.

(ii) Some especially unfavorable occurrences can vastly increase the roundoff
error of single operations. Generally these can be traced to the subtraction of two
very nearly equal numbers, giving a result whose only significant bits are those
(few) low-order ones in which the operands differed. You might think that such a
“coincidental” subtraction is unlikely to occur. Not always so. Some mathematical
expressions magnify its probability of occurrence tremendously. For example, in the
familiar formula for the solution of a quadratic equation,

x =
−b +

√
b2 − 4ac

2a
(1.2.2)

the addition becomes delicate and roundoff-prone wheneverac ≪ b2. (In §5.6 we
will learn how to avoid the problem in this particular case.)

Roundoff error is a characteristic of computer hardware. There is another,
different, kind of error that is a characteristic of the program or algorithm used,
independent of the hardware on which the program is executed. Many numerical
algorithms compute “discrete” approximations to some desired “continuous” quan-
tity. For example, an integral is evaluated numerically by computing a function
at a discrete set of points, rather than at “every” point. Or, a function may be
evaluated by summing a finite number of leading terms in its infinite series, rather
than all infinity terms. In cases like this, there is an adjustable parameter, e.g., the
number of points or of terms, such that the “true” answer is obtained only when
that parameter goes to infinity. Any practical calculation is done with a finite, but
sufficiently large, choice of that parameter.

The discrepancy between the true answer and the answer obtained in a practical
calculation is called thetruncation error. Truncation error would persist even on a
hypothetical, “perfect” computer that had an infinitelyaccurate representation and no
roundoff error. As a general rule there is not much that a programmer can do about
roundoff error, other than to choose algorithms that do not magnify it unnecessarily
(see discussion of “stability” below). Truncation error, on the other hand, is entirely
under the programmer’s control. In fact, it is only a slight exaggeration to say

1.2 Error, Accuracy, and Stability 21

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

that clever minimization of truncation error is practically the entire content of the
field of numerical analysis!

Most of the time, truncation error and roundoff error do not strongly interact
with one another. A calculation can be imagined as having, first, the truncation error
that it would have if run on an infinite-precision computer, “plus” the roundoff error
associated with the number of operations performed.

Sometimes, however, an otherwise attractive method can beunstable. This
means that any roundoff error that becomes “mixed into” the calculation at an early
stage is successively magnified until it comes to swamp the true answer. An unstable
method would be useful on a hypothetical, perfect computer; but in this imperfect
world it is necessary for us to require that algorithms be stable — or if unstable
that we use them with great caution.

Here is a simple, if somewhat artificial, example of an unstable algorithm:
Suppose that it is desired to calculate all integer powers of the so-called “Golden
Mean,” the number given by

φ ≡
√

5 − 1

2
≈ 0.61803398 (1.2.3)

It turns out (you can easily verify) that the powersφn satisfy a simple recursion
relation,

φn+1 = φn−1 − φn (1.2.4)

Thus, knowing the first two valuesφ0 = 1 and φ1 = 0.61803398, we can
successively apply (1.2.4) performing only a single subtraction, rather than a slower
multiplication by φ, at each stage.

Unfortunately, the recurrence (1.2.4) also hasanothersolution,namely the value
−1

2
(
√

5 + 1). Since the recurrence is linear, and since this undesired solution has
magnitude greater than unity, any small admixture of it introduced by roundoff errors
will grow exponentially. On a typical machine with 32-bit wordlength, (1.2.4) starts
to givecompletely wrong answers by aboutn = 16, at which pointφn is down to only
10−4. The recurrence (1.2.4) isunstable, and cannot be used for the purpose stated.

We will encounter the question of stability in many more sophisticated guises,
later in this book.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 1.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 2.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §1.3.

Wilkinson, J.H. 1964, Rounding Errors in Algebraic Processes (Englewood Cliffs, NJ: Prentice-
Hall).

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
Chapter 2. Solution of Linear

Algebraic Equations

2.0 Introduction

A set of linear algebraic equations looks like this:

a11x1 + a12x2 + a13x3 + · · ·+ a1NxN = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2NxN = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3NxN = b3

· · · · · ·

aM1x1 + aM2x2 + aM3x3 + · · ·+ aMNxN = bM

(2.0.1)

Here theN unknownsxj , j = 1, 2, . . . , N are related byM equations. The
coefficientsaij with i = 1, 2, . . . ,M andj = 1, 2, . . ., N are known numbers, as
are theright-hand sidequantitiesbi, i = 1, 2, . . . ,M .

Nonsingular versus Singular Sets of Equations

If N = M then there are as many equations as unknowns, and there is a good
chance of solving for a unique solution set ofxj ’s. Analytically, there can fail to
be a unique solution if one or more of theM equations is a linear combination of
the others, a condition calledrow degeneracy, or if all equations contain certain
variables only in exactly the same linear combination, calledcolumn degeneracy.
(For square matrices, a row degeneracy implies a column degeneracy, and vice
versa.) A set of equations that is degenerate is calledsingular. We will consider
singular matrices in some detail in§2.6.

Numerically, at least two additional things can go wrong:
• While not exact linear combinations of each other, some of the equations

may be so close to linearly dependent that roundoff errors in the machine
render them linearly dependent at some stage in the solution process. In
this case your numerical procedure will fail, and it can tell you that it
has failed.

22

2.0 Introduction 23

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• Accumulated roundoff errors in the solution process can swamp the true
solution. This problem particularly emerges ifN is too large. The
numerical procedure does not fail algorithmically. However, it returns a
set ofx’s that are wrong, as can be discovered by direct substitution back
into the original equations. The closer a set of equations is to being singular,
the more likely this is to happen, since increasingly close cancellations
will occur during the solution. In fact, the preceding item can be viewed
as the special case where the loss of significance is unfortunately total.

Much of the sophistication of complicated “linear equation-solving packages”
is devoted to the detection and/or correction of these two pathologies. As you
work with large linear sets of equations, you will develop a feeling for when such
sophistication is needed. It is difficult to give any firm guidelines, since there is no
such thing as a “typical” linear problem. But here is a rough idea: Linear sets with
N as large as 20 or 50 can be routinely solved in single precision (32 bit floating
representations) without resorting to sophisticated methods,if the equations are not
close to singular. With double precision (60 or 64 bits), this number can readily
be extended toN as large as several hundred, after which point the limiting factor
is generally machine time, not accuracy.

Even larger linear sets,N in the thousands or greater, can be solved when the
coefficients are sparse (that is, mostly zero), by methods that take advantage of the
sparseness. We discuss this further in§2.7.

At the other end of the spectrum, one seems just as often to encounter linear
problems which, by their underlying nature, are close to singular. In this case, you
mightneed to resort to sophisticated methods even for the case ofN = 10 (though
rarely for N = 5). Singular value decomposition (§2.6) is a technique that can
sometimes turn singular problems into nonsingular ones, in which case additional
sophistication becomes unnecessary.

Matrices

Equation (2.0.1) can be written in matrix form as

A · x = b (2.0.2)

Here the raised dot denotes matrix multiplication,A is the matrix of coefficients, and
b is the right-hand side written as a column vector,

A =

a11 a12 . . . a1N

a21 a22 . . . a2N

· · ·

aM1 aM2 . . . aMN

b =

b1
b2
· · ·

bM

(2.0.3)

By convention, the first index on an elementaij denotes its row, the second
index its column. A computer will store the matrixA as a two-dimensional array.
However, computer memory is numbered sequentially by its address, and so is
intrinsically one-dimensional. Therefore the two-dimensional arrayA will, at the
hardware level, either bestored by columnsin the order

a11, a21, . . . , aM1, a12, a22, . . . , aM2, . . . , a1N , a2N , . . . aMN

24 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
1

7

2

2

3

4

4

8

5

×

6

5

7

3

8

9

9

1

10

×

11

1

12

1

13

0

14

2

15

×

16

×

×

18

×

19

×

20

×

21

×

22

×

23

×

24

×

25

×

26

×

27

×

28

×

29

×

30

×

31

×

32

×

33

×

34

×

35

×

36

×

37

×

38

×

39

×

40

×

17
m

mp

np

n

Figure 2.0.1. A matrix of logical dimensionm by n is stored in an array of physical dimensionmp
by np. Locations marked by “x” contain extraneous information which may be left over from some
previous use of the physical array. Circled numbers show the actual ordering of the array incomputer
memory, not usually relevant to the programmer. Note, however, that the logical array does notoccupy
consecutive memory locations. To locate an(i,j) element correctly, a subroutine must be toldmp
and np, not just i and j.

or elsestored by rowsin the order

a11, a12, . . . , a1N , a21, a22, . . . , a2N , . . . , aM1, aM2, . . . aMN

FORTRAN always stores by columns, and user programs are generally allowed
to exploit this fact to their advantage. By contrast,C, Pascal, and other languages
generally store by rows. Note one confusing point in the terminology, that a matrix
which is stored by columns (as inFORTRAN) has itsrow (i.e., first) index changing
most rapidly as one goes linearly through memory, the opposite of a car’s odometer!

For most purposes you don’tneedto know what the order of storage is, since
you reference an element by its two-dimensional address:a34 = a(3,4). It is,
however,essentialthat you understand the difference between an array’sphysical
dimensionsand its logical dimensions. When you pass an array to a subroutine,
you must, in general, tell the subroutinebothof these dimensions. The distinction
between them is this: It may happen that you have a4 × 4 matrix stored in an array
dimensioned as10 × 10. This occurs most frequently in practice when you have
dimensioned to the largest expected value ofN , but are at the moment considering
a value ofN smaller than that largest possible one. In the example posed, the 16
elements of the matrix do not occupy 16 consecutive memory locations. Rather they
are spread out among the 100 dimensioned locations of the array as if the whole
10 × 10 matrix were filled. Figure 2.0.1 shows an additional example.

If you have a subroutine to invert a matrix, its call might typically look like this:

2.0 Introduction 25

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call matinv(a,ai,n,np)

Here the subroutine has to be told both the logical size of the matrix that
you want to invert (heren = 4), and the physical size of the array in which it is
stored (herenp = 10).

This seems like a trivial point, and we are sorry to belabor it. But it turns out that
mostreported failures of standard linear equation and matrix manipulation packages
are due to user errors in passing inappropriate logical or physical dimensions!

Tasks of Computational Linear Algebra

We will consider the following tasks as falling in the general purview of this
chapter:

• Solutionof the matrix equationA ·x = b for an unknown vectorx, whereA
is a square matrix of coefficients, raised dot denotes matrix multiplication,
andb is a known right-hand side vector (§2.1–§2.10).

• Solution of more than one matrix equationA · xj = bj , for a set of vectors
xj , j = 1, 2, . . . , each corresponding to a different, known right-hand side
vectorbj. In this task the key simplification is that the matrixA is held
constant, while the right-hand sides, theb’s, are changed (§2.1–§2.10).

• Calculation of the matrixA−1 which is the matrix inverse of a square
matrix A, i.e., A · A−1 = A−1 · A = 1, where1 is the identity matrix
(all zeros except for ones on the diagonal). This task is equivalent,
for an N × N matrix A, to the previous task withN different bj ’s
(j = 1, 2, . . ., N), namely the unit vectors (bj = all zero elements except
for 1 in thejth component). The correspondingx’s are then the columns
of the matrix inverse ofA (§2.1 and§2.3).

• Calculation of the determinant of a square matrixA (§2.3).

If M < N , or if M = N but the equations are degenerate, then there are
effectively fewer equations than unknowns. In this case there can be either no
solution, or else more than one solution vectorx. In the latter event, the solution
space consists of a particular solutionxp added to any linear combination of
(typically)N − M vectors (which are said to be in the nullspace of the matrixA).
The task of finding the solution space ofA involves

• Singular value decomposition of a matrixA.

This subject is treated in§2.6.
In the opposite case there are more equations than unknowns,M > N . When

this occurs there is, in general, no solution vectorx to equation (2.0.1), and the
set of equations is said to beoverdetermined. It happens frequently, however, that
the best “compromise” solution is sought, the one that comes closest to satisfying
all equations simultaneously. If closeness is defined in the least-squares sense, i.e.,
that the sum of the squares of the differences between the left- and right-hand sides
of equation (2.0.1) be minimized, then the overdetermined linear problem reduces to a

26 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(usually) solvable linear problem, called the

• Linear least-squares problem.

The reduced set of equations to be solved can be written as theN×N set of equations

(AT · A) · x = (AT · b) (2.0.4)

whereAT denotes the transpose of the matrixA. Equations (2.0.4) are called the
normal equationsof the linear least-squares problem. There is a close connection
between singular value decomposition and the linear least-squares problem, and the
latter is also discussed in§2.6. You should be warned that direct solution of the
normal equations (2.0.4) is not generally the best way to find least-squares solutions.

Some other topics in this chapter include

• Iterative improvement of a solution (§2.5)
• Various special forms: symmetric positive-definite (§2.9), tridiagonal

(§2.4), band diagonal (§2.4), Toeplitz (§2.8), Vandermonde (§2.8), sparse
(§2.7)

• Strassen’s “fast matrix inversion” (§2.11).

Standard Subroutine Packages

We cannot hope, in this chapter or in this book, to tell you everything there is
to know about the tasks that have been defined above. In many cases you will have
no alternative but to use sophisticated black-box program packages. Several good
ones are available. LINPACK was developed at Argonne National Laboratories and
deserves particular mention because it ispublished, documented, and available for
free use. A successor to LINPACK, LAPACK, is now becoming available. Packages
available commercially include those in the IMSL and NAG libraries.

You should keep in mind that the sophisticated packages are designed with very
large linear systems in mind. They therefore go to great effort to minimize not only
the number of operations, but also the required storage. Routines for the various
tasks are usually provided in several versions, corresponding to several possible
simplifications in the form of the input coefficient matrix: symmetric, triangular,
banded, positive definite, etc. If you have a large matrix in one of these forms,
you should certainly take advantage of the increased efficiency provided by these
different routines, and not just use the form provided for general matrices.

There is also a great watershed dividing routines that aredirect (i.e., execute
in a predictable number of operations) from routines that areiterative (i.e., attempt
to converge to the desired answer in however many steps are necessary). Iterative
methods become preferable when the battle against loss of significance is in danger
of being lost, either due to largeN or because the problem is close to singular. We
will treat iterative methods only incompletely in this book, in§2.7 and in Chapters
18 and 19. These methods are important, but mostly beyond our scope. We will,
however, discuss in detail a technique which is on the borderline between direct
and iterative methods, namely the iterative improvement of a solution that has been
obtained by direct methods (§2.5).

2.1 Gauss-Jordan Elimination 27

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press).

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.).

Coleman, T.F., and Van Loan, C. 1988, Handbook for Matrix Computations (Philadelphia: S.I.A.M.).

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall).

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag).

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 9.

2.1 Gauss-Jordan Elimination

For inverting a matrix,Gauss-Jordan eliminationis about as efficient as any
other method. For solving sets of linear equations, Gauss-Jordan elimination
producesboththe solution of the equations for one or more right-hand side vectors
b, and also the matrix inverseA−1. However, its principal weaknesses are (i) that
it requires all the right-hand sides to be stored and manipulated at the same time,
and (ii) that when the inverse matrix isnot desired, Gauss-Jordan is three times
slower than the best alternative technique for solving a single linear set (§2.3). The
method’s principal strength is that it is as stable as any other direct method, perhaps
even a bit more stable when full pivoting is used (see below).

If you come along later with an additional right-hand side vector, you can
multiply it by the inverse matrix, of course. This does give an answer, but one that is
quite susceptible to roundoff error, not nearly as good as if the new vector had been
included with the set of right-hand side vectors in the first instance.

For these reasons, Gauss-Jordan elimination should usually not be your method
of first choice, either for solving linear equations or for matrix inversion. The
decomposition methods in§2.3 are better. Why do we give you Gauss-Jordan at all?
Because it is straightforward,understandable, solid as a rock, and an exceptionally
good “psychological” backup for those times that something is going wrong and you
think it might be your linear-equation solver.

Some people believe that the backup is more than psychological, that Gauss-
Jordan elimination is an “independent” numerical method. This turns out to be
mostly myth. Except for the relatively minor differences in pivoting, described
below, the actual sequence of operations performed in Gauss-Jordan elimination is
very closely related to that performed by the routines in the next two sections.

2.1 Gauss-Jordan Elimination 27

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press).

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.).

Coleman, T.F., and Van Loan, C. 1988, Handbook for Matrix Computations (Philadelphia: S.I.A.M.).

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall).

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag).

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 9.

2.1 Gauss-Jordan Elimination

For inverting a matrix,Gauss-Jordan eliminationis about as efficient as any
other method. For solving sets of linear equations, Gauss-Jordan elimination
producesboththe solution of the equations for one or more right-hand side vectors
b, and also the matrix inverseA−1. However, its principal weaknesses are (i) that
it requires all the right-hand sides to be stored and manipulated at the same time,
and (ii) that when the inverse matrix isnot desired, Gauss-Jordan is three times
slower than the best alternative technique for solving a single linear set (§2.3). The
method’s principal strength is that it is as stable as any other direct method, perhaps
even a bit more stable when full pivoting is used (see below).

If you come along later with an additional right-hand side vector, you can
multiply it by the inverse matrix, of course. This does give an answer, but one that is
quite susceptible to roundoff error, not nearly as good as if the new vector had been
included with the set of right-hand side vectors in the first instance.

For these reasons, Gauss-Jordan elimination should usually not be your method
of first choice, either for solving linear equations or for matrix inversion. The
decomposition methods in§2.3 are better. Why do we give you Gauss-Jordan at all?
Because it is straightforward,understandable, solid as a rock, and an exceptionally
good “psychological” backup for those times that something is going wrong and you
think it might be your linear-equation solver.

Some people believe that the backup is more than psychological, that Gauss-
Jordan elimination is an “independent” numerical method. This turns out to be
mostly myth. Except for the relatively minor differences in pivoting, described
below, the actual sequence of operations performed in Gauss-Jordan elimination is
very closely related to that performed by the routines in the next two sections.

28 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For clarity, and to avoid writingendless ellipses (· · ·) we will write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case ofN × N matrices, withM sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below
is, of course, general.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 ·

x11

x21

x31

x41

 ⊔

x12

x22

x32

x42

 ⊔

x13

x23

x33

x43

 ⊔

y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44

=

b11
b21
b31
b41

 ⊔

b12
b22
b32
b42

 ⊔

b13
b23
b33
b43

 ⊔

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (2.1.1)

Here the raised dot (·) signifies matrix multiplication, while the operator⊔ just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the⊔ operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states thatxij is theith component (i = 1, 2, 3, 4) of the vector solution of thejth
right-hand side (j = 1, 2, 3), the one whose coefficients arebij, i = 1, 2, 3, 4; and
that the matrix of unknown coefficientsyij is the inverse matrix ofaij. In other
words, the matrix solution of

[A] · [x1 ⊔ x2 ⊔ x3 ⊔ Y] = [b1 ⊔ b2 ⊔ b3 ⊔ 1] (2.1.2)

whereA andY are square matrices, thebi’s andxi’s are column vectors, and1 is
the identity matrix, simultaneously solves the linear sets

A · x1 = b1 A · x2 = b2 A · x3 = b3 (2.1.3)
and

A · Y = 1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):
• Interchanging any tworows of A and the correspondingrows of theb’s

and of1, does not change (or scramble in any way) the solutionx’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

• Likewise, the solution set is unchanged and in no way scrambled if we
replace any row inA by a linear combination of itself and any other row,
as long as we do the same linear combination of the rows of theb’s and1
(which then is no longer the identity matrix, of course).

2.1 Gauss-Jordan Elimination 29

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• Interchanging any twocolumnsof A gives the same solution set only
if we simultaneously interchange correspondingrows of the x’s and of
Y. In other words, this interchange scrambles the order of the rows in
the solution. If we do this, we will need to unscramble the solution by
restoring the rows to their original order.

Gauss-Jordan elimination uses one or more of the above operations to reduce
the matrixA to the identity matrix. When this isaccomplished, the right-hand side
becomes the solution set, as one sees instantly from (2.1.2).

Pivoting

In “Gauss-Jordan elimination with no pivoting,” only the second operation in
the above list is used. The first row is divided by the elementa11 (this being a
trivial linear combination of the first row with any other row — zero coefficient for
the other row). Then the right amount of the first row is subtracted fromeach other
row to make all the remainingai1’s zero. The first column ofA now agrees with
the identity matrix. We move to the second column and divide the second row by
a22, then subtract the right amount of the second row from rows 1, 3, and 4, so as to
make their entries in the second column zero. The second column is now reduced
to the identity form. And so on for the third and fourth columns. As we do these
operations toA, we of course also do the corresponding operations to theb’s and to
1 (which by now no longer resembles the identity matrix in any way!).

Obviously we will run into trouble if we ever encounter a zero element on the
(then current) diagonal when we are going to divide by the diagonal element. (The
element that we divide by, incidentally, is called thepivot elementor pivot.) Not so
obvious, but true, is the fact that Gauss-Jordan elimination with no pivoting (no use of
the first or third procedures in the above list) is numerically unstable in the presence
of any roundoff error, even when a zero pivot is not encountered. You mustneverdo
Gauss-Jordan elimination (or Gaussian elimination, see below) without pivoting!

So whatis this magic pivoting? Nothing more than interchanging rows (partial
pivoting) or rows and columns (full pivoting), so as to put a particularly desirable
element in the diagonal position from which the pivot is about to be selected. Since
we don’t want to mess up the part of the identity matrix that we have already built up,
we can choose among elements that are both (i) on rows below (or on) the one that
is about to be normalized, and also (ii) on columns to the right (or on) the column
we are about to eliminate. Partial pivoting is easier than full pivoting, because we
don’t have to keep track of the permutation of the solution vector. Partial pivoting
makes available as pivots only the elements already in the correct column. It turns
out that partial pivoting is “almost” as good as full pivoting, in a sense that can be
made mathematically precise, but which need not concern us here (for discussion
and references, see[1]). To show you both variants, we do full pivoting in the routine
in this section, partial pivoting in§2.3.

We have to state how to recognize a particularly desirable pivot when we see
one. The answer to this is not completely known theoretically. It is known, both
theoretically and in practice, that simply picking the largest (in magnitude) available
element as the pivot is a very good choice. A curiosity of this procedure, however, is
that the choice of pivot will depend on the original scaling of the equations. If we take
the third linear equation in our original set and multiply it by a factor of a million, it

30 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

is almost guaranteed that it will contribute the first pivot; yet the underlying solution
of the equations is not changed by this multiplication! One therefore sometimes sees
routines which choose as pivot that element whichwould have been largest if the
original equations had all been scaled to have their largest coefficient normalized to
unity. This is calledimplicit pivoting. There is some extra bookkeeping to keep track
of the scale factors by which the rows would have been multiplied. (The routines in
§2.3 include implicit pivoting, but the routine in this section does not.)

Finally, let us consider the storage requirements of the method. With a little
reflection you will see that at every stage of the algorithm,eitheran element ofA is
predictably a one or zero (if it is already in a part of the matrix that has been reduced
to identity form)or elsethe exactly corresponding element of the matrix that started
as1 is predictably a one or zero (if its mate inA has not been reduced to the identity
form). Therefore the matrix1 does not have to exist as separate storage: The matrix
inverse ofA is gradually built up inA as the originalA is destroyed. Likewise,
the solution vectorsx can gradually replace the right-hand side vectorsb and share
the same storage, since after each column inA is reduced, the corresponding row
entry in theb’s is never again used.

Here is the routine for Gauss-Jordan elimination with full pivoting:

SUBROUTINE gaussj(a,n,np,b,m,mp)
INTEGER m,mp,n,np,NMAX
REAL a(np,np),b(np,mp)
PARAMETER (NMAX=50)

Linear equation solution by Gauss-Jordan elimination, equation (2.1.1) above. a(1:n,1:n)
is an input matrix stored in an array of physical dimensions np by np. b(1:n,1:m) is an in-
put matrix containing the m right-hand side vectors, stored in an array of physical dimensions
np by mp. On output, a(1:n,1:n) is replaced by its matrix inverse, and b(1:n,1:m) is
replaced by the corresponding set of solution vectors.
Parameter: NMAX is the largest anticipated value of n.

INTEGER i,icol,irow,j,k,l,ll,indxc(NMAX),indxr(NMAX),
* ipiv(NMAX) The integer arrays ipiv, indxr, and indxc are used

for bookkeeping on the pivoting.REAL big,dum,pivinv
do 11 j=1,n

ipiv(j)=0
enddo 11

do 22 i=1,n This is the main loop over the columns to be re-
duced.big=0.

do 13 j=1,n This is the outer loop of the search for a pivot ele-
ment.if(ipiv(j).ne.1)then

do 12 k=1,n
if (ipiv(k).eq.0) then

if (abs(a(j,k)).ge.big)then
big=abs(a(j,k))
irow=j
icol=k

endif
else if (ipiv(k).gt.1) then

pause ’singular matrix in gaussj’
endif

enddo 12

endif
enddo 13

ipiv(icol)=ipiv(icol)+1
We now have the pivot element, so we interchange rows, if needed, to put the pivot
element on the diagonal. The columns are not physically interchanged, only relabeled:

2.1 Gauss-Jordan Elimination 31

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

indxc(i), the column of the ith pivot element, is the ith column that is reduced, while
indxr(i) is the row in which that pivot element was originally located. If indxr(i) 6=
indxc(i) there is an implied column interchange. With this form of bookkeeping, the
solution b’s will end up in the correct order, and the inverse matrix will be scrambled
by columns.

if (irow.ne.icol) then
do 14 l=1,n

dum=a(irow,l)
a(irow,l)=a(icol,l)
a(icol,l)=dum

enddo 14

do 15 l=1,m
dum=b(irow,l)
b(irow,l)=b(icol,l)
b(icol,l)=dum

enddo 15

endif
indxr(i)=irow We are now ready to divide the pivot row by the pivot

element, located at irow and icol.indxc(i)=icol
if (a(icol,icol).eq.0.) pause ’singular matrix in gaussj’
pivinv=1./a(icol,icol)
a(icol,icol)=1.
do 16 l=1,n

a(icol,l)=a(icol,l)*pivinv
enddo 16

do 17 l=1,m
b(icol,l)=b(icol,l)*pivinv

enddo 17

do 21 ll=1,n Next, we reduce the rows...
if(ll.ne.icol)then ...except for the pivot one, of course.

dum=a(ll,icol)
a(ll,icol)=0.
do 18 l=1,n

a(ll,l)=a(ll,l)-a(icol,l)*dum
enddo 18

do 19 l=1,m
b(ll,l)=b(ll,l)-b(icol,l)*dum

enddo 19

endif
enddo 21

enddo 22 This is the end of the main loop over columns of the reduction.
do 24 l=n,1,-1 It only remains to unscramble the solution in view

of the column interchanges. We do this by in-
terchanging pairs of columns in the reverse order
that the permutation was built up.

if(indxr(l).ne.indxc(l))then
do 23 k=1,n

dum=a(k,indxr(l))
a(k,indxr(l))=a(k,indxc(l))
a(k,indxc(l))=dum

enddo 23

endif
enddo 24

return And we are done.
END

Row versus Column Elimination Strategies

The above discussion can be amplified by a modest amount of formalism. Row
operations on a matrixA correspond to pre- (that is, left-) multiplication by some simple

32 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

matrix R. For example, the matrixR with components

Rij =

1 if i = j andi 6= 2, 4
1 if i = 2, j = 4
1 if i = 4, j = 2
0 otherwise

(2.1.5)

effects the interchange of rows2 and4. Gauss-Jordan elimination by row operations alone
(including the possibility ofpartial pivoting) consists of a series of such left-multiplications,
yielding successively

A · x = b

(· · ·R3 · R2 · R1 · A) · x = · · ·R3 · R2 · R1 · b

(1) · x = · · ·R3 · R2 · R1 · b

x = · · ·R3 · R2 · R1 · b

(2.1.6)

The key point is that since theR’s build from right to left, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call themC. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchangeA’s second and fourthcolumns. Elimination by column operations
involves (conceptually) inserting a column operator,and also its inverse,between the matrix
A and the unknown vectorx:

A · x = b

A · C1 · C−1

1 · x = b

A · C1 · C2 · C−1

2 · C−1

1 · x = b

(A · C1 · C2 · C3 · · ·) · · ·C
−1

3 · C−1

2 · C−1

1 · x = b

(1) · · ·C−1

3 · C−1

2 · C−1

1 · x = b

(2.1.7)

which (peeling of theC−1’s one at a time) implies a solution

x = C1 · C2 · C3 · · · b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, theC’s must be applied tob in the reverse orderfrom that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [1]

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Example 5.2, p. 282.

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Program B-2, p. 298.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3–1.

2.2 Gaussian Elimination with Backsubstitution 33

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantagesaccrue.

Suppose that in doing Gauss-Jordan elimination, as described in§2.1, we at
each stage subtract away rows onlybelowthe then-current pivot element. Whena22

is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero onlya32 anda42, not a12 (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):

a′11 a′12 a′13 a′14

0 a′22 a′23 a′24

0 0 a′33 a′34

0 0 0 a′44

·

x1

x2

x3

x4

=

b′1
b′2
b′3
b′4

(2.2.1)

Here the primes signify that thea’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termedGaussian elimination.

Backsubstitution

But how do we solve for thex’s? The lastx (x4 in this example) is already
isolated, namely

x4 = b′4/a
′

44 (2.2.2)

With the lastx known we can move to the penultimatex,

x3 =
1

a′33

[b′3 − x4a
′

34] (2.2.3)

and then proceed with thex before that one. The typical step is

xi =
1

a′ii

b′i −

N
∑

j=i+1

a′ijxj

 (2.2.4)

The procedure defined by equation (2.2.4) is calledbacksubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.

2.2 Gaussian Elimination with Backsubstitution 33

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantagesaccrue.

Suppose that in doing Gauss-Jordan elimination, as described in§2.1, we at
each stage subtract away rows onlybelowthe then-current pivot element. Whena22

is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero onlya32 anda42, not a12 (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):

a′11 a′12 a′13 a′14

0 a′22 a′23 a′24

0 0 a′33 a′34

0 0 0 a′44

·

x1

x2

x3

x4

=

b′1
b′2
b′3
b′4

(2.2.1)

Here the primes signify that thea’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termedGaussian elimination.

Backsubstitution

But how do we solve for thex’s? The lastx (x4 in this example) is already
isolated, namely

x4 = b′4/a
′

44 (2.2.2)

With the lastx known we can move to the penultimatex,

x3 =
1

a′33

[b′3 − x4a
′

34] (2.2.3)

and then proceed with thex before that one. The typical step is

xi =
1

a′ii

b′i −

N
∑

j=i+1

a′ijxj

 (2.2.4)

The procedure defined by equation (2.2.4) is calledbacksubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.

34 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The
innermost loops of Gauss-Jordan elimination,each containing one subtraction and
one multiplication, are executedN3 andN2M times (where there areN equations
andM unknowns). The corresponding loops in Gaussian elimination are executed
only 1

3
N3 times (only half the matrix is reduced, and the increasing numbers of

predictable zeros reduce the count to one-third), and1

2
N2M times, respectively.

Each backsubstitution of a right-hand side is1

2
N2 executions of a similar loop (one

multiplication plus one subtraction). ForM ≪ N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jordan.
(We could reduce this advantage to a factor 1.5 bynotcomputing the inverse matrix
as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case ofM = N
right-hand sides, namely theN unit vectors which are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glance require1

3
N3 (matrix

reduction)+1

2
N3 (right-hand side manipulations)+1

2
N3 (N backsubstitutions)

= 4

3
N3 loop executions, which is more than theN3 for Gauss-Jordan. However, the

unit vectors are quite special in containing all zeros except for one element. Ifthis
is taken into account, the right-side manipulations can be reduced to only1

6
N3 loop

executions, and, for matrix inversion, the two methods have identical efficiencies.
Both Gaussian eliminationand Gauss-Jordan elimination share the disadvantage

that all right-hand sides must be known in advance. TheLU decomposition method
in the next section does not share that deficiency, and also has an equally small
operations count, both for solution with any number of right-hand sides, and for
matrix inversion. For this reason we will not implement the method of Gaussian
elimination as a routine.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3–1.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §2.1.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.2.1.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrixA as a product of two matrices,

L · U = A (2.3.1)

whereL is lower triangular(has elements only on the diagonal and below) andU
is upper triangular(has elements only on the diagonal and above). For the case of

34 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The
innermost loops of Gauss-Jordan elimination,each containing one subtraction and
one multiplication, are executedN3 andN2M times (where there areN equations
andM unknowns). The corresponding loops in Gaussian elimination are executed
only 1

3
N3 times (only half the matrix is reduced, and the increasing numbers of

predictable zeros reduce the count to one-third), and1

2
N2M times, respectively.

Each backsubstitution of a right-hand side is1

2
N2 executions of a similar loop (one

multiplication plus one subtraction). ForM ≪ N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jordan.
(We could reduce this advantage to a factor 1.5 bynotcomputing the inverse matrix
as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case ofM = N

right-hand sides, namely theN unit vectors which are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glance require1

3
N3 (matrix

reduction)+1

2
N3 (right-hand side manipulations)+1

2
N3 (N backsubstitutions)

= 4

3
N3 loop executions, which is more than theN3 for Gauss-Jordan. However, the

unit vectors are quite special in containing all zeros except for one element. Ifthis
is taken into account, the right-side manipulations can be reduced to only1

6
N3 loop

executions, and, for matrix inversion, the two methods have identical efficiencies.
Both Gaussian eliminationand Gauss-Jordan elimination share the disadvantage

that all right-hand sides must be known in advance. TheLU decomposition method
in the next section does not share that deficiency, and also has an equally small
operations count, both for solution with any number of right-hand sides, and for
matrix inversion. For this reason we will not implement the method of Gaussian
elimination as a routine.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3–1.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §2.1.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.2.1.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrixA as a product of two matrices,

L · U = A (2.3.1)

whereL is lower triangular(has elements only on the diagonal and below) andU
is upper triangular(has elements only on the diagonal and above). For the case of

2.3 LU Decomposition and Its Applications 35

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

a 4 × 4 matrix A, for example, equation (2.3.1) would look like this:

α11 0 0 0

α21 α22 0 0

α31 α32 α33 0

α41 α42 α43 α44

 ·

β11 β12 β13 β14

0 β22 β23 β24

0 0 β33 β34

0 0 0 β44

 =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set

A · x = (L · U) · x = L · (U · x) = b (2.3.3)

by first solving for the vectory such that

L · y = b (2.3.4)
and then solving

U · x = y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equations is quite trivial, as
we have already seen in§2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitutionas follows,

y1 =
b1

α11

yi =
1

αii

bi −

i−1
∑

j=1

αijyj

 i = 2, 3, . . . , N

(2.3.6)

while (2.3.5) can then be solved bybacksubstitutionexactly as in equations (2.2.2)–
(2.2.4),

xN =
yN

βNN

xi =
1

βii

yi −

N
∑

j=i+1

βijxj

 i = N − 1, N − 2, . . . , 1
(2.3.7)

Equations (2.3.6) and (2.3.7) total (for each right-hand sideb) N2 executions
of an inner loop containing one multiply and one add. If we haveN right-hand
sides which are the unit column vectors (which is the case when we are inverting a
matrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from 1

2
N3 to 1

6
N3, while (2.3.7) is unchanged at1

2
N3.

Notice that, once we have theLU decomposition ofA, we can solve with as
many right-hand sides as we then care to, one at a time. This is a distinct advantage
over the methods of§2.1 and§2.2.

36 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Performing the LU Decomposition

How then can we solve forL and U, given A? First, we write out the
i, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with

αi1β1j + · · · = aij

The number of terms in the sum depends, however, on whetheri or j is the smaller
number. We have, in fact, the three cases,

i < j : αi1β1j + αi2β2j + · · ·+ αiiβij = aij (2.3.8)

i = j : αi1β1j + αi2β2j + · · ·+ αiiβjj = aij (2.3.9)

i > j : αi1β1j + αi2β2j + · · ·+ αijβjj = aij (2.3.10)

Equations (2.3.8)–(2.3.10) totalN2 equations for theN2 +N unknownα’s and
β’s (the diagonal being represented twice). Since the number of unknowns is greater
than the number of equations, we are invited to specifyN of the unknowns arbitrarily
and then try to solve for the others. In fact, as we shall see, it is always possible to take

αii ≡ 1 i = 1, . . . , N (2.3.11)

A surprising procedure, now, isCrout’s algorithm, which quite trivially solves
the set ofN2 +N equations (2.3.8)–(2.3.11) for all theα’s andβ’s by just arranging
the equations in a certain order! That order is as follows:

• Setαii = 1, i = 1, . . . , N (equation 2.3.11).
• For eachj = 1, 2, 3, . . . , N do these two procedures: First, fori =

1, 2, . . ., j, use (2.3.8), (2.3.9), and (2.3.11) to solve forβij , namely

βij = aij −

i−1
∑

k=1

αikβkj . (2.3.12)

(Wheni = 1 in 2.3.12 the summation term is taken to mean zero.) Second,
for i = j + 1, j + 2, . . . , N use (2.3.10) to solve forαij, namely

αij =
1

βjj

(

aij −

j−1
∑

k=1

αikβkj

)

. (2.3.13)

Be sure to do both procedures before going on to the nextj.

If you work through a few iterations of the above procedure, you will see that
theα’s andβ’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see thateveryaij
is used only once and never again. This means that the correspondingαij orβij can
be stored in the location that thea used to occupy: the decomposition is “in place.”
[The diagonal unity elementsαii (equation 2.3.11) are not stored at all.] In brief,
Crout’s method fills in the combined matrix ofα’s andβ’s,

β11 β12 β13 β14

α21 β22 β23 β24

α31 α32 β33 β34

α41 α42 α43 β44

(2.3.14)

by columns from left to right, and within each column from top to bottom(see
Figure 2.3.1).

2.3 LU Decomposition and Its Applications 37

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

c

g
i

b
d

f
h

j

diagonal elem
ents

subdiagonal elem
ents

etc.

etc.

x

x

a

e

Figure 2.3.1. Crout’s algorithm forLU decomposition of a matrix. Elements of the original matrix are
modified in the order indicated by lower case letters: a, b, c, etc. Shaded boxes show the previously
modified elements that are used in modifying two typical elements, each indicated by an “x”.

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element
for the division in equation 2.3.13) is absolutely essential for the stability of Crout’s
method. Only partial pivoting (interchange of rows) can be implemented efficiently.
However this is enough to make the method stable. This means, incidentally, that
we don’t actually decompose the matrixA into LU form, but rather we decompose
a rowwise permutation ofA. (If we keep track of what that permutation is, this
decomposition is just as useful as the original one would have been.)

Pivoting is slightly subtle in Crout’s algorithm. The key point to notice is that
equation (2.3.12) in the case ofi = j (its final application) isexactly the sameas
equation (2.3.13) except for the division in the latter equation; in both cases the
upper limit of the sum isk = j − 1 (= i − 1). This means that we don’t have to
commit ourselves as to whether the diagonal elementβjj is the one that happens
to fall on the diagonal in the first instance, or whether one of the (undivided)αij ’s
below it in the column,i = j+1, . . . , N , is to be “promoted” to become the diagonal
β. This can be decided after all the candidates in the column are in hand. As you
should be able to guess by now, we will choose the largest one as the diagonalβ

(pivot element), then do all the divisions by that elementen masse. This isCrout’s

38 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

method with partial pivoting. Our implementation has one additional wrinkle: It
initially finds the largest element ineach row, and subsequently (when it is looking
for the maximal pivot element) scales the comparisonas ifwe had initially scaled all
the equations to make their maximum coefficient equal to unity; this is theimplicit
pivoting mentioned in§2.1.

SUBROUTINE ludcmp(a,n,np,indx,d)
INTEGER n,np,indx(n),NMAX
REAL d,a(np,np),TINY
PARAMETER (NMAX=500,TINY=1.0e-20) Largest expected n, and a small number.

Given a matrix a(1:n,1:n), with physical dimension np by np, this routine replaces it by
the LU decomposition of a rowwise permutation of itself. a and n are input. a is output,
arranged as in equation (2.3.14) above; indx(1:n) is an output vector that records the
row permutation effected by the partial pivoting; d is output as ±1 depending on whether
the number of row interchanges was even or odd, respectively. This routine is used in
combination with lubksb to solve linear equations or invert a matrix.

INTEGER i,imax,j,k
REAL aamax,dum,sum,vv(NMAX) vv stores the implicit scaling of each row.
d=1. No row interchanges yet.
do 12 i=1,n Loop over rows to get the implicit scaling informa-

tion.aamax=0.
do 11 j=1,n

if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))
enddo 11

if (aamax.eq.0.) pause ’singular matrix in ludcmp’ No nonzero largest element.
vv(i)=1./aamax Save the scaling.

enddo 12

do 19 j=1,n This is the loop over columns of Crout’s method.
do 14 i=1,j-1 This is equation (2.3.12) except for i = j.

sum=a(i,j)
do 13 k=1,i-1

sum=sum-a(i,k)*a(k,j)
enddo 13

a(i,j)=sum
enddo 14

aamax=0. Initialize for the search for largest pivot element.
do 16 i=j,n This is i = j of equation (2.3.12) and i = j+1 . . . N

of equation (2.3.13).sum=a(i,j)
do 15 k=1,j-1

sum=sum-a(i,k)*a(k,j)
enddo 15

a(i,j)=sum
dum=vv(i)*abs(sum) Figure of merit for the pivot.
if (dum.ge.aamax) then Is it better than the best so far?

imax=i
aamax=dum

endif
enddo 16

if (j.ne.imax)then Do we need to interchange rows?
do 17 k=1,n Yes, do so...

dum=a(imax,k)
a(imax,k)=a(j,k)
a(j,k)=dum

enddo 17

d=-d ...and change the parity of d.
vv(imax)=vv(j) Also interchange the scale factor.

endif
indx(j)=imax
if(a(j,j).eq.0.)a(j,j)=TINY

If the pivot element is zero the matrix is singular (at least to the precision of the al-
gorithm). For some applications on singular matrices, it is desirable to substitute TINY
for zero.

2.3 LU Decomposition and Its Applications 39

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(j.ne.n)then Now, finally, divide by the pivot element.
dum=1./a(j,j)
do 18 i=j+1,n

a(i,j)=a(i,j)*dum
enddo 18

endif
enddo 19 Go back for the next column in the reduction.
return
END

Here is the routine for forward substitution and backsubstitution, implementing
equations (2.3.6) and (2.3.7).

SUBROUTINE lubksb(a,n,np,indx,b)
INTEGER n,np,indx(n)
REAL a(np,np),b(n)

Solves the set of n linear equations A ·X = B. Here a is input, not as the matrix A but
rather as its LU decomposition, determined by the routine ludcmp. indx is input as the
permutation vector returned by ludcmp. b(1:n) is input as the right-hand side vector B,
and returns with the solution vector X . a, n, np, and indx are not modified by this routine
and can be left in place for successive calls with different right-hand sides b. This routine
takes into account the possibility that b will begin with many zero elements, so it is efficient
for use in matrix inversion.

INTEGER i,ii,j,ll
REAL sum
ii=0 When ii is set to a positive value, it will become the in-

dex of the first nonvanishing element of b. We now do
the forward substitution, equation (2.3.6). The only new
wrinkle is to unscramble the permutation as we go.

do 12 i=1,n
ll=indx(i)
sum=b(ll)
b(ll)=b(i)
if (ii.ne.0)then

do 11 j=ii,i-1
sum=sum-a(i,j)*b(j)

enddo 11

else if (sum.ne.0.) then
ii=i A nonzero element was encountered, so from now on we will

have to do the sums in the loop above.endif
b(i)=sum

enddo 12

do 14 i=n,1,-1 Now we do the backsubstitution, equation (2.3.7).
sum=b(i)
do 13 j=i+1,n

sum=sum-a(i,j)*b(j)
enddo 13

b(i)=sum/a(i,i) Store a component of the solution vector X .
enddo 14

return All done!
END

TheLU decomposition inludcmp requires about1
3
N3 executions of the inner

loops (each with one multiply and one add). This is thus the operation count
for solving one (or a few) right-hand sides, and is a factor of 3 better than the
Gauss-Jordan routinegaussj which was given in§2.1, and a factor of 1.5 better
than a Gauss-Jordan routine (not given) that does not compute the inverse matrix.
For inverting a matrix, the total count (including the forward and backsubstitution
as discussed following equation 2.3.7 above) is(1

3
+ 1

6
+ 1

2
)N3 = N3, the same

as gaussj.

40 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

To summarize, this is the preferred way to solve the linear set of equations
A · x = b:

call ludcmp(a,n,np,indx,d)
call lubksb(a,n,np,indx,b)

The answerx will be returned inb. Your original matrixA will have been
destroyed.

If you subsequently want to solve a set of equations with the sameA but a
different right-hand sideb, you repeatonly

call lubksb(a,n,np,indx,b)

not, of course, with the original matrixA, but with a and indx as were already
returned fromludcmp.

Inverse of a Matrix

Using the aboveLU decomposition and backsubstitution routines, it is com-
pletely straightforward to find the inverse of a matrix column by column.

INTEGER np,indx(np)
REAL a(np,np),y(np,np)
...
do 12 i=1,n Set up identity matrix.

do 11 j=1,n
y(i,j)=0.

enddo 11

y(i,i)=1.
enddo 12

call ludcmp(a,n,np,indx,d) Decompose the matrix just once.
do 13 j=1,n Find inverse by columns.

call lubksb(a,n,np,indx,y(1,j))
Note that FORTRAN stores two-dimensional matrices by column, so y(1,j) is the
address of the jth column of y.

enddo 13

The matrixy will now contain the inverse of the original matrixa, which will have
been destroyed. Alternatively, there is nothing wrong with using a Gauss-Jordan
routine likegaussj (§2.1) to invert a matrix in place, again destroying the original.
Both methods have practically the same operations count.

Incidentally, if you ever have the need to computeA−1 · B from matricesA
andB, you shouldLU decomposeA and then backsubstitute with the columns of
B instead of with the unit vectors that would giveA’s inverse. This saves a whole
matrix multiplication, and is also moreaccurate.

2.3 LU Decomposition and Its Applications 41

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Determinant of a Matrix

The determinant of anLU decomposed matrix is just the product of the
diagonal elements,

det=
N
∏

j=1

βjj (2.3.15)

We don’t, recall, compute the decomposition of the original matrix, but rather a
decomposition of a rowwise permutation of it. Luckily, we have kept track of
whether the number of row interchanges was even or odd, so we just preface the
product by the corresponding sign. (You now finally know the purpose of returning
d in the routineludcmp.)

Calculation of a determinant thus requires one call toludcmp, with no subse-
quent backsubstitutions bylubksb.

INTEGER np,indx(np)
REAL a(np,np)
...
call ludcmp(a,n,np,indx,d) This returns d as ±1.
do 11 j=1,n

d=d*a(j,j)
enddo 11

The variabled now contains the determinant of the original matrixa, which will
have been destroyed.

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In this case
you can modify the loop of the above fragment and (e.g.) divide by powers of ten,
to keep track of the scale separately, or (e.g.) accumulate the sum of logarithmsof
the absolute values of the factors and the sign separately.

Complex Systems of Equations

If your matrix A is real, but the right-hand side vector is complex, sayb + id, then (i)
LU decomposeA in the usual way, (ii) backsubstituteb to get the real part of the solution
vector, and (iii) backsubstituted to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

(A + iC) · (x + iy) = (b + id) (2.3.16)

then there are two possible ways to proceed. The best way is to rewriteludcmp andlubksb
as complex routines. Complex modulus substitutes for absolute value in the construction of
the scaling vectorvv and in the search for the largest pivot elements. Everything else goes
through in the obvious way, with complex arithmetic used as needed.

A quick-and-dirty way to solve complex systems is to take the real and imaginary
parts of (2.3.16), giving

A · x − C · y = b

C · x + A · y = d
(2.3.17)

which can be written as a2N × 2N set of real equations,
(

A −C
C A

)

·

(

x
y

)

=

(

b
d

)

(2.3.18)

42 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and then solved withludcmp andlubksb in their present forms. This scheme is a factor of
2 inefficient in storage, sinceA andC are stored twice. It is also a factor of 2 inefficient in
time, since the complex multiplies in a complexified version of the routines wouldeach use
4 real multiplies, while the solution of a2N × 2N problem involves 8 times the work of
anN ×N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §3.3, and p. 50.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapters 9, 16, and 18.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that istridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systems that areband diagonal, with nonzero elements
only along a few diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures ofLU decomposition, forward- and back-
substitutioneach take onlyO(N) operations, and the whole solution can be encoded
very concisely. The resulting routinetridag is one that we will use in later chapters.

Naturally, one does not reserve storage for the fullN ×N matrix, but only for
the nonzero components, stored as three vectors. The set of equations to be solved is

b1 c1 0 · · ·

a2 b2 c2 · · ·

· · ·

· · · aN−1 bN−1 cN−1

· · · 0 aN bN

·

u1

u2

· · ·

uN−1

uN

=

r1
r2
· · ·

rN−1

rN

(2.4.1)

Notice thata1 andcN are undefined and are not referenced by the routine that follows.

42 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and then solved withludcmp andlubksb in their present forms. This scheme is a factor of
2 inefficient in storage, sinceA andC are stored twice. It is also a factor of 2 inefficient in
time, since the complex multiplies in a complexified version of the routines wouldeach use
4 real multiplies, while the solution of a2N × 2N problem involves 8 times the work of
anN ×N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 4.

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §3.3, and p. 50.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapters 9, 16, and 18.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that istridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systems that areband diagonal, with nonzero elements
only along a few diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures ofLU decomposition, forward- and back-
substitutioneach take onlyO(N) operations, and the whole solution can be encoded
very concisely. The resulting routinetridag is one that we will use in later chapters.

Naturally, one does not reserve storage for the fullN ×N matrix, but only for
the nonzero components, stored as three vectors. The set of equations to be solved is

b1 c1 0 · · ·
a2 b2 c2 · · ·

· · ·
· · · aN−1 bN−1 cN−1

· · · 0 aN bN

·

u1

u2

· · ·
uN−1

uN

=

r1
r2
· · ·

rN−1

rN

(2.4.1)

Notice thata1 andcN are undefined and are not referenced by the routine that follows.

2.4 Tridiagonal and Band Diagonal Systems of Equations 43

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE tridag(a,b,c,r,u,n)
INTEGER n,NMAX
REAL a(n),b(n),c(n),r(n),u(n)
PARAMETER (NMAX=500)

Solves for a vector u(1:n) of length n the tridiagonal linear set given by equation (2.4.1).
a(1:n), b(1:n), c(1:n), and r(1:n) are input vectors and are not modified.
Parameter: NMAX is the maximum expected value of n.

INTEGER j
REAL bet,gam(NMAX) One vector of workspace, gam is needed.
if(b(1).eq.0.)pause ’tridag: rewrite equations’

If this happens then you should rewrite your equations as a set of order N − 1, with u2

trivially eliminated.
bet=b(1)
u(1)=r(1)/bet
do 11 j=2,n Decomposition and forward substitution.

gam(j)=c(j-1)/bet
bet=b(j)-a(j)*gam(j)
if(bet.eq.0.)pause ’tridag failed’ Algorithm fails; see below.
u(j)=(r(j)-a(j)*u(j-1))/bet

enddo 11

do 12 j=n-1,1,-1 Backsubstitution.
u(j)=u(j)-gam(j+1)*u(j+1)

enddo 12

return
END

There is no pivoting intridag. It is for this reason thattridag can fail
(pause) even when the underlying matrix is nonsingular: A zero pivot can be
encountered even for a nonsingular matrix. In practice, this is not something to lose
sleep about. The kinds of problems that lead to tridiagonal linear sets usually have
additional properties which guarantee that the algorithm intridag will succeed.
For example, if

|bj | > |aj |+ |cj | j = 1, . . . , N (2.4.2)

(calleddiagonal dominance) then it can be shown that the algorithmcannot encounter
a zero pivot.

It is possible to construct special examples in which the lack of pivoting in the
algorithm causes numerical instability. In practice, however, such instability is almost
never encountered — unlike the general matrix problem where pivoting is essential.

The tridiagonal algorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for whichtridag fails, you can instead use the more general method for
band diagonal systems, now described (routinesbandec andbanbks).

Some other matrix forms consisting of tridiagonal with a small number of
additional elements (e.g., upper right and lower left corners) also allow rapid
solution; see§2.7.

Band Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band diagonal systems are slightly more general and have (say)m1 ≥ 0 nonzero elements
immediately to the left of (below) the diagonal andm2 ≥ 0 nonzero elements immediately to
its right (above it). Of course, this is only a useful classification ifm1 andm2 are both≪ N .
In that case, the solution of the linear system byLU decomposition can beaccomplished
much faster, and in much less storage, than for the generalN ×N case.

44 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The precise definition of a band diagonal matrix with elementsaij is that

aij = 0 when j > i + m2 or i > j + m1 (2.4.3)

Band diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45◦ clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 + 1 + m2 columns andN rows. This is best illustrated by an example:
The band diagonal matrix

3 1 0 0 0 0 0
4 1 5 0 0 0 0
9 2 6 5 0 0 0
0 3 5 8 9 0 0
0 0 7 9 3 2 0
0 0 0 3 8 4 6
0 0 0 0 2 4 4

(2.4.4)

which hasN = 7, m1 = 2, andm2 = 1, is stored compactly as the7 × 4 matrix,

x x 3 1
x 4 1 5
9 2 6 5
3 5 8 9
7 9 3 2
3 8 4 6
2 4 4 x

(2.4.5)

Here x denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagonal
of the original matrix appears in columnm1 + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to its right. Although this is algorithmically trivial, you might wantto study
the following routine carefully, as an example of how to pull nonzero elementsaij out of the
compact storage format in an orderly fashion. Notice that, as always, the logical and physical
dimensions of a two-dimensional array can be different. Our convention is to passN , m1,
m2, and thephysicaldimensionsnp≥ N andmp≥ m1 + 1 + m2.

SUBROUTINE banmul(a,n,m1,m2,np,mp,x,b)
INTEGER m1,m2,mp,n,np
REAL a(np,mp),b(n),x(n)

Matrix multiply b = A · x, where A is band diagonal with m1 rows below the diagonal
and m2 rows above. The input vector x and output vector b are stored as x(1:n) and
b(1:n), respectively. The array a(1:n,1:m1+m2+1) stores A as follows: The diagonal
elements are in a(1:n,m1+1). Subdiagonal elements are in a(j:n,1:m1) (with j > 1

appropriate to the number of elements on each subdiagonal). Superdiagonal elements are
in a(1:j,m1+2:m1+m2+1) with j < n appropriate to the number of elements on each
superdiagonal.

INTEGER i,j,k
do 12 i=1,n

b(i)=0.
k=i-m1-1
do 11 j=max(1,1-k),min(m1+m2+1,n-k)

b(i)=b(i)+a(i,j)*x(j+k)
enddo 11

enddo 12

return
END

2.4 Tridiagonal and Band Diagonal Systems of Equations 45

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

It is not possible to store theLU decomposition of a band diagonal matrixA quite
as compactly as the compact form ofA itself. The decomposition (essentially by Crout’s
method, see§2.3) produces additional nonzero “fill-ins.” One straightforward storage scheme
is to return the upper triangular factor (U) in the same space thatA previously occupied, and
to return the lower triangular factor (L) in a separate compact matrix of sizeN × m1. The
diagonal elements ofU (whose product, timesd= ±1, gives the determinant) are returned
in the first column ofA’s storage space.

The following routine,bandec, is the band-diagonal analog ofludcmp in §2.3:

SUBROUTINE bandec(a,n,m1,m2,np,mp,al,mpl,indx,d)
INTEGER m1,m2,mp,mpl,n,np,indx(n)
REAL d,a(np,mp),al(np,mpl),TINY
PARAMETER (TINY=1.e-20)

Given an n × n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal
rows, compactly stored in the array a(1:n,1:m1+m2+1) as described in the comment for
routine banmul, this routine constructs an LU decomposition of a rowwise permutation
of A. The upper triangular matrix replaces a, while the lower triangular matrix is returned
in al(1:n,1:m1). indx(1:n) is an output vector which records the row permutation
effected by the partial pivoting; d is output as ±1 depending on whether the number of
row interchanges was even or odd, respectively. This routine is used in combination with
banbks to solve band-diagonal sets of equations.

INTEGER i,j,k,l,mm
REAL dum
mm=m1+m2+1
if(mm.gt.mp.or.m1.gt.mpl.or.n.gt.np) pause ’bad args in bandec’
l=m1
do 13 i=1,m1 Rearrange the storage a bit.

do 11 j=m1+2-i,mm
a(i,j-l)=a(i,j)

enddo 11

l=l-1
do 12 j=mm-l,mm

a(i,j)=0.
enddo 12

enddo 13

d=1.
l=m1
do 18 k=1,n For each row...

dum=a(k,1)
i=k
if(l.lt.n)l=l+1
do 14 j=k+1,l Find the pivot element.

if(abs(a(j,1)).gt.abs(dum))then
dum=a(j,1)
i=j

endif
enddo 14

indx(k)=i
if(dum.eq.0.) a(k,1)=TINY

Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in some
applications).

if(i.ne.k)then Interchange rows.
d=-d
do 15 j=1,mm

dum=a(k,j)
a(k,j)=a(i,j)
a(i,j)=dum

enddo 15

endif
do 17 i=k+1,l Do the elimination.

dum=a(i,1)/a(k,1)
al(k,i-k)=dum
do 16 j=2,mm

46 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

a(i,j-1)=a(i,j)-dum*a(k,j)
enddo 16

a(i,mm)=0.
enddo 17

enddo 18

return
END

Some pivoting is possible within the storage limitations ofbandec, and the above
routine does take advantage of the opportunity. In general, whenTINY is returned as a
diagonal element ofU , then the original matrix (perhaps as modified by roundoff error)
is in fact singular. In this regard,bandec is somewhat more robust thantridag above,
which can fail algorithmically even for nonsingular matrices;bandec is thus also useful (with
m1 = m2 = 1) for some ill-behaved tridiagonal systems.

Once the matrixA has been decomposed,any number of right-hand sides can be solved in
turn by repeated calls tobanbks, the backsubstitution routine whose analog in§2.3 islubksb.

SUBROUTINE banbks(a,n,m1,m2,np,mp,al,mpl,indx,b)
INTEGER m1,m2,mp,mpl,n,np,indx(n)
REAL a(np,mp),al(np,mpl),b(n)

Given the arrays a, al, and indx as returned from bandec, and given a right-hand side
vector b(1:n), solves the band diagonal linear equations A · x = b. The solution vector x
overwrites b(1:n). The other input arrays are not modified, and can be left in place for
successive calls with different right-hand sides.

INTEGER i,k,l,mm
REAL dum
mm=m1+m2+1
if(mm.gt.mp.or.m1.gt.mpl.or.n.gt.np) pause ’bad args in banbks’
l=m1
do 12 k=1,n Forward substitution, unscrambling the permuted rows as we

go.i=indx(k)
if(i.ne.k)then

dum=b(k)
b(k)=b(i)
b(i)=dum

endif
if(l.lt.n)l=l+1
do 11 i=k+1,l

b(i)=b(i)-al(k,i-k)*b(k)
enddo 11

enddo 12

l=1
do 14 i=n,1,-1 Backsubstitution.

dum=b(i)
do 13 k=2,l

dum=dum-a(i,k)*b(k+i-1)
enddo 13

b(i)=dum/a(i,1)
if(l.lt.mm) l=l+1

enddo 14

return
END

The routinesbandec and banbks are based on the Handbook routinesbandet1and
bansol1 in [1].

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell), p. 74.

2.5 Iterative Improvement of a Solution to Linear Equations 47

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Example 5.4.3, p. 166.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/6. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.3.

2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent thatyour matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) werefar from singular.

If this happens to you, there is a neat trick to restore the full machine precision,
callediterative improvementof the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vectorx is the exact solution of the linear set

A · x = b (2.5.1)

You don’t, however, knowx. You only know some slightly wrong solutionx + δx,
whereδx is the unknown error. When multipliedby the matrixA, your slightlywrong
solutiongives a product slightlydiscrepant fromthe desired right-handsideb, namely

A · (x + δx) = b + δb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A · δx = δb (2.5.3)

But (2.5.2) can also be solved, trivially, forδb. Substituting this into (2.5.3) gives

A · δx = A · (x + δx) − b (2.5.4)

In this equation, the whole right-hand side is known, sincex + δx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction ofb.
Then, we need only solve (2.5.4) for the errorδx, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution byLU

decomposition. In this case we already have theLU decomposed form ofA, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do all this is concise and straightforward:

2.5 Iterative Improvement of a Solution to Linear Equations 47

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Example 5.4.3, p. 166.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/6. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.3.

2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent thatyour matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) werefar from singular.

If this happens to you, there is a neat trick to restore the full machine precision,
callediterative improvementof the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vectorx is the exact solution of the linear set

A · x = b (2.5.1)

You don’t, however, knowx. You only know some slightly wrong solutionx + δx,
whereδx is the unknown error. When multipliedby the matrixA, your slightlywrong
solutiongives a product slightlydiscrepant fromthe desired right-handsideb, namely

A · (x + δx) = b + δb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A · δx = δb (2.5.3)

But (2.5.2) can also be solved, trivially, forδb. Substituting this into (2.5.3) gives

A · δx = A · (x + δx) − b (2.5.4)

In this equation, the whole right-hand side is known, sincex + δx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction ofb.
Then, we need only solve (2.5.4) for the errorδx, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution byLU

decomposition. In this case we already have theLU decomposed form ofA, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do all this is concise and straightforward:

48 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

A

A−1

δx

x +
 δx

x b
b + δb

δb

Figure 2.5.1. Iterative improvement of the solution toA · x = b. The first guessx + δx is multiplied by
A to produceb + δb. The known vectorb is subtracted, givingδb. The linear set with this right-hand
side is inverted, givingδx. This is subtracted from the first guess giving an improved solutionx.

SUBROUTINE mprove(a,alud,n,np,indx,b,x)
INTEGER n,np,indx(n),NMAX
REAL a(np,np),alud(np,np),b(n),x(n)
PARAMETER (NMAX=500) Maximum anticipated value of n.

C USES lubksb
Improves a solution vector x(1:n) of the linear set of equations A · X = B. The matrix
a(1:n,1:n), and the vectors b(1:n) and x(1:n) are input, as is the dimension n. Also
input is alud, the LU decomposition of a as returned by ludcmp, and the vector indx also
returned by that routine. On output, only x(1:n) is modified, to an improved set of values.

INTEGER i,j
REAL r(NMAX)
DOUBLE PRECISION sdp
do 12 i=1,n Calculate the right-hand side, accumulating the resid-

ual in double precision.sdp=-b(i)
do 11 j=1,n

sdp=sdp+dble(a(i,j))*dble(x(j))
enddo 11

r(i)=sdp
enddo 12

call lubksb(alud,n,np,indx,r) Solve for the error term,
do 13 i=1,n and subtract it from the old solution.

x(i)=x(i)-r(i)
enddo 13

return
END

You should note that the routineludcmp in §2.3 destroys the input matrix as it
LU decomposes it. Since iterative improvement requiresboth the original matrix
and itsLU decomposition, you will need to copyA before callingludcmp. Likewise
lubksb destroysb in obtainingx, so make a copy ofb also. If you don’t mind
this extra storage, iterative improvement ishighly recommended: It is a process
of order onlyN2 operations (multiply vector by matrix, and backsubstitute — see
discussion following equation 2.3.7); it never hurts; and it can really give you your
money’s worth if it saves an otherwise ruined solution on which you have already
spent of orderN3 operations.

2.5 Iterative Improvement of a Solution to Linear Equations 49

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

You can callmprove several times in succession if you want. Unless you are
starting quite far from the true solution, one call is generally enough; but a second
call to verify convergence can be reassuring.

More on Iterative Improvement

It is illuminating (and will be useful later in thebook) to give a somewhat more solid
analytical foundation for equation (2.5.4), and also to give some additional results. Implicit in
the previous discussion was the notion that the solution vectorx + δx has an error term; but
we neglected the fact that theLU decomposition ofA is itself not exact.

A different analytical approach starts with some matrixB0 that is assumed to be an
approximateinverse of the matrixA, so thatB0 · A is approximately the identity matrix1.
Define theresidual matrixR of B0 as

R ≡ 1− B0 · A (2.5.5)

which is supposed to be “small” (we will be more precise below). Note that therefore

B0 · A = 1− R (2.5.6)

Next consider the following formal manipulation:

A−1 = A−1 · (B−1
0 · B0) = (A−1 · B−1

0) · B0 = (B0 · A)−1 · B0

= (1− R)−1 · B0 = (1 + R + R2 + R3 + · · ·) · B0

(2.5.7)

We can define thenth partial sum of the last expression by

Bn ≡ (1 + R + · · · + Rn) · B0 (2.5.8)

so thatB∞ → A−1, if the limit exists.
It now is straightforward to verify that equation (2.5.8) satisfies some interesting

recurrence relations. As regards solvingA · x = b, wherex andb are vectors, define

xn ≡ Bn · b (2.5.9)

Then it is easy to show that

xn+1 = xn + B0 · (b − A · xn) (2.5.10)

This is immediately recognizable as equation (2.5.4), with−δx = xn+1 − xn, and withB0

taking the role ofA−1. We see, therefore, that equation (2.5.4) does not require that theLU
decompositon ofA be exact, but only that the implied residualR be small. In rough terms, if
the residual is smaller than the square root of your computer’s roundoff error, then after one
application of equation (2.5.10) (that is, going fromx0 ≡ B0 · b to x1) the first neglected term,
of orderR2, will be smaller than the roundoff error. Equation (2.5.10), like equation (2.5.4),
moreover, can be applied more than once, since it uses onlyB0, and not any of the higherB’s.

A much more surprising recurrence which follows from equation (2.5.8) is one that
more thandoublesthe ordern at each stage:

B2n+1 = 2Bn − Bn · A · Bn n = 0, 1, 3, 7, . . . (2.5.11)

Repeated application of equation (2.5.11), from a suitable starting matrixB0, converges
quadraticallyto the unknown inverse matrixA−1 (see§9.4 for the definition of “quadrati-
cally”). Equation (2.5.11) goes by various names, includingSchultz’s MethodandHotelling’s
Method; see Pan and Reif[1] for references. In fact, equation (2.5.11) is simply the iterative
Newton-Raphson method of root-finding (§9.4) applied to matrix inversion.

Before you get too excited about equation (2.5.11), however, you should notice that it
involves two full matrix multiplications ateach iteration. Each matrix multiplication involves
N3 adds and multiplies. But we already saw in§§2.1–2.3 that direct inversion ofA requires
only N3 adds andN3 multiplies in toto. Equation (2.5.11) is therefore practical only when
special circumstances allow it to be evaluated much more rapidly than is the case for general
matrices. We will meet such circumstances later, in§13.10.

50 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In the spirit of delayed gratification, let us nevertheless pursue the two related issues:
When does the series in equation (2.5.7) converge; and what is a suitable initial guessB0 (if,
for example, an initialLU decomposition is not feasible)?

We can define the norm of a matrix as the largest amplification of length that it is
able to induce on a vector,

‖R‖ ≡ max
v6=0

|R · v|
|v|

(2.5.12)

If we let equation (2.5.7) act on some arbitrary right-hand sideb, as one wants a matrix inverse
to do, it is obvious that a sufficient condition for convergence is

‖R‖ < 1 (2.5.13)

Pan and Reif[1] point out that a suitable initial guess forB0 is any sufficiently small constant
ǫ times the matrix transpose ofA, that is,

B0 = ǫAT or R = 1− ǫAT · A (2.5.14)

To see why this is so involves concepts from Chapter 11; we give here only the briefest
sketch:AT · A is a symmetric, positive definite matrix, so it has real, positive eigenvalues.
In its diagonal representation,R takes the form

R = diag(1− ǫλ1, 1 − ǫλ2, . . . , 1− ǫλN) (2.5.15)

where all theλi’s are positive. Evidently anyǫ satisfying0 < ǫ < 2/(maxi λi) will give
‖R‖ < 1. It is not difficult to show that the optimal choice forǫ, giving the most rapid
convergence for equation (2.5.11), is

ǫ = 2/(max
i

λi + min
i

λi) (2.5.16)

Rarely does one know the eigenvalues ofAT · A in equation (2.5.16). Pan and Reif
derive several interesting bounds, which are computable directly fromA. The following
choices guarantee the convergence ofBn asn → ∞,

ǫ ≤ 1

/

∑

j,k

a2
jk or ǫ ≤ 1

/(

max
i

∑

j

|aij | × max
j

∑

i

|aij |

)

(2.5.17)

The latter expression is truly a remarkable formula, which Pan and Reif derive bynoting that
the vector norm in equation (2.5.12) need not be the usualL2 norm, but can instead be either
theL∞ (max) norm, or theL1 (absolute value) norm. See their work for details.

Another approach, with which we have had some success, is to estimate the largest
eigenvalue statistically, by calculatingsi ≡ |A ·vi|2 for several unit vectorvi ’s with randomly
chosen directions inN -space. The largest eigenvalueλ can then be bounded by the maximum
of 2 max si and2NVar(si)/µ(si), where Var andµ denote the sample variance and mean,
respectively.

CITED REFERENCES AND FURTHER READING:

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.3.4, p. 55.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), p. 74.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§5.5.6, p. 183.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapter 13.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.5, p. 437.

Pan, V., and Reif, J. 1985, in Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing (New York: Association for Computing Machinery). [1]

2.6 Singular Value Decomposition 51

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

2.6 Singular Value Decomposition

There exists a very powerful set of techniques for dealing with sets of equations
or matrices that are either singular or else numerically very close to singular. In many
cases where Gaussian elimination andLU decomposition fail to give satisfactory
results, this set of techniques, known assingular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “the” answer
that you thought you should get.

SVD is also the method of choice for solving mostlinear least-squaresproblems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SVD methods are based on the following theorem of linear algebra, whose proof
is beyond our scope: AnyM ×N matrixA whose number of rowsM is greater than
or equal to its number of columnsN , can be written as the product of anM × N

column-orthogonal matrixU, anN × N diagonal matrixW with positive or zero
elements (thesingular values), and the transpose of anN ×N orthogonal matrixV.
The various shapes of these matrices will be made clearer by the following tableau:

A

=

U

·

w1

w2

· · ·

· · ·

wN

·

VT

(2.6.1)

The matricesU and V are each orthogonal in the sense that their columns are
orthonormal,

M
∑

i=1

UikUin = δkn
1 ≤ k ≤ N

1 ≤ n ≤ N
(2.6.2)

N
∑

j=1

VjkVjn = δkn
1 ≤ k ≤ N

1 ≤ n ≤ N
(2.6.3)

2.6 Singular Value Decomposition 51

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

2.6 Singular Value Decomposition

There exists a very powerful set of techniques for dealing with sets of equations
or matrices that are either singular or else numerically very close to singular. In many
cases where Gaussian elimination andLU decomposition fail to give satisfactory
results, this set of techniques, known assingular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “the” answer
that you thought you should get.

SVD is also the method of choice for solving mostlinear least-squaresproblems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SVD methods are based on the following theorem of linear algebra, whose proof
is beyond our scope: AnyM ×N matrixA whose number of rowsM is greater than
or equal to its number of columnsN , can be written as the product of anM × N
column-orthogonal matrixU, anN × N diagonal matrixW with positive or zero
elements (thesingular values), and the transpose of anN ×N orthogonal matrixV.
The various shapes of these matrices will be made clearer by the following tableau:

A

=

U

·

w1

w2

· · ·

· · ·

wN

·

VT

(2.6.1)

The matricesU and V are each orthogonal in the sense that their columns are
orthonormal,

M
∑

i=1

UikUin = δkn
1 ≤ k ≤ N

1 ≤ n ≤ N
(2.6.2)

N
∑

j=1

VjkVjn = δkn
1 ≤ k ≤ N

1 ≤ n ≤ N
(2.6.3)

52 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

or as a tableau,

UT

·

U

=

VT

·

V

=

1

(2.6.4)

SinceV is square, it is also row-orthonormal,V · VT = 1.
The SVD decomposition can also be carried out whenM < N . In this case

the singular valueswj for j = M + 1, . . . , N are all zero, and the corresponding
columns ofU are also zero. Equation (2.6.2) then holds only fork, n ≤ M .

The decomposition (2.6.1) can always be done, no matter how singular the
matrix is, and it is “almost” unique. That is to say, it is unique up to (i) making
the same permutation of the columns ofU, elements ofW, and columns ofV (or
rows ofVT), or (ii) forming linear combinations of any columns ofU andV whose
corresponding elements ofW happen to be exactly equal. An important consequence
of the permutation freedom is that for the caseM < N , a numerical algorithm for
the decomposition need not return zerowj ’s for j = M + 1, . . . , N ; theN − M
zero singular values can be scattered among all positionsj = 1, 2, . . . , N .

At the end of this section, we give a routine,svdcmp, that performs SVD on an
arbitrary matrixA, replacing it byU (they are the same shape) and returningW and
V separately. The routinesvdcmp is based on a routine by Forsythe et al.[1], which
is in turn based on the original routine of Golub and Reinsch, found, in various
forms, in[2-4] and elsewhere. These references include extensive discussion of the
algorithm used. As much as we dislike the use of black-box routines, we are going to
ask you to accept this one, since it would take us too far afield to cover its necessary
background material here. Suffice it to say that the algorithm is very stable, and
that it is very unusual for it ever to misbehave. Most of the concepts that enter
the algorithm (Householder reduction to bidiagonal form, diagonalization byQR
procedure with shifts) will be discussed further in Chapter 11.

If you are as suspicious of black boxes as we are, you will want to verify yourself
thatsvdcmp does what we say it does. That is very easy to do: Generate an arbitrary
matrix A, call the routine, and then verify by matrix multiplication that (2.6.1) and
(2.6.4) are satisfied. Since these two equations are the only defining requirements
for SVD, this procedure is (for the chosenA) a complete end-to-end check.

Now let us find out what SVD is good for.

2.6 Singular Value Decomposition 53

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SVD of a Square Matrix

If the matrixA is square,N ×N say, thenU, V, andW are all square matrices
of the same size. Their inverses are also trivial to compute:U andV are orthogonal,
so their inverses are equal to their transposes;W is diagonal, so its inverse is the
diagonal matrix whose elements are the reciprocals of the elementswj. From (2.6.1)
it now follows immediately that the inverse ofA is

A−1 = V · [diag(1/wj)] · UT (2.6.5)

The only thing that can go wrong with this construction is for one of thewj ’s
to be zero, or (numerically) for it to be so small that its value is dominated by
roundoff error and therefore unknowable. If more than one of thewj ’s have this
problem, then the matrix is even more singular. So, first of all, SVD gives you a
clear diagnosis of the situation.

Formally, thecondition numberof a matrix is defined as the ratio of the largest
(in magnitude) of thewj ’s to the smallest of thewj ’s. A matrix is singular if its
condition number is infinite, and it isill-conditionedif its condition number is too
large, that is, if its reciprocal approaches the machine’s floating-point precision (for
example, less than10−6 for single precision or10−12 for double).

For singular matrices, the concepts ofnullspaceand range are important.
Consider the familiar set of simultaneous equations

A · x = b (2.6.6)

whereA is a square matrix,b andx are vectors. Equation (2.6.6) definesA as a
linear mapping from the vector spacex to the vector spaceb. If A is singular, then
there is some subspace ofx, called the nullspace, that is mapped to zero,A · x = 0.
The dimension of the nullspace (the number of linearly independent vectorsx that
can be found in it) is called thenullity of A.

Now, there is also some subspace ofb that can be “reached” byA, in the sense
that there exists somex which is mapped there. This subspace ofb is called the range
of A. The dimension of the range is called therankof A. If A is nonsingular, then its
range will be all of the vector spaceb, so its rank isN . If A is singular, then the rank
will be less thanN . In fact, the relevant theorem is “rank plus nullity equalsN .”

What has this to do with SVD? SVD explicitly constructs orthonormal bases
for the nullspace and range of a matrix. Specifically, the columns ofU whose
same-numbered elementswj arenonzeroare an orthonormal set of basis vectors that
span the range; the columns ofV whose same-numbered elementswj arezeroare
an orthonormal basis for the nullspace.

Now let’s have another look at solving the set of simultaneous linear equations
(2.6.6) in the case thatA is singular. First, the set ofhomogeneousequations, where
b = 0, is solved immediately by SVD: Any column ofV whose correspondingwj

is zero yields a solution.
When the vectorb on the right-hand side is not zero, the important question is

whether it lies in the range ofA or not. If it does, then the singular set of equations
doeshave a solutionx; in fact it has more than one solution, since any vector in
the nullspace (any column ofV with a corresponding zerowj) can be added tox
in any linear combination.

54 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If we want to single out one particular member of this solution-set of vectors as
a representative, we might want to pick the one with the smallest length|x|2. Here is
how to find that vector using SVD: Simplyreplace1/wj by zero ifwj = 0. (It is not
very often that one gets to set∞ = 0 !) Then compute (working from right to left)

x = V · [diag(1/wj)] · (UT · b) (2.6.7)

This will be the solution vector of smallest length; the columns ofV that are in the
nullspace complete the specification of the solution set.

Proof: Consider|x + x′|, wherex′ lies in the nullspace. Then, ifW−1 denotes
the modified inverse ofW with some elements zeroed,

|x + x′| =
∣

∣V · W−1 · UT · b + x′
∣

∣

=
∣

∣V · (W−1 · UT · b + VT · x′)
∣

∣

=
∣

∣W−1 · UT · b + VT · x′
∣

∣

(2.6.8)

Here the first equality follows from (2.6.7), the second and third from the orthonor-
mality of V. If you now examine the two terms that make up the sum on the
right-hand side, you will see that the first one has nonzeroj components only where
wj 6= 0, while the second one, sincex′ is in the nullspace, hasnonzeroj components
only wherewj = 0. Therefore the minimum length obtains forx′ = 0, q.e.d.

If b is not in the range of the singular matrixA, then the set of equations (2.6.6)
has no solution. But here is some good news: Ifb is not in the range ofA, then
equation (2.6.7) can still be used to construct a “solution” vectorx. This vectorx
will not exactly solveA · x = b. But, among all possible vectorsx, it will do the
closest possible job in the least squares sense. In other words (2.6.7) finds

x which minimizes r ≡ |A · x − b| (2.6.9)

The numberr is called theresidual of the solution.
The proof is similar to (2.6.8): Suppose we modifyx by adding some arbitrary

x′. ThenA · x − b is modified by adding someb′ ≡ A · x′. Obviouslyb′ is in
the range ofA. We then have

∣

∣A · x − b + b′
∣

∣ =
∣

∣(U · W · VT) · (V · W−1 · UT · b) − b + b′
∣

∣

=
∣

∣(U · W · W−1 · UT − 1) · b + b′
∣

∣

=
∣

∣U ·
[

(W · W−1 − 1) · UT · b + UT · b′
]∣

∣

=
∣

∣(W · W−1 − 1) · UT · b + UT · b′
∣

∣

(2.6.10)

Now, (W · W−1 − 1) is a diagonal matrix which has nonzeroj components only for
wj = 0, while UTb′ has nonzeroj components only forwj 6= 0, sinceb′ lies in the
range ofA. Therefore the minimum obtains forb′ = 0, q.e.d.

Figure 2.6.1 summarizes our discussion of SVD thus far.

2.6 Singular Value Decomposition 55

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

A ⋅ x = b

SVD “solution”
of A ⋅ x = c

solutions of
A ⋅ x = c′solutions of

A ⋅ x = d

null
space
of A

SVD solution of
A ⋅ x = d

range of A

d
c

(b)

(a)

A

x b

c′

Figure 2.6.1. (a) A nonsingular matrixA maps a vector space into one of the same dimension. The
vectorx is mapped intob, so thatx satisfies the equationA · x = b. (b) A singular matrixA maps a
vector space into one of lower dimensionality, here a plane into a line,called the “range” ofA. The
“nullspace” ofA is mapped to zero. The solutions ofA · x = d consist of any one particular solution plus
any vector in the nullspace, here forming a line parallel to the nullspace. Singular value decomposition
(SVD) selects the particular solution closest to zero, as shown. The pointc lies outside of the range
of A, so A · x = c has no solution. SVD finds the least-squares best compromise solution, namely a
solution of A · x = c′, as shown.

In the discussion since equation (2.6.6), we have been pretending that a matrix
either is singular or else isn’t. That is of course true analytically. Numerically,
however, the far more common situation is that some of thewj ’s are very small
but nonzero, so that the matrix is ill-conditioned. In that case, the direct solution
methods ofLU decomposition or Gaussian elimination may actually give a formal
solution to the set of equations (that is, a zero pivot may not be encountered); but
the solution vector may have wildly large components whose algebraic cancellation,
when multiplying by the matrixA, may give a very poor approximation to the
right-hand vectorb. In such cases, the solution vectorx obtained byzeroingthe

56 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

smallwj ’s and then using equation (2.6.7) is very often better (in the sense of the
residual|A · x − b| being smaller) thanboththe direct-method solutionandthe SVD
solution where the smallwj ’s are left nonzero.

It may seem paradoxical that this can be so, since zeroing a singular value
corresponds to throwing away one linear combination of the set of equations that
we are trying to solve. The resolution of the paradox is that we are throwing away
precisely a combination of equations that is so corrupted by roundoff error as to be at
best useless; usually it is worse than useless since it “pulls” the solution vector way
off towards infinity along some direction that is almost a nullspace vector. In doing
this, it compounds the roundoff problem and makes the residual|A · x − b| larger.

SVD cannot be applied blindly, then. You have to exercise some discretion in
deciding at what threshold to zero the smallwj ’s, and/or you have to have some idea
what size of computed residual|A · x − b| is acceptable.

As an example, here is a “backsubstitution” routinesvbksb for evaluating
equation (2.6.7) and obtaining a solution vectorx from a right-hand sideb, given
that the SVD of a matrixA has already been calculated by a call tosvdcmp. Note
that this routine presumes thatyouhave already zeroed the smallwj ’s. It does not
do this for you. If youhaven’t zeroed the smallwj ’s, then this routine is just as
ill-conditioned as any direct method, and you are misusing SVD.

SUBROUTINE svbksb(u,w,v,m,n,mp,np,b,x)
INTEGER m,mp,n,np,NMAX
REAL b(mp),u(mp,np),v(np,np),w(np),x(np)
PARAMETER (NMAX=500) Maximum anticipated value of n.

Solves A ·X = B for a vector X , where A is specified by the arrays u, w, v as returned by
svdcmp. m and n are the logical dimensions of a, and will be equal for square matrices. mp
and np are the physical dimensions of a. b(1:m) is the input right-hand side. x(1:n) is
the output solution vector. No input quantities are destroyed, so the routine may be called
sequentially with different b’s.

INTEGER i,j,jj
REAL s,tmp(NMAX)
do 12 j=1,n Calculate UTB.

s=0.
if(w(j).ne.0.)then Nonzero result only if wj is nonzero.

do 11 i=1,m
s=s+u(i,j)*b(i)

enddo 11

s=s/w(j) This is the divide by wj .
endif
tmp(j)=s

enddo 12

do 14 j=1,n Matrix multiply by V to get answer.
s=0.
do 13 jj=1,n

s=s+v(j,jj)*tmp(jj)
enddo 13

x(j)=s
enddo 14

return
END

Note that a typical use ofsvdcmp and svbksb superficially resembles the
typical use ofludcmp and lubksb: In both cases, you decompose the left-hand
matrix A just once, and then can use the decomposition either once or many times
with different right-hand sides. The crucial difference is the “editing” of the singular

2.6 Singular Value Decomposition 57

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

values beforesvbksb is called:

REAL a(np,np),u(np,np),w(np),v(np,np),b(np),x(np)
...
do 12 i=1,n Copy a into u if you don’t want it to be destroyed.

do 11 j=1,n
u(i,j)=a(i,j)

enddo 11

enddo 12

call svdcmp(u,n,n,np,np,w,v) SVD the square matrix a.
wmax=0. Will be the maximum singular value obtained.
do 13 j=1,n

if(w(j).gt.wmax)wmax=w(j)
enddo 13

wmin=wmax*1.0e-6 This is where we set the threshold for singular values
allowed to be nonzero. The constant is typical,
but not universal. You have to experiment with
your own application.

do 14 j=1,n
if(w(j).lt.wmin)w(j)=0.

enddo 14

call svbksb(u,w,v,n,n,np,np,b,x) Now we can backsubstitute.

SVD for Fewer Equations than Unknowns

If you have fewer linear equationsM than unknownsN , then you are not
expecting a unique solution. Usually there will be anN −M dimensional family
of solutions. If you want to find this whole solution space, then SVD can readily
do the job.

The SVD decomposition will yieldN − M zero or negligiblewj ’s, since
M < N . There may be additional zerowj ’s from any degeneracies in yourM
equations. Be sure that you find this many smallwj ’s, and zero them before calling
svbksb, which will give you the particular solution vectorx. As before, the columns
of V corresponding to zeroedwj ’s are the basis vectors whose linear combinations,
added to the particular solution, span the solution space.

SVD for More Equations than Unknowns

This situation will occur in Chapter 15, when we wish to find the least-squares
solution to an overdetermined set of linear equations. In tableau, the equations
to be solved are

A

·

x

=

b

(2.6.11)

The proofs that we gave above for the square case apply without modification
to the case of more equations than unknowns. The least-squares solution vectorx is

58 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

given by (2.6.7), which, with nonsquare matrices, looks like this,

x

=

V

·

diag(1/wj)

·

UT

·

b

(2.6.12)

In general, the matrixW will not be singular, and nowj ’s will need to be
set to zero. Occasionally, however, there might be column degeneracies inA. In
this case you will need to zero some smallwj values after all. The corresponding
column inV gives the linear combination ofx’s that is then ill-determined even by
the supposedly overdetermined set.

Sometimes, although you do not need to zero anywj ’s for computational
reasons, you may nevertheless want to take note of any that are unusually small:
Their corresponding columns inV are linear combinations ofx’s which are insensitive
to your data. In fact, you may then wish to zero thesewj ’s, to reduce the number of
free parameters in the fit. These matters are discussed more fully in Chapter 15.

Constructing an Orthonormal Basis

Suppose that you haveN vectors in anM -dimensional vector space, with
N ≤ M . Then theN vectors span some subspace of the full vector space.
Often you want to construct an orthonormal set ofN vectors that span the same
subspace. The textbook way to do this is by Gram-Schmidt orthogonalization,
starting with one vector and then expanding the subspace one dimension at a
time. Numerically, however, because of the build-up of roundoff errors, naive
Gram-Schmidt orthogonalization isterrible.

The right way to construct an orthonormal basis for a subspace is by SVD:
Form anM × N matrix A whoseN columns are your vectors. Run the matrix
throughsvdcmp. The columns of the matrixU (which in fact replacesA on output
from svdcmp) are your desired orthonormal basis vectors.

You might also want to check the outputwj ’s for zero values. If any occur,
then the spanned subspace was not, in fact,N dimensional; the columns ofU
corresponding to zerowj ’s should be discarded from the orthonormal basis set.

(QR factorization, discussed in§2.10, also constructs an orthonormal basis,
see[5].)

Approximation of Matrices

Note that equation (2.6.1) can be rewritten to express any matrixAij as a sum
of outer products of columns ofU and rows ofVT , with the “weighting factors”
being the singular valueswj,

Aij =

N
∑

k=1

wk UikVjk (2.6.13)

2.6 Singular Value Decomposition 59

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If you ever encounter a situation wheremostof the singular valueswj of a
matrixA are very small, thenA will be well-approximated by only a few terms in the
sum (2.6.13). This means that you have to store only a few columns ofU andV (the
samek ones) and you will be able to recover, with goodaccuracy, the whole matrix.

Note also that it is very efficient to multiply such an approximated matrix by a
vectorx: You just dotx with each of the stored columns ofV, multiply the resulting
scalar by the correspondingwk, and accumulate that multiple of the corresponding
column of U. If your matrix is approximated by a small numberK of singular
values, then this computation ofA · x takes only aboutK(M + N) multiplications,
instead ofMN for the full matrix.

SVD Algorithm

Here is the algorithm for constructing the singular value decomposition of any
matrix. See§11.2–§11.3, and also[4-5], for discussion relating to the underlying
method.

SUBROUTINE svdcmp(a,m,n,mp,np,w,v)
INTEGER m,mp,n,np,NMAX
REAL a(mp,np),v(np,np),w(np)
PARAMETER (NMAX=500) Maximum anticipated value of n.

C USES pythag
Given a matrix a(1:m,1:n), with physical dimensions mp by np, this routine computes its
singular value decomposition, A = U ·W · V T . The matrix U replaces a on output. The
diagonal matrix of singular values W is output as a vector w(1:n). The matrix V (not the
transpose V T) is output as v(1:n,1:n).

INTEGER i,its,j,jj,k,l,nm
REAL anorm,c,f,g,h,s,scale,x,y,z,rv1(NMAX),pythag
g=0.0 Householder reduction to bidiagonal form.
scale=0.0
anorm=0.0
do 25 i=1,n

l=i+1
rv1(i)=scale*g
g=0.0
s=0.0
scale=0.0
if(i.le.m)then

do 11 k=i,m
scale=scale+abs(a(k,i))

enddo 11

if(scale.ne.0.0)then
do 12 k=i,m

a(k,i)=a(k,i)/scale
s=s+a(k,i)*a(k,i)

enddo 12

f=a(i,i)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,i)=f-g
do 15 j=l,n

s=0.0
do 13 k=i,m

s=s+a(k,i)*a(k,j)
enddo 13

f=s/h
do 14 k=i,m

a(k,j)=a(k,j)+f*a(k,i)
enddo 14

60 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 15

do 16 k=i,m
a(k,i)=scale*a(k,i)

enddo 16

endif
endif
w(i)=scale *g
g=0.0
s=0.0
scale=0.0
if((i.le.m).and.(i.ne.n))then

do 17 k=l,n
scale=scale+abs(a(i,k))

enddo 17

if(scale.ne.0.0)then
do 18 k=l,n

a(i,k)=a(i,k)/scale
s=s+a(i,k)*a(i,k)

enddo 18

f=a(i,l)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,l)=f-g
do 19 k=l,n

rv1(k)=a(i,k)/h
enddo 19

do 23 j=l,m
s=0.0
do 21 k=l,n

s=s+a(j,k)*a(i,k)
enddo 21

do 22 k=l,n
a(j,k)=a(j,k)+s*rv1(k)

enddo 22

enddo 23

do 24 k=l,n
a(i,k)=scale*a(i,k)

enddo 24

endif
endif
anorm=max(anorm,(abs(w(i))+abs(rv1(i))))

enddo 25

do 32 i=n,1,-1 Accumulation of right-hand transformations.
if(i.lt.n)then

if(g.ne.0.0)then
do 26 j=l,n Double division to avoid possible underflow.

v(j,i)=(a(i,j)/a(i,l))/g
enddo 26

do 29 j=l,n
s=0.0
do 27 k=l,n

s=s+a(i,k)*v(k,j)
enddo 27

do 28 k=l,n
v(k,j)=v(k,j)+s*v(k,i)

enddo 28

enddo 29

endif
do 31 j=l,n

v(i,j)=0.0
v(j,i)=0.0

enddo 31

endif
v(i,i)=1.0

2.6 Singular Value Decomposition 61

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

g=rv1(i)
l=i

enddo 32

do 39 i=min(m,n),1,-1 Accumulation of left-hand transformations.
l=i+1
g=w(i)
do 33 j=l,n

a(i,j)=0.0
enddo 33

if(g.ne.0.0)then
g=1.0/g
do 36 j=l,n

s=0.0
do 34 k=l,m

s=s+a(k,i)*a(k,j)
enddo 34

f=(s/a(i,i))*g
do 35 k=i,m

a(k,j)=a(k,j)+f*a(k,i)
enddo 35

enddo 36

do 37 j=i,m
a(j,i)=a(j,i)*g

enddo 37

else
do 38 j= i,m

a(j,i)=0.0
enddo 38

endif
a(i,i)=a(i,i)+1.0

enddo 39

do 49 k=n,1,-1 Diagonalization of the bidiagonal form: Loop over
singular values, and over allowed iterations.do 48 its=1,30

do 41 l=k,1,-1 Test for splitting.
nm=l-1 Note that rv1(1) is always zero.
if((abs(rv1(l))+anorm).eq.anorm) goto 2
if((abs(w(nm))+anorm).eq.anorm) goto 1

enddo 41

1 c=0.0 Cancellation of rv1(l), if l > 1.
s=1.0
do 43 i=l,k

f=s*rv1(i)
rv1(i)=c*rv1(i)
if((abs(f)+anorm).eq.anorm) goto 2
g=w(i)
h=pythag(f,g)
w(i)=h
h=1.0/h
c= (g*h)
s=-(f*h)
do 42 j=1,m

y=a(j,nm)
z=a(j,i)
a(j,nm)=(y*c)+(z*s)
a(j,i)=-(y*s)+(z*c)

enddo 42

enddo 43

2 z=w(k)
if(l.eq.k)then Convergence.

if(z.lt.0.0)then Singular value is made nonnegative.
w(k)=-z
do 44 j=1,n

v(j,k)=-v(j,k)
enddo 44

62 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
goto 3

endif
if(its.eq.30) pause ’no convergence in svdcmp’
x=w(l) Shift from bottom 2-by-2 minor.
nm=k-1
y=w(nm)
g=rv1(nm)
h=rv1(k)
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y)
g=pythag(f,1.0)
f=((x-z)*(x+z)+h*((y/(f+sign(g,f)))-h))/x
c=1.0 Next QR transformation:
s=1.0
do 47 j=l,nm

i=j+1
g=rv1(i)
y=w(i)
h=s*g
g=c*g
z=pythag(f,h)
rv1(j)=z
c=f/z
s=h/z
f= (x*c)+(g*s)
g=-(x*s)+(g*c)
h=y*s
y=y*c
do 45 jj=1,n

x=v(jj,j)
z=v(jj,i)
v(jj,j)= (x*c)+(z*s)
v(jj,i)=-(x*s)+(z*c)

enddo 45

z=pythag(f,h)
w(j)=z Rotation can be arbitrary if z = 0.
if(z.ne.0.0)then

z=1.0/z
c=f*z
s=h*z

endif
f= (c*g)+(s*y)
x=-(s*g)+(c*y)
do 46 jj=1,m

y=a(jj,j)
z=a(jj,i)
a(jj,j)= (y*c)+(z*s)
a(jj,i)=-(y*s)+(z*c)

enddo 46

enddo 47

rv1(l)=0.0
rv1(k)=f
w(k)=x

enddo 48

3 continue
enddo 49

return
END

FUNCTION pythag(a,b)
REAL a,b,pythag

Computes (a2 + b2)1/2 without destructive underflow or overflow.

2.7 Sparse Linear Systems 63

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

REAL absa,absb
absa=abs(a)
absb=abs(b)
if(absa.gt.absb)then

pythag=absa*sqrt(1.+(absb/absa)**2)
else

if(absb.eq.0.)then
pythag=0.

else
pythag=absb*sqrt(1.+(absa/absb)**2)

endif
endif
return
END

(Double precision versions ofsvdcmp, svbksb, and pythag, nameddsvdcmp,
dsvbksb, anddpythag, are used by the routineratlsq in §5.13. You can easily
make the conversions, or else get the converted routines from theNumerical Recipes
diskette.)

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.3 and Chapter 12.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall), Chapter 18.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I.10 by G.H. Golub and C. Reinsch. [2]

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.), Chapter 11. [3]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.7. [4]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §5.2.6. [5]

2.7 Sparse Linear Systems

A system of linear equations is calledsparseif only a relatively small number
of its matrix elementsaij are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of theO(N3) arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not always compatible) goals for any sparse
matrix method: saving time and/or saving space.

We have already considered one archetypal sparse form in§2.4, the band
diagonal matrix. In the tridiagonal case, e.g., we saw that it was possible to save

2.7 Sparse Linear Systems 63

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

REAL absa,absb
absa=abs(a)
absb=abs(b)
if(absa.gt.absb)then

pythag=absa*sqrt(1.+(absb/absa)**2)
else

if(absb.eq.0.)then
pythag=0.

else
pythag=absb*sqrt(1.+(absa/absb)**2)

endif
endif
return
END

(Double precision versions ofsvdcmp, svbksb, and pythag, nameddsvdcmp,
dsvbksb, anddpythag, are used by the routineratlsq in §5.13. You can easily
make the conversions, or else get the converted routines from theNumerical Recipes
diskette.)

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.3 and Chapter 12.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall), Chapter 18.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I.10 by G.H. Golub and C. Reinsch. [2]

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.), Chapter 11. [3]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.7. [4]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §5.2.6. [5]

2.7 Sparse Linear Systems

A system of linear equations is calledsparseif only a relatively small number
of its matrix elementsaij are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of theO(N3) arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not always compatible) goals for any sparse
matrix method: saving time and/or saving space.

We have already considered one archetypal sparse form in§2.4, the band
diagonal matrix. In the tridiagonal case, e.g., we saw that it was possible to save

64 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

both time (orderN instead ofN3) and space (orderN instead ofN2). The
method of solution was not different in principle from the general method ofLU
decomposition; it was just applied cleverly, and with due attention to the bookkeeping
of zero elements. Many practical schemes for dealing with sparse problems have this
same character. They are fundamentally decomposition schemes, or else elimination
schemes akin to Gauss-Jordan, but carefully optimized so as to minimize the number
of so-calledfill-ins, initially zero elements which must become nonzero during the
solution process, and for which storage must be reserved.

Direct methods for solving sparse equations, then, depend crucially on the
precise pattern of sparsity of the matrix. Patterns that occur frequently, or that are
useful as way-stations in the reduction of more general forms, already have special
names and special methods of solution. We do not have space here for any detailed
review of these. References listed at the end of this section will furnish you with an
“in” to the specialized literature, and the following list of buzz words (and Figure
2.7.1) will at least let you hold your own at cocktail parties:

• tridiagonal
• band diagonal (or banded) with bandwidthM
• band triangular
• block diagonal
• block tridiagonal
• block triangular
• cyclic banded
• singly (or doubly) bordered block diagonal
• singly (or doubly) bordered block triangular
• singly (or doubly) bordered band diagonal
• singly (or doubly) bordered band triangular
• other (!)

You should also be aware of some of the special sparse forms that occur in the
solution of partial differential equations in two or more dimensions. See Chapter 19.

If your particular pattern of sparsity is not a simple one, then you may wish to
try ananalyze/factorize/operatepackage, which automates the procedure of figuring
out how fill-ins are to be minimized. Theanalyzestage is done once only foreach
pattern of sparsity. Thefactorizestage is done once foreach particular matrix that
fits the pattern. Theoperatestage is performed once for each right-hand side to
be used with the particular matrix. Consult[2,3] for references on this. The NAG
library [4] has an analyze/factorize/operate capability. A substantial collection of
routines for sparse matrix calculation is also available from IMSL[5] as theYale
Sparse Matrix Package[6].

You should be aware that the special order of interchanges and eliminations,
prescribed by a sparse matrix method so as to minimize fill-ins and arithmetic
operations, generally acts to decrease the method’s numerical stability as compared
to, e.g., regularLU decomposition with pivoting. Scaling your problem so as to
make its nonzero matrix elements have comparable magnitudes (if you can do it)
will sometimes ameliorate this problem.

In the remainder of this section, we present some concepts which are applicable
to some general classes of sparse matrices, and which do not necessarily depend on
details of the pattern of sparsity.

2.7 Sparse Linear Systems 65

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

zeros

zeros

zeros

Figure 2.7.1. Some standard forms for sparse matrices. (a) Band diagonal; (b) block triangular; (c) block
tridiagonal; (d) singly bordered block diagonal; (e) doubly bordered block diagonal; (f) singly bordered
block triangular; (g) bordered band-triangular; (h) and (i) singly and doubly bordered band diagonal; (j)
and (k) other! (after Tewarson)[1].

Sherman-Morrison Formula

Suppose that you have already obtained, by herculean effort, the inverse matrix
A−1 of a square matrixA. Now you want to make a “small” change inA, for
example change one elementaij, or a few elements, or one row, or one column.
Is there any way of calculating the corresponding change inA−1 without repeating

66 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

your difficult labors? Yes, if your change is of the form

A → (A + u ⊗ v) (2.7.1)

for some vectorsu andv. If u is a unit vectorei, then (2.7.1) adds the components
of v to theith row. (Recall thatu ⊗ v is a matrix whosei, jth element is the product
of theith component ofu and thejth component ofv.) If v is a unit vectorej , then
(2.7.1) adds the components ofu to thejth column. If bothu andv are proportional
to unit vectorsei andej respectively, then a term is added only to the elementaij .

TheSherman-Morrisonformula gives the inverse(A +u⊗v)−1, and is derived
briefly as follows:

(A + u ⊗ v)−1 = (1 + A−1 · u ⊗ v)−1 · A−1

= (1− A−1 · u ⊗ v + A−1 · u ⊗ v · A−1 · u ⊗ v − . . .) · A−1

= A−1 − A−1 · u ⊗ v · A−1 (1 − λ + λ2 − . . .)

= A−1 −
(A−1 · u) ⊗ (v · A−1)

1 + λ
(2.7.2)

where

λ ≡ v · A−1 · u (2.7.3)

The second line of (2.7.2) is a formal power series expansion. In the third line, the
associativity of outer and inner products is used to factor out the scalarsλ.

The use of (2.7.2) is this: GivenA−1 and the vectorsu andv, we need only
perform two matrix multiplications and a vector dot product,

z ≡ A−1 · u w ≡ (A−1)T · v λ = v · z (2.7.4)

to get the desired change in the inverse

A−1 → A−1 −
z⊗ w
1 + λ

(2.7.5)

The whole procedure requires only3N2 multiplies and a like number of adds (an
even smaller number ifu or v is a unit vector).

The Sherman-Morrison formula can be directly applied to a class of sparse
problems. If you already have a fast way of calculating the inverse ofA (e.g., a
tridiagonal matrix, or some other standard sparse form), then (2.7.4)–(2.7.5) allow
you to build up to your related but more complicated form, adding for example a
row or column at a time. Notice that you can apply the Sherman-Morrison formula
more than once successively, using at each stage the most recentupdate ofA−1

(equation 2.7.5). Of course, if you have to modifyeveryrow, then you are back to
anN3 method. The constant in front of theN3 is only a few times worse than the
better direct methods, but you have deprived yourself of the stabilizing advantages
of pivoting — so be careful.

For some other sparse problems, the Sherman-Morrison formula cannot be
directly applied for the simple reason that storage of the whole inverse matrixA−1

2.7 Sparse Linear Systems 67

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

is not feasible. If you want to add only a single correction of the formu ⊗ v,
and solve the linear system

(A + u ⊗ v) · x = b (2.7.6)

then you proceed as follows. Using the fast method that is presumed available for
the matrixA, solve the two auxiliary problems

A · y = b A · z = u (2.7.7)

for the vectorsy and z. In terms of these,

x = y −

[
v · y

1 + (v · z)

]
z (2.7.8)

as we see by multiplying (2.7.2) on the right byb.

Cyclic Tridiagonal Systems

So-calledcyclic tridiagonal systemsoccur quite frequently, and are a good
example of how to use the Sherman-Morrison formula in the manner just described.
The equations have the form

b1 c1 0 · · · β
a2 b2 c2 · · ·

· · ·

· · · aN−1 bN−1 cN−1

α · · · 0 aN bN

 ·

x1

x2

· · ·

xN−1

xN

 =

r1
r2
· · ·

rN−1

rN

 (2.7.9)

This is a tridiagonal system, except for the matrix elementsα andβ in the corners.
Forms like this are typically generated by finite-differencing differential equations
with periodic boundary conditions (§19.4).

We use the Sherman-Morrison formula, treating the system as tridiagonal plus
a correction. In the notation of equation (2.7.6), define vectorsu andv to be

u =

γ
0
...
0
α

v =

1
0
...
0

β/γ

(2.7.10)

Hereγ is arbitrary for the moment. Then the matrixA is the tridiagonal part of the
matrix in (2.7.9), with two terms modified:

b′1 = b1 − γ, b′N = bN − αβ/γ (2.7.11)

We now solve equations (2.7.7) with the standard tridiagonal algorithm, and then
get the solution from equation (2.7.8).

The routinecyclic below implements this algorithm. We choose the arbitrary
parameterγ = −b1 to avoid loss of precision by subtraction in the first of equations
(2.7.11). In the unlikely event that this causes loss of precision in the second of
these equations, you can make a different choice.

68 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE cyclic(a,b,c,alpha,beta,r,x,n)
INTEGER n,NMAX
REAL alpha,beta,a(n),b(n),c(n),r(n),x(n)
PARAMETER (NMAX=500)

C USES tridag
Solves for a vector x(1:n) the “cyclic” set of linear equations given by equation (2.7.9).
a, b, c, and r are input vectors, while alpha and beta are the corner entries in the matrix.
The input is not modified.

INTEGER i
REAL fact,gamma,bb(NMAX),u(NMAX),z(NMAX)
if(n.le.2)pause ’n too small in cyclic’
if(n.gt.NMAX)pause ’NMAX too small in cyclic’
gamma=-b(1) Avoid subtraction error in forming bb(1).
bb(1)=b(1)-gamma Set up the diagonal of the modified tridiagonal system.
bb(n)=b(n)-alpha*beta/gamma
do 11 i=2,n-1

bb(i)=b(i)
enddo 11

call tridag(a,bb,c,r,x,n) Solve A · x = r .
u(1)=gamma Set up the vector u.
u(n)=alpha
do 12 i=2,n-1

u(i)=0.
enddo 12

call tridag(a,bb,c,u,z,n) Solve A · z = u.
fact=(x(1)+beta*x(n)/gamma)/(1.+z(1)+beta*z(n)/gamma) Form v · x/(1 + v · z).
do 13 i=1,n Now get the solution vector x.

x(i)=x(i)-fact*z(i)
enddo 13

return
END

Woodbury Formula

If you want to add more than a single correction term, then you cannot use (2.7.8)
repeatedly, since without storing a newA−1 you will not be able to solve the auxiliary
problems (2.7.7) efficiently after the first step. Instead, you need theWoodbury formula,
which is the block-matrix version of the Sherman-Morrison formula,

(A + U · VT)−1

= A−1 −
[
A−1 · U · (1 + VT · A−1 · U)−1 · VT · A−1

] (2.7.12)

HereA is, as usual, anN × N matrix, while U andV areN × P matrices withP < N
and usuallyP ≪ N . The inner piece of the correction term may become clearer if written
as the tableau,

U

·

1 + VT · A−1 · U

−1

·

 VT

 (2.7.13)

where you can see that the matrix whose inverse is needed is onlyP × P rather thanN ×N .

2.7 Sparse Linear Systems 69

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The relation between the Woodbury formula and successiveapplications of the Sherman-
Morrison formula is now clarified by noting that, ifU is the matrix formed by columns out of the
P vectorsu1, . . . , uP , andV is the matrix formed by columns out of theP vectorsv1, . . . , vP ,

U ≡

u1

 · · ·

uP

 V ≡

v1

 · · ·

vP

 (2.7.14)

then two ways of expressing the same correction toA are
(

A +

P∑

k=1

uk ⊗ vk

)
= (A + U · VT) (2.7.15)

(Note that the subscripts onu andv do not denote components, but rather distinguish the
different column vectors.)

Equation (2.7.15) reveals that, if you haveA−1 in storage, then you can either make the
P corrections in one fell swoop by using (2.7.12), inverting aP × P matrix, or else make
them by applying (2.7.5)P successive times.

If you don’t have storage forA−1, then youmustuse (2.7.12) in the following way:
To solve the linear equation

(
A +

P∑

k=1

uk ⊗ vk

)
· x = b (2.7.16)

first solve theP auxiliary problems

A · z1 = u1

A · z2 = u2

· · ·

A · zP = uP

(2.7.17)

and construct the matrixZ by columns from thez’s obtained,

Z ≡

z1

 · · ·

zP

 (2.7.18)

Next, do theP × P matrix inversion

H ≡ (1 + VT · Z)−1 (2.7.19)

Finally, solve the one further auxiliary problem

A · y = b (2.7.20)

In terms of these quantities, the solution is given by

x = y − Z ·
[
H · (VT · y)

]
(2.7.21)

70 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Inversion by Partitioning

Once in a while, you will encounter a matrix (not even necessarily sparse)
that can be inverted efficiently by partitioning. Suppose that theN × N matrix
A is partitioned into

A =

[
P Q
R S

]
(2.7.22)

whereP andSare square matrices of sizep× p ands× s respectively (p+ s = N).
The matricesQ andR are not necessarily square, and have sizesp × s ands × p,
respectively.

If the inverse ofA is partitioned in the same manner,

A−1 =

[
P̃ Q̃

R̃ S̃

]
(2.7.23)

then P̃, Q̃, R̃, S̃, which have the same sizes asP, Q, R, S, respectively, can be
found by either the formulas

P̃ = (P− Q · S−1 · R)−1

Q̃ = −(P− Q · S−1 · R)−1 · (Q · S−1)

R̃ = −(S−1 · R) · (P− Q · S−1 · R)−1

S̃ = S−1 + (S−1 · R) · (P− Q · S−1 · R)−1 · (Q · S−1)

(2.7.24)

or else by the equivalent formulas

P̃ = P−1 + (P−1 · Q) · (S− R · P−1 · Q)−1 · (R · P−1)

Q̃ = −(P−1 · Q) · (S− R · P−1 · Q)−1

R̃ = −(S− R · P−1 · Q)−1 · (R · P−1)

S̃= (S− R · P−1 · Q)−1

(2.7.25)

The parentheses in equations (2.7.24) and (2.7.25) highlight repeated factors that
you may wish to compute only once. (Of course, by associativity, you can instead
do the matrix multiplications in any order you like.) The choice between using
equation (2.7.24) and (2.7.25) depends on whether you wantP̃ or S̃ to have the
simpler formula; or on whether the repeated expression(S−R ·P−1 ·Q)−1 is easier
to calculate than the expression(P− Q · S−1 · R)−1; or on the relative sizes ofP
and S; or on whetherP−1 or S−1 is already known.

Another sometimes useful formula is for the determinant of the partitioned
matrix,

det A = det Pdet(S− R · P−1 · Q) = det Sdet(P− Q · S−1 · R) (2.7.26)

2.7 Sparse Linear Systems 71

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Indexed Storage of Sparse Matrices

We have already seen (§2.4) that tri- or band-diagonalmatrices can be stored in a compact
format that allocates storage only to elements which can be nonzero, plus perhaps a few wasted
locations to make the bookkeeping easier. What about more general sparse matrices? When a
sparse matrix of logical sizeN ×N contains only a few timesN nonzero elements (a typical
case), it is surely inefficient — and often physically impossible — to allocate storage for all
N2 elements. Even if one did allocate such storage, it would be inefficient or prohibitive in
machine time to loop over all of it in search of nonzero elements.

Obviously some kind of indexed storage scheme is required, one that stores only nonzero
matrix elements, along with sufficient auxiliary information to determine where an element
logically belongs and how the various elements can be looped over in common matrix
operations. Unfortunately, there is no one standard scheme in general use. Knuth[7] describes
one method. The Yale Sparse Matrix Package[6] and ITPACK[8] describe several other
methods. For most applications, we favor the storage scheme used by PCGPACK[9], which
is almost the same as that described by Bentley[10], and also similar to one of the Yale Sparse
Matrix Package methods. The advantage of this scheme, which can be calledrow-indexed
sparse storage mode, is that it requires storage of only about two times the number of nonzero
matrix elements. (Other methods can require as much as three or five times.) For simplicity,
we will treat only the case of square matrices, which occurs most frequently in practice.

To represent a matrixA of logical sizeN ×N , the row-indexed scheme sets up two
one-dimensional arrays, call themsa andija. The first of these stores matrix element values
in single or double precision as desired; the second stores integer values. The storage rules are:

• The firstN locations ofsa storeA’s diagonal matrix elements, in order. (Note that
diagonal elements are stored even if they are zero; this is at most a slight storage
inefficiency, since diagonal elements are nonzero in most realistic applications.)

• Each of the firstN locations ofija stores the index of the arraysa that contains
the firstoff-diagonalelement of the corresponding row of the matrix. (If there are
no off-diagonal elements for that row, it is one greater than the index insa of the
most recently stored element of a previous row.)

• Location 1 ofija is always equal toN + 2. (It can be read to determineN .)
• LocationN + 1 of ija is one greater than the index insa of the last off-diagonal

element of the last row. (It can be read to determine the number of nonzero
elements in the matrix, or the logical length of the arrayssa andija.) Location
N + 1 of sa is not used and can be set arbitrarily.

• Entries insa at locations≥ N + 2 containA’s off-diagonal values, ordered by
rows and, within each row, ordered by columns.

• Entries inijaat locations≥ N+2 contain the column number of the corresponding
element insa.

While these rules seem arbitrary at first sight, they result in a rather elegant storage
scheme. As an example, consider the matrix

3. 0. 1. 0. 0.
0. 4. 0. 0. 0.
0. 7. 5. 9. 0.
0. 0. 0. 0. 2.
0. 0. 0. 6. 5.

 (2.7.27)

In row-indexed compact storage, matrix (2.7.27) is represented by the two arrays of length
11, as follows

indexk 1 2 3 4 5 6 7 8 9 10 11

ija(k) 7 8 8 10 11 12 3 2 4 5 4

sa(k) 3. 4. 5. 0. 5. x 1. 7. 9. 2. 6.
(2.7.28)

Herex is an arbitrary value. Notice that, according to the storage rules, the value ofN
(namely 5) isija(1)-2, and the length of each array isija(ija(1)-1)-1, namely 11.

72 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The diagonal element in rowi is sa(i), and the off-diagonal elements in that row are in
sa(k) wherek loops fromija(i) to ija(i+1)-1, if the upper limit is greater or equal to
the lower one (as inFORTRAN do loops).

Here is a routine,sprsin, that converts a matrix from full storage mode into row-indexed
sparse storage mode, throwing away any elements that are less than a specified threshold.
Of course, the principal use of sparse storage mode is for matrices whose full storage mode
won’t fit into your machine at all; then you have to generate them directly into sparse format.
Neverthelesssprsin is useful as a precise algorithmic definition of the storage scheme, for
subscale testing of large problems, and for the case where execution time, rather than storage,
furnishes the impetus to sparse storage.

SUBROUTINE sprsin(a,n,np,thresh,nmax,sa,ija)
INTEGER n,nmax,np,ija(nmax)
REAL thresh,a(np,np),sa(nmax)

Converts a square matrix a(1:n,1:n) with physical dimension np into row-indexed sparse
storage mode. Only elements of a with magnitude ≥thresh are retained. Output is in
two linear arrays with physical dimension nmax (an input parameter): sa(1:) contains
array values, indexed by ija(1:). The logical sizes of sa and ija on output are both
ija(ija(1)-1)-1 (see text).

INTEGER i,j,k
do 11 j=1,n Store diagonal elements.

sa(j)=a(j,j)
enddo 11

ija(1)=n+2 Index to 1st row off-diagonal element, if any.
k=n+1
do 13 i=1,n Loop over rows.

do 12 j=1,n Loop over columns.
if(abs(a(i,j)).ge.thresh)then

if(i.ne.j)then Store off-diagonal elements and their columns.
k=k+1
if(k.gt.nmax)pause ’nmax too small in sprsin’
sa(k)=a(i,j)
ija(k)=j

endif
endif

enddo 12

ija(i+1)=k+1 As each row is completed, store index to next.
enddo 13

return
END

The single most important use of a matrix in row-indexed sparse storage mode is to
multiply a vector to its right. In fact, the storage mode is optimized for justthis purpose.
The following routine is thus very simple.

SUBROUTINE sprsax(sa,ija,x,b,n)
INTEGER n,ija(*)
REAL b(n),sa(*),x(n)

Multiply a matrix in row-index sparse storage arrays sa and ija by a vector x(1:n), giving
a vector b(1:n).

INTEGER i,k
if (ija(1).ne.n+2) pause ’mismatched vector and matrix in sprsax’
do 12 i=1,n

b(i)=sa(i)*x(i) Start with diagonal term.
do 11 k=ija(i),ija(i+1)-1 Loop over off-diagonal terms.

b(i)=b(i)+sa(k)*x(ija(k))
enddo 11

enddo 12

return
END

2.7 Sparse Linear Systems 73

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

It is also simple to multiply thetransposeof a matrix by a vector to its right. (We will use
this operation later in this section.) Note that the transpose matrix is not actually constructed.

SUBROUTINE sprstx(sa,ija,x,b,n)
INTEGER n,ija(*)
REAL b(n),sa(*),x(n)

Multiply the transpose of a matrix in row-index sparse storage arrays sa and ija by a
vector x(1:n), giving a vector b(1:n).

INTEGER i,j,k
if (ija(1).ne.n+2) pause ’mismatched vector and matrix in sprstx’
do 11 i=1,n Start with diagonal terms.

b(i)=sa(i)*x(i)
enddo 11

do 13 i=1,n Loop over off-diagonal terms.
do 12 k=ija(i),ija(i+1)-1

j=ija(k)
b(j)=b(j)+sa(k)*x(i)

enddo 12

enddo 13

return
END

(Double precision versions ofsprsax andsprstx, nameddsprsax anddsprstx, are used
by the routineatimes later in this section. You can easily make the conversion, or else get
the converted routines from theNumerical Recipesdiskettes.)

In fact, because the choice of row-indexed storage treats rows and columns quite
differently, it is quite an involved operation to construct the transpose of a matrix, given the
matrix itself in row-indexed sparse storage mode. When the operation cannot be avoided,
it is done as follows: An index of all off-diagonal elements by their columns is constructed
(see§8.4). The elements are then written to the output array in column order. Aseach
element is written, its row is determined and stored. Finally, the elements ineach column
are sorted by row.

SUBROUTINE sprstp(sa,ija,sb,ijb)
INTEGER ija(*),ijb(*)
REAL sa(*),sb(*)

C USES iindexx Version of indexxwith all REAL variables changed to INTEGER.
Construct the transpose of a sparse square matrix, from row-index sparse storage arrays sa
and ija into arrays sb and ijb.

INTEGER j,jl,jm,jp,ju,k,m,n2,noff,inc,iv
REAL v
n2=ija(1) Linear size of matrix plus 2.
do 11 j=1,n2-2 Diagonal elements.

sb(j)=sa(j)
enddo 11

call iindexx(ija(n2-1)-ija(1),ija(n2),ijb(n2))
Index all off-diagonal elements by their columns.

jp=0
do 13 k=ija(1),ija(n2-1)-1 Loop over output off-diagonal elements.

m=ijb(k)+n2-1 Use index table to store by (former) columns.
sb(k)=sa(m)
do 12 j=jp+1,ija(m) Fill in the index to any omitted rows.

ijb(j)=k
enddo 12

jp=ija(m) Use bisection to find which row element m is in and put that
into ijb(k).jl=1

ju=n2-1
5 if (ju-jl.gt.1) then

jm=(ju+jl)/2
if(ija(jm).gt.m)then

ju=jm
else

74 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

jl=jm
endif
goto 5

endif
ijb(k)=jl

enddo 13

do 14 j=jp+1,n2-1
ijb(j)=ija(n2-1)

enddo 14 Make a final pass to sort each row by Shell sort algorithm.
do 16 j=1,n2-2

jl=ijb(j+1)-ijb(j)
noff=ijb(j)-1
inc=1

1 inc=3*inc+1
if(inc.le.jl)goto 1

2 continue
inc=inc/3
do 15 k=noff+inc+1,noff+jl

iv=ijb(k)
v=sb(k)
m=k

3 if(ijb(m-inc).gt.iv)then
ijb(m)=ijb(m-inc)
sb(m)=sb(m-inc)
m=m-inc
if(m-noff.le.inc)goto 4

goto 3
endif

4 ijb(m)=iv
sb(m)=v

enddo 15

if(inc.gt.1)goto 2
enddo 16

return
END

The above routine embeds internally a sorting algorithm from§8.1, but calls the external
routineiindexx to construct the initial column index. This routine is identical toindexx, as
listed in §8.4, except that the latter’s twoREAL declarations should be changed tointeger.
(The Numerical Recipesdiskettes include bothindexx and iindexx.) In fact, you can
often useindexx without making these changes, since many computers have the property
that numerical values will sort correctly independently of whether they are interpreted as
floating or integer values.

As final examples of the manipulation of sparse matrices, we give two routines for the
multiplication of two sparse matrices. These are useful for techniques tobe described in§13.10.

In general, the product of two sparse matrices is not itself sparse. One therefore wants
to limit the size of the product matrix in one of two ways: either compute only those elements
of the product that are specified in advance by a known pattern of sparsity, or else compute all
nonzero elements, but store only those whose magnitude exceeds some threshold value. The
former technique, when it can be used, is quite efficient. The pattern of sparsity is specified
by furnishing an index array in row-index sparse storage format (e.g.,ija). The program
then constructs a corresponding value array (e.g.,sa). The latter technique runs the danger of
excessive compute times and unknown output sizes, so it must be used cautiously.

With row-index storage, it is much more natural to multiply a matrix (on the left) by
the transposeof a matrix (on the right), so that one is crunching rows on rows, rather than
rows on columns. Our routines therefore calculateA · BT , rather thanA · B. This means
that you have to run your right-hand matrix through the transpose routinesprstp before
sending it to the matrix multiply routine.

The two implementing routines,sprspm for “pattern multiply” andsprstm for “threshold
multiply” are quite similar in structure. Both are complicated by the logic of the various

2.7 Sparse Linear Systems 75

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

combinations of diagonal or off-diagonal elements for the two input streams and output stream.

SUBROUTINE sprspm(sa,ija,sb,ijb,sc,ijc)
INTEGER ija(*),ijb(*),ijc(*)
REAL sa(*),sb(*),sc(*)

Matrix multiply A · BT where A and B are two sparse matrices in row-index storage mode,
and BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the
matrix B. This routine computes only those components of the matrix product that are pre-
specifiedby the input index array ijc, which is not modified. On output, the arrays sc and
ijc give the product matrix in row-index storage mode. For sparse matrix multiplication,
this routine will often be preceded by a call to sprstp, so as to construct the transpose
of a known matrix into sb, ijb.

INTEGER i,ijma,ijmb,j,m,ma,mb,mbb,mn
REAL sum
if (ija(1).ne.ijb(1).or.ija(1).ne.ijc(1))

* pause ’sprspm sizes do not match’
do 13 i=1,ijc(1)-2 Loop over rows.

j=i Set up so that first pass through loop does the diag-
onal component.m=i

mn=ijc(i)
sum=sa(i)*sb(i)

1 continue Main loop over each component to be output.
mb=ijb(j)
do 11 ma=ija(i),ija(i+1)-1 Loop through elements in A’s row. Convoluted logic,

following, accounts for the various combinations
of diagonal and off-diagonal elements.

ijma=ija(ma)
if(ijma.eq.j)then

sum=sum+sa(ma)*sb(j)
else

2 if(mb.lt.ijb(j+1))then
ijmb=ijb(mb)
if(ijmb.eq.i)then

sum=sum+sa(i)*sb(mb)
mb=mb+1
goto 2

else if(ijmb.lt.ijma)then
mb=mb+1
goto 2

else if(ijmb.eq.ijma)then
sum=sum+sa(ma)*sb(mb)
mb=mb+1
goto 2

endif
endif

endif
enddo 11

do 12 mbb=mb,ijb(j+1)-1 Exhaust the remainder of B’s row.
if(ijb(mbb).eq.i)then

sum=sum+sa(i)*sb(mbb)
endif

enddo 12

sc(m)=sum
sum=0.e0 Reset indices for next pass through loop.
if(mn.ge.ijc(i+1))goto 3
m=mn
mn=mn+1
j=ijc(m)

goto 1
3 continue

enddo 13

return
END

76 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE sprstm(sa,ija,sb,ijb,thresh,nmax,sc,ijc)
INTEGER nmax,ija(*),ijb(*),ijc(nmax)
REAL thresh,sa(*),sb(*),sc(nmax)

Matrix multiply A · BT where A and B are two sparse matrices in row-index storage mode,
and BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the
matrix B. This routine computes all components of the matrix product (which may be non-
sparse!), but stores only those whose magnitude exceeds thresh. On output, the arrays
sc and ijc (whose maximum size is input as nmax) give the product matrix in row-index
storage mode. For sparse matrix multiplication, this routine will often be preceded by a call
to sprstp, so as to construct the transpose of a known matrix into sb, ijb.

INTEGER i,ijma,ijmb,j,k,ma,mb,mbb
REAL sum
if (ija(1).ne.ijb(1)) pause ’sprstm sizes do not match’
k=ija(1)
ijc(1)=k
do 14 i=1,ija(1)-2 Loop over rows of A,

do 13 j=1,ijb(1)-2 and rows of B.
if(i.eq.j)then

sum=sa(i)*sb(j)
else

sum=0.e0
endif
mb=ijb(j)
do 11 ma=ija(i),ija(i+1)-1 Loop through elements in A’s row. Convoluted logic,

following, accounts for the various combinations
of diagonal and off-diagonal elements.

ijma=ija(ma)
if(ijma.eq.j)then

sum=sum+sa(ma)*sb(j)
else

2 if(mb.lt.ijb(j+1))then
ijmb=ijb(mb)
if(ijmb.eq.i)then

sum=sum+sa(i)*sb(mb)
mb=mb+1
goto 2

else if(ijmb.lt.ijma)then
mb=mb+1
goto 2

else if(ijmb.eq.ijma)then
sum=sum+sa(ma)*sb(mb)
mb=mb+1
goto 2

endif
endif

endif
enddo 11

do 12 mbb=mb,ijb(j+1)-1 Exhaust the remainder of B’s row.
if(ijb(mbb).eq.i)then

sum=sum+sa(i)*sb(mbb)
endif

enddo 12

if(i.eq.j)then Where to put the answer...
sc(i)=sum

else if(abs(sum).gt.thresh)then
if(k.gt.nmax)pause ’sprstm: nmax to small’
sc(k)=sum
ijc(k)=j
k=k+1

endif
enddo 13

ijc(i+1)=k
enddo 14

return
END

2.7 Sparse Linear Systems 77

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Conjugate Gradient Method for a Sparse System

So-calledconjugate gradient methodsprovide a quite general means for solving the
N × N linear system

A · x = b (2.7.29)

The attractiveness of these methods for large sparse systems is that they referenceA only
through its multiplication of a vector, or the multiplication of its transpose and a vector. As
we have seen, these operations can be very efficient for a properly stored sparse matrix. You,
the “owner” of the matrixA, can be asked to provide subroutines that perform these sparse
matrix multiplications as efficiently as possible. We, the “grand strategists” supply the general
routine,linbcgbelow, that solves the set of linear equations, (2.7.29), using your subroutines.

The simplest, “ordinary” conjugate gradient algorithm[11-13] solves (2.7.29) only in the
case thatA is symmetric and positive definite. It is based on the idea of minimizing the function

f(x) =
1

2
x · A · x − b · x (2.7.30)

This function is minimized when its gradient

∇f = A · x − b (2.7.31)

is zero, which is equivalent to (2.7.29). The minimization is carried out by generating a
succession of search directionspk and improved minimizersxk. At each stage a quantity αk

is found that minimizesf(xk + αkpk), andxk+1 is set equal to the new pointxk + αkpk.
Thepk andxk are built up in such a way thatxk+1 is also the minimizer off over the whole
vector space of directions already taken,{p1, p2, . . . , pk}. After N iterations you arrive at
the minimizer over the entire vector space, i.e., the solution to (2.7.29).

Later, in§10.6, we will generalize this “ordinary” conjugate gradient algorithm to the
minimization of arbitrary nonlinear functions. Here, where our interest is insolving linear,
but not necessarily positive definite or symmetric, equations, a different generalization is
important, thebiconjugate gradient method. This method does not, in general, have a simple
connection with function minimization. It constructs four sequences of vectors,rk, rk, pk,
pk, k = 1, 2, You supply the initial vectorsr1 andr1, and setp1 = r 1, p1 = r1. Then
you carry out the following recurrence:

αk =
rk · rk

pk · A · pk

rk+1 = rk − αkA · pk

rk+1 = rk − αkAT · pk

βk =
rk+1 · rk+1

rk · rk
pk+1 = rk+1 + βkpk

pk+1 = rk+1 + βkpk

(2.7.32)

This sequence of vectors satisfies thebiorthogonality condition

r i · rj = r i · r j = 0, j < i (2.7.33)

and thebiconjugacycondition

pi · A · pj = pi · AT · pj = 0, j < i (2.7.34)

There is also a mutual orthogonality,

r i · pj = r i · pj = 0, j < i (2.7.35)

The proof of these properties proceeds by straightforward induction[14]. As long as the
recurrence does not break down earlier because one of the denominators is zero, it must

78 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

terminate afterm ≤ N steps withrm+1 = rm+1 = 0. This is basically because after at most
N steps you run out of new orthogonal directions to the vectors you’ve already constructed.

To use the algorithm to solve the system (2.7.29), make an initial guessx1 for the
solution. Chooser1 to be theresidual

r1 = b − A · x1 (2.7.36)

and chooser1 = r1. Then form the sequence of improved estimates

xk+1 = xk + αkpk (2.7.37)

while carrying out the recurrence (2.7.32). Equation (2.7.37) guarantees thatrk+1 from the
recurrence is in fact the residualb − A · xk+1 corresponding toxk+1. Sincerm+1 = 0,
xm+1 is the solution to equation (2.7.29).

While there is no guarantee that this whole procedure will not break down or become
unstable for generalA, in practice this is rare. More importantly, the exact termination in at
mostN iterations occurs only with exact arithmetic. Roundoff error means that you should
regard the process as a genuinely iterative procedure, to be halted when some appropriate
error criterion is met.

The ordinary conjugate gradient algorithm is the special case of the biconjugate gradient
algorithm whenA is symmetric, and we chooser1 = r1. Thenrk = rk andpk = pk for all
k; you can omit computing them and halve the work of the algorithm. This conjugate gradient
version has the interpretation of minimizing equation (2.7.30). IfA is positive definite as
well as symmetric, the algorithm cannot break down (in theory!). The routinelinbcg below
indeed reduces to the ordinary conjugate gradient method if you input a symmetricA, but
it does all the redundant computations.

Another variant of the general algorithm corresponds to a symmetric but non-positive
definiteA, with the choicer1 = A · r1 instead ofr1 = r1. In this caserk = A · rk and
pk = A · pk for all k. This algorithm is thus equivalent to the ordinary conjugate gradient
algorithm, but with all dot productsa ·b replaced bya ·A ·b. It is called theminimum residual
algorithm, because it corresponds to successive minimizations of the function

Φ(x) =
1

2
r · r =

1

2
|A · x − b|2 (2.7.38)

where the successiveiteratesxk minimizeΦ over the same set of search directionspk generated
in the conjugate gradient method. This algorithm has been generalized in various ways for
unsymmetric matrices. Thegeneralized minimum residualmethod (GMRES; see[9,15]) is
probably the most robust of these methods.

Note that equation (2.7.38) gives

∇Φ(x) = AT · (A · x − b) (2.7.39)

For any nonsingular matrixA, AT ·A is symmetric and positive definite. You might therefore
be tempted to solve equation (2.7.29) by applying the ordinary conjugate gradient algorithm
to the problem

(AT · A) · x = AT · b (2.7.40)

Don’t! The condition number of the matrixAT · A is the square of the condition number of
A (see§2.6 for definition of condition number). A large condition number both increases the
number of iterations required, and limits the accuracy to which a solution can be obtained. It
is almost always better to apply the biconjugate gradient method to the original matrixA.

So far we have said nothing about therate of convergence of these methods. The
ordinary conjugate gradient method works well for matrices that are well-conditioned, i.e.,
“close” to the identity matrix. This suggests applying these methods to thepreconditioned
form of equation (2.7.29),

(Ã
−1

· A) · x = Ã
−1

· b (2.7.41)

The idea is that you might already be able to solve your linear system easily for someÃ close
to A, in which casẽA−1

· A ≈ 1, allowing the algorithm to converge in fewer steps. The

2.7 Sparse Linear Systems 79

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

matrix Ã is called apreconditioner[11], and the overall scheme given here is known as the
preconditioned biconjugate gradient methodor PBCG.

For efficient implementation, the PBCG algorithm introduces an additional set of vectors
zk and zk defined by

Ã · zk = rk and Ã
T
· zk = rk (2.7.42)

and modifies the definitions ofαk, βk, pk, andpk in equation (2.7.32):

αk =
rk · zk

pk · A · pk

βk =
rk+1 · zk+1

rk · zk
pk+1 = zk+1 + βkpk

pk+1 = zk+1 + βkpk

(2.7.43)

Forlinbcg, below, we will ask you to supply routines that solve the auxiliary linear systems
(2.7.42). If you have no idea what to use for the preconditionerÃ, then use the diagonal part
of A, or even the identity matrix, in which case the burden of convergence will be entirely
on the biconjugate gradient method itself.

The routinelinbcg, below, is based on a program originally written by Anne Greenbaum.
(See[13] for a different, less sophisticated, implementation.) There are a few wrinkles you
should know about.

What constitutes “good” convergence is rather application dependent. The routine
linbcg therefore provides for four possibilities, selected by setting the flagitol on input.
If itol=1, iteration stops when the quantity|A · x − b|/|b| is less than the input quantity
tol. If itol=2, the required criterion is

|Ã
−1

· (A · x − b)|/|Ã
−1

· b| < tol (2.7.44)

If itol=3, the routine uses its own estimate of the error inx, and requires its magnitude,
divided by the magnitude ofx, to be less thantol. The settingitol=4 is the same asitol=3,
except that the largest (in absolute value) component of the error and largest component ofx
are used instead of the vector magnitude (that is, theL∞ norm instead of theL2 norm). You
may need to experiment to find which of these convergence criteria is best for your problem.

On output,err is the tolerance actually achieved. If the returned countiter does
not indicate that the maximum number of allowed iterationsitmax was exceeded, thenerr
should be less thantol. If you want to do further iterations, leave all returned quantities as
they are and call the routine again. The routine loses its memory of the spanned conjugate
gradient subspace between calls, however, so you should not force it to return more often
than about everyN iterations.

Finally, note thatlinbcg is furnished in double precision, since it will be usually be
used whenN is quite large.

SUBROUTINE linbcg(n,b,x,itol,tol,itmax,iter,err)
INTEGER iter,itmax,itol,n,NMAX
DOUBLE PRECISION err,tol,b(*),x(*),EPS Double precision is a good idea in this rou-

tine.PARAMETER (NMAX=1024,EPS=1.d-14)
C USES atimes,asolve,snrm

Solves A · x = b for x(1:n), given b(1:n), by the iterative biconjugate gradient method.
On input x(1:n) should be set to an initial guess of the solution (or all zeros); itol is
1,2,3, or 4, specifying which convergence test is applied (see text); itmax is the maximum
number of allowed iterations; and tol is the desired convergence tolerance. On output,
x(1:n) is reset to the improved solution, iter is the number of iterations actually taken,
and err is the estimated error. The matrix A is referenced only through the user-supplied
routines atimes, which computes the product of either A or its transpose on a vector; and

asolve, which solves Ã · x = b or Ã
T
· x = b for some preconditioner matrix Ã (possibly

the trivial diagonal part of A).
INTEGER j

80 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

DOUBLE PRECISION ak,akden,bk,bkden,bknum,bnrm,dxnrm,
* xnrm,zm1nrm,znrm,p(NMAX),pp(NMAX),r(NMAX),rr(NMAX),
* z(NMAX),zz(NMAX),snrm

iter=0 Calculate initial residual.
call atimes(n,x,r,0) Input to atimes is x(1:n), output is r(1:n);

the final 0 indicates that the matrix (not
its transpose) is to be used.

do 11 j=1,n
r(j)=b(j)-r(j)
rr(j)=r(j)

enddo 11

C call atimes(n,r,rr,0) Uncomment this line to get the “minimum
residual” variant of the algorithm.if(itol.eq.1) then

bnrm=snrm(n,b,itol)
call asolve(n,r,z,0) Input to asolve is r(1:n), output is z(1:n);

the final 0 indicates that the matrix Ã
(not its transpose) is to be used.

else if (itol.eq.2) then
call asolve(n,b,z,0)
bnrm=snrm(n,z,itol)
call asolve(n,r,z,0)

else if (itol.eq.3.or.itol.eq.4) then
call asolve(n,b,z,0)
bnrm=snrm(n,z,itol)
call asolve(n,r,z,0)
znrm=snrm(n,z,itol)

else
pause ’illegal itol in linbcg’

endif
100 if (iter.le.itmax) then Main loop.

iter=iter+1

call asolve(n,rr,zz,1) Final 1 indicates use of transpose matrix Ã
T

.
bknum=0.d0
do 12 j=1,n Calculate coefficient bk and direction vectors

p and pp.bknum=bknum+z(j)*rr(j)
enddo 12

if(iter.eq.1) then
do 13 j=1,n

p(j)=z(j)
pp(j)=zz(j)

enddo 13

else
bk=bknum/bkden
do 14 j=1,n

p(j)=bk*p(j)+z(j)
pp(j)=bk*pp(j)+zz(j)

enddo 14

endif
bkden=bknum Calculate coefficient ak, new iterate x, and

new residuals r and rr.call atimes(n,p,z,0)
akden=0.d0
do 15 j=1,n

akden=akden+z(j)*pp(j)
enddo 15

ak=bknum/akden
call atimes(n,pp,zz,1)
do 16 j=1,n

x(j)=x(j)+ak*p(j)
r(j)=r(j)-ak*z(j)
rr(j)=rr(j)-ak*zz(j)

enddo 16

call asolve(n,r,z,0) Solve Ã ·z = r and check stopping criterion.
if(itol.eq.1)then

err=snrm(n,r,itol)/bnrm
else if(itol.eq.2)then

err=snrm(n,z,itol)/bnrm
else if(itol.eq.3.or.itol.eq.4)then

zm1nrm=znrm

2.7 Sparse Linear Systems 81

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

znrm=snrm(n,z,itol)
if(abs(zm1nrm-znrm).gt.EPS*znrm) then

dxnrm=abs(ak)*snrm(n,p,itol)
err=znrm/abs(zm1nrm-znrm)*dxnrm

else
err=znrm/bnrm Error may not be accurate, so loop again.
goto 100

endif
xnrm=snrm(n,x,itol)
if(err.le.0.5d0*xnrm) then

err=err/xnrm
else

err=znrm/bnrm Error may not be accurate, so loop again.
goto 100

endif
endif
write (*,*) ’ iter=’,iter,’ err=’,err

if(err.gt.tol) goto 100
endif
return
END

The routinelinbcg uses this short utility for computing vector norms:

FUNCTION snrm(n,sx,itol)
INTEGER n,itol,i,isamax
DOUBLE PRECISION sx(n),snrm

Compute one of two norms for a vector sx(1:n), as signaled by itol. Used by linbcg.
if (itol.le.3)then

snrm=0.
do 11 i=1,n Vector magnitude norm.

snrm=snrm+sx(i)**2
enddo 11

snrm=sqrt(snrm)
else

isamax=1
do 12 i=1,n Largest component norm.

if(abs(sx(i)).gt.abs(sx(isamax))) isamax=i
enddo 12

snrm=abs(sx(isamax))
endif
return
END

So that the specifications for the routinesatimes andasolve are clear, we list here
simple versions that assume a matrixA stored somewhere in row-index sparse format.

SUBROUTINE atimes(n,x,r,itrnsp)
INTEGER n,itrnsp,ija,NMAX
DOUBLE PRECISION x(n),r(n),sa
PARAMETER (NMAX=1000)
COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.

C USES dsprsax,dsprstx DOUBLE PRECISION versions of sprsax and sprstx.
if (itrnsp.eq.0) then

call dsprsax(sa,ija,x,r,n)
else

call dsprstx(sa,ija,x,r,n)
endif
return
END

82 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE asolve(n,b,x,itrnsp)
INTEGER n,itrnsp,ija,NMAX,i
DOUBLE PRECISION x(n),b(n),sa
PARAMETER (NMAX=1000)
COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.
do 11 i=1,n

x(i)=b(i)/sa(i) The matrix Ã is the diagonal part of A, stored in
the first n elements of sa. Since the transpose
matrix has the same diagonal, the flag itrnsp is
not used.

enddo 11

return
END

CITED REFERENCES AND FURTHER READING:

Tewarson, R.P. 1973, Sparse Matrices (New York: Academic Press). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter I.3 (by J.K. Reid). [2]

George, A., and Liu, J.W.H. 1981, Computer Solution of Large Sparse Positive Definite Systems
(Englewood Cliffs, NJ: Prentice-Hall). [3]

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.).
[4]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [5]

Eisenstat, S.C., Gursky, M.C., Schultz, M.H., and Sherman, A.H. 1977, Yale Sparse Matrix Pack-
age, Technical Reports 112 and 114 (Yale University Department of Computer Science). [6]

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.2.6. [7]

Kincaid, D.R., Respess, J.R., Young, D.M., and Grimes, R.G. 1982, ACM Transactions on Math-
ematical Software, vol. 8, pp. 302–322. [8]

PCGPAK User’s Guide (New Haven: Scientific Computing Associates, Inc.). [9]

Bentley, J. 1986, Programming Pearls (Reading, MA: Addison-Wesley), §9. [10]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapters 4 and 10, particularly §§10.2–10.3. [11]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 8. [12]

Baker, L. 1991, More C Tools for Scientists and Engineers (New York: McGraw-Hill). [13]

Fletcher, R. 1976, in Numerical Analysis Dundee 1975, Lecture Notes in Mathematics, vol. 506,
A. Dold and B Eckmann, eds. (Berlin: Springer-Verlag), pp. 73–89. [14]

Saad, Y., and Schulz, M. 1986, SIAM Journal on Scientific and Statistical Computing, vol. 7,
pp. 856–869. [15]

Bunch, J.R., and Rose, D.J. (eds.) 1976, Sparse Matrix Computations (New York: Academic
Press).

Duff, I.S., and Stewart, G.W. (eds.) 1979, Sparse Matrix Proceedings 1978 (Philadelphia:
S.I.A.M.).

2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specially, because that
particular type of linear system admits a solution in only of orderN operations,
rather than of orderN3 for the general linear problem. When such particular types

82 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE asolve(n,b,x,itrnsp)
INTEGER n,itrnsp,ija,NMAX,i
DOUBLE PRECISION x(n),b(n),sa
PARAMETER (NMAX=1000)
COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.
do 11 i=1,n

x(i)=b(i)/sa(i) The matrix Ã is the diagonal part of A, stored in
the first n elements of sa. Since the transpose
matrix has the same diagonal, the flag itrnsp is
not used.

enddo 11

return
END

CITED REFERENCES AND FURTHER READING:

Tewarson, R.P. 1973, Sparse Matrices (New York: Academic Press). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter I.3 (by J.K. Reid). [2]

George, A., and Liu, J.W.H. 1981, Computer Solution of Large Sparse Positive Definite Systems
(Englewood Cliffs, NJ: Prentice-Hall). [3]

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.).
[4]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [5]

Eisenstat, S.C., Gursky, M.C., Schultz, M.H., and Sherman, A.H. 1977, Yale Sparse Matrix Pack-
age, Technical Reports 112 and 114 (Yale University Department of Computer Science). [6]

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.2.6. [7]

Kincaid, D.R., Respess, J.R., Young, D.M., and Grimes, R.G. 1982, ACM Transactions on Math-
ematical Software, vol. 8, pp. 302–322. [8]

PCGPAK User’s Guide (New Haven: Scientific Computing Associates, Inc.). [9]

Bentley, J. 1986, Programming Pearls (Reading, MA: Addison-Wesley), §9. [10]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapters 4 and 10, particularly §§10.2–10.3. [11]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 8. [12]

Baker, L. 1991, More C Tools for Scientists and Engineers (New York: McGraw-Hill). [13]

Fletcher, R. 1976, in Numerical Analysis Dundee 1975, Lecture Notes in Mathematics, vol. 506,
A. Dold and B Eckmann, eds. (Berlin: Springer-Verlag), pp. 73–89. [14]

Saad, Y., and Schulz, M. 1986, SIAM Journal on Scientific and Statistical Computing, vol. 7,
pp. 856–869. [15]

Bunch, J.R., and Rose, D.J. (eds.) 1976, Sparse Matrix Computations (New York: Academic
Press).

Duff, I.S., and Stewart, G.W. (eds.) 1979, Sparse Matrix Proceedings 1978 (Philadelphia:
S.I.A.M.).

2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specially, because that
particular type of linear system admits a solution in only of orderN operations,
rather than of orderN3 for the general linear problem. When such particular types

2.8 Vandermonde Matrices and Toeplitz Matrices 83

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

exist, it is important to know about them. Your computational savings, should you
ever happen to be working on a problem that involves the right kind of particular
type, can be enormous.

This section treats two special types of matrices that can be solved in of order
N2 operations, not as good as tridiagonal, but a lot better than the general case.
(Other than the operations count, these two types having nothing in common.)
Matrices of the first type, termedVandermonde matrices, occur in some problems
having to do with the fitting of polynomials, the reconstruction of distributions from
their moments, and also other contexts. In this book, for example, a Vandermonde
problem crops up in§3.5. Matrices of the second type, termedToeplitz matrices,
tend to occur in problems involving deconvolution and signal processing. In this
book, a Toeplitz problem is encountered in§13.7.

These are not theonly special types of matrices worth knowing about. The
Hilbert matrices, whose components are of the formaij = 1/(i + j − 1), i, j =
1, . . . , N can be inverted by an exact integer algorithm, and are verydifficult to
invert in any other way, since they are notoriously ill-conditioned (see[1] for details).
The Sherman-Morrison and Woodbury formulas, discussed in§2.7, can sometimes
be used to convert new special forms into old ones. Reference[2] gives some other
special forms. We have not found these additional forms to arise as frequently as
the two that we now discuss.

Vandermonde Matrices

A Vandermonde matrix of sizeN × N is completely determined byN arbitrary
numbersx1, x2, . . . , xN , in terms of which itsN2 components are the integer powers
xj−1
i , i, j = 1, . . . , N . Evidently there are two possible such forms, depending on whether

we view thei’s as rows,j’s as columns, or vice versa. In the former case, we get a linear
system of equations that looks like this,

1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2

...
...

...
...

1 xN x2
N · · · xN−1

N

·

c1

c2
...
cN

=

y1

y2

...
yN

(2.8.1)

Performing the matrix multiplication, you will see that this equation solves fortheunknown
coefficientsci which fit a polynomial to theN pairs of abscissas and ordinates(xj , yj).
Precisely this problem will arise in§3.5, and the routine given there will solve (2.8.1) by the
method that we are about to describe.

The alternative identification of rows and columns leads to the set of equations

1 1 · · · 1
x1 x2 · · · xN

x2
1 x2

2 · · · x2
N

· · ·
xN−1

1 xN−1
2 · · · xN−1

N

 ·

w1

w2

w3

· · ·
wN

 =

q1
q2
q3
· · ·
qN

 (2.8.2)

Write this out and you will see that it relates to theproblem of moments: Given the values
of N points xi, find the unknown weightswi, assigned so as to match the given values
qj of the firstN moments. (For more on this problem, consult[3].) The routine given in
this section solves (2.8.2).

84 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The method of solution of both (2.8.1) and (2.8.2) is closely related to Lagrange’s
polynomial interpolation formula, which we will not formally meet until§3.1 below. Notwith-
standing, the following derivation should be comprehensible:

Let Pj(x) be the polynomial of degreeN − 1 defined by

Pj(x) =

N∏

n=1
(n6=j)

x− xn

xj − xn
=

N∑

k=1

Ajkx
k−1 (2.8.3)

Here the meaning of the last equality is to define the components of the matrixAij as the
coefficients that arise when the product is multiplied out and like terms collected.

The polynomialPj(x) is a function ofx generally. But you will notice that it is
specifically designed so that it takes on a value of zero at allxi with i 6= j, and has a value
of unity at x = xj . In other words,

Pj(xi) = δij =

N∑

k=1

Ajkx
k−1
i (2.8.4)

But (2.8.4) says thatAjk is exactly the inverse of the matrix of componentsxk−1
i , which

appears in (2.8.2), with the subscript as the column index. Therefore the solution of (2.8.2)
is just that matrix inverse times the right-hand side,

wj =

N∑

k=1

Ajkqk (2.8.5)

As for the transpose problem (2.8.1), we can use the fact that the inverse of the transpose
is the transpose of the inverse, so

cj =
N∑

k=1

Akjyk (2.8.6)

The routine in§3.5 implements this.
It remains to find a good way of multiplying out the monomial terms in (2.8.3), in order

to get the components ofAjk . This is essentially a bookkeeping problem, and we will let you
read the routine itself to see how it can be solved. One trick is to define a masterP (x) by

P (x) ≡

N∏

n=1

(x− xn) (2.8.7)

work out its coefficients, and then obtain the numerators and denominators of the specific
Pj ’s via synthetic division by the one supernumerary term. (See§5.3 for more on synthetic
division.) Since each such division is only a process of orderN , the total procedure is
of order N2.

You should be warned that Vandermonde systems are notoriouslyill-conditioned, by
their very nature. (As an aside anticipating§5.8, the reason is the same as that which makes
Chebyshev fitting so impressivelyaccurate: there exist high-order polynomials that are very
good uniform fits to zero. Hence roundoff error can introduce rather substantial coefficients
of the leading terms of these polynomials.) It is a good idea always to compute Vandermonde
problems in double precision.

The routine for (2.8.2) which follows is due to G.B. Rybicki.

SUBROUTINE vander(x,w,q,n)
INTEGER n,NMAX
DOUBLE PRECISION q(n),w(n),x(n)
PARAMETER (NMAX=100)

Solves the Vandermonde linear system
∑N

i=1 x
k−1
i wi = qk (k = 1, . . . ,N). Input consists

of the vectors x(1:n) and q(1:n); the vector w(1:n) is output.

2.8 Vandermonde Matrices and Toeplitz Matrices 85

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Parameters: NMAX is the maximum expected value of n.
INTEGER i,j,k
DOUBLE PRECISION b,s,t,xx,c(NMAX)
if(n.eq.1)then

w(1)=q(1)
else

do 11 i=1,n Initialize array.
c(i)=0.d0

enddo 11

c(n)=-x(1) Coefficients of the master polynomial are found by recur-
sion.do 13 i=2,n

xx=-x(i)
do 12 j=n+1-i,n-1

c(j)=c(j)+xx*c(j+1)
enddo 12

c(n)=c(n)+xx
enddo 13

do 15 i=1,n Each subfactor in turn
xx=x(i)
t=1.d0
b=1.d0
s=q(n)
do 14 k=n,2,-1 is synthetically divided,

b=c(k)+xx*b
s=s+q(k-1)*b matrix-multiplied by the right-hand side,
t=xx*t+b

enddo 14

w(i)=s/t and supplied with a denominator.
enddo 15

endif
return
END

Toeplitz Matrices

An N ×N Toeplitz matrix is specified by giving2N − 1 numbersRk , k = −N +
1, . . . ,−1, 0, 1, . . . , N − 1. Those numbers are then emplaced as matrix elements constant
along the (upper-left to lower-right) diagonals of the matrix:

R0 R
−1 R

−2 · · · R
−(N−2) R

−(N−1)

R1 R0 R
−1 · · · R

−(N−3) R
−(N−2)

R2 R1 R0 · · · R
−(N−4) R

−(N−3)

· · · · · ·
RN−2 RN−3 RN−4 · · · R0 R

−1

RN−1 RN−2 RN−3 · · · R1 R0

(2.8.8)

The linear Toeplitz problem can thus be written as

N∑

j=1

Ri−jxj = yi (i = 1, . . . , N) (2.8.9)

where thexj ’s, j = 1, . . . , N , are the unknowns to be solved for.
The Toeplitz matrix is symmetric ifRk = R

−k for all k. Levinson[4] developed an
algorithm for fast solution of the symmetric Toeplitz problem, by abordering method, that is,
a recursive procedure that solves theM -dimensional Toeplitz problem

M∑

j=1

Ri−jx
(M)
j = yi (i = 1, . . . ,M) (2.8.10)

86 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

in turn forM = 1, 2, . . . until M = N , the desired result, is finally reached. The vectorx
(M)
j

is the result at theM th stage, and becomes the desired answer only whenN is reached.
Levinson’s method is well documented in standard texts (e.g.,[5]). The useful fact that

the method generalizes to thenonsymmetriccase seems to be less well known. At some risk
of excessive detail, we therefore give a derivation here, due to G.B. Rybicki.

In following a recursion from stepM to stepM +1 we find that our developing solution
x(M) changes in this way:

M∑

j=1

Ri−jx
(M)
j = yi i = 1, . . . ,M (2.8.11)

becomes

M∑

j=1

Ri−jx
(M+1)
j + Ri−(M+1)x

(M+1)
M+1 = yi i = 1, . . . , M + 1 (2.8.12)

By eliminating yi we find

M∑

j=1

Ri−j

(
x

(M)
j − x

(M+1)
j

x
(M+1)
M+1

)
= Ri−(M+1) i = 1, . . . ,M (2.8.13)

or by letting i → M + 1 − i and j → M + 1 − j,

M∑

j=1

Rj−iG
(M)
j = R

−i (2.8.14)

where

G
(M)
j ≡

x
(M)
M+1−j − x

(M+1)
M+1−j

x
(M+1)
M+1

(2.8.15)

To put this another way,

x
(M+1)
M+1−j = x

(M)
M+1−j − x

(M+1)
M+1 G

(M)
j j = 1, . . . ,M (2.8.16)

Thus, if we can use recursion to find the orderM quantitiesx(M) andG(M) and the single
orderM + 1 quantityx(M+1)

M+1 , then all of the otherx(M+1)
j will follow. Fortunately, the

quantityx(M+1)
M+1 follows from equation (2.8.12) withi = M + 1,

M∑

j=1

RM+1−jx
(M+1)
j + R0x

(M+1)
M+1 = yM+1 (2.8.17)

For the unknown orderM + 1 quantitiesx(M+1)
j we can substitute the previous order

quantities inG since

G
(M)
M+1−j =

x
(M)
j − x

(M+1)
j

x
(M+1)
M+1

(2.8.18)

The result of this operation is

x
(M+1)
M+1 =

∑M
j=1 RM+1−jx

(M)
j − yM+1

∑M
j=1 RM+1−jG

(M)
M+1−j −R0

(2.8.19)

The only remaining problem is to develop a recursion relation forG. Before we do
that, however, we should point out that there are actually two distinct sets of solutions to the
original linear problem for a nonsymmetric matrix, namely right-hand solutions (which we

2.8 Vandermonde Matrices and Toeplitz Matrices 87

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

have been discussing) and left-hand solutionszi. The formalism for the left-hand solutions
differs only in that we deal with the equations

M∑

j=1

Rj−iz
(M)
j = yi i = 1, . . . ,M (2.8.20)

Then, the same sequence of operations on this set leads to

M∑

j=1

Ri−jH
(M)
j = Ri (2.8.21)

where

H
(M)
j ≡

z
(M)
M+1−j − z

(M+1)
M+1−j

z
(M+1)
M+1

(2.8.22)

(compare with 2.8.14 – 2.8.15). The reason for mentioning the left-hand solutions now is
that, by equation (2.8.21), theHj satisfy exactly the same equation as thexj except for
the substitutionyi → Ri on the right-hand side. Therefore we can quickly deduce from
equation (2.8.19) that

H
(M+1)
M+1 =

∑M
j=1 RM+1−jH

(M)
j − RM+1

∑M
j=1 RM+1−jG

(M)
M+1−j −R0

(2.8.23)

By the same token,G satisfies the same equation asz, except for the substitutionyi → R
−i.

This gives

G
(M+1)
M+1 =

∑M
j=1 Rj−M−1G

(M)
j − R

−M−1

∑M
j=1 Rj−M−1H

(M)
M+1−j − R0

(2.8.24)

The same “morphism” also turns equation (2.8.16), and its partner forz, into the final equations

G
(M+1)
j = G

(M)
j − G

(M+1)
M+1 H

(M)
M+1−j

H
(M+1)
j = H

(M)
j −H

(M+1)
M+1 G

(M)
M+1−j

(2.8.25)

Now, starting with the initial values

x
(1)
1 = y1/R0 G

(1)
1 = R

−1/R0 H
(1)
1 = R1/R0 (2.8.26)

we can recurse away. At each stageM we use equations (2.8.23) and (2.8.24) to find
H

(M+1)
M+1 , G

(M+1)
M+1 , and then equation (2.8.25) to find the other components ofH(M+1), G(M+1).

From there the vectorsx(M+1) and/orz(M+1) are easily calculated.
The program below does this. It incorporates the second equation in (2.8.25) in the form

H
(M+1)
M+1−j = H

(M)
M+1−j −H

(M+1)
M+1 G

(M)
j (2.8.27)

so that the computation can be done “in place.”
Notice that the above algorithm fails ifR0 = 0. In fact, because the bordering method

does not allow pivoting, the algorithm will fail if any of the diagonal principal minors of the
original Toeplitz matrix vanish. (Compare with discussion of the tridiagonal algorithm in
§2.4.) If the algorithm fails, your matrix is not necessarily singular — you might just have
to solve your problem by a slower and more general algorithm such asLU decomposition
with pivoting.

The routine that implements equations (2.8.23)–(2.8.27) is also due to Rybicki. Note
that the routine’sr(n+j) is equal toRj above, so that subscripts on ther array vary from
1 to 2N − 1.

88 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE toeplz(r,x,y,n)
INTEGER n,NMAX
REAL r(2*n-1),x(n),y(n)
PARAMETER (NMAX=100)

Solves the Toeplitz system
∑N

j=1 R(N+i−j)xj = yi (i = 1, . . . , N). The Toeplitz matrix

need not be symmetric. y and r are input arrays of length n and 2*n-1, respectively. x
is the output array, of length n.
Parameter: NMAX is the maximum anticipated value of n.

INTEGER j,k,m,m1,m2
REAL pp,pt1,pt2,qq,qt1,qt2,sd,sgd,sgn,shn,sxn,

* g(NMAX),h(NMAX)
if(r(n).eq.0.) goto 99
x(1)=y(1)/r(n) Initialize for the recursion.
if(n.eq.1)return
g(1)=r(n-1)/r(n)
h(1)=r(n+1)/r(n)
do 15 m=1,n Main loop over the recursion.

m1=m+1
sxn=-y(m1) Compute numerator and denominator for x,
sd=-r(n)
do 11 j=1,m

sxn=sxn+r(n+m1-j)*x(j)
sd=sd+r(n+m1-j)*g(m-j+1)

enddo 11

if(sd.eq.0.)goto 99
x(m1)=sxn/sd whence x.
do 12 j=1,m

x(j)=x(j)-x(m1)*g(m-j+1)
enddo 12

if(m1.eq.n)return
sgn=-r(n-m1) Compute numerator and denominator for G and H ,
shn=-r(n+m1)
sgd=-r(n)
do 13 j=1,m

sgn=sgn+r(n+j-m1)*g(j)
shn=shn+r(n+m1-j)*h(j)
sgd=sgd+r(n+j-m1)*h(m-j+1)

enddo 13

if(sd.eq.0..or.sgd.eq.0.)goto 99
g(m1)=sgn/sgd whence G and H .
h(m1)=shn/sd
k=m
m2=(m+1)/2
pp=g(m1)
qq=h(m1)
do 14 j=1,m2

pt1=g(j)
pt2=g(k)
qt1=h(j)
qt2=h(k)
g(j)=pt1-pp*qt2
g(k)=pt2-pp*qt1
h(j)=qt1-qq*pt2
h(k)=qt2-qq*pt1
k=k-1

enddo 14

enddo 15 Back for another recurrence.
pause ’never get here in toeplz’

99 pause ’singular principal minor in toeplz’
END

If you are in the businessof solvingverylarge Toeplitz systems, you should find out about
so-called “new, fast” algorithms, which require only on the order ofN(logN)2 operations,

2.9 Cholesky Decomposition 89

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

compared toN2 for Levinson’s method. These methods are too complicated to include here.
Papers by Bunch[6] and de Hoog[7] will give entry to the literature.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 5 [also treats some other special forms].

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), §19. [1]

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley). [2]

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), pp. 394ff. [3]

Levinson, N., Appendix B of N. Wiener, 1949, Extrapolation, Interpolation and Smoothing of
Stationary Time Series (New York: Wiley). [4]

Robinson, E.A., and Treitel, S. 1980, Geophysical Signal Analysis (Englewood Cliffs, NJ: Prentice-
Hall), pp. 163ff. [5]

Bunch, J.R. 1985, SIAM Journal on Scientific and Statistical Computing, vol. 6, pp. 349–364. [6]

de Hoog, F. 1987, Linear Algebra and Its Applications, vol. 88/89, pp. 123–138. [7]

2.9 Cholesky Decomposition

If a square matrixA happens to be symmetric and positive definite, then it has a
special, more efficient, triangular decomposition. Symmetricmeans thataij = aji for
i, j = 1, . . . , N , while positive definitemeans that

v · A · v > 0 for all vectorsv (2.9.1)

(In Chapter 11 we will see that positive definite has the equivalent interpretation thatA has
all positive eigenvalues.) While symmetric, positive definite matrices are ratherspecial, they
occur quite frequently in some applications, so their special factorization,calledCholesky
decomposition, is good to know about. When you can use it, Cholesky decomposition is about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factorsL and U, Cholesky
decomposition constructs a lower triangular matrixL whose transposeLT can itself serve as
the upper triangular part. In other words we replace equation (2.3.1) by

L · LT = A (2.9.2)

This factorization is sometimes referred to as “taking the square root” of the matrixA. The
components ofLT are of course related to those ofL by

LT
ij = Lji (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12)–(2.3.13),

Lii =

(
aii −

i−1∑

k=1

L2
ik

)1/2

(2.9.4)

and

Lji =
1

Lii

(
aij −

i−1∑

k=1

LikLjk

)
j = i + 1, i + 2, . . . , N (2.9.5)

2.9 Cholesky Decomposition 89

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

compared toN2 for Levinson’s method. These methods are too complicated to include here.
Papers by Bunch[6] and de Hoog[7] will give entry to the literature.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 5 [also treats some other special forms].

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), §19. [1]

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley). [2]

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), pp. 394ff. [3]

Levinson, N., Appendix B of N. Wiener, 1949, Extrapolation, Interpolation and Smoothing of
Stationary Time Series (New York: Wiley). [4]

Robinson, E.A., and Treitel, S. 1980, Geophysical Signal Analysis (Englewood Cliffs, NJ: Prentice-
Hall), pp. 163ff. [5]

Bunch, J.R. 1985, SIAM Journal on Scientific and Statistical Computing, vol. 6, pp. 349–364. [6]

de Hoog, F. 1987, Linear Algebra and Its Applications, vol. 88/89, pp. 123–138. [7]

2.9 Cholesky Decomposition

If a square matrixA happens to be symmetric and positive definite, then it has a
special, more efficient, triangular decomposition. Symmetricmeans thataij = aji for
i, j = 1, . . . , N , while positive definitemeans that

v · A · v > 0 for all vectorsv (2.9.1)

(In Chapter 11 we will see that positive definite has the equivalent interpretation thatA has
all positive eigenvalues.) While symmetric, positive definite matrices are ratherspecial, they
occur quite frequently in some applications, so their special factorization,calledCholesky
decomposition, is good to know about. When you can use it, Cholesky decomposition is about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factorsL and U, Cholesky
decomposition constructs a lower triangular matrixL whose transposeLT can itself serve as
the upper triangular part. In other words we replace equation (2.3.1) by

L · LT = A (2.9.2)

This factorization is sometimes referred to as “taking the square root” of the matrixA. The
components ofLT are of course related to those ofL by

LT
ij = Lji (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12)–(2.3.13),

Lii =

(

aii −

i−1
∑

k=1

L2

ik

)1/2

(2.9.4)

and

Lji =
1

Lii

(

aij −

i−1
∑

k=1

LikLjk

)

j = i + 1, i + 2, . . . , N (2.9.5)

90 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If you apply equations (2.9.4) and (2.9.5) in the orderi = 1, 2, . . . , N , you will see
that theL’s that occur on the right-hand side are already determined by the time they are
needed. Also, only componentsaij with j ≥ i are referenced. (SinceA is symmetric,
these have complete information.) It is convenient, then, to have the factorL overwrite the
subdiagonal (lower triangular but not including the diagonal) part ofA, preserving the input
upper triangular values ofA. Only one extra vector of lengthN is needed to store the diagonal
part of L . The operations count isN3/6 executions of the inner loop (consisting of one
multiply and one subtract), with alsoN square roots. As already mentioned, this is about a
factor 2 better thanLU decomposition ofA (where its symmetry would be ignored).

A straightforward implementation is

SUBROUTINE choldc(a,n,np,p)
INTEGER n,np
REAL a(np,np),p(n)

Given a positive-definite symmetric matrix a(1:n,1:n), with physical dimension np, this
routine constructs its Cholesky decomposition, A = L ·LT . On input, only the upper triangle
of a need be given; it is not modified. The Cholesky factor L is returned in the lower triangle
of a, except for its diagonal elements which are returned in p(1:n).

INTEGER i,j,k
REAL sum
do 13 i=1,n

do 12 j=i,n
sum=a(i,j)
do 11 k=i-1,1,-1

sum=sum-a(i,k)*a(j,k)
enddo 11

if(i.eq.j)then
if(sum.le.0.)pause ’choldc failed’ a, with rounding errors, is not

positive definite.p(i)=sqrt(sum)
else

a(j,i)=sum/p(i)
endif

enddo 12

enddo 13

return
END

You might at this point wonder about pivoting. The pleasant answer is that Cholesky
decomposition is extremely stable numerically, without any pivoting at all. Failure ofcholdc
simply indicates that the matrixA (or, with roundoff error, another very nearby matrix) is
not positive definite. In fact,choldc is an efficient way to testwhethera symmetric matrix
is positive definite. (In this application, you will want to replace thepause with some less
drastic signaling method.)

Once your matrix is decomposed, the triangular factor can be used to solve a linear
equation by backsubstitution. The straightforward implementation of this is

SUBROUTINE cholsl(a,n,np,p,b,x)
INTEGER n,np
REAL a(np,np),b(n),p(n),x(n)

Solves the set of n linear equations A · x = b, where a is a positive-definite symmetric
matrix with physical dimension np. a and p are input as the output of the routine choldc.
Only the lower triangle of a is accessed. b(1:n) is input as the right-hand side vector. The
solution vector is returned in x(1:n). a, n, np, and p are not modified and can be left
in place for successive calls with different right-hand sides b. b is not modified unless you
identify b and x in the calling sequence, which is allowed.

INTEGER i,k
REAL sum
do 12 i=1,n Solve L · y = b, storing y in x.

sum=b(i)
do 11 k=i-1,1,-1

sum=sum-a(i,k)*x(k)

2.10 QR Decomposition 91

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 11

x(i)=sum/p(i)
enddo 12

do 14 i=n,1,-1 Solve LT
· x = y.

sum=x(i)
do 13 k=i+1,n

sum=sum-a(k,i)*x(k)
enddo 13

x(i)=sum/p(i)
enddo 14

return
END

A typical use ofcholdcandcholsl is in the inversion of covariancematrices describing
the fit of data to a model; see, e.g.,§15.6. In this, and many other applications, one often needs
L−1. The lower triangle of this matrix can be efficiently found from the output ofcholdc:

do 13 i=1,n
a(i,i)=1./p(i)
do 12 j=i+1,n

sum=0.
do 11 k=i,j-1

sum=sum-a(j,k)*a(k,i)
enddo 11

a(j,i)=sum/p(j)
enddo 12

enddo 13

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/1.

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), §4.9.2.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§5.3.5.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.2.

2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-calledQR
decomposition,

A = Q · R (2.10.1)

HereR is upper triangular, whileQ is orthogonal, that is,

QT
· Q = 1 (2.10.2)

whereQT is the transpose matrix ofQ. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensionsN × N .

2.10 QR Decomposition 91

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 11

x(i)=sum/p(i)
enddo 12

do 14 i=n,1,-1 Solve LT · x = y.
sum=x(i)
do 13 k=i+1,n

sum=sum-a(k,i)*x(k)
enddo 13

x(i)=sum/p(i)
enddo 14

return
END

A typical use ofcholdcandcholsl is in the inversion of covariancematrices describing
the fit of data to a model; see, e.g.,§15.6. In this, and many other applications, one often needs
L−1. The lower triangle of this matrix can be efficiently found from the output ofcholdc:

do 13 i=1,n
a(i,i)=1./p(i)
do 12 j=i+1,n

sum=0.
do 11 k=i,j-1

sum=sum-a(j,k)*a(k,i)
enddo 11

a(j,i)=sum/p(j)
enddo 12

enddo 13

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/1.

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), §4.9.2.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§5.3.5.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.2.

2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-calledQR
decomposition,

A = Q · R (2.10.1)

HereR is upper triangular, whileQ is orthogonal, that is,

QT
· Q = 1 (2.10.2)

whereQT is the transpose matrix ofQ. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensionsN × N .

92 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Like the other matrix factorizations we have met (LU , SVD, Cholesky),QR decompo-
sition can be used to solve systems of linear equations. To solve

A · x = b (2.10.3)

first form QT
· b and then solve

R · x = QT
· b (2.10.4)

by backsubstitution. SinceQR decomposition involves about twice as many operations as
LU decomposition, it is not used for typical systems of linear equations. However, we will
meet special cases whereQR is the method of choice.

The standard algorithm for theQR decomposition involves successive Householder
transformations (to be discussed later in§11.2). We write a Householder matrix in the form
1− u⊗ u/c wherec = 1

2
u · u. An appropriate Householder matrix applied to a given matrix

can zero all elements in a column of the matrix situated below a chosen element. Thus we
arrange for the first Householder matrixQ

1
to zero all elements in the first column ofA

below the first element. SimilarlyQ
2

zeroes all elements in the second column below the
second element, and so on up toQn−1

. Thus

R = Qn−1
· · ·Q

1
· A (2.10.5)

Since the Householder matrices are orthogonal,

Q = (Qn−1
· · ·Q

1
)−1 = Q

1
· · ·Qn−1

(2.10.6)

In most applications we don’t need to formQ explicitly; we instead store it in the factored
form (2.10.6). Pivoting is not usually necessary unless the matrixA is very close to singular.
A generalQR algorithm for rectangular matrices including pivoting is given in[1]. For square
matrices, an implementation is the following:

SUBROUTINE qrdcmp(a,n,np,c,d,sing)
INTEGER n,np
REAL a(np,np),c(n),d(n)
LOGICAL sing

Constructs the QR decomposition of a(1:n,1:n), with physical dimension np. The upper
triangular matrix R is returned in the upper triangle of a, except for the diagonal elements
of R which are returned in d(1:n). The orthogonal matrix Q is represented as a product of
n− 1 Householder matrices Q1 . . .Qn−1, where Qj = 1− uj ⊗ uj/cj . The ith component

of uj is zero for i = 1, . . . , j − 1 while the nonzero components are returned in a(i,j) for
i = j, . . . , n. sing returns as true if singularity is encountered during the decomposition,
but the decomposition is still completed in this case.

INTEGER i,j,k
REAL scale,sigma,sum,tau
sing=.false.
do 17 k=1,n-1

scale=0.
do 11 i=k,n

scale=max(scale,abs(a(i,k)))
enddo 11

if(scale.eq.0.)then Singular case.
sing=.true.
c(k)=0.
d(k)=0.

else Form Qk and Qk · A.
do 12 i=k,n

a(i,k)=a(i,k)/scale
enddo 12

sum=0.
do 13 i=k,n

sum=sum+a(i,k)**2
enddo 13

sigma=sign(sqrt(sum),a(k,k))
a(k,k)=a(k,k)+sigma

2.10 QR Decomposition 93

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

c(k)=sigma*a(k,k)
d(k)=-scale*sigma
do 16 j=k+1,n

sum=0.
do 14 i=k,n

sum=sum+a(i,k)*a(i,j)
enddo 14

tau=sum/c(k)
do 15 i=k,n

a(i,j)=a(i,j)-tau*a(i,k)
enddo 15

enddo 16

endif
enddo 17

d(n)=a(n,n)
if(d(n).eq.0.)sing=.true.
return
END

The next routine,qrsolv, is used to solve linear systems. In many applications only the
part (2.10.4) of the algorithm is needed, so we separate it off into its own routinersolv.

SUBROUTINE qrsolv(a,n,np,c,d,b)
INTEGER n,np
REAL a(np,np),b(n),c(n),d(n)

C USES rsolv
Solves the set of n linear equations A ·x = b, where a is a matrix with physical dimension np.
a, c, and d are input as the output of the routine qrdcmp and are not modified. b(1:n)
is input as the right-hand side vector, and is overwritten with the solution vector on output.

INTEGER i,j
REAL sum,tau
do 13 j=1,n-1 Form QT · b.

sum=0.
do 11 i=j,n

sum=sum+a(i,j)*b(i)
enddo 11

tau=sum/c(j)
do 12 i=j,n

b(i)=b(i)-tau*a(i,j)
enddo 12

enddo 13

call rsolv(a,n,np,d,b) Solve R · x = QT · b.
return
END

SUBROUTINE rsolv(a,n,np,d,b)
INTEGER n,np
REAL a(np,np),b(n),d(n)

Solves the set of n linear equations R · x = b, where R is an upper triangular matrix stored
in a and d. a and d are input as the output of the routine qrdcmp and are not modified.
b(1:n) is input as the right-hand side vector, and is overwritten with the solution vector
on output.

INTEGER i,j
REAL sum
b(n)=b(n)/d(n)
do 12 i=n-1,1,-1

sum=0.
do 11 j=i+1,n

sum=sum+a(i,j)*b(j)
enddo 11

b(i)=(b(i)-sum)/d(i)

94 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 12

return
END

See[2] for details on how to useQR decomposition for constructing orthogonal bases,
and for solving least-squares problems. (We prefer to use SVD,§2.6, for these purposes,
because of its greater diagnostic capability in pathological cases.)

Updating a QR decomposition

Some numerical algorithms involve solving a successionof linear systems each of which
differs only slightly from its predecessor. Instead of doingO(N3) operations each time
to solve the equations from scratch, one can often update a matrix factorization inO(N2)
operations and use the new factorization to solve the next set of linear equations. TheLU
decomposition is complicated toupdate because of pivoting. However,QR turns out to be
quite simple for a very common kind of update,

A → A + s⊗ t (2.10.7)

(compare equation 2.7.1). In practice it is more convenient to work with the equivalent form

A = Q · R → A′ = Q′

· R′ = Q · (R + u ⊗ v) (2.10.8)

One can go back and forth between equations (2.10.7) and (2.10.8) using the fact thatQ
is orthogonal, giving

t = v and either s = Q · u or u = QT
· s (2.10.9)

The algorithm[2] has two phases. In the first we applyN − 1 Jacobi rotations (§11.1) to
reduceR + u ⊗ v to upper Hessenberg form. AnotherN − 1 Jacobi rotations transform this
upper Hessenberg matrix to the new upper triangular matrixR′. The matrixQ′ is simply the
product ofQ with the 2(N − 1) Jacobi rotations. In applications we usually wantQT , and
the algorithm can easily be rearranged to work with this matrix instead of withQ.

SUBROUTINE qrupdt(r,qt,n,np,u,v)
INTEGER n,np
REAL r(np,np),qt(np,np),u(np),v(np)

C USES rotate
Given the QR decomposition of some n × n matrix, calculates the QR decomposition of
the matrix Q · (R + u ⊗ v). The matrices r and qt have physical dimension np. Note that

QT is input and returned in qt.
INTEGER i,j,k
do 11 k=n,1,-1 Find largest k such that u(k) 6= 0.

if(u(k).ne.0.)goto 1
enddo 11

k=1
1 do 12 i=k-1,1,-1 Transform R + u ⊗ v to upper Hes-

senberg.call rotate(r,qt,n,np,i,u(i),-u(i+1))
if(u(i).eq.0.)then

u(i)=abs(u(i+1))
else if(abs(u(i)).gt.abs(u(i+1)))then

u(i)=abs(u(i))*sqrt(1.+(u(i+1)/u(i))**2)
else

u(i)=abs(u(i+1))*sqrt(1.+(u(i)/u(i+1))**2)
endif

enddo 12

do 13 j=1,n
r(1,j)=r(1,j)+u(1)*v(j)

enddo 13

do 14 i=1,k-1 Transform upper Hessenberg matrix
to upper triangular.call rotate(r,qt,n,np,i,r(i,i),-r(i+1,i))

enddo 14

2.11 Is Matrix Inversion an N
3 Process? 95

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

return
END

SUBROUTINE rotate(r,qt,n,np,i,a,b)
INTEGER n,np,i
REAL a,b,r(np,np),qt(np,np)

Given n×n matrices r and qt of physical dimension np, carry out a Jacobi rotation on rows i
and i+1 of each matrix. a and b are the parameters of the rotation: cos θ = a/

√
a2 + b2,

sin θ = b/
√
a2 + b2.

INTEGER j
REAL c,fact,s,w,y
if(a.eq.0.)then Avoid unnecessary overflow or underflow.

c=0.
s=sign(1.,b)

else if(abs(a).gt.abs(b))then
fact=b/a
c=sign(1./sqrt(1.+fact**2),a)
s=fact*c

else
fact=a/b
s=sign(1./sqrt(1.+fact**2),b)
c=fact*s

endif
do 11 j=i,n Premultiply r by Jacobi rotation.

y=r(i,j)
w=r(i+1,j)
r(i,j)=c*y-s*w
r(i+1,j)=s*y+c*w

enddo 11

do 12 j=1,n Premultiply qt by Jacobi rotation.
y=qt(i,j)
w=qt(i+1,j)
qt(i,j)=c*y-s*w
qt(i+1,j)=s*y+c*w

enddo 12

return
END

We will make use ofQR decomposition, and its updating, in§9.7.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/8. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §§5.2, 5.3, 12.6. [2]

2.11 Is Matrix Inversion an N 3 Process?

We close this chapter with a little entertainment, a bit of algorithmic prestidig-
itation which probes more deeply into the subject of matrix inversion. We start
with a seemingly simple question:

2.11 Is Matrix Inversion an N3 Process? 95

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

return
END

SUBROUTINE rotate(r,qt,n,np,i,a,b)
INTEGER n,np,i
REAL a,b,r(np,np),qt(np,np)

Given n×n matrices r and qt of physical dimension np, carry out a Jacobi rotation on rows i

and i+1 of each matrix. a and b are the parameters of the rotation: cos θ = a/
√
a2 + b2,

sin θ = b/
√
a2 + b2.

INTEGER j
REAL c,fact,s,w,y
if(a.eq.0.)then Avoid unnecessary overflow or underflow.

c=0.
s=sign(1.,b)

else if(abs(a).gt.abs(b))then
fact=b/a
c=sign(1./sqrt(1.+fact**2),a)
s=fact*c

else
fact=a/b
s=sign(1./sqrt(1.+fact**2),b)
c=fact*s

endif
do 11 j=i,n Premultiply r by Jacobi rotation.

y=r(i,j)
w=r(i+1,j)
r(i,j)=c*y-s*w
r(i+1,j)=s*y+c*w

enddo 11

do 12 j=1,n Premultiply qt by Jacobi rotation.
y=qt(i,j)
w=qt(i+1,j)
qt(i,j)=c*y-s*w
qt(i+1,j)=s*y+c*w

enddo 12

return
END

We will make use ofQR decomposition, and its updating, in§9.7.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/8. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §§5.2, 5.3, 12.6. [2]

2.11 Is Matrix Inversion an N 3 Process?

We close this chapter with a little entertainment, a bit of algorithmic prestidig-
itation which probes more deeply into the subject of matrix inversion. We start
with a seemingly simple question:

96 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

How many individual multiplications does it take to perform the matrix
multiplication of two 2 × 2 matrices,

(

a11 a12

a21 a22

)

·

(

b11 b12

b21 b22

)

=

(

c11 c12

c21 c22

)

(2.11.1)

Eight, right? Here they are written explicitly:

c11 = a11 × b11 + a12 × b21

c12 = a11 × b12 + a12 × b22

c21 = a21 × b11 + a22 × b21

c22 = a21 × b12 + a22 × b22

(2.11.2)

Do you think that one can write formulas for thec’s that involve onlyseven
multiplications? (Try it yourself, before reading on.)

Such a set of formulas was, in fact, discovered by Strassen[1]. The formulas are:

Q1 ≡ (a11 + a22) × (b11 + b22)

Q2 ≡ (a21 + a22) × b11

Q3 ≡ a11 × (b12 − b22)

Q4 ≡ a22 × (−b11 + b21)

Q5 ≡ (a11 + a12) × b22

Q6 ≡ (−a11 + a21) × (b11 + b12)

Q7 ≡ (a12 − a22) × (b21 + b22)

(2.11.3)

in terms of which

c11 = Q1 + Q4 −Q5 + Q7

c21 = Q2 + Q4

c12 = Q3 + Q5

c22 = Q1 + Q3 −Q2 + Q6

(2.11.4)

What’s the use of this? There is one fewer multiplication than in equation
(2.11.2), butmany moreadditions and subtractions. It is not clear that anything
has been gained. But notice that in (2.11.3) thea’s and b’s are never commuted.
Therefore (2.11.3) and (2.11.4) are valid when thea’s and b’s are themselves
matrices. The problem of multiplying two very large matrices (of orderN = 2m for
some integerm) can now be broken down recursively by partitioning the matrices
into quarters, sixteenths, etc. And note the key point: The savings is not just a factor
“7/8”; it is that factor ateachhierarchical level of the recursion. In total it reduces
the process of matrix multiplication to orderN log

2
7 instead ofN3.

2.11 Is Matrix Inversion an N3 Process? 97

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

What about all the extra additions in (2.11.3)–(2.11.4)? Don’t they outweigh
the advantage of the fewer multiplications? For largeN , it turns out that there are
six times as many additions as multiplications implied by (2.11.3)–(2.11.4). But,
if N is very large, this constant factor is no match for the change in theexponent
from N3 to N log

2
7.

With this “fast” matrix multiplication, Strassen also obtained a surprising result
for matrix inversion[1]. Suppose that the matrices

(

a11 a12

a21 a22

)

and

(

c11 c12

c21 c22

)

(2.11.5)

are inverses of each other. Then thec’s can be obtained from thea’s by the following
operations (compare equations 2.7.22 and 2.7.25):

R1 = Inverse(a11)

R2 = a21 × R1

R3 = R1 × a12

R4 = a21 × R3

R5 = R4 − a22

R6 = Inverse(R5)

c12 = R3 × R6

c21 = R6 × R2

R7 = R3 × c21

c11 = R1 − R7

c22 = −R6

(2.11.6)

In (2.11.6) the “inverse” operator occurs just twice. It is to be interpreted as the
reciprocal if thea’s andc’s are scalars, but as matrix inversion if thea’s andc’s are
themselves submatrices. Imagine doing the inversion of a very large matrix, of order
N = 2m, recursively by partitions in half. Ateach step, halving the orderdoubles
the number of inverse operations. But this means that there are onlyN divisions in
all! So divisions don’t dominate in the recursive use of (2.11.6). Equation (2.11.6)
is dominated, in fact, by its 6 multiplications. Since these can be done by anN log

2
7

algorithm, so can the matrix inversion!
This is fun, but let’s look at practicalities: If you estimate how largeN has to be

before the difference between exponent 3 and exponentlog2 7 = 2.807 is substantial
enough to outweigh the bookkeeping overhead, arising from the complicated nature
of the recursive Strassen algorithm, you will find thatLU decomposition is in no
immediate danger of becoming obsolete.

If, on the other hand, you like this kind of fun, then try these: (1) Can you
multiply the complex numbers(a+ib) and(c+id) in only threereal multiplications?
[Answer: see§5.4.] (2) Can you evaluate a general fourth-degree polynomial in

98 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

x for many different values ofx with only three multiplications per evaluation?
[Answer: see§5.3.]

CITED REFERENCES AND FURTHER READING:

Strassen, V. 1969, Numerische Mathematik, vol. 13, pp. 354–356. [1]

Kronsjö, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley).

Winograd, S. 1971, Linear Algebra and Its Applications, vol. 4, pp. 381–388.

Pan, V. Ya. 1980, SIAM Journal on Computing, vol. 9, pp. 321–342.

Pan, V. 1984, How to Multiply Matrices Faster, Lecture Notes in Computer Science, vol. 179
(New York: Springer-Verlag)

Pan, V. 1984, SIAM Review, vol. 26, pp. 393–415. [More recent results that show that an
exponent of 2.496 can be achieved — theoretically!]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
Chapter 3. Interpolation and

Extrapolation

3.0 Introduction

We sometimes know the value of a functionf(x) at a set of pointsx1, x2, . . . , xN

(say, withx1 < . . . < xN), but we don’t have an analytic expression forf(x) that lets
us calculate its value at an arbitrary point. For example, thef(xi)’s might result from
some physical measurement or from long numerical calculation that cannot be cast
into a simple functional form. Often thexi’s are equally spaced, but not necessarily.

The task now is to estimatef(x) for arbitraryx by, in some sense, drawing a
smooth curve through (and perhaps beyond) thexi. If the desiredx is in between the
largest and smallest of thexi’s, the problem is calledinterpolation; if x is outside
that range, it is calledextrapolation, which is considerably more hazardous (as many
former stock-market analysts can attest).

Interpolation and extrapolation schemes must model the function, between or
beyond the known points, by some plausible functional form. The form should
be sufficiently general so as to be able to approximate large classes of functions
which might arise in practice. By far most common among the functional forms
used are polynomials (§3.1). Rational functions (quotients of polynomials) also turn
out to be extremely useful (§3.2). Trigonometric functions, sines and cosines, give
rise totrigonometric interpolationand related Fourier methods, which we defer to
Chapters 12 and 13.

There is an extensive mathematical literature devoted to theorems about what
sort of functions can be well approximated by which interpolating functions. These
theorems are, alas, almost completely useless in day-to-day work: If we know
enough about our function to apply a theorem of any power, we are usually not in
the pitiful state of having to interpolate on a table of its values!

Interpolation is related to, but distinct from,function approximation. That task
consists of finding an approximate (but easily computable) function to use in place
of a more complicated one. In the case of interpolation, you are given the functionf

at pointsnot of your own choosing. For the case of function approximation, you are
allowed to compute the functionf atanydesired points for the purpose of developing
your approximation. We deal with function approximation in Chapter 5.

One can easily find pathological functions that make a mockery of any interpo-
lation scheme. Consider, for example, the function

f(x) = 3x2 +
1

π4
ln
[

(π − x)2
]

+ 1 (3.0.1)

99

100 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

which is well-behaved everywhere except atx = π, very mildly singular atx = π,
and otherwise takes on all positive and negative values. Any interpolation based
on the valuesx = 3.13, 3.14, 3.15, 3.16, will assuredly get a very wrong answer for
the valuex = 3.1416, even though a graph plotting those five points looks really
quite smooth! (Try it on your calculator.)

Because pathologies can lurk anywhere, it is highly desirable that an interpo-
lation and extrapolation routine should return an estimate of its own error. Such an
error estimate can never be foolproof, of course. We could have a function that,
for reasons known only to its maker, takes off wildly and unexpectedly between
two tabulated points. Interpolation always presumes some degree of smoothness
for the function interpolated, but within this framework of presumption, deviations
from smoothness can be detected.

Conceptually, the interpolation process has two stages: (1) Fit an interpolating
function to the data points provided. (2) Evaluate that interpolating function at
the target pointx.

However, this two-stage method is generally not the best way to proceed in
practice. Typically it is computationally less efficient, and more susceptible to
roundoff error, than methods which construct a functional estimatef(x) directly
from theN tabulated values every time one is desired. Most practical schemes start
at a nearby pointf(xi), then add a sequence of (hopefully) decreasing corrections,
as information from otherf(xi)’s is incorporated. The procedure typically takes
O(N2) operations. If everything is well behaved, the last correction will be the
smallest, and it can be used as an informal (though not rigorous) bound on the error.

In the case of polynomial interpolation, it sometimes does happen that the
coefficients of the interpolating polynomial are of interest, even though their use
in evaluatingthe interpolating function should be frowned on. We deal with this
eventuality in§3.5.

Local interpolation, using a finite number of “nearest-neighbor” points, gives
interpolated valuesf(x) that do not, in general, have continuous first or higher
derivatives. That happens because, asx crosses the tabulated valuesxi, the
interpolation scheme switches which tabulated points are the “local” ones. (If such
a switch is allowed to occur anywhereelse, then there will be a discontinuity in the
interpolated function itself at that point. Bad idea!)

In situations where continuity of derivatives is a concern, one must use
the “stiffer” interpolation provided by a so-calledspline function. A spline is
a polynomial betweeneach pair of table points, but one whose coefficients are
determined “slightly” nonlocally. The nonlocality is designed to guarantee global
smoothness in the interpolated function up to some order of derivative. Cubic splines
(§3.3) are the most popular. They produce an interpolated function that is continuous
through the second derivative. Splines tend to be stabler than polynomials, with less
possibility of wild oscillation between the tabulated points.

The number of points (minus one) used in an interpolation scheme is called
the order of the interpolation. Increasing the order does not necessarily increase
the accuracy, especially in polynomial interpolation. If the added points are distant
from the point of interestx, the resulting higher-order polynomial, with its additional
constrained points, tends to oscillate wildly between the tabulated values. This
oscillation may have no relation at all to the behavior of the “true” function (see
Figure 3.0.1). Of course, adding pointscloseto the desired point usually does help,

3.0 Introduction 101

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(a)

(b)

Figure 3.0.1. (a) A smooth function (solid line) is more accurately interpolated by ahigh-order
polynomial (shown schematically as dotted line) than by a low-order polynomial (shown as a piecewise
linear dashed line). (b) A function with sharp corners or rapidly changing higher derivativesis less
accurately approximatedby a high-orderpolynomial (dotted line), which is too “stiff,” than by a low-order
polynomial (dashed lines). Even some smooth functions, such as exponentials or rational functions, can
be badly approximated by high-order polynomials.

but a finer mesh implies a larger table of values, not always available.
Unless there is solid evidence that the interpolating function is close in form to

the true functionf , it is a good idea to be cautious about high-order interpolation.
We enthusiastically endorse interpolations with 3 or 4 points, we are perhaps tolerant
of 5 or 6; but we rarely go higher than that unless there is quite rigorous monitoring
of estimated errors.

When your table of values contains many more points than the desirable order
of interpolation, you must begin each interpolation with a search for the right “local”
place in the table. While not strictly a part of the subject of interpolation, this task is
important enough (and often enough botched) that we devote§3.4 to its discussion.

The routines given for interpolation are also routines for extrapolation. An
important application, in Chapter 16, is their use in the integration of ordinary
differential equations. There, considerable careis taken with the monitoring of
errors. Otherwise, the dangers of extrapolation cannot be overemphasized: An
interpolating function, which is perforce an extrapolating function, will typically go
berserk when the argumentx is outside the range of tabulated values by more than
the typical spacing of tabulated points.

Interpolation can be done in more than one dimension, e.g., for a function

102 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

f(x, y, z). Multidimensional interpolation is oftenaccomplished by a sequence of
one-dimensional interpolations. We discuss this in§3.6.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 2.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 3.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 4.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 5.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 3.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 6.

3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of degreeN − 1 through
the N points y1 = f(x1), y2 = f(x2), . . . , yN = f(xN) is given explicitly by
Lagrange’s classical formula,

P (x) =
(x− x2)(x− x3)...(x− xN)

(x1 − x2)(x1 − x3)...(x1 − xN)
y1 +

(x− x1)(x− x3)...(x− xN)

(x2 − x1)(x2 − x3)...(x2 − xN)
y2

+ · · ·+
(x − x1)(x − x2)...(x− xN−1)

(xN − x1)(xN − x2)...(xN − xN−1)
yN

(3.1.1)
There areN terms, each a polynomial of degreeN − 1 and each constructed to be
zero at all of thexi except one, at which it is constructed to beyi.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
but it is not terribly right either. The resulting algorithm gives no error estimate, and
it is also somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomial) isNeville’s algorithm, closely related to
and sometimes confused withAitken’s algorithm, the latter now considered obsolete.

Let P1 be the value atx of the unique polynomial of degree zero (i.e.,
a constant) passing through the point(x1, y1); so P1 = y1. Likewise define
P2, P3, . . . , PN . Now let P12 be the value atx of the unique polynomial of
degree one passing through both(x1, y1) and (x2, y2). Likewise P23, P34, . . . ,

P(N−1)N . Similarly, for higher-order polynomials, up toP123...N , which is the value
of the unique interpolating polynomial through allN points, i.e., the desired answer.

102 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

f(x, y, z). Multidimensional interpolation is oftenaccomplished by a sequence of
one-dimensional interpolations. We discuss this in§3.6.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 2.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 3.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 4.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 5.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 3.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 6.

3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of degreeN − 1 through
the N points y1 = f(x1), y2 = f(x2), . . . , yN = f(xN) is given explicitly by
Lagrange’s classical formula,

P (x) =
(x− x2)(x− x3)...(x− xN)

(x1 − x2)(x1 − x3)...(x1 − xN)
y1 +

(x− x1)(x− x3)...(x− xN)

(x2 − x1)(x2 − x3)...(x2 − xN)
y2

+ · · ·+
(x − x1)(x − x2)...(x− xN−1)

(xN − x1)(xN − x2)...(xN − xN−1)
yN

(3.1.1)
There areN terms, each a polynomial of degreeN − 1 and each constructed to be
zero at all of thexi except one, at which it is constructed to beyi.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
but it is not terribly right either. The resulting algorithm gives no error estimate, and
it is also somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomial) isNeville’s algorithm, closely related to
and sometimes confused withAitken’s algorithm, the latter now considered obsolete.

Let P1 be the value atx of the unique polynomial of degree zero (i.e.,
a constant) passing through the point(x1, y1); so P1 = y1. Likewise define
P2, P3, . . . , PN . Now let P12 be the value atx of the unique polynomial of
degree one passing through both(x1, y1) and (x2, y2). Likewise P23, P34, . . . ,

P(N−1)N . Similarly, for higher-order polynomials, up toP123...N , which is the value
of the unique interpolating polynomial through allN points, i.e., the desired answer.

3.1 Polynomial Interpolation and Extrapolation 103

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The variousP ’s form a “tableau” with “ancestors” on the left leading to a single
“descendant” at the extreme right. For example, withN = 4,

x1 : y1 = P1

P12

x2 : y2 = P2 P123

P23 P1234

x3 : y3 = P3 P234

P34

x4 : y4 = P4

(3.1.2)

Neville’s algorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationshipbetween a
“daughter”P and its two “parents,”

Pi(i+1)...(i+m) =
(x − xi+m)Pi(i+1)...(i+m−1) + (xi − x)P(i+1)(i+2)...(i+m)

xi − xi+m

(3.1.3)

This recurrence works because the two parents already agree at pointsxi+1 . . .

xi+m−1.
An improvement on the recurrence (3.1.3) is to keep track of the small

differencesbetween parents and daughters, namely to define (form = 1, 2, . . . ,
N − 1),

Cm,i ≡ Pi...(i+m) − Pi...(i+m−1)

Dm,i ≡ Pi...(i+m) − P(i+1)...(i+m).
(3.1.4)

Then one can easily derive from (3.1.3) the relations

Dm+1,i =
(xi+m+1 − x)(Cm,i+1 −Dm,i)

xi − xi+m+1

Cm+1,i =
(xi − x)(Cm,i+1 −Dm,i)

xi − xi+m+1

(3.1.5)

At each levelm, theC ’s andD’s are the corrections that make the interpolation one
order higher. The final answerP1...N is equal to the sum ofanyyi plus a set ofC ’s
and/orD’s that form a path through the family tree to the rightmost daughter.

Here is a routine for polynomial interpolation or extrapolation:

SUBROUTINE polint(xa,ya,n,x,y,dy)
INTEGER n,NMAX
REAL dy,x,y,xa(n),ya(n)
PARAMETER (NMAX=10) Largest anticipated value of n.

Given arrays xa and ya, each of length n, and given a value x, this routine returns a
value y, and an error estimate dy. If P (x) is the polynomial of degree N − 1 such that
P (xai) = ya

i
, i = 1, . . . ,n, then the returned value y = P (x).

INTEGER i,m,ns
REAL den,dif,dift,ho,hp,w,c(NMAX),d(NMAX)
ns=1
dif=abs(x-xa(1))

104 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 11 i=1,n Here we find the index ns of the closest table entry,
dift=abs(x-xa(i))
if (dift.lt.dif) then

ns=i
dif=dift

endif
c(i)=ya(i) and initialize the tableau of c’s and d’s.
d(i)=ya(i)

enddo 11

y=ya(ns) This is the initial approximation to y.
ns=ns-1
do 13 m=1,n-1 For each column of the tableau,

do 12 i=1,n-m we loop over the current c’s and d’s and update them.
ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den.eq.0.)pause ’failure in polint’

This error can occur only if two input xa’s are (to within roundoff) identical.
den=w/den
d(i)=hp*den Here the c’s and d’s are updated.
c(i)=ho*den

enddo 12

if (2*ns.lt.n-m)then After each column in the tableau is completed, we decide
which correction, c or d, we want to add to our accu-
mulating value of y, i.e., which path to take through
the tableau—forking up or down. We do this in such a
way as to take the most “straight line” route through the
tableau to its apex, updating ns accordingly to keep track
of where we are. This route keeps the partial approxima-
tions centered (insofar as possible) on the target x. The
last dy added is thus the error indication.

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

Quite often you will want to callpolint with the dummy argumentsxa
and ya replaced by actual arrayswith offsets. For example, the construction
call polint(xx(15),yy(15),4,x,y,dy) performs 4-point interpolation on the
tabulated valuesxx(15:18), yy(15:18). For more on this, see the end of§3.4.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.

3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, butare well
approximated by rational functions, that is quotients of polynomials. We de-
note by Ri(i+1)...(i+m) a rational function passing through them + 1 points

104 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 11 i=1,n Here we find the index ns of the closest table entry,
dift=abs(x-xa(i))
if (dift.lt.dif) then

ns=i
dif=dift

endif
c(i)=ya(i) and initialize the tableau of c’s and d’s.
d(i)=ya(i)

enddo 11

y=ya(ns) This is the initial approximation to y.
ns=ns-1
do 13 m=1,n-1 For each column of the tableau,

do 12 i=1,n-m we loop over the current c’s and d’s and update them.
ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den.eq.0.)pause ’failure in polint’

This error can occur only if two input xa’s are (to within roundoff) identical.
den=w/den
d(i)=hp*den Here the c’s and d’s are updated.
c(i)=ho*den

enddo 12

if (2*ns.lt.n-m)then After each column in the tableau is completed, we decide
which correction, c or d, we want to add to our accu-
mulating value of y, i.e., which path to take through
the tableau—forking up or down. We do this in such a
way as to take the most “straight line” route through the
tableau to its apex, updating ns accordingly to keep track
of where we are. This route keeps the partial approxima-
tions centered (insofar as possible) on the target x. The
last dy added is thus the error indication.

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

Quite often you will want to callpolint with the dummy argumentsxa
and ya replaced by actual arrayswith offsets. For example, the construction
call polint(xx(15),yy(15),4,x,y,dy) performs 4-point interpolation on the
tabulated valuesxx(15:18), yy(15:18). For more on this, see the end of§3.4.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.

3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, butare well
approximated by rational functions, that is quotients of polynomials. We de-
note by Ri(i+1)...(i+m) a rational function passing through them + 1 points

3.2 Rational Function Interpolation and Extrapolation 105

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(xi, yi) . . . (xi+m, yi+m). More explicitly, suppose

Ri(i+1)...(i+m) =
Pµ(x)

Qν(x)
=

p0 + p1x + · · ·+ pµx
µ

q0 + q1x + · · ·+ qνxν
(3.2.1)

Since there areµ + ν + 1 unknownp’s andq’s (q0 being arbitrary), we must have

m+ 1 = µ + ν + 1 (3.2.2)

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functions with poles, that is, zeros of the denominator
of equation (3.2.1). These poles might occur for real values ofx, if the function
to be interpolated itself has poles. More often, the functionf(x) is finite for all
finite real x, but has an analytic continuation with poles in the complexx-plane.
Such poles can themselves ruin a polynomial approximation, even one restricted to
real values ofx, just as they can ruin the convergence of an infinite power series
in x. If you draw a circle in the complex plane around yourm tabulated points,
then you should not expect polynomial interpolation to be good unless the nearest
pole is rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powers ofx in its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should also
mention in passing that rational function approximations can be used in analytic
work. One sometimes constructs a rational function approximation by the criterion
that the rational function of equation (3.2.1) itself have a power series expansion
that agrees with the firstm + 1 terms of the power series expansion of the desired
functionf(x). This is calledPadé approximation, and is discussed in§5.12.

Bulirsch and Stoer found an algorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of equation
(3.1.2) is constructed column by column, leading to a result and an error estimate.
The Bulirsch-Stoer algorithm produces the so-calleddiagonalrational function, with
the degrees of numerator and denominator equal (ifm is even) or with the degree
of the denominator larger by one (ifm is odd, cf. equation 3.2.2 above). For the
derivation of the algorithm, refer to[1]. The algorithm is summarized by a recurrence
relation exactly analogous to equation (3.1.3) for polynomial approximation:

Ri(i+1)...(i+m) = R(i+1)...(i+m)

+
R(i+1)...(i+m) − Ri...(i+m−1)

(

x−xi

x−xi+m

)(

1 −
R(i+1)...(i+m)−Ri...(i+m−1)

R(i+1)...(i+m)−R(i+1)...(i+m−1)

)

− 1

(3.2.3)

This recurrence generates the rational functions throughm + 1 points from the
ones throughm and (the termR(i+1)...(i+m−1) in equation 3.2.3)m − 1 points.
It is started with

Ri = yi (3.2.4)

106 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and with
R ≡ [Ri(i+1)...(i+m) with m = −1] = 0 (3.2.5)

Now, exactly as in equations (3.1.4) and (3.1.5) above, we can convert the
recurrence (3.2.3) to one involving only the small differences

Cm,i ≡ Ri...(i+m) −Ri...(i+m−1)

Dm,i ≡ Ri...(i+m) −R(i+1)...(i+m)

(3.2.6)

Note that these satisfy the relation

Cm+1,i −Dm+1,i = Cm,i+1 −Dm,i (3.2.7)

which is useful in proving the recurrences

Dm+1,i =
Cm,i+1(Cm,i+1 −Dm,i)

(

x−xi

x−xi+m+1

)

Dm,i −Cm,i+1

Cm+1,i =

(

x−xi

x−xi+m+1

)

Dm,i(Cm,i+1 −Dm,i)
(

x−xi

x−xi+m+1

)

Dm,i −Cm,i+1

(3.2.8)

This recurrence is implemented in the following subroutine, whose use is analogous
in every way topolint in §3.1.

SUBROUTINE ratint(xa,ya,n,x,y,dy)
INTEGER n,NMAX
REAL dy,x,y,xa(n),ya(n),TINY
PARAMETER (NMAX=10,TINY=1.e-25) Largest expected value of n, and a small number.

Given arrays xa and ya, each of length n, and given a value of x, this routine returns a
value of y and an accuracy estimate dy. The value returned is that of the diagonal rational
function, evaluated at x, which passes through the n points (xai, yai), i = 1...n.

INTEGER i,m,ns
REAL dd,h,hh,t,w,c(NMAX),d(NMAX)
ns=1
hh=abs(x-xa(1))
do 11 i=1,n

h=abs(x-xa(i))
if (h.eq.0.)then

y=ya(i)
dy=0.0
return

else if (h.lt.hh) then
ns=i
hh=h

endif
c(i)=ya(i)
d(i)=ya(i)+TINY The TINY part is needed to prevent a rare zero-over-

zero condition.enddo 11

y=ya(ns)
ns=ns-1
do 13 m=1,n-1

do 12 i=1,n-m

3.3 Cubic Spline Interpolation 107

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

w=c(i+1)-d(i)
h=xa(i+m)-x h will never be zero, since this was tested in the ini-

tializing loop.t=(xa(i)-x)*d(i)/h
dd=t-c(i+1)
if(dd.eq.0.)pause ’failure in ratint’

This error condition indicates that the interpolating function has a pole at the re-
quested value of x.

dd=w/dd
d(i)=c(i+1)*dd
c(i)=t*dd

enddo 12

if (2*ns.lt.n-m)then
dy=c(ns+1)

else
dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated functionyi = y(xi), i = 1...N , focus attention on one
particular interval, betweenxj andxj+1. Linear interpolation in that interval gives
the interpolation formula

y = Ayj + Byj+1 (3.3.1)
where

A ≡
xj+1 − x

xj+1 − xj

B ≡ 1 −A =
x− xj

xj+1 − xj

(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and anundefined, or infinite, second derivative at the
abscissasxj . The goal of cubic spline interpolation is to get an interpolation formula
that is smooth in the first derivative, and continuous in the second derivative, both
within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values ofyi, we
also have tabulated values for the function’s second derivatives,y′′, that is, a set

3.3 Cubic Spline Interpolation 107

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

w=c(i+1)-d(i)
h=xa(i+m)-x h will never be zero, since this was tested in the ini-

tializing loop.t=(xa(i)-x)*d(i)/h
dd=t-c(i+1)
if(dd.eq.0.)pause ’failure in ratint’

This error condition indicates that the interpolating function has a pole at the re-
quested value of x.

dd=w/dd
d(i)=c(i+1)*dd
c(i)=t*dd

enddo 12

if (2*ns.lt.n-m)then
dy=c(ns+1)

else
dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated functionyi = y(xi), i = 1...N , focus attention on one
particular interval, betweenxj andxj+1. Linear interpolation in that interval gives
the interpolation formula

y = Ayj + Byj+1 (3.3.1)
where

A ≡
xj+1 − x

xj+1 − xj

B ≡ 1 −A =
x− xj

xj+1 − xj

(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and anundefined, or infinite, second derivative at the
abscissasxj . The goal of cubic spline interpolation is to get an interpolation formula
that is smooth in the first derivative, and continuous in the second derivative, both
within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values ofyi, we
also have tabulated values for the function’s second derivatives,y′′, that is, a set

108 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

of numbersy′′i . Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
valuey′′j on the left to a valuey′′j+1 on the right. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zerovaluesat xj andxj+1, then adding it in will not spoil the agreement with the
tabulated functional valuesyj andyj+1 at the endpointsxj andxj+1.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ayj + Byj+1 + Cy′′j + Dy′′j+1 (3.3.3)

whereA andB are defined in (3.3.2) and

C ≡
1

6
(A3 − A)(xj+1 − xj)

2 D ≡
1

6
(B3 −B)(xj+1 − xj)

2 (3.3.4)

Notice that the dependence on the independent variablex in equations (3.3.3) and
(3.3.4) is entirely through the linearx-dependence ofA andB, and (throughA and
B) the cubicx-dependence ofC andD.

We can readily check thaty′′ is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect
to x, using the definitions ofA,B, C,D to computedA/dx, dB/dx, dC/dx, and
dD/dx. The result is

dy

dx
=

yj+1 − yj
xj+1 − xj

−
3A2 − 1

6
(xj+1 − xj)y

′′

j +
3B2 − 1

6
(xj+1 − xj)y

′′

j+1 (3.3.5)

for the first derivative, and

d2y

dx2
= Ay′′j + By′′j+1 (3.3.6)

for the second derivative. SinceA = 1 at xj, A = 0 at xj+1, while B is just the
other way around, (3.3.6) shows thaty′′ is just the tabulated second derivative, and
also that the second derivative will be continuous across (e.g.) the boundary between
the two intervals(xj−1, xj) and (xj, xj+1).

The only problem now is that we supposed they′′i ’s to be known, when, actually,
they are not. However, we have not yet required that thefirst derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivativesy′′i .

The required equations are obtained by setting equation (3.3.5) evaluated for
x = xj in the interval(xj−1, xj) equal to the same equation evaluated forx = xj but
in the interval(xj, xj+1). With some rearrangement, this gives (forj = 2, . . . , N−1)

xj − xj−1

6
y′′j−1 +

xj+1 − xj−1

3
y′′j +

xj+1 − xj

6
y′′j+1 =

yj+1 − yj
xj+1 − xj

−
yj − yj−1

xj − xj−1

(3.3.7)

These areN − 2 linear equations in theN unknownsy′′i , i = 1, . . . , N . Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
as boundary conditions atx1 andxN . The most common ways of doing this are either

3.3 Cubic Spline Interpolation 109

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• set one or both ofy′′1 andy′′N equal to zero, giving the so-callednatural
cubic spline, which has zero second derivative on one or both of its
boundaries, or

• set either ofy′′1 andy′′N to values calculated from equation (3.3.5) so as
to make the first derivative of the interpolating function have a specified
value on either or both boundaries.

One reason that cubic splines are especially practical is that the set of equations
(3.3.7), along with the two additional boundary conditions, are not only linear, but
alsotridiagonal. Eachy′′j is coupled only to its nearest neighbors atj±1. Therefore,
the equations can be solved inO(N) operations by the tridiagonal algorithm (§2.4).
That algorithm is concise enough to build right into the spline calculational routine.
This makes the routine not completely transparent as an implementation of (3.3.7),
so we encourage you to study it carefully, comparing withtridag (§2.4).

SUBROUTINE spline(x,y,n,yp1,ypn,y2)
INTEGER n,NMAX
REAL yp1,ypn,x(n),y(n),y2(n)
PARAMETER (NMAX=500)

Given arrays x(1:n) and y(1:n) containing a tabulated function, i.e., y
i

= f(xi), with
x1 < x2 < . . . < xN , and given values yp1 and ypn for the first derivative of the inter-
polating function at points 1 and n, respectively, this routine returns an array y2(1:n) of
length n which contains the second derivatives of the interpolating function at the tabulated
points xi. If yp1 and/or ypn are equal to 1 × 1030 or larger, the routine is signaled to set
the corresponding boundary condition for a natural spline, with zero second derivative on
that boundary.
Parameter: NMAX is the largest anticipated value of n.

INTEGER i,k
REAL p,qn,sig,un,u(NMAX)
if (yp1.gt..99e30) then The lower boundary condition is set either to be

“natural”y2(1)=0.
u(1)=0.

else or else to have a specified first derivative.
y2(1)=-0.5
u(1)=(3./(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)

endif
do 11 i=2,n-1 This is the decomposition loop of the tridiagonal

algorithm. y2 and u are used for temporary
storage of the decomposed factors.

sig=(x(i)-x(i-1))/(x(i+1)-x(i-1))
p=sig*y2(i-1)+2.
y2(i)=(sig-1.)/p
u(i)=(6.*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))

* /(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*u(i-1))/p
enddo 11

if (ypn.gt..99e30) then The upper boundary condition is set either to be
“natural”qn=0.

un=0.
else or else to have a specified first derivative.

qn=0.5
un=(3./(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1)))

endif
y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.)
do 12 k=n-1,1,-1 This is the backsubstitution loop of the tridiago-

nal algorithm.y2(k)=y2(k)*y2(k+1)+u(k)
enddo 12

return
END

It is important to understand that the programspline is called onlyonceto
process an entire tabulated function in arraysxi andyi. Once this has been done,

110 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

values of the interpolated function for any value ofx are obtained by calls (as many
as desired) to a separate routinesplint (for “spline interpolation”):

SUBROUTINE splint(xa,ya,y2a,n,x,y)
INTEGER n
REAL x,y,xa(n),y2a(n),ya(n)

Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with the
xai’s in order), and given the array y2a(1:n), which is the output from spline above,
and given a value of x, this routine returns a cubic-spline interpolated value y.

INTEGER k,khi,klo
REAL a,b,h
klo=1 We will find the right place in the table by means of bisection.

This is optimal if sequential calls to this routine are at random
values of x. If sequential calls are in order, and closely
spaced, one would do better to store previous values of
klo and khi and test if they remain appropriate on the
next call.

khi=n
1 if (khi-klo.gt.1) then

k=(khi+klo)/2
if(xa(k).gt.x)then

khi=k
else

klo=k
endif

goto 1
endif klo and khi now bracket the input value of x.
h=xa(khi)-xa(klo)
if (h.eq.0.) pause ’bad xa input in splint’ The xa’s must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
y=a*ya(klo)+b*ya(khi)+

* ((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.
return
END

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4–4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a functionf(x) from a
set of tabulatedxi’s andfi’s. Then you will need a fast way of finding your place
in the table ofxi’s, given some particular valuex at which the function evaluation
is desired. This problem is not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, the problem is this: Given an array of abscissasxx(j), j=1, 2,. . . ,n,
with the elements either monotonically increasing or monotonically decreasing, and
given a numberx, find an integerj such thatx lies betweenxx(j) andxx(j+1).

110 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

values of the interpolated function for any value ofx are obtained by calls (as many
as desired) to a separate routinesplint (for “spline interpolation”):

SUBROUTINE splint(xa,ya,y2a,n,x,y)
INTEGER n
REAL x,y,xa(n),y2a(n),ya(n)

Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with the
xai’s in order), and given the array y2a(1:n), which is the output from spline above,
and given a value of x, this routine returns a cubic-spline interpolated value y.

INTEGER k,khi,klo
REAL a,b,h
klo=1 We will find the right place in the table by means of bisection.

This is optimal if sequential calls to this routine are at random
values of x. If sequential calls are in order, and closely
spaced, one would do better to store previous values of
klo and khi and test if they remain appropriate on the
next call.

khi=n
1 if (khi-klo.gt.1) then

k=(khi+klo)/2
if(xa(k).gt.x)then

khi=k
else

klo=k
endif

goto 1
endif klo and khi now bracket the input value of x.
h=xa(khi)-xa(klo)
if (h.eq.0.) pause ’bad xa input in splint’ The xa’s must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
y=a*ya(klo)+b*ya(khi)+

* ((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.
return
END

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4–4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a functionf(x) from a
set of tabulatedxi’s andfi’s. Then you will need a fast way of finding your place
in the table ofxi’s, given some particular valuex at which the function evaluation
is desired. This problem is not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, the problem is this: Given an array of abscissasxx(j), j=1, 2,. . . ,n,
with the elements either monotonically increasing or monotonically decreasing, and
given a numberx, find an integerj such thatx lies betweenxx(j) andxx(j+1).

3.4 How to Search an Ordered Table 111

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For this task, let us define fictitious array elementsxx(0) andxx(n+1) equal to
plus or minus infinity (in whichever order is consistent with the monotonicity of the
table). Thenj will always be between 0 andn, inclusive; a returned value of 0
indicates “off-scale” at one end of the table,n indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do better thanbisection,
which will find the right place in the table in aboutlog

2
n tries. We already did use

bisection in the spline evaluation routinesplint of the preceding section, so you
might glance back at that. Standing by itself, a bisection routine looks like this:

SUBROUTINE locate(xx,n,x,j)
INTEGER j,n
REAL x,xx(n)

Given an array xx(1:n), and given a value x, returns a value j such that x is between
xx(j) and xx(j+1). xx(1:n) must be monotonic, either increasing or decreasing. j=0
or j=n is returned to indicate that x is out of range.

INTEGER jl,jm,ju
jl=0 Initialize lower
ju=n+1 and upper limits.

10 if(ju-jl.gt.1)then If we are not yet done,
jm=(ju+jl)/2 compute a midpoint,
if((xx(n).ge.xx(1)).eqv.(x.ge.xx(jm)))then

jl=jm and replace either the lower limit
else

ju=jm or the upper limit, as appropriate.
endif

goto 10 Repeat until
endif the test condition 10 is satisfied.
if(x.eq.xx(1))then Then set the output

j=1
else if(x.eq.xx(n))then

j=n-1
else

j=jl
endif
return and return.
END

Note the use of the logical equality relation.eqv., which is true when its
two logical operands are either both true or both false. This relation allows the
routine to work for both monotonically increasing and monotonically decreasing
orders ofxx(1:n).

Search with Correlated Values
Sometimes you will be in the situation of searching a large table many times,

and with nearly identical abscissas on consecutive searches. For example, you
may be generating a function that is used on the right-hand side of a differential
equation: Most differential-equation integrators, as we shall see in Chapter 16, call
for right-hand side evaluations at points that hop back and forth a bit, but whose
trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisection,ab initio, on each call. The
following routine instead starts with a guessed position in the table. It first “hunts,”
either up or down, in increments of 1, then 2, then 4, etc., until the desired value is
bracketed. Second, it then bisects in the bracketed interval. At worst, this routine is
about a factor of 2 slower thanlocate above (if the hunt phase expands to include
the whole table). At best, it can be a factor oflog

2
n faster thanlocate, if the desired

point is usually quite close to the input guess. Figure 3.4.1 compares the two routines.

112 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

hunt phase

bisection phase

1 7 10

8

14 22

32

38

321
(a)

(b)

51

64

Figure 3.4.1. (a) The routinelocate finds a table entry by bisection. Shown here is the sequence
of steps that converge to element 51 in a table of length 64. (b) The routinehunt searches from a
previous known position in the table by increasing steps, then converges by bisection. Shown here is a
particularly unfavorable example, converging to element 32 from element 7. A favorable example would
be convergence to an element near 7, such as 9, which would require just three “hops.”

SUBROUTINE hunt(xx,n,x,jlo)
INTEGER jlo,n
REAL x,xx(n)

Given an array xx(1:n), and given a value x, returns a value jlo such that x is between
xx(jlo) and xx(jlo+1). xx(1:n) must be monotonic, either increasing or decreasing.
jlo=0 or jlo=n is returned to indicate that x is out of range. jlo on input is taken as
the initial guess for jlo on output.

INTEGER inc,jhi,jm
LOGICAL ascnd
ascnd=xx(n).ge.xx(1) True if ascending order of table, false otherwise.
if(jlo.le.0.or.jlo.gt.n)then Input guess not useful. Go immediately to bisection.

jlo=0
jhi=n+1
goto 3

endif
inc=1 Set the hunting increment.
if(x.ge.xx(jlo).eqv.ascnd)then Hunt up:

1 jhi=jlo+inc
if(jhi.gt.n)then Done hunting, since off end of table.

jhi=n+1
else if(x.ge.xx(jhi).eqv.ascnd)then Not done hunting,

jlo=jhi
inc=inc+inc so double the increment
goto 1 and try again.

endif Done hunting, value bracketed.
else Hunt down:

jhi=jlo
2 jlo=jhi-inc

if(jlo.lt.1)then Done hunting, since off end of table.
jlo=0

else if(x.lt.xx(jlo).eqv.ascnd)then Not done hunting,
jhi=jlo
inc=inc+inc so double the increment
goto 2 and try again.

endif Done hunting, value bracketed.
endif Hunt is done, so begin the final bisection phase:

3 if(jhi-jlo.eq.1)then
if(x.eq.xx(n))jlo=n-1
if(x.eq.xx(1))jlo=1

3.5 Coefficients of the Interpolating Polynomial 113

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

return
endif
jm=(jhi+jlo)/2
if(x.ge.xx(jm).eqv.ascnd)then

jlo=jm
else

jhi=jm
endif
goto 3
END

After the Hunt

The problem: Routineslocate and hunt return an indexj such that your
desired value lies between table entriesxx(j) andxx(j+1), wherexx(1:n) is the
full length of the table. But, to obtain anm-point interpolated value using a routine
like polint (§3.1) orratint (§3.2), you need to supply much shorterxx andyy
arrays, of lengthm. How do you make the connection?

The solution: Calculate

k = min(max(j-(m-1)/2,1),n+1-m)

This expression produces the index of the leftmost member of anm-point set of
points centered (insofar as possible) betweenj andj+1, but bounded by 1 at the
left andn at the right. FORTRAN then lets you call the interpolation routine with
array addresses offset byk, e.g.,

call polint(xx(k),yy(k),m, . . .)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §6.2.1.

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not the value of the interpolating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneous interpolated values of the function and of several of its derivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e., its convolution with powers ofx)
are known analytically.

However, please be certain that the coefficients are what you need. Generally the
coefficients of the interpolating polynomial can be determined much lessaccurately
than its value at a desired abscissa. Therefore it is not a good idea to determine the
coefficients only for use in calculating interpolating values. Valuesthus calculated
will not pass exactly through the tabulated points, for example, while values
computed by the routines in§3.1–§3.3 will pass exactly through such points.

3.5 Coefficients of the Interpolating Polynomial 113

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

return
endif
jm=(jhi+jlo)/2
if(x.ge.xx(jm).eqv.ascnd)then

jlo=jm
else

jhi=jm
endif
goto 3
END

After the Hunt

The problem: Routineslocate and hunt return an indexj such that your
desired value lies between table entriesxx(j) andxx(j+1), wherexx(1:n) is the
full length of the table. But, to obtain anm-point interpolated value using a routine
like polint (§3.1) orratint (§3.2), you need to supply much shorterxx andyy
arrays, of lengthm. How do you make the connection?

The solution: Calculate

k = min(max(j-(m-1)/2,1),n+1-m)

This expression produces the index of the leftmost member of anm-point set of
points centered (insofar as possible) betweenj andj+1, but bounded by 1 at the
left andn at the right. FORTRAN then lets you call the interpolation routine with
array addresses offset byk, e.g.,

call polint(xx(k),yy(k),m, . . .)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §6.2.1.

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not the value of the interpolating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneous interpolated values of the function and of several of its derivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e., its convolution with powers ofx)
are known analytically.

However, please be certain that the coefficients are what you need. Generally the
coefficients of the interpolating polynomial can be determined much lessaccurately
than its value at a desired abscissa. Therefore it is not a good idea to determine the
coefficients only for use in calculating interpolating values. Valuesthus calculated
will not pass exactly through the tabulated points, for example, while values
computed by the routines in§3.1–§3.3 will pass exactly through such points.

114 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, thebest fitpolynomial through a data set. Fitting is asmoothing
process, since the number of fitted coefficients is typically much less than the
number of data points. Therefore, fitted coefficients can be accurately and stably
determined even in the presence of statistical errors in the tabulated values. (See
§14.8.) Interpolation, where the number of coefficients and number of tabulated
points are equal, takes the tabulated values as perfect. If they in fact contain statistical
errors, these can be magnified into oscillations of the interpolating polynomial in
between the tabulated points.

As before, we take the tabulated points to beyi ≡ y(xi). If the interpolating
polynomial is written as

y = c1 + c2x + c3x
2 + · · ·+ cNxN−1 (3.5.1)

then theci’s are required to satisfy the linear equation

1 x1 x2

1
· · · xN−1

1

1 x2 x2

2
· · · xN−1

2

...
...

...
...

1 xN x2

N
· · · xN−1

N

·

c1

c2
...
cN

=

y1

y2

...
yN

(3.5.2)

This is aVandermonde matrix, as described in§2.8. One could in principle solve
equation (3.5.2) by standard techniques for linear equations generally (§2.3); however
the special method that was derived in§2.8 is more efficient by a large factor, of
order N , so it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case,no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolatedvaluesby the methods
of §3.1, but only difficulty in findingcoefficients.

Like the routine in§2.8, the following is due to G.B. Rybicki.

SUBROUTINE polcoe(x,y,n,cof)
INTEGER n,NMAX
REAL cof(n),x(n),y(n)
PARAMETER (NMAX=15) Largest anticipated value of n.

Given arrays x(1:n) and y(1:n) containing a tabulated function yi = f(xi), this routine

returns an array of coefficients cof(1:n), such that yi =
∑

j cofjx
j−1

i .
INTEGER i,j,k
REAL b,ff,phi,s(NMAX)
do 11 i=1,n

s(i)=0.
cof(i)=0.

enddo 11

s(n)=-x(1)
do 13 i=2,n Coefficients si of the master polynomial P (x) are found

by recurrence.do 12 j=n+1-i,n-1
s(j)=s(j)-x(i)*s(j+1)

enddo 12

s(n)=s(n)-x(i)
enddo 13

do 16 j=1,n
phi=n
do 14 k=n-1,1,-1 The quantity phi =

∏

j 6=k(xj−xk) is found as a deriva-

tive of P (xj).

3.5 Coefficients of the Interpolating Polynomial 115

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

phi=k*s(k+1)+x(j)*phi
enddo 14

ff=y(j)/phi
b=1. Coefficients of polynomials in each term of the Lagrange

formula are found by synthetic division of P (x) by
(x− xj). The solution ck is accumulated.

do 15 k=n,1,-1
cof(k)=cof(k)+b*ff
b=s(k)+x(j)*b

enddo 15

enddo 16

return
END

Another Method

Another technique is to make use of the function value interpolation routine
already given (polint §3.1). If we interpolate (or extrapolate) to find the value of
the interpolating polynomial atx = 0, then this value will evidently bec1. Now
we can subtractc1 from theyi’s and divide each by its correspondingxi. Throwing
out one point (the one with smallestxi is a good candidate), we can repeat the
procedure to findc2, and so on.

It is not instantly obvious that this procedure is stable, but we have generally
found it to be somewhatmorestable than the routine immediately preceding. This
method is of orderN3, while the preceding one was of orderN2. You will
find, however, that neither works very well for largeN , because of the intrinsic
ill-condition of the Vandermonde problem. In single precision,N up to 8 or 10 is
satisfactory; about double this in double precision.

SUBROUTINE polcof(xa,ya,n,cof)
INTEGER n,NMAX
REAL cof(n),xa(n),ya(n)
PARAMETER (NMAX=15) Largest anticipated value of n.

C USES polint
Given arrays xa(1:n) and ya(1:n) of length n containing a tabulated function yai =
f(xai), this routine returns an array of coefficients cof(1:n), also of length n, such that

yai =
∑

j cofjxa
j−1

i .
INTEGER i,j,k
REAL dy,xmin,x(NMAX),y(NMAX)
do 11 j=1,n

x(j)=xa(j)
y(j)=ya(j)

enddo 11

do 14 j=1,n
call polint(x,y,n+1-j,0.,cof(j),dy) This is the polynomial interpolation rou-

tine of §3.1. We extrapolate to x =
0.

xmin=1.e38
k=0
do 12 i=1,n+1-j Find the remaining xi of smallest abso-

lute value,if (abs(x(i)).lt.xmin)then
xmin=abs(x(i))
k=i

endif
if(x(i).ne.0.)y(i)=(y(i)-cof(j))/x(i) (meanwhile reducing all the terms)

enddo 12

do 13 i=k+1,n+1-j and eliminate it.
y(i-1)=y(i)
x(i-1)=x(i)

enddo 13

enddo 14

return
END

116 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If the pointx = 0 is not in (or at least close to) the range of the tabulatedxi’s,
then the coefficients of the interpolating polynomial will in general become very large.
However, the real “information content” of the coefficients is in small differences
from the “translation-induced” large values. This is one cause of ill-conditioning,
resulting in loss of significance and poorly determined coefficients. You should
consider redefining the origin of the problem, to putx = 0 in a sensible place.

Another pathology is that, if too high a degree of interpolation is attempted on
a smooth function, the interpolating polynomial will attempt to use its high-degree
coefficients, in combinations with large and almost precisely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect is the same as the intrinsic tendency of the interpolating polynomial values to
oscillate (wildly) between its constrained points, and would be present even if the
machine’s floating precision were infinitely good. The above routinespolcoe and
polcof have slightly different sensitivities to the pathologies that can occur.

Are you still quite certain that using thecoefficientsis a good idea?

CITED REFERENCES AND FURTHER READING:

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §5.2.

3.6 Interpolation in Two or More Dimensions

In multidimensional interpolation, we seek an estimate ofy(x1, x2, . . . , xn)
from an n-dimensional grid of tabulated valuesy and n one-dimensional vec-
tors giving the tabulated values of each of the independent variablesx1, x2, . . . ,

xn. We will not here consider the problem of interpolating on a mesh that is not
Cartesian, i.e., has tabulated function values at “random” points inn-dimensional
space rather than at the vertices of a rectangular array. For clarity, we will consider
explicitly only the case of two dimensions, the cases of three or more dimensions
being analogous in every way.

In two dimensions, we imagine that we are given a matrix of functional values
ya(j,k), wherej varies from 1 tom, andk varies from 1 ton. We are also given
an arrayx1a of lengthm, and an arrayx2a of lengthn. The relation of these input
quantities to an underlying functiony(x1, x2) is

ya(j,k) = y(x1a(j), x2a(k)) (3.6.1)

We want to estimate, by interpolation, the functiony at some untabulated point
(x1, x2).

An important concept is that of thegrid squarein which the point(x1, x2)
falls, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from 1 to 4, counterclockwise starting
from the lower left (see Figure 3.6.1). More precisely, if

x1a(j) ≤ x1 ≤ x1a(j+1)

x2a(k) ≤ x2 ≤ x2a(k+1)
(3.6.2)

116 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If the pointx = 0 is not in (or at least close to) the range of the tabulatedxi’s,
then the coefficients of the interpolating polynomial will in general become very large.
However, the real “information content” of the coefficients is in small differences
from the “translation-induced” large values. This is one cause of ill-conditioning,
resulting in loss of significance and poorly determined coefficients. You should
consider redefining the origin of the problem, to putx = 0 in a sensible place.

Another pathology is that, if too high a degree of interpolation is attempted on
a smooth function, the interpolating polynomial will attempt to use its high-degree
coefficients, in combinations with large and almost precisely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect is the same as the intrinsic tendency of the interpolating polynomial values to
oscillate (wildly) between its constrained points, and would be present even if the
machine’s floating precision were infinitely good. The above routinespolcoe and
polcof have slightly different sensitivities to the pathologies that can occur.

Are you still quite certain that using thecoefficientsis a good idea?

CITED REFERENCES AND FURTHER READING:

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §5.2.

3.6 Interpolation in Two or More Dimensions

In multidimensional interpolation, we seek an estimate ofy(x1, x2, . . . , xn)
from an n-dimensional grid of tabulated valuesy and n one-dimensional vec-
tors giving the tabulated values of each of the independent variablesx1, x2, . . . ,
xn. We will not here consider the problem of interpolating on a mesh that is not
Cartesian, i.e., has tabulated function values at “random” points inn-dimensional
space rather than at the vertices of a rectangular array. For clarity, we will consider
explicitly only the case of two dimensions, the cases of three or more dimensions
being analogous in every way.

In two dimensions, we imagine that we are given a matrix of functional values
ya(j,k), wherej varies from 1 tom, andk varies from 1 ton. We are also given
an arrayx1a of lengthm, and an arrayx2a of lengthn. The relation of these input
quantities to an underlying functiony(x1, x2) is

ya(j,k) = y(x1a(j), x2a(k)) (3.6.1)

We want to estimate, by interpolation, the functiony at some untabulated point
(x1, x2).

An important concept is that of thegrid squarein which the point(x1, x2)
falls, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from 1 to 4, counterclockwise starting
from the lower left (see Figure 3.6.1). More precisely, if

x1a(j) ≤ x1 ≤ x1a(j+1)

x2a(k) ≤ x2 ≤ x2a(k+1)
(3.6.2)

3.6 Interpolation in Two or More Dimensions 117

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

y

∂y/∂x1

∂y/∂x2

∂2y/∂x1∂x2

x2 = x2u

x2 = x2l
x 1

 =

x
1
u

x 1
 =

x
1
l

1 2 3 4

pt. 1
us

er
 su

pp
lie

s

th
es

e
va

lue
s

pt. 4

pt. 2

pt. 3

d2

d1

(a) (b)

⊗
desired pt.
(x1,x2)

pt. number

Figure 3.6.1. (a) Labeling of points used in the two-dimensional interpolation routinesbcuint and
bcucof. (b) For each of the four points in (a), the user supplies one function value, two first derivatives,
and one cross-derivative, a total of 16 numbers.

definesj and k, then

y1 ≡ ya(j,k)

y2 ≡ ya(j+1,k)

y3 ≡ ya(j+1,k+1)

y4 ≡ ya(j,k+1)

(3.6.3)

The simplest interpolation in two dimensions isbilinear interpolationon the
grid square. Its formulas are:

t ≡ (x1 − x1a(j))/(x1a(j+1)− x1a(j))

u ≡ (x2 − x2a(k))/(x2a(k+1)− x2a(k))
(3.6.4)

(so thatt andu each lie between 0 and 1), and

y(x1 , x2) = (1 − t)(1 − u)y1 + t(1 − u)y2 + tuy3 + (1 − t)uy4 (3.6.5)

Bilinear interpolation is frequently “close enough for government work.” As
the interpolating point wanders from grid square to grid square, the interpolated
function value changes continuously. However, the gradient of the interpolated
function changes discontinuously at the boundaries ofeach grid square.

There are two distinctly different directions that one can take in going beyond
bilinear interpolation to higher-order methods: One can use higher order to obtain
increased accuracy for the interpolated function (for sufficiently smooth functions!),
without necessarily trying to fix up the continuity of the gradient and higher
derivatives. Or, one can make use of higher order to enforce smoothness of some of
these derivatives as the interpolating point crosses grid-square boundaries. We will
now consider each of these two directions in turn.

118 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Higher Order for Accuracy

The basic idea is to break up the problem into a succession of one-dimensional
interpolations. If we want to dom-1 order interpolation in thex1 direction, andn-1
order in thex2 direction, we first locate anm× n sub-block of the tabulated function
matrix that contains our desired point(x1, x2). We then dom one-dimensional
interpolations in thex2 direction, i.e., on the rows of the sub-block, to get function
values at the points(x1a(j), x2), j = 1, . . . , m. Finally, we do a last interpolation
in thex1 direction to get the answer. If we use the polynomial interpolation routine
polint of §3.1, and a sub-block which is presumed to be already located (and copied
into anm by n arrayya), the procedure looks like this:

SUBROUTINE polin2(x1a,x2a,ya,m,n,x1,x2,y,dy)
INTEGER m,n,NMAX,MMAX
REAL dy,x1,x2,y,x1a(m),x2a(n),ya(m,n)
PARAMETER (NMAX=20,MMAX=20) Maximum expected values of n and m.

C USES polint
Given arrays x1a(1:m) and x2a(1:n) of independent variables, and an m by n array of
function values ya(1:m,1:n), tabulated at the grid points defined by x1a and x2a; and
given values x1 and x2 of the independent variables; this routine returns an interpolated
function value y, and an accuracy indication dy (based only on the interpolation in the x1
direction, however).

INTEGER j,k
REAL ymtmp(MMAX),yntmp(NMAX)
do 12 j=1,m Loop over rows.

do 11 k=1,n Copy the row into temporary storage.
yntmp(k)=ya(j,k)

enddo 11

call polint(x2a,yntmp,n,x2,ymtmp(j),dy) Interpolate answer into temporary stor-
age.enddo 12

call polint(x1a,ymtmp,m,x1,y,dy) Do the final interpolation.
return
END

Higher Order for Smoothness: Bicubic Interpolation

We will give two methods that are in common use, and which are themselves
not unrelated. The first is usually calledbicubic interpolation.

Bicubic interpolation requires the user to specify at each grid point notjust
the functiony(x1 , x2), but also the gradients∂y/∂x1 ≡ y,1, ∂y/∂x2 ≡ y,2 and
the cross derivative∂2y/∂x1∂x2 ≡ y,12. Then an interpolating function that is
cubic in the scaled coordinatest and u (equation 3.6.4) can be found, with the
following properties: (i) The values of the function and the specified derivatives
are reproduced exactly on the grid points, and (ii) the values of the function and
the specified derivatives change continuously as the interpolating point crosses from
one grid square to another.

It is important to understand that nothing in the equations of bicubic interpolation
requires you to specify the extra derivativescorrectly! The smoothness properties are
tautologically “forced,” and have nothing to do with the “accuracy” of the specified
derivatives. It is a separate problem for you to decide how to obtain the values that
are specified. The better you do, the moreaccuratethe interpolation will be. But
it will be smoothno matter what you do.

3.6 Interpolation in Two or More Dimensions 119

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Best of all is to know the derivatives analytically, or to be able to compute them
accurately by numerical means, at the grid points. Next best is to determine them by
numerical differencing from the functional values already tabulated on the grid. The
relevant code would be something like this (using centered differencing):

y1a(j,k)=(ya(j+1,k)-ya(j-1,k))/(x1a(j+1)-x1a(j-1))
y2a(j,k)=(ya(j,k+1)-ya(j,k-1))/(x2a(k+1)-x2a(k-1))
y12a(j,k)=(ya(j+1,k+1)-ya(j+1,k-1)-ya(j-1,k+1)+ya(j-1,k-1))

/((x1a(j+1)-x1a(j-1))*(x2a(k+1)-x2a(k-1)))

To do a bicubic interpolation within a grid square, given the functiony and the
derivativesy1, y2, y12 at each of the four corners of the square, there are two steps:
First obtain the sixteen quantitiescij, i, j = 1, . . . , 4 using the routinebcucof
below. (The formulas that obtain thec’s from the function and derivative values
are just a complicated linear transformation, with coefficients which, having been
determined once in the mists of numerical history, can be tabulated and forgotten.)
Next, substitute thec’s into any or all of the following bicubic formulas for function
and derivatives, as desired:

y(x1, x2) =

4∑

i=1

4∑

j=1

cijt
i−1uj−1

y,1(x1, x2) =

4∑

i=1

4∑

j=1

(i− 1)cijt
i−2uj−1(dt/dx1)

y,2(x1, x2) =
4∑

i=1

4∑

j=1

(j − 1)cijt
i−1uj−2(du/dx2)

y,12(x1, x2) =

4∑

i=1

4∑

j=1

(i− 1)(j − 1)cijt
i−2uj−2(dt/dx1)(du/dx2)

(3.6.6)

wheret andu are again given by equation (3.6.4).

SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c)
REAL d1,d2,c(4,4),y(4),y1(4),y12(4),y2(4)

Given arrays y,y1,y2, and y12, each of length 4, containing the function, gradients, and
cross derivative at the four grid points of a rectangular grid cell (numbered counterclockwise
from the lower left), and given d1 and d2, the length of the grid cell in the 1- and 2-
directions, this routine returns the table c(1:4,1:4) that is used by routine bcuint for
bicubic interpolation.

INTEGER i,j,k,l
REAL d1d2,xx,cl(16),wt(16,16),x(16)
SAVE wt
DATA wt/1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,8*0,3,0,-9,6,-2,0,6,-4

* ,10*0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,2*0,6,-4
* ,4*0,1,0,-3,2,-2,0,6,-4,1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,2
* ,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0,-6,4,2*0,3,-2
* ,0,1,-2,1,5*0,-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2
* ,10*0,-3,3,2*0,2,-2,2*0,-1,1,6*0,3,-3,2*0,-2,2
* ,5*0,1,-2,1,0,-2,4,-2,0,1,-2,1,9*0,-1,2,-1,0,1,-2,1
* ,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0,2,-2,2*0,-1,1/

d1d2=d1*d2
do 11 i=1,4 Pack a temporary vector x.

x(i)=y(i)

120 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

x(i+4)=y1(i)*d1
x(i+8)=y2(i)*d2
x(i+12)=y12(i)*d1d2

enddo 11

do 13 i=1,16 Matrix multiply by the stored table.
xx=0.
do 12 k=1,16

xx=xx+wt(i,k)*x(k)
enddo 12

cl(i)=xx
enddo 13

l=0
do 15 i=1,4 Unpack the result into the output table.

do 14 j=1,4
l=l+1
c(i,j)=cl(l)

enddo 14

enddo 15

return
END

The implementation of equation (3.6.6), which performs a bicubic interpolation,
returns the interpolated function value and the two gradient values, and uses the
above routinebcucof, is simply:

SUBROUTINE bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2,ansy,
* ansy1,ansy2)

REAL ansy,ansy1,ansy2,x1,x1l,x1u,x2,x2l,x2u,y(4),y1(4),
* y12(4),y2(4)
C USES bcucof

Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described
in bcucof); x1l and x1u, the lower and upper coordinates of the grid square in the 1-
direction; x2l and x2u likewise for the 2-direction; and x1,x2, the coordinates of the
desired point for the interpolation. The interpolated function value is returned as ansy,
and the interpolated gradient values as ansy1 and ansy2. This routine calls bcucof.

INTEGER i
REAL t,u,c(4,4)
call bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) Get the c’s.
if(x1u.eq.x1l.or.x2u.eq.x2l)pause ’bad input in bcuint’
t=(x1-x1l)/(x1u-x1l) Equation (3.6.4).
u=(x2-x2l)/(x2u-x2l)
ansy=0.
ansy2=0.
ansy1=0.
do 11 i=4,1,-1 Equation (3.6.6).

ansy=t*ansy+((c(i,4)*u+c(i,3))*u+c(i,2))*u+c(i,1)
ansy2=t*ansy2+(3.*c(i,4)*u+2.*c(i,3))*u+c(i,2)
ansy1=u*ansy1+(3.*c(4,i)*t+2.*c(3,i))*t+c(2,i)

enddo 11

ansy1=ansy1/(x1u-x1l)
ansy2=ansy2/(x2u-x2l)
return
END

Higher Order for Smoothness: Bicubic Spline

The other common technique for obtaining smoothness in two-dimensional
interpolation is thebicubic spline. Actually, this is equivalent to a special case

3.6 Interpolation in Two or More Dimensions 121

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

of bicubic interpolation: The interpolating function is of the same functional
form as equation (3.6.6); the values of the derivatives at the grid points are,
however, determined “globally” by one-dimensional splines. However, bicubic
splines are usually implemented in a form that looks rather different from the
above bicubic interpolation routines, instead looking much closer in form to the
routinepolin2 above: To interpolate one functional value, one performsm one-
dimensional splines across the rows of the table, followed by one additional
one-dimensional spline down the newly created column. It is a matter of taste
(and trade-off between time and memory) as to how much of this process one
wants to precompute and store. Instead of precomputing and storing all the
derivative information (as in bicubic interpolation), spline users typically precom-
pute and store only one auxiliary table, of second derivatives in one direction
only. Then one need only do splineevaluations(not constructions) for them
row splines; one must still do a constructionand an evaluation for the final col-
umn spline. (Recall that a spline construction is a process of orderN , while a
spline evaluation is only of orderlogN — and that is just to find the place in
the table!)

Here is a routine to precompute the auxiliary second-derivative table:

SUBROUTINE splie2(x1a,x2a,ya,m,n,y2a)
INTEGER m,n,NN
REAL x1a(m),x2a(n),y2a(m,n),ya(m,n)
PARAMETER (NN=100) Maximum expected value of n and m.

C USES spline
Given an m by n tabulated function ya(1:m,1:n), and tabulated independent variables
x2a(1:n), this routine constructs one-dimensional natural cubic splines of the rows of ya
and returns the second-derivatives in the array y2a(1:m,1:n). (The array x1a is included
in the argument list merely for consistency with routine splin2.)

INTEGER j,k
REAL y2tmp(NN),ytmp(NN)
do 13 j=1,m

do 11 k=1,n
ytmp(k)=ya(j,k)

enddo 11

call spline(x2a,ytmp,n,1.e30,1.e30,y2tmp) Values 1×1030 signal a natural spline.
do 12 k=1,n

y2a(j,k)=y2tmp(k)
enddo 12

enddo 13

return
END

After the above routine has been executed once, any number of bicubic spline
interpolations can be performed by successive calls of the following routine:

SUBROUTINE splin2(x1a,x2a,ya,y2a,m,n,x1,x2,y)
INTEGER m,n,NN
REAL x1,x2,y,x1a(m),x2a(n),y2a(m,n),ya(m,n)
PARAMETER (NN=100) Maximum expected value of n and m.

C USES spline,splint
Given x1a, x2a, ya, m, n as described in splie2 and y2a as produced by that routine;
and given a desired interpolating point x1,x2; this routine returns an interpolated function
value y by bicubic spline interpolation.

INTEGER j,k
REAL y2tmp(NN),ytmp(NN),yytmp(NN)

122 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 12 j=1,m Perform m evaluations of the row splines
constructed by splie2, using the one-
dimensional spline evaluator splint.

do 11 k=1,n
ytmp(k)=ya(j,k)
y2tmp(k)=y2a(j,k)

enddo 11

call splint(x2a,ytmp,y2tmp,n,x2,yytmp(j))
enddo 12

call spline(x1a,yytmp,m,1.e30,1.e30,y2tmp) Construct the one-dimensional column spline
and evaluate it.call splint(x1a,yytmp,y2tmp,m,x1,y)

return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Kinahan, B.F., and Harm, R. 1975, Astrophysical Journal, vol. 200, pp. 330–335.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §5.2.7.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.7.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 4. Integration of Functions

4.0 Introduction

Numerical integration, which is also calledquadrature, has a history extending
back to the invention of calculus and before. The fact that integrals of elementary
functions could not, in general, be computed analytically, while derivativescould
be, served to give the field a certain panache, and to set it a cut above the arithmetic
drudgery of numerical analysis during the whole of the 18th and 19th centuries.

With the invention of automatic computing, quadrature became just one numer-
ical task among many, and not a very interesting one at that. Automatic computing,
even the most primitivesort involvingdesk calculators and rooms full of “computers”
(that were, until the 1950s, people rather than machines), opened to feasibility the
much richer field of numerical integration of differential equations. Quadrature is
merely the simplest special case: The evaluation of the integral

I =

∫
b

a

f(x)dx (4.0.1)

is precisely equivalent to solving for the valueI ≡ y(b) the differential equation

dy

dx
= f(x) (4.0.2)

with the boundary condition

y(a) = 0 (4.0.3)

Chapter 16 of this book deals with the numerical integration of differential
equations. In that chapter, much emphasis is given to the concept of “variable” or
“adaptive” choices of stepsize. We will not, therefore, develop that materialhere.
If the function that you propose to integrate is sharply concentrated in one or more
peaks, or if its shape is not readily characterized by a single length-scale, then it
is likely that you should cast the problem in the form of (4.0.2)–(4.0.3) and use
the methods of Chapter 16.

The quadrature methods in this chapter are based, in one way or another, on the
obvious device of adding up the value of the integrand at a sequence of abscissas
within the range of integration. The game is to obtain the integral as accurately
as possible with the smallest number of function evaluations of the integrand. Just
as in the case of interpolation (Chapter 3), one has the freedom to choose methods

123

124 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

of various orders, with higher order sometimes, but not always, giving higher
accuracy. “Romberg integration,” which is discussed in§4.3, is a general formalism
for making use of integration methods of a variety of different orders, and we
recommend it highly.

Apart from the methods of this chapter and of Chapter 16, there are yet
other methods for obtaining integrals. One important class is based on function
approximation. We discuss explicitly the integration of functions by Chebyshev
approximation (“Clenshaw-Curtis” quadrature) in§5.9. Although not explicitly
discussed here, you ought to be able to figure out how to docubic spline quadrature
using the output of the routinespline in §3.3. (Hint: Integrate equation 3.3.3
over x analytically. See[1].)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) algorithm. This is discussed in§13.9.

Multidimensional integrals are another whole multidimensional bag of worms.
Section 4.6 is an introductory discussion in this chapter; the important technique of
Monte-Carlo integrationis treated in Chapter 7.

CITED REFERENCES AND FURTHER READING:

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Chapter 2.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 7.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 3.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 5.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.2, p. 89. [1]

Davis, P., and Rabinowitz, P. 1984, Methods of Numerical Integration, 2nd ed. (Orlando, FL:
Academic Press).

4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule”? The classical formulas for integrating a function whose value is known at
equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as thetime
of Newton, if not farther. Alas, timesdo change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended

124 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

of various orders, with higher order sometimes, but not always, giving higher
accuracy. “Romberg integration,” which is discussed in§4.3, is a general formalism
for making use of integration methods of a variety of different orders, and we
recommend it highly.

Apart from the methods of this chapter and of Chapter 16, there are yet
other methods for obtaining integrals. One important class is based on function
approximation. We discuss explicitly the integration of functions by Chebyshev
approximation (“Clenshaw-Curtis” quadrature) in§5.9. Although not explicitly
discussed here, you ought to be able to figure out how to docubic spline quadrature
using the output of the routinespline in §3.3. (Hint: Integrate equation 3.3.3
over x analytically. See[1].)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) algorithm. This is discussed in§13.9.

Multidimensional integrals are another whole multidimensional bag of worms.
Section 4.6 is an introductory discussion in this chapter; the important technique of
Monte-Carlo integrationis treated in Chapter 7.

CITED REFERENCES AND FURTHER READING:

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Chapter 2.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 7.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 3.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 5.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.2, p. 89. [1]

Davis, P., and Rabinowitz, P. 1984, Methods of Numerical Integration, 2nd ed. (Orlando, FL:
Academic Press).

4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule”? The classical formulas for integrating a function whose value is known at
equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as thetime
of Newton, if not farther. Alas, timesdo change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended

4.1 Classical Formulas for Equally Spaced Abscissas 125

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

x0 xN xN + 1

open formulas use these points

closed formulas use these points

x1 x2

h

Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
betweenx0 andxN+1. Closed formulas evaluate the function on the boundary points, while open
formulas refrain from doing so (useful if the evaluation algorithm breaks down onthe boundary points).

midpoint rule,” equation 4.1.19, see§4.2), the classical formulas are almost entirely
useless. They are museum pieces, but beautiful ones.

Some notation: We have a sequence of abscissas, denotedx0, x1, . . . , xN ,
xN+1 which are spaced apart by a constant steph,

xi = x0 + ih i = 0, 1, . . . , N + 1 (4.1.1)

A function f(x) has known values at thexi’s,

f(xi) ≡ fi (4.1.2)

We want to integrate the functionf(x) between a lower limita and an upper limit
b, wherea and b are each equal to one or the other of thexi’s. An integration
formula that uses the value of the function at the endpoints,f(a) or f(b), is called
a closedformula. Occasionally, we want to integrate a function whose value atone
or both endpoints is difficult to compute (e.g., the computation off goes to a limit
of zero over zero there, or worse yet has an integrable singularity there). In this
case we want anopenformula, which estimates the integral using onlyxi’s strictly
betweena and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not always imply higher accuracy in real cases.) A sequenceof
such closed formulas is now given.

Closed Newton-Cotes Formulas

Trapezoidal rule:

∫ x2

x1

f(x)dx = h

[

1

2
f1 +

1

2
f2

]

+ O(h3f ′′) (4.1.3)

Here the error termO() signifies that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient timesh3 times the value

126 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write onlyO(), instead of the coefficient.

Equation (4.1.3) is a two-point formula (x1 andx2). It is exact for polynomials
up to and including degree 1, i.e.,f(x) = x. One anticipates that there is a
three-point formula exact up to polynomials of degree 2. This is true; moreover, by a
cancellation of coefficients due to left-right symmetry of the formula, the three-point
formula is exact for polynomials up to and including degree 3, i.e.,f(x) = x3:

Simpson’s rule:

∫ x3

x1

f(x)dx = h

[

1

3
f1 +

4

3
f2 +

1

3
f3

]

+ O(h5f(4)) (4.1.4)

Heref(4) means the fourth derivative of the functionf evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval
of size2h, so the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

Simpson’s3
8

rule:

∫ x4

x1

f(x)dx = h

[

3

8
f1 +

9

8
f2 +

9

8
f3 +

3

8
f4

]

+ O(h5f(4)) (4.1.5)

The five-point formula again benefits from a cancellation:

Bode’s rule:

∫ x5

x1

f(x)dx = h

[

14

45
f1 +

64

45
f2 +

24

45
f3 +

64

45
f4 +

14

45
f5

]

+O(h7f(6)) (4.1.6)

This is exact for polynomials up to and including degree 5.
At this point the formulas stop being named after famous personages, so we

will not go any further. Consult[1] for additional formulas in the sequence.

Extrapolative Formulas for a Single Interval

We are going to depart from historical practice for a moment. Many texts
would give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.”
Here is an example:

∫ x5

x0

f(x)dx = h

[

55

24
f1 +

5

24
f2 +

5

24
f3 +

55

24
f4

]

+ O(h5f(4))

4.1 Classical Formulas for Equally Spaced Abscissas 127

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Notice that the integral froma = x0 to b = x5 is estimated, using only the interior
pointsx1, x2, x3, x4. In our opinion, formulas of this type are not useful for the
reasons that (i) they cannot usefully be strung together to get “extended” rules, as we
are about to do with the closed formulas, and (ii) for all other possible uses they are
dominated by the Gaussian integration formulas which we will introduce in§4.5.

Instead of the Newton-Cotes open formulas, let us set out the formulas for
estimating the integral in the single interval fromx0 to x1, using values of the
functionf at x1, x2, These will be useful building blocks for the “extended”
open formulas.

∫ x1

x0

f(x)dx = h[f1] + O(h2f ′) (4.1.7)

∫ x1

x0

f(x)dx = h

[

3

2
f1 −

1

2
f2

]

+ O(h3f ′′) (4.1.8)

∫ x1

x0

f(x)dx = h

[

23

12
f1 −

16

12
f2 +

5

12
f3

]

+ O(h4f(3)) (4.1.9)

∫ x1

x0

f(x)dx = h

[

55

24
f1 −

59

24
f2 +

37

24
f3 −

9

24
f4

]

+ O(h5f(4))(4.1.10)

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but the most straightforward is to write down the
basic form of the formula, replacing the numerical coefficients with unknowns, say
p, q, r, s. Without loss of generality takex0 = 0 andx1 = 1, soh = 1. Substitute in
turn for f(x) (and forf1, f2, f3, f4) the functionsf(x) = 1, f(x) = x, f(x) = x2,
and f(x) = x3. Doing the integral in each case reduces the left-hand side to a
number, and the right-hand side to a linear equation for the unknownsp, q, r, s.
Solving the four equations produced in this way gives the coefficients.

Extended Formulas (Closed)

If we use equation (4.1.3)N − 1 times, to do the integration in the intervals
(x1, x2), (x2, x3), . . . , (xN−1, xN), and then add the results,we obtain an “extended”
or “composite” formula for the integral fromx1 to xN .

Extended trapezoidal rule:

∫ xN

x1

f(x)dx = h

[

1

2
f1 + f2 + f3+

· · ·+ fN−1 +
1

2
fN

]

+ O

(

(b− a)3f ′′

N2

) (4.1.11)

Here we have written the error estimate in terms of the intervalb− a and the number
of pointsN instead of in terms ofh. This is clearer, since one is usually holding
a and b fixed and wanting to know (e.g.) how much the error will be decreased

128 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

by taking twice as many steps (in this case, it is by a factor of 4). In subsequent
equations we will showonly the scaling of the error term with the number of steps.

For reasons that will not become clear until§4.2, equation (4.1.11) is in fact
the most important equation in this section, the basis for most practical quadrature
schemes.

The extended formula of order1/N3 is:

∫ xN

x1

f(x)dx = h

[

5

12
f1 +

13

12
f2 + f3 + f4+

· · ·+ fN−2 +
13

12
fN−1 +

5

12
fN

]

+ O

(

1

N3

) (4.1.12)

(We will see in a moment where this comes from.)
If we apply equation (4.1.4) to successive, nonoverlappingpairs of intervals,

we get theextended Simpson’s rule:

∫ xN

x1

f(x)dx = h

[

1

3
f1 +

4

3
f2 +

2

3
f3 +

4

3
f4+

· · ·+
2

3
fN−2 +

4

3
fN−1 +

1

3
fN

]

+ O

(

1

N4

) (4.1.13)

Notice that the 2/3, 4/3 alternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling alternation somehow contains deep
information about the integral of their function that is not apparent to mortal eyes.
In fact, the alternation is an artifact of using the building block (4.1.4). Another
extended formula with the same order as Simpson’s rule is

∫ xN

x1

f(x)dx = h

[

3

8
f1 +

7

6
f2 +

23

24
f3 + f4 + f5+

· · ·+ fN−4 + fN−3 +
23

24
fN−2 +

7

6
fN−1 +

3

8
fN

]

+ O

(

1

N4

)

(4.1.14)

This equation is constructed by fitting cubic polynomials through successive groups
of four points; we defer details to§18.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation (4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of
itself in which the first and last step are done with the trapezoidal rule (4.1.3). The
trapezoidal step istwo orders lower than Simpson’s rule; however, its contribution
to the integral goes down as an additional power ofN (since it is used only twice,
notN times). This makes the resulting formula of degreeoneless than Simpson.

4.1 Classical Formulas for Equally Spaced Abscissas 129

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Extended Formulas (Open and Semi-open)

We can construct open and semi-open extended formulas by adding the closed
formulas (4.1.11)–(4.1.14), evaluated for the second and subsequent steps, to the
extrapolative open formulas for the first step, (4.1.7)–(4.1.10). As discussed
immediately above, it is consistent to use an end step that is of one order lower
than the (repeated) interior step. The resulting formulas for an interval open at
both ends are as follows:

Equations (4.1.7) and (4.1.11) give
∫ xN

x1

f(x)dx = h

[

3

2
f2 +f3 +f4 + · · ·+fN−2 +

3

2
fN−1

]

+O

(

1

N2

)

(4.1.15)

Equations (4.1.8) and (4.1.12) give
∫ xN

x1

f(x)dx = h

[

23

12
f2 +

7

12
f3 + f4 + f5+

· · ·+ fN−3 +
7

12
fN−2 +

23

12
fN−1

]

+ O

(

1

N3

)

(4.1.16)

Equations (4.1.9) and (4.1.13) give
∫ xN

x1

f(x)dx = h

[

27

12
f2 + 0 +

13

12
f4 +

4

3
f5+

· · ·+
4

3
fN−4 +

13

12
fN−3 + 0 +

27

12
fN−1

]

+ O

(

1

N4

)

(4.1.17)

The interior points alternate 4/3 and 2/3. If we want to avoid this alternation,
we can combine equations (4.1.9) and (4.1.14), giving

∫ xN

x1

f(x)dx = h

[

55

24
f2 −

1

6
f3 +

11

8
f4 + f5 + f6 + f7+

· · ·+ fN−5 + fN−4 +
11

8
fN−3 −

1

6
fN−2 +

55

24
fN−1

]

+ O

(

1

N4

)

(4.1.18)

We should mention in passing another extended open formula, for use where
the limits of integration are located halfway between tabulated abscissas. This one is
known as theextended midpoint rule, and is accurate to the same order as (4.1.15):

∫ xN

x1

f(x)dx = h[f3/2 + f5/2 + f7/2+

· · ·+ fN−3/2 + fN−1/2] + O

(

1

N2

) (4.1.19)

130 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

N = 1

2

3

4

(total after N = 4)

Figure 4.2.1. Sequential calls to the routinetrapzd incorporate the information from previous calls and
evaluate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routineqsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

There are also formulas of higher order for this situation, but we will refrain from
giving them.

Thesemi-open formulasare just the obvious combinations of equations (4.1.11)–
(4.1.14) with (4.1.15)–(4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end use the weights from
the latter equations. One example should give the idea, the formula with error term
decreasing as1/N3 which is closed on the right and open on the left:

∫ xN

x1

f(x)dx = h

[

23

12
f2 +

7

12
f3 + f4 + f5+

· · ·+ fN−2 +
13

12
fN−1 +

5

12
fN

]

+ O

(

1

N3

) (4.1.20)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.4. [1]

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §7.1.

4.2 Elementary Algorithms

Our starting point is equation (4.1.11), the extended trapezoidal rule. There are
two facts about the trapezoidal rule which make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obvious fact is that, for a fixed functionf(x) to be integrated between fixed
limits a andb, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of
the trapezoidal rule is to average the function at its endpointsa and b. The first
stage of refinement is to add to this average the value of the function at the halfway
point. The second stage of refinement is to add the values at the 1/4 and 3/4 points.
And so on (see Figure 4.2.1).

Without further ado we can write a routine with this kind of logic to it:

130 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

N = 1

2

3

4

(total after N = 4)

Figure 4.2.1. Sequential calls to the routinetrapzd incorporate the information from previous calls and
evaluate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routineqsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

There are also formulas of higher order for this situation, but we will refrain from
giving them.

Thesemi-open formulasare just the obvious combinations of equations (4.1.11)–
(4.1.14) with (4.1.15)–(4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end use the weights from
the latter equations. One example should give the idea, the formula with error term
decreasing as1/N3 which is closed on the right and open on the left:

∫ xN

x1

f(x)dx = h

[

23

12
f2 +

7

12
f3 + f4 + f5+

· · ·+ fN−2 +
13

12
fN−1 +

5

12
fN

]

+ O

(

1

N3

) (4.1.20)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.4. [1]

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §7.1.

4.2 Elementary Algorithms

Our starting point is equation (4.1.11), the extended trapezoidal rule. There are
two facts about the trapezoidal rule which make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obvious fact is that, for a fixed functionf(x) to be integrated between fixed
limits a andb, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of
the trapezoidal rule is to average the function at its endpointsa and b. The first
stage of refinement is to add to this average the value of the function at the halfway
point. The second stage of refinement is to add the values at the 1/4 and 3/4 points.
And so on (see Figure 4.2.1).

Without further ado we can write a routine with this kind of logic to it:

4.2 Elementary Algorithms 131

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE trapzd(func,a,b,s,n)
INTEGER n
REAL a,b,s,func
EXTERNAL func

This routine computes the nth stage of refinement of an extended trapezoidal rule. func is
input as the name of the function to be integrated between limits a and b, also input. When

called with n=1, the routine returns as s the crudest estimate of
∫

b

a
f(x)dx. Subsequent

calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding 2n-2

additional interior points. s should not be modified between sequential calls.
INTEGER it,j
REAL del,sum,tnm,x
if (n.eq.1) then

s=0.5*(b-a)*(func(a)+func(b))
else

it=2**(n-2)
tnm=it
del=(b-a)/tnm This is the spacing of the points to be added.
x=a+0.5*del
sum=0.
do 11 j=1,it

sum=sum+func(x)
x=x+del

enddo 11

s=0.5*(s+(b-a)*sum/tnm) This replaces s by its refined value.
endif
return
END

The above routine (trapzd) is a workhorse that can be harnessed in several
ways. The simplest and crudest is to integrate a function by the extended trapezoidal
rule where you know in advance (we can’t imagine how!) the number of steps you
want. If you want2M + 1, you can accomplish this by the fragment

do 11 j=1,m+1
call trapzd(func,a,b,s,j)

enddo 11

with the answer returned ass.
Much better, of course, is to refine the trapezoidal rule until some specified

degree of accuracy has been achieved:

SUBROUTINE qtrap(func,a,b,s)
INTEGER JMAX
REAL a,b,func,s,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20)

C USES trapzd
Returns as s the integral of the function func from a to b. The parameters EPS can be set
to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by the trapezoidal rule.

INTEGER j
REAL olds
olds=-1.e30 Any number that is unlikely to be the average of the function

at its endpoints will do here.do 11 j=1,JMAX
call trapzd(func,a,b,s,j)
if (j.gt.5) then Avoid spurious early convergence.

if (abs(s-olds).lt.EPS*abs(olds).or.
* (s.eq.0..and.olds.eq.0.)) return

endif
olds=s

enddo 11

pause ’too many steps in qtrap’
END

132 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Unsophisticated as it is, routineqtrap is in fact a fairly robust way of doing
integrals of functions that are not very smooth. Increased sophistication will usually
translate into a higher-order method whose efficiency will be greater only for
sufficiently smooth integrands.qtrap is the method of choice, e.g., for an integrand
which is a function of a variable that is linearly interpolated between measured data
points. Be sure that you do not require too stringent anEPS, however: Ifqtrap takes
too many steps in trying to achieve your requiredaccuracy, accumulated roundoff
errors may start increasing, and the routine may never converge. A value10−6

is just on the edge of trouble for most 32-bit machines; it is achievable when the
convergence is moderately rapid, but not otherwise.

We come now to the “deep” fact about the extended trapezoidal rule, equation
(4.1.11). It is this: The error of the approximation, which begins with a term of
order1/N2, is in factentirely evenwhen expressed in powers of1/N . This follows
directly from theEuler-Maclaurin Summation Formula,

∫

xN

x1

f(x)dx = h

[

1

2
f1 + f2 + f3 + · · ·+ fN−1 +

1

2
fN

]

−
B2h

2

2!
(f ′

N − f ′

1) − · · · −
B2kh

2k

(2k)!
(f

(2k−1)
N

− f
(2k−1)
1) − · · ·

(4.2.1)

HereB2k is aBernoulli number, defined by the generating function

t

et − 1
=

∞
∑

n=0

Bn

tn

n!
(4.2.2)

with the first few even values (odd values vanish except forB1 = −1/2)

B0 = 1 B2 =
1

6
B4 = −

1

30
B6 =

1

42

B8 = −
1

30
B10 =

5

66
B12 = −

691

2730

(4.2.3)

Equation (4.2.1) is not a convergent expansion, but rather only an asymptotic
expansion whose error when truncated at any point is always less than twice the
magnitude of the first neglected term. The reason that it is not convergent is that
the Bernoulli numbers become very large, e.g.,

B50 =
495057205241079648212477525

66

The key point is that only even powers ofh occur in the error series of (4.2.1).
This fact is not, in general, shared by the higher-order quadrature rules in§4.1.
For example, equation (4.1.12) has an error series beginning withO(1/N3), but
continuing with all subsequent powers ofN : 1/N4, 1/N5, etc.

Suppose we evaluate (4.1.11) withN steps, getting a resultSN , and then again
with 2N steps, getting a resultS2N . (This is done by any two consecutive calls of

4.2 Elementary Algorithms 133

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

trapzd.) The leading error term in the second evaluation will be 1/4 the size of the
error in the first evaluation. Therefore the combination

S =
4

3
S2N −

1

3
SN (4.2.4)

will cancel out the leading order error term. But thereis no error term of order
1/N3, by (4.2.1). The surviving error is of order1/N4, the same as Simpson’s rule.
In fact, it should not take long for you to see that (4.2.4) isexactlySimpson’s rule
(4.1.13), alternating 2/3’s, 4/3’s, and all. This is the preferred method for evaluating
that rule, and we can write it as a routine exactly analogous toqtrap above:

SUBROUTINE qsimp(func,a,b,s)
INTEGER JMAX
REAL a,b,func,s,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20)

C USES trapzd
Returns as s the integral of the function func from a to b. The parameters EPS can be set
to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by Simpson’s rule.

INTEGER j
REAL os,ost,st
ost=-1.e30
os= -1.e30
do 11 j=1,JMAX

call trapzd(func,a,b,st,j)
s=(4.*st-ost)/3. Compare equation (4.2.4), above.
if (j.gt.5) then Avoid spurious early convergence.

if (abs(s-os).lt.EPS*abs(os).or.
* (s.eq.0..and.os.eq.0.)) return

endif
os=s
ost=st

enddo 11

pause ’too many steps in qsimp’
END

The routineqsimp will in general be more efficient thanqtrap (i.e., require
fewer function evaluations) when the function to be integrated has a finite 4th
derivative (i.e., a continuous 3rd derivative). The combination ofqsimp and its
necessary workhorsetrapzd is a good one for light-duty work.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§3.3.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§§7.4.1–7.4.2.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.3.

134 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine
qsimp in the last section to integration schemes that are of higher order than
Simpson’s rule. The basic idea is to use the results fromk successive refinements
of the extended trapezoidal rule (implemented intrapzd) to remove all terms in
the error series up to but not includingO(1/N2k). The routineqsimp is the case
of k = 2. This is one example of a very general idea that goes by the name of
Richardson’s deferred approach to the limit: Perform some numerical algorithm for
various values of a parameterh, and then extrapolate the result to the continuum
limit h = 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of
polynomial extrapolation. In the more general Romberg case, we can use Neville’s
algorithm (see§3.1) to extrapolate the successive refinements to zero stepsize.
Neville’s algorithm can in fact be coded very concisely within a Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by subroutine call topolint, already given in§3.1.

SUBROUTINE qromb(func,a,b,ss)
INTEGER JMAX,JMAXP,K,KM
REAL a,b,func,ss,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1)

C USES polint,trapzd
Returns as ss the integral of the function func from a to b. Integration is performed by
Romberg’s method of order 2K, where, e.g., K=2 is Simpson’s rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation
error estimate; JMAX limits the total number of steps; K is the number of points used in
the extrapolation.

INTEGER j
REAL dss,h(JMAXP),s(JMAXP) These store the successive trapezoidal approximations

and their relative stepsizes.h(1)=1.
do 11 j=1,JMAX

call trapzd(func,a,b,s(j),j)
if (j.ge.K) then

call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return

endif
s(j+1)=s(j)
h(j+1)=0.25*h(j) This is a key step: The factor is 0.25 even though

the stepsize is decreased by only 0.5. This makes
the extrapolation a polynomial in h2 as allowed
by equation (4.2.1), not just a polynomial in h.

enddo 11

pause ’too many steps in qromb’
END

The routineqromb, along with its requiredtrapzd and polint, is quite
powerful for sufficiently smooth (e.g., analytic) integrands, integrated over intervals
which contain no singularities, and where the endpoints are also nonsingular.qromb,
in such circumstances, takes many,manyfewer function evaluations than either of
the routines in§4.2. For example, the integral

∫ 2

0

x4 log(x +
√

x2 + 1)dx

134 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine
qsimp in the last section to integration schemes that are of higher order than
Simpson’s rule. The basic idea is to use the results fromk successive refinements
of the extended trapezoidal rule (implemented intrapzd) to remove all terms in
the error series up to but not includingO(1/N2k). The routineqsimp is the case
of k = 2. This is one example of a very general idea that goes by the name of
Richardson’s deferred approach to the limit: Perform some numerical algorithm for
various values of a parameterh, and then extrapolate the result to the continuum
limit h = 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of
polynomial extrapolation. In the more general Romberg case, we can use Neville’s
algorithm (see§3.1) to extrapolate the successive refinements to zero stepsize.
Neville’s algorithm can in fact be coded very concisely within a Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by subroutine call topolint, already given in§3.1.

SUBROUTINE qromb(func,a,b,ss)
INTEGER JMAX,JMAXP,K,KM
REAL a,b,func,ss,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1)

C USES polint,trapzd
Returns as ss the integral of the function func from a to b. Integration is performed by
Romberg’s method of order 2K, where, e.g., K=2 is Simpson’s rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation
error estimate; JMAX limits the total number of steps; K is the number of points used in
the extrapolation.

INTEGER j
REAL dss,h(JMAXP),s(JMAXP) These store the successive trapezoidal approximations

and their relative stepsizes.h(1)=1.
do 11 j=1,JMAX

call trapzd(func,a,b,s(j),j)
if (j.ge.K) then

call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return

endif
s(j+1)=s(j)
h(j+1)=0.25*h(j) This is a key step: The factor is 0.25 even though

the stepsize is decreased by only 0.5. This makes
the extrapolation a polynomial in h

2 as allowed
by equation (4.2.1), not just a polynomial in h.

enddo 11

pause ’too many steps in qromb’
END

The routineqromb, along with its requiredtrapzd and polint, is quite
powerful for sufficiently smooth (e.g., analytic) integrands, integrated over intervals
which contain no singularities, and where the endpoints are also nonsingular.qromb,
in such circumstances, takes many,manyfewer function evaluations than either of
the routines in§4.2. For example, the integral

∫ 2

0

x4 log(x +
√

x2 + 1)dx

4.4 Improper Integrals 135

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

converges (with parameters as shown above) on the very first extrapolation, after
just 5 calls totrapzd, whileqsimp requires 8 calls (8 times as many evaluations of
the integrand) andqtrap requires 13 calls (making 256 times as many evaluations
of the integrand).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§3.4–3.5.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§§7.4.1–7.4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §4.10–2.

4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

• its integrand goes to a finite limiting value at finite upper and lower limits,
but cannot be evaluatedright onone of those limits (e.g.,sinx/x atx = 0)

• its upper limit is∞ , or its lower limit is−∞

• it has an integrable singularity at either limit (e.g.,x−1/2 at x = 0)
• it has an integrable singularity at a known place between its upper and

lower limits
• it has an integrable singularity at an unknown place between its upper

and lower limits
If an integral is infinite (e.g.,

∫

∞

1
x−1dx), or does not exist in a limiting sense

(e.g.,
∫

∞

−∞
cosxdx), we do not call it improper; we call it impossible. No amount of

clever algorithmics will return a meaningful answer to an ill-posed problem.
In this section we will generalize the techniques of the preceding two sections

to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 18, notably§18.3. The
fifth problem, singularity at unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given
in Chapter 16.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
one which is anopenformula in the sense of§4.1, i.e., does not require the integrand
to be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is
the best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property
of having an error series that is entirely even inh. Indeed there is a formula, not as
well known as it ought to be, called theSecond Euler-Maclaurin summation formula,

∫ xN

x1

f(x)dx = h[f3/2 + f5/2 + f7/2 + · · ·+ fN−3/2 + fN−1/2]

+
B2h

2

4
(f ′

N − f ′

1) + · · ·

+
B2kh

2k

(2k)!
(1 − 2−2k+1)(f

(2k−1)
N − f

(2k−1)
1) + · · ·

(4.4.1)

4.4 Improper Integrals 135

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

converges (with parameters as shown above) on the very first extrapolation, after
just 5 calls totrapzd, whileqsimp requires 8 calls (8 times as many evaluations of
the integrand) andqtrap requires 13 calls (making 256 times as many evaluations
of the integrand).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§3.4–3.5.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§§7.4.1–7.4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §4.10–2.

4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

• its integrand goes to a finite limiting value at finite upper and lower limits,
but cannot be evaluatedright onone of those limits (e.g.,sinx/x atx = 0)

• its upper limit is∞ , or its lower limit is−∞
• it has an integrable singularity at either limit (e.g.,x−1/2 at x = 0)
• it has an integrable singularity at a known place between its upper and

lower limits
• it has an integrable singularity at an unknown place between its upper

and lower limits
If an integral is infinite (e.g.,

∫∞
1

x−1dx), or does not exist in a limiting sense
(e.g.,

∫∞
−∞ cosxdx), we do not call it improper; we call it impossible. No amount of

clever algorithmics will return a meaningful answer to an ill-posed problem.
In this section we will generalize the techniques of the preceding two sections

to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 18, notably§18.3. The
fifth problem, singularity at unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given
in Chapter 16.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
one which is anopenformula in the sense of§4.1, i.e., does not require the integrand
to be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is
the best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property
of having an error series that is entirely even inh. Indeed there is a formula, not as
well known as it ought to be, called theSecond Euler-Maclaurin summation formula,

∫ xN

x1

f(x)dx = h[f3/2 + f5/2 + f7/2 + · · ·+ fN−3/2 + fN−1/2]

+
B2h

2

4
(f ′

N − f ′
1) + · · ·

+
B2kh

2k

(2k)!
(1 − 2−2k+1)(f

(2k−1)
N − f

(2k−1)
1) + · · ·

(4.4.1)

136 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

This equation can be derived by writing out (4.2.1) with stepsizeh, then writing it
out again with stepsizeh/2, then subtracting the first from twice the second.

It is not possible to double the number of steps in the extended midpoint rule
and still have the benefit of previous function evaluations (try it!). However, it is
possible totriple the number of steps and do so. Shall we do this, or double and
accept the loss? On the average, tripling does a factor

√
3 of unnecessary work,

since the “right” number of steps for a desired accuracy criterion may in fact fall
anywhere in the logarithmic interval implied by tripling. For doubling, the factor
is only

√
2, but we lose an extra factor of 2 in being unable to use all the previous

evaluations. Since1.732 < 2 × 1.414, it is better to triple.
Here is the resulting routine, which is directly comparable totrapzd.

SUBROUTINE midpnt(func,a,b,s,n)
INTEGER n
REAL a,b,s,func
EXTERNAL func

This routine computes the nth stage of refinement of an extended midpoint rule. func is
input as the name of the function to be integrated between limits a and b, also input. When

called with n=1, the routine returns as s the crudest estimate of
∫

b

a
f(x)dx. Subsequent

calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding

(2/3)× 3n-1 additional interior points. s should not be modified between sequential calls.
INTEGER it,j
REAL ddel,del,sum,tnm,x
if (n.eq.1) then

s=(b-a)*func(0.5*(a+b))
else

it=3**(n-2)
tnm=it
del=(b-a)/(3.*tnm)
ddel=del+del The added points alternate in spacing between del and ddel.
x=a+0.5*del
sum=0.
do 11 j=1,it

sum=sum+func(x)
x=x+ddel
sum=sum+func(x)
x=x+del

enddo 11

s=(s+(b-a)*sum/tnm)/3. The new sum is combined with the old integral to give a
refined integral.endif

return
END

The routinemidpnt can exactly replacetrapzd in a driver routine likeqtrap
(§4.2); one simply changescall trapzd to call midpnt, and perhaps also
decreases the parameterJMAX since3JMAX−1 (from step tripling) is a much larger
number than2JMAX−1 (step doubling).

The open formula implementation analogous to Simpson’s rule (qsimp in §4.2)
substitutesmidpnt for trapzd and decreasesJMAX as above, but now also changes
the extrapolation step to be

s=(9.*st-ost)/8.

4.4 Improper Integrals 137

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

since, when the number of steps is tripled, the error decreases to1/9th its size, not
1/4th as with step doubling.

Either the modifiedqtrap or the modifiedqsimp will fix the first problem
on the list at the beginning of this section. Yet more sophisticated is to generalize
Romberg integration in like manner:

SUBROUTINE qromo(func,a,b,ss,choose)
INTEGER JMAX,JMAXP,K,KM
REAL a,b,func,ss,EPS
EXTERNAL func,choose
PARAMETER (EPS=1.e-6, JMAX=14, JMAXP=JMAX+1, K=5, KM=K-1)

C USES polint
Romberg integration on an open interval. Returns as ss the integral of the function func
from a to b, using any specified integrating subroutine choose and Romberg’s method.
Normally choose will be an open formula, not evaluating the function at the endpoints. It
is assumed that choose triples the number of steps on each call, and that its error series
contains only even powers of the number of steps. The routines midpnt, midinf, midsql,
midsqu, are possible choices for choose. The parameters have the same meaning as in
qromb.

INTEGER j
REAL dss,h(JMAXP),s(JMAXP)
h(1)=1.
do 11 j=1,JMAX

call choose(func,a,b,s(j),j)
if (j.ge.K) then

call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return

endif
s(j+1)=s(j)
h(j+1)=h(j)/9. This is where the assumption of step tripling and an even

error series is used.enddo 11

pause ’too many steps in qromo’
END

The differences betweenqromo andqromb (§4.3) are so slight that it is perhaps
gratuitous to listqromo in full. It, however, is an excellent driver routine for solving
all the other problems of improper integrals in our first list (except the intractable
fifth), as we shall now see.

The basic trick for improper integrals is to make a change of variables to
eliminate the singularity, or to map an infinite range of integration to a finite one.
For example, the identity

∫ b

a

f(x)dx =

∫ 1/a

1/b

1

t2
f

(

1

t

)

dt ab > 0 (4.4.2)

can be used witheitherb → ∞ anda positive,or with a → −∞ andb negative, and
works for any function which decreases towards infinity faster than1/x2.

You can make the change of variable implied by (4.4.2) either analytically and
then use (e.g.)qromo andmidpnt to do the numerical evaluation,or you can let
the numerical algorithm make the change of variable for you. We prefer the latter
method as being more transparent to the user. To implement equation (4.4.2) we
simply write a modified version ofmidpnt, calledmidinf, which allowsb to be
infinite (or, more precisely, a very large number on your particular machine, such
as 1 × 1030), or a to be negative and infinite.

138 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE midinf(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk

This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that the function is evaluated at evenly spaced
points in 1/x rather than in x. This allows the upper limit bb to be as large and positive
as the computer allows, or the lower limit aa to be as large and negative, but not both.
aa and bb must have the same sign.

INTEGER it,j
REAL a,b,ddel,del,sum,tnm,func,x
func(x)=funk(1./x)/x**2 This statement function effects the change of variable.
b=1./aa These two statements change the limits of integration ac-

cordingly.a=1./bb
if (n.eq.1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*func(0.5*(a+b))
else

it=3**(n-2)
tnm=it
del=(b-a)/(3.*tnm)
ddel=del+del
x=a+0.5*del
sum=0.
do 11 j=1,it

sum=sum+func(x)
x=x+ddel
sum=sum+func(x)
x=x+del

enddo 11

s=(s+(b-a)*sum/tnm)/3.
endif
return
END

If you need to integrate from a negative lower limit to positive infinity, you do
this by breaking the integral into two pieces at some positive value, for example,

call qromo(funk,-5.,2.,s1,midpnt)
call qromo(funk,2.,1.e30,s2,midinf)
answer=s1+s2

Where should you choose the breakpoint? At a sufficiently large positive value so
that the functionfunk is at least beginning to approach its asymptotic decrease to
zero value at infinity. The polynomial extrapolation implicit in the second call to
qromo deals with a polynomial in1/x, not in x.

To deal with an integral that has an integrable power-law singularity at its lower
limit, one also makes a change of variable. If the integrand diverges as(x − a)γ ,
0 ≤ γ < 1, nearx = a, use the identity

∫ b

a

f(x)dx =
1

1 − γ

∫ (b−a)1−γ

0

t
γ

1−γ f(t
1

1−γ + a)dt (b > a) (4.4.3)

If the singularity is at the upper limit, use the identity

∫ b

a

f(x)dx =
1

1 − γ

∫ (b−a)1−γ

0

t
γ

1−γ f(b − t
1

1−γ)dt (b > a) (4.4.4)

4.4 Improper Integrals 139

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If there is a singularity at both limits, divide the integral at an interior breakpoint
as in the example above.

Equations (4.4.3) and (4.4.4) are particularly simple in the case of inverse
square-root singularities, a case that occurs frequently in practice:

∫ b

a

f(x)dx =

∫

√
b−a

0

2tf(a + t2)dt (b > a) (4.4.5)

for a singularity ata, and

∫ b

a

f(x)dx =

∫

√
b−a

0

2tf(b − t2)dt (b > a) (4.4.6)

for a singularity atb. Once again, we can implement these changes of variable
transparently to the user by defining substitute routines formidpnt which make the
change of variable automatically:

SUBROUTINE midsql(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk

This routine is an exact replacement for midpnt, except that it allows for an inverse square-
root singularity in the integrand at the lower limit aa.

INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=2.*x*funk(aa+x**2)
b=sqrt(bb-aa)
a=0.
if (n.eq.1) then

The rest of the routine is exactly like midpnt and is omitted.

Similarly,

SUBROUTINE midsqu(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk

This routine is an exact replacement for midpnt, except that it allows for an inverse square-
root singularity in the integrand at the upper limit bb.

INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=2.*x*funk(bb-x**2)
b=sqrt(bb-aa)
a=0.
if (n.eq.1) then

The rest of the routine is exactly like midpnt and is omitted.

One last example should suffice to show how these formulas are derived in
general. Suppose the upper limit of integration is infinite, and the integrand falls off
exponentially. Then we want a change of variable that mapse−xdx into (±)dt (with
the sign chosen to keep the upper limit of the new variable larger than the lower
limit). Doing the integration gives by inspection

t = e−x or x = − log t (4.4.7)

140 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

so that

∫ x=∞

x=a

f(x)dx =

∫ t=e−a

t=0

f(− log t)
dt

t
(4.4.8)

The user-transparent implementation would be

SUBROUTINE midexp(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk

This routine is an exact replacement for midpnt, except that bb is assumed to be infinite
(value passed not actually used). It is assumed that the function funk decreases exponen-
tially rapidly at infinity.

INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=funk(-log(x))/x
b=exp(-aa)
a=0.
if (n.eq.1) then

The rest of the routine is exactly like midpnt and is omitted.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.3, p. 294.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§3.7, p. 152.

4.5 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of§4.1, the integral of a function was approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea ofGaussian quadraturesis to give ourselves the freedom to
choose not only the weighting coefficients, but also the location of the abscissas at
which the function is to be evaluated: They will no longer be equally spaced. Thus,
we will havetwicethe number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a
familiar one, which cannot be overemphasized: High order is not the same as high
accuracy. High order translates to high accuracy only when the integrand is very
smooth, in the sense of being “well-approximated by a polynomial.”

140 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

so that

∫ x=∞

x=a

f(x)dx =

∫ t=e−a

t=0

f(− log t)
dt

t
(4.4.8)

The user-transparent implementation would be

SUBROUTINE midexp(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk

This routine is an exact replacement for midpnt, except that bb is assumed to be infinite
(value passed not actually used). It is assumed that the function funk decreases exponen-
tially rapidly at infinity.

INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=funk(-log(x))/x
b=exp(-aa)
a=0.
if (n.eq.1) then

The rest of the routine is exactly like midpnt and is omitted.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.3, p. 294.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§3.7, p. 152.

4.5 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of§4.1, the integral of a function was approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea ofGaussian quadraturesis to give ourselves the freedom to
choose not only the weighting coefficients, but also the location of the abscissas at
which the function is to be evaluated: They will no longer be equally spaced. Thus,
we will havetwicethe number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a
familiar one, which cannot be overemphasized: High order is not the same as high
accuracy. High order translates to high accuracy only when the integrand is very
smooth, in the sense of being “well-approximated by a polynomial.”

4.5 Gaussian Quadratures and Orthogonal Polynomials 141

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

There is, however, one additional feature of Gaussian quadrature formulas that
adds to their usefulness: We can arrange the choice of weights and abscissas to make
the integral exact for a class of integrands “polynomials times some known function
W (x)” rather than for the usual class of integrands “polynomials.” The function
W (x) can then be chosen to remove integrable singularities from the desired integral.
GivenW (x), in other words, and given an integerN , we can find a set of weights
wj and abscissasxj such that the approximation

∫ b

a

W (x)f(x)dx ≈
N∑

j=1

wjf(xj) (4.5.1)

is exact iff(x) is a polynomial. For example, to do the integral

∫ 1

−1

exp(− cos2 x)√
1 − x2

dx (4.5.2)

(not a very natural looking integral, it must be admitted), we might well be interested
in a Gaussian quadrature formula based on the choice

W (x) =
1√

1 − x2
(4.5.3)

in the interval(−1, 1). (This particular choice is calledGauss-Chebyshev integration,
for reasons that will become clear shortly.)

Notice that the integration formula (4.5.1) can also be written with the weight
functionW (x) not overtly visible: Defineg(x) ≡ W (x)f(x) andvj ≡ wj/W (xj).
Then (4.5.1) becomes

∫ b

a

g(x)dx ≈
N∑

j=1

vjg(xj) (4.5.4)

Where did the functionW (x) go? It is lurking there, ready to give high-order
accuracy to integrands of the form polynomials timesW (x), and ready todenyhigh-
order accuracy to integrands that are otherwise perfectly smooth and well-behaved.
When you find tabulations of the weights and abscissas for a givenW (x), you have
to determine carefully whether they are to be used with a formula in the form of
(4.5.1), or like (4.5.4).

Here is an example of a quadrature routine that contains the tabulated abscissas
and weights for the caseW (x) = 1 andN = 10. Since the weights and abscissas
are, in this case, symmetric around the midpoint of the range of integration, there
are actually only five distinct values of each:

SUBROUTINE qgaus(func,a,b,ss)
REAL a,b,ss,func
EXTERNAL func

Returns as ss the integral of the function func between a and b, by ten-point Gauss-
Legendre integration: the function is evaluated exactly ten times at interior points in the
range of integration.

INTEGER j

142 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

REAL dx,xm,xr,w(5),x(5) The abscissas and weights.
SAVE w,x
DATA w/.2955242247,.2692667193,.2190863625,.1494513491,.0666713443/
DATA x/.1488743389,.4333953941,.6794095682,.8650633666,.9739065285/
xm=0.5*(b+a)
xr=0.5*(b-a)
ss=0 Will be twice the average value of the function, since the ten

weights (five numbers above each used twice) sum to 2.do 11 j=1,5
dx=xr*x(j)
ss=ss+w(j)*(func(xm+dx)+func(xm-dx))

enddo 11

ss=xr*ss Scale the answer to the range of integration.
return
END

The above routine illustrates that one can use Gaussian quadratures without
necessarily understanding the theory behind them: One just locates tabulated weights
and abscissas in a book (e.g.,[1] or [2]). However, the theory is very pretty, and it
will come in handy if you ever need to construct your own tabulation of weights and
abscissas for an unusual choice ofW (x). We will therefore give, without any proofs,
some useful results that will enable you to do this. Several of the results assume that
W (x) does not change sign inside(a, b), which is usually the case in practice.

The theory behind Gaussian quadratures goes back to Gauss in 1814, who
used continued fractions to develop the subject. In 1826 Jacobi rederived Gauss’s
results by means of orthogonal polynomials. The systematic treatment of arbitrary
weight functionsW (x) using orthogonal polynomials is largely due to Christoffel in
1877. To introduce these orthogonal polynomials, let us fix the interval of interest
to be (a, b). We can define the “scalar product of two functionsf and g over a
weight functionW ” as

〈f |g〉 ≡
∫ b

a

W (x)f(x)g(x)dx (4.5.5)

The scalar product is a number, not a function ofx. Two functions are said to be
orthogonalif their scalar product is zero. A function is said to benormalizedif its
scalar product with itself is unity. A set of functions that are all mutually orthogonal
and also all individually normalized is called anorthonormalset.

We can find a set of polynomials (i) that includes exactly one polynomial of
orderj, calledpj(x), for eachj = 0, 1, 2, . . ., and (ii) all of which are mutually
orthogonal over the specified weight functionW (x). A constructive procedure for
finding such a set is the recurrence relation

p−1(x) ≡ 0

p0(x) ≡ 1

pj+1(x) = (x− aj)pj(x) − bjpj−1(x) j = 0, 1, 2, . . .

(4.5.6)

where

aj =
〈xpj|pj〉
〈pj|pj〉

j = 0, 1, . . .

bj =
〈pj |pj〉

〈pj−1|pj−1〉
j = 1, 2, . . .

(4.5.7)

4.5 Gaussian Quadratures and Orthogonal Polynomials 143

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The coefficientb0 is arbitrary; we can take it to be zero.
The polynomials defined by (4.5.6) aremonic, i.e., the coefficient of their

leading term [xj for pj(x)] is unity. If we divide eachpj(x) by the constant
[〈pj|pj〉]1/2 we can render the set of polynomials orthonormal. One also encounters
orthogonal polynomials with various other normalizations. You can convert from
a given normalization to monic polynomials if you know that the coefficient of
xj in pj is λj, say; then the monic polynomials are obtained by dividingeachpj
by λj. Note that the coefficients in the recurrence relation (4.5.6) depend on the
adopted normalization.

The polynomialpj(x) can be shown to have exactlyj distinct roots in the
interval (a, b). Moreover, it can be shown that the roots ofpj(x) “interleave” the
j − 1 roots ofpj−1(x), i.e., there is exactly one root of the former in between each
two adjacent roots of the latter. This fact comes in handy if you need to find all the
roots: You can start with the one root ofp1(x) and then, in turn, bracket the roots
of each higherj, pinning them down at each stage more precisely by Newton’s rule
or some other root-finding scheme (see Chapter 9).

Why would you ever want to find all the roots of an orthogonal polynomial
pj(x)? Because the abscissas of theN -point Gaussian quadrature formulas (4.5.1)
and (4.5.4) with weighting functionW (x) in the interval(a, b) are precisely the roots
of the orthogonal polynomialpN (x) for the same interval and weighting function.
This is the fundamental theorem of Gaussian quadratures, and lets you find the
abscissas for any particular case.

Once you know the abscissasx1, . . . , xN , you need to find the weightswj,
j = 1, . . . , N . One way to do this (not the most efficient) is to solve the set of
linear equations

p0(x1) . . . p0(xN)
p1(x1) . . . p1(xN)

...
...

pN−1(x1) . . . pN−1(xN)

w1

w2
...

wN

 =

∫ b

a W (x)p0(x)dx
0
...
0

 (4.5.8)

Equation (4.5.8) simply solves for those weights such that the quadrature (4.5.1)
gives the correct answer for the integral of the firstN orthogonal polynomials. Note
that the zeros on the right-hand side of (4.5.8) appear becausep1(x), . . . , pN−1(x)
are all orthogonal top0(x), which is a constant. It can be shown that, with those
weights, the integral of thenext N − 1 polynomials is also exact, so that the
quadrature is exact for all polynomials of degree2N − 1 or less. Another way to
evaluate the weights (though one whose proof is beyond our scope) is by the formula

wj =
〈pN−1|pN−1〉

pN−1(xj)p
′

N(xj)
(4.5.9)

wherep′N(xj) is the derivative of the orthogonal polynomial at its zeroxj.
The computation of Gaussian quadrature rules thus involves two distinct phases:

(i) the generation of the orthogonal polynomialsp0, . . . , pN , i.e., the computation of
the coefficientsaj, bj in (4.5.6); (ii) the determination of the zeros ofpN (x), and
the computation of the associated weights. For the case of the “classical” orthogonal
polynomials, the coefficientsaj and bj are explicitly known (equations 4.5.10 –

144 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

4.5.14 below) and phase (i) can be omitted. However, if you are confronted with a
“nonclassical” weight functionW (x), and you don’t know the coefficientsaj and
bj, the construction of the associated set of orthogonal polynomials is not trivial.
We discuss it at the end of this section.

Computation of the Abscissas and Weights

This task can range from easy to difficult, depending on how much you already
know about your weight function and its associated polynomials. In the case of
classical, well-studied, orthogonal polynomials, practically everything is known,
including good approximations for their zeros. These can be used as starting guesses,
enabling Newton’s method (to be discussed in§9.4) to converge very rapidly.
Newton’s method requires the derivativep′N(x), which is evaluated by standard
relations in terms ofpN andpN−1. The weights are then conveniently evaluated by
equation (4.5.9). For the following named cases, this direct root-finding is faster,
by a factor of 3 to 5, than any other method.

Here are the weight functions, intervals, and recurrence relations that generate
the most commonly used orthogonal polynomials and their corresponding Gaussian
quadrature formulas.

Gauss-Legendre:

W (x) = 1 − 1 < x < 1

(j + 1)Pj+1 = (2j + 1)xPj − jPj−1 (4.5.10)

Gauss-Chebyshev:

W (x) = (1 − x2)−1/2 − 1 < x < 1

Tj+1 = 2xTj − Tj−1 (4.5.11)

Gauss-Laguerre:

W (x) = xαe−x 0 < x < ∞

(j + 1)Lα
j+1 = (−x + 2j + α + 1)Lα

j − (j + α)Lα
j−1 (4.5.12)

Gauss-Hermite:

W (x) = e−x2 −∞ < x < ∞

Hj+1 = 2xHj − 2jHj−1 (4.5.13)

Gauss-Jacobi:

W (x) = (1 − x)α(1 + x)β − 1 < x < 1

4.5 Gaussian Quadratures and Orthogonal Polynomials 145

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

cjP
(α,β)
j+1 = (dj + ejx)P

(α,β)
j − fjP

(α,β)
j−1 (4.5.14)

where the coefficientscj , dj, ej, andfj are given by

cj = 2(j + 1)(j + α + β + 1)(2j + α + β)

dj = (2j + α + β + 1)(α2 − β2)

ej = (2j + α + β)(2j + α + β + 1)(2j + α + β + 2)

fj = 2(j + α)(j + β)(2j + α + β + 2)

(4.5.15)

We now give individual routines that calculate the abscissas and weights for
these cases. First comes the most common set of abscissas and weights, thoseof
Gauss-Legendre. The routine, due to G.B. Rybicki, uses equation (4.5.9) in the
special form for the Gauss-Legendre case,

wj =
2

(1 − x2
j)[P

′

N(xj)]2
(4.5.16)

The routine also scales the range of integration from(x1, x2) to (−1, 1), and provides
abscissasxj and weightswj for the Gaussian formula

∫ x2

x1

f(x)dx =

N∑

j=1

wjf(xj) (4.5.17)

SUBROUTINE gauleg(x1,x2,x,w,n)
INTEGER n
REAL x1,x2,x(n),w(n)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.d-14) EPS is the relative precision.

Given the lower and upper limits of integration x1 and x2, and given n, this routine returns
arrays x(1:n) and w(1:n) of length n, containing the abscissas and weights of the Gauss-
Legendre n-point quadrature formula.

INTEGER i,j,m
DOUBLE PRECISION p1,p2,p3,pp,xl,xm,z,z1

High precision is a good idea for this routine.
m=(n+1)/2 The roots are symmetric in the interval, so we

only have to find half of them.xm=0.5d0*(x2+x1)
xl=0.5d0*(x2-x1)
do 12 i=1,m Loop over the desired roots.

z=cos(3.141592654d0*(i-.25d0)/(n+.5d0))
Starting with the above approximation to the ith root, we enter the main loop of re-
finement by Newton’s method.

1 continue
p1=1.d0
p2=0.d0
do 11 j=1,n Loop up the recurrence relation to get the Leg-

endre polynomial evaluated at z.p3=p2
p2=p1
p1=((2.d0*j-1.d0)*z*p2-(j-1.d0)*p3)/j

enddo 11

p1 is now the desired Legendre polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.

pp=n*(z*p1-p2)/(z*z-1.d0)

146 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

z1=z
z=z1-p1/pp Newton’s method.

if(abs(z-z1).gt.EPS)goto 1
x(i)=xm-xl*z Scale the root to the desired interval,
x(n+1-i)=xm+xl*z and put in its symmetric counterpart.
w(i)=2.d0*xl/((1.d0-z*z)*pp*pp) Compute the weight
w(n+1-i)=w(i) and its symmetric counterpart.

enddo 12

return
END

Next we give three routines that use initial approximations for the roots given
by Stroud and Secrest[2]. The first is for Gauss-Laguerre abscissas and weights, to
be used with the integration formula

∫
∞

0

xαe−xf(x)dx =

N∑

j=1

wjf(xj) (4.5.18)

SUBROUTINE gaulag(x,w,n,alf)
INTEGER n,MAXIT
REAL alf,w(n),x(n)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.D-14,MAXIT=10) Increase EPS if you don’t have this precision.

C USES gammln
Given alf, the parameter α of the Laguerre polynomials, this routine returns arrays x(1:n)
and w(1:n) containing the abscissas and weights of the n-point Gauss-Laguerre quadrature
formula. The smallest abscissa is returned in x(1), the largest in x(n).

INTEGER i,its,j
REAL ai,gammln
DOUBLE PRECISION p1,p2,p3,pp,z,z1

High precision is a good idea for this routine.
do 13 i=1,n Loop over the desired roots.

if(i.eq.1)then Initial guess for the smallest root.
z=(1.+alf)*(3.+.92*alf)/(1.+2.4*n+1.8*alf)

else if(i.eq.2)then Initial guess for the second root.
z=z+(15.+6.25*alf)/(1.+.9*alf+2.5*n)

else Initial guess for the other roots.
ai=i-2
z=z+((1.+2.55*ai)/(1.9*ai)+1.26*ai*alf/

* (1.+3.5*ai))*(z-x(i-2))/(1.+.3*alf)
endif
do 12 its=1,MAXIT Refinement by Newton’s method.

p1=1.d0
p2=0.d0
do 11 j=1,n Loop up the recurrence relation to get the Laguerre

polynomial evaluated at z.p3=p2
p2=p1
p1=((2*j-1+alf-z)*p2-(j-1+alf)*p3)/j

enddo 11

p1 is now the desired Laguerre polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.

pp=(n*p1-(n+alf)*p2)/z
z1=z
z=z1-p1/pp Newton’s formula.
if(abs(z-z1).le.EPS)goto 1

enddo 12

pause ’too many iterations in gaulag’
1 x(i)=z Store the root and the weight.

4.5 Gaussian Quadratures and Orthogonal Polynomials 147

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

w(i)=-exp(gammln(alf+n)-gammln(float(n)))/(pp*n*p2)
enddo 13

return
END

Next is a routine for Gauss-Hermite abscissas and weights. If we use the
“standard” normalization of these functions, as given in equation (4.5.13), we find
that the computations overflow for largeN because of various factorials that occur.
We can avoid this by using instead the orthonormal set of polynomialsH̃j. They
are generated by the recurrence

H̃−1 = 0, H̃0 =
1

π1/4
, H̃j+1 = x

√
2

j + 1
H̃j −

√
j

j + 1
H̃j−1 (4.5.19)

The formula for the weights becomes

wj =
2

(H̃ ′

j)
2

(4.5.20)

while the formula for the derivative with this normalization is

H̃ ′

j =
√

2jH̃j−1 (4.5.21)

The abscissas and weights returned bygauher are used with the integration formula

∫
∞

−∞

e−x2

f(x)dx =

N∑

j=1

wjf(xj) (4.5.22)

SUBROUTINE gauher(x,w,n)
INTEGER n,MAXIT
REAL w(n),x(n)
DOUBLE PRECISION EPS,PIM4
PARAMETER (EPS=3.D-14,PIM4=.7511255444649425D0,MAXIT=10)

Given n, this routine returns arrays x(1:n) and w(1:n) containing the abscissas and
weights of the n-point Gauss-Hermite quadrature formula. The largest abscissa is returned
in x(1), the most negative in x(n).
Parameters: EPS is the relative precision, PIM4 = 1/π1/4, MAXIT = maximum iterations.

INTEGER i,its,j,m
DOUBLE PRECISION p1,p2,p3,pp,z,z1

High precision is a good idea for this routine.
m=(n+1)/2

The roots are symmetric about the origin, so we have to find only half of them.
do 13 i=1,m Loop over the desired roots.

if(i.eq.1)then Initial guess for the largest root.
z=sqrt(float(2*n+1))-1.85575*(2*n+1)**(-.16667)

else if(i.eq.2)then Initial guess for the second largest root.
z=z-1.14*n**.426/z

else if (i.eq.3)then Initial guess for the third largest root.
z=1.86*z-.86*x(1)

else if (i.eq.4)then Initial guess for the fourth largest root.
z=1.91*z-.91*x(2)

else Initial guess for the other roots.
z=2.*z-x(i-2)

148 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
do 12 its=1,MAXIT Refinement by Newton’s method.

p1=PIM4
p2=0.d0
do 11 j=1,n Loop up the recurrence relation to get the Hermite poly-

nomial evaluated at z.p3=p2
p2=p1
p1=z*sqrt(2.d0/j)*p2-sqrt(dble(j-1)/dble(j))*p3

enddo 11

p1 is now the desired Hermite polynomial. We next compute pp, its derivative, by
the relation (4.5.21) using p2, the polynomial of one lower order.

pp=sqrt(2.d0*n)*p2
z1=z
z=z1-p1/pp Newton’s formula.
if(abs(z-z1).le.EPS)goto 1

enddo 12

pause ’too many iterations in gauher’
1 x(i)=z Store the root

x(n+1-i)=-z and its symmetric counterpart.
w(i)=2.d0/(pp*pp) Compute the weight
w(n+1-i)=w(i) and its symmetric counterpart.

enddo 13

return
END

Finally, here is a routine for Gauss-Jacobi abscissas and weights, which
implement the integration formula

∫ 1

−1

(1 − x)α(1 + x)βf(x)dx =

N∑

j=1

wjf(xj) (4.5.23)

SUBROUTINE gaujac(x,w,n,alf,bet)
INTEGER n,MAXIT
REAL alf,bet,w(n),x(n)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.D-14,MAXIT=10) Increase EPS if you don’t have this precision.

C USES gammln
Given alf and bet, the parameters α and β of the Jacobi polynomials, this routine returns
arrays x(1:n) and w(1:n) containing the abscissas and weights of the n-point Gauss-Jacobi
quadrature formula. The largest abscissa is returned in x(1), the smallest in x(n).

INTEGER i,its,j
REAL alfbet,an,bn,r1,r2,r3,gammln
DOUBLE PRECISION a,b,c,p1,p2,p3,pp,temp,z,z1

High precision is a good idea for this routine.
do 13 i=1,n Loop over the desired roots.

if(i.eq.1)then Initial guess for the largest root.
an=alf/n
bn=bet/n
r1=(1.+alf)*(2.78/(4.+n*n)+.768*an/n)
r2=1.+1.48*an+.96*bn+.452*an*an+.83*an*bn
z=1.-r1/r2

else if(i.eq.2)then Initial guess for the second largest root.
r1=(4.1+alf)/((1.+alf)*(1.+.156*alf))
r2=1.+.06*(n-8.)*(1.+.12*alf)/n
r3=1.+.012*bet*(1.+.25*abs(alf))/n
z=z-(1.-z)*r1*r2*r3

else if(i.eq.3)then Initial guess for the third largest root.
r1=(1.67+.28*alf)/(1.+.37*alf)
r2=1.+.22*(n-8.)/n

4.5 Gaussian Quadratures and Orthogonal Polynomials 149

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

r3=1.+8.*bet/((6.28+bet)*n*n)
z=z-(x(1)-z)*r1*r2*r3

else if(i.eq.n-1)then Initial guess for the second smallest root.
r1=(1.+.235*bet)/(.766+.119*bet)
r2=1./(1.+.639*(n-4.)/(1.+.71*(n-4.)))
r3=1./(1.+20.*alf/((7.5+alf)*n*n))
z=z+(z-x(n-3))*r1*r2*r3

else if(i.eq.n)then Initial guess for the smallest root.
r1=(1.+.37*bet)/(1.67+.28*bet)
r2=1./(1.+.22*(n-8.)/n)
r3=1./(1.+8.*alf/((6.28+alf)*n*n))
z=z+(z-x(n-2))*r1*r2*r3

else Initial guess for the other roots.
z=3.*x(i-1)-3.*x(i-2)+x(i-3)

endif
alfbet=alf+bet
do 12 its=1,MAXIT Refinement by Newton’s method.

temp=2.d0+alfbet Start the recurrence with P0 and P1 to avoid a divi-
sion by zero when α + β = 0 or −1.p1=(alf-bet+temp*z)/2.d0

p2=1.d0
do 11 j=2,n Loop up the recurrence relation to get the Jacobi

polynomial evaluated at z.p3=p2
p2=p1
temp=2*j+alfbet
a=2*j*(j+alfbet)*(temp-2.d0)
b=(temp-1.d0)*(alf*alf-bet*bet+temp*

* (temp-2.d0)*z)
c=2.d0*(j-1+alf)*(j-1+bet)*temp
p1=(b*p2-c*p3)/a

enddo 11

pp=(n*(alf-bet-temp*z)*p1+2.d0*(n+alf)*
* (n+bet)*p2)/(temp*(1.d0-z*z))

p1 is now the desired Jacobi polynomial. We next compute pp, its derivative, by a
standard relation involving also p2, the polynomial of one lower order.

z1=z
z=z1-p1/pp Newton’s formula.
if(abs(z-z1).le.EPS)goto 1

enddo 12

pause ’too many iterations in gaujac’
1 x(i)=z Store the root and the weight.

w(i)=exp(gammln(alf+n)+gammln(bet+n)-gammln(n+1.)-
* gammln(n+alfbet+1.))*temp*2.**alfbet/(pp*p2)

enddo 13

return
END

Legendre polynomials are special cases of Jacobi polynomials withα = β = 0,
but it is worth having the separate routine for them,gauleg, given above. Chebyshev
polynomials correspond toα = β = −1/2 (see§5.8). They have analytic abscissas
and weights:

xj = cos

(
π(j − 1

2)

N

)

wj =
π

N

(4.5.24)

150 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Case of Known Recurrences

Turn now to the case where you do not know good initial guesses for the zeros ofyour
orthogonal polynomials, but you do have available the coefficientsaj andbj that generate
them. As we have seen, the zeros ofpN (x) are the abscissas for theN -point Gaussian
quadrature formula. The most useful computational formula for the weights is equation
(4.5.9) above, since the derivativep′N can be efficiently computed by the derivative of (4.5.6)
in the general case, or by special relations for the classical polynomials. Note that (4.5.9) is
valid as written only for monic polynomials; for other normalizations, there is an extra factor
of λN/λN−1, whereλN is the coefficient ofxN in pN .

Except in those special cases already discussed, the best way to find the abscissas isnot
to use a root-finding method like Newton’s method onpN (x). Rather, it is generally faster
to use the Golub-Welsch[3] algorithm, which is based on a result of Wilf[4]. This algorithm
notes that if you bring the termxpj to the left-hand side of (4.5.6) and the termpj+1 to the
right-hand side, the recurrence relation can be written in matrix form as

x

p0

p1

...
pN−2

pN−1

=

a0 1
b1 a1 1

...
...

bN−2 aN−2 1
bN−1 aN−1

·

p0

p1

...
pN−2

pN−1

+

0
0
...
0
pN

or

xp = T · p + pNeN−1 (4.5.25)

HereT is a tridiagonal matrix,p is a column vector ofp0, p1, . . . , pN−1, andeN−1 is a unit
vector with a 1 in the(N − 1)st (last) position and zeros elsewhere. The matrixT can be
symmetrized by a diagonal similarity transformationD to give

J = DTD−1 =

a0

√
b1√

b1 a1

√
b2

...
...√

bN−2 aN−2

√
bN−1√

bN−1 aN−1

(4.5.26)

The matrix J is called theJacobi matrix(not to be confused with other matrices named
after Jacobi that arise in completely different problems!). Now we see from (4.5.25) that
pN (xj) = 0 is equivalent toxj being an eigenvalue ofT. Since eigenvalues are preserved
by a similarity transformation,xj is an eigenvalue of the symmetric tridiagonal matrixJ.
Moreover, Wilf [4] shows that ifvj is the eigenvector corresponding to the eigenvaluexj ,
normalized so thatv · v = 1, then

wj = µ0v
2
j,1 (4.5.27)

where

µ0 =

∫ b

a

W (x) dx (4.5.28)

and wherevj,1 is the first component ofv. As we shall see in Chapter 11, finding all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix is a relatively efficient and
well-conditioned procedure. We accordingly give a routine,gaucof, for finding the abscissas
and weights, given the coefficientsaj andbj . Remember that if you know the recurrence
relation for orthogonal polynomials that are not normalized to be monic, you can easily
convert it to monic form by means of the quantities λj .

4.5 Gaussian Quadratures and Orthogonal Polynomials 151

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE gaucof(n,a,b,amu0,x,w)
INTEGER n,NMAX
REAL amu0,a(n),b(n),w(n),x(n)
PARAMETER (NMAX=64)

C USES eigsrt,tqli
Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi
matrix. On input, a(1:n) and b(1:n) are the coefficients of the recurrence relation for

the set of monic orthogonal polynomials. The quantity µ0 ≡

∫ b
a W (x)dx is input as amu0.

The abscissas x(1:n) are returned in descending order, with the corresponding weights
in w(1:n). The arrays a and b are modified. Execution can be speeded up by modifying
tqli and eigsrt to compute only the first component of each eigenvector.

INTEGER i,j
REAL z(NMAX,NMAX)
do 12 i=1,n

if(i.ne.1)b(i)=sqrt(b(i)) Set up superdiagonal of Jacobi matrix.
do 11 j=1,n Set up identity matrix for tqli to compute eigenvectors.

if(i.eq.j)then
z(i,j)=1.

else
z(i,j)=0.

endif
enddo 11

enddo 12

call tqli(a,b,n,NMAX,z)
call eigsrt(a,z,n,NMAX) Sort eigenvalues into descending order.
do 13 i=1,n

x(i)=a(i)
w(i)=amu0*z(1,i)**2 Equation (4.5.12).

enddo 13

return
END

Orthogonal Polynomials with Noncl assical Weights

This somewhat specialized subsection will tell you what to do if your weight function
is not one of the classical ones dealt with above and you do not know theaj ’s and bj ’s
of the recurrence relation (4.5.6) to use ingaucof. Then, a method of finding theaj ’s
and bj ’s is needed.

The procedure of Stieltjesis to computea0 from (4.5.7), thenp1(x) from (4.5.6).
Knowing p0 andp1, we can computea1 andb1 from (4.5.7), and so on. But how are we
to compute the inner products in (4.5.7)?

The textbook approach is to represent eachpj(x) explicitly as a polynomial in x and
to compute the inner products by multiplying out term by term. This will be feasible if we
know the first2N moments of the weight function,

µj =

∫ b

a

xjW (x)dx j = 0, 1, . . . , 2N − 1 (4.5.29)

However, the solution of the resulting set of algebraic equations for the coefficientsaj andbj
in terms of the momentsµj is in generalextremelyill-conditioned. Even in double precision,
it is not unusual to lose all accuracy by the timeN = 12. We thus reject any procedure
based on the moments (4.5.29).

Sack and Donovan[5] discovered that the numerical stability is greatly improved if,
instead of using powers ofx as a set of basis functions to represent thepj ’s, one uses some
other known set of orthogonal polynomialsπj(x), say. Roughly speaking, the improved
stability occurs because the polynomial basis “samples” the interval(a, b) better than the
power basis when the inner product integrals are evaluated, especially if its weight function
resemblesW (x).

152 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

So assume that we know themodified moments

νj =

∫ b

a

πj(x)W (x)dx j = 0, 1, . . . , 2N − 1 (4.5.30)

where theπj ’s satisfy a recurrence relation analogous to (4.5.6),

π−1(x) ≡ 0

π0(x) ≡ 1

πj+1(x) = (x− αj)πj(x) − βjπj−1(x) j = 0, 1, 2, . . .

(4.5.31)

and the coefficientsαj, βj are known explicitly. Then Wheeler[6] has given an efficient
O(N2) algorithm equivalent to that of Sack and Donovan for findingaj andbj via a set
of intermediate quantities

σk,l = 〈pk|πl〉 k, l ≥ −1 (4.5.32)

Initialize

σ−1,l = 0 l = 1, 2, . . . , 2N − 2

σ0,l = νl l = 0, 1, . . . , 2N − 1

a0 = α0 +
ν1

ν0

b0 = 0

(4.5.33)

Then, fork = 1, 2, . . . , N − 1, compute

σk,l = σk−1,l+1 − (ak−1 − αl)σk−1,l − bk−1σk−2,l + βlσk−1,l−1

l = k, k + 1, . . . , 2N − k − 1

ak = αk − σk−1,k

σk−1,k−1

+
σk,k+1

σk,k

bk =
σk,k

σk−1,k−1

(4.5.34)

Note that the normalization factors can also easily be computed if needed:

〈p0|p0〉 = ν0

〈pj |pj〉 = bj 〈pj−1|pj−1〉 j = 1, 2, . . .
(4.5.35)

You can find a derivation of the above algorithm in Ref.[7].
Wheeler’s algorithm requires that the modified moments (4.5.30) be accurately computed.

In practical cases there is often a closed form, or else recurrence relations can be used. The
algorithm is extremely successful forfinite intervals(a, b). For infinite intervals, the algorithm
does not completely remove the ill-conditioning. In this case, Gautschi[8,9] recommends
reducing the interval to a finite interval by a change of variable, and then usinga suitable
discretization procedure to compute the inner products. You will have to consult the
references for details.

We give the routineorthog for generating the coefficientsaj and bj by Wheeler’s
algorithm, given the coefficientsαj andβj , and the modified momentsνj . To conform
to the usualFORTRAN convention for dimensioning subscripts, the indices of theσ matrix
are increased by 2, i.e.,sig(k,l) = σk−2,l−2, while the indices of the vectorsα, β, a
and b are increased by 1.

4.5 Gaussian Quadratures and Orthogonal Polynomials 153

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE orthog(n,anu,alpha,beta,a,b)
INTEGER n,NMAX
REAL a(n),alpha(2*n-1),anu(2*n),b(n),beta(2*n-1)
PARAMETER (NMAX=64)

Computes the coefficients aj and bj , j = 0, . . . N − 1, of the recurrence relation for
monic orthogonal polynomials with weight function W (x) by Wheeler’s algorithm. On input,
alpha(1:2*n-1) and beta(1:2*n-1) are the coefficients αj and βj , j = 0, . . . 2N − 2,
of the recurrence relation for the chosen basis of orthogonal polynomials. The modified
moments νj are input in anu(1:2*n). The first n coefficients are returned in a(1:n) and
b(1:n).

INTEGER k,l
REAL sig(2*NMAX+1,2*NMAX+1)
do 11 l=3,2*n Initialization, Equation (4.5.33).

sig(1,l)=0.
enddo 11

do 12 l=2,2*n+1
sig(2,l)=anu(l-1)

enddo 12

a(1)=alpha(1)+anu(2)/anu(1)
b(1)=0.
do 14 k=3,n+1 Equation (4.5.34).

do 13 l=k,2*n-k+3
sig(k,l)=sig(k-1,l+1)+(alpha(l-1)-a(k-2))*sig(k-1,l)-

* b(k-2)*sig(k-2,l)+beta(l-1)*sig(k-1,l-1)
enddo 13

a(k-1)=alpha(k-1)+sig(k,k+1)/sig(k,k)-sig(k-1,k)/sig(k-1,k-1)
b(k-1)=sig(k,k)/sig(k-1,k-1)

enddo 14

return
END

As an example of the use oforthog, consider the problem[7] of generating orthogonal
polynomials with the weight functionW (x) = − log x on the interval(0, 1). A suitable set
of πj ’s is the shifted Legendre polynomials

πj =
(j!)2

(2j)!
Pj(2x− 1) (4.5.36)

The factor in front ofPj makes the polynomials monic. The coefficients in the recurrence
relation (4.5.31) are

αj =
1

2
j = 0, 1, . . .

βj =
1

4(4 − j−2)
j = 1, 2, . . .

(4.5.37)

while the modified moments are

νj =

1 j = 0
(−1)j(j!)2

j(j + 1)(2j)!
j ≥ 1

(4.5.38)

A call to orthog with this input allows one to generate the required polynomials to machine
accuracy for very largeN , and hence do Gaussian quadrature with this weight function. Before
Sack and Donovan’s observation, this seemingly simple problem was essentially intractable.

Extensions of Gaussian Quadrature

There are many different ways in which the ideas of Gaussian quadrature have
been extended. One important extension is the case ofpreassigned nodes: Some
points are required to be included in the set of abscissas, and the problem is to choose

154 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the weights and the remaining abscissas to maximize the degree of exactness of the
the quadrature rule. The most common cases areGauss-Radauquadrature, where
one of the nodes is an endpoint of the interval, eithera or b, andGauss-Lobatto
quadrature, where botha andb are nodes. Golub[10] has given an algorithm similar
to gaucof for these cases.

The second important extension is theGauss-Kronrodformulas. For ordinary
Gaussian quadrature formulas, asN increases the sets of abscissas have no points
in common. This means that if you compare results with increasingN as a way of
estimating the quadrature error, you cannot reuse the previous function evaluations.
Kronrod[11] posed the problem of searching for optimal sequences of rules, each
of which reuses all abscissas of its predecessor. If one starts withN = m, say,
and then addsn new points, one has2n + m free parameters: then new abscissas
and weights, andm new weights for the fixed previous abscissas. The maximum
degree of exactness one would expect to achieve would therefore be2n + m − 1.
The question is whether this maximum degree of exactness can actually be achieved
in practice, when the abscissas are required to all lie inside(a, b). The answer to
this question is not known in general.

Kronrod showed that if you choosen = m + 1, an optimal extension can
be found for Gauss-Legendre quadrature. Patterson[12] showed how to compute
continued extensions of this kind. Sequences such asN = 10, 21, 43, 87, . . . are
popular in automatic quadrature routines[13] that attempt to integrate a function until
some specified accuracy has been achieved.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.4. [1]

Stroud, A.H., and Secrest, D. 1966, Gaussian Quadrature Formulas (Englewood Cliffs, NJ:
Prentice-Hall). [2]

Golub, G.H., and Welsch, J.H. 1969, Mathematics of Computation, vol. 23, pp. 221–230 and
A1–A10. [3]

Wilf, H.S. 1962, Mathematics for the Physical Sciences (New York: Wiley), Problem 9, p. 80. [4]

Sack, R.A., and Donovan, A.F. 1971/72, Numerische Mathematik, vol. 18, pp. 465–478. [5]

Wheeler, J.C. 1974, Rocky Mountain Journal of Mathematics, vol. 4, pp. 287–296. [6]

Gautschi, W. 1978, in Recent Advances in Numerical Analysis, C. de Boor and G.H. Golub, eds.
(New York: Academic Press), pp. 45–72. [7]

Gautschi, W. 1981, in E.B. Christoffel, P.L. Butzer and F. Fehér, eds. (Basel: Birkhauser Verlag),
pp. 72–147. [8]

Gautschi, W. 1990, in Orthogonal Polynomials, P. Nevai, ed. (Dordrecht: Kluwer Academic
Publishers), pp. 181–216. [9]

Golub, G.H. 1973, SIAM Review, vol. 15, pp. 318–334. [10]

Kronrod, A.S. 1964, Doklady Akademii Nauk SSSR, vol. 154, pp. 283–286 (in Russian). [11]

Patterson, T.N.L. 1968, Mathematics of Computation, vol. 22, pp. 847–856 and C1–C11; 1969,
op. cit., vol. 23, p. 892. [12]

Piessens, R., de Doncker, E., Uberhuber, C.W., and Kahaner, D.K. 1983, QUADPACK: A Sub-
routine Package for Automatic Integration (New York: Springer-Verlag). [13]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§3.6.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §6.5.

4.6 Multidimensional Integrals 155

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), §§2.9–2.10.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §§4.4–4.8.

4.6 Multidimensional Integrals

Integrals of functions of several variables, over regions with dimension greater
than one, arenot easy. There are two reasons for this. First, the number of function
evaluations needed to sample anN -dimensional space increases as theN th power
of the number needed to do a one-dimensional integral. If you need 30 function
evaluations to do a one-dimensional integral crudely, then you will likely need on
the order of 30000 evaluations to reach the same crude level for a three-dimensional
integral. Second, the region of integration inN -dimensional space is defined by
anN − 1 dimensional boundary which can itself be terribly complicated: It need
not be convex or simply connected, for example. By contrast, the boundary of a
one-dimensional integral consists of two numbers, its upper and lower limits.

The first question to be asked, when faced with a multidimensional integral,
is, “can it be reduced analytically to a lower dimensionality?” For example,
so-callediterated integralsof a function of one variablef(t) can be reduced to
one-dimensional integrals by the formula

∫ x

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t3

0

dt2

∫ t2

0

f(t1)dt1

=
1

(n− 1)!

∫ x

0

(x− t)n−1f(t)dt

(4.6.1)

Alternatively, the function may have some special symmetry in the way it depends
on its independent variables. If the boundary also has this symmetry, then the
dimension can be reduced. In three dimensions, for example, the integration of a
spherically symmetric function over a spherical region reduces, in polar coordinates,
to a one-dimensional integral.

The next questions to be asked will guide your choice between two entirely
different approaches to doing the problem. The questions are: Is the shape of the
boundary of the region of integration simple or complicated? Inside the region, is
the integrand smooth and simple, or complicated, or locally strongly peaked? Does
the problem require high accuracy, or does it require an answer accurate only to
a percent, or a few percent?

If your answers are that the boundary is complicated, the integrand isnot
strongly peaked in very small regions, and relatively lowaccuracy is tolerable, then
your problem is a good candidate forMonte Carlo integration. This method is very
straightforward to program, in its cruder forms. One needs only to know a region
with simple boundaries thatincludesthe complicated region of integration, plus a
method of determining whether a random point is inside or outside the region of
integration. Monte Carlo integration evaluates the function at a random sample of

4.6 Multidimensional Integrals 155

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), §§2.9–2.10.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §§4.4–4.8.

4.6 Multidimensional Integrals

Integrals of functions of several variables, over regions with dimension greater
than one, arenot easy. There are two reasons for this. First, the number of function
evaluations needed to sample anN -dimensional space increases as theN th power
of the number needed to do a one-dimensional integral. If you need 30 function
evaluations to do a one-dimensional integral crudely, then you will likely need on
the order of 30000 evaluations to reach the same crude level for a three-dimensional
integral. Second, the region of integration inN -dimensional space is defined by
anN − 1 dimensional boundary which can itself be terribly complicated: It need
not be convex or simply connected, for example. By contrast, the boundary of a
one-dimensional integral consists of two numbers, its upper and lower limits.

The first question to be asked, when faced with a multidimensional integral,
is, “can it be reduced analytically to a lower dimensionality?” For example,
so-callediterated integralsof a function of one variablef(t) can be reduced to
one-dimensional integrals by the formula

∫ x

0

dtn

∫ tn

0

dtn−1 · · ·

∫ t3

0

dt2

∫ t2

0

f(t1)dt1

=
1

(n− 1)!

∫ x

0

(x− t)n−1f(t)dt

(4.6.1)

Alternatively, the function may have some special symmetry in the way it depends
on its independent variables. If the boundary also has this symmetry, then the
dimension can be reduced. In three dimensions, for example, the integration of a
spherically symmetric function over a spherical region reduces, in polar coordinates,
to a one-dimensional integral.

The next questions to be asked will guide your choice between two entirely
different approaches to doing the problem. The questions are: Is the shape of the
boundary of the region of integration simple or complicated? Inside the region, is
the integrand smooth and simple, or complicated, or locally strongly peaked? Does
the problem require high accuracy, or does it require an answer accurate only to
a percent, or a few percent?

If your answers are that the boundary is complicated, the integrand isnot
strongly peaked in very small regions, and relatively lowaccuracy is tolerable, then
your problem is a good candidate forMonte Carlo integration. This method is very
straightforward to program, in its cruder forms. One needs only to know a region
with simple boundaries thatincludesthe complicated region of integration, plus a
method of determining whether a random point is inside or outside the region of
integration. Monte Carlo integration evaluates the function at a random sample of

156 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

points, and estimates its integral based on that random sample. We will discuss it in
more detail, and with more sophistication, in Chapter 7.

If the boundary is simple, and the function is very smooth, then the remaining
approaches, breaking up the problem into repeated one-dimensional integrals, or
multidimensional Gaussian quadratures, will be effective and relatively fast[1]. If
you require high accuracy, these approaches are in any case theonly ones available
to you, since Monte Carlo methods are by nature asymptotically slow to converge.

For low accuracy, use repeated one-dimensional integrationor multidimensional
Gaussian quadratures when the integrand is slowly varying and smooth in the region
of integration, Monte Carlo when the integrand is oscillatory or discontinuous, but
not strongly peaked in small regions.

If the integrandis strongly peaked in small regions, and you know where those
regions are, break the integral up into several regions so that the integrand is smooth
in each, and do each separately. If youdon’t know where the strongly peaked regions
are, you might as well (at the level of sophistication of this book) quit: It is hopeless
to expect an integration routine to search out unknown pockets of large contribution
in a hugeN -dimensional space. (But see§7.8.)

If, on the basis of the above guidelines, you decide to pursue the repeated one-
dimensional integration approach, here is how it works. For definiteness, we will
consider the case of a three-dimensional integral inx, y, z-space. Two dimensions,
or more than three dimensions, are entirely analogous.

The first step is to specify the region of integration by (i) its lower and upper
limits in x, which we will denotex1 andx2; (ii) its lower and upper limits iny at a
specified value ofx, denotedy1(x) andy2(x); and (iii) its lower and upper limits
in z at specifiedx andy, denotedz1(x, y) andz2(x, y). In other words, find the
numbersx1 andx2, and the functionsy1(x), y2(x), z1(x, y), andz2(x, y) such that

I ≡

∫ ∫ ∫
dx dy dzf(x, y, z)

=

∫ x2

x1

dx

∫ y2(x)

y1(x)

dy

∫ z2(x,y)

z1(x,y)

dz f(x, y, z)

(4.6.2)

For example, a two-dimensional integral over a circle of radius one centered on
the origin becomes

∫ 1

−1

dx

∫ √

1−x2

−

√

1−x2

dy f(x, y) (4.6.3)

Now we can define a functionG(x, y) that does the innermost integral,

G(x, y) ≡

∫ z2(x,y)

z1(x,y)

f(x, y, z)dz (4.6.4)

and a functionH(x) that does the integral ofG(x, y),

H(x) ≡

∫ y2(x)

y1(x)

G(x, y)dy (4.6.5)

4.6 Multidimensional Integrals 157

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

inner integration

y

x

ou
te

r
in

te
gr

at
io

n

Figure 4.6.1. Function evaluations for a two-dimensional integral over an irregular region, shown
schematically. The outer integration routine, iny, requests values of the inner,x, integral at locations
along they axis of its own choosing. The inner integration routine then evaluates the function at
x locations suitable toit. This is more accurate in general than, e.g., evaluating the function on a
Cartesian mesh of points.

and finally our answer as an integral overH(x)

I =

∫ x2

x1

H(x)dx (4.6.6)

To implement equations (4.6.4)–(4.6.6) in a program, one needs three separate
copies of a basic one-dimensional integration routine (and of any subroutines called
by it), one each for thex, y, andz integrations. If you try to make do with only
one copy, then it will call itself recursively, since (e.g.) the function evaluations
of H for thex integration will themselves call the integration routine to do they

integration (see Figure 4.6.1). In our example, let us suppose that we plan to use the
one-dimensional integratorqgaus of §4.5. Then we make three identical copies and
call themqgausx, qgausy, andqgausz. The basic program for three-dimensional
integration then is as follows:

SUBROUTINE quad3d(x1,x2,ss)
REAL ss,x1,x2,h
EXTERNAL h

C USES h,qgausx
Returns as ss the integral of a user-supplied function func over a three-dimensional region
specified by the limits x1, x2, and by the user-supplied functions y1, y2, z1, and z2, as
defined in (4.6.2).

call qgausx(h,x1,x2,ss)
return
END

FUNCTION f(zz)
REAL f,zz,func,x,y,z

158 Chapter 4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

COMMON /xyz/ x,y,z
C USES func

Called by qgausz. Calls func.
z=zz
f=func(x,y,z)
return
END

FUNCTION g(yy)
REAL g,yy,f,z1,z2,x,y,z
EXTERNAL f
COMMON /xyz/ x,y,z

C USES f,qgausz,z1,z2
Called by qgausy. Calls qgausz.

REAL ss
y=yy
call qgausz(f,z1(x,y),z2(x,y),ss)
g=ss
return
END

FUNCTION h(xx)
REAL h,xx,g,y1,y2,x,y,z
EXTERNAL g
COMMON /xyz/ x,y,z

C USES g,qgausy,y1,y2
Called by qgausx. Calls qgausy.

REAL ss
x=xx
call qgausy(g,y1(x),y2(x),ss)
h=ss
return
END

The necessary user-supplied functions have the following calling sequences:

FUNCTION func(x,y,z) The 3-dimensional function to be integrated
FUNCTION y1(x)
FUNCTION y2(x)
FUNCTION z1(x,y)
FUNCTION z2(x,y)

CITED REFERENCES AND FURTHER READING:

Stroud, A.H. 1971, Approximate Calculation of Multiple Integrals (Englewood Cliffs, NJ: Prentice-
Hall). [1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.7, p. 318.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §6.2.5, p. 307.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), equations 25.4.58ff.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 5. Evaluation of Functions

5.0 Introduction

The purpose of this chapter is to acquaint you with a selection of the techniques
that are frequently used in evaluating functions. In Chapter 6, we will apply and
illustrate these techniques by giving routines for a variety of specific functions.
The purposes of this chapter and the next are thus mostly in harmony, but there
is nevertheless some tension between them: Routines that are clearest andmost
illustrative of the general techniques of this chapter are not always the methods of
choice for a particular special function. By comparing this chapter to the next one,
you should get some idea of the balance between “general” and “special” methods
that occurs in practice.

Insofar as that balance favors general methods, this chapter should give you
ideas about how to write your own routine for the evaluation of a function which,
while “special” to you, is not so special as to be included in Chapter 6 or the
standard program libraries.

CITED REFERENCES AND FURTHER READING:

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall).

Lanczos, C. 1956, Applied Analysis; reprinted 1988 (New York: Dover), Chapter 7.

5.1 Series and Their Convergence

Everybody knows that an analytic function can be expanded in the neighborhood
of a pointx0 in a power series,

f(x) =

∞∑

k=0

ak(x− x0)
k (5.1.1)

Such series are straightforward to evaluate. You don’t, of course, evaluate thekth
power ofx−x0 ab initio for each term; rather you keep thek−1st power and update
it with a multiply. Similarly, the form of the coefficientsa is often such as to make
use of previous work: Terms likek! or (2k)! can be updated in a multiply or two.

159

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 5. Evaluation of Functions

5.0 Introduction

The purpose of this chapter is to acquaint you with a selection of the techniques
that are frequently used in evaluating functions. In Chapter 6, we will apply and
illustrate these techniques by giving routines for a variety of specific functions.
The purposes of this chapter and the next are thus mostly in harmony, but there
is nevertheless some tension between them: Routines that are clearest andmost
illustrative of the general techniques of this chapter are not always the methods of
choice for a particular special function. By comparing this chapter to the next one,
you should get some idea of the balance between “general” and “special” methods
that occurs in practice.

Insofar as that balance favors general methods, this chapter should give you
ideas about how to write your own routine for the evaluation of a function which,
while “special” to you, is not so special as to be included in Chapter 6 or the
standard program libraries.

CITED REFERENCES AND FURTHER READING:

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall).

Lanczos, C. 1956, Applied Analysis; reprinted 1988 (New York: Dover), Chapter 7.

5.1 Series and Their Convergence

Everybody knows that an analytic function can be expanded in the neighborhood
of a pointx0 in a power series,

f(x) =

∞
∑

k=0

ak(x− x0)
k (5.1.1)

Such series are straightforward to evaluate. You don’t, of course, evaluate thekth
power ofx−x0 ab initio for each term; rather you keep thek−1st power and update
it with a multiply. Similarly, the form of the coefficientsa is often such as to make
use of previous work: Terms likek! or (2k)! can be updated in a multiply or two.

159

160 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

How do you know when you have summed enough terms? In practice, the
terms had better be getting small fast, otherwise the series is not a good technique
to use in the first place. While not mathematically rigorous in all cases, standard
practice is to quit when the term you have just added is smaller in magnitude than
some smallǫ times the magnitude of the sum thus far accumulated. (But watch out
if isolated instances ofak = 0 are possible!).

A weakness of a power series representation is that it is guaranteednot to
converge farther than that distance fromx0 at which a singularity is encountered
in the complex plane. This catastrophe is not usually unexpected: When you find
a power series in a book (or when you work one out yourself), you will generally
also know the radius of convergence. An insidious problem occurs with series that
converge everywhere (in the mathematical sense), but almost nowhere fast enough
to be useful in a numerical method. Two familiar examples are the sine function
and the Bessel function of the first kind,

sinx =

∞
∑

k=0

(−1)k

(2k + 1)!
x2k+1 (5.1.2)

Jn(x) =
(x

2

)n
∞
∑

k=0

(−1
4x

2)k

k!(k + n)!
(5.1.3)

Both of these series converge for allx. But both don’t even start to converge
until k ≫ |x|; before this, their terms are increasing. This makes these series
useless for largex.

Accelerating the Convergence of Series

There are several tricks for accelerating the rate of convergence of a series (or,
equivalently, of a sequence of partial sums). These tricks willnot generally help in
cases like (5.1.2) or (5.1.3) while the size of the terms is still increasing. For series
with terms of decreasing magnitude, however, some accelerating methods can be
startlingly good.Aitken’sδ2-processis simply a formula for extrapolating the partial
sums of a series whose convergence is approximately geometric. IfSn−1, Sn, Sn+1

are three successive partial sums, then an improved estimate is

S′

n ≡ Sn+1 −
(Sn+1 − Sn)2

Sn+1 − 2Sn + Sn−1
(5.1.4)

You can also use (5.1.4) withn + 1 and n − 1 replaced byn + p and n − p

respectively, for any integerp. If you form the sequence ofS′

i
’s, you can apply

(5.1.4) a second time tothat sequence, and so on. (In practice, this iteration will
only rarely do much for you after the first stage.) Note that equation (5.1.4) should
be computed as written; there exist algebraically equivalent forms that are much
more susceptible to roundoff error.

For alternating series(where the terms in the sum alternate in sign),Euler’s
transformationcan be a powerful tool. Generally it is advisable to do a small

5.1 Series and Their Convergence 161

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

numbern− 1 of terms directly, then apply the transformation to the rest of the series
beginning with thenth term. The formula (forn even) is

∞
∑

s=0

(−1)sus = u0 − u1 + u2 . . .− un−1 +

∞
∑

s=0

(−1)s

2s+1
[∆sun] (5.1.5)

Here∆ is the forward difference operator, i.e.,

∆un ≡ un+1 − un

∆2un ≡ un+2 − 2un+1 + un

∆3un ≡ un+3 − 3un+2 + 3un+1 − un etc.

(5.1.6)

Of course you don’t actually do the infinite sum on the right-hand side of (5.1.5),
but only the first, say,p terms, thus requiring the firstp differences (5.1.6) obtained
from the terms starting atun.

Euler’s transformation can be applied not only to convergent series. In some
cases it will produceaccurate answers from the first terms of a series that is formally
divergent. It is widely used in the summation of asymptotic series. In this case
it is generally wise not to sum farther than where the terms start increasing in
magnitude; and you should devise some independent numerical check that the results
are meaningful.

There is an elegant and subtle implementation of Euler’s transformation due
to van Wijngaarden[1]: It incorporates the terms of the original alternating series
one at a time, in order. For each incorporation iteither increasesp by 1, equivalent
to computing one further difference (5.1.6), or elseretroactivelyincreasesn by 1,
without having to redo all the difference calculations based on the oldn value! The
decision as to which to increase,n or p, is taken in such a way as to make the
convergence most rapid. Van Wijngaarden’s technique requires only one vector of
saved partial differences. Here is the algorithm:

SUBROUTINE eulsum(sum,term,jterm,wksp)
INTEGER jterm
REAL sum,term,wksp(jterm) Workspace, provided by the calling program.

Incorporates into sum the jterm’th term, with value term, of an alternating series. sum
is input as the previous partial sum, and is output as the new partial sum. The first call
to this routine, with the first term in the series, should be with jterm=1. On the second
call, term should be set to the second term of the series, with sign opposite to that of the
first call, and jterm should be 2. And so on.

INTEGER j,nterm
REAL dum,tmp
SAVE nterm
if(jterm.eq.1)then Initialize:

nterm=1 Number of saved differences in wksp.
wksp(1)=term
sum=0.5*term Return first estimate.

else
tmp=wksp(1)
wksp(1)=term
do 11 j=1,nterm-1 Update saved quantities by van Wijngaarden’s algo-

rithm.dum=wksp(j+1)
wksp(j+1)=0.5*(wksp(j)+tmp)
tmp=dum

162 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 11

wksp(nterm+1)=0.5*(wksp(nterm)+tmp)
if(abs(wksp(nterm+1)).le.abs(wksp(nterm)))then Favorable to increase p,

sum=sum+0.5*wksp(nterm+1)
nterm=nterm+1 and the table becomes longer.

else Favorable to increase n,
sum=sum+wksp(nterm+1) the table doesn’t become longer.

endif
endif
return
END

The powerful Euler technique is not directly applicable to a series of positive
terms. Occasionally it is useful to convert a series of positive terms into an alternating
series, just so that the Euler transformation can be used! Van Wijngaarden has given
a transformation for accomplishing this[1]:

∞
∑

r=1

vr =

∞
∑

r=1

(−1)r−1wr (5.1.7)

where
wr ≡ vr + 2v2r + 4v4r + 8v8r + · · · (5.1.8)

Equations (5.1.7) and (5.1.8) replace a simple sum by a two-dimensional sum, each
term in (5.1.7) being itself an infinite sum (5.1.8). This may seem a strange way to
save on work! Since, however, the indices in (5.1.8) increase tremendously rapidly,
as powers of 2, it often requires only a few terms to converge (5.1.8) to extraordinary
accuracy. You do, however, need to be able to compute thevr’s efficiently for
“random” valuesr. The standard “updating” tricks for sequentialr’s, mentioned
above following equation (5.1.1), can’t be used.

Actually, Euler’s transformation is a special case of a more general transforma-
tion of power series. Suppose that some known functiong(z) has the series

g(z) =

∞
∑

n=0

bnz
n (5.1.9)

and that you want to sum the new, unknown, series

f(z) =

∞
∑

n=0

cnbnz
n (5.1.10)

Then it is not hard to show (see[2]) that equation (5.1.10) can be written as

f(z) =

∞
∑

n=0

[∆(n)c0]
g(n)

n!
zn (5.1.11)

which often converges much more rapidly. Here∆(n)c0 is thenth finite-difference
operator (equation 5.1.6), with∆(0)c0 ≡ c0, andg(n) is thenth derivative ofg(z).
The usual Euler transformation (equation 5.1.5 withn = 0) can be obtained, for
example, by substituting

g(z) =
1

1 + z
= 1 − z + z2 − z3 + · · · (5.1.12)

5.2 Evaluation of Continued Fractions 163

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

into equation (5.1.11), and then settingz = 1.
Sometimes you will want to compute a function from a series representation

even when the computation isnotefficient. For example, you may be using the values
obtained to fit the function to an approximating form that you will use subsequently
(cf. §5.8). If you are summing very large numbers of slowly convergent terms, pay
attention to roundoff errors! In floating-point representation it is moreaccurate to
sum a list of numbers in the order starting with the smallest one, rather than starting
with the largest one. It is even better to group terms pairwise, then in pairs of pairs,
etc., so that all additions involve operands of comparable magnitude.

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 13 [van Wijngaarden’s transformations]. [1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 3.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.6.

Mathews, J., and Walker, R.L. 1970,

5.2 Evaluation of Continued Fractions 163

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

into equation (5.1.11), and then settingz = 1.
Sometimes you will want to compute a function from a series representation

even when the computation isnotefficient. For example, you may be using the values
obtained to fit the function to an approximating form that you will use subsequently
(cf. §5.8). If you are summing very large numbers of slowly convergent terms, pay
attention to roundoff errors! In floating-point representation it is moreaccurate to
sum a list of numbers in the order starting with the smallest one, rather than starting
with the largest one. It is even better to group terms pairwise, then in pairs of pairs,
etc., so that all additions involve operands of comparable magnitude.

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 13 [van Wijngaarden’s transformations]. [1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 3.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.6.

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), §2.3. [2]

5.2 Evaluation of Continued Fractions

Continued fractions are often powerful ways of evaluating functions that occur
in scientific applications. A continued fraction looks like this:

f(x) = b0 +
a1

b1 +
a2

b2+
a3

b3+
a
4

b4+

a
5

b5+···

(5.2.1)

Printers prefer to write this as

f(x) = b0 +
a1

b1 +

a2

b2 +

a3

b3 +

a4

b4 +

a5

b5 +
· · · (5.2.2)

In either (5.2.1) or (5.2.2), thea’s andb’s can themselves be functions ofx, usually
linear or quadratic monomials at worst (i.e., constants timesx or timesx2). For
example, the continued fraction representation of the tangent function is

tanx =
x

1 −

x2

3 −

x2

5 −

x2

7 −
· · · (5.2.3)

Continued fractions frequently converge much more rapidly than power series
expansions, and in a much larger domain in the complex plane (not necessarily
including the domain of convergence of the series, however). Sometimes the
continued fraction converges best where the series does worst, although this is not

164 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

a general rule. Blanch[1] gives a good review of the most useful convergence tests
for continued fractions.

There are standard techniques, including the importantquotient-difference algo-
rithm, for going back and forth between continued fraction approximations, power
series approximations, and rational function approximations. Consult Acton[2] for
an introduction to this subject, and Fike[3] for further details and references.

How do you tell how far to go when evaluating a continued fraction? Unlike
a series, you can’t just evaluate equation (5.2.1) from left to right, stopping when
the change is small. Written in the form of (5.2.1), the only way to evaluate the
continued fraction is from right to left, first (blindly!) guessing how far out to
start. This is not the right way.

The right way is to use a result that relates continued fractions to rational
approximations, and that gives a means of evaluating (5.2.1) or (5.2.2) from left
to right. Let fn denote the result of evaluating (5.2.2) with coefficients through
an and bn. Then

fn =
An

Bn

(5.2.4)

whereAn andBn are given by the following recurrence:

A
−1 ≡ 1 B

−1 ≡ 0

A0 ≡ b0 B0 ≡ 1

Aj = bjAj−1 + ajAj−2 Bj = bjBj−1 + ajBj−2 j = 1, 2, . . . , n

(5.2.5)

This method was invented by J. Wallis in 1655 (!), and is discussed in hisArithmetica
Infinitorum[4]. You can easily prove it by induction.

In practice, this algorithmhas some unattractive features: The recurrence (5.2.5)
frequently generates very large or very small values for the partial numerators and
denominatorsAj andBj . There is thus the danger of overflow or underflow of the
floating-point representation. However, the recurrence (5.2.5) is linear in theA’s and
B’s. At any point you can rescale the currently saved two levels of the recurrence,
e.g., divideAj, Bj , Aj−1, andBj−1 all by Bj . This incidentally makesAj = fj
and is convenient for testing whether you have gone far enough: See iffj andfj−1

from the last iteration are as close as you would like them to be. (IfBj happens to
be zero, which can happen, just skip the renormalization for this cycle. A fancier
level of optimization is to renormalize only when an overflow is imminent, saving
the unnecessary divides. All this complicates the program logic.)

Two newer algorithms have been proposed for evaluating continued fractions.
Steed’s methoddoes not useAj andBj explicitly, but only theratio Dj = Bj−1/Bj.
One calculatesDj and∆fj = fj − fj−1 recursively using

Dj = 1/(bj + ajDj−1) (5.2.6)

∆fj = (bjDj − 1)∆fj−1 (5.2.7)

Steed’s method (see, e.g.,[5]) avoids the need for rescaling of intermediate results.
However, for certain continued fractions you can occasionally run intoa situation

5.2 Evaluation of Continued Fractions 165

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

where the denominator in (5.2.6) approaches zero, so thatDj and ∆fj are very
large. The next∆fj+1 will typically cancel this large change, but with loss of
accuracy in the numerical running sum of thefj ’s. It is awkward to program around
this, so Steed’s method can be recommended only for cases where you know in
advance that no denominator can vanish. We will use it for a special purpose in
the routinebessik (§6.7).

The best general method for evaluating continued fractions seems to be the
modified Lentz’s method[6]. The need for rescaling intermediate results is avoided
by using both the ratios

Cj = Aj/Aj−1, Dj = Bj−1/Bj (5.2.8)

and calculatingfj by

fj = fj−1CjDj (5.2.9)

From equation (5.2.5), one easily shows that the ratios satisfy the recurrence relations

Dj = 1/(bj + ajDj−1), Cj = bj + aj/Cj−1 (5.2.10)

In this algorithm there is the danger that the denominator in the expression forDj,
or the quantityCj itself, might approach zero. Either of these conditions invalidates
(5.2.10). However, Thompson and Barnett[5] show how to modify Lentz’s algorithm
to fix this: Just shift the offending term by a small amount, e.g.,10−30. If you
work through a cycle of the algorithm with this prescription, you will see thatfj+1

is accurately calculated.
In detail, the modified Lentz’s algorithm is this:

• Setf0 = b0; if b0 = 0 set f0 = tiny.
• Set C0 = f0.
• Set D0 = 0.
• For j = 1, 2, . . .

SetDj = bj + ajDj−1.
If Dj = 0, setDj = tiny.
SetCj = bj + aj/Cj−1.
If Cj = 0 set Cj = tiny.
Set Dj = 1/Dj .
Set ∆j = CjDj .
Set fj = fj−1∆j.
If |∆j − 1| < eps then exit.

Hereeps is your floating-point precision, say10−7 or 10−15. The parametertiny
should be less than typical values ofeps|bj|, say10−30.

The above algorithm assumes that you can terminate the evaluation of the
continued fraction when|fj − fj−1| is sufficiently small. This is usually the case,
but by no means guaranteed. Jones[7] gives a list of theorems that can be used to
justify this termination criterion for various kinds of continued fractions.

There is at present no rigorousanalysis of error propagation in Lentz’s algorithm.
However, empirical tests suggest that it is at least as good as other methods.

166 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Manipulating Continued Fractions

Several important properties of continued fractions can be used to rewrite them
in forms that can speed up numerical computation. Anequivalence transformation

an → λan, bn → λbn, an+1 → λan+1 (5.2.11)

leaves the value of a continued fraction unchanged. By a suitable choice of the scale
factor λ you can often simplify the form of thea’s and theb’s. Of course, you
can carry out successive equivalence transformations, possibly with differentλ’s, on
successive terms of the continued fraction.

The evenandoddparts of a continued fraction are continued fractions whose
successive convergents aref2n andf2n+1, respectively. Their main use is that they
converge twice as fast as the original continued fraction, and so if their terms are not
much more complicated than the terms in the original there can be a big savings in
computation. The formula for the even part of (5.2.2) is

feven = d0 +
c1

d1 +

c2
d2 +

· · · (5.2.12)

where in terms of intermediate variables

α1 =
a1

b1

αn =
an

bnbn−1

, n ≥ 2
(5.2.13)

we have
d0 = b0, c1 = α1, d1 = 1 + α2

cn = −α2n−1α2n−2, dn = 1 + α2n−1 + α2n, n ≥ 2
(5.2.14)

You can find the similar formula for the odd part in the review by Blanch[1]. Often
a combination of the transformations (5.2.14) and (5.2.11) is used to get the best
form for numerical work.

We will make frequent use of continued fractions in the next chapter.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.10.

Blanch, G. 1964, SIAM Review, vol. 6, pp. 383–421. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 11. [2]

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 1.

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), §§8.2, 10.4, and 10.5. [3]

Wallis, J. 1695, in Opera Mathematica, vol. 1, p. 355, Oxoniae e Theatro Shedoniano. Reprinted
by Georg Olms Verlag, Hildeshein, New York (1972). [4]

5.3 Polynomials and Rational Functions 167

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Thompson, I.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490–509.
[5]

Lentz, W.J. 1976, Applied Optics, vol. 15, pp. 668–671. [6]

Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
don: Academic Press), p. 125. [7]

5.3 Polynomials and Rational Functions

A polynomial of degreeN − 1 is represented numerically as a stored array
of coefficients,c(j) with j= 1, . . . , N . We will always takec(1) to be the
constant term in the polynomial,c(N) the coefficient ofxN−1; but of course other
conventions are possible. There are two kinds of manipulations that you can do
with a polynomial: numericalmanipulations (such as evaluation), where you are
given the numerical value of its argument, oralgebraicmanipulations, where you
want to transform the coefficient array in some way without choosing any particular
argument. Let’s start with the numerical.

We assume that you know enoughneverto evaluate a polynomial this way:

p=c(1)+c(2)*x+c(3)*x**2+c(4)*x**3+c(5)*x**4

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won’t be! It is a matter
of taste, however, whether to write

p=c(1)+x*(c(2)+x*(c(3)+x*(c(4)+x*c(5))))

or

p=(((c(5)*x+c(4))*x+c(3))*x+c(2))*x+c(1)

If the number of coefficients is a large numbern, one writes

p=c(n)
do 11 j=n-1,1,-1

p=p*x+c(j)
enddo 11

Another useful trick is for evaluating a polynomialP (x) and its derivative
dP (x)/dx simultaneously:

p=c(n)
dp=0.
do 11 j=n-1,1,-1

dp=dp*x+p
p=p*x+c(j)

enddo 11

which returns the polynomial asp and its derivative asdp.
The above trick, which is basicallysynthetic division[1,2], generalizes to the

evaluation of the polynomial andnd-1 of its derivatives simultaneously:

5.3 Polynomials and Rational Functions 167

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Thompson, I.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490–509.
[5]

Lentz, W.J. 1976, Applied Optics, vol. 15, pp. 668–671. [6]

Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
don: Academic Press), p. 125. [7]

5.3 Polynomials and Rational Functions

A polynomial of degreeN − 1 is represented numerically as a stored array
of coefficients,c(j) with j= 1, . . . , N . We will always takec(1) to be the
constant term in the polynomial,c(N) the coefficient ofxN−1; but of course other
conventions are possible. There are two kinds of manipulations that you can do
with a polynomial: numericalmanipulations (such as evaluation), where you are
given the numerical value of its argument, oralgebraicmanipulations, where you
want to transform the coefficient array in some way without choosing any particular
argument. Let’s start with the numerical.

We assume that you know enoughneverto evaluate a polynomial this way:

p=c(1)+c(2)*x+c(3)*x**2+c(4)*x**3+c(5)*x**4

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won’t be! It is a matter
of taste, however, whether to write

p=c(1)+x*(c(2)+x*(c(3)+x*(c(4)+x*c(5))))

or

p=(((c(5)*x+c(4))*x+c(3))*x+c(2))*x+c(1)

If the number of coefficients is a large numbern, one writes

p=c(n)
do 11 j=n-1,1,-1

p=p*x+c(j)
enddo 11

Another useful trick is for evaluating a polynomialP (x) and its derivative
dP (x)/dx simultaneously:

p=c(n)
dp=0.
do 11 j=n-1,1,-1

dp=dp*x+p
p=p*x+c(j)

enddo 11

which returns the polynomial asp and its derivative asdp.
The above trick, which is basicallysynthetic division[1,2], generalizes to the

evaluation of the polynomial andnd-1 of its derivatives simultaneously:

168 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE ddpoly(c,nc,x,pd,nd)
INTEGER nc,nd
REAL x,c(nc),pd(nd)

Given the coefficients of a polynomial of degree nc-1 as an array c(1:nc) with c(1) being
the constant term, and given a value x, and given a value nd>1, this routine returns the
polynomial evaluated at x as pd(1) and nd-1 derivatives as pd(2:nd).

INTEGER i,j,nnd
REAL const
pd(1)=c(nc)
do 11 j=2,nd

pd(j)=0.
enddo 11

do 13 i=nc-1,1,-1
nnd=min(nd,nc+1-i)
do 12 j=nnd,2,-1

pd(j)=pd(j)*x+pd(j-1)
enddo 12

pd(1)=pd(1)*x+c(i)
enddo 13

const=2. After the first derivative, factorial constants come in.
do 14 i=3,nd

pd(i)=const*pd(i)
const=const*i

enddo 14

return
END

As a curiosity, you might be interested to know that polynomials of degree
n > 3 can be evaluated infewer thann multiplications, at least if you are willing
to precompute some auxiliary coefficients and, in some cases, do an extra addition.
For example, the polynomial

P (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 (5.3.1)

wherea4 > 0, can be evaluated with 3 multiplications and 5 additions as follows:

P (x) = [(Ax+ B)2 + Ax + C][(Ax+ B)2 + D] + E (5.3.2)

whereA,B, C,D, andE are to be precomputed by

A = (a4)
1/4

B =
a3 − A3

4A3

D = 3B2 + 8B3 +
a1A − 2a2B

A2

C =
a2

A2
− 2B − 6B2 −D

E = a0 − B4 − B2(C + D) − CD

(5.3.3)

Fifth degree polynomials can be evaluated in 4 multiplies and 5 adds; sixth degree
polynomials can be evaluated in 4 multiplies and 7 adds; if any of this strikes
you as interesting, consult references[3-5]. The subject has something of the same
entertaining, if impractical, flavor as that of fast matrix multiplication, discussed
in §2.11.

5.3 Polynomials and Rational Functions 169

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Turn now to algebraic manipulations. You multiply a polynomial of degree
n−1 (array of lengthn) by a monomial factorx−aby a bit of code like the following,

c(n+1)=c(n)
do 11 j=n,2,-1

c(j)=c(j-1)-c(j)*a
enddo 11

c(1)=-c(1)*a

Likewise, you divide a polynomial of degreen− 1 by a monomial factorx− a
(synthetic division again) using

rem=c(n)
c(n)=0.
do 11 i=n-1,1,-1

swap=c(i)
c(i)=rem
rem=swap+rem*a

enddo 11

which leaves you with a new polynomial array and a numerical remainderrem.
Multiplication of two general polynomials involves straightforward summing

of the products,each involving one coefficient fromeach polynomial. Division
of two general polynomials, while it can be done awkwardly in the fashion taught
using pencil and paper, is susceptible to a good deal of streamlining. Witness the
following routine based on the algorithm in[3].

SUBROUTINE poldiv(u,n,v,nv,q,r)
INTEGER n,nv
REAL q(n),r(n),u(n),v(nv)

Given the n coefficients of a polynomial in u(1:n), and the nv coefficients of another
polynomial in v(1:nv), divide the polynomial u by the polynomial v (“u”/“v”) giving
a quotient polynomial whose coefficients are returned in q(1:n-nv+1), and a remainder
polynomial whose coefficients are returned in r(1:nv-1). The arrays q and r are dimen-
sioned with lengths n, but the elements r(nv) . . . r(n) and q(n-nv+2). . . q(n) will be
returned as zero.

INTEGER j,k
do 11 j=1,n

r(j)=u(j)
q(j)=0.

enddo 11

do 13 k=n-nv,0,-1
q(k+1)=r(nv+k)/v(nv)
do 12 j=nv+k-1,k+1,-1

r(j)=r(j)-q(k+1)*v(j-k)
enddo 12

enddo 13

do 14 j=nv,n
r(j)=0.

enddo 14

return
END

170 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Rational Functions

You evaluate a rational function like

R(x) =
Pµ(x)

Qν(x)
=

p0 + p1x + · · ·+ pµx
µ

q0 + q1x + · · ·+ qνxν
(5.3.4)

in the obvious way, namely as two separate polynomials followed by a divide. As a
matter of convention one usually choosesq0 = 1, obtained by dividing numerator
and denominator by any otherq0. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard subroutine available
for doing the evaluation:

FUNCTION ratval(x,cof,mm,kk)
INTEGER kk,mm
DOUBLE PRECISION ratval,x,cof(mm+kk+1) Note precision! Change to REAL if desired.

Given mm, kk, and cof(1:mm+kk+1), evaluate and return the rational function (cof(1)+

cof(2)x+ · · · + cof(mm+1)xmm)/(1 + cof(mm+2)x+ · · · + cof(mm+kk+1)xkk).
INTEGER j
DOUBLE PRECISION sumd,sumn
sumn=cof(mm+1)
do 11 j=mm,1,-1

sumn=sumn*x+cof(j)
enddo 11

sumd=0.d0
do 12 j=mm+kk+1,mm+2,-1

sumd=(sumd+cof(j))*x
enddo 12

ratval=sumn/(1.d0+sumd)
return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 183, 190. [1]

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), pp. 361–363. [2]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.6. [3]

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 4.

Winograd, S. 1970, Communications on Pure and Applied Mathematics, vol. 23, pp. 165–179. [4]

Kronsjö, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley). [5]

5.4 Complex Arithmetic 171

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

5.4 Complex Arithmetic

SinceFORTRAN has the built-in data typeCOMPLEX, you can generally let the
compiler and intrinsic function library take care of complex arithmetic for you.
Generally, but not always. For a program with only a small number of complex
operations, you may want to code these yourself, in-line. Or, you may find that
your compiler is not up to snuff: It is disconcertingly common to encounter complex
operations that produce overflows or underflows when both the complex operands
and the complex result are perfectly representable. This occurs, we think, because
software companies assign inexperienced programmers to what they believe to be
the perfectly trivial task of implementing complex arithmetic.

Actually, complex arithmetic is notquite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can also be done in the obvious way,
with 4 multiplications, one addition, and one subtraction,

(a + ib)(c + id) = (ac− bd) + i(bc + ad) (5.4.1)

(the addition before thei doesn’t count; it just separates the real and imaginary parts
notationally). But it is sometimes faster to multiply via

(a + ib)(c + id) = (ac− bd) + i[(a + b)(c + d) − ac− bd] (5.4.2)

which has only three multiplications (ac, bd, (a+ b)(c+ d)), plus two additions and
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when the final result is representable, this happens only when the final
answer is on the edge of representability. Not so for the complex modulus, if you
or your compiler are misguided enough to compute it as

|a + ib| =
√

a2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if eithera or b is as large as the square
root of the largest representable number (e.g.,1019 as compared to1038). The right
way to do the calculation is

|a + ib| =

{

|a|
√

1 + (b/a)2 |a| ≥ |b|

|b|
√

1 + (a/b)2 |a| < |b|
(5.4.4)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

a + ib

c + id
=

[a + b(d/c)] + i[b− a(d/c)]

c + d(d/c)
|c| ≥ |d|

[a(c/d) + b] + i[b(c/d)− a]

c(c/d) + d
|c| < |d|

(5.4.5)

5.4 Complex Arithmetic 171

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

5.4 Complex Arithmetic

SinceFORTRAN has the built-in data typeCOMPLEX, you can generally let the
compiler and intrinsic function library take care of complex arithmetic for you.
Generally, but not always. For a program with only a small number of complex
operations, you may want to code these yourself, in-line. Or, you may find that
your compiler is not up to snuff: It is disconcertingly common to encounter complex
operations that produce overflows or underflows when both the complex operands
and the complex result are perfectly representable. This occurs, we think, because
software companies assign inexperienced programmers to what they believe to be
the perfectly trivial task of implementing complex arithmetic.

Actually, complex arithmetic is notquite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can also be done in the obvious way,
with 4 multiplications, one addition, and one subtraction,

(a + ib)(c + id) = (ac− bd) + i(bc + ad) (5.4.1)

(the addition before thei doesn’t count; it just separates the real and imaginary parts
notationally). But it is sometimes faster to multiply via

(a + ib)(c + id) = (ac− bd) + i[(a + b)(c + d) − ac− bd] (5.4.2)

which has only three multiplications (ac, bd, (a+ b)(c+ d)), plus two additions and
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when the final result is representable, this happens only when the final
answer is on the edge of representability. Not so for the complex modulus, if you
or your compiler are misguided enough to compute it as

|a + ib| =
√

a2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if eithera or b is as large as the square
root of the largest representable number (e.g.,1019 as compared to1038). The right
way to do the calculation is

|a + ib| =

{

|a|
√

1 + (b/a)2 |a| ≥ |b|
|b|

√

1 + (a/b)2 |a| < |b| (5.4.4)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

a + ib

c + id
=

[a + b(d/c)] + i[b− a(d/c)]

c + d(d/c)
|c| ≥ |d|

[a(c/d) + b] + i[b(c/d)− a]

c(c/d) + d
|c| < |d|

(5.4.5)

172 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Of course you should calculate repeated subexpressions, likec/d or d/c, only once.
Complex square root is even more complicated, since we must both guard

intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the square root ofc + id, first compute

w ≡

0 c = d = 0

√

|c|

√

1 +
√

1 + (d/c)2

2
|c| ≥ |d|

√

|d|

√

|c/d|+
√

1 + (c/d)2

2
|c| < |d|

(5.4.6)

Then the answer is

√
c + id =

0 w = 0

w + i

(

d

2w

)

w 6= 0, c ≥ 0

|d|
2w

+ iw w 6= 0, c < 0, d ≥ 0

|d|
2w

− iw w 6= 0, c < 0, d < 0

(5.4.7)

CITED REFERENCES AND FURTHER READING:

Midy, P., and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33–49.

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (5.5.1)

Jn+1(x) =
2n

x
Jn(x) − Jn−1(x) (5.5.2)

nEn+1(x) = e−x − xEn(x) (5.5.3)

cosnθ = 2 cos θ cos(n − 1)θ − cos(n− 2)θ (5.5.4)

sinnθ = 2 cos θ sin(n− 1)θ − sin(n− 2)θ (5.5.5)

where the first three functions are Legendre polynomials, Bessel functions of the first
kind, and exponential integrals, respectively. (For notation see[1].) These relations

172 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Of course you should calculate repeated subexpressions, likec/d or d/c, only once.
Complex square root is even more complicated, since we must both guard

intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the square root ofc + id, first compute

w ≡

0 c = d = 0

√

|c|

√

1 +
√

1 + (d/c)2

2
|c| ≥ |d|

√

|d|

√

|c/d|+
√

1 + (c/d)2

2
|c| < |d|

(5.4.6)

Then the answer is

√
c + id =

0 w = 0

w + i

(

d

2w

)

w 6= 0, c ≥ 0

|d|
2w

+ iw w 6= 0, c < 0, d ≥ 0

|d|
2w

− iw w 6= 0, c < 0, d < 0

(5.4.7)

CITED REFERENCES AND FURTHER READING:

Midy, P., and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33–49.

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (5.5.1)

Jn+1(x) =
2n

x
Jn(x) − Jn−1(x) (5.5.2)

nEn+1(x) = e−x − xEn(x) (5.5.3)

cosnθ = 2 cos θ cos(n − 1)θ − cos(n− 2)θ (5.5.4)

sinnθ = 2 cos θ sin(n− 1)θ − sin(n− 2)θ (5.5.5)

where the first three functions are Legendre polynomials, Bessel functions of the first
kind, and exponential integrals, respectively. (For notation see[1].) These relations

5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 173

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

are useful for extending computational methods from two successive values ofn to
other values, either larger or smaller.

Equations (5.5.4) and (5.5.5) motivate us to say a few words about trigonometric
functions. If your program’s running time is dominated by evaluating trigonometric
functions, you are probably doing something wrong. Trig functions whose arguments
form a linear sequenceθ = θ0 + nδ, n = 0, 1, 2, . . ., are efficiently calculated by
the following recurrence,

cos(θ + δ) = cos θ − [α cos θ + β sin θ]

sin(θ + δ) = sin θ − [α sin θ − β cos θ]
(5.5.6)

whereα andβ are the precomputed coefficients

α ≡ 2 sin2

(

δ

2

)

β ≡ sin δ (5.5.7)

The reason for doing things this way, rather than with the standard (and equivalent)
identities for sums of angles, is that hereα andβ do not lose significance if the
incrementalδ is small. Likewise, the adds in equation (5.5.6) should be done in
the order indicated by square brackets. We will use (5.5.6) repeatedly in Chapter
12, when we deal with Fourier transforms.

Another trick, occasionally useful, is to note that bothsin θ andcos θ can be
calculated via a single call totan:

t ≡ tan

(

θ

2

)

cos θ =
1 − t2

1 + t2
sin θ =

2t

1 + t2
(5.5.8)

The cost of getting bothsin andcos, if you need them, is thus the cost oftan plus
2 multiplies, 2 divides, and 2 adds. On machines with slow trig functions, this can
be a savings.However, note that special treatment is required ifθ → ±π. And also
note that many modern machines havevery fasttrig functions; so you should not
assume that equation (5.5.8) is faster without testing.

Stability of Recurrences

You need to be aware that recurrence relations are not necessarilystable
against roundoff error in the direction that you propose to go (either increasingn or
decreasingn). A three-term linear recurrence relation

yn+1 + anyn + bnyn−1 = 0, n = 1, 2, . . . (5.5.9)

has two linearly independent solutions,fn andgn say. Only one of these corresponds
to the sequence of functionsfn that you are trying to generate. The other onegn
maybe exponentially growing in the direction that you want to go, or exponentially
damped, or exponentiallyneutral (growingor dying as some power law, for example).
If it is exponentially growing, then the recurrence relation is of little or no practical
use in that direction. This is the case, e.g., for (5.5.2) in the direction of increasing
n, when x < n. You cannot generate Bessel functions of highn by forward
recurrence on (5.5.2).

174 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

To state things a bit more formally, if

fn/gn → 0 as n → ∞ (5.5.10)

thenfn is called theminimalsolution of the recurrence relation (5.5.9). Nonminimal
solutions likegn are calleddominantsolutions. The minimal solution is unique, if it
exists, but dominant solutions are not — you can add an arbitrary multiple offn to
a givengn. You can evaluate any dominant solution by forward recurrence,but not
the minimal solution. (Unfortunately it is sometimes the one you want.)

Abramowitz and Stegun (in their Introduction)[1] give a list of recurrences that
are stable in the increasing or decreasing directions. That list does not contain all
possible formulas, of course. Given a recurrence relation for some functionfn(x)
you can test it yourself with about five minutes of (human) labor: For a fixedx
in your range of interest, start the recurrence not with true values offj(x) and
fj+1(x), but (first) with the values 1 and 0, respectively, and then (second) with
0 and 1, respectively. Generate 10 or 20 terms of the recursive sequences in the
direction that you want to go (increasing or decreasing fromj), for each of the two
starting conditions. Look at the difference between the corresponding members of
the two sequences. If the differences stay of order unity (absolute value less than
10, say), then the recurrence is stable. If they increase slowly, thenthe recurrence
may be mildly unstable but quite tolerably so. If they increase catastrophically,
then there is an exponentially growing solution of the recurrence. If you know
that the function that you want actually corresponds to the growing solution, then
you can keep the recurrence formula anyway e.g., the case of the Bessel function
Yn(x) for increasingn, see§6.5; if you don’t know which solution your function
corresponds to, you must at this point reject the recurrence formula. Notice that
you can do this testbeforeyou go to the trouble of finding a numerical method for
computing the two starting functionsfj(x) andfj+1(x): stability is a property of
the recurrence, not of the starting values.

An alternative heuristic procedure for testing stability is to replace the recur-
rence relation by a similar one that is linear with constant coefficients. For example,
the relation (5.5.2) becomes

yn+1 − 2γyn + yn−1 = 0 (5.5.11)

where γ ≡ n/x is treated as a constant. You solve such recurrence relations
by trying solutions of the formyn = an. Substituting into the above recur-
rence gives

a2 − 2γa + 1 = 0 or a = γ ±
√

γ2 − 1 (5.5.12)

The recurrence is stable if|a| ≤ 1 for all solutionsa. This holds (as you can verify)
if |γ| ≤ 1 or n ≤ x. The recurrence (5.5.2) thus cannot be used, starting withJ0(x)
andJ1(x), to computeJn(x) for largen.

Possibly you would at this point like the security of some real theorems on
this subject (although we ourselves always follow one of the heuristic procedures).
Here are two theorems, due to Perron[2]:

Theorem A. If in (5.5.9)an ∼ anα, bn ∼ bnβ asn → ∞, andβ < 2α, then

gn+1/gn ∼ −anα, fn+1/fn ∼ −(b/a)nβ−α (5.5.13)

5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 175

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and fn is the minimal solution to (5.5.9).
Theorem B. Under the same conditions as Theorem A, but withβ = 2α,

consider thecharacteristic polynomial

t2 + at + b = 0 (5.5.14)

If the rootst1 andt2 of (5.5.14) have distinct moduli,|t1| > |t2| say, then

gn+1/gn ∼ t1n
α, fn+1/fn ∼ t2n

α (5.5.15)

and fn is again the minimal solution to (5.5.9). Cases other than those in these
two theorems are inconclusive for the existence of minimal solutions. (For more
on the stability of recurrences, see[3].)

How do you proceed if the solution that you desireis the minimal solution?
The answer lies in that old aphorism, that every cloud has a silver lining: If a
recurrence relation is catastrophically unstable in one direction, then that (undesired)
solution will decrease very rapidly in the reverse direction. This means that you
can start withanyseed values for the consecutivefj andfj+1 and (when you have
gone enough steps in the stable direction) you will converge to the sequence of
functions that you want, times an unknown normalization factor. If there is some
other way to normalize the sequence (e.g., by a formula for the sum of thefn’s),
then this can be a practical means of function evaluation. The method is called
Miller’s algorithm. An example often given[1,4] uses equation (5.5.2) in just this
way, along with the normalization formula

1 = J0(x) + 2J2(x) + 2J4(x) + 2J6(x) + · · · (5.5.16)

Incidentally, there is an important relation between three-term recurrence
relations andcontinued fractions. Rewrite the recurrence relation (5.5.9) as

yn
yn−1

= − bn
an + yn+1/yn

(5.5.17)

Iterating this equation, starting withn, gives

yn
yn−1

= − bn
an −

bn+1

an+1 −
· · · (5.5.18)

Pincherle’s Theorem[2] tells us that (5.5.18) converges if and only if (5.5.9) has a
minimal solutionfn, in which case it converges tofn/fn−1. This result, usually for
the casen = 1 and combined with some way to determinef0, underlies many of the
practical methods for computing special functions that we give in the next chapter.

176 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Clenshaw’s Recurrence Formula

Clenshaw’s recurrence formula[5] is an elegant and efficient way to evaluate a
sum of coefficients times functions that obey a recurrence formula, e.g.,

f(θ) =

N
∑

k=0

ck cos kθ or f(x) =

N
∑

k=0

ckPk(x)

Here is how it works: Suppose that the desired sum is

f(x) =

N
∑

k=0

ckFk(x) (5.5.19)

and thatFk obeys the recurrence relation

Fn+1(x) = α(n, x)Fn(x) + β(n, x)Fn−1(x) (5.5.20)

for some functionsα(n, x) and β(n, x). Now define the quantitiesyk (k =
N,N − 1, . . . , 1) by the following recurrence:

yN+2 = yN+1 = 0

yk = α(k, x)yk+1 + β(k + 1, x)yk+2 + ck (k = N,N − 1, . . . , 1)
(5.5.21)

If you solve equation (5.5.21) forck on the left, and then write out explicitly the
sum (5.5.19), it will look (in part) like this:

f(x) = · · ·

+ [y8 − α(8, x)y9 − β(9, x)y10]F8(x)

+ [y7 − α(7, x)y8 − β(8, x)y9]F7(x)

+ [y6 − α(6, x)y7 − β(7, x)y8]F6(x)

+ [y5 − α(5, x)y6 − β(6, x)y7]F5(x)

+ · · ·

+ [y2 − α(2, x)y3 − β(3, x)y4]F2(x)

+ [y1 − α(1, x)y2 − β(2, x)y3]F1(x)

+ [c0 + β(1, x)y2 − β(1, x)y2]F0(x)

(5.5.22)

Notice that we have added and subtractedβ(1, x)y2 in the last line. If you examine
the terms containing a factor ofy8 in (5.5.22), you will find that they sum to zero as
a consequence of the recurrence relation (5.5.20); similarly all the otheryk ’s down
throughy2. The only surviving terms in (5.5.22) are

f(x) = β(1, x)F0(x)y2 + F1(x)y1 + F0(x)c0 (5.5.23)

5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 177

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Equations (5.5.21) and (5.5.23) areClenshaw’s recurrence formulafor doing the sum
(5.5.19): You make one pass down through theyk’s using (5.5.21); when you have
reachedy2 andy1 you apply (5.5.23) to get the desired answer.

Clenshaw’s recurrence as written above incorporates the coefficientsck in a
downward order, withk decreasing. At each stage, the effect of all previousck’s
is “remembered” as two coefficients which multiply the functionsFk+1 and Fk

(ultimatelyF0 andF1). If the functionsFk are small whenk is large,and if the
coefficientsck are small whenk is small, then the sum can be dominated by small
Fk’s. In this case the remembered coefficients will involve a delicate cancellation
and there can be a catastrophic loss of significance. An example would be to sum
the trivial series

J15(1) = 0 × J0(1) + 0 × J1(1) + . . .+ 0 × J14(1) + 1× J15(1) (5.5.24)

HereJ15, which is tiny, ends up represented as a canceling linear combination of
J0 and J1, which are of order unity.

The solution in such cases is to use an alternative Clenshaw recurrence that
incorporatesck’s in an upward direction. The relevant equations are

y
−2 = y

−1 = 0 (5.5.25)

yk =
1

β(k + 1, x)
[yk−2 − α(k, x)yk−1 − ck],

(k = 0, 1, . . . , N − 1) (5.5.26)

f(x) = cNFN(x) − β(N, x)FN−1(x)yN−1 − FN(x)yN−2 (5.5.27)

The rare case where equations (5.5.25)–(5.5.27) should be used instead of
equations (5.5.21) and (5.5.23) can be detected automatically by testing whether
the operands in the first sum in (5.5.23) are opposite in sign and nearly equal in
magnitude. Other than in this special case, Clenshaw’s recurrence is always stable,
independent of whether the recurrence for the functionsFk is stable in the upward
or downward direction.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), pp. xiii, 697. [1]

Gautschi, W. 1967, SIAM Review, vol. 9, pp. 24–82. [2]

Lakshmikantham, V., and Trigiante, D. 1988, Theory of Difference Equations: Numerical Methods
and Applications (San Diego: Academic Press). [3]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 20ff. [4]

Clenshaw, C.W. 1962, Mathematical Tables, vol. 5, National Physical Laboratory (London: H.M.
Stationery Office). [5]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§4.4.3, p. 111.

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), p. 76.

178 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

5.6 Quadratic and Cubic Equations

The roots of simple algebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of thequadratic equation

ax2 + bx+ c = 0 (5.6.1)

with real coefficientsa, b, c, namely

x =
−b ±

√
b2 − 4ac

2a
(5.6.2)

and

x =
2c

−b ±
√
b2 − 4ac

(5.6.3)

If you useeither(5.6.2)or (5.6.3) to get the two roots, you are asking for trouble: If
eithera or c (or both) are small, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

q ≡ −1

2

[

b + sgn(b)
√

b2 − 4ac
]

(5.6.4)

Then the two roots are

x1 =
q

a
and x2 =

c

q
(5.6.5)

If the coefficientsa, b, c, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be
chosen so as to make

Re(b*
√

b2 − 4ac) ≥ 0 (5.6.6)

where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functionssinh−1 and cosh−1 are in fact just logarithms of
solutions to such equations,

sinh−1(x) = ln
(

x +
√

x2 + 1
)

(5.6.7)

cosh−1(x) = ± ln
(

x+
√

x2 − 1
)

(5.6.8)

Equation (5.6.7) is numerically robust forx ≥ 0. For negativex, use the symmetry
sinh−1(−x) = − sinh−1(x). Equation (5.6.8) is of course valid only forx ≥ 1.
SinceFORTRAN mysteriously omits the inverse hyperbolic functions from its list of
intrinsic functions, equations (5.6.7)–(5.6.8) are sometimes quite essential.

178 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

5.6 Quadratic and Cubic Equations

The roots of simple algebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of thequadratic equation

ax2 + bx+ c = 0 (5.6.1)

with real coefficientsa, b, c, namely

x =
−b ±

√
b2 − 4ac

2a
(5.6.2)

and

x =
2c

−b ±
√
b2 − 4ac

(5.6.3)

If you useeither(5.6.2)or (5.6.3) to get the two roots, you are asking for trouble: If
eithera or c (or both) are small, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

q ≡ −1

2

[

b + sgn(b)
√

b2 − 4ac
]

(5.6.4)

Then the two roots are

x1 =
q

a
and x2 =

c

q
(5.6.5)

If the coefficientsa, b, c, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be
chosen so as to make

Re(b*
√

b2 − 4ac) ≥ 0 (5.6.6)

where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functionssinh−1 and cosh−1 are in fact just logarithms of
solutions to such equations,

sinh−1(x) = ln
(

x +
√

x2 + 1
)

(5.6.7)

cosh−1(x) = ± ln
(

x+
√

x2 − 1
)

(5.6.8)

Equation (5.6.7) is numerically robust forx ≥ 0. For negativex, use the symmetry
sinh−1(−x) = − sinh−1(x). Equation (5.6.8) is of course valid only forx ≥ 1.
SinceFORTRAN mysteriously omits the inverse hyperbolic functions from its list of
intrinsic functions, equations (5.6.7)–(5.6.8) are sometimes quite essential.

5.6 Quadratic and Cubic Equations 179

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For the cubic equation

x3 + ax2 + bx + c = 0 (5.6.9)

with real or complex coefficientsa, b, c, first compute

Q ≡ a2 − 3b

9
and R ≡ 2a3 − 9ab+ 27c

54
(5.6.10)

If Q andR are real (always true whena, b, c are real)andR2 < Q3, then the cubic
equation has three real roots. Find them by computing

θ = arccos(R/
√

Q3) (5.6.11)

in terms of which the three roots are

x1 = −2
√

Q cos

(

θ

3

)

− a

3

x2 = −2
√

Q cos

(

θ + 2π

3

)

− a

3

x3 = −2
√

Q cos

(

θ − 2π

3

)

− a

3

(5.6.12)

(This equation first appears in Chapter VI of Fran¸cois Viète’s treatise “De emen-
datione,” published in 1615!)

Otherwise, compute

A = −
[

R +
√

R2 −Q3

]1/3

(5.6.13)

where the sign of the square root is chosen to make

Re(R*
√

R2 −Q3) ≥ 0 (5.6.14)

(asterisk again denoting complex conjugation). IfQ andR are both real, equations
(5.6.13)–(5.6.14) are equivalent to

A = −sgn(R)
[

|R|+
√

R2 −Q3

]1/3

(5.6.15)

where the positive square root is assumed. Next compute

B =

{

Q/A (A 6= 0)
0 (A = 0)

(5.6.16)

in terms of which the three roots are

x1 = (A + B) − a

3
(5.6.17)

180 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(the single real root whena, b, c are real) and

x2 = −1

2
(A + B) − a

3
+ i

√
3

2
(A −B)

x3 = −1

2
(A + B) − a

3
− i

√
3

2
(A −B)

(5.6.18)

(in that same case, a complex conjugate pair). Equations (5.6.13)–(5.6.16) are
arranged both to minimize roundoff error, and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the
spurious loss of a distinct root.

If you need to solve many cubic equations with only slightly different coeffi-
cients, it is more efficient to use Newton’s method (§9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130–133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.

McKelvey, J.P. 1984, American Journal of Physics, vol. 52, pp. 269–270; see also vol. 53,
p. 775, and vol. 55, pp. 374–375.

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a functionf(x), and now
you want to compute its derivativef ′(x). Easy, right? The definition of the
derivative, the limit ash → 0 of

f ′(x) ≈ f(x + h) − f(x)

h
(5.7.1)

practically suggests the program: Pick a small valueh; evaluatef(x + h); you
probably havef(x) already evaluated, but if not, do it too; finally apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the functionf is fiercelyexpensive to compute,
when you already have invested in computingf(x), and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to chooseh properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

f(x + h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) + · · · (5.7.2)

whence

f(x + h) − f(x)

h
= f ′ +

1

2
hf ′′ + · · · (5.7.3)

180 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(the single real root whena, b, c are real) and

x2 = −1

2
(A + B) − a

3
+ i

√
3

2
(A −B)

x3 = −1

2
(A + B) − a

3
− i

√
3

2
(A −B)

(5.6.18)

(in that same case, a complex conjugate pair). Equations (5.6.13)–(5.6.16) are
arranged both to minimize roundoff error, and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the
spurious loss of a distinct root.

If you need to solve many cubic equations with only slightly different coeffi-
cients, it is more efficient to use Newton’s method (§9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130–133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.

McKelvey, J.P. 1984, American Journal of Physics, vol. 52, pp. 269–270; see also vol. 53,
p. 775, and vol. 55, pp. 374–375.

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a functionf(x), and now
you want to compute its derivativef ′(x). Easy, right? The definition of the
derivative, the limit ash → 0 of

f ′(x) ≈ f(x + h) − f(x)

h
(5.7.1)

practically suggests the program: Pick a small valueh; evaluatef(x + h); you
probably havef(x) already evaluated, but if not, do it too; finally apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the functionf is fiercelyexpensive to compute,
when you already have invested in computingf(x), and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to chooseh properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

f(x + h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) + · · · (5.7.2)

whence

f(x + h) − f(x)

h
= f ′ +

1

2
hf ′′ + · · · (5.7.3)

5.7 Numerical Derivatives 181

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The roundoff error has various contributions. First there is roundoff error inh:
Suppose, by way of an example, that you are at a pointx = 10.3 and you blindly
chooseh = 0.0001. Neitherx = 10.3 nor x + h = 10.30001 is a number with
an exact representation in binary; each is therefore represented with some fractional
error characteristic of the machine’s floating-point format,ǫm, whose value in single
precision may be∼ 10−7. The error in theeffectivevalue ofh, namely the difference
betweenx+ h andx as represented in the machine, is therefore on the order ofǫmx,
which implies a fractional error inh of order∼ ǫmx/h ∼ 10−2! By equation (5.7.1)
this immediately implies at least the same large fractional error in the derivative.

We arrive at Lesson 1: Always chooseh so thatx+h andx differ by an exactly
representable number. This can usually be accomplished by the program steps

temp = x + h

h = temp− x
(5.7.4)

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externally, can foil this trick; if so, it is usually
enough to call a dummy subroutinedonothing(temp) between the two equations
(5.7.4). This forcestemp into and out of addressable memory.

With h an “exact” number, the roundoff error in equation (5.7.1) iser ∼
ǫf |f(x)/h|. Hereǫf is the fractional accuracy with whichf is computed; for a
simple function this may be comparable to the machine accuracy,ǫf ≈ ǫm, but for a
complicated calculation with additional sources of inaccuracy it may be larger. The
truncation error in equation (5.7.3) is on the order ofet ∼ |hf ′′(x)|. Varying h to
minimize the sumer + et gives the optimal choice ofh,

h ∼
√

ǫff

f ′′
≈ √

ǫfxc (5.7.5)

wherexc ≡ (f/f ′′)1/2 is the “curvature scale” of the functionf , or “characteristic
scale” over which it changes. In the absence of any other information, one often
assumesxc = x (except nearx = 0 where some other estimate of the typicalx
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

(er + et)/|f ′| ∼ √
ǫf(ff ′′/f ′2)1/2 ∼ √

ǫf (5.7.6)

Here the last order-of-magnitude equality assumes thatf , f ′, and f ′′ all share
the same characteristic length scale, usually the case. One sees that the simple
finite-difference equation (5.7.1) givesat bestonly the square root of the machine
accuracyǫm.

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form

f ′(x) ≈ f(x + h) − f(x − h)

2h
(5.7.7)

182 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In this case, by equation (5.7.2), the truncation error iset ∼ h2f ′′′. The roundoff
errorer is about the same as before. The optimal choice ofh, by a short calculation
analogous to the one above, is now

h ∼
(

ǫff

f ′′′

)1/3

∼ (ǫf)1/3xc (5.7.8)

and the fractional error is

(er + et)/|f ′| ∼ (ǫf)2/3f2/3(f ′′′)1/3/f ′ ∼ (ǫf)2/3 (5.7.9)

which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precision)betterthan equation (5.7.6). We have arrived at Lesson
2: Chooseh to bethe correctpower ofǫf or ǫm times a characteristic scalexc.

You can easily derive the correct powers for other cases[1]. For a function of
two dimensions, for example, and the mixed derivative formula

∂2f

∂x∂y
=

[f(x + h, y + h) − f(x + h, y− h)]− [f(x− h, y + h) − f(x− h, y− h)]

4h2

(5.7.10)

the correct scaling ish ∼ ǫ
1/3
f xc.

It is disappointing, certainly, that no simple finite-difference formula like
equation (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accuracy
ǫm, or even the lower accuracy to whichf is evaluated,ǫf . Are there no better
methods?

Yes, there are. All, however, involve exploration of the function’s behavior
over scales comparable toxc, plus some assumption of smoothness, or analyticity,
so that the high-order terms in a Taylor expansion like equation (5.7.2) have some
meaning. Such methods also involve multiple evaluations of the functionf , so their
increased accuracy must be weighed against increased cost.

The general idea of “Richardson’s deferred approach to the limit” is particularly
attractive. For numerical integrals, that idea leads to so-called Romberg integration
(for review, see§4.3). For derivatives, one seeks to extrapolate, toh → 0, the result
of finite-difference calculations with smaller and smaller finite values ofh. By the
use of Neville’s algorithm (§3.1), one uses each new finite-difference calculation to
produce both an extrapolation of higher order, and also extrapolations of previous,
lower, orders but with smaller scalesh. Ridders[2] has given a nice implementation
of this idea; the following program,dfridr, is based on his algorithm, modified by
an improved termination criterion. Input to the routine is a functionf (calledfunc),
a positionx, and alargest stepsizeh (more analogous to what we have calledxc

above than to what we have calledh). Output is the returned value of the derivative,
and an estimate of its error,err.

FUNCTION dfridr(func,x,h,err)
INTEGER NTAB
REAL dfridr,err,h,x,func,CON,CON2,BIG,SAFE
PARAMETER (CON=1.4,CON2=CON*CON,BIG=1.E30,NTAB=10,SAFE=2.)
EXTERNAL func

C USES func
Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small,

5.7 Numerical Derivatives 183

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

but rather should be an increment in x over which func changes substantially. An estimate
of the error in the derivative is returned as err.
Parameters: Stepsize is decreased by CON at each iteration. Max size of tableau is set by
NTAB. Return when error is SAFE worse than the best so far.

INTEGER i,j
REAL errt,fac,hh,a(NTAB,NTAB)
if(h.eq.0.) pause ’h must be nonzero in dfridr’
hh=h
a(1,1)=(func(x+hh)-func(x-hh))/(2.0*hh)
err=BIG
do 12 i=2,NTAB Successive columns in the Neville tableau will go to smaller

stepsizes and higher orders of extrapolation.hh=hh/CON
a(1,i)=(func(x+hh)-func(x-hh))/(2.0*hh) Try new, smaller stepsize.
fac=CON2
do 11 j=2,i Compute extrapolations of various orders, requiring no new

function evaluations.a(j,i)=(a(j-1,i)*fac-a(j-1,i-1))/(fac-1.)
fac=CON2*fac
errt=max(abs(a(j,i)-a(j-1,i)),abs(a(j,i)-a(j-1,i-1)))

The error strategy is to compare each new extrapolation to one order lower, both at
the present stepsize and the previous one.

if (errt.le.err) then If error is decreased, save the improved answer.
err=errt
dfridr=a(j,i)

endif
enddo 11

if(abs(a(i,i)-a(i-1,i-1)).ge.SAFE*err)return
If higher order is worse by a significant factor SAFE, then quit early.

enddo 12

return
END

In dfridr, the number of evaluations offunc is typically 6 to 12, but is allowed
to be as great as 2×NTAB. As a function of inputh, it is typical for the accuracy
to getbetterash is made larger, until a sudden point is reached wherenonsensical
extrapolation produces early return with a large error. You should therefore choose
a fairly large value forh, but monitor the returned valueerr, decreasingh if it is
not small. For functions whose characteristicx scale is of order unity, we typically
take h to be a few tenths.

Besides Ridders’ method, there are other possible techniques. If your function
is fairly smooth, and you know that you will want to evaluate its derivative many
times at arbitrary points in some interval, then it makes sense to construct a
Chebyshev polynomial approximation to the function in that interval, and to evaluate
the derivative directly from the resulting Chebyshev coefficients. This method is
described in§§5.8–5.9, following.

Another technique applies when the function consists of data that is tabulated
at equally spaced intervals, and perhaps also noisy. One might then want,at each
point, to least-squaresfit a polynomial of some degreeM , using an additional
numbernL of points to the left and some numbernR of points to the right of each
desiredx value. The estimated derivative is then the derivative of the resulting
fitted polynomial. A very efficient way to do this construction is via Savitzky-Golay
smoothing filters, which will be discussed later, in§14.8. There we will give a
routine for getting filter coefficients that not only construct the fitting polynomial but,
in the accumulation of a single sum of data points times filter coefficients, evaluate
it as well. In fact, the routine given,savgol, has an argumentld that determines
which derivative of the fitted polynomial is evaluated. For the first derivative, the

184 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

appropriate setting isld=1, and the value of the derivative is the accumulated sum
divided by the sampling intervalh.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall), §§5.4–5.6. [1]

Ridders, C.J.F. 1982, Advances in Engineering Software, vol. 4, no. 2, pp. 75–76. [2]

5.8 Chebyshev Approximation

The Chebyshev polynomial of degreen is denotedTn(x), and is given by
the explicit formula

Tn(x) = cos(n arccosx) (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomials and the discrete Fourier transform); however
(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for Tn(x) (see Figure 5.8.1),

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

· · ·

Tn+1(x) = 2xTn(x) − Tn−1(x) n ≥ 1.

(5.8.2)

(There also exist inverse formulas for the powers ofx in terms of theTn’s — see
equations 5.11.2-5.11.3.)

The Chebyshev polynomials are orthogonal in the interval[−1, 1] over a weight
(1 − x2)−1/2. In particular,

∫ 1

−1

Ti(x)Tj(x)√
1 − x2

dx =

{

0 i 6= j
π/2 i = j 6= 0
π i = j = 0

(5.8.3)

The polynomialTn(x) hasn zeros in the interval[−1, 1], and they are located
at the points

x = cos

(

π(k − 1

2
)

n

)

k = 1, 2, . . . , n (5.8.4)

184 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

appropriate setting isld=1, and the value of the derivative is the accumulated sum
divided by the sampling intervalh.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall), §§5.4–5.6. [1]

Ridders, C.J.F. 1982, Advances in Engineering Software, vol. 4, no. 2, pp. 75–76. [2]

5.8 Chebyshev Approximation

The Chebyshev polynomial of degreen is denotedTn(x), and is given by
the explicit formula

Tn(x) = cos(n arccosx) (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomials and the discrete Fourier transform); however
(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for Tn(x) (see Figure 5.8.1),

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

· · ·

Tn+1(x) = 2xTn(x) − Tn−1(x) n ≥ 1.

(5.8.2)

(There also exist inverse formulas for the powers ofx in terms of theTn’s — see
equations 5.11.2-5.11.3.)

The Chebyshev polynomials are orthogonal in the interval[−1, 1] over a weight
(1 − x2)−1/2. In particular,

∫ 1

−1

Ti(x)Tj(x)√
1 − x2

dx =

{

0 i 6= j
π/2 i = j 6= 0
π i = j = 0

(5.8.3)

The polynomialTn(x) hasn zeros in the interval[−1, 1], and they are located
at the points

x = cos

(

π(k − 1

2
)

n

)

k = 1, 2, . . . , n (5.8.4)

5.8 Chebyshev Approximation 185

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

C
he

by
sh

ev
 p

ol
yn

om
ia

ls

1

.5

0

−.5

−1

−.8 −.6 −.4 −.2 0
x

.2 .4 .6 .8 1−1

T1

T0

T2

T3

T6

T5

T4

Figure 5.8.1. Chebyshev polynomialsT0(x) throughT6(x). Note thatTj hasj roots in the interval
(−1,1) and that all the polynomials are bounded between±1.

In this same interval there aren + 1 extrema (maxima and minima), located at

x = cos

(

πk

n

)

k = 0, 1, . . . , n (5.8.5)

At all of the maximaTn(x) = 1, while at all of the minimaTn(x) = −1;
it is precisely this property that makes the Chebyshev polynomials so useful in
polynomial approximation of functions.

The Chebyshev polynomials satisfy a discrete orthogonality relation as well as
the continuous one (5.8.3): Ifxk (k = 1, . . . , m) are them zeros ofTm(x) given
by (5.8.4), and ifi, j < m, then

m
∑

k=1

Ti(xk)Tj(xk) =

{

0 i 6= j
m/2 i = j 6= 0
m i = j = 0

(5.8.6)

It is not too difficult to combine equations (5.8.1), (5.8.4), and (5.8.6) to prove
the following theorem: Iff(x) is an arbitrary function in the interval[−1, 1], and
if N coefficientscj , j = 1, . . . , N , are defined by

cj =
2

N

N
∑

k=1

f(xk)Tj−1(xk)

=
2

N

N
∑

k=1

f

[

cos

(

π(k − 1

2
)

N

)]

cos

(

π(j − 1)(k − 1

2
)

N

)

(5.8.7)

186 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

then the approximation formula

f(x) ≈
[

N
∑

k=1

ckTk−1(x)

]

− 1

2
c1 (5.8.8)

is exact for x equal to all of theN zeros ofTN(x).
For a fixedN , equation (5.8.8) is a polynomial inx which approximates the

functionf(x) in the interval[−1, 1] (where all the zeros ofTN(x) are located). Why
is this particular approximating polynomial better than any other one, exact on some
other set ofN points? The answer isnot that (5.8.8) is necessarily more accurate
than some other approximating polynomial of the same orderN (for some specified
definition of“accurate”), but rather that (5.8.8) can be truncated to a polynomial of
lowerdegreem ≪ N in a very graceful way, one thatdoesyield the “most accurate”
approximation of degreem (in a sense that can be made precise). SupposeN is
so large that (5.8.8) is virtually a perfect approximation off(x). Now consider
the truncated approximation

f(x) ≈
[

m
∑

k=1

ckTk−1(x)

]

− 1

2
c1 (5.8.9)

with the samecj ’s, computed from (5.8.7). Since theTk(x)’s are all bounded
between±1, the difference between (5.8.9) and (5.8.8) can be no larger than the
sum of the neglectedck’s (k = m + 1, . . . , N). In fact, if the ck’s are rapidly
decreasing (which is the typical case), then the error is dominated bycm+1Tm(x),
an oscillatory function withm + 1 equal extrema distributed smoothly over the
interval[−1, 1]. This smooth spreading out of the error is a very important property:
The Chebyshev approximation (5.8.9) is very nearly the same polynomial as that
holy grail of approximating polynomials theminimax polynomial, which (among all
polynomials of the same degree) has the smallest maximum deviation from the true
function f(x). The minimax polynomial is very difficult to find; the Chebyshev
approximating polynomial is almost identical and is very easy to compute!

So, given some (perhaps difficult) means of computing the functionf(x), we
now need algorithms for implementing (5.8.7) and (after inspection of the resulting
ck’s and choice of a truncating valuem) evaluating (5.8.9). The latter equation then
becomes an easy way of computingf(x) for all subsequent time.

The first of these tasks is straightforward. A generalization of equation (5.8.7)
that is here implemented is to allow the range of approximation to be between two
arbitrary limitsa andb, instead of just−1 to1. This is effected by a change of variable

y ≡
x− 1

2
(b + a)

1

2
(b− a)

(5.8.10)

and by the approximation off(x) by a Chebyshev polynomial iny.

SUBROUTINE chebft(a,b,c,n,func)
INTEGER n,NMAX
REAL a,b,c(n),func
DOUBLE PRECISION PI
EXTERNAL func
PARAMETER (NMAX=50, PI=3.141592653589793d0)

Chebyshev fit: Given a function func, lower and upper limits of the interval [a,b], and
a maximum degree n, this routine computes the n coefficients ck such that func(x) ≈

5.8 Chebyshev Approximation 187

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

[
∑n

k=1
ckTk−1(y)] − c1/2, where y and x are related by (5.8.10). This routine is to be

used with moderately large n (e.g., 30 or 50), the array of c’s subsequently to be truncated
at the smaller value m such that cm+1 and subsequent elements are negligible.
Parameters: Maximum expected value of n, and π.

INTEGER j,k
REAL bma,bpa,fac,y,f(NMAX)
DOUBLE PRECISION sum
bma=0.5*(b-a)
bpa=0.5*(b+a)
do 11 k=1,n We evaluate the function at the n points required by (5.8.7).

y=cos(PI*(k-0.5d0)/n)
f(k)=func(y*bma+bpa)

enddo 11

fac=2./n
do 13 j=1,n

sum=0.d0 We will accumulate the sum in double precision, a nicety that
you can ignore.do 12 k=1,n

sum=sum+f(k)*cos((PI*(j-1))*((k-0.5d0)/n))
enddo 12

c(j)=fac*sum
enddo 13

return
END

(If you find that the execution time ofchebft is dominated by the calculation of
N2 cosines, rather than by theN evaluations of your function, then you should look
ahead to§12.3, especially equation 12.3.22, which shows how fast cosine transform
methods can be used to evaluate equation 5.8.7.)

Now that we have the Chebyshev coefficients, how do we evaluate the approxi-
mation? One could use the recurrence relation of equation (5.8.2) to generate values
for Tk(x) from T0 = 1, T1 = x, while also accumulating the sum of (5.8.9). It
is better to use Clenshaw’s recurrence formula (§5.5), effecting the two processes
simultaneously. Applied to the Chebyshev series (5.8.9), the recurrence is

dm+2 ≡ dm+1 ≡ 0

dj = 2xdj+1 − dj+2 + cj j = m,m− 1, . . . , 2

f(x) ≡ d0 = xd2 − d3 +
1

2
c1

(5.8.11)

FUNCTION chebev(a,b,c,m,x)
INTEGER m
REAL chebev,a,b,x,c(m)

Chebyshev evaluation: All arguments are input. c(1:m) is an array of Chebyshev coeffi-
cients, the first m elements of c output from chebft (which must have been called with

the same a and b). The Chebyshev polynomial
∑m

k=1 ckTk−1(y) − c1/2 is evaluated at a
point y = [x− (b + a)/2]/[(b− a)/2], and the result is returned as the function value.

INTEGER j
REAL d,dd,sv,y,y2
if ((x-a)*(x-b).gt.0.) pause ’x not in range in chebev’
d=0.
dd=0.
y=(2.*x-a-b)/(b-a) Change of variable.
y2=2.*y
do 11 j=m,2,-1 Clenshaw’s recurrence.

sv=d

188 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

d=y2*d-dd+c(j)
dd=sv

enddo 11

chebev=y*d-dd+0.5*c(1) Last step is different.
return
END

If we are approximating anevenfunction on the interval[−1, 1], its expansion
will involve only even Chebyshev polynomials. It is wasteful to callchebev with
all the odd coefficients zero[1]. Instead, using the half-angle identity for the cosine
in equation (5.8.1), we get the relation

T2n(x) = Tn(2x2 − 1) (5.8.12)

Thus we can evaluate a series of even Chebyshev polynomials by callingchebev

with the even coefficients stored consecutively in the arrayc, but with the argument
x replaced by2x2 − 1.

An odd function will have an expansion involving only odd Chebysev poly-
nomials. It is best to rewrite it as an expansion for the functionf(x)/x, which
involves only even Chebyshev polynomials. This will giveaccurate values for
f(x)/x nearx = 0. The coefficientsc′n for f(x)/x can be found from those for
f(x) by recurrence:

c′N+1 = 0

c′n−1 = 2cn − c′n+1, n = N,N − 2, . . .
(5.8.13)

Equation (5.8.13) follows from the recurrence relation in equation (5.8.2).
If you insist on evaluating an odd Chebyshev series, the efficient way is to once

again usechebev with x replaced byy = 2x2 − 1, and with the odd coefficients
stored consecutively in the arrayc. Now, however, you must also change the last
formula in equation (5.8.11) to be

f(x) = x[(2y− 1)d2 − d3 + c1] (5.8.14)

and change the corresponding line inchebev.

CITED REFERENCES AND FURTHER READING:

Clenshaw, C.W. 1962, Mathematical Tables, vol. 5, National Physical Laboratory, (London: H.M.
Stationery Office). [1]

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 8.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§4.4.1, p. 104.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §6.5.2, p. 334.

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), §1.10, p. 39.

5.9 Derivatives or Integrals of a Chebyshev-approximated Function 189

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

5.9 Derivatives or Integrals of a
Chebyshev-approximated Function

If you have obtained the Chebyshev coefficients that approximate a function in
a certain range (e.g., fromchebft in §5.8), then it is a simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function. Having done this, you can evaluate the derivative or integral just as if it
were a function that you had Chebyshev-fittedab initio.

The relevant formulas are these: Ifci, i = 1, . . . , m are the coefficients that
approximate a functionf in equation (5.8.9),Ci are the coefficients that approximate
the indefinite integral off , and c′i are the coefficients that approximate the derivative
of f , then

Ci =
ci−1 − ci+1

2(i− 1)
(i > 1) (5.9.1)

c′i−1 = c′i+1 + 2(i− 1)ci (i = m− 1, m− 2, . . . , 2) (5.9.2)

Equation (5.9.1) is augmented by an arbitrary choice ofC1, corresponding to an
arbitrary constant of integration. Equation (5.9.2), which is a recurrence, is started
with the valuesc′m = c′m+1 = 0, corresponding to no information about them+ 1st
Chebyshev coefficient of the original functionf .

Here are routines for implementing equations (5.9.1) and (5.9.2).

SUBROUTINE chder(a,b,c,cder,n)
INTEGER n
REAL a,b,c(n),cder(n)

Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of c to be used), this routine returns the array cder(1:n), the
Chebyshev coefficients of the derivative of the function whose coefficients are c(1:n).

INTEGER j
REAL con
cder(n)=0. n and n-1 are special cases.
cder(n-1)=2*(n-1)*c(n)
do 11 j=n-2,1,-1

cder(j)=cder(j+2)+2*j*c(j+1) Equation (5.9.2).
enddo 11

con=2./(b-a)
do 12 j=1,n Normalize to the interval b-a.

cder(j)=cder(j)*con
enddo 12

return
END

SUBROUTINE chint(a,b,c,cint,n)
INTEGER n
REAL a,b,c(n),cint(n)

Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of c to be used), this routine returns the array cint(1:n), the
Chebyshev coefficients of the integral of the function whose coefficients are c. The constant
of integration is set so that the integral vanishes at a.

INTEGER j
REAL con,fac,sum

5.9 Derivatives or Integrals of a Chebyshev-approximated Function 189

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

5.9 Derivatives or Integrals of a
Chebyshev-approximated Function

If you have obtained the Chebyshev coefficients that approximate a function in
a certain range (e.g., fromchebft in §5.8), then it is a simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function. Having done this, you can evaluate the derivative or integral just as if it
were a function that you had Chebyshev-fittedab initio.

The relevant formulas are these: Ifci, i = 1, . . . , m are the coefficients that
approximate a functionf in equation (5.8.9),Ci are the coefficients that approximate
the indefinite integral off , and c′

i
are the coefficients that approximate the derivative

of f , then

Ci =
ci−1 − ci+1

2(i− 1)
(i > 1) (5.9.1)

c′
i−1 = c′

i+1 + 2(i− 1)ci (i = m− 1, m− 2, . . . , 2) (5.9.2)

Equation (5.9.1) is augmented by an arbitrary choice ofC1, corresponding to an
arbitrary constant of integration. Equation (5.9.2), which is a recurrence, is started
with the valuesc′m = c′m+1 = 0, corresponding to no information about them+ 1st
Chebyshev coefficient of the original functionf .

Here are routines for implementing equations (5.9.1) and (5.9.2).

SUBROUTINE chder(a,b,c,cder,n)
INTEGER n
REAL a,b,c(n),cder(n)

Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of c to be used), this routine returns the array cder(1:n), the
Chebyshev coefficients of the derivative of the function whose coefficients are c(1:n).

INTEGER j
REAL con
cder(n)=0. n and n-1 are special cases.
cder(n-1)=2*(n-1)*c(n)
do 11 j=n-2,1,-1

cder(j)=cder(j+2)+2*j*c(j+1) Equation (5.9.2).
enddo 11

con=2./(b-a)
do 12 j=1,n Normalize to the interval b-a.

cder(j)=cder(j)*con
enddo 12

return
END

SUBROUTINE chint(a,b,c,cint,n)
INTEGER n
REAL a,b,c(n),cint(n)

Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of c to be used), this routine returns the array cint(1:n), the
Chebyshev coefficients of the integral of the function whose coefficients are c. The constant
of integration is set so that the integral vanishes at a.

INTEGER j
REAL con,fac,sum

190 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

con=0.25*(b-a) Factor that normalizes to the interval b-a.
sum=0. Accumulates the constant of integration.
fac=1. Will equal ±1.
do 11 j=2,n-1

cint(j)=con*(c(j-1)-c(j+1))/(j-1) Equation (5.9.1).
sum=sum+fac*cint(j)
fac=-fac

enddo 11

cint(n)=con*c(n-1)/(n-1) Special case of (5.9.1) for n.
sum=sum+fac*cint(n)
cint(1)=2.*sum Set the constant of integration.
return
END

Clenshaw-Curtis Quadrature

Since a smooth function’s Chebyshev coefficientsci decrease rapidly, generally expo-
nentially, equation (5.9.1) is often quite efficient as the basis for a quadrature scheme. The
routineschebft andchint, used in that order, can be followed by repeated calls tochebev

if
∫ x

a
f(x)dx is required for many different values ofx in the rangea ≤ x ≤ b.

If only the single definite integral
∫ b

a
f(x)dx is required, thenchint andchebev are

replaced by the simpler formula, derived from equation (5.9.1),

∫ b

a

f(x)dx = (b− a)

[

1

2
c1 −

1

3
c3 −

1

15
c5 − · · · −

1

(2k + 1)(2k − 1)
c2k+1 − · · ·

]

(5.9.3)
where theci’s are as returned bychebft. The series can be truncated whenc2k+1 becomes
negligible, and the first neglected term gives an error estimate.

This scheme is known asClenshaw-Curtis quadrature[1]. It is often combined with an
adaptive choice ofN , the number of Chebyshev coefficients calculated via equation (5.8.7),
which is also the number of function evaluations off(x). If a modest choice ofN does
not give a sufficiently smallc2k+1 in equation (5.9.3), then a larger value is tried. In this
adaptive case, it is even better to replace equation (5.8.7) by the so-called “trapezoidal” or
Gauss-Lobatto (§4.5) variant,

cj =
2

N

N
∑

′′

k=0

f

[

cos

(

πk

N

)]

cos

(

π(j − 1)k

N

)

j = 1, . . . , N (5.9.4)

where (N.B.!) the two primes signify that the first and last terms in the sum are to be
multiplied by 1/2. If N is doubled in equation (5.9.4), then half of the new function
evaluation points are identical to the old ones, allowing the previous function evaluations to be
reused. This feature, plus the analytic weights and abscissas (cosine functions in 5.9.4), give
Clenshaw-Curtis quadrature an edge over high-order adaptive Gaussian quadrature (cf.§4.5),
which the method otherwise resembles.

If your problem forces you to large values ofN , you should be aware that equation (5.9.4)
can be evaluated rapidly, and simultaneously for all the values ofj, by a fast cosine transform.
(See§12.3, especially equation 12.3.17.) (We already remarked that the nontrapezoidal form
(5.8.7) can also be done by fast cosine methods, cf. equation 12.3.22.)

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), pp. 78–79.

Clenshaw, C.W., and Curtis, A.R. 1960, Numerische Mathematik, vol. 2, pp. 197–205. [1]

5.10 Polynomial Approximation from Chebyshev Coefficients 191

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

5.10 Polynomial Approximation from
Chebyshev Coefficients

You may well ask after reading the preceding two sections, “Must I store and
evaluate my Chebyshev approximation as an array of Chebyshev coefficients for a
transformed variabley? Can’t I convert theck ’s into actual polynomial coefficients
in the original variablex and have an approximation of the following form?”

f(x) ≈

m
∑

k=1

gkx
k−1 (5.10.1)

Yes, you can do this (and we will give you the algorithm to do it), but we
caution you against it: Evaluating equation (5.10.1), where the coefficientg’s reflect
an underlying Chebyshev approximation, usually requires more significant figures
than evaluation of the Chebyshev sum directly (as bychebev). This is because
the Chebyshev polynomials themselves exhibit a rather delicate cancellation: The
leading coefficient ofTn(x), for example, is2n−1; other coefficients ofTn(x) are
even bigger; yet they all manage to combine into a polynomial that lies between±1.
Only whenm is no larger than 7 or 8 should you contemplate writing a Chebyshev
fit as a direct polynomial, and even in those cases you should be willing to tolerate
two or so significant figures less accuracy than the roundoff limit of your machine.

You get theg’s in equation (5.10.1) from thec’s output fromchebft (suitably
truncated at amodest valueofm) by calling in sequence the following two procedures:

SUBROUTINE chebpc(c,d,n)
INTEGER n,NMAX
REAL c(n),d(n)
PARAMETER (NMAX=50) Maximum anticipated value of n.

Chebyshev polynomial coefficients. Given a coefficient array c(1:n) of length n, this routine
generates a coefficient array d(1:n) such that

∑n
k=1 dky

k−1 =
∑n

k=1 ckTk−1(y)−c1/2.
The method is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather than
arithmetically.

INTEGER j,k
REAL sv,dd(NMAX)
do 11 j=1,n

d(j)=0.
dd(j)=0.

enddo 11

d(1)=c(n)
do 13 j=n-1,2,-1

do 12 k=n-j+1,2,-1
sv=d(k)
d(k)=2.*d(k-1)-dd(k)
dd(k)=sv

enddo 12

sv=d(1)
d(1)=-dd(1)+c(j)
dd(1)=sv

enddo 13

do 14 j=n,2,-1
d(j)=d(j-1)-dd(j)

enddo 14

d(1)=-dd(1)+0.5*c(1)
return
END

5.10 Polynomial Approximation from Chebyshev Coefficients 191

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

5.10 Polynomial Approximation from
Chebyshev Coefficients

You may well ask after reading the preceding two sections, “Must I store and
evaluate my Chebyshev approximation as an array of Chebyshev coefficients for a
transformed variabley? Can’t I convert theck ’s into actual polynomial coefficients
in the original variablex and have an approximation of the following form?”

f(x) ≈

m∑

k=1

gkx
k−1 (5.10.1)

Yes, you can do this (and we will give you the algorithm to do it), but we
caution you against it: Evaluating equation (5.10.1), where the coefficientg’s reflect
an underlying Chebyshev approximation, usually requires more significant figures
than evaluation of the Chebyshev sum directly (as bychebev). This is because
the Chebyshev polynomials themselves exhibit a rather delicate cancellation: The
leading coefficient ofTn(x), for example, is2n−1; other coefficients ofTn(x) are
even bigger; yet they all manage to combine into a polynomial that lies between±1.
Only whenm is no larger than 7 or 8 should you contemplate writing a Chebyshev
fit as a direct polynomial, and even in those cases you should be willing to tolerate
two or so significant figures less accuracy than the roundoff limit of your machine.

You get theg’s in equation (5.10.1) from thec’s output fromchebft (suitably
truncated at amodest valueofm) by calling in sequence the following two procedures:

SUBROUTINE chebpc(c,d,n)
INTEGER n,NMAX
REAL c(n),d(n)
PARAMETER (NMAX=50) Maximum anticipated value of n.

Chebyshev polynomial coefficients. Given a coefficient array c(1:n) of length n, this routine
generates a coefficient array d(1:n) such that

∑n
k=1

dky
k−1 =

∑n
k=1

ckTk−1(y)−c1/2.
The method is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather than
arithmetically.

INTEGER j,k
REAL sv,dd(NMAX)
do 11 j=1,n

d(j)=0.
dd(j)=0.

enddo 11

d(1)=c(n)
do 13 j=n-1,2,-1

do 12 k=n-j+1,2,-1
sv=d(k)
d(k)=2.*d(k-1)-dd(k)
dd(k)=sv

enddo 12

sv=d(1)
d(1)=-dd(1)+c(j)
dd(1)=sv

enddo 13

do 14 j=n,2,-1
d(j)=d(j-1)-dd(j)

enddo 14

d(1)=-dd(1)+0.5*c(1)
return
END

192 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE pcshft(a,b,d,n)
INTEGER n
REAL a,b,d(n)

Polynomial coefficient shift. Given a coefficient array d(1:n), this routine generates a
coefficient array g(1:n) such that

∑n
k=1

dky
k−1 =

∑n
k=1

gkx
k−1, where x and y are

related by (5.8.10), i.e., the interval −1 < y < 1 is mapped to the interval a < x < b.
The array g is returned in d.

INTEGER j,k
REAL const,fac
const=2./(b-a)
fac=const
do 11 j=2,n First we rescale by the factor const...

d(j)=d(j)*fac
fac=fac*const

enddo 11

const=0.5*(a+b) ...which is then redefined as the desired shift.
do 13 j=1,n-1 We accomplish the shift by synthetic division. Synthetic

division is a miracle of high-school algebra. If you
never learned it, go do so. You won’t be sorry.

do 12 k=n-1,j,-1
d(k)=d(k)-const*d(k+1)

enddo 12

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 59, 182–183 [synthetic division].

5.11 Economization of Power Series

One particular application of Chebyshev methods, theeconomization of power series, is
an occasionally useful technique, with a flavor of getting something for nothing.

Suppose that you are already computing a function by the use of a convergent power
series, for example

f(x) ≡ 1 − x

3!
+

x2

5!
− x3

7!
+ · · · (5.11.1)

(This function is actuallysin(
√
x)/

√
x, but pretend you don’t know that.) You might be

doing a problem that requires evaluating the series many times in some particular interval, say
[0, (2π)2]. Everything is fine, except that the series requires a large number of terms before
its error (approximated by the first neglected term, say) is tolerable. In our example, with
x = (2π)2, the first term smaller than10−7 is x13/(27!). This then approximates the error
of the finite series whose last term isx12/(25!).

Notice that because of the large exponent inx13, the error ismuch smallerthan10−7

everywhere in the interval except at the very largest values ofx. This is the feature that allows
“economization”: if we are willing to let the error elsewhere in the interval rise to about the
same value that the first neglected term has at the extreme end of the interval, then we can
replace the 13-term series by one that is significantly shorter.

Here are the steps for doing so:
1. Change variables fromx to y, as in equation (5.8.10), to map thex interval into

−1 ≤ y ≤ 1.
2. Find the coefficients of the Chebyshev sum (like equation 5.8.8) that exactly equals your

truncated power series (the one with enough terms for accuracy).

192 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE pcshft(a,b,d,n)
INTEGER n
REAL a,b,d(n)

Polynomial coefficient shift. Given a coefficient array d(1:n), this routine generates a
coefficient array g(1:n) such that

∑n
k=1

dky
k−1 =

∑n
k=1

gkx
k−1, where x and y are

related by (5.8.10), i.e., the interval −1 < y < 1 is mapped to the interval a < x < b.
The array g is returned in d.

INTEGER j,k
REAL const,fac
const=2./(b-a)
fac=const
do 11 j=2,n First we rescale by the factor const...

d(j)=d(j)*fac
fac=fac*const

enddo 11

const=0.5*(a+b) ...which is then redefined as the desired shift.
do 13 j=1,n-1 We accomplish the shift by synthetic division. Synthetic

division is a miracle of high-school algebra. If you
never learned it, go do so. You won’t be sorry.

do 12 k=n-1,j,-1
d(k)=d(k)-const*d(k+1)

enddo 12

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 59, 182–183 [synthetic division].

5.11 Economization of Power Series

One particular application of Chebyshev methods, theeconomization of power series, is
an occasionally useful technique, with a flavor of getting something for nothing.

Suppose that you are already computing a function by the use of a convergent power
series, for example

f(x) ≡ 1 − x

3!
+

x2

5!
− x3

7!
+ · · · (5.11.1)

(This function is actuallysin(
√
x)/

√
x, but pretend you don’t know that.) You might be

doing a problem that requires evaluating the series many times in some particular interval, say
[0, (2π)2]. Everything is fine, except that the series requires a large number of terms before
its error (approximated by the first neglected term, say) is tolerable. In our example, with
x = (2π)2, the first term smaller than10−7 is x13/(27!). This then approximates the error
of the finite series whose last term isx12/(25!).

Notice that because of the large exponent inx13, the error ismuch smallerthan10−7

everywhere in the interval except at the very largest values ofx. This is the feature that allows
“economization”: if we are willing to let the error elsewhere in the interval rise to about the
same value that the first neglected term has at the extreme end of the interval, then we can
replace the 13-term series by one that is significantly shorter.

Here are the steps for doing so:
1. Change variables fromx to y, as in equation (5.8.10), to map thex interval into

−1 ≤ y ≤ 1.
2. Find the coefficients of the Chebyshev sum (like equation 5.8.8) that exactly equals your

truncated power series (the one with enough terms for accuracy).

5.11 Economization of Power Series 193

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

3. Truncate this Chebyshev series to a smaller number of terms, using the coefficient of the
first neglected Chebyshev polynomial as an estimate of the error.

4. Convert back to a polynomial iny.
5. Change variables back tox.

All of these steps can be done numerically, given the coefficients of the original power
series expansion. The first step is exactly the inverse of the routinepcshft (§5.10), which
mapped a polynomial fromy (in the interval[−1, 1]) to x (in the interval[a, b]). But since
equation (5.8.10) is a linear relation betweenx and y, one can also usepcshft for the
inverse. The inverse of

pcshft(a,b,d,n)

turns out to be (you can check this)

pcshft

(

−2 − b− a

b− a
,
2− b− a

b− a
,d,n

)

The second step requires the inverse operation to that done by the routinechebpc (which
took Chebyshev coefficients into polynomial coefficients). The following routine,pccheb,
accomplishes this, using the formula[1]

xk =
1

2k−1

[

Tk(x) +

(

k

1

)

Tk−2(x) +

(

k

2

)

Tk−4(x) + · · ·
]

(5.11.2)

where the last term depends on whetherk is even or odd,

· · · +
(

k

(k − 1)/2

)

T1(x) (k odd), · · · + 1

2

(

k

k/2

)

T0(x) (k even). (5.11.3)

SUBROUTINE pccheb(d,c,n)
INTEGER n
REAL c(n),d(n)

Inverse of routine chebpc: given an array of polynomial coefficients d(1:n), returns an
equivalent array of Chebyshev coefficients c(1:n).

INTEGER j,jm,jp,k
REAL fac,pow
pow=1. Will be powers of 2.
c(1)=2.*d(1)
do 12 k=2,n Loop over orders of x in the polynomial.

c(k)=0. Zero corresponding order of Chebyshev.
fac=d(k)/pow
jm=k-1
jp=1
do 11 j=k,1,-2 Increment this and lower orders of Chebyshev with the com-

binatorial coefficent times d(k); see text for formula.c(j)=c(j)+fac
fac=fac*float(jm)/float(jp)
jm=jm-1
jp=jp+1

enddo 11

pow=2.*pow
enddo 12

return
END

The fourth and fifth steps are accomplished by the routineschebpc and pcshft,
respectively. Here is how the procedure looks all together:

194 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

INTEGER NMANY,NFEW
REAL e(NMANY),d(NFEW),c(NMANY),a,b

Economize NMANY power series coefficients e(1:NMANY) in the range (a, b) into NFEW
coefficients d(1:NFEW).

call pcshft((-2.-b-a)/(b-a),(2.-b-a)/(b-a),e,NMANY)
call pccheb(e,c,NMANY)
...

Here one would normally examine the Chebyshev coefficients c(1:NMANY) to decide how
small NFEW can be.

call chebpc(c,d,NFEW)
call pcshft(a,b,d,NFEW)

In our example, by the way, the8th through10th Chebyshev coefficients turn out to
be on the order of−7 × 10−6, 3 × 10−7, and−9 × 10−9, so reasonable truncations (for
single precision calculations) are somewhere in this range, yielding a polynomial with8 –
10 terms instead of the original13.

Replacing a 13-term polynomial with a (say) 10-term polynomial without any loss of
accuracy — that does seem to be getting something for nothing. Is there some magic in
this technique? Not really. The 13-term polynomial defined a functionf(x). Equivalent to
economizing the series, we could instead have evaluatedf(x) at enough points to construct
its Chebyshev approximation in the interval of interest, by the methods of§5.8. We would
have obtained just the same lower-order polynomial. The principal lesson is that the rate
of convergence of Chebyshev coefficients has nothing to do with the rate of convergence of
power series coefficients; and it is theformer that dictates the number of terms needed in a
polynomial approximation. A function might have adivergentpower series in some region
of interest, but if the function itself is well-behaved, it will have perfectly good polynomial
approximations. These can be found by the methods of§5.8, butnot by economization of
series. There is slightly less to economization of series than meets the eye.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 12.

Arfken, G. 1970, Mathematical Methods for Physicists, 2nd ed. (New York: Academic Press),
p. 631. [1]

5.12 Padé Approximants

A Padé approximant, so called, is that rational function (of a specified order) whose
power series expansion agrees with a given power series to the highest possible order. If
the rational function is

R(x) ≡

M
∑

k=0

akx
k

1 +

N
∑

k=1

bkx
k

(5.12.1)

thenR(x) is said to be a Pad´e approximant to the series

f(x) ≡
∞
∑

k=0

ckx
k (5.12.2)

if
R(0) = f(0) (5.12.3)

194 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

INTEGER NMANY,NFEW
REAL e(NMANY),d(NFEW),c(NMANY),a,b

Economize NMANY power series coefficients e(1:NMANY) in the range (a, b) into NFEW
coefficients d(1:NFEW).

call pcshft((-2.-b-a)/(b-a),(2.-b-a)/(b-a),e,NMANY)
call pccheb(e,c,NMANY)
...

Here one would normally examine the Chebyshev coefficients c(1:NMANY) to decide how
small NFEW can be.

call chebpc(c,d,NFEW)
call pcshft(a,b,d,NFEW)

In our example, by the way, the8th through10th Chebyshev coefficients turn out to
be on the order of−7 × 10−6, 3 × 10−7, and−9 × 10−9, so reasonable truncations (for
single precision calculations) are somewhere in this range, yielding a polynomial with8 –
10 terms instead of the original13.

Replacing a 13-term polynomial with a (say) 10-term polynomial without any loss of
accuracy — that does seem to be getting something for nothing. Is there some magic in
this technique? Not really. The 13-term polynomial defined a functionf(x). Equivalent to
economizing the series, we could instead have evaluatedf(x) at enough points to construct
its Chebyshev approximation in the interval of interest, by the methods of§5.8. We would
have obtained just the same lower-order polynomial. The principal lesson is that the rate
of convergence of Chebyshev coefficients has nothing to do with the rate of convergence of
power series coefficients; and it is theformer that dictates the number of terms needed in a
polynomial approximation. A function might have adivergentpower series in some region
of interest, but if the function itself is well-behaved, it will have perfectly good polynomial
approximations. These can be found by the methods of§5.8, butnot by economization of
series. There is slightly less to economization of series than meets the eye.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 12.

Arfken, G. 1970, Mathematical Methods for Physicists, 2nd ed. (New York: Academic Press),
p. 631. [1]

5.12 Padé Approximants

A Padé approximant, so called, is that rational function (of a specified order) whose
power series expansion agrees with a given power series to the highest possible order. If
the rational function is

R(x) ≡

M
∑

k=0

akx
k

1 +

N
∑

k=1

bkx
k

(5.12.1)

thenR(x) is said to be a Pad´e approximant to the series

f(x) ≡
∞
∑

k=0

ckx
k (5.12.2)

if
R(0) = f(0) (5.12.3)

5.12 Padé Approximants 195

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and also

dk

dxk
R(x)

∣

∣

∣

∣

x=0

=
dk

dxk
f(x)

∣

∣

∣

∣

x=0

, k = 1, 2, . . . ,M + N (5.12.4)

Equations (5.12.3) and (5.12.4) furnishM + N + 1 equations for the unknownsa0, . . . , aM
andb1, . . . , bN . The easiest way to see what these equations are is to equate (5.12.1) and
(5.12.2), multiply both by the denominator of equation (5.12.1), and equate all powers of
x that have eithera’s or b’s in their coefficients. If we consider only the special case of
a diagonal rational approximation,M = N (cf. §3.2), then we havea0 = c0, with the
remaininga’s and b’s satisfying

N
∑

m=1

bmcN−m+k = −cN+k, k = 1, . . . , N (5.12.5)

k
∑

m=0

bmck−m = ak , k = 1, . . . , N (5.12.6)

(note, in equation 5.12.1, thatb0 = 1). To solve these, start with equations (5.12.5), which
are a set of linear equations for all the unknownb’s. Although the set is in the form of a
Toeplitz matrix (compare equation 2.8.8), experience shows that the equations are frequently
close to singular, so that one should not solve them by the methods of§2.8, but rather by
full LU decomposition. Additionally, it is a good idea to refine the solution by iterative
improvement (routinemprove in §2.5) [1].

Once theb’s are known, then equation (5.12.6) gives an explicit formula for the unknown
a’s, completing the solution.

Padé approximants are typically used when there is some unknown underlying function
f(x). We suppose that you are able somehow to compute, perhaps by laborious analytic
expansions, the values off(x) and a few of its derivatives atx = 0: f(0), f ′(0), f ′′(0),
and so on. These are of course the first few coefficients in the power series expansion of
f(x); but they are not necessarily getting small, and you have no idea where (or whether)
the power series is convergent.

By contrast with techniques like Chebyshev approximation (§5.8) or economization
of power series (§5.11) that only condense the information that you already know about a
function, Padé approximants can give you genuinely new information about your function’s
values. It is sometimes quite mysterious how well this can work. (Like other mysteries in
mathematics, it relates toanalyticity.) An example will illustrate.

Imagine that, by extraordinary labors, you have ground out the first five terms in the
power series expansion of an unknown functionf(x),

f(x) ≈ 2 +
1

9
x +

1

81
x

2
−

49

8748
x

3 +
175

78732
x

4 + · · · (5.12.7)

(It is not really necessary that you know the coefficients in exact rational form — numerical
values are just as good. We here write them as rationals to give you the impression that
they derive from some side analytic calculation.) Equation (5.12.7) is plotted as the curve
labeled “power series” in Figure 5.12.1. One sees that forx >

∼
4 it is dominated by its

largest, quartic, term.
We now take the five coefficients in equation (5.12.7) and run them through the routine

pade listed below. It returns five rational coefficients, threea’s and twob’s, for use in equation
(5.12.1) withM = N = 2. The curve in the figure labeled “Pad´e” plots the resulting rational
function. Note that both solid curves derive from thesamefive original coefficient values.

To evaluate the results, we needDeus ex machina(a useful fellow, when he is available)
to tell us that equation (5.12.7) is in fact the power series expansion of the function

f(x) = [7 + (1 + x)4/3]1/3 (5.12.8)

which is plotted as the dotted curve in the figure. This function has a branch point atx = −1,
so its power series is convergent only in the range−1 < x < 1. In most of the range
shown in the figure, the series is divergent, and the value of its truncation to five termsis

196 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

0

2

4

6

8

10

0 2 4 6 8 10

f(
x)

x

Padé (5 coefficients)

exact

power series (5 terms)

f(x) = [7 + (1 + x)4/3]1/3

Figure 5.12.1. The five-term power series expansion and the derived five-coefficient Pad´e approximant
for a sample functionf(x). The full power series converges only forx < 1. Note that the Padé
approximant maintains accuracy far outside the radius of convergence of the series.

rather meaningless. Nevertheless, those five terms, converted to a Pad´e approximant, give a
remarkably good representation of the function up to at leastx ∼ 10.

Why does this work? Are there not other functions with the same first five terms in
their power series, but completely different behavior in the range (say)2 < x < 10? Indeed
there are. Pad´e approximation has the uncanny knack of picking the functionyou had in
mind from among all the possibilities.Except when it doesn’t!That is the downside of
Padé approximation: it is uncontrolled. There is, in general, no way to tell how accurate
it is, or how far out inx it can usefully be extended. It is a powerful, but in the end still
mysterious, technique.

Here is the routine that getsa’s andb’s from yourc’s. Note that the routine is specialized
to the caseM = N , and also that, on output, the rational coefficients are arranged in a format
for use with the evaluation routineratval (§5.3). (Also for consistency with that routine,
the array ofc’s is passed in double precision.)

SUBROUTINE pade(cof,n,resid)
INTEGER n,NMAX
REAL resid,BIG
DOUBLE PRECISION cof(2*n+1) For consistency with ratval.
PARAMETER (NMAX=20,BIG=1.E30) Max expected value of n, and a big number.

C USES lubksb,ludcmp,mprove
Given cof(1:2*n+1), the leading terms in the power series expansion of a function, solve
the linear Padé equations to return the coefficients of a diagonal rational function approx-
imation to the same function, namely (cof(1)+ cof(2)x + · · · + cof(n+1)xN)/(1 +
cof(n+2)x+ · · ·+cof(2*n+1)xN). The value resid is the norm of the residual vector;
a small value indicates a well-converged solution.

INTEGER j,k,indx(NMAX)
REAL d,rr,rrold,sum,q(NMAX,NMAX),qlu(NMAX,NMAX),x(NMAX),

* y(NMAX),z(NMAX)
do 12 j=1,n Set up matrix for solving.

x(j)=cof(n+j+1)

5.13 Rational Chebyshev Approximation 197

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

y(j)=x(j)
do 11 k=1,n

q(j,k)=cof(j-k+n+1)
qlu(j,k)=q(j,k)

enddo 11

enddo 12

call ludcmp(qlu,n,NMAX,indx,d) Solve by LU decomposition and backsubstitution.
call lubksb(qlu,n,NMAX,indx,x)
rr=BIG

1 continue Important to use iterative improvement, since the
Padé equations tend to be ill-conditioned.rrold=rr

do 13 j=1,n
z(j)=x(j)

enddo 13

call mprove(q,qlu,n,NMAX,indx,y,x)
rr=0.
do 14 j=1,n Calculate residual.

rr=rr+(z(j)-x(j))**2
enddo 14

if(rr.lt.rrold)goto 1 If it is no longer improving, call it quits.
resid=sqrt(rr)
do 16 k=1,n Calculate the remaining coefficients.

sum=cof(k+1)
do 15 j=1,k

sum=sum-x(j)*cof(k-j+1)
enddo 15

y(k)=sum
enddo 16 Copy answers to output.
do 17 j=1,n

cof(j+1)=y(j)
cof(j+n+1)=-x(j)

enddo 17

return
END

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
p. 14.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 2.

Graves-Morris, P.R. 1979, in Padé Approximation and Its Applications, Lecture Notes in Mathe-
matics, vol. 765, L. Wuytack, ed. (Berlin: Springer-Verlag). [1]

5.13 Rational Chebyshev Approximation

In §5.8 and§5.10 we learned how to find good polynomial approximations to a given
function f(x) in a given intervala ≤ x ≤ b. Here, we want to generalize the task to find
good approximations that are rational functions (see§5.3). The reason for doing so is that,
for some functions and some intervals, the optimal rational function approximation is able
to achieve substantially higher accuracy than the optimal polynomial approximation with the
same number of coefficients. This must be weighed against the fact that finding a rational
function approximation is not as straightforward as finding a polynomial approximation,
which, as we saw, could be done elegantly via Chebyshev polynomials.

5.13 Rational Chebyshev Approximation 197

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

y(j)=x(j)
do 11 k=1,n

q(j,k)=cof(j-k+n+1)
qlu(j,k)=q(j,k)

enddo 11

enddo 12

call ludcmp(qlu,n,NMAX,indx,d) Solve by LU decomposition and backsubstitution.
call lubksb(qlu,n,NMAX,indx,x)
rr=BIG

1 continue Important to use iterative improvement, since the
Padé equations tend to be ill-conditioned.rrold=rr

do 13 j=1,n
z(j)=x(j)

enddo 13

call mprove(q,qlu,n,NMAX,indx,y,x)
rr=0.
do 14 j=1,n Calculate residual.

rr=rr+(z(j)-x(j))**2
enddo 14

if(rr.lt.rrold)goto 1 If it is no longer improving, call it quits.
resid=sqrt(rr)
do 16 k=1,n Calculate the remaining coefficients.

sum=cof(k+1)
do 15 j=1,k

sum=sum-x(j)*cof(k-j+1)
enddo 15

y(k)=sum
enddo 16 Copy answers to output.
do 17 j=1,n

cof(j+1)=y(j)
cof(j+n+1)=-x(j)

enddo 17

return
END

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
p. 14.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 2.

Graves-Morris, P.R. 1979, in Padé Approximation and Its Applications, Lecture Notes in Mathe-
matics, vol. 765, L. Wuytack, ed. (Berlin: Springer-Verlag). [1]

5.13 Rational Chebyshev Approximation

In §5.8 and§5.10 we learned how to find good polynomial approximations to a given
function f(x) in a given intervala ≤ x ≤ b. Here, we want to generalize the task to find
good approximations that are rational functions (see§5.3). The reason for doing so is that,
for some functions and some intervals, the optimal rational function approximation is able
to achieve substantially higher accuracy than the optimal polynomial approximation with the
same number of coefficients. This must be weighed against the fact that finding a rational
function approximation is not as straightforward as finding a polynomial approximation,
which, as we saw, could be done elegantly via Chebyshev polynomials.

198 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Let the desired rational functionR(x) have numerator of degreem and denominator
of degreek. Then we have

R(x) ≡
p0 + p1x + · · · + pmxm

1 + q1x + · · · + qkxk
≈ f(x) for a ≤ x ≤ b (5.13.1)

The unknown quantities that we need to find arep0, . . . , pm andq1, . . . , qk, that is,m+ k+1
quantities in all. Letr(x) denote the deviation ofR(x) from f(x), and letr denote its
maximum absolute value,

r(x) ≡ R(x) − f(x) r ≡ max
a≤x≤b

|r(x)| (5.13.2)

The idealminimaxsolution would be that choice ofp’s andq’s that minimizesr. Obviously
there issomeminimax solution, sincer is bounded below by zero. How can we find it, or
a reasonable approximation to it?

A first hint is furnished by the following fundamental theorem: IfR(x) is nondegenerate
(has no common polynomial factors in numerator and denominator), then there is a unique
choice ofp’s and q’s that minimizesr; for this choice,r(x) hasm + k + 2 extrema in
a ≤ x ≤ b, all of magnituder and with alternating sign. (We have omitted some technical
assumptions in this theorem. See Ralston[1] for a precise statement.) We thus learn that the
situation with rational functions is quite analogous to that for minimax polynomials: In§5.8
we saw that the error term of annth order approximation, withn+ 1 Chebyshev coefficients,
was generally dominated by the first neglected Chebyshev term, namelyTn+1, which itself
hasn + 2 extrema of equal magnitude and alternating sign. So, here, the number of rational
coefficients,m + k + 1, plays the same role of the number of polynomial coefficients,n+ 1.

A different way to see whyr(x) should havem + k + 2 extrema is to note thatR(x)
can be made exactly equal tof(x) at anym+ k + 1 pointsxi. Multiplying equation (5.13.1)
by its denominator gives the equations

p0 + p1xi + · · · + pmxm

i = f(xi)(1 + q1xi + · · · + qkx
k

i)

i = 1, 2, . . . ,m + k + 1
(5.13.3)

This is a set ofm + k + 1 linear equations for the unknownp’s and q’s, which can be
solved by standard methods (e.g.,LU decomposition). If we choose thexi’s to all be in
the interval(a, b), then there will generically be an extremum between each chosenxi and
xi+1, plus also extrema where the function goes out of the interval ata andb, for a total
of m + k + 2 extrema. For arbitraryxi’s, the extrema will not have the same magnitude.
The theorem says that, for one particular choice ofxi’s, the magnitudes can be beaten down
to the identical, minimal, value ofr.

Instead of makingf(xi) andR(xi) equal at the pointsxi, one can instead force the
residualr(xi) to any desired valuesyi by solving the linear equations

p0 + p1xi + · · · + pmxm

i = [f(xi) − yi](1 + q1xi + · · · + qkx
k

i)

i = 1, 2, . . . ,m + k + 1
(5.13.4)

In fact, if the xi’s are chosen to be the extrema (not the zeros) of the minimax solution,
then the equations satisfied will be

p0 + p1xi + · · · + pmxm

i = [f(xi) ± r](1 + q1xi + · · · + qkx
k

i)

i = 1, 2, . . . ,m + k + 2
(5.13.5)

where the± alternates for the alternating extrema. Notice that equation (5.13.5) is satisfied at
m + k + 2 extrema, while equation (5.13.4) was satisfied only atm + k + 1 arbitrary points.
How can this be? The answer is thatr in equation (5.13.5) is an additional unknown, so that
the number of both equations and unknowns ism + k + 2. True, the set is mildly nonlinear
(in r), but in general it is still perfectly soluble by methods that we will develop in Chapter 9.

We thus see that, given only thelocationsof the extrema of the minimax rational
function, we can solve for its coefficients and maximum deviation. Additional theorems,

5.13 Rational Chebyshev Approximation 199

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

R
(x

)
−

f(
x)

2 × 10−6

10−6

0

−1 × 10−6

−2 × 10−6

 0 .5 1 1.5 2 2.5 3
x

m = k = 4
f (x) = cos(x)/(1 + ex)
0 < x < π

Figure 5.13.1. Solid curves show deviationsr(x) for five successive iterations of the routineratlsq
for an arbitrary test problem. The algorithm does not converge to exactly the minimax solution (shown
as the dotted curve). But, after one iteration, the discrepancy is a small fraction of the last significant
bit of accuracy.

leading up to the so-calledRemes algorithms[1], tell how to converge to these locations by
an iterative process. For example, here is a (slightly simplified) statement ofRemes’ Second
Algorithm: (1) Find an initial rational function withm + k + 2 extremaxi (not having equal
deviation). (2) Solve equation (5.13.5) for new rational coefficients andr. (3) Evaluate the
resultingR(x) to find its actual extrema (which will not be the same as the guessed values).
(4) Replace each guessed value with the nearest actual extremum of the same sign. (5) Go
back to step 2 and iterate to convergence. Under a broad set of assumptions, this method will
converge. Ralston[1] fills in the necessary details, including how to find the initial set ofxi’s.

Up to this point, our discussion has been textbook-standard. We now reveal ourselves
as heretics. We don’t much like the elegant Remes algorithm. Its two nested iterations (on
r in the nonlinear set 5.13.5, and on the new sets ofxi’s) are finicky and require a lot of
special logic for degenerate cases. Even more heretical, we doubt that compulsive searching
for theexactly best, equal deviation, approximation is worth the effort — except perhaps for
those few people in the world whose business it is to find optimal approximations that get
built into compilers and microchips.

When we use rational function approximation, the goal is usually much more pragmatic:
Inside some inner loop we are evaluating some function a zillion times, and we want to
speed up its evaluation. Almost never do we need this function to the last bit of machine
accuracy. Suppose (heresy!) we use an approximation whose error hasm + k + 2 extrema
whose deviations differ by a factor of 2. The theorems on which the Remes algorithms
are based guarantee that the perfect minimax solution will have extrema somewhere within
this factor of 2 range – forcing down the higher extrema will cause the lower ones to rise,
until all are equal. So our “sloppy” approximation is in fact within a fraction of a least
significant bit of the minimax one.

That is good enough for us, especially when we have available a very robust method
for finding the so-called “sloppy” approximation. Such a method is the least-squares solution
of overdetermined linear equations by singular value decomposition (§2.6 and§15.4). We
proceed as follows: First, solve (in the least-squares sense) equation (5.13.3), not just for
m + k + 1 values ofxi, but for a significantly larger number ofxi’s, spaced approximately

200 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

like the zeros of a high-order Chebyshev polynomial. This gives an initial guess forR(x).
Second, tabulate the resulting deviations, find the mean absolute deviation, call itr, and then
solve (again in the least-squares sense) equation (5.13.5) withr fixed and the± chosen to be
the sign of the observed deviation at each pointxi. Third, repeat the second step a few times.

You can spot some Remes orthodoxy lurking in our algorithm: The equations we solve
are trying to bring the deviations not to zero, but rather to plus-or-minus some consistent
value. However, we dispense with keeping track of actual extrema; and we solve only linear
equations at each stage. One additional trick is to solve aweightedleast-squares problem,
where the weights are chosen to beat down the largest deviations fastest.

Here is a program implementing these ideas. Notice that the only calls to thefunctionfn
occur in the initial filling of the tablefs. You could easily modify the code to do this filling
outside of the routine. It is not even necessary that your abscissasxs be exactly the ones
that we use, though the quality of the fit will deteriorate if you do not have several abscissas
between each extremum of the (underlying) minimax solution. Notice that the rational
coefficients are output in a format suitable for evaluation by the routineratval in §5.3.

SUBROUTINE ratlsq(fn,a,b,mm,kk,cof,dev)
INTEGER kk,mm,NPFAC,MAXC,MAXP,MAXIT
DOUBLE PRECISION a,b,dev,cof(mm+kk+1),fn,PIO2,BIG
PARAMETER (NPFAC=8,MAXC=20,MAXP=NPFAC*MAXC+1,

* MAXIT=5,PIO2=3.141592653589793D0/2.D0,BIG=1.D30)
EXTERNAL fn

C USES fn,ratval,dsvbksb,dsvdcmp DOUBLE PRECISION versions of svdcmp, svbksb.
Returns in cof(1:mm+kk+1) the coefficients of a rational function approximation to the
function fn in the interval (a, b). Input quantities mm and kk specify the order of the numer-
ator and denominator, respectively. The maximum absolute deviation of the approximation
(insofar as is known) is returned as dev.

INTEGER i,it,j,ncof,npt
DOUBLE PRECISION devmax,e,hth,pow,sum,bb(MAXP),coff(MAXC),ee(MAXP),

* fs(MAXP),u(MAXP,MAXC),v(MAXC,MAXC),w(MAXC),wt(MAXP),xs(MAXP),
* ratval

ncof=mm+kk+1
npt=NPFAC*ncof Number of points where function is evaluated, i.e., fineness

of the mesh.dev=BIG
do 11 i=1,npt Fill arrays with mesh abscissas and function values.

if (i.lt.npt/2) then At each end, use formula that minimizes roundoff sensitivity.
hth=PIO2*(i-1)/(npt-1.d0)
xs(i)=a+(b-a)*sin(hth)**2

else
hth=PIO2*(npt-i)/(npt-1.d0)
xs(i)=b-(b-a)*sin(hth)**2

endif
fs(i)=fn(xs(i))
wt(i)=1.d0 In later iterations we will adjust these weights to combat the

largest deviations.ee(i)=1.d0
enddo 11

e=0.d0
do 17 it=1,MAXIT Loop over iterations.

do 14 i=1,npt Set up the “design matrix” for the least-squares fit.
pow=wt(i)
bb(i)=pow*(fs(i)+sign(e,ee(i))) Key idea here: Fit to fn(x) + e where

the deviation is positive, to fn(x)−e

where it is negative. Then e is sup-
posed to become an approximation
to the equal-ripple deviation.

do 12 j=1,mm+1
u(i,j)=pow
pow=pow*xs(i)

enddo 12

pow=-bb(i)
do 13 j=mm+2,ncof

pow=pow*xs(i)
u(i,j)=pow

enddo 13

enddo 14

call dsvdcmp(u,npt,ncof,MAXP,MAXC,w,v) Singular Value Decomposition.

5.14 Evaluation of Functions by Path Integration 201

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In especially singular or difficult cases, one might here edit the singular values w(1:ncof),
replacing small values by zero.

call dsvbksb(u,w,v,npt,ncof,MAXP,MAXC,bb,coff)
devmax=0.d0
sum=0.d0
do 15 j=1,npt Tabulate the deviations and revise the weights.

ee(j)=ratval(xs(j),coff,mm,kk)-fs(j)
wt(j)=abs(ee(j)) Use weighting to emphasize most deviant points.
sum=sum+wt(j)
if(wt(j).gt.devmax)devmax=wt(j)

enddo 15

e=sum/npt Update e to be the mean absolute deviation.
if (devmax.le.dev) then Save only the best coefficient set found.

do 16 j=1,ncof
cof(j)=coff(j)

enddo 16

dev=devmax
endif
write (*,10) it,devmax

enddo 17

return
10 FORMAT (1x,’ratlsq iteration=’,i2,’ max error=’,1pe10.3)

END

Figure 5.13.1 shows the discrepancies for the first five iterations ofratlsq when it is
applied to find them = k = 4 rational fit to the functionf(x) = cos x/(1 + ex) in the
interval (0, π). One sees that after the first iteration, the results are virtually as good as the
minimax solution. The iterations do not converge in the order that the figure suggests: In
fact, it is the second iteration that is best (has smallest maximum deviation). The routine
ratlsq accordingly returns the best of its iterations, not necessarily the last one; there is no
advantage in doing more than five iterations.

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
Chapter 13. [1]

5.14 Evaluation of Functions by Path
Integration

In computer programming, the technique of choice is not necessarily the most
efficient, or elegant, or fastest executing one. Instead, it may be the one that is quick
to implement, general, and easy to check.

One sometimes needs only a few, or a few thousand, evaluations of a special
function, perhaps a complex valued function of a complex variable, that has many
different parameters, or asymptotic regimes, or both. Use of the usual tricks (series,
continued fractions, rational function approximations, recurrence relations, and so
forth) may result in a patchwork program with tests and branches to different
formulas. While such a program may be highly efficient in execution, it is often not
the shortest way to the answer from a standing start.

A different technique of considerable generality is direct integration of a
function’s defining differential equation – an ab initio integration foreach desired

5.14 Evaluation of Functions by Path Integration 201

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In especially singular or difficult cases, one might here edit the singular values w(1:ncof),
replacing small values by zero.

call dsvbksb(u,w,v,npt,ncof,MAXP,MAXC,bb,coff)
devmax=0.d0
sum=0.d0
do 15 j=1,npt Tabulate the deviations and revise the weights.

ee(j)=ratval(xs(j),coff,mm,kk)-fs(j)
wt(j)=abs(ee(j)) Use weighting to emphasize most deviant points.
sum=sum+wt(j)
if(wt(j).gt.devmax)devmax=wt(j)

enddo 15

e=sum/npt Update e to be the mean absolute deviation.
if (devmax.le.dev) then Save only the best coefficient set found.

do 16 j=1,ncof
cof(j)=coff(j)

enddo 16

dev=devmax
endif
write (*,10) it,devmax

enddo 17

return
10 FORMAT (1x,’ratlsq iteration=’,i2,’ max error=’,1pe10.3)

END

Figure 5.13.1 shows the discrepancies for the first five iterations ofratlsq when it is
applied to find them = k = 4 rational fit to the functionf(x) = cos x/(1 + ex) in the
interval (0, π). One sees that after the first iteration, the results are virtually as good as the
minimax solution. The iterations do not converge in the order that the figure suggests: In
fact, it is the second iteration that is best (has smallest maximum deviation). The routine
ratlsq accordingly returns the best of its iterations, not necessarily the last one; there is no
advantage in doing more than five iterations.

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
Chapter 13. [1]

5.14 Evaluation of Functions by Path
Integration

In computer programming, the technique of choice is not necessarily the most
efficient, or elegant, or fastest executing one. Instead, it may be the one that is quick
to implement, general, and easy to check.

One sometimes needs only a few, or a few thousand, evaluations of a special
function, perhaps a complex valued function of a complex variable, that has many
different parameters, or asymptotic regimes, or both. Use of the usual tricks (series,
continued fractions, rational function approximations, recurrence relations, and so
forth) may result in a patchwork program with tests and branches to different
formulas. While such a program may be highly efficient in execution, it is often not
the shortest way to the answer from a standing start.

A different technique of considerable generality is direct integration of a
function’s defining differential equation – an ab initio integration foreach desired

202 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

function value — along a path in the complex plane if necessary. While this may at
first seem like swatting a fly with a golden brick, it turns out that when you already
have the brick, and the fly is asleep right under it, all you have to do is let it fall!

As a specific example, let us consider the complex hypergeometric func-
tion 2F1(a, b, c; z), which is defined as the analytic continuation of the so-called
hypergeometric series,

2F1(a, b, c; z) = 1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)

c(c + 1)

z2

2!
+ · · ·

+
a(a + 1) . . . (a + j − 1)b(b + 1) . . . (b + j − 1)

c(c + 1) . . . (c + j − 1)

zj

j!
+ · · ·

(5.14.1)
The series converges only within the unit circle|z| < 1 (see[1]), but one’s interest
in the function is often not confined to this region.

The hypergeometric function2F1 is a solution (in factthesolution that is regular
at the origin) of the hypergeometric differential equation, which we can write as

z(1 − z)F ′′ = abF − [c− (a + b + 1)z]F ′ (5.14.2)

Here prime denotesd/dz. One can see that the equation has regular singular points
at z = 0, 1, and∞. Since the desired solution is regular atz = 0, the values1 and
∞ will in general be branch points. If we want2F1 to be a single valued function,
we must have a branch cut connecting these two points. A conventional position for
this cut is along the positive real axis from1 to ∞, though we may wish to keep
open the possibility of altering this choice for some applications.

Our golden brick consists of a collection of routines for the integration of sets
of ordinary differential equations, which we will develop in detail later, in Chapter
16. For now, we need only a high-level, “black-box” routine that integrates such
a set from initial conditions at one value of a (real) independent variable to final
conditions at some other value of the independent variable, while automatically
adjusting its internal stepsize to maintain some specified accuracy. That routine is
calledodeint and, in one particular invocation, calculates its individual steps with
a sophisticated Bulirsch-Stoer technique.

Suppose that we know values forF and its derivativeF ′ at some valuez0, and
that we want to findF at some other pointz1 in the complex plane. The straight-line
path connecting these two points is parametrized by

z(s) = z0 + s(z1 − z0) (5.14.3)

with s a real parameter. The differential equation (5.14.2) can now be written as
a set of two first-order equations,

dF

ds
= (z1 − z0)F

′

dF ′

ds
= (z1 − z0)

(

abF − [c− (a + b + 1)z]F ′

z(1 − z)

) (5.14.4)

to be integrated froms = 0 to s = 1. HereF andF ′ are to be viewed as two
independent complex variables. The fact that prime meansd/dz can be ignored; it

5.14 Evaluation of Functions by Path Integration 203

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

use power series
branch cut

Im

0 1 Re

Figure 5.14.1. Complex plane showing the singular points of the hypergeometric function, its branch
cut, and some integration paths from the circle|z| = 1/2 (where the power series converges rapidly)
to other points in the plane.

will emerge as a consequence of the first equation in (5.14.4). Moreover, the real and
imaginary parts of equation (5.14.4) define a set of fourreal differential equations,
with independent variables. The complex arithmetic on the right-hand side can be
viewed as mere shorthand for how the four components are to be coupled. It is
precisely this point of view that gets passed to the routineodeint, since it knows
nothing of either complex functions or complex independent variables.

It remains only to decide where to start, and what path to take in the complex
plane, to get to an arbitrary pointz. This is where consideration of the function’s
singularities, and the adopted branch cut, enter. Figure 5.14.1 shows the strategy
that we adopt. For|z| ≤ 1/2, the series in equation (5.14.1) will in general converge
rapidly, and it makes sense to use it directly. Otherwise, we integrate along a straight
line path from one of the starting points(±1/2, 0) or (0,±1/2). The former choices
are natural for0 < Re(z) < 1 and Re(z) < 0, respectively. The latter choices are
used for Re(z) > 1, above and below the branch cut; the purpose of starting away
from the real axis in these cases is to avoid passing too close to the singularity at
z = 1 (see Figure 5.14.1). The location of the branch cut isdefinedby the fact that
our adopted strategy never integrates across the real axis for Re(z) > 1.

An implementation of this algorithm is given in§6.12 as the routinehypgeo.
A number of variants on the procedure described thus far are possible, and easy

to program. If successively called values ofz are close together (with identical values
of a, b, andc), then you can save the state vector(F, F ′) and the corresponding value

204 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

of z on each call, and use these as starting values for the next call. The incremental
integration may then take only one or two steps. Avoid integrating across the branch
cut unintentionally: the function value will be “correct,” but not the one you want.

Alternatively, you may wish to integrate to some positionz by a dog-leg path
that doescross the real axis Rez > 1, as a means ofmovingthe branch cut. For
example, in some cases you might want to integrate from(0, 1/2) to (3/2, 1/2),
and go from there to any point with Rez > 1 — with either sign of Imz. (If
you are, for example, finding roots of a function by an iterative method, you do
not want the integration for nearby values to take different paths around a branch
point. If it does, your root-finder will see discontinuous function values, and will
likely not converge correctly!)

In any case, be aware that a loss of numerical accuracy can result if you integrate
through a region of large function value on your way to a final answer where the
function value is small. (For the hypergeometric function, a particular case of this is
whena andb are both large and positive, withc andx >∼ 1.) In such cases, you’ll
need to find a better dog-leg path.

The general technique of evaluating a function by integrating its differential
equation in the complex plane can also be applied to other special functions. For
example, the complex Bessel function, Airy function, Coulomb wave function, and
Weber function are all special cases of theconfluent hypergeometric function, with a
differential equation similar to the one used above (see, e.g.,[1] §13.6, for a table of
special cases). The confluent hypergeometric function has no singularities at finitez:
That makes it easy to integrate. However, its essential singularity at infinity means
that it can have, along some paths and for some parameters, highly oscillatory or
exponentially decreasing behavior: That makes it hard to integrate. Some case by
case judgment (or experimentation) is therefore required.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [1]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 6. Special Functions

6.0 Introduction

There is nothing particularly special about aspecial function, except that
some person in authority or textbook writer (not the same thing!) has decided to
bestow the moniker. Special functions are sometimes calledhigher transcendental
functions(higher than what?) orfunctions of mathematical physics(but they occur in
other fields also) orfunctions that satisfy certain frequently occurring second-order
differential equations(but not all special functions do). One might simply call them
“useful functions” and let it go at that; it is surely only a matter of taste which
functions we have chosen to include in this chapter.

Good commercially available program libraries, such as NAG or IMSL, contain
routines for a number of special functions. These routines are intended for users who
will have no idea what goes on inside them. Such state of the art “black boxes” are
often very messy things, full of branches to completely different methods depending
on the value of the calling arguments. Black boxes have, or should have, careful
control of accuracy, to some stated uniform precision in all regimes.

We will not be quite so fastidious in our examples, in part because we want
to illustrate techniques from Chapter 5, and in part because wewant you to
understand what goes on in the routines presented. Some of our routines have an
accuracy parameter that can be made as small as desired, while others (especially
those involving polynomial fits) give only a certainaccuracy, one that we believe
serviceable (typically six significant figures or more). We donot certify that the
routines are perfect black boxes. We do hope that, if you ever encounter trouble
in a routine, you will be able to diagnose and correct the problem on the basis of
the information that we have given.

In short, the special function routines of this chapter are meant to be used —
we use them all the time — but we also want you to be prepared to understand
their inner workings.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York) [full of useful numerical approximations to a great variety
of functions].

IMSL Sfun/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042).

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.),
Chapter S.

205

206 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Hart, J.F., et al. 1968, Computer Approximations (New York: Wiley).

Hastings, C. 1955, Approximations for Digital Computers (Princeton: Princeton University Press).

Luke, Y.L. 1975, Mathematical Functions and Their Approximations (New York: Academic Press).

6.1 Gamma Function, Beta Function, Factorials,
Binomial Coefficients

The gamma function is defined by the integral

Γ(z) =

∫

∞

0

tz−1e−tdt (6.1.1)

When the argumentz is an integer, the gamma function is just the familiar factorial
function, but offset by one,

n! = Γ(n + 1) (6.1.2)

The gamma function satisfies the recurrence relation

Γ(z + 1) = zΓ(z) (6.1.3)

If the function is known for argumentsz > 1 or, more generally, in the half complex
plane Re(z) > 1 it can be obtained forz < 1 or Re(z) < 1 by the reflection formula

Γ(1 − z) =
π

Γ(z) sin(πz)
=

πz

Γ(1 + z) sin(πz)
(6.1.4)

Notice thatΓ(z) has a pole atz = 0, and at all negative integer values ofz.
There are a variety of methods in use for calculating the functionΓ(z)

numerically, but none is quite as neat as the approximation derived by Lanczos[1].
This scheme is entirely specific to the gamma function, seemingly plucked from
thin air. We will not attempt to derive the approximation, but only state the
resulting formula: For certain integer choices ofγ andN , and for certain coefficients
c1, c2, . . . , cN , the gamma function is given by

Γ(z + 1) = (z + γ + 1
2)z+

1

2 e−(z+γ+ 1

2
)

×
√

2π

[

c0 +
c1

z + 1
+

c2

z + 2
+ · · ·+ cN

z + N
+ ǫ

]

(z > 0)
(6.1.5)

You can see that this is a sort of take-off on Stirling’s approximation, but with a
series of corrections that take into account the first few poles in the left complex
plane. The constantc0 is very nearly equal to 1. The error term is parametrized byǫ.
Forγ = 5, N = 6, and a certain set ofc’s, the error is smaller than|ǫ| < 2 × 10−10.
Impressed? If not, then perhaps you will be impressed by the fact that (with these

206 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Hart, J.F., et al. 1968, Computer Approximations (New York: Wiley).

Hastings, C. 1955, Approximations for Digital Computers (Princeton: Princeton University Press).

Luke, Y.L. 1975, Mathematical Functions and Their Approximations (New York: Academic Press).

6.1 Gamma Function, Beta Function, Factorials,
Binomial Coefficients

The gamma function is defined by the integral

Γ(z) =

∫

∞

0

tz−1e−tdt (6.1.1)

When the argumentz is an integer, the gamma function is just the familiar factorial
function, but offset by one,

n! = Γ(n + 1) (6.1.2)

The gamma function satisfies the recurrence relation

Γ(z + 1) = zΓ(z) (6.1.3)

If the function is known for argumentsz > 1 or, more generally, in the half complex
plane Re(z) > 1 it can be obtained forz < 1 or Re(z) < 1 by the reflection formula

Γ(1 − z) =
π

Γ(z) sin(πz)
=

πz

Γ(1 + z) sin(πz)
(6.1.4)

Notice thatΓ(z) has a pole atz = 0, and at all negative integer values ofz.
There are a variety of methods in use for calculating the functionΓ(z)

numerically, but none is quite as neat as the approximation derived by Lanczos[1].
This scheme is entirely specific to the gamma function, seemingly plucked from
thin air. We will not attempt to derive the approximation, but only state the
resulting formula: For certain integer choices ofγ andN , and for certain coefficients
c1, c2, . . . , cN , the gamma function is given by

Γ(z + 1) = (z + γ + 1
2)z+

1

2 e−(z+γ+ 1

2
)

×
√

2π

[

c0 +
c1

z + 1
+

c2

z + 2
+ · · ·+ cN

z + N
+ ǫ

]

(z > 0)
(6.1.5)

You can see that this is a sort of take-off on Stirling’s approximation, but with a
series of corrections that take into account the first few poles in the left complex
plane. The constantc0 is very nearly equal to 1. The error term is parametrized byǫ.
Forγ = 5, N = 6, and a certain set ofc’s, the error is smaller than|ǫ| < 2 × 10−10.
Impressed? If not, then perhaps you will be impressed by the fact that (with these

6.1 Gamma, Beta, and Related Functions 207

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

same parameters) the formula (6.1.5) and bound onǫ apply for thecomplexgamma
function,everywhere in the half complex plane Rez > 0.

It is better to implementlnΓ(x) thanΓ(x), since the latter will overflow many
computers’ floating-point representation at quite modest values ofx. Often the
gamma function is used in calculations where the large values ofΓ(x) are divided by
other large numbers, with the result being a perfectly ordinary value. Such operations
would normally be coded as subtraction of logarithms. With (6.1.5) in hand, we can
compute the logarithm of the gamma function with two calls to a logarithm and 25
or so arithmetic operations. This makes it not much more difficult than other built-in
functions that we take for granted, such assinx or ex:

FUNCTION gammln(xx)
REAL gammln,xx

Returns the value ln[Γ(xx)] for xx > 0.
INTEGER j
DOUBLE PRECISION ser,stp,tmp,x,y,cof(6)

Internal arithmetic will be done in double precision, a nicety that you can omit if five-figure
accuracy is good enough.

SAVE cof,stp
DATA cof,stp/76.18009172947146d0,-86.50532032941677d0,

* 24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2,
* -.5395239384953d-5,2.5066282746310005d0/

x=xx
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*log(tmp)-tmp
ser=1.000000000190015d0
do 11 j=1,6

y=y+1.d0
ser=ser+cof(j)/y

enddo 11

gammln=tmp+log(stp*ser/x)
return
END

How shall we write a routine for the factorial functionn!? Generally the
factorial function will be called for small integer values (for large values it will
overflow anyway!), and in most applications the same integer value will be called for
many times. It is a profligate waste of computer time to callexp(gammln(n+1.0))

for each required factorial. Better to go back to basics, holdinggammln in reserve
for unlikely calls:

FUNCTION factrl(n)
INTEGER n
REAL factrl

C USES gammln
Returns the value n! as a floating-point number.

INTEGER j,ntop
REAL a(33),gammln Table to be filled in only as required.
SAVE ntop,a
DATA ntop,a(1)/0,1./ Table initialized with 0! only.
if (n.lt.0) then

pause ’negative factorial in factrl’
else if (n.le.ntop) then Already in table.

factrl=a(n+1)
else if (n.le.32) then Fill in table up to desired value.

do 11 j=ntop+1,n

208 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

a(j+1)=j*a(j)
enddo 11

ntop=n
factrl=a(n+1)

else Larger value than size of table is required. Actually, this big
a value is going to overflow on many computers, but no
harm in trying.

factrl=exp(gammln(n+1.))
endif
return
END

A useful point is thatfactrl will be exactfor the smaller values ofn, since
floating-point multiplies on small integers are exact on all computers. This exactness
will not hold if we turn to the logarithm of the factorials. For binomial coefficients,
however, we must do exactly this, since the individual factorials in a binomial
coefficient will overflow long before the coefficient itself will.

The binomial coefficient is defined by

(

n

k

)

=
n!

k!(n− k)!
0 ≤ k ≤ n (6.1.6)

FUNCTION bico(n,k)
INTEGER k,n
REAL bico

C USES factln
Returns the binomial coefficient

(

n

k

)

as a floating-point number.
REAL factln
bico=nint(exp(factln(n)-factln(k)-factln(n-k)))
return The nearest-integer function cleans up roundoff error for smaller values of n and k.
END

which uses

FUNCTION factln(n)
INTEGER n
REAL factln

C USES gammln
Returns ln(n!).

REAL a(100),gammln
SAVE a
DATA a/100*-1./ Initialize the table to negative values.
if (n.lt.0) pause ’negative factorial in factln’
if (n.le.99) then In range of the table.

if (a(n+1).lt.0.) a(n+1)=gammln(n+1.) If not already in the table, put it in.
factln=a(n+1)

else
factln=gammln(n+1.) Out of range of the table.

endif
return
END

6.2 Incomplete Gamma Function 209

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If your problem requires a series of related binomial coefficients, a good idea
is to use recurrence relations, for example

(

n + 1

k

)

=
n + 1

n− k + 1

(

n

k

)

=

(

n

k

)

+

(

n

k − 1

)

(

n

k + 1

)

=
n− k

k + 1

(

n

k

)

(6.1.7)

Finally, turning away from the combinatorial functions with integer valued
arguments, we come to the beta function,

B(z, w) = B(w, z) =

∫ 1

0

tz−1(1 − t)w−1dt (6.1.8)

which is related to the gamma function by

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
(6.1.9)

hence

FUNCTION beta(z,w)
REAL beta,w,z

C USES gammln
Returns the value of the beta function B(z,w).

REAL gammln
beta=exp(gammln(z)+gammln(w)-gammln(z+w))
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 6.

Lanczos, C. 1964, SIAM Journal on Numerical Analysis, ser. B, vol. 1, pp. 86–96. [1]

6.2 Incomplete Gamma Function, Error
Function, Chi-Square Probability Function,
Cumulative Poisson Function

The incomplete gamma function is defined by

P (a, x) ≡ γ(a, x)

Γ(a)
≡ 1

Γ(a)

∫ x

0

e−tta−1dt (a > 0) (6.2.1)

6.2 Incomplete Gamma Function 209

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If your problem requires a series of related binomial coefficients, a good idea
is to use recurrence relations, for example

(

n + 1

k

)

=
n + 1

n− k + 1

(

n

k

)

=

(

n

k

)

+

(

n

k − 1

)

(

n

k + 1

)

=
n− k

k + 1

(

n

k

)

(6.1.7)

Finally, turning away from the combinatorial functions with integer valued
arguments, we come to the beta function,

B(z, w) = B(w, z) =

∫

1

0

tz−1(1 − t)w−1dt (6.1.8)

which is related to the gamma function by

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
(6.1.9)

hence

FUNCTION beta(z,w)
REAL beta,w,z

C USES gammln
Returns the value of the beta function B(z,w).

REAL gammln
beta=exp(gammln(z)+gammln(w)-gammln(z+w))
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 6.

Lanczos, C. 1964, SIAM Journal on Numerical Analysis, ser. B, vol. 1, pp. 86–96. [1]

6.2 Incomplete Gamma Function, Error
Function, Chi-Square Probability Function,
Cumulative Poisson Function

The incomplete gamma function is defined by

P (a, x) ≡ γ(a, x)

Γ(a)
≡ 1

Γ(a)

∫

x

0

e−tta−1dt (a > 0) (6.2.1)

210 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

0 2 4 6 8 10 12 14

0

.2

.4

.6

.8

1.0

a = 3.0

1.0

0.5

in
co

m
pl

et
e

ga
m

m
a

fu
nc

tio
n P
(a

,x
)

x

a = 10

Figure 6.2.1. The incomplete gamma functionP (a, x) for four values ofa.

It has the limiting values

P (a, 0) = 0 and P (a,∞) = 1 (6.2.2)

The incomplete gamma functionP (a, x) is monotonic and (fora greater than one or
so) rises from “near-zero” to “near-unity” in a range ofx centered on abouta − 1,
and of width about

√
a (see Figure 6.2.1).

The complement ofP (a, x) is also confusingly called an incomplete gamma
function,

Q(a, x) ≡ 1 − P (a, x) ≡ Γ(a, x)

Γ(a)
≡ 1

Γ(a)

∫

∞

x

e−tta−1dt (a > 0) (6.2.3)

It has the limiting values

Q(a, 0) = 1 and Q(a,∞) = 0 (6.2.4)

The notationsP (a, x), γ(a, x), and Γ(a, x) are standard; the notationQ(a, x) is
specific to this book.

There is a series development forγ(a, x) as follows:

γ(a, x) = e−xxa

∞
∑

n=0

Γ(a)

Γ(a + 1 + n)
xn (6.2.5)

One does not actually need to compute a newΓ(a + 1 + n) for eachn; one rather
uses equation (6.1.3) and the previous coefficient.

6.2 Incomplete Gamma Function 211

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

A continued fraction development forΓ(a, x) is

Γ(a, x) = e−xxa

(

1

x +

1 − a

1 +

1

x +

2 − a

1 +

2

x +
· · ·

)

(x > 0) (6.2.6)

It is computationally better to use the even part of (6.2.6), which converges twice
as fast (see§5.2):

Γ(a, x) = e−xxa

(

1

x + 1 − a−
1 · (1 − a)

x + 3 − a−
2 · (2 − a)

x + 5 − a− · · ·
)

(x > 0)

(6.2.7)

It turns out that (6.2.5) converges rapidly forx less than abouta + 1, while
(6.2.6) or (6.2.7) converges rapidly forx greater than abouta+1. In these respective
regimes each requires at most a few times

√
a terms to converge, and this many

only nearx = a, where the incomplete gamma functions are varying most rapidly.
Thus (6.2.5) and (6.2.7) together allow evaluation of the function for all positive
a andx. An extra dividend is that we never need compute a function value near
zero by subtracting two nearly equal numbers. The higher-level functions that return
P (a, x) and Q(a, x) are

FUNCTION gammp(a,x)
REAL a,gammp,x

C USES gcf,gser
Returns the incomplete gamma function P (a, x).

REAL gammcf,gamser,gln
if(x.lt.0..or.a.le.0.)pause ’bad arguments in gammp’
if(x.lt.a+1.)then Use the series representation.

call gser(gamser,a,x,gln)
gammp=gamser

else Use the continued fraction representation
call gcf(gammcf,a,x,gln)
gammp=1.-gammcf and take its complement.

endif
return
END

FUNCTION gammq(a,x)
REAL a,gammq,x

C USES gcf,gser
Returns the incomplete gamma function Q(a, x) ≡ 1 − P (a, x).

REAL gammcf,gamser,gln
if(x.lt.0..or.a.le.0.)pause ’bad arguments in gammq’
if(x.lt.a+1.)then Use the series representation

call gser(gamser,a,x,gln)
gammq=1.-gamser and take its complement.

else Use the continued fraction representation.
call gcf(gammcf,a,x,gln)
gammq=gammcf

endif
return
END

212 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The argumentgln is returned by both the series and continued fraction
procedures containing the valuelnΓ(a); the reason for this is so that it is available
to you if you want to modify the above two procedures to giveγ(a, x) andΓ(a, x),
in addition toP (a, x) andQ(a, x) (cf. equations 6.2.1 and 6.2.3).

The proceduresgser andgcf which implement (6.2.5) and (6.2.7) are

SUBROUTINE gser(gamser,a,x,gln)
INTEGER ITMAX
REAL a,gamser,gln,x,EPS
PARAMETER (ITMAX=100,EPS=3.e-7)

C USES gammln
Returns the incomplete gamma function P (a, x) evaluated by its series representation as
gamser. Also returns lnΓ(a) as gln.

INTEGER n
REAL ap,del,sum,gammln
gln=gammln(a)
if(x.le.0.)then

if(x.lt.0.)pause ’x < 0 in gser’
gamser=0.
return

endif
ap=a
sum=1./a
del=sum
do 11 n=1,ITMAX

ap=ap+1.
del=del*x/ap
sum=sum+del
if(abs(del).lt.abs(sum)*EPS)goto 1

enddo 11

pause ’a too large, ITMAX too small in gser’
1 gamser=sum*exp(-x+a*log(x)-gln)

return
END

SUBROUTINE gcf(gammcf,a,x,gln)
INTEGER ITMAX
REAL a,gammcf,gln,x,EPS,FPMIN
PARAMETER (ITMAX=100,EPS=3.e-7,FPMIN=1.e-30)

C USES gammln
Returns the incomplete gamma function Q(a, x) evaluated by its continued fraction repre-
sentation as gammcf. Also returns lnΓ(a) as gln.
Parameters: ITMAX is the maximum allowed number of iterations; EPS is the relative accu-
racy; FPMIN is a number near the smallest representable floating-point number.

INTEGER i
REAL an,b,c,d,del,h,gammln
gln=gammln(a)
b=x+1.-a Set up for evaluating continued fraction by modified

Lentz’s method (§5.2) with b0 = 0.c=1./FPMIN
d=1./b
h=d
do 11 i=1,ITMAX Iterate to convergence.

an=-i*(i-a)
b=b+2.
d=an*d+b
if(abs(d).lt.FPMIN)d=FPMIN
c=b+an/c
if(abs(c).lt.FPMIN)c=FPMIN
d=1./d
del=d*c

6.2 Incomplete Gamma Function 213

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

h=h*del
if(abs(del-1.).lt.EPS)goto 1

enddo 11

pause ’a too large, ITMAX too small in gcf’
1 gammcf=exp(-x+a*log(x)-gln)*h Put factors in front.

return
END

Error Function

The error function and complementary error function are special cases of the
incomplete gamma function, and are obtained moderately efficiently by the above
procedures. Their definitions are

erf(x) =
2√
π

∫

x

0

e−t
2

dt (6.2.8)

and

erfc(x) ≡ 1 − erf(x) =
2√
π

∫

∞

x

e−t
2

dt (6.2.9)

The functions have the following limiting values and symmetries:

erf(0) = 0 erf(∞) = 1 erf(−x) = −erf(x) (6.2.10)

erfc(0) = 1 erfc(∞) = 0 erfc(−x) = 2− erfc(x) (6.2.11)

They are related to the incomplete gamma functions by

erf(x) = P

(

1

2
, x2

)

(x ≥ 0) (6.2.12)

and

erfc(x) = Q

(

1

2
, x2

)

(x ≥ 0) (6.2.13)

Hence we have

FUNCTION erf(x)
REAL erf,x

C USES gammp
Returns the error function erf(x).

REAL gammp
if(x.lt.0.)then

erf=-gammp(.5,x**2)
else

erf=gammp(.5,x**2)
endif
return
END

214 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION erfc(x)
REAL erfc,x

C USES gammp,gammq
Returns the complementary error function erfc(x).

REAL gammp,gammq
if(x.lt.0.)then

erfc=1.+gammp(.5,x**2)
else

erfc=gammq(.5,x**2)
endif
return
END

If you care to do so, you can easily remedy the minor inefficiency inerf and
erfc, namely thatΓ(0.5) =

√
π is computed unnecessarily whengammp or gammq

is called. Before you do that, however, you might wish to consider the following
routine, based on Chebyshev fitting to an inspired guess as to the functional form:

FUNCTION erfcc(x)
REAL erfcc,x

Returns the complementary error function erfc(x) with fractional error everywhere less than
1.2 × 10−7.

REAL t,z
z=abs(x)
t=1./(1.+0.5*z)
erfcc=t*exp(-z*z-1.26551223+t*(1.00002368+t*(.37409196+

* t*(.09678418+t*(-.18628806+t*(.27886807+t*(-1.13520398+
* t*(1.48851587+t*(-.82215223+t*.17087277)))))))))

if (x.lt.0.) erfcc=2.-erfcc
return
END

There are also some functions oftwo variables that are special cases of the
incomplete gamma function:

Cumulative Poisson Probability Function

Px(< k), for positivex and integerk ≥ 1, denotes thecumulative Poisson
probability function. It is defined as the probability that the number of Poisson
random events occurring will be between 0 andk− 1 inclusive, if the expected mean
number isx. It has the limiting values

Px(< 1) = e−x Px(< ∞) = 1 (6.2.14)

Its relation to the incomplete gamma function is simply

Px(< k) = Q(k, x) = gammq (k, x) (6.2.15)

6.3 Exponential Integrals 215

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chi-Square Probability Function

P (χ2|ν) is defined as the probability that the observed chi-square for a correct
model should be less than a valueχ2. (We will discuss the use of this function in
Chapter 15.) Its complementQ(χ2|ν) is the probability that the observed chi-square
will exceed the valueχ2 by chanceevenfor a correct model. In both casesν is an
integer, the number of degrees of freedom. The functions have the limiting values

P (0|ν) = 0 P (∞|ν) = 1 (6.2.16)

Q(0|ν) = 1 Q(∞|ν) = 0 (6.2.17)

and the following relation to the incomplete gamma functions,

P (χ2|ν) = P

(

ν

2
,
χ2

2

)

= gammp

(

ν

2
,
χ2

2

)

(6.2.18)

Q(χ2|ν) = Q

(

ν

2
,
χ2

2

)

= gammq

(

ν

2
,
χ2

2

)

(6.2.19)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 6, 7, and 26.

Pearson, K. (ed.) 1951, Tables of the Incomplete Gamma Function (Cambridge: Cambridge
University Press).

6.3 Exponential Integrals

The standard definition of the exponential integral is

En(x) =

∫

∞

1

e−xt

tn
dt, x > 0, n = 0, 1, . . . (6.3.1)

The function defined by the principal value of the integral

Ei(x) = −
∫

∞

−x

e−t

t
dt =

∫

x

−∞

et

t
dt, x > 0 (6.3.2)

is also called an exponential integral. Note thatEi(−x) is related to−E1(x) by
analytic continuation.

The functionEn(x) is a special case of the incomplete gamma function

En(x) = xn−1Γ(1 − n, x) (6.3.3)

6.3 Exponential Integrals 215

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chi-Square Probability Function

P (χ2|ν) is defined as the probability that the observed chi-square for a correct
model should be less than a valueχ2. (We will discuss the use of this function in
Chapter 15.) Its complementQ(χ2|ν) is the probability that the observed chi-square
will exceed the valueχ2 by chanceevenfor a correct model. In both casesν is an
integer, the number of degrees of freedom. The functions have the limiting values

P (0|ν) = 0 P (∞|ν) = 1 (6.2.16)

Q(0|ν) = 1 Q(∞|ν) = 0 (6.2.17)

and the following relation to the incomplete gamma functions,

P (χ2|ν) = P

(

ν

2
,
χ2

2

)

= gammp

(

ν

2
,
χ2

2

)

(6.2.18)

Q(χ2|ν) = Q

(

ν

2
,
χ2

2

)

= gammq

(

ν

2
,
χ2

2

)

(6.2.19)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 6, 7, and 26.

Pearson, K. (ed.) 1951, Tables of the Incomplete Gamma Function (Cambridge: Cambridge
University Press).

6.3 Exponential Integrals

The standard definition of the exponential integral is

En(x) =

∫ ∞

1

e−xt

tn
dt, x > 0, n = 0, 1, . . . (6.3.1)

The function defined by the principal value of the integral

Ei(x) = −

∫ ∞

−x

e−t

t
dt =

∫ x

−∞

et

t
dt, x > 0 (6.3.2)

is also called an exponential integral. Note thatEi(−x) is related to−E1(x) by
analytic continuation.

The functionEn(x) is a special case of the incomplete gamma function

En(x) = xn−1Γ(1 − n, x) (6.3.3)

216 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

We can therefore use a similar strategy for evaluating it. The continued fraction —
just equation (6.2.6) rewritten — converges for allx > 0:

En(x) = e−x

(

1

x+

n

1 +

1

x+

n+ 1

1 +

2

x+
· · ·

)

(6.3.4)

We use it in its more rapidly converging even form,

En(x) = e−x

(

1

x+ n −

1 · n

x+ n+ 2 −

2(n+ 1)

x+ n+ 4 −
· · ·

)

(6.3.5)

The continued fraction only really converges fast enough to be useful forx >∼ 1.
For 0 < x <∼ 1, we can use the series representation

En(x) =
(−x)n−1

(n − 1)!
[− lnx+ ψ(n)] −

∞
∑

m=0
m6=n−1

(−x)m

(m− n+ 1)m!
(6.3.6)

The quantityψ(n) here is the digamma function, given for integer arguments by

ψ(1) = −γ, ψ(n) = −γ +
n−1
∑

m=1

1

m
(6.3.7)

whereγ = 0.5772156649 . . . is Euler’s constant. We evaluate the expression (6.3.6)
in order of ascending powers ofx:

En(x) = −

[

1

(1 − n)
−

x

(2 − n) · 1
+

x2

(3 − n)(1 · 2)
− · · ·+

(−x)n−2

(−1)(n − 2)!

]

+
(−x)n−1

(n − 1)!
[− lnx+ ψ(n)] −

[

(−x)n

1 · n!
+

(−x)n+1

2 · (n+ 1)!
+ · · ·

]

(6.3.8)

The first square bracket is omitted whenn = 1. This method of evaluation has the
advantage that for largen the series converges before reaching the term containing
ψ(n). Accordingly, one needs an algorithm for evaluatingψ(n) only for smalln,
n <∼ 20 – 40. We use equation (6.3.7), although a table look-up would improve
efficiency slightly.

Amos[1] presents a careful discussion of the truncation error in evaluating
equation (6.3.8), and gives a fairly elaborate termination criterion. We have found
that simply stopping when the last term added is smaller than the required tolerance
works about as well.

Two special cases have to be handled separately:

E0(x) =
e−x

x

En(0) =
1

n− 1
, n > 1

(6.3.9)

6.3 Exponential Integrals 217

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The routineexpint allows fast evaluation ofEn(x) to any accuracyEPS
within the reach ofyour machine’s word length for floating-point numbers. The
only modification required for increased accuracy is to supply Euler’s constant with
enough significant digits. Wrench[2] can provide you with the first 328 digits if
necessary!

FUNCTION expint(n,x)
INTEGER n,MAXIT
REAL expint,x,EPS,FPMIN,EULER
PARAMETER (MAXIT=100,EPS=1.e-7,FPMIN=1.e-30,EULER=.5772156649)

Evaluates the exponential integral En(x).
Parameters: MAXIT is the maximum allowed number of iterations; EPS is the desired rel-
ative error, not smaller than the machine precision; FPMIN is a number near the smallest
representable floating-point number; EULER is Euler’s constant γ.

INTEGER i,ii,nm1
REAL a,b,c,d,del,fact,h,psi
nm1=n-1
if(n.lt.0.or.x.lt.0..or.(x.eq.0..and.(n.eq.0.or.n.eq.1)))then

pause ’bad arguments in expint’
else if(n.eq.0)then Special case.

expint=exp(-x)/x
else if(x.eq.0.)then Another special case.

expint=1./nm1
else if(x.gt.1.)then Lentz’s algorithm (§5.2).

b=x+n
c=1./FPMIN
d=1./b
h=d
do 11 i=1,MAXIT

a=-i*(nm1+i)
b=b+2.
d=1./(a*d+b) Denominators cannot be zero.
c=b+a/c
del=c*d
h=h*del
if(abs(del-1.).lt.EPS)then

expint=h*exp(-x)
return

endif
enddo 11

pause ’continued fraction failed in expint’
else Evaluate series.

if(nm1.ne.0)then Set first term.
expint=1./nm1

else
expint=-log(x)-EULER

endif
fact=1.
do 13 i=1,MAXIT

fact=-fact*x/i
if(i.ne.nm1)then

del=-fact/(i-nm1)
else

psi=-EULER Compute ψ(n).
do 12 ii=1,nm1

psi=psi+1./ii
enddo 12

del=fact*(-log(x)+psi)
endif
expint=expint+del
if(abs(del).lt.abs(expint)*EPS) return

enddo 13

218 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

pause ’series failed in expint’
endif
return
END

A good algorithm for evaluatingEi is to use the power series for smallx and
the asymptotic series for largex. The power series is

Ei(x) = γ + lnx+
x

1 · 1!
+

x2

2 · 2!
+ · · · (6.3.10)

whereγ is Euler’s constant. The asymptotic expansion is

Ei(x) ∼
ex

x

(

1 +
1!

x
+

2!

x2
+ · · ·

)

(6.3.11)

The lower limit for the use of the asymptotic expansion is approximately| lnEPS|,
whereEPS is the required relative error.

FUNCTION ei(x)
INTEGER MAXIT
REAL ei,x,EPS,EULER,FPMIN
PARAMETER (EPS=6.e-8,EULER=.57721566,MAXIT=100,FPMIN=1.e-30)

Computes the exponential integral Ei(x) for x > 0.
Parameters: EPS is the relative error, or absolute error near the zero of Ei at x = 0.3725;
EULER is Euler’s constant γ; MAXIT is the maximum number of iterations allowed; FPMIN
is a number near the smallest representable floating-point number.

INTEGER k
REAL fact,prev,sum,term
if(x.le.0.) pause ’bad argument in ei’
if(x.lt.FPMIN)then Special case: avoid failure of convergence test be-

cause of underflow.ei=log(x)+EULER
else if(x.le.-log(EPS))then Use power series.

sum=0.
fact=1.
do 11 k=1,MAXIT

fact=fact*x/k
term=fact/k
sum=sum+term
if(term.lt.EPS*sum)goto 1

enddo 11

pause ’series failed in ei’
1 ei=sum+log(x)+EULER

else Use asymptotic series.
sum=0. Start with second term.
term=1.
do 12 k=1,MAXIT

prev=term
term=term*k/x
if(term.lt.EPS)goto 2 Since final sum is greater than one, term itself ap-

proximates the relative error.if(term.lt.prev)then
sum=sum+term Still converging: add new term.

else
sum=sum-prev Diverging: subtract previous term and exit.
goto 2

endif
enddo 12

2 ei=exp(x)*(1.+sum)/x
endif

6.4 Incomplete Beta Function, Student’s Distribution, F-Distribution, Cumulative Binomial Distribution219

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

return
END

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1974, Journal of Research of the National Bureau of Standards,
vol. 78B, pp. 199–216; 1976, op. cit., vol. 80B, pp. 291–311.

Amos D.E. 1980, ACM Transactions on Mathematical Software, vol. 6, pp. 365–377 [1]; also
vol. 6, pp. 420–428.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 5.

Wrench J.W. 1952, Mathematical Tables and Other Aids to Computation, vol. 6, p. 255. [2]

6.4 Incomplete Beta Function, Student’s
Distribution, F-Distribution, Cumulative
Binomial Distribution

The incomplete beta function is defined by

Ix(a, b) ≡
Bx(a, b)

B(a, b)
≡

1

B(a, b)

∫ x

0

ta−1(1 − t)b−1dt (a, b > 0) (6.4.1)

It has the limiting values

I0(a, b) = 0 I1(a, b) = 1 (6.4.2)

and the symmetry relation

Ix(a, b) = 1 − I1−x(b, a) (6.4.3)

If a andb are both rather greater than one, thenIx(a, b) rises from “near-zero” to
“near-unity” quite sharply at aboutx = a/(a + b). Figure 6.4.1 plots the function
for several pairs(a, b).

The incomplete beta function has a series expansion

Ix(a, b) =
xa(1 − x)b

aB(a, b)

[

1 +

∞
∑

n=0

B(a + 1, n+ 1)

B(a + b, n+ 1)
xn+1

]

, (6.4.4)

but this does not prove to be very useful in its numerical evaluation. (Note, however,
that the beta functions in the coefficients can be evaluated for each valueof n with
just the previous value and a few multiplies, using equations 6.1.9 and 6.1.3.)

The continued fraction representation proves to be much more useful,

Ix(a, b) =
xa(1 − x)b

aB(a, b)

[

1

1+

d1

1+

d2

1+
· · ·

]

(6.4.5)

6.4 Incomplete Beta Function, Student’s Distribution, F-Distribution, Cumulative Binomial Distribution219

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

return
END

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1974, Journal of Research of the National Bureau of Standards,
vol. 78B, pp. 199–216; 1976, op. cit., vol. 80B, pp. 291–311.

Amos D.E. 1980, ACM Transactions on Mathematical Software, vol. 6, pp. 365–377 [1]; also
vol. 6, pp. 420–428.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 5.

Wrench J.W. 1952, Mathematical Tables and Other Aids to Computation, vol. 6, p. 255. [2]

6.4 Incomplete Beta Function, Student’s
Distribution, F-Distribution, Cumulative
Binomial Distribution

The incomplete beta function is defined by

Ix(a, b) ≡
Bx(a, b)

B(a, b)
≡

1

B(a, b)

∫ x

0

ta−1(1 − t)b−1dt (a, b > 0) (6.4.1)

It has the limiting values

I0(a, b) = 0 I1(a, b) = 1 (6.4.2)

and the symmetry relation

Ix(a, b) = 1 − I1−x(b, a) (6.4.3)

If a andb are both rather greater than one, thenIx(a, b) rises from “near-zero” to
“near-unity” quite sharply at aboutx = a/(a + b). Figure 6.4.1 plots the function
for several pairs(a, b).

The incomplete beta function has a series expansion

Ix(a, b) =
xa(1 − x)b

aB(a, b)

[

1 +

∞
∑

n=0

B(a + 1, n+ 1)

B(a + b, n+ 1)
xn+1

]

, (6.4.4)

but this does not prove to be very useful in its numerical evaluation. (Note, however,
that the beta functions in the coefficients can be evaluated for each valueof n with
just the previous value and a few multiplies, using equations 6.1.9 and 6.1.3.)

The continued fraction representation proves to be much more useful,

Ix(a, b) =
xa(1 − x)b

aB(a, b)

[

1

1+

d1

1+

d2

1+
· · ·

]

(6.4.5)

220 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

0

(5.0,0.5)

(0.5,0.5)

(8.0,10.0)

(1.0,3.0)

(0.5,5.0)

.2 .4 .6 1.8

0

.2

.4

.6

.8

1

in
co

m
pl

et
e

be
ta

 fu
nc

tio
n I x

(a
,b

)

x

Figure 6.4.1. The incomplete beta functionIx(a, b) for five different pairs of(a, b). Notice that the pairs
(0.5,5.0) and(5.0,0.5) are related by reflection symmetry around the diagonal (cf. equation 6.4.3).

where

d2m+1 = −
(a + m)(a + b + m)x

(a + 2m)(a + 2m + 1)

d2m =
m(b −m)x

(a + 2m− 1)(a + 2m)

(6.4.6)

This continued fraction converges rapidly forx < (a + 1)/(a + b + 2), taking in
the worst caseO(

√

max(a, b)) iterations. But forx > (a + 1)/(a + b + 2) we can
just use the symmetry relation (6.4.3) to obtain an equivalent computation where the
continued fraction will also converge rapidly. Hence we have

FUNCTION betai(a,b,x)
REAL betai,a,b,x

C USES betacf,gammln
Returns the incomplete beta function Ix(a,b).

REAL bt,betacf,gammln
if(x.lt.0..or.x.gt.1.)pause ’bad argument x in betai’
if(x.eq.0..or.x.eq.1.)then

bt=0.
else Factors in front of the continued fraction.

bt=exp(gammln(a+b)-gammln(a)-gammln(b)
* +a*log(x)+b*log(1.-x))

endif
if(x.lt.(a+1.)/(a+b+2.))then Use continued fraction directly.

6.4 Incomplete Beta Function, Student’s Distribution, F-Distribution, Cumulative Binomial Distribution221

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

betai=bt*betacf(a,b,x)/a
return

else
betai=1.-bt*betacf(b,a,1.-x)/b Use continued fraction after making the symme-

try transformation.return
endif
END

which utilizes the continued fraction evaluation routine

FUNCTION betacf(a,b,x)
INTEGER MAXIT
REAL betacf,a,b,x,EPS,FPMIN
PARAMETER (MAXIT=100,EPS=3.e-7,FPMIN=1.e-30)

Used by betai: Evaluates continued fraction for incomplete beta function by modified
Lentz’s method (§5.2).

INTEGER m,m2
REAL aa,c,d,del,h,qab,qam,qap
qab=a+b These q’s will be used in factors that occur in the

coefficients (6.4.6).qap=a+1.
qam=a-1.
c=1. First step of Lentz’s method.
d=1.-qab*x/qap
if(abs(d).lt.FPMIN)d=FPMIN
d=1./d
h=d
do 11 m=1,MAXIT

m2=2*m
aa=m*(b-m)*x/((qam+m2)*(a+m2))
d=1.+aa*d One step (the even one) of the recurrence.
if(abs(d).lt.FPMIN)d=FPMIN
c=1.+aa/c
if(abs(c).lt.FPMIN)c=FPMIN
d=1./d
h=h*d*c
aa=-(a+m)*(qab+m)*x/((a+m2)*(qap+m2))
d=1.+aa*d Next step of the recurrence (the odd one).
if(abs(d).lt.FPMIN)d=FPMIN
c=1.+aa/c
if(abs(c).lt.FPMIN)c=FPMIN
d=1./d
del=d*c
h=h*del
if(abs(del-1.).lt.EPS)goto 1 Are we done?

enddo 11

pause ’a or b too big, or MAXIT too small in betacf’
1 betacf=h

return
END

Student’s Distribution Probability Function

Student’s distribution, denotedA(t|ν), is useful in several statistical contexts,
notably in the test of whether two observed distributions have the same mean.A(t|ν)
is the probability, forν degrees of freedom, that a certain statistict (measuring the
observed difference of means) would be smaller than the observed value if the
means were in fact the same. (See Chapter 14 for further details.) Two means are

222 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

significantly different if, e.g.,A(t|ν) > 0.99. In other words,1 − A(t|ν) is the
significance level at which the hypothesis that the means are equal is disproved.

The mathematical definition of the function is

A(t|ν) =
1

ν1/2B(1

2
, ν

2
)

∫ t

−t

(

1 +
x2

ν

)

−
ν+1

2

dx (6.4.7)

Limiting values are

A(0|ν) = 0 A(∞|ν) = 1 (6.4.8)

A(t|ν) is related to the incomplete beta functionIx(a, b) by

A(t|ν) = 1 − I ν

ν+t2

(

ν

2
,
1

2

)

(6.4.9)

So, you can use (6.4.9) and the above routinebetai to evaluate the function.

F-Distribution Probability Function

This function occurs in the statistical test of whether two observed samples
have the same variance. A certain statisticF , essentially the ratio of the observed
dispersion of the first sample to that of the second one, is calculated. (For further
details, see Chapter 14.) The probability thatF would be aslarge as it is if the
first sample’s underlying distribution actually hassmallervariance than the second’s
is denotedQ(F |ν1, ν2), whereν1 and ν2 are the number of degrees of freedom
in the first and second samples, respectively. In other words,Q(F |ν1, ν2) is the
significance level at which the hypothesis “1 has smaller variance than 2” can be
rejected. A small numerical value implies a very significant rejection, in turn
implying high confidence in the hypothesis “1 has variance greater or equal to 2.”

Q(F |ν1, ν2) has the limiting values

Q(0|ν1, ν2) = 1 Q(∞|ν1, ν2) = 0 (6.4.10)

Its relation to the incomplete beta functionIx(a, b) as evaluated bybetai above is

Q(F |ν1, ν2) = I ν2

ν2+ν1F

(

ν2

2
,
ν1

2

)

(6.4.11)

Cumulative Binomial Probability Distribution

Suppose an event occurs with probabilityp per trial. Then the probabilityP of
its occurringk or moretimes inn trials is termed acumulative binomial probability,
and is related to the incomplete beta functionIx(a, b) as follows:

P ≡

n
∑

j=k

(

n

j

)

pj(1 − p)n−j = Ip(k, n− k + 1) (6.4.12)

6.5 Bessel Functions of Integer Order 223

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Forn larger than a dozen or so,betai is a much better way to evaluate the sum in
(6.4.12) than would be the straightforward sum with concurrent computation of the
binomial coefficients. (Forn smaller than a dozen, either method is acceptable.)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 6 and 26.

Pearson, E., and Johnson, N. 1968, Tables of the Incomplete Beta Function (Cambridge: Cam-
bridge University Press).

6.5 Bessel Functions of Integer Order

This section and the next one present practical algorithms for computing various
kinds of Bessel functions of integer order. In§6.7 we deal with fractional order. In
fact, the more complicated routines for fractional order work fine for integer order
too. For integer order, however, the routines in this section (and§6.6) are simpler
and faster. Their only drawback is that they are limited by the precision of the
underlying rational approximations. For full double precision, it is best to work with
the routines for fractional order in§6.7.

For any realν , the Bessel functionJν(x) can be defined by the series
representation

Jν(x) =

(

1

2
x

)ν ∞
∑

k=0

(−1

4
x2)k

k!Γ(ν + k + 1)
(6.5.1)

The series converges for allx, but it is not computationally very useful forx ≫ 1.
For ν not an integer the Bessel functionYν(x) is given by

Yν(x) =
Jν(x) cos(νπ) − J−ν(x)

sin(νπ)
(6.5.2)

The right-hand side goes to the correct limiting valueYn(x) as ν goes to some
integern, but this is also not computationally useful.

For argumentsx < ν, both Bessel functions look qualitatively like simple
power laws, with the asymptotic forms for0 < x ≪ ν

Jν(x) ∼
1

Γ(ν + 1)

(

1

2
x

)ν

ν ≥ 0

Y0(x) ∼
2

π
ln(x)

Yν(x) ∼ −
Γ(ν)

π

(

1

2
x

)

−ν

ν > 0

(6.5.3)

6.5 Bessel Functions of Integer Order 223

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Forn larger than a dozen or so,betai is a much better way to evaluate the sum in
(6.4.12) than would be the straightforward sum with concurrent computation of the
binomial coefficients. (Forn smaller than a dozen, either method is acceptable.)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 6 and 26.

Pearson, E., and Johnson, N. 1968, Tables of the Incomplete Beta Function (Cambridge: Cam-
bridge University Press).

6.5 Bessel Functions of Integer Order

This section and the next one present practical algorithms for computing various
kinds of Bessel functions of integer order. In§6.7 we deal with fractional order. In
fact, the more complicated routines for fractional order work fine for integer order
too. For integer order, however, the routines in this section (and§6.6) are simpler
and faster. Their only drawback is that they are limited by the precision of the
underlying rational approximations. For full double precision, it is best to work with
the routines for fractional order in§6.7.

For any realν , the Bessel functionJν(x) can be defined by the series
representation

Jν(x) =

(

1

2
x

)ν ∞
∑

k=0

(−1

4
x2)k

k!Γ(ν + k + 1)
(6.5.1)

The series converges for allx, but it is not computationally very useful forx ≫ 1.
For ν not an integer the Bessel functionYν(x) is given by

Yν(x) =
Jν(x) cos(νπ) − J−ν(x)

sin(νπ)
(6.5.2)

The right-hand side goes to the correct limiting valueYn(x) as ν goes to some
integern, but this is also not computationally useful.

For argumentsx < ν, both Bessel functions look qualitatively like simple
power laws, with the asymptotic forms for0 < x ≪ ν

Jν(x) ∼
1

Γ(ν + 1)

(

1

2
x

)ν

ν ≥ 0

Y0(x) ∼
2

π
ln(x)

Yν(x) ∼ −
Γ(ν)

π

(

1

2
x

)

−ν

ν > 0

(6.5.3)

224 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

B
es

se
l f

un
ct

io
ns

1

.5

0

−.5

−1

−1.5

−2
2 4 6 8 100

Y0 Y1
Y2

J0
J1 J2 J3

x

Figure 6.5.1. Bessel functionsJ0(x) throughJ3(x) andY0(x) throughY2(x).

Forx > ν, both Bessel functions look qualitatively like sine or cosine waves whose
amplitude decays asx−1/2. The asymptotic forms forx ≫ ν are

Jν(x) ∼

√

2

πx
cos

(

x−
1

2
νπ −

1

4
π

)

Yν(x) ∼

√

2

πx
sin

(

x−
1

2
νπ −

1

4
π

)

(6.5.4)

In the transition region wherex ∼ ν , the typical amplitudes of the Bessel functions
are on the order

Jν(ν) ∼
21/3

32/3Γ(2

3
)

1

ν1/3
∼

0.4473

ν1/3

Yν(ν) ∼ −
21/3

31/6Γ(2

3
)

1

ν1/3
∼ −

0.7748

ν1/3

(6.5.5)

which holds asymptotically for largeν . Figure 6.5.1 plots the first few Bessel
functions of each kind.

The Bessel functions satisfy the recurrence relations

Jn+1(x) =
2n

x
Jn(x) − Jn−1(x) (6.5.6)

and

Yn+1(x) =
2n

x
Yn(x) − Yn−1(x) (6.5.7)

As already mentioned in§5.5, only the second of these (6.5.7) is stable in the
direction of increasingn for x < n. The reason that (6.5.6) is unstable in the

6.5 Bessel Functions of Integer Order 225

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

direction of increasingn is simply that it isthe same recurrenceas (6.5.7): A small
amount of “polluting”Yn introduced by roundoff error will quickly come to swamp
the desiredJn, according to equation (6.5.3).

A practical strategy for computing the Bessel functions of integer order divides
into two tasks: first, how to computeJ0, J1, Y0, andY1, and second, how to use the
recurrence relations stably to find otherJ ’s andY ’s. We treat the first task first:

For x between zero and some arbitrary value (we will use the value 8),
approximateJ0(x) andJ1(x) by rational functions inx. Likewise approximate by
rational functions the “regular part” ofY0(x) andY1(x), defined as

Y0(x) −
2

π
J0(x) ln(x) and Y1(x) −

2

π

[

J1(x) ln(x) −
1

x

]

(6.5.8)

For 8 < x < ∞, use the approximating forms (n = 0, 1)

Jn(x) =

√

2

πx

[

Pn

(

8

x

)

cos(Xn) −Qn

(

8

x

)

sin(Xn)

]

(6.5.9)

Yn(x) =

√

2

πx

[

Pn

(

8

x

)

sin(Xn) + Qn

(

8

x

)

cos(Xn)

]

(6.5.10)

where

Xn ≡ x−
2n + 1

4
π (6.5.11)

and whereP0, P1, Q0, andQ1 are each polynomials in their arguments, for0 <
8/x < 1. TheP ’s are even polynomials, theQ’s odd.

Coefficients of the various rational functions and polynomials are given by
Hart [1], for various levels of desired accuracy. A straightforward implementation is

FUNCTION bessj0(x)
REAL bessj0,x

Returns the Bessel function J0(x) for any real x.
REAL ax,xx,z
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,

* r5,r6,s1,s2,s3,s4,s5,s6,y We’ll accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,

* s1,s2,s3,s4,s5,s6
DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-2,.2734510407d-4,

* -.2073370639d-5,.2093887211d-6/, q1,q2,q3,q4,q5/-.1562499995d-1,
* .1430488765d-3,-.6911147651d-5,.7621095161d-6,-.934945152d-7/

DATA r1,r2,r3,r4,r5,r6/57568490574.d0,-13362590354.d0,651619640.7d0,
* -11214424.18d0,77392.33017d0,-184.9052456d0/,
* s1,s2,s3,s4,s5,s6/57568490411.d0,1029532985.d0,
* 9494680.718d0,59272.64853d0,267.8532712d0,1.d0/

if(abs(x).lt.8.)then Direct rational function fit.
y=x**2
bessj0=(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))

* /(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))
else Fitting function (6.5.9).

ax=abs(x)
z=8./ax
y=z**2
xx=ax-.785398164
bessj0=sqrt(.636619772/ax)*(cos(xx)*(p1+y*(p2+y*(p3+y*(p4+y

226 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

* *p5))))-z*sin(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
endif
return
END

FUNCTION bessy0(x)
REAL bessy0,x

C USES bessj0
Returns the Bessel function Y0(x) for positive x.

REAL xx,z,bessj0
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,

* q2,q3,q4,q5,r1,r2,r3,r4,
* r5,r6,s1,s2,s3,s4,s5,s6,y We’ll accumulate polynomials in double precision.

SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,
* r5,r6,s1,s2,s3,s4,s5,s6

DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-2,.2734510407d-4,
* -.2073370639d-5,.2093887211d-6/, q1,q2,q3,q4,q5/-.1562499995d-1,
* .1430488765d-3,-.6911147651d-5,.7621095161d-6,-.934945152d-7/

DATA r1,r2,r3,r4,r5,r6/-2957821389.d0,7062834065.d0,-512359803.6d0,
* 10879881.29d0,-86327.92757d0,228.4622733d0/,
* s1,s2,s3,s4,s5,s6/40076544269.d0,745249964.8d0,
* 7189466.438d0,47447.26470d0,226.1030244d0,1.d0/

if(x.lt.8.)then Rational function approximation of (6.5.8).
y=x**2
bessy0=(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(s1+y*(s2+y

* *(s3+y*(s4+y*(s5+y*s6)))))+.636619772*bessj0(x)*log(x)
else Fitting function (6.5.10).

z=8./x
y=z**2
xx=x-.785398164
bessy0=sqrt(.636619772/x)*(sin(xx)*(p1+y*(p2+y*(p3+y*(p4+y*

* p5))))+z*cos(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
endif
return
END

FUNCTION bessj1(x)
REAL bessj1,x

Returns the Bessel function J1(x) for any real x.
REAL ax,xx,z
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,

* r5,r6,s1,s2,s3,s4,s5,s6,y We’ll accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,

* s1,s2,s3,s4,s5,s6
DATA r1,r2,r3,r4,r5,r6/72362614232.d0,-7895059235.d0,242396853.1d0,

* -2972611.439d0,15704.48260d0,-30.16036606d0/,
* s1,s2,s3,s4,s5,s6/144725228442.d0,2300535178.d0,
* 18583304.74d0,99447.43394d0,376.9991397d0,1.d0/

DATA p1,p2,p3,p4,p5/1.d0,.183105d-2,-.3516396496d-4,.2457520174d-5,
* -.240337019d-6/, q1,q2,q3,q4,q5/.04687499995d0,-.2002690873d-3,
* .8449199096d-5,-.88228987d-6,.105787412d-6/

if(abs(x).lt.8.)then Direct rational approximation.
y=x**2
bessj1=x*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))

* /(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))
else Fitting function (6.5.9).

ax=abs(x)
z=8./ax
y=z**2
xx=ax-2.356194491

6.5 Bessel Functions of Integer Order 227

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

bessj1=sqrt(.636619772/ax)*(cos(xx)*(p1+y*(p2+y*(p3+y*(p4+y
* *p5))))-z*sin(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
* *sign(1.,x)

endif
return
END

FUNCTION bessy1(x)
REAL bessy1,x

C USES bessj1
Returns the Bessel function Y1(x) for positive x.

REAL xx,z,bessj1
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,

* r5,r6,s1,s2,s3,s4,s5,s6,s7,y We’ll accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,

* r5,r6,s1,s2,s3,s4,s5,s6,s7
DATA p1,p2,p3,p4,p5/1.d0,.183105d-2,-.3516396496d-4,.2457520174d-5,

* -.240337019d-6/, q1,q2,q3,q4,q5/.04687499995d0,-.2002690873d-3,
* .8449199096d-5,-.88228987d-6,.105787412d-6/

DATA r1,r2,r3,r4,r5,r6/-.4900604943d13,.1275274390d13,-.5153438139d11,
* .7349264551d9,-.4237922726d7,.8511937935d4/,
* s1,s2,s3,s4,s5,s6,s7/.2499580570d14,.4244419664d12,
* .3733650367d10,.2245904002d8,.1020426050d6,.3549632885d3,1.d0/

if(x.lt.8.)then Rational function approximation of (6.5.8).
y=x**2
bessy1=x*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(s1+y*(s2+y*

* (s3+y*(s4+y*(s5+y*(s6+y*s7))))))+.636619772
* *(bessj1(x)*log(x)-1./x)

else Fitting function (6.5.10).
z=8./x
y=z**2
xx=x-2.356194491
bessy1=sqrt(.636619772/x)*(sin(xx)*(p1+y*(p2+y*(p3+y*(p4+y

* *p5))))+z*cos(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
endif
return
END

We now turn to the second task, namely how to use the recurrence formulas
(6.5.6) and (6.5.7) to get the Bessel functionsJn(x) andYn(x) for n ≥ 2. The latter
of these is straightforward, since its upward recurrence is always stable:

FUNCTION bessy(n,x)
INTEGER n
REAL bessy,x

C USES bessy0,bessy1
Returns the Bessel function Yn(x) for positive x and n ≥ 2.

INTEGER j
REAL by,bym,byp,tox,bessy0,bessy1
if(n.lt.2)pause ’bad argument n in bessy’
tox=2./x
by=bessy1(x) Starting values for the recurrence.
bym=bessy0(x)
do 11 j=1,n-1 Recurrence (6.5.7).

byp=j*tox*by-bym
bym=by
by=byp

enddo 11

bessy=by
return
END

228 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The cost of this algorithm is the call tobessy1 andbessy0 (which generate a
call to each ofbessj1 andbessj0), plusO(n) operations in the recurrence.

As for Jn(x), things are a bit more complicated. We can start the recurrence
upward onn from J0 andJ1, but it will remain stable only whilen does not exceed
x. This is, however, just fine for calls with largex and smalln, a case which
occurs frequently in practice.

The harder case to provide for is that withx < n. The best thing to do here
is to use Miller’s algorithm (see discussion preceding equation 5.5.16), applying
the recurrencedownwardfrom some arbitrary starting value and making use of the
upward-unstable nature of the recurrence to put usonto the correct solution. When
we finally arrive atJ0 or J1 we are able to normalize the solution with the sum
(5.5.16) accumulated along the way.

The only subtlety is in deciding at how large ann we need start the downward
recurrence so as to obtain a desired accuracy by the time we reach then that we
really want. If you play with the asymptotic forms (6.5.3) and (6.5.5), you should
be able to convince yourself that the answer is to start larger than the desiredn by
an additive amount of order[constant× n]1/2, where the square root of the constant
is, very roughly, the number of significant figures ofaccuracy.

The above considerations lead to the following function.

FUNCTION bessj(n,x)
INTEGER n,IACC
REAL bessj,x,BIGNO,BIGNI
PARAMETER (IACC=40,BIGNO=1.e10,BIGNI=1.e-10)

C USES bessj0,bessj1
Returns the Bessel function Jn(x) for any real x and n ≥ 2.

INTEGER j,jsum,m
REAL ax,bj,bjm,bjp,sum,tox,bessj0,bessj1
if(n.lt.2)pause ’bad argument n in bessj’
ax=abs(x)
if(ax.eq.0.)then

bessj=0.
else if(ax.gt.float(n))then Upwards recurrence from J0 and J1.

tox=2./ax
bjm=bessj0(ax)
bj=bessj1(ax)
do 11 j=1,n-1

bjp=j*tox*bj-bjm
bjm=bj
bj=bjp

enddo 11

bessj=bj
else Downwards recurrence from an even m here com-

puted. Make IACC larger to increase accuracy.tox=2./ax
m=2*((n+int(sqrt(float(IACC*n))))/2)
bessj=0.
jsum=0 jsum will alternate between 0 and 1; when it is 1, we

accumulate in sum the even terms in (5.5.16).sum=0.
bjp=0.
bj=1.
do 12 j=m,1,-1 The downward recurrence.

bjm=j*tox*bj-bjp
bjp=bj
bj=bjm
if(abs(bj).gt.BIGNO)then Renormalize to prevent overflows.

bj=bj*BIGNI

6.6 Modified Bessel Functions of Integer Order 229

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

bjp=bjp*BIGNI
bessj=bessj*BIGNI
sum=sum*BIGNI

endif
if(jsum.ne.0)sum=sum+bj Accumulate the sum.
jsum=1-jsum Change 0 to 1 or vice versa.
if(j.eq.n)bessj=bjp Save the unnormalized answer.

enddo 12

sum=2.*sum-bj Compute (5.5.16)
bessj=bessj/sum and use it to normalize the answer.

endif
if(x.lt.0..and.mod(n,2).eq.1)bessj=-bessj
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 9.

Hart, J.F., et al. 1968, Computer Approximations (New York: Wiley), §6.8, p. 141. [1]

6.6 Modified Bessel Functions of Integer Order

The modified Bessel functionsIn(x) andKn(x) are equivalent to the usual
Bessel functionsJn andYn evaluated for purely imaginary arguments. In detail,
the relationship is

In(x) = (−i)nJn(ix)

Kn(x) =
π

2
in+1[Jn(ix) + iYn(ix)]

(6.6.1)

The particular choice of prefactor and of the linear combination ofJn andYn to form
Kn are simply choices that make the functions real-valued for real argumentsx.

For small argumentsx ≪ n, bothIn(x) andKn(x) become, asymptotically,
simple powers of their argument

In(x) ≈
1

n!

(x

2

)n

n ≥ 0

K0(x) ≈ − ln(x)

Kn(x) ≈
(n− 1)!

2

(x

2

)

−n

n > 0

(6.6.2)

These expressions are virtually identical to those forJn(x) andYn(x) in this region,
except for the factor of−2/π difference betweenYn(x) andKn(x). In the region

6.6 Modified Bessel Functions of Integer Order 229

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

bjp=bjp*BIGNI
bessj=bessj*BIGNI
sum=sum*BIGNI

endif
if(jsum.ne.0)sum=sum+bj Accumulate the sum.
jsum=1-jsum Change 0 to 1 or vice versa.
if(j.eq.n)bessj=bjp Save the unnormalized answer.

enddo 12

sum=2.*sum-bj Compute (5.5.16)
bessj=bessj/sum and use it to normalize the answer.

endif
if(x.lt.0..and.mod(n,2).eq.1)bessj=-bessj
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 9.

Hart, J.F., et al. 1968, Computer Approximations (New York: Wiley), §6.8, p. 141. [1]

6.6 Modified Bessel Functions of Integer Order

The modified Bessel functionsIn(x) andKn(x) are equivalent to the usual
Bessel functionsJn andYn evaluated for purely imaginary arguments. In detail,
the relationship is

In(x) = (−i)nJn(ix)

Kn(x) =
π

2
in+1[Jn(ix) + iYn(ix)]

(6.6.1)

The particular choice of prefactor and of the linear combination ofJn andYn to form
Kn are simply choices that make the functions real-valued for real argumentsx.

For small argumentsx ≪ n, bothIn(x) andKn(x) become, asymptotically,
simple powers of their argument

In(x) ≈ 1

n!

(x

2

)

n

n ≥ 0

K0(x) ≈ − ln(x)

Kn(x) ≈ (n− 1)!

2

(x

2

)

−n

n > 0

(6.6.2)

These expressions are virtually identical to those forJn(x) andYn(x) in this region,
except for the factor of−2/π difference betweenYn(x) andKn(x). In the region

230 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

0

1

2

3

4

0 1 2 3 4

m
od

ifi
ed

 B
es

se
l f

un
ct

io
ns

x

K0 K1 K2

I0

I1

I2

I3

Figure 6.6.1. Modified Bessel functionsI0(x) throughI3(x), K0(x) throughK2(x).

x ≫ n, however, the modified functions have quite different behavior than the
Bessel functions,

In(x) ≈ 1√
2πx

exp(x)

Kn(x) ≈ π√
2πx

exp(−x)
(6.6.3)

The modified functions evidently have exponential rather than sinusoidal
behavior for large arguments (see Figure 6.6.1). The smoothness of the modified
Bessel functions, once the exponential factor is removed, makes a simple polynomial
approximation of a few terms quite suitable for the functionsI0, I1, K0, andK1.
The following routines, based on polynomial coefficients given by Abramowitz and
Stegun[1], evaluate these four functions, and will provide the basis for upward
recursion forn > 1 when x > n.

FUNCTION bessi0(x)
REAL bessi0,x

Returns the modified Bessel function I0(x) for any real x.
REAL ax
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,

* q8,q9,y Accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,q8,q9
DATA p1,p2,p3,p4,p5,p6,p7/1.0d0,3.5156229d0,3.0899424d0,1.2067492d0,

* 0.2659732d0,0.360768d-1,0.45813d-2/
DATA q1,q2,q3,q4,q5,q6,q7,q8,q9/0.39894228d0,0.1328592d-1,

* 0.225319d-2,-0.157565d-2,0.916281d-2,-0.2057706d-1,
* 0.2635537d-1,-0.1647633d-1,0.392377d-2/

6.6 Modified Bessel Functions of Integer Order 231

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if (abs(x).lt.3.75) then
y=(x/3.75)**2
bessi0=p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7)))))

else
ax=abs(x)
y=3.75/ax
bessi0=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4

* +y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))))
endif
return
END

FUNCTION bessk0(x)
REAL bessk0,x

C USES bessi0
Returns the modified Bessel function K0(x) for positive real x.

REAL bessi0
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,q1,

* q2,q3,q4,q5,q6,q7,y Accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7
DATA p1,p2,p3,p4,p5,p6,p7/-0.57721566d0,0.42278420d0,0.23069756d0,

* 0.3488590d-1,0.262698d-2,0.10750d-3,0.74d-5/
DATA q1,q2,q3,q4,q5,q6,q7/1.25331414d0,-0.7832358d-1,0.2189568d-1,

* -0.1062446d-1,0.587872d-2,-0.251540d-2,0.53208d-3/
if (x.le.2.0) then Polynomial fit.

y=x*x/4.0
bessk0=(-log(x/2.0)*bessi0(x))+(p1+y*(p2+y*(p3+

* y*(p4+y*(p5+y*(p6+y*p7))))))
else

y=(2.0/x)
bessk0=(exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+

* y*(q4+y*(q5+y*(q6+y*q7))))))
endif
return
END

FUNCTION bessi1(x)
REAL bessi1,x

Returns the modified Bessel function I1(x) for any real x.
REAL ax
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,

* q8,q9,y Accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,q8,q9
DATA p1,p2,p3,p4,p5,p6,p7/0.5d0,0.87890594d0,0.51498869d0,

* 0.15084934d0,0.2658733d-1,0.301532d-2,0.32411d-3/
DATA q1,q2,q3,q4,q5,q6,q7,q8,q9/0.39894228d0,-0.3988024d-1,

* -0.362018d-2,0.163801d-2,-0.1031555d-1,0.2282967d-1,
* -0.2895312d-1,0.1787654d-1,-0.420059d-2/

if (abs(x).lt.3.75) then Polynomial fit.
y=(x/3.75)**2
bessi1=x*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))))

else
ax=abs(x)
y=3.75/ax
bessi1=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+

* y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))))
if(x.lt.0.)bessi1=-bessi1

endif
return
END

232 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION bessk1(x)
REAL bessk1,x

C USES bessi1
Returns the modified Bessel function K1(x) for positive real x.

REAL bessi1
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,q1,

* q2,q3,q4,q5,q6,q7,y Accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7
DATA p1,p2,p3,p4,p5,p6,p7/1.0d0,0.15443144d0,-0.67278579d0,

* -0.18156897d0,-0.1919402d-1,-0.110404d-2,-0.4686d-4/
DATA q1,q2,q3,q4,q5,q6,q7/1.25331414d0,0.23498619d0,-0.3655620d-1,

* 0.1504268d-1,-0.780353d-2,0.325614d-2,-0.68245d-3/
if (x.le.2.0) then Polynomial fit.

y=x*x/4.0
bessk1=(log(x/2.0)*bessi1(x))+(1.0/x)*(p1+y*(p2+

* y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))))
else

y=2.0/x
bessk1=(exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+

* y*(q4+y*(q5+y*(q6+y*q7))))))
endif
return
END

The recurrence relation forIn(x) andKn(x) is the same as that forJn(x)
andYn(x) provided thatix is substituted forx. This has the effect of changing
a sign in the relation,

In+1(x) = −
(

2n

x

)

In(x) + In−1(x)

Kn+1(x) = +

(

2n

x

)

Kn(x) + Kn−1(x)

(6.6.4)

These relations are alwaysunstablefor upward recurrence. ForKn, itself growing,
this presents no problem. ForIn, however, the strategy of downward recursion is
therefore required once again, and the starting point for the recursion may be chosen
in the same manner as for the routinebessj. The only fundamental difference is
that the normalization formula forIn(x) has an alternating minus sign in successive
terms, which again arises from the substitution ofix for x in the formula used
previously for Jn

1 = I0(x) − 2I2(x) + 2I4(x) − 2I6(x) + · · · (6.6.5)

In fact, we prefer simply to normalize with a call tobessi0.
With this simple modification, the recursion routinesbessj andbessy become

the new routinesbessi and bessk:

FUNCTION bessk(n,x)
INTEGER n
REAL bessk,x

C USES bessk0,bessk1
Returns the modified Bessel function Kn(x) for positive x and n ≥ 2.

INTEGER j
REAL bk,bkm,bkp,tox,bessk0,bessk1
if (n.lt.2) pause ’bad argument n in bessk’
tox=2.0/x

6.6 Modified Bessel Functions of Integer Order 233

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

bkm=bessk0(x) Upward recurrence for all x...
bk=bessk1(x)
do 11 j=1,n-1 ...and here it is.

bkp=bkm+j*tox*bk
bkm=bk
bk=bkp

enddo 11

bessk=bk
return
END

FUNCTION bessi(n,x)
INTEGER n,IACC
REAL bessi,x,BIGNO,BIGNI
PARAMETER (IACC=40,BIGNO=1.0e10,BIGNI=1.0e-10)

C USES bessi0
Returns the modified Bessel function In(x) for any real x and n ≥ 2.

INTEGER j,m
REAL bi,bim,bip,tox,bessi0
if (n.lt.2) pause ’bad argument n in bessi’
if (x.eq.0.) then

bessi=0.
else

tox=2.0/abs(x)
bip=0.0
bi=1.0
bessi=0.
m=2*((n+int(sqrt(float(IACC*n))))) Downward recurrence from even m.
do 11 j=m,1,-1 Make IACC larger to increase accuracy.

bim=bip+float(j)*tox*bi The downward recurrence.
bip=bi
bi=bim
if (abs(bi).gt.BIGNO) then Renormalize to prevent overflows.

bessi=bessi*BIGNI
bi=bi*BIGNI
bip=bip*BIGNI

endif
if (j.eq.n) bessi=bip

enddo 11

bessi=bessi*bessi0(x)/bi Normalize with bessi0.
if (x.lt.0..and.mod(n,2).eq.1) bessi=-bessi

endif
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §9.8. [1]

Carrier, G.F., Krook, M. and Pearson, C.E. 1966, Functions of a Complex Variable (New York:
McGraw-Hill), pp. 220ff.

234 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

6.7 Bessel Functions of Fractional Order, Airy
Functions, Spherical Bessel Functions

Many algorithms have been proposed for computing Bessel functions of fractional order
numerically. Most of them are, in fact, not very good in practice. The routines given here are
rather complicated, but they can be recommended wholeheartedly.

Ordinary Bessel Functions

The basic idea isSteed’s method, which was originally developed[1] for Coulomb wave
functions. The method calculatesJν , J ′

ν , Yν , andY ′

ν simultaneously, and so involves four
relations among these functions. Three of the relations come from two continued fractions,
one of which is complex. The fourth is provided by the Wronskian relation

W ≡ JνY
′

ν − YνJ
′

ν =
2

πx
(6.7.1)

The first continued fraction, CF1, is defined by

fν ≡ J ′

ν

Jν
=

ν

x
− Jν+1

Jν

=
ν

x
− 1

2(ν + 1)/x −
1

2(ν + 2)/x − · · ·
(6.7.2)

You can easily derive it from the three-term recurrence relation for Bessel functions: Start with
equation (6.5.6) and use equation (5.5.18). Forward evaluation of the continued fraction by
one of the methods of§5.2 is essentially equivalent to backward recurrence of the recurrence
relation. The rate of convergence of CF1 is determined by the position of the turning point
xtp =

√

ν(ν + 1) ≈ ν, beyond which the Bessel functions become oscillatory. If x <
∼

xtp,
convergence is very rapid. Ifx >

∼
xtp, then each iteration of the continued fraction effectively

increasesν by one untilx <
∼

xtp; thereafter rapid convergence sets in. Thus the number
of iterations of CF1 is of orderx for largex. In the routinebessjy we set the maximum
allowed number of iterations to 10,000. For largerx, you can use the usual asymptotic
expressions for Bessel functions.

One can show that the sign ofJν is the same as the sign of the denominator of CF1
once it has converged.

The complex continued fraction CF2 is defined by

p + iq ≡ J ′

ν + iY ′

ν

Jν + iYν
= − 1

2x
+ i +

i

x

(1/2)2 − ν2

2(x + i) +

(3/2)2 − ν2

2(x + 2i) +
· · · (6.7.3)

(We sketch the derivation of CF2 in the analogous case of modified Bessel functions in the
next subsection.) This continued fraction converges rapidly forx >

∼
xtp, while convergence

fails asx → 0. We have to adopt a special method for smallx, which we describe below. For
x not too small, we can ensure thatx >

∼
xtp by a stable recurrence ofJν andJ ′

ν downwards
to a valueν = µ <

∼
x, thus yielding the ratiofµ at this lower value ofν. This is the stable

direction for the recurrence relation. The initial values for the recurrence are

Jν = arbitrary, J ′

ν = fνJν , (6.7.4)

with the sign of the arbitrary initial value ofJν chosen to be the sign of the denominator of
CF1. Choosing the initial value ofJν very small minimizes the possibility of overflow during
the recurrence. The recurrence relations are

Jν−1 =
ν

x
Jν + J ′

ν

J ′

ν−1 =
ν − 1

x
Jν−1 − Jν

(6.7.5)

6.7 Bessel Functions of Fractional Order 235

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Once CF2 has been evaluated atν = µ, then with the Wronskian (6.7.1) we have enough
relations to solve for all four quantities. The formulas are simplified by introducing the quantity

γ ≡ p− fµ
q

(6.7.6)

Then

Jµ = ±
(

W

q + γ(p− fµ)

)1/2

(6.7.7)

J ′

µ = fµJµ (6.7.8)

Yµ = γJµ (6.7.9)

Y ′

µ = Yµ

(

p +
q

γ

)

(6.7.10)

The sign ofJµ in (6.7.7) is chosen to be the same as the sign of the initialJν in (6.7.4).
Once all four functions have been determined at the valueν = µ, we can find them at the

original value ofν. ForJν andJ ′

ν , simply scale the values in (6.7.4) by the ratio of (6.7.7) to
the value found after applying the recurrence (6.7.5). The quantitiesYν andY ′

ν can be found
by starting with the values in (6.7.9) and (6.7.10) and using the stable upwards recurrence

Yν+1 =
2ν

x
Yν − Yν−1 (6.7.11)

together with the relation

Y ′

ν =
ν

x
Yν − Yν+1 (6.7.12)

Now turn to the case of smallx, when CF2 is not suitable. Temme[2] has given a
good method of evaluatingYν andYν+1, and henceY ′

ν from (6.7.12), by series expansions
that accurately handle the singularity asx → 0. The expansions work only for|ν| ≤ 1/2,
and so now the recurrence (6.7.5) is used to evaluatefν at a valueν = µ in this interval.
Then one calculatesJµ from

Jµ =
W

Y ′

µ − Yµfµ
(6.7.13)

andJ ′

µ from (6.7.8). The values at the original value ofν are determined by scaling as before,
and theY ’s are recurred up as before.

Temme’s series are

Yν = −
∞
∑

k=0

ckgk Yν+1 = − 2

x

∞
∑

k=0

ckhk (6.7.14)

Here

ck =
(−x2/4)k

k!
(6.7.15)

while the coefficientsgk andhk are defined in terms of quantitiespk , qk, andfk that can
be found by recursion:

gk = fk +
2

ν
sin2

(νπ

2

)

qk

hk = −kgk + pk

pk =
pk−1

k − ν

qk =
qk−1

k + ν

fk =
kfk−1 + pk−1 + qk−1

k2 − ν2

(6.7.16)

236 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The initial values for the recurrences are

p0 =
1

π

(x

2

)

−ν

Γ(1 + ν)

q0 =
1

π

(x

2

)ν

Γ(1 − ν)

f0 =
2

π

νπ

sinνπ

[

coshσΓ1(ν) +
sinhσ

σ
ln

(

2

x

)

Γ2(ν)

]

(6.7.17)

with

σ = ν ln

(

2

x

)

Γ1(ν) =
1

2ν

[

1

Γ(1 − ν)
− 1

Γ(1 + ν)

]

Γ2(ν) =
1

2

[

1

Γ(1− ν)
+

1

Γ(1 + ν)

]

(6.7.18)

The whole point of writing the formulas in this way is that the potential problems asν → 0
can be controlled by evaluatingνπ/ sin νπ, sinhσ/σ, andΓ1 carefully. In particular, Temme
gives Chebyshev expansions forΓ1(ν) andΓ2(ν). We have rearranged his expansion forΓ1

to be explicitly an even series inν so that we can use our routinechebev as explained in§5.8.
The routine assumesν ≥ 0. For negativeν you can use the reflection formulas

J−ν = cos νπ Jν − sinνπ Yν

Y−ν = sin νπ Jν + cos νπ Yν

(6.7.19)

The routine also assumesx > 0. Forx < 0 the functions are in general complex, but
expressible in terms of functions withx > 0. Forx = 0, Yν is singular.

Internal arithmetic in the routine is carried out in double precision. To maintain
portability, complex arithmetic has been recoded with real variables.

SUBROUTINE bessjy(x,xnu,rj,ry,rjp,ryp)
INTEGER MAXIT
REAL rj,rjp,ry,ryp,x,xnu,XMIN
DOUBLE PRECISION EPS,FPMIN,PI
PARAMETER (EPS=1.e-10,FPMIN=1.e-30,MAXIT=10000,XMIN=2.,

* PI=3.141592653589793d0)
C USES beschb

Returns the Bessel functions rj = Jν , ry = Yν and their derivatives rjp = J ′

ν , ryp = Y ′

ν ,
for positive x and for xnu = ν ≥ 0. The relative accuracy is within one or two significant
digits of EPS, except near a zero of one of the functions, where EPS controls its absolute
accuracy. FPMIN is a number close to the machine’s smallest floating-point number. All
internal arithmetic is in double precision. To convert the entire routine to double precision,
change the REAL declaration above and decrease EPS to 10−16. Also convert the subroutine
beschb.

INTEGER i,isign,l,nl
DOUBLE PRECISION a,b,br,bi,c,cr,ci,d,del,del1,den,di,dlr,dli,

* dr,e,f,fact,fact2,fact3,ff,gam,gam1,gam2,gammi,gampl,h,
* p,pimu,pimu2,q,r,rjl,rjl1,rjmu,rjp1,rjpl,rjtemp,ry1,
* rymu,rymup,rytemp,sum,sum1,temp,w,x2,xi,xi2,xmu,xmu2

if(x.le.0..or.xnu.lt.0.) pause ’bad arguments in bessjy’
if(x.lt.XMIN)then nl is the number of downward recurrences of the J’s and

upward recurrences of Y ’s. xmu lies between −1/2 and
1/2 for x < XMIN, while it is chosen so that x is greater
than the turning point for x ≥ XMIN.

nl=int(xnu+.5d0)
else

nl=max(0,int(xnu-x+1.5d0))
endif
xmu=xnu-nl
xmu2=xmu*xmu
xi=1.d0/x
xi2=2.d0*xi
w=xi2/PI The Wronskian.

6.7 Bessel Functions of Fractional Order 237

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

isign=1 Evaluate CF1 by modified Lentz’s method (§5.2). isign keeps
track of sign changes in the denominator.h=xnu*xi

if(h.lt.FPMIN)h=FPMIN
b=xi2*xnu
d=0.d0
c=h
do 11 i=1,MAXIT

b=b+xi2
d=b-d
if(abs(d).lt.FPMIN)d=FPMIN
c=b-1.d0/c
if(abs(c).lt.FPMIN)c=FPMIN
d=1.d0/d
del=c*d
h=del*h
if(d.lt.0.d0)isign=-isign
if(abs(del-1.d0).lt.EPS)goto 1

enddo 11

pause ’x too large in bessjy; try asymptotic expansion’
1 continue

rjl=isign*FPMIN Initialize Jν and J ′

ν for downward recurrence.
rjpl=h*rjl
rjl1=rjl Store values for later rescaling.
rjp1=rjpl
fact=xnu*xi
do 12 l=nl,1,-1

rjtemp=fact*rjl+rjpl
fact=fact-xi
rjpl=fact*rjtemp-rjl
rjl=rjtemp

enddo 12

if(rjl.eq.0.d0)rjl=EPS
f=rjpl/rjl Now have unnormalized Jµ and J′

µ.
if(x.lt.XMIN) then Use series.

x2=.5d0*x
pimu=PI*xmu
if(abs(pimu).lt.EPS)then

fact=1.d0
else

fact=pimu/sin(pimu)
endif
d=-log(x2)
e=xmu*d
if(abs(e).lt.EPS)then

fact2=1.d0
else

fact2=sinh(e)/e
endif
call beschb(xmu,gam1,gam2,gampl,gammi) Chebyshev evaluation of Γ1 and Γ2.
ff=2.d0/PI*fact*(gam1*cosh(e)+gam2*fact2*d) f0.
e=exp(e)
p=e/(gampl*PI) p0.
q=1.d0/(e*PI*gammi) q0.
pimu2=0.5d0*pimu
if(abs(pimu2).lt.EPS)then

fact3=1.d0
else

fact3=sin(pimu2)/pimu2
endif
r=PI*pimu2*fact3*fact3
c=1.d0
d=-x2*x2
sum=ff+r*q
sum1=p

238 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 13 i=1,MAXIT
ff=(i*ff+p+q)/(i*i-xmu2)
c=c*d/i
p=p/(i-xmu)
q=q/(i+xmu)
del=c*(ff+r*q)
sum=sum+del
del1=c*p-i*del
sum1=sum1+del1
if(abs(del).lt.(1.d0+abs(sum))*EPS)goto 2

enddo 13

pause ’bessy series failed to converge’
2 continue

rymu=-sum
ry1=-sum1*xi2
rymup=xmu*xi*rymu-ry1
rjmu=w/(rymup-f*rymu) Equation (6.7.13).

else Evaluate CF2 by modified Lentz’s method
(§5.2).a=.25d0-xmu2

p=-.5d0*xi
q=1.d0
br=2.d0*x
bi=2.d0
fact=a*xi/(p*p+q*q)
cr=br+q*fact
ci=bi+p*fact
den=br*br+bi*bi
dr=br/den
di=-bi/den
dlr=cr*dr-ci*di
dli=cr*di+ci*dr
temp=p*dlr-q*dli
q=p*dli+q*dlr
p=temp
do 14 i=2,MAXIT

a=a+2*(i-1)
bi=bi+2.d0
dr=a*dr+br
di=a*di+bi
if(abs(dr)+abs(di).lt.FPMIN)dr=FPMIN
fact=a/(cr*cr+ci*ci)
cr=br+cr*fact
ci=bi-ci*fact
if(abs(cr)+abs(ci).lt.FPMIN)cr=FPMIN
den=dr*dr+di*di
dr=dr/den
di=-di/den
dlr=cr*dr-ci*di
dli=cr*di+ci*dr
temp=p*dlr-q*dli
q=p*dli+q*dlr
p=temp
if(abs(dlr-1.d0)+abs(dli).lt.EPS)goto 3

enddo 14

pause ’cf2 failed in bessjy’
3 continue

gam=(p-f)/q Equations (6.7.6) – (6.7.10).
rjmu=sqrt(w/((p-f)*gam+q))
rjmu=sign(rjmu,rjl)
rymu=rjmu*gam
rymup=rymu*(p+q/gam)
ry1=xmu*xi*rymu-rymup

endif
fact=rjmu/rjl

6.7 Bessel Functions of Fractional Order 239

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

rj=rjl1*fact Scale original Jν and J′

ν .
rjp=rjp1*fact
do 15 i=1,nl Upward recurrence of Yν .

rytemp=(xmu+i)*xi2*ry1-rymu
rymu=ry1
ry1=rytemp

enddo 15

ry=rymu
ryp=xnu*xi*rymu-ry1
return
END

SUBROUTINE beschb(x,gam1,gam2,gampl,gammi)
INTEGER NUSE1,NUSE2
DOUBLE PRECISION gam1,gam2,gammi,gampl,x
PARAMETER (NUSE1=5,NUSE2=5)

C USES chebev
Evaluates Γ1 and Γ2 by Chebyshev expansion for |x| ≤ 1/2. Also returns 1/Γ(1 + x) and
1/Γ(1 − x). If converting to double precision, set NUSE1 = 7, NUSE2 = 8.

REAL xx,c1(7),c2(8),chebev
SAVE c1,c2
DATA c1/-1.142022680371168d0,6.5165112670737d-3,

* 3.087090173086d-4,-3.4706269649d-6,6.9437664d-9,
* 3.67795d-11,-1.356d-13/

DATA c2/1.843740587300905d0,-7.68528408447867d-2,
* 1.2719271366546d-3,-4.9717367042d-6,-3.31261198d-8,
* 2.423096d-10,-1.702d-13,-1.49d-15/

xx=8.d0*x*x-1.d0 Multiply x by 2 to make range be −1 to 1, and then
apply transformation for evaluating even Cheby-
shev series.

gam1=chebev(-1.,1.,c1,NUSE1,xx)
gam2=chebev(-1.,1.,c2,NUSE2,xx)
gampl=gam2-x*gam1
gammi=gam2+x*gam1
return
END

Modified Bessel Functions

Steed’s method does not work for modified Bessel functions because in this case CF2 is
purely imaginary and we have only three relations among the four functions. Temme[3] has
given a normalization condition that provides the fourth relation.

The Wronskian relation is

W ≡ IνK
′

ν −KνI
′

ν = − 1

x
(6.7.20)

The continued fraction CF1 becomes

fν ≡ I ′ν
Iν

=
ν

x
+

1

2(ν + 1)/x +

1

2(ν + 2)/x +
· · · (6.7.21)

To get CF2 and the normalization condition in a convenient form, consider the sequence
of confluent hypergeometric functions

zn(x) = U(ν + 1/2 + n, 2ν + 1, 2x) (6.7.22)

for fixed ν. Then

Kν(x) = π1/2(2x)νe−xz0(x) (6.7.23)

Kν+1(x)

Kν(x)
=

1

x

[

ν +
1

2
+ x +

(

ν2 − 1

4

)

z1

z0

]

(6.7.24)

240 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Equation (6.7.23) is the standard expression forKν in terms of a confluent hypergeometric
function, while equation (6.7.24) follows from relations between contiguous confluent hy-
pergeometric functions (equations 13.4.16 and 13.4.18 in Abramowitz and Stegun). Now
the functionszn satisfy the three-term recurrence relation (equation 13.4.15 in Abramowitz
and Stegun)

zn−1(x) = bnzn(x) + an+1zn+1 (6.7.25)
with

bn = 2(n + x)

an+1 = −[(n+ 1/2)2 − ν2]
(6.7.26)

Following the steps leading to equation (5.5.18), we get the continued fractionCF2

z1

z0
=

1

b1 +

a2

b2 +
· · · (6.7.27)

from which (6.7.24) givesKν+1/Kν and thusK ′

ν/Kν .
Temme’s normalization condition is that

∞
∑

n=0

Cnzn =

(

1

2x

)ν+1/2

(6.7.28)

where

Cn =
(−1)n

n!

Γ(ν + 1/2 + n)

Γ(ν + 1/2 − n)
(6.7.29)

Note that theCn’s can be determined by recursion:

C0 = 1, Cn+1 = − an+1

n + 1
Cn (6.7.30)

We use the condition (6.7.28) by finding

S =
∞
∑

n=1

Cn
zn
z0

(6.7.31)

Then

z0 =

(

1

2x

)ν+1/2
1

1 + S
(6.7.32)

and (6.7.23) givesKν .
Thompson and Barnett[4] have given a clever method of doing the sum (6.7.31)

simultaneously with the forward evaluation of the continued fraction CF2. Suppose the
continued fraction is being evaluated as

z1

z0
=

∞
∑

n=0

∆hn (6.7.33)

where the increments∆hn are being found by, e.g., Steed’s algorithm or the modified Lentz’s
algorithm of§5.2. Then the approximation toS keeping the firstN terms can be found as

SN =

N
∑

n=1

Qn∆hn (6.7.34)

Here

Qn =

n
∑

k=1

Ckqk (6.7.35)

and qk is found by recursion from

qk+1 = (qk−1 − bkqk)/ak+1 (6.7.36)

starting withq0 = 0, q1 = 1. For the case at hand, approximately three times as many terms
are needed to getS to converge as are needed simply for CF2 to converge.

6.7 Bessel Functions of Fractional Order 241

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

To findKν andKν+1 for smallx we use series analogous to (6.7.14):

Kν =

∞
∑

k=0

ckfk Kν+1 =
2

x

∞
∑

k=0

ckhk (6.7.37)

Here

ck =
(x2/4)k

k!
hk = −kfk + pk

pk =
pk−1

k − ν

qk =
qk−1

k + ν

fk =
kfk−1 + pk−1 + qk−1

k2 − ν2

(6.7.38)

The initial values for the recurrences are

p0 =
1

2

(x

2

)

−ν

Γ(1 + ν)

q0 =
1

2

(x

2

)ν

Γ(1− ν)

f0 =
νπ

sin νπ

[

coshσΓ1(ν) +
sinh σ

σ
ln

(

2

x

)

Γ2(ν)

]

(6.7.39)

Both the series for smallx, and CF2 and the normalization relation (6.7.28) require
|ν| ≤ 1/2. In both cases, therefore, we recurseIν down to a valueν = µ in this interval, find
Kµ there, and recurseKν back up to the original value ofν.

The routine assumesν ≥ 0. For negativeν use the reflection formulas

I−ν = Iν +
2

π
sin(νπ)Kν

K−ν = Kν

(6.7.40)

Note that for largex, Iν ∼ ex, Kν ∼ e−x, and so these functions will overflow or
underflow. It is often desirable to be able to compute the scaled quantities e−xIν andexKν.
Simply omitting the factore−x in equation (6.7.23) will ensure that all four quantities will
have the appropriate scaling. If you also want to scale the four quantitiesfor smallx when
the series in equation (6.7.37) are used, you must multiplyeach series byex.

SUBROUTINE bessik(x,xnu,ri,rk,rip,rkp)
INTEGER MAXIT
REAL ri,rip,rk,rkp,x,xnu,XMIN
DOUBLE PRECISION EPS,FPMIN,PI
PARAMETER (EPS=1.e-10,FPMIN=1.e-30,MAXIT=10000,XMIN=2.,

* PI=3.141592653589793d0)
C USES beschb

Returns the modified Bessel functions ri = Iν , rk = Kν and their derivatives rip = I′ν ,
rkp = K′

ν , for positive x and for xnu = ν ≥ 0. The relative accuracy is within one or
two significant digits of EPS. FPMIN is a number close to the machine’s smallest floating-
point number. All internal arithmetic is in double precision. To convert the entire routine
to double precision, change the REAL declaration above and decrease EPS to 10−16. Also
convert the subroutine beschb.

INTEGER i,l,nl
DOUBLE PRECISION a,a1,b,c,d,del,del1,delh,dels,e,f,fact,

* fact2,ff,gam1,gam2,gammi,gampl,h,p,pimu,q,q1,q2,
* qnew,ril,ril1,rimu,rip1,ripl,ritemp,rk1,rkmu,rkmup,
* rktemp,s,sum,sum1,x2,xi,xi2,xmu,xmu2

if(x.le.0..or.xnu.lt.0.) pause ’bad arguments in bessik’

242 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

nl=int(xnu+.5d0) nl is the number of downward recurrences
of the I’s and upward recurrences
of K’s. xmu lies between −1/2 and
1/2.

xmu=xnu-nl
xmu2=xmu*xmu
xi=1.d0/x
xi2=2.d0*xi
h=xnu*xi Evaluate CF1 by modified Lentz’s method

(§5.2).if(h.lt.FPMIN)h=FPMIN
b=xi2*xnu
d=0.d0
c=h
do 11 i=1,MAXIT

b=b+xi2
d=1.d0/(b+d) Denominators cannot be zero here, so no

need for special precautions.c=b+1.d0/c
del=c*d
h=del*h
if(abs(del-1.d0).lt.EPS)goto 1

enddo 11

pause ’x too large in bessik; try asymptotic expansion’
1 continue

ril=FPMIN Initialize Iν and I′ν for downward recur-
rence.ripl=h*ril

ril1=ril Store values for later rescaling.
rip1=ripl
fact=xnu*xi
do 12 l=nl,1,-1

ritemp=fact*ril+ripl
fact=fact-xi
ripl=fact*ritemp+ril
ril=ritemp

enddo 12

f=ripl/ril Now have unnormalized Iµ and I′µ.
if(x.lt.XMIN) then Use series.

x2=.5d0*x
pimu=PI*xmu
if(abs(pimu).lt.EPS)then

fact=1.d0
else

fact=pimu/sin(pimu)
endif
d=-log(x2)
e=xmu*d
if(abs(e).lt.EPS)then

fact2=1.d0
else

fact2=sinh(e)/e
endif
call beschb(xmu,gam1,gam2,gampl,gammi) Chebyshev evaluation of Γ1 and Γ2.
ff=fact*(gam1*cosh(e)+gam2*fact2*d) f0.
sum=ff
e=exp(e)
p=0.5d0*e/gampl p0.
q=0.5d0/(e*gammi) q0.
c=1.d0
d=x2*x2
sum1=p
do 13 i=1,MAXIT

ff=(i*ff+p+q)/(i*i-xmu2)
c=c*d/i
p=p/(i-xmu)
q=q/(i+xmu)
del=c*ff
sum=sum+del
del1=c*(p-i*ff)

6.7 Bessel Functions of Fractional Order 243

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

sum1=sum1+del1
if(abs(del).lt.abs(sum)*EPS)goto 2

enddo 13

pause ’bessk series failed to converge’
2 continue

rkmu=sum
rk1=sum1*xi2

else Evaluate CF2 by Steed’s algorithm (§5.2),
which is OK because there can be no
zero denominators.

b=2.d0*(1.d0+x)
d=1.d0/b
delh=d
h=delh
q1=0.d0 Initializations for recurrence (6.7.35).
q2=1.d0
a1=.25d0-xmu2
c=a1
q=c First term in equation (6.7.34).
a=-a1
s=1.d0+q*delh
do 14 i=2,MAXIT

a=a-2*(i-1)
c=-a*c/i
qnew=(q1-b*q2)/a
q1=q2
q2=qnew
q=q+c*qnew
b=b+2.d0
d=1.d0/(b+a*d)
delh=(b*d-1.d0)*delh
h=h+delh
dels=q*delh
s=s+dels
if(abs(dels/s).lt.EPS)goto 3 Need only test convergence of sum since

CF2 itself converges more quickly.enddo 14

pause ’bessik: failure to converge in cf2’
3 continue

h=a1*h
rkmu=sqrt(PI/(2.d0*x))*exp(-x)/s Omit the factor exp(−x) to scale all the

returned functions by exp(x) for x ≥
XMIN.

rk1=rkmu*(xmu+x+.5d0-h)*xi
endif
rkmup=xmu*xi*rkmu-rk1
rimu=xi/(f*rkmu-rkmup) Get Iµ from Wronskian.
ri=(rimu*ril1)/ril Scale original Iν and I′ν .
rip=(rimu*rip1)/ril
do 15 i=1,nl Upward recurrence of Kν .

rktemp=(xmu+i)*xi2*rk1+rkmu
rkmu=rk1
rk1=rktemp

enddo 15

rk=rkmu
rkp=xnu*xi*rkmu-rk1
return
END

Airy Functions

For positivex, the Airy functions are defined by

Ai(x) =
1

π

√

x

3
K1/3(z) (6.7.41)

244 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Bi(x) =

√

x

3
[I1/3(z) + I−1/3(z)] (6.7.42)

where

z =
2

3
x3/2 (6.7.43)

By using the reflection formula (6.7.40), we can convert (6.7.42) into the computationally
more useful form

Bi(x) =
√
x

[

2√
3
I1/3(z) +

1

π
K1/3(z)

]

(6.7.44)

so thatAi andBi can be evaluated with a single call tobessik.
The derivatives should not be evaluated by simply differentiating the above expressions

because of possible subtraction errors nearx = 0. Instead, use the equivalent expressions

Ai′(x) = − x

π
√

3
K2/3(z)

Bi′(x) = x

[

2√
3
I2/3(z) +

1

π
K2/3(z)

] (6.7.45)

The corresponding formulas for negative arguments are

Ai(−x) =

√
x

2

[

J1/3(z) −
1√
3
Y1/3(z)

]

Bi(−x) = −
√
x

2

[

1√
3
J1/3(z) + Y1/3(z)

]

Ai′(−x) =
x

2

[

J2/3(z) +
1√
3
Y2/3(z)

]

Bi′(−x) =
x

2

[

1√
3
J2/3(z) − Y2/3(z)

]

(6.7.46)

SUBROUTINE airy(x,ai,bi,aip,bip)
REAL ai,aip,bi,bip,x

C USES bessik,bessjy
Returns Airy functions Ai(x), Bi(x), and their derivatives Ai′(x), Bi′(x).

REAL absx,ri,rip,rj,rjp,rk,rkp,rootx,ry,ryp,z,
* PI,THIRD,TWOTHR,ONOVRT

PARAMETER (PI=3.1415927,THIRD=1./3.,TWOTHR=2.*THIRD,
* ONOVRT=.57735027)

absx=abs(x)
rootx=sqrt(absx)
z=TWOTHR*absx*rootx
if(x.gt.0.)then

call bessik(z,THIRD,ri,rk,rip,rkp)
ai=rootx*ONOVRT*rk/PI
bi=rootx*(rk/PI+2.*ONOVRT*ri)
call bessik(z,TWOTHR,ri,rk,rip,rkp)
aip=-x*ONOVRT*rk/PI
bip=x*(rk/PI+2.*ONOVRT*ri)

else if(x.lt.0.)then
call bessjy(z,THIRD,rj,ry,rjp,ryp)
ai=.5*rootx*(rj-ONOVRT*ry)
bi=-.5*rootx*(ry+ONOVRT*rj)
call bessjy(z,TWOTHR,rj,ry,rjp,ryp)
aip=.5*absx*(ONOVRT*ry+rj)
bip=.5*absx*(ONOVRT*rj-ry)

else Case x = 0.
ai=.35502805
bi=ai/ONOVRT

6.7 Bessel Functions of Fractional Order 245

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

aip=-.25881940
bip=-aip/ONOVRT

endif
return
END

Spherical Bessel Functions

For integern, spherical Bessel functions are defined by

jn(x) =

√

π

2x
Jn+(1/2)(x)

yn(x) =

√

π

2x
Yn+(1/2)(x)

(6.7.47)

They can be evaluated by a call tobessjy, and the derivatives can safely be found from
the derivatives of equation (6.7.47).

Note that in the continued fraction CF2 in (6.7.3) just the first term survives forν = 1/2.
Thus one can make a very simple algorithm for spherical Bessel functions along the lines of
bessjy by always recursingjn down ton = 0, settingp andq from the first term in CF2, and
then recursingyn up. No special series is required nearx = 0. However,bessjy is already
so efficient that we have not bothered to provide an independent routine for spherical Bessels.

SUBROUTINE sphbes(n,x,sj,sy,sjp,syp)
INTEGER n
REAL sj,sjp,sy,syp,x

C USES bessjy
Returns spherical Bessel functions jn(x), yn(x), and their derivatives j′n(x), y′n(x) for
integer n.

REAL factor,order,rj,rjp,ry,ryp,RTPIO2
PARAMETER (RTPIO2=1.2533141)
if(n.lt.0.or.x.le.0.)pause ’bad arguments in sphbes’
order=n+0.5
call bessjy(x,order,rj,ry,rjp,ryp)
factor=RTPIO2/sqrt(x)
sj=factor*rj
sy=factor*ry
sjp=factor*rjp-sj/(2.*x)
syp=factor*ryp-sy/(2.*x)
return
END

CITED REFERENCES AND FURTHER READING:

Barnett, A.R., Feng, D.H., Steed, J.W., and Goldfarb, L.J.B. 1974, Computer Physics Commu-
nications, vol. 8, pp. 377–395. [1]

Temme, N.M. 1976, Journal of Computational Physics, vol. 21, pp. 343–350 [2]; 1975, op. cit.,
vol. 19, pp. 324–337. [3]

Thompson, I.J., and Barnett, A.R. 1987, Computer Physics Communications, vol. 47, pp. 245–
257. [4]

Barnett, A.R. 1981, Computer Physics Communications, vol. 21, pp. 297–314.

Thompson, I.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490–509.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 10.

246 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

6.8 Spherical Harmonics

Spherical harmonics occur in a large variety of physical problems, for ex-
ample, whenever a wave equation, or Laplace’s equation, is solved by separa-
tion of variables in spherical coordinates. The spherical harmonicYlm(θ, φ),
−l ≤ m ≤ l, is a function of the two coordinatesθ, φ on the surface of a sphere.

The spherical harmonics are orthogonal for differentl andm, and they are
normalized so that their integrated square over the sphere is unity:

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)Yl′m′*(θ, φ)Ylm(θ, φ) = δl′ lδm′m (6.8.1)

Here asterisk denotes complex conjugation.
Mathematically, the spherical harmonics are related toassociated Legendre

polynomialsby the equation

Ylm(θ, φ) =

√

2l + 1

4π

(l−m)!

(l + m)!
Pm
l (cos θ)eimφ (6.8.2)

By using the relation

Yl,−m(θ, φ) = (−1)mYlm*(θ, φ) (6.8.3)

we can always relate a spherical harmonic to an associated Legendre polynomial
with m ≥ 0. With x ≡ cos θ, these are defined in terms of the ordinary Legendre
polynomials (cf.§4.5 and§5.5) by

Pm
l (x) = (−1)m(1 − x2)m/2 dm

dxm
Pl(x) (6.8.4)

The first few associated Legendre polynomials, and their corresponding nor-
malized spherical harmonics, are

P 0
0 (x) = 1 Y00 =

√

1

4π

P 1
1 (x) = − (1 − x2)1/2 Y11 = −

√

3

8π sin θeiφ

P 0
1 (x) = x Y10 =

√

3

4π
cos θ

P 2
2 (x) = 3 (1 − x2) Y22 = 1

4

√

15

2π sin2 θe2iφ

P 1
2 (x) = −3 (1 − x2)1/2x Y21 = −

√

15

8π
sin θ cos θeiφ

P 0
2 (x) = 1

2
(3x2 − 1) Y20 =

√

5

4π (3

2
cos2 θ − 1

2
)

(6.8.5)

There are many bad ways to evaluate associated Legendre polynomials numer-
ically. For example, there are explicit expressions, such as

Pm
l (x) =

(−1)m(l + m)!

2mm!(l−m)!
(1 − x2)m/2

[

1 − (l−m)(m + l + 1)

1!(m+ 1)

(

1 − x

2

)

+
(l−m)(l −m− 1)(m+ l + 1)(m+ l + 2)

2!(m+ 1)(m + 2)

(

1 − x

2

)2

− · · ·
]

(6.8.6)

6.8 Spherical Harmonics 247

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

where the polynomial continues up through the term in(1 − x)l−m. (See[1] for
this and related formulas.) This is not a satisfactory method because evaluation
of the polynomial involves delicate cancellations between successive terms, which
alternate in sign. For largel, the individual terms in the polynomial become very
much larger than their sum, and all accuracy is lost.

In practice, (6.8.6) can be used only in single precision (32-bit) forl up
to 6 or 8, and in double precision (64-bit) forl up to 15 or 18, depending on
the precision required for the answer. A more robust computational procedure is
therefore desirable, as follows:

The associated Legendre functions satisfy numerous recurrence relations, tab-
ulated in[1-2]. These are recurrences onl alone, onm alone, and on bothl and
m simultaneously. Most of the recurrences involvingm are unstable, and so
dangerous for numerical work. The following recurrence onl is, however, stable
(compare 5.5.1):

(l −m)Pm
l = x(2l− 1)Pm

l−1 − (l + m− 1)Pm
l−2 (6.8.7)

It is useful because there is a closed-form expression for the starting value,

Pm
m = (−1)m(2m− 1)!!(1− x2)m/2 (6.8.8)

(The notationn!! denotes the product of allodd integers less than or equal ton.)
Using (6.8.7) withl = m + 1, and settingPm

m−1 = 0, we find

Pm
m+1 = x(2m+ 1)Pm

m (6.8.9)

Equations (6.8.8) and (6.8.9) provide the two starting values required for (6.8.7)
for general l.

The function that implements this is

FUNCTION plgndr(l,m,x)
INTEGER l,m
REAL plgndr,x

Computes the associated Legendre polynomial Pm

l
(x). Here m and l are integers satisfying

0 ≤ m ≤ l, while x lies in the range −1 ≤ x ≤ 1.
INTEGER i,ll
REAL fact,pll,pmm,pmmp1,somx2
if(m.lt.0.or.m.gt.l.or.abs(x).gt.1.)pause ’bad arguments in plgndr’
pmm=1. Compute Pm

m
.

if(m.gt.0) then
somx2=sqrt((1.-x)*(1.+x))
fact=1.
do 11 i=1,m

pmm=-pmm*fact*somx2
fact=fact+2.

enddo 11

endif
if(l.eq.m) then

plgndr=pmm
else

pmmp1=x*(2*m+1)*pmm Compute Pm
m+1.

if(l.eq.m+1) then
plgndr=pmmp1

else Compute Pm

l
, l > m + 1.

do 12 ll=m+2,l

248 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll

enddo 12

plgndr=pll
endif

endif
return
END

CITED REFERENCES AND FURTHER READING:

Magnus, W., and Oberhettinger, F. 1949, Formulas and Theorems for the Functions of Mathe-
matical Physics (New York: Chelsea), pp. 54ff. [1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 8. [2]

6.9 Fresnel Integrals, Cosine and Sine Integrals

Fresnel Integrals

The two Fresnel integrals are defined by

C(x) =

∫ x

0

cos
(π

2
t2
)

dt, S(x) =

∫ x

0

sin
(π

2
t2
)

dt (6.9.1)

The most convenient way of evaluating these functions to arbitrary precision is
to use power series for smallx and a continued fraction for largex. The series are

C(x) = x−
(π

2

)2 x5

5 · 2!
+

(π

2

)4 x9

9 · 4!
− · · ·

S(x) =
(π

2

) x3

3 · 1!
−

(π

2

)3 x7

7 · 3!
+

(π

2

)5 x11

11 · 5!
− · · ·

(6.9.2)

There is a complex continued fraction that yields bothS(x) and C(x) si-
multaneously:

C(x) + iS(x) =
1 + i

2
erf z, z =

√
π

2
(1 − i)x (6.9.3)

where

ez
2

erfc z =
1√
π

(

1

z +

1/2

z +

1

z +

3/2

z +

2

z +
· · ·

)

=
2z√
π

(

1

2z2 + 1 −
1 · 2

2z2 + 5 −
3 · 4

2z2 + 9 − · · ·
) (6.9.4)

248 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll

enddo 12

plgndr=pll
endif

endif
return
END

CITED REFERENCES AND FURTHER READING:

Magnus, W., and Oberhettinger, F. 1949, Formulas and Theorems for the Functions of Mathe-
matical Physics (New York: Chelsea), pp. 54ff. [1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 8. [2]

6.9 Fresnel Integrals, Cosine and Sine Integrals

Fresnel Integrals

The two Fresnel integrals are defined by

C(x) =

∫ x

0

cos
(π

2
t2
)

dt, S(x) =

∫ x

0

sin
(π

2
t2
)

dt (6.9.1)

The most convenient way of evaluating these functions to arbitrary precision is
to use power series for smallx and a continued fraction for largex. The series are

C(x) = x−
(π

2

)2 x5

5 · 2!
+

(π

2

)4 x9

9 · 4!
− · · ·

S(x) =
(π

2

) x3

3 · 1!
−

(π

2

)3 x7

7 · 3!
+

(π

2

)5 x11

11 · 5!
− · · ·

(6.9.2)

There is a complex continued fraction that yields bothS(x) and C(x) si-
multaneously:

C(x) + iS(x) =
1 + i

2
erf z, z =

√
π

2
(1 − i)x (6.9.3)

where

ez
2

erfc z =
1√
π

(

1

z +

1/2

z +

1

z +

3/2

z +

2

z +
· · ·

)

=
2z√
π

(

1

2z2 + 1 −
1 · 2

2z2 + 5 −
3 · 4

2z2 + 9 − · · ·
) (6.9.4)

6.9 Fresnel Integrals, Cosine and Sine Integrals 249

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In the last line we have converted the “standard” form of the continued fraction to
its “even” form (see§5.2), which converges twice as fast. We must be careful not
to evaluate the alternating series (6.9.2) at too large a value ofx; inspection of the
terms shows thatx = 1.5 is a good point to switch over to the continued fraction.

Note that for largex

C(x) ∼ 1

2
+

1

πx
sin

(π

2
x2

)

, S(x) ∼ 1

2
− 1

πx
cos

(π

2
x2

)

(6.9.5)

Thus the precision of the routinefrenel may be limited by the precision of the
library routines for sine and cosine for largex.

SUBROUTINE frenel(x,s,c)
INTEGER MAXIT
REAL c,s,x,EPS,FPMIN,PI,PIBY2,XMIN
PARAMETER (EPS=6.e-8,MAXIT=100,FPMIN=1.e-30,XMIN=1.5,

* PI=3.1415927,PIBY2=1.5707963)
Computes the Fresnel integrals S(x) and C(x) for all real x.
Parameters: EPS is the relative error; MAXIT is the maximum number of iterations allowed;
FPMIN is a number near the smallest representable floating-point number; XMIN is the
dividing line between using the series and continued fraction; PI = π; PIBY2 = π/2.

INTEGER k,n
REAL a,absc,ax,fact,pix2,sign,sum,sumc,sums,term,test
COMPLEX b,cc,d,h,del,cs
LOGICAL odd
absc(h)=abs(real(h))+abs(aimag(h)) Statement function.
ax=abs(x)
if(ax.lt.sqrt(FPMIN))then Special case: avoid failure of convergence test

because of underflow.s=0.
c=ax

else if(ax.le.XMIN)then Evaluate both series simultaneously.
sum=0.
sums=0.
sumc=ax
sign=1.
fact=PIBY2*ax*ax
odd=.true.
term=ax
n=3
do 11 k=1,MAXIT

term=term*fact/k
sum=sum+sign*term/n
test=abs(sum)*EPS
if(odd)then

sign=-sign
sums=sum
sum=sumc

else
sumc=sum
sum=sums

endif
if(term.lt.test)goto 1
odd=.not.odd
n=n+2

enddo 11

pause ’series failed in frenel’
1 s=sums

c=sumc
else Evaluate continued fraction by modified Lentz’s

method (§5.2).pix2=PI*ax*ax
b=cmplx(1.,-pix2)

250 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

cc=1./FPMIN
d=1./b
h=d
n=-1
do 12 k=2,MAXIT

n=n+2
a=-n*(n+1)
b=b+4.
d=1./(a*d+b) Denominators cannot be zero.
cc=b+a/cc
del=cc*d
h=h*del
if(absc(del-1.).lt.EPS)goto 2

enddo 12

pause ’cf failed in frenel’
2 h=h*cmplx(ax,-ax)

cs=cmplx(.5,.5)*(1.-cmplx(cos(.5*pix2),sin(.5*pix2))*h)
c=real(cs)
s=aimag(cs)

endif
if(x.lt.0.)then Use antisymmetry.

c=-c
s=-s

endif
return
END

Cosine and Sine Integrals

The cosine and sine integrals are defined by

Ci(x) = γ + lnx +

∫ x

0

cos t− 1

t
dt

Si(x) =

∫ x

0

sin t

t
dt

(6.9.6)

Here γ ≈ 0.5772 . . . is Euler’s constant. We only need a way to calculate the
functions forx > 0, because

Si(−x) = −Si(x), Ci(−x) = Ci(x) − iπ (6.9.7)

Once again we can evaluate these functions by a judicious combination of
power series and complex continued fraction. The series are

Si(x) = x− x3

3 · 3!
+

x5

5 · 5!
− · · ·

Ci(x) = γ + lnx +

(

− x2

2 · 2!
+

x4

4 · 4!
− · · ·

) (6.9.8)

The continued fraction for the exponential integralE1(ix) is

E1(ix) = −Ci(x) + i[Si(x) − π/2]

= e−ix

(

1

ix +

1

1 +

1

ix +

2

1 +

2

ix +
· · ·

)

= e−ix

(

1

1 + ix−
12

3 + ix−
22

5 + ix− · · ·
)

(6.9.9)

6.9 Fresnel Integrals, Cosine and Sine Integrals 251

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The “even” form of the continued fraction is given in the last line and converges
twice as fast for about the same amount of computation. A good crossover point
from the alternating series to the continued fraction isx = 2 in this case. As for
the Fresnel integrals, for largex the precision may be limited by the precision of
the sine and cosine routines.

SUBROUTINE cisi(x,ci,si)
INTEGER MAXIT
REAL ci,si,x,EPS,EULER,PIBY2,FPMIN,TMIN
PARAMETER (EPS=6.e-8,EULER=.57721566,MAXIT=100,PIBY2=1.5707963,

* FPMIN=1.e-30,TMIN=2.)
Computes the cosine and sine integrals Ci(x) and Si(x). Ci(0) is returned as a large negative
number and no error message is generated. For x < 0 the routine returns Ci(−x) and you
must supply the −iπ yourself.
Parameters: EPS is the relative error, or absolute error near a zero of Ci(x); EULER = γ;
MAXIT is the maximum number of iterations allowed; PIBY2 = π/2; FPMIN is a number
near the smallest representable floating-point number; TMIN is the dividing line between
using the series and continued fraction.

INTEGER i,k
REAL a,err,fact,sign,sum,sumc,sums,t,term,absc
COMPLEX h,b,c,d,del
LOGICAL odd
absc(h)=abs(real(h))+abs(aimag(h)) Statement function.
t=abs(x)
if(t.eq.0.)then Special case.

si=0.
ci=-1./FPMIN
return

endif
if(t.gt.TMIN)then Evaluate continued fraction by modified Lentz’s

method (§5.2).b=cmplx(1.,t)
c=1./FPMIN
d=1./b
h=d
do 11 i=2,MAXIT

a=-(i-1)**2
b=b+2.
d=1./(a*d+b) Denominators cannot be zero.
c=b+a/c
del=c*d
h=h*del
if(absc(del-1.).lt.EPS)goto 1

enddo 11

pause ’cf failed in cisi’
1 continue

h=cmplx(cos(t),-sin(t))*h
ci=-real(h)
si=PIBY2+aimag(h)

else Evaluate both series simultaneously.
if(t.lt.sqrt(FPMIN))then Special case: avoid failure of convergence test

because of underflow.sumc=0.
sums=t

else
sum=0.
sums=0.
sumc=0.
sign=1.
fact=1.
odd=.true.
do 12 k=1,MAXIT

fact=fact*t/k
term=fact/k

252 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

sum=sum+sign*term
err=term/abs(sum)
if(odd)then

sign=-sign
sums=sum
sum=sumc

else
sumc=sum
sum=sums

endif
if(err.lt.EPS)goto 2
odd=.not.odd

enddo 12

pause ’maxits exceeded in cisi’
endif

2 si=sums
ci=sumc+log(t)+EULER

endif
if(x.lt.0.)si=-si
return
END

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1976, Journal of Research of the National Bureau of Standards,
vol. 80B, pp. 291–311; 1981, op. cit., vol. 86, pp. 661–686.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 5 and 7.

6.10 Dawson’s Integral

Dawson’s IntegralF (x) is defined by

F (x) = e−x
2

∫ x

0

et
2

dt (6.10.1)

The function can also be related to the complex error function by

F (z) =
i
√
π

2
e−z

2

[1 − erfc(−iz)] . (6.10.2)

A remarkable approximation forF (x), due to Rybicki[1], is

F (z) = lim
h→0

1√
π

∑

n odd

e−(z−nh)2

n
(6.10.3)

What makes equation (6.10.3) unusual is that itsaccuracy increasesexponentially
ash gets small, so that quite moderate values ofh (and correspondingly quite rapid
convergence of the series) give veryaccurate approximations.

252 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

sum=sum+sign*term
err=term/abs(sum)
if(odd)then

sign=-sign
sums=sum
sum=sumc

else
sumc=sum
sum=sums

endif
if(err.lt.EPS)goto 2
odd=.not.odd

enddo 12

pause ’maxits exceeded in cisi’
endif

2 si=sums
ci=sumc+log(t)+EULER

endif
if(x.lt.0.)si=-si
return
END

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1976, Journal of Research of the National Bureau of Standards,
vol. 80B, pp. 291–311; 1981, op. cit., vol. 86, pp. 661–686.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 5 and 7.

6.10 Dawson’s Integral

Dawson’s IntegralF (x) is defined by

F (x) = e−x2

∫ x

0

et
2

dt (6.10.1)

The function can also be related to the complex error function by

F (z) =
i
√
π

2
e−z2

[1 − erfc(−iz)] . (6.10.2)

A remarkable approximation forF (x), due to Rybicki[1], is

F (z) = lim
h→0

1√
π

∑

n odd

e−(z−nh)2

n
(6.10.3)

What makes equation (6.10.3) unusual is that itsaccuracy increasesexponentially
ash gets small, so that quite moderate values ofh (and correspondingly quite rapid
convergence of the series) give veryaccurate approximations.

6.10 Dawson’s Integral 253

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

We will discuss the theory that leads to equation (6.10.3) later, in§13.11, as
an interesting application of Fourier methods. Here we simply implement a routine
based on the formula.

It is first convenient to shift the summation index to center it approximately on
the maximum of the exponential term. Definen0 to be the even integer nearest to
x/h, andx0 ≡ n0h, x′ ≡ x − x0, andn′ ≡ n − n0, so that

F (x) ≈ 1√
π

N
∑

n′=−N

n′ odd

e−(x′
−n′h)2

n′ + n0
, (6.10.4)

where the approximate equality isaccurate whenh is sufficiently small andN is
sufficiently large. The computation of this formula can be greatly speeded up if
we note that

e−(x′
−n′h)2 = e−x′2

e−(n′h)2
(

e2x
′h
)n′

. (6.10.5)

The first factor is computed once, the second is an array of constants to be stored,
and the third can be computed recursively, so that only two exponentials need be
evaluated. Advantage is also taken of the symmetry of the coefficientse−(n′h)2 by
breaking the summation up into positive and negative values ofn′ separately.

In the following routine, the choicesh = 0.4 andN = 11 are made. Because
of the symmetry of the summations and the restriction to odd values ofn, the limits
on thedo loops are 1 to 6. Theaccuracy of the result in thisREAL version is about
2 × 10−7. In order to maintain relative accuracy nearx = 0, whereF (x) vanishes,
the program branches to the evaluation of the power series[2] forF (x), for |x| < 0.2.

FUNCTION dawson(x)
INTEGER NMAX
REAL dawson,x,H,A1,A2,A3
PARAMETER (NMAX=6,H=0.4,A1=2./3.,A2=0.4,A3=2./7.)

Returns Dawson’s integral F (x) = exp(−x2)
∫

x

0
exp(t2)dt for any real x.

INTEGER i,init,n0
REAL d1,d2,e1,e2,sum,x2,xp,xx,c(NMAX)
SAVE init,c
DATA init/0/ Flag is 0 if we need to initialize, else 1.
if(init.eq.0)then

init=1
do 11 i=1,NMAX

c(i)=exp(-((2.*float(i)-1.)*H)**2)
enddo 11

endif
if(abs(x).lt.0.2)then Use series expansion.

x2=x**2
dawson=x*(1.-A1*x2*(1.-A2*x2*(1.-A3*x2)))

else Use sampling theorem representation.
xx=abs(x)
n0=2*nint(0.5*xx/H)
xp=xx-float(n0)*H
e1=exp(2.*xp*H)
e2=e1**2
d1=float(n0+1)
d2=d1-2.
sum=0.
do 12 i=1,NMAX

254 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

sum=sum+c(i)*(e1/d1+1./(d2*e1))
d1=d1+2.
d2=d2-2.
e1=e2*e1

enddo 12

dawson=0.5641895835*sign(exp(-xp**2),x)*sum Constant is 1/
√

π.
endif
return
END

Other methods for computing Dawson’s integral are also known[2,3].

CITED REFERENCES AND FURTHER READING:

Rybicki, G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 85–87. [1]

Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, Mathematics of Computation, vol. 24,
pp. 171–178. [2]

McCabe, J.H. 1974, Mathematics of Computation, vol. 28, pp. 811–816. [3]

6.11 Elliptic Integrals and Jacobian Elliptic
Functions

Elliptic integrals occur in many applications, because any integral of the form

∫

R(t, s) dt (6.11.1)

whereR is a rational function oft and s, ands is the square root of a cubic or
quartic polynomial int, can be evaluated in terms of elliptic integrals. Standard
references[1] describe how to carry out the reduction, which was originally done
by Legendre. Legendre showed that only three basic elliptic integrals are required.
The simplest of these is

I1 =

∫ x

y

dt
√

(a1 + b1t)(a2 + b2t)(a3 + b3t)(a4 + b4t)
(6.11.2)

where we have written the quartics2 in factored form. In standard integral tables[2],
one of the limits of integration is always a zero of the quartic, while the other limit
lies closer than the next zero, so that there is no singularity within the interval. To
evaluateI1, we simply break the interval[y, x] into subintervals, each of which
either begins or ends on a singularity. The tables, therefore, need only distinguish
the eight cases in which each of the four zeros (ordered according to size) appearsas
the upper or lower limit of integration. In addition, when one of theb’s in (6.11.2)
tends to zero, the quartic reduces to a cubic, with the largest or smallest singularity
moving to±∞; this leads to eight more cases (actually just special cases of the first
eight). The sixteen cases in total are then usually tabulated in terms ofLegendre’s
standard elliptic integral of the 1st kind, which we will define below. By a change of
the variable of integrationt, the zeros of the quartic are mapped to standard locations

254 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

sum=sum+c(i)*(e1/d1+1./(d2*e1))
d1=d1+2.
d2=d2-2.
e1=e2*e1

enddo 12

dawson=0.5641895835*sign(exp(-xp**2),x)*sum Constant is 1/
√
π.

endif
return
END

Other methods for computing Dawson’s integral are also known[2,3].

CITED REFERENCES AND FURTHER READING:

Rybicki, G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 85–87. [1]

Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, Mathematics of Computation, vol. 24,
pp. 171–178. [2]

McCabe, J.H. 1974, Mathematics of Computation, vol. 28, pp. 811–816. [3]

6.11 Elliptic Integrals and Jacobian Elliptic
Functions

Elliptic integrals occur in many applications, because any integral of the form

∫

R(t, s) dt (6.11.1)

whereR is a rational function oft and s, ands is the square root of a cubic or
quartic polynomial int, can be evaluated in terms of elliptic integrals. Standard
references[1] describe how to carry out the reduction, which was originally done
by Legendre. Legendre showed that only three basic elliptic integrals are required.
The simplest of these is

I1 =

∫ x

y

dt
√

(a1 + b1t)(a2 + b2t)(a3 + b3t)(a4 + b4t)
(6.11.2)

where we have written the quartics2 in factored form. In standard integral tables[2],
one of the limits of integration is always a zero of the quartic, while the other limit
lies closer than the next zero, so that there is no singularity within the interval. To
evaluateI1, we simply break the interval[y, x] into subintervals, each of which
either begins or ends on a singularity. The tables, therefore, need only distinguish
the eight cases in which each of the four zeros (ordered according to size) appearsas
the upper or lower limit of integration. In addition, when one of theb’s in (6.11.2)
tends to zero, the quartic reduces to a cubic, with the largest or smallest singularity
moving to±∞; this leads to eight more cases (actually just special cases of the first
eight). The sixteen cases in total are then usually tabulated in terms ofLegendre’s
standard elliptic integral of the 1st kind, which we will define below. By a change of
the variable of integrationt, the zeros of the quartic are mapped to standard locations

6.11 Elliptic Integrals and Jacobian Elliptic Functions 255

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

on the real axis. Then only two dimensionless parameters are needed to tabulate
Legendre’s integral. However, the symmetry of the original integral (6.11.2) under
permutation of the roots is concealed in Legendre’s notation. We will get back to
Legendre’s notation below. But first, here is a better way:

Carlson[3] has given a new definition of a standard elliptic integral of the first kind,

RF (x, y, z) =
1

2

∫

∞

0

dt
√

(t + x)(t + y)(t + z)
(6.11.3)

wherex, y, and z are nonnegative and at most one is zero. By standardizing the range
of integration, he retains permutation symmetry for the zeros. (Weierstrass’canonical form
also has this property.) Carlson first shows that whenx or y is a zero of the quartic in
(6.11.2), the integralI1 can be written in terms ofRF in a form that is symmetric under
permutation of theremainingthree zeros. In the general case when neitherx nor y is a
zero, two suchRF functions can be combined into a single one by anaddition theorem,
leading to the fundamental formula

I1 = 2RF (U2
12, U

2
13, U

2
14) (6.11.4)

where
Uij = (XiXjYkYm + YiYjXkXm)/(x− y) (6.11.5)

Xi = (ai + bix)1/2, Yi = (ai + biy)
1/2 (6.11.6)

andi, j, k, m is any permutation of1, 2, 3, 4. A short-cut in evaluating these expressions is

U2
13 = U2

12 − (a1b4 − a4b1)(a2b3 − a3b2)

U2
14 = U2

12 − (a1b3 − a3b1)(a2b4 − a4b2)
(6.11.7)

TheU ’s correspond to the three ways of pairing the four zeros, andI1 is thus manifestly
symmetric under permutation of the zeros. Equation (6.11.4) therefore reproduces all sixteen
cases when one limit is a zero, and also includes the cases when neither limit is a zero.

Thus Carlson’s function allows arbitrary ranges of integration and arbitrary positions of
the branch points of the integrand relative to the interval of integration.To handle elliptic
integrals of the second and third kind, Carlson defines the standard integral of the third kind as

RJ (x, y, z, p) =
3

2

∫

∞

0

dt

(t + p)
√

(t + x)(t + y)(t + z)
(6.11.8)

which is symmetric inx, y, andz. The degenerate case when two arguments are equal
is denoted

RD(x, y, z) = RJ(x, y, z, z) (6.11.9)

and is symmetric inx andy. The functionRD replaces Legendre’s integral of the second
kind. The degenerate form ofRF is denoted

RC(x, y) = RF (x, y, y) (6.11.10)

It embraces logarithmic, inverse circular, and inverse hyperbolic functions.
Carlson[4-7] gives integral tables in terms of the exponents of the linear factors of

the quartic in (6.11.1). For example, the integral where the exponents are (1

2
,1
2

,− 1

2
,− 3

2
)

can be expressed as a single integral in terms ofRD; it accounts for 144 separate cases in
Gradshteyn and Ryzhik[2]!

Refer to Carlson’s papers[3-7] for some of the practical details in reducing elliptic
integrals to his standard forms, such as handling complex conjugate zeros.

256 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Turn now to the numerical evaluation of elliptic integrals. The traditional methods[8]
are Gauss or Landen transformations.Descendingtransformations decrease the modulus
k of the Legendre integrals towards zero,increasingtransformations increase it towards
unity. In these limits the functions have simple analytic expressions. While these methods
converge quadratically and are quite satisfactory for integrals of the first and second kinds,
they generally lead to loss of significant figures in certain regimes for integrals of the third
kind. Carlson’s algorithms[9,10], by contrast, provide a unified method for all three kinds
with no significant cancellations.

The key ingredient in these algorithms is theduplication theorem:

RF (x, y, z) = 2RF (x + λ, y + λ, z + λ)

= RF

(

x + λ

4
,
y + λ

4
,
z + λ

4

) (6.11.11)

where
λ = (xy)1/2 + (xz)1/2 + (yz)1/2 (6.11.12)

This theorem can be proved by a simple change of variable of integration[11]. Equation
(6.11.11) is iterated until the arguments ofRF are nearly equal. For equal arguments we have

RF (x, x, x) = x−1/2 (6.11.13)

When the arguments are close enough, the function is evaluated from a fixed Taylor expansion
about (6.11.13) through fifth-order terms. While the iterative part of the algorithm is only
linearly convergent, the error ultimately decreases by a factor of46 = 4096 for each iteration.
Typically only two or three iterations are required, perhaps six or seven if the initial values
of the arguments have huge ratios. We list the algorithm forRF here, and refer you to
Carlson’s paper[9] for the other cases.

Stage 1: Forn = 0, 1, 2, . . . compute

µn = (xn + yn + zn)/3

Xn = 1 − (xn/µn), Yn = 1− (yn/µn), Zn = 1 − (zn/µn)

ǫn = max(|Xn|, |Yn|, |Zn|)

If ǫn < tol go to Stage 2; else compute

λn = (xnyn)1/2 + (xnzn)1/2 + (ynzn)1/2

xn+1 = (xn + λn)/4, yn+1 = (yn + λn)/4, zn+1 = (zn + λn)/4

and repeat this stage.

Stage 2: Compute

E2 = XnYn − Z2
n, E3 = XnYnZn

RF = (1 − 1

10
E2 + 1

14
E3 + 1

24
E2

2 − 3

44
E2E3)/(µn)1/2

In some applications the argumentp in RJ or the argumenty in RC is negative, and the
Cauchy principal value of the integral is required. This is easily handled by using the formulas

RJ (x, y,z, p) =

[(γ − y)RJ (x, y, z, γ) − 3RF (x, y, z) + 3RC(xz/y, pγ/y)] /(y − p)

(6.11.14)
where

γ ≡ y +
(z − y)(y − x)

y − p
(6.11.15)

6.11 Elliptic Integrals and Jacobian Elliptic Functions 257

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

is positive if p is negative, and

RC(x, y) =

(

x

x− y

)1/2

RC(x− y,−y) (6.11.16)

The Cauchy principal value ofRJ has a zero at some value ofp < 0, so (6.11.14) will give
some loss of significant figures near the zero.

FUNCTION rf(x,y,z)
REAL rf,x,y,z,ERRTOL,TINY,BIG,THIRD,C1,C2,C3,C4
PARAMETER (ERRTOL=.08,TINY=1.5e-38,BIG=3.E37,THIRD=1./3.,

* C1=1./24.,C2=.1,C3=3./44.,C4=1./14.)
Computes Carlson’s elliptic integral of the first kind, RF (x, y, z). x, y, and z must be
nonnegative, and at most one can be zero. TINY must be at least 5 times the machine
underflow limit, BIG at most one fifth the machine overflow limit.

REAL alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt
if(min(x,y,z).lt.0..or.min(x+y,x+z,y+z).lt.TINY.or.

* max(x,y,z).gt.BIG)pause ’invalid arguments in rf’
xt=x
yt=y
zt=z

1 continue
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave

if(max(abs(delx),abs(dely),abs(delz)).gt.ERRTOL)goto 1
e2=delx*dely-delz**2
e3=delx*dely*delz
rf=(1.+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
return
END

A value of 0.08 for the error tolerance parameter is adequate for single precision (7
significant digits). Since the error scales asǫ6n, we see that 0.0025 will yield double precision
(16 significant digits) and require at most two or three more iterations. Since the coefficients
of the sixth-order truncation error are different for the other elliptic functions, these values for
the error tolerance should be changed to 0.04 and 0.0012 in the algorithm forRC , and 0.05 and
0.0015 forRJ andRD . As well as being an algorithm in its own right for certain combinations
of elementary functions, the algorithm forRC is used repeatedly in the computation ofRJ .

The Fortran implementations test the input arguments against two machine-dependent
constants,TINY andBIG, to ensure that there will be no underflow or overflow during the
computation. We have chosen conservative values, corresponding to a machine minimum
of 3 × 10−39 and a machine maximum of1.7 × 1038. You can always extend the range of
admissible argument values by using the homogeneity relations (6.11.22), below.

FUNCTION rd(x,y,z)
REAL rd,x,y,z,ERRTOL,TINY,BIG,C1,C2,C3,C4,C5,C6
PARAMETER (ERRTOL=.05,TINY=1.e-25,BIG=4.5E21,C1=3./14.,C2=1./6.,

* C3=9./22.,C4=3./26.,C5=.25*C3,C6=1.5*C4)
Computes Carlson’s elliptic integral of the second kind, RD(x, y, z). x and y must be
nonnegative, and at most one can be zero. z must be positive. TINY must be at least twice
the negative 2/3 power of the machine overflow limit. BIG must be at most 0.1× ERRTOL

times the negative 2/3 power of the machine underflow limit.
REAL alamb,ave,delx,dely,delz,ea,eb,ec,ed,ee,fac,sqrtx,sqrty,

258 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

* sqrtz,sum,xt,yt,zt
if(min(x,y).lt.0..or.min(x+y,z).lt.TINY.or.

* max(x,y,z).gt.BIG)pause ’invalid arguments in rd’
xt=x
yt=y
zt=z
sum=0.
fac=1.

1 continue
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb))
fac=.25*fac
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=.2*(xt+yt+3.*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave

if(max(abs(delx),abs(dely),abs(delz)).gt.ERRTOL)goto 1
ea=delx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.*eb
ee=ed+ec+ec
rd=3.*sum+fac*(1.+ed*(-C1+C5*ed-C6*delz*ee)

* +delz*(C2*ee+delz*(-C3*ec+delz*C4*ea)))/(ave*sqrt(ave))
return
END

FUNCTION rj(x,y,z,p)
REAL rj,p,x,y,z,ERRTOL,TINY,BIG,C1,C2,C3,C4,C5,C6,C7,C8
PARAMETER (ERRTOL=.05,TINY=2.5e-13,BIG=9.E11,C1=3./14.,C2=1./3.,

* C3=3./22.,C4=3./26.,C5=.75*C3,C6=1.5*C4,C7=.5*C2,C8=C3+C3)
C USES rc,rf

Computes Carlson’s elliptic integral of the third kind, RJ(x, y, z, p). x, y, and z must be
nonnegative, and at most one can be zero. p must be nonzero. If p < 0, the Cauchy
principal value is returned. TINY must be at least twice the cube root of the machine
underflow limit, BIG at most one fifth the cube root of the machine overflow limit.

REAL a,alamb,alpha,ave,b,beta,delp,delx,dely,delz,ea,eb,ec,
* ed,ee,fac,pt,rcx,rho,sqrtx,sqrty,sqrtz,sum,tau,xt,
* yt,zt,rc,rf

if(min(x,y,z).lt.0..or.min(x+y,x+z,y+z,abs(p)).lt.TINY.or.
* max(x,y,z,abs(p)).gt.BIG)pause ’invalid arguments in rj’

sum=0.
fac=1.
if(p.gt.0.)then

xt=x
yt=y
zt=z
pt=p

else
xt=min(x,y,z)
zt=max(x,y,z)
yt=x+y+z-xt-zt
a=1./(yt-p)
b=a*(zt-yt)*(yt-xt)
pt=yt+b
rho=xt*zt/yt

6.11 Elliptic Integrals and Jacobian Elliptic Functions 259

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

tau=p*pt/yt
rcx=rc(rho,tau)

endif
1 continue

sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
alpha=(pt*(sqrtx+sqrty+sqrtz)+sqrtx*sqrty*sqrtz)**2
beta=pt*(pt+alamb)**2
sum=sum+fac*rc(alpha,beta)
fac=.25*fac
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
pt=.25*(pt+alamb)
ave=.2*(xt+yt+zt+pt+pt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
delp=(ave-pt)/ave

if(max(abs(delx),abs(dely),abs(delz),abs(delp)).gt.ERRTOL)goto 1
ea=delx*(dely+delz)+dely*delz
eb=delx*dely*delz
ec=delp**2
ed=ea-3.*ec
ee=eb+2.*delp*(ea-ec)
rj=3.*sum+fac*(1.+ed*(-C1+C5*ed-C6*ee)+eb*(C7+delp*(-C8+delp*C4))

* +delp*ea*(C2-delp*C3)-C2*delp*ec)/(ave*sqrt(ave))
if (p.le.0.) rj=a*(b*rj+3.*(rcx-rf(xt,yt,zt)))
return
END

FUNCTION rc(x,y)
REAL rc,x,y,ERRTOL,TINY,SQRTNY,BIG,TNBG,COMP1,COMP2,THIRD,

* C1,C2,C3,C4
PARAMETER (ERRTOL=.04,TINY=1.69e-38,SQRTNY=1.3e-19,BIG=3.E37,

* TNBG=TINY*BIG,COMP1=2.236/SQRTNY,COMP2=TNBG*TNBG/25.,
* THIRD=1./3.,C1=.3,C2=1./7.,C3=.375,C4=9./22.)

Computes Carlson’s degenerate elliptic integral, RC(x, y). x must be nonnegative and y
must be nonzero. If y < 0, the Cauchy principal value is returned. TINY must be at least
5 times the machine underflow limit, BIG at most one fifth the machine maximum overflow
limit.

REAL alamb,ave,s,w,xt,yt
if(x.lt.0..or.y.eq.0..or.(x+abs(y)).lt.TINY.or.(x+abs(y)).gt.BIG

* .or.(y.lt.-COMP1.and.x.gt.0..and.x.lt.COMP2))
* pause ’invalid arguments in rc’

if(y.gt.0.)then
xt=x
yt=y
w=1.

else
xt=x-y
yt=-y
w=sqrt(x)/sqrt(xt)

endif
1 continue

alamb=2.*sqrt(xt)*sqrt(yt)+yt
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
ave=THIRD*(xt+yt+yt)
s=(yt-ave)/ave

260 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(abs(s).gt.ERRTOL)goto 1
rc=w*(1.+s*s*(C1+s*(C2+s*(C3+s*C4))))/sqrt(ave)
return
END

At times you may want to express your answer in Legendre’s notation. Alter-
natively, you may be given results in that notation and need to compute their values
with the programs given above. It is a simple matter to transform back and forth.
The Legendre elliptic integral of the 1st kindis defined as

F (φ, k) ≡

∫ φ

0

dθ
√

1 − k2 sin2 θ
(6.11.17)

The complete elliptic integral of the 1st kindis given by

K(k) ≡ F (π/2, k) (6.11.18)
In terms ofRF ,

F (φ, k) = sinφRF (cos2 φ, 1− k2 sin2 φ, 1)

K(k) = RF (0, 1 − k2, 1)
(6.11.19)

The Legendre elliptic integral of the 2nd kindand thecomplete elliptic integral of
the 2nd kindare given by

E(φ, k) ≡

∫ φ

0

√

1 − k2 sin2 θ dθ

= sinφRF (cos2 φ, 1− k2 sin2 φ, 1)

− 1

3
k2 sin3 φRD(cos2 φ, 1− k2 sin2 φ, 1)

E(k) ≡ E(π/2, k) = RF (0, 1 − k2, 1)− 1

3
k2RD(0, 1 − k2, 1)

(6.11.20)

Finally, theLegendre elliptic integral of the 3rd kindis

Π(φ, n, k) ≡

∫ φ

0

dθ

(1 + n sin2 θ)
√

1 − k2 sin2 θ

= sinφRF (cos2 φ, 1− k2 sin2 φ, 1)

− 1

3
n sin3 φRJ(cos2 φ, 1− k2 sin2 φ, 1, 1 + n sin2 φ)

(6.11.21)

(Note that this sign convention forn is opposite that of Abramowitz and Stegun[12],
and that theirsinα is our k.)

FUNCTION ellf(phi,ak)
REAL ellf,ak,phi

C USES rf
Legendre elliptic integral of the 1st kind F (φ, k), evaluated using Carlson’s function RF .
The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL s,rf
s=sin(phi)
ellf=s*rf(cos(phi)**2,(1.-s*ak)*(1.+s*ak),1.)
return
END

6.11 Elliptic Integrals and Jacobian Elliptic Functions 261

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION elle(phi,ak)
REAL elle,ak,phi

C USES rd,rf
Legendre elliptic integral of the 2nd kind E(φ, k), evaluated using Carlson’s functions RD
and RF . The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL cc,q,s,rd,rf
s=sin(phi)
cc=cos(phi)**2
q=(1.-s*ak)*(1.+s*ak)
elle=s*(rf(cc,q,1.)-((s*ak)**2)*rd(cc,q,1.)/3.)
return
END

FUNCTION ellpi(phi,en,ak)
REAL ellpi,ak,en,phi

C USES rf,rj
Legendre elliptic integral of the 3rd kind Π(φ, n, k), evaluated using Carlson’s functions RJ

and RF . (Note that the sign convention on n is opposite that of Abramowitz and Stegun.)
The ranges of φ and k are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL cc,enss,q,s,rf,rj
s=sin(phi)
enss=en*s*s
cc=cos(phi)**2
q=(1.-s*ak)*(1.+s*ak)
ellpi=s*(rf(cc,q,1.)-enss*rj(cc,q,1.,1.+enss)/3.)
return
END

Carlson’s functions are homogeneous of degree−1

2
and−3

2
, so

RF (λx, λy, λz) = λ−1/2RF (x, y, z)

RJ(λx, λy, λz, λp) = λ−3/2RJ(x, y, z, p)
(6.11.22)

Thus to express a Carlson function in Legendre’s notation, permute the first three
arguments into ascending order, use homogeneity to scale the third argument to be
1, and then use equations (6.11.19)–(6.11.21).

Jacobian Elliptic Functions

The Jacobian elliptic function sn is defined as follows: instead of considering
the elliptic integral

u(y, k) ≡ u = F (φ, k) (6.11.23)

consider theinverse function

y = sinφ = sn(u, k) (6.11.24)

Equivalently,

u =

∫ sn

0

dy
√

(1 − y2)(1 − k2y2)
(6.11.25)

Whenk = 0, sn is just sin. The functions cn and dn are defined by the relations

sn2 + cn2 = 1, k2sn2 + dn2 = 1 (6.11.26)

The routine given below actually takesmc ≡ k2
c = 1 − k2 as an input parameter.

It also computes all three functions sn, cn, and dn since computing all three is no
harder than computing any one of them. For a description of the method, see[8].

262 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE sncndn(uu,emmc,sn,cn,dn)
REAL cn,dn,emmc,sn,uu,CA
PARAMETER (CA=.0003) The accuracy is the square of CA.

Returns the Jacobian elliptic functions sn(u, kc), cn(u, kc), and dn(u, kc). Here uu = u,
while emmc = k2

c .
INTEGER i,ii,l
REAL a,b,c,d,emc,u,em(13),en(13)
LOGICAL bo
emc=emmc
u=uu
if(emc.ne.0.)then

bo=(emc.lt.0.)
if(bo)then

d=1.-emc
emc=-emc/d
d=sqrt(d)
u=d*u

endif
a=1.
dn=1.
do 11 i=1,13

l=i
em(i)=a
emc=sqrt(emc)
en(i)=emc
c=0.5*(a+emc)
if(abs(a-emc).le.CA*a)goto 1
emc=a*emc
a=c

enddo 11

1 u=c*u
sn=sin(u)
cn=cos(u)
if(sn.eq.0.)goto 2
a=cn/sn
c=a*c
do 12 ii=l,1,-1

b=em(ii)
a=c*a
c=dn*c
dn=(en(ii)+a)/(b+a)
a=c/b

enddo 12

a=1./sqrt(c**2+1.)
if(sn.lt.0.)then

sn=-a
else

sn=a
endif
cn=c*sn

2 if(bo)then
a=dn
dn=cn
cn=a
sn=sn/d

endif
else

cn=1./cosh(u)
dn=cn
sn=tanh(u)

endif
return
END

6.12 Hypergeometric Functions 263

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. 1953, Higher Transcendental
Functions, Vol. II, (New York: McGraw-Hill). [1]

Gradshteyn, I.S., and Ryzhik, I.W. 1980, Table of Integrals, Series, and Products (New York:
Academic Press). [2]

Carlson, B.C. 1977, SIAM Journal on Mathematical Analysis, vol. 8, pp. 231–242. [3]

Carlson, B.C. 1987, Mathematics of Computation, vol. 49, pp. 595–606 [4]; 1988, op. cit., vol. 51,
pp. 267–280 [5]; 1989, op. cit., vol. 53, pp. 327–333 [6]; 1991, op. cit., vol. 56, pp. 267–280.
[7]

Bulirsch, R. 1965, Numerische Mathematik, vol. 7, pp. 78–90; 1965, op. cit., vol. 7, pp. 353–354;
1969, op. cit., vol. 13, pp. 305–315. [8]

Carlson, B.C. 1979, Numerische Mathematik, vol. 33, pp. 1–16. [9]

Carlson, B.C., and Notis, E.M. 1981, ACM Transactions on Mathematical Software, vol. 7,
pp. 398–403. [10]

Carlson, B.C. 1978, SIAM Journal on Mathematical Analysis, vol. 9, p. 524–528. [11]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 17. [12]

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), pp. 78–79.

6.12 Hypergeometric Functions

As was discussed in§5.14, a fast, general routine for the the complex hyperge-
ometric function2F1(a, b, c; z), is difficult or impossible. The function is defined as
the analytic continuation of the hypergeometric series,

2F1(a, b, c; z) = 1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)

c(c + 1)

z2

2!
+ · · ·

+
a(a + 1) . . . (a + j − 1)b(b + 1) . . . (b + j − 1)

c(c + 1) . . . (c + j − 1)

zj

j!
+ · · ·

(6.12.1)
This series converges only within the unit circle|z| < 1 (see[1]), but one’s interest
in the function is not confined to this region.

Section 5.14 discussed the method of evaluating this function by direct path
integration in the complex plane. We here merely list the routines that result.

Implementation of the functionhypgeo is straightforward, and is described by
comments in the program. The machinery associated with Chapter 16’s routine for
integrating differential equations,odeint, is only minimally intrusive, and need
not even be completely understood: use ofodeint requires a common block with
one zeroed variable, one subroutine call, and a prescribed format for the derivative
routine hypdrv.

The subroutinehypgeo will fail, of course, for values ofz too close to the
singularity at1. (If you need to approach this singularity, or the one at∞, use
the “linear transformation formulas” in§15.3 of [1].) Away from z = 1, and for
moderate values ofa, b, c, it is often remarkable how few steps are required to
integrate the equations. A half-dozen is typical.

6.12 Hypergeometric Functions 263

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. 1953, Higher Transcendental
Functions, Vol. II, (New York: McGraw-Hill). [1]

Gradshteyn, I.S., and Ryzhik, I.W. 1980, Table of Integrals, Series, and Products (New York:
Academic Press). [2]

Carlson, B.C. 1977, SIAM Journal on Mathematical Analysis, vol. 8, pp. 231–242. [3]

Carlson, B.C. 1987, Mathematics of Computation, vol. 49, pp. 595–606 [4]; 1988, op. cit., vol. 51,
pp. 267–280 [5]; 1989, op. cit., vol. 53, pp. 327–333 [6]; 1991, op. cit., vol. 56, pp. 267–280.
[7]

Bulirsch, R. 1965, Numerische Mathematik, vol. 7, pp. 78–90; 1965, op. cit., vol. 7, pp. 353–354;
1969, op. cit., vol. 13, pp. 305–315. [8]

Carlson, B.C. 1979, Numerische Mathematik, vol. 33, pp. 1–16. [9]

Carlson, B.C., and Notis, E.M. 1981, ACM Transactions on Mathematical Software, vol. 7,
pp. 398–403. [10]

Carlson, B.C. 1978, SIAM Journal on Mathematical Analysis, vol. 9, p. 524–528. [11]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 17. [12]

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), pp. 78–79.

6.12 Hypergeometric Functions

As was discussed in§5.14, a fast, general routine for the the complex hyperge-
ometric function2F1(a, b, c; z), is difficult or impossible. The function is defined as
the analytic continuation of the hypergeometric series,

2F1(a, b, c; z) = 1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)

c(c + 1)

z2

2!
+ · · ·

+
a(a + 1) . . . (a + j − 1)b(b + 1) . . . (b + j − 1)

c(c + 1) . . . (c + j − 1)

zj

j!
+ · · ·

(6.12.1)
This series converges only within the unit circle|z| < 1 (see[1]), but one’s interest
in the function is not confined to this region.

Section 5.14 discussed the method of evaluating this function by direct path
integration in the complex plane. We here merely list the routines that result.

Implementation of the functionhypgeo is straightforward, and is described by
comments in the program. The machinery associated with Chapter 16’s routine for
integrating differential equations,odeint, is only minimally intrusive, and need
not even be completely understood: use ofodeint requires a common block with
one zeroed variable, one subroutine call, and a prescribed format for the derivative
routine hypdrv.

The subroutinehypgeo will fail, of course, for values ofz too close to the
singularity at1. (If you need to approach this singularity, or the one at∞, use
the “linear transformation formulas” in§15.3 of [1].) Away from z = 1, and for
moderate values ofa, b, c, it is often remarkable how few steps are required to
integrate the equations. A half-dozen is typical.

264 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION hypgeo(a,b,c,z)
COMPLEX hypgeo,a,b,c,z
REAL EPS
PARAMETER (EPS=1.e-6) Accuracy parameter.

C USES bsstep,hypdrv,hypser,odeint
Complex hypergeometric function 2F1 for complex a, b, c, and z, by direct integration of
the hypergeometric equation in the complex plane. The branch cut is taken to lie along
the real axis, Re z > 1.

INTEGER kmax,nbad,nok
EXTERNAL bsstep,hypdrv
COMPLEX z0,dz,aa,bb,cc,y(2)
COMMON /hypg/ aa,bb,cc,z0,dz
COMMON /path/ kmax Used by odeint.
kmax=0
if (real(z)**2+aimag(z)**2.le.0.25) then Use series...

call hypser(a,b,c,z,hypgeo,y(2))
return

else if (real(z).lt.0.) then ...or pick a starting point for the path inte-
gration.z0=cmplx(-0.5,0.)

else if (real(z).le.1.0) then
z0=cmplx(0.5,0.)

else
z0=cmplx(0.,sign(0.5,aimag(z)))

endif
aa=a Load the common block, used to pass pa-

rameters “over the head” of odeint to
hypdrv.

bb=b
cc=c
dz=z-z0
call hypser(aa,bb,cc,z0,y(1),y(2)) Get starting function and derivative.
call odeint(y,4,0.,1.,EPS,.1,.0001,nok,nbad,hypdrv,bsstep)

The arguments to odeint are the vector of independent variables, its length, the starting and
ending values of the dependent variable, the accuracy parameter, an initial guess for stepsize,
a minimum stepsize, the (returned) number of good and bad steps taken, and the names of
the derivative routine and the (here Bulirsch-Stoer) stepping routine.

hypgeo=y(1)
return
END

SUBROUTINE hypser(a,b,c,z,series,deriv)
INTEGER n
COMPLEX a,b,c,z,series,deriv,aa,bb,cc,fac,temp

Returns the hypergeometric series 2F1 and its derivative, iterating to machine accuracy.
For cabs(z) ≤ 1/2 convergence is quite rapid.

deriv=cmplx(0.,0.)
fac=cmplx(1.,0.)
temp=fac
aa=a
bb=b
cc=c
do 11 n=1,1000

fac=((aa*bb)/cc)*fac
deriv=deriv+fac
fac=fac*z/n
series=temp+fac
if (series.eq.temp) return
temp=series
aa=aa+1.
bb=bb+1.
cc=cc+1.

enddo 11

pause ’convergence failure in hypser’
END

6.12 Hypergeometric Functions 265

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE hypdrv(s,y,dyds)
REAL s
COMPLEX y(2),dyds(2),aa,bb,cc,z0,dz,z

Derivative subroutine for the hypergeometric equation, see text equation (5.14.4).
COMMON /hypg/ aa,bb,cc,z0,dz
z=z0+s*dz
dyds(1)=y(2)*dz
dyds(2)=((aa*bb)*y(1)-(cc-((aa+bb)+1.)*z)*y(2))*dz/(z*(1.-z))
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [1]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 7. Random Numbers

7.0 Introduction

It may seem perverse to use a computer, that most precise and deterministic of
all machines conceived by the human mind, to produce “random” numbers. More
than perverse, it may seem to be a conceptual impossibility. Any program, after all,
will produce output that is entirely predictable, hence not truly “random.”

Nevertheless, practical computer “random number generators” are in common
use. We will leave it to philosophers of the computer age to resolve the paradox in
a deep way (see, e.g., Knuth[1] §3.5 for discussion and references). One sometimes
hears computer-generated sequences termedpseudo-random, while the wordrandom
is reserved for the output of an intrinsically random physical process, like the elapsed
time between clicks of a Geiger counter placed next to a sample of some radioactive
element. We will not try to make such fine distinctions.

A working, though imprecise, definition of randomness in the context of
computer-generated sequences, is to say that the deterministic program that produces
a random sequence should be different from, and — in all measurable respects —
statistically uncorrelated with, the computer program thatusesits output. In other
words, any two different random number generators ought to produce statistically
the same results when coupled to your particular applications program. If they don’t,
then at least one of them is not (from your point of view) a good generator.

The above definition may seem circular, comparing, as it does, one generator to
another. However, there exists a body of random number generators which mutually
do satisfy the definition over a very, very broad class of applications programs.
And it is also found empirically that statistically identical results are obtained from
random numbers produced by physical processes. So, because such generators are
known to exist, we can leave to the philosophers the problem of defining them.

A pragmatic point of view, then, is that randomness is in the eye of the beholder
(or programmer). What is random enough for one application may not be random
enough for another. Still, one is not entirely adrift in a sea of incommensurable
applications programs: There is a certain list of statistical tests, some sensible and
some merely enshrined by history, which on the whole will do a very good job
of ferreting out any correlations that are likely to be detected by an applications
program (in this case, yours). Good random number generators ought to pass all of
these tests; or at least the user had better be aware of any that they fail, so that heor
she will be able to judge whether they are relevant to the case at hand.

266

7.1 Uniform Deviates 267

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

As for references on this subject, the one to turn to first is Knuth[1]. Then
try [2]. Only a few of the standard books on numerical methods[3-4] treat topics
relating to random numbers.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), Chapter 3, especially §3.5. [1]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [2]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 11. [3]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10. [4]

7.1 Uniform Deviates

Uniform deviates are just random numbers that lie within a specified range
(typically 0 to 1), with any one number in the range just as likely as any other. They
are, in other words, what you probably think “random numbers” are. However,
we want to distinguish uniform deviates from other sorts of random numbers, for
example numbers drawn from a normal (Gaussian) distribution of specified mean
and standard deviation. These other sorts of deviates are almost always generated by
performing appropriate operations on one or more uniform deviates, as we will see
in subsequent sections. So, a reliable source of random uniform deviates, the subject
of this section, is an essential building block for any sort of stochastic modeling
or Monte Carlo computer work.

System-Supplied Random Number Generators

Your computer very likely has lurking within it a library routine which is called
a “random number generator.” That routine typically has an unforgettable name like
“ran,” and a calling sequence like

x=ran(iseed) sets x to the next random number and updates iseed

You initialize iseed to a (usually) arbitrary value before the first call toran.
Each initializing value will typically return a different subsequent random sequence,
or at least a different subsequence of some one enormously long sequence. Thesame
initializing value ofiseed will always return thesamerandom sequence, however.

Now our first, and perhaps most important, lesson in this chapter is: Bevery,
verysuspicious of a system-suppliedran that resembles the one just described. If all
scientific papers whose results are in doubt because of badrans were to disappear
from library shelves, there would be a gap on each shelf about as big as your
fist. System-suppliedrans are almost alwayslinear congruential generators, which

7.1 Uniform Deviates 267

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

As for references on this subject, the one to turn to first is Knuth[1]. Then
try [2]. Only a few of the standard books on numerical methods[3-4] treat topics
relating to random numbers.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), Chapter 3, especially §3.5. [1]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [2]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 11. [3]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10. [4]

7.1 Uniform Deviates

Uniform deviates are just random numbers that lie within a specified range
(typically 0 to 1), with any one number in the range just as likely as any other. They
are, in other words, what you probably think “random numbers” are. However,
we want to distinguish uniform deviates from other sorts of random numbers, for
example numbers drawn from a normal (Gaussian) distribution of specified mean
and standard deviation. These other sorts of deviates are almost always generated by
performing appropriate operations on one or more uniform deviates, as we will see
in subsequent sections. So, a reliable source of random uniform deviates, the subject
of this section, is an essential building block for any sort of stochastic modeling
or Monte Carlo computer work.

System-Supplied Random Number Generators

Your computer very likely has lurking within it a library routine which is called
a “random number generator.” That routine typically has an unforgettable name like
“ran,” and a calling sequence like

x=ran(iseed) sets x to the next random number and updates iseed

You initialize iseed to a (usually) arbitrary value before the first call toran.
Each initializing value will typically return a different subsequent random sequence,
or at least a different subsequence of some one enormously long sequence. Thesame
initializing value ofiseed will always return thesamerandom sequence, however.

Now our first, and perhaps most important, lesson in this chapter is: Bevery,
verysuspicious of a system-suppliedran that resembles the one just described. If all
scientific papers whose results are in doubt because of badrans were to disappear
from library shelves, there would be a gap on each shelf about as big as your
fist. System-suppliedrans are almost alwayslinear congruential generators, which

268 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

generate a sequence of integersI1, I2, I3, . . . , each between0 andm − 1 (a large
number) by the recurrence relation

Ij+1 = aIj + c (mod m) (7.1.1)

Herem is called themodulus, anda andc are positive integers called themultiplier
and theincrement, respectively. The recurrence (7.1.1) will eventually repeat itself,
with a period that is obviously no greater thanm. If m, a, andc are properly chosen,
then the period will be of maximal length, i.e., of lengthm. In that case, all possible
integers between 0 andm− 1 occur at some point, so any initial “seed” choice ofI0
is as good as any other: The sequence just takes off from that point. The real number
between 0 and 1 which is returned is generallyIj+1/m, so that it is strictly less than
1, but occasionally (once inm calls) exactly equal to zero.iseed is set toIj+1 (or
some encoding of it), so that it can be used on the next call to generateIj+2, and so on.

The linear congruential method has the advantage of being very fast, requiring
only a few operations per call, hence its almost universal use. It has the disadvantage
that it is not free of sequential correlation on successive calls. Ifk random numbers at
a time are used to plot points ink dimensional space (with each coordinate between
0 and 1), then the points will not tend to “fill up” thek-dimensional space, but
rather will lie on(k − 1)-dimensional “planes.” There will beat mostaboutm1/k

such planes. If the constantsm, a, andc are not very carefully chosen, there will
be many fewer than that.The numberm is usually close to the machine’s largest
representable integer, e.g.,∼ 232. So, for example, the number of planes on which
triples of points lie in three-dimensional space is usually no greater than about the
cube root of232, about 1600. You might well be focusing attention on a physical
process that occurs in a small fraction of the total volume, so that the discreteness
of the planes can be very pronounced.

Even worse, you might be using aran whose choices ofm, a, and c have
been botched. One infamous such routine,RANDU, with a = 65539 andm = 231,
was widespread on IBM mainframe computers for many years, and widely copied
onto other systems[1]. One of us recalls producing a “random” plot with only 11
planes, and being told by his computer center’s programming consultant that he
had misused the random number generator: “We guarantee thateach number is
random individually, but we don’t guarantee that more than one of them is random.”
Figure that out.

Correlation ink-space is not the only weakness of linear congruentialgenerators.
Such generators often have their low-order (least significant) bits much less random
than their high-order bits. If you want to generate a random integer between 1 and
10, you should always do it using high-order bits, as in

j=1+int(10.*ran(iseed))

and never by anything resembling

j=1+mod(int(1000000.*ran(iseed)),10)

7.1 Uniform Deviates 269

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(which uses lower-order bits). Similarly you should never try to take apart a
“ran” number into several supposedly random pieces. Instead use separate calls
for every piece.

Portable Random Number Generators

Park and Miller[1] have surveyed a large number of random number generators
that have been used over the last 30 years or more. Along with a good theoretical
review, they present an anecdotal sampling of a number of inadequate generators
that have come into widespread use. The historical record is nothing if not appalling.

There is good evidence, both theoretical and empirical, that the simple mul-
tiplicative congruential algorithm

Ij+1 = aIj (mod m) (7.1.2)

can be as good as any of the more general linear congruential generators that have
c 6= 0 (equation 7.1.1) —if the multipliera and modulusm are chosen exquisitely
carefully. Park and Miller propose a “Minimal Standard” generator based on the
choices

a = 75 = 16807 m = 231 − 1 = 2147483647 (7.1.3)

First proposed by Lewis, Goodman, and Miller in 1969, this generator has in
subsequent years passed all new theoretical tests, and (perhaps more importantly)
has accumulated a large amount of successful use. Park and Miller do not claim that
the generator is “perfect” (we will see below that it is not), but only that it is a good
minimal standard against which other generators should be judged.

It is not possible to implement equations (7.1.2) and (7.1.3) directly in a
high-level language, since the product ofa andm− 1 exceeds the maximum value
for a 32-bit integer. Assembly language implementation using a 64-bit product
register is straightforward, but not portable from machine to machine. A trick
due to Schrage[2,3] for multiplying two 32-bit integers modulo a 32-bit constant,
without using any intermediates larger than 32 bits (including a sign bit) is therefore
extremely interesting: It allows the Minimal Standard generator to be implemented
in essentially any programming language on essentially any machine.

Schrage’s algorithm is based on anapproximate factorizationof m,

m = aq + r, i.e., q = [m/a], r = m mod a (7.1.4)

with square brackets denoting integer part. Ifr is small, specificallyr < q, and
0 < z < m − 1, it can be shown that botha(z mod q) andr[z/q] lie in the range
0, . . . , m − 1, and that

az mod m =

{

a(z mod q) − r[z/q] if it is ≥ 0,
a(z mod q) − r[z/q] + m otherwise

(7.1.5)

The application of Schrage’s algorithm to the constants (7.1.3) uses the values
q = 127773 and r = 2836.

Here is an implementation of the Minimal Standard generator:

270 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION ran0(idum)
INTEGER idum,IA,IM,IQ,IR,MASK
REAL ran0,AM
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,

* IQ=127773,IR=2836,MASK=123459876)
“Minimal” random number generator of Park and Miller. Returns a uniform random deviate
between 0.0 and 1.0. Set or reset idum to any integer value (except the unlikely value MASK)
to initialize the sequence; idum must not be altered between calls for successive deviates
in a sequence.

INTEGER k
idum=ieor(idum,MASK) XORing with MASK allows use of zero and other simple

bit patterns for idum.k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k Compute idum=mod(IA*idum,IM) without overflows by

Schrage’s method.if (idum.lt.0) idum=idum+IM
ran0=AM*idum Convert idum to a floating result.
idum=ieor(idum,MASK) Unmask before return.
return
END

The period ofran0 is 231 − 2 ≈ 2.1 × 109. A peculiarity of generators of
the form (7.1.2) is that the value0 must never be allowed as the initial seed — it
perpetuates itself — and it never occurs for any nonzero initial seed. Experience has
shown that users always manage to call random number generators with the seed
idum=0. That is whyran0 performs its exclusive-or with an arbitrary constant both
on entry and exit. If you are the first user in history to be proof against human error,
you can remove the two lines with theieor function.

Park and Miller discuss two other multipliersa that can be used with the same
m = 231 − 1. These area = 48271 (with q = 44488 andr = 3399) anda = 69621
(with q = 30845 and r = 23902). These can be substituted in the routineran0

if desired; they may be slightly superior to Lewiset al.’s longer-tested values. No
values other than these should be used.

The routineran0 is a Minimal Standard, satisfactory for the majority of appli-
cations, but we do not recommend it as the final word on random number generators.
Our reason is precisely the simplicity of the Minimal Standard. It is not hard to think
of situations where successive random numbers might be used in a way thatacciden-
tally conflicts with the generation algorithm. For example, since successive numbers
differ by a multipleof only1.6×104 out of a modulus of more than2×109, very small
random numbers will tend to be followed by smaller than average values. One time
in 106, for example, there will be a value< 10−6 returned (as there should be), but
this will alwaysbe followed by a value less than about0.0168. One can easily think
of applications involving rare events where this property would lead to wrong results.

There are other, more subtle, serial correlations present inran0. For example,
if successive points(Ii, Ii+1) are binned into a two-dimensional plane fori =
1, 2, . . . , N , then the resulting distribution fails theχ2 test whenN is greater than a
few×107, much less than the periodm−2. Since low-order serial correlations have
historically been such a bugaboo, and since there is a very simple way to remove
them, we think that it is prudent to do so.

The following routine,ran1, uses the Minimal Standard for its random value,
but it shuffles the output to remove low-order serial correlations. A random deviate
derived from thejth value in the sequence,Ij, is output not on thejth call, but rather
on a randomized later call,j +32 on average. The shuffling algorithm is due to Bays
and Durham as described in Knuth[4], and is illustrated in Figure 7.1.1.

7.1 Uniform Deviates 271

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION ran1(idum)
INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV
REAL ran1,AM,EPS,RNMX
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836,

* NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
“Minimal” random number generator of Park and Miller with Bays-Durham shuffle and
added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of
the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
alter idum between successive deviates in a sequence. RNMX should approximate the largest
floating value that is less than 1.

INTEGER j,k,iv(NTAB),iy
SAVE iv,iy
DATA iv /NTAB*0/, iy /0/
if (idum.le.0.or.iy.eq.0) then Initialize.

idum=max(-idum,1) Be sure to prevent idum = 0.
do 11 j=NTAB+8,1,-1 Load the shuffle table (after 8 warm-ups).

k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (idum.lt.0) idum=idum+IM
if (j.le.NTAB) iv(j)=idum

enddo 11

iy=iv(1)
endif
k=idum/IQ Start here when not initializing.
idum=IA*(idum-k*IQ)-IR*k Compute idum=mod(IA*idum,IM) without overflows by

Schrage’s method.if (idum.lt.0) idum=idum+IM
j=1+iy/NDIV Will be in the range 1:NTAB.
iy=iv(j) Output previously stored value and refill the shuffle ta-

ble.iv(j)=idum
ran1=min(AM*iy,RNMX) Because users don’t expect endpoint values.
return
END

The routineran1 passes those statistical tests thatran0 is known to fail. In
fact, we do not know of any statistical test thatran1 fails to pass, except when the
number of calls starts to become on the order of the periodm, say> 108 ≈ m/20.

For situations when even longer random sequences are needed, L’Ecuyer[6] has
given a good way of combining two different sequences with different periods so
as to obtain a new sequence whose period is the least common multiple of the two
periods. The basic idea is simply to add the two sequences, modulo the modulus of
eitherof them (call itm). A trick to avoid an intermediate value that overflows the
integer wordsize is to subtract rather than add, and then add back the constantm− 1
if the result is≤ 0, so as to wrap around into the desired interval0, . . . , m− 1.

Notice that it is not necessary that this wrapped subtraction be ableto reach all
values0, . . . , m − 1 from everyvalue of the first sequence. Consider the absurd
extreme case where the value subtracted was only between 1 and 10: The resulting
sequence would still be no less random than the first sequence by itself. As a
practical matter it is only necessary that the second sequence have a range covering
substantiallyall of the range of the first. L’Ecuyer recommends the use of the two
generatorsm1 = 2147483563 (with a1 = 40014, q1 = 53668, r1 = 12211) and
m2 = 2147483399 (with a2 = 40692, q2 = 52774, r2 = 3791). Both moduli
are slightly less than231. The periodsm1 − 1 = 2 × 3 × 7 × 631 × 81031 and
m2 − 1 = 2 × 19 × 31 × 1019 × 1789 share only the factor 2, so the period of
the combined generator is≈ 2.3 × 1018. For present computers, period exhaustion
is a practical impossibility.

272 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

OUTPUT

RAN

1

3 2

iy

iv1

iv32

Figure 7.1.1. Shuffling procedure used inran1 to break up sequential correlations in the Minimal
Standard generator. Circled numbers indicate the sequence of events: On each call, the random number
in iy is used to choose a random element in the arrayiv. That element becomes the output random
number, and also is the nextiy. Its spot iniv is refilled from the Minimal Standard routine.

Combining the two generators breaks up serial correlations to a considerable
extent. We nevertheless recommend the additional shuffle that is implemented in
the following routine,ran2. We think that, within the limits of its floating-point
precision,ran2 provides perfect random numbers; a practical definition of “perfect”
is that we will pay$1000 to the first reader who convinces us otherwise (by finding a
statistical test thatran2 fails in a nontrivial way, excluding the ordinary limitations
of a machine’s floating-point representation).

FUNCTION ran2(idum)
INTEGER idum,IM1,IM2,IMM1,IA1,IA2,IQ1,IQ2,IR1,IR2,NTAB,NDIV
REAL ran2,AM,EPS,RNMX
PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1,IMM1=IM1-1,

* IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211,
* IR2=3791,NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.2e-7,RNMX=1.-EPS)

Long period (> 2× 10
18) random number generator of L’Ecuyer with Bays-Durham shuffle

and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive
of the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
alter idum between successive deviates in a sequence. RNMX should approximate the largest
floating value that is less than 1.

INTEGER idum2,j,k,iv(NTAB),iy
SAVE iv,iy,idum2
DATA idum2/123456789/, iv/NTAB*0/, iy/0/
if (idum.le.0) then Initialize.

idum=max(-idum,1) Be sure to prevent idum = 0.
idum2=idum
do 11 j=NTAB+8,1,-1 Load the shuffle table (after 8 warm-ups).

k=idum/IQ1

7.1 Uniform Deviates 273

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

idum=IA1*(idum-k*IQ1)-k*IR1
if (idum.lt.0) idum=idum+IM1
if (j.le.NTAB) iv(j)=idum

enddo 11

iy=iv(1)
endif
k=idum/IQ1 Start here when not initializing.
idum=IA1*(idum-k*IQ1)-k*IR1 Compute idum=mod(IA1*idum,IM1)without over-

flows by Schrage’s method.if (idum.lt.0) idum=idum+IM1
k=idum2/IQ2
idum2=IA2*(idum2-k*IQ2)-k*IR2 Compute idum2=mod(IA2*idum2,IM2) likewise.
if (idum2.lt.0) idum2=idum2+IM2
j=1+iy/NDIV Will be in the range 1:NTAB.
iy=iv(j)-idum2 Here idum is shuffled, idum and idum2 are com-

bined to generate output.iv(j)=idum
if(iy.lt.1)iy=iy+IMM1
ran2=min(AM*iy,RNMX) Because users don’t expect endpoint values.
return
END

L’Ecuyer [6] lists additional short generators that can be combined into longer
ones, including generators that can be implemented in 16-bit integer arithmetic.

Finally, we give you Knuth’s suggestion[4] for a portable routine, which we
have translated to the present conventions asran3. This is not based on the linear
congruential method at all, but rather on asubtractive method(see also[5]). One
might hope that its weaknesses, if any, are therefore of a highly different character
from the weaknesses, if any, ofran1 above. If you ever suspect trouble with one
routine, it is a good idea to try the other in the same application.ran3 has one
nice feature: if your machine is poor on integer arithmetic (i.e., is limited to 16-bit
integers), substitution of the three “commented” lines for the ones directly preceding
them will render the routine entirely floating-point.

FUNCTION ran3(idum)
Returns a uniform random deviate between 0.0 and 1.0. Set idum to any negative value
to initialize or reinitialize the sequence.

INTEGER idum
INTEGER MBIG,MSEED,MZ

C REAL MBIG,MSEED,MZ
REAL ran3,FAC
PARAMETER (MBIG=1000000000,MSEED=161803398,MZ=0,FAC=1./MBIG)

C PARAMETER (MBIG=4000000.,MSEED=1618033.,MZ=0.,FAC=1./MBIG)
According to Knuth, any large mbig, and any smaller (but still large) mseed can be sub-
stituted for the above values.

INTEGER i,iff,ii,inext,inextp,k
INTEGER mj,mk,ma(55) The value 55 is special and should not be modified; see

Knuth.C REAL mj,mk,ma(55)
SAVE iff,inext,inextp,ma
DATA iff /0/
if(idum.lt.0.or.iff.eq.0)then Initialization.

iff=1
mj=abs(MSEED-abs(idum)) Initialize ma(55) using the seed idum and the large num-

ber mseed.mj=mod(mj,MBIG)
ma(55)=mj
mk=1
do 11 i=1,54 Now initialize the rest of the table,

ii=mod(21*i,55) in a slightly random order,
ma(ii)=mk with numbers that are not especially random.
mk=mj-mk
if(mk.lt.MZ)mk=mk+MBIG

274 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

mj=ma(ii)
enddo 11

do 13 k=1,4 We randomize them by “warming up the generator.”
do 12 i=1,55

ma(i)=ma(i)-ma(1+mod(i+30,55))
if(ma(i).lt.MZ)ma(i)=ma(i)+MBIG

enddo 12

enddo 13

inext=0 Prepare indices for our first generated number.
inextp=31 The constant 31 is special; see Knuth.
idum=1

endif
inext=inext+1 Here is where we start, except on initialization. Increment

inext, wrapping around 56 to 1.if(inext.eq.56)inext=1
inextp=inextp+1 Ditto for inextp.
if(inextp.eq.56)inextp=1
mj=ma(inext)-ma(inextp) Now generate a new random number subtractively.
if(mj.lt.MZ)mj=mj+MBIG Be sure that it is in range.
ma(inext)=mj Store it,
ran3=mj*FAC and output the derived uniform deviate.
return
END

Quick and Dirty Generators

One sometimes would like a “quick and dirty” generator to embed in a program, perhaps
taking only one or two lines of code, just tosomewhatrandomize things. One might wish to
process data from an experiment not always in exactly the same order, for example, so that
the first output is more “typical” than might otherwise be the case.

For this kind of application, all we really need is a list of “good” choices form, a, and
c in equation (7.1.1). If we don’t need a period longer than104 to 106, say, we can keep the
value of(m − 1)a + c small enough to avoid overflows that would otherwise mandate the
extra complexity of Schrage’s method (above). We can thus easily embed in our programs

jran=mod(jran*ia+ic,im)
ran=float(jran)/float(im)

whenever we want a quick and dirty uniform deviate, or

jran=mod(jran*ia+ic,im)
j=jlo+((jhi-jlo+1)*jran)/im

whenever we want an integer betweenjlo andjhi, inclusive. (In both casesjran was once
initialized to any seed value between 0 andim-1.)

Be sure to remember, however, that whenim is small, thekth root of it, which is the
number of planes ink-space, is even smaller! So a quick and dirty generator should never
be used to select points ink-space withk > 1.

With these caveats, some “good” choices for the constants are given in the accompanying
table. These constants (i) give a period of maximal lengthim, and, more important, (ii) pass
Knuth’s “spectral test” for dimensions 2, 3, 4, 5, and 6. The incrementic is a prime, close to
the value(1

2
−

1

6

√

3)im; actually almost any value ofic that is relatively prime toim will do
just as well, but there is some “lore” favoring this choice (see[4], p. 84).

7.1 Uniform Deviates 275

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Constants for Quick and Dirty Random Number Generators

overflow at im ia ic

6075 106 1283
220

7875 211 1663
221

7875 421 1663
222

6075 1366 1283
6655 936 1399

11979 430 2531
223

14406 967 3041
29282 419 6173
53125 171 11213

224

12960 1741 2731
14000 1541 2957
21870 1291 4621
31104 625 6571

139968 205 29573
225

29282 1255 6173
81000 421 17117

134456 281 28411
226

overflow at im ia ic

86436 1093 18257
121500 1021 25673
259200 421 54773

227

117128 1277 24749
121500 2041 25673
312500 741 66037

228

145800 3661 30809
175000 2661 36979
233280 1861 49297
244944 1597 51749

229

139968 3877 29573
214326 3613 45289
714025 1366 150889

230

134456 8121 28411
259200 7141 54773

231

233280 9301 49297
714025 4096 150889

232

An Even Quicker and Dirtier Generator

ManyFORTRAN compilers can be abused in such a way that they will multiply two 32-bit
integersignoring any resulting overflow. In such cases, on many machines, the value returned
is predictably the low-order 32 bits of the true 64-bit product. (C compilers, incidentally,
can do this without the requirement of abuse — it is guaranteed behavior for so-called
unsigned long int integers. On VMS VAXes, the necessary FORTRAN command is
FORTRAN/CHECK=NOOVERFLOW.) If we now choosem = 232, the “mod” in equation (7.1.1)
is free, and we have simply

Ij+1 = aIj + c (7.1.6)

Knuth suggestsa = 1664525 as a suitable multiplier for this value ofm. H.W. Lewis
has conducted extensive tests of this value ofa with c = 1013904223, which is a prime close
to (

√

5 − 2)m. The resulting in-line generator (we will call itranqd1) is simply

idum=1664525*idum+1013904223

This is about as good as any 32-bit linear congruential generator, entirely adequate for many
uses. And, with only a single multiply and add, it isvery fast.

To check whether your compiler and machine have the desired overflow proper-
ties, see if you can generate the following sequence of 32-bit values (given here in
hex): 00000000, 3C6EF35F, 47502932, D1CCF6E9, AAF95334, 6252E503, 9F2EC686,
57FE6C2D, A3D95FA8, 81FDBEE7, 94F0AF1A, CBF633B1.

If you need floating-point values instead of 32-bit integers, and want to avoid a divide by
floating-point232, a dirty trick is to mask in an exponent that makes the value lie between 1 and
2, then subtract 1.0. The resulting in-line generator (call itranqd2) will look something like

276 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

INTEGER idum,itemp,jflone,jflmsk
REAL ftemp
EQUIVALENCE (itemp,ftemp)
DATA jflone /Z’3F800000’/, jflmsk /Z’007FFFFF’/

C ...
idum=1664525*idum+1013904223
itemp=ior(jflone,iand(jflmsk,idum))
ran=ftemp-1.0

The hex constants 3F800000 and 007FFFFF are the appropriate ones for computers using
the IEEE representation for 32-bit floating-point numbers (e.g., IBM PCs and most UNIX
workstations). For DEC VAXes, the correct hex constants are, respectively, 00004080 and
FFFF007F. Notice that the IEEE mask results in the floating-point number being constructed
out of the 23 low-order bits of the integer, which is not ideal. Also notice that your compiler
may require a different notation for hex constants, e.g.,x’3f800000’, ’3F800000’X, or even
16#3F800000. (Your authors have tried very hard to makealmost allof the material in this
book machine and compiler independent— indeed, even programming language independent.
This subsection is a rare aberration. Forgive us. Once in a great while the temptation to
be really dirty is just irresistible.)

Relative Timings and Recommendations

Timings are inevitably machine dependent. Nevertheless the following table
is indicative of therelative timings, for typical machines, of the various uniform
generators discussed in this section, plusran4 from §7.5. Smaller values in the table
indicate faster generators. The generatorsranqd1 andranqd2 refer to the “quick
and dirty” generators immediately above.

Generator Relative Execution Time

ran0 ≡ 1.0

ran1 ≈ 1.3

ran2 ≈ 2.0

ran3 ≈ 0.6

ranqd1 ≈ 0.10

ranqd2 ≈ 0.25

ran4 ≈ 4.0

On balance, we recommendran1 for general use. It is portable, based on
Park and Miller’s Minimal Standard generator with an additional shuffle, and has no
known (to us) flaws other than period exhaustion.

If you are generating more than 100,000,000 random numbers in a single
calculation (that is, more than about 5% ofran1’s period), we recommend the use
of ran2, with its much longer period.

Knuth’s subtractive routineran3 seems to be the timing winner among portable
routines. Unfortunately the subtractive method is not so well studied, and not a
standard. We like to keepran3 in reserve for a “second opinion,” substitutingit when
we suspect another generator of introducing unwanted correlations into a calculation.

The routineran4 generatesextremelygood random deviates, and has some
other nice properties, but it is slow. See§7.5 for discussion.

7.2 Transformation Method: Exponential and Normal Deviates 277

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Finally, the quick and dirty in-line generatorsranqd1 and ranqd2 are very
fast, but they are machine dependent, nonportable, and at best only as good as a
32-bit linear congruential generator ever is — in our view not good enough in many
situations. We would use these only in very special cases, where speed is critical.

CITED REFERENCES AND FURTHER READING:

Park, S.K., and Miller, K.W. 1988, Communications of the ACM, vol. 31, pp. 1192–1201. [1]

Schrage, L. 1979, ACM Transactions on Mathematical Software, vol. 5, pp. 132–138. [2]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [3]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §§3.2–3.3. [4]

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 10. [5]

L’Ecuyer, P. 1988, Communications of the ACM, vol. 31, pp. 742–774. [6]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10.

7.2 Transformation Method: Exponential and
Normal Deviates

In the previous section, we learned how to generate random deviates with
a uniform probability distribution, so that the probability of generating a number
betweenx andx + dx, denotedp(x)dx, is given by

p(x)dx =
{

dx 0 < x < 1
0 otherwise

(7.2.1)

The probability distributionp(x) is of course normalized, so that

∫

∞

−∞

p(x)dx = 1 (7.2.2)

Now suppose that we generate a uniform deviatex and then take some prescribed
function of it,y(x). The probability distribution ofy, denotedp(y)dy, is determined
by the fundamental transformation law of probabilities, which is simply

|p(y)dy| = |p(x)dx| (7.2.3)
or

p(y) = p(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

(7.2.4)

7.2 Transformation Method: Exponential and Normal Deviates 277

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Finally, the quick and dirty in-line generatorsranqd1 and ranqd2 are very
fast, but they are machine dependent, nonportable, and at best only as good as a
32-bit linear congruential generator ever is — in our view not good enough in many
situations. We would use these only in very special cases, where speed is critical.

CITED REFERENCES AND FURTHER READING:

Park, S.K., and Miller, K.W. 1988, Communications of the ACM, vol. 31, pp. 1192–1201. [1]

Schrage, L. 1979, ACM Transactions on Mathematical Software, vol. 5, pp. 132–138. [2]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [3]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §§3.2–3.3. [4]

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 10. [5]

L’Ecuyer, P. 1988, Communications of the ACM, vol. 31, pp. 742–774. [6]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10.

7.2 Transformation Method: Exponential and
Normal Deviates

In the previous section, we learned how to generate random deviates with
a uniform probability distribution, so that the probability of generating a number
betweenx andx + dx, denotedp(x)dx, is given by

p(x)dx =
{

dx 0 < x < 1
0 otherwise

(7.2.1)

The probability distributionp(x) is of course normalized, so that

∫

∞

−∞

p(x)dx = 1 (7.2.2)

Now suppose that we generate a uniform deviatex and then take some prescribed
function of it,y(x). The probability distribution ofy, denotedp(y)dy, is determined
by the fundamental transformation law of probabilities, which is simply

|p(y)dy| = |p(x)dx| (7.2.3)
or

p(y) = p(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

(7.2.4)

278 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

uniform
deviate in

0

1

y

x

F(y) = 0 p(y)dy
y

p(y)

⌠
�⌡

transformed
deviate out

Figure 7.2.1. Transformation method for generating a random deviatey from a known probability
distributionp(y). The indefinite integral ofp(y) must be known and invertible. A uniform deviatex is
chosen between0 and1. Its correspondingy on the definite-integral curve is the desired deviate.

Exponential Deviates

As an example, suppose thaty(x) ≡ − ln(x), and thatp(x) is as given by
equation (7.2.1) for a uniform deviate. Then

p(y)dy =

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

dy = e−ydy (7.2.5)

which is distributed exponentially. This exponential distribution occurs frequently
in real problems, usually as the distribution of waiting times between independent
Poisson-random events, for example the radioactive decay of nuclei. You can also
easily see (from 7.2.4) that the quantityy/λ has the probability distributionλe−λy.

So we have

FUNCTION expdev(idum)
INTEGER idum
REAL expdev

C USES ran1
Returns an exponentially distributed, positive, random deviate of unit mean, using
ran1(idum) as the source of uniform deviates.

REAL dum,ran1
1 dum=ran1(idum)

if(dum.eq.0.)goto 1
expdev=-log(dum)
return
END

Let’s see what is involved in using the abovetransformation methodto generate
some arbitrary desired distribution ofy’s, say one withp(y) = f(y) for some
positive functionf whose integral is 1. (See Figure 7.2.1.) According to (7.2.4),
we need to solve the differential equation

dx

dy
= f(y) (7.2.6)

7.2 Transformation Method: Exponential and Normal Deviates 279

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

But the solution of this is justx = F (y), whereF (y) is the indefinite integral of
f(y). The desired transformation which takes a uniform deviate into one distributed
as f(y) is therefore

y(x) = F−1(x) (7.2.7)

whereF−1 is the inverse function toF . Whether (7.2.7) is feasible to implement
depends on whether theinverse function of the integral of f(y)is itself feasible to
compute, either analytically or numerically. Sometimes it is, and sometimes it isn’t.

Incidentally, (7.2.7) has an immediate geometric interpretation: SinceF (y) is
the area under the probability curve to the left ofy, (7.2.7) is just the prescription:
choose a uniform randomx, then find the valuey that has that fractionx of
probability area to its left, and return the valuey.

Normal (Gaussian) Deviates

Transformation methods generalize to more than one dimension. Ifx1, x2,
. . . are random deviates with ajoint probability distribution p(x1, x2, . . .)
dx1dx2 . . . , and if y1, y2, . . . are each functions of all thex’s (same number of
y’s asx’s), then the joint probability distribution of they’s is

p(y1, y2, . . .)dy1dy2 . . . = p(x1, x2, . . .)

∣

∣

∣

∣

∂(x1, x2, . . .)

∂(y1 , y2, . . .)

∣

∣

∣

∣

dy1dy2 . . . (7.2.8)

where|∂()/∂()| is the Jacobian determinant of thex’s with respect to they’s
(or reciprocal of the Jacobian determinant of they’s with respect to thex’s).

An important example of the use of (7.2.8) is theBox-Muller method for
generating random deviates with a normal (Gaussian) distribution,

p(y)dy =
1√
2π

e−y2/2dy (7.2.9)

Consider the transformation between two uniform deviates on (0,1),x1, x2, and
two quantitiesy1, y2,

y1 =
√

−2 lnx1 cos 2πx2

y2 =
√

−2 lnx1 sin 2πx2

(7.2.10)

Equivalently we can write

x1 = exp

[

−1

2
(y2

1
+ y2

2
)

]

x2 =
1

2π
arctan

y2

y1

(7.2.11)

Now the Jacobian determinant can readily be calculated (try it!):

∂(x1, x2)

∂(y1 , y2)
=

∣

∣

∣

∣

∣

∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣

∣

∣

∣

∣

= −
[

1√
2π

e−y2

1
/2

] [

1√
2π

e−y2

2
/2

]

(7.2.12)

280 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Since this is the product of a function ofy2 alone and a function ofy1 alone, we see
that eachy is independently distributed according to the normal distribution (7.2.9).

One further trick is useful in applying (7.2.10). Suppose that, instead of picking
uniform deviatesx1 andx2 in the unit square, we instead pickv1 and v2 as the
ordinate and abscissa of a random point inside the unit circle around the origin. Then
the sum of their squares,R2 ≡ v2

1
+v2

2
is a uniform deviate, which can be used forx1,

while the angle that(v1, v2) defines with respect to thev1 axis can serve as the random
angle2πx2. What’s the advantage? It’s that the cosine and sine in (7.2.10) can now
be written asv1/

√
R2 andv2/

√
R2, obviating the trigonometric function calls!

We thus have

FUNCTION gasdev(idum)
INTEGER idum
REAL gasdev

C USES ran1
Returns a normally distributed deviate with zero mean and unit variance, using ran1(idum)
as the source of uniform deviates.

INTEGER iset
REAL fac,gset,rsq,v1,v2,ran1
SAVE iset,gset
DATA iset/0/
if (idum.lt.0) iset=0 Reinitialize.
if (iset.eq.0) then We don’t have an extra deviate handy, so

1 v1=2.*ran1(idum)-1. pick two uniform numbers in the square extend-
ing from -1 to +1 in each direction,v2=2.*ran1(idum)-1.

rsq=v1**2+v2**2 see if they are in the unit circle,
if(rsq.ge.1..or.rsq.eq.0.)goto 1 and if they are not, try again.
fac=sqrt(-2.*log(rsq)/rsq) Now make the Box-Muller transformation to get

two normal deviates. Return one and save
the other for next time.

gset=v1*fac
gasdev=v2*fac
iset=1 Set flag.

else We have an extra deviate handy,
gasdev=gset so return it,
iset=0 and unset the flag.

endif
return
END

See Devroye[1] and Bratley[2] for many additional algorithms.

CITED REFERENCES AND FURTHER READING:

Devroye, L. 1986, Non-Uniform Random Variate Generation (New York: Springer-Verlag), §9.1.
[1]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [2]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 116ff.

7.3 Rejection Method: Gamma, Poisson, Binomial Deviates 281

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

7.3 Rejection Method: Gamma, Poisson,
Binomial Deviates

The rejection methodis a powerful, general technique for generating random
deviates whosedistribution functionp(x)dx (probabilityof avalueoccurring between
x andx + dx) is known and computable. The rejection method doesnot require
that the cumulative distribution function [indefinite integral ofp(x)] be readily
computable, much less the inverse of that function — which was required for the
transformation method in the previous section.

The rejection method is based on a simple geometrical argument:
Draw a graph of the probability distributionp(x) that you wish to generate, so

that the area under the curve in any range ofx corresponds to the desired probability
of generating anx in that range. If we had some way of choosing a random pointin
two dimensions, with uniform probability in thearea under your curve, then thex
value of that random point would have the desired distribution.

Now, on the same graph, draw any other curvef(x) which has finite (not
infinite) area and lies everywhereaboveyour original probability distribution. (This
is always possible, becauseyour original curve encloses only unit area, by definition
of probability.) We will call thisf(x) the comparison function. Imagine now
that you have some way of choosing a random point in two dimensions that is
uniform in the area under the comparison function. Whenever that point lies outside
the area under the original probability distribution, we willreject it and choose
another random point. Whenever it lies inside the area under the original probability
distribution, we will acceptit. It should be obvious that theaccepted points are
uniform in the accepted area, so that theirx values have the desired distribution. It
should also be obvious that the fraction of points rejected just depends on the ratio
of the area of the comparison function to the area of the probability distribution
function, not on the details of shape of either function. For example, a comparison
function whose area is less than 2 will reject fewer than half the points, even if it
approximates the probability function very badly at some values ofx, e.g., remains
finite in some region wherex is zero.

It remains only to suggest how to choose a uniform random point in two
dimensions under the comparison functionf(x). A variant of the transformation
method (§7.2) does nicely: Be sure to have chosen a comparison function whose
indefinite integral is known analytically, and is also analytically invertible to givex
as a function of “area under the comparison function to the left ofx.” Now pick a
uniform deviate between 0 andA, whereA is the total area underf(x), and use it
to get a correspondingx. Then pick a uniform deviate between 0 andf(x) as they
value for the two-dimensional point. You should be able to convince yourself that the
point(x, y) is uniformly distributed in the area under the comparison functionf(x).

An equivalent procedure is to pick the second uniform deviate between zero
and one, and accept or reject according to whether it is respectively less than or
greater than the ratiop(x)/f(x).

So, to summarize, the rejection method for some givenp(x) requires that one
find, once and for all, some reasonably good comparison functionf(x). Thereafter,
each deviate generated requires two uniform random deviates, one evaluation off (to
get the coordinatey), and one evaluation ofp (to decide whether to accept or reject

7.3 Rejection Method: Gamma, Poisson, Binomial Deviates 281

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

7.3 Rejection Method: Gamma, Poisson,
Binomial Deviates

The rejection methodis a powerful, general technique for generating random
deviates whosedistribution functionp(x)dx (probabilityof avalueoccurring between
x andx + dx) is known and computable. The rejection method doesnot require
that the cumulative distribution function [indefinite integral ofp(x)] be readily
computable, much less the inverse of that function — which was required for the
transformation method in the previous section.

The rejection method is based on a simple geometrical argument:
Draw a graph of the probability distributionp(x) that you wish to generate, so

that the area under the curve in any range ofx corresponds to the desired probability
of generating anx in that range. If we had some way of choosing a random pointin
two dimensions, with uniform probability in thearea under your curve, then thex
value of that random point would have the desired distribution.

Now, on the same graph, draw any other curvef(x) which has finite (not
infinite) area and lies everywhereaboveyour original probability distribution. (This
is always possible, becauseyour original curve encloses only unit area, by definition
of probability.) We will call thisf(x) the comparison function. Imagine now
that you have some way of choosing a random point in two dimensions that is
uniform in the area under the comparison function. Whenever that point lies outside
the area under the original probability distribution, we willreject it and choose
another random point. Whenever it lies inside the area under the original probability
distribution, we will acceptit. It should be obvious that theaccepted points are
uniform in the accepted area, so that theirx values have the desired distribution. It
should also be obvious that the fraction of points rejected just depends on the ratio
of the area of the comparison function to the area of the probability distribution
function, not on the details of shape of either function. For example, a comparison
function whose area is less than 2 will reject fewer than half the points, even if it
approximates the probability function very badly at some values ofx, e.g., remains
finite in some region wherex is zero.

It remains only to suggest how to choose a uniform random point in two
dimensions under the comparison functionf(x). A variant of the transformation
method (§7.2) does nicely: Be sure to have chosen a comparison function whose
indefinite integral is known analytically, and is also analytically invertible to givex
as a function of “area under the comparison function to the left ofx.” Now pick a
uniform deviate between 0 andA, whereA is the total area underf(x), and use it
to get a correspondingx. Then pick a uniform deviate between 0 andf(x) as they
value for the two-dimensional point. You should be able to convince yourself that the
point(x, y) is uniformly distributed in the area under the comparison functionf(x).

An equivalent procedure is to pick the second uniform deviate between zero
and one, and accept or reject according to whether it is respectively less than or
greater than the ratiop(x)/f(x).

So, to summarize, the rejection method for some givenp(x) requires that one
find, once and for all, some reasonably good comparison functionf(x). Thereafter,
each deviate generated requires two uniform random deviates, one evaluation off (to
get the coordinatey), and one evaluation ofp (to decide whether to accept or reject

282 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

second random
deviate in

0

f (x0)
reject x0

accept x0

first random
deviate in

A

0

f (x)

0 f (x)dx
x

p(x)

x0

⌠
�⌡

Figure 7.3.1. Rejection method for generating a random deviatex from a known probability distribution
p(x) that is everywhere less than some other functionf(x). The transformation method is first used to
generate a random deviatex of the distributionf (compare Figure 7.2.1). A second uniform deviate is
used to decide whether to accept or reject thatx. If it is rejected, a new deviate off is found; and so on.
The ratio of accepted to rejected points is the ratio of the area underp to the area betweenp andf .

the pointx, y). Figure 7.3.1 illustrates the procedure. Then, of course, this procedure
must be repeated, on the average,A times before the final deviate is obtained.

Gamma Distribution

The gamma distribution of integer ordera > 0 is the waiting time to theath
event in a Poisson random process of unit mean. For example, whena = 1, it is just
the exponential distribution of§7.2, the waiting time to the first event.

A gamma deviate has probabilitypa(x)dx of occurring with a value between
x and x + dx, where

pa(x)dx =
xa−1e−x

Γ(a)
dx x > 0 (7.3.1)

To generate deviates of (7.3.1) for small values ofa, it is best to add upa
exponentially distributed waiting times, i.e., logarithms of uniform deviates. Since
the sum of logarithms is the logarithm of the product, one really has only to generate
the product ofa uniform deviates, then take the log.

For larger values ofa, the distribution (7.3.1) has a typically “bell-shaped”
form, with a peak atx = a and a half-width of about

√
a.

We will be interested in several probability distributions with this same qual-
itative form. A useful comparison function in such cases is derived from the
Lorentzian distribution

p(y)dy =
1

π

(

1

1 + y2

)

dy (7.3.2)

whose inverse indefinite integral is just the tangent function. It follows that the
x-coordinate of an area-uniform random point under the comparison function

f(x) =
c0

1 + (x− x0)2/a
2
0

(7.3.3)

7.3 Rejection Method: Gamma, Poisson, Binomial Deviates 283

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

for any constantsa0, c0, andx0, can be generated by the prescription

x = a0 tan(πU) + x0 (7.3.4)

whereU is a uniform deviate between 0 and 1. Thus, for some specific “bell-shaped”
p(x) probabilitydistribution,we need only find constantsa0, c0, x0, with the product
a0c0 (which determines the area) as small as possible, such that (7.3.3) is everywhere
greater thanp(x).

Ahrens has done this for the gamma distribution, yielding the following
algorithm (as described in Knuth[1]):

FUNCTION gamdev(ia,idum)
INTEGER ia,idum
REAL gamdev

C USES ran1
Returns a deviate distributed as a gamma distribution of integer order ia, i.e., a waiting
time to the iath event in a Poisson process of unit mean, using ran1(idum) as the source

of uniform deviates.
INTEGER j
REAL am,e,s,v1,v2,x,y,ran1
if(ia.lt.1)pause ’bad argument in gamdev’
if(ia.lt.6)then Use direct method, adding waiting times.

x=1.
do 11 j=1,ia

x=x*ran1(idum)
enddo 11

x=-log(x)
else Use rejection method.

1 v1=ran1(idum) These four lines generate the tangent of a random angle, i.e.,
are equivalent to y = tan(3.14159265 * ran1(idum)).v2=2.*ran1(idum)-1.

if(v1**2+v2**2.gt.1.)goto 1
y=v2/v1
am=ia-1
s=sqrt(2.*am+1.)
x=s*y+am We decide whether to reject x:

if(x.le.0.)goto 1 Reject in region of zero probability.

e=(1.+y**2)*exp(am*log(x/am)-s*y) Ratio of prob. fn. to comparison fn.
if(ran1(idum).gt.e)goto 1 Reject on basis of a second uniform de-

viate.endif
gamdev=x
return
END

Poisson Deviates

The Poisson distribution is conceptually related to the gamma distribution. It
gives the probability of a certain integer numberm of unit rate Poisson random
events occurring in a given interval of timex, while the gamma distribution was the
probabilityof waiting time betweenx andx+dx to themth event. Note thatm takes
on only integer values≥ 0, so that the Poisson distribution, viewed as a continuous
distribution functionpx(m)dm, is zero everywhere except wherem is an integer
≥ 0. At such places, it is infinite, such that the integrated probability over a region
containing the integer is some finite number. The total probability at an integerj is

Prob(j) =

∫ j+ǫ

j−ǫ

px(m)dm =
xje−x

j!
(7.3.5)

284 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

0
1 2 3 4 5

accept

reject

in

1

Figure 7.3.2. Rejection method as applied to an integer-valued distribution. The method is performed
on the step function shown as a dashed line, yielding a real-valued deviate. This deviateis rounded
down to the next lower integer, which is output.

At first sight this might seem an unlikely candidate distribution for the rejection
method, since no continuous comparison function can be larger than the infinitely
tall, but infinitely narrow,Dirac delta functionsin px(m). However, there is a trick
that we can do: Spread the finite area in the spike atj uniformly into the interval
betweenj andj + 1. This defines a continuous distributionqx(m)dm given by

qx(m)dm =
x[m]e−x

[m]!
dm (7.3.6)

where[m] represents the largest integer less thanm. If we now use the rejection
method to generate a (noninteger) deviate from (7.3.6), and then take the integer
part of that deviate, it will be as if drawn from the desired distribution (7.3.5). (See
Figure 7.3.2.) This trick is general for any integer-valued probability distribution.

For x large enough, the distribution (7.3.6) is qualitatively bell-shaped (albeit
with a bell made out of small, square steps), and we can use the same kind of
Lorentzian comparison function as was already used above. For smallx, we can
generate independent exponential deviates (waiting times between events); when the
sum of these first exceedsx, then the number of events that would have occurred in
waiting timex becomes known and is one less than the number of terms in the sum.

These ideas produce the following routine:

FUNCTION poidev(xm,idum)
INTEGER idum
REAL poidev,xm,PI
PARAMETER (PI=3.141592654)

C USES gammln,ran1
Returns as a floating-point number an integer value that is a random deviate drawn from a
Poisson distribution of mean xm, using ran1(idum) as a source of uniform random deviates.

7.3 Rejection Method: Gamma, Poisson, Binomial Deviates 285

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

REAL alxm,em,g,oldm,sq,t,y,gammln,ran1
SAVE alxm,g,oldm,sq
DATA oldm /-1./ Flag for whether xm has changed since last call.

if (xm.lt.12.)then Use direct method.
if (xm.ne.oldm) then

oldm=xm
g=exp(-xm) If xm is new, compute the exponential.

endif
em=-1
t=1.

2 em=em+1. Instead of adding exponential deviates it is equivalent to mul-
tiply uniform deviates. We never actually have to take the

log, merely compare to the pre-computed exponential.

t=t*ran1(idum)
if (t.gt.g) goto 2

else Use rejection method.
if (xm.ne.oldm) then If xm has changed since the last call, then precompute some

functions that occur below.oldm=xm
sq=sqrt(2.*xm)
alxm=log(xm)
g=xm*alxm-gammln(xm+1.) The function gammln is the natural log of the gamma

function, as given in §6.1.endif
1 y=tan(PI*ran1(idum)) y is a deviate from a Lorentzian comparison function.

em=sq*y+xm em is y, shifted and scaled.
if (em.lt.0.) goto 1 Reject if in regime of zero probability.

em=int(em) The trick for integer-valued distributions.
t=0.9*(1.+y**2)*exp(em*alxm-gammln(em+1.)-g) The ratio of the desired distribu-

tion to the comparison function; we accept or re-

ject by comparing it to another uniform deviate.
The factor 0.9 is chosen so that t never exceeds

1.

if (ran1(idum).gt.t) goto 1
endif
poidev=em
return
END

Binomial Deviates

If an event occurs with probabilityq, and we maken trials, then the number
of timesm that it occurs has the binomial distribution,

∫ j+ǫ

j−ǫ

pn,q(m)dm =

(

n

j

)

qj(1 − q)n−j (7.3.7)

The binomial distribution is integer valued, withm taking on possible values
from 0 to n. It depends ontwo parameters,n and q, so is correspondingly a
bit harder to implement than our previous examples. Nevertheless, the techniques
already illustrated are sufficiently powerful to do the job:

FUNCTION bnldev(pp,n,idum)
INTEGER idum,n
REAL bnldev,pp,PI

C USES gammln,ran1
PARAMETER (PI=3.141592654)

Returns as a floating-point number an integer value that is a random deviate drawn from
a binomial distribution of n trials each of probability pp, using ran1(idum) as a source

of uniform random deviates.
INTEGER j,nold
REAL am,em,en,g,oldg,p,pc,pclog,plog,pold,sq,t,y,gammln,ran1

286 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SAVE nold,pold,pc,plog,pclog,en,oldg
DATA nold /-1/, pold /-1./ Arguments from previous calls.
if(pp.le.0.5)then The binomial distribution is invariant under changing pp to

1.-pp, if we also change the answer to n minus itself;
we’ll remember to do this below.

p=pp
else

p=1.-pp
endif
am=n*p This is the mean of the deviate to be produced.
if (n.lt.25)then Use the direct method while n is not too large. This can

require up to 25 calls to ran1.bnldev=0.
do 11 j=1,n

if(ran1(idum).lt.p)bnldev=bnldev+1.
enddo 11

else if (am.lt.1.) then If fewer than one event is expected out of 25 or more tri-
als, then the distribution is quite accurately Poisson. Use

direct Poisson method.

g=exp(-am)
t=1.
do 12 j=0,n

t=t*ran1(idum)
if (t.lt.g) goto 1

enddo 12

j=n
1 bnldev=j

else Use the rejection method.

if (n.ne.nold) then If n has changed, then compute useful quantities.
en=n
oldg=gammln(en+1.)
nold=n

endif
if (p.ne.pold) then If p has changed, then compute useful quantities.

pc=1.-p
plog=log(p)
pclog=log(pc)
pold=p

endif
sq=sqrt(2.*am*pc) The following code should by now seem familiar: rejection

method with a Lorentzian comparison function.2 y=tan(PI*ran1(idum))
em=sq*y+am
if (em.lt.0..or.em.ge.en+1.) goto 2 Reject.
em=int(em) Trick for integer-valued distribution.
t=1.2*sq*(1.+y**2)*exp(oldg-gammln(em+1.)

* -gammln(en-em+1.)+em*plog+(en-em)*pclog)
if (ran1(idum).gt.t) goto 2 Reject. This happens about 1.5 times per deviate, on

average.bnldev=em
endif
if (p.ne.pp) bnldev=n-bnldev Remember to undo the symmetry transformation.

return
END

See Devroye[2] and Bratley[3] for many additional algorithms.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 120ff. [1]

Devroye, L. 1986, Non-Uniform Random Variate Generation (New York: Springer-Verlag), §X.4.
[2]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-
Verlag). [3].

7.4 Generation of Random Bits 287

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

7.4 Generation of Random Bits

This topic is not very useful for programming in high-level languages, but
it can be quite useful when you have access to the machine-language level of a
machine or when you are in a position to build special-purpose hardware out of
readily available chips.

The problem is how to generate single random bits, with 0 and 1 equally
probable. Of course you can just generate uniform random deviates between zero
and one and use their high-order bit (i.e., test if they are greater than or less than
0.5). However this takes a lot of arithmetic; there are special-purpose applications,
such as real-time signal processing, where you want to generate bits very much
faster than that.

One method for generating random bits, with two variant implementations, is
based on “primitive polynomials modulo 2.” The theory of these polynomials is
beyond our scope (although§7.7 and§20.3 will give you small tastes of it). Here,
suffice it to say that there are special polynomials among those whose coefficients
are zero or one. An example is

x18 + x5 + x2 + x1 + x0 (7.4.1)

which we can abbreviate by just writing the nonzero powers ofx, e.g.,

(18, 5, 2, 1, 0)

Every primitive polynomial modulo 2 of ordern (=18 above) defines a
recurrence relation for obtaining a new random bit from then preceding ones. The
recurrence relation is guaranteed to produce a sequence of maximal length, i.e.,
cycle through all possible sequences ofn bits (except all zeros) before it repeats.
Therefore one can seed the sequence with any initial bit pattern (except all zeros),
and get2n − 1 random bits before the sequence repeats.

Let the bits be numbered from 1 (most recently generated) throughn (generated
n steps ago), and denoteda1, a2, . . . , an. We want to give a formula for a new bit
a0. After generatinga0 we will shift all the bits by one, so that the oldan is finally
lost, and the newa0 becomesa1. We then apply the formula again, and so on.

“Method I” is the easiest to implement in hardware, requiring only a single shift
registern bits long and a few XOR (“exclusive or” or bit addition mod 2) gates. For
the primitive polynomial given above, the recurrence formula is

a0 = a18 XOR a5 XOR a2 XOR a1 (7.4.2)

The terms that are XOR’d together can be thought of as “taps” on the shift register,
XOR’d into the register’s input. More generally, there is precisely one term for
eachnonzero coefficient in the primitive polynomial except the constant (zero bit)
term. So the first term will always bean for a primitive polynomial of degreen,
while the last term might or might not bea1, depending on whether the primitive
polynomial has a term inx1.

It is rather cumbersome to illustrate the method inFORTRAN. Assume thatiand
is a bitwise AND function,not is bitwise complement,ishft(,1) is leftshift by
one bit,ior is bitwise OR. (These are available in manyFORTRAN implementations.)
Then we have the following routine.

7.4 Generation of Random Bits 287

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

7.4 Generation of Random Bits

This topic is not very useful for programming in high-level languages, but
it can be quite useful when you have access to the machine-language level of a
machine or when you are in a position to build special-purpose hardware out of
readily available chips.

The problem is how to generate single random bits, with 0 and 1 equally
probable. Of course you can just generate uniform random deviates between zero
and one and use their high-order bit (i.e., test if they are greater than or less than
0.5). However this takes a lot of arithmetic; there are special-purpose applications,
such as real-time signal processing, where you want to generate bits very much
faster than that.

One method for generating random bits, with two variant implementations, is
based on “primitive polynomials modulo 2.” The theory of these polynomials is
beyond our scope (although§7.7 and§20.3 will give you small tastes of it). Here,
suffice it to say that there are special polynomials among those whose coefficients
are zero or one. An example is

x
18 + x

5 + x
2 + x

1 + x
0 (7.4.1)

which we can abbreviate by just writing the nonzero powers ofx, e.g.,

(18, 5, 2, 1, 0)

Every primitive polynomial modulo 2 of ordern (=18 above) defines a
recurrence relation for obtaining a new random bit from then preceding ones. The
recurrence relation is guaranteed to produce a sequence of maximal length, i.e.,
cycle through all possible sequences ofn bits (except all zeros) before it repeats.
Therefore one can seed the sequence with any initial bit pattern (except all zeros),
and get2n − 1 random bits before the sequence repeats.

Let the bits be numbered from 1 (most recently generated) throughn (generated
n steps ago), and denoteda1, a2, . . . , an. We want to give a formula for a new bit
a0. After generatinga0 we will shift all the bits by one, so that the oldan is finally
lost, and the newa0 becomesa1. We then apply the formula again, and so on.

“Method I” is the easiest to implement in hardware, requiring only a single shift
registern bits long and a few XOR (“exclusive or” or bit addition mod 2) gates. For
the primitive polynomial given above, the recurrence formula is

a0 = a18 XOR a5 XOR a2 XOR a1 (7.4.2)

The terms that are XOR’d together can be thought of as “taps” on the shift register,
XOR’d into the register’s input. More generally, there is precisely one term for
eachnonzero coefficient in the primitive polynomial except the constant (zero bit)
term. So the first term will always bean for a primitive polynomial of degreen,
while the last term might or might not bea1, depending on whether the primitive
polynomial has a term inx1.

It is rather cumbersome to illustrate the method inFORTRAN. Assume thatiand
is a bitwise AND function,not is bitwise complement,ishft(,1) is leftshift by
one bit,ior is bitwise OR. (These are available in manyFORTRAN implementations.)
Then we have the following routine.

288 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

18 17 5 4 3 2 1 0
shift left

(a)

18 17 5 4 3 2 1 0
shift left

(b)

Figure 7.4.1. Two related methods for obtaining random bits from a shift register and a primitive
polynomial modulo 2. (a) The contents of selected taps are combined by exclusive-or (addition modulo
2), and the result is shifted in from the right. This method is easiest to implement in hardware. (b)
Selected bits are modified by exclusive-or with the leftmost bit, which is then shifted in from the right.
This method is easiest to implement in software.

FUNCTION irbit1(iseed)

INTEGER irbit1,iseed,IB1,IB2,IB5,IB18

PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072) Powers of 2.
Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

LOGICAL newbit The accumulated XOR’s.
newbit=iand(iseed,IB18).ne.0 Get bit 18.
if(iand(iseed,IB5).ne.0)newbit=.not.newbit XOR with bit 5.
if(iand(iseed,IB2).ne.0)newbit=.not.newbit XOR with bit 2.
if(iand(iseed,IB1).ne.0)newbit=.not.newbit XOR with bit 1.
irbit1=0

iseed=iand(ishft(iseed,1),not(IB1)) Leftshift the seed and put a zero in its bit 1.
if(newbit)then But if the XOR calculation gave a 1,

irbit1=1

iseed=ior(iseed,IB1) then put that in bit 1 instead.
endif

return

END

“Method II” is less suited to direct hardware implementation (though still
possible), but is more suited to machine-language implementation. It modifies more
than one bit among the savedn bits as each new bit is generated (Figure 7.4.1). It
generates the maximal length sequence, but not in the same order as Method I. The
prescription for the primitive polynomial (7.4.1) is:

a0 = a18

a5 = a5 XOR a0

a2 = a2 XOR a0

a1 = a1 XOR a0

(7.4.3)

7.4 Generation of Random Bits 289

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Some Primitive Polynomials Modulo 2 (after Watson)

(1, 0) (51, 6, 3, 1, 0)
(2, 1, 0) (52, 3, 0)
(3, 1, 0) (53, 6, 2, 1, 0)
(4, 1, 0) (54, 6, 5, 4, 3, 2, 0)
(5, 2, 0) (55, 6, 2, 1, 0)
(6, 1, 0) (56, 7, 4, 2, 0)
(7, 1, 0) (57, 5, 3, 2, 0)
(8, 4, 3, 2, 0) (58, 6, 5, 1, 0)
(9, 4, 0) (59, 6, 5, 4, 3, 1, 0)
(10, 3, 0) (60, 1, 0)
(11, 2, 0) (61, 5, 2, 1, 0)
(12, 6, 4, 1, 0) (62, 6, 5, 3, 0)
(13, 4, 3, 1, 0) (63, 1, 0)
(14, 5, 3, 1, 0) (64, 4, 3, 1, 0)
(15, 1, 0) (65, 4, 3, 1, 0)
(16, 5, 3, 2, 0) (66, 8, 6, 5, 3, 2, 0)
(17, 3, 0) (67, 5, 2, 1, 0)
(18, 5, 2, 1, 0) (68, 7, 5, 1, 0)
(19, 5, 2, 1, 0) (69, 6, 5, 2, 0)
(20, 3, 0) (70, 5, 3, 1, 0)
(21, 2, 0) (71, 5, 3, 1, 0)
(22, 1, 0) (72, 6, 4, 3, 2, 1, 0)
(23, 5, 0) (73, 4, 3, 2, 0)
(24, 4, 3, 1, 0) (74, 7, 4, 3, 0)
(25, 3, 0) (75, 6, 3, 1, 0)
(26, 6, 2, 1, 0) (76, 5, 4, 2, 0)
(27, 5, 2, 1, 0) (77, 6, 5, 2, 0)
(28, 3, 0) (78, 7, 2, 1, 0)
(29, 2, 0) (79, 4, 3, 2, 0)
(30, 6, 4, 1, 0) (80, 7, 5, 3, 2, 1, 0)
(31, 3, 0) (81, 4 0)
(32, 7, 5, 3, 2, 1, 0) (82, 8, 7, 6, 4, 1, 0)
(33, 6, 4, 1, 0) (83, 7, 4, 2, 0)
(34, 7, 6, 5, 2, 1, 0) (84, 8, 7, 5, 3, 1, 0)
(35, 2, 0) (85, 8, 2, 1, 0)
(36, 6, 5, 4, 2, 1, 0) (86, 6, 5, 2, 0)
(37, 5, 4, 3, 2, 1, 0) (87, 7, 5, 1, 0)
(38, 6, 5, 1, 0) (88, 8, 5, 4, 3, 1, 0)
(39, 4, 0) (89, 6, 5, 3, 0)
(40, 5, 4 3, 0) (90, 5, 3, 2, 0)
(41, 3, 0) (91, 7, 6, 5, 3, 2, 0)
(42, 5, 4, 3, 2, 1, 0) (92, 6, 5, 2, 0)
(43, 6, 4, 3, 0) (93, 2, 0)
(44, 6, 5, 2, 0) (94, 6, 5, 1, 0)
(45, 4, 3, 1, 0) (95, 6, 5, 4, 2, 1, 0)
(46, 8, 5, 3, 2, 1, 0) (96, 7, 6, 4, 3, 2, 0)
(47, 5, 0) (97, 6, 0)
(48, 7, 5, 4, 2, 1, 0) (98, 7, 4, 3, 2, 1, 0)
(49, 6, 5, 4, 0) (99, 7, 5, 4, 0)
(50, 4, 3, 2, 0) (100, 8, 7, 2, 0)

In general there will be an exclusive-or for eachnonzero term in the primitive
polynomial except 0 andn. The nice feature about Method II is that all the
exclusive-or’s can usually be done as a single masked word XOR (here assumed
to be theFORTRAN function ieor):

290 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION irbit2(iseed)

INTEGER irbit2,iseed,IB1,IB2,IB5,IB18,MASK

PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072,MASK=IB1+IB2+IB5)

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if(iand(iseed,IB18).ne.0)then Change all masked bits, shift, and put 1 into bit 1.
iseed=ior(ishft(ieor(iseed,MASK),1),IB1)

irbit2=1

else Shift and put 0 into bit 1.
iseed=iand(ishft(iseed,1),not(IB1))

irbit2=0

endif

return

END

A word of caution is: Don’t use sequential bits from these routines as the bits
of a large, supposedly random, integer, or as the bits in the mantissa of a supposedly
random floating-point number. They are not very random for that purpose; see
Knuth [1]. Examples of acceptable uses of these random bits are: (i) multiplying a
signal randomly by±1 at a rapid “chip rate,” so as to spread its spectrum uniformly
(but recoverably) across some desired bandpass, or (ii) Monte Carlo exploration
of a binary tree, where decisions as to whether to branch left or right areto be
made randomly.

Now we do not want you to go through life thinking that there is something
special about the primitive polynomial of degree 18 used in the above examples.
(We chose 18 because218 is small enough for you to verify our claims directly by
numerical experiment.) The accompanying table[2] lists one primitive polynomial
for each degree up to100. (In fact there exist many such foreach degree. For
example, see§7.7 for a complete table up to degree 10.)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 29ff. [1]

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (Cambridge: Cambridge University
Press), §§9.32–9.37.

Tausworthe, R.C. 1965, Mathematics of Computation, vol. 19, pp. 201–209.

Watson, E.J. 1962, Mathematics of Computation, vol. 16, pp. 368–369. [2]

7.5 Random Sequences Based on Data
Encryption

In Numerical Recipes’first edition,we described how to use the Data Encryption Standard
(DES) [1-3] for the generation of random numbers. Unfortunately, when implemented in
software in a high-level language likeFORTRAN, DES is very slow, so excruciatingly slow,
in fact, that our previous implementation can be viewed as more mischievous than useful.
Here we give a much faster and simpler algorithm which, though it may not be secure in the
cryptographic sense, generates about equally good random numbers.

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [4]. It acts on 64 bits of input by iteratively applying (16 times, in fact) a kind of highly

290 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION irbit2(iseed)
INTEGER irbit2,iseed,IB1,IB2,IB5,IB18,MASK
PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072,MASK=IB1+IB2+IB5)

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if(iand(iseed,IB18).ne.0)then Change all masked bits, shift, and put 1 into bit 1.
iseed=ior(ishft(ieor(iseed,MASK),1),IB1)
irbit2=1

else Shift and put 0 into bit 1.
iseed=iand(ishft(iseed,1),not(IB1))
irbit2=0

endif
return
END

A word of caution is: Don’t use sequential bits from these routines as the bits
of a large, supposedly random, integer, or as the bits in the mantissa of a supposedly
random floating-point number. They are not very random for that purpose; see
Knuth [1]. Examples of acceptable uses of these random bits are: (i) multiplying a
signal randomly by±1 at a rapid “chip rate,” so as to spread its spectrum uniformly
(but recoverably) across some desired bandpass, or (ii) Monte Carlo exploration
of a binary tree, where decisions as to whether to branch left or right areto be
made randomly.

Now we do not want you to go through life thinking that there is something
special about the primitive polynomial of degree 18 used in the above examples.
(We chose 18 because218 is small enough for you to verify our claims directly by
numerical experiment.) The accompanying table[2] lists one primitive polynomial
for each degree up to100. (In fact there exist many such foreach degree. For
example, see§7.7 for a complete table up to degree 10.)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 29ff. [1]

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (Cambridge: Cambridge University
Press), §§9.32–9.37.

Tausworthe, R.C. 1965, Mathematics of Computation, vol. 19, pp. 201–209.

Watson, E.J. 1962, Mathematics of Computation, vol. 16, pp. 368–369. [2]

7.5 Random Sequences Based on Data
Encryption

In Numerical Recipes’first edition,we described how to use the Data Encryption Standard
(DES) [1-3] for the generation of random numbers. Unfortunately, when implemented in
software in a high-level language likeFORTRAN, DES is very slow, so excruciatingly slow,
in fact, that our previous implementation can be viewed as more mischievous than useful.
Here we give a much faster and simpler algorithm which, though it may not be secure in the
cryptographic sense, generates about equally good random numbers.

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [4]. It acts on 64 bits of input by iteratively applying (16 times, in fact) a kind of highly

7.5 Random Sequences Based on Data Encryption 291

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

32-bit XOR

right 32-bit wordleft 32-bit word

right 32-bit wordleft 32-bit word

g

32-bit XOR

right 32-bit wordleft 32-bit word

g

Figure 7.5.1. The Data Encryption Standard (DES) iterates a nonlinear functiong on two 32-bit words,
in the manner shown here (after Meyer and Matyas[4]).

nonlinear bit-mixing function. Figure 7.5.1 shows the flow of information in DES during
this mixing. The functiong, which takes 32-bits into 32-bits, is called the “cipher function.”
Meyer and Matyas[4] discuss the importance of the cipher function being nonlinear, as well
as other design criteria.

DES constructs its cipher functiong from an intricate set of bit permutations and table
lookups acting on short sequences of consecutive bits. Apparently, this function was chosen
to be particularly strong cryptographically (or conceivably as some critics contend, to have
an exquisitely subtle cryptographic flaw!). For our purposes, a different functiong that can
be rapidly computed in a high-level computer language is preferable. Such a function may
weaken the algorithm cryptographically. Our purposes are not, however, cryptographic: We
want to find the fastestg, and smallest number of iterations of the mixing procedure in Figure
7.5.1, such that our output random sequence passes the standard tests that are customarily
applied to random number generators. The resulting algorithm will not be DES, but rather a
kind of “pseudo-DES,” better suited to the purpose at hand.

Following the criterion, mentioned above, thatg should be nonlinear, we must give
the integer multiply operation a prominent place ing. Because 64-bit registers are not
generally accessible in high-level languages, we must confine ourselves to multiplying 16-bit
operands into a 32-bit result. So, the general idea ofg, almost forced, is to calculate the three
distinct 32-bit products of the high and low 16-bit input half-words, and then to combine
these, and perhaps additional fixed constants, by fast operations (e.g., add or exclusive-or)
into a single 32-bit result.

There are only a limited number of ways of effecting this general scheme, allowing
systematic exploration of the alternatives. Experimentation, and tests of the randomness of
the output, lead to the sequence of operations shown in Figure 7.5.2. The few new elements
in the figure need explanation: The valuesC1 andC2 are fixed constants, chosen randomly
with the constraint that they have exactly 16 1-bits and 16 0-bits; combining these constants

292 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

lo2hi2

XORC1

XORC2

NOT

+

hi • lo

reverse
half-words

+

Figure 7.5.2. The nonlinear functiong used by the routinepsdes.

via exclusive-or ensures that the overallg has no bias towards 0 or 1 bits.
The “reverse half-words” operation in Figure 7.5.2 turns out to be essential; otherwise,

the very lowest and very highest bits are not properly mixed by the three multiplications.
The nonobvious choices ing are therefore: where along the vertical “pipeline” to do the
reverse; in what order to combine the three products andC2; and with which operation (add
or exclusive-or) should each combining be done? We tested these choices exhaustively before
settling on the algorithm shown in the figure.

It remains to determine the smallest number of iterationsNit that we can get away with.
The minimum meaningfulNit is evidently two, since a single iteration simply moves one
32-bit word without altering it. One can use the constantsC1 andC2 to help determine an
appropriateNit: WhenNit = 2 andC1 = C2 = 0 (an intentionally very poor choice), the
generator fails several tests of randomness by easily measurable, though not overwhelming,
amounts. WhenNit = 4, on the other hand, or withNit = 2 but with the constants
C1, C2 nonsparse, we have been unable to findanystatistical deviation from randomness in
sequences of up to109 floating numbersri derived from this scheme. The combined strength
of Nit = 4 and nonsparseC1, C2 should therefore give sequences that are random to tests
even far beyond those that we have actually tried. These are our recommended conservative
parameter values, notwithstanding the fact thatNit = 2 (which is, of course, twice as fast)
has no nonrandomness discernible (by us).

We turn now to implementation. The nonlinear function shown in Figure 7.5.2 is not
implementable in strictly portableFORTRAN, for at least three reasons: (1) The addition of two
32-bit integers may overflow, and the multiplication of two 16-bit integers may not produce
the correct 32-bit product because of sign-bit conventions. We intend that the overflow be
ignored, and that the 16-bit integers be multiplied as if they are positive. It is possible
to force this behavior on most machines. (2) We assume 32-bit integers; however, there

7.5 Random Sequences Based on Data Encryption 293

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

is no reason to believe thatlonger integers would be in any way inferior (with suitable
extensions of the constantsC1, C2). (3) Your compiler may require a different notation for
hex constants (see below).

We have been able to run the following routine,psdes, successfullyon machines ranging
from PCs to VAXes and both “big-endian” and “little-endian” UNIX workstations. (Big- and
little-endian refer to the order in which the bytes are stored in a word.) A strictly portable
implementation is possible inC. If all else fails, you can make aFORTRAN-callable version
of the C routine, found inNumerical Recipes in C.

SUBROUTINE psdes(lword,irword)
INTEGER irword,lword,NITER
PARAMETER (NITER=4)

“Pseudo-DES” hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
returned hashed on all bits. NOTE: This routine assumes that arbitrary 32-bit integers can
be added without overflow. To accomplish this, you may need to compile with a special
directive (e.g., /check=nooverflow for VMS). In other languages, such as C, one can
instead type the integers as “unsigned.”

INTEGER i,ia,ib,iswap,itmph,itmpl,c1(4),c2(4)
SAVE c1,c2
DATA c1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’, Your compiler may use a differ-

ent notation for hex constants!* Z’0F33D1B2’/, c2 /Z’4B0F3B58’,Z’E874F0C3’,
* Z’6955C5A6’, Z’55A7CA46’/

do 11 i=1,NITER Perform niter iterations of DES logic, using a simpler (non-
cryptographic) nonlinear function instead of DES’s.iswap=irword

ia=ieor(irword,c1(i)) The bit-rich constants c1 and (below) c2 guarantee lots of
nonlinear mixing.itmpl=iand(ia,65535)

itmph=iand(ishft(ia,-16),65535)
ib=itmpl**2+not(itmph**2)
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
irword=ieor(lword,ieor(c2(i),ia)+itmpl*itmph)
lword=iswap

enddo 11

return
END

The routineran4, listed below, usespsdes to generate uniform random deviates. We
adopt the convention that a negative value of the argumentidum sets the left 32-bit word, while
a positive valuei sets the right 32-bit word, returns theith random deviate, and increments
idum to i + 1. This is no more than a convenient way of defining many different sequences
(negative values ofidum), but still with random access to each sequence (positive values
of idum). For getting a floating-point number from the 32-bit integer, we like to do it by
the masking trick described at the end of§7.1, above. The hex constants 3F800000 and
007FFFFF are the appropriate ones for computers using the IEEE representation for 32-bit
floating-point numbers (e.g., IBM PCs and most UNIX workstations). For DEC VAXes, the
correct hex constants are, respectively, 00004080 and FFFF007F. Note that your compiler
may require a different notation for hex constants, e.g.,x’3f800000’, ’3F800000’X, or even
16#3F800000. For greater portability, you can instead construct a floating number bymaking
the (signed) 32-bit integer nonnegative (typically, you add exactly2

31 if it is negative) and
then multiplying it by a floating constant (typically2.−31).

An interesting, and sometimes useful, feature of the routineran4, below, is that it allows
random access to thenth random value in a sequence, without the necessity of first generating
values1 · · ·n− 1. This property is shared by any random number generator based onhashing
(the technique of mapping data keys, which may be highly clustered in value, approximately
uniformly into a storage address space)[5,6]. One might have a simulation problem in which
some certain rare situation becomes recognizable by its consequences only considerably after
it has occurred. One may wish to restart the simulation back at that occurrence, using identical
random values but, say, varying some other control parameters. The relevant question might
then be something like “what random numbers were used in cycle number 337098901?” It
might already be cycle number 395100273 before the question comes up. Random generators
based on recursion, rather than hashing, cannot easily answer such a question.

294 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Values for Verifying the Implementation ofpsdes

idum beforepsdes call afterpsdes call (hex) ran4(idum)

lword irword lword irword VAX PC

–1 1 1 604D1DCE 509C0C23 0.275898 0.219120

99 1 99 D97F8571 A66CB41A 0.208204 0.849246

–99 99 1 7822309D 64300984 0.034307 0.375290

99 99 99 D7F376F0 59BA89EB 0.838676 0.457334

Successive calls topsdes with arguments−1, 99,−99, and 1, should produce exactly the
lword andirword values shown. Masking conversion to a returned floating random value
is allowed to be machine dependent; values for VAX and PC are shown.

FUNCTION ran4(idum)
INTEGER idum
REAL ran4

C USES psdes
Returns a uniform random deviate in the range 0.0 to 1.0, generated by pseudo-DES (DES-
like) hashing of the 64-bit word (idums,idum), where idumswas set by a previous call with
negative idum. Also increments idum. Routine can be used to generate a random sequence
by successive calls, leaving idum unaltered between calls; or it can randomly access the nth
deviate in a sequence by calling with idum = n. Different sequences are initialized by calls
with differing negative values of idum.

INTEGER idums,irword,itemp,jflmsk,jflone,lword
REAL ftemp
EQUIVALENCE (itemp,ftemp)
SAVE idums,jflone,jflmsk
DATA idums /0/, jflone /Z’3F800000’/, jflmsk /Z’007FFFFF’/

The hexadecimal constants jflone and jflmsk are used to produce a floating number between
1. and 2. by bitwise masking. They are machine-dependent. See text.

if(idum.lt.0)then Reset idums and prepare to return the first devi-
ate in its sequence.idums=-idum

idum=1
endif
irword=idum
lword=idums
call psdes(lword,irword) “Pseudo-DES” encode the words.
itemp=ior(jflone,iand(jflmsk,irword)) Mask to a floating number between 1 and 2.
ran4=ftemp-1.0 Subtraction moves range to 0. to 1.
idum=idum+1
return
END

The accompanying table gives data for verifying thatran4 andpsdes work correctly
on your machine. We do not advise the use ofran4 unless you are able to reproduce the
hex values shown. Typically,ran4 is about 4 times slower thanran0 (§7.1), or about 3
times slower thanran1.

CITED REFERENCES AND FURTHER READING:

Data Encryption Standard, 1977 January 15, Federal Information Processing Standards Publi-
cation, number 46 (Washington: U.S. Department of Commerce, National Bureau of Stan-
dards). [1]

Guidelines for Implementing and Using the NBS Data Encryption Standard, 1981 April 1, Federal
Information Processing Standards Publication, number 74 (Washington: U.S. Department
of Commerce, National Bureau of Standards). [2]

7.6 Simple Monte Carlo Integration 295

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Validating the Correctness of Hardware Implementations of the NBS Data Encryption Standard,
1980, NBS Special Publication 500–20 (Washington: U.S. Department of Commerce, Na-
tional Bureau of Standards). [3]

Meyer, C.H. and Matyas, S.M. 1982, Cryptography: A New Dimension in Computer Data Security
(New York: Wiley). [4]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), Chapter 6. [5]

Vitter, J.S., and Chen, W-C. 1987, Design and Analysis of Coalesced Hashing (New York:
Oxford University Press). [6]

7.6 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. “Splines”
first were flexible strips of wood used by draftsmen. “Simulated annealing” (we
shall see in§10.9) is rooted in a thermodynamic analogy. And who does not feel at
least a faint echo of glamor in the name “Monte Carlo method”?

Suppose that we pickN random points, uniformly distributed in a multidimen-
sional volumeV . Call themx1, . . . , xN . Then the basic theorem of Monte Carlo
integration estimates the integral of a functionf over the multidimensional volume,

∫

f dV ≈ V 〈f〉 ± V

√

〈f2〉 − 〈f〉
2

N
(7.6.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

〈f〉 ≡
1

N

N
∑

i=1

f(xi)
〈

f2
〉

≡
1

N

N
∑

i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for
the integral, not a rigorous bound; further, there is no guarantee that the error
is distributed as a Gaussian, so the error term should be taken only as a rough
indication of probable error.

Suppose that you want to integrate a functiong over a regionW that is not
easy to sample randomly. For example,W might have a very complicated shape.
No problem. Just find a regionV that includesW and thatcan easily be sampled
(Figure 7.6.1), and then definef to be equal tog for points inW and equal to zero
for points outside ofW (but still inside the sampledV). You want to try to make
V encloseW as closely as possible, because the zero values off will increase the
error estimate term of (7.6.1). And well they should: points chosen outside ofW

have no information content, so the effective value ofN , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated
(see§7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an

7.6 Simple Monte Carlo Integration 295

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Validating the Correctness of Hardware Implementations of the NBS Data Encryption Standard,
1980, NBS Special Publication 500–20 (Washington: U.S. Department of Commerce, Na-
tional Bureau of Standards). [3]

Meyer, C.H. and Matyas, S.M. 1982, Cryptography: A New Dimension in Computer Data Security
(New York: Wiley). [4]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), Chapter 6. [5]

Vitter, J.S., and Chen, W-C. 1987, Design and Analysis of Coalesced Hashing (New York:
Oxford University Press). [6]

7.6 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. “Splines”
first were flexible strips of wood used by draftsmen. “Simulated annealing” (we
shall see in§10.9) is rooted in a thermodynamic analogy. And who does not feel at
least a faint echo of glamor in the name “Monte Carlo method”?

Suppose that we pickN random points, uniformly distributed in a multidimen-
sional volumeV . Call themx1, . . . , xN . Then the basic theorem of Monte Carlo
integration estimates the integral of a functionf over the multidimensional volume,

∫

f dV ≈ V 〈f〉 ± V

√

〈f2〉 − 〈f〉2
N

(7.6.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

〈f〉 ≡ 1

N

N
∑

i=1

f(xi)
〈

f2
〉

≡ 1

N

N
∑

i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for
the integral, not a rigorous bound; further, there is no guarantee that the error
is distributed as a Gaussian, so the error term should be taken only as a rough
indication of probable error.

Suppose that you want to integrate a functiong over a regionW that is not
easy to sample randomly. For example,W might have a very complicated shape.
No problem. Just find a regionV that includesW and thatcan easily be sampled
(Figure 7.6.1), and then definef to be equal tog for points inW and equal to zero
for points outside ofW (but still inside the sampledV). You want to try to make
V encloseW as closely as possible, because the zero values off will increase the
error estimate term of (7.6.1). And well they should: points chosen outside ofW
have no information content, so the effective value ofN , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated
(see§7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an

296 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

area A

∫fdx

Figure 7.6.1. Monte Carlo integration. Random points are chosen within the areaA. The integral of the
functionf is estimated as the area ofA multiplied by the fraction of random points that fall below the
curvef . Refinements on this procedure can improve the accuracy of the method; see text.

0 2 4

2

4

y

x
1

Figure 7.6.2. Example of Monte Carlo integration (see text). The region of interest is a piece of a torus,
bounded by the intersection of two planes. The limits of integration of the region cannot easily be written
in analytically closed form, so Monte Carlo is a useful technique.

7.6 Simple Monte Carlo Integration 297

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

object of complicated shape, namely the intersection of a torus with the edgeof a
large box. In particular let the object be defined by the three simultaneous conditions

z2 +
(

√

x2 + y2 − 3
)2

≤ 1 (7.6.3)

(torus centered on the origin with major radius= 4, minor radius= 2)

x ≥ 1 y ≥ −3 (7.6.4)

(two faces of thebox, see Figure 7.6.2). Suppose for the moment that the object
has a constant densityρ.

We want to estimate the following integrals over the interior of the complicated
object:

∫

ρ dx dy dz

∫

xρ dx dy dz

∫

yρ dx dy dz

∫

zρ dx dy dz

(7.6.5)
The coordinates of the center of mass will be the ratio of the latter three integrals
(linear moments) to the first one (the weight).

In the following fragment, the regionV , enclosing the piece-of-torusW , is the
rectangular box extending from 1 to 4 inx, −3 to 4 in y, and−1 to 1 in z.

n= Set to the number of sample points desired.
den= Set to the constant value of the density.
sw=0. Zero the various sums to be accumulated.
swx=0.
swy=0.
swz=0.
varw=0.
varx=0.
vary=0.
varz=0.
vol=3.*7.*2. Volume of the sampled region.
do 11 j=1,n

x=1.+3.*ran2(idum) Pick a point randomly in the sampled region.
y=-3.+7.*ran2(idum)
z=-1.+2.*ran2(idum)
if (z**2+(sqrt(x**2+y**2)-3.)**2.le.1.)then Is it in the torus?

sw=sw+den If so, add to the various cumulants.
swx=swx+x*den
swy=swy+y*den
swz=swz+z*den
varw=varw+den**2
varx=varx+(x*den)**2
vary=vary+(y*den)**2
varz=varz+(z*den)**2

endif
enddo 11

w=vol*sw/n The values of the integrals (7.6.5),
x=vol*swx/n
y=vol*swy/n
z=vol*swz/n
dw=vol*sqrt((varw/n-(sw/n)**2)/n) and their corresponding error estimates.
dx=vol*sqrt((varx/n-(swx/n)**2)/n)
dy=vol*sqrt((vary/n-(swy/n)**2)/n)
dz=vol*sqrt((varz/n-(swz/n)**2)/n)

298 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

A change of variable can often be extremely worthwhile in Monte Carlo
integration. Suppose, for example, that we want to evaluate the same integrals,
but for a piece-of-torus whose density is a strong function ofz, in fact varying
according to

ρ(x, y, z) = e5z (7.6.6)

One way to do this is to put the statement

den=exp(5.*z)

inside theif...then block, just beforeden is first used. This will work, but it is
a poor way to proceed. Since (7.6.6) falls so rapidly to zero asz decreases (down
to its lower limit −1), most sampled points contribute almost nothing to the sum
of the weight or moments. These points are effectively wasted, almost as badly
as those that fall outside of the regionW . A change of variable, exactly as in the
transformation methods of§7.2, solves this problem. Let

ds = e5zdz so that s =
1

5
e5z, z =

1

5
ln(5s) (7.6.7)

Thenρdz = ds, and the limits−1 < z < 1 become.00135 < s < 29.682. The
program fragment now looks like this

n= Set to the number of sample points desired.
sw=0.
swx=0.
swy=0.
swz=0.
varw=0.
varx=0.
vary=0.
varz=0.
ss=(0.2*(exp(5.)-exp(-5.))) Interval of s to be random sampled.
vol=3.*7.*ss Volume in x,y,s-space.
do 11 j=1,n

x=1.+3.*ran2(idum)
y=-3.+7.*ran2(idum)
s=.00135+ss*ran2(idum) Pick a point in s.
z=0.2*log(5.*s) Equation (7.6.7).
if (z**2+(sqrt(x**2+y**2)-3.)**2.lt.1.)then

sw=sw+1. Density is 1, since absorbed into definition of s.
swx=swx+x
swy=swy+y
swz=swz+z
varw=varw+1.
varx=varx+x**2
vary=vary+y**2
varz=varz+z**2

endif
enddo 11

w=vol*sw/n The values of the integrals (7.6.5),
x=vol*swx/n
y=vol*swy/n
z=vol*swz/n
dw=vol*sqrt((varw/n-(sw/n)**2)/n) and their corresponding error estimates.
dx=vol*sqrt((varx/n-(swx/n)**2)/n)
dy=vol*sqrt((vary/n-(swy/n)**2)/n)
dz=vol*sqrt((varz/n-(swz/n)**2)/n)

7.7 Quasi- (that is, Sub-) Random Sequences 299

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If you think for a minute, you will realize that equation (7.6.7) was useful only
because the part of the integrand that we wanted to eliminate (e5z) was both integrable
analytically, and had an integral that could be analytically inverted. (Compare§7.2.)
In general these properties will not hold. Question: What then? Answer: Pull out
of the integrand the “best” factor thatcanbe integrated and inverted. The criterion
for “best” is to try to reduce the remaining integrand to a function that is as close
as possible to constant.

The limiting case is instructive: If you manage to make the integrandf exactly
constant, and if the regionV , of known volume,exactlyencloses the desired region
W , then the average off that you compute will be exactly its constant value, and the
error estimate in equation (7.6.1) will exactly vanish. You will, in fact, have done
the integral exactly, and the Monte Carlo numerical evaluations are superfluous. So,
backing off from the extreme limiting case,to the extentthat you are able to makef
approximately constant by change of variable, andto the extentthat you can sample a
region only slightly larger thanW , you will increase the accuracy of the Monte Carlo
integral. This technique is generically calledreduction of variancein the literature.

The fundamental disadvantage of simple Monte Carlo integration is that its
accuracy increases only as the square root ofN , the number of sampled points. If
your accuracy requirements are modest, or ifyour computer budget is large, then
the technique is highly recommended as one of great generality. In the next two
sections we will see that there are techniques available for “breaking the square root
of N barrier” and achieving, at least in some cases, higher accuracy with fewer
function evaluations.

CITED REFERENCES AND FURTHER READING:

Hammersley, J.M., and Handscomb, D.C. 1964, Monte Carlo Methods (London: Methuen).

Shreider, Yu. A. (ed.) 1966, The Monte Carlo Method (Oxford: Pergamon).

Sobol’, I.M. 1974, The Monte Carlo Method (Chicago: University of Chicago Press).

Kalos, M.H., and Whitlock, P.A. 1986, Monte Carlo Methods (New York: Wiley).

7.7 Quasi- (that is, Sub-) Random Sequences

We have just seen that choosingN points uniformly randomly in ann-
dimensional space leads to an error term in Monte Carlo integration that decreases
as1/

√
N . In essence, each new point sampled adds linearly to an accumulated sum

that will become the function average, and also linearly to an accumulatedsum of
squares that will become the variance (equation 7.6.2). The estimated error comes
from the square root of this variance, hence the powerN−1/2.

Just because this square root convergence is familiar does not, however, mean
that it is inevitable. A simple counterexample is to choose sample points that lie
on a Cartesian grid, and to sample each grid point exactly once (in whateverorder).
The Monte Carlo method thus becomes a deterministic quadrature scheme — albeit
a simple one — whose fractional error decreases at least as fast asN−1 (even faster
if the function goes to zero smoothly at the boundaries of the sampled region, or
is periodic in the region).

7.7 Quasi- (that is, Sub-) Random Sequences 299

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If you think for a minute, you will realize that equation (7.6.7) was useful only
because the part of the integrand that we wanted to eliminate (e5z) was both integrable
analytically, and had an integral that could be analytically inverted. (Compare§7.2.)
In general these properties will not hold. Question: What then? Answer: Pull out
of the integrand the “best” factor thatcanbe integrated and inverted. The criterion
for “best” is to try to reduce the remaining integrand to a function that is as close
as possible to constant.

The limiting case is instructive: If you manage to make the integrandf exactly
constant, and if the regionV , of known volume,exactlyencloses the desired region
W , then the average off that you compute will be exactly its constant value, and the
error estimate in equation (7.6.1) will exactly vanish. You will, in fact, have done
the integral exactly, and the Monte Carlo numerical evaluations are superfluous. So,
backing off from the extreme limiting case,to the extentthat you are able to makef
approximately constant by change of variable, andto the extentthat you can sample a
region only slightly larger thanW , you will increase the accuracy of the Monte Carlo
integral. This technique is generically calledreduction of variancein the literature.

The fundamental disadvantage of simple Monte Carlo integration is that its
accuracy increases only as the square root ofN , the number of sampled points. If
your accuracy requirements are modest, or ifyour computer budget is large, then
the technique is highly recommended as one of great generality. In the next two
sections we will see that there are techniques available for “breaking the square root
of N barrier” and achieving, at least in some cases, higher accuracy with fewer
function evaluations.

CITED REFERENCES AND FURTHER READING:

Hammersley, J.M., and Handscomb, D.C. 1964, Monte Carlo Methods (London: Methuen).

Shreider, Yu. A. (ed.) 1966, The Monte Carlo Method (Oxford: Pergamon).

Sobol’, I.M. 1974, The Monte Carlo Method (Chicago: University of Chicago Press).

Kalos, M.H., and Whitlock, P.A. 1986, Monte Carlo Methods (New York: Wiley).

7.7 Quasi- (that is, Sub-) Random Sequences

We have just seen that choosingN points uniformly randomly in ann-
dimensional space leads to an error term in Monte Carlo integration that decreases
as1/

√
N . In essence, each new point sampled adds linearly to an accumulated sum

that will become the function average, and also linearly to an accumulatedsum of
squares that will become the variance (equation 7.6.2). The estimated error comes
from the square root of this variance, hence the powerN−1/2.

Just because this square root convergence is familiar does not, however, mean
that it is inevitable. A simple counterexample is to choose sample points that lie
on a Cartesian grid, and to sample each grid point exactly once (in whateverorder).
The Monte Carlo method thus becomes a deterministic quadrature scheme — albeit
a simple one — whose fractional error decreases at least as fast asN−1 (even faster
if the function goes to zero smoothly at the boundaries of the sampled region, or
is periodic in the region).

300 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The trouble with a grid is that one has to decidein advancehow fine it should
be. One is then committed to completing all of its sample points. With a grid, it is
not convenient to “sampleuntil” some convergence or termination criterion is met.
One might ask if there is not some intermediate scheme, some way to pick sample
points “at random,” yet spread out in some self-avoiding way, avoiding the chance
clustering that occurs with uniformly random points.

A similar question arises for tasks other than Monte Carlo integration. We might
want to search ann-dimensional space for a point where some (locally computable)
condition holds. Of course, for the task to be computationally meaningful, there
had better be continuity, so that the desired condition will hold in some finiten-
dimensional neighborhood. We may not knowa priori how large that neighborhood
is, however. We want to “sampleuntil” the desired point is found, moving smoothly
to finer scales with increasing samples. Is there any way to do this that is better
than uncorrelated, random samples?

The answer to the above question is “yes.” Sequences ofn-tuples that fill
n-space more uniformly than uncorrelated random points are calledquasi-random
sequences. That term is somewhat of a misnomer, since there is nothing “random”
about quasi-random sequences: They are cleverly crafted to be, in fact,sub-random.
The sample points in a quasi-random sequence are, in a precise sense, “maximally
avoiding” of each other.

A conceptually simple example isHalton’s sequence[1]. In one dimension, the
jth numberHj in the sequence is obtained by the following steps: (i) Writej as a
number in baseb, whereb is some prime. (For examplej = 17 in baseb = 3 is
122.) (ii) Reverse the digits and put a radix point (i.e., a decimal point baseb) in
front of the sequence. (In the example, we get0.221 base 3.) The result isHj. To
get a sequence ofn-tuples inn-space, you make each component a Halton sequence
with a different prime baseb. Typically, the firstn primes are used.

It is not hard to see how Halton’s sequence works: Every time the number of
digits in j increases by one place,j’s digit-reversed fraction becomes a factor of
b finer-meshed. Thus the process is one of filling in all the points on a sequence
of finer and finer Cartesian grids — and in a kind of maximally spread-out order
on each grid (since, e.g., the most rapidly changing digit inj controls themost
significant digit of the fraction).

Other ways of generating quasi-random sequences have been suggested by
Faure, Sobol’, Niederreiter, and others. Bratley and Fox[2] provide a good review
and references, and discuss a particularly efficient variant of the Sobol’[3] sequence
suggested by Antonov and Saleev[4]. It is this Antonov-Saleev variant whose
implementation we now discuss.

The Sobol’ sequencegenerates numbers between zero and one directly as binary fractions
of lengthw bits, from a set ofw special binary fractions,Vi, i = 1, 2, . . . , w, calleddirection
numbers. In Sobol’s original method, thejth numberXj is generated by XORing (bitwise
exclusive or) together the set ofVi ’s satisfying the criterion oni, “the ith bit of j is nonzero.”
As j increments, in other words, different ones of theVi ’s flash in and out ofXj on different
time scales.V1 alternates between being present and absent most quickly, whileVk goes from
present to absent (or vice versa) only every2k−1 steps.

Antonov and Saleev’s contribution was to show that instead of using the bits of the
integerj to select direction numbers, one could just as well use the bits of theGray codeof j,
G(j). (For a quick review of Gray codes, look at§20.2.)

NowG(j) andG(j + 1) differ in exactly one bit position, namely in the position of the

7.7 Quasi- (that is, Sub-) Random Sequences 301

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

.
....

.
..

.. .
.
.

. .. .
.

..
. .

. .

. .

.

...
. ..
.

.. ..
..

..

...
. ...
..

.
...

.. ...
. ..

.
.

. ..
.
.... . ..

.
.... ..

....
.....

.
...

.

..
.

..... .
..

. ...
..
.
.

0 .2 .4 .6 .8 1
points 1 to 128

0

.2

.4

.6

.8

1

.
....

. ..
..

.
.
.

.
.. .

. .. .
.

..
.

.

.

.

. .

.

... . ..
.

..
.

...

..

...
. ...

.. .
.

..

....... ..
.

.

.

. ..
..

.
.

....

....
... .

..
.

..
....

.

. ..

.....
...
. ...

...
.

... ...
....
....

......
.....

..
..

.
.........

....
....

......
..
...... ..
..
.. .
...... .
.
.

..
......

..
..
.

....
.........
...........

..
........

.....
...

.......
..

.....
......

.

........... . . .
.....

0 .2 .4 .6 .8 1
points 129 to 512

0

.2

.4

.6

.8

1

...
..
.........................

.
.

................
........................

........

.........
......

..........
..............................
..........................

....

....................
.

........
.................

..................

.....
...............

......
...

.....
...
.......

.....
...
...

..........
...

.............
..

...
.

0 .2 .4 .6 .8 1
points 513 to 1024

0

.2

.4

.6

.8

1

........
....
..........

...................
.......

.....
........................ ...

......

....
.....................

.....
..........

....... .
......
..........................

.........
............
... .

........
..................

.............
.........

......
...................................

............ .
..
.........

.................
.........
.........
......
....

..
....

.....................
.

.............

.............
..........
......

......
.........
.................

.. ..
.................. ...

......................
........................

....................................
............................. ..

..........
....

..............
.....
......
...........

....
......

.... ...

0 .2 .4 .6 .8 1
points 1 to 1024

0

.2

.4

.6

.8

1

Figure 7.7.1. First 1024 points of a two-dimensional Sobol’ sequence. The sequence is generated
number-theoretically, rather than randomly, so successive points at any stage “know” how to fill in the
gaps in the previously generated distribution.

rightmost zero bit in the binary representation ofj (adding a leading zero toj if necessary). A
consequence is that thej + 1st Sobol’-Antonov-Saleev number can be obtained from thejth
by XORing it with a singleVi, namely withi the position of the rightmost zero bit inj. This
makes the calculation of the sequence very efficient, as we shall see.

Figure 7.7.1 plots the first 1024 points generated by a two-dimensional Sobol’ sequence.
One sees that successive points do “know” about the gaps left previously, and keep filling
them in, hierarchically.

We have deferred to this point a discussionof how the direction numbersVi are generated.
Some nontrivial mathematics is involved in that, so we will content ourself with a cookbook
summary only: Each different Sobol’ sequence (or component of ann-dimensional sequence)
is based on a different primitive polynomial over the integers modulo 2, that is, a polynomial
whose coefficients are either 0 or 1, and which generates a maximal length shift register
sequence. (Primitive polynomials modulo 2 were used in§7.4, and are further discussed in
§20.3.) SupposeP is such a polynomial, of degreeq,

P = xq + a1x
q−1 + a2x

q−2 + · · · + aq−1 + 1 (7.7.1)

302 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Degree Primitive Polynomials Modulo 2*

1 0 (i.e., x + 1)

2 1 (i.e., x2 + x + 1)

3 1, 2 (i.e.,x3 + x + 1 andx
3 + x

2 + 1)

4 1, 4 (i.e.,x4 + x + 1 andx
4 + x

3 + 1)

5 2, 4, 7, 11, 13, 14

6 1, 13, 16, 19, 22, 25

7 1, 4, 7, 8, 14, 19, 21, 28, 31, 32, 37, 41, 42, 50, 55, 56, 59, 62

8 14, 21, 22, 38, 47, 49, 50, 52, 56, 67, 70, 84, 97, 103, 115, 122

9 8, 13, 16, 22, 25, 44, 47, 52, 55, 59, 62, 67, 74, 81, 82, 87, 91, 94, 103, 104, 109, 122,

124, 137, 138, 143, 145, 152, 157, 167, 173, 176, 181, 182, 185, 191, 194, 199, 218, 220,

227, 229, 230, 234, 236, 241, 244, 253

10 4, 13, 19, 22, 50, 55, 64, 69, 98, 107, 115, 121, 127, 134, 140, 145, 152, 158, 161, 171,

181, 194, 199, 203, 208, 227, 242, 251, 253, 265, 266, 274, 283, 289, 295, 301, 316,

319, 324, 346, 352, 361, 367, 382, 395, 398, 400, 412, 419, 422, 426, 428, 433, 446,

454, 457, 472, 493, 505, 508

*Expressed as a decimal integer representing the interior bits (that is,omitting the
high-order bit and the unit bit).

Define a sequence of integersMi by theq-term recurrence relation,

Mi = 2a1Mi−1 ⊕ 22a2Mi−2 ⊕ · · · ⊕ 2q−1Mi−q+1aq−1 ⊕ (2qMi−q ⊕Mi−q) (7.7.2)

Here bitwise XOR is denoted by⊕. The starting values for this recurrence are thatM1, . . . ,Mq

can be arbitrary odd integers less than2, . . . , 2q , respectively. Then, the direction numbers
Vi are given by

Vi = Mi/2
i i = 1, . . . , w (7.7.3)

The accompanying table lists all primitive polynomials modulo 2 with degreeq ≤ 10.
Since the coefficients are either 0 or 1, and since the coefficients ofxq and of1 are predictably
1, it is convenient to denote a polynomial by its middle coefficients taken as the bits of a binary
number (higher powers ofx being more significant bits). The table uses this convention.

Turn now to the implementation of the Sobol’ sequence. Successive calls to the function
sobseq (after a preliminary initializing call) return successive points in ann-dimensional
Sobol’ sequence based on the firstn primitive polynomials in the table. As given, the
routine is initialized for maximumn of 6 dimensions, and for a word lengthw of 30 bits.
These parameters can be altered by changingMAXBIT (≡ w) andMAXDIM, and by adding
more initializing data to the arraysip (the primitive polynomials from the table),mdeg (their
degrees), andiv (the starting values for the recurrence, equation 7.7.2). A second table,
below, elucidates the initializing data in the routine.

SUBROUTINE sobseq(n,x)
INTEGER n,MAXBIT,MAXDIM
REAL x(*)
PARAMETER (MAXBIT=30,MAXDIM=6)

When n is negative, internally initializes a set of MAXBIT direction numbers for each of
MAXDIM different Sobol’ sequences. When n is positive (but ≤MAXDIM), returns as the

7.7 Quasi- (that is, Sub-) Random Sequences 303

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Initializing Values Used insobseq

Degree Polynomial Starting Values

1 0 1 (3) (5) (15) . . .

2 1 1 1 (7) (11) . . .

3 1 1 3 7 (5) . . .

3 2 1 3 3 (15) . . .

4 1 1 1 3 13 . . .

4 4 1 1 5 9 . . .

Parenthesized values are not freely specifiable, but are forced by the required recurrence
for this degree.

vector x(1..n) the next values from n of these sequences. (n must not be changed between
initializations.)

INTEGER i,im,in,ipp,j,k,l,ip(MAXDIM),iu(MAXDIM,MAXBIT),
* iv(MAXBIT*MAXDIM),ix(MAXDIM),mdeg(MAXDIM)

REAL fac
SAVE ip,mdeg,ix,iv,in,fac
EQUIVALENCE (iv,iu) To allow both 1D and 2D addressing.
DATA ip /0,1,1,2,1,4/, mdeg /1,2,3,3,4,4/, ix /6*0/
DATA iv /6*1,3,1,3,3,1,1,5,7,7,3,3,5,15,11,5,15,13,9,156*0/
if (n.lt.0) then Initialize, don’t return a vector.

do 11 k=1,MAXDIM
ix(k)=0

enddo 11

in=0
if(iv(1).ne.1)return
fac=1./2.**MAXBIT
do 15 k=1,MAXDIM

do 12 j=1,mdeg(k) Stored values only require normalization.
iu(k,j)=iu(k,j)*2**(MAXBIT-j)

enddo 12

do 14 j=mdeg(k)+1,MAXBIT Use the recurrence to get other values.
ipp=ip(k)
i=iu(k,j-mdeg(k))
i=ieor(i,i/2**mdeg(k))
do 13 l=mdeg(k)-1,1,-1

if(iand(ipp,1).ne.0)i=ieor(i,iu(k,j-l))
ipp=ipp/2

enddo 13

iu(k,j)=i
enddo 14

enddo 15

else Calculate the next vector in the sequence.
im=in
do 16 j=1,MAXBIT Find the rightmost zero bit.

if(iand(im,1).eq.0)goto 1
im=im/2

enddo 16

pause ’MAXBIT too small in sobseq’
1 im=(j-1)*MAXDIM

do 17 k=1,min(n,MAXDIM) XOR the appropriate direction number into each com-
ponent of the vector and convert to a floating
number.

ix(k)=ieor(ix(k),iv(im+k))
x(k)=ix(k)*fac

enddo 17

in=in+1 Increment the counter.

304 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
return
END

How good is a Sobol’ sequence, anyway? For Monte Carlo integration of a smooth
function inn dimensions, the answer is that the fractional error will decrease withN , the
number of samples, as(lnN)n/N , i.e., almost as fast as1/N . As an example, let us integrate
a function that is nonzero inside a torus (doughnut) in three-dimensional space. If the major
radius of the torus isR0, the minor radial coordinater is defined by

r =
(

[(x2 + y2)1/2 − R0]
2 + z2

)1/2

(7.7.4)

Let us try the function

f(x, y, z) =

1 + cos

(

πr2

a2

)

r < r0

0 r ≥ r0

(7.7.5)

which can be integrated analytically in cylindrical coordinates, giving
∫ ∫ ∫

dx dy dz f(x, y, z) = 2π2a2R0 (7.7.6)

With parametersR0 = 0.6, r0 = 0.3, we did 100 successive Monte Carlo integrations of
equation (7.7.4), sampling uniformly in the region−1 < x, y, z < 1, for the two cases of
uncorrelated random points and the Sobol’ sequence generated by the routinesobseq. Figure
7.7.2 shows the results, plotting the r.m.s. average error of the 100 integrations as a function
of the number of points sampled. (For anysingle integration, the error of course wanders
from positive to negative, or vice versa, so a logarithmic plot of fractional error is not very
informative.) The thin, dashed curve corresponds to uncorrelated random points and shows
the familiarN−1/2 asymptotics. The thin, solid gray curve shows the result for the Sobol’
sequence. The logarithmic term in the expected(lnN)3/N is readily apparent as curvature
in the curve, but the asymptoticN−1 is unmistakable.

To understand the importance of Figure 7.7.2, suppose that a Monte Carlo integration of
f with 1% accuracy is desired. The Sobol’ sequence achieves this accuracy in a few thousand
samples, while pseudorandom sampling requires nearly 100,000 samples. The ratio would
be even greater for higher desired accuracies.

A different, not quite so favorable, case occurs when the function being integrated has
hard (discontinuous) boundaries inside the sampling region, for example the function that is
one inside the torus, zero outside,

f(x, y, z) =
{

1 r < r0
0 r ≥ r0

(7.7.7)

wherer is defined in equation (7.7.4). Not by coincidence, this function has the same analytic
integral as the function of equation (7.7.5), namely2π2a2R0.

The carefully hierarchical Sobol’ sequence is based on a set of Cartesian grids, but the
boundary of the torus has no particular relation to those grids. The result is that it is essentially
random whether sampled points in a thin layer at the surface of the torus, containing on the
order ofN2/3 points, come out to be inside, or outside, the torus. The square root law, applied
to this thin layer, givesN1/3 fluctuations in the sum, orN−2/3 fractional error in the Monte
Carlo integral. One sees this behavior verified in Figure 7.7.2 by the thicker gray curve. The
thicker dashed curve in Figure 7.7.2 is the result of integrating the function of equation (7.7.7)
using independent random points. While the advantage of the Sobol’ sequence is not quite so
dramatic as in the case of a smooth function, it can nonetheless be a significant factor (∼5)
even at modest accuracies like 1%, and greater at higher accuracies.

Note that we have not provided the routinesobseq with a means of starting the
sequence at a point other than the beginning, but this feature would be easy to add. Once
the initialization of the direction numbersiv has been done, thejth point can be obtained
directly by XORing together those direction numbers corresponding to nonzero bits in the
Gray code ofj, as described above.

7.7 Quasi- (that is, Sub-) Random Sequences 305

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

.001

.01

.1

fr
ac

tio
na

l a
cc

ur
ac

y
of

 in
te

gr
al

number of points N

100 1000 10000 105

∝ N−1/2

∝ N−2/3

∝ N−1

quasi-random, hard boundary
pseudo-random, soft boundary
pseudo-random, hard boundary

quasi-random, soft boundary

Figure 7.7.2. Fractional accuracy of Monte Carlo integrations as a function of number of points sampled,
for two different integrands and two different methods of choosing random points. The quasi-random
Sobol’ sequence converges much more rapidly than a conventional pseudo-random sequence. Quasi-
random sampling does better when the integrand is smooth (“soft boundary”) than when it has step
discontinuities (“hardboundary”). The curves shown are the r.m.s. average of 100 trials.

The Latin Hypercube

We might here give passing mention the unrelated technique ofLatin squareor
Latin hypercubesampling, which is useful when you must sample anN -dimensional
spaceexceedinglysparsely, atM points. For example, you may want to test the
crashworthiness of cars as a simultaneous function of 4 different design parameters,
but with a budget of only three expendable cars. (The issue is not whether this is a
good plan — it isn’t — but rather how to make the best of the situation!)

The idea is to partitioneach design parameter (dimension) intoM segments, so
that the whole space is partitioned intoMN cells. (You can choose the segments in
each dimension to be equal or unequal, according to taste.) With 4 parameters and 3
cars, for example, you end up with3 × 3 × 3 × 3 = 81 cells.

Next, chooseM cells to contain the sample points by the following algorithm:
Randomly choose one of theMN cells for the first point. Now eliminate all cells
that agree with this point onanyof its parameters (that is, cross out all cells in the
same row, column, etc.), leaving(M − 1)N candidates. Randomly choose one of
these, eliminate new rows and columns, and continue the process until there is only
one cell left, which then contains the final sample point.

The result of this construction is thateachdesign parameter will have been
tested inevery oneof its subranges. If the response of the system under test is

306 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

dominated byone of the design parameters, that parameter will be found with
this sampling technique. On the other hand, if there is an important interaction
among different design parameters, then the Latin hypercube gives no particular
advantage. Use with care.

CITED REFERENCES AND FURTHER READING:

Halton, J.H. 1960, Numerische Mathematik, vol. 2, pp. 84–90. [1]

Bratley P., and Fox, B.L. 1988, ACM Transactions on Mathematical Software, vol. 14, pp. 88–
100. [2]

Lambert, J.P. 1988, in Numerical Mathematics – Singapore 1988, ISNM vol. 86, R.P. Agarwal,
Y.M. Chow, and S.J. Wilson, eds. (Basel: Birkhaüser), pp. 273–284.

Niederreiter, H. 1988, in Numerical Integration III, ISNM vol. 85, H. Brass and G. Hämmerlin,
eds. (Basel: Birkhaüser), pp. 157–171.

Sobol’, I.M. 1967, USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4,
pp. 86–112. [3]

Antonov, I.A., and Saleev, V.M 1979, USSR Computational Mathematics and Mathematical
Physics, vol. 19, no. 1, pp. 252–256. [4]

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York, Wiley) [discusses Latin Square].

7.8 Adaptive and Recursive Monte Carlo
Methods

This section discusses more advanced techniques of Monte Carlo integration. As
examples of the use of these techniques, we include two rather different, fairly sophisticated,
multidimensional Monte Carlo codes:vegas [1,2], andmiser [3]. The techniques that we
discuss all fall under the general rubric ofreduction of variance(§7.6), but are otherwise
quite distinct.

Importance Sampling

The use ofimportance samplingwas already implicit in equations (7.6.6) and (7.6.7).
We now return to it in a slightly more formal way. Suppose that an integrandf can be written
as the product of a functionh that is almost constant times another, positive, functiong. Then
its integral over a multidimensional volumeV is

∫

f dV =

∫

(f/g) gdV =

∫

hgdV (7.8.1)

In equation (7.6.7) we interpreted equation (7.8.1) as suggesting a change of variable to
G, the indefinite integral ofg. That madegdV a perfect differential. We then proceeded
to use the basic theorem of Monte Carlo integration, equation (7.6.1). A more general
interpretation of equation (7.8.1) is that we can integratef by instead samplingh — not,
however, with uniform probability densitydV , but rather with nonuniform densitygdV . In
this second interpretation, the first interpretation follows as the special case, where themeans
of generating the nonuniform sampling ofgdV is via the transformation method, using the
indefinite integralG (see§7.2).

More directly, one can go back and generalize the basic theorem (7.6.1) to the case
of nonuniform sampling: Suppose that pointsxi are chosen within the volumeV with a
probability densityp satisfying

∫

pdV = 1 (7.8.2)

306 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

dominated byone of the design parameters, that parameter will be found with
this sampling technique. On the other hand, if there is an important interaction
among different design parameters, then the Latin hypercube gives no particular
advantage. Use with care.

CITED REFERENCES AND FURTHER READING:

Halton, J.H. 1960, Numerische Mathematik, vol. 2, pp. 84–90. [1]

Bratley P., and Fox, B.L. 1988, ACM Transactions on Mathematical Software, vol. 14, pp. 88–
100. [2]

Lambert, J.P. 1988, in Numerical Mathematics – Singapore 1988, ISNM vol. 86, R.P. Agarwal,
Y.M. Chow, and S.J. Wilson, eds. (Basel: Birkhaüser), pp. 273–284.

Niederreiter, H. 1988, in Numerical Integration III, ISNM vol. 85, H. Brass and G. Hämmerlin,
eds. (Basel: Birkhaüser), pp. 157–171.

Sobol’, I.M. 1967, USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4,
pp. 86–112. [3]

Antonov, I.A., and Saleev, V.M 1979, USSR Computational Mathematics and Mathematical
Physics, vol. 19, no. 1, pp. 252–256. [4]

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York, Wiley) [discusses Latin Square].

7.8 Adaptive and Recursive Monte Carlo
Methods

This section discusses more advanced techniques of Monte Carlo integration. As
examples of the use of these techniques, we include two rather different, fairly sophisticated,
multidimensional Monte Carlo codes:vegas [1,2], andmiser [3]. The techniques that we
discuss all fall under the general rubric ofreduction of variance(§7.6), but are otherwise
quite distinct.

Importance Sampling

The use ofimportance samplingwas already implicit in equations (7.6.6) and (7.6.7).
We now return to it in a slightly more formal way. Suppose that an integrandf can be written
as the product of a functionh that is almost constant times another, positive, functiong. Then
its integral over a multidimensional volumeV is

∫

f dV =

∫

(f/g) gdV =

∫

hgdV (7.8.1)

In equation (7.6.7) we interpreted equation (7.8.1) as suggesting a change of variable to
G, the indefinite integral ofg. That madegdV a perfect differential. We then proceeded
to use the basic theorem of Monte Carlo integration, equation (7.6.1). A more general
interpretation of equation (7.8.1) is that we can integratef by instead samplingh — not,
however, with uniform probability densitydV , but rather with nonuniform densitygdV . In
this second interpretation, the first interpretation follows as the special case, where themeans
of generating the nonuniform sampling ofgdV is via the transformation method, using the
indefinite integralG (see§7.2).

More directly, one can go back and generalize the basic theorem (7.6.1) to the case
of nonuniform sampling: Suppose that pointsxi are chosen within the volumeV with a
probability densityp satisfying

∫

pdV = 1 (7.8.2)

7.8 Adaptive and Recursive Monte Carlo Methods 307

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The generalized fundamental theorem is that the integral of any functionf is estimated, using
N sample pointsxi, . . . , xN , by

I ≡
∫

f dV =

∫

f

p
pdV ≈

〈

f

p

〉

±

√

〈f2/p2〉 − 〈f/p〉2
N

(7.8.3)

where angle brackets denote arithmetic means over theN points, exactly as in equation
(7.6.2). As in equation (7.6.1), the “plus-or-minus” term is a one standard deviation error
estimate. Notice that equation (7.6.1) is in fact the special case of equation (7.8.3), with
p = constant= 1/V .

What is the best choice for the sampling densityp? Intuitively, we have already
seen that the idea is to makeh = f/p as close to constant as possible. We can be more
rigorous by focusing on the numerator inside the square root in equation (7.8.3), which is
the variance per sample point. Both angle brackets are themselves Monte Carlo estimators
of integrals, so we can write

S ≡
〈

f2

p2

〉

−
〈

f

p

〉2

≈
∫

f2

p2
pdV −

[
∫

f

p
pdV

]2

=

∫

f2

p
dV −

[
∫

f dV

]2

(7.8.4)

We now find the optimalp subject to the constraint equation (7.8.2) by the functional variation

0 =
δ

δp

(

∫

f2

p
dV −

[
∫

f dV

]2

+ λ

∫

p dV

)

(7.8.5)

with λ a Lagrange multiplier. Note that the middle term does not depend onp. The variation
(which comes inside the integrals) gives0 = −f2/p2 + λ or

p =
|f |√
λ

=
|f |

∫

|f | dV (7.8.6)

whereλ has been chosen to enforce the constraint (7.8.2).
If f has one sign in the region of integration, then we get the obvious result that the

optimal choice ofp — if one can figure out a practical way of effecting the sampling — is
that it be proportional to|f |. Then the variance is reduced to zero. Not so obvious, but seen
to be true, is the fact thatp ∝ |f | is optimal even iff takes on both signs. In that case the
variance per sample point (from equations 7.8.4 and 7.8.6) is

S = Soptimal =

(∫

|f | dV
)2

−
(∫

f dV

)2

(7.8.7)

One curiosity is that one can add a constant to the integrand to make it all of one sign,
since this changes the integral by a known amount, constant× V . Then, the optimal choice
of p always gives zero variance, that is, a perfectly accurate integral! The resolution of
this seeming paradox (already mentioned at the end of§7.6) is that perfect knowledge ofp
in equation (7.8.6) requires perfect knowledge of

∫

|f |dV , which is tantamount to already
knowing the integral you are trying to compute!

If your function f takes on a known constant value in most of the volumeV , it is
certainly a good idea to add a constant so as to make that value zero. Having done that, the
accuracy attainable by importance sampling depends in practice not on how small equation
(7.8.7) is, but rather on how small is equation (7.8.4) for animplementablep, likely only a
crude approximation to the ideal.

308 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Stratified Sampling

The idea ofstratified samplingis quite different from importance sampling. Let us
expand our notation slightly and let〈〈f〉〉 denote the true average of the functionf over
the volumeV (namely the integral divided byV), while 〈f〉 denotes as before the simplest
(uniformly sampled) Monte Carloestimatorof that average:

〈〈f〉〉 ≡ 1

V

∫

f dV 〈f〉 ≡ 1

N

∑

i

f(xi) (7.8.8)

The variance of the estimator, Var(〈f〉), which measures the square of the error of the
Monte Carlo integration, is asymptotically related to the variance of the function, Var(f) ≡
〈〈f2〉〉 − 〈〈f〉〉2, by the relation

Var(〈f〉) =
Var(f)

N
(7.8.9)

(compare equation 7.6.1).
Suppose we divide the volumeV into two equal, disjoint subvolumes, denoteda andb,

and sampleN/2 points in each subvolume. Then another estimator for〈〈f〉〉, different from
equation (7.8.8), which we denote〈f〉′, is

〈f〉′ ≡ 1

2

(

〈f〉a + 〈f〉b
)

(7.8.10)

in other words, the mean of the sample averages in the two half-regions. The variance of
estimator (7.8.10) is given by

Var
(

〈f〉′
)

=
1

4

[

Var
(

〈f〉a
)

+ Var
(

〈f〉b
)]

=
1

4

[

Vara (f)

N/2
+

Varb (f)

N/2

]

=
1

2N
[Vara (f) + Varb (f)]

(7.8.11)

Here Vara (f) denotes the variance off in subregiona, that is, 〈〈f2〉〉a − 〈〈f〉〉2a, and
correspondingly forb.

From the definitions already given, it is not difficult to prove the relation

Var(f) =
1

2
[Vara (f) + Varb (f)] +

1

4
(〈〈f〉〉a − 〈〈f〉〉b)2 (7.8.12)

(In physics, this formula for combining second moments is the “parallel axis theorem.”)
Comparing equations (7.8.9), (7.8.11), and (7.8.12), one sees that the stratified(into two
subvolumes) sampling gives a variance that is never larger than the simple Monte Carlo case
— and smaller whenever the means of the stratified samples,〈〈f〉〉a and〈〈f〉〉b, are different.

We have not yet exploited the possibility of sampling the two subvolumes withdifferent
numbersof points, sayNa in subregiona andNb ≡ N −Na in subregionb. Let us do so
now. Then the variance of the estimator is

Var
(

〈f〉′
)

=
1

4

[

Vara (f)

Na
+

Varb (f)

N −Na

]

(7.8.13)

which is minimized (one can easily verify) when

Na

N
=

σa

σa + σb
(7.8.14)

Here we have adopted the shorthand notationσa ≡ [Vara (f)]1/2, and correspondingly forb.
If Na satisfies equation (7.8.14), then equation (7.8.13) reduces to

Var
(

〈f〉′
)

=
(σa + σb)

2

4N
(7.8.15)

7.8 Adaptive and Recursive Monte Carlo Methods 309

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Equation (7.8.15) reduces to equation (7.8.9) if Var(f) = Vara (f) = Varb (f), in which case
stratifying the sample makes no difference.

A standard way to generalize the above result is to consider the volumeV divided into
more than two equal subregions. One can readily obtain the result that theoptimal allocation of
sample points among the regions is to have the number of points in each regionj proportional
to σj (that is, the square root of the variance of the functionf in that subregion). In spaces
of high dimensionality (sayd >

∼
4) this is not in practice very useful, however. Dividing a

volume intoK segments along each dimension impliesKd subvolumes, typically much too
large a number when one contemplates estimating all the correspondingσj ’s.

Mixed Strategies

Importance sampling and stratified sampling seem, at first sight, inconsistent with each
other. The former concentrates sample points where the magnitude of the integrand|f | is
largest, that latter where the variance off is largest. How can both be right?

The answer is that (like so much else in life) it all depends on what you know and how
well you know it. Importance sampling depends on already knowing some approximation to
your integral, so that you are able to generate random pointsxi with the desired probability
densityp. To the extent that yourp is not ideal, you are left with an error that decreases
only asN−1/2. Things are particularly bad if yourp is far from ideal in a region where the
integrandf is changing rapidly, since then the sampled functionh = f/p will have a large
variance. Importance sampling works by smoothing the values of the sampled functionh,
and is effective only to the extent that you succeed in this.

Stratified sampling, by contrast, does not necessarily require that you know anything
aboutf . Stratified sampling works by smoothing out the fluctuations of thenumberof points
in subregions, not by smoothing the values of the points. The simplest stratified strategy,
dividing V into N equal subregions and choosing one point randomly in each subregion,
already gives a method whose error decreases asymptotically asN−1, much faster than
N−1/2. (Note that quasi-random numbers,§7.7, are another way of smoothing fluctuations in
the density of points, giving nearly as good a result as the “blind” stratification strategy.)

However, “asymptotically” is an important caveat: For example, if the integrand is
negligible in all but a single subregion, then the resulting one-sample integration is all but
useless. Information, even very crude, allowing importance sampling to put many points in
the active subregion would be much better than blind stratified sampling.

Stratified sampling really comes into its own if you have some way of estimating the
variances, so that you can put unequal numbers of points in different subregions, according to
(7.8.14) or its generalizations,and if you can find a way of dividing a region into a practical
number of subregions (notablynot Kd with large dimensiond), while yet significantly
reducing the variance of the function in each subregion compared to its variance in the full
volume. Doing this requires a lot of knowledge aboutf , though different knowledge from
what is required for importance sampling.

In practice, importance sampling and stratified sampling are not incompatible.In many,
if not most, cases of interest, the integrandf is small everywhere inV except for a small
fractional volume of “active regions.” In these regions the magnitude of|f | and the standard
deviationσ = [Var(f)]1/2 are comparable in size, so both techniques will give about the
same concentration of points. In more sophisticated implementations, it is also possible to
“nest” the two techniques, so that (e.g.) importance sampling on a crude grid is followed
by stratification within each grid cell.

Adaptive Monte Carlo: VEGAS

The VEGAS algorithm, invented by Peter Lepage[1,2], is widely used for multidimen-
sional integrals that occur in elementary particle physics. VEGAS is primarily based on
importance sampling, but it also does some stratified sampling if the dimensiond is small
enough to avoidKd explosion (specifically, if(K/2)d < N/2, with N the number of sample

310 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

points). The basic technique for importance sampling in VEGAS is to construct, adaptively,
a multidimensional weight functiong that is separable,

p ∝ g(x, y, z, . . .) = gx(x)gy(y)gz(z) . . . (7.8.16)

Such a function avoids theKd explosion in two ways: (i) It can be stored in the computer
asd separate one-dimensional functions, each defined byK tabulated values, say — so that
K × d replacesKd. (ii) It can be sampled as a probability density by consecutively sampling
thed one-dimensional functions to obtain coordinate vector components(x, y, z, . . .).

The optimal separable weight function can be shown to be[1]

gx(x) ∝
[
∫

dy

∫

dz . . .
f2(x, y, z, . . .)

gy(y)gz(z) . . .

]1/2

(7.8.17)

(and correspondingly fory, z, . . .). Notice that this reduces tog ∝ |f | (7.8.6) in one
dimension. Equation (7.8.17) immediately suggests VEGAS’ adaptive strategy: Given a
set ofg-functions (initially all constant, say), one samples the functionf , accumulating not
only the overall estimator of the integral, but also theKd estimators (K subdivisions of the
independent variable in each ofd dimensions) of the right-hand side of equation (7.8.17).
These then determine improvedg functions for the next iteration.

When the integrandf is concentrated in one, or at most a few, regions ind-space, then
the weight functiong’s quickly become large at coordinate values that are the projections of
these regions onto the coordinate axes. The accuracy of the Monte Carlo integration is then
enormously enhanced over what simple Monte Carlo would give.

The weakness of VEGAS is the obvious one: To the extent that the projection of the
functionf onto individual coordinate directions is uniform, VEGAS gives no concentration
of sample points in those dimensions. The worst case for VEGAS, e.g., is an integrand that
is concentrated close to a body diagonal line, e.g., one from(0, 0, 0, . . .) to (1, 1, 1, . . .).
Since this geometry is completely nonseparable, VEGAS can give no advantage at all. More
generally, VEGAS may not do well when the integrand is concentrated in one-dimensional
(or higher) curved trajectories (or hypersurfaces), unless these happen to be oriented close
to the coordinate directions.

The routinevegas that follows is essentially Lepage’s standard version, minimally
modified to conform to our conventions. (We thank Lepage for permission to reproduce the
program here.) For consistency with other versions of the VEGAS algorithm in circulation,
we have preserved original variable names. The parameterNDMX is what we have calledK ,
the maximum number of increments along each axis;MXDIM is the maximum value ofd; some
other parameters are explained in the comments.

The vegas routine performsm = itmx statistically independent evaluations of the
desired integral, each withN = ncall function evaluations. While statistically independent,
these iterations do assist each other, since each one is used to refine the sampling grid for
the next one. The results of all iterations are combined into a single best answer, and its
estimated error, by the relations

Ibest =

m
∑

i=1

Ii
σ2
i

/

m
∑

i=1

1

σ2
i

σbest =

(

m
∑

i=1

1

σ2
i

)

−1/2

(7.8.18)

Also returned is the quantity

χ2/m ≡ 1

m− 1

m
∑

i=1

(Ii − Ibest)
2

σ2
i

(7.8.19)

If this is significantly larger than 1, then the results of the iterations are statistically
inconsistent, and the answers are suspect.

The input flaginit can be used to advantage. One might have a call withinit=0,
ncall=1000, itmx=5 immediately followed by a call withinit=1, ncall=100000, itmx=1.
The effect would be to develop a sampling grid over 5 iterations of a small number of samples,
then to do a single high accuracy integration on the optimized grid.

7.8 Adaptive and Recursive Monte Carlo Methods 311

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Note that the user-supplied integrand function,fxn, has an argumentwgt in addition
to the expected evaluation pointx. In most applications you ignorewgt inside the function.
Occasionally, however, you may want to integrate some additional function or functions along
with the principal functionf . The integral of any such functiong can be estimated by

Ig =
∑

i

wig(x) (7.8.20)

where thewi’s andx’s are the argumentswgt andx, respectively. It is straightforward to
accumulate this sum inside your functionfxn, and to pass the answer back to your main
program via a common block. Of course,g(x) had better resemble the principal functionf
to some degree, since the sampling will be optimized forf .

SUBROUTINE vegas(region,ndim,fxn,init,ncall,itmx,nprn,
* tgral,sd,chi2a)

INTEGER init,itmx,ncall,ndim,nprn,NDMX,MXDIM
REAL tgral,chi2a,sd,region(2*ndim),fxn,ALPH,TINY
PARAMETER (ALPH=1.5,NDMX=50,MXDIM=10,TINY=1.e-30)
EXTERNAL fxn

C USES fxn,ran2,rebin
Performs Monte Carlo integration of a user-supplied ndim-dimensional function fxn over
a rectangular volume specified by region, a 2×ndim vector consisting of ndim “lower
left” coordinates of the region followed by ndim “upper right” coordinates. The integration
consists of itmx iterations, each with approximately ncall calls to the function. After each
iteration the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag
init signals whether this call is a new start, or a subsequent call for additional iterations
(see comments below). The input flag nprn (normally 0) controls the amount of diagnostic
output. Returned answers are tgral (the best estimate of the integral), sd (its standard
deviation), and chi2a (χ2 per degree of freedom, an indicator of whether consistent results
are being obtained). See text for further details.

INTEGER i,idum,it,j,k,mds,nd,ndo,ng,npg,ia(MXDIM),kg(MXDIM)
REAL calls,dv2g,dxg,f,f2,f2b,fb,rc,ti,tsi,wgt,xjac,xn,xnd,xo,

* d(NDMX,MXDIM),di(NDMX,MXDIM),dt(MXDIM),dx(MXDIM),
* r(NDMX),x(MXDIM),xi(NDMX,MXDIM),xin(NDMX),ran2

DOUBLE PRECISION schi,si,swgt
COMMON /ranno/ idum Means for random number initialization.
SAVE Best make everything static, allowing restarts.
if(init.le.0)then Normal entry. Enter here on a cold start.

mds=1 Change to mds=0 to disable stratified sampling, i.e., use im-
portance sampling only.ndo=1

do 11 j=1,ndim
xi(1,j)=1.

enddo 11

endif
if (init.le.1)then Enter here to inherit the grid from a previous call, but not its

answers.si=0.d0
swgt=0.d0
schi=0.d0

endif
if (init.le.2)then Enter here to inherit the previous grid and its answers.

nd=NDMX
ng=1
if(mds.ne.0)then Set up for stratification.

ng=(ncall/2.+0.25)**(1./ndim)
mds=1
if((2*ng-NDMX).ge.0)then

mds=-1
npg=ng/NDMX+1
nd=ng/npg
ng=npg*nd

endif
endif
k=ng**ndim

312 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

npg=max(ncall/k,2)
calls=float(npg)*float(k)
dxg=1./ng
dv2g=(calls*dxg**ndim)**2/npg/npg/(npg-1.)
xnd=nd
dxg=dxg*xnd
xjac=1./calls
do 12 j=1,ndim

dx(j)=region(j+ndim)-region(j)
xjac=xjac*dx(j)

enddo 12

if(nd.ne.ndo)then Do binning if necessary.
do 13 i=1,max(nd,ndo)

r(i)=1.
enddo 13

do 14 j=1,ndim
call rebin(ndo/xnd,nd,r,xin,xi(1,j))

enddo 14

ndo=nd
endif
if(nprn.ge.0) write(*,200) ndim,calls,it,itmx,nprn,

* ALPH,mds,nd,(j,region(j),j,region(j+ndim),j=1,ndim)
endif
do 28 it=1,itmx

Main iteration loop. Can enter here (init ≥ 3) to do an additional itmx iterations with all
other parameters unchanged.
ti=0.
tsi=0.
do 16 j=1,ndim

kg(j)=1
do 15 i=1,nd

d(i,j)=0.
di(i,j)=0.

enddo 15

enddo 16

10 continue
fb=0.
f2b=0.
do 19 k=1,npg

wgt=xjac
do 17 j=1,ndim

xn=(kg(j)-ran2(idum))*dxg+1.
ia(j)=max(min(int(xn),NDMX),1)
if(ia(j).gt.1)then

xo=xi(ia(j),j)-xi(ia(j)-1,j)
rc=xi(ia(j)-1,j)+(xn-ia(j))*xo

else
xo=xi(ia(j),j)
rc=(xn-ia(j))*xo

endif
x(j)=region(j)+rc*dx(j)
wgt=wgt*xo*xnd

enddo 17

f=wgt*fxn(x,wgt)
f2=f*f
fb=fb+f
f2b=f2b+f2
do 18 j=1,ndim

di(ia(j),j)=di(ia(j),j)+f
if(mds.ge.0) d(ia(j),j)=d(ia(j),j)+f2

enddo 18

enddo 19

f2b=sqrt(f2b*npg)
f2b=(f2b-fb)*(f2b+fb)

7.8 Adaptive and Recursive Monte Carlo Methods 313

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if (f2b.le.0.) f2b=TINY
ti=ti+fb
tsi=tsi+f2b
if(mds.lt.0)then Use stratified sampling.

do 21 j=1,ndim
d(ia(j),j)=d(ia(j),j)+f2b

enddo 21

endif
do 22 k=ndim,1,-1

kg(k)=mod(kg(k),ng)+1
if(kg(k).ne.1) goto 10

enddo 22

tsi=tsi*dv2g Compute final results for this iteration.
wgt=1./tsi
si=si+dble(wgt)*dble(ti)
schi=schi+dble(wgt)*dble(ti)**2
swgt=swgt+dble(wgt)
tgral=si/swgt
chi2a=max((schi-si*tgral)/(it-.99d0),0.d0)
sd=sqrt(1./swgt)
tsi=sqrt(tsi)
if(nprn.ge.0)then

write(*,201) it,ti,tsi,tgral,sd,chi2a
if(nprn.ne.0)then

do 23 j=1,ndim
write(*,202) j,(xi(i,j),di(i,j),

* i=1+nprn/2,nd,nprn)
enddo 23

endif
endif
do 25 j=1,ndim Refine the grid. Consult references to understand the subtlety

of this procedure. The refinement is damped, to avoid
rapid, destabilizing changes, and also compressed in range
by the exponent ALPH.

xo=d(1,j)
xn=d(2,j)
d(1,j)=(xo+xn)/2.
dt(j)=d(1,j)
do 24 i=2,nd-1

rc=xo+xn
xo=xn
xn=d(i+1,j)
d(i,j)=(rc+xn)/3.
dt(j)=dt(j)+d(i,j)

enddo 24

d(nd,j)=(xo+xn)/2.
dt(j)=dt(j)+d(nd,j)

enddo 25

do 27 j=1,ndim
rc=0.
do 26 i=1,nd

if(d(i,j).lt.TINY) d(i,j)=TINY
r(i)=((1.-d(i,j)/dt(j))/(log(dt(j))-log(d(i,j))))**ALPH
rc=rc+r(i)

enddo 26

call rebin(rc/xnd,nd,r,xin,xi(1,j))
enddo 27

enddo 28

return
200 FORMAT(/’ input parameters for vegas: ndim=’,i3,’ ncall=’,f8.0
* /28x,’ it=’,i5,’ itmx=’,i5
* /28x,’ nprn=’,i3,’ alph=’,f5.2/28x,’ mds=’,i3,’ nd=’,i4
* /(30x,’xl(’,i2,’)= ’,g11.4,’ xu(’,i2,’)= ’,g11.4))
201 FORMAT(/’ iteration no.’,I3,’: ’,’integral =’,g14.7,’+/- ’,g9.2
* /’ all iterations: integral =’,g14.7,’+/- ’,g9.2,
* ’ chi**2/it’’n =’,g9.2)
202 FORMAT(/’ data for axis ’,I2/’ X delta i ’,

314 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

* ’ x delta i ’,’ x delta i ’,
* /(1x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4))

END

SUBROUTINE rebin(rc,nd,r,xin,xi)
INTEGER nd
REAL rc,r(*),xi(*),xin(*)

Utility routine used by vegas, to rebin a vector of densities xi into new bins defined by
a vector r.

INTEGER i,k
REAL dr,xn,xo
k=0
xo=0.
dr=0.
do 11 i=1,nd-1

1 if(rc.gt.dr)then
k=k+1
dr=dr+r(k)

goto 1
endif
if(k.gt.1) xo=xi(k-1)
xn=xi(k)
dr=dr-rc
xin(i)=xn-(xn-xo)*dr/r(k)

enddo 11

do 12 i=1,nd-1
xi(i)=xin(i)

enddo 12

xi(nd)=1.
return
END

Recursive Stratified Sampling

The problem with stratified sampling, we have seen, is that it may not avoid theKd

explosion inherent in the obvious, Cartesian, tesselation of ad-dimensional volume. A
technique calledrecursive stratified sampling[3] attempts to do this by successive bisections
of a volume, not along alld dimensions, but rather along only one dimension at a time.
The starting points are equations (7.8.10) and (7.8.13), applied to bisections of successively
smaller subregions.

Suppose that we have a quota ofN evaluations of the functionf , and want to evaluate
〈f〉′ in the rectangular parallelepiped regionR = (xa, xb). (We denote such a region by the
two coordinate vectors of its diagonally opposite corners.) First, we allocate a fractionp of
N towards exploring the variance off in R: We samplepN function values uniformly in
R and accumulate the sums that will give thed different pairs of variances corresponding to
thed different coordinate directions along whichR can be bisected. In other words, inpN
samples, we estimate Var(f) in each of the regions resulting from a possible bisection ofR,

Rai ≡(xa, xb − 1

2
ei · (xb − xa)ei)

Rbi ≡(xa +
1

2
ei · (xb − xa)ei, xb)

(7.8.21)

Hereei is the unit vector in theith coordinate direction,i = 1, 2, . . . , d.
Second, we inspect the variances to find the most favorable dimensioni to bisect. By

equation (7.8.15), we could, for example, choose thati for which the sum of the square roots
of the variance estimators in regionsRai andRbi is minimized. (Actually, as we will explain,
we do something slightly different.)

7.8 Adaptive and Recursive Monte Carlo Methods 315

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Third, we allocate the remaining(1 − p)N function evaluations between the regions
Rai andRbi. If we used equation (7.8.15) to choosei, we should do this allocation according
to equation (7.8.14).

We now have two parallelepipeds each with its own allocation of function evaluations
for estimating the mean off . Our “RSS” algorithm now shows itself to berecursive: To
evaluate the mean in each region, we go back to the sentence beginning “First,...” in the
paragraph above equation (7.8.21). (Of course, when the allocation of points to a region falls
below some number, we resort to simple Monte Carlo rather than continue with the recursion.)

Finally, we combine the means, and also estimated variances of the two subvolumes,
using equation (7.8.10) and the first line of equation (7.8.11).

This completes the RSS algorithm in its simplest form. Before we describe some
additional tricks under the general rubric of “implementation details,” we need to return
briefly to equations (7.8.13)–(7.8.15) and derive the equations that we actually use instead of
these. The right-hand side of equation (7.8.13) applies the familiar scaling law of equation
(7.8.9) twice, once toa and again tob. This would be correct if the estimates〈f〉a and〈f〉b
were each made by simple Monte Carlo, with uniformly random sample points. However, the
two estimates of the mean are in fact made recursively. Thus, there is no reason to expect
equation (7.8.9) to hold. Rather, we might substitute for equation (7.8.13) therelation,

Var
(

〈f〉′
)

=
1

4

[

Vara (f)

Nα
a

+
Varb (f)

(N −Na)α

]

(7.8.22)

whereα is an unknown constant≥ 1 (the case of equality corresponding to simple Monte
Carlo). In that case, a short calculation shows that Var

(

〈f〉′
)

is minimized when

Na

N
=

Vara (f)1/(1+α)

Vara (f)1/(1+α) + Varb (f)1/(1+α)
(7.8.23)

and that its minimum value is

Var
(

〈f〉′
)

∝
[

Vara (f)1/(1+α) + Varb (f)1/(1+α)
]1+α

(7.8.24)

Equations (7.8.22)–(7.8.24) reduce to equations (7.8.13)–(7.8.15) whenα = 1. Numerical
experiments to find a self-consistent value forα find thatα ≈ 2. That is, when equation
(7.8.23) withα = 2 is used recursively to allocate sample opportunities, the observed variance
of the RSS algorithm goes approximately asN−2, while any other value ofα in equation
(7.8.23) gives a poorer fall-off. (The sensitivity to α is, however, not very great; it is not
known whetherα = 2 is an analytically justifiable result, or only a useful heuristic.)

Turn now to the routine,miser, which implements the RSS method. A bit ofFORTRAN
wizardry is its implementation of the required recursion. This is done by dimensioning an
arraystack, and a shorter “stack frame”stf; the latter has components that are equivalenced
to variables that need to be preserved during the recursion, including a flag indicating where
program control should return. A recursive call then consists of copying the stack frame
onto the stack, incrementing the stack pointerjstack, and transferring control. A recursive
return analogously pops the stack and transfers control to the saved location. Stack growth
in miser is only logarithmic inN , since at each bifurcation one of the subvolumes can
be processed immediately.

The principal difference betweenmiser’s implementation and the algorithm as described
thus far lies in how the variances on the right-hand side of equation (7.8.23) are estimated.
We find empirically that it is somewhat more robust to use the square of the difference of
maximum and minimum sampled function values, instead of the genuine second moment
of the samples. This estimator is of course increasingly biased with increasing sample
size; however, equation (7.8.23) uses it only to compare two subvolumes (a andb) having
approximately equal numbers of samples. The “max minus min” estimator proves its worth
when the preliminary sampling yields only a single point, or small number of points,in active
regions of the integrand. In many realistic cases, these are indicators of nearby regions of
even greater importance, and it is useful to let them attract the greater sampling weight that
“max minus min” provides.

316 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

A second modification embodied in the code is the introduction of a “dithering parameter,”
dith, whose nonzero value causes subvolumes to be divided not exactly down the middle, but
rather into fractions0.5±dith, with the sign of the± randomly chosen by a built-in random
number routine. Normallydith can be set to zero. However, there is a large advantage in
takingdith to be nonzero if some special symmetry of the integrand puts the active region
exactly at the midpoint of the region, or at the center of some power-of-two submultiple of
the region. One wants to avoid the extreme case of the active region being evenly divided
into 2d abutting corners of ad-dimensional space. A typical nonzero value ofdith, on
those occasions when it is useful, might be0.1. Of course, when the dithering parameter
is nonzero, we must take the differing sizes of the subvolumes into account; the code does
this through the variablefracl.

One final feature in the code deserves mention. The RSS algorithm uses a single set
of sample points to evaluate equation (7.8.23) in alld directions. At bottom levels of the
recursion, the number of sample points can be quite small. Although rare, it can happen that
in one direction all the samples are in one half of the volume; in that case, that direction
is ignored as a candidate for bifurcation. Even more rare is the possibility that all of the
samples are in one half of the volume inall directions. In this case, a random direction is
chosen. If this happens too often in your application, then you should increaseMNPT (see
line if (jb.eq.0). . . in the code).

Note thatmiser, as given, returns asave an estimate of the average function value
〈〈f〉〉, not the integral off over the region. The routinevegas, adopting the other convention,
returns astgral the integral. The two conventions are of course trivially related, by equation
(7.8.8), since the volumeV of the rectangular region is known.

SUBROUTINE miser(func,region,ndim,npts,dith,ave,var)
INTEGER ndim,npts,MNPT,MNBS,MAXD,NSTACK
REAL ave,dith,var,region(2*ndim),func,TINY,BIG,PFAC
PARAMETER (MNPT=15,MNBS=4*MNPT,MAXD=10,TINY=1.e-30,BIG=1.e30,

* NSTACK=1000,PFAC=0.1)
EXTERNAL func

C USES func,ranpt
Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular
volume specified by region, a 2×ndim vector consisting of ndim “lower-left” coordinates
of the region followed by ndim “upper-right” coordinates. The function is sampled a total
of npts times, at locations determined by the method of recursive stratified sampling. The
mean value of the function in the region is returned as ave; an estimate of the statistical
uncertainty of ave (square of standard deviation) is returned as var. The input parameter
dith should normally be set to zero, but can be set to (e.g.) 0.1 if func’s active region
falls on the boundary of a power-of-two subdivision of region.
Parameters: PFAC is the fraction of remaining function evaluations used at each stageto
explore the variance of func. At least MNPT function evaluations are performed in any
terminal subregion; a subregion is further bisected only if at least MNBS function evaluations
are available. MAXD is the largest value of ndim. NSTACK is the total size of the stack.

INTEGER iran,j,jb,jstack,n,naddr,np,npre,nptl,nptr,nptt
REAL avel,fracl,fval,rgl,rgm,rgr,s,sigl,siglb,sigr,sigrb,sum,

* sumb,summ,summ2,varl,fmaxl(MAXD),fmaxr(MAXD),fminl(MAXD),
* fminr(MAXD),pt(MAXD),rmid(MAXD),stack(NSTACK),stf(9)

EQUIVALENCE (stf(1),avel),(stf(2),varl),(stf(3),jb),
* (stf(4),nptr),(stf(5),naddr),(stf(6),rgl),(stf(7),rgm),
* (stf(8),rgr),(stf(9),fracl)

SAVE iran
DATA iran /0/
jstack=0
nptt=npts

1 continue
if (nptt.lt.MNBS) then Too few points to bisect; do straight Monte Carlo.

np=abs(nptt)
summ=0.
summ2=0.
do 11 n=1,np

call ranpt(pt,region,ndim)

7.8 Adaptive and Recursive Monte Carlo Methods 317

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fval=func(pt)
summ=summ+fval
summ2=summ2+fval**2

enddo 11

ave=summ/np
var=max(TINY,(summ2-summ**2/np)/np**2)

else Do the preliminary (uniform) sampling.
npre=max(int(nptt*PFAC),MNPT)
do 12 j=1,ndim Initialize the left and right bounds for each dimension.

iran=mod(iran*2661+36979,175000)
s=sign(dith,float(iran-87500))
rmid(j)=(0.5+s)*region(j)+(0.5-s)*region(j+ndim)
fminl(j)=BIG
fminr(j)=BIG
fmaxl(j)=-BIG
fmaxr(j)=-BIG

enddo 12

do 14 n=1,npre Loop over the points in the sample.
call ranpt(pt,region,ndim)
fval=func(pt)
do 13 j=1,ndim Find the left and right bounds for each dimension.

if(pt(j).le.rmid(j))then
fminl(j)=min(fminl(j),fval)
fmaxl(j)=max(fmaxl(j),fval)

else
fminr(j)=min(fminr(j),fval)
fmaxr(j)=max(fmaxr(j),fval)

endif
enddo 13

enddo 14

sumb=BIG Choose which dimension jb to bisect.
jb=0
siglb=1.
sigrb=1.
do 15 j=1,ndim

if(fmaxl(j).gt.fminl(j).and.fmaxr(j).gt.fminr(j))then
sigl=max(TINY,(fmaxl(j)-fminl(j))**(2./3.))
sigr=max(TINY,(fmaxr(j)-fminr(j))**(2./3.))
sum=sigl+sigr Equation (7.8.24), see text.
if (sum.le.sumb) then

sumb=sum
jb=j
siglb=sigl
sigrb=sigr

endif
endif

enddo 15

if (jb.eq.0) jb=1+(ndim*iran)/175000 MNPT may be too small.
rgl=region(jb) Apportion the remaining points between left and right.
rgm=rmid(jb)
rgr=region(jb+ndim)
fracl=abs((rgm-rgl)/(rgr-rgl))
nptl=MNPT+(nptt-npre-2*MNPT)

* *fracl*siglb/(fracl*siglb+(1.-fracl)*sigrb) Equation (7.8.23).
nptr=nptt-npre-nptl
region(jb+ndim)=rgm Set region to left.
naddr=1 Push the stack.
do 16 j=1,9

stack(jstack+j)=stf(j)
enddo 16

jstack=jstack+9
nptt=nptl
goto 1 Dispatch recursive call; will return back here eventually.

10 continue

318 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

avel=ave Save left estimates on stack variable.
varl=var
region(jb)=rgm Set region to right.
region(jb+ndim)=rgr
naddr=2 Push the stack.
do 17 j=1,9

stack(jstack+j)=stf(j)
enddo 17

jstack=jstack+9
nptt=nptr
goto 1 Dispatch recursive call; will return back here eventually.

20 continue
region(jb)=rgl Restore region to original value (so that we don’t

need to include it on the stack).ave=fracl*avel+(1.-fracl)*ave
var=fracl**2*varl+(1.-fracl)**2*var Combine left and right regions by equa-

tion (7.8.11) (1st line).endif
if (jstack.ne.0) then Pop the stack.

jstack=jstack-9
do 18 j=1,9

stf(j)=stack(jstack+j)
enddo 18

goto (10,20),naddr
pause ’miser: never get here’

endif
return
END

Themiser routine calls a short subroutineranpt to get a random point within a specified
d-dimensional region. The following version ofranpt makes consecutive calls to a uniform
random number generator and does the obvious scaling. One can easily modifyranpt to
generate its points via the quasi-random routinesobseq (§7.7). We find thatmiser with
sobseq can be considerably more accurate thanmiser with uniform random deviates. Since
the use of RSS and the use of quasi-random numbers are completely separable, however, we
have not made the code given here dependent onsobseq. A similar remark might be made
regarding importance sampling, which could in principle be combined with RSS. (One could
in principle combinevegas andmiser, although the programming would be intricate.)

SUBROUTINE ranpt(pt,region,n)
INTEGER n,idum
REAL pt(n),region(2*n)
COMMON /ranno/ idum
SAVE /ranno/

C USES ran1
Returns a uniformly random point pt in an n-dimensional rectangular region. Used by
miser; calls ran1 for uniform deviates. Your main program should initialize idum, through
the COMMON block /ranno/, to a negative seed integer.

INTEGER j
REAL ran1
do 11 j=1,n

pt(j)=region(j)+(region(j+n)-region(j))*ran1(idum)
enddo 11

return
END

CITED REFERENCES AND FURTHER READING:

Hammersley, J.M. and Handscomb, D.C. 1964, Monte Carlo Methods (London: Methuen).

Kalos, M.H. and Whitlock, P.A. 1986, Monte Carlo Methods (New York: Wiley).

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-Verlag).

7.8 Adaptive and Recursive Monte Carlo Methods 319

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Lepage, G.P. 1978, Journal of Computational Physics, vol. 27, pp. 192–203. [1]

Lepage, G.P. 1980, “VEGAS: An Adaptive Multidimensional Integration Program,” Publication
CLNS-80/447, Cornell University. [2]

Press, W.H., and Farrar, G.R. 1990, Computers in Physics, vol. 4, pp. 190–195. [3]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 8. Sorting

8.0 Introduction

This chapter almost doesn’t belong in a book onnumericalmethods. However,
some practical knowledge of techniques for sorting is an indispensable part of any
good programmer’s expertise. We would not want you to consider yourself expert in
numerical techniques while remaining ignorant of so basic a subject.

In conjunction with numerical work, sorting is frequently necessary when data
(either experimental or numerically generated) are being handled. One has tables
or lists of numbers, representing one or more independent (or “control”) variables,
and one or more dependent (or “measured”) variables. One may wish to arrange
these data, in various circumstances, in order by one or another of these variables.
Alternatively, one may simply wish to identify the “median” value, or the “upper
quartile” value of one of the lists of values. This task, closely related to sorting,
is called selection.

Here, more specifically, are the tasks that this chapter will deal with:
• Sort, i.e., rearrange, an array of numbers into numerical order.
• Rearrange an array into numerical order while performing the corre-

sponding rearrangement of one or more additional arrays, so that the
correspondence between elements in all arrays is maintained.

• Given an array, prepare anindex tablefor it, i.e., a table of pointers
telling which number array element comes first in numerical order, which
second, and so on.

• Given an array, prepare arank tablefor it, i.e., a table telling what is
the numerical rank of the first array element, the second array element,
and so on.

• Select theM th largest element from an array.

For the basic task of sortingN elements, the best algorithms require on the
order of several timesN log2

N operations. The algorithm inventor tries to reduce
the constant in front of this estimate to as small a value as possible. Two of the
best algorithms areQuicksort(§8.2), invented by the inimitable C.A.R. Hoare, and
Heapsort(§8.3), invented by J.W.J. Williams.

For largeN (say> 1000), Quicksort is faster, on most machines, by a factor of
1.5 or 2; it requires a bit of extra memory, however, and is a moderately complicated
program. Heapsort is a true “sort in place,” and is somewhat more compact to
program and therefore a bit easier to modify for special purposes. On balance, we
recommend Quicksort because of its speed, but we implement both routines.

320

8.1 Straight Insertion and Shell’s Method 321

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For smallN one does better to use an algorithm whose operation count goes
as a higher, i.e., poorer, power ofN , if the constant in front is small enough. For
N < 20, roughly, the method ofstraight insertion(§8.1) is concise and fast enough.
We include it with some trepidation: It is anN2 algorithm, whose potential for
misuse (by using it for too large anN) is great. The resultant waste of computer
time is so awesome, that we were tempted not to include anyN

2 routine at all. We
will draw the line, however, at the inefficientN2 algorithm, beloved of elementary
computer science texts, calledbubble sort. If you know what bubble sort is, wipe it
from your mind; if you don’t know, make a point of never finding out!

ForN < 50, roughly,Shell’s method(§8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. This method goes asN3/2 in the worst case, but is usually faster.

See references[1,2] for further information on the subject of sorting, and for
detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley). [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapters 8–13. [2]

8.1 Straight Insertion and Shell’s Method

Straight insertionis an N
2 routine, and should be used only for smallN ,

say < 20.
The technique is exactly the one used by experienced card players to sort their

cards: Pick out the second card and put it in order with respect to the first; then pick
out the third card and insert it into the sequence among the first two; and so on until
the last card has been picked out and inserted.

SUBROUTINE piksrt(n,arr)
INTEGER n
REAL arr(n)

Sorts an array arr(1:n) into ascending numerical order, by straight insertion. n is input;
arr is replaced on output by its sorted rearrangement.

INTEGER i,j
REAL a
do 12 j=2,n Pick out each element in turn.

a=arr(j)
do 11 i=j-1,1,-1 Look for the place to insert it.

if(arr(i).le.a)goto 10
arr(i+1)=arr(i)

enddo 11

i=0
10 arr(i+1)=a Insert it.

enddo 12

return
END

What if you also want to rearrange an arraybrr at the same time as you sort
arr? Simply move an element ofbrr whenever you move an element ofarr:

8.1 Straight Insertion and Shell’s Method 321

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For smallN one does better to use an algorithm whose operation count goes
as a higher, i.e., poorer, power ofN , if the constant in front is small enough. For
N < 20, roughly, the method ofstraight insertion(§8.1) is concise and fast enough.
We include it with some trepidation: It is anN2 algorithm, whose potential for
misuse (by using it for too large anN) is great. The resultant waste of computer
time is so awesome, that we were tempted not to include anyN2 routine at all. We
will draw the line, however, at the inefficientN2 algorithm, beloved of elementary
computer science texts, calledbubble sort. If you know what bubble sort is, wipe it
from your mind; if you don’t know, make a point of never finding out!

ForN < 50, roughly,Shell’s method(§8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. This method goes asN3/2 in the worst case, but is usually faster.

See references[1,2] for further information on the subject of sorting, and for
detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley). [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapters 8–13. [2]

8.1 Straight Insertion and Shell’s Method

Straight insertionis an N2 routine, and should be used only for smallN ,
say < 20.

The technique is exactly the one used by experienced card players to sort their
cards: Pick out the second card and put it in order with respect to the first; then pick
out the third card and insert it into the sequence among the first two; and so on until
the last card has been picked out and inserted.

SUBROUTINE piksrt(n,arr)
INTEGER n
REAL arr(n)

Sorts an array arr(1:n) into ascending numerical order, by straight insertion. n is input;
arr is replaced on output by its sorted rearrangement.

INTEGER i,j
REAL a
do 12 j=2,n Pick out each element in turn.

a=arr(j)
do 11 i=j-1,1,-1 Look for the place to insert it.

if(arr(i).le.a)goto 10
arr(i+1)=arr(i)

enddo 11

i=0
10 arr(i+1)=a Insert it.

enddo 12

return
END

What if you also want to rearrange an arraybrr at the same time as you sort
arr? Simply move an element ofbrr whenever you move an element ofarr:

322 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE piksr2(n,arr,brr)
INTEGER n
REAL arr(n),brr(n)

Sorts an array arr(1:n) into ascending numerical order, by straight insertion, while making
the corresponding rearrangement of the array brr(1:n).

INTEGER i,j
REAL a,b
do 12 j=2,n Pick out each element in turn.

a=arr(j)
b=brr(j)
do 11 i=j-1,1,-1 Look for the place to insert it.

if(arr(i).le.a)goto 10
arr(i+1)=arr(i)
brr(i+1)=brr(i)

enddo 11

i=0
10 arr(i+1)=a Insert it.

brr(i+1)=b
enddo 12

return
END

For the case of rearranging a larger number of arrays by sorting on one of
them, see§8.4.

Shell’s Method

This is actually a variant on straight insertion,but a very powerful variant indeed.
The rough idea, e.g., for the case of sorting 16 numbersn1 . . . n16, is this: First sort,
by straight insertion, each of the 8 groups of 2(n1, n9), (n2, n10), . . . , (n8, n16).
Next, sort each of the 4 groups of 4(n1, n5, n9, n13), . . . , (n4, n8, n12, n16). Next
sort the 2 groups of 8 records, beginning with(n1, n3, n5, n7, n9, n11, n13, n15).
Finally, sort the whole list of 16 numbers.

Of course, only thelastsort isnecessaryfor putting the numbers into order. So
what is the purpose of the previous partial sorts? The answer is that the previous
sorts allow numbers efficiently to filter up or down to positions close to their final
resting places. Therefore, the straight insertion passes on the final sort rarely have to
go past more than a “few” elements before finding the right place. (Thinkof sorting
a hand of cards that are already almost in order.)

The spacings between the numbers sorted on each pass through the data (8,4,2,1
in the above example) are called theincrements, and a Shell sort is sometimes
called adiminishing increment sort. There has been a lot of research into how to
choose a good set of increments, but the optimum choice is not known. The set
. . . , 8, 4, 2, 1 is in fact not a good choice, especially forN a power of 2. A much
better choice is the sequence

(3k − 1)/2, . . . , 40, 13, 4, 1 (8.1.1)

which can be generated by the recurrence

i1 = 1, ik+1 = 3ik + 1, k = 1, 2, . . . (8.1.2)

It can be shown (see[1]) that for this sequence of increments the number of operations
required in all is of orderN3/2 for the worst possible ordering of the original data.

8.2 Quicksort 323

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For “randomly” ordered data, the operations count goes approximately asN1.25, at
least forN < 60000. For N > 50, however, Quicksort is generally faster. The
program follows:

SUBROUTINE shell(n,a)
INTEGER n
REAL a(n)

Sorts an array a(1:n) into ascending numerical order by Shell’s method (diminishing in-
crement sort). n is input; a is replaced on output by its sorted rearrangement.

INTEGER i,j,inc
REAL v
inc=1 Determine the starting increment.

1 inc=3*inc+1
if(inc.le.n)goto 1

2 continue Loop over the partial sorts.
inc=inc/3
do 11 i=inc+1,n Outer loop of straight insertion.

v=a(i)
j=i

3 if(a(j-inc).gt.v)then Inner loop of straight insertion.
a(j)=a(j-inc)
j=j-inc
if(j.le.inc)goto 4

goto 3
endif

4 a(j)=v
enddo 11

if(inc.gt.1)goto 2
return
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.1. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 8.

8.2 Quicksort

Quicksort is, on most machines, on average, for largeN , the fastest known
sorting algorithm. It is a “partition-exchange” sorting method: A “partitioning
element”a is selected from the array. Then by pairwise exchanges of elements, the
original array is partitioned into two subarrays. At the end of a round of partitioning,
the elementa is in its final place in the array. All elements in the left subarray are
≤ a, while all elements in the right subarray are≥ a. The process is then repeated
on the left and right subarrays independently, and so on.

The partitioning process is carried out by selecting some element, say the
leftmost, as the partitioning elementa. Scan a pointer up the array until you find
an element> a, and then scan another pointer down from the end of the array
until you find an element< a. These two elements are clearly out of place for the
final partitioned array, so exchange them. Continue this process until the pointers

8.2 Quicksort 323

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For “randomly” ordered data, the operations count goes approximately asN1.25, at
least forN < 60000. For N > 50, however, Quicksort is generally faster. The
program follows:

SUBROUTINE shell(n,a)
INTEGER n
REAL a(n)

Sorts an array a(1:n) into ascending numerical order by Shell’s method (diminishing in-
crement sort). n is input; a is replaced on output by its sorted rearrangement.

INTEGER i,j,inc
REAL v
inc=1 Determine the starting increment.

1 inc=3*inc+1
if(inc.le.n)goto 1

2 continue Loop over the partial sorts.
inc=inc/3
do 11 i=inc+1,n Outer loop of straight insertion.

v=a(i)
j=i

3 if(a(j-inc).gt.v)then Inner loop of straight insertion.
a(j)=a(j-inc)
j=j-inc
if(j.le.inc)goto 4

goto 3
endif

4 a(j)=v
enddo 11

if(inc.gt.1)goto 2
return
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.1. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 8.

8.2 Quicksort

Quicksort is, on most machines, on average, for largeN , the fastest known
sorting algorithm. It is a “partition-exchange” sorting method: A “partitioning
element”a is selected from the array. Then by pairwise exchanges of elements, the
original array is partitioned into two subarrays. At the end of a round of partitioning,
the elementa is in its final place in the array. All elements in the left subarray are
≤ a, while all elements in the right subarray are≥ a. The process is then repeated
on the left and right subarrays independently, and so on.

The partitioning process is carried out by selecting some element, say the
leftmost, as the partitioning elementa. Scan a pointer up the array until you find
an element> a, and then scan another pointer down from the end of the array
until you find an element< a. These two elements are clearly out of place for the
final partitioned array, so exchange them. Continue this process until the pointers

324 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

cross. This is the right place to inserta, and that round of partitioning is done. The
question of the best strategy when an element is equal to the partitioning element
is subtle; we refer you to Sedgewick[1] for a discussion. (Answer: You should
stop and do an exchange.)

Quicksort requires an auxiliary array of storage, of length2 log
2
N , which it

uses as a push-down stack for keeping track of the pending subarrays. When a
subarray has gotten down to some sizeM , it becomes faster to sort it by straight
insertion (§8.1), so we will do this. The optimal setting ofM is machine dependent,
butM = 7 is not too far wrong. Some people advocate leaving the short subarrays
unsorted until the end, and then doing one giant insertion sort at the end. Since
each element moves at most 7 places, this is just as efficient as doing the sorts
immediately, and saves on the overhead. However, on modern machines with paged
memory, there is increased overhead when dealing with a large array all at once. We
have not found any advantage in saving the insertion sorts till the end.

As already mentioned, Quicksort’saveragerunning time is fast, but itsworst
caserunning time can be very slow: For the worst case it is, in fact, anN2 method!
And for the most straightforward implementation of Quicksort it turns out that the
worst case is achieved for an input array that is already in order! This ordering
of the input array might easily occur in practice. One way to avoid this is to use
a little random number generator to choose a random element as the partitioning
element. Another is to use instead the median of the first, middle, and last elements
of the current subarray.

The great speed of Quicksort comes from the simplicity and efficiency of its
inner loop. Simply adding one unnecessary test (for example, a test that your pointer
has not moved off the end of the array) can almost double the running time! One
avoids such unnecessary tests by placing “sentinels” at either end of the subarray
being partitioned. The leftmost sentinel is≤ a, the rightmost≥ a. With the
“median-of-three” selection of a partitioning element, we can use the two elements
that were not the median to be the sentinels for that subarray.

Our implementation closely follows[1]:

SUBROUTINE sort(n,arr)
INTEGER n,M,NSTACK
REAL arr(n)
PARAMETER (M=7,NSTACK=50)

Sorts an array arr(1:n) into ascending numerical order using the Quicksort algorithm. n
is input; arr is replaced on output by its sorted rearrangement.
Parameters: M is the size of subarrays sorted by straight insertion and NSTACK is the required
auxiliary storage.

INTEGER i,ir,j,jstack,k,l,istack(NSTACK)
REAL a,temp
jstack=0
l=1
ir=n

1 if(ir-l.lt.M)then Insertion sort when subarray small enough.
do 12 j=l+1,ir

a=arr(j)
do 11 i=j-1,l,-1

if(arr(i).le.a)goto 2
arr(i+1)=arr(i)

enddo 11

i=l-1
2 arr(i+1)=a

enddo 12

8.2 Quicksort 325

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(jstack.eq.0)return
ir=istack(jstack) Pop stack and begin a new round of partitioning.
l=istack(jstack-1)
jstack=jstack-2

else
k=(l+ir)/2 Choose median of left, center, and right elements as par-

titioning element a. Also rearrange so that a(l) ≤
a(l+1) ≤ a(ir).

temp=arr(k)
arr(k)=arr(l+1)
arr(l+1)=temp
if(arr(l).gt.arr(ir))then

temp=arr(l)
arr(l)=arr(ir)
arr(ir)=temp

endif
if(arr(l+1).gt.arr(ir))then

temp=arr(l+1)
arr(l+1)=arr(ir)
arr(ir)=temp

endif
if(arr(l).gt.arr(l+1))then

temp=arr(l)
arr(l)=arr(l+1)
arr(l+1)=temp

endif
i=l+1 Initialize pointers for partitioning.
j=ir
a=arr(l+1) Partitioning element.

3 continue Beginning of innermost loop.
i=i+1 Scan up to find element > a.

if(arr(i).lt.a)goto 3
4 continue

j=j-1 Scan down to find element < a.
if(arr(j).gt.a)goto 4
if(j.lt.i)goto 5 Pointers crossed. Exit with partitioning complete.
temp=arr(i) Exchange elements.
arr(i)=arr(j)
arr(j)=temp
goto 3 End of innermost loop.

5 arr(l+1)=arr(j) Insert partitioning element.
arr(j)=a
jstack=jstack+2

Push pointers to larger subarray on stack, process smaller subarray immediately.
if(jstack.gt.NSTACK)pause ’NSTACK too small in sort’
if(ir-i+1.ge.j-l)then

istack(jstack)=ir
istack(jstack-1)=i
ir=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

endif
endif
goto 1
END

As usual you can move any other arrays around at the same time as you sort
arr. At the risk of being repetitious:

326 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE sort2(n,arr,brr)
INTEGER n,M,NSTACK
REAL arr(n),brr(n)
PARAMETER (M=7,NSTACK=50)

Sorts an array arr(1:n) into ascending order using Quicksort, while making the corre-
sponding rearrangement of the array brr(1:n).

INTEGER i,ir,j,jstack,k,l,istack(NSTACK)
REAL a,b,temp
jstack=0
l=1
ir=n

1 if(ir-l.lt.M)then Insertion sort when subarray small enough.
do 12 j=l+1,ir

a=arr(j)
b=brr(j)
do 11 i=j-1,l,-1

if(arr(i).le.a)goto 2
arr(i+1)=arr(i)
brr(i+1)=brr(i)

enddo 11

i=l-1
2 arr(i+1)=a

brr(i+1)=b
enddo 12

if(jstack.eq.0)return
ir=istack(jstack) Pop stack and begin a new round of partitioning.
l=istack(jstack-1)
jstack=jstack-2

else
k=(l+ir)/2 Choose median of left, center and right elements as par-

titioning element a. Also rearrange so that a(l) ≤
a(l+1) ≤ a(ir).

temp=arr(k)
arr(k)=arr(l+1)
arr(l+1)=temp
temp=brr(k)
brr(k)=brr(l+1)
brr(l+1)=temp
if(arr(l).gt.arr(ir))then

temp=arr(l)
arr(l)=arr(ir)
arr(ir)=temp
temp=brr(l)
brr(l)=brr(ir)
brr(ir)=temp

endif
if(arr(l+1).gt.arr(ir))then

temp=arr(l+1)
arr(l+1)=arr(ir)
arr(ir)=temp
temp=brr(l+1)
brr(l+1)=brr(ir)
brr(ir)=temp

endif
if(arr(l).gt.arr(l+1))then

temp=arr(l)
arr(l)=arr(l+1)
arr(l+1)=temp
temp=brr(l)
brr(l)=brr(l+1)
brr(l+1)=temp

endif
i=l+1 Initialize pointers for partitioning.
j=ir
a=arr(l+1) Partitioning element.
b=brr(l+1)

8.3 Heapsort 327

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

3 continue Beginning of innermost loop.
i=i+1 Scan up to find element > a.

if(arr(i).lt.a)goto 3
4 continue

j=j-1 Scan down to find element < a.
if(arr(j).gt.a)goto 4
if(j.lt.i)goto 5 Pointers crossed. Exit with partitioning complete.
temp=arr(i) Exchange elements of both arrays.
arr(i)=arr(j)
arr(j)=temp
temp=brr(i)
brr(i)=brr(j)
brr(j)=temp
goto 3 End of innermost loop.

5 arr(l+1)=arr(j) Insert partitioning element in both arrays.
arr(j)=a
brr(l+1)=brr(j)
brr(j)=b
jstack=jstack+2

Push pointers to larger subarray on stack, process smaller subarray immediately.
if(jstack.gt.NSTACK)pause ’NSTACK too small in sort2’
if(ir-i+1.ge.j-l)then

istack(jstack)=ir
istack(jstack-1)=i
ir=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

endif
endif
goto 1
END

You could, in principle, rearrange any number of additional arrays along with
brr, but this becomes wasteful as the number of such arrays becomes large. The
preferred technique is to make use of an index table, as described in§8.4.

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1978, Communications of the ACM, vol. 21, pp. 847–857. [1]

8.3 Heapsort

While usually not quite as fast as Quicksort, Heapsort is one of our favorite
sorting routines. It is a true “in-place” sort, requiring no auxiliary storage. It is an
N log

2
N process, not only on average, but also for the worst-case order of input data.

In fact, its worst case is only 20 percent or so worse than its average running time.
It is beyond our scope to give a complete exposition on the theory of Heapsort.

We will mention the general principles, then let you refer to the references[1,2], or
analyze the program yourself, if you want to understand the details.

A set ofN numbersai, i = 1, . . . , N , is said to form a “heap” if it satisfies
the relation

aj/2 ≥ aj for 1 ≤ j/2 < j ≤ N (8.3.1)

8.3 Heapsort 327

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

3 continue Beginning of innermost loop.
i=i+1 Scan up to find element > a.

if(arr(i).lt.a)goto 3
4 continue

j=j-1 Scan down to find element < a.
if(arr(j).gt.a)goto 4
if(j.lt.i)goto 5 Pointers crossed. Exit with partitioning complete.
temp=arr(i) Exchange elements of both arrays.
arr(i)=arr(j)
arr(j)=temp
temp=brr(i)
brr(i)=brr(j)
brr(j)=temp
goto 3 End of innermost loop.

5 arr(l+1)=arr(j) Insert partitioning element in both arrays.
arr(j)=a
brr(l+1)=brr(j)
brr(j)=b
jstack=jstack+2

Push pointers to larger subarray on stack, process smaller subarray immediately.
if(jstack.gt.NSTACK)pause ’NSTACK too small in sort2’
if(ir-i+1.ge.j-l)then

istack(jstack)=ir
istack(jstack-1)=i
ir=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

endif
endif
goto 1
END

You could, in principle, rearrange any number of additional arrays along with
brr, but this becomes wasteful as the number of such arrays becomes large. The
preferred technique is to make use of an index table, as described in§8.4.

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1978, Communications of the ACM, vol. 21, pp. 847–857. [1]

8.3 Heapsort

While usually not quite as fast as Quicksort, Heapsort is one of our favorite
sorting routines. It is a true “in-place” sort, requiring no auxiliary storage. It is an
N log2 N process, not only on average, but also for the worst-case order of input data.
In fact, its worst case is only 20 percent or so worse than its average running time.

It is beyond our scope to give a complete exposition on the theory of Heapsort.
We will mention the general principles, then let you refer to the references[1,2], or
analyze the program yourself, if you want to understand the details.

A set ofN numbersai, i = 1, . . . , N , is said to form a “heap” if it satisfies
the relation

aj/2 ≥ aj for 1 ≤ j/2 < j ≤ N (8.3.1)

328 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

a1

a2 a3

a7a6a5 a4

a8 a9 a10 a11 a12

Figure 8.3.1. Ordering implied by a “heap,” here of 12 elements. Elements connected by an upward
path are sorted with respect to one another, but there is not necessarily any ordering among elements
related only “laterally.”

Here the division inj/2 means “integer divide,” i.e., is an exact integer or else
is rounded down to the closest integer. Definition (8.3.1) will make sense if you
think of the numbersai as being arranged in a binary tree, with the top, “boss,”
node beinga1, the two “underling” nodes beinga2 and a3, their four underling
nodes beinga4 througha7, etc. (See Figure 8.3.1.) In this form, a heap has
every “supervisor” greater than or equal to its two “supervisees,” down through
the levels of the hierarchy.

If you have managed to rearrange your array into an order that forms a heap,
then sorting it is very easy: You pull off the “top of the heap,” which will be the
largest element yet unsorted. Then you “promote” to the top of the heap its largest
underling. Then you promoteits largest underling, and so on. The process is like
what happens (or is supposed to happen) in a large corporation when the chairman
of the board retires. You then repeat the whole process by retiring the new chairman
of the board. Evidently the whole thing is anN log2 N process, since each retiring
chairman leads tolog2 N promotions of underlings.

Well, how do you arrange the array into a heap in the first place? The answer
is again a “sift-up” process like corporate promotion. Imagine that the corporation
starts out withN/2 employees on the production line, but with no supervisors. Now
a supervisor is hired to supervise two workers. If he is less capable than one of
his workers, that one is promoted in his place, and he joins the production line.
After supervisors are hired, then supervisors of supervisors are hired, and so on up
the corporate ladder. Each employee is brought in at the top of the tree, but then
immediately sifted down, with more capable workers promoted until their proper
corporate level has been reached.

In the Heapsort implementation, the same “sift-up” code can be used for the
initial creation of the heap and for the subsequent retirement-and-promotion phase.
One execution of the Heapsort subroutine represents the entire life-cycle of a giant
corporation:N/2 workers are hired;N/2 potential supervisors are hired; there is a
sifting up in the ranks, a sort of super Peter Principle: in due course, each of the
original employees gets promoted to chairman of the board.

8.4 Indexing and Ranking 329

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE hpsort(n,ra)
INTEGER n
REAL ra(n)

Sorts an array ra(1:n) into ascending numerical order using the Heapsort algorithm. n is
input; ra is replaced on output by its sorted rearrangement.

INTEGER i,ir,j,l
REAL rra
if (n.lt.2) return

The index l will be decremented from its initial value down to 1 during the “hiring” (heap
creation) phase. Once it reaches 1, the index ir will be decremented from its initial value
down to 1 during the “retirement-and-promotion” (heap selection) phase.

l=n/2+1
ir=n

10 continue
if(l.gt.1)then Still in hiring phase.

l=l-1
rra=ra(l)

else In retirement-and-promotion phase.
rra=ra(ir) Clear a space at end of array.
ra(ir)=ra(1) Retire the top of the heap into it.
ir=ir-1 Decrease the size of the corporation.
if(ir.eq.1)then Done with the last promotion.

ra(1)=rra The least competent worker of all!
return

endif
endif
i=l Whether in the hiring phase or promotion phase, we here

set up to sift down element rra to its proper level.j=l+l
20 if(j.le.ir)then “Do while j.le.ir:”

if(j.lt.ir)then
if(ra(j).lt.ra(j+1))j=j+1 Compare to the better underling.

endif
if(rra.lt.ra(j))then Demote rra.

ra(i)=ra(j)
i=j
j=j+j

else This is rra’s level. Set j to terminate the sift-down.
j=ir+1

endif
goto 20
endif
ra(i)=rra Put rra into its slot.

goto 10
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 11. [2]

8.4 Indexing and Ranking

The concept ofkeysplays a prominent role in the management of data files. A
datarecord in such a file may contain several items, orfields. For example, a record
in a file of weather observations may have fields recording time, temperature,and

8.4 Indexing and Ranking 329

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE hpsort(n,ra)
INTEGER n
REAL ra(n)

Sorts an array ra(1:n) into ascending numerical order using the Heapsort algorithm. n is
input; ra is replaced on output by its sorted rearrangement.

INTEGER i,ir,j,l
REAL rra
if (n.lt.2) return

The index l will be decremented from its initial value down to 1 during the “hiring” (heap
creation) phase. Once it reaches 1, the index ir will be decremented from its initial value
down to 1 during the “retirement-and-promotion” (heap selection) phase.

l=n/2+1
ir=n

10 continue
if(l.gt.1)then Still in hiring phase.

l=l-1
rra=ra(l)

else In retirement-and-promotion phase.
rra=ra(ir) Clear a space at end of array.
ra(ir)=ra(1) Retire the top of the heap into it.
ir=ir-1 Decrease the size of the corporation.
if(ir.eq.1)then Done with the last promotion.

ra(1)=rra The least competent worker of all!
return

endif
endif
i=l Whether in the hiring phase or promotion phase, we here

set up to sift down element rra to its proper level.j=l+l
20 if(j.le.ir)then “Do while j.le.ir:”

if(j.lt.ir)then
if(ra(j).lt.ra(j+1))j=j+1 Compare to the better underling.

endif
if(rra.lt.ra(j))then Demote rra.

ra(i)=ra(j)
i=j
j=j+j

else This is rra’s level. Set j to terminate the sift-down.
j=ir+1

endif
goto 20
endif
ra(i)=rra Put rra into its slot.

goto 10
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 11. [2]

8.4 Indexing and Ranking

The concept ofkeysplays a prominent role in the management of data files. A
datarecord in such a file may contain several items, orfields. For example, a record
in a file of weather observations may have fields recording time, temperature,and

330 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

15

6

3

5

7

4

32

3

8

2

1

14

3

6

6

5

1

4

2

3

4

2

1

5

5

6

1

5

2

4

6

3

3

2

1

4

32

6

15

5

14

4

8

3

7

2

1

3

original
array

index
table

rank
table

sorted
array

(a) (b) (c) (d)

Figure 8.4.1. (a) An unsorted array of six numbers. (b) Index table, whose entries arepointers to
the elements of (a) in ascending order. (c) Rank table, whose entries are the ranks of the corresponding
elements of (a). (d) Sorted array of the elements in (a).

wind velocity. When we sort the records, we must decide which of these fields we
want to be brought into sorted order. The other fields in a record just come along
for the ride, and will not, in general, end up in any particular order. The field on
which the sort is performed is called thekey field.

For a data file with many records and many fields, the actual movement ofN
records into the sorted order of their keysKi, i = 1, . . . , N , can be a daunting task.
Instead, one can construct anindex tableIj , j = 1, . . . , N , such that the smallest
Ki hasi = I1, the second smallest hasi = I2, and so on up to the largestKi with
i = IN . In other words, the array

KIj j = 1, 2, . . . , N (8.4.1)

is in sorted order when indexed byj. When an index table is available, one need not
move records from their original order. Further, different index tables can be made
from the same set of records, indexing them to different keys.

The algorithm for constructing an index table is straightforward: Initialize the
index array with the integers from 1 toN , then perform the Quicksort algorithm,
moving the elements aroundas ifone were sorting the keys. The integer that initially
numbered the smallest key thus ends up in the number one position, and so on.

SUBROUTINE indexx(n,arr,indx)
INTEGER n,indx(n),M,NSTACK
REAL arr(n)
PARAMETER (M=7,NSTACK=50)

Indexes an array arr(1:n), i.e., outputs the array indx(1:n) such that arr(indx(j))
is in ascending order for j = 1,2, . . . , N . The input quantities n and arr are not changed.

8.4 Indexing and Ranking 331

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

INTEGER i,indxt,ir,itemp,j,jstack,k,l,istack(NSTACK)
REAL a
do 11 j=1,n

indx(j)=j
enddo 11

jstack=0
l=1
ir=n

1 if(ir-l.lt.M)then
do 13 j=l+1,ir

indxt=indx(j)
a=arr(indxt)
do 12 i=j-1,l,-1

if(arr(indx(i)).le.a)goto 2
indx(i+1)=indx(i)

enddo 12

i=l-1
2 indx(i+1)=indxt

enddo 13

if(jstack.eq.0)return
ir=istack(jstack)
l=istack(jstack-1)
jstack=jstack-2

else
k=(l+ir)/2
itemp=indx(k)
indx(k)=indx(l+1)
indx(l+1)=itemp
if(arr(indx(l)).gt.arr(indx(ir)))then

itemp=indx(l)
indx(l)=indx(ir)
indx(ir)=itemp

endif
if(arr(indx(l+1)).gt.arr(indx(ir)))then

itemp=indx(l+1)
indx(l+1)=indx(ir)
indx(ir)=itemp

endif
if(arr(indx(l)).gt.arr(indx(l+1)))then

itemp=indx(l)
indx(l)=indx(l+1)
indx(l+1)=itemp

endif
i=l+1
j=ir
indxt=indx(l+1)
a=arr(indxt)

3 continue
i=i+1

if(arr(indx(i)).lt.a)goto 3
4 continue

j=j-1
if(arr(indx(j)).gt.a)goto 4
if(j.lt.i)goto 5
itemp=indx(i)
indx(i)=indx(j)
indx(j)=itemp
goto 3

5 indx(l+1)=indx(j)
indx(j)=indxt
jstack=jstack+2
if(jstack.gt.NSTACK)pause ’NSTACK too small in indexx’
if(ir-i+1.ge.j-l)then

istack(jstack)=ir

332 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

istack(jstack-1)=i
ir=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

endif
endif
goto 1
END

If you want to sort an array while making the corresponding rearrangement of
several or many other arrays, you should first make an index table, then use it to
rearrange each array in turn. This requires two arrays of working space: one to
hold the index, and another into which an array is temporarily moved, and from
which it is redeposited back on itself in the rearranged order. For 3 arrays, the
procedure looks like this:

SUBROUTINE sort3(n,ra,rb,rc,wksp,iwksp)
INTEGER n,iwksp(n)
REAL ra(n),rb(n),rc(n),wksp(n)

C USES indexx
Sorts an array ra(1:n) into ascending numerical order while making the corresponding
rearrangements of the arrays rb(1:n) and rc(1:n). An index table is constructed via the
routine indexx.

INTEGER j
call indexx(n,ra,iwksp) Make the index table.
do 11 j=1,n Save the array ra.

wksp(j)=ra(j)
enddo 11

do 12 j=1,n Copy it back in the rearranged order.
ra(j)=wksp(iwksp(j))

enddo 12

do 13 j=1,n Ditto rb.
wksp(j)=rb(j)

enddo 13

do 14 j=1,n
rb(j)=wksp(iwksp(j))

enddo 14

do 15 j=1,n Ditto rc.
wksp(j)=rc(j)

enddo 15

do 16 j=1,n
rc(j)=wksp(iwksp(j))

enddo 16

return
END

The generalization to any other number of arrays is obviously straightforward.

A rank tableis different from an index table. A rank table’sjth entry gives the
rank of thejth element of the original array of keys, ranging from 1 (if that element
was the smallest) toN (if that element was the largest). One can easily construct
a rank table from an index table, however:

8.5 Selecting the Mth Largest 333

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE rank(n,indx,irank)
INTEGER n,indx(n),irank(n)

Given indx(1:n)as output from the routine indexx, this routine returns an array irank(1:n),
the corresponding table of ranks.

INTEGER j
do 11 j=1,n

irank(indx(j))=j
enddo 11

return
END

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selection is sorting’s austere sister. (Saythatfive times quickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asks for a single
returned value: What is thekth smallest (or, equivalently, them = N+1−kth largest)
element out ofN elements? The fastest methods for selection do, unfortunately,
rearrange the array for their own computational purposes, typically puttingall smaller
elements to the left of thekth, all larger elements to the right, and scrambling the
order within each subset. This side effect is at best innocuous, at worst downright
inconvenient. When the array is very long, so that making a scratch copy of it is taxing
on memory, or when the computational burden of the selection is a negligible part
of a larger calculation, one turns to selection algorithms without side effects, which
leave the original array undisturbed. Suchin placeselection is slower than the faster
selection methods by a factor of about 10. We give routines of both types, below.

The most common use of selection is in the statistical characterization of a set
of data. One often wants to know the median element in an array, or the top and
bottom quartile elements. WhenN is odd, the median is thekth element, with
k = (N +1)/2. WhenN is even, statistics books define the median as the arithmetic
mean of the elementsk = N/2 andk = N/2 + 1 (that is,N/2 from the bottom
andN/2 from the top). If you accept such pedantry, you must perform two separate
selections to find these elements. ForN > 100 we usually definek = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangement, ispartition-
ing, exactly as was done in the Quicksort algorithm (§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to the
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels” (§8.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our desiredkth
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales asN rather than asN logN (see[1]). Comparison
with sort in §8.2 should make the following routine obvious:

8.5 Selecting the Mth Largest 333

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE rank(n,indx,irank)
INTEGER n,indx(n),irank(n)

Given indx(1:n)as output from the routine indexx, this routine returns an array irank(1:n),
the corresponding table of ranks.

INTEGER j
do 11 j=1,n

irank(indx(j))=j
enddo 11

return
END

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selection is sorting’s austere sister. (Saythatfive times quickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asks for a single
returned value: What is thekth smallest (or, equivalently, them = N+1−kth largest)
element out ofN elements? The fastest methods for selection do, unfortunately,
rearrange the array for their own computational purposes, typically puttingall smaller
elements to the left of thekth, all larger elements to the right, and scrambling the
order within each subset. This side effect is at best innocuous, at worst downright
inconvenient. When the array is very long, so that making a scratch copy of it is taxing
on memory, or when the computational burden of the selection is a negligible part
of a larger calculation, one turns to selection algorithms without side effects, which
leave the original array undisturbed. Suchin placeselection is slower than the faster
selection methods by a factor of about 10. We give routines of both types, below.

The most common use of selection is in the statistical characterization of a set
of data. One often wants to know the median element in an array, or the top and
bottom quartile elements. WhenN is odd, the median is thekth element, with
k = (N +1)/2. WhenN is even, statistics books define the median as the arithmetic
mean of the elementsk = N/2 andk = N/2 + 1 (that is,N/2 from the bottom
andN/2 from the top). If you accept such pedantry, you must perform two separate
selections to find these elements. ForN > 100 we usually definek = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangement, ispartition-
ing, exactly as was done in the Quicksort algorithm (§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to the
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels” (§8.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our desiredkth
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales asN rather than asN logN (see[1]). Comparison
with sort in §8.2 should make the following routine obvious:

334 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION select(k,n,arr)
INTEGER k,n
REAL select,arr(n)

Returns the kth smallest value in the array arr(1:n). The input array will be rearranged
to have this value in location arr(k), with all smaller elements moved to arr(1:k-1) (in
arbitrary order) and all larger elements in arr[k+1..n] (also in arbitrary order).

INTEGER i,ir,j,l,mid
REAL a,temp
l=1
ir=n

1 if(ir-l.le.1)then Active partition contains 1 or 2 elements.
if(ir-l.eq.1)then Active partition contains 2 elements.

if(arr(ir).lt.arr(l))then
temp=arr(l)
arr(l)=arr(ir)
arr(ir)=temp

endif
endif
select=arr(k)
return

else
mid=(l+ir)/2 Choose median of left, center, and right elements as par-

titioning element a. Also rearrange so that arr(l) ≤

arr(l+1), arr(ir) ≥ arr(l+1).
temp=arr(mid)
arr(mid)=arr(l+1)
arr(l+1)=temp
if(arr(l).gt.arr(ir))then

temp=arr(l)
arr(l)=arr(ir)
arr(ir)=temp

endif
if(arr(l+1).gt.arr(ir))then

temp=arr(l+1)
arr(l+1)=arr(ir)
arr(ir)=temp

endif
if(arr(l).gt.arr(l+1))then

temp=arr(l)
arr(l)=arr(l+1)
arr(l+1)=temp

endif
i=l+1 Initialize pointers for partitioning.
j=ir
a=arr(l+1) Partitioning element.

3 continue Beginning of innermost loop.
i=i+1 Scan up to find element > a.

if(arr(i).lt.a)goto 3
4 continue

j=j-1 Scan down to find element < a.
if(arr(j).gt.a)goto 4
if(j.lt.i)goto 5 Pointers crossed. Exit with partitioning complete.
temp=arr(i) Exchange elements.
arr(i)=arr(j)
arr(j)=temp
goto 3 End of innermost loop.

5 arr(l+1)=arr(j) Insert partitioning element.
arr(j)=a
if(j.ge.k)ir=j-1 Keep active the partition that contains the kth element.
if(j.le.k)l=i

endif
goto 1
END

8.5 Selecting the Mth Largest 335

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In-place,nondestructive, selection is conceptually simple, but it requires a lot
of bookkeeping, and it is correspondingly slower. The general idea is to pick some
numberM of elements at random, to sort them, and then to make a pass through
the arraycountinghow many elements fall in each of theM + 1 intervals defined
by these elements. Thekth largest will fall in one such interval — call it the “live”
interval. One then does a second round, first pickingM random elements in the live
interval, and then determining which of the new, finer,M + 1 intervals all presently
live elements fall into. And so on, until thekth element is finally localized within a
single array of sizeM , at which point direct selection is possible.

How shall we pickM? The number of rounds,log
M

N = log2 N/ log2 M ,
will be smaller ifM is larger; but the work to locate each element amongM + 1
subintervals will be larger, scaling aslog2 M for bisection, say. Each round
requires looking at allN elements, if only to find those that are still alive, while
the bisections are dominated by theN that occur in the first round. Minimizing
O(N log

M
N) + O(N log2 M) thus yields the result

M ∼ 2
√

log
2
N (8.5.1)

The square root of the logarithm is so slowly varying that secondary considerations of
machine timing become important. We useM = 64 as a convenient constant value.

Two minor additional tricks in the following routine,selip, are (i) augmenting
the set ofM random values by anM + 1st, the arithmetic mean, and (ii) choosing
theM random values “on the fly” in a pass through the data, by a method that makes
later values no less likely to be chosen than earlier ones. (The underlying idea is to
give elementm > M anM/m chance of being brought into the set. You can prove
by induction that this yields the desired result.)

FUNCTION selip(k,n,arr)
INTEGER k,n,M
REAL selip,arr(n),BIG
PARAMETER (M=64,BIG=1.E30)

Returns the kth smallest value in the array arr(1:n). The input array is not altered.
C USES shell

INTEGER i,j,jl,jm,ju,kk,mm,nlo,nxtmm,isel(M+2)
REAL ahi,alo,sum,sel(M+2)
if(k.lt.1.or.k.gt.n.or.n.le.0) pause ’bad input to selip’
kk=k
ahi=BIG
alo=-BIG

1 continue Main iteration loop, until desired element is isolated.
mm=0
nlo=0
sum=0.
nxtmm=M+1
do 11 i=1,n Make a pass through the whole array.

if(arr(i).ge.alo.and.arr(i).le.ahi)then Consider only elements in the cur-
rent brackets.mm=mm+1

if(arr(i).eq.alo) nlo=nlo+1 In case of ties for low bracket.
if(mm.le.M)then Statistical procedure for selecting m in-range elements

with equal probability, even without knowing in
advance how many there are!

sel(mm)=arr(i)
else if(mm.eq.nxtmm)then

nxtmm=mm+mm/M
sel(1+mod(i+mm+kk,M))=arr(i) The mod function provides a some-

what random number.endif
sum=sum+arr(i)

336 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
enddo 11

if(kk.le.nlo)then Desired element is tied for lower bound; return it.
selip=alo
return

else if(mm.le.M)then All in-range elements were kept. So return answer by
direct method.call shell(mm,sel)

selip=sel(kk)
return

endif Augment selected set by mean value (fixes degenera-
cies), and sort it.sel(M+1)=sum/mm

call shell(M+1,sel)
sel(M+2)=ahi
do 12 j=1,M+2 Zero the count array.

isel(j)=0
enddo 12

do 13 i=1,n Make another pass through the whole array.
if(arr(i).ge.alo.and.arr(i).le.ahi)then For each in-range element..

jl=0
ju=M+2

2 if(ju-jl.gt.1)then ...find its position among the select by bisection...
jm=(ju+jl)/2
if(arr(i).ge.sel(jm))then

jl=jm
else

ju=jm
endif

goto 2
endif
isel(ju)=isel(ju)+1 ...and increment the counter.

endif
enddo 13

j=1 Now we can narrow the bounds to just one bin, that
is, by a factor of order m.3 if(kk.gt.isel(j))then

alo=sel(j)
kk=kk-isel(j)
j=j+1

goto 3
endif
ahi=sel(j)

goto 1
END

Approximate timings:selip is about 10 times slower thanselect. Indeed,
for N in the range of∼ 105, selip is about 1.5 times slower than a full sort with
sort, while select is about 6 times faster thansort. You should weigh time
against memory and convenience carefully.

Of course neither of the above routines should be used for the trivial cases of
finding the largest, or smallest, element in an array. Those cases, you code by hand
as simpledo loops. There are also good ways to code the case wherek is modest in
comparison toN , so that extra memory of orderk is not burdensome. An example
is to use the method of Heapsort (§8.3) to make a single pass through an array of
lengthN while saving them largestelements. The advantage of the heap structure
is that onlylogm, rather thanm, comparisons are required every time a new element
is added to the candidate list. This becomes a real savings whenm > O(

√
N), but

it never hurts otherwise and is easy to code. The following program gives the idea.

SUBROUTINE hpsel(m,n,arr,heap)
INTEGER m,n

8.6 Determination of Equivalence Classes 337

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

REAL arr(n),heap(m)
C USES sort

Returns in heap(1:m) the largest m elements of the array arr(1:n), with heap(1) guar-
anteed to be the the mth largest element. The array arr is not altered. For efficiency, this
routine should be used only when m ≪ n.

INTEGER i,j,k
REAL swap
if (m.gt.n/2.or.m.lt.1) pause ’probable misuse of hpsel’
do 11 i=1,m

heap(i)=arr(i)
enddo 11

call sort(m,heap) Create initial heap by overkill! We assume m ≪ n.
do 12 i=m+1,n For each remaining element...

if(arr(i).gt.heap(1))then Put it on the heap?
heap(1)=arr(i)
j=1

1 continue Sift down.
k=2*j
if(k.gt.m)goto 2
if(k.ne.m)then

if(heap(k).gt.heap(k+1))k=k+1
endif
if(heap(j).le.heap(k))goto 2
swap=heap(k)
heap(k)=heap(j)
heap(j)=swap
j=k

goto 1
2 continue

endif
enddo 12

return
end

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniques for sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation,
namely the determination of equivalence classes, arises sufficiently often to justify inclusion
here.

The problem is this: There areN “elements” (or “data points” or whatever), numbered
1, . . . , N . You are given pairwise information about whether elements are in the same
equivalence classof “sameness,” by whatever criterion happens to be of interest. For
example, you may have a list of facts like: “Element 3 and element 7 are in the same class;
element 19 and element 4 are in the same class; element 7 and element 12 are in the same
class,. . . .” Alternatively, you may have a procedure, given the numbers of two elements

8.6 Determination of Equivalence Classes 337

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

REAL arr(n),heap(m)
C USES sort

Returns in heap(1:m) the largest m elements of the array arr(1:n), with heap(1) guar-
anteed to be the the mth largest element. The array arr is not altered. For efficiency, this
routine should be used only when m ≪ n.

INTEGER i,j,k
REAL swap
if (m.gt.n/2.or.m.lt.1) pause ’probable misuse of hpsel’
do 11 i=1,m

heap(i)=arr(i)
enddo 11

call sort(m,heap) Create initial heap by overkill! We assume m ≪ n.
do 12 i=m+1,n For each remaining element...

if(arr(i).gt.heap(1))then Put it on the heap?
heap(1)=arr(i)
j=1

1 continue Sift down.
k=2*j
if(k.gt.m)goto 2
if(k.ne.m)then

if(heap(k).gt.heap(k+1))k=k+1
endif
if(heap(j).le.heap(k))goto 2
swap=heap(k)
heap(k)=heap(j)
heap(j)=swap
j=k

goto 1
2 continue

endif
enddo 12

return
end

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniques for sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation,
namely the determination of equivalence classes, arises sufficiently often to justify inclusion
here.

The problem is this: There areN “elements” (or “data points” or whatever), numbered
1, . . . , N . You are given pairwise information about whether elements are in the same
equivalence classof “sameness,” by whatever criterion happens to be of interest. For
example, you may have a list of facts like: “Element 3 and element 7 are in the same class;
element 19 and element 4 are in the same class; element 7 and element 12 are in the same
class,. . . .” Alternatively, you may have a procedure, given the numbers of two elements

338 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

j andk, for deciding whether they are in the same class or different classes. (Recall that
an equivalence relation can be anything satisfying theRST properties: reflexive, symmetric,
transitive. This is compatible with any intuitive definition of “sameness.”)

The desired output is an assignment to each of theN elements of an equivalence class
number, such that two elements are in the same class if and only if they are assigned the
same class number.

Efficient algorithms work like this: LetF (j) be the class or “family” number of element
j. Start off with each element in its own family, so thatF (j) = j. The arrayF (j) can be
interpreted as a tree structure, whereF (j) denotes the parent ofj. If we arrange for each family
to be its own tree, disjoint from all the other “family trees,” then we can label each family
(equivalence class) by its most senior great-great-. . .grandparent. The detailed topology of
the tree doesn’t matter at all, as long as we graft each related element onto itsomewhere.

Therefore, we process each elemental datum “j is equivalent tok” by (i) tracking j
up to its highest ancestor, (ii) trackingk up to its highest ancestor, (iii) givingj to k as a
new parent, or vice versa (it makes no difference). After processing all the relations, we go
through all the elementsj and reset theirF (j)’s to their highest possible ancestors, which
then label the equivalence classes.

The following routine, based on Knuth[1], assumes that there arem elemental pieces
of information, stored in two arrays of lengthm, lista,listb, the interpretation being
that lista(j) andlistb(j), j=1...m, are the numbers of two elements which (we are
thus told) are related.

SUBROUTINE eclass(nf,n,lista,listb,m)
INTEGER m,n,lista(m),listb(m),nf(n)

Given m equivalences between pairs of n individual elements in the form of the input arrays
lista(1:m) and listb(1:m), this routine returns in nf(1:n) the number of the equiva-
lence class of each of the n elements, integers between 1 and n (not all such integers used).

INTEGER j,k,l
do 11 k=1,n Initialize each element its own class.

nf(k)=k
enddo 11

do 12 l=1,m For each piece of input information...
j=lista(l)

1 if(nf(j).ne.j)then Track first element up to its ancestor.
j=nf(j)

goto 1
endif
k=listb(l)

2 if(nf(k).ne.k)then Track second element up to its ancestor.
k=nf(k)

goto 2
endif
if(j.ne.k)nf(j)=k If they are not already related, make them so.

enddo 12

do 13 j=1,n Final sweep up to highest ancestors.
3 if(nf(j).ne.nf(nf(j)))then

nf(j)=nf(nf(j))
goto 3
endif

enddo 13

return
END

Alternatively, we may be able to construct a procedureequiv(j,k) that returns a value
.true. if elementsj andk are related, or.false. if they are not. Then we want to loop
over all pairs of elements to get the complete picture. D. Eardley has devised a clever way of
doing this while simultaneously sweeping the tree up to high ancestors in a manner that keeps
it current and obviates most of the final sweep phase:

8.6 Determination of Equivalence Classes 339

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE eclazz(nf,n,equiv)
INTEGER n,nf(n)
LOGICAL equiv
EXTERNAL equiv

Given a user-supplied logical function equiv which tells whether a pair of elements, each
in the range 1...n, are related, return in nf equivalence class numbers for each element.

INTEGER jj,kk
nf(1)=1
do 12 jj=2,n Loop over first element of all pairs.

nf(jj)=jj
do 11 kk=1,jj-1 Loop over second element of all pairs.

nf(kk)=nf(nf(kk)) Sweep it up this much.
if (equiv(jj,kk)) nf(nf(nf(kk)))=jj Good exercise for the reader to figure

out why this much ancestry is
necessary!

enddo 11

enddo 12

do 13 jj=1,n Only this much sweeping is needed finally.
nf(jj)=nf(nf(jj))

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.3.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 30.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 9. Root Finding and
Nonlinear Sets of Equations

9.0 Introduction

We now consider that most basic of tasks, solving equations numerically. While
most equations are born with both a right-hand side and a left-hand side, one
traditionally moves all terms to the left, leaving

f(x) = 0 (9.0.1)

whose solutionor solutionsare desired. When there is only one independent variable,
the problem isone-dimensional, namely to find the root or roots of a function.

With more than one independent variable, more than one equation can be
satisfied simultaneously. You likely once learned theimplicit function theorem
which (in this context) gives us the hope of satisfyingN equations inN unknowns
simultaneously. Note that we have only hope, not certainty. A nonlinear set of
equations may have no (real) solutions at all. Contrariwise, it may have more than
one solution. The implicit function theorem tells us that “generically” the solutions
will be distinct, pointlike, and separated fromeach other. If, however, life is so
unkind as to present you with a nongeneric, i.e., degenerate, case, then you can get
a continuous family of solutions. In vector notation, we want to find one or more
N -dimensional solution vectorsx such that

f(x) = 0 (9.0.2)

where f is theN -dimensional vector-valued function whose components are the
individual equations to be satisfied simultaneously.

Don’t be fooled by the apparent notational similarity of equations (9.0.2) and
(9.0.1). Simultaneous solution of equations inN dimensions ismuchmore difficult
than finding roots in the one-dimensional case. The principal difference between one
and many dimensions is that, in one dimension, it is possible to bracket or “trap” a root
between bracketing values, and then hunt it down like a rabbit. In multidimensions,
you can never be sure that the root is there at all until you have found it.

Except in linear problems, root finding invariably proceeds by iteration, and
this is equally true in one or in many dimensions. Starting from some approximate
trial solution, a useful algorithm will improve the solution until some predetermined
convergence criterion is satisfied. For smoothly varying functions, good algorithms

340

9.0 Introduction 341

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

will always converge,providedthat the initial guess is good enough. Indeed one can
even determine in advance the rate of convergence of most algorithms.

It cannot be overemphasized, however, how crucially success depends on
having a good first guess for the solution, especially for multidimensional problems.
This crucial beginning usually depends on analysis rather than numerics. Carefully
crafted initial estimates reward you not only with reduced computational effort, but
also with understanding and increased self-esteem. Hamming’s motto, “the purpose
of computing is insight, not numbers,” is particularly apt in the area of finding
roots. You should repeat this motto aloud whenever your program converges, with
ten-digit accuracy, to the wrong root of a problem, or whenever it fails to converge
because there is actuallyno root, or because there is a root butyour initial estimate
was not sufficiently close to it.

“This talk of insight is all very well, but what do I actually do?” For one-
dimensional root finding, it is possible to give some straightforward answers: You
should try to get some idea of what your function looks like before trying to find
its roots. If you need to mass-produce roots for many different functions, then you
should at least know what some typical members of the ensemble look like. Next,
you should always bracket a root, that is, know that the function changes sign in an
identified interval, before trying to converge to the root’s value.

Finally (this is advice with which some daring souls might disagree, but
we give it nonetheless) never let your iteration method get outside of the best
bracketing bounds obtained at any stage. We will see below that some pedagogically
important algorithms, such assecant methodor Newton-Raphson, can violate this
last constraint, and are thus not recommended unless certain fixups are implemented.

Multiple roots, or very close roots, are a real problem, especially if the
multiplicity is an even number. In that case, there may be no readily apparent
sign change in the function, so the notion of bracketing a root — and maintaining
the bracket — becomes difficult. We are hard-liners: we nevertheless insist on
bracketing a root, even if it takes the minimum-searching techniques of Chapter 10
to determine whether a tantalizing dip in the function really does cross zero or not.
(You can easily modify the simple golden section routine of§10.1 to return early
if it detects a sign change in the function. And, if the minimum of the function is
exactly zero, then you have found adoubleroot.)

As usual, we want to discourage you from using routines as black boxes without
understanding them. However, as a guide to beginners, here are some reasonable
starting points:

• Brent’s algorithm in§9.3 is the method of choice to find a bracketed root
of a general one-dimensional function, when you cannot easily compute
the function’s derivative. Ridders’ method (§9.2) is concise, and a close
competitor.

• When you can compute the function’s derivative, the routinertsafe in
§9.4, which combines the Newton-Raphson method with some bookkeep-
ing on bounds, is recommended. Again, you must first bracket your root.

• Roots of polynomials are a special case. Laguerre’s method, in§9.5,
is recommended as a starting point. Beware: Some polynomials are
ill-conditioned!

• Finally, for multidimensional problems, the only elementary method is
Newton-Raphson (§9.6), which worksvery well if you can supply a

342 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

good first guess of the solution. Try it. Then read the more advanced
material in§9.7 for some more complicated, but globally more convergent,
alternatives.

Avoiding implementations for specific computers, this book must generally
steer clear of interactive or graphics-related routines. We make an exception right
now. The following routine, which produces a crude function plot with interactively
scaled axes, can save you a lot of grief as you enter the world of root finding.

SUBROUTINE scrsho(fx)
INTEGER ISCR,JSCR
REAL fx
EXTERNAL fx
PARAMETER (ISCR=60,JSCR=21) Number of horizontal and vertical positions in display.

For interactive CRT terminal use. Produce a crude graph of the function fx over the
prompted-for interval x1,x2. Query for another plot until the user signals satisfaction.

INTEGER i,j,jz
REAL dx,dyj,x,x1,x2,ybig,ysml,y(ISCR)
CHARACTER*1 scr(ISCR,JSCR),blank,zero,yy,xx,ff
SAVE blank,zero,yy,xx,ff
DATA blank,zero,yy,xx,ff/’ ’,’-’,’l’,’-’,’x’/

1 continue
write (*,*) ’ Enter x1,x2 (= to stop)’Query for another plot, quit if x1=x2.
read (*,*) x1,x2
if(x1.eq.x2) return
do 11 j=1,JSCR Fill vertical sides with character ’l’.

scr(1,j)=yy
scr(ISCR,j)=yy

enddo 11

do 13 i=2,ISCR-1
scr(i,1)=xx Fill top, bottom with character ’-’.
scr(i,JSCR)=xx
do 12 j=2,JSCR-1 Fill interior with blanks.

scr(i,j)=blank
enddo 12

enddo 13

dx=(x2-x1)/(ISCR-1)
x=x1
ybig=0. Limits will include 0.
ysml=ybig
do 14 i=1,ISCR Evaluate the function at equal intervals. Find the

largest and smallest values.y(i)=fx(x)
if(y(i).lt.ysml) ysml=y(i)
if(y(i).gt.ybig) ybig=y(i)
x=x+dx

enddo 14

if(ybig.eq.ysml) ybig=ysml+1. Be sure to separate top and bottom.
dyj=(JSCR-1)/(ybig-ysml)
jz=1-ysml*dyj Note which row corresponds to 0.
do 15 i=1,ISCR Place an indicator at function height and 0.

scr(i,jz)=zero
j=1+(y(i)-ysml)*dyj
scr(i,j)=ff

enddo 15

write (*,’(1x,1pe10.3,1x,80a1)’) ybig,(scr(i,JSCR),i=1,ISCR)
do 16 j=JSCR-1,2,-1 Display.

write (*,’(12x,80a1)’) (scr(i,j),i=1,ISCR)
enddo 16

write (*,’(1x,1pe10.3,1x,80a1)’) ysml,(scr(i,1),i=1,ISCR)
write (*,’(12x,1pe10.3,40x,e10.3)’) x1,x2
goto 1
END

9.1 Bracketing and Bisection 343

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 5.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapters 2, 7, and 14.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 8.

Householder, A.S. 1970, The Numerical Treatment of a Single Nonlinear Equation (New York:
McGraw-Hill).

9.1 Bracketing and Bisection

We will say that a root isbracketedin the interval(a, b) if f(a) and f(b)
have opposite signs. If the function is continuous, then at least one root must lie in
that interval (theintermediate value theorem). If the function is discontinuous, but
bounded, then instead of a root there might be a step discontinuity which crosses
zero (see Figure 9.1.1). For numerical purposes, that might as well be a root, since
the behavior is indistinguishable from the case of a continuous function whose zero
crossing occurs in between two “adjacent” floating-point numbers in a machine’s
finite-precision representation. Only for functions with singularities is there the
possibility that a bracketed root is not really there, as for example

f(x) =
1

x− c
(9.1.1)

Some root-finding algorithms (e.g., bisection in this section) will readily converge
to c in (9.1.1). Luckily there is not much possibility of your mistakingc, or any
numberx close to it, for a root, since mere evaluation of|f(x)| will give a very
large, rather than a very small, result.

If you are given a function in a black box, there is no sure way of bracketing
its roots, or of even determining that it has roots. If you like pathological examples,
think about the problem of locating the two real roots of equation (3.0.1), which dips
below zero only in the ridiculously small interval of aboutx = π ± 10−667.

In the next chapter we will deal with the related problem of bracketing a
function’s minimum. There it is possible to give a procedure that always succeeds;
in essence, “Go downhill, taking steps of increasing size, until your function starts
back uphill.” There is no analogous procedure for roots. The procedure “go downhill
until your function changes sign,” can be foiled by a function that has a simple
extremum. Nevertheless, if you are prepared to deal with a “failure” outcome, this
procedure is often a good first start; success is usual ifyour function has opposite
signs in the limitx → ±∞.

9.1 Bracketing and Bisection 343

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 5.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapters 2, 7, and 14.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 8.

Householder, A.S. 1970, The Numerical Treatment of a Single Nonlinear Equation (New York:
McGraw-Hill).

9.1 Bracketing and Bisection

We will say that a root isbracketedin the interval(a, b) if f(a) and f(b)
have opposite signs. If the function is continuous, then at least one root must lie in
that interval (theintermediate value theorem). If the function is discontinuous, but
bounded, then instead of a root there might be a step discontinuity which crosses
zero (see Figure 9.1.1). For numerical purposes, that might as well be a root, since
the behavior is indistinguishable from the case of a continuous function whose zero
crossing occurs in between two “adjacent” floating-point numbers in a machine’s
finite-precision representation. Only for functions with singularities is there the
possibility that a bracketed root is not really there, as for example

f(x) =
1

x− c
(9.1.1)

Some root-finding algorithms (e.g., bisection in this section) will readily converge
to c in (9.1.1). Luckily there is not much possibility of your mistakingc, or any
numberx close to it, for a root, since mere evaluation of|f(x)| will give a very
large, rather than a very small, result.

If you are given a function in a black box, there is no sure way of bracketing
its roots, or of even determining that it has roots. If you like pathological examples,
think about the problem of locating the two real roots of equation (3.0.1), which dips
below zero only in the ridiculously small interval of aboutx = π ± 10−667.

In the next chapter we will deal with the related problem of bracketing a
function’s minimum. There it is possible to give a procedure that always succeeds;
in essence, “Go downhill, taking steps of increasing size, until your function starts
back uphill.” There is no analogous procedure for roots. The procedure “go downhill
until your function changes sign,” can be foiled by a function that has a simple
extremum. Nevertheless, if you are prepared to deal with a “failure” outcome, this
procedure is often a good first start; success is usual ifyour function has opposite
signs in the limitx → ±∞.

344 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

a b

(b)

x1

e f c x1 d a b

b

a

(c)

(d)

(a)

x2 x3

Figure 9.1.1. Some situations encountered while root finding: (a) shows an isolated rootx1 bracketed
by two pointsa andb at which the function has opposite signs; (b)illustrates that there is not necessarily
a sign change in the function near a double root (in fact, there is not necessarily a root!); (c) is a
pathological function with many roots; in (d) the function has opposite signs at pointsa andb, but the
points bracket a singularity, not a root.

9.1 Bracketing and Bisection 345

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE zbrac(func,x1,x2,succes)
INTEGER NTRY
REAL x1,x2,func,FACTOR
EXTERNAL func
PARAMETER (FACTOR=1.6,NTRY=50)

Given a function func and an initial guessed range x1 to x2, the routine expands the range
geometrically until a root is bracketed by the returned values x1 and x2 (in which case
succes returns as .true.) or until the range becomes unacceptably large (in which case
succes returns as .false.).

INTEGER j
REAL f1,f2
LOGICAL succes
if(x1.eq.x2)pause ’you have to guess an initial range in zbrac’
f1=func(x1)
f2=func(x2)
succes=.true.
do 11 j=1,NTRY

if(f1*f2.lt.0.)return
if(abs(f1).lt.abs(f2))then

x1=x1+FACTOR*(x1-x2)
f1=func(x1)

else
x2=x2+FACTOR*(x2-x1)
f2=func(x2)

endif
enddo 11

succes=.false.
return
END

Alternatively, you might want to “look inward” on an initial interval, rather
than “look outward” from it, asking if there are any roots of the functionf(x) in
the interval fromx1 to x2 when a search is carried out by subdivision inton equal
intervals. The following subroutine returns brackets for up tonb distinct intervals
which each contain one or more roots.

SUBROUTINE zbrak(fx,x1,x2,n,xb1,xb2,nb)
INTEGER n,nb
REAL x1,x2,xb1(nb),xb2(nb),fx
EXTERNAL fx

Given a function fx defined on the interval from x1-x2 subdivide the interval into n equally
spaced segments, and search for zero crossings of the function. nb is input as the maxi-
mum number of roots sought, and is reset to the number of bracketing pairs xb1(1:nb),
xb2(1:nb) that are found.

INTEGER i,nbb
REAL dx,fc,fp,x
nbb=0
x=x1
dx=(x2-x1)/n Determine the spacing appropriate to the mesh.
fp=fx(x)
do 11 i=1,n Loop over all intervals

x=x+dx
fc=fx(x)
if(fc*fp.le.0.) then If a sign change occurs then record values for the bounds.

nbb=nbb+1
xb1(nbb)=x-dx
xb2(nbb)=x
if(nbb.eq.nb)goto 1

endif
fp=fc

enddo 11

346 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

1 continue
nb=nbb
return
END

Bisection Method

Once we know that an interval contains a root, several classical procedures are
available to refine it. These proceed with varying degrees of speed and sureness
towards the answer. Unfortunately, the methods that are guaranteed to converge plod
along most slowly, while those that rush to the solution in the best cases can also dash
rapidly to infinity without warning if measures are not taken to avoid such behavior.

The bisection methodis one that cannot fail. It is thus not to be sneered at
as a method for otherwise badly behaved problems. The idea is simple. Over
some interval the function is known to pass through zero because it changes sign.
Evaluate the function at the interval’s midpoint and examine its sign. Use the
midpoint to replace whichever limit has the same sign. Aftereach iteration the
bounds containing the root decrease by a factor of two. If aftern iterations the root
is known to be within an interval of sizeǫn, then after the next iteration it will be
bracketed within an interval of size

ǫn+1 = ǫn/2 (9.1.2)

neither more nor less. Thus, we know in advance the number of iterations required
to achieve a given tolerance in the solution,

n = log2

ǫ0
ǫ

(9.1.3)

where ǫ0 is the size of the initially bracketing interval,ǫ is the desired ending
tolerance.

Bisectionmustsucceed. If the interval happens to contain two or more roots,
bisection will find one of them. If the interval contains no roots and merely straddles
a singularity, it will converge on the singularity.

When a method converges as a factor (less than 1) times the previous uncertainty
to the first power (as is the case for bisection), it is said to convergelinearly. Methods
that converge as a higher power,

ǫn+1 = constant× (ǫn)m m > 1 (9.1.4)

are said to converge superlinearly. In other contexts “linear” convergence would be
termed “exponential,” or “geometrical.” That is not too bad at all: Linear convergence
means that successive significant figures are won linearly with computational effort.

It remains to discuss practical criteria for convergence. It is crucial to keep in
mind that computers use a fixed number of binary digits to represent floating-point
numbers. While your function might analytically pass through zero, it is possible
that its computed value is never zero, for any floating-point argument. One must
decide what accuracy on the root is attainable: Convergence to within10−6 in
absolute value is reasonable when the root lies near 1, but certainly unachievable if

9.2 Secant Method, False Position Method, and Ridders’ Method 347

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the root lies near1026. One might thus think to specify convergence by a relative
(fractional) criterion, but this becomes unworkable for roots near zero. To be most
general, the routines below will require you to specify an absolute tolerance, such that
iterations continue until the interval becomes smaller than this tolerance in absolute
units. Usually you may wish to take the tolerance to beǫ(|x1|+ |x2|)/2 whereǫ is the
machine precision andx1 andx2 are the initial brackets. When the root lies near zero
you ought to consider carefully what reasonable tolerance means for your function.
The following routine quits after 40 bisections in any event, with2−40 ≈ 10−12.

FUNCTION rtbis(func,x1,x2,xacc)
INTEGER JMAX
REAL rtbis,x1,x2,xacc,func
EXTERNAL func
PARAMETER (JMAX=40) Maximum allowed number of bisections.

Using bisection, find the root of a function func known to lie between x1 and x2. The
root, returned as rtbis, will be refined until its accuracy is ±xacc.

INTEGER j
REAL dx,f,fmid,xmid
fmid=func(x2)
f=func(x1)
if(f*fmid.ge.0.) pause ’root must be bracketed in rtbis’
if(f.lt.0.)then Orient the search so that f>0 lies at x+dx.

rtbis=x1
dx=x2-x1

else
rtbis=x2
dx=x1-x2

endif
do 11 j=1,JMAX Bisection loop.

dx=dx*.5
xmid=rtbis+dx
fmid=func(xmid)
if(fmid.le.0.)rtbis=xmid
if(abs(dx).lt.xacc .or. fmid.eq.0.) return

enddo 11

pause ’too many bisections in rtbis’
END

9.2 Secant Method, False Position Method,
and Ridders’ Method

For functions that are smooth near a root, the methods known respectively
as false position(or regula falsi) andsecant methodgenerally converge faster than
bisection. In both of these methods the function is assumed to be approximately
linear in the local region of interest, and the next improvement in the root is taken as
the point where the approximating line crosses the axis. After each iteration one of
the previous boundary points is discarded in favor of the latest estimate of the root.

Theonly difference between the methods is that secant retains the most recent
of the prior estimates (Figure 9.2.1; this requires an arbitrary choice on the first
iteration), while false position retains that prior estimate for which the function value

9.2 Secant Method, False Position Method, and Ridders’ Method 347

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the root lies near1026. One might thus think to specify convergence by a relative
(fractional) criterion, but this becomes unworkable for roots near zero. To be most
general, the routines below will require you to specify an absolute tolerance, such that
iterations continue until the interval becomes smaller than this tolerance in absolute
units. Usually you may wish to take the tolerance to beǫ(|x1|+ |x2|)/2 whereǫ is the
machine precision andx1 andx2 are the initial brackets. When the root lies near zero
you ought to consider carefully what reasonable tolerance means for your function.
The following routine quits after 40 bisections in any event, with2−40 ≈ 10−12.

FUNCTION rtbis(func,x1,x2,xacc)
INTEGER JMAX
REAL rtbis,x1,x2,xacc,func
EXTERNAL func
PARAMETER (JMAX=40) Maximum allowed number of bisections.

Using bisection, find the root of a function func known to lie between x1 and x2. The
root, returned as rtbis, will be refined until its accuracy is ±xacc.

INTEGER j
REAL dx,f,fmid,xmid
fmid=func(x2)
f=func(x1)
if(f*fmid.ge.0.) pause ’root must be bracketed in rtbis’
if(f.lt.0.)then Orient the search so that f>0 lies at x+dx.

rtbis=x1
dx=x2-x1

else
rtbis=x2
dx=x1-x2

endif
do 11 j=1,JMAX Bisection loop.

dx=dx*.5
xmid=rtbis+dx
fmid=func(xmid)
if(fmid.le.0.)rtbis=xmid
if(abs(dx).lt.xacc .or. fmid.eq.0.) return

enddo 11

pause ’too many bisections in rtbis’
END

9.2 Secant Method, False Position Method,
and Ridders’ Method

For functions that are smooth near a root, the methods known respectively
as false position(or regula falsi) andsecant methodgenerally converge faster than
bisection. In both of these methods the function is assumed to be approximately
linear in the local region of interest, and the next improvement in the root is taken as
the point where the approximating line crosses the axis. After each iteration one of
the previous boundary points is discarded in favor of the latest estimate of the root.

Theonly difference between the methods is that secant retains the most recent
of the prior estimates (Figure 9.2.1; this requires an arbitrary choice on the first
iteration), while false position retains that prior estimate for which the function value

348 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

f (x)

2

3

4

1

x

Figure 9.2.1. Secant method. Extrapolation or interpolation lines (dashed) are drawn through the two
most recently evaluated points, whether or not they bracket the function. The points are numbered in
the order that they are used.

f (x)

x

4

3

2

1

Figure 9.2.2. False position method. Interpolation lines (dashed) are drawn through the most recent
pointsthat bracket the root. In this example, point 1 thus remains “active” for many steps. Falseposition
converges less rapidly than the secant method, but it is more certain.

9.2 Secant Method, False Position Method, and Ridders’ Method 349

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

2
f (x)

1 3 4

x

Figure 9.2.3. Example where both the secant and false position methods will take many iterations to
arrive at the true root. This function would be difficult for many other root-finding methods.

has opposite sign from the function value at the current best estimate of the root,
so that the two points continue to bracket the root (Figure 9.2.2). Mathematically,
the secant method converges more rapidly near a root of a sufficiently continuous
function. Its order of convergence can be shown to be the “golden ratio”1.618 . . .,
so that

lim
k→∞

|ǫk+1| ≈ const× |ǫk|1.618
(9.2.1)

The secant method has, however, the disadvantage that the root does not necessarily
remain bracketed. For functions that arenot sufficiently continuous, the algorithm
can therefore not be guaranteed to converge: Local behavior might send it off
towards infinity.

False position, since it sometimes keeps an older rather than newer function
evaluation, has a lower order of convergence. Since the newer function value will
sometimesbe kept, the method is often superlinear, but estimation of its exact order
is not so easy.

Here are sample implementations of these two related methods. While these
methods are standard textbook fare,Ridders’ method, described below, orBrent’s
method, in the next section, are almost always better choices. Figure 9.2.3 shows the
behavior of secant and false-position methods in a difficult situation.

FUNCTION rtflsp(func,x1,x2,xacc)
INTEGER MAXIT
REAL rtflsp,x1,x2,xacc,func
EXTERNAL func
PARAMETER (MAXIT=30) Set to the maximum allowed number of iterations.

350 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Using the false position method, find the root of a function func known to lie between x1
and x2. The root, returned as rtflsp, is refined until its accuracy is ±xacc.

INTEGER j
REAL del,dx,f,fh,fl,swap,xh,xl
fl=func(x1)
fh=func(x2) Be sure the interval brackets a root.
if(fl*fh.gt.0.) pause ’root must be bracketed in rtflsp’
if(fl.lt.0.)then Identify the limits so that xl corresponds to the low side.

xl=x1
xh=x2

else
xl=x2
xh=x1
swap=fl
fl=fh
fh=swap

endif
dx=xh-xl
do 11 j=1,MAXIT False position loop.

rtflsp=xl+dx*fl/(fl-fh) Increment with respect to latest value.
f=func(rtflsp)
if(f.lt.0.) then Replace appropriate limit.

del=xl-rtflsp
xl=rtflsp
fl=f

else
del=xh-rtflsp
xh=rtflsp
fh=f

endif
dx=xh-xl
if(abs(del).lt.xacc.or.f.eq.0.)return Convergence.

enddo 11

pause ’rtflsp exceed maximum iterations’
END

FUNCTION rtsec(func,x1,x2,xacc)
INTEGER MAXIT
REAL rtsec,x1,x2,xacc,func
EXTERNAL func
PARAMETER (MAXIT=30) Maximum allowed number of iterations.

Using the secant method, find the root of a function func thought to lie between x1 and
x2. The root, returned as rtsec, is refined until its accuracy is ±xacc.

INTEGER j
REAL dx,f,fl,swap,xl
fl=func(x1)
f=func(x2)
if(abs(fl).lt.abs(f))then Pick the bound with the smaller function value as the most

recent guess.rtsec=x1
xl=x2
swap=fl
fl=f
f=swap

else
xl=x1
rtsec=x2

endif
do 11 j=1,MAXIT Secant loop.

dx=(xl-rtsec)*f/(f-fl) Increment with respect to latest value.
xl=rtsec
fl=f
rtsec=rtsec+dx

9.2 Secant Method, False Position Method, and Ridders’ Method 351

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

f=func(rtsec)
if(abs(dx).lt.xacc.or.f.eq.0.)return Convergence.

enddo 11

pause ’rtsec exceed maximum iterations’
END

Ridders’ Method

A powerful variant on false position is due to Ridders[1]. When a root is
bracketed betweenx1 andx2, Ridders’ method first evaluates the function at the
midpointx3 = (x1 + x2)/2. It then factors out that unique exponential function
which turns the residual function into a straight line. Specifically, it solves for a
factor eQ that gives

f(x1) − 2f(x3)e
Q + f(x2)e

2Q = 0 (9.2.2)

This is a quadratic equation ineQ, which can be solved to give

eQ =
f(x3) + sign[f(x2)]

√

f(x3)2 − f(x1)f(x2)

f(x2)
(9.2.3)

Now the false position method is applied, not to the valuesf(x1), f(x3), f(x2), but
to the valuesf(x1), f(x3)e

Q, f(x2)e
2Q, yielding a new guess for the root,x4. The

overall updating formula (incorporating the solution 9.2.3) is

x4 = x3 + (x3 − x1)
sign[f(x1) − f(x2)]f(x3)
√

f(x3)2 − f(x1)f(x2)
(9.2.4)

Equation (9.2.4) has some very nice properties. First,x4 is guaranteed to lie
in the interval(x1, x2), so the method never jumps out of its brackets. Second,
the convergence of successive applications of equation (9.2.4) isquadratic, that is,
m = 2 in equation (9.1.4). Since each application of (9.2.4) requires two function
evaluations, the actual order of the method is

√
2, not 2; but this is still quite

respectably superlinear: the number of significant digits in the answer approximately
doubleswith each two function evaluations. Third, taking out the function’s “bend”
via exponential (that is, ratio) factors, rather than via a polynomial technique (e.g.,
fitting a parabola), turns out to give an extraordinarily robust algorithm. In both
reliability and speed, Ridders’ method is generally competitive with the more highly
developed and better established (but more complicated) method of Van Wijngaarden,
Dekker, and Brent, which we next discuss.

FUNCTION zriddr(func,x1,x2,xacc)
INTEGER MAXIT
REAL zriddr,x1,x2,xacc,func,UNUSED
PARAMETER (MAXIT=60,UNUSED=-1.11E30)
EXTERNAL func

C USES func
Using Ridders’ method, return the root of a function func known to lie between x1 and
x2. The root, returned as zriddr, will be refined to an approximate accuracy xacc.

INTEGER j
REAL fh,fl,fm,fnew,s,xh,xl,xm,xnew

352 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fl=func(x1)
fh=func(x2)
if((fl.gt.0..and.fh.lt.0.).or.(fl.lt.0..and.fh.gt.0.))then

xl=x1
xh=x2
zriddr=UNUSED Any highly unlikely value, to simplify logic

below.do 11 j=1,MAXIT
xm=0.5*(xl+xh)
fm=func(xm) First of two function evaluations per it-

eration.s=sqrt(fm**2-fl*fh)
if(s.eq.0.)return
xnew=xm+(xm-xl)*(sign(1.,fl-fh)*fm/s) Updating formula.
if (abs(xnew-zriddr).le.xacc) return
zriddr=xnew
fnew=func(zriddr) Second of two function evaluations per

iteration.if (fnew.eq.0.) return
if(sign(fm,fnew).ne.fm) then Bookkeeping to keep the root bracketed

on next iteration.xl=xm
fl=fm
xh=zriddr
fh=fnew

else if(sign(fl,fnew).ne.fl) then
xh=zriddr
fh=fnew

else if(sign(fh,fnew).ne.fh) then
xl=zriddr
fl=fnew

else
pause ’never get here in zriddr’

endif
if(abs(xh-xl).le.xacc) return

enddo 11

pause ’zriddr exceed maximum iterations’
else if (fl.eq.0.) then

zriddr=x1
else if (fh.eq.0.) then

zriddr=x2
else

pause ’root must be bracketed in zriddr’
endif
return
END

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.3.

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press), Chapter 12.

Ridders, C.J.F. 1979, IEEE Transactions on Circuits and Systems, vol. CAS-26, pp. 979–980. [1]

9.3 Van Wijngaarden–Dekker–Brent Method

While secant and false position formally converge faster than bisection, one
finds in practice pathological functions for which bisection converges more rapidly.

352 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fl=func(x1)
fh=func(x2)
if((fl.gt.0..and.fh.lt.0.).or.(fl.lt.0..and.fh.gt.0.))then

xl=x1
xh=x2
zriddr=UNUSED Any highly unlikely value, to simplify logic

below.do 11 j=1,MAXIT
xm=0.5*(xl+xh)
fm=func(xm) First of two function evaluations per it-

eration.s=sqrt(fm**2-fl*fh)
if(s.eq.0.)return
xnew=xm+(xm-xl)*(sign(1.,fl-fh)*fm/s) Updating formula.
if (abs(xnew-zriddr).le.xacc) return
zriddr=xnew
fnew=func(zriddr) Second of two function evaluations per

iteration.if (fnew.eq.0.) return
if(sign(fm,fnew).ne.fm) then Bookkeeping to keep the root bracketed

on next iteration.xl=xm
fl=fm
xh=zriddr
fh=fnew

else if(sign(fl,fnew).ne.fl) then
xh=zriddr
fh=fnew

else if(sign(fh,fnew).ne.fh) then
xl=zriddr
fl=fnew

else
pause ’never get here in zriddr’

endif
if(abs(xh-xl).le.xacc) return

enddo 11

pause ’zriddr exceed maximum iterations’
else if (fl.eq.0.) then

zriddr=x1
else if (fh.eq.0.) then

zriddr=x2
else

pause ’root must be bracketed in zriddr’
endif
return
END

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.3.

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press), Chapter 12.

Ridders, C.J.F. 1979, IEEE Transactions on Circuits and Systems, vol. CAS-26, pp. 979–980. [1]

9.3 Van Wijngaarden–Dekker–Brent Method

While secant and false position formally converge faster than bisection, one
finds in practice pathological functions for which bisection converges more rapidly.

9.3 Van Wijngaarden–Dekker–Brent Method 353

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

These can be choppy, discontinuousfunctions, or even smooth functions if the second
derivative changes sharply near the root. Bisection always halves the interval, while
secant and false position can sometimes spend many cycles slowly pulling distant
bounds closer to a root. Ridders’ method does a much better job, but it too can
sometimes be fooled. Is there a way to combine superlinear convergence with the
sureness of bisection?

Yes. We can keep track of whether a supposedly superlinear method is actually
converging the way it is supposed to, and, if it is not, we can intersperse bisection
steps so as to guaranteeat least linear convergence. This kind of super-strategy
requires attention to bookkeeping detail, and also careful consideration of how
roundoff errors can affect the guiding strategy. Also, we must be able to determine
reliably when convergence has been achieved.

An excellent algorithm that pays close attention to these matters was developed
in the 1960s by van Wijngaarden, Dekker, and others at the Mathematical Center
in Amsterdam, and later improved by Brent[1]. For brevity, we refer to the final
form of the algorithm asBrent’s method. The method isguaranteed(by Brent)
to converge, so long as the function can be evaluated within the initial interval
known to contain a root.

Brent’s method combines root bracketing, bisection, andinverse quadratic
interpolationto converge from the neighborhood of a zero crossing. While the false
position and secant methods assume approximately linear behavior between two
prior root estimates, inverse quadratic interpolation uses three prior points to fit an
inverse quadratic function (x as a quadratic function ofy) whose value aty = 0 is
taken as the next estimate of the rootx. Of course one must have contingency plans
for what to do if the root falls outside of the brackets. Brent’s method takes care of
all that. If the three point pairs are[a, f(a)], [b, f(b)], [c, f(c)] then the interpolation
formula (cf. equation 3.1.1) is

x =
[y − f(a)][y − f(b)]c

[f(c) − f(a)][f(c) − f(b)]
+

[y − f(b)][y − f(c)]a

[f(a) − f(b)][f(a) − f(c)]

+
[y − f(c)][y − f(a)]b

[f(b) − f(c)][f(b) − f(a)]

(9.3.1)

Settingy to zero gives a result for the next root estimate, which can be written as

x = b + P/Q (9.3.2)

where, in terms of

R ≡ f(b)/f(c), S ≡ f(b)/f(a), T ≡ f(a)/f(c) (9.3.3)

we have

P = S [T (R− T)(c − b) − (1 − R)(b− a)] (9.3.4)

Q = (T − 1)(R− 1)(S − 1) (9.3.5)

In practiceb is the current best estimate of the root andP/Q ought to be a “small”
correction. Quadratic methods work well only when the function behaves smoothly;

354 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

they run the serious risk of giving very bad estimates of the next root or causing
machine failure by an inappropriate division by a very small number (Q ≈ 0).
Brent’s method guards against this problem by maintaining brackets on the root
and checking where the interpolation would land before carrying out the division.
When the correctionP/Q would not land within the bounds, or when the bounds
are not collapsing rapidly enough, the algorithm takes a bisection step. Thus,
Brent’s method combines the sureness of bisection with the speed of a higher-order
method when appropriate. We recommend it as the method of choice for general
one-dimensional root finding where a function’s values only (and not its derivative
or functional form) are available.

FUNCTION zbrent(func,x1,x2,tol)
INTEGER ITMAX
REAL zbrent,tol,x1,x2,func,EPS
EXTERNAL func
PARAMETER (ITMAX=100,EPS=3.e-8)

Using Brent’s method, find the root of a function func known to lie between x1 and x2.
The root, returned as zbrent, will be refined until its accuracy is tol.
Parameters: Maximum allowed number of iterations, and machine floating-point precision.

INTEGER iter
REAL a,b,c,d,e,fa,fb,fc,p,q,r,

* s,tol1,xm
a=x1
b=x2
fa=func(a)
fb=func(b)
if((fa.gt.0..and.fb.gt.0.).or.(fa.lt.0..and.fb.lt.0.))

* pause ’root must be bracketed for zbrent’
c=b
fc=fb
do 11 iter=1,ITMAX

if((fb.gt.0..and.fc.gt.0.).or.(fb.lt.0..and.fc.lt.0.))then
c=a Rename a, b, c and adjust bounding interval d.
fc=fa
d=b-a
e=d

endif
if(abs(fc).lt.abs(fb)) then

a=b
b=c
c=a
fa=fb
fb=fc
fc=fa

endif
tol1=2.*EPS*abs(b)+0.5*tol Convergence check.
xm=.5*(c-b)
if(abs(xm).le.tol1 .or. fb.eq.0.)then

zbrent=b
return

endif
if(abs(e).ge.tol1 .and. abs(fa).gt.abs(fb)) then

s=fb/fa Attempt inverse quadratic interpolation.
if(a.eq.c) then

p=2.*xm*s
q=1.-s

else
q=fa/fc
r=fb/fc
p=s*(2.*xm*q*(q-r)-(b-a)*(r-1.))
q=(q-1.)*(r-1.)*(s-1.)

9.4 Newton-Raphson Method Using Derivative 355

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
if(p.gt.0.) q=-q Check whether in bounds.
p=abs(p)
if(2.*p .lt. min(3.*xm*q-abs(tol1*q),abs(e*q))) then

e=d Accept interpolation.
d=p/q

else
d=xm Interpolation failed, use bisection.
e=d

endif
else Bounds decreasing too slowly, use bisection.

d=xm
e=d

endif
a=b Move last best guess to a.
fa=fb
if(abs(d) .gt. tol1) then Evaluate new trial root.

b=b+d
else

b=b+sign(tol1,xm)
endif
fb=func(b)

enddo 11

pause ’zbrent exceeding maximum iterations’
zbrent=b
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapters 3, 4. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §7.2.

9.4 Newton-Raphson Method Using Derivative

Perhaps the most celebrated of all one-dimensional root-findingroutines isNew-
ton’s method, also called theNewton-Raphson method. This method is distinguished
from the methods of previous sections by the fact that it requires the evaluation
of both the functionf(x), and the derivativef ′(x), at arbitrary pointsx. The
Newton-Raphson formula consists geometrically of extending the tangent line at a
current pointxi until it crosses zero, then setting the next guessxi+1 to the abscissa
of that zero-crossing (see Figure 9.4.1). Algebraically, the method derives from the
familiar Taylor series expansion of a function in the neighborhood of a point,

f(x + δ) ≈ f(x) + f ′(x)δ +
f ′′(x)

2
δ2 + (9.4.1)

For small enough values ofδ, and for well-behaved functions, the terms beyond
linear are unimportant, hencef(x + δ) = 0 implies

δ = −
f(x)

f ′(x)
. (9.4.2)

9.4 Newton-Raphson Method Using Derivative 355

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
if(p.gt.0.) q=-q Check whether in bounds.
p=abs(p)
if(2.*p .lt. min(3.*xm*q-abs(tol1*q),abs(e*q))) then

e=d Accept interpolation.
d=p/q

else
d=xm Interpolation failed, use bisection.
e=d

endif
else Bounds decreasing too slowly, use bisection.

d=xm
e=d

endif
a=b Move last best guess to a.
fa=fb
if(abs(d) .gt. tol1) then Evaluate new trial root.

b=b+d
else

b=b+sign(tol1,xm)
endif
fb=func(b)

enddo 11

pause ’zbrent exceeding maximum iterations’
zbrent=b
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapters 3, 4. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §7.2.

9.4 Newton-Raphson Method Using Derivative

Perhaps the most celebrated of all one-dimensional root-findingroutines isNew-
ton’s method, also called theNewton-Raphson method. This method is distinguished
from the methods of previous sections by the fact that it requires the evaluation
of both the functionf(x), and the derivativef ′(x), at arbitrary pointsx. The
Newton-Raphson formula consists geometrically of extending the tangent line at a
current pointxi until it crosses zero, then setting the next guessxi+1 to the abscissa
of that zero-crossing (see Figure 9.4.1). Algebraically, the method derives from the
familiar Taylor series expansion of a function in the neighborhood of a point,

f(x + δ) ≈ f(x) + f ′(x)δ +
f ′′(x)

2
δ2 + (9.4.1)

For small enough values ofδ, and for well-behaved functions, the terms beyond
linear are unimportant, hencef(x + δ) = 0 implies

δ = − f(x)

f ′(x)
. (9.4.2)

356 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Newton-Raphson is not restricted to one dimension. The method readily
generalizes to multiple dimensions, as we shall see in§9.6 and§9.7, below.

Far from a root, where the higher-order terms in the seriesare important, the
Newton-Raphson formula can give grossly inaccurate, meaningless corrections. For
instance, the initial guess for the root might be so far from the true root as to let
the search interval include a local maximum or minimum of the function. This can
be death to the method (see Figure 9.4.2). If an iteration places a trial guess near
such a local extremum, so that the first derivative nearly vanishes, then Newton-
Raphson sends its solution off to limbo, with vanishingly small hope of recovery.
Like most powerful tools, Newton-Raphson can be destructive used in inappropriate
circumstances. Figure 9.4.3 demonstrates another possible pathology.

Why do we call Newton-Raphson powerful? The answer lies in its rate of
convergence: Within a small distanceǫ of x the function and its derivative are
approximately:

f(x + ǫ) = f(x) + ǫf ′(x) + ǫ2
f ′′(x)

2
+ · · · ,

f ′(x + ǫ) = f ′(x) + ǫf ′′(x) + · · ·
(9.4.3)

By the Newton-Raphson formula,

xi+1 = xi −
f(xi)

f ′(xi)
, (9.4.4)

so that

ǫi+1 = ǫi −
f(xi)

f ′(xi)
. (9.4.5)

When a trial solutionxi differs from the true root byǫi, we can use (9.4.3) to express
f(xi), f

′(xi) in (9.4.4) in terms ofǫi and derivatives at the root itself. The result is
a recurrence relation for the deviations of the trial solutions

ǫi+1 = −ǫ2i
f ′′(x)

2f ′(x)
. (9.4.6)

Equation (9.4.6) says that Newton-Raphson convergesquadratically(cf. equa-
tion 9.2.3). Near a root, the number of significant digits approximatelydoubles
with each step. This very strong convergence property makes Newton-Raphson the
method of choice for any function whose derivative can be evaluated efficiently, and
whose derivative is continuous and nonzero in the neighborhood of a root.

Even where Newton-Raphson is rejected for the early stages of convergence
(because of itspoor global convergence properties), it is very common to “polish
up” a root with one or two steps of Newton-Raphson, which can multiply by two
or four its number of significant figures!

For an efficient realization of Newton-Raphson the user provides a routine that
evaluates bothf(x) and its first derivativef ′(x) at the pointx. The Newton-Raphson
formula can also be applied using a numerical difference to approximate the true
local derivative,

f ′(x) ≈ f(x + dx)− f(x)

dx
. (9.4.7)

9.4 Newton-Raphson Method Using Derivative 357

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

1

2

3

x

f (x)

Figure 9.4.1. Newton’s method extrapolates the local derivative to find the next estimate of the root. In
this example it works well and converges quadratically.

f (x)

x

1

2
3

Figure 9.4.2. Unfortunate case where Newton’s method encounters a local extremum and shoots off to
outer space. Here bracketing bounds, as inrtsafe, would save the day.

358 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

x

f (x)

2

1

Figure 9.4.3. Unfortunate case where Newton’s method enters a nonconvergent cycle. This behavior
is often encountered when the functionf is obtained, in whole or in part, by table interpolation. With
a better initial guess, the method would have succeeded.

This is not, however, a recommended procedure for the following reasons: (i) You
are doing two function evaluations per step, soat best the superlinear order of
convergence will be only

√
2. (ii) If you take dx too small you will be wiped

out by roundoff, while if you take it too large your order of convergence will be
only linear, no better than using theinitial evaluationf ′(x0) for all subsequent
steps. Therefore, Newton-Raphson with numerical derivatives is (in one dimension)
always dominated by the secant method of§9.2. (In multidimensions, where there
is a paucity of available methods, Newton-Raphson with numerical derivatives must
be taken more seriously. See§§9.6–9.7.)

The following subroutine calls a user supplied subroutinefuncd(x,fn,df)

which returns the function value asfn and the derivative asdf. We have included
input bounds on the root simply to be consistent with previous root-finding routines:
Newton does not adjust bounds, and works only on local information at the point
x. The bounds are used only to pick the midpoint as the first guess, and to reject
the solution if it wanders outside of the bounds.

FUNCTION rtnewt(funcd,x1,x2,xacc)
INTEGER JMAX
REAL rtnewt,x1,x2,xacc
EXTERNAL funcd
PARAMETER (JMAX=20) Set to maximum number of iterations.

Using the Newton-Raphson method, find the root of a function known to lie in the interval
[x1, x2]. The root rtnewtwill be refined until its accuracy is known within ±xacc. funcd

is a user-supplied subroutine that returns both the function value and the first derivative
of the function at the point x.

INTEGER j
REAL df,dx,f

9.4 Newton-Raphson Method Using Derivative 359

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

rtnewt=.5*(x1+x2) Initial guess.
do 11 j=1,JMAX

call funcd(rtnewt,f,df)
dx=f/df
rtnewt=rtnewt-dx
if((x1-rtnewt)*(rtnewt-x2).lt.0.)

* pause ’rtnewt jumped out of brackets’
if(abs(dx).lt.xacc) return Convergence.

enddo 11

pause ’rtnewt exceeded maximum iterations’
END

While Newton-Raphson’s global convergence properties are poor, it is fairly
easy to design a fail-safe routine that utilizes a combination of bisection and Newton-
Raphson. The hybrid algorithm takes a bisection step whenever Newton-Raphson
would take the solution out of bounds, or whenever Newton-Raphson is not reducing
the size of the brackets rapidly enough.

FUNCTION rtsafe(funcd,x1,x2,xacc)
INTEGER MAXIT
REAL rtsafe,x1,x2,xacc
EXTERNAL funcd
PARAMETER (MAXIT=100) Maximum allowed number of iterations.

Using a combination of Newton-Raphson and bisection, find the root of a function bracketed
between x1 and x2. The root, returned as the function value rtsafe, will be refined until
its accuracy is known within ±xacc. funcd is a user-supplied subroutine which returns
both the function value and the first derivative of the function.

INTEGER j
REAL df,dx,dxold,f,fh,fl,temp,xh,xl
call funcd(x1,fl,df)
call funcd(x2,fh,df)
if((fl.gt.0..and.fh.gt.0.).or.(fl.lt.0..and.fh.lt.0.))

* pause ’root must be bracketed in rtsafe’
if(fl.eq.0.)then

rtsafe=x1
return

else if(fh.eq.0.)then
rtsafe=x2
return

else if(fl.lt.0.)then Orient the search so that f(xl) < 0.
xl=x1
xh=x2

else
xh=x1
xl=x2

endif
rtsafe=.5*(x1+x2) Initialize the guess for root,
dxold=abs(x2-x1) the “stepsize before last,”
dx=dxold and the last step.
call funcd(rtsafe,f,df)
do 11 j=1,MAXIT Loop over allowed iterations.

if(((rtsafe-xh)*df-f)*((rtsafe-xl)*df-f).gt.0. Bisect if Newton out of range,
* .or. abs(2.*f).gt.abs(dxold*df)) then or not decreasing fast enough.

dxold=dx
dx=0.5*(xh-xl)
rtsafe=xl+dx
if(xl.eq.rtsafe)return Change in root is negligible.

else Newton step acceptable. Take it.
dxold=dx
dx=f/df
temp=rtsafe

360 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

rtsafe=rtsafe-dx
if(temp.eq.rtsafe)return

endif
if(abs(dx).lt.xacc) return Convergence criterion.
call funcd(rtsafe,f,df) The one new function evaluation per iteration.
if(f.lt.0.) then Maintain the bracket on the root.

xl=rtsafe
else

xh=rtsafe
endif

enddo 11

pause ’rtsafe exceeding maximum iterations’
return
END

For many functions the derivativef ′(x) often converges to machineaccuracy
before the functionf(x) itself does. When that is the case one need not subsequently
updatef ′(x). This shortcut is recommended only when you confidently understand
the generic behavior of your function, but it speeds computations when the derivative
calculation is laborious. (Formally this makes the convergence only linear, but if the
derivative isn’t changing anyway, you can do no better.)

Newton-Raphson and Fractals

An interesting sidelight to our repeated warnings about Newton-Raphson’s
unpredictable global convergence properties — its very rapid local convergence
notwithstanding — is to investigate, for some particular equation, the set of starting
values from which the method does, or doesn’t converge to a root.

Consider the simple equation

z3 − 1 = 0 (9.4.8)

whose single real root isz = 1, but which also has complex roots at the other two
cube roots of unity,exp(±2πi/3). Newton’s method gives the iteration

zj+1 = zj −
z3
j − 1

3z2
j

(9.4.9)

Up to now, we have applied an iteration like equation (9.4.9) only for real
starting valuesz0, but in fact all of the equations in this section also apply in the
complex plane. We can therefore map out the complex plane into regions from which
a starting valuez0, iterated in equation (9.4.9), will, or won’t, converge toz = 1.
Naively, we might expect to find a “basin of convergence” somehow surrounding
the rootz = 1. We surely do not expect the basin of convergence to fill the whole
plane, because the plane must also contain regions that converge toeach of the two
complex roots. In fact, by symmetry, the three regions must have identicalshapes.
Perhaps they will be three symmetric120◦ wedges, with one root centered in each?

Now take a look at Figure 9.4.4, which shows the result of a numerical
exploration. The basin of convergence does indeed cover1/3 the area of the
complex plane, but its boundary is highly irregular — in fact,fractal. (A fractal, so
called, has self-similar structure that repeats on all scales of magnification.) How

9.4 Newton-Raphson Method Using Derivative 361

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Figure 9.4.4. The complexz plane with real and imaginary components in the range(−2,2). The
black region is the set of points from which Newton’s method converges to the rootz = 1 of the equation
z3 − 1 = 0. Its shape is fractal.

does this fractal emerge from something as simple as Newton’s method, and an
equation as simple as (9.4.8)? The answer is already implicit in Figure 9.4.2, which
showed how, on the real line, a local extremum causes Newton’s method to shoot
off to infinity. Suppose one isslightly removed from such a point. Then one might
be shot off not to infinity, but — by luck — right into the basin of convergence
of the desired root. But that means that in the neighborhood of an extremum there
must be a tiny, perhaps distorted, copy of the basin of convergence — a kind of
“one-bounce away” copy. Similar logic shows that there can be “two-bounce”
copies, “three-bounce” copies, and so on. A fractal thus emerges.

Notice that, for equation (9.4.8), almost the whole real axis is in the domain of
convergence for the rootz = 1. We say “almost” because of the peculiar discrete
points on the negative real axis whose convergence is indeterminate (see figure).
What happens if you start Newton’s method from one of these points? (Try it.)

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.4.

Ortega, J., and Rheinboldt, W. 1970, Iterative Solution of Nonlinear Equations in Several Vari-
ables (New York: Academic Press).

Mandelbrot, B.B. 1983, The Fractal Geometry of Nature (San Francisco: W.H. Freeman).

362 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Peitgen, H.-O., and Saupe, D. (eds.) 1988, The Science of Fractal Images (New York: Springer-
Verlag).

9.5 Roots of Polynomials

Here we present a few methods for finding roots of polynomials. These will
serve for most practical problems involving polynomials of low-to-moderate degree
or for well-conditioned polynomials of higher degree. Not as well appreciated as it
ought to be is the fact that some polynomials are exceedinglyill-conditioned. The
tiniest changes in a polynomial’s coefficients can, in the worst case, send its roots
sprawling all over the complex plane. (An infamous example due to Wilkinson is
detailed by Acton[1].)

Recall that a polynomial of degreen will have n roots. The roots can be real
or complex, and they might not be distinct. If the coefficients of the polynomial are
real, then complex roots will occur in pairs that are conjugate, i.e., ifx1 = a + bi
is a root thenx2 = a − bi will also be a root. When the coefficients are complex,
the complex roots need not be related.

Multiple roots, or closely spaced roots, produce the most difficulty for numerical
algorithms (see Figure 9.5.1). For example,P (x) = (x− a)2 has a double real root
atx = a. However, we cannot bracket the root by the usual technique of identifying
neighborhoods where the function changes sign, nor will slope-following methods
such as Newton-Raphson work well, because both the function and its derivative
vanish at a multiple root. Newton-Raphsonmay work, but slowly, since large
roundoff errors can occur. When a root is known in advance to be multiple, then
special methods of attack are readily devised. Problems arise when (as is generally
the case) we do not know in advance what pathology a root will display.

Deflation of Polynomials

When seeking several or all roots of a polynomial, the total effort can be
significantly reduced by the use ofdeflation. As each rootr is found, the polynomial
is factored into a product involving the root and a reduced polynomial of degree
one less than the original, i.e.,P (x) = (x − r)Q(x). Since the roots ofQ are
exactly the remaining roots ofP , the effort of finding additional roots decreases,
because we work with polynomials of lower and lower degree as we find successive
roots. Even more important, with deflation we can avoid the blunder of having our
iterative method converge twice to the same (nonmultiple) root instead of separately
to two different roots.

Deflation, which amounts to synthetic division, is a simple operation that acts
on the array of polynomial coefficients. The concise code for synthetic division by a
monomial factor was given in§5.3 above. You can deflate complex roots either by
converting that code to complex data type, or else — in the case of a polynomial with
real coefficients but possibly complex roots — by deflating by a quadratic factor,

[x− (a + ib)] [x− (a− ib)] = x2 − 2ax + (a2 + b2) (9.5.1)

362 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Peitgen, H.-O., and Saupe, D. (eds.) 1988, The Science of Fractal Images (New York: Springer-
Verlag).

9.5 Roots of Polynomials

Here we present a few methods for finding roots of polynomials. These will
serve for most practical problems involving polynomials of low-to-moderate degree
or for well-conditioned polynomials of higher degree. Not as well appreciated as it
ought to be is the fact that some polynomials are exceedinglyill-conditioned. The
tiniest changes in a polynomial’s coefficients can, in the worst case, send its roots
sprawling all over the complex plane. (An infamous example due to Wilkinson is
detailed by Acton[1].)

Recall that a polynomial of degreen will have n roots. The roots can be real
or complex, and they might not be distinct. If the coefficients of the polynomial are
real, then complex roots will occur in pairs that are conjugate, i.e., ifx1 = a + bi
is a root thenx2 = a − bi will also be a root. When the coefficients are complex,
the complex roots need not be related.

Multiple roots, or closely spaced roots, produce the most difficulty for numerical
algorithms (see Figure 9.5.1). For example,P (x) = (x− a)2 has a double real root
atx = a. However, we cannot bracket the root by the usual technique of identifying
neighborhoods where the function changes sign, nor will slope-following methods
such as Newton-Raphson work well, because both the function and its derivative
vanish at a multiple root. Newton-Raphsonmay work, but slowly, since large
roundoff errors can occur. When a root is known in advance to be multiple, then
special methods of attack are readily devised. Problems arise when (as is generally
the case) we do not know in advance what pathology a root will display.

Deflation of Polynomials

When seeking several or all roots of a polynomial, the total effort can be
significantly reduced by the use ofdeflation. As each rootr is found, the polynomial
is factored into a product involving the root and a reduced polynomial of degree
one less than the original, i.e.,P (x) = (x − r)Q(x). Since the roots ofQ are
exactly the remaining roots ofP , the effort of finding additional roots decreases,
because we work with polynomials of lower and lower degree as we find successive
roots. Even more important, with deflation we can avoid the blunder of having our
iterative method converge twice to the same (nonmultiple) root instead of separately
to two different roots.

Deflation, which amounts to synthetic division, is a simple operation that acts
on the array of polynomial coefficients. The concise code for synthetic division by a
monomial factor was given in§5.3 above. You can deflate complex roots either by
converting that code to complex data type, or else — in the case of a polynomial with
real coefficients but possibly complex roots — by deflating by a quadratic factor,

[x− (a + ib)] [x− (a− ib)] = x2 − 2ax + (a2 + b2) (9.5.1)

9.5 Roots of Polynomials 363

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(a)

x x

(b)

f (x) f (x)

Figure 9.5.1. (a) Linear, quadratic, and cubic behavior at the roots of polynomials. Only under high
magnification (b) does it become apparent that the cubic has one, not three, roots, and that the quadratic
has two roots rather than none.

The routinepoldiv in §5.3 can be used to divide the polynomial by this factor.
Deflation must, however, be utilized with care. Because each new root isknown

with only finite accuracy, errors creep into the determination of the coefficients of
the successively deflated polynomial. Consequently, the roots can become more and
more inaccurate. It matters a lot whether the inaccuracy creeps in stably (plus or
minus a few multiples of the machine precision ateach stage) or unstably (erosion of
successive significant figures until the results become meaningless). Which behavior
occurs depends on just how the root is divided out.Forward deflation, where the
new polynomial coefficients are computed in the order from the highest power ofx
down to the constant term, was illustrated in§5.3. This turns out to be stable if the
root of smallest absolute value is divided out at each stage. Alternatively, one can do
backward deflation, where new coefficients are computed in order from the constant
term up to the coefficient of the highest power ofx. This is stable if the remaining
root of largestabsolute value is divided out at each stage.

A polynomial whose coefficients are interchanged “end-to-end,” so that the
constant becomes the highest coefficient, etc., has its roots mapped into their
reciprocals. (Proof: Divide the whole polynomial by its highest powerxn and
rewrite it as a polynomial in1/x.) The algorithm for backward deflation is therefore
virtually identical to that of forward deflation, except that the original coefficients are
taken in reverse order and the reciprocal of the deflating root is used. Since we will
use forward deflation below, we leave to you the exercise of writing a concise coding
for backward deflation (as in§5.3). For more on the stability of deflation, consult[2].

To minimize the impact of increasing errors (even stable ones) when using
deflation, it is advisable to treat roots of the successively deflated polynomials as
only tentativeroots of the originalpolynomial. One thenpolishesthese tentative roots
by taking them as initial guesses that are to be re-solved for, using thenondeflated
original polynomialP . Again you must beware lest two deflated roots are inaccurate
enough that, under polishing, they both converge to the same undeflated root; in that
case you gain a spurious root-multiplicity and lose a distinct root. This is detectable,

364 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

since you can compare each polished root for equality to previous ones from distinct
tentative roots. When it happens, you are advised to deflate the polynomial just
once (and for this root only), then again polish the tentative root, or to use Maehly’s
procedure (see equation 9.5.29 below).

Below we say more about techniques for polishing real and complex-conjugate
tentative roots. First, let’s get back to overall strategy.

There are two schools of thought about how to proceed when faced with a
polynomial of real coefficients. One school says to go after the easiest quarry, the
real, distinct roots, by the same kinds of methods that we have discussed in previous
sections for general functions, i.e., trial-and-error bracketing followed by a safe
Newton-Raphson as inrtsafe. Sometimes you areonly interested in real roots, in
which case the strategy is complete. Otherwise, you then go after quadratic factors
of the form (9.5.1) by any of a variety of methods. One such is Bairstow’s method,
which we will discuss below in the context of root polishing. Another is Muller’s
method, which we here briefly discuss.

Muller’s Method

Muller’s methodgeneralizes the secant method, but uses quadratic interpolation
among three points instead of linear interpolation between two. Solving for the
zeros of the quadratic allows the method to find complex pairs of roots. Giventhree
previous guesses for the rootxi−2, xi−1, xi, and the values of the polynomialP (x)
at those points, the next approximationxi+1 is produced by the following formulas,

q ≡ xi − xi−1

xi−1 − xi−2

A ≡ qP (xi) − q(1 + q)P (xi−1) + q2P (xi−2)

B ≡ (2q + 1)P (xi) − (1 + q)2P (xi−1) + q2P (xi−2)

C ≡ (1 + q)P (xi)

(9.5.2)

followed by

xi+1 = xi − (xi − xi−1)

[

2C

B ±
√
B2 − 4AC

]

(9.5.3)

where the sign in the denominator is chosen to make its absolute value or modulus
as large as possible. You can start the iterations with any three values ofx that you
like, e.g., three equally spaced values on the real axis. Note that you must allow
for the possibility of a complex denominator, and subsequent complex arithmetic,
in implementing the method.

Muller’s method is sometimes also used for finding complex zeros of analytic
functions (not just polynomials) in the complex plane, for example in the IMSL
routine ZANLY [3].

9.5 Roots of Polynomials 365

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Laguerre’s Method

The second school regarding overall strategy happens to be the one to which
we belong. That school advises you to use one of a very small number of methods
that will converge (though with greater or lesser efficiency) to all types of roots:
real, complex, single, or multiple. Use such a method to get tentative values for all
n roots of yournth degree polynomial. Then go back and polish them as you desire.

Laguerre’s methodis by far the most straightforward of these general, complex
methods. It does require complex arithmetic, even while converging to real roots;
however, for polynomials with all real roots, it is guaranteed to converge to a
root from any starting point. For polynomials with some complex roots, little is
theoretically proved about the method’s convergence. Much empirical experience,
however, suggests that nonconvergence is extremely unusual, and, further, can almost
always be fixed by a simple scheme to break a nonconverging limit cycle. (This is
implemented in our routine, below.) An example of a polynomial that requires this
cycle-breaking scheme is one of high degree (>∼ 20), with all its roots just outside of
the complex unit circle, approximately equally spaced around it. When the method
converges on a simple complex zero, it is known that its convergence is third order.

In some instances the complex arithmetic in the Laguerre method is no
disadvantage, since the polynomial itself may have complex coefficients.

To motivate (although not rigorously derive) the Laguerre formulas we can note
the following relations between the polynomial and its roots and derivatives

Pn(x) = (x− x1)(x− x2) . . . (x − xn) (9.5.4)

ln |Pn(x)| = ln |x− x1| + ln |x− x2| + . . .+ ln |x− xn| (9.5.5)

d ln |Pn(x)|
dx

= +
1

x− x1

+
1

x− x2

+ . . .+
1

x− xn

=
P ′

n

Pn

≡ G (9.5.6)

−d2 ln |Pn(x)|
dx2

= +
1

(x− x1)2
+

1

(x− x2)2
+ . . .+

1

(x− xn)2

=

[

P ′

n

Pn

]2

− P ′′

n

Pn

≡ H (9.5.7)

Starting from these relations, the Laguerre formulas make what Acton[1] nicely calls
“a rather drastic set of assumptions”: The rootx1 that we seek is assumed to be
located some distancea from our current guessx, while all other rootsare assumed
to be located at a distanceb

x− x1 = a ; x− xi = b i = 2, 3, . . . , n (9.5.8)

Then we can express (9.5.6), (9.5.7) as

1

a
+

n− 1

b
= G (9.5.9)

1

a2
+

n− 1

b2
= H (9.5.10)

which yields as the solution fora

a =
n

G±
√

(n− 1)(nH −G2)
(9.5.11)

366 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

where the sign should be taken to yield the largest magnitude for the denominator.
Since the factor inside the square root can be negative,a can be complex. (A more
rigorous justification of equation 9.5.11 is in[4].)

The method operates iteratively: For a trial valuex, a is calculated by equation
(9.5.11). Thenx − a becomes the next trial value. This continues untila is
sufficiently small.

The following routine implements the Laguerre method to find one root of a
given polynomial of degreem, whose coefficients can be complex. As usual, the first
coefficienta(1) is the constant term, whilea(m+1) is the coefficient of the highest
power ofx. The routine implements a simplified version of an elegant stopping
criterion due to Adams[5], which neatly balances the desire to achieve full machine
accuracy, on the one hand, with the danger of iterating forever in the presence of
roundoff error, on the other.

SUBROUTINE laguer(a,m,x,its)
INTEGER m,its,MAXIT,MR,MT
REAL EPSS
COMPLEX a(m+1),x
PARAMETER (EPSS=2.e-7,MR=8,MT=10,MAXIT=MT*MR)

Given the degree m and the complex coefficients a(1:m+1) of the polynomial
∑m+1

i=1
a(i)xi−1,

and given a complex value x, this routine improves x by Laguerre’s method until it con-
verges, within the achievable roundoff limit, to a root of the given polynomial. The number
of iterations taken is returned as its.
Parameters: EPSS is the estimated fractional roundoff error. We try to break (rare) limit
cycles with MR different fractional values, once every MT steps, for MAXIT total allowed
iterations.

INTEGER iter,j
REAL abx,abp,abm,err,frac(MR)
COMPLEX dx,x1,b,d,f,g,h,sq,gp,gm,g2
SAVE frac
DATA frac /.5,.25,.75,.13,.38,.62,.88,1./ Fractions used to break a limit cycle.
do 12 iter=1,MAXIT Loop over iterations up to allowed maximum.

its=iter
b=a(m+1)
err=abs(b)
d=cmplx(0.,0.)
f=cmplx(0.,0.)
abx=abs(x)
do 11 j=m,1,-1 Efficient computation of the polynomial and its first

two derivatives.f=x*f+d
d=x*d+b
b=x*b+a(j)
err=abs(b)+abx*err

enddo 11

err=EPSS*err Estimate of roundoff error in evaluating polynomial.
if(abs(b).le.err) then We are on the root.

return
else The generic case: use Laguerre’s formula.

g=d/b
g2=g*g
h=g2-2.*f/b
sq=sqrt((m-1)*(m*h-g2))
gp=g+sq
gm=g-sq
abp=abs(gp)
abm=abs(gm)
if(abp.lt.abm) gp=gm
if (max(abp,abm).gt.0.) then

dx=m/gp

9.5 Roots of Polynomials 367

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

else
dx=exp(cmplx(log(1.+abx),float(iter)))

endif
endif
x1=x-dx
if(x.eq.x1)return Converged.
if (mod(iter,MT).ne.0) then

x=x1
else Every so often we take a fractional step, to break any

limit cycle (itself a rare occurrence).x=x-dx*frac(iter/MT)
endif

enddo 12

pause ’too many iterations in laguer’ Very unusual — can occur only for complex roots.
return Try a different starting guess for the root.
END

Here is a driver routine that callslaguer in succession for each root, performs
the deflation, optionally polishes the roots by the same Laguerre method — if you
are not going to polish in some other way — and finally sorts the roots by their real
parts. (We will use this routine in Chapter 13.)

SUBROUTINE zroots(a,m,roots,polish)
INTEGER m,MAXM
REAL EPS
COMPLEX a(m+1),roots(m)
LOGICAL polish
PARAMETER (EPS=1.e-6,MAXM=101) A small number and maximum anticipated value of m+1.

C USES laguer

Given the degree m and the complex coefficients a(1:m+1) of the polynomial
∑m+1

i=1 a(i)xi−1,
this routine successively calls laguer and finds all m complex roots. The logical variable
polish should be input as .true. if polishing (also by Laguerre’s method) is desired,
.false. if the roots will be subsequently polished by other means.

INTEGER i,j,jj,its
COMPLEX ad(MAXM),x,b,c
do 11 j=1,m+1 Copy of coefficients for successive deflation.

ad(j)=a(j)
enddo 11

do 13 j=m,1,-1 Loop over each root to be found.
x=cmplx(0.,0.) Start at zero to favor convergence to smallest remaining root.
call laguer(ad,j,x,its) Find the root.
if(abs(aimag(x)).le.2.*EPS**2*abs(real(x))) x=cmplx(real(x),0.)
roots(j)=x
b=ad(j+1) Forward deflation.
do 12 jj=j,1,-1

c=ad(jj)
ad(jj)=b
b=x*b+c

enddo 12

enddo 13

if (polish) then
do 14 j=1,m Polish the roots using the undeflated coefficients.

call laguer(a,m,roots(j),its)
enddo 14

endif
do 16 j=2,m Sort roots by their real parts by straight insertion.

x=roots(j)
do 15 i=j-1,1,-1

if(real(roots(i)).le.real(x))goto 10
roots(i+1)=roots(i)

enddo 15

i=0

368 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

10 roots(i+1)=x
enddo 16

return
END

Eigenvalue Methods

The eigenvalues of a matrixA are the roots of the “characteristic polynomial”
P (x) = det[A − xI]. However, as we will see in Chapter 11, root-finding is not
generally an efficient way to find eigenvalues. Turning matters around, we can
use the more efficient eigenvalue methods that are discussed in Chapter 11 to find
the roots of arbitrary polynomials. You can easily verify (see, e.g.,[6]) that the
characteristic polynomial of the specialm ×m companion matrix

A =

− am
am+1

−am−1

am+1
· · · − a2

am+1
− a1
am+1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
0 0 · · · 1 0

(9.5.12)

is equivalent to the general polynomial

P (x) =
m+1
∑

i=1

aix
i−1 (9.5.13)

If the coefficientsai are real, rather than complex, then the eigenvalues ofA can be
found using the routinesbalanc andhqr in §§11.5–11.6 (see discussion there). This
method, implemented in the routinezrhqr following, is typically about a factor 2
slower thanzroots (above). However, for some classes of polynomials, it is a more
robust technique, largely because of the fairly sophisticated convergence methods
embodied inhqr. If your polynomial has real coefficients, and you are having
trouble withzroots, thenzrhqr is a recommended alternative.

SUBROUTINE zrhqr(a,m,rtr,rti)
INTEGER m,MAXM
REAL a(m+1),rtr(m),rti(m)
PARAMETER (MAXM=50)

C USES balanc,hqr

Find all the roots of a polynomial with real coefficients,
∑m+1

i=1 a(i)xi−1, given the degree
m and the coefficients a(1:m+1). The method is to construct an upper Hessenberg matrix
whose eigenvalues are the desired roots, and then use the routines balanc and hqr. The
real and imaginary parts of the roots are returned in rtr(1:m) and rti(1:m), respectively.

INTEGER j,k
REAL hess(MAXM,MAXM),xr,xi
if (m.gt.MAXM.or.a(m+1).eq.0.) pause ’bad args in zrhqr’
do 12 k=1,m Construct the matrix.

hess(1,k)=-a(m+1-k)/a(m+1)
do 11 j=2,m

hess(j,k)=0.
enddo 11

if (k.ne.m) hess(k+1,k)=1.

9.5 Roots of Polynomials 369

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 12

call balanc(hess,m,MAXM) Find its eigenvalues.
call hqr(hess,m,MAXM,rtr,rti)
do 14 j=2,m Sort roots by their real parts by straight insertion.

xr=rtr(j)
xi=rti(j)
do 13 k=j-1,1,-1

if(rtr(k).le.xr)goto 1
rtr(k+1)=rtr(k)
rti(k+1)=rti(k)

enddo 13

k=0
1 rtr(k+1)=xr

rti(k+1)=xi
enddo 14

return
END

Other Sure-Fire Techniques

The Jenkins-Traub methodhas become practically a standard in black-box
polynomial root-finders, e.g., in the IMSL library[3]. The method is too complicated
to discuss here, but is detailed, with references to the primary literature, in[4].

TheLehmer-Schur algorithmis one of a class of methods that isolate roots in
the complex plane by generalizing the notion of one-dimensional bracketing. It is
possible to determine efficiently whether there are any polynomial roots within a
circle of given center and radius. From then on it is a matter of bookkeeping to
hunt down all the roots by a series of decisions regarding where to place new trial
circles. Consult[1] for an introduction.

Techniques for Root-Polishing

Newton-Raphson works very well for real roots once the neighborhood of
a root has been identified. The polynomial and its derivative can be efficiently
simultaneously evaluated as in§5.3. For a polynomial of degreen-1with coefficients
c(1)...c(n), the following segment of code embodies one cycle of Newton-
Raphson:

p=c(n)*x+c(n-1)
p1=c(n)
do 11 i=n-2,1,-1

p1=p+p1*x
p=c(i)+p*x

enddo 11

if (p1.eq.0.) pause ’derivative should not vanish’
x=x-p/p1

Once all real roots of a polynomial have been polished, one must polish the
complex roots, either directly, or by looking for quadratic factors.

Direct polishing by Newton-Raphson is straightforward for complex roots if the
above code is converted to complex data types. With real polynomial coefficients,
note that your starting guess (tentative root)mustbe off the real axis, otherwise
you will never get off that axis — and may get shot off to infinity by a minimum
or maximum of the polynomial.

370 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For real polynomials, the alternative means of polishing complex roots (or, for that
matter, double real roots) isBairstow’s method, which seeks quadratic factors. The advantage
of going after quadratic factors is that it avoids all complex arithmetic. Bairstow’s method
seeks a quadratic factor that embodies the two rootsx = a ± ib, namely

x
2
− 2ax + (a2 + b

2) ≡ x
2 + Bx + C (9.5.14)

In general if we divide a polynomial by a quadratic factor, there will be a linear remainder

P (x) = (x2 + Bx + C)Q(x) + Rx + S. (9.5.15)

Given B andC, R andS can be readily found, by polynomial division (§5.3). We can
considerR andS to be adjustable functions ofB andC, and they will be zero if the
quadratic factor is zero.

In the neighborhood of a root a first-order Taylor series expansion approximates the
variation ofR,S with respect to small changes inB,C

R(B + δB,C + δC) ≈ R(B,C) +
∂R

∂B
δB +

∂R

∂C
δC (9.5.16)

S(B + δB,C + δC) ≈ S(B, C) +
∂S

∂B
δB +

∂S

∂C
δC (9.5.17)

To evaluate the partial derivatives, consider the derivative of (9.5.15) withrespect toC. Since
P (x) is a fixed polynomial, it is independent ofC, hence

0 = (x2 + Bx + C)
∂Q

∂C
+ Q(x) +

∂R

∂C
x +

∂S

∂C
(9.5.18)

which can be rewritten as

−Q(x) = (x2 + Bx + C)
∂Q

∂C
+

∂R

∂C
x +

∂S

∂C
(9.5.19)

Similarly,P (x) is independent ofB, so differentiating (9.5.15) with respect toB gives

−xQ(x) = (x2 + Bx + C)
∂Q

∂B
+

∂R

∂B
x +

∂S

∂B
(9.5.20)

Now note that equation (9.5.19) matches equation (9.5.15) in form. Thus if we perform a
secondsynthetic division ofP (x), i.e., a division ofQ(x), yielding a remainderR1x+S1, then

∂R

∂C
= −R1

∂S

∂C
= −S1 (9.5.21)

To get the remaining partial derivatives, evaluate equation (9.5.20) at the two roots of the
quadratic,x+ and x−. Since

Q(x±) = R1x± + S1 (9.5.22)

we get

∂R

∂B
x+ +

∂S

∂B
= −x+(R1x+ + S1) (9.5.23)

∂R

∂B
x− +

∂S

∂B
= −x−(R1x− + S1) (9.5.24)

Solve these two equations for the partial derivatives, using

x+ + x− = −B x+x− = C (9.5.25)

and find
∂R

∂B
= BR1 − S1

∂S

∂B
= CR1 (9.5.26)

Bairstow’s method now consists of using Newton-Raphson in two dimensions (which is
actually the subject of thenextsection) to find a simultaneous zero ofR andS. Synthetic
division is used twice per cycle to evaluateR,S and their partial derivatives with respect to
B,C. Like one-dimensional Newton-Raphson, the method works well in the vicinity of a root
pair (real or complex), but it can fail miserably when started at a random point. We therefore
recommend it only in the context of polishing tentative complex roots.

9.5 Roots of Polynomials 371

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE qroot(p,n,b,c,eps)
INTEGER n,NMAX,ITMAX
REAL b,c,eps,p(n),TINY
PARAMETER (NMAX=20,ITMAX=20,TINY=1.0e-6)

C USES poldiv
Given coefficients p(1:n) of a polynomial of degree n-1, and trial values for the coefficients
of a quadratic factor x*x+b*x+c, improve the solution until the coefficients b,c change
by less than eps. The routine poldiv §5.3 is used.
Parameters: At most NMAX coefficients, ITMAX iterations.

INTEGER iter
REAL delb,delc,div,r,rb,rc,s,sb,sc,d(3),q(NMAX),qq(NMAX),rem(NMAX)
d(3)=1.
do 11 iter=1,ITMAX

d(2)=b
d(1)=c
call poldiv(p,n,d,3,q,rem)
s=rem(1) First division r,s.
r=rem(2)
call poldiv(q,n-1,d,3,qq,rem)
sc=-rem(1) Second division partial r,s with respect to c.
rc=-rem(2)
sb=-c*rc
rb=sc-b*rc
div=1./(sb*rc-sc*rb) Solve 2x2 equation.
delb=(r*sc-s*rc)*div
delc=(-r*sb+s*rb)*div
b=b+delb
c=c+delc
if((abs(delb).le.eps*abs(b).or.abs(b).lt.TINY)

* .and.(abs(delc).le.eps*abs(c)
* .or.abs(c).lt.TINY)) return Coefficients converged.

enddo 11

pause ’too many iterations in qroot’
END

We have already remarked on the annoyance of having two tentative roots
collapse to one value under polishing. You are left not knowing whether your
polishing procedure has lost a root, or whether thereis actually a double root,
which was split only by roundoff errors in your previous deflation. One solution
is deflate-and-repolish; but deflation is what we are trying to avoid at the polishing
stage. An alternative isMaehly’s procedure. Maehly pointed out that the derivative
of the reduced polynomial

Pj(x) ≡ P (x)

(x − x1) · · · (x− xj)
(9.5.27)

can be written as

P ′

j(x) =
P ′(x)

(x− x1) · · · (x− xj)
− P (x)

(x− x1) · · · (x− xj)

j
∑

i=1

(x− xi)
−1 (9.5.28)

Hence one step of Newton-Raphson, taking a guessxk into a new guessxk+1,
can be written as

xk+1 = xk −
P (xk)

P ′(xk) − P (xk)
∑j

i=1
(xk − xi)−1

(9.5.29)

372 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

This equation, if used withi ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one’s true root. It is an example
of so-calledzero suppressionas an alternative to true deflation.

Muller’s method, which was described above, can also be useful at the
polishing stage.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 7. [1]

Peters G., and Wilkinson, J.H. 1971, Journal of the Institute of Mathematics and its Applications,
vol. 8, pp. 16–35. [2]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [3]

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.9–8.13. [4]

Adams, D.A. 1967, Communications of the ACM, vol. 10, pp. 655–658. [5]

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §4.4.3. [6]

Henrici, P. 1974, Applied and Computational Complex Analysis, vol. 1 (New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§5.5–5.9.

9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

We make an extreme, but wholly defensible, statement: There arenogood, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermore,
it is not hard to see why (very likely) therenever will beany good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously

f(x, y) = 0

g(x, y) = 0
(9.6.1)

The functionsf and g are two arbitrary functions, each of which has zero
contour lines that divide the(x, y) plane into regions where their respective function
is positive or negative. These zero contour boundaries are of interest to us. The
solutions that we seek are those points (if any) that are common to the zero contours
of f andg (see Figure 9.6.1). Unfortunately, the functionsf andg have, in general,
no relation to each other at all! There is nothing special about a common point from
eitherf ’s point of view, or fromg’s. In order to find all common points, which are
the solutions of our nonlinear equations, we will (in general) have to do neither more
nor less than map out the full zero contours of both functions. Note further that
the zero contours will (in general) consist of an unknown number of disjoint closed
curves. How can we ever hope to know when we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common toN unrelated zero-contour hypersurfaces, each of dimensionN − 1.

372 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

This equation, if used withi ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one’s true root. It is an example
of so-calledzero suppressionas an alternative to true deflation.

Muller’s method, which was described above, can also be useful at the
polishing stage.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 7. [1]

Peters G., and Wilkinson, J.H. 1971, Journal of the Institute of Mathematics and its Applications,
vol. 8, pp. 16–35. [2]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [3]

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.9–8.13. [4]

Adams, D.A. 1967, Communications of the ACM, vol. 10, pp. 655–658. [5]

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §4.4.3. [6]

Henrici, P. 1974, Applied and Computational Complex Analysis, vol. 1 (New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§5.5–5.9.

9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

We make an extreme, but wholly defensible, statement: There arenogood, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermore,
it is not hard to see why (very likely) therenever will beany good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously

f(x, y) = 0

g(x, y) = 0
(9.6.1)

The functionsf and g are two arbitrary functions, each of which has zero
contour lines that divide the(x, y) plane into regions where their respective function
is positive or negative. These zero contour boundaries are of interest to us. The
solutions that we seek are those points (if any) that are common to the zero contours
of f andg (see Figure 9.6.1). Unfortunately, the functionsf andg have, in general,
no relation to each other at all! There is nothing special about a common point from
eitherf ’s point of view, or fromg’s. In order to find all common points, which are
the solutions of our nonlinear equations, we will (in general) have to do neither more
nor less than map out the full zero contours of both functions. Note further that
the zero contours will (in general) consist of an unknown number of disjoint closed
curves. How can we ever hope to know when we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common toN unrelated zero-contour hypersurfaces, each of dimensionN − 1.

9.6 Newton-Raphson Method for Nonlinear Systems of Equations 373

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

g = 0

g
=

0

f = 0

f = 0

f pos
M

g pos

f pos

f pos
f neg

g = 0

g neg

g pos

g neg

g pos

y

x

no root here!
two roots here

Figure 9.6.1. Solution of two nonlinear equations in two unknowns. Solid curves refer tof(x, y),
dashed curves tog(x, y). Each equation divides the(x, y) plane into positive and negative regions,
bounded by zero curves. The desired solutions are the intersections of these unrelated zero curves. The
number of solutions isa priori unknown.

You see that root finding becomes virtually impossible without insight! You
will almost always have to use additional information, specific to your particular
problem, to answer such basic questions as, “Do I expect a unique solution?” and
“Approximately where?” Acton[1] has a good discussion of some of the particular
strategies that can be tried.

In this section we will discuss the simplest multidimensional root finding
method, Newton-Raphson. This method gives you a very efficient means of
converging to a root, if you have a sufficiently good initial guess. It can also
spectacularly fail to converge, indicating (though not proving) that your putative
root does not exist nearby. In§9.7 we discuss more sophisticated implementations
of the Newton-Raphson method, which try to improve on Newton-Raphson’s poor
global convergence. A multidimensional generalization of the secant method, called
Broyden’s method, is also discussed in§9.7.

A typical problem givesN functional relations to be zeroed, involving variables
xi, i = 1, 2, . . . , N :

Fi(x1, x2, . . . , xN) = 0 i = 1, 2, . . . , N. (9.6.2)

We let x denote the entire vector of valuesxi and F denote the entire vector of
functionsFi. In the neighborhood ofx, each of the functionsFi can be expanded
in Taylor series

Fi(x + δx) = Fi(x) +

N∑

j=1

∂Fi

∂xj

δxj + O(δx2). (9.6.3)

374 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The matrix of partial derivatives appearing in equation (9.6.3) is theJacobian
matrix J:

Jij ≡
∂Fi

∂xj

. (9.6.4)

In matrix notation equation (9.6.3) is

F(x + δx) = F(x) + J · δx + O(δx2). (9.6.5)

By neglecting terms of orderδx2 and higher and by settingF(x + δx) = 0, we
obtain a set of linear equations for the correctionsδx that move each function closer
to zero simultaneously, namely

J · δx = −F. (9.6.6)

Matrix equation (9.6.6) can be solved byLU decomposition as described in
§2.3. The corrections are then added to the solution vector,

xnew = xold + δx (9.6.7)

and the process is iterated to convergence. In general it is a good idea to check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won’t change.

The following routinemnewt performsntrial iterations starting from an initial
guess at the solution vectorx of lengthn variables. Iteration stops if either the sum
of the magnitudes of the functionsFi is less than some tolerancetolf, or the sum of
the absolute values of the corrections toδxi is less than some tolerancetolx. mnewt
calls a user supplied subroutineusrfunwhich must return the function valuesF and
the Jacobian matrixJ. If J is difficult to compute analytically, you can try having
usrfun call the routinefdjac of §9.7 to compute the partial derivatives by finite
differences. You should not makentrial too big; rather inspect to see what is
happening before continuing for some further iterations.

SUBROUTINE mnewt(ntrial,x,n,tolx,tolf)
INTEGER n,ntrial,NP
REAL tolf,tolx,x(n)
PARAMETER (NP=15) Up to NP variables.

C USES lubksb,ludcmp,usrfun
Given an initial guess x for a root in n dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

INTEGER i,k,indx(NP)
REAL d,errf,errx,fjac(NP,NP),fvec(NP),p(NP)
do 14 k=1,ntrial

call usrfun(x,n,NP,fvec,fjac) User subroutine supplies function values at x in fvec
and Jacobian matrix in fjac.errf=0.

do 11 i=1,n Check function convergence.
errf=errf+abs(fvec(i))

enddo 11

if(errf.le.tolf)return
do 12 i=1,n Right-hand side of linear equations.

p(i)=-fvec(i)
enddo 12

9.6 Newton-Raphson Method for Nonlinear Systems of Equations 375

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call ludcmp(fjac,n,NP,indx,d) Solve linear equations using LU decomposition.
call lubksb(fjac,n,NP,indx,p)
errx=0. Check root convergence.
do 13 i=1,n Update solution.

errx=errx+abs(p(i))
x(i)=x(i)+p(i)

enddo 13

if(errx.le.tolx)return
enddo 14

return
END

Newton’s Method versus Minimization

In the next chapter, we will find that thereare efficient general techniques for
finding a minimum of a function of many variables. Why is that task (relatively)
easy, while multidimensional root finding is often quite hard? Isn’t minimization
equivalent to finding a zero of anN -dimensional gradient vector, not so different from
zeroing anN -dimensional function? No! The components of a gradient vector are not
independent, arbitrary functions. Rather, they obey so-called integrability conditions
that are highly restrictive. Put crudely, you can always find a minimum by sliding
downhill on a single surface. The test of “downhillness” is thus one-dimensional.
There is no analogous conceptual procedure for finding a multidimensional root,
where “downhill”must mean simultaneously downhill inN separate function spaces,
thus allowing a multitude of trade-offs, as to how much progress in one dimension
is worth compared with progress in another.

It might occur to you to carry out multidimensional root finding by collapsing
all these dimensions into one: Add up the sums of squares of the individual functions
Fi to get a master functionF which (i) is positive definite, and (ii) has a global
minimum of zero exactly at all solutions of the original set of nonlinear equations.
Unfortunately, as you will see in the next chapter, the efficient algorithms for finding
minima come to rest on global and local minima indiscriminately. You will often
find, to your great dissatisfaction, that your functionF has a great number of local
minima. In Figure 9.6.1, for example, there is likely to be a local minimum wherever
the zero contours off andg make a close approach to each other. The point labeled
M is such a point, and one sees that there are no nearby roots.

However, we will now see that sophisticated strategies for multidimensional
root finding can in fact make use of the idea of minimizing a master functionF , by
combiningit with Newton’s method applied to the full set of functionsFi. While
such methods can still occasionally fail by coming to rest on a local minimum of
F , they often succeed where a direct attack via Newton’s method alone fails. The
next section deals with these methods.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 14. [1]

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press).

Ortega, J., and Rheinboldt, W. 1970, Iterative Solution of Nonlinear Equations in Several Vari-
ables (New York: Academic Press).

376 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton’s method for solving nonlinear equations has an
unfortunate tendency to wander off into the wild blue yonder if the initial guess
is not sufficiently close to the root. Aglobal method is one that converges to
a solution from almost any starting point. In this section we will develop an
algorithm that combines the rapid local convergence of Newton’s method with a
globally convergent strategy that will guarantee some progress towards the solution
at each iteration. The algorithm is closely related to the quasi-Newton method of
minimization which we will describe in§10.7.

Recall our discussion of§9.6: the Newton step for the set of equations

F(x) = 0 (9.7.1)
is

xnew = xold + δx (9.7.2)
where

δx = −J−1 · F (9.7.3)

HereJ is the Jacobian matrix. How do we decide whether to accept the Newton step
δx? A reasonable strategy is to require that the step decrease|F|2 = F · F. This is
the same requirement we would impose if we were trying to minimize

f =
1

2
F · F (9.7.4)

(The 1

2
is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but

there may be local minima of (9.7.4) that are not solutions to (9.7.1). Thus, as
already mentioned, simply applying one of our minimum finding algorithms from
Chapter 10 to (9.7.4) isnot a good idea.

To develop a better strategy, note that the Newton step (9.7.3) is adescent
direction for f :

∇f · δx = (F · J) · (−J−1 · F) = −F · F < 0 (9.7.5)

Thus our strategy is quite simple: We always first try the full Newton step,
because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reducesf . If not, we
backtrackalong the Newton direction until we have an acceptable step. Because the
Newton step is a descent direction forf , we are guaranteed to find an acceptable step
by backtracking. We will discuss the backtracking algorithm in more detail below.

Note that this method essentially minimizesf by taking Newton steps designed
to bringF to zero. This isnotequivalent to minimizingf directly by taking Newton
steps designed to bring∇f to zero. While the method can still occasionally fail by
landing on a local minimum off , this is quite rare in practice. The routinenewt
below will warn you if this happens. The remedy is to try a new starting point.

376 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton’s method for solving nonlinear equations has an
unfortunate tendency to wander off into the wild blue yonder if the initial guess
is not sufficiently close to the root. Aglobal method is one that converges to
a solution from almost any starting point. In this section we will develop an
algorithm that combines the rapid local convergence of Newton’s method with a
globally convergent strategy that will guarantee some progress towards the solution
at each iteration. The algorithm is closely related to the quasi-Newton method of
minimization which we will describe in§10.7.

Recall our discussion of§9.6: the Newton step for the set of equations

F(x) = 0 (9.7.1)
is

xnew = xold + δx (9.7.2)
where

δx = −J−1 · F (9.7.3)

HereJ is the Jacobian matrix. How do we decide whether to accept the Newton step
δx? A reasonable strategy is to require that the step decrease|F|2 = F · F. This is
the same requirement we would impose if we were trying to minimize

f =
1

2
F · F (9.7.4)

(The 1

2
is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but

there may be local minima of (9.7.4) that are not solutions to (9.7.1). Thus, as
already mentioned, simply applying one of our minimum finding algorithms from
Chapter 10 to (9.7.4) isnot a good idea.

To develop a better strategy, note that the Newton step (9.7.3) is adescent
direction for f :

∇f · δx = (F · J) · (−J−1 · F) = −F · F < 0 (9.7.5)

Thus our strategy is quite simple: We always first try the full Newton step,
because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reducesf . If not, we
backtrackalong the Newton direction until we have an acceptable step. Because the
Newton step is a descent direction forf , we are guaranteed to find an acceptable step
by backtracking. We will discuss the backtracking algorithm in more detail below.

Note that this method essentially minimizesf by taking Newton steps designed
to bringF to zero. This isnotequivalent to minimizingf directly by taking Newton
steps designed to bring∇f to zero. While the method can still occasionally fail by
landing on a local minimum off , this is quite rare in practice. The routinenewt
below will warn you if this happens. The remedy is to try a new starting point.

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 377

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Line Searches and Backtracking

When we are not close enough to the minimum off , taking the full Newton stepp = δx
need not decrease the function; we may move too far for the quadratic approximation to
be valid. All we are guaranteed is thatinitially f decreases as we move in the Newton
direction. So the goal is to move to a new pointxnew along thedirection of the Newton
stepp, but not necessarily all the way:

xnew = xold + λp, 0 < λ ≤ 1 (9.7.6)

The aim is to findλ so thatf(xold + λp) has decreased sufficiently. Until the early 1970s,
standard practice was to chooseλ so thatxnew exactly minimizesf in the directionp.
However, we now know that it is extremely wasteful of function evaluations to do so. A
better strategy is as follows: Sincep is always the Newton direction in our algorithms, we
first try λ = 1, the full Newton step. This will lead to quadratic convergence whenx is
sufficiently close to the solution. However, iff(xnew) does not meet our acceptance criteria,
we backtrackalong the Newton direction, trying a smaller value ofλ, until we find a suitable
point. Since the Newton direction is a descent direction, we are guaranteed to decreasef
for sufficiently smallλ.

What should the criterion for accepting a step be? It isnot sufficient to require merely
that f(xnew) < f(xold). This criterion can fail to converge to a minimum off in one of
two ways. First, it is possible to construct a sequence of steps satisfyingthis criterion with
f decreasing too slowly relative to the step lengths. Second, one can have a sequence where
the step lengths are too small relative to the initial rate of decreaseof f . (For examples of
such sequences, see[1], p. 117.)

A simple way to fix the first problem is to require theaveragerate of decrease off to
be at least some fractionα of the initial rate of decrease∇f · p:

f(xnew) ≤ f(xold) + α∇f · (xnew − xold) (9.7.7)

Here the parameterα satisfies0 < α < 1. We can get away with quite small values of
α; α = 10−4 is a good choice.

The second problem can be fixed by requiring the rate of decrease off at xnew to be
greater than some fractionβ of the rate of decrease off at xold. In practice, we will not
need to impose this second constraint because our backtracking algorithm will have a built-in
cutoff to avoid taking steps that are too small.

Here is the strategy for a practical backtracking routine: Define

g(λ) ≡ f(xold + λp) (9.7.8)

so that

g′(λ) = ∇f · p (9.7.9)

If we need to backtrack, then we modelg with the most current information we have and
chooseλ to minimize the model. We start withg(0) andg′(0) available. The first step is
always the Newton step,λ = 1. If this step is not acceptable, we have availableg(1) as
well. We can therefore modelg(λ) as a quadratic:

g(λ) ≈ [g(1) − g(0) − g′(0)]λ2 + g′(0)λ + g(0) (9.7.10)

Taking the derivative of this quadratic, we find that it is a minimum when

λ = −
g′(0)

2[g(1) − g(0) − g′(0)]
(9.7.11)

Since the Newton step failed, we can show thatλ <∼
1

2
for smallα. We need to guard against

too small a value ofλ, however. We setλmin = 0.1.
On second and subsequent backtracks, we modelg as a cubic inλ, using the previous

valueg(λ1) and the second most recent valueg(λ2):

g(λ) = aλ3 + bλ2 + g′(0)λ + g(0) (9.7.12)

378 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Requiring this expression to give the correct values ofg at λ1 andλ2 gives two equations
that can be solved for the coefficientsa and b:

[

a

b

]

=
1

λ1 − λ2

[

1/λ2
1 −1/λ2

2

−λ2/λ
2
1 λ1/λ

2
2

]

·

[

g(λ1) − g′(0)λ1 − g(0)

g(λ2) − g′(0)λ2 − g(0)

]

(9.7.13)

The minimum of the cubic (9.7.12) is at

λ =
−b +

√

b2 − 3ag′(0)

3a
(9.7.14)

We enforce thatλ lie betweenλmax = 0.5λ1 andλmin = 0.1λ1.
The routine has two additional features, a minimum step lengthalamin and a maximum

step lengthstpmax. lnsrch will also be used in the quasi-Newton minimization routine
dfpmin in the next section.

SUBROUTINE lnsrch(n,xold,fold,g,p,x,f,stpmax,check,func)
INTEGER n
LOGICAL check
REAL f,fold,stpmax,g(n),p(n),x(n),xold(n),func,ALF,TOLX
PARAMETER (ALF=1.e-4,TOLX=1.e-7)
EXTERNAL func

C USES func
Given an n-dimensional point xold(1:n), the value of the function and gradient there,
fold and g(1:n), and a direction p(1:n), finds a new point x(1:n) along the direction
p from xold where the function func has decreased “sufficiently.” The new function value
is returned in f. stpmax is an input quantity that limits the length of the steps so that you
do not try to evaluate the function in regions where it is undefined or subject to overflow.
p is usually the Newton direction. The output quantity check is false on a normal exit.
It is true when x is too close to xold. In a minimization algorithm, this usually signals
convergence and can be ignored. However, in a zero-finding algorithm the calling program
should check whether the convergence is spurious.
Parameters: ALF ensures sufficient decrease in function value; TOLX is the convergence
criterion on ∆x.

INTEGER i
REAL a,alam,alam2,alamin,b,disc,f2,rhs1,rhs2,slope,

* sum,temp,test,tmplam
check=.false.
sum=0.
do 11 i=1,n

sum=sum+p(i)*p(i)
enddo 11

sum=sqrt(sum)
if(sum.gt.stpmax)then Scale if attempted step is too big.

do 12 i=1,n
p(i)=p(i)*stpmax/sum

enddo 12

endif
slope=0.
do 13 i=1,n

slope=slope+g(i)*p(i)
enddo 13

if(slope.ge.0.) pause ’roundoff problem in lnsrch’
test=0. Compute λmin.
do 14 i=1,n

temp=abs(p(i))/max(abs(xold(i)),1.)
if(temp.gt.test)test=temp

enddo 14

alamin=TOLX/test
alam=1. Always try full Newton step first.

1 continue Start of iteration loop.
do 15 i=1,n

x(i)=xold(i)+alam*p(i)
enddo 15

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 379

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

f=func(x)
if(alam.lt.alamin)then Convergence on ∆x. For zero finding,

the calling program should verify the
convergence.

do 16 i=1,n
x(i)=xold(i)

enddo 16

check=.true.
return

else if(f.le.fold+ALF*alam*slope)then Sufficient function decrease.
return

else Backtrack.
if(alam.eq.1.)then First time.

tmplam=-slope/(2.*(f-fold-slope))
else Subsequent backtracks.

rhs1=f-fold-alam*slope
rhs2=f2-fold-alam2*slope
a=(rhs1/alam**2-rhs2/alam2**2)/(alam-alam2)
b=(-alam2*rhs1/alam**2+alam*rhs2/alam2**2)/

* (alam-alam2)
if(a.eq.0.)then

tmplam=-slope/(2.*b)
else

disc=b*b-3.*a*slope
if(disc.lt.0.)then

tmplam=.5*alam
else if(b.le.0.)then

tmplam=(-b+sqrt(disc))/(3.*a)
else

tmplam=-slope/(b+sqrt(disc))
endif

endif
if(tmplam.gt..5*alam)tmplam=.5*alam λ ≤ 0.5λ1.

endif
endif
alam2=alam
f2=f
alam=max(tmplam,.1*alam) λ ≥ 0.1λ1.

goto 1 Try again.
END

Here now is the globally convergent Newton routinenewt that useslnsrch. A feature
of newt is that you need not supply the Jacobian matrix analytically; the routine will attempt to
compute the necessary partial derivatives ofF by finite differences in the routinefdjac. This
routine uses some of the techniques described in§5.7 for computing numerical derivatives. Of
course, you can always replacefdjac with a routine that calculates the Jacobian analytically
if this is easy for you to do.

SUBROUTINE newt(x,n,check)
INTEGER n,nn,NP,MAXITS
LOGICAL check
REAL x(n),fvec,TOLF,TOLMIN,TOLX,STPMX
PARAMETER (NP=40,MAXITS=200,TOLF=1.e-4,TOLMIN=1.e-6,TOLX=1.e-7,

* STPMX=100.)
COMMON /newtv/ fvec(NP),nn Communicates with fmin.
SAVE /newtv/

C USES fdjac,fmin,lnsrch,lubksb,ludcmp
Given an initial guess x(1:n) for a root in n dimensions, find the root by a globally
convergent Newton’s method. The vector of functions to be zeroed, called fvec(1:n)
in the routine below, is returned by a user-supplied subroutine that mustbe called funcv
and have the declaration subroutine funcv(n,x,fvec). The output quantity check
is false on a normal return and true if the routine has converged to a local minimum of the
function fmin defined below. In this case try restarting from a different initial guess.
Parameters: NP is the maximum expected value of n; MAXITS is the maximum number of
iterations; TOLF sets the convergence criterion on function values; TOLMIN sets the criterion
for deciding whether spurious convergence to a minimum of fmin has occurred; TOLX is

380 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the convergence criterion on δx; STPMX is the scaled maximum step length allowed in line
searches.

INTEGER i,its,j,indx(NP)
REAL d,den,f,fold,stpmax,sum,temp,test,fjac(NP,NP),

* g(NP),p(NP),xold(NP),fmin
EXTERNAL fmin
nn=n
f=fmin(x) The vector fvec is also computed by this call.
test=0. Test for initial guess being a root. Use more strin-

gent test than simply TOLF.do 11 i=1,n
if(abs(fvec(i)).gt.test)test=abs(fvec(i))

enddo 11

if(test.lt..01*TOLF)then
check=.false.
return

endif
sum=0. Calculate stpmax for line searches.
do 12 i=1,n

sum=sum+x(i)**2
enddo 12

stpmax=STPMX*max(sqrt(sum),float(n))
do 21 its=1,MAXITS Start of iteration loop.

call fdjac(n,x,fvec,NP,fjac)
If analytic Jacobian is available, you can replace the routine fdjac below with your own
routine.

do 14 i=1,n Compute ∇f for the line search.
sum=0.
do 13 j=1,n

sum=sum+fjac(j,i)*fvec(j)
enddo 13

g(i)=sum
enddo 14

do 15 i=1,n Store x,
xold(i)=x(i)

enddo 15

fold=f and f .
do 16 i=1,n Right-hand side for linear equations.

p(i)=-fvec(i)
enddo 16

call ludcmp(fjac,n,NP,indx,d) Solve linear equations by LU decomposition.
call lubksb(fjac,n,NP,indx,p)
call lnsrch(n,xold,fold,g,p,x,f,stpmax,check,fmin)
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

test=0. Test for convergence on function values.
do 17 i=1,n

if(abs(fvec(i)).gt.test)test=abs(fvec(i))
enddo 17

if(test.lt.TOLF)then
check=.false.
return

endif
if(check)then Check for gradient of f zero, i.e., spurious con-

vergence.test=0.
den=max(f,.5*n)
do 18 i=1,n

temp=abs(g(i))*max(abs(x(i)),1.)/den
if(temp.gt.test)test=temp

enddo 18

if(test.lt.TOLMIN)then
check=.true.

else
check=.false.

endif
return

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 381

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
test=0. Test for convergence on δx.
do 19 i=1,n

temp=(abs(x(i)-xold(i)))/max(abs(x(i)),1.)
if(temp.gt.test)test=temp

enddo 19

if(test.lt.TOLX)return
enddo 21

pause ’MAXITS exceeded in newt’
END

SUBROUTINE fdjac(n,x,fvec,np,df)
INTEGER n,np,NMAX
REAL df(np,np),fvec(n),x(n),EPS
PARAMETER (NMAX=40,EPS=1.e-4)

C USES funcv
Computes forward-difference approximation to Jacobian. On input, x(1:n) is the point
at which the Jacobian is to be evaluated, fvec(1:n) is the vector of function values at
the point, and np is the physical dimension of the Jacobian array df(1:n,1:n) which is
output. subroutine funcv(n,x,f) is a fixed-name, user-supplied routine that returns
the vector of functions at x.
Parameters: NMAX is the maximum value of n; EPS is the approximate square root of the
machine precision.

INTEGER i,j
REAL h,temp,f(NMAX)
do 12 j=1,n

temp=x(j)
h=EPS*abs(temp)
if(h.eq.0.)h=EPS
x(j)=temp+h Trick to reduce finite precision error.
h=x(j)-temp
call funcv(n,x,f)
x(j)=temp
do 11 i=1,n Forward difference formula.

df(i,j)=(f(i)-fvec(i))/h
enddo 11

enddo 12

return
END

FUNCTION fmin(x)
INTEGER n,NP
REAL fmin,x(*),fvec
PARAMETER (NP=40)
COMMON /newtv/ fvec(NP),n
SAVE /newtv/

C USES funcv
Returns f = 1

2
F · F at x. subroutine funcv(n,x,f) is a fixed-name, user-supplied

routine that returns the vector of functions at x. The common block newtv communicates
the function values back to newt.

INTEGER i
REAL sum
call funcv(n,x,fvec)
sum=0.
do 11 i=1,n

sum=sum+fvec(i)**2
enddo 11

fmin=0.5*sum
return
END

The routinenewt assumes that typical values of all components ofx and ofF are of order
unity, and it can fail if this assumption is badly violated. You should rescale the variables by
their typical values before invokingnewt if this problem occurs.

382 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Multidimensional Secant Met hods: Broyden’s Method

Newton’s method as implemented above is quite powerful, but it still has several
disadvantages. One drawback is that the Jacobian matrix is needed. In many problems
analytic derivatives are unavailable. If function evaluation is expensive, then the cost of
finite-difference determination of the Jacobian can be prohibitive.

Just as the quasi-Newton methods to be discussed in§10.7 provide cheap approximations
for the Hessian matrix in minimization algorithms, there are quasi-Newton methodsthat
provide cheap approximations to the Jacobian for zero finding. These methods are often called
secant methods, since they reduce to the secant method (§9.2) in one dimension (see, e.g.,[1]).
The best of these methods still seems to be the first one introduced,Broyden’s method[2].

Let us denote the approximate Jacobian byB. Then theith quasi-Newton stepδxi

is the solution of

Bi · δxi = −Fi (9.7.15)

whereδxi = xi+1 − xi (cf. equation 9.7.3). The quasi-Newton or secant condition is that
Bi+1 satisfy

Bi+1 · δxi = δFi (9.7.16)

whereδFi = Fi+1 − Fi. This is the generalization of the one-dimensional secant approxima-
tion to the derivative,δF/δx. However, equation (9.7.16) does not determineBi+1 uniquely
in more than one dimension.

Many different auxiliary conditions to pin downBi+1 have been explored, but the
best-performing algorithm in practice results from Broyden’s formula. This formula is based
on the idea of gettingBi+1 by making the least change toBi consistent with the secant
equation (9.7.16). Broyden showed that the resulting formula is

Bi+1 = Bi +
(δFi − Bi · δxi) ⊗ δxi

δxi · δxi

(9.7.17)

You can easily check thatBi+1 satisfies (9.7.16).
Early implementations of Broyden’s method used the Sherman-Morrison formula,

equation (2.7.2), to invert equation (9.7.17) analytically,

B−1

i+1 = B−1

i +
(δxi − B−1

i
· δFi) ⊗ δxi · B−1

i

δxi · B−1

i
· δFi

(9.7.18)

Then instead of solving equation (9.7.3) by e.g.,LU decomposition, one determined

δxi = −B−1

i · Fi (9.7.19)

by matrix multiplication inO(N2) operations. The disadvantage of this method is that
it cannot easily be embedded in a globally convergent strategy, for which the gradient of
equation (9.7.4) requiresB, not B−1,

∇(1

2
F · F) ≃ BT

· F (9.7.20)

Accordingly, we implement the update formula in the form (9.7.17).
However, we can still preserve theO(N2) solution of (9.7.3) by usingQR decomposition

(§2.10) instead ofLU decomposition. The reason is that because of the special form of equation
(9.7.17), theQR decomposition ofBi can be updated into theQR decomposition ofBi+1 in
O(N2) operations (§2.10). All we need is an initial approximationB0 to start the ball rolling.
It is often acceptable to start simply with the identity matrix, and then allowO(N) updates to
produce a reasonable approximation to the Jacobian. We prefer to spend the firstN function
evaluations on a finite-difference approximation to initializeB via a call tofdjac.

SinceB is not the exact Jacobian, we are not guaranteed thatδx is a descent direction for
f = 1

2
F ·F (cf. equation 9.7.5). Thus the line search algorithm can fail to return a suitable step

if B wanders far from the true Jacobian. In this case, we reinitializeB by another call tofdjac.
Like the secant method in one dimension, Broyden’s method converges superlinearly

once you get close enough to the root. Embedded in a global strategy, it is almost as robust

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 383

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

as Newton’s method, and often needs far fewer function evaluations to determine a zero.
Note that the final value ofB is not always close to the true Jacobian at the root, even
when the method converges.

The routinebroydn given below is very similar tonewt in organization. The principal
differences are the use ofQR decomposition instead ofLU , and the updating formula instead
of directly determining the Jacobian. The remarks at the end ofnewt about scaling the
variables apply equally tobroydn.

SUBROUTINE broydn(x,n,check)
INTEGER n,nn,NP,MAXITS
REAL x(n),fvec,EPS,TOLF,TOLMIN,TOLX,STPMX
LOGICAL check
PARAMETER (NP=40,MAXITS=200,EPS=1.e-7,TOLF=1.e-4,TOLMIN=1.e-6,

* TOLX=EPS,STPMX=100.)
COMMON /newtv/ fvec(NP),nn Communicates with fmin.
SAVE /newtv/

C USES fdjac,fmin,lnsrch,qrdcmp,qrupdt,rsolv
Given an initial guess x(1:n) for a root in n dimensions, find the root by Broyden’s method
embedded in a globally convergent strategy. The vector of functions to be zeroed, called
fvec(1:n) in the routine below, is returned by a user-supplied subroutine that must be
called funcv and have the declaration subroutine funcv(n,x,fvec). The subroutine
fdjac and the function fmin from newt are used. The output quantity check is false on
a normal return and true if the routine has converged to a local minimum of the function
fmin or if Broyden’s method can make no further progress. In this case try restarting from
a different initial guess.
Parameters: NP is the maximum expected value of n; MAXITS is the maximum number of
iterations; EPS is close to the machine precision; TOLF sets the convergence criterion on
function values; TOLMIN sets the criterion for deciding whether spurious convergence to a
minimum of fmin has occurred; TOLX is the convergence criterion on δx; STPMX is the
scaled maximum step length allowed in line searches.

INTEGER i,its,j,k
REAL den,f,fold,stpmax,sum,temp,test,c(NP),d(NP),fvcold(NP),

* g(NP),p(NP),qt(NP,NP),r(NP,NP),s(NP),t(NP),w(NP),
* xold(NP),fmin

LOGICAL restrt,sing,skip
EXTERNAL fmin
nn=n
f=fmin(x) The vector fvec is also computed by this call.
test=0. Test for initial guess being a root. Use more strin-

gent test than simply TOLF.do 11 i=1,n
if(abs(fvec(i)).gt.test)test=abs(fvec(i))

enddo 11

if(test.lt..01*TOLF)then
check=.false.
return

endif
sum=0. Calculate stpmax for line searches.
do 12 i=1,n

sum=sum+x(i)**2
enddo 12

stpmax=STPMX*max(sqrt(sum),float(n))
restrt=.true. Ensure initial Jacobian gets computed.
do 44 its=1,MAXITS Start of iteration loop.

if(restrt)then
call fdjac(n,x,fvec,NP,r) Initialize or reinitialize Jacobian in r.
call qrdcmp(r,n,NP,c,d,sing) QR decomposition of Jacobian.
if(sing) pause ’singular Jacobian in broydn’

do 14 i=1,n Form QT explicitly.
do 13 j=1,n

qt(i,j)=0.
enddo 13

qt(i,i)=1.
enddo 14

384 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 18 k=1,n-1
if(c(k).ne.0.)then

do 17 j=1,n
sum=0.
do 15 i=k,n

sum=sum+r(i,k)*qt(i,j)
enddo 15

sum=sum/c(k)
do 16 i=k,n

qt(i,j)=qt(i,j)-sum*r(i,k)
enddo 16

enddo 17

endif
enddo 18

do 21 i=1,n Form R explicitly.
r(i,i)=d(i)
do 19 j=1,i-1

r(i,j)=0.
enddo 19

enddo 21

else Carry out Broyden update.
do 22 i=1,n s = δx.

s(i)=x(i)-xold(i)
enddo 22

do 24 i=1,n t = R · s.
sum=0.
do 23 j=i,n

sum=sum+r(i,j)*s(j)
enddo 23

t(i)=sum
enddo 24

skip=.true.
do 26 i=1,n w = δF − B · s.

sum=0.
do 25 j=1,n

sum=sum+qt(j,i)*t(j)
enddo 25

w(i)=fvec(i)-fvcold(i)-sum
if(abs(w(i)).ge.EPS*(abs(fvec(i))+abs(fvcold(i))))then

Don’t update with noisy components of w.
skip=.false.

else
w(i)=0.

endif
enddo 26

if(.not.skip)then

do 28 i=1,n t = QT · w.
sum=0.
do 27 j=1,n

sum=sum+qt(i,j)*w(j)
enddo 27

t(i)=sum
enddo 28

den=0.
do 29 i=1,n

den=den+s(i)**2
enddo 29

do 31 i=1,n Store s/(s · s) in s.
s(i)=s(i)/den

enddo 31

call qrupdt(r,qt,n,NP,t,s) Update R and QT .
do 32 i=1,n

if(r(i,i).eq.0.) pause ’r singular in broydn’
d(i)=r(i,i) Diagonal of R stored in d.

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 385

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 32

endif
endif
do 34 i=1,n Compute ∇f ≈ (Q · R)T · F for the line search.

sum=0.
do 33 j=1,n

sum=sum+qt(i,j)*fvec(j)
enddo 33

g(i)=sum
enddo 34

do 36 i=n,1,-1
sum=0.
do 35 j=1,i

sum=sum+r(j,i)*g(j)
enddo 35

g(i)=sum
enddo 36

do 37 i=1,n Store x and F.
xold(i)=x(i)
fvcold(i)=fvec(i)

enddo 37

fold=f Store f .
do 39 i=1,n Right-hand side for linear equations is −QT · F.

sum=0.
do 38 j=1,n

sum=sum+qt(i,j)*fvec(j)
enddo 38

p(i)=-sum
enddo 39

call rsolv(r,n,NP,d,p) Solve linear equations.
call lnsrch(n,xold,fold,g,p,x,f,stpmax,check,fmin)
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

test=0. Test for convergence on function values.
do 41 i=1,n

if(abs(fvec(i)).gt.test)test=abs(fvec(i))
enddo 41

if(test.lt.TOLF)then
check=.false.
return

endif
if(check)then True if line search failed to find a new x.

if(restrt)then Failure; already tried reinitializing the Jacobian.
return

else Check for gradient of f zero, i.e., spurious con-
vergence.test=0.

den=max(f,.5*n)
do 42 i=1,n

temp=abs(g(i))*max(abs(x(i)),1.)/den
if(temp.gt.test)test=temp

enddo 42

if(test.lt.TOLMIN)then
return

else Try reinitializing the Jacobian.
restrt=.true.

endif
endif

else Successful step; will use Broyden update for next
step.restrt=.false.

test=0. Test for convergence on δx.
do 43 i=1,n

temp=(abs(x(i)-xold(i)))/max(abs(x(i)),1.)
if(temp.gt.test)test=temp

enddo 43

if(test.lt.TOLX)return

386 Chapter 9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
enddo 44

pause ’MAXITS exceeded in broydn’
END

More Advanced Implementations

One of the principal ways that the methods described so far can fail is ifJ (in Newton’s
method) orB in (Broyden’s method) becomes singular or nearly singular, so thatδx cannot
be determined. If you are lucky, this situation will not occur very often in practice. Methods
developed so far to deal with this problem involve monitoring the condition number ofJ and
perturbingJ if singularity or near singularity is detected. This is most easily implemented
if the QR decomposition is used instead ofLU in Newton’s method (see[1] for details).
Our personal experience is that, while such an algorithm can solve problems whereJ is
exactly singular and the standard Newton’s method fails, it is occasionally less robust on
other problems whereLU decomposition succeeds. Clearly implementation details involving
roundoff, underflow, etc., are important here and the last word is yet to be written.

Our global strategies both for minimization and zero finding have been based on line
searches. Other global algorithms, such as thehook stepanddogleg stepmethods, are based
instead on themodel-trust regionapproach, which is related to the Levenberg-Marquardt
algorithm for nonlinear least-squares (§15.5). While somewhat more complicated than line
searches, these methods have a reputation for robustness even when starting far from the
desired zero or minimum[1].

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [1]

Broyden, C.G. 1965, Mathematics of Computation, vol. 19, pp. 577–593. [2]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 10. Minimization or
Maximization of Functions

10.0 Introduction

In a nutshell: You are given a single functionf that depends on one or more
independent variables. You want to find the value of those variables wheref takes
on a maximum or a minimum value. You can then calculate what value off is
achieved at the maximum or minimum. The tasks of maximization and minimization
are trivially related to each other, since one person’s functionf could just as well
be another’s−f . The computational desiderata are the usual ones: Do it quickly,
cheaply, and in small memory. Often the computational effort is dominated by
the cost of evaluatingf (and also perhaps its partial derivatives with respect to all
variables, if the chosen algorithm requires them). In such cases the desiderata are
sometimes replaced by the simple surrogate: Evaluatef as few times as possible.

An extremum (maximum or minimum point) can be eitherglobal (truly
the highest or lowest function value) orlocal (the highest or lowest in a finite
neighborhood and not on the boundary of that neighborhood). (See Figure 10.0.1.)
Finding a global extremum is, in general, a very difficult problem. Two standard
heuristics are widely used: (i) find local extrema starting from widely varying
starting values of the independent variables (perhaps chosen quasi-randomly, as in
§7.7), and then pick the most extreme of these (if they are not all the same); or
(ii) perturb a local extremum by taking a finite amplitude step away from it, and
then see if your routine returns you to a better point, or “always” to the same
one. Relatively recently, so-called “simulated annealing methods” (§10.9) have
demonstrated important successes on a variety of global extremization problems.

Our chapter title could just as well beoptimization, which is the usual name
for this very large field of numerical research. The importance ascribed to the
various tasks in this field depends strongly on the particular interests of whom
you talk to. Economists, and some engineers, are particularly concerned with
constrained optimization, where there area priori limitations on the allowed values
of independent variables. For example, the production of wheat in the U.S. must
be a nonnegative number. One particularly well-developed area of constrained
optimization islinear programming, where both the function to be optimized and
the constraints happen to be linear functions of the independent variables. Section
10.8, which is otherwise somewhat disconnected from the rest of the material that we
have chosen to include in this chapter, implements the so-called “simplex algorithm”
for linear programming problems.

387

388 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

G

Z

Y
F

X
E

D

B

A

C

X1 X2

⊗ ⊗

⊗

Figure 10.0.1. Extrema of a function in an interval. PointsA, C, andE are local, but not global
maxima. PointsB andF are local, but not global minima. The global maximum occurs atG, which
is on the boundary of the interval so that the derivative of the function need not vanish there. The
global minimum is atD. At point E, derivatives higher than the first vanish, a situation which can
cause difficulty for some algorithms. The pointsX , Y , andZ are said to “bracket” the minimumF ,
sinceY is less than bothX andZ.

One other section,§10.9, also lies outside of our main thrust, but for a different
reason: so-called “annealing methods” are relatively new, so we do not yet know
where they will ultimately fit into the scheme of things. However, these methods
have solved some problems previously thought to be practically insoluble; they
address directly the problem of finding global extrema in the presence of large
numbers of undesired local extrema.

The other sections in this chapter constitute a selection of the best established
algorithms in unconstrained minimization. (For definiteness, we will henceforth
regard the optimization problem as that of minimization.) These sections are
connected, with later ones depending on earlier ones. If you are just looking for
the one “perfect” algorithm to solve your particular application, you may feel that
we are telling you more than you want to know. Unfortunately, there isno perfect
optimization algorithm. This is a case where we strongly urge you to try more than
one method in comparative fashion. Your initial choice of method can be based
on the following considerations:

• You must choose between methods that need only evaluations of the
function to be minimized and methods that also require evaluations of the
derivative of that function. In the multidimensional case, this derivative
is the gradient, a vector quantity. Algorithms using the derivative are
somewhat more powerful than those using only the function, but not
always enough so as to compensate for the additional calculations of
derivatives. We can easily construct examples favoring one approach or
favoring the other. However, if youcancompute derivatives, be prepared
to try using them.

• For one-dimensional minimization (minimize a function of one variable)
withoutcalculation of the derivative, bracket the minimum as described in
§10.1, and then useBrent’s methodas described in§10.2. If your function
has a discontinuous second (or lower) derivative, then the parabolic

10.0 Introduction 389

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

interpolations of Brent’s method are of no advantage, and you might wish
to use the simplest form ofgolden section search, as described in§10.1.

• For one-dimensional minimizationwithcalculation of the derivative,§10.3
supplies a variant of Brent’s method which makes limited use of the first
derivative information. We shy away from the alternative of using
derivative information to construct high-order interpolating polynomials.
In our experience the improvement in convergence very near a smooth,
analytic minimum does not make up for the tendency of polynomials
sometimes to give wildly wrong interpolations at early stages, especially
for functions that may have sharp, “exponential” features.

We now turn to the multidimensional case, both with and without computation
of first derivatives.

• You must choose between methods that require storage of orderN2 and
those that require only of orderN , whereN is the number of dimensions.
For moderate values ofN and reasonable memory sizes this is not a
serious constraint. There will be, however, the occasional application
where storage may be critical.

• We give in§10.4 a sometimes overlookeddownhill simplex methoddue
to Nelder and Mead. (This use of the word “simplex” is not to be
confused with the simplex method of linear programming.) This method
just crawls downhill in a straightforward fashion that makes almost no
special assumptions about your function. This can be extremely slow, but
it can also, in some cases, be extremely robust. Not to be overlooked is
the fact that the code is concise and completely self-contained: a general
N -dimensional minimization program in under 100 program lines! This
method is most useful when the minimization calculation is only an
incidental part of your overall problem. The storage requirement is of
orderN2, and derivative calculations are not required.

• Section 10.5 deals withdirection-set methods, of which Powell’s method
is the prototype. These are the methods of choice when you cannot easily
calculate derivatives, and are not necessarily to be sneered at even if you
can. Although derivatives are not needed, the method does require a
one-dimensional minimization sub-algorithm such as Brent’s method (see
above). Storage is of orderN2.

There are two major families of algorithms for multidimensional minimization
with calculation of first derivatives. Both families require a one-dimensional
minimization sub-algorithm, which can itself either use, or not use, the derivative
information, as you see fit (depending on the relative effort of computing the function
and of its gradient vector). We do not think that either family dominates the other in
all applications; you should think of them as available alternatives:

• The first family goes under the nameconjugate gradient methods, as typi-
fied by theFletcher-Reeves algorithmand the closely related and probably
superiorPolak-Ribiere algorithm. Conjugate gradient methods require
only of order a few timesN storage, require derivative calculations and

390 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

one-dimensional sub-minimization. Turn to§10.6 for detailed discussion
and implementation.

• The second family goes under the namesquasi-Newtonor variable metric
methods, as typified by theDavidon-Fletcher-Powell (DFP)algorithm
(sometimes referred to just asFletcher-Powell) or the closely related
Broyden-Fletcher-Goldfarb-Shanno (BFGS)algorithm. These methods
require of orderN2 storage, require derivative calculations and one-
dimensional sub-minimization. Details are in§10.7.

You are now ready to proceed with scaling the peaks (and/or plumbing the
depths) of practical optimization.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall).

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press).

Gill, P.E., Murray, W., and Wright, M.H. 1981, Practical Optimization (New York: Academic Press).

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 17.

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter III.1.

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall).

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 10.

10.1 Golden Section Search in One Dimension

Recall how the bisection method finds roots of functions in one dimension
(§9.1): The root is supposed to have been bracketed in an interval(a, b). One
then evaluates the function at an intermediate pointx and obtains a new, smaller
bracketing interval, either(a, x) or (x, b). The process continues until the bracketing
interval is acceptably small. It is optimal to choosex to be the midpoint of(a, b)
so that the decrease in the interval length is maximized when the function is as
uncooperative as it can be, i.e., when the luck of the draw forces you to take the
bigger bisected segment.

There is a precise, though slightly subtle, translation of these considerations to
the minimization problem: What does it mean tobracketa minimum? A root of a
function is known to be bracketed by a pair of points,a andb, when the function
has opposite sign at those two points. A minimum, by contrast, is known to be
bracketed only when there is atriplet of points,a < b < c (or c < b < a), such that
f(b) is less than bothf(a) andf(c). In this case we know that the function (if it
is nonsingular) has a minimum in the interval(a, c).

The analog of bisection is to choose a new pointx, either betweena andb or
betweenb andc. Suppose, to be specific, that we make the latter choice. Then we
evaluatef(x). If f(b) < f(x), then the new bracketing triplet of points is(a, b, x);

390 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

one-dimensional sub-minimization. Turn to§10.6 for detailed discussion
and implementation.

• The second family goes under the namesquasi-Newtonor variable metric
methods, as typified by theDavidon-Fletcher-Powell (DFP)algorithm
(sometimes referred to just asFletcher-Powell) or the closely related
Broyden-Fletcher-Goldfarb-Shanno (BFGS)algorithm. These methods
require of orderN2 storage, require derivative calculations and one-
dimensional sub-minimization. Details are in§10.7.

You are now ready to proceed with scaling the peaks (and/or plumbing the
depths) of practical optimization.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall).

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press).

Gill, P.E., Murray, W., and Wright, M.H. 1981, Practical Optimization (New York: Academic Press).

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 17.

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter III.1.

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall).

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 10.

10.1 Golden Section Search in One Dimension

Recall how the bisection method finds roots of functions in one dimension
(§9.1): The root is supposed to have been bracketed in an interval(a, b). One
then evaluates the function at an intermediate pointx and obtains a new, smaller
bracketing interval, either(a, x) or (x, b). The process continues until the bracketing
interval is acceptably small. It is optimal to choosex to be the midpoint of(a, b)
so that the decrease in the interval length is maximized when the function is as
uncooperative as it can be, i.e., when the luck of the draw forces you to take the
bigger bisected segment.

There is a precise, though slightly subtle, translation of these considerations to
the minimization problem: What does it mean tobracketa minimum? A root of a
function is known to be bracketed by a pair of points,a andb, when the function
has opposite sign at those two points. A minimum, by contrast, is known to be
bracketed only when there is atriplet of points,a < b < c (or c < b < a), such that
f(b) is less than bothf(a) andf(c). In this case we know that the function (if it
is nonsingular) has a minimum in the interval(a, c).

The analog of bisection is to choose a new pointx, either betweena andb or
betweenb andc. Suppose, to be specific, that we make the latter choice. Then we
evaluatef(x). If f(b) < f(x), then the new bracketing triplet of points is(a, b, x);

10.1 Golden Section Search in One Dimension 391

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

6

4

4

6

3

5

1

5

2

Figure 10.1.1. Successive bracketing of a minimum. The minimum is originally bracketed bypoints
1,3,2. The function is evaluated at 4, which replaces 2; then at 5, which replaces 1; then at 6, which
replaces 4. The rule at each stage is to keep a center point that is lower than the two outside points. After
the steps shown, the minimum is bracketed by points 5,3,6.

contrariwise, iff(b) > f(x), then the new bracketing triplet is(b, x, c). In all cases
the middle point of the new triplet is the abscissa whose ordinate is the best minimum
achieved so far; see Figure 10.1.1. We continue the process of bracketing until the
distance between the two outer points of the triplet is tolerably small.

How small is “tolerably” small? For a minimum located at a valueb, you
might naively think that you will be able to bracket it in as small a range as
(1 − ǫ)b < b < (1 + ǫ)b, whereǫ is your computer’s floating-point precision, a
number like3 × 10−8 (single precision) or10−15 (double precision). Not so! In
general, the shape of your functionf(x) nearb will be given by Taylor’s theorem

f(x) ≈ f(b) +
1

2
f ′′(b)(x− b)2 (10.1.1)

The second term will be negligible compared to the first (that is, will be a factorǫ
smaller and will act just like zero when added to it) whenever

|x− b| <
√
ǫ|b|

√

2 |f(b)|
b2f ′′(b)

(10.1.2)

The reason for writing the right-hand side in this way is that, for most functions,
the final square root is a number of order unity. Therefore, as a rule of thumb, it
is hopeless to ask for a bracketing interval of width less than

√
ǫ times its central

value, a fractional width of only about10−4 (single precision) or3 × 10−8 (double
precision). Knowing this inescapable fact will save you a lot of useless bisections!

The minimum-finding routines of this chapter will often call for a user-supplied
argumenttol, and return with an abscissa whose fractional precision is about±tol
(bracketing interval of fractional size about2×tol). Unless you have a better

392 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

estimate for the right-hand side of equation (10.1.2), you should settol equal to
(not much less than) the square root of your machine’s floating-point precision, since
smaller values will gain you nothing.

It remains to decide on a strategy for choosing the new pointx, given(a, b, c).
Suppose thatb is a fractionw of the way betweena andc, i.e.

b− a

c − a
= w

c− b

c− a
= 1 − w (10.1.3)

Also suppose that our next trial pointx is an additional fractionz beyondb,

x− b

c− a
= z (10.1.4)

Then the next bracketing segment will either be of lengthw+z relative to the current
one, or else of length1 − w. If we want to minimize the worst case possibility, then
we will choosez to make these equal, namely

z = 1 − 2w (10.1.5)

We see at once that the new point is the symmetric point tob in the original interval,
namely with|b− a| equal to|x− c|. This implies that the pointx lies in the larger
of the two segments (z is positive only ifw < 1/2).

But where in the larger segment? Where did the value ofw itself come from?
Presumably from the previous stage of applying our same strategy. Therefore, ifz
is chosen to be optimal, then so wasw before it. Thisscale similarityimplies that
x should be the same fraction of the way fromb to c (if that is the bigger segment)
as wasb from a to c, in other words,

z

1 − w
= w (10.1.6)

Equations (10.1.5) and (10.1.6) give the quadratic equation

w2 − 3w + 1 = 0 yielding w =
3 −

√
5

2
≈ 0.38197 (10.1.7)

In other words, the optimal bracketing interval(a, b, c) has its middle pointb a
fractional distance 0.38197 from one end (say,a), and 0.61803 from the other end
(say,b). These fractions are those of the so-calledgolden meanor golden section,
whose supposedly aesthetic properties hark back to the ancient Pythagoreans. This
optimal method of function minimization, the analog of the bisection method for
finding zeros, is thus called thegolden section search, summarized as follows:

Given, at each stage, a bracketing triplet of points, the next point to be tried
is that which is a fraction 0.38197 into the larger of the two intervals (measuring
from the central point of the triplet). If you start out with a bracketing triplet whose
segments are not in the golden ratios, the procedure of choosing successive points
at the golden mean point of the larger segment will quickly converge you to the
proper, self-replicating ratios.

The golden section search guarantees that each new function evaluation will
(after self-replicating ratios have been achieved) bracket the minimumto an interval

10.1 Golden Section Search in One Dimension 393

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

just 0.61803 times the size of the preceding interval. This is comparable to, but not
quite as good as, the 0.50000 that holds when finding roots by bisection. Note that
the convergence islinear (in the language of Chapter 9), meaning that successive
significant figures are won linearly with additional function evaluations. In the
next section we will give a superlinear method, where the rate at which successive
significant figures are liberated increases with each successive function evaluation.

Routine for Initially Bracketing a Minimum

The preceding discussion has assumed that you are able to bracket the minimum
in the first place. We consider this initial bracketing to be an essential part of any
one-dimensional minimization. There are some one-dimensional algorithms that
do not require a rigorous initial bracketing. However, we wouldnever trade the
secure feeling ofknowingthat a minimum is “in there somewhere” for the dubious
reduction of function evaluations that these nonbracketing routines may promise.
Please bracket your minima (or, for that matter, your zeros) before isolating them!

There is not much theory as to how to do this bracketing. Obviously you want
to step downhill. But how far? We like to take larger and larger steps, starting with
some (wild?) initial guess and then increasing the stepsize ateach step either by
a constant factor, or else by the result of a parabolic extrapolationof the preceding
points that is designed to take us to the extrapolated turning point. It doesn’t much
matter if the steps get big. After all, we are stepping downhill, so we already have
the left and middle points of the bracketing triplet. We just need to take a big enough
step to stop the downhill trend and get a high third point.

Our standard routine is this:

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)
REAL ax,bx,cx,fa,fb,fc,func,GOLD,GLIMIT,TINY
EXTERNAL func
PARAMETER (GOLD=1.618034, GLIMIT=100., TINY=1.e-20)

Given a function func, and given distinct initial points ax and bx, this routine searches
in the downhill direction (defined by the function as evaluated at the initial points) and
returns new points ax, bx, cx that bracket a minimum of the function. Also returned are
the function values at the three points, fa, fb, and fc.
Parameters: GOLD is the default ratio by which successive intervals are magnified; GLIMIT
is the maximum magnification allowed for a parabolic-fit step.

REAL dum,fu,q,r,u,ulim
fa=func(ax)
fb=func(bx)
if(fb.gt.fa)then Switch roles of a and b so that we can go downhill in the

direction from a to b.dum=ax
ax=bx
bx=dum
dum=fb
fb=fa
fa=dum

endif
cx=bx+GOLD*(bx-ax) First guess for c.
fc=func(cx)

1 if(fb.ge.fc)then “do while”: keep returning here until we bracket.
r=(bx-ax)*(fb-fc) Compute u by parabolic extrapolation from a, b, c. TINY

is used to prevent any possible division by zero.q=(bx-cx)*(fb-fa)
u=bx-((bx-cx)*q-(bx-ax)*r)/(2.*sign(max(abs(q-r),TINY),q-r))
ulim=bx+GLIMIT*(cx-bx) We won’t go farther than this. Test various possibilities:
if((bx-u)*(u-cx).gt.0.)then Parabolic u is between b and c: try it.

fu=func(u)

394 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(fu.lt.fc)then Got a minimum between b and c.
ax=bx
fa=fb
bx=u
fb=fu
return

else if(fu.gt.fb)then Got a minimum between between a and u.
cx=u
fc=fu
return

endif
u=cx+GOLD*(cx-bx) Parabolic fit was no use. Use default magnification.
fu=func(u)

else if((cx-u)*(u-ulim).gt.0.)then Parabolic fit is between c and its allowed
limit.fu=func(u)

if(fu.lt.fc)then
bx=cx
cx=u
u=cx+GOLD*(cx-bx)
fb=fc
fc=fu
fu=func(u)

endif
else if((u-ulim)*(ulim-cx).ge.0.)then Limit parabolic u to maximum allowed

value.u=ulim
fu=func(u)

else Reject parabolic u, use default magnification.
u=cx+GOLD*(cx-bx)
fu=func(u)

endif
ax=bx Eliminate oldest point and continue.
bx=cx
cx=u
fa=fb
fb=fc
fc=fu
goto 1

endif
return
END

(Because of thehousekeeping involved in moving around three or four points and
their function values, the above program ends up looking deceptively formidable.
That is true of several other programs in this chapter as well. The underlying ideas,
however, are quite simple.)

Routine for Golden Section Search

FUNCTION golden(ax,bx,cx,f,tol,xmin)
REAL golden,ax,bx,cx,tol,xmin,f,R,C
EXTERNAL f
PARAMETER (R=.61803399,C=1.-R)

Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine performs
a golden section search for the minimum, isolating it to a fractional precision of about
tol. The abscissa of the minimum is returned as xmin, and the minimum function value
is returned as golden, the returned function value.
Parameters: The golden ratios.

REAL f1,f2,x0,x1,x2,x3
x0=ax At any given time we will keep track of four points, x0,x1,x2,x3.

10.2 Parabolic Interpolation and Brent’s Method 395

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

x3=cx
if(abs(cx-bx).gt.abs(bx-ax))then Make x0 to x1 the smaller segment,

x1=bx
x2=bx+C*(cx-bx) and fill in the new point to be tried.

else
x2=bx
x1=bx-C*(bx-ax)

endif
f1=f(x1) The initial function evaluations. Note that we never need to

evaluate the function at the original endpoints.f2=f(x2)
1 if(abs(x3-x0).gt.tol*(abs(x1)+abs(x2)))then Do-while loop: we keep returning here.

if(f2.lt.f1)then One possible outcome,
x0=x1 its housekeeping,
x1=x2
x2=R*x1+C*x3
f1=f2
f2=f(x2) and a new function evaluation.

else The other outcome,
x3=x2
x2=x1
x1=R*x2+C*x0
f2=f1
f1=f(x1) and its new function evaluation.

endif
goto 1 Back to see if we are done.
endif
if(f1.lt.f2)then We are done. Output the best of the two current values.

golden=f1
xmin=x1

else
golden=f2
xmin=x2

endif
return
END

10.2 Parabolic Interpolation and Brent’s
Method in One Dimension

We already tipped our hand about the desirability of parabolic interpolation in
the previous section’smnbrak routine, but it is now time to be more explicit. A
golden section search is designed to handle, in effect, the worst possible case of
function minimization, with the uncooperative minimum hunted down and cornered
like a scared rabbit. But why assume the worst? If the function is nicely parabolic
near to the minimum — surely the generic case for sufficiently smooth functions —
then the parabola fitted through any three points ought to take us in a single leap
to the minimum, or at least very near to it (see Figure 10.2.1). Since we want to
find an abscissa rather than an ordinate, the procedure is technically calledinverse
parabolic interpolation.

The formula for the abscissax that is the minimum of a parabola through three
points f(a), f(b), and f(c) is

x = b− 1

2

(b − a)2[f(b) − f(c)] − (b − c)2[f(b) − f(a)]

(b− a)[f(b) − f(c)] − (b − c)[f(b) − f(a)]
(10.2.1)

10.2 Parabolic Interpolation and Brent’s Method 395

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

x3=cx
if(abs(cx-bx).gt.abs(bx-ax))then Make x0 to x1 the smaller segment,

x1=bx
x2=bx+C*(cx-bx) and fill in the new point to be tried.

else
x2=bx
x1=bx-C*(bx-ax)

endif
f1=f(x1) The initial function evaluations. Note that we never need to

evaluate the function at the original endpoints.f2=f(x2)
1 if(abs(x3-x0).gt.tol*(abs(x1)+abs(x2)))then Do-while loop: we keep returning here.

if(f2.lt.f1)then One possible outcome,
x0=x1 its housekeeping,
x1=x2
x2=R*x1+C*x3
f1=f2
f2=f(x2) and a new function evaluation.

else The other outcome,
x3=x2
x2=x1
x1=R*x2+C*x0
f2=f1
f1=f(x1) and its new function evaluation.

endif
goto 1 Back to see if we are done.
endif
if(f1.lt.f2)then We are done. Output the best of the two current values.

golden=f1
xmin=x1

else
golden=f2
xmin=x2

endif
return
END

10.2 Parabolic Interpolation and Brent’s
Method in One Dimension

We already tipped our hand about the desirability of parabolic interpolation in
the previous section’smnbrak routine, but it is now time to be more explicit. A
golden section search is designed to handle, in effect, the worst possible case of
function minimization, with the uncooperative minimum hunted down and cornered
like a scared rabbit. But why assume the worst? If the function is nicely parabolic
near to the minimum — surely the generic case for sufficiently smooth functions —
then the parabola fitted through any three points ought to take us in a single leap
to the minimum, or at least very near to it (see Figure 10.2.1). Since we want to
find an abscissa rather than an ordinate, the procedure is technically calledinverse
parabolic interpolation.

The formula for the abscissax that is the minimum of a parabola through three
points f(a), f(b), and f(c) is

x = b−
1

2

(b − a)2[f(b) − f(c)] − (b − c)2[f(b) − f(a)]

(b− a)[f(b) − f(c)] − (b − c)[f(b) − f(a)]
(10.2.1)

396 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

1

4

2

3

parabola through1 2 3

parabola through1 2 4

5

Figure 10.2.1. Convergence to a minimum by inverse parabolic interpolation. A parabola (dashed line) is
drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated
at the parabola’s minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through
points 1,4,2. The minimum of this parabola is at 5, which is close to the minimum of the function.

as you can easily derive. This formula fails only if the three points are collinear,
in which case the denominator is zero (minimum of the parabola is infinitely far
away). Note, however, that (10.2.1) is as happy jumping to a parabolic maximum
as to a minimum. No minimization scheme that depends solely on (10.2.1) is likely
to succeed in practice.

The exacting task is to invent a scheme that relies on a sure-but-slow technique,
like golden section search, when the function is not cooperative, but that switches
over to (10.2.1) when the function allows. The task is nontrivial for several
reasons, including these: (i) The housekeeping needed to avoid unnecessary function
evaluations in switching between the two methods can be complicated. (ii) Careful
attention must be given to the “endgame,” where the function is being evaluated
very near to the roundoff limit of equation (10.1.2). (iii) The scheme for detecting a
cooperative versus noncooperative function must be very robust.

Brent’s method[1] is up to the task in all particulars. At any particular stage,
it is keeping track of six function points (not necessarily all distinct),a, b, u, v,
w andx, defined as follows: the minimum is bracketed betweena andb; x is the
point with the very least function value found so far (or the most recent one in
case of a tie);w is the point with the second least function value;v is the previous
value ofw; u is the point at which the function was evaluated most recently. Also
appearing in the algorithm is the pointxm, the midpoint betweena andb; however,
the function is not evaluated there.

You can read the code below to understand the method’s logical organization.
Mention of a few general principles here may, however, be helpful: Parabolic
interpolation is attempted, fitting through the pointsx, v, andw. To be acceptable,
the parabolic step must (i) fall within the bounding interval(a, b), and (ii) imply a
movement from the best current valuex that islessthan half the movement of the
step before last. This second criterion insures that the parabolic steps are actually

10.2 Parabolic Interpolation and Brent’s Method 397

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

converging to something, rather than, say, bouncing around in some nonconvergent
limit cycle. In the worst possible case, where the parabolic steps areacceptable but
useless, the method will approximately alternate between parabolic steps and golden
sections, converging in due course by virtue of the latter. The reason for comparing
to the stepbeforelast seems essentially heuristic: Experience shows that it is better
not to “punish” the algorithm for a single bad step if it can make it up on the next one.

Another principle exemplified in the code is never to evaluate the function less
than a distancetol from a point already evaluated (or from a known bracketing
point). The reason is that, as we saw in equation (10.1.2), there is simply no
information content in doing so: the function will differ from the value already
evaluated only by an amount of order the roundoff error. Therefore in the code below
you will find several tests and modifications of a potential new point, imposing this
restriction. This restriction also interacts subtly with the test for “doneness,” which
the method takes into account.

A typical ending configuration for Brent’s method is thata andb are2×x×tol

apart, withx (the best abscissa) at the midpoint ofa andb, and therefore fractionally
accurate to±tol.

Indulge us a final reminder thattol should generally be no smaller than the
square root of your machine’s floating-point precision.

FUNCTION brent(ax,bx,cx,f,tol,xmin)
INTEGER ITMAX
REAL brent,ax,bx,cx,tol,xmin,f,CGOLD,ZEPS
EXTERNAL f
PARAMETER (ITMAX=100,CGOLD=.3819660,ZEPS=1.0e-10)

Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine isolates
the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
the minimum is returned as xmin, and the minimum function value is returned as brent,
the returned function value.
Parameters: Maximum allowed number of iterations; golden ratio; and a small number that
protects against trying to achieve fractional accuracy for a minimum that happens to be
exactly zero.

INTEGER iter
REAL a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm
a=min(ax,cx) a and b must be in ascending order, though the input

abscissas need not be.b=max(ax,cx)
v=bx Initializations...
w=v
x=v
e=0. This will be the distance moved on the step before last.
fx=f(x)
fv=fx
fw=fx
do 11 iter=1,ITMAX Main program loop.

xm=0.5*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.*tol1
if(abs(x-xm).le.(tol2-.5*(b-a))) goto 3 Test for done here.
if(abs(e).gt.tol1) then Construct a trial parabolic fit.

r=(x-w)*(fx-fv)
q=(x-v)*(fx-fw)
p=(x-v)*q-(x-w)*r
q=2.*(q-r)
if(q.gt.0.) p=-p
q=abs(q)
etemp=e
e=d

398 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(abs(p).ge.abs(.5*q*etemp).or.p.le.q*(a-x).or.
* p.ge.q*(b-x)) goto 1

The above conditions determine the acceptability of the parabolic fit. Here it is o.k.:
d=p/q Take the parabolic step.
u=x+d
if(u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(tol1,xm-x)
goto 2 Skip over the golden section step.

endif
1 if(x.ge.xm) then We arrive here for a golden section step, which we take

into the larger of the two segments.e=a-x
else

e=b-x
endif
d=CGOLD*e Take the golden section step.

2 if(abs(d).ge.tol1) then Arrive here with d computed either from parabolic fit, or
else from golden section.u=x+d

else
u=x+sign(tol1,d)

endif
fu=f(u) This is the one function evaluation per iteration,
if(fu.le.fx) then and now we have to decide what to do with our function

evaluation. Housekeeping follows:if(u.ge.x) then
a=x

else
b=x

endif
v=w
fv=fw
w=x
fw=fx
x=u
fx=fu

else
if(u.lt.x) then

a=u
else

b=u
endif
if(fu.le.fw .or. w.eq.x) then

v=w
fv=fw
w=u
fw=fu

else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
v=u
fv=fu

endif
endif Done with housekeeping. Back for another iteration.

enddo 11

pause ’brent exceed maximum iterations’
3 xmin=x Arrive here ready to exit with best values.

brent=fx
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 5. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §8.2.

10.3 One-Dimensional Search with First Derivatives 399

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

10.3 One-Dimensional Search with First
Derivatives

Here we want to accomplish precisely the same goal as in the previous
section, namely to isolate a functional minimum that is bracketed by the triplet of
abscissas(a, b, c), but utilizing an additional capability to compute the function’s
first derivative as well as its value.

In principle, we might simply search for a zero of the derivative, ignoring the
function value information, using a root finder likertflsp or zbrent (§§9.2–9.3).
It doesn’t take long to rejectthat idea: How do we distinguishmaxima from minima?
Where do we go from initial conditions where the derivatives on one or both of
the outer bracketing points indicate that “downhill” is in the directionout of the
bracketed interval?

We don’t want to give up our strategy of maintaining a rigorous bracket on the
minimum at all times. The only way to keep such a bracket is to update it using
function (not derivative) information, with the central point in the bracketing triplet
always that with the lowest function value. Therefore the role of the derivatives can
only be to help us choose new trial points within the bracket.

One school of thought is to “use everything you’ve got”: Compute a polynomial
of relatively high order (cubic or above) that agrees with some number of previous
function and derivative evaluations. For example, there is a unique cubic that agrees
with function and derivative at two points, and one can jump to the interpolated
minimum of that cubic (if there is a minimum within the bracket). Suggested by
Davidon and others, formulas for this tactic are given in[1].

We like to be more conservative than this. Once superlinear convergence sets
in, it hardly matters whether its order is moderately lower or higher. In practical
problems that we have met, most function evaluations are spent in getting globally
close enough to the minimum for superlinear convergence to commence. So we are
more worried about all the funny “stiff” things that high-order polynomials can do
(cf. Figure 3.0.1b), and about their sensitivities to roundoff error.

This leads us to use derivative information only as follows: The sign of the
derivative at the central point of the bracketing triplet(a, b, c) indicates uniquely
whether the next test point should be taken in the interval(a, b) or in the interval
(b, c). The value of this derivative and of the derivative at the second-best-so-far
point are extrapolated to zero by the secant method (inverse linear interpolation),
which by itself is superlinear of order 1.618. (The golden mean again: see[1], p. 57.)
We impose the same sort of restrictions on this new trial point as in Brent’s method.
If the trial point must be rejected, webisectthe interval under scrutiny.

Yes, we are fuddy-duddies when it comes to making flamboyant use of derivative
information in one-dimensional minimization. But we have met too many functions
whose computed “derivatives”don’t integrate up to the function value anddon’t
accurately point the way to the minimum, usually because of roundoff errors,
sometimes because of truncation error in the method of derivative evaluation.

You will see that the following routine is closely modeled onbrent in the
previous section.

10.3 One-Dimensional Search with First Derivatives 399

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

10.3 One-Dimensional Search with First
Derivatives

Here we want to accomplish precisely the same goal as in the previous
section, namely to isolate a functional minimum that is bracketed by the triplet of
abscissas(a, b, c), but utilizing an additional capability to compute the function’s
first derivative as well as its value.

In principle, we might simply search for a zero of the derivative, ignoring the
function value information, using a root finder likertflsp or zbrent (§§9.2–9.3).
It doesn’t take long to rejectthat idea: How do we distinguishmaxima from minima?
Where do we go from initial conditions where the derivatives on one or both of
the outer bracketing points indicate that “downhill” is in the directionout of the
bracketed interval?

We don’t want to give up our strategy of maintaining a rigorous bracket on the
minimum at all times. The only way to keep such a bracket is to update it using
function (not derivative) information, with the central point in the bracketing triplet
always that with the lowest function value. Therefore the role of the derivatives can
only be to help us choose new trial points within the bracket.

One school of thought is to “use everything you’ve got”: Compute a polynomial
of relatively high order (cubic or above) that agrees with some number of previous
function and derivative evaluations. For example, there is a unique cubic that agrees
with function and derivative at two points, and one can jump to the interpolated
minimum of that cubic (if there is a minimum within the bracket). Suggested by
Davidon and others, formulas for this tactic are given in[1].

We like to be more conservative than this. Once superlinear convergence sets
in, it hardly matters whether its order is moderately lower or higher. In practical
problems that we have met, most function evaluations are spent in getting globally
close enough to the minimum for superlinear convergence to commence. So we are
more worried about all the funny “stiff” things that high-order polynomials can do
(cf. Figure 3.0.1b), and about their sensitivities to roundoff error.

This leads us to use derivative information only as follows: The sign of the
derivative at the central point of the bracketing triplet(a, b, c) indicates uniquely
whether the next test point should be taken in the interval(a, b) or in the interval
(b, c). The value of this derivative and of the derivative at the second-best-so-far
point are extrapolated to zero by the secant method (inverse linear interpolation),
which by itself is superlinear of order 1.618. (The golden mean again: see[1], p. 57.)
We impose the same sort of restrictions on this new trial point as in Brent’s method.
If the trial point must be rejected, webisectthe interval under scrutiny.

Yes, we are fuddy-duddies when it comes to making flamboyant use of derivative
information in one-dimensional minimization. But we have met too many functions
whose computed “derivatives”don’t integrate up to the function value anddon’t
accurately point the way to the minimum, usually because of roundoff errors,
sometimes because of truncation error in the method of derivative evaluation.

You will see that the following routine is closely modeled onbrent in the
previous section.

400 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION dbrent(ax,bx,cx,f,df,tol,xmin)
INTEGER ITMAX
REAL dbrent,ax,bx,cx,tol,xmin,df,f,ZEPS
EXTERNAL df,f
PARAMETER (ITMAX=100,ZEPS=1.0e-10)

Given a function f and its derivative function df, and given a bracketing triplet of abscissas
ax, bx, cx [such that bx is between ax and cx, and f(bx) is less than both f(ax) and
f(cx)], this routine isolates the minimum to a fractional precision of about tol using
a modification of Brent’s method that uses derivatives. The abscissa of the minimum is
returned as xmin, and the minimum function value is returned as dbrent, the returned
function value.

INTEGER iter
REAL a,b,d,d1,d2,du,dv,dw,dx,e,fu,fv,fw,fx,olde,tol1,tol2,

* u,u1,u2,v,w,x,xm
Comments following will point out only differences from the routine brent. Read that
routine first.

LOGICAL ok1,ok2 Will be used as flags for whether proposed steps are accept-
able or not.a=min(ax,cx)

b=max(ax,cx)
v=bx
w=v
x=v
e=0.
fx=f(x)
fv=fx
fw=fx
dx=df(x) All our housekeeping chores are doubled by the necessity of

moving derivative values around as well as function val-
ues.

dv=dx
dw=dx
do 11 iter=1,ITMAX

xm=0.5*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.*tol1
if(abs(x-xm).le.(tol2-.5*(b-a))) goto 3
if(abs(e).gt.tol1) then

d1=2.*(b-a) Initialize these d’s to an out-of-bracket value.
d2=d1
if(dw.ne.dx) d1=(w-x)*dx/(dx-dw) Secant method with one point.
if(dv.ne.dx) d2=(v-x)*dx/(dx-dv) And the other.

Which of these two estimates of d shall we take? We will insist that they be within
the bracket, and on the side pointed to by the derivative at x:

u1=x+d1
u2=x+d2
ok1=((a-u1)*(u1-b).gt.0.).and.(dx*d1.le.0.)
ok2=((a-u2)*(u2-b).gt.0.).and.(dx*d2.le.0.)
olde=e Movement on the step before last.
e=d
if(.not.(ok1.or.ok2))then Take only an acceptable d, and if both

are acceptable, then take the small-
est one.

goto 1
else if (ok1.and.ok2)then

if(abs(d1).lt.abs(d2))then
d=d1

else
d=d2

endif
else if (ok1)then

d=d1
else

d=d2
endif
if(abs(d).gt.abs(0.5*olde))goto 1
u=x+d
if(u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(tol1,xm-x)
goto 2

10.3 One-Dimensional Search with First Derivatives 401

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
1 if(dx.ge.0.) then Decide which segment by the sign of the derivative.

e=a-x
else

e=b-x
endif
d=0.5*e Bisect, not golden section.

2 if(abs(d).ge.tol1) then
u=x+d
fu=f(u)

else
u=x+sign(tol1,d)
fu=f(u)
if(fu.gt.fx)goto 3 If the minimum step in the downhill direction takes us uphill,

then we are done.endif
du=df(u) Now all the housekeeping, sigh.
if(fu.le.fx) then

if(u.ge.x) then
a=x

else
b=x

endif
v=w
fv=fw
dv=dw
w=x
fw=fx
dw=dx
x=u
fx=fu
dx=du

else
if(u.lt.x) then

a=u
else

b=u
endif
if(fu.le.fw .or. w.eq.x) then

v=w
fv=fw
dv=dw
w=u
fw=fu
dw=du

else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
v=u
fv=fu
dv=du

endif
endif

enddo 11

pause ’dbrent exceeded maximum iterations’
3 xmin=x

dbrent=fx
return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 55; 454–458. [1]

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), p. 78.

402 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely
self-contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex methodis due to Nelder and Mead[1]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell’s method (§10.5) is
almost surely faster in all likely applications. However, the downhill simplex method
may frequently be thebestmethod to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through:

A simplexis the geometrical figure consisting, inN dimensions, ofN + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron,
not necessarily the regular tetrahedron. (Thesimplex methodof linear programming,
described in§10.8, also makes use of the geometrical concept of a simplex. Otherwise
it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite innerN -dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then theN other points define vector directions that span the
N -dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, anN -vector of independent
variables as the first point to try. The algorithm is then supposed to make its own way
downhill through the unimaginable complexity of anN -dimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point,
but with N + 1 points, defining an initial simplex. If you think of one of these
points (it matters not which) as being your initial starting pointP0, then you can
take the otherN points to be

Pi = P0 + λei (10.4.1)

where theei’s areN unit vectors, and whereλ is a constant which is your guess
of the problem’s characteristic length scale. (Or, you could have different λi’s for
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just
moving the point of the simplex where the function is largest (“highest point”)
through the opposite face of the simplex to a lower point. These steps are called

402 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely
self-contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex methodis due to Nelder and Mead[1]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell’s method (§10.5) is
almost surely faster in all likely applications. However, the downhill simplex method
may frequently be thebestmethod to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through:

A simplexis the geometrical figure consisting, inN dimensions, ofN + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron,
not necessarily the regular tetrahedron. (Thesimplex methodof linear programming,
described in§10.8, also makes use of the geometrical concept of a simplex. Otherwise
it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite innerN -dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then theN other points define vector directions that span the
N -dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, anN -vector of independent
variables as the first point to try. The algorithm is then supposed to make its own way
downhill through the unimaginable complexity of anN -dimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point,
but with N + 1 points, defining an initial simplex. If you think of one of these
points (it matters not which) as being your initial starting pointP0, then you can
take the otherN points to be

Pi = P0 + λei (10.4.1)

where theei’s areN unit vectors, and whereλ is a constant which is your guess
of the problem’s characteristic length scale. (Or, you could have different λi’s for
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just
moving the point of the simplex where the function is largest (“highest point”)
through the opposite face of the simplex to a lower point. These steps are called

10.4 Downhill Simplex Method in Multidimensions 403

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

simplex at beginning of step

reflection

reflection and expansion

contraction

multiple
contraction

(a)

(b)

(c)

(d)

high
low

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplexat the
beginning of the step, here a tetrahedron, is shown, top. The simplex at the end of the step can beany one
of (a) a reflection away from the high point, (b) a reflection and expansion away from the high point, (c) a
contraction along one dimension from the high point, or (d) a contraction along all dimensionstowards
the low point. An appropriate sequence of such steps will always converge to a minimum of the function.

reflections, and they are constructed to conserve the volume of the simplex (hence
maintain its nondegeneracy). When it can do so, the method expands the simplex
in one or another direction to take larger steps. When it reaches a “valley floor,”
the method contracts itself in the transverse direction and tries to ooze down the
valley. If there is a situation where the simplex is trying to “pass through the eye
of a needle,” it contracts itself in all directions, pulling itself in around its lowest
(best) point. The routine nameamoeba is intended to be descriptive of this kind of
behavior; the basic moves are summarized in Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimization
routine. Without bracketing, and with more than one independent variable, we
no longer have the option of requiring a certain tolerance for a single independent

404 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

variable. We typically can identify one “cycle” or “step” of our multidimensional
algorithm. It is then possible to terminate when the vector distance moved in that
step is fractionally smaller in magnitude than some tolerancetol. Alternatively,
we could require that the decrease in the function value in the terminating step be
fractionally smaller than some toleranceftol. Note that whiletol should not
usually be smaller than the square root of the machine precision, it is perfectly
appropriate to letftol be of order the machine precision (or perhaps slightly larger
so as not to be diddled by roundoff).

Note well that either of the above criteria might be fooled by a single anomalous
step that, for one reason or another, failed to get anywhere. Therefore, it is frequently
a good idea torestart a multidimensional minimization routine at a point where
it claims to have found a minimum. For this restart, you should reinitialize any
ancillary input quantities. In the downhill simplex method, for example, you should
reinitializeN of theN + 1 vertices of the simplex again by equation (10.4.1), with
P0 being one of the vertices of the claimed minimum.

Restarts should never be very expensive; your algorithm did, after all, converge
to the restart point once, and now you are starting the algorithm already there.

Consider, then, ourN -dimensional amoeba:

SUBROUTINE amoeba(p,y,mp,np,ndim,ftol,funk,iter)
INTEGER iter,mp,ndim,np,NMAX,ITMAX
REAL ftol,p(mp,np),y(mp),funk,TINY
PARAMETER (NMAX=20,ITMAX=5000,TINY=1.e-10) Maximum allowed dimensions and func-

tion evaluations, and a small num-
ber.

EXTERNAL funk
C USES amotry,funk

Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector
in ndim dimensions, by the downhill simplex method of Nelder and Mead. The matrix
p(1:ndim+1,1:ndim) is input. Its ndim+1 rows are ndim-dimensional vectors which are
the vertices of the starting simplex. Also input is the vector y(1:ndim+1), whose compo-
nents must be pre-initialized to the values of funk evaluated at the ndim+1 vertices (rows)
of p; and ftol the fractional convergence tolerance to be achieved in the function value
(n.b.!). On output, p and y will have been reset to ndim+1 new points all within ftol of
a minimum function value, and iter gives the number of function evaluations taken.

INTEGER i,ihi,ilo,inhi,j,m,n
REAL rtol,sum,swap,ysave,ytry,psum(NMAX),amotry
iter=0

1 do 12 n=1,ndim Enter here when starting or have just overall contracted.
sum=0. Recompute psum.
do 11 m=1,ndim+1

sum=sum+p(m,n)
enddo 11

psum(n)=sum
enddo 12

2 ilo=1 Enter here when have just changed a single point.
if (y(1).gt.y(2)) then Determine which point is the highest (worst), next-highest,

and lowest (best),ihi=1
inhi=2

else
ihi=2
inhi=1

endif
do 13 i=1,ndim+1 by looping over the points in the simplex.

if(y(i).le.y(ilo)) ilo=i
if(y(i).gt.y(ihi)) then

inhi=ihi
ihi=i

else if(y(i).gt.y(inhi)) then
if(i.ne.ihi) inhi=i

10.4 Downhill Simplex Method in Multidimensions 405

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
enddo 13

rtol=2.*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo))+TINY)
Compute the fractional range from highest to lowest and return if satisfactory.

if (rtol.lt.ftol) then If returning, put best point and value in slot 1.
swap=y(1)
y(1)=y(ilo)
y(ilo)=swap
do 14 n=1,ndim

swap=p(1,n)
p(1,n)=p(ilo,n)
p(ilo,n)=swap

enddo 14

return
endif
if (iter.ge.ITMAX) pause ’ITMAX exceeded in amoeba’
iter=iter+2

Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex across
from the high point, i.e., reflect the simplex from the high point.

ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,-1.0)
if (ytry.le.y(ilo)) then

Gives a result better than the best point, so try an additional extrapolation by a factor 2.
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,2.0)

else if (ytry.ge.y(inhi)) then
The reflected point is worse than the second-highest, so look for an intermediate lower point,
i.e., do a one-dimensional contraction.
ysave=y(ihi)
ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,0.5)
if (ytry.ge.ysave) then Can’t seem to get rid of that high point. Better contract

around the lowest (best) point.do 16 i=1,ndim+1
if(i.ne.ilo)then

do 15 j=1,ndim
psum(j)=0.5*(p(i,j)+p(ilo,j))
p(i,j)=psum(j)

enddo 15

y(i)=funk(psum)
endif

enddo 16

iter=iter+ndim Keep track of function evaluations.
goto 1 Go back for the test of doneness and the next iteration.

endif
else

iter=iter-1 Correct the evaluation count.
endif
goto 2
END

FUNCTION amotry(p,y,psum,mp,np,ndim,funk,ihi,fac)
INTEGER ihi,mp,ndim,np,NMAX
REAL amotry,fac,p(mp,np),psum(np),y(mp),funk
PARAMETER (NMAX=20)
EXTERNAL funk

C USES funk
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

INTEGER j
REAL fac1,fac2,ytry,ptry(NMAX)
fac1=(1.-fac)/ndim
fac2=fac1-fac
do 11 j=1,ndim

ptry(j)=psum(j)*fac1-p(ihi,j)*fac2
enddo 11

406 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ytry=funk(ptry) Evaluate the function at the trial point.
if (ytry.lt.y(ihi)) then If it’s better than the highest, then replace the highest.

y(ihi)=ytry
do 12 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)
p(ihi,j)=ptry(j)

enddo 12

endif
amotry=ytry
return
END

CITED REFERENCES AND FURTHER READING:

Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308–313. [1]

Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391–398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’s) Methods in
Multidimensions

We know (§10.1–§10.3) how to minimize a function of one variable. If we
start at a pointP in N -dimensional space, and proceed from there in some vector
directionn, then any function ofN variablesf(P) can be minimized along the line
n by our one-dimensional methods. One can dream up various multidimensional
minimization methods that consist of sequences of such lineminimizations. Different
methods will differ only by how, ateach stage, they choose the next directionn to
try. All such methods presume the existence of a “black-box” sub-algorithm, which
we might calllinmin (given as an explicit routine at the end of this section), whose
definition can be taken for now as

linmin: Given as input the vectorsP andn, and the
functionf , find the scalarλ that minimizesf(P+λn).
ReplaceP by P + λn. Replacen by λn. Done.

All the minimization methods in this section and in the two sections following
fall under this general schema of successive line minimizations. (The algorithm
in §10.7 does not need very accurate line minimizations. Accordingly, it has its
own approximate line minimization routine,lnsrch.) In this section we consider
a class of methods whose choice of successive directions does not involve explicit
computation of the function’s gradient; the next two sections do require such gradient
calculations. You will note that we need not specify whetherlinmin uses gradient
information or not. That choice is up to you, and its optimization depends on your
particular function. You would be crazy, however, to use gradients inlinmin and
not use them in the choice of directions, since in this latter role they can drastically
reduce the total computational burden.

406 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ytry=funk(ptry) Evaluate the function at the trial point.
if (ytry.lt.y(ihi)) then If it’s better than the highest, then replace the highest.

y(ihi)=ytry
do 12 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)
p(ihi,j)=ptry(j)

enddo 12

endif
amotry=ytry
return
END

CITED REFERENCES AND FURTHER READING:

Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308–313. [1]

Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391–398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’s) Methods in
Multidimensions

We know (§10.1–§10.3) how to minimize a function of one variable. If we
start at a pointP in N -dimensional space, and proceed from there in some vector
directionn, then any function ofN variablesf(P) can be minimized along the line
n by our one-dimensional methods. One can dream up various multidimensional
minimization methods that consist of sequences of such lineminimizations. Different
methods will differ only by how, ateach stage, they choose the next directionn to
try. All such methods presume the existence of a “black-box” sub-algorithm, which
we might calllinmin (given as an explicit routine at the end of this section), whose
definition can be taken for now as

linmin: Given as input the vectorsP andn, and the
functionf , find the scalarλ that minimizesf(P+λn).
ReplaceP by P + λn. Replacen by λn. Done.

All the minimization methods in this section and in the two sections following
fall under this general schema of successive line minimizations. (The algorithm
in §10.7 does not need very accurate line minimizations. Accordingly, it has its
own approximate line minimization routine,lnsrch.) In this section we consider
a class of methods whose choice of successive directions does not involve explicit
computation of the function’s gradient; the next two sections do require such gradient
calculations. You will note that we need not specify whetherlinmin uses gradient
information or not. That choice is up to you, and its optimization depends on your
particular function. You would be crazy, however, to use gradients inlinmin and
not use them in the choice of directions, since in this latter role they can drastically
reduce the total computational burden.

10.5 Direction Set (Powell’s) Methods in Multidimensions 407

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

start

y

x

Figure 10.5.1. Successive minimizations along coordinate directions in a long, narrow “valley” (shown
as contour lines). Unless the valley is optimally oriented, this method is extremely inefficient, taking
many tiny steps to get to the minimum, crossing and re-crossing the principal axis.

But what if, in your application, calculation of the gradient is out of the question.
You might first think of this simple method: Take the unit vectorse1, e2, . . .eN as
a set of directions. Usinglinmin, move along the first direction to its minimum,
then from therealong the second direction toits minimum, and so on, cycling
through the whole set of directions as many times as necessary, until the function
stops decreasing.

This simple method is actually not too bad for many functions. Even more
interesting is why itis bad, i.e. very inefficient, for some other functions. Consider
a function of two dimensions whose contour map (level lines) happens to define a
long, narrow valley at some angle to the coordinate basis vectors (see Figure 10.5.1).
Then the only way “down the length of the valley” going along the basis vectors at
each stage is by a series of many tiny steps. More generally, inN dimensions, if
the function’s second derivatives are much larger in magnitude in some directions
than in others, then many cycles through allN basis vectors will be required in
order to get anywhere. This condition is not all that unusual;according to Murphy’s
Law, you should count on it.

Obviously what we need is a better set of directions than theei’s. All direction
set methodsconsist of prescriptions for updating the set of directions as the method
proceeds, attempting to come up with a set which either (i) includes some very

408 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

good directions that will take us far along narrow valleys, or else (more subtly)
(ii) includes some number of “non-interfering” directions with the special property
that minimization along one is not “spoiled” by subsequent minimization along
another, so that interminable cycling through the set of directions can be avoided.

Conjugate Directions

This concept of “non-interfering” directions, more conventionally calledcon-
jugate directions, is worth making mathematically explicit.

First, note that if we minimize a function along some directionu, then the
gradient of the function must be perpendicular tou at the line minimum; if not, then
there would still be a nonzero directional derivative alongu.

Next take some particular pointP as the origin of the coordinate system with
coordinatesx. Then any functionf can be approximated by its Taylor series

f(x) = f(P) +
∑

i

∂f

∂xi

xi +
1

2

∑

i,j

∂2f

∂xi∂xj

xixj + · · ·

≈ c − b · x +
1

2
x · A · x

(10.5.1)

where

c ≡ f(P) b ≡ −∇f |P [A]ij ≡
∂2f

∂xi∂xj

∣

∣

∣

∣

P
(10.5.2)

The matrixA whose components are the second partial derivative matrix of the
function is called theHessian matrixof the function atP.

In the approximation of (10.5.1), the gradient off is easily calculated as

∇f = A · x− b (10.5.3)

(This implies that the gradient will vanish — the function will be at an extremum —
at a value ofx obtained by solvingA · x = b. This idea we will return to in§10.7!)

How does the gradient∇f changeas we move along some direction? Evidently

δ(∇f) = A · (δx) (10.5.4)

Suppose that we have moved along some directionu to a minimum and now
propose to move along some new directionv. The condition that motion alongv not
spoilour minimization alongu is just that the gradient stay perpendicular tou, i.e.,
that the change in the gradient be perpendicular tou. By equation (10.5.4) this is just

0 = u · δ(∇f) = u · A · v (10.5.5)

When (10.5.5) holds for two vectorsu and v, they are said to beconjugate.
When the relation holds pairwise for all members of a set of vectors, theyare said
to be a conjugate set. If you do successive line minimization of a function along
a conjugate set of directions, then you don’t need to redo any of those directions

10.5 Direction Set (Powell’s) Methods in Multidimensions 409

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(unless, of course, you spoil things by minimizing along a direction that they are
not conjugate to).

A triumph for a direction set method is to come up with a set ofN linearly
independent, mutually conjugate directions. Then, one pass ofN line minimizations
will put it exactly at the minimum of a quadratic form like (10.5.1). For functions
f that are not exactly quadratic forms, it won’t be exactly at the minimum; but
repeated cycles ofN line minimizations will in due course convergequadratically
to the minimum.

Powell’s Quadratically Convergent Method

Powell first discovered a direction set method that does produceN mutually
conjugate directions. Here is how it goes: Initialize the set of directionsui to
the basis vectors,

ui = ei i = 1, . . . , N (10.5.6)

Now repeat the following sequence of steps (“basic procedure”) until your function
stops decreasing:

• Save your starting position asP0.
• For i = 1, . . . , N , move Pi−1 to the minimum along directionui and

call this point Pi.
• For i = 1, . . . , N − 1, setui ← ui+1.
• Set uN ← PN − P0.
• MovePN to the minimum along directionuN and call this pointP0.

Powell, in 1964, showed that, for a quadratic form like (10.5.1),k iterations
of the above basic procedure produce a set of directionsui whose lastk members
are mutually conjugate. Therefore,N iterations of the basic procedure, amounting
to N(N + 1) line minimizations in all, will exactly minimize a quadratic form.
Brent[1] gives proofs of these statements in accessible form.

Unfortunately, there is a problem with Powell’s quadratically convergent al-
gorithm. The procedure of throwing away, at each stage,u1 in favor of PN − P0

tends to produce sets of directions that “fold up oneach other” and become linearly
dependent. Once this happens, then the procedure finds the minimum of the function
f only over a subspace of the fullN -dimensional case; in other words, it gives the
wrong answer. Therefore, the algorithm must not be used in the form given above.

There are a number of ways to fix up the problem of linear dependence in
Powell’s algorithm, among them:

1. You can reinitialize the set of directionsui to the basis vectorsei after every
N or N + 1 iterations of the basic procedure. This produces a serviceable method,
which we commend to you if quadratic convergence is important for your application
(i.e., if your functions are close to quadratic forms and if you desire highaccuracy).

2. Brent points out that the set of directions can equally well be reset to
the columns of any orthogonal matrix. Rather than throw away the information
on conjugate directions already built up, he resets the direction set to calculated
principal directions of the matrixA (which he gives a procedure for determining).

410 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The calculation is essentially a singular value decomposition algorithm (see§2.6).
Brent has a number of other cute tricks up his sleeve, and his modification of
Powell’s method is probably the best presently known. Consult[1] for a detailed
description and listing of the program. Unfortunately it is rather too elaborate for
us to include here.

3. You can give up the property of quadratic convergence in favor of a more
heuristic scheme (due to Powell) which tries to find a few good directions along
narrow valleys instead ofN necessarily conjugate directions. This is the method
that we now implement. (It is also the version of Powell’s method given in Acton[2],
from which parts of the following discussion are drawn.)

Discarding the Direction of Largest Decrease

The fox and the grapes: Now that we are going to give up the property of
quadratic convergence, was it so important after all? That depends on the function
that you are minimizing. Some applications produce functions with long, twisty
valleys. Quadratic convergence is of no particular advantage to a program which
must slalom down the length of a valley floor that twists one way and another (and
another, and another,. . . – there areN dimensions!). Along the long direction,
a quadratically convergent method is trying to extrapolate to the minimum of a
parabola which just isn’t (yet) there; while the conjugacy of theN − 1 transverse
directions keeps getting spoiled by the twists.

Sooner or later, however, we do arrive at an approximately ellipsoidal minimum
(cf. equation 10.5.1 whenb, the gradient, is zero). Then, depending on how much
accuracy we require, a method with quadratic convergence can save us several times
N2 extra line minimizations, since quadratic convergencedoublesthe number of
significant figures at each iteration.

The basic idea of our now-modified Powell’s method is still to takePN −P0 as
a new direction; it is, after all, the average direction moved after trying allN possible
directions. For a valley whose long direction is twisting slowly, this direction is
likely to give us a good run along the new long direction. The change is to discard
the old direction along which the functionf made itslargest decrease. This seems
paradoxical, since that direction was thebestof the previous iteration. However, it
is also likely to be a major component of the new direction that we are adding, so
dropping it gives us the best chance of avoiding a buildup of linear dependence.

There are a couple of exceptions to this basic idea. Sometimes it is betternot
to add a new direction at all. Define

f0 ≡ f(P0) fN ≡ f(PN) fE ≡ f(2PN − P0) (10.5.7)

Here fE is the function value at an “extrapolated” point somewhat further along
the proposed new direction. Also define∆f to be the magnitude of the largest
decrease along one particular direction of the present basic procedure iteration. (∆f

is a positive number.) Then:
1. If fE ≥ f0, then keep the old set of directions for the next basic procedure,

because the average directionPN − P0 is all played out.
2. If 2 (f0−2fN +fE) [(f0−fN)−∆f]2 ≥ (f0−fE)2∆f , then keep the old

set of directions for the next basic procedure, because either (i) the decrease along

10.5 Direction Set (Powell’s) Methods in Multidimensions 411

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the average direction was not primarily due to any single direction’s decrease, or
(ii) there is a substantial second derivative along the average direction and we seem
to be near to the bottom of its minimum.

The followingroutine implements Powell’s method in the version just described.
In the routine,xi is the matrix whose columns are the set of directionsni; otherwise
the correspondence of notation should be self-evident.

SUBROUTINE powell(p,xi,n,np,ftol,iter,fret)
INTEGER iter,n,np,NMAX,ITMAX
REAL fret,ftol,p(np),xi(np,np),func,TINY
EXTERNAL func
PARAMETER (NMAX=20,ITMAX=200,TINY=1.e-25)

C USES func,linmin
Minimization of a function func of n variables. (func is not an argument, it is a fixed func-
tion name.) Input consists of an initial starting point p(1:n); an initial matrix xi(1:n,1:n)
with physical dimensions np by np, and whose columns contain the initial set of directions
(usually the n unit vectors); and ftol, the fractional tolerance in the function value such
that failure to decrease by more than this amount on one iteration signals doneness. On
output, p is set to the best point found, xi is the then-current direction set, fret is the
returned function value at p, and iter is the number of iterations taken. The routine
linmin is used.
Parameters: Maximum value of n, maximum allowed iterations, and a small number.

INTEGER i,ibig,j
REAL del,fp,fptt,t,pt(NMAX),ptt(NMAX),xit(NMAX)
fret=func(p)
do 11 j=1,n Save the initial point.

pt(j)=p(j)
enddo 11

iter=0
1 iter=iter+1

fp=fret
ibig=0
del=0. Will be the biggest function decrease.
do 13 i=1,n In each iteration, loop over all directions in the set.

do 12 j=1,n Copy the direction,
xit(j)=xi(j,i)

enddo 12

fptt=fret
call linmin(p,xit,n,fret) minimize along it,
if(fptt-fret.gt.del)then and record it if it is the largest decrease so far.

del=fptt-fret
ibig=i

endif
enddo 13

if(2.*(fp-fret).le.ftol*(abs(fp)+abs(fret))+TINY)return Termination criterion.
if(iter.eq.ITMAX) pause ’powell exceeding maximum iterations’
do 14 j=1,n Construct the extrapolated point and the average di-

rection moved. Save the old starting point.ptt(j)=2.*p(j)-pt(j)
xit(j)=p(j)-pt(j)
pt(j)=p(j)

enddo 14

fptt=func(ptt) Function value at extrapolated point.
if(fptt.ge.fp)goto 1 One reason not to use new direction.
t=2.*(fp-2.*fret+fptt)*(fp-fret-del)**2-del*(fp-fptt)**2
if(t.ge.0.)goto 1 Other reason not to use new direction.
call linmin(p,xit,n,fret) Move to the minimum of the new direction,
do 15 j=1,n and save the new direction.

xi(j,ibig)=xi(j,n)
xi(j,n)=xit(j)

enddo 15

goto 1 Back for another iteration.
END

412 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Implementation of Line Minimization

In the above routine, you might have wondered why we didn’t make the function
namefunc an argument of the routine. The reason is buried in a slightly dirty
FORTRAN practicality in our implementation oflinmin.

Make no mistake, there is aright way to implementlinmin: It is to use
the methodsof one-dimensional minimization described in§10.1–§10.3, but to
rewrite the programs of those sections so that their bookkeeping is done on vector-
valued pointsP (all lying along a given directionn) rather than scalar-valued
abscissasx. That straightforward task produces long routines densely populated
with “do k=1,n” loops.

We do not have space to include such routines in this book. Ourlinmin, which
works just fine, is instead a kind of bookkeeping swindle. It constructs an “artificial”
function of one variable calledf1dim, which is the value of your functionfunc
along the line going through the pointp in the directionxi. linmin communicates
with f1dim through a common block. It then calls our familiar one-dimensional
routinesmnbrak (§10.1) andbrent (§10.2) and instructs them to minimizef1dim.

Still following? Then try this:brent receives the function namef1dim, which
it dutifully calls. But there is no way to signal tof1dim that it is supposed to use your
function name, which could have been passed tolinmin as an argument. Therefore,
we have to makef1dim use afixed function name, namelyfunc. The situation is
reminiscent of Henry Ford’s black automobile:powell will minimize any function,
as long as it is namedfunc. Needed to remedy this situation is a way to pass a
function name through a common block; this is lacking inFORTRAN.

The only thing inefficient aboutlinmin is this: Its use as an interface between a
multidimensional minimization strategy and a one-dimensional minimization routine
results in some unnecessary copying of vectors hither and yon. That should not
normally be a significant addition to the overall computational burden, but we cannot
disguise its inelegance.

SUBROUTINE linmin(p,xi,n,fret)
INTEGER n,NMAX
REAL fret,p(n),xi(n),TOL
PARAMETER (NMAX=50,TOL=1.e-4) Maximum anticipated n, and TOL passed to brent.

C USES brent,f1dim,mnbrak
Given an n-dimensional point p(1:n) and an n-dimensional direction xi(1:n), moves and
resets p to where the function func(p) takes on a minimum along the direction xi from
p, and replaces xi by the actual vector displacement that p was moved. Also returns as
fret the value of func at the returned location p. This is actually all accomplished by
calling the routines mnbrak and brent.

INTEGER j,ncom
REAL ax,bx,fa,fb,fx,xmin,xx,pcom(NMAX),xicom(NMAX),brent
COMMON /f1com/ pcom,xicom,ncom
EXTERNAL f1dim
ncom=n Set up the common block.
do 11 j=1,n

pcom(j)=p(j)
xicom(j)=xi(j)

enddo 11

ax=0. Initial guess for brackets.
xx=1.
call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)
fret=brent(ax,xx,bx,f1dim,TOL,xmin)
do 12 j=1,n Construct the vector results to return.

10.6 Conjugate Gradient Methods in Multidimensions 413

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

xi(j)=xmin*xi(j)
p(j)=p(j)+xi(j)

enddo 12

return
END

FUNCTION f1dim(x)
INTEGER NMAX
REAL f1dim,func,x
PARAMETER (NMAX=50)

C USES func
Used by linmin as the function passed to mnbrak and brent.

INTEGER j,ncom
REAL pcom(NMAX),xicom(NMAX),xt(NMAX)
COMMON /f1com/ pcom,xicom,ncom
do 11 j=1,ncom

xt(j)=pcom(j)+x*xicom(j)
enddo 11

f1dim=func(xt)
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 7. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 464–467. [2]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), pp. 259–262.

10.6 Conjugate Gradient Methods in
Multidimensions

We consider now the case where you are able to calculate, at a givenN -
dimensional pointP, not just the value of a functionf(P) but also the gradient
(vector of first partial derivatives)∇f(P).

A rough counting argument will show how advantageous it is to use the gradient
information: Suppose that the functionf is roughly approximated as a quadratic
form, as above in equation (10.5.1),

f(x) ≈ c − b · x +
1

2
x · A · x (10.6.1)

Then the number of unknown parameters inf is equal to the number of free
parameters inA and b, which is 1

2
N(N + 1), which we see to be of orderN2.

Changing any one of these parameters can move the location of the minimum.
Therefore, we should not expect to be able tofind the minimum until we have
collected an equivalent information content, of orderN2 numbers.

10.6 Conjugate Gradient Methods in Multidimensions 413

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

xi(j)=xmin*xi(j)
p(j)=p(j)+xi(j)

enddo 12

return
END

FUNCTION f1dim(x)
INTEGER NMAX
REAL f1dim,func,x
PARAMETER (NMAX=50)

C USES func
Used by linmin as the function passed to mnbrak and brent.

INTEGER j,ncom
REAL pcom(NMAX),xicom(NMAX),xt(NMAX)
COMMON /f1com/ pcom,xicom,ncom
do 11 j=1,ncom

xt(j)=pcom(j)+x*xicom(j)
enddo 11

f1dim=func(xt)
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 7. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 464–467. [2]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), pp. 259–262.

10.6 Conjugate Gradient Methods in
Multidimensions

We consider now the case where you are able to calculate, at a givenN -
dimensional pointP, not just the value of a functionf(P) but also the gradient
(vector of first partial derivatives)∇f(P).

A rough counting argument will show how advantageous it is to use the gradient
information: Suppose that the functionf is roughly approximated as a quadratic
form, as above in equation (10.5.1),

f(x) ≈ c − b · x +
1

2
x · A · x (10.6.1)

Then the number of unknown parameters inf is equal to the number of free
parameters inA and b, which is 1

2
N(N + 1), which we see to be of orderN2.

Changing any one of these parameters can move the location of the minimum.
Therefore, we should not expect to be able tofind the minimum until we have
collected an equivalent information content, of orderN2 numbers.

414 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In the direction set methods of§10.5, we collected the necessary information by
making on the order ofN2 separate line minimizations, each requiring “a few” (but
sometimes abig few!) function evaluations. Now, each evaluation of the gradient
will bring usN new components of information. If we use them wisely, we should
need to make only of orderN separate line minimizations. That is in fact the case
for the algorithms in this section and the next.

A factor ofN improvement in computational speed is not necessarily implied.
As a rough estimate, we might imagine that the calculation ofeach componentof
the gradient takes about as long as evaluating the function itself. In that case there
will be of orderN2 equivalent function evaluations both with and without gradient
information. Even if the advantage is not of orderN , however, it is nevertheless
quite substantial: (i) Each calculated component of the gradient will typically save
not just one function evaluation, but a number of them, equivalent to, say, a whole
line minimization. (ii) There is often a high degree of redundancy in the formulas
for the various components of a function’s gradient; when this is so, especially when
there is also redundancy with the calculation of the function, then the calculation of
the gradient may cost significantly less thanN function evaluations.

A common beginner’s error is to assume that any reasonable way of incorporat-
ing gradient information should be about as good as any other. This line of thought
leads to the followingnot very goodalgorithm, thesteepest descent method:

Steepest Descent: Start at a pointP0. As many times
as needed, move from pointPi to the pointPi+1 by
minimizing along the line fromPi in the direction of
the local downhill gradient−∇f(Pi).

The problem with the steepest descent method (which, incidentally, goesback
to Cauchy), is similar to the problem that was shown in Figure 10.5.1. The method
will perform many small steps in going down a long, narrow valley, even if the valley
is a perfect quadratic form. You might have hoped that, say in two dimensions,
your first step would take you to the valley floor, the second step directly down
the long axis; but remember that the new gradient at the minimum point of any
line minimization is perpendicular to the direction just traversed. Therefore, with
the steepest descent method, youmustmake a right angle turn, which doesnot, in
general, take you to the minimum. (See Figure 10.6.1.)

Just as in the discussion that led up to equation (10.5.5), we really want a
way of proceeding not down the new gradient, but rather in a directionthat is
somehow constructed to beconjugateto the old gradient, and, insofar as possible,
to all previous directions traversed. Methods thataccomplish this construction are
called conjugate gradientmethods.

In §2.7 we discussed the conjugate gradient method as a technique for solving
linear algebraic equations by minimizing a quadratic form. That formalism can also
be applied to the problem of minimizing a functionapproximatedby the quadratic
form (10.6.1). Recall that, starting with an arbitrary initial vector g0 and letting
h0 = g0, the conjugate gradient method constructs two sequences of vectors from
the recurrence

gi+1 = gi − λiA · hi hi+1 = gi+1 + γihi i = 0, 1, 2, . . . (10.6.2)

10.6 Conjugate Gradient Methods in Multidimensions 415

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
(a)

(b)

Figure 10.6.1. (a) Steepest descent method in a long, narrow “valley.” While more efficient than the
strategy of Figure 10.5.1, steepest descent is nonetheless an inefficient strategy, taking many steps to
reach the valley floor. (b) Magnified view of one step: A step starts off in the local gradient direction,
perpendicular to the contour lines, and traverses a straight line until a local minimum is reached, where
the traverse is parallel to the local contour lines.

The vectors satisfy the orthogonality and conjugacy conditions

gi · gj = 0 hi · A · hj = 0 gi · hj = 0 j < i (10.6.3)

The scalarsλi and γi are given by

λi =
gi · gi

hi · A · hi

=
gi · hi

hi · A · hi

(10.6.4)

γi =
gi+1 · gi+1

gi · gi
(10.6.5)

Equations (10.6.2)–(10.6.5) are simply equations (2.7.32)–(2.7.35) for a symmetric
A in a new notation. (A self-contained derivation of these results in the context of
function minimization is given by Polak[1].)

Now suppose that we knew the Hessian matrixA in equation (10.6.1). Then
we could use the construction (10.6.2) to find successively conjugate directionshi

along which to line-minimize. AfterN such, we would efficiently have arrived at
the minimum of the quadratic form. But we don’t knowA.

Here is a remarkable theorem to save the day: Suppose we happen to have
gi = −∇f(Pi), for some pointPi, wheref is of the form (10.6.1). Suppose that we
proceed fromPi along the directionhi to the local minimum off located at some
point Pi+1 and then setgi+1 = −∇f(Pi+1). Then, thisgi+1 is the same vector
as would have been constructed by equation (10.6.2). (And we have constructed
it without knowledge ofA!)

Proof: By equation (10.5.3),gi = −A · Pi + b, and

gi+1 = −A · (Pi + λhi) + b = gi − λA · hi (10.6.6)

416 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

with λ chosen to take us to the line minimum. But at the line minimumhi · ∇f =
−hi · gi+1 = 0. This latter condition is easily combined with (10.6.6) to solve for
λ. The result is exactly the expression (10.6.4). But with this value ofλ, (10.6.6)
is the same as (10.6.2), q.e.d.

We have, then, the basis of an algorithm that requires neither knowledge of the
Hessian matrixA, nor even the storage necessary to store such a matrix. A sequence
of directionshi is constructed, using only line minimizations, evaluations of the
gradient vector, and an auxiliary vector to store the latest in the sequence ofg’s.

The algorithm described so far is the original Fletcher-Reeves version of the
conjugate gradient algorithm. Later, Polak and Ribiere introduced one tiny, but
sometimes significant, change. They proposed using the form

γi =
(gi+1 − gi) · gi+1

gi · gi
(10.6.7)

instead of equation (10.6.5). “Wait,” you say, “aren’t they equal by the orthogonality
conditions (10.6.3)?” They are equal for exact quadratic forms. In the real world,
however, your function is not exactly a quadratic form. Arriving at the supposed
minimum of the quadratic form, you may still need to proceed for another set of
iterations. There is some evidence[2] that the Polak-Ribiere formula accomplishes
the transition to further iterations more gracefully: When it runs out of steam, it
tends to reseth to be down the local gradient, which is equivalent to beginning the
conjugate-gradient procedure anew.

The following routine implements the Polak-Ribiere variant, which we recom-
mend; but changing one program line, as shown, will give you Fletcher-Reeves. The
routine presumes the existence of a functionfunc(p), wherep(1:n) is a vector of
lengthn, and also presumes the existence of a subroutinedfunc(p,df) that returns
the vector gradientdf(1:n) evaluated at the input pointp.

The routine callslinmin to do the line minimizations. As already discussed,
you may wish to use a modified version oflinmin that usesdbrent instead of
brent, i.e., that uses the gradient in doing the line minimizations. See note below.

SUBROUTINE frprmn(p,n,ftol,iter,fret)
INTEGER iter,n,NMAX,ITMAX
REAL fret,ftol,p(n),EPS,func
EXTERNAL func
PARAMETER (NMAX=50,ITMAX=200,EPS=1.e-10)

C USES dfunc,func,linmin
Given a starting point p that is a vector of length n, Fletcher-Reeves-Polak-Ribiere minimiza-
tion is performed on a function func, using its gradient as calculated by a routine dfunc.
The convergence tolerance on the function value is input as ftol. Returned quantities are
p (the location of the minimum), iter (the number of iterations that were performed),
and fret (the minimum value of the function). The routine linmin is called to perform
line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; EPS is a small number to rectify special case of converging to exactly
zero function value.

INTEGER its,j
REAL dgg,fp,gam,gg,g(NMAX),h(NMAX),xi(NMAX)
fp=func(p) Initializations.
call dfunc(p,xi)
do 11 j=1,n

g(j)=-xi(j)
h(j)=g(j)

10.6 Conjugate Gradient Methods in Multidimensions 417

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

xi(j)=h(j)
enddo 11

do 14 its=1,ITMAX Loop over iterations.
iter=its
call linmin(p,xi,n,fret) Next statement is the normal return:
if(2.*abs(fret-fp).le.ftol*(abs(fret)+abs(fp)+EPS))return
fp=fret
call dfunc(p,xi)
gg=0.
dgg=0.
do 12 j=1,n

gg=gg+g(j)**2
C dgg=dgg+xi(j)**2 This statement for Fletcher-Reeves.

dgg=dgg+(xi(j)+g(j))*xi(j) This statement for Polak-Ribiere.
enddo 12

if(gg.eq.0.)return Unlikely. If gradient is exactly zero then we are al-
ready done.gam=dgg/gg

do 13 j=1,n
g(j)=-xi(j)
h(j)=g(j)+gam*h(j)
xi(j)=h(j)

enddo 13

enddo 14

pause ’frprmn maximum iterations exceeded’
return
END

Note on Line Minimization Using Derivatives

Kindly reread the last part of§10.5. We here want to do the same thing, but
using derivative information in performing the line minimization.

Rather than reprint the whole routinelinmin just to show one modified
statement, let us just tell you what the change is: The statement

fret=brent(ax,xx,bx,f1dim,tol,xmin)

should be replaced by

fret=dbrent(ax,xx,bx,f1dim,df1dim,tol,xmin)

You must also include the following function, which is analogous tof1dim

as discussed in§10.5. And remember, your function must be namedfunc, and its
gradient calculation must be nameddfunc.

FUNCTION df1dim(x)
INTEGER NMAX
REAL df1dim,x
PARAMETER (NMAX=50)

C USES dfunc
INTEGER j,ncom
REAL df(NMAX),pcom(NMAX),xicom(NMAX),xt(NMAX)
COMMON /f1com/ pcom,xicom,ncom
do 11 j=1,ncom

xt(j)=pcom(j)+x*xicom(j)
enddo 11

call dfunc(xt,df)
df1dim=0.

418 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 12 j=1,ncom
df1dim=df1dim+df(j)*xicom(j)

enddo 12

return
END

CITED REFERENCES AND FURTHER READING:

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), §2.3. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter III.1.7 (by K.W. Brodlie). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§8.7.

10.7 Variable Metric Methods in
Multidimensions

The goal ofvariable metricmethods, which are sometimes calledquasi-Newton
methods, is not different from the goal of conjugate gradient methods: toaccumulate
information from successive line minimizations so thatN such line minimizations
lead to the exact minimum of a quadratic form inN dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods require that you are able to
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it stores
and updates the information that isaccumulated. Instead of requiring intermediate
storage on the order ofN , the number of dimensions, it requires a matrix of size
N ×N . Generally, for any moderateN , this is an entirely trivial disadvantage.

On the other hand, there is not, as far as we know, any overwhelming advantage
that the variable metric methods hold over the conjugate gradient techniques, except
perhaps a historical one. Developed somewhat earlier, and more widely propagated,
the variable metric methods have by now developed a wider constituency of satisfied
users. Likewise, some fancier implementations of variable metric methods (going
beyond the scope of this book, see below) have been developed to a greater level of
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so on.Wetend to use variable metric rather than conjugate gradient,
but we have no reason to urge this habit on you.

Variablemetricmethods come in two main flavors. One is theDavidon-Fletcher-
Powell (DFP)algorithm (sometimes referred to as simplyFletcher-Powell). The
other goes by the nameBroyden-Fletcher-Goldfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues which are outside of our scope[1,2]. However, it has
become generally recognized that, empirically, the BFGS scheme is superior in these
details. We will implement BFGS in this section.

As before, we imagine that our arbitrary functionf(x) can be locally approx-
imated by the quadratic form of equation (10.6.1). We don’t, however, have any

418 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 12 j=1,ncom
df1dim=df1dim+df(j)*xicom(j)

enddo 12

return
END

CITED REFERENCES AND FURTHER READING:

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), §2.3. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter III.1.7 (by K.W. Brodlie). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§8.7.

10.7 Variable Metric Methods in
Multidimensions

The goal ofvariable metricmethods, which are sometimes calledquasi-Newton
methods, is not different from the goal of conjugate gradient methods: toaccumulate
information from successive line minimizations so thatN such line minimizations
lead to the exact minimum of a quadratic form inN dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods require that you are able to
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it stores
and updates the information that isaccumulated. Instead of requiring intermediate
storage on the order ofN , the number of dimensions, it requires a matrix of size
N ×N . Generally, for any moderateN , this is an entirely trivial disadvantage.

On the other hand, there is not, as far as we know, any overwhelming advantage
that the variable metric methods hold over the conjugate gradient techniques, except
perhaps a historical one. Developed somewhat earlier, and more widely propagated,
the variable metric methods have by now developed a wider constituency of satisfied
users. Likewise, some fancier implementations of variable metric methods (going
beyond the scope of this book, see below) have been developed to a greater level of
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so on.Wetend to use variable metric rather than conjugate gradient,
but we have no reason to urge this habit on you.

Variablemetricmethods come in two main flavors. One is theDavidon-Fletcher-
Powell (DFP)algorithm (sometimes referred to as simplyFletcher-Powell). The
other goes by the nameBroyden-Fletcher-Goldfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues which are outside of our scope[1,2]. However, it has
become generally recognized that, empirically, the BFGS scheme is superior in these
details. We will implement BFGS in this section.

As before, we imagine that our arbitrary functionf(x) can be locally approx-
imated by the quadratic form of equation (10.6.1). We don’t, however, have any

10.7 Variable Metric Methods in Multidimensions 419

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

information about the values of the quadratic form’s parametersA and b, except
insofar as we can glean such information from our function evaluations and line
minimizations.

The basic idea of the variable metric method is to build up, iteratively, a good
approximation to the inverse Hessian matrixA−1, that is, to construct a sequence
of matricesHi with the property,

lim
i→∞

Hi = A−1 (10.7.1)

Even better if the limit is achieved afterN iterations instead of∞.
The reason that variable metric methods are sometimes called quasi-Newton

methods can now be explained. Consider finding a minimum by using Newton’s
method to search for a zero of the gradient of the function. Near the current point
xi, we have to second order

f(x) = f(xi) + (x − xi) · ∇f(xi) + 1

2
(x − xi) · A · (x − xi) (10.7.2)

so
∇f(x) = ∇f(xi) + A · (x − xi) (10.7.3)

In Newton’s method we set∇f(x) = 0 to determine the next iteration point:

x − xi = −A−1 · ∇f(xi) (10.7.4)

The left-hand side is the finite step we need take to get to the exact minimum; the
right-hand side is known once we haveaccumulated an accurateH ≈ A−1.

The “quasi” in quasi-Newton is because wedon’t use the actual Hessian matrix
of f , but instead use our current approximation of it. This is oftenbetter than
using the true Hessian. We can understand this paradoxical result by considering the
descent directionsof f at xi. These are the directionsp along whichf decreases:
∇f ·p < 0. For the Newton direction (10.7.4) to be a descent direction, we must have

∇f(xi) · (x − xi) = −(x − xi) · A · (x − xi) < 0 (10.7.5)

that is,A must be positive definite. In general, far from a minimum, we have no
guarantee that the Hessian is positive definite. Taking the actual Newton step with
the real Hessian can move us to points where the function isincreasingin value.
The idea behind quasi-Newton methods is to start with a positive definite, symmetric
approximation toA (usually the unit matrix) and build up the approximatingHi’s
in such a way that the matrixHi remains positive definite and symmetric. Far from
the minimum, this guarantees that we always move in a downhill direction. Close to
the minimum, the updating formula approaches the true Hessian and we enjoy the
quadratic convergence of Newton’s method.

When we are not close enough to the minimum, taking the full Newton step
p even with a positive definiteA need not decrease the function; we may move
too far for the quadratic approximation to be valid. All we are guaranteed is that
initially f decreases as we move in the Newton direction. Once again we can use
the backtracking strategy described in§9.7 to choose a step along thedirection of
the Newton stepp, but not necessarily all the way.

420 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

We won’t rigorously derive the DFP algorithm for takingHi into Hi+1; you
can consult[3] for clear derivations. Following Brodlie (in[2]), we will give the
following heuristic motivation of the procedure.

Subtracting equation (10.7.4) atxi+1 from that same equation atxi gives

xi+1 − xi = A−1 · (∇fi+1 −∇fi) (10.7.6)

where∇fj ≡ ∇f(xj). Having made the step fromxi to xi+1, we might reasonably
want to require that the new approximationHi+1 satisfy (10.7.6) as if it were
actually A−1, that is,

xi+1 − xi = Hi+1 · (∇fi+1 −∇fi) (10.7.7)

We might also imagine that the updating formula should be of the formHi+1 =
Hi + correction.

What “objects” are around out of which to construct a correction term? Most
notable are the two vectorsxi+1 − xi and ∇fi+1 − ∇fi; and there is alsoHi.
There are not infinitely many natural ways of making a matrix out of these objects,
especially if (10.7.7) must hold! One such way, theDFP updating formula, is

Hi+1 = Hi +
(xi+1 − xi) ⊗ (xi+1 − xi)

(xi+1 − xi) · (∇fi+1 −∇fi)

−
[Hi · (∇fi+1 −∇fi)] ⊗ [Hi · (∇fi+1 −∇fi)]

(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)

(10.7.8)

where⊗ denotes the “outer” or “direct” product of two vectors, a matrix: Theij

component ofu⊗v isuivj . (You might want to verify that 10.7.8 does satisfy 10.7.7.)
TheBFGS updating formulais exactly the same, but with one additional term,

· · · + [(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)] u ⊗ u (10.7.9)

where u is defined as the vector

u ≡
(xi+1 − xi)

(xi+1 − xi) · (∇fi+1 −∇fi)

−
Hi · (∇fi+1 −∇fi)

(∇fi+1 −∇fi) · Hi · (∇fi+1 −∇fi)

(10.7.10)

(You might also verify that this satisfies 10.7.7.)
You will have to take on faith — or else consult[3] for details of — the “deep”

result that equation (10.7.8), with or without (10.7.9), does in fact converge toA−1

in N steps, iff is a quadratic form.
Here now is the routinedfpmin that implements the quasi-Newton method, and

useslnsrch from §9.7. As mentioned at the end ofnewt in §9.7, this algorithm
can fail if your variables are badly scaled.

10.7 Variable Metric Methods in Multidimensions 421

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE dfpmin(p,n,gtol,iter,fret,func,dfunc)
INTEGER iter,n,NMAX,ITMAX
REAL fret,gtol,p(n),func,EPS,STPMX,TOLX
PARAMETER (NMAX=50,ITMAX=200,STPMX=100.,EPS=3.e-8,TOLX=4.*EPS)
EXTERNAL dfunc,func

C USES dfunc,func,lnsrch
Given a starting point p(1:n) that is a vector of length n, the Broyden-Fletcher-Goldfarb-
Shanno variant of Davidon-Fletcher-Powell minimization is performed on a function func,
using its gradient as calculated by a routine dfunc. The convergence requirement on zeroing
the gradient is input as gtol. Returned quantities are p(1:n) (the location of the mini-
mum), iter (the number of iterations that were performed), and fret (the minimum value
of the function). The routine lnsrch is called to perform approximate line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; STPMX is the scaled maximum step length allowed in line searches;
TOLX is the convergence criterion on x values.

INTEGER i,its,j
LOGICAL check
REAL den,fac,fad,fae,fp,stpmax,sum,sumdg,sumxi,temp,test,

* dg(NMAX),g(NMAX),hdg(NMAX),hessin(NMAX,NMAX),
* pnew(NMAX),xi(NMAX)

fp=func(p) Calculate starting function value and gradient,
call dfunc(p,g)
sum=0.
do 12 i=1,n and initialize the inverse Hessian to the unit matrix.

do 11 j=1,n
hessin(i,j)=0.

enddo 11

hessin(i,i)=1.
xi(i)=-g(i) Initial line direction.
sum=sum+p(i)**2

enddo 12

stpmax=STPMX*max(sqrt(sum),float(n))
do 27 its=1,ITMAX Main loop over the iterations.

iter=its
call lnsrch(n,p,fp,g,xi,pnew,fret,stpmax,check,func)

The new function evaluation occurs in lnsrch; save the function value in fp for the next
line search. It is usually safe to ignore the value of check.

fp=fret
do 13 i=1,n

xi(i)=pnew(i)-p(i) Update the line direction,
p(i)=pnew(i) and the current point.

enddo 13

test=0. Test for convergence on ∆x.
do 14 i=1,n

temp=abs(xi(i))/max(abs(p(i)),1.)
if(temp.gt.test)test=temp

enddo 14

if(test.lt.TOLX)return
do 15 i=1,n Save the old gradient,

dg(i)=g(i)
enddo 15

call dfunc(p,g) and get the new gradient.
test=0. Test for convergence on zero gradient.
den=max(fret,1.)
do 16 i=1,n

temp=abs(g(i))*max(abs(p(i)),1.)/den
if(temp.gt.test)test=temp

enddo 16

if(test.lt.gtol)return
do 17 i=1,n Compute difference of gradients,

dg(i)=g(i)-dg(i)
enddo 17

do 19 i=1,n and difference times current matrix.
hdg(i)=0.

422 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 18 j=1,n
hdg(i)=hdg(i)+hessin(i,j)*dg(j)

enddo 18

enddo 19

fac=0. Calculate dot products for the denominators.
fae=0.
sumdg=0.
sumxi=0.
do 21 i=1,n

fac=fac+dg(i)*xi(i)
fae=fae+dg(i)*hdg(i)
sumdg=sumdg+dg(i)**2
sumxi=sumxi+xi(i)**2

enddo 21

if(fac.gt.sqrt(EPS*sumdg*sumxi))then Skip update if fac not sufficiently positive.
fac=1./fac
fad=1./fae
do 22 i=1,n The vector that makes BFGS different from DFP:

dg(i)=fac*xi(i)-fad*hdg(i)
enddo 22

do 24 i=1,n The BFGS updating formula:
do 23 j=i,n

hessin(i,j)=hessin(i,j)+fac*xi(i)*xi(j)
* -fad*hdg(i)*hdg(j)+fae*dg(i)*dg(j)

hessin(j,i)=hessin(i,j)
enddo 23

enddo 24

endif
do 26 i=1,n Now calculate the next direction to go,

xi(i)=0.
do 25 j=1,n

xi(i)=xi(i)-hessin(i,j)*g(j)
enddo 25

enddo 26

enddo 27 and go back for another iteration.
pause ’too many iterations in dfpmin’
return
END

Quasi-Newton methods likedfpmin work well with the approximate line
minimization done bylnsrch. The routinespowell (§10.5) andfrprmn (§10.6),
however, need more accurate line minimization, which is carried out by the routine
linmin.

Advanced Implementations of Variable Metric Methods

Although rare, it can conceivably happen that roundoff errors cause the matrixHi to
become nearly singular or non-positive-definite. This can be serious, because the supposed
search directions might then not lead downhill, and because nearly singularHi’s tend to give
subsequentHi’s that are also nearly singular.

There is a simple fix for this rare problem, the same as was mentioned in§10.4: In case
of any doubt, you shouldrestart the algorithm at the claimed minimum point, and see if it
goes anywhere. Simple, but not very elegant. Modern implementations of variable metric
methods deal with the problem in a more sophisticated way.

Instead of building up an approximation toA−1, it is possible to build up an approximation
of A itself. Then, instead of calculating the left-hand side of (10.7.4) directly, one solves
the set of linear equations

A · (xm − xi) = −∇f(xi) (10.7.11)

At first glance this seems like a bad idea, since solving (10.7.11) is a process of order
N3 — and anyway, how does this help the roundoff problem? The trick is not to storeA but

10.8 Linear Programming and the Simplex Method 423

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

rather a triangular decomposition of A, its Cholesky decomposition(cf. §2.9). The updating
formula used for the Cholesky decomposition ofA is of orderN2 and can be arranged to
guarantee that the matrix remains positive definite andnonsingular, even in the presence of
finite roundoff. This method is due to Gill and Murray[1,2].

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1, §§3–6 (by K. W. Brodlie). [2]

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), pp. 56ff. [3]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 467–468.

10.8 Linear Programming and the Simplex
Method

The subject oflinear programming, sometimes calledlinear optimization,
concerns itself with the followingproblem: ForN independent variablesx1, . . . , xN ,
maximizethe function

z = a01x1 + a02x2 + · · ·+ a0NxN (10.8.1)

subject to the primary constraints

x1 ≥ 0, x2 ≥ 0, . . . xN ≥ 0 (10.8.2)

and simultaneously subject toM = m1 + m2 + m3 additional constraints,m1 of
them of the form

ai1x1 + ai2x2 + · · ·+ aiNxN ≤ bi (bi ≥ 0) i = 1, . . . , m1 (10.8.3)

m2 of them of the form

aj1x1 + aj2x2 + · · ·+ ajNxN ≥ bj ≥ 0 j = m1 + 1, . . . , m1 + m2 (10.8.4)

and m3 of them of the form

ak1x1 + ak2x2 + · · ·+ akNxN = bk ≥ 0

k = m1 + m2 + 1, . . . , m1 + m2 + m3

(10.8.5)

The variousaij ’s can have either sign, or be zero. The fact that theb’s must all be
nonnegative (as indicated by the final inequality in the above three equations) is a
matter of convention only, since you can multiply any contrary inequality by−1.
There is no particular significance in the number of constraintsM being less than,
equal to, or greater than the number of unknownsN .

10.8 Linear Programming and the Simplex Method 423

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

rather a triangular decomposition of A, its Cholesky decomposition(cf. §2.9). The updating
formula used for the Cholesky decomposition ofA is of orderN2 and can be arranged to
guarantee that the matrix remains positive definite andnonsingular, even in the presence of
finite roundoff. This method is due to Gill and Murray[1,2].

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1, §§3–6 (by K. W. Brodlie). [2]

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), pp. 56ff. [3]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 467–468.

10.8 Linear Programming and the Simplex
Method

The subject oflinear programming, sometimes calledlinear optimization,
concerns itself with the followingproblem: ForN independent variablesx1, . . . , xN ,
maximizethe function

z = a01x1 + a02x2 + · · ·+ a0NxN (10.8.1)

subject to the primary constraints

x1 ≥ 0, x2 ≥ 0, . . . xN ≥ 0 (10.8.2)

and simultaneously subject toM = m1 + m2 + m3 additional constraints,m1 of
them of the form

ai1x1 + ai2x2 + · · ·+ aiNxN ≤ bi (bi ≥ 0) i = 1, . . . , m1 (10.8.3)

m2 of them of the form

aj1x1 + aj2x2 + · · ·+ ajNxN ≥ bj ≥ 0 j = m1 + 1, . . . , m1 + m2 (10.8.4)

and m3 of them of the form

ak1x1 + ak2x2 + · · ·+ akNxN = bk ≥ 0

k = m1 + m2 + 1, . . . , m1 + m2 + m3

(10.8.5)

The variousaij ’s can have either sign, or be zero. The fact that theb’s must all be
nonnegative (as indicated by the final inequality in the above three equations) is a
matter of convention only, since you can multiply any contrary inequality by−1.
There is no particular significance in the number of constraintsM being less than,
equal to, or greater than the number of unknownsN .

424 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

A set of valuesx1 . . . xN that satisfies the constraints (10.8.2)–(10.8.5) is called
a feasible vector. The function that we are trying to maximize is called theobjective
function. The feasible vector that maximizes the objective function is called the
optimal feasible vector. An optimal feasible vector can fail to exist for two distinct
reasons: (i) there areno feasible vectors, i.e., the given constraints are incompatible,
or (ii) there is no maximum, i.e., there is a direction inN space where one or more
of the variables can be taken to infinity while still satisfying the constraints, giving
an unbounded value for the objective function.

As you see, the subject of linear programming is surrounded by notational and
terminological thickets. Both of these thorny defenses are lovingly cultivated by a
coterie of stern acolytes who have devoted themselves to the field. Actually, the
basic ideas of linear programming are quite simple. Avoiding the shrubbery, we
want to teach you the basics by means of a couple of specific examples; it should
then be quite obvious how to generalize.

Why is linear programming so important? (i) Because “nonnegativity” is the
usual constraint on any variablexi that represents the tangible amount of some
physical commodity, like guns, butter, dollars, units of vitamin E, food calories,
kilowatt hours, mass, etc. Hence equation (10.8.2). (ii) Because one is often
interested in additive (linear) limitations or bounds imposed by man or nature:
minimum nutritional requirement, maximum affordable cost, maximum on available
labor or capital, minimum tolerable level of voter approval, etc. Hence equations
(10.8.3)–(10.8.5). (iii) Because the function that one wants to optimize may be
linear, or else may at least be approximated by a linear function — since that is the
problem that linear programmingcan solve. Hence equation (10.8.1). For a short,
semipopular survey of linear programming applications, see Bland[1].

Here is a specific example of a problem in linear programming, which has
N = 4, m1 = 2, m2 = m3 = 1, henceM = 4:

Maximize z = x1 + x2 + 3x3 −
1

2
x4 (10.8.6)

with all the x’s nonnegative and also with

x1 + 2x3 ≤ 740

2x2 − 7x4 ≤ 0

x2 − x3 + 2x4 ≥ 1

2

x1 + x2 + x3 + x4 = 9

(10.8.7)

The answer turns out to be (to 2 decimals)x1 = 0, x2 = 3.33,x3 = 4.73,x4 = 0.95.
In the rest of this section we will learn how this answer is obtained. Figure 10.8.1
summarizes some of the terminology thus far.

10.8 Linear Programming and the Simplex Method 425

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

additional constraint (inequality)

additional constraint (inequality)the optimal feasible vector

some feasible vectors

x1

primary constraint x2

a feasible basic vector
(not optimal)

pr
im

ar
y

co
ns

tr
ai

nt

additional constraint (equality)

z = 3.1

z = 2.9z = 2.8z = 2.7z = 2.6z = 2.5z = 2.4

z = 3.0

Figure 10.8.1. Basic concepts of linear programming. The case of only two independent variables,
x1, x2, is shown. The linear functionz, to be maximized, is represented by its contour lines. Primary
constraints requirex1 andx2 to be positive. Additional constraints may restrict the solution to regions
(inequality constraints) or to surfaces of lower dimensionality (equality constraints). Feasible vectors
satisfy all constraints. Feasible basic vectors also lie on the boundary of the allowed region. The simplex
method steps among feasible basic vectors until the optimal feasible vector is found.

Fundamental Theorem of Linear Optimization

Imagine that we start with a fullN -dimensional space of candidate vectors. Then
(in mind’s eye, at least) we carve away the regions that are eliminated in turn by each
imposed constraint. Since the constraints are linear, every boundary introduced by
this process is a plane, or rather hyperplane. Equality constraints of the form (10.8.5)
force the feasible region onto hyperplanes of smaller dimension, while inequalities
simply divide the then-feasible region into allowed and nonallowed pieces.

When all the constraints are imposed, either we are left with some feasible
region or else there are no feasible vectors. Since the feasible region is bounded by
hyperplanes, it is geometrically a kind of convex polyhedron or simplex (cf.§10.4).
If there is a feasible region, can the optimal feasible vector be somewhere in its
interior, away from the boundaries? No, because the objective function is linear.
This means that it always has a nonzero vector gradient. This, in turn, means that
we could always increase the objective function by running up the gradient until
we hit a boundary wall.

The boundary of any geometrical region has one less dimension than its interior.
Therefore, we can now run up the gradient projected into the boundary wall until we

426 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

reach an edge of that wall. We can then run up that edge, and so on, down through
whatever number of dimensions, until we finally arrive at a point, avertexof the
original simplex. Since this point has allN of its coordinates defined, it must be
the solution ofN simultaneousequalitiesdrawn from the original set of equalities
and inequalities (10.8.2)–(10.8.5).

Points that are feasible vectors and that satisfyN of the original constraints
as equalities, are termedfeasible basic vectors. If N > M , then a feasible basic
vector hasat leastN −M of its components equal to zero, since at least that many
of the constraints (10.8.2) will be needed to make up the total ofN . Put the other
way, at mostM components of a feasible basic vector are nonzero. In the example
(10.8.6)–(10.8.7), you can check that the solution as given satisfies as equalities the
last three constraints of (10.8.7) and the constraintx1 ≥ 0, for the required total of 4.

Put together the two preceding paragraphs and you have theFundamental
Theorem of Linear Optimization: If an optimal feasible vector exists, then there is a
feasible basic vector that is optimal. (Didn’t we warn you about the terminological
thicket?)

The importance of the fundamental theorem is that it reduces the optimization
problem to a “combinatorial” problem, that of determining whichN constraints
(out of theM + N constraints in 10.8.2–10.8.5) should be satisfied by the optimal
feasible vector. We have only to keep trying different combinations, and computing
the objective function for each trial, until we find the best.

Doing this blindly would take halfway to forever. Thesimplex method, first
published by Dantzig in 1948 (see[2]), is a way of organizing the procedure so that
(i) a series of combinations is tried for which the objective function increases at each
step, and (ii) the optimal feasible vector is reached after a number of iterations that
is almost always no larger than of orderM orN , whichever is larger. An interesting
mathematical sidelight is that this second property, although known empirically ever
since the simplex method was devised, was not proved to be true until the 1982 work
of Stephen Smale. (For a contemporary account, see[3].)

Simplex Method for a Restricted Normal Form

A linear programming problem is said to be innormal form if it has no
constraints in the form (10.8.3) or (10.8.4), but rather only equality constraints of the
form (10.8.5) and nonnegativity constraints of the form (10.8.2).

For our purposes it will be useful to consider an even more restricted set of
cases, with this additional property: Each equality constraint of the form (10.8.5)
must have at least one variable that has a positive coefficient andthat appears
uniquely in that one constraint only. We can then choose one such variable ineach
constraint equation, and solve that constraint equation for it. The variables thus
chosen are calledleft-hand variablesor basic variables, and there are exactlyM
(= m3) of them. The remainingN −M variables are calledright-hand variablesor
nonbasic variables. Obviously thisrestricted normal formcan be achieved only in
the caseM ≤ N , so that is the case that we will consider.

You may be thinking that our restricted normal form is so specialized that
it is unlikely to include the linear programming problem that you wish to solve.
Not at all! We will presently show howany linear programming problem can be

10.8 Linear Programming and the Simplex Method 427

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

transformed into restricted normal form. Therefore bear with us and learn howto
apply the simplex method to a restricted normal form.

Here is an example of a problem in restricted normal form:

Maximize z = 2x2 − 4x3 (10.8.8)

with x1, x2, x3, andx4 all nonnegative and also with

x1 = 2 − 6x2 + x3

x4 = 8 + 3x2 − 4x3

(10.8.9)

This example hasN = 4, M = 2; the left-hand variables arex1 and x4; the
right-hand variables arex2 andx3. The objective function (10.8.8) is written so
as to depend only on right-hand variables; note, however, that this is not an actual
restriction on objective functions in restricted normal form, since any left-hand
variables appearing in the objective function could be eliminated algebraically by
use of (10.8.9) or its analogs.

For any problem in restricted normal form, we can instantly read off a feasible
basic vector (although not necessarily theoptimalfeasible basic vector). Simply set
all right-hand variables equal to zero, and equation (10.8.9) then gives the values of
the left-hand variables for which the constraints are satisfied. The idea of the simplex
method is to proceed by a series of exchanges. In each exchange, a right-hand
variable and a left-hand variable change places. At each stage we maintain aproblem
in restricted normal form that is equivalent to the original problem.

It is notationally convenient to record the information content of equations
(10.8.8) and (10.8.9) in a so-calledtableau, as follows:

x2 x3

z 0 2 −4

x1 2 −6 1

x4 8 3 −4 (10.8.10)

You should study (10.8.10) to be sure that you understand whereeach entry comes
from, and how to translate back and forth between the tableau and equation formats
of a problem in restricted normal form.

The first step in the simplex method is to examine the top row of the tableau,
which we will call the “z-row.” Look at the entries in columns labeled by right-hand
variables (we will call these “right-columns”). We want to imagine in turn the effect
of increasing each right-hand variable from its present value of zero, while leaving
all the other right-hand variables at zero. Will the objective function increase or
decrease? The answer is given by the sign of the entry in the z-row. Sincewe want
to increase the objective function, only right columns having positive z-row entries
are of interest. In (10.8.10) there is only one such column, whose z-row entry is2.

The second step is to examine the column entries below each z-row entry
that was selected by step one. We want to ask how much we can increase the
right-hand variable before one of the left-hand variables is driven negative, which is
not allowed. If the tableau element at the intersection of the right-hand column and

428 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the left-hand variable’s row is positive, then it poses no restriction: the corresponding
left-hand variable will just be driven more and more positive. Ifall the entries in
any right-hand column are positive, then there is no bound on the objective function
and (having said so) we are done with the problem.

If one or more entries below a positive z-row entry are negative, then we have
to figure out which such entry first limits the increase of that column’s right-hand
variable. Evidently the limiting increase is given by dividing the element in the right-
hand column (which is called thepivot element) into the element in the “constant
column” (leftmost column) of the pivot element’s row. A value that is small in
magnitude is most restrictive. The increase in the objective function for this choice
of pivot element is then that value multiplied by the z-row entry of that column. We
repeat this procedure on all possible right-hand columns to find the pivot element
with the largest such increase. That completes our “choice of a pivot element.”

In the above example, the only positive z-row entry is 2. There is only one
negative entry below it, namely−6, so this is the pivot element. Its constant-column
entry is2. This pivot will therefore allowx2 to be increased by2÷|6|, which results
in an increase of the objective function by an amount(2 × 2) ÷ |6|.

The third step is todo the increase of the selected right-hand variable, thus
making it a left-hand variable; and simultaneously to modify the left-hand variables,
reducing the pivot-row element to zero and thus making it a right-hand variable. For
our above example let’s do this first by hand: We begin by solving the pivot-row
equation for the new left-hand variablex2 in favor of the old onex1, namely

x1 = 2 − 6x2 + x3 → x2 = 1

3
− 1

6
x1 + 1

6
x3 (10.8.11)

We then substitute this into the old z-row,

z = 2x2 − 4x3 = 2
[

1

3
− 1

6
x1 + 1

6
x3

]

− 4x3 = 2

3
− 1

3
x1 −

11

3
x3 (10.8.12)

and into all other left-variable rows, in this case onlyx4,

x4 = 8 + 3
[

1

3
− 1

6
x1 + 1

6
x3

]

− 4x3 = 9 − 1

2
x1 −

7

2
x3 (10.8.13)

Equations (10.8.11)–(10.8.13) form the new tableau

x1 x3

z 2

3
−1

3
−11

3

x2
1

3
−1

6

1

6

x4 9 −1

2
−7

2 (10.8.14)

The fourth step is to go back and repeat the first step, looking for another possible
increase of the objective function. We do this as many times as possible, that is, until
all the right-hand entries in the z-row are negative, signaling that no further increase
is possible. In the present example, this already occurs in (10.8.14), so we are done.

The answer can now be read from the constant column of the final tableau. In
(10.8.14) we see that the objective function is maximized to a value of2/3 for the
solution vectorx2 = 1/3, x4 = 9, x1 = x3 = 0.

Now look back over the procedure that led from (10.8.10) to (10.8.14). You will
find that it could be summarized entirely in tableau format as a series of prescribed
elementary matrix operations:

10.8 Linear Programming and the Simplex Method 429

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• Locate the pivot element and save it.
• Save the whole pivot column.
• Replace each row, except the pivot row, by that linear combination of itself

and the pivot row which makes its pivot-column entry zero.
• Divide the pivot row by the negative of the pivot.
• Replace the pivot element by the reciprocal of its saved value.
• Replace the rest of the pivot column by its saved values divided by the

saved pivot element.
This is the sequence of operations actually performed by a linear programming
routine, such as the one that we will presently give.

You should now be able to solve almost any linear programming problem that
starts in restricted normal form. The only special case that might stump you is
if an entry in the constant column turns out to be zero at some stage, so that a
left-hand variable is zero at the same time as all the right-hand variables are zero.
This is called adegenerate feasible vector. To proceed, you may need to exchange
the degenerate left-hand variable for one of the right-hand variables, perhaps even
making several such exchanges.

Writing the General Problem in Restricted Normal Form

Here is a pleasant surprise. There exist a couple of clever tricks that render
trivial the task of translating a general linear programming problem into restricted
normal form!

First, we need to get rid of the inequalities of the form (10.8.3) or (10.8.4), for
example, the first three constraints in (10.8.7). We do this by adding to the problem
so-calledslack variableswhich, when their nonnegativity is required, convert the
inequalities to equalities. We will denote slack variables asyi. There will be
m1 + m2 of them. Once they are introduced, you treat them on an equal footing
with the original variablesxi; then, at the very end, you simply ignore them.

For example, introducing slack variables leaves (10.8.6) unchanged but turns
(10.8.7) into

x1 + 2x3 + y1 = 740

2x2 − 7x4 + y2 = 0

x2 − x3 + 2x4 − y3 = 1

2

x1 + x2 + x3 + x4 = 9

(10.8.15)

(Notice how the sign of the coefficient of the slack variable is determined by which
sense of inequality it is replacing.)

Second, we need to insure that there is a set ofM left-hand vectors, so that we
can set up a starting tableau in restricted normal form. (In other words, we need to
find a “feasible basic starting vector.”) The trick is again to invent new variables!
There areM of these, and they are calledartificial variables; we denote them byzi.
You put exactly one artificial variable into each constraint equation on thefollowing

430 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

model for the example (10.8.15):

z1 = 740− x1 − 2x3 − y1

z2 = −2x2 + 7x4 − y2

z3 = 1

2
− x2 + x3 − 2x4 + y3

z4 = 9 − x1 − x2 − x3 − x4

(10.8.16)

Our example is now in restricted normal form.
Now you may object that (10.8.16) is not the same problem as (10.8.15) or

(10.8.7)unless all thezi’s are zero. Right you are! There is some subtlety here!
We must proceed to solve our problem in two phases. First phase: We replace our
objective function (10.8.6) by a so-calledauxiliary objective function

z′ ≡ −z1 − z2 − z3 − z4 = −(749 1

2
− 2x1 − 4x2 − 2x3 + 4x4 − y1 − y2 + y3)

(10.8.17)
(where the last equality follows from using 10.8.16). We now perform the simplex
method on the auxiliary objective function (10.8.17) with the constraints (10.8.16).
Obviously the auxiliary objective function will be maximized for nonnegativezi’s if
all thezi ’s are zero. We therefore expect the simplex method in this first phase to
produce a set of left-hand variables drawn from thexi’s andyi’s only, with all the
zi’s being right-hand variables. Aha! We then cross out thezi’s, leaving a problem
involving onlyxi’s andyi’s in restricted normal form. In other words, the first phase
produces an initial feasible basic vector. Second phase: Solve the problem produced
by the first phase, using the original objective function, not the auxiliary.

And what if the first phasedoesn’tproduce zero values for all thezi’s? That
signals that there isno initial feasible basic vector, i.e., that the constraints given to
us are inconsistent among themselves. Report that fact, and you are done.

Here is how to translate into tableau format the information needed for both the
first and second phases of the overall method. As before, the underlying problem
to be solved is as posed in equations (10.8.6)–(10.8.7).

x1 x2 x3 x4 y1 y2 y3

z 0 1 1 3 −1

2
0 0 0

z1 740 −1 0 −2 0 −1 0 0

z2 0 0 −2 0 7 0 −1 0

z3
1

2
0 −1 1 −2 0 0 1

z4 9 −1 −1 −1 −1 0 0 0

z′ −749 1

2
2 4 2 −4 1 1 −1

(10.8.18)

This is not as daunting as it may, at first sight, appear. The table entries inside
the box of double lines are no more than the coefficients of the original problem
(10.8.6)–(10.8.7) organized into a tabular form. In fact, these entries, along with

10.8 Linear Programming and the Simplex Method 431

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the values ofN , M , m1, m2, andm3, are the only input that is needed by the
simplex method routine below. The columns under the slack variablesyi simply
record whether each of theM constraints is of the form≤, ≥, or=; this is redundant
information with the valuesm1, m2, m3, as long as we are sure to enter the rows of
the tableau in the correct respective order. The coefficients of the auxiliary objective
function (bottom row) are just the negatives of the column sums of the rows above,
so these are easily calculated automatically.

The output from a simplex routine will be (i) a flag telling whether a finite
solution,no solution,or an unbounded solution was found,and (ii) an updated tableau.
The output tableau that derives from (10.8.18), given to two significant figures, is

x1 y2 y3 · · ·

z 17.03 −.95 −.05 −1.05 · · ·

x2 3.33 −.35 −.15 .35 · · ·

x3 4.73 −.55 .05 −.45 · · ·

x4 .95 −.10 .10 .10 · · ·

y1 730.55 .10 −.10 .90 · · ·

(10.8.19)

A little counting of thexi’s and yi ’s will convince you that there areM + 1
rows (including the z-row) in both the input and the output tableaux, but that only
N + 1 −m3 columns of the output tableau (including the constant column) contain
any useful information, the other columns belonging to now-discarded artificial
variables. In the output, the first numerical column contains the solution vector,
along with the maximum value of the objective function. Where a slack variable (yi)
appears on the left, the corresponding value is the amount by which its inequality
is safely satisfied. Variables that are not left-hand variables in the output tableau
have zero values. Slack variables with zero values represent constraintsthat are
satisfied as equalities.

Routine Implementing the Simplex Method

The followingroutine is based algorithmicallyon the implementation of Kuenzi,
Tzschach, and Zehnder[4]. Aside from input values ofM , N , m1, m2, m3, the
principal input to the routine is a two-dimensional arraya containing the portion of
the tableau (10.8.18) that is contained between the double lines. This input occupies
the firstM + 1 rows andN + 1 columns ofa. Note, however, that reference is
made internally to rowM + 2 of a (used for the auxiliary objective function, just as
in 10.8.18). Therefore the physical dimensions ofa,

REAL a(MP,NP) (10.8.20)

musthaveNP≥ N + 1 andMP≥ M + 2.You will suffer endless agonies if you fail
to understand this simple point. Also do not neglect to order the rows ofa in the
same order as equations (10.8.1), (10.8.3), (10.8.4), and (10.8.5), that is, objective
function,≤-constraints,≥-constraints,=-constraints.

432 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

On output, the tableaua is indexed by two returned arrays of integers.iposv(j)

contains, forj= 1 . . .M , the numberi whose original variablexi is now represented
by rowj+1 of a. These are thus the left-hand variables in the solution. (The first row
of a is of course the z-row.) A valuei > N indicates that the variable is ayi rather
than anxi, xN+j ≡ yj . Likewise,izrov(j) contains, forj= 1 . . .N , the numberi
whose original variablexi is now a right-hand variable, represented by columnj+1

of a. These variables are all zero in the solution. The meaning ofi > N is the same
as above, except thati > N +m1 +m2 denotes an artificial or slack variable which
was used only internally and should now be entirely ignored.

The flagicase is returned as zero if a finite solution is found,+1 if the objective
function is unbounded,−1 if no solution satisfies the given constraints.

The routine treats the case of degenerate feasible vectors, so don’t worry about
them. You may also wish to admire the fact that the routine does not require storage
for the columns of the tableau (10.8.18) that are to the right of the double line; it
keeps track of slack variables by more efficient bookkeeping.

Please note that, as given, the routine is only “semi-sophisticated” in its tests
for convergence. While the routine properly implements tests for inequality with
zero as tests against some small parameterEPS, it does not adjust this parameter to
reflect the scale of the input data. This is adequate for many problems, where the
input data do not differ from unity by too many orders of magnitude. If, however,
you encounter endless cycling, then you should modifyEPS in the routinessimplx
andsimp2. Permuting your variables can also help. Finally, consult[5].

SUBROUTINE simplx(a,m,n,mp,np,m1,m2,m3,icase,izrov,iposv)
INTEGER icase,m,m1,m2,m3,mp,n,np,iposv(m),izrov(n),MMAX,NMAX
REAL a(mp,np),EPS
PARAMETER (MMAX=100,NMAX=100,EPS=1.e-6)

C USES simp1,simp2,simp3
Simplex method for linear programming. Input parameters a, m, n, mp, np, m1, m2, and m3,
and output parameters a, icase, izrov, and iposv are described above.
Parameters: MMAX is the maximum number of constraints expected; NMAX is the maximum
number of variables expected; EPS is the absolute precision, which should be adjusted to
the scale of your variables.

INTEGER i,ip,is,k,kh,kp,nl1,l1(NMAX),l3(MMAX)
REAL bmax,q1
if(m.ne.m1+m2+m3)pause ’bad input constraint counts in simplx’
nl1=n
do 11 k=1,n

l1(k)=k Initialize index list of columns admissible for exchange.
izrov(k)=k Initially make all variables right-hand.

enddo 11

do 12 i=1,m
if(a(i+1,1).lt.0.)pause ’bad input tableau in simplx’ Constants bi must be non-

negative.iposv(i)=n+i
Initial left-hand variables. m1 type constraints are represented by having their slack vari-
able initially left-hand, with no artificial variable. m2 type constraints have their slack
variable initially left-hand, with a minus sign, and their artificial variable handled implic-
itly during their first exchange. m3 type constraints have their artificial variable initially
left-hand.

enddo 12

if(m2+m3.eq.0)goto 30 The origin is a feasible starting solution. Go to phase two.
do 13 i=1,m2 Initialize list of m2 constraints whose slack variables have never

been exchanged out of the initial basis.l3(i)=1
enddo 13

do 15 k=1,n+1 Compute the auxiliary objective function.
q1=0.
do 14 i=m1+1,m

10.8 Linear Programming and the Simplex Method 433

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

q1=q1+a(i+1,k)
enddo 14

a(m+2,k)=-q1
enddo 15

10 call simp1(a,mp,np,m+1,l1,nl1,0,kp,bmax) Find max. coeff. of auxiliary objec-
tive fn.if(bmax.le.EPS.and.a(m+2,1).lt.-EPS)then

icase=-1 Auxiliary objective function is still negative and can’t be im-
proved, hence no feasible solution exists.return

else if(bmax.le.EPS.and.a(m+2,1).le.EPS)then
Auxiliary objective function is zero and can’t be improved; we have a feasible starting vec-
tor. Clean out the artificial variables corresponding to any remaining equality constraints by
goto 1’s and then move on to phase two by goto 30.
do 16 ip=m1+m2+1,m

if(iposv(ip).eq.ip+n)then Found an artificial variable for an equality
constraint.call simp1(a,mp,np,ip,l1,nl1,1,kp,bmax)

if(bmax.gt.EPS)goto 1 Exchange with column corresponding to max-
imum pivot element in row.endif

enddo 16

do 18 i=m1+1,m1+m2 Change sign of row for any m2 constraints
still present from the initial basis.if(l3(i-m1).eq.1)then

do 17 k=1,n+1
a(i+1,k)=-a(i+1,k)

enddo 17

endif
enddo 18

goto 30 Go to phase two.
endif
call simp2(a,m,n,mp,np,ip,kp) Locate a pivot element (phase one).
if(ip.eq.0)then Maximum of auxiliary objective function is

unbounded, so no feasible solution ex-
ists.

icase=-1
return

endif
1 call simp3(a,mp,np,m+1,n,ip,kp)

Exchange a left- and a right-hand variable (phase one), then update lists.
if(iposv(ip).ge.n+m1+m2+1)then Exchanged out an artificial variable for an

equality constraint. Make sure it stays
out by removing it from the l1 list.

do 19 k=1,nl1
if(l1(k).eq.kp)goto 2

enddo 19

2 nl1=nl1-1
do 21 is=k,nl1

l1(is)=l1(is+1)
enddo 21

else
kh=iposv(ip)-m1-n
if(kh.ge.1)then Exchanged out an m2 type constraint.

if(l3(kh).ne.0)then If it’s the first time, correct the pivot col-
umn for the minus sign and the implicit
artificial variable.

l3(kh)=0
a(m+2,kp+1)=a(m+2,kp+1)+1.
do 22 i=1,m+2

a(i,kp+1)=-a(i,kp+1)
enddo 22

endif
endif

endif
is=izrov(kp) Update lists of left- and right-hand variables.
izrov(kp)=iposv(ip)
iposv(ip)=is
goto 10 Still in phase one, go back to 10.

End of phase one code for finding an initial feasible solution. Now, in phase two, optimize it.
30 call simp1(a,mp,np,0,l1,nl1,0,kp,bmax) Test the z-row for doneness.

if(bmax.le.EPS)then Done. Solution found. Return with the good news.
icase=0
return

endif

434 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call simp2(a,m,n,mp,np,ip,kp) Locate a pivot element (phase two).
if(ip.eq.0)then Objective function is unbounded. Report and return.

icase=1
return

endif
call simp3(a,mp,np,m,n,ip,kp) Exchange a left- and a right-hand variable (phase two),
is=izrov(kp) update lists of left- and right-hand variables,
izrov(kp)=iposv(ip)
iposv(ip)=is
goto 30 and return for another iteration.
END

The preceding routine makes use of the following utility subroutines.

SUBROUTINE simp1(a,mp,np,mm,ll,nll,iabf,kp,bmax)
INTEGER iabf,kp,mm,mp,nll,np,ll(np)
REAL bmax,a(mp,np)

Determines the maximum of those elements whose index is contained in the supplied list
ll, either with or without taking the absolute value, as flagged by iabf.

INTEGER k
REAL test
if(nll.le.0)then No eligible columns.

bmax=0.
else

kp=ll(1)
bmax=a(mm+1,kp+1)
do 11 k=2,nll

if(iabf.eq.0)then
test=a(mm+1,ll(k)+1)-bmax

else
test=abs(a(mm+1,ll(k)+1))-abs(bmax)

endif
if(test.gt.0.)then

bmax=a(mm+1,ll(k)+1)
kp=ll(k)

endif
enddo 11

endif
return
END

SUBROUTINE simp2(a,m,n,mp,np,ip,kp)
INTEGER ip,kp,m,mp,n,np
REAL a(mp,np),EPS
PARAMETER (EPS=1.e-6)

Locate a pivot element, taking degeneracy into account.
INTEGER i,k
REAL q,q0,q1,qp
ip=0
do 11 i=1,m

if(a(i+1,kp+1).lt.-EPS)goto 1
enddo 11

return No possible pivots. Return with message.
1 q1=-a(i+1,1)/a(i+1,kp+1)

ip=i
do 13 i=ip+1,m

if(a(i+1,kp+1).lt.-EPS)then
q=-a(i+1,1)/a(i+1,kp+1)
if(q.lt.q1)then

ip=i
q1=q

else if (q.eq.q1) then We have a degeneracy.

10.8 Linear Programming and the Simplex Method 435

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 12 k=1,n
qp=-a(ip+1,k+1)/a(ip+1,kp+1)
q0=-a(i+1,k+1)/a(i+1,kp+1)
if(q0.ne.qp)goto 2

enddo 12

2 if(q0.lt.qp)ip=i
endif

endif
enddo 13

return
END

SUBROUTINE simp3(a,mp,np,i1,k1,ip,kp)
INTEGER i1,ip,k1,kp,mp,np
REAL a(mp,np)

Matrix operations to exchange a left-hand and right-hand variable (see text).
INTEGER ii,kk
REAL piv
piv=1./a(ip+1,kp+1)
do 12 ii=1,i1+1

if(ii-1.ne.ip)then
a(ii,kp+1)=a(ii,kp+1)*piv
do 11 kk=1,k1+1

if(kk-1.ne.kp)then
a(ii,kk)=a(ii,kk)-a(ip+1,kk)*a(ii,kp+1)

endif
enddo 11

endif
enddo 12

do 13 kk=1,k1+1
if(kk-1.ne.kp)a(ip+1,kk)=-a(ip+1,kk)*piv

enddo 13

a(ip+1,kp+1)=piv
return
END

Other Topics Briefly Mentioned

Every linear programming problem in normal form withN variables andM
constraints has a correspondingdual problem withM variables andN constraints.
The tableau of the dual problem is, in essence, the transpose of the tableau of the
original (sometimes calledprimal) problem. It is possible to go from a solution
of the dual to a solution of the primal. This can occasionally be computationally
useful, but generally it is no big deal.

The revised simplex methodis exactly equivalent to the simplex method in its
choice of which left-hand and right-hand variables are exchanged. Its computational
effort is not significantly less than that of the simplex method. It does differ in
the organization of its storage, requiring only a matrix of sizeM ×M , rather than
M × N , in its intermediate stages. If you have a lot of constraints, and memory
size is one of them, then you should look into it.

The primal-dual algorithmand thecomposite simplex algorithmare two dif-
ferent methods for avoiding the two phases of the usual simplex method: Progress
is made simultaneously towards finding a feasible solution and finding an optimal
solution. There seems to be no clearcut evidence that these methods are superior

436 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

to the usual method by any factor substantially larger than the “tender-loving-care
factor” (which reflects the programming effort of the proponents).

Problems where the objective function and/or one or more of the constraints are
replaced by expressionsnonlinear in the variables are callednonlinear programming
problems. The literature on such problems is vast, but outside our scope. The special
case of quadratic expressions is calledquadratic programming. Optimization prob-
lems where the variables take on only integer values are calledinteger programming
problems, a special case ofdiscrete optimizationgenerally. The next section looks
at a particular kind of discrete optimization problem.

CITED REFERENCES AND FURTHER READING:

Bland, R.G. 1981, Scientific American, vol. 244 (June), pp. 126–144. [1]

Dantzig, G.B. 1963, Linear Programming and Extensions (Princeton, NJ: Princeton University
Press). [2]

Kolata, G. 1982, Science, vol. 217, p. 39. [3]

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), Chapters 7–8.

Cooper, L., and Steinberg, D. 1970, Introduction to Methods of Optimization (Philadelphia: Saun-
ders).

Gass, S.T. 1969, Linear Programming, 3rd ed. (New York: McGraw-Hill).

Murty, K.G. 1976, Linear and Combinatorial Programming (New York: Wiley).

Land, A.H., and Powell, S. 1973, Fortran Codes for Mathematical Programming (London: Wiley-
Interscience).

Kuenzi, H.P., Tzschach, H.G., and Zehnder, C.A. 1971, Numerical Methods of Mathematical
Optimization (New York: Academic Press). [4]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§4.10.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [5]

10.9 Simulated Annealing Methods

Themethod of simulated annealing[1,2] is a technique that has attracted signif-
icant attention as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local extrema. For
practical purposes, simulated annealing has effectively “solved” the famoustraveling
salesman problemof finding the shortest cyclical itinerary for a traveling salesman
who must visit each ofN cities in turn. (Other practical methods have also been
found.) The method has also been used successfully for designing complex integrated
circuits: The arrangement of several hundred thousand circuit elements on a tiny
silicon substrate is optimized so as to minimize interference among their connecting
wires[3,4]. Surprisingly, the implementation of the algorithm is relatively simple.

Notice that the two applications cited are both examples ofcombinatorial
minimization. There is an objective function to be minimized, as usual; but the space
over which that function is defined is not simply theN -dimensional space ofN
continuouslyvariable parameters. Rather, it is a discrete, but very large, configuration

436 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

to the usual method by any factor substantially larger than the “tender-loving-care
factor” (which reflects the programming effort of the proponents).

Problems where the objective function and/or one or more of the constraints are
replaced by expressionsnonlinear in the variables are callednonlinear programming
problems. The literature on such problems is vast, but outside our scope. The special
case of quadratic expressions is calledquadratic programming. Optimization prob-
lems where the variables take on only integer values are calledinteger programming
problems, a special case ofdiscrete optimizationgenerally. The next section looks
at a particular kind of discrete optimization problem.

CITED REFERENCES AND FURTHER READING:

Bland, R.G. 1981, Scientific American, vol. 244 (June), pp. 126–144. [1]

Dantzig, G.B. 1963, Linear Programming and Extensions (Princeton, NJ: Princeton University
Press). [2]

Kolata, G. 1982, Science, vol. 217, p. 39. [3]

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), Chapters 7–8.

Cooper, L., and Steinberg, D. 1970, Introduction to Methods of Optimization (Philadelphia: Saun-
ders).

Gass, S.T. 1969, Linear Programming, 3rd ed. (New York: McGraw-Hill).

Murty, K.G. 1976, Linear and Combinatorial Programming (New York: Wiley).

Land, A.H., and Powell, S. 1973, Fortran Codes for Mathematical Programming (London: Wiley-
Interscience).

Kuenzi, H.P., Tzschach, H.G., and Zehnder, C.A. 1971, Numerical Methods of Mathematical
Optimization (New York: Academic Press). [4]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§4.10.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [5]

10.9 Simulated Annealing Methods

Themethod of simulated annealing[1,2] is a technique that has attracted signif-
icant attention as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local extrema. For
practical purposes, simulated annealing has effectively “solved” the famoustraveling
salesman problemof finding the shortest cyclical itinerary for a traveling salesman
who must visit each ofN cities in turn. (Other practical methods have also been
found.) The method has also been used successfully for designing complex integrated
circuits: The arrangement of several hundred thousand circuit elements on a tiny
silicon substrate is optimized so as to minimize interference among their connecting
wires[3,4]. Surprisingly, the implementation of the algorithm is relatively simple.

Notice that the two applications cited are both examples ofcombinatorial
minimization. There is an objective function to be minimized, as usual; but the space
over which that function is defined is not simply theN -dimensional space ofN
continuouslyvariable parameters. Rather, it is a discrete, but very large, configuration

10.9 Simulated Annealing Methods 437

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

space, like the set of possible orders of cities, or the set of possible allocations of
silicon “real estate” blocks to circuit elements. The number of elements in the
configuration space is factorially large, so that they cannot be explored exhaustively.
Furthermore, since the set is discrete, we are deprived of any notion of “continuing
downhill in a favorable direction.” The concept of “direction” may not have any
meaning in the configuration space.

Below, we will also discuss how to use simulated annealing methods for spaces
with continuous control parameters, like those of§§10.4–10.7. This application is
actually more complicated than the combinatorial one, since the familiar problem of
“long, narrow valleys” again asserts itself. Simulated annealing, as we will see, tries
“random” steps; but in a long, narrow valley, almost all random steps are uphill!
Some additional finesse is therefore required.

At the heart of the method of simulated annealing is an analogy with thermody-
namics, specifically with the way that liquids freeze and crystallize, or metals cool
and anneal. At high temperatures, the molecules of a liquid move freelywith respect
to one another. If the liquid is cooled slowly, thermal mobility is lost. The atoms are
often able to line themselves up and form a pure crystal that is completely ordered
over a distance up to billions of times the size of an individual atom in all directions.
This crystal is the state of minimum energy for this system. The amazing fact is that,
for slowly cooled systems, nature is able to find this minimum energystate. In fact, if
a liquid metal is cooled quickly or “quenched,” it does not reach this state but rather
ends up in a polycrystalline or amorphous state having somewhat higher energy.

So the essence of the process isslow cooling, allowing ample time for
redistribution of the atoms as they lose mobility. This is the technical definition of
annealing, and it is essential for ensuring that a low energy state will be achieved.

Although the analogy is not perfect, there is a sense in which all of the
minimization algorithms thus far in this chapter correspond to rapid cooling or
quenching. In all cases, we have gone greedily for the quick, nearby solution: From
the starting point, go immediately downhill as far as you can go. This, as often
remarked above, leads to a local, but not necessarily a global, minimum. Nature’s
own minimization algorithm is based on quite a different procedure. The so-called
Boltzmann probability distribution,

Prob(E) ∼ exp(−E/kT) (10.9.1)

expresses the idea that a system in thermal equilibrium at temperatureT has its
energy probabilistically distributed among all different energy statesE. Even at
low temperature, there is a chance, albeit very small, of a system being in a high
energy state. Therefore, there is a corresponding chance for the system to get out of
a local energy minimum in favor of finding a better, more global, one. The quantity
k (Boltzmann’s constant) is a constant of nature that relates temperature to energy.
In other words, the system sometimes goesuphill as well as downhill; but the lower
the temperature, the less likely is any significant uphill excursion.

In 1953, Metropolis and coworkers[5] first incorporated these kinds of prin-
ciples into numerical calculations. Offered a succession of options, a simulated
thermodynamic system was assumed to change its configuration from energyE1 to
energyE2 with probabilityp = exp[−(E2 −E1)/kT]. Notice that ifE2 < E1, this
probability is greater than unity; in such cases the change is arbitrarily assigned a
probabilityp = 1, i.e., the systemalwaystook such an option. This general scheme,

438 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

of always taking a downhill step whilesometimestaking an uphill step, has come
to be known as the Metropolis algorithm.

To make use of the Metropolis algorithm for other than thermodynamic systems,
one must provide the following elements:

1. A description of possible system configurations.
2. A generator of random changes in the configuration; these changes are the

“options” presented to the system.
3. An objective functionE (analog of energy) whose minimization is the

goal of the procedure.
4. A control parameterT (analog of temperature) and anannealing schedule

which tells how it is lowered from high to low values, e.g., after how many random
changes in configuration is each downward step inT taken, and how large is that
step. The meaning of “high” and “low” in this context, and the assignment of a
schedule, may require physical insight and/or trial-and-error experiments.

Combinatorial Minimization: The Traveling Salesman

A concrete illustration is provided by the traveling salesman problem. The
proverbial seller visitsN cities with given positions(xi, yi), returning finally to his
or her city of origin. Each city is to be visited only once, and the route is to be made as
short as possible. This problem belongs to a class known asNP-completeproblems,
whose computation time for anexactsolution increases withN asexp(const.×N),
becoming rapidly prohibitive in cost asN increases. The traveling salesman problem
also belongs to a class of minimization problems for which the objective functionE
has many local minima. In practical cases, it is often enough to be able to choose
from these a minimum which, even if not absolute, cannot be significantly improved
upon. The annealing method manages to achieve this, while limiting its calculations
to scale as a small power ofN .

As a problem in simulated annealing, the traveling salesman problem is handled
as follows:

1. Configuration.The cities are numberedi = 1 . . .N and each has coordinates
(xi, yi). A configuration is a permutation of the number1 . . .N , interpreted as the
order in which the cities are visited.

2. Rearrangements.An efficient set of moves has been suggested by Lin[6].
The moves consist of two types: (a) A section of path is removed and then replaced
with the same cities running in the opposite order; or (b) a section of path is removed
and then replaced in between two cities on another, randomly chosen, part of the path.

3. Objective Function.In the simplest form of the problem,E is taken just
as the total length of journey,

E = L ≡

N
∑

i=1

√

(xi − xi+1)2 + (yi − yi+1)2 (10.9.2)

with the convention that pointN + 1 is identified with point1. To illustrate the
flexibility of the method, however, we can add the following additional wrinkle:
Suppose that the salesman has an irrational fear of flying over the Mississippi River.
In that case, we would assign each city a parameterµi, equal to+1 if it is east of the

10.9 Simulated Annealing Methods 439

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Mississippi,−1 if it is west, and take the objective function to be

E =

N
∑

i=1

[

√

(xi − xi+1)2 + (yi − yi+1)2 + λ(µi − µi+1)
2

]

(10.9.3)

A penalty4λ is thereby assigned to any river crossing. The algorithm now finds
the shortest path that avoids crossings. The relative importance that it assigns to
length of path versus river crossings is determined by our choice ofλ. Figure 10.9.1
shows the results obtained. Clearly, this technique can be generalized to include
many conflicting goals in the minimization.

4. Annealing schedule.This requires experimentation. We first generate some
random rearrangements, and use them to determine the range of values of∆E that
will be encountered from move to move. Choosing a starting value for the parameter
T which is considerably larger than the largest∆E normally encountered, we
proceed downward in multiplicative stepseach amounting to a 10 percent decrease
in T . We hold each new value ofT constant for, say,100N reconfigurations, or for
10N successful reconfigurations, whichever comes first. When efforts to reduceE
further become sufficiently discouraging, we stop.

The following traveling salesman program, using the Metropolis algorithm,
illustrates the main aspects of the simulated annealing technique for combinatorial
problems.

SUBROUTINE anneal(x,y,iorder,ncity)
INTEGER ncity,iorder(ncity)
REAL x(ncity),y(ncity)

C USES irbit1,metrop,ran3,revcst,revers,trncst,trnspt
This algorithm finds the shortest round-trip path to ncity cities whose coordinates are in
the arrays x(1:ncity),y(1:ncity). The array iorder(1:ncity) specifies the order
in which the cities are visited. On input, the elements of iorder may be set to any per-
mutation of the numbers 1 to ncity. This routine will return the best alternative path
it can find.

INTEGER i,i1,i2,idec,idum,iseed,j,k,nlimit,nn,nover,nsucc,n(6),
* irbit1

REAL de,path,t,tfactr,ran3,alen,x1,x2,y1,y2
LOGICAL ans
alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)
nover=100*ncity Maximum number of paths tried at any temperature.
nlimit=10*ncity Maximum number of successful path changes before continuing.
tfactr=0.9 Annealing schedule: t is reduced by this factor on each step.
path=0.0
t=0.5
do 11 i=1,ncity-1 Calculate initial path length.

i1=iorder(i)
i2=iorder(i+1)
path=path+alen(x(i1),x(i2),y(i1),y(i2))

enddo 11

i1=iorder(ncity) Close the loop by tying path ends together.
i2=iorder(1)
path=path+alen(x(i1),x(i2),y(i1),y(i2))
idum=-1
iseed=111
do 13 j=1,100 Try up to 100 temperature steps.

nsucc=0
do 12 k=1,nover

1 n(1)=1+int(ncity*ran3(idum)) Choose beginning of segment ..
n(2)=1+int((ncity-1)*ran3(idum)) ..and end of segment.
if (n(2).ge.n(1)) n(2)=n(2)+1

440 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

0 .5 1

0

.5

1

0 .5 1

0

.5

1

0 .5 1

0

.5

1

(a)

(b)

(c)

Figure 10.9.1. Traveling salesman problem solved by simulated annealing. The (nearly) shortest path
among 100 randomly positioned cities is shown in (a). The dotted line is a river, but there is no penalty in
crossing. In (b) the river-crossing penalty is made large, and the solution restricts itself to the minimum
number of crossings, two. In (c) the penalty has been made negative: the salesman is actually a smuggler
who crosses the river on the flimsiest excuse!

10.9 Simulated Annealing Methods 441

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

nn=1+mod((n(1)-n(2)+ncity-1),ncity) nn is the number of cities not on the
segment.if (nn.lt.3) goto 1

idec=irbit1(iseed) Decide whether to do a segment reversal or transport.
if (idec.eq.0) then Do a transport.

n(3)=n(2)+int(abs(nn-2)*ran3(idum))+1
n(3)=1+mod(n(3)-1,ncity) Transport to a location not on the path.
call trncst(x,y,iorder,ncity,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call trnspt(iorder,ncity,n) Carry out the transport.

endif
else Do a path reversal.

call revcst(x,y,iorder,ncity,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call revers(iorder,ncity,n) Carry out the reversal.

endif
endif
if (nsucc.ge.nlimit) goto 2 Finish early if we have enough

successful changes.enddo 12

2 write(*,*)
write(*,*) ’T =’,t,’ Path Length =’,path
write(*,*) ’Successful Moves: ’,nsucc
t=t*tfactr Annealing schedule.
if (nsucc.eq.0) return If no success, we are done.

enddo 13

return
END

SUBROUTINE revcst(x,y,iorder,ncity,n,de)
INTEGER ncity,iorder(ncity),n(6)
REAL de,x(ncity),y(ncity)

This subroutine returns the value of the cost function for a proposed path reversal. ncity
is the number of cities, and arrays x(1:ncity),y(1:ncity) give the coordinates of these
cities. iorder(1:ncity) holds the present itinerary. The first two values n(1) and n(2)
of array n give the starting and ending cities along the path segment which is to be reversed.
On output, de is the cost of making the reversal. The actual reversal is not performed by
this routine.

INTEGER ii,j
REAL alen,xx(4),yy(4),x1,x2,y1,y2
alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)
n(3)=1+mod((n(1)+ncity-2),ncity) Find the city before n(1) ..
n(4)=1+mod(n(2),ncity) .. and the city after n(2).
do 11 j=1,4

ii=iorder(n(j)) Find coordinates for the four cities involved.
xx(j)=x(ii)
yy(j)=y(ii)

enddo 11

de=-alen(xx(1),xx(3),yy(1),yy(3)) Calculate cost of disconnecting the segment
at both ends and reconnecting in the op-
posite order.

* -alen(xx(2),xx(4),yy(2),yy(4))
* +alen(xx(1),xx(4),yy(1),yy(4))
* +alen(xx(2),xx(3),yy(2),yy(3))

return
END

442 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE revers(iorder,ncity,n)
INTEGER ncity,iorder(ncity),n(6)

This routine performs a path segment reversal. iorder(1:ncity) is an input array giving
the present itinerary. The vector n has as its first four elements the first and last cities
n(1),n(2) of the path segment to be reversed, and the two cities n(3) and n(4) that
immediately precede and follow this segment. n(3) and n(4) are found by subroutine
revcst. On output, iorder(1:ncity) contains the segment from n(1) to n(2) in
reversed order.

INTEGER itmp,j,k,l,nn
nn=(1+mod(n(2)-n(1)+ncity,ncity))/2 This many cities must be swapped to effect

the reversal.do 11 j=1,nn
k=1+mod((n(1)+j-2),ncity) Start at the ends of the segment and swap

pairs of cities, moving toward the cen-
ter.

l=1+mod((n(2)-j+ncity),ncity)
itmp=iorder(k)
iorder(k)=iorder(l)
iorder(l)=itmp

enddo 11

return
END

SUBROUTINE trncst(x,y,iorder, ncity,n,de)
INTEGER ncity,iorder(ncity),n(6)
REAL de,x(ncity),y(ncity)

This subroutine returns the value of the cost function for a proposed path segment transport.
ncity is the number of cities, and arrays x(1:ncity) and y(1:ncity) give the city
coordinates. iorder is an array giving the present itinerary. The first three elements of
array n give the starting and ending cities of the path to be transported, and the point
among the remaining cities after which it is to be inserted. On output, de is the cost of
the change. The actual transport is not performed by this routine.

INTEGER ii,j
REAL xx(6),yy(6),alen,x1,x2,y1,y2
alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)
n(4)=1+mod(n(3),ncity) Find the city following n(3)..
n(5)=1+mod((n(1)+ncity-2),ncity) ..and the one preceding n(1)..
n(6)=1+mod(n(2),ncity) ..and the one following n(2).
do 11 j=1,6

ii=iorder(n(j)) Determine coordinates for the six cities in-
volved.xx(j)=x(ii)

yy(j)=y(ii)
enddo 11

de=-alen(xx(2),xx(6),yy(2),yy(6)) Calculate the cost of disconnecting the path
segment from n(1) to n(2), opening a
space between n(3) and n(4), connect-
ing the segment in the space, and con-
necting n(5) to n(6).

* -alen(xx(1),xx(5),yy(1),yy(5))
* -alen(xx(3),xx(4),yy(3),yy(4))
* +alen(xx(1),xx(3),yy(1),yy(3))
* +alen(xx(2),xx(4),yy(2),yy(4))
* +alen(xx(5),xx(6),yy(5),yy(6))

return
END

SUBROUTINE trnspt(iorder,ncity,n)
INTEGER ncity,iorder(ncity),n(6),MXCITY
PARAMETER (MXCITY=1000) Maximum number of cities anticipated.

This routine does the actual path transport, once metrop has approved. iorder is an
input array of length ncity giving the present itinerary. The array n has as its six elements
the beginning n(1) and end n(2) of the path to be transported, the adjacent cities n(3)
and n(4) between which the path is to be placed, and the cities n(5) and n(6) that
precede and follow the path. n(4), n(5), and n(6) are calculated by subroutine trncst.
On output, iorder is modified to reflect the movement of the path segment.

INTEGER j,jj,m1,m2,m3,nn,jorder(MXCITY)
m1=1+mod((n(2)-n(1)+ncity),ncity) Find number of cities from n(1) to n(2)

10.9 Simulated Annealing Methods 443

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

m2=1+mod((n(5)-n(4)+ncity),ncity) ...and the number from n(4) to n(5)
m3=1+mod((n(3)-n(6)+ncity),ncity) ...and the number from n(6) to n(3).
nn=1
do 11 j=1,m1

jj=1+mod((j+n(1)-2),ncity) Copy the chosen segment.
jorder(nn)=iorder(jj)
nn=nn+1

enddo 11

do 12 j=1,m2 Then copy the segment from n(4) to n(5).
jj=1+mod((j+n(4)-2),ncity)
jorder(nn)=iorder(jj)
nn=nn+1

enddo 12

do 13 j=1,m3 Finally, the segment from n(6) to n(3).
jj=1+mod((j+n(6)-2),ncity)
jorder(nn)=iorder(jj)
nn=nn+1

enddo 13

do 14 j=1,ncity
iorder(j)=jorder(j) Copy jorder back into iorder.

enddo 14

return
END

SUBROUTINE metrop(de,t,ans)
REAL de,t
LOGICAL ans

C USES ran3
Metropolis algorithm. ans is a logical variable that issues a verdict on whether to accept a
reconfiguration that leads to a change de in the objective function e. If de<0, ans=.true.,
while if de>0, ans is only .true. with probability exp(-de/t), where t is a temperature
determined by the annealing schedule.

INTEGER jdum
REAL ran3
SAVE jdum
DATA jdum /1/
ans=(de.lt.0.0).or.(ran3(jdum).lt.exp(-de/t))
return
END

Continuous Minimization by Simulated Annealing

The basic ideas of simulated annealing are also applicable to optimization
problems with continuousN -dimensional control spaces, e.g., finding the (ideally,
global) minimum of some functionf(x), in the presence of many local minima,
wherex is anN -dimensional vector. The four elements required by the Metropolis
procedure are now as follows: The value off is the objective function. The
system state is the pointx. The control parameterT is, as before, something like a
temperature, with an annealing schedule by which it is gradually reduced. And there
must be a generator of random changes in the configuration, that is, a procedure for
taking a random step fromx to x + ∆x.

444 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The last of these elements is the most problematical. The literature to date[7-10]

describes several different schemes for choosing∆x, none of which, in our view,
inspire complete confidence. The problem is one of efficiency: A generator of
random changes is inefficient if,when local downhill moves exist, it nevertheless
almost always proposes an uphill move. A good generator, we think, should not
become inefficient in narrow valleys; nor should it become more and more inefficient
as convergence to a minimum is approached. Except possibly for[7], all of the
schemes that we have seen are inefficient in one or both of these situations.

Our own way of doing simulated annealing minimization on continuous control
spaces is to use a modification of the downhill simplex method (§10.4). This amounts
to replacing the single pointx as a description of the system state by a simplex of
N + 1 points. The “moves” are the same as described in§10.4, namely reflections,
expansions, and contractions of the simplex. The implementation of the Metropolis
procedure is slightly subtle: Weadda positive, logarithmically distributed random
variable, proportional to the temperatureT , to the stored function value associated
with every vertex of the simplex, and wesubtracta similar random variable from
the function value of every new point that is tried as a replacement point. Like the
ordinary Metropolis procedure, this method always accepts a true downhill step, but
sometimes accepts anuphill one. In the limitT → 0, this algorithm reduces exactly
to the downhill simplex method and converges to a local minimum.

At a finite value ofT , the simplex expands to a scale that approximates the size
of the region that can be reached at this temperature, and then executes a stochastic,
tumbling Brownian motion within that region, sampling new, approximately random,
points as it does so. The efficiency with which a region is explored is independent
of its narrowness (for an ellipsoidal valley, the ratio of its principal axes) and
orientation. If the temperature is reduced sufficiently slowly, it becomes highly
likely that the simplex will shrink into that region containing the lowest relative
minimum encountered.

As in all applications of simulated annealing, there can be quite a lot of
problem-dependent subtlety in the phrase “sufficiently slowly”; success or failure
is quite often determined by the choice of annealing schedule. Here are some
possibilities worth trying:

• ReduceT to (1 − ǫ)T after everym moves, whereǫ/m is determined
by experiment.

• Budget a total ofK moves, and reduceT after everym moves to a value
T = T0(1− k/K)α, wherek is the cumulative number of moves thus far,
andα is a constant, say 1, 2, or 4. The optimal value forα depends on the
statistical distribution of relative minima of various depths. Larger values
of α spend more iterations at lower temperature.

• After everymmoves, setT toβ timesf1−fb, whereβ is an experimentally
determined constant of order 1,f1 is the smallest function value currently
represented in the simplex, andfb is the best function ever encountered.
However, never reduceT by more than some fractionγ at a time.

Another strategic question is whether to do an occasionalrestart, where a vertex
of the simplex is discarded in favor of the “best-ever” point. (You must be sure that
the best-ever point is not currently in the simplex when you do this!) We have found
problems for which restarts — every time the temperature has decreased by a factor
of 3, say — are highly beneficial; we have found other problems for which restarts

10.9 Simulated Annealing Methods 445

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

have no positive, or a somewhat negative, effect.
You should compare the followingroutine,amebsa, with its counterpartamoeba

in §10.4. Note that the argumentiter is used in a somewhat different manner.

SUBROUTINE amebsa(p,y,mp,np,ndim,pb,yb,ftol,funk,iter,temptr)
INTEGER iter,mp,ndim,np,NMAX
REAL ftol,temptr,yb,p(mp,np),pb(np),y(mp),funk
PARAMETER (NMAX=200)
EXTERNAL funk

C USES amotsa,funk,ran1
Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector in
ndim dimensions, by simulated annealing combined with the downhill simplex method of
Nelder and Mead. The input matrix p(1..ndim+1,1..ndim) has ndim+1 rows, each an
ndim-dimensional vector which is a vertex of the starting simplex. Also input is the vector
y(1:ndim+1), whose components must be pre-initialized to the values of funk evaluated at
the ndim+1 vertices (rows) of p; ftol, the fractional convergence tolerance to be achieved
in the function value for an early return; iter, and temptr. The routine makes iter
function evaluations at an annealing temperature temptr, then returns. You should then
decrease temptr according to your annealing schedule, reset iter, and call the routine
again (leaving other arguments unaltered between calls). If iter is returned with a positive
value, then early convergence and return occurred. If you initialize yb to a very large value
on the first call, then yb and pb(1:ndim) will subsequently return the best function value
and point ever encountered (even if it is no longer a point in the simplex).

INTEGER i,idum,ihi,ilo,j,m,n
REAL rtol,sum,swap,tt,yhi,ylo,ynhi,ysave,yt,ytry,psum(NMAX),

* amotsa,ran1
COMMON /ambsa/ tt,idum
tt=-temptr

1 do 12 n=1,ndim Enter here when starting or after overall contraction.
sum=0. Recompute psum.
do 11 m=1,ndim+1

sum=sum+p(m,n)
enddo 11

psum(n)=sum
enddo 12

2 ilo=1 Enter here after changing a single point. Find which point
is the highest (worst), next-highest, and lowest (best).ihi=2

ylo=y(1)+tt*log(ran1(idum)) Whenever we “look at” a vertex, it gets a random thermal
fluctuation.ynhi=ylo

yhi=y(2)+tt*log(ran1(idum))
if (ylo.gt.yhi) then

ihi=1
ilo=2
ynhi=yhi
yhi=ylo
ylo=ynhi

endif
do 13 i=3,ndim+1 Loop over the points in the simplex.

yt=y(i)+tt*log(ran1(idum)) More thermal fluctuations.
if(yt.le.ylo) then

ilo=i
ylo=yt

endif
if(yt.gt.yhi) then

ynhi=yhi
ihi=i
yhi=yt

else if(yt.gt.ynhi) then
ynhi=yt

endif
enddo 13

rtol=2.*abs(yhi-ylo)/(abs(yhi)+abs(ylo))

446 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol.lt.ftol.or.iter.lt.0) then If returning, put best point and value in slot 1.

swap=y(1)
y(1)=y(ilo)
y(ilo)=swap
do 14 n=1,ndim

swap=p(1,n)
p(1,n)=p(ilo,n)
p(ilo,n)=swap

enddo 14

return
endif
iter=iter-2

Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex across
from the high point, i.e., reflect the simplex from the high point.

ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,-1.0)
if (ytry.le.ylo) then

Gives a result better than the best point, so try an additional extrapolation by a factor 2.
ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,2.0)

else if (ytry.ge.ynhi) then
The reflected point is worse than the second-highest, so look for an intermediate lower point,
i.e., do a one-dimensional contraction.
ysave=yhi
ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,0.5)
if (ytry.ge.ysave) then Can’t seem to get rid of that high point. Better contract

around the lowest (best) point.do 16 i=1,ndim+1
if(i.ne.ilo)then

do 15 j=1,ndim
psum(j)=0.5*(p(i,j)+p(ilo,j))
p(i,j)=psum(j)

enddo 15

y(i)=funk(psum)
endif

enddo 16

iter=iter-ndim
goto 1

endif
else

iter=iter+1 Correct the evaluation count.
endif
goto 2
END

FUNCTION amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,fac)
INTEGER ihi,mp,ndim,np,NMAX
REAL amotsa,fac,yb,yhi,p(mp,np),pb(np),psum(np),y(mp),funk
PARAMETER (NMAX=200)
EXTERNAL funk

C USES funk,ran1
Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

INTEGER idum,j
REAL fac1,fac2,tt,yflu,ytry,ptry(NMAX),ran1
COMMON /ambsa/ tt,idum
fac1=(1.-fac)/ndim
fac2=fac1-fac
do 11 j=1,ndim

ptry(j)=psum(j)*fac1-p(ihi,j)*fac2
enddo 11

10.9 Simulated Annealing Methods 447

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ytry=funk(ptry)
if (ytry.le.yb) then Save the best-ever.

do 12 j=1,ndim
pb(j)=ptry(j)

enddo 12

yb=ytry
endif
yflu=ytry-tt*log(ran1(idum)) We addeda thermal fluctuation to all the current vertices,

but we subtract it here, so as to give the simplex
a thermal Brownian motion: It likes to accept any
suggested change.

if (yflu.lt.yhi) then
y(ihi)=ytry
yhi=yflu
do 13 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)
p(ihi,j)=ptry(j)

enddo 13

endif
amotsa=yflu
return
END

There is not yet enough practical experience with the method of simulated
annealing to say definitively what its future place among optimization methods
will be. The method has several extremely attractive features, rather unique when
compared with other optimization techniques.

First, it is not “greedy,” in the sense that it is not easily fooled by the quick
payoff achieved by falling into unfavorable local minima. Provided that sufficiently
general reconfigurations are given, it wanders freely among local minima of depth
less than aboutT . As T is lowered, the number of such minima qualifying for
frequent visits is gradually reduced.

Second, configuration decisions tend to proceed in a logical order. Changes
that cause the greatest energy differences are sifted over when the control parameter
T is large. These decisions become more permanent asT is lowered, and attention
then shifts more to smaller refinements in the solution. For example, in the traveling
salesman problem with the Mississippi River twist, ifλ is large, a decision to cross
the Mississippi only twice is made at highT , while the specific routes on each side
of the river are determined only at later stages.

The analogies to thermodynamics may be pursued to a greater extent than we
have done here. Quantities analogous to specific heat and entropy may be defined,
and these can be useful in monitoring the progress of the algorithm towards an
acceptable solution. Information on this subject is found in[1].

CITED REFERENCES AND FURTHER READING:

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. 1983, Science, vol. 220, pp. 671–680. [1]

Kirkpatrick, S. 1984, Journal of Statistical Physics, vol. 34, pp. 975–986. [2]

Vecchi, M.P. and Kirkpatrick, S. 1983, IEEE Transactions on Computer Aided Design, vol. CAD-
2, pp. 215–222. [3]

Otten, R.H.J.M., and van Ginneken, L.P.P.P. 1989, The Annealing Algorithm (Boston: Kluwer)
[contains many references to the literature]. [4]

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller A., and Teller, E. 1953, Journal of Chemical
Physics, vol. 21, pp. 1087–1092. [5]

Lin, S. 1965, Bell System Technical Journal, vol. 44, pp. 2245–2269. [6]

Vanderbilt, D., and Louie, S.G. 1984, Journal of Computational Physics, vol. 56, pp. 259–271. [7]

Bohachevsky, I.O., Johnson, M.E., and Stein, M.L. 1986, Technometrics, vol. 28, pp. 209–217. [8]

448 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Corana, A., Marchesi, M., Martini, C., and Ridella, S. 1987, ACM Transactions on Mathematical
Software, vol. 13, pp. 262–280. [9]

Bélisle, C.J.P., Romeijn, H.E., and Smith, R.L. 1990, Technical Report 90–25, Department of
Industrial and Operations Engineering, University of Michigan, submitted to Mathematical
Programming. [10]

Christofides, N., Mingozzi, A., Toth, P., and Sandi, C. (eds.) 1979, Combinatorial Optimization
(London and New York: Wiley-Interscience) [not simulated annealing, but other topics and
algorithms].

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 11. Eigensystems

11.0 Introduction

An N × N matrix A is said to have aneigenvectorx and corresponding
eigenvalueλ if

A · x = λx (11.0.1)

Obviously any multiple of an eigenvectorx will also be an eigenvector, but we
won’t consider such multiples as being distinct eigenvectors. (The zero vector is not
considered to be an eigenvector at all.) Evidently (11.0.1) can hold only if

det|A − λ1| = 0 (11.0.2)

which, if expanded out, is anN th degree polynomial inλ whose roots are the eigen-
values. This proves that there are alwaysN (not necessarily distinct) eigenvalues.
Equal eigenvalues coming from multiple roots are calleddegenerate. Root-searching
in the characteristic equation (11.0.2) is usually a very poor computational method
for finding eigenvalues. We will learn much better ways in this chapter, as well as
efficient ways for finding corresponding eigenvectors.

The above two equations also prove that every one of theN eigenvalues has
a (not necessarily distinct) corresponding eigenvector: Ifλ is set to an eigenvalue,
then the matrixA − λ1 is singular, and we know that every singular matrix has at
least one nonzero vector in its nullspace (see§2.6 on singular value decomposition).

If you addτx to both sides of (11.0.1), you will easily see that the eigenvalues
of any matrix can be changed orshiftedby an additive constantτ by adding to
the matrix that constant times the identity matrix. The eigenvectors are unchanged
by this shift. Shifting, as we will see, is an important part of many algorithms
for computing eigenvalues. We see also that there is no special significance to a
zero eigenvalue. Any eigenvalue can be shifted to zero, or any zero eigenvalue
can be shifted away from zero.

449

450 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Definitions and Basic Facts

A matrix is calledsymmetricif it is equal to its transpose,

A = AT or aij = aji (11.0.3)

It is calledHermitianorself-adjointif it equals the complex-conjugate of its transpose
(its Hermitian conjugate, denoted by “†”)

A = A† or aij = aji* (11.0.4)

It is termedorthogonalif its transpose equals its inverse,

AT · A = A · AT = 1 (11.0.5)

andunitary if its Hermitian conjugate equals its inverse. Finally, a matrix is called
normal if it commuteswith its Hermitian conjugate,

A · A† = A† · A (11.0.6)

For real matrices, Hermitian means the same as symmetric, unitary means the
same as orthogonal, andbothof these distinct classes are normal.

The reason that “Hermitian” is an important concept has to do with eigenvalues.
The eigenvalues of a Hermitian matrix are all real. In particular, the eigenvalues
of a real symmetric matrix are all real. Contrariwise, the eigenvalues of areal
nonsymmetric matrix may include real values, but may also include pairs of complex
conjugate values; and the eigenvalues of a complex matrix that is not Hermitian
will in general be complex.

The reason that “normal” is an important concept has to do with the eigen-
vectors. The eigenvectors of a normal matrix with nondegenerate (i.e., distinct)
eigenvalues are complete and orthogonal, spanning theN -dimensional vector space.
For a normal matrix with degenerate eigenvalues, we have the additional freedom of
replacing the eigenvectors corresponding to a degenerate eigenvalue by linear com-
binations of themselves. Using this freedom, we can always perform Gram-Schmidt
orthogonalization (consult any linear algebra text) andfinda set of eigenvectors that
are complete and orthogonal, just as in the nondegenerate case. The matrix whose
columns are an orthonormal set of eigenvectors is evidently unitary. A special case
is that the matrix of eigenvectors of a real, symmetric matrix is orthogonal, since
the eigenvectors of that matrix are all real.

When a matrix is not normal, as typified by any random, nonsymmetric, real
matrix, then in general we cannot findanyorthonormal set of eigenvectors, nor even
any pairs of eigenvectors that are orthogonal (except perhaps by rare chance). While
theN non-orthonormal eigenvectors will “usually” span theN -dimensional vector
space, they do not always do so; that is, the eigenvectors are not alwayscomplete.
Such a matrix is said to bedefective.

11.0 Introduction 451

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Left and Right Eigenvectors

While the eigenvectors of a non-normal matrix are not particularly orthogonal
among themselves, theydo have an orthogonality relation with a different set of
vectors, which we must now define. Up to now our eigenvectors have been column
vectors that are multiplied to the right of a matrixA, as in (11.0.1). These, more
explicitly, are termedright eigenvectors. We could also, however, try to find row
vectors, which multiplyA to the left and satisfy

x · A = λx (11.0.7)

These are calledleft eigenvectors. By taking the transpose of equation (11.0.7), we
see that every left eigenvector is the transpose of a right eigenvectorof the transpose
of A. Now by comparing to (11.0.2), and using the fact that the determinant of a
matrix equals the determinant of its transpose, we also see that the left and right
eigenvaluesof A are identical.

If the matrix A is symmetric, then the left and right eigenvectors are just
transposes of each other, that is, have the same numerical values as components.
Likewise, if the matrix is self-adjoint, the left and right eigenvectors are Hermitian
conjugates of each other. For the generalnonnormal case, however, we have the
following calculation: LetXR be the matrix formed by columns from the right
eigenvectors, andXL be the matrix formed by rows from the left eigenvectors. Then
(11.0.1) and (11.0.7) can be rewritten as

A · XR = XR · diag(λ1 . . . λN) XL · A = diag(λ1 . . . λN) · XL (11.0.8)

Multiplying the first of these equations on the left byXL, the second on the right
by XR, and subtracting the two, gives

(XL · XR) · diag(λ1 . . . λN) = diag(λ1 . . . λN) · (XL · XR) (11.0.9)

This says that the matrix of dot products of the left and right eigenvectors commutes
with the diagonal matrix of eigenvalues. But the only matrices that commute with a
diagonal matrixof distinct elementsare themselves diagonal. Thus, if the eigenvalues
are nondegenerate,each left eigenvector is orthogonal to all right eigenvectors except
its corresponding one, and vice versa. By choice of normalization, the dot products
of corresponding left and right eigenvectors can always be made unity for any matrix
with nondegenerate eigenvalues.

If some eigenvalues are degenerate, then either the left or the right eigenvec-
tors corresponding to a degenerate eigenvalue must be linearly combined among
themselves to achieve orthogonality with the right or left ones, respectively. This
can always be done by a procedure akin to Gram-Schmidt orthogonalization. The
normalization can then be adjusted to give unity for the nonzero dot products between
corresponding left and right eigenvectors. If the dot product of corresponding left and
right eigenvectors is zero at this stage, then you have a case where the eigenvectors
are incomplete! Note that incomplete eigenvectors can occur only where there are
degenerate eigenvalues, but do not always occur in such cases (in fact, never occur
for the class of “normal” matrices). See[1] for a clear discussion.

452 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In both the degenerate and nondegenerate cases, the final normalization to
unity of all nonzero dot products produces the result: The matrix whose rows
are left eigenvectors is the inverse matrix of the matrix whose columns are right
eigenvectors,if the inverse exists.

Diagonalization of a Matrix

Multiplying the first equation in (11.0.8) byXL, and using the fact thatXL

and XR are matrix inverses, we get

X−1

R
· A · XR = diag(λ1 . . . λN) (11.0.10)

This is a particular case of asimilarity transformof the matrixA,

A → Z−1 · A · Z (11.0.11)

for some transformation matrixZ. Similarity transformations play a crucial role
in the computation of eigenvalues, because they leave the eigenvalues ofa matrix
unchanged. This is easily seen from

det
∣

∣Z−1 · A · Z − λ1
∣

∣ = det
∣

∣Z−1 · (A − λ1) · Z
∣

∣

= det|Z| det|A − λ1| det
∣

∣Z−1
∣

∣

= det|A − λ1|

(11.0.12)

Equation (11.0.10) shows that any matrix with complete eigenvectors (which includes
all normal matrices and “most” random nonnormal ones) can be diagonalized by a
similarity transformation, that the columns of the transformation matrix that effects
the diagonalization are the right eigenvectors, and that the rows of its inverse are
the left eigenvectors.

For real, symmetric matrices, the eigenvectors are real and orthonormal, so the
transformation matrix is orthogonal. The similarity transformation is then also an
orthogonal transformationof the form

A → ZT · A · Z (11.0.13)

While real nonsymmetric matrices can be diagonalized in their usual case of complete
eigenvectors, the transformation matrix is not necessarily real. It turns out, however,
that a real similarity transformation can “almost” do the job. It can reduce the
matrix down to a form with little two-by-two blocks along the diagonal, all other
elements zero. Each two-by-two block corresponds to a complex-conjugate pair
of complex eigenvalues. We will see this idea exploited in some routines given
later in the chapter.

The “grand strategy” of virtually all modern eigensystem routines is to nudge
the matrixA towards diagonal form by a sequence of similarity transformations,

A → P−1

1
· A · P1 → P−1

2
· P−1

1
· A · P1 · P2

→ P−1

3
· P−1

2
· P−1

1
· A · P1 · P2 · P3 → etc.

(11.0.14)

11.0 Introduction 453

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If we get all the way to diagonal form, then the eigenvectors are the columns of
the accumulated transformation

XR = P1 · P2 · P3 · . . . (11.0.15)

Sometimes we do not want to go all the way to diagonal form. For example, if
we are interested only in eigenvalues, not eigenvectors, it is enough to transform
the matrixA to be triangular, with all elements below (or above) the diagonal zero.
In this case the diagonal elements are already the eigenvalues, as you can see by
mentally evaluating (11.0.2) using expansion by minors.

There are two rather different sets of techniques for implementing the grand
strategy (11.0.14). It turns out that they work rather well in combination, so most
modern eigensystem routines use both. The first set of techniques constructs individ-
ual Pi’s as explicit “atomic” transformations designed to perform specific tasks, for
example zeroing a particular off-diagonal element (Jacobi transformation,§11.1), or
a whole particular row or column (Householder transformation,§11.2; elimination
method,§11.5). In general, a finite sequence of these simple transformations cannot
completely diagonalize a matrix. There are then two choices: either use the finite
sequence of transformations to go most of the way (e.g., to some special form like
tridiagonalor Hessenberg, see§11.2 and§11.5 below) and follow up with the second
set of techniques about to be mentioned; or else iterate the finite sequence of simple
transformations over and over until the deviation of the matrix from diagonal is
negligibly small. This latter approach is conceptually simplest, so we will discuss
it in the next section; however, forN greater than∼ 10, it is computationally
inefficient by a roughly constant factor∼ 5.

The second set of techniques, calledfactorization methods, is more subtle.
Suppose that the matrixA can be factored into a left factorFL and a right factor
FR. Then

A = FL · FR or equivalently F−1

L · A = FR (11.0.16)

If we now multiply back together the factors in the reverse order, and use the second
equation in (11.0.16) we get

FR · FL = F−1

L · A · FL (11.0.17)

which we recognize as having effected a similarity transformation onA with the
transformation matrix beingFL! In §11.3 and§11.6 we will discuss theQR method
which exploits this idea.

Factorization methods also do not converge exactly in a finite number of
transformations. But the better ones do converge rapidly and reliably, and, when
following an appropriate initial reduction by simple similarity transformations, they
are the methods of choice.

454 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

“Eigenpackages of Canned Eigenroutines”

You have probably gathered by now that the solution of eigensystems is a fairly
complicated business. It is. It is one of the few subjects covered in this book for
which we donot recommend that you avoid canned routines. On the contrary, the
purpose of this chapter is precisely to give you some appreciation of what is going
on inside such canned routines, so that you can make intelligent choices about using
them, and intelligent diagnoses when something goes wrong.

You will find that almost all canned routines in use nowadays trace their ancestry
back to routines published in Wilkinson and Reinsch’sHandbook for Automatic
Computation,Vol. II, Linear Algebra[2]. This excellent reference, containing papers
by a number of authors, is the Bible of the field. A public-domain implementation
of the Handbookroutines inFORTRAN is the EISPACK set of programs[3]. The
routines in this chapter are translations of either theHandbookor EISPACK routines,
so understanding these will take you a lot of the way towards understanding those
canonical packages.

IMSL [4] and NAG[5] each provide proprietary implementations, inFORTRAN,
of what are essentially the Handbook routines.

A good “eigenpackage” will provideseparate routines, or separate paths through
sequences of routines, for the following desired calculations:

• all eigenvalues and no eigenvectors
• all eigenvalues and some corresponding eigenvectors
• all eigenvalues and all corresponding eigenvectors

The purpose of these distinctions is to save compute time and storage; it is wasteful
to calculate eigenvectors that you don’t need. Often one is interested only in
the eigenvectors corresponding to the largest few eigenvalues, or largest few in
magnitude, or few that are negative. The method usually used to calculate “some”
eigenvectors is typically more efficient than calculating all eigenvectors if you desire
fewer than about a quarter of the eigenvectors.

A good eigenpackage also provides separate paths foreach of the above
calculations for each of the following special forms of the matrix:

• real, symmetric, tridiagonal
• real, symmetric, banded (only a small number of sub- and superdiagonals

are nonzero)
• real, symmetric
• real, nonsymmetric
• complex, Hermitian
• complex, non-Hermitian

Again, the purpose of these distinctions is to save time and storage by using theleast
general routine that will serve in any particular application.

In this chapter, as a bare introduction, we give good routines for the following
paths:

• all eigenvalues and eigenvectors of a real, symmetric, tridiagonal matrix
(§11.3)

• all eigenvalues and eigenvectors of a real, symmetric, matrix (§11.1–§11.3)
• all eigenvalues and eigenvectors of a complex, Hermitian matrix

(§11.4)
• all eigenvalues and no eigenvectors of a real, nonsymmetric matrix

11.0 Introduction 455

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(§11.5–§11.6)
We also discuss, in§11.7, how to obtain some eigenvectors of nonsymmetric

matrices by the method of inverse iteration.

Generalized and Nonlinear Eigenvalue Problems

Many eigenpackages also deal with the so-calledgeneralized eigenproblem, [6]

A · x = λB · x (11.0.18)

whereA and B are both matrices. Most such problems, whereB is nonsingular,
can be handled by the equivalent

(B−1 · A) · x = λx (11.0.19)

Often A and B are symmetric andB is positive definite. The matrixB−1 · A in
(11.0.19) is not symmetric, but we can recover a symmetric eigenvalue problem
by using the Cholesky decompositionB = L · LT of §2.9. Multiplying equation
(11.0.18) byL−1, we get

C · (LT · x) = λ(LT · x) (11.0.20)
where

C = L−1 · A · (L−1)T (11.0.21)

The matrixC is symmetric and its eigenvalues are the same as those of the original
problem (11.0.18); its eigenfunctions areLT · x. The efficient way to formC is
first to solve the equation

Y · LT = A (11.0.22)

for the lower triangle of the matrixY. Then solve

L · C = Y (11.0.23)

for the lower triangle of the symmetric matrixC.
Another generalization of the standard eigenvalue problem is to problems

nonlinear in the eigenvalueλ, for example,

(Aλ2 + Bλ + C) · x = 0 (11.0.24)

This can be turned into a linear problem by introducing an additional unknown
eigenvectory and solving the2N × 2N eigensystem,

(

0 1
−A−1 · C −A−1 · B

)

·

(

x
y

)

= λ

(

x
y

)

(11.0.25)

This technique generalizes to higher-order polynomials inλ. A polynomial of degree
M produces a linearMN × MN eigensystem (see[7]).

456 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 6. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [3]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [4]

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.),
Chapter F02. [5]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §7.7. [6]

Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [7]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 13.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

11.1 Jacobi Transformations of a Symmetric
Matrix

The Jacobi method consists of a sequence of orthogonal similarity transforma-
tions of the form of equation (11.0.14). Each transformation (aJacobi rotation) is
just a plane rotation designed to annihilate one of the off-diagonal matrix elements.
Successive transformations undo previously set zeros, but the off-diagonal elements
nevertheless get smaller and smaller, until the matrix is diagonal to machine preci-
sion. Accumulating the product of the transformations as you go gives the matrix
of eigenvectors, equation (11.0.15), while the elements of the final diagonal matrix
are the eigenvalues.

The Jacobi method is absolutely foolproof for all real symmetric matrices. For
matrices of order greater than about 10, say, the algorithm is slower, by a significant
constant factor, than theQR method we shall give in§11.3. However, the Jacobi
algorithm is much simpler than the more efficient methods. We thus recommend it
for matrices of moderate order, where expense is not a major consideration.

The basic Jacobi rotationPpq is a matrix of the form

Ppq =

1
· · ·

c · · · s
... 1

...
−s · · · c

· · ·
1

(11.1.1)

Here all the diagonal elements are unity except for the two elementsc in rows (and
columns)p andq. All off-diagonal elements are zero except the two elementss and
−s. The numbersc ands are the cosine and sine of a rotation angleφ, soc2 +s2 = 1.

456 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 6. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [3]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [4]

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.),
Chapter F02. [5]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §7.7. [6]

Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [7]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 13.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

11.1 Jacobi Transformations of a Symmetric
Matrix

The Jacobi method consists of a sequence of orthogonal similarity transforma-
tions of the form of equation (11.0.14). Each transformation (aJacobi rotation) is
just a plane rotation designed to annihilate one of the off-diagonal matrix elements.
Successive transformations undo previously set zeros, but the off-diagonal elements
nevertheless get smaller and smaller, until the matrix is diagonal to machine preci-
sion. Accumulating the product of the transformations as you go gives the matrix
of eigenvectors, equation (11.0.15), while the elements of the final diagonal matrix
are the eigenvalues.

The Jacobi method is absolutely foolproof for all real symmetric matrices. For
matrices of order greater than about 10, say, the algorithm is slower, by a significant
constant factor, than theQR method we shall give in§11.3. However, the Jacobi
algorithm is much simpler than the more efficient methods. We thus recommend it
for matrices of moderate order, where expense is not a major consideration.

The basic Jacobi rotationPpq is a matrix of the form

Ppq =

1
· · ·

c · · · s
... 1

...
−s · · · c

· · ·
1

(11.1.1)

Here all the diagonal elements are unity except for the two elementsc in rows (and
columns)p andq. All off-diagonal elements are zero except the two elementss and
−s. The numbersc ands are the cosine and sine of a rotation angleφ, soc2 +s2 = 1.

11.1 Jacobi Transformations of a Symmetric Matrix 457

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

A plane rotation such as (11.1.1) is used to transform the matrixA according to

A′ = PT
pq · A · Ppq (11.1.2)

Now, PT
pq · A changes only rowsp andq of A, while A · Ppq changes only columns

p andq. Notice that the subscriptsp andq do not denote components ofPpq, but
rather label which kind of rotation the matrix is, i.e., which rows and columns it
affects. Thus the changed elements ofA in (11.1.2) are only in thep andq rows
and columns indicated below:

A′ =

· · · a′1p · · · a′1q · · ·
...

...
...

...
a′p1 · · · a′pp · · · a′pq · · · a′pn
...

...
...

...
a′q1 · · · a′qp · · · a′qq · · · a′qn
...

...
...

...
· · · a′np · · · a′nq · · ·

(11.1.3)

Multiplying out equation (11.1.2) and using the symmetry ofA, we get the explicit
formulas

a′rp = carp − sarq

a′rq = carq + sarp
r 6= p, r 6= q (11.1.4)

a′pp = c2app + s2aqq − 2scapq (11.1.5)

a′qq = s2app + c2aqq + 2scapq (11.1.6)

a′pq = (c2 − s2)apq + sc(app − aqq) (11.1.7)

The idea of the Jacobi method is to try to zero the off-diagonal elements by a
series of plane rotations. Accordingly, to seta′pq = 0, equation (11.1.7) gives the
following expression for the rotation angleφ

θ ≡ cot 2φ ≡ c2 − s2

2sc
=

aqq − app
2apq

(11.1.8)

If we let t ≡ s/c, the definition ofθ can be rewritten

t2 + 2tθ− 1 = 0 (11.1.9)

The smaller root of this equation corresponds to a rotation angle less thanπ/4
in magnitude; this choice at each stage gives the most stable reduction.Using the
form of the quadratic formula with the discriminant in the denominator, we can
write this smaller root as

t =
sgn(θ)

|θ| +
√
θ2 + 1

(11.1.10)

458 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If θ is so large thatθ2 would overflow on the computer, we sett = 1/(2θ). It
now follows that

c =
1√

t2 + 1
(11.1.11)

s = tc (11.1.12)

When we actually use equations (11.1.4)–(11.1.7) numerically, we rewrite them
to minimize roundoff error. Equation (11.1.7) is replaced by

a′pq = 0 (11.1.13)

The idea in the remaining equations is to set the new quantity equal to the old
quantity plus a small correction. Thus we can use (11.1.7) and (11.1.13) to eliminate
aqq from (11.1.5), giving

a′pp = app − tapq (11.1.14)

Similarly,

a′qq = aqq + tapq (11.1.15)

a′rp = arp − s(arq + τarp) (11.1.16)

a′rq = arq + s(arp − τarq) (11.1.17)

where τ (= tanφ/2) is defined by

τ ≡ s

1 + c
(11.1.18)

One can see the convergence of the Jacobi method by considering the sum of
the squares of the off-diagonal elements

S =
∑

r 6=s

|ars|2 (11.1.19)

Equations (11.1.4)–(11.1.7) imply that

S′ = S − 2|apq|2 (11.1.20)

(Since the transformation is orthogonal, the sum of the squares of the diagonal
elements increases correspondingly by2|apq|2.) The sequence ofS’s thus decreases
monotonically. Since the sequence is bounded below by zero, and since we can
chooseapq to be whatever element we want, the sequence can be made to converge
to zero.

Eventually one obtains a matrixD that is diagonal to machine precision. The
diagonal elements give the eigenvalues of the original matrixA, since

D = VT · A · V (11.1.21)

11.1 Jacobi Transformations of a Symmetric Matrix 459

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

where
V = P1 · P2 · P3 · · · (11.1.22)

the Pi’s being the successive Jacobi rotation matrices. The columns ofV are the
eigenvectors (sinceA · V = V · D). They can be computed by applying

V′ = V · Pi (11.1.23)

at each stage of calculation, where initially V is the identity matrix. In detail,
equation (11.1.23) is

v′rs = vrs (s 6= p, s 6= q)

v′rp = cvrp − svrq

v′rq = svrp + cvrq

(11.1.24)

We rewrite these equations in terms ofτ as in equations (11.1.16) and (11.1.17)
to minimize roundoff.

The only remaining question is the strategy one should adopt for the order in
which the elements are to be annihilated. Jacobi’s original algorithmof 1846 searched
the whole upper triangle ateach stage and set the largest off-diagonal element to zero.
This is a reasonable strategy for hand calculation, but it is prohibitive on a computer
since the search alone makes each Jacobi rotation a process of orderN2 instead ofN .

A better strategy for our purposes is thecyclic Jacobi method, where one
annihilates elements in strict order. For example, one can simply proceed down
the rows: P12,P13, ...,P1n; then P23,P24, etc. One can show that convergence
is generally quadratic for both the original or the cyclic Jacobi methods, for
nondegenerate eigenvalues. One such set ofn(n − 1)/2 Jacobi rotations is called
a sweep.

The program below, based on the implementations in[1,2], uses two further
refinements:

• In the first three sweeps, we carry out thepq rotation only if |apq| > ǫ
for some threshold value

ǫ =
1

5

S0

n2
(11.1.25)

whereS0 is the sum of the off-diagonal moduli,

S0 =
∑

r<s

|ars| (11.1.26)

• After four sweeps, if|apq| ≪ |app| and |apq| ≪ |aqq|, we set|apq| = 0
and skip the rotation. The criterion used in the comparison is|apq| <
10−(D+2)|app|, whereD is the number of significant decimal digits on the
machine, and similarly for|aqq|.

460 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In the following routine then×n symmetric matrixa(1:n,1:n) is stored in
annp×np array. On output, the superdiagonal elements ofa are destroyed, but the
diagonal and subdiagonal are unchanged and give full information on the original
symmetric matrixa. The parameterd is a vector of lengthnp. On output, it returns
the eigenvalues ofa in its first n elements. During the computation, it contains the
current diagonal ofa. The matrixv outputs the normalized eigenvector belonging
to d(k) in its kth column. The parameternrot is the number of Jacobi rotations
that were needed to achieve convergence.

Typical matrices require 6 to 10 sweeps to achieve convergence, or3n2 to
5n2 Jacobi rotations. Each rotation requires of order4n operations, each consisting
of a multiply and an add, so the total labor is of order12n3 to 20n3 operations.
Calculation of the eigenvectors as well as the eigenvalues changes the operation
count from4n to 6n per rotation, which is only a 50 percent overhead.

SUBROUTINE jacobi(a,n,np,d,v,nrot)
INTEGER n,np,nrot,NMAX
REAL a(np,np),d(np),v(np,np)
PARAMETER (NMAX=500)

Computes all eigenvalues and eigenvectors of a real symmetric matrix a, which is of size n
by n, stored in a physical np by np array. On output, elements of a above the diagonal are
destroyed. d returns the eigenvalues of a in its first n elements. v is a matrix with the same
logical and physical dimensions as a, whose columns contain, on output, the normalized
eigenvectors of a. nrot returns the number of Jacobi rotations that were required.

INTEGER i,ip,iq,j
REAL c,g,h,s,sm,t,tau,theta,tresh,b(NMAX),z(NMAX)
do 12 ip=1,n Initialize to the identity matrix.

do 11 iq=1,n
v(ip,iq)=0.

enddo 11

v(ip,ip)=1.
enddo 12

do 13 ip=1,n
b(ip)=a(ip,ip) Initialize b and d to the diagonal of a.
d(ip)=b(ip)
z(ip)=0. This vector will accumulate terms of the form tapq

as in equation (11.1.14).enddo 13

nrot=0
do 24 i=1,50

sm=0.
do 15 ip=1,n-1 Sum off-diagonal elements.

do 14 iq=ip+1,n
sm=sm+abs(a(ip,iq))

enddo 14

enddo 15

if(sm.eq.0.)return The normal return, which relies on quadratic conver-
gence to machine underflow.if(i.lt.4)then

tresh=0.2*sm/n**2 ...on the first three sweeps.
else

tresh=0. ...thereafter.
endif
do 22 ip=1,n-1

do 21 iq=ip+1,n
g=100.*abs(a(ip,iq))

After four sweeps, skip the rotation if the off-diagonal element is small.
if((i.gt.4).and.(abs(d(ip))+g.eq.abs(d(ip)))

* .and.(abs(d(iq))+g.eq.abs(d(iq))))then
a(ip,iq)=0.

else if(abs(a(ip,iq)).gt.tresh)then
h=d(iq)-d(ip)
if(abs(h)+g.eq.abs(h))then

11.1 Jacobi Transformations of a Symmetric Matrix 461

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t=a(ip,iq)/h t = 1/(2θ)
else

theta=0.5*h/a(ip,iq) Equation (11.1.10).
t=1./(abs(theta)+sqrt(1.+theta**2))
if(theta.lt.0.)t=-t

endif
c=1./sqrt(1+t**2)
s=t*c
tau=s/(1.+c)
h=t*a(ip,iq)
z(ip)=z(ip)-h
z(iq)=z(iq)+h
d(ip)=d(ip)-h
d(iq)=d(iq)+h
a(ip,iq)=0.
do 16 j=1,ip-1 Case of rotations 1 ≤ j < p.

g=a(j,ip)
h=a(j,iq)
a(j,ip)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)

enddo 16

do 17 j=ip+1,iq-1 Case of rotations p < j < q.
g=a(ip,j)
h=a(j,iq)
a(ip,j)=g-s*(h+g*tau)
a(j,iq)=h+s*(g-h*tau)

enddo 17

do 18 j=iq+1,n Case of rotations q < j ≤ n.
g=a(ip,j)
h=a(iq,j)
a(ip,j)=g-s*(h+g*tau)
a(iq,j)=h+s*(g-h*tau)

enddo 18

do 19 j=1,n
g=v(j,ip)
h=v(j,iq)
v(j,ip)=g-s*(h+g*tau)
v(j,iq)=h+s*(g-h*tau)

enddo 19

nrot=nrot+1
endif

enddo 21

enddo 22

do 23 ip=1,n
b(ip)=b(ip)+z(ip)
d(ip)=b(ip) Update d with the sum of tapq,
z(ip)=0. and reinitialize z.

enddo 23

enddo 24

pause ’too many iterations in jacobi’
return
END

Note that the above routine assumes that underflows are set to zero. On
machines where this is not true, the program must be modified.

The eigenvalues are not ordered on output. If sorting is desired, the following
routine can be invoked to reorder the output ofjacobi or of later routines in this
chapter. (The method, straight insertion, isN2 rather thanN logN ; but since you
have just done anN3 procedure to get the eigenvalues, you can afford yourself
this little indulgence.)

462 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE eigsrt(d,v,n,np)
INTEGER n,np
REAL d(np),v(np,np)

Given the eigenvalues d and eigenvectors v as output from jacobi (§11.1) or tqli (§11.3),
this routine sorts the eigenvalues into descending order, and rearranges the columns of v
correspondingly. The method is straight insertion.

INTEGER i,j,k
REAL p
do 13 i=1,n-1

k=i
p=d(i)
do 11 j=i+1,n

if(d(j).ge.p)then
k=j
p=d(j)

endif
enddo 11

if(k.ne.i)then
d(k)=d(i)
d(i)=p
do 12 j=1,n

p=v(j,i)
v(j,i)=v(j,k)
v(j,k)=p

enddo 12

endif
enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.4.

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]

11.2 Reduction of a Symmetric Matrix
to Tridiagonal Form: Givens and
Householder Reductions

As already mentioned, the optimum strategy for finding eigenvalues and
eigenvectors is, first, to reduce the matrix to a simple form, only then beginning an
iterative procedure. For symmetric matrices, the preferred simple form is tridiagonal.
The Givens reductionis a modification of the Jacobi method. Instead of trying to
reduce the matrix all the way to diagonal form, we are content to stop when the
matrix is tridiagonal. This allows the procedure to be carried outin a finite number
of steps, unlike the Jacobi method, which requires iteration to convergence.

462 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE eigsrt(d,v,n,np)
INTEGER n,np
REAL d(np),v(np,np)

Given the eigenvalues d and eigenvectors v as output from jacobi (§11.1) or tqli (§11.3),
this routine sorts the eigenvalues into descending order, and rearranges the columns of v
correspondingly. The method is straight insertion.

INTEGER i,j,k
REAL p
do 13 i=1,n-1

k=i
p=d(i)
do 11 j=i+1,n

if(d(j).ge.p)then
k=j
p=d(j)

endif
enddo 11

if(k.ne.i)then
d(k)=d(i)
d(i)=p
do 12 j=1,n

p=v(j,i)
v(j,i)=v(j,k)
v(j,k)=p

enddo 12

endif
enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.4.

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]

11.2 Reduction of a Symmetric Matrix
to Tridiagonal Form: Givens and
Householder Reductions

As already mentioned, the optimum strategy for finding eigenvalues and
eigenvectors is, first, to reduce the matrix to a simple form, only then beginning an
iterative procedure. For symmetric matrices, the preferred simple form is tridiagonal.
The Givens reductionis a modification of the Jacobi method. Instead of trying to
reduce the matrix all the way to diagonal form, we are content to stop when the
matrix is tridiagonal. This allows the procedure to be carried outin a finite number
of steps, unlike the Jacobi method, which requires iteration to convergence.

11.2 Reduction of a Symmetric Matrix to Tridiagonal Form 463

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Givens Method

For the Givens method, we choose the rotation angle in equation (11.1.1) so
as to zero an element that isnot at one of the four “corners,” i.e., notapp, apq,
or aqq in equation (11.1.3). Specifically, we first chooseP23 to annihilatea31

(and, by symmetry,a13). Then we chooseP24 to annihilatea41. In general, we
choose the sequence

P23,P24, . . . ,P2n; P34, . . . ,P3n; . . . ; Pn−1,n

wherePjk annihilatesak,j−1. The method works because elements such asa′rp and
a′rq , with r 6= p r 6= q, are linear combinations of the old quantitiesarp andarq , by
equation (11.1.4). Thus, ifarp andarq have already been set to zero, they remain
zero as the reduction proceeds. Evidently, of ordern2/2 rotations are required,
and the number of multiplications in a straightforward implementation is of order
4n3/3, not counting those for keeping track of the product of the transformation
matrices, required for the eigenvectors.

The Householder method, to be discussed next, is just as stable as the Givens
reduction and it is a factor of 2 more efficient, so the Givens method is not generally
used. Recent work (see[1]) has shown that the Givens reduction can be reformulated
to reduce the number of operations by a factor of 2, and also avoid the necessity
of taking square roots. This appears to make the algorithm competitive with the
Householder reduction. However, this “fast Givens” reduction has to be monitored
to avoid overflows, and the variables have to be periodically rescaled. There does
not seem to be any compelling reason to prefer the Givens reduction over the
Householder method.

Householder Method

The Householder algorithm reduces ann×n symmetric matrixA to tridiagonal
form by n − 2 orthogonal transformations. Each transformation annihilates the
required part of a whole column and whole corresponding row. The basic ingredient
is a Householder matrixP, which has the form

P = 1− 2w · wT (11.2.1)

wherew is a real vector with|w|2 = 1. (In the present notation, theouteror matrix
product of two vectors,a andb is writtena · bT , while theinneror scalar product of
the vectors is written asaT · b.) The matrixP is orthogonal, because

P2 = (1− 2w · wT) · (1− 2w · wT)

= 1− 4w · wT + 4w · (wT · w) · wT

= 1

(11.2.2)

ThereforeP = P−1. But PT = P, and soPT = P−1, proving orthogonality.

464 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Rewrite P as

P =1− u · uT

H
(11.2.3)

where the scalarH is

H ≡ 1

2
|u|2 (11.2.4)

and u can now be any vector. Supposex is the vector composed of the first
column of A. Choose

u = x ∓ |x|e1 (11.2.5)

where e1 is the unit vector[1, 0, . . ., 0]T , and the choice of signs will be made
later. Then

P · x = x − u
H

· (x ∓ |x|e1)
T · x

= x − 2u · (|x|2 ∓ |x|x1)

2|x|2 ∓ 2|x|x1

= x − u

= ±|x|e1

(11.2.6)

This shows that the Householder matrixP acts on a given vectorx to zero all its
elements except the first one.

To reduce a symmetric matrixA to tridiagonal form, we choose the vectorx
for the first Householder matrix to be the lowern − 1 elements of the first column.
Then the lowern − 2 elements will be zeroed:

P1 · A =

1 0 0 · · · 0

0

0
... (n−1)P1

0

·

a11 a12 a13 · · · a1n

a21

a31

... irrelevant

an1

=

a11 a12 a13 · · · a1n

k

0
... irrelevant

0

(11.2.7)

Here we have written the matrices in partitioned form, with(n−1)P denoting a
Householder matrix with dimensions(n − 1) × (n − 1). The quantityk is simply
plus or minus the magnitude of the vector[a21, . . . , an1]

T .

11.2 Reduction of a Symmetric Matrix to Tridiagonal Form 465

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The complete orthogonal transformation is now

A′ = P · A · P =

a11 k 0 · · · 0

k

0
... irrelevant

0

(11.2.8)

We have used the fact thatPT = P.
Now choose the vectorx for the second Householder matrix to be the bottom

n − 2 elements of the second column, and from it construct

P2 ≡

1 0 0 · · · 0

0 1 0 · · · 0

0 0
...

... (n−2)P2

0 0

(11.2.9)

The identity block in the upper left corner insures that the tridiagonalizationachieved
in the first step will not be spoiled by this one, while the(n − 2)-dimensional
Householder matrix(n−2)P2 creates one additional row and column of the tridiagonal
output. Clearly, a sequence ofn − 2 such transformations will reduce the matrix
A to tridiagonal form.

Instead of actually carrying out the matrix multiplications inP · A · P, we
compute a vector

p ≡ A · u
H

(11.2.10)

Then

A · P = A · (1 − u · uT

H
) = A − p · uT

A′ = P · A · P = A − p · uT − u · pT + 2Ku · uT

where the scalarK is defined by

K =
uT · p
2H

(11.2.11)

If we write
q ≡ p −Ku (11.2.12)

then we have
A′ = A − q · uT − u · qT (11.2.13)

This is the computationally useful formula.
Following[2], the routine for Householder reduction given below actually starts

in the nth column ofA, not the first as in the explanation above. In detail, the
equations are as follows: At stagem (m = 1, 2, . . . , n−2) the vectoru has the form

uT = [ai1, ai2, . . . , ai,i−2, ai,i−1 ±
√
σ, 0, . . . , 0] (11.2.14)

466 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Here
i ≡ n−m + 1 = n, n− 1, . . . , 3 (11.2.15)

and the quantityσ (|x|2 in our earlier notation) is

σ = (ai1)
2 + · · ·+ (ai,i−1)

2 (11.2.16)

We choose the sign ofσ in (11.2.14) to be the same as the sign ofai,i−1 to lessen
roundoff error.

Variables are thus computed in the following order:σ, u, H, p, K, q,A′. At any
stagem, A is tridiagonal in its lastm − 1 rows and columns.

If the eigenvectors of the final tridiagonal matrix are found (for example, by the
routine in the next section), then the eigenvectors ofA can be obtained by applying
the accumulated transformation

Q = P1 · P2 · · ·Pn−2 (11.2.17)

to those eigenvectors. We therefore formQ by recursion after all theP’s have
been determined:

Qn−2 = Pn−2

Qj = Pj · Qj+1, j = n− 3, . . . , 1

Q = Q1

(11.2.18)

The input parameters for the routine below are then×n real, symmetric matrix
a, stored in annp×np array. On output,a contains the elements of the orthogonal
matrix q. The vectord returns the diagonal elements of the tridiagonal matrixA′,
while the vectore returns the off-diagonal elements in its components2 throughn,
with e(1)=0. Note that sincea is overwritten, you should copy it before calling the
routine, if it is required for subsequent computations.

No extra storage arrays are needed for the intermediate results. At stagem, the
vectorsp andq are nonzero only in elements1, . . . , i (recall thati = n −m + 1),
while u is nonzero only in elements1, . . . , i− 1. The elements of the vectore are
being determined in the ordern, n − 1, . . . , so we can storep in the elements ofe
not already determined. The vectorq can overwritep oncep is no longer needed.
We storeu in theith row ofa andu/H in the ith column ofa. Once the reduction
is complete, we compute the matricesQj using the quantitiesu andu/H that have
been stored ina. SinceQj is an identity matrix in the lastn − j + 1 rows and
columns, we only need compute its elements up to row and columnn − j. These
can overwrite theu’s andu/H ’s in the corresponding rows and columns ofa, which
are no longer required for subsequentQ’s.

The routinetred2, given below, includes one further refinement. If the quantity
σ is zero or “small” at any stage, one can skip the corresponding transformation.
A simple criterion, such as

σ <
smallest positive number representable on machine

machine precision

11.2 Reduction of a Symmetric Matrix to Tridiagonal Form 467

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

would be fine most of the time. A more careful criterion is actually used. Define
the quantity

ǫ =

i−1
∑

k=1

|aik| (11.2.19)

If ǫ = 0 to machine precision, we skip the transformation. Otherwise we redefine

aik becomes aik/ǫ (11.2.20)

and use the scaled variables for the transformation. (A Householder transformation
depends only on the ratios of the elements.)

Note that when dealing with a matrix whose elements vary over many orders
of magnitude, it is important that the matrix be permuted, insofar as possible, so that
the smaller elements are in the top left-hand corner. This is because the reduction
is performed starting from the bottom right-hand corner, and a mixture of small and
large elements there can lead to considerable rounding errors.

The routinetred2 is designed for use with the routinetqli of the next section.
tqli finds the eigenvalues and eigenvectors of a symmetric, tridiagonal matrix.
The combination oftred2 and tqli is the most efficient known technique for
finding all the eigenvalues and eigenvectors (or just all the eigenvalues) of a real,
symmetric matrix.

In the listing below, the statements indicated by comments are required only for
subsequent computation of eigenvectors. If only eigenvalues are required, omission
of the commented statements speeds up the execution time oftred2 by a factor of 2
for largen. In the limit of largen, the operation count of the Householder reduction
is 2n3/3 for eigenvalues only, and4n3/3 for both eigenvalues and eigenvectors.

SUBROUTINE tred2(a,n,np,d,e)
INTEGER n,np
REAL a(np,np),d(np),e(np)

Householder reduction of a real, symmetric, n by n matrix a, stored in an np by np physical
array. On output, a is replaced by the orthogonal matrix Q effecting the transformation. d
returns the diagonal elements of the tridiagonal matrix, and e the off-diagonal elements,
with e(1)=0. Several statements, as noted in comments, can be omitted if only eigenvalues
are to be found, in which case a contains no useful information on output. Otherwise they
are to be included.

INTEGER i,j,k,l
REAL f,g,h,hh,scale
do 18 i=n,2,-1

l=i-1
h=0.
scale=0.
if(l.gt.1)then

do 11 k=1,l
scale=scale+abs(a(i,k))

enddo 11

if(scale.eq.0.)then Skip transformation.
e(i)=a(i,l)

else
do 12 k=1,l

a(i,k)=a(i,k)/scale Use scaled a’s for transformation.
h=h+a(i,k)**2 Form σ in h.

enddo 12

f=a(i,l)

468 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

g=-sign(sqrt(h),f)
e(i)=scale*g
h=h-f*g Now h is equation (11.2.4).
a(i,l)=f-g Store u in the ith row of a.
f=0.
do 15 j=1,l

C Omit following line if finding only eigenvalues
a(j,i)=a(i,j)/h Store u/H in ith column of a.
g=0. Form an element of A · u in g.
do 13 k=1,j

g=g+a(j,k)*a(i,k)
enddo 13

do 14 k=j+1,l
g=g+a(k,j)*a(i,k)

enddo 14

e(j)=g/h Form element of p in temporarily unused
f=f+e(j)*a(i,j) element of e.

enddo 15

hh=f/(h+h) Form K, equation (11.2.11).
do 17 j=1,l Form q and store in e overwriting p.

f=a(i,j)
g=e(j)-hh*f
e(j)=g
do 16 k=1,j Reduce a, equation (11.2.13).

a(j,k)=a(j,k)-f*e(k)-g*a(i,k)
enddo 16

enddo 17

endif
else

e(i)=a(i,l)
endif
d(i)=h

enddo 18

C Omit following line if finding only eigenvalues.
d(1)=0.
e(1)=0.
do 24 i=1,n Begin accumulation of transformation matrices.

C Delete lines from here ...
l=i-1
if(d(i).ne.0.)then This block skipped when i=1.

do 22 j=1,l
g=0.
do 19 k=1,l Use u and u/H stored in a to form P · Q.

g=g+a(i,k)*a(k,j)
enddo 19

do 21 k=1,l
a(k,j)=a(k,j)-g*a(k,i)

enddo 21

enddo 22

endif
C ... to here when finding only eigenvalues.

d(i)=a(i,i) This statement remains.
C Also delete lines from here ...

a(i,i)=1. Reset row and column of a to identity matrix for
next iteration.do 23 j=1,l

a(i,j)=0.
a(j,i)=0.

enddo 23

C ... to here when finding only eigenvalues.
enddo 24

return
END

11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix 469

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §5.1. [1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag).

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]

11.3 Eigenvalues and Eigenvectors of a
Tridiagonal Matrix

Evaluation of the Characteristic Polynomial

Once our original, real, symmetric matrix has been reduced to tridiagonal form,
one possible way to determine its eigenvalues is to find the roots of the characteristic
polynomialpn(λ) directly. The characteristic polynomial of a tridiagonal matrix can
be evaluated for any trial value ofλ by an efficient recursion relation (see[1], for
example). The polynomials of lower degree produced during the recurrence form a
Sturmian sequence that can be used to localize the eigenvalues to intervals on the
real axis. A root-finding method such as bisection or Newton’s method can then
be employed to refine the intervals. The corresponding eigenvectors can then be
found by inverse iteration (see§11.7).

Procedures based on these ideas can be found in[2,3]. If, however, more
than a small fraction of all the eigenvalues and eigenvectors are required, then the
factorization method next considered is much more efficient.

The QR and QL Algorithms

The basic idea behind theQR algorithm is that any real matrix can be
decomposed in the form

A = Q · R (11.3.1)

where Q is orthogonal andR is upper triangular. For a general matrix, the
decomposition is constructed by applying Householder transformations to annihilate
successive columns ofA below the diagonal (see§2.10).

Now consider the matrix formed by writing the factors in (11.3.1) in the
opposite order:

A′ = R · Q (11.3.2)

SinceQ is orthogonal, equation (11.3.1) givesR = QT · A. Thus equation (11.3.2)
becomes

A′ = QT · A · Q (11.3.3)

11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix 469

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §5.1. [1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag).

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]

11.3 Eigenvalues and Eigenvectors of a
Tridiagonal Matrix

Evaluation of the Characteristic Polynomial

Once our original, real, symmetric matrix has been reduced to tridiagonal form,
one possible way to determine its eigenvalues is to find the roots of the characteristic
polynomialpn(λ) directly. The characteristic polynomial of a tridiagonal matrix can
be evaluated for any trial value ofλ by an efficient recursion relation (see[1], for
example). The polynomials of lower degree produced during the recurrence form a
Sturmian sequence that can be used to localize the eigenvalues to intervals on the
real axis. A root-finding method such as bisection or Newton’s method can then
be employed to refine the intervals. The corresponding eigenvectors can then be
found by inverse iteration (see§11.7).

Procedures based on these ideas can be found in[2,3]. If, however, more
than a small fraction of all the eigenvalues and eigenvectors are required, then the
factorization method next considered is much more efficient.

The QR and QL Algorithms

The basic idea behind theQR algorithm is that any real matrix can be
decomposed in the form

A = Q · R (11.3.1)

where Q is orthogonal andR is upper triangular. For a general matrix, the
decomposition is constructed by applying Householder transformations to annihilate
successive columns ofA below the diagonal (see§2.10).

Now consider the matrix formed by writing the factors in (11.3.1) in the
opposite order:

A′ = R · Q (11.3.2)

SinceQ is orthogonal, equation (11.3.1) givesR = QT · A. Thus equation (11.3.2)
becomes

A′ = QT · A · Q (11.3.3)

470 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

We see thatA′ is an orthogonal transformation ofA.
You can verify that aQR transformation preserves the following properties of

a matrix: symmetry, tridiagonal form, and Hessenberg form (to be defined in§11.5).
There is nothing special about choosing one of the factors ofA to be upper

triangular; one could equally well make it lower triangular. This is called theQL

algorithm, since

A = Q · L (11.3.4)

whereL is lower triangular. (The standard, but confusing, nomenclatureR andL
stands for whether theright or left of the matrix is nonzero.)

Recall that in the Householder reduction to tridiagonal form in§11.2, we started
in the nth (last) column of the original matrix. To minimize roundoff, we then
exhorted you to put the biggest elements of the matrix in the lower right-hand
corner, if you can. If we now wish to diagonalize the resulting tridiagonal matrix,
theQL algorithm will have smaller roundoff than theQR algorithm, so we shall
useQL henceforth.

TheQL algorithm consists of asequenceof orthogonal transformations:

As = Qs · Ls

As+1 = Ls · Qs (= QT
s · As · Qs)

(11.3.5)

The following (nonobvious!) theorem is the basis of the algorithm for a general
matrixA: (i) If A has eigenvalues of different absolute value|λi|, then As → [lower
triangular form] ass → ∞. The eigenvalues appear on the diagonal in increasing
order of absolute magnitude. (ii) IfA has an eigenvalue|λi| of multiplicity p,
As → [lower triangular form] ass → ∞, except for a diagonal block matrix
of orderp, whose eigenvalues→ λi. The proof of this theorem is fairly lengthy;
see, for example,[4].

The workload in theQL algorithm isO(n3) per iteration for a general matrix,
which is prohibitive. However, the workload is onlyO(n) per iteration for a
tridiagonal matrix andO(n2) for a Hessenberg matrix, which makes it highly
efficient on these forms.

In this section we are concerned only with the case whereA is a real, symmetric,
tridiagonal matrix. All the eigenvaluesλi are thus real. According to the theorem,
if any λi has a multiplicityp, then there must be at leastp − 1 zeros on the
sub- and superdiagonal. Thus the matrix can be split into submatrices that can be
diagonalized separately, and the complication of diagonal blocks that can arise in
the general case is irrelevant.

In the proof of the theorem quoted above, one finds that in general a super-
diagonal element converges to zero like

a
(s)
ij ∼

(

λi

λj

)s

(11.3.6)

Althoughλi < λj , convergence can be slow ifλi is close toλj . Convergence can
be accelerated by the technique ofshifting: If k is any constant, thenA − k1 has

11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix 471

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

eigenvaluesλi − k. If we decompose

As − ks1 = Qs · Ls (11.3.7)
so that

As+1 = Ls · Qs + ks1

= QT
s · As · Qs

(11.3.8)

then the convergence is determined by the ratio

λi − ks

λj − ks
(11.3.9)

The idea is to choose the shiftks at each stage to maximize the rate of
convergence. A good choice for the shift initially would beks close toλ1, the
smallest eigenvalue. Then the first row of off-diagonal elements would tend rapidly
to zero. However,λ1 is not usually knowna priori. A very effective strategy in
practice (although there is no proof that it is optimal) is to compute the eigenvalues
of the leading2 × 2 diagonal submatrix ofA. Then setks equal to the eigenvalue
closer toa11.

More generally, suppose you have already foundr − 1 eigenvalues ofA. Then
you candeflatethe matrix by crossing out the firstr − 1 rows and columns, leaving

A =

0 · · · · · · 0
· · ·

0
... dr er

...
... er dr+1

· · · 0
dn−1 en−1

0 · · · 0 en−1 dn

(11.3.10)

Chooseks equal to the eigenvalue of the leading2× 2 submatrix that is closer todr.
One can show that the convergence of the algorithm with this strategy is generally
cubic (and at worst quadratic for degenerate eigenvalues). This rapid convergence
is what makes the algorithm so attractive.

Note that with shifting, the eigenvalues no longer necessarily appear on the
diagonal in order of increasing absolute magnitude. The routineeigsrt (§11.1)
can be used if required.

As we mentioned earlier, theQL decomposition of a general matrix is effected
by a sequence of Householder transformations. For a tridiagonal matrix,however, it is
more efficient to use plane rotationsPpq. One uses the sequenceP12,P23, . . . ,Pn−1,n

to annihilate the elementsa12, a23, . . . , an−1,n. By symmetry, the subdiagonal
elementsa21, a32, . . . , an,n−1 will be annihilated too. Thus eachQs is a product
of plane rotations:

QT
s = P(s)

1 · P(s)
2 · · ·P(s)

n−1 (11.3.11)

472 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

wherePi annihilatesai,i+1. Note that it isQT in equation (11.3.11), notQ, because
we definedL = QT · A.

QL Algorithm with Implicit Shifts

The algorithm as described so far can be very successful. However, when
the elements ofA differ widely in order of magnitude, subtracting a largeks
from the diagonal elements can lead to loss ofaccuracy for the small eigenvalues.
This difficulty is avoided by theQL algorithm with implicit shifts. The implicit
QL algorithm is mathematically equivalent to the originalQL algorithm, but the
computation does not requireks1 to be actually subtracted fromA.

The algorithm is based on the following lemma: IfA is a symmetric nonsingular matrix
andB = QT · A · Q, whereQ is orthogonal andB is tridiagonal with positive off-diagonal
elements, thenQ andB are fully determined when the last row ofQT is specified. Proof:
Let qT

i denote theith row vector of the matrixQT . Thenqi is theith column vector of the
matrix Q. The relationB · QT = QT · A can be written

β1 γ1

α2 β2 γ2

...
αn−1 βn−1 γn−1

αn βn

·

qT
1

qT
2

...
qT
n−1

qT
n

=

qT
1

qT
2

...
qT
n−1

qT
n

· A (11.3.12)

The nth row of this matrix equation is

αnqT

n−1 + βnqT

n = qT

n · A (11.3.13)

Since Q is orthogonal,

qT

n · qm = δnm (11.3.14)

Thus if we postmultiply equation (11.3.13) byqn, we find

βn = qT

n · A · qn (11.3.15)

which is known sinceqn is known. Then equation (11.3.13) gives

αnqT

n−1 = zTn−1 (11.3.16)
where

zTn−1 ≡ qT

n · A − βnqT

n (11.3.17)
is known. Therefore

α2
n = zTn−1zn−1, (11.3.18)

or
αn = |zn−1| (11.3.19)

and
qT

n−1 = zTn−1/αn (11.3.20)

(whereαn is nonzero by hypothesis). Similarly, one can show by induction that if we know
qn, qn−1, . . . , qn−j and theα’s, β’s, andγ’s up to leveln − j, one can determine the
quantities at leveln − (j + 1).

To apply the lemma in practice, suppose one can somehow find a tridiagonal matrix
As+1 such that

As+1 = Q
T

s · As · Qs (11.3.21)

whereQ
T

s is orthogonal and has the same last row asQT
s in the originalQL algorithm.

Then Qs = Qs and As+1 = As+1.

11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix 473

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Now, in the original algorithm, from equation (11.3.11) we see that the last row ofQT
s

is the same as the last row ofP(s)
n−1. But recall thatP(s)

n−1 is a plane rotation designed to
annihilate the(n − 1, n) element ofAs − ks1. A simple calculation using the expression
(11.1.1) shows that it has parameters

c =
dn − ks

√

e2
n + (dn − ks)2

, s =
−en−1

√

e2
n + (dn − ks)2

(11.3.22)

The matrixP(s)
n−1 · As · P(s)T

n−1 is tridiagonal with 2 extra elements:

· · ·
× × ×

× × × x
× × ×
x × ×

(11.3.23)

We must now reduce this to tridiagonal form with an orthogonal matrix whose last row is

[0, 0, . . . , 0, 1] so that the last row ofQ
T

s will stay equal toP(s)
n−1. This can be done by

a sequence of Householder or Givens transformations. For the special form of the matrix
(11.3.23), Givens is better. We rotate in the plane(n− 2, n− 1) to annihilate the(n− 2, n)
element. [By symmetry, the(n, n − 2) element will also be zeroed.] This leaves us with
tridiagonal form except for extra elements(n− 3, n− 1) and(n− 1, n− 3). We annihilate
these with a rotation in the(n − 3, n − 2) plane, and so on. Thus a sequence ofn − 2
Givens rotations is required. The result is that

QT
s = Q

T

s = P
(s)
1 · P

(s)
2 · · ·P

(s)
n−2 · P(s)

n−1 (11.3.24)

where theP’s are the Givens rotations andPn−1 is the same plane rotation as in the original
algorithm. Then equation (11.3.21) gives the next iterate ofA. Note that the shiftks enters
implicitly through the parameters (11.3.22).

The following routinetqli (“TridiagonalQL Implicit”), based algorithmically
on the implementations in[2,3], works extremely well in practice. The number
of iterations for the first few eigenvalues might be 4 or 5, say, but meanwhile
the off-diagonal elements in the lower right-hand corner have been reduced too.
The later eigenvalues are liberated with very little work. The average number of
iterations per eigenvalue is typically1.3 − 1.6. The operation count per iteration is
O(n), with a fairly large effective coefficient, say,∼ 20n. The total operation count
for the diagonalization is then∼ 20n × (1.3 − 1.6)n ∼ 30n2. If the eigenvectors
are required, the statements indicated by comments are included and there is an
additional, much larger, workload of about3n3 operations.

SUBROUTINE tqli(d,e,n,np,z)
INTEGER n,np
REAL d(np),e(np),z(np,np)

C USES pythag
QL algorithm with implicit shifts, to determine the eigenvalues and eigenvectors of a real,
symmetric, tridiagonal matrix, or of a real, symmetric matrix previously reduced by tred2
§11.2. d is a vector of length np. On input, its first n elements are the diagonal elements of
the tridiagonal matrix. On output, it returns the eigenvalues. The vector e inputs the sub-
diagonal elements of the tridiagonal matrix, with e(1) arbitrary. On output e is destroyed.
When finding only the eigenvalues, several lines may be omitted, as noted in the comments.
If the eigenvectors of a tridiagonal matrix are desired, the matrix z (n by n matrix stored
in np by np array) is input as the identity matrix. If the eigenvectors of a matrix that has
been reduced by tred2 are required, then z is input as the matrix output by tred2. In
either case, the kth column of z returns the normalized eigenvector corresponding to d(k).

INTEGER i,iter,k,l,m
REAL b,c,dd,f,g,p,r,s,pythag

474 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 11 i=2,n Convenient to renumber the elements of e.
e(i-1)=e(i)

enddo 11

e(n)=0.
do 15 l=1,n

iter=0
1 do 12 m=l,n-1 Look for a single small subdiagonal element

to split the matrix.dd=abs(d(m))+abs(d(m+1))
if (abs(e(m))+dd.eq.dd) goto 2

enddo 12

m=n
2 if(m.ne.l)then

if(iter.eq.30)pause ’too many iterations in tqli’
iter=iter+1
g=(d(l+1)-d(l))/(2.*e(l)) Form shift.
r=pythag(g,1.)
g=d(m)-d(l)+e(l)/(g+sign(r,g)) This is dm − ks.
s=1.
c=1.
p=0.
do 14 i=m-1,l,-1 A plane rotation as in the original QL, fol-

lowed by Givens rotations to restore tridi-
agonal form.

f=s*e(i)
b=c*e(i)
r=pythag(f,g)
e(i+1)=r
if(r.eq.0.)then Recover from underflow.

d(i+1)=d(i+1)-p
e(m)=0.
goto 1

endif
s=f/r
c=g/r
g=d(i+1)-p
r=(d(i)-g)*s+2.*c*b
p=s*r
d(i+1)=g+p
g=c*r-b

C Omit lines from here ...
do 13 k=1,n Form eigenvectors.

f=z(k,i+1)
z(k,i+1)=s*z(k,i)+c*f
z(k,i)=c*z(k,i)-s*f

enddo 13

C ... to here when finding only eigenvalues.
enddo 14

d(l)=d(l)-p
e(l)=g
e(m)=0.
goto 1

endif
enddo 15

return
END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 331–335. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [2]

11.4 Hermitian Matrices 475

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [3]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.6.6. [4]

11.4 Hermitian Matrices

The complex analog of a real, symmetric matrix is a Hermitian matrix,
satisfying equation (11.0.4). Jacobi transformations can be used to find eigenvalues
and eigenvectors, as also can Householder reduction to tridiagonal form followed by
QL iteration. Complex versions of the previous routinesjacobi, tred2, andtqli
are quite analogous to their real counterparts. For working routines, consult[1,2].

An alternative, using the routines in this book, is to convert the Hermitian
problem to a real, symmetric one: IfC = A + iB is a Hermitian matrix, then the
n × n complex eigenvalue problem

(A + iB) · (u + iv) = λ(u + iv) (11.4.1)

is equivalent to the2n × 2n real problem
[

A −B
B A

]

·

[

u
v

]

= λ

[

u
v

]

(11.4.2)

Note that the2n × 2n matrix in (11.4.2) is symmetric:AT = A and BT = −B
if C is Hermitian.

Corresponding to a given eigenvalueλ, the vector
[

−v
u

]

(11.4.3)

is also an eigenvector, as you can verify by writing out the two matrix equa-
tions implied by (11.4.2). Thus ifλ1, λ2, . . . , λn are the eigenvalues ofC,
then the2n eigenvalues of the augmented problem (11.4.2) areλ1, λ1, λ2, λ2, . . . ,

λn, λn; each, in other words, is repeated twice. The eigenvectors are pairs of the form
u + iv andi(u + iv); that is, they are the same up to an inessential phase. Thus we
solve the augmented problem (11.4.2), and choose one eigenvalue and eigenvector
from each pair. These give the eigenvalues and eigenvectors of the original matrixC.

Working with the augmented matrix requires a factor of 2 more storage than
the original complex matrix. In principle, a complex algorithm is also a factor of 2
more efficient in computer time than is the solution of the augmented problem. In
practice, most complex implementations do not achieve this factor unless they are
written entirely in real arithmetic. (Good library routines always do this.)

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [2]

11.4 Hermitian Matrices 475

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [3]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.6.6. [4]

11.4 Hermitian Matrices

The complex analog of a real, symmetric matrix is a Hermitian matrix,
satisfying equation (11.0.4). Jacobi transformations can be used to find eigenvalues
and eigenvectors, as also can Householder reduction to tridiagonal form followed by
QL iteration. Complex versions of the previous routinesjacobi, tred2, andtqli
are quite analogous to their real counterparts. For working routines, consult[1,2].

An alternative, using the routines in this book, is to convert the Hermitian
problem to a real, symmetric one: IfC = A + iB is a Hermitian matrix, then the
n × n complex eigenvalue problem

(A + iB) · (u + iv) = λ(u + iv) (11.4.1)

is equivalent to the2n × 2n real problem
[

A −B
B A

]

·

[

u
v

]

= λ

[

u
v

]

(11.4.2)

Note that the2n × 2n matrix in (11.4.2) is symmetric:AT = A and BT = −B
if C is Hermitian.

Corresponding to a given eigenvalueλ, the vector
[

−v
u

]

(11.4.3)

is also an eigenvector, as you can verify by writing out the two matrix equa-
tions implied by (11.4.2). Thus ifλ1, λ2, . . . , λn are the eigenvalues ofC,
then the2n eigenvalues of the augmented problem (11.4.2) areλ1, λ1, λ2, λ2, . . . ,

λn, λn; each, in other words, is repeated twice. The eigenvectors are pairs of the form
u + iv andi(u + iv); that is, they are the same up to an inessential phase. Thus we
solve the augmented problem (11.4.2), and choose one eigenvalue and eigenvector
from each pair. These give the eigenvalues and eigenvectors of the original matrixC.

Working with the augmented matrix requires a factor of 2 more storage than
the original complex matrix. In principle, a complex algorithm is also a factor of 2
more efficient in computer time than is the solution of the augmented problem. In
practice, most complex implementations do not achieve this factor unless they are
written entirely in real arithmetic. (Good library routines always do this.)

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [2]

476 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

11.5 Reduction of a General Matrix to
Hessenberg Form

The algorithms for symmetric matrices, given in the preceding sections, are
highly satisfactory in practice. By contrast, it is impossible to design equally
satisfactory algorithms for the nonsymmetric case. There are two reasons for this.
First, the eigenvalues of a nonsymmetricmatrix can be very sensitive to small changes
in the matrix elements. Second, the matrix itself can be defective, so that there is
no complete set of eigenvectors. We emphasize that these difficulties are intrinsic
properties of certain nonsymmetric matrices, and no numerical procedure can “cure”
them. The best we can hope for are procedures that don’t exacerbate such problems.

The presence of rounding error can only make the situation worse. With finite-
precision arithmetic, one cannot even design a foolproof algorithm to determine
whether a given matrix is defective or not. Thus current algorithms generallytry to
find acompleteset of eigenvectors, and rely on the user to inspect the results. If any
eigenvectors are almost parallel, the matrix is probably defective.

Apart fromreferring you to the literature, and to the collected routines in[1,2], we
are going to sidestep the problem of eigenvectors, giving algorithms for eigenvalues
only. If you require just a few eigenvectors, you can read§11.7 and consider finding
them by inverse iteration. We consider the problem of findingall eigenvectors of a
nonsymmetric matrix as lying beyond the scope of this book.

Balancing

The sensitivity of eigenvalues to rounding errors during the execution of
some algorithms can be reduced by the procedure ofbalancing. The errors in
the eigensystem found by a numerical procedure are generally proportional to the
Euclidean norm of the matrix, that is, to the square root of the sum of the squares
of the elements. The idea of balancing is to use similarity transformations to
make corresponding rows and columns of the matrix have comparable norms, thus
reducing the overall norm of the matrix while leaving the eigenvalues unchanged.
A symmetric matrix is already balanced.

Balancing is a procedure with of orderN2 operations. Thus, the time taken
by the procedurebalanc, given below, should never be more than a few percent
of the total time required to find the eigenvalues. It is therefore recommended that
you alwaysbalance nonsymmetric matrices. It never hurts, and it can substantially
improve the accuracy of the eigenvalues computed for a badly balanced matrix.

The actual algorithm used is due to Osborne, as discussed in[1]. It consists of a
sequence of similarity transformations by diagonal matricesD. To avoid introducing
rounding errors during the balancing process, the elements ofD are restricted to be
exact powers of the radix base employed for floating-point arithmetic (i.e., 2 for
most machines, but 16 for IBM mainframe architectures). The output is a matrix
that is balanced in the norm given by summing the absolute magnitudes of the
matrix elements. This is more efficient than using the Euclidean norm, and equally
effective: A large reduction in one norm implies a large reduction in the other.

Note that if the off-diagonal elements of any row or column of a matrix are
all zero, then the diagonal element is an eigenvalue. If the eigenvalue happens to

476 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

11.5 Reduction of a General Matrix to
Hessenberg Form

The algorithms for symmetric matrices, given in the preceding sections, are
highly satisfactory in practice. By contrast, it is impossible to design equally
satisfactory algorithms for the nonsymmetric case. There are two reasons for this.
First, the eigenvalues of a nonsymmetricmatrix can be very sensitive to small changes
in the matrix elements. Second, the matrix itself can be defective, so that there is
no complete set of eigenvectors. We emphasize that these difficulties are intrinsic
properties of certain nonsymmetric matrices, and no numerical procedure can “cure”
them. The best we can hope for are procedures that don’t exacerbate such problems.

The presence of rounding error can only make the situation worse. With finite-
precision arithmetic, one cannot even design a foolproof algorithm to determine
whether a given matrix is defective or not. Thus current algorithms generallytry to
find acompleteset of eigenvectors, and rely on the user to inspect the results. If any
eigenvectors are almost parallel, the matrix is probably defective.

Apart fromreferring you to the literature, and to the collected routines in[1,2], we
are going to sidestep the problem of eigenvectors, giving algorithms for eigenvalues
only. If you require just a few eigenvectors, you can read§11.7 and consider finding
them by inverse iteration. We consider the problem of findingall eigenvectors of a
nonsymmetric matrix as lying beyond the scope of this book.

Balancing

The sensitivity of eigenvalues to rounding errors during the execution of
some algorithms can be reduced by the procedure ofbalancing. The errors in
the eigensystem found by a numerical procedure are generally proportional to the
Euclidean norm of the matrix, that is, to the square root of the sum of the squares
of the elements. The idea of balancing is to use similarity transformations to
make corresponding rows and columns of the matrix have comparable norms, thus
reducing the overall norm of the matrix while leaving the eigenvalues unchanged.
A symmetric matrix is already balanced.

Balancing is a procedure with of orderN2 operations. Thus, the time taken
by the procedurebalanc, given below, should never be more than a few percent
of the total time required to find the eigenvalues. It is therefore recommended that
you alwaysbalance nonsymmetric matrices. It never hurts, and it can substantially
improve the accuracy of the eigenvalues computed for a badly balanced matrix.

The actual algorithm used is due to Osborne, as discussed in[1]. It consists of a
sequence of similarity transformations by diagonal matricesD. To avoid introducing
rounding errors during the balancing process, the elements ofD are restricted to be
exact powers of the radix base employed for floating-point arithmetic (i.e., 2 for
most machines, but 16 for IBM mainframe architectures). The output is a matrix
that is balanced in the norm given by summing the absolute magnitudes of the
matrix elements. This is more efficient than using the Euclidean norm, and equally
effective: A large reduction in one norm implies a large reduction in the other.

Note that if the off-diagonal elements of any row or column of a matrix are
all zero, then the diagonal element is an eigenvalue. If the eigenvalue happens to

11.5 Reduction of a General Matrix to Hessenberg Form 477

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

be ill-conditioned (sensitive to small changes in the matrix elements), it will have
relatively large errors when determined by the routinehqr (§11.6). Had we merely
inspected the matrix beforehand, we could have determined the isolated eigenvalue
exactly and then deleted the corresponding row and column from the matrix. You
should consider whether such a pre-inspection might be useful in your application.
(For symmetric matrices, the routines we gave will determine isolated eigenvalues
accurately in all cases.)

The routinebalanc does not keep track of the accumulated similarity trans-
formation of the original matrix, since we will only be concerned with finding
eigenvalues of nonsymmetric matrices, not eigenvectors. Consult[1-3] if you want
to keep track of the transformation.

SUBROUTINE balanc(a,n,np)
INTEGER n,np
REAL a(np,np),RADIX,SQRDX
PARAMETER (RADIX=2.,SQRDX=RADIX**2)

Given an n by n matrix a stored in an array of physical dimensions np by np, this routine
replaces it by a balanced matrix with identical eigenvalues. A symmetric matrix is already
balanced and is unaffected by this procedure. The parameter RADIX should be the machine’s
floating-point radix.

INTEGER i,j,last
REAL c,f,g,r,s

1 continue
last=1
do 14 i=1,n Calculate row and column norms.

c=0.
r=0.
do 11 j=1,n

if(j.ne.i)then
c=c+abs(a(j,i))
r=r+abs(a(i,j))

endif
enddo 11

if(c.ne.0..and.r.ne.0.)then If both are nonzero,
g=r/RADIX
f=1.
s=c+r

2 if(c.lt.g)then find the integer power of the machine radix that
comes closest to balancing the matrix.f=f*RADIX

c=c*SQRDX
goto 2
endif
g=r*RADIX

3 if(c.gt.g)then
f=f/RADIX
c=c/SQRDX

goto 3
endif
if((c+r)/f.lt.0.95*s)then

last=0
g=1./f
do 12 j=1,n Apply similarity transformation.

a(i,j)=a(i,j)*g
enddo 12

do 13 j=1,n
a(j,i)=a(j,i)*f

enddo 13

endif
endif

enddo 14

478 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(last.eq.0)goto 1
return
END

Reduction to Hessenberg Form

The strategy for finding the eigensystem of a general matrix parallels that of the
symmetric case. First we reduce the matrix to a simpler form, and then we perform
an iterative procedure on the simplified matrix. The simpler structure we use here is
calledHessenbergform. An upper Hessenbergmatrix has zeros everywhere below
the diagonal except for the first subdiagonal row. For example, in the6 × 6 case,
the nonzero elements are:

× × × × × ×

× × × × × ×

× × × × ×

× × × ×

× × ×

× ×

By now you should be able to tell at a glance that such a structure can be
achieved by a sequence of Householder transformations, each one zeroing the
required elements in a column of the matrix. Householder reduction to Hessenberg
form is in fact an accepted technique. An alternative, however, is a procedure
analogous to Gaussian elimination with pivoting. We will use this elimination
procedure since it is about a factor of 2 more efficient than the Householder method,
and also since we want to teach you the method. It is possible to construct matrices
for which the Householder reduction, being orthogonal, is stable and elimination is
not, but such matrices are extremely rare in practice.

Straight Gaussian elimination is not a similarity transformation of the matrix.
Accordingly, the actual elimination procedure used is slightly different. Before the
rth stage, the original matrixA ≡ A1 has becomeAr, which is upper Hessenberg
in its first r − 1 rows and columns. Therth stage then consists of the following
sequence of operations:

• Find the element of maximum magnitude in therth column below the
diagonal. If it is zero, skip the next two “bullets” and the stage is done.
Otherwise, suppose the maximum element was in rowr′.

• Interchange rowsr′ andr + 1. This is the pivoting procedure. To make
the permutation a similarity transformation, also interchange columnsr′

and r + 1.
• For i = r + 2, r + 3, . . . , N , compute the multiplier

ni,r+1 ≡
air

ar+1,r

Subtractni,r+1 times rowr + 1 from row i. To make the elimination a
similarity transformation, alsoaddni,r+1 times columni to columnr+1.

A total of N − 2 such stages are required.

11.5 Reduction of a General Matrix to Hessenberg Form 479

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

When the magnitudes of the matrix elements vary over many orders, you should
try to rearrange the matrix so that the largest elements are in the top left-hand corner.
This reduces the roundoff error, since the reduction proceeds from left to right.

Since we are concerned only with eigenvalues, the routineelmhes does not
keep track of the accumulated similarity transformation. The operation count is
about 5N3/6 for large N .

SUBROUTINE elmhes(a,n,np)
INTEGER n,np
REAL a(np,np)

Reduction to Hessenberg form by the elimination method. The real, nonsymmetric, n by
n matrix a, stored in an array of physical dimensions np by np, is replaced by an upper
Hessenberg matrix with identical eigenvalues. Recommended, but not required, is that this
routine be preceded by balanc. On output, the Hessenberg matrix is in elements a(i,j)
with i ≤ j+1. Elements with i > j+1 are to be thought of as zero, but are returned with
random values.

INTEGER i,j,m
REAL x,y
do 17 m=2,n-1 m is called r + 1 in the text.

x=0.
i=m
do 11 j=m,n Find the pivot.

if(abs(a(j,m-1)).gt.abs(x))then
x=a(j,m-1)
i=j

endif
enddo 11

if(i.ne.m)then Interchange rows and columns.
do 12 j=m-1,n

y=a(i,j)
a(i,j)=a(m,j)
a(m,j)=y

enddo 12

do 13 j=1,n
y=a(j,i)
a(j,i)=a(j,m)
a(j,m)=y

enddo 13

endif
if(x.ne.0.)then Carry out the elimination.

do 16 i=m+1,n
y=a(i,m-1)
if(y.ne.0.)then

y=y/x
a(i,m-1)=y
do 14 j=m,n

a(i,j)=a(i,j)-y*a(m,j)
enddo 14

do 15 j=1,n
a(j,m)=a(j,m)+y*a(j,i)

enddo 15

endif
enddo 16

endif
enddo 17

return
END

480 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.5.4. [3]

11.6 The QR Algorithm for Real Hessenberg
Matrices

Recall the following relations for theQR algorithm with shifts:

Qs · (As − ks1) = Rs (11.6.1)

whereQ is orthogonal andR is upper triangular, and

As+1 = Rs · QT
s + ks1

= Qs · As · QT
s

(11.6.2)

TheQR transformation preserves the upper Hessenberg form of the original matrix
A ≡ A1, and the workload on such a matrix isO(n2) per iteration as opposed
to O(n3) on a general matrix. Ass → ∞, As converges to a form where
the eigenvalues are either isolated on the diagonal or are eigenvalues of a2 × 2
submatrix on the diagonal.

As we pointed out in§11.3, shifting is essential for rapid convergence. A key
difference here is that a nonsymmetric real matrix can have complex eigenvalues.
This means that good choices for the shiftsks may be complex, apparently
necessitating complex arithmetic.

Complex arithmetic can be avoided, however, by a clever trick. The trick
depends on a result analogous to the lemma we used for implicit shifts in§11.3. The
lemma we need here states that ifB is a nonsingular matrix such that

B · Q = Q · H (11.6.3)

whereQ is orthogonal andH is upper Hessenberg, thenQ andH are fully determined
by the first column ofQ. (The determination is unique ifH has positive subdiagonal
elements.) The lemma can be proved by induction analogously to the proof given
for tridiagonal matrices in§11.3.

The lemma is used in practice by taking two steps of theQR algorithm,
either with two real shiftsks andks+1, or with complex conjugate valuesks and
ks+1 = ks*. This gives a real matrixAs+2, where

As+2 = Qs+1 · Qs · As · QT
s · QT

s+1· (11.6.4)

480 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.5.4. [3]

11.6 The QR Algorithm for Real Hessenberg
Matrices

Recall the following relations for theQR algorithm with shifts:

Qs · (As − ks1) = Rs (11.6.1)

whereQ is orthogonal andR is upper triangular, and

As+1 = Rs · QT
s + ks1

= Qs · As · QT
s

(11.6.2)

TheQR transformation preserves the upper Hessenberg form of the original matrix
A ≡ A1, and the workload on such a matrix isO(n2) per iteration as opposed
to O(n3) on a general matrix. Ass → ∞, As converges to a form where
the eigenvalues are either isolated on the diagonal or are eigenvalues of a2 × 2
submatrix on the diagonal.

As we pointed out in§11.3, shifting is essential for rapid convergence. A key
difference here is that a nonsymmetric real matrix can have complex eigenvalues.
This means that good choices for the shiftsks may be complex, apparently
necessitating complex arithmetic.

Complex arithmetic can be avoided, however, by a clever trick. The trick
depends on a result analogous to the lemma we used for implicit shifts in§11.3. The
lemma we need here states that ifB is a nonsingular matrix such that

B · Q = Q · H (11.6.3)

whereQ is orthogonal andH is upper Hessenberg, thenQ andH are fully determined
by the first column ofQ. (The determination is unique ifH has positive subdiagonal
elements.) The lemma can be proved by induction analogously to the proof given
for tridiagonal matrices in§11.3.

The lemma is used in practice by taking two steps of theQR algorithm,
either with two real shiftsks andks+1, or with complex conjugate valuesks and
ks+1 = ks*. This gives a real matrixAs+2, where

As+2 = Qs+1 · Qs · As · QT
s · QT

s+1· (11.6.4)

11.6 The QR Algorithm for Real Hessenberg Matrices 481

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The Q’s are determined by

As − ks1 = QT
s · Rs (11.6.5)

As+1 = Qs · As · QT
s (11.6.6)

As+1 − ks+11 = QT
s+1 · Rs+1 (11.6.7)

Using (11.6.6), equation (11.6.7) can be rewritten

As − ks+11 = QT
s · QT

s+1 · Rs+1 · Qs (11.6.8)

Hence, if we define

M = (As − ks+11) · (As − ks1) (11.6.9)

equations (11.6.5) and (11.6.8) give

R = Q · M (11.6.10)

where

Q = Qs+1 · Qs (11.6.11)

R = Rs+1 · Rs (11.6.12)

Equation (11.6.4) can be rewritten

As · QT = QT · As+2 (11.6.13)

Thus suppose we can somehow find an upper Hessenberg matrixH such that

As · Q
T

= Q
T
· H (11.6.14)

whereQ is orthogonal. IfQ
T

has the same first column asQT (i.e.,Q has the same
first row asQ), thenQ = Q and As+2 = H.

The first row ofQ is found as follows. Equation (11.6.10) shows thatQ is
the orthogonal matrix that triangularizes the real matrixM . Any real matrix can
be triangularized by premultiplying it by a sequence of Householder matricesP1

(acting on the first column),P2 (acting on the second column),. . . , Pn−1. Thus
Q = Pn−1 · · ·P2 · P1, and the first row ofQ is the first row ofP1 sincePi is an
(i − 1) × (i − 1) identity matrix in the top left-hand corner. We now must findQ
satisfying (11.6.14) whose first row is that ofP1.

The Householder matrixP1 is determined by the first column ofM . SinceAs

is upper Hessenberg, equation (11.6.9) shows that the first column ofM has the
form [p1, q1, r1, 0, ..., 0]

T, where

p1 = a2
11 − a11(ks + ks+1) + ksks+1 + a12a21

q1 = a21(a11 + a22 − ks − ks+1)

r1 = a21a32

(11.6.15)

482 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Hence

P1 = 1 − 2w1 · wT
1 (11.6.16)

wherew1 has only its first 3 elements nonzero (cf. equation 11.2.5). The matrix
P1 · As · PT

1 is therefore upper Hessenberg with 3 extra elements:

P1 · A1 · PT
1 =

× × × × × × ×
× × × × × × ×
x × × × × × ×
x x × × × × ×

× × × ×
× × ×

× ×

(11.6.17)

This matrix can be restored to upper Hessenberg form without affecting the first row
by a sequence of Householder similarity transformations. The first such Householder
matrix, P2, acts on elements 2, 3, and 4 in the first column, annihilating elements
3 and 4. This produces a matrix of the same form as (11.6.17), with the 3 extra
elements appearing one column over:

× × × × × × ×
× × × × × × ×

× × × × × ×
x × × × × ×
x x × × × ×

× × ×
× ×

(11.6.18)

Proceeding in this way up toPn−1, we see that at each stage the Householder
matrix Pr has a vectorwr that is nonzero only in elementsr, r + 1, and r + 2.
These elements are determined by the elementsr, r + 1, andr + 2 in the(r − 1)st
column of the current matrix. Note that the preliminary matrixP1 has the same
structure asP2, . . . ,Pn−1.

The result is that

Pn−1 · · ·P2 · P1 · As · PT
1 · PT

2 · · ·PT
n−1 = H (11.6.19)

whereH is upper Hessenberg. Thus

Q = Q = Pn−1 · · ·P2 · P1 (11.6.20)
and

As+2 = H (11.6.21)

The shifts of origin at each stage are taken to be the eigenvalues of the 2 × 2
matrix in the bottom right-hand corner of the currentAs. This gives

ks + ks+2 = an−1,n−1 + ann

ksks+1 = an−1,n−1ann − an−1,nan,n−1

(11.6.22)

11.6 The QR Algorithm for Real Hessenberg Matrices 483

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Substituting (11.6.22) in (11.6.15), we get

p1 = a21 {[(ann − a11)(an−1,n−1 − a11) − an−1,nan,n−1]/a21 + a12}

q1 = a21[a22 − a11 − (ann − a11) − (an−1,n−1 − a11)]

r1 = a21a32 (11.6.23)

We have judiciously grouped terms to reduce possible roundoff when there are
small off-diagonal elements. Since only the ratios of elements are relevant for a
Householder transformation, we can omit the factora21 from (11.6.23).

In summary, to carry out a doubleQR step we construct the Householder
matricesPr, r = 1, . . . , n− 1. ForP1 we usep1, q1, andr1 given by (11.6.23). For
the remaining matrices,pr, qr, andrr are determined by the(r, r−1), (r+1, r−1),
and (r + 2, r − 1) elements of the current matrix. The number of arithmetic
operations can be reduced by writing the nonzero elements of the2w · wT part of
the Householder matrix in the form

2w · wT =

(p± s)/(±s)
q/(±s)
r/(±s)

 · [1 q/(p± s) r/(p± s)] (11.6.24)

where

s2 = p2 + q2 + r2 (11.6.25)

(We have simply divided each element by a piece of the normalizing factor; cf.
the equations in§11.2.)

If we proceed in this way, convergence is usually very fast. There are two
possible ways of terminating the iteration for an eigenvalue. First, ifan,n−1 becomes
“negligible,” thenann is an eigenvalue. We can then delete thenth row and column
of the matrix and look for the next eigenvalue. Alternatively,an−1,n−2 may become
negligible. In this case the eigenvalues of the2 × 2 matrix in the lower right-hand
corner may be taken to be eigenvalues. We delete thenth and(n − 1)st rows and
columns of the matrix and continue.

The test for convergence to an eigenvalue is combined with a test for negligible
subdiagonal elements that allows splitting of the matrix into submatrices. We find
the largesti such thatai,i−1 is negligible. If i = n, we have found a single
eigenvalue. Ifi = n − 1, we have found two eigenvalues. Otherwise we continue
the iteration on the submatrix in rowsi to n (i being set to unity if there is no
small subdiagonal element).

After determiningi, the submatrix in rowsi to n is examined to see if the
product of any two consecutive subdiagonal elements is small enough that we
can work with an even smaller submatrix, starting say in rowm. We start with
m = n − 2 and decrement it down toi + 1, computingp, q, andr according to
equations (11.6.23) with 1 replaced bym and 2 bym + 1. If these were indeed the
elements of the special “first” Householder matrix in a doubleQR step, then applying
the Householder matrix would lead to nonzero elements in positions(m+1, m−1),
(m + 2, m− 1), and(m + 2, m). We require that the first two of these elements be

484 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

small compared with the local diagonal elementsam−1,m−1, amm andam+1,m+1.
A satisfactory approximate criterion is

|am,m−1|(|q|+ |r|) ≪ |p|(|am+1,m+1| + |amm| + |am−1,m−1|) (11.6.26)

Very rarely, the procedure described so far will fail to converge. On such
matrices, experience shows that if one double step is performed with any shifts
that are of order the norm of the matrix, convergence is subsequently very rapid.
Accordingly, if ten iterations occur without determining an eigenvalue, the usual
shifts are replaced for the next iteration by shifts defined by

ks + ks+1 = 1.5× (|an,n−1|+ |an−1,n−2|)

ksks+1 = (|an,n−1| + |an−1,n−2|)
2

(11.6.27)

The factor 1.5 was arbitrarily chosen to lessen the likelihood of an “unfortunate”
choice of shifts. This strategy is repeated after 20 unsuccessful iterations. After 30
unsuccessful iterations, the routine reports failure.

The operation count for theQR algorithm described here is∼ 5k2 per iteration,
wherek is the current size of the matrix. The typical average number of iterations per
eigenvalue is∼ 1.8, so the total operation count for all the eigenvalues is∼ 3n3. This
estimate neglects any possible efficiency due to splitting or sparseness of the matrix.

The following routinehqr is based algorithmically on the above description,
in turn following the implementations in[1,2].

SUBROUTINE hqr(a,n,np,wr,wi)
INTEGER n,np
REAL a(np,np),wi(np),wr(np)

Finds all eigenvalues of an n by n upper Hessenberg matrix a that is stored in an np by np
array. On input a can be exactly as output from elmhes §11.5; on output it is destroyed.
The real and imaginary parts of the eigenvalues are returned in wr and wi, respectively.

INTEGER i,its,j,k,l,m,nn
REAL anorm,p,q,r,s,t,u,v,w,x,y,z
anorm=0. Compute matrix norm for possible use

in locating single small subdiagonal
element.

do 12 i=1,n
do 11 j=max(i-1,1),n

anorm=anorm+abs(a(i,j))
enddo 11

enddo 12

nn=n
t=0. Gets changed only by an exceptional shift.

1 if(nn.ge.1)then Begin search for next eigenvalue.
its=0

2 do 13 l=nn,2,-1 Begin iteration: look for single small sub-
diagonal element.s=abs(a(l-1,l-1))+abs(a(l,l))

if(s.eq.0.)s=anorm
if(abs(a(l,l-1))+s.eq.s)goto 3

enddo 13

l=1
3 x=a(nn,nn)

if(l.eq.nn)then One root found.
wr(nn)=x+t
wi(nn)=0.
nn=nn-1

else
y=a(nn-1,nn-1)
w=a(nn,nn-1)*a(nn-1,nn)

11.6 The QR Algorithm for Real Hessenberg Matrices 485

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(l.eq.nn-1)then Two roots found...
p=0.5*(y-x)
q=p**2+w
z=sqrt(abs(q))
x=x+t
if(q.ge.0.)then ...a real pair.

z=p+sign(z,p)
wr(nn)=x+z
wr(nn-1)=wr(nn)
if(z.ne.0.)wr(nn)=x-w/z
wi(nn)=0.
wi(nn-1)=0.

else ...a complex pair.
wr(nn)=x+p
wr(nn-1)=wr(nn)
wi(nn)=z
wi(nn-1)=-z

endif
nn=nn-2

else No roots found. Continue iteration.
if(its.eq.30)pause ’too many iterations in hqr’
if(its.eq.10.or.its.eq.20)then Form exceptional shift.

t=t+x
do 14 i=1,nn

a(i,i)=a(i,i)-x
enddo 14

s=abs(a(nn,nn-1))+abs(a(nn-1,nn-2))
x=0.75*s
y=x
w=-0.4375*s**2

endif
its=its+1
do 15 m=nn-2,l,-1 Form shift and then look for 2 consecu-

tive small subdiagonal elements.z=a(m,m)
r=x-z
s=y-z
p=(r*s-w)/a(m+1,m)+a(m,m+1) Equation (11.6.23).
q=a(m+1,m+1)-z-r-s
r=a(m+2,m+1)
s=abs(p)+abs(q)+abs(r) Scale to prevent overflow or underflow.
p=p/s
q=q/s
r=r/s
if(m.eq.l)goto 4
u=abs(a(m,m-1))*(abs(q)+abs(r))
v=abs(p)*(abs(a(m-1,m-1))+abs(z)+abs(a(m+1,m+1)))
if(u+v.eq.v)goto 4 Equation (11.6.26).

enddo 15

4 do 16 i=m+2,nn
a(i,i-2)=0.
if (i.ne.m+2) a(i,i-3)=0.

enddo 16

do 19 k=m,nn-1 Double QR step on rows l to nn and
columns m to nn.if(k.ne.m)then

p=a(k,k-1) Begin setup of Householder vector.
q=a(k+1,k-1)
r=0.
if(k.ne.nn-1)r=a(k+2,k-1)
x=abs(p)+abs(q)+abs(r)
if(x.ne.0.)then

p=p/x Scale to prevent overflow or underflow.
q=q/x
r=r/x

endif

486 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
s=sign(sqrt(p**2+q**2+r**2),p)
if(s.ne.0.)then

if(k.eq.m)then
if(l.ne.m)a(k,k-1)=-a(k,k-1)

else
a(k,k-1)=-s*x

endif
p=p+s Equations (11.6.24).
x=p/s
y=q/s
z=r/s
q=q/p
r=r/p
do 17 j=k,nn Row modification.

p=a(k,j)+q*a(k+1,j)
if(k.ne.nn-1)then

p=p+r*a(k+2,j)
a(k+2,j)=a(k+2,j)-p*z

endif
a(k+1,j)=a(k+1,j)-p*y
a(k,j)=a(k,j)-p*x

enddo 17

do 18 i=l,min(nn,k+3) Column modification.
p=x*a(i,k)+y*a(i,k+1)
if(k.ne.nn-1)then

p=p+z*a(i,k+2)
a(i,k+2)=a(i,k+2)-p*r

endif
a(i,k+1)=a(i,k+1)-p*q
a(i,k)=a(i,k)-p

enddo 18

endif
enddo 19

goto 2 ...for next iteration on current eigenvalue.
endif

endif
goto 1 ...for next eigenvalue.
endif
return
END

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag). [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §7.5.

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [2]

11.7 Eigenvalues or Eigenvectors by Inverse Iteration 487

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

11.7 Improving Eigenvalues and/or Finding
Eigenvectors by Inverse Iteration

The basic idea behind inverse iteration is quite simple. Lety be the solution
of the linear system

(A − τ1) · y = b (11.7.1)

whereb is a random vector andτ is close to some eigenvalueλ of A. Then the
solutiony will be close to the eigenvector corresponding toλ. The procedure can
be iterated: Replaceb by y and solve for a newy, which will be even closer to
the true eigenvector.

We can see why this works by expanding bothy andb as linear combinations
of the eigenvectorsxj of A:

y =
∑

j

αjxj b =
∑

j

βjxj (11.7.2)

Then (11.7.1) gives
∑

j

αj(λj − τ)xj =
∑

j

βjxj (11.7.3)

so that

αj =
βj

λj − τ
(11.7.4)

and

y =
∑

j

βjxj
λj − τ

(11.7.5)

If τ is close toλn, say, then providedβn is not accidentally too small,y will be
approximatelyxn, up to a normalization. Moreover, each iteration of this procedure
gives another power ofλj − τ in the denominator of (11.7.5). Thus the convergence
is rapid for well-separated eigenvalues.

Suppose at thekth stage of iteration we are solving the equation

(A − τk1) · y = bk (11.7.6)

wherebk and τk are our current guesses for some eigenvector and eigenvalue of
interest (let’s say,xn and λn). Normalizebk so thatbk · bk = 1. The exact
eigenvector and eigenvalue satisfy

A · xn = λnxn (11.7.7)

so

(A − τk1) · xn = (λn − τk)xn (11.7.8)

Sincey of (11.7.6) is an improved approximation toxn, we normalize it and set

bk+1 =
y
|y|

(11.7.9)

11.7 Eigenvalues or Eigenvectors by Inverse Iteration 487

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

11.7 Improving Eigenvalues and/or Finding
Eigenvectors by Inverse Iteration

The basic idea behind inverse iteration is quite simple. Lety be the solution
of the linear system

(A − τ1) · y = b (11.7.1)

whereb is a random vector andτ is close to some eigenvalueλ of A. Then the
solutiony will be close to the eigenvector corresponding toλ. The procedure can
be iterated: Replaceb by y and solve for a newy, which will be even closer to
the true eigenvector.

We can see why this works by expanding bothy andb as linear combinations
of the eigenvectorsxj of A:

y =
∑

j

αjxj b =
∑

j

βjxj (11.7.2)

Then (11.7.1) gives
∑

j

αj(λj − τ)xj =
∑

j

βjxj (11.7.3)

so that

αj =
βj

λj − τ
(11.7.4)

and

y =
∑

j

βjxj
λj − τ

(11.7.5)

If τ is close toλn, say, then providedβn is not accidentally too small,y will be
approximatelyxn, up to a normalization. Moreover, each iteration of this procedure
gives another power ofλj − τ in the denominator of (11.7.5). Thus the convergence
is rapid for well-separated eigenvalues.

Suppose at thekth stage of iteration we are solving the equation

(A − τk1) · y = bk (11.7.6)

wherebk and τk are our current guesses for some eigenvector and eigenvalue of
interest (let’s say,xn and λn). Normalizebk so thatbk · bk = 1. The exact
eigenvector and eigenvalue satisfy

A · xn = λnxn (11.7.7)

so

(A − τk1) · xn = (λn − τk)xn (11.7.8)

Sincey of (11.7.6) is an improved approximation toxn, we normalize it and set

bk+1 =
y
|y|

(11.7.9)

488 Chapter 11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

We get an improved estimate of the eigenvalue by substituting our improved guess
y for xn in (11.7.8). By (11.7.6), the left-hand side isbk, so callingλn our new
value τk+1, we find

τk+1 = τk +
1

bk · y
(11.7.10)

While the above formulas look simple enough, in practice the implementation
can be quite tricky. The first question to be resolved iswhento use inverse iteration.
Most of the computational load occurs in solving the linear system (11.7.6). Thus
a possible strategy is first to reduce the matrixA to a special form that allows easy
solution of (11.7.6). Tridiagonal form for symmetric matrices or Hessenberg for
nonsymmetric are the obvious choices. Then apply inverse iteration to generate
all the eigenvectors. While this is anO(N3) method for symmetric matrices, it
is many times less efficient than theQL method given earlier. In fact, even the
best inverse iteration packages are less efficient than theQL method as soon as
more than about 25 percent of the eigenvectors are required. Accordingly, inverse
iteration is generally used when one already has good eigenvalues and wants only
a few selected eigenvectors.

You can write a simple inverse iteration routine yourself usingLU decompo-
sition to solve (11.7.6). You can decide whether to use the generalLU algorithm
we gave in Chapter 2 or whether to take advantage of tridiagonal or Hessenberg
form. Note that, since the linear system (11.7.6) is nearly singular, you must be
careful to use a version ofLU decomposition like that in§2.3 which replaces a zero
pivot with a very small number.

We have chosen not to give a general inverse iteration routine in this book,
because it is quite cumbersome to take account of all the cases that can arise.
Routines are given, for example, in[1,2]. If you use these, or write your own routine,
you may appreciate the following pointers.

One starts by supplying an initial valueτ0 for the eigenvalueλn of interest.
Choose a random normalized vectorb0 as the initial guess for the eigenvectorxn,
and solve (11.7.6). The new vectory is bigger thanb0 by a “growth factor”|y|,
which ideally should be large. Equivalently, the change in the eigenvalue, which by
(11.7.10) is essentially1/ |y|, should be small. The following cases can arise:

• If the growth factor is too small initially, then we assume we have made
a “bad” choice of random vector. This can happen not just because of
a smallβn in (11.7.5), but also in the case of a defective matrix, when
(11.7.5) does not even apply (see, e.g.,[1] or [3] for details). We go back
to the beginning and choose a new initial vector.

• The change|b1 − b0| might be less than some toleranceǫ. We can use this
as a criterion for stopping, iterating until it is satisfied, with a maximum
of 5 – 10 iterations, say.

• After a few iterations, if|bk+1 − bk| is not decreasing rapidly enough,
we can try updating the eigenvalueaccording to (11.7.10). Ifτk+1 = τk
to machine accuracy, we are not going to improve the eigenvector much
more and can quit. Otherwise start another cycle of iterations with the
new eigenvalue.

The reason we do not update the eigenvalue at every step is that when we solve
the linear system (11.7.6) byLU decomposition, we can save the decomposition

11.7 Eigenvalues or Eigenvectors by Inverse Iteration 489

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if τk is fixed. We only need do the backsubstitution stepeach time weupdatebk.
The number of iterations we decide to do with a fixedτk is a trade-off between the
quadratic convergence butO(N3) workload for updatingτk at each step and the
linear convergence butO(N2) load for keepingτk fixed. If you have determined the
eigenvalue by one of the routines given earlier in the chapter, it is probably correct
to machine accuracy anyway, and you can omitupdating it.

There are two different pathologies that can arise during inverse iteration. The
first is multiple or closely spaced roots. This is more often a problem with symmetric
matrices. Inverse iteration will find only one eigenvector for a given initial guessτ0.
A good strategy is to perturb the last few significant digits inτ0 and then repeat the
iteration. Usually this provides an independent eigenvector. Special steps generally
have to be taken to ensure orthogonality of the linearly independent eigenvectors,
whereas the Jacobi andQL algorithms automatically yield orthogonal eigenvectors
even in the case of multiple eigenvalues.

The second problem, peculiar to nonsymmetric matrices, is the defective case.
Unless one makes a “good” initial guess, the growth factor is small. Moreover,
iteration does not improve matters. In this case, the remedy is to choose random
initial vectors, solve (11.7.6) once, and quit as soon asanyvector gives an acceptably
large growth factor. Typically only a few trials are necessary.

One further complication in the nonsymmetric case is that a real matrix can
have complex-conjugate pairs of eigenvalues. You will then have to use complex
arithmetic to solve (11.7.6) for the complex eigenvectors. For any moderate-sized
(or larger) nonsymmetric matrix, our recommendation is to avoid inverse iteration
in favor of aQR method that includes the eigenvector computation in complex
arithmetic. You will find routines for this in[1,2] and other places.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), p. 418. [1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
p. 356. [3]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 12. Fast Fourier Transform

12.0 Introduction

A very large class of important computational problems falls under the general
rubric of “Fourier transform methods” or “spectral methods.” For some of these
problems, the Fourier transform is simply an efficient computational tool for
accomplishing certain common manipulations of data. In other cases, we have
problems for which the Fourier transform (or the related “power spectrum”) is itself
of intrinsic interest. These two kinds of problems share a common methodology.

Largely for historical reasons the literature on Fourier and spectral methods has
been disjoint from the literature on “classical” numerical analysis. Nowadays there is
no justification for such a split. Fourier methods are commonplace in research and we
shall not treat them as specialized or arcane. At the same time, we realize that many
computer users have had relatively less experience with this field than with, say,
differential equations or numerical integration. Therefore our summary of analytical
results will be more complete. Numerical algorithms, per se, begin in§12.2. Various
applications of Fourier transform methods are discussed in Chapter 13.

A physical process can be described either in thetime domain, by the values of
some quantityh as a function of timet, e.g.,h(t), or else in thefrequency domain,
where the process is specified by giving its amplitudeH (generally a complex
number indicating phase also) as a function of frequencyf , that isH(f), with
−∞ < f < ∞. For many purposes it is useful to think ofh(t) andH(f) as being
two differentrepresentationsof thesamefunction. One goes back and forth between
these two representations by means of theFourier transformequations,

H(f) =

∫
∞

−∞

h(t)e2πiftdt

h(t) =

∫
∞

−∞

H(f)e−2πiftdf

(12.0.1)

If t is measured in seconds, thenf in equation (12.0.1) is in cycles per second,
or Hertz (the unit of frequency). However, the equations work with other units too.
If h is a function of positionx (in meters),H will be a function of inverse wavelength
(cycles per meter), and so on. If you are trained as a physicist or mathematician, you
are probably more used to usingangular frequencyω, which is given inradiansper
sec. The relation betweenω andf , H(ω) andH(f) is

ω ≡ 2πf H(ω) ≡ [H(f)]f=ω/2π (12.0.2)

490

12.0 Introduction 491

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and equation (12.0.1) looks like this

H(ω) =

∫
∞

−∞

h(t)eiωtdt

h(t) =
1

2π

∫
∞

−∞

H(ω)e−iωtdω

(12.0.3)

We were raised on theω-convention, but we changed! There are fewer factors of
2π to remember if you use thef-convention, especially when we get to discretely
sampled data in§12.1.

From equation (12.0.1) it is evident at once that Fourier transformation is a
linear operation. The transform of the sum of two functions is equal to the sum of
the transforms. The transform of a constant times a function is that same constant
times the transform of the function.

In the time domain, functionh(t) may happen to have one or more special
symmetries It might bepurely real or purely imaginaryor it might be even,
h(t) = h(−t), or odd, h(t) = −h(−t). In the frequency domain, these symmetries
lead to relationships betweenH(f) andH(−f). The following table gives the
correspondence between symmetries in the two domains:

If . . . then. . .

h(t) is real H(−f) = [H(f)]*
h(t) is imaginary H(−f) = −[H(f)]*
h(t) is even H(−f) = H(f) [i.e.,H(f) is even]
h(t) is odd H(−f) = −H(f) [i.e.,H(f) is odd]
h(t) is real and even H(f) is real and even
h(t) is real and odd H(f) is imaginary and odd
h(t) is imaginary and even H(f) is imaginary and even
h(t) is imaginary and odd H(f) is real and odd

In subsequent sections we shall see how to use these symmetries to increase
computational efficiency.

Here are some other elementary properties of the Fourier transform. (We’ll use
the “⇐⇒” symbol to indicate transform pairs.) If

h(t) ⇐⇒ H(f)

is such a pair, then other transform pairs are

h(at) ⇐⇒
1

|a|
H(

f

a
) “time scaling” (12.0.4)

1

|b|
h(

t

b
) ⇐⇒ H(bf) “frequency scaling” (12.0.5)

h(t− t0) ⇐⇒ H(f) e2πift0 “time shifting” (12.0.6)

h(t) e−2πif0t ⇐⇒ H(f − f0) “frequency shifting” (12.0.7)

492 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

With two functionsh(t) andg(t), and their corresponding Fourier transforms
H(f) andG(f), we can form two combinations of special interest. Theconvolution
of the two functions, denotedg ∗ h, is defined by

g ∗ h ≡

∫
∞

−∞

g(τ)h(t − τ) dτ (12.0.8)

Note thatg ∗ h is a function in the time domain and thatg ∗ h = h ∗ g. It turns out
that the functiong ∗ h is one member of a simple transform pair

g ∗ h ⇐⇒ G(f)H(f) “Convolution Theorem” (12.0.9)

In other words, the Fourier transform of the convolution is just the product of the
individual Fourier transforms.

Thecorrelationof two functions, denoted Corr(g, h), is defined by

Corr(g, h) ≡

∫
∞

−∞

g(τ + t)h(τ) dτ (12.0.10)

The correlation is a function oft, which is called thelag. It therefore lies in the time
domain, and it turns out to be one member of the transform pair:

Corr(g, h) ⇐⇒ G(f)H*(f) “Correlation Theorem” (12.0.11)

[More generally, the second member of the pair isG(f)H(−f), but we are restricting
ourselves to the usual case in whichg andh are real functions, so we take the libertyof
settingH(−f) = H*(f).] This result shows that multiplying the Fourier transform
of one function by the complex conjugate of the Fourier transform of the other gives
the Fourier transform of their correlation. The correlation of a function with itself is
called itsautocorrelation. In this case (12.0.11) becomes the transform pair

Corr(g, g) ⇐⇒ |G(f)|
2 “Wiener-Khinchin Theorem” (12.0.12)

The total power in a signal is the same whether we compute it in the time
domain or in the frequency domain. This result is known asParseval’s theorem:

Total Power≡
∫

∞

−∞

|h(t)|
2
dt =

∫
∞

−∞

|H(f)|
2
df (12.0.13)

Frequently one wants to know “how much power” is contained in the frequency
interval betweenf and f + df . In such circumstances one does not usually
distinguish between positive and negativef , but rather regardsf as varying from 0
(“zero frequency” or D.C.) to+∞. In such cases, one defines theone-sided power
spectral density (PSD)of the functionh as

Ph(f) ≡ |H(f)|2 + |H(−f)|2 0 ≤ f < ∞ (12.0.14)

so that the total power is just the integral ofPh(f) from f = 0 to f = ∞. When the
functionh(t) is real, then the two terms in (12.0.14) are equal, soPh(f) = 2 |H(f)|

2.

12.0 Introduction 493

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

h
(t

)
2

(a)

(b)

(c)
f

P h
(f

)
(o

ne
-s

id
ed

)

0− f

P h
(f

)
(t

w
o-

si
de

d)

t

f0

Figure 12.0.1. Normalizations of one- and two-sided power spectra. The area under the square of the
function, (a), equals the area under its one-sided power spectrum at positive frequencies, (b), and also
equals the area under its two-sided power spectrum at positive and negative frequencies, (c).

Be warned that one occasionally sees PSDs defined without this factor two. These,
strictly speaking, are calledtwo-sided power spectral densities, but some books
are not careful about stating whether one- or two-sided is to be assumed. We
will always use the one-sided density given by equation (12.0.14). Figure 12.0.1
contrasts the two conventions.

If the functionh(t) goes endlessly from−∞ < t < ∞, then its total power
and power spectral density will, in general, be infinite. Of interest then is the(one-
or two-sided) power spectral density per unit time. This is computed by taking a
long, but finite, stretch of the functionh(t), computing its PSD [that is, the PSD
of a function that equalsh(t) in the finite stretch but is zero everywhere else], and
then dividing the resulting PSD by the length of the stretch used. Parseval’s theorem
in this case states that the integral of the one-sided PSD-per-unit-time over positive
frequency is equal to the mean square amplitude of the signalh(t).

You might well worry about how the PSD-per-unit-time, which is a function
of frequencyf , converges as one evaluates it using longer and longer stretches of
data. This interesting question is the content of the subject of “power spectrum
estimation,” and will be considered below in§13.4–§13.7. A crude answer for

494 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

now is: The PSD-per-unit-time converges to finite values at all frequenciesexcept
those whereh(t) has a discrete sine-wave (or cosine-wave) component of finite
amplitude. At those frequencies, it becomes a delta-function, i.e., a sharp spike,
whose width gets narrower and narrower, but whose area converges to be the mean
square amplitude of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
data, we are almost never given a continuous functionh(t) to work with, but are
given, rather, a list of measurements ofh(ti) for a discrete set ofti’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Aca-
demic Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, functionh(t) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let∆ denote the time interval between
consecutive samples, so that the sequence of sampled values is

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (12.1.1)

The reciprocal of the time interval∆ is called thesampling rate; if ∆ is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval∆, there is also a special frequencyfc, called the
Nyquist critical frequency, given by

fc ≡
1

2∆
(12.1.2)

If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise:Critical sampling of a
sine wave is two sample points per cycle.One frequently chooses to measure time
in units of the sampling interval∆. In this case the Nyquist critical frequency is
just the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news. First the good news. It is the remarkable

494 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

now is: The PSD-per-unit-time converges to finite values at all frequenciesexcept
those whereh(t) has a discrete sine-wave (or cosine-wave) component of finite
amplitude. At those frequencies, it becomes a delta-function, i.e., a sharp spike,
whose width gets narrower and narrower, but whose area converges to be the mean
square amplitude of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
data, we are almost never given a continuous functionh(t) to work with, but are
given, rather, a list of measurements ofh(ti) for a discrete set ofti’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Aca-
demic Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, functionh(t) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let∆ denote the time interval between
consecutive samples, so that the sequence of sampled values is

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (12.1.1)

The reciprocal of the time interval∆ is called thesampling rate; if ∆ is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval∆, there is also a special frequencyfc, called the
Nyquist critical frequency, given by

fc ≡
1

2∆
(12.1.2)

If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise:Critical sampling of a
sine wave is two sample points per cycle.One frequently chooses to measure time
in units of the sampling interval∆. In this case the Nyquist critical frequency is
just the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news. First the good news. It is the remarkable

12.1 Fourier Transform of Discretely Sampled Data 495

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fact known as thesampling theorem: If a continuous functionh(t), sampled at an
interval∆, happens to bebandwidth limitedto frequencies smaller in magnitude than
fc, i.e., ifH(f) = 0 for all |f | ≥ fc, then the functionh(t) is completely determined
by its sampleshn. In fact,h(t) is given explicitly by the formula

h(t) = ∆

+∞∑
n=−∞

hn
sin[2πfc(t− n∆)]

π(t − n∆)
(12.1.3)

This is a remarkable theorem for many reasons, among them that it shows that the
“information content” of a bandwidth limited function is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing
with a signal that is known on physical grounds to be bandwidth limited (or at
least approximately bandwidth limited). For example, the signal may have passed
through an amplifier with a known, finite frequency response. In this case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at a rate∆−1 equal to twice the maximum frequency passed
by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continuous
function that isnot bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of
the frequency range−fc < f < fc is spuriously moved into that range. This
phenomenon is calledaliasing. Any frequency component outside of the frequency
range(−fc, fc) is aliased (falsely translated) into that range by the very act of
discrete sampling. You can readily convince yourself that two wavesexp(2πif1t)
and exp(2πif2t) give the same samples at an interval∆ if and only if f1 and
f2 differ by a multiple of1/∆, which is just the width in frequency of the range
(−fc, fc). There is little that you can do to remove aliased power once you have
discretely sampled a signal. The way to overcome aliasing is to (i) know the natural
bandwidth limit of the signal — or else enforce a known limit by analog filtering
of the continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present. Figure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we canassume(or rather wemight
as wellassume) that its Fourier transform is equal to zero outside of the frequency
range in between−fc andfc. Then we look to the Fourier transform to tell whether
the continuous functionhasbeen competently sampled (aliasing effects minimized).
We do this by looking to see whether the Fourier transform is already approaching
zero as the frequency approachesfc from below, or−fc from above. If, on the
contrary, the transform is going towards some finite value, then chances are that
components outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of a function from a finite number of its
sampled points. Suppose that we haveN consecutive sampled values

hk ≡ h(tk), tk ≡ k∆, k = 0, 1, 2, . . ., N − 1 (12.1.4)

496 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

h(t)

t

(a)

f

0

H(f)

(b)

(c)

aliased Fourier transform

true Fourier transform

0

H(f)

1
2∆

1
2∆

−

f

∆

T

Figure 12.1.1. The continuous function shown in (a) is nonzero only for a finite interval of timeT .
It follows that its Fourier transform, whose modulus is shown schematically in (b), is not bandwidth
limited but has finite amplitude for all frequencies. If the original function is sampled with a sampling
interval∆, as in (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist
critical frequency. Power outside that range is folded over or “aliased” into the range. The effect can be
eliminated only by low-pass filtering the original functionbefore sampling.

so that the sampling interval is∆. To make things simpler, let us also suppose that
N is even. If the functionh(t) is nonzero only in a finite interval of time, then
that whole interval of time is supposed to be contained in the range of theN points
given. Alternatively, if the functionh(t) goes on forever, then the sampled points
are supposed to be at least “typical” of whath(t) looks like at all other times.

With N numbers of input, we will evidently be able to produce no more than
N independent numbers of output. So, instead of trying to estimate the Fourier
transformH(f) at all values off in the range−fc to fc, let us seek estimates
only at the discrete values

fn ≡
n

N∆
, n = −

N

2
, . . . ,

N

2
(12.1.5)

The extreme values ofn in (12.1.5) correspond exactly to the lower and upper limits
of the Nyquist critical frequency range. If you are really on the ball, you will have
noticed that there areN + 1, not N , values ofn in (12.1.5); it will turn out that
the two extreme values ofn are not independent (in fact they are equal), but all the
others are. This reduces the count toN .

12.1 Fourier Transform of Discretely Sampled Data 497

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The remaining step is to approximate the integral in (12.0.1) by a discrete sum:

H(fn) =

∫
∞

−∞

h(t)e2πifntdt ≈

N−1∑
k=0

hk e2πifntk∆ = ∆

N−1∑
k=0

hk e2πikn/N

(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final equality. The final
summation in equation (12.1.6) is called thediscrete Fourier transformof theN
pointshk. Let us denote it byHn,

Hn ≡

N−1∑
k=0

hk e2πikn/N (12.1.7)

The discrete Fourier transform mapsN complex numbers (thehk’s) intoN complex
numbers (theHn’s). It does not depend on any dimensional parameter, such as the
time scale∆. The relation (12.1.6) between the discrete Fourier transform of a set
of numbers and their continuous Fourier transform when they are viewed as samples
of a continuous function sampled at an interval∆ can be rewritten as

H(fn) ≈ ∆Hn (12.1.8)

wherefn is given by (12.1.5).
Up to now we have taken the view that the indexn in (12.1.7) varies from

−N/2 toN/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodic in
n, with periodN . Therefore,H−n = HN−n n = 1, 2, With this conversion
in mind, one generally lets then in Hn vary from 0 to N − 1 (one complete
period). Thenn andk (in hk) vary exactly over the same range, so the mapping
of N numbers intoN numbers is manifest. When this convention is followed,
you must remember that zero frequency corresponds ton = 0, positive frequencies
0 < f < fc correspond to values1 ≤ n ≤ N/2 − 1, while negative frequencies
−fc < f < 0 correspond toN/2 + 1 ≤ n ≤ N − 1. The valuen = N/2
corresponds toboth f = fc and f = −fc.

The discrete Fourier transform has symmetry properties almost exactly the same
as the continuous Fourier transform. For example, all the symmetries in the table
following equation (12.0.3) hold if we readhk for h(t), Hn for H(f), andHN−n

for H(−f). (Likewise, “even” and “odd” in time refer to whether the valueshk atk
andN − k are identical or the negative of each other.)

The formula for the discreteinverseFourier transform, which recovers the set
of hk ’s exactly from theHn’s is:

hk =
1

N

N−1∑
n=0

Hn e−2πikn/N (12.1.9)

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (ii) dividing the answer byN . This means that a
routine for calculating discrete Fourier transforms can also, with slight modification,
calculate the inverse transforms.

498 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The discrete form of Parseval’s theorem is

N−1∑
k=0

|hk|
2 =

1

N

N−1∑
n=0

|Hn|
2 (12.1.10)

There are also discrete analogs to the convolutionand correlation theorems (equations
12.0.9 and 12.0.11), but we shall defer them to§13.1 and§13.2, respectively.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) ofN points? For many years, until the mid-1960s, the standard answer
was this: DefineW as the complex number

W ≡ e2πi/N (12.2.1)

Then (12.1.7) can be written as

Hn =

N−1∑
k=0

Wnkhk (12.2.2)

In other words, the vector ofhk’s is multiplied by a matrix whose(n, k)th element
is the constantW to the powern × k. The matrix multiplication produces a vector
result whose components are theHn’s. This matrix multiplication evidently requires
N2 complex multiplications, plus a smaller number of operations to generate the
required powers ofW . So, the discrete Fourier transform appears to be anO(N2)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed inO(N log2 N) operations with an algorithm called thefast
Fourier transform, or FFT. The difference betweenN log2 N andN2 is immense.
WithN = 106, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle time computer. The existence
of an FFT algorithm became generallyknown only in the mid-1960s, from the work
of J.W. Cooley and J.W. Tukey. Retrospectively, we now know (see[1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of lengthN can be rewritten as the sum of two
discrete Fourier transforms, each of lengthN/2. One of the two is formed from the

498 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The discrete form of Parseval’s theorem is

N−1∑

k=0

|hk|
2 =

1

N

N−1∑

n=0

|Hn|
2 (12.1.10)

There are also discrete analogs to the convolutionand correlation theorems (equations
12.0.9 and 12.0.11), but we shall defer them to§13.1 and§13.2, respectively.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) ofN points? For many years, until the mid-1960s, the standard answer
was this: DefineW as the complex number

W ≡ e2πi/N (12.2.1)

Then (12.1.7) can be written as

Hn =

N−1∑

k=0

Wnkhk (12.2.2)

In other words, the vector ofhk’s is multiplied by a matrix whose(n, k)th element
is the constantW to the powern × k. The matrix multiplication produces a vector
result whose components are theHn’s. This matrix multiplication evidently requires
N2 complex multiplications, plus a smaller number of operations to generate the
required powers ofW . So, the discrete Fourier transform appears to be anO(N2)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed inO(N log2 N) operations with an algorithm called thefast
Fourier transform, or FFT. The difference betweenN log2 N andN2 is immense.
WithN = 106, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle time computer. The existence
of an FFT algorithm became generallyknown only in the mid-1960s, from the work
of J.W. Cooley and J.W. Tukey. Retrospectively, we now know (see[1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of lengthN can be rewritten as the sum of two
discrete Fourier transforms, each of lengthN/2. One of the two is formed from the

12.2 Fast Fourier Transform (FFT) 499

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

even-numbered points of the originalN , the other from the odd-numbered points.
The proof is simply this:

Fk =

N−1∑

j=0

e2πijk/Nfj

=

N/2−1∑

j=0

e2πik(2j)/Nf2j +

N/2−1∑

j=0

e2πik(2j+1)/Nf2j+1

=

N/2−1∑

j=0

e2πikj/(N/2)f2j + W k

N/2−1∑

j=0

e2πikj/(N/2)f2j+1

= F e
k + W k F o

k

(12.2.3)

In the last line,W is the same complex constant as in (12.2.1),F e
k denotes thekth

component of the Fourier transform of lengthN/2 formed from the even components
of the originalfj ’s, whileF o

k is the corresponding transform of lengthN/2 formed
from the odd components. Notice also thatk in the last line of (12.2.3) varies from
0 to N , not just toN/2. Nevertheless, the transformsF e

k andF o
k are periodic ink

with lengthN/2. So each is repeated through two cycles to obtainFk.
The wonderful thing about theDanielson-Lanczos Lemmais that it can be used

recursively. Having reduced the problem of computingFk to that of computing
F e
k andF o

k , we can do the same reduction ofF e
k to the problem of computing

the transform ofits N/4 even-numbered input data andN/4 odd-numbered data.
In other words, we can defineF ee

k andF eo
k to be the discrete Fourier transforms

of the points which are respectively even-even and even-odd on the successive
subdivisions of the data.

Although there are ways of treating other cases, by far the easiest case is the
one in which the originalN is an integer power of 2. In fact, we categorically
recommend that youonlyuse FFTs withN a power of two. If the length of your data
set is not a power of two, pad it with zeros up to the next power of two. (We will give
more sophisticated suggestions in subsequent sections below.) With this restriction
on N , it is evident that we can continue applying the Danielson-Lanczos Lemma
until we have subdivided the data all the way down to transforms of length 1. What
is the Fourier transform of length one? It is just the identity operation that copies its
one input number into its one output slot! In other words, for every pattern oflog2 N
e’s ando’s, there is a one-point transform that is just one of the input numbersfn

F eoeeoeo···oee
k = fn for somen (12.2.4)

(Of course this one-point transform actually does not depend onk, since it is periodic
in k with period 1.)

The next trick is to figure out which value ofn corresponds to which pattern of
e’s ando’s in equation (12.2.4). The answer is: Reverse the pattern ofe’s ando’s,
then lete = 0 ando = 1, and you will have,in binary the value ofn. Do you see
why it works? It is because the successive subdivisions of the data into even and odd
are tests of successive low-order (least significant) bits ofn. This idea ofbit reversal
can be exploited in a very clever way which, along with the Danielson-Lanczos

500 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

 101

110

111

(a) (b)

Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

Lemma, makes FFTs practical: Suppose we take the original vector of datafj
and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individual
numbers are in the order not ofj, but of the number obtained by bit-reversingj.
Then the bookkeeping on the recursive application of the Danielson-Lanczos Lemma
becomes extraordinarily simple. The points as given are the one-point transforms.
We combine adjacent pairs to get two-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of orderN operations, and there are evidentlylog2 N combinations, so the whole
algorithm is of orderN log2 N (assuming, as is the case, that the process of sorting
into bit-reversed order is no greater in order thanN log2 N).

This, then, is the structure of an FFT algorithm: It has two sections. The first
section sorts the data into bit-reversed order. Luckily this takes no additional storage,
since it involves only swapping pairs of elements. (Ifk1 is the bit reverse ofk2, then
k2 is the bit reverse ofk1.) The second section has an outer loop that is executed
log2 N times and calculates, in turn, transforms of length2, 4, 8, . . ., N . For each
stage of this process, two nested inner loops range over the subtransforms already
computed and the elements of each transform, implementing the Danielson-Lanczos
Lemma. The operation is made more efficient by restricting external calls for
trigonometric sines and cosines to the outer loop, where they are made onlylog2 N
times. Computation of the sines and cosines of multiple angles is through simple
recurrence relations in the inner loops (cf. 5.5.6).

The FFT routine given below is based on one originally written by N. M.
Brenner. The input quantities are the number of complex data points (nn), the data
array (data), andisign, which should be set to either±1 and is the sign ofi in
the exponential of equation (12.1.7). Whenisign is set to−1, the routine thus
calculates the inverse transform (12.1.9) — except that it does not multiply by the
normalizing factor1/N that appears in that equation. You can do that yourself.

Notice that the argumentnn is the number ofcomplexdata points, although

12.2 Fast Fourier Transform (FFT) 501

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

we avoid the use of complex arithmetic because of the inefficient implementations
found on many computers. The actual length of the real array (data) is 2 times
nn, with each complex value occupying two consecutive locations. In other words,
data(1) is the real part off0, data(2) is the imaginary part off0, and so on up
to data(2*nn-1), which is the real part offN−1, anddata(2*nn), which is the
imaginary part offN−1. The FFT routine returns theFn’s packed in exactly the
same fashion, asnn complex numbers.

The real and imaginary parts of the zero frequency componentF0 are indata(1)
anddata(2); the smallest nonzero positive frequency has real and imaginary parts in
data(3) anddata(4); the smallest (in magnitude) nonzero negative frequency has
real and imaginary parts indata(2*nn-1) anddata(2*nn). Positive frequencies
increasing in magnitude are stored in the real-imaginary pairsdata(5), data(6)

up todata(nn-1), data(nn). Negative frequencies of increasing magnitude are
stored indata(2*nn-3), data(2*nn-2) down todata(nn+3), data(nn+4).
Finally, the pairdata(nn+1), data(nn+2) contain the real and imaginary parts of
the one aliased point that contains the most positive and the most negative frequency.
You should try to develop a familiarity with this storage arrangement of complex
spectra, also shown in Figure 12.2.2, since it is the practical standard.

SUBROUTINE four1(data,nn,isign)
INTEGER isign,nn
REAL data(2*nn)

Replaces data(1:2*nn) by its discrete Fourier transform, if isign is input as 1; or replaces
data(1:2*nn) by nn times its inverse discrete Fourier transform, if isign is input as −1.
data is a complex array of length nn or, equivalently, a real array of length 2*nn. nn
MUST be an integer power of 2 (this is not checked for!).

INTEGER i,istep,j,m,mmax,n
REAL tempi,tempr
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp Double precision for the trigonomet-

ric recurrences.n=2*nn
j=1
do 11 i=1,n,2 This is the bit-reversal section of the routine.

if(j.gt.i)then
tempr=data(j) Exchange the two complex numbers.
tempi=data(j+1)
data(j)=data(i)
data(j+1)=data(i+1)
data(i)=tempr
data(i+1)=tempi

endif
m=n/2

1 if ((m.ge.2).and.(j.gt.m)) then
j=j-m
m=m/2

goto 1
endif
j=j+m

enddo 11

mmax=2 Here begins the Danielson-Lanczos section of the routine.
2 if (n.gt.mmax) then Outer loop executed log2 nn times.

istep=2*mmax
theta=6.28318530717959d0/(isign*mmax) Initialize for the trigonometric recur-

rence.wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
do 13 m=1,mmax,2 Here are the two nested inner loops.

502 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

1

2

3

4

real

imag

real

imag

t = 0

t = ∆

real

imag

real

imag

t = (N − 2)∆

t = (N − 1)∆

re
al

 a
rr

ay
 o

f l
en

gt
h

2N

1

2

3

4

real

imag

real

imag

f = 0

f =

N − 1

N

N + 1

N + 2

N + 3

N + 4

real

imag

real

imag

real

imag

f =

f = ± (combination)

f = −

re
al

 a
rr

ay
 o

f l
en

gt
h

2N

1
N∆

N/2 − 1
N∆

1
2∆

2N − 1

2N

real

imag
f = − 1

N∆

2N − 3

2N − 2

2N − 1

 2N

N/2 − 1
N∆

(b)(a)

Figure 12.2.2. Input and output arrays for FFT. (a) The input array containsN (a power of 2)
complex time samples in a real array of length2N , with real and imaginary parts alternating. (b) The
output array contains the complex Fourier spectrum atN values of frequency. Real and imaginary parts
again alternate. The array starts with zero frequency, works up to the most positive frequency (which
is ambiguous with the most negative frequency). Negative frequencies follow, from the second-most
negative up to the frequency just below zero.

do 12 i=m,n,istep
j=i+mmax This is the Danielson-Lanczos formula:
tempr=sngl(wr)*data(j)-sngl(wi)*data(j+1)
tempi=sngl(wr)*data(j+1)+sngl(wi)*data(j)
data(j)=data(i)-tempr
data(j+1)=data(i+1)-tempi
data(i)=data(i)+tempr
data(i+1)=data(i+1)+tempi

enddo 12

wtemp=wr Trigonometric recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 13

mmax=istep
goto 2 Not yet done.
endif All done.
return
END

(A double precision version offour1, nameddfour1, is used by the routinempmul
in §20.6. You can easily make the conversion, or else get the converted routine
from the Numerical Recipesdiskette.)

12.2 Fast Fourier Transform (FFT) 503

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Other FFT Algorithms

We should mention that there are a number of variants on the basic FFT algorithm
given above. As we have seen, that algorithm first rearranges the input elements
into bit-reverse order, then builds up the output transform inlog2 N iterations. In
the literature, this sequence is called adecimation-in-timeor Cooley-TukeyFFT
algorithm. It is also possible to derive FFT algorithms that first go through a set of
log2 N iterations on the input data, and rearrange theoutputvalues into bit-reverse
order. These are calleddecimation-in-frequencyorSande-TukeyFFT algorithms. For
some applications, such as convolution (§13.1), one takes a data set into the Fourier
domain and then, after some manipulation,back out again. In these cases it is possible
to avoid all bit reversing. You use a decimation-in-frequency algorithm (without its
bit reversing) to get into the “scrambled” Fourier domain, do your operations there,
and then use an inverse algorithm (withoutits bit reversing) to get back to the time
domain. While elegant in principle, this procedure does not in practice save much
computation time, since the bit reversals represent only a small fraction of an FFT’s
operations count, and since most useful operations in the frequency domain require
a knowledge of which points correspond to which frequencies.

Another class of FFTs subdivides the initial data set of lengthN not all the
way down to the trivial transform of length1, but rather only down to some other
small power of2, for exampleN = 4, base-4 FFTs, orN = 8, base-8 FFTs. These
small transforms are then done by small sections of highly optimized coding which
take advantage of special symmetries of that particular smallN . For example, for
N = 4, the trigonometric sines and cosines that enter are all±1 or 0, so many
multiplications are eliminated, leaving largely additions and subtractions. These
can be faster than simpler FFTs by some significant, but not overwhelming, factor,
e.g., 20 or 30 percent.

There are also FFT algorithms for data sets of lengthN not a power of
two. They work by using relations analogous to the Danielson-Lanczos Lemma to
subdivide the initial problem into successively smaller problems, not by factors of
2, but by whatever small prime factors happen to divideN . The larger that the
largest prime factor ofN is, the worse this method works. IfN is prime, then no
subdivision is possible, and the user (whether he knows it or not) is taking aslow
Fourier transform, of orderN2 instead of orderN log2 N . Our advice is to stay clear
of such FFT implementations, with perhaps one class of exceptions, theWinograd
Fourier transform algorithms. Winograd algorithms are in some ways analogous to
the base-4 and base-8 FFTs. Winograd has derived highly optimized codings for
taking small-N discrete Fourier transforms, e.g., forN = 2, 3, 4, 5, 7, 8, 11, 13, 16.
The algorithms also use a new and clever way of combining the subfactors. The
method involves a reordering of the data both before the hierarchical processing and
after it, but it allows a significant reduction in the number of multiplications in the
algorithm. For some especially favorable values ofN , the Winograd algorithms can
be significantly (e.g., up to a factor of 2) faster than the simpler FFT algorithms
of the nearest integer power of 2. This advantage in speed, however, must be
weighed against the considerably more complicated data indexing involved in these
transforms, and the fact that the Winograd transform cannot be done “in place.”

Finally, an interesting class of transforms for doing convolutions quickly are
number theoretic transforms. These schemes replace floating-point arithmetic with

504 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

integer arithmetic modulo some large primeN+1, and theN th root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are notFourier transforms
at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall). [1]

Bloomfield, P. 1976, Fourier Analysis of Time Series – An Introduction (New York: Wiley).

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.).

Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].

Heideman, M.T., Johnson, D.H., and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14–21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samplesfj , j = 0 . . .N − 1. To usefour1, we put these into a complex array
with all imaginary parts set to zero. The resulting transformFn, n = 0 . . .N − 1
satisfiesFN−n* = Fn. Since this complex-valued array has real values forF0

andFN/2, and(N/2) − 1 other independent valuesF1 . . . FN/2−1, it has the same
2(N/2 − 1) + 2 = N “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There aretwo better ways. The first is “mass production”: Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the programtwofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the programrealft below.

504 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

integer arithmetic modulo some large primeN+1, and theN th root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are notFourier transforms
at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall). [1]

Bloomfield, P. 1976, Fourier Analysis of Time Series – An Introduction (New York: Wiley).

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.).

Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].

Heideman, M.T., Johnson, D.H., and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14–21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samplesfj , j = 0 . . .N − 1. To usefour1, we put these into a complex array
with all imaginary parts set to zero. The resulting transformFn, n = 0 . . .N − 1
satisfiesFN−n* = Fn. Since this complex-valued array has real values forF0

andFN/2, and(N/2) − 1 other independent valuesF1 . . . FN/2−1, it has the same
2(N/2 − 1) + 2 = N “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There aretwo better ways. The first is “mass production”: Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the programtwofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the programrealft below.

12.3 FFT of Real Functions, Sine and Cosine Transforms 505

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transformFn to handle
two real functions at once: Since the input datafj are real, the components of the
discrete Fourier transform satisfy

FN−n = (Fn)* (12.3.1)

where the asterisk denotes complex conjugation. By the same token, the discrete
Fourier transform of a purely imaginary set ofgj ’s has the opposite symmetry.

GN−n = −(Gn)* (12.3.2)

Therefore we can take the discrete Fourier transform of two real functions each of
lengthN simultaneously by packing the two data arrays as the real and imaginary
parts, respectively, of the complex input array offour1. Then the resulting transform
array can be unpacked into two complex arrays with the aid of the two symmetries.
Routinetwofft works out these ideas.

SUBROUTINE twofft(data1,data2,fft1,fft2,n)
INTEGER n
REAL data1(n),data2(n)
COMPLEX fft1(n),fft2(n)

C USES four1
Given two real input arrays data1(1:n) and data2(1:n), this routine calls four1 and
returns two complex output arrays, fft1(1:n) and fft2(1:n), each of complex length n
(i.e., real length 2*n), which contain the discrete Fourier transforms of the respective data
arrays. n MUST be an integer power of 2.

INTEGER j,n2
COMPLEX h1,h2,c1,c2
c1=cmplx(0.5,0.0)
c2=cmplx(0.0,-0.5)
do 11 j=1,n

fft1(j)=cmplx(data1(j),data2(j)) Pack the two real arrays into one complex
array.enddo 11

call four1(fft1,n,1) Transform the complex array.
fft2(1)=cmplx(aimag(fft1(1)),0.0)
fft1(1)=cmplx(real(fft1(1)),0.0)
n2=n+2
do 12 j=2,n/2+1

h1=c1*(fft1(j)+conjg(fft1(n2-j))) Use symmetries to separate the two trans-
forms.h2=c2*(fft1(j)-conjg(fft1(n2-j)))

fft1(j)=h1 Ship them out in two complex arrays.
fft1(n2-j)=conjg(h1)
fft2(j)=h2
fft2(n2-j)=conjg(h2)

enddo 12

return
END

What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that youknow that the inverses
of both transforms are real functions. Can you invert both in a single FFT? This is
even easier than the other direction. Use the fact that the FFT is linear andform
the sum of the first transform plusi times the second. Invert usingfour1 with

506 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

isign = −1. The real and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

To implement the second method, which allows us to perform the FFT of
a single real function without redundancy, we split the data set in half, thereby
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the original data. It will
be a schizophrenic combination of two transforms,each of which has half of the
information we need. Fortunately, this schizophrenia is treatable. It works like this:

The right way to split the original data is to take the even-numberedfj as
one data set, and the odd-numberedfj as the other. The beauty of this is that
we can take the original real array and treat it as a complex arrayhj of half the
length. The first data set is the real part of this array, and the second is the
imaginary part, as prescribed fortwofft. No repacking is required. In other words
hj = f2j + if2j+1, j = 0, . . . , N/2 − 1. We submit this tofour1, and it will
return a complex arrayHn = F e

n + iF o
n , n = 0, . . . , N/2 − 1 with

F e
n =

N/2−1
∑

k=0

f2k e
2πikn/(N/2)

F o
n =

N/2−1
∑

k=0

f2k+1 e
2πikn/(N/2)

(12.3.3)

The discussion of programtwofft tells you how to separate the two transforms
F e
n andF o

n out ofHn. How do you work them into the transformFn of the original
data setfj? Simply glance back at equation (12.2.3):

Fn = F e
n + e2πin/NF o

n n = 0, . . . , N − 1 (12.3.4)

Expressed directly in terms of the transformHn of our real (masquerading as
complex) data set, the result is

Fn =
1

2
(Hn + HN/2−n*) −

i

2
(Hn −HN/2−n*)e2πin/N n = 0, . . . , N − 1

(12.3.5)

A few remarks:
• SinceFN−n* = Fn there is no point in saving the entire spectrum. The

positive frequency half is sufficient and can be stored in the same array as
the original data. The operation can, in fact, be done in place.

• Even so, we need valuesHn, n = 0, . . . , N/2 whereasfour1 returns only
the valuesn = 0, . . . , N/2− 1. Symmetry to the rescue,HN/2 = H0.

• The valuesF0 andFN/2 are real and independent. In order to actually get
the entireFn in the original array space, it is convenient to returnFN/2

as the imaginary part ofF0.

12.3 FFT of Real Functions, Sine and Cosine Transforms 507

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• Despite its complicated form, the process above is invertible. First peel
FN/2 out of F0. Then construct

F e
n =

1

2
(Fn + F *

N/2−n)

F o
n =

1

2
e−2πin/N (Fn − F *

N/2−n)

n = 0, . . . , N/2 − 1 (12.3.6)

and usefour1 to find the inverse transform ofHn = F
(1)
n + iF

(2)
n .

Surprisingly, the actual algebraic steps are virtually identical to those of
the forward transform.

Here is a representation of what we have said:

SUBROUTINE realft(data,n,isign)
INTEGER isign,n
REAL data(n)

C USES four1
Calculates the Fourier transform of a set of n real-valued data points. Replaces this data
(which is stored in array data(1:n)) by the positive frequency half of its complex Fourier
transform. The real-valued first and last components of the complex transform are returned
as elements data(1) and data(2), respectively. n must be a power of 2. This routine
also calculates the inverse transform of a complex data array if it is the transform of real
data. (Result in this case must be multiplied by 2/n.)

INTEGER i,i1,i2,i3,i4,n2p3
REAL c1,c2,h1i,h1r,h2i,h2r,wis,wrs
DOUBLE PRECISION theta,wi,wpi,wpr,

* wr,wtemp Double precision for the trigonometric recurrences.
theta=3.141592653589793d0/dble(n/2) Initialize the recurrence.
c1=0.5
if (isign.eq.1) then

c2=-0.5
call four1(data,n/2,+1) The forward transform is here.

else
c2=0.5 Otherwise set up for an inverse transform.
theta=-theta

endif
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.0d0+wpr
wi=wpi
n2p3=n+3
do 11 i=2,n/4 Case i=1 done separately below.

i1=2*i-1
i2=i1+1
i3=n2p3-i2
i4=i3+1
wrs=sngl(wr)
wis=sngl(wi)
h1r=c1*(data(i1)+data(i3)) The two separate transforms are separated out of

data.h1i=c1*(data(i2)-data(i4))
h2r=-c2*(data(i2)+data(i4))
h2i=c2*(data(i1)-data(i3))
data(i1)=h1r+wrs*h2r-wis*h2i Here they are recombined to form the true trans-

form of the original real data.data(i2)=h1i+wrs*h2i+wis*h2r
data(i3)=h1r-wrs*h2r+wis*h2i
data(i4)=-h1i+wrs*h2i+wis*h2r
wtemp=wr The recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 11

508 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if (isign.eq.1) then
h1r=data(1)
data(1)=h1r+data(2)
data(2)=h1r-data(2) Squeeze the first and last data together to get

them all within the original array.else
h1r=data(1)
data(1)=c1*(h1r+data(2))
data(2)=c1*(h1r-data(2))
call four1(data,n/2,-1) This is the inverse transform for the case isign=-1.

endif
return
END

Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used to solve
differential equations (see§19.4). The most common boundary conditions for the
solutions are 1) they have the value zero at the boundaries, or 2) their derivatives
are zero at the boundaries. In the first instance, the natural transform to use is the
sine transform, given by

Fk =

N−1
∑

j=1

fj sin(πjk/N) sine transform (12.3.7)

wherefj , j = 0, . . . , N − 1 is the data array, andf0 ≡ 0.
At first blush this appears to be simply the imaginary part of the discrete Fourier

transform. However, the argument of the sine differs by a factor of two from the
value that would make this so. The sine transform usessines onlyas a complete set
of functions in the interval from0 to 2π, and, as we shall see, the cosine transform
usescosines only. By contrast, the normal FFT uses both sines and cosines, but only
half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be “force-fit” into a form that allows its calculation
via the FFT. The idea is to extend the given function rightward past its last tabulated
value. We extend the data to twice their length in such a way as to make them an
odd function aboutj = N , with fN = 0,

f2N−j ≡ −fj j = 0, . . . , N − 1 (12.3.8)

Consider the FFT of this extended function:

Fk =

2N−1
∑

j=0

fje
2πijk/(2N) (12.3.9)

The half of this sum fromj = N to j = 2N − 1 can be rewritten with the
substitutionj′ = 2N − j

2N−1
∑

j=N

fje
2πijk/(2N) =

N
∑

j′=1

f2N−j′e
2πi(2N−j′)k/(2N)

= −

N−1
∑

j′=0

fj′e
−2πij′k/(2N)

(12.3.10)

12.3 FFT of Real Functions, Sine and Cosine Transforms 509

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(a)

+1

0

−1

+1

0

−1

+1

0

−1

(b)

(c)

0 2π

5

4 2

1

3

123

4

5

1

2
3

4

5

Figure 12.3.1. Basis functions used by the Fourier transform (a), sine transform (b),and cosine transform
(c), are plotted. The first five basis functions are shown in each case. (For the Fourier transform, the real
and imaginary parts of the basis functions are both shown.) While some basis functions occur in more
than one transform, the basis sets are distinct. For example, the sine transform functions labeled (1), (3),
(5) are not present in the Fourier basis. Any of the three sets can expand any function in the interval
shown; however, the sine or cosine transform best expands functions matching the boundary conditions
of the respective basis functions, namely zero function values for sine, zero derivatives for cosine.

so that

Fk =

N−1
∑

j=0

fj

[

e2πijk/(2N) − e−2πijk/(2N)
]

= 2i

N−1
∑

j=0

fj sin(πjk/N)

(12.3.11)

Thus, up to a factor2i we get the sine transform from the FFT of the extended
function.

This method introduces a factor of two inefficiency into the computation by
extending the data. This inefficiency shows up in the FFT output, which has
zeros for the real part of every element of the transform. For a one-dimensional
problem, the factor of two may be bearable, especially in view of the simplicity
of the method. When we work with partial differential equations in two or three
dimensions, though, the factor becomes four or eight, so efforts to eliminate the
inefficiency are well rewarded.

510 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

From the original real data arrayfj we will construct an auxiliary arrayyj and
apply to it the routinerealft. The output will then be used to construct the desired
transform. For the sine transform of datafj, j = 1, . . . , N−1, the auxiliary array is

y0 = 0

yj = sin(jπ/N)(fj + fN−j) +
1

2
(fj − fN−j) j = 1, . . . , N − 1

(12.3.12)

This array is of the same dimension as the original. Notice that the first term is
symmetric aboutj = N/2 and the second is antisymmetric. Consequently, when
realft is applied toyj , the result has real partsRk and imaginary partsIk given by

Rk =

N−1
∑

j=0

yj cos(2πjk/N)

=

N−1
∑

j=1

(fj + fN−j) sin(jπ/N) cos(2πjk/N)

=

N−1
∑

j=0

2fj sin(jπ/N) cos(2πjk/N)

=

N−1
∑

j=0

fj

[

sin
(2k + 1)jπ

N
− sin

(2k − 1)jπ

N

]

= F2k+1 − F2k−1 (12.3.13)

Ik =

N−1
∑

j=0

yj sin(2πjk/N)

=
N−1
∑

j=1

(fj − fN−j)
1

2
sin(2πjk/N)

=

N−1
∑

j=0

fj sin(2πjk/N)

= F2k (12.3.14)

ThereforeFk can be determined as follows:

F2k = Ik F2k+1 = F2k−1 + Rk k = 0, . . . , (N/2 − 1) (12.3.15)

The even terms ofFk are thus determined very directly. The odd terms require
a recursion, the starting point of which follows from settingk = 0 in equation
(12.3.15) and usingF1 = −F−1:

F1 =
1

2
R0 (12.3.16)

The implementing program is

12.3 FFT of Real Functions, Sine and Cosine Transforms 511

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE sinft(y,n)
INTEGER n
REAL y(n)

C USES realft
Calculates the sine transform of a set of n real-valued data points stored in array y(1:n).
The number n must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/n.

INTEGER j
REAL sum,y1,y2
DOUBLE PRECISION theta,wi,wpi,wpr,

* wr,wtemp Double precision in the trigonometric recurrences.
theta=3.141592653589793d0/dble(n) Initialize the recurrence.
wr=1.0d0
wi=0.0d0
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
y(1)=0.0
do 11 j=1,n/2

wtemp=wr
wr=wr*wpr-wi*wpi+wr Calculate the sine for the auxiliary array.
wi=wi*wpr+wtemp*wpi+wi The cosine is needed to continue the recurrence.
y1=wi*(y(j+1)+y(n-j+1)) Construct the auxiliary array.
y2=0.5*(y(j+1)-y(n-j+1))
y(j+1)=y1+y2 Terms j and N − j are related.
y(n-j+1)=y1-y2

enddo 11

call realft(y,n,+1) Transform the auxiliary array.
sum=0.0
y(1)=0.5*y(1) Initialize the sum used for odd terms below.
y(2)=0.0
do 12 j=1,n-1,2

sum=sum+y(j)
y(j)=y(j+1) Even terms in the transform are determined directly.
y(j+1)=sum Odd terms are determined by this running sum.

enddo 12

return
END

The sine transform, curiously, is its own inverse. If you apply it twice, you get the
original data, but multiplied by a factor ofN/2.

The other common boundary condition for differential equations is that the
derivative of the function is zero at the boundary. In this case the natural transform
is thecosinetransform. There are several possible ways of defining the transform.
Each can be thought of as resulting from a different way of extending a given array
to create an even array of double the length, and/or from whether the extended array
contains2N − 1, 2N , or some other number of points. In practice, only two of the
numerous possibilities are useful so we will restrict ourselves to just these two.

The first form of the cosine transform usesN + 1 data points:

Fk =
1

2
[f0 + (−1)kfN] +

N−1
∑

j=1

fj cos(πjk/N) (12.3.17)

It results from extending the given array to an even array aboutj = N , with

f2N−j = fj, j = 0, . . . , N − 1 (12.3.18)

512 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If you substitute this extended array into equation (12.3.9),and follow steps analogous
to those leading up to equation (12.3.11), you will find that the Fourier transform is
just twice the cosine transform (12.3.17). Another way of thinking about the formula
(12.3.17) is to notice that it is the Chebyshev Gauss-Lobatto quadrature formula (see
§4.5), often used in Clenshaw-Curtis adaptive quadrature (see§5.9, equation 5.9.4).

Once again the transform can be computed without the factor of two inefficiency.
In this case the auxiliary function is

yj =
1

2
(fj + fN−j) − sin(jπ/N)(fj − fN−j) j = 0, . . . , N − 1 (12.3.19)

Instead of equation (12.3.15),realft now gives

F2k = Rk F2k+1 = F2k−1 + Ik k = 0, . . . , (N/2 − 1) (12.3.20)

The starting value for the recursion for oddk in this case is

F1 =
1

2
(f0 − fN) +

N−1
∑

j=1

fj cos(jπ/N) (12.3.21)

This sum does not appear naturally among theRk andIk, and so we accumulate it
during the generation of the arrayyj .

Once again this transform is its own inverse, and so the following routine
works for both directions of the transformation. Note that although this form of
the cosine transform hasN + 1 input and output values, it passes an array only
of lengthN to realft.

SUBROUTINE cosft1(y,n)
INTEGER n
REAL y(n+1)

C USES realft
Calculates the cosine transform of a set y(1:n+1) of real-valued data points. The trans-
formed data replace the original data in array y. n must be a power of 2. This program,
without changes, also calculates the inverse cosine transform, but in this case the output
array should be multiplied by 2/n.

INTEGER j
REAL sum,y1,y2
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp For trig. recurrences.
theta=3.141592653589793d0/n Initialize the recurrence.
wr=1.0d0
wi=0.0d0
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
sum=0.5*(y(1)-y(n+1))
y(1)=0.5*(y(1)+y(n+1))
do 11 j=1,n/2-1 j=n/2 unnecessary since y(n/2+1) unchanged.

wtemp=wr
wr=wr*wpr-wi*wpi+wr Carry out the recurrence.
wi=wi*wpr+wtemp*wpi+wi
y1=0.5*(y(j+1)+y(n-j+1)) Calculate the auxiliary function.
y2=(y(j+1)-y(n-j+1))
y(j+1)=y1-wi*y2 The values for j and N − j are related.
y(n-j+1)=y1+wi*y2
sum=sum+wr*y2 Carry along this sum for later use in unfolding the

transform.enddo 11

12.3 FFT of Real Functions, Sine and Cosine Transforms 513

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call realft(y,n,+1) Calculate the transform of the auxiliary function.
y(n+1)=y(2)
y(2)=sum sum is the value of F1 in equation (12.3.21).
do 12 j=4,n,2

sum=sum+y(j) Equation (12.3.20).
y(j)=sum

enddo 12

return
END

The second important form of the cosine transform is defined by

Fk =

N−1
∑

j=0

fj cos
πk(j + 1

2)

N
(12.3.22)

with inverse

fj =
2

N

N−1
∑′

k=0

Fk cos
πk(j + 1

2
)

N
(12.3.23)

Here the prime on the summation symbol means that the term fork = 0 has a
coefficient of 1

2 in front. This form arises by extending the given data, defined for
j = 0, . . . , N −1, toj = N, . . . , 2N−1 in such a way that it is even about the point
N − 1

2
and periodic. (It is therefore also even aboutj = −1

2
.) The form (12.3.23)

is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev
approximation (§5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (§5.9).

This form of the cosine transform is useful when solving differential equations
on “staggered” grids, where the variables are centered midway between mesh points.
It is also the standard form in the field of data compression and image processing.

The auxiliary function used in this case is similar to equation (12.3.19):

yj =
1

2
(fj + fN−j−1) − sin

π(j + 1
2)

N
(fj − fN−j−1) j = 0, . . . , N − 1

(12.3.24)

Carrying out the steps similar to those used to get from (12.3.12) to (12.3.15), we find

F2k = cos
πk

N
Rk − sin

πk

N
Ik (12.3.25)

F2k−1 = sin
πk

N
Rk + cos

πk

N
Ik + F2k+1 (12.3.26)

Note that equation (12.3.26) gives

FN−1 =
1

2
RN/2 (12.3.27)

Thus the even components are found directly from (12.3.25), while the odd com-
ponents are found by recursing (12.3.26) down fromk = N/2 − 1, using (12.3.27)
to start.

Since the transform is not self-inverting, we have to reverse the above steps
to find the inverse. Here is the routine:

514 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE cosft2(y,n,isign)
INTEGER isign,n
REAL y(n)

C USES realft
Calculates the “staggered” cosine transform of a set y(1:n) of real-valued data points.
The transformed data replace the original data in array y. n must be a power of 2. Set
isign to +1 for a transform, and to −1 for an inverse transform. For an inverse transform,
the output array should be multiplied by 2/n.

INTEGER i
REAL sum,sum1,y1,y2,ytemp
DOUBLE PRECISION theta,wi,wi1,wpi,wpr,wr,wr1,wtemp,PI

Double precision for the trigonometric recurrences.
PARAMETER (PI=3.141592653589793d0)
theta=0.5d0*PI/n Initialize the recurrences.
wr=1.0d0
wi=0.0d0
wr1=cos(theta)
wi1=sin(theta)
wpr=-2.0d0*wi1**2
wpi=sin(2.d0*theta)
if(isign.eq.1)then Forward transform.

do 11 i=1,n/2
y1=0.5*(y(i)+y(n-i+1)) Calculate the auxiliary function.
y2=wi1*(y(i)-y(n-i+1))
y(i)=y1+y2
y(n-i+1)=y1-y2
wtemp=wr1 Carry out the recurrence.
wr1=wr1*wpr-wi1*wpi+wr1
wi1=wi1*wpr+wtemp*wpi+wi1

enddo 11

call realft(y,n,1) Calculate the transform of the auxiliary function.
do 12 i=3,n,2 Even terms.

wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
y1=y(i)*wr-y(i+1)*wi
y2=y(i+1)*wr+y(i)*wi
y(i)=y1
y(i+1)=y2

enddo 12

sum=0.5*y(2) Initialize recurrence for odd terms with 1

2
RN/2.

do 13 i=n,2,-2 Carry out recurrence for odd terms.
sum1=sum
sum=sum+y(i)
y(i)=sum1

enddo 13

else if(isign.eq.-1)then Inverse transform.
ytemp=y(n)
do 14 i=n,4,-2 Form difference of odd terms.

y(i)=y(i-2)-y(i)
enddo 14

y(2)=2.0*ytemp
do 15 i=3,n,2 Calculate Rk and Ik .

wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
y1=y(i)*wr+y(i+1)*wi
y2=y(i+1)*wr-y(i)*wi
y(i)=y1
y(i+1)=y2

enddo 15

call realft(y,n,-1)
do 16 i=1,n/2 Invert auxiliary array.

y1=y(i)+y(n-i+1)

12.4 FFT in Two or More Dimensions 515

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

y2=(0.5/wi1)*(y(i)-y(n-i+1))
y(i)=0.5*(y1+y2)
y(n-i+1)=0.5*(y1-y2)
wtemp=wr1
wr1=wr1*wpr-wi1*wpi+wr1
wi1=wi1*wpr+wtemp*wpi+wi1

enddo 16

endif
return
END

An alternative way of implementing this algorithm is to form an auxiliary
function by copying the even elements offj into the firstN/2 locations, and the
odd elements into the nextN/2 elements in reverse order. However, it is not easy
to implement the alternative algorithm without a temporary storage array and we
prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for smallN that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixedN of small dimension[1].

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §10–10.

Sorensen, H.V., Jones, D.L., Heideman, M.T., and Burris, C.S. 1987, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 849–863.

Hou, H.S. 1987, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
pp. 1455–1461 [see for additional references].

Hockney, R.W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).

Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314–329.

Clarke, R.J. 1985, Transform Coding of Images, (Reading, MA: Addison-Wesley).

Gonzalez, R.C., and Wintz, P. 1987, Digital Image Processing, (Reading, MA: Addison-Wesley).

Chen, W., Smith, C.H., and Fralick, S.C. 1977, IEEE Transactions on Communications, vol. COM-
25, pp. 1004–1009. [1]

12.4 FFT in Two or More Dimensions

Given a complex functionh(k1, k2) defined over the two-dimensional grid
0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1, we can define its two-dimensional discrete
Fourier transform as a complex functionH(n1, n2), defined over the same grid,

H(n1, n2) ≡

N2−1
∑

k2=0

N1−1
∑

k1=0

exp(2πik2n2/N2) exp(2πik1n1/N1) h(k1, k2)

(12.4.1)

By pulling the “subscripts 2” exponential outside of the sum overk1, or by reversing
the order of summation and pulling the “subscripts 1” outside of the sum overk2,

12.4 FFT in Two or More Dimensions 515

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

y2=(0.5/wi1)*(y(i)-y(n-i+1))
y(i)=0.5*(y1+y2)
y(n-i+1)=0.5*(y1-y2)
wtemp=wr1
wr1=wr1*wpr-wi1*wpi+wr1
wi1=wi1*wpr+wtemp*wpi+wi1

enddo 16

endif
return
END

An alternative way of implementing this algorithm is to form an auxiliary
function by copying the even elements offj into the firstN/2 locations, and the
odd elements into the nextN/2 elements in reverse order. However, it is not easy
to implement the alternative algorithm without a temporary storage array and we
prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for smallN that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixedN of small dimension[1].

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §10–10.

Sorensen, H.V., Jones, D.L., Heideman, M.T., and Burris, C.S. 1987, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 849–863.

Hou, H.S. 1987, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
pp. 1455–1461 [see for additional references].

Hockney, R.W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).

Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314–329.

Clarke, R.J. 1985, Transform Coding of Images, (Reading, MA: Addison-Wesley).

Gonzalez, R.C., and Wintz, P. 1987, Digital Image Processing, (Reading, MA: Addison-Wesley).

Chen, W., Smith, C.H., and Fralick, S.C. 1977, IEEE Transactions on Communications, vol. COM-
25, pp. 1004–1009. [1]

12.4 FFT in Two or More Dimensions

Given a complex functionh(k1, k2) defined over the two-dimensional grid
0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1, we can define its two-dimensional discrete
Fourier transform as a complex functionH(n1, n2), defined over the same grid,

H(n1, n2) ≡

N2−1∑

k2=0

N1−1∑

k1=0

exp(2πik2n2/N2) exp(2πik1n1/N1) h(k1, k2)

(12.4.1)

By pulling the “subscripts 2” exponential outside of the sum overk1, or by reversing
the order of summation and pulling the “subscripts 1” outside of the sum overk2,

516 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

we can see instantly that the two-dimensional FFT can be computed by taking one-
dimensional FFTs sequentially on each index of the original function. Symbolically,

H(n1, n2) = FFT-on-index-1(FFT-on-index-2[h(k1, k2)])

= FFT-on-index-2(FFT-on-index-1[h(k1, k2)])
(12.4.2)

For this to be practical, of course, bothN1 andN2 should be some efficient length
for an FFT, usually a power of 2. Programming a two-dimensional FFT, using
(12.4.2) with a one-dimensional FFT routine, is a bit clumsier than it seems at first.
Because the one-dimensional routine requires that its input be in consecutive order
as a one-dimensional complex array, you find that you are endlessly copying things
out of the multidimensional input array and then copying things back into it. This
is not recommended technique. Rather, you should use a multidimensional FFT
routine, such as the one we give below.

The generalization of (12.4.1) to more than two dimensions, say toL-
dimensions, is evidently

H(n1, . . . , nL) ≡

NL−1∑

kL=0

· · ·

N1−1∑

k1=0

exp(2πikLnL/NL) × · · ·

× exp(2πik1n1/N1) h(k1, . . . , kL)

(12.4.3)

wheren1 andk1 range from 0 toN1 − 1, . . . , nL andkL range from 0 toNL − 1.
How many calls to a one-dimensional FFT are in (12.4.3)? Quite a few! For each
value ofk1, k2, . . . , kL−1 you FFT to transform theL index. Then for each value of
k1, k2, . . . , kL−2 andnL you FFT to transform theL − 1 index. And so on. It is
best to rely on someone else having done the bookkeeping for once and for all.

The inverse transforms of (12.4.1) or (12.4.3) are just what you would expect
them to be: Change thei’s in the exponentials to−i’s, and put an overall
factor of 1/(N1 × · · · × NL) in front of the whole thing. Most other features
of multidimensional FFTs are also analogous to features already discussed in the
one-dimensional case:

• Frequencies are arranged in wrap-around order in the transform, but now
for each separate dimension.

• The input data are also treated as if they were wrapped around. If they are
discontinuous across this periodic identification (in any dimension) then
the spectrum will have some excess power at high frequencies because
of the discontinuity. The fix, if you care, is to remove multidimensional
linear trends.

• If you are doing spatial filtering and are worried about wrap-around effects,
then you need to zero-pad all around the border of the multidimensional
array. However, be sure to notice how costly zero-padding is in multidi-
mensional transforms. If you use too thick a zero-pad, you are going to
waste alot of storage, especially in 3 or more dimensions!

• Aliasing occurs as always if sufficient bandwidth limiting does not exist
along one or more of the dimensions of the transform.

12.4 FFT in Two or More Dimensions 517

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

........

........

co
lu

m
n

of
 2N

1
re

al
 n

um
be

rs

........

........

........

........

........

........

........

........

........

........

.

N2 columns

f2 = 0 f2 =
1

N2∆2
f2 =

N2/2 − 1
N2∆2

f2 = ±
1

2∆2
f2 = − N2/2 − 1

N2∆2
f2 = −

1
N2∆2

array element
2N1N2

array element
1

col. 1 col. 2 col.
N2
2

col. +1
N2
2

col. +2
N2
2

col. N2

Figure 12.4.1. Storage arrangement of frequencies in the outputH(f1, f2) of a two-dimensional FFT.
The input data is a two-dimensionalN1 ×N2 arrayh(t1, t2) (stored by columns of complex numbers).
The output is also stored by complex columns. Each column corresponds to a particular value off2,
as shown in the figure. Within each column, the arrangement of frequenciesf1 is exactly as shown in
Figure 12.2.2∆1 and∆2 are the sampling intervals in the 1 and 2 directions, respectively. The total
number of (real) array elements is2N1N2 . The programfourn can also do more than two dimensions,
and the storage arrangement generalizes in the obvious way.

The routinefourn that we furnish herewith is a descendant of one written by N.
M. Brenner. It requires as input (i) a scalar, telling the number of dimensions, e.g.,
2; (ii) a vector, telling the length of the array ineach dimension, e.g., (32,64). Note
that these lengthsmust allbe powers of 2, and are the numbers ofcomplexvalues
in each direction; (iii) the usual scalar equal to±1 indicating whether you want the
transform or its inverse; and, finally (iv) the array of data.

A few words about the data array:fourn accesses it as a one-dimensional
array of real numbers, of length equal to twice the product of the lengths of the
L dimensions. It assumes that the array represents anL-dimensional complex
array, in normalFORTRAN order. NormalFORTRAN order means: (i) each complex
value occupies two sequential locations, real part followed by imaginary; (ii)
the first subscript changes most rapidly as one goes through the array; the last
subscript changes least rapidly; (iii) subscripts range from 1 to their maximum values
(N1, N2, . . . , NL, respectively), rather than from 0 toN1 − 1, N2 − 1, . . . , NL − 1.
Almost all failures to getfourn to work result from improper understanding of
the above ordering of the data array, so take care! (Figure 12.4.1 illustrates the
format of the output array.)

518 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE fourn(data,nn,ndim,isign)
INTEGER isign,ndim,nn(ndim)
REAL data(*)

Replaces data by its ndim-dimensional discrete Fourier transform, if isign is input as
1. nn(1:ndim) is an integer array containing the lengths of each dimension (number of
complex values), which MUST all be powers of 2. data is a real array of length twice the
product of these lengths, in which the data are stored as in a multidimensional complex
FORTRAN array. If isign is input as −1, data is replaced by its inverse transform times
the product of the lengths of all dimensions.

INTEGER i1,i2,i2rev,i3,i3rev,ibit,idim,ifp1,ifp2,ip1,ip2,
* ip3,k1,k2,n,nprev,nrem,ntot

REAL tempi,tempr
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp Double precision for trigonometric re-

currences.ntot=1
do 11 idim=1,ndim Compute total number of complex values.

ntot=ntot*nn(idim)
enddo 11

nprev=1
do 18 idim=1,ndim Main loop over the dimensions.

n=nn(idim)
nrem=ntot/(n*nprev)
ip1=2*nprev
ip2=ip1*n
ip3=ip2*nrem
i2rev=1
do 14 i2=1,ip2,ip1 This is the bit-reversal section of the routine.

if(i2.lt.i2rev)then
do 13 i1=i2,i2+ip1-2,2

do 12 i3=i1,ip3,ip2
i3rev=i2rev+i3-i2
tempr=data(i3)
tempi=data(i3+1)
data(i3)=data(i3rev)
data(i3+1)=data(i3rev+1)
data(i3rev)=tempr
data(i3rev+1)=tempi

enddo 12

enddo 13

endif
ibit=ip2/2

1 if ((ibit.ge.ip1).and.(i2rev.gt.ibit)) then
i2rev=i2rev-ibit
ibit=ibit/2

goto 1
endif
i2rev=i2rev+ibit

enddo 14

ifp1=ip1 Here begins the Danielson-Lanczos section of the routine.
2 if(ifp1.lt.ip2)then

ifp2=2*ifp1
theta=isign*6.28318530717959d0/(ifp2/ip1) Initialize for the trig. recur-

rence.wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
do 17 i3=1,ifp1,ip1

do 16 i1=i3,i3+ip1-2,2
do 15 i2=i1,ip3,ifp2

k1=i2 Danielson-Lanczos formula:
k2=k1+ifp1
tempr=sngl(wr)*data(k2)-sngl(wi)*data(k2+1)
tempi=sngl(wr)*data(k2+1)+sngl(wi)*data(k2)
data(k2)=data(k1)-tempr
data(k2+1)=data(k1+1)-tempi

12.5 Fourier Transforms of Real Data in Two and Three Dimensions 519

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

data(k1)=data(k1)+tempr
data(k1+1)=data(k1+1)+tempi

enddo 15

enddo 16

wtemp=wr Trigonometric recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 17

ifp1=ifp2
goto 2
endif
nprev=n*nprev

enddo 18

return
END

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

12.5 Fourier Transforms of Real Data in Two
and Three Dimensions

Two-dimensional FFTs are particularly important in the field of image process-
ing. An image is usually represented as a two-dimensional array of pixel intensities,
real (and usually positive) numbers. One commonly desires to filter high, or low,
frequency spatial components from an image; or to convolve or deconvolve the
image with some instrumental point spread function. Use of the FFT is by far the
most efficient technique.

In three dimensions, a common use of the FFT is to solve Poisson’s equation
for a potential (e.g., electromagnetic or gravitational) on a three-dimensional lattice
that represents the discretization of three-dimensional space. Here the source terms
(mass or charge distribution) and the desired potentials are also real. In two and
three dimensions, with large arrays, memory is often at a premium. It is therefore
important to perform the FFTs, insofar as possible, on the data“in place.” We
want a routine with functionality similar to the multidimensional FFT routinefourn

(§12.4), but which operates on real, not complex, input data. We give such a
routine in this section. The development is analogous to that of§12.3 leading to
the one-dimensional routinerealft. (You might wish to review that material at
this point, particularly equation 12.3.5.)

It is convenient to think of the independent variablesn1, . . . , nL in equation
(12.4.3) as representing anL-dimensional vector~n in wave-number space, with
values on the lattice of integers. The transformH(n1, . . . , nL) is then denotedH(~n).

It is easy to see that the transformH(~n) is periodic in each of itsL dimensions.
Specifically, if ~P1, ~P2, ~P3, . . . denote the vectors(N1, 0, 0, . . .), (0, N2, 0, . . .),
(0, 0, N3, . . .), and so forth, then

H(~n± ~Pj) = H(~n) j = 1, . . . , L (12.5.1)

12.5 Fourier Transforms of Real Data in Two and Three Dimensions 519

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

data(k1)=data(k1)+tempr
data(k1+1)=data(k1+1)+tempi

enddo 15

enddo 16

wtemp=wr Trigonometric recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

enddo 17

ifp1=ifp2
goto 2
endif
nprev=n*nprev

enddo 18

return
END

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

12.5 Fourier Transforms of Real Data in Two
and Three Dimensions

Two-dimensional FFTs are particularly important in the field of image process-
ing. An image is usually represented as a two-dimensional array of pixel intensities,
real (and usually positive) numbers. One commonly desires to filter high, or low,
frequency spatial components from an image; or to convolve or deconvolve the
image with some instrumental point spread function. Use of the FFT is by far the
most efficient technique.

In three dimensions, a common use of the FFT is to solve Poisson’s equation
for a potential (e.g., electromagnetic or gravitational) on a three-dimensional lattice
that represents the discretization of three-dimensional space. Here the source terms
(mass or charge distribution) and the desired potentials are also real. In two and
three dimensions, with large arrays, memory is often at a premium. It is therefore
important to perform the FFTs, insofar as possible, on the data“in place.” We
want a routine with functionality similar to the multidimensional FFT routinefourn

(§12.4), but which operates on real, not complex, input data. We give such a
routine in this section. The development is analogous to that of§12.3 leading to
the one-dimensional routinerealft. (You might wish to review that material at
this point, particularly equation 12.3.5.)

It is convenient to think of the independent variablesn1, . . . , nL in equation
(12.4.3) as representing anL-dimensional vector~n in wave-number space, with
values on the lattice of integers. The transformH(n1, . . . , nL) is then denotedH(~n).

It is easy to see that the transformH(~n) is periodic in each of itsL dimensions.
Specifically, if ~P1, ~P2, ~P3, . . . denote the vectors(N1, 0, 0, . . .), (0, N2, 0, . . .),
(0, 0, N3, . . .), and so forth, then

H(~n± ~Pj) = H(~n) j = 1, . . . , L (12.5.1)

520 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Equation (12.5.1) holds for any input data, real or complex. When the data is real,
we have the additional symmetry

H(−~n) = H(~n)* (12.5.2)

Equations (12.5.1) and (12.5.2) imply that the full transform can be trivially obtained
from the subset of lattice values~n that have

0 ≤ n1 ≤
N1

2
0 ≤ n2 ≤ N2 − 1

· · ·

0 ≤ nL ≤ NL − 1

(12.5.3)

In fact, this set of values is overcomplete, because there are additional symmetry
relations among the transform values that haven1 = 0 andn1 = N1/2. However
these symmetries are complicated and their use becomes extremely confusing.
Therefore, we will compute our FFT on the lattice subset of equation (12.5.3),
even though this requires a small amount of extra storage for the answer, i.e., the
transform is notquite“in place.” (Although an in-place transform is in fact possible,
we have found it virtually impossible to explain to any user how to unscramble its
output, i.e., where to find the real and imaginary components of the transform at
some particular frequency!)

Figure 12.5.1 shows the storage scheme that we will use for the input data
and the output transform. The figure is specialized to the case of two dimensions,
L = 2, but the generalization to higher dimensions is obvious. The input data is
a two-dimensional real array of dimensionsN1 (called nn1) by N2 (callednn2).
Notice that theFORTRAN subscripts number from 1 tonn1, and not from 0 toN1 − 1.
The output spectrum is in two complex arrays, one two-dimensional and the other
one-dimensional. The two-dimensional one,spec, has dimensionsnn1/2 by nn2.
This is exactly half the size of the input data array; but since it is complex, it is
the same amount of storage. In fact,spec will share storage with (and overwrite)
the input data array. As the figure shows,spec contains those spectral components
whose first component of frequency,f1, ranges from zero to just short of the
Nyquist frequencyfc. The full range of positive and negative second-component of
frequencies,f2, is stored, in wrap-around order (see§12.2), with negative frequencies
shifted by exactly one period to put them “above” the positive frequencies, as the
figure indicates. The figure also indicates how the additionalL − 1 (here, one-)
dimensional arrayspeq stores only that single value ofn1 that corresponds to the
Nyquist frequency, but all values ofn2, etc.

With this much introduction, the implementing procedure, calledrlft3, is
something of an anticlimax. The routine is written for the case ofL = 3 dimensions,
but (we will explain below) it can be used without modification forL = 2 also; and
it is quite trivial to generalize it to largerL. Look at the innermost (“do13”) loop in
the procedure, and you will see equation (12.3.5) implemented on thefirst transform
index. The case ofi1=1 is coded separately, to account for the fact thatspeq is
to be filled instead ofspec (which is here calleddata since it shares storage with

12.5 Fourier Transforms of Real Data in Two and Three Dimensions 521

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Input data array

Output spectrum
arrays

nn1, 1 nn1, nn2

REAL data(nn1,nn2)

1,1

1,1

1, nn2

nn1/2,1 nn1/2,nn2

1,nn2

COMPLEX speq(nn2)

COMPLEX spec(nn1/2,nn2)

f1 = fc

f1 = 0

f 2
 =

 f c

f 2
 =

 0

1 nn2

f 2
 =

 –
f c

f1 = – fc

Figure 12.5.1. Input and output data arrangement forrlft3 in the case of two-dimensional data. The
input data array is a real, two-dimensionalarray. The outputdata arrayspec is a complex, two-dimensional
array whose(1,1) element contains thef1 = f2 = 0 spectral component; a complete set off2 values
are stored in wrap-around order, while only positive f1 values are stored (others being obtainable by
symmetry). The output arrayspeq contains components withf1 equal to the Nyquist frequency.

522 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the input array). The three enclosingdo loops (indicesi2, i1, andi3, from inside
to outside) could in fact be done in any order — their actions all commute. We
chose the order shown because of the following considerations: (i)i1 should not be
the inner loop, because if it is, then the recurrence relations onwr andwi become
burdensome. (ii) On virtual-memory machines,i3 should be the outer loop, because
(with FORTRAN order of array storage) this results in the arraydata, which might be
very large, being accessed in block sequential order.

Note that the work done inrlft3 is quite (logarithmically) small, compared
to the associated complex FFT,fourn. For this reason, we allow ourselves the
clarity of usingFORTRAN complex arithmetic even when (as in the multiplications
by c1 andc2) there are a few unnecessary operations. The routinerlft3 is based
on an earlier routine by G.B. Rybicki.

SUBROUTINE rlft3(data,speq,nn1,nn2,nn3,isign)
INTEGER isign,nn1,nn2,nn3
COMPLEX data(nn1/2,nn2,nn3),speq(nn2,nn3)

C USES fourn
Given a two- or three-dimensional real array data whose dimensions are nn1, nn2, nn3
(where nn3 is 1 for the case of a two-dimensional array), this routine returns (for isign=1)
the complex fast Fourier transform as two complex arrays: On output, data contains the
zero and positive frequency values of the first frequency component, while speq contains
the Nyquist critical frequency values of the first frequency component. Second (and third)
frequency components are stored for zero, positive, and negative frequencies, in standard
wrap-around order. For isign=-1, the inverse transform (times nn1*nn2*nn3/2 as a
constant multiplicative factor) is performed, with output data (viewed as a real array)
deriving from input data (viewed as complex) and speq. For inverse transforms on data
not generated first by a forward transform, make sure the complex input data array satisfies
property (12.5.2). The dimensions nn1, nn2, nn3 must always be integer powers of 2.

INTEGER i1,i2,i3,j1,j2,j3,nn(3)
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp
COMPLEX c1,c2,h1,h2,w Note that data is dimensioned as complex, its output

format.c1=cmplx(0.5,0.0)
c2=cmplx(0.0,-0.5*isign)
theta=6.28318530717959d0/dble(isign*nn1)
wpr=-2.0d0*sin(0.5d0*theta)**2
wpi=sin(theta)
nn(1)=nn1/2
nn(2)=nn2
nn(3)=nn3
if(isign.eq.1)then Case of forward transform.

call fourn(data,nn,3,isign) Here is where most all of the compute time is spent.
do 12 i3=1,nn3 Extend data periodically into speq.

do 11 i2=1,nn2
speq(i2,i3)=data(1,i2,i3)

enddo 11

enddo 12

endif
do 15 i3=1,nn3

j3=1 Zero frequency is its own reflection, otherwise locate cor-
responding negative frequency in wrap-around order.if (i3.ne.1) j3=nn3-i3+2

wr=1.0d0 Initialize trigonometric recurrence.
wi=0.0d0
do 14 i1=1,nn1/4+1

j1=nn1/2-i1+2
do 13 i2=1,nn2

j2=1
if (i2.ne.1) j2=nn2-i2+2
if(i1.eq.1)then Equation (12.3.5).

h1=c1*(data(1,i2,i3)+conjg(speq(j2,j3)))
h2=c2*(data(1,i2,i3)-conjg(speq(j2,j3)))

12.5 Fourier Transforms of Real Data in Two and Three Dimensions 523

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Figure 12.5.2. (a) A two-dimensional image with intensities either purely black or purely white. (b) The
same image, after it has been low-pass filtered usingrlft3. Regionswith fine-scale features becomegray.

data(1,i2,i3)=h1+h2
speq(j2,j3)=conjg(h1-h2)

else
h1=c1*(data(i1,i2,i3)+conjg(data(j1,j2,j3)))
h2=c2*(data(i1,i2,i3)-conjg(data(j1,j2,j3)))
data(i1,i2,i3)=h1+w*h2
data(j1,j2,j3)=conjg(h1-w*h2)

endif
enddo 13

wtemp=wr Do the recurrence.
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi
w=cmplx(sngl(wr),sngl(wi))

enddo 14

enddo 15

if(isign.eq.-1)then Case of reverse transform.
call fourn(data,nn,3,isign)

endif
return
END

We now give some fragments from notional calling programs, to clarify the
use ofrlft3 for two- and three-dimensional data. Note that the routine does not
actually distinguish between two and three dimensions; two is treated like three, but
with the third dimension having length 1. Since the third dimension is the outer
loop, almost no inefficiency is introduced.

The first program fragment FFTs a two-dimensional data array, allows for some
processing on it, e.g., filtering, and then takes the inverse transform. Figure 12.5.2
shows an example of the use of this kind of code: A sharp image becomes blurry
when its high-frequency spatial components are suppressed by the factor (here)
max(1 − 6f2/f2

c , 0). The second program example illustrates a three-dimensional
transform, where the three dimensions have different lengths. The third program
example is an example of convolution, as it might occur in a program to compute
the potential generated by a three-dimensional distribution of sources.

524 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

PROGRAM exmpl1
This fragment shows how one might filter a 256 by 256 digital image.

INTEGER N1,N2,N3
PARAMETER (N1=256,N2=256,N3=1) Note that the third component must be set to 1.

C USES rlft3
REAL data(N1,N2)
COMPLEX spec(N1/2,N2),speq(N2)
EQUIVALENCE (data,spec)

C ... Here the image would be loaded into data.
call rlft3(data,speq,N1,N2,N3,1)

C ... Here the arrays spec and speq would be multiplied by a suit-
able filter function (of frequency).call rlft3(data,speq,N1,N2,N3,-1)

C ... Here the filtered image would be unloaded from data.
END

PROGRAM exmpl2
This fragment shows how one might FFT a real three-dimensional array of size 32 by 64
by 16.

INTEGER N1,N2,N3
PARAMETER (N1=32,N2=64,N3=16)

C USES rlft3
REAL data(N1,N2,N3)
COMPLEX spec(N1/2,N2,N3),speq(N2,N3)
EQUIVALENCE (data,spec)

C ... Here load data.
call rlft3(data,speq,N1,N2,N3,1)

C ... Here unload spec and speq.
END

PROGRAM exmpl3
This fragment shows how one might convolve two real, three-dimensional arrays of size 32
by 32 by 32, replacing the first array by the result.

INTEGER N
PARAMETER (N=32)

C USES rlft3
INTEGER j
REAL fac,data1(N,N,N),data2(N,N,N)
COMPLEX spec1(N/2,N,N),speq1(N,N),spec2(N/2,N,N),speq2(N,N),

* zpec1(N*N*N/2),zpeq1(N*N),zpec2(N*N*N/2),zpeq2(N*N)
EQUIVALENCE (data1,spec1,zpec1), (data2,spec2,zpec2),

* (speq1,zpeq1), (speq2,zpeq2)
C ...

call rlft3(data1,speq1,N,N,N,1) FFT both input arrays.
call rlft3(data2,speq2,N,N,N,1)
fac=2./(N*N*N) Factor needed to get normalized inverse.
do 11 j=1,N*N*N/2 The sole purpose of the zpecs and zpeqs is to make

this a single do-loop instead of three-nested ones.zpec1(j)=fac*zpec1(j)*zpec2(j)
enddo 11

do 12 j=1,N*N
zpeq1(j)=fac*zpeq1(j)*zpeq2(j)

enddo 12

call rlft3(data1,speq1,N,N,N,-1) Inverse FFT the product of the two FFTs.
C ...

END

To extendrlft3 to four dimensions, you simply add an additional (outer) nested
do loop ini4, analogous to the presenti3. (Modifying the routine to do anarbitrary
number of dimensions, as infourn, is a good programming exercise for the reader.)

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Swartztrauber, P. N. 1986, Mathematics of Computation, vol. 47, pp. 323–346.

12.6 External Storage or Memory-Local FFTs 525

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

12.6 External Storage or Memory-Local FFTs

Sometime in your life, you might have to compute the Fourier transform of areally
large data set, larger than the size of your computer’s physical memory. In such a case,
the data will be stored on some external medium, such as magnetic or optical tape or disk.
Needed is an algorithm that makes some manageable number of sequential passes through
the external data, processing it on the fly and outputting intermediate results to other external
media, which can be read on subsequent passes.

In fact, an algorithm of just this description was developed by Singleton[1] very soon
after the discovery of the FFT. The algorithm requires four sequential storage devices, each
capable of holding half of the input data. The first half of the input data is initially on one
device, the second half on another.

Singleton’s algorithm is based on the observation that it is possible to bit-reverse2
M

values by the following sequence of operations: On the first pass, values are read alternately
from the two input devices, and written to a single output device (until it holds half the data),
and then to the other output device. On the second pass, the output devices become input
devices, and vice versa. Now, we copytwo values from the first device, thentwo values
from the second, writing them (as before) first to fill one output device, then to fill a second.
Subsequent passes read 4, 8, etc., input values at a time. After completion of passM − 1,
the data are in bit-reverse order.

Singleton’s next observation is that it is possible to alternate the passes of essentially
this bit-reversal technique with passes that implement one stage of the Danielson-Lanczos
combination formula (12.2.3). The scheme, roughly, is this: One starts as before with half
the input data on one device, half on another. In the first pass, one complex value is read
from each input device. Two combinations are formed, and one is written to each of two
output devices. After this “computing” pass, the devices are rewound, and a “permutation”
pass is performed, where groups of values are read from the first input device and alternately
written to the first and second output devices; when the first input device is exhausted, the
second is similarly processed. This sequenceof computing and permutation passes is repeated
M − K − 1 times, where2K is the size of internal buffer available to the program. The
second phase of the computation consists of a finalK computation passes. What distinguishes
the second phase from the first is that, now, the permutations are local enough to do in place
during the computation. There are thus no separate permutation passes in the second phase.
In all, there are2M − K − 2 passes through the data.

Here is an implementation of Singleton’s algorithm, based on[1]:

SUBROUTINE fourfs(iunit,nn,ndim,isign)
INTEGER ndim,nn(ndim),isign,iunit(4),KBF
PARAMETER (KBF=128)

C USES fourew
One- or multi-dimensional Fourier transform of a large data set stored on external media.
On input, ndim is the number of dimensions, and nn(1:ndim) contains the lengths of
each dimension (number of complex values), which must be powers of two. iunit(1:4)
contains the unit numbers of 4 sequential files, each large enough to hold half of the data.
The four units must be opened for FORTRAN unformatted access. The input data must be
in FORTRAN normal order, with its first half stored on unit iunit(1), its second half on
iunit(2), in unformatted form, with KBF real numbers per record. isign should be set
to 1 for the Fourier transform, to −1 for its inverse. On output, values in the array iunit
may have been permuted; the first half of the result is stored on iunit(3), the second
half on iunit(4). N.B.: For ndim > 1, the output is stored by rows, i.e., not in FORTRAN
normal order; in other words, the output is the transpose of that which would have been
produced by routine fourn.

INTEGER j,j12,jk,k,kk,n,mm,kc,kd,ks,kr,nr,ns,nv,jx,
* mate(4),na,nb,nc,nd

REAL tempr,tempi,afa(KBF),afb(KBF),afc(KBF)
DOUBLE PRECISION wr,wi,wpr,wpi,wtemp,theta
SAVE mate
DATA mate /2,1,4,3/

12.6 External Storage or Memory-Local FFTs 525

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

12.6 External Storage or Memory-Local FFTs

Sometime in your life, you might have to compute the Fourier transform of areally
large data set, larger than the size of your computer’s physical memory. In such a case,
the data will be stored on some external medium, such as magnetic or optical tape or disk.
Needed is an algorithm that makes some manageable number of sequential passes through
the external data, processing it on the fly and outputting intermediate results to other external
media, which can be read on subsequent passes.

In fact, an algorithm of just this description was developed by Singleton[1] very soon
after the discovery of the FFT. The algorithm requires four sequential storage devices, each
capable of holding half of the input data. The first half of the input data is initially on one
device, the second half on another.

Singleton’s algorithm is based on the observation that it is possible to bit-reverse2
M

values by the following sequence of operations: On the first pass, values are read alternately
from the two input devices, and written to a single output device (until it holds half the data),
and then to the other output device. On the second pass, the output devices become input
devices, and vice versa. Now, we copytwo values from the first device, thentwo values
from the second, writing them (as before) first to fill one output device, then to fill a second.
Subsequent passes read 4, 8, etc., input values at a time. After completion of passM − 1,
the data are in bit-reverse order.

Singleton’s next observation is that it is possible to alternate the passes of essentially
this bit-reversal technique with passes that implement one stage of the Danielson-Lanczos
combination formula (12.2.3). The scheme, roughly, is this: One starts as before with half
the input data on one device, half on another. In the first pass, one complex value is read
from each input device. Two combinations are formed, and one is written to each of two
output devices. After this “computing” pass, the devices are rewound, and a “permutation”
pass is performed, where groups of values are read from the first input device and alternately
written to the first and second output devices; when the first input device is exhausted, the
second is similarly processed. This sequenceof computing and permutation passes is repeated
M − K − 1 times, where2K is the size of internal buffer available to the program. The
second phase of the computation consists of a finalK computation passes. What distinguishes
the second phase from the first is that, now, the permutations are local enough to do in place
during the computation. There are thus no separate permutation passes in the second phase.
In all, there are2M − K − 2 passes through the data.

Here is an implementation of Singleton’s algorithm, based on[1]:

SUBROUTINE fourfs(iunit,nn,ndim,isign)
INTEGER ndim,nn(ndim),isign,iunit(4),KBF
PARAMETER (KBF=128)

C USES fourew
One- or multi-dimensional Fourier transform of a large data set stored on external media.
On input, ndim is the number of dimensions, and nn(1:ndim) contains the lengths of
each dimension (number of complex values), which must be powers of two. iunit(1:4)
contains the unit numbers of 4 sequential files, each large enough to hold half of the data.
The four units must be opened for FORTRAN unformatted access. The input data must be
in FORTRAN normal order, with its first half stored on unit iunit(1), its second half on
iunit(2), in unformatted form, with KBF real numbers per record. isign should be set
to 1 for the Fourier transform, to −1 for its inverse. On output, values in the array iunit
may have been permuted; the first half of the result is stored on iunit(3), the second
half on iunit(4). N.B.: For ndim > 1, the output is stored by rows, i.e., not in FORTRAN
normal order; in other words, the output is the transpose of that which would have been
produced by routine fourn.

INTEGER j,j12,jk,k,kk,n,mm,kc,kd,ks,kr,nr,ns,nv,jx,
* mate(4),na,nb,nc,nd

REAL tempr,tempi,afa(KBF),afb(KBF),afc(KBF)
DOUBLE PRECISION wr,wi,wpr,wpi,wtemp,theta
SAVE mate
DATA mate /2,1,4,3/

526 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

n=1
do 11 j=1,ndim

n=n*nn(j)
if (nn(j).le.1)

* pause ’invalid dimension or wrong ndim in fourfs’
enddo 11

nv=ndim
jk=nn(nv)
mm=n
ns=n/KBF
nr=ns/2
kc=0
kd=KBF/2
ks=n
call fourew(iunit,na,nb,nc,nd)

The first phase of the transform starts here.
1 continue Start of the computing pass.

theta=3.141592653589793d0/(isign*n/mm)
wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
mm=mm/2
do 13 j12=1,2

kr=0
2 continue

read (iunit(na)) (afa(jx),jx=1,KBF)
read (iunit(nb)) (afb(jx),jx=1,KBF)
do 12 j=1,KBF,2

tempr=sngl(wr)*afb(j)-sngl(wi)*afb(j+1)
tempi=sngl(wi)*afb(j)+sngl(wr)*afb(j+1)
afb(j)=afa(j)-tempr
afa(j)=afa(j)+tempr
afb(j+1)=afa(j+1)-tempi
afa(j+1)=afa(j+1)+tempi

enddo 12

kc=kc+kd
if (kc.eq.mm) then

kc=0
wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

endif
write (iunit(nc)) (afa(jx),jx=1,KBF)
write (iunit(nd)) (afb(jx),jx=1,KBF)

kr=kr+1
if (kr.lt.nr) goto 2
if(j12.eq.1.and.ks.ne.n.and.ks.eq.KBF) then

na=mate(na)
nb=na

endif
if (nr.eq.0) goto 3

enddo 13

3 call fourew(iunit,na,nb,nc,nd) Start of the permutation pass.
jk=jk/2

4 if (jk.eq.1) then
mm=n
nv=nv-1
jk=nn(nv)

goto 4
endif
ks=ks/2
if (ks.gt.KBF) then

do 16 j12=1,2

12.6 External Storage or Memory-Local FFTs 527

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 15 kr=1,ns,ks/KBF
do 14 k=1,ks,KBF

read (iunit(na)) (afa(jx),jx=1,KBF)
write (iunit(nc)) (afa(jx),jx=1,KBF)

enddo 14

nc=mate(nc)
enddo 15

na=mate(na)
enddo 16

call fourew(iunit,na,nb,nc,nd)
goto 1

else if (ks.eq.KBF) then
nb=na
goto 1

endif
continue
j=1

The second phase of the transform starts here. Now, the remaining permutations are suffi-
ciently local to be done in place.

5 continue
theta=3.141592653589793d0/(isign*n/mm)
wpr=-2.d0*sin(0.5d0*theta)**2
wpi=sin(theta)
wr=1.d0
wi=0.d0
mm=mm/2
ks=kd
kd=kd/2
do 18 j12=1,2

do 17 kr=1,ns
read (iunit(na)) (afc(jx),jx=1,KBF)
kk=1
k=ks+1

6 continue
tempr=sngl(wr)*afc(kk+ks)-sngl(wi)*afc(kk+ks+1)
tempi=sngl(wi)*afc(kk+ks)+sngl(wr)*afc(kk+ks+1)
afa(j)=afc(kk)+tempr
afb(j)=afc(kk)-tempr
afa(j+1)=afc(kk+1)+tempi
afb(j+1)=afc(kk+1)-tempi
j=j+2
kk=kk+2

if (kk.lt.k) goto 6
kc=kc+kd
if (kc.eq.mm) then

kc=0
wtemp=wr
wr=wr*wpr-wi*wpi+wr
wi=wi*wpr+wtemp*wpi+wi

endif
kk=kk+ks
if (kk.le.KBF) then

k=kk+ks
goto 6

endif
if (j.gt.KBF) then

write (iunit(nc)) (afa(jx),jx=1,KBF)
write (iunit(nd)) (afb(jx),jx=1,KBF)
j=1

endif
enddo 17

na=mate(na)
enddo 18

call fourew(iunit,na,nb,nc,nd)

528 Chapter 12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

jk=jk/2
if (jk.gt.1) goto 5
mm=n

7 if (nv.gt.1) then
nv=nv-1
jk=nn(nv)
if (jk.eq.1) goto 7
goto 5

endif
return
END

SUBROUTINE fourew(iunit,na,nb,nc,nd)
INTEGER na,nb,nc,nd,iunit(4),ii

Utility used by fourfs. Rewinds and renumbers the four files.
do 11 ii=1,4

rewind(unit=iunit(ii))
enddo 11

ii=iunit(2)
iunit(2)=iunit(4)
iunit(4)=ii
ii=iunit(1)
iunit(1)=iunit(3)
iunit(3)=ii
na=3
nb=4
nc=1
nd=2
return
END

For one-dimensional data, Singleton’s algorithm produces output in exactly the same
order as a standard FFT (e.g.,four1). For multidimensional data, the output is thetransposeof
the conventionalarrangement (e.g., the output offourn). This peculiarity, which is intrinsic to
the method, is generally only a minor inconvenience. For convolutions, one simply computes
the component-by-component product of two transforms in their nonstandard arrangement,
and then does an inverse transform on the result. Note that, if the lengths of the different
dimensions are not all the same, then you must reverse the order of the values innn(1:ndim)
(thus giving the transpose dimensions) before performing the inverse transform. Note also
that, just likefourn, performing a transform and then an inverse results in multiplying the
original data by the product of the lengths of all dimensions.

We leave it as an exercise for the reader to figure out how to reorderfourfs’s output
into normal order, taking additional passes through the externally stored data. We doubt that
such reordering is ever really needed.

You will likely want to modify fourfs to fit your particular application. For example,
as written,KBF ≡ 2

K plays the dual role of being the size of the internal buffers, and the
record size of the unformatted reads and writes. The latter role limits its size to that allowed
by your machine’s I/O facility. It is a simple matter to perform multiple reads for a much
largerKBF, thus reducing the number of passes by a few.

Another modification offourfs would be for the case where your virtual memory
machine has sufficient address space, but not sufficient physical memory, to do an efficient
FFT by the conventional algorithm (whose memory references are extremely nonlocal). In
that case, you will need to replace the reads, writes, and rewinds by mappings of the arrays
afa, afb, andafc into your address space. In other words, these arrays are replaced by
references to a single data array, with offsets that get modified whereverfourfs performs an
I/O operation. The resulting algorithm will have its memory references local within blocks
of sizeKBF. Execution speed is thereby sometimes increased enormously, albeit at the cost
of requiring twice as much virtual memory as an in-place FFT.

12.6 External Storage or Memory-Local FFTs 529

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Singleton, R.C. 1967, IEEE Transactions on Audio and Electroacoustics, vol. AU-15, pp. 91–97.
[1]

Oppenheim, A.V., and Schafer, R.W. 1989, Discrete-Time Signal Processing (Englewood Cliffs,
NJ: Prentice-Hall), Chapter 9.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
Chapter 13. Fourier and Spectral

Applications

13.0 Introduction

Fourier methods have revolutionized fields of science and engineering, from
radio astronomy to medical imaging, from seismology to spectroscopy. In this
chapter, we present some of the basic applications of Fourier and spectral methods
that have made these revolutions possible.

Say the word “Fourier” to a numericist, and the response, as if by Pavlovian
conditioning, will likely be “FFT.” Indeed, the wide application of Fourier methods
must be credited principally to the existence of the fast Fourier transform. Better
mousetraps stand aside: If you speed upany nontrivial algorithm by a factor of a
million or so, the world will beat a path towards finding useful applications for it.
The most direct applications of the FFT are to the convolution or deconvolution of
data (§13.1), correlation and autocorrelation (§13.2), optimal filtering (§13.3), power
spectrum estimation (§13.4), and the computation of Fourier integrals (§13.9).

As important as they are, however, FFT methods are not the be-all and end-all
of spectral analysis. Section 13.5 is a brief introduction to the field of time-domain
digital filters. In the spectral domain, one limitation of the FFT is that it always
represents a function’s Fourier transform as a polynomial inz = exp(2πif∆)
(cf. equation 12.1.7). Sometimes, processes have spectra whose shapes are not
well represented by this form. An alternative form, which allows the spectrum to
have poles inz, is used in the techniques of linear prediction (§13.6) and maximum
entropy spectral estimation (§13.7).

Another significant limitation of all FFT methods is that they require the input
data to be sampled at evenly spaced intervals. For irregularly or incompletely
sampled data, other (albeit slower) methods are available, as discussed in§13.8.

So-called wavelet methods inhabit a representation of function space that is
neither in the temporal, nor in the spectral, domain, but rather something in-between.
Section 13.10 is an introduction to this subject. Finally§13.11 is an excursion into
numerical use of the Fourier sampling theorem.

530

13.1 Convolution and Deconvolution Using the FFT 531

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

13.1 Convolution and Deconvolution Using
the FFT

We have defined theconvolutionof two functions for the continuous case in
equation (12.0.8), and have given theconvolution theoremas equation (12.0.9). The
theorem says that the Fourier transform of the convolution of two functions is equal
to the product of their individual Fourier transforms. Now, we want to deal with
the discrete case. We will mention first the context in which convolution is a useful
procedure, and then discuss how to compute it efficiently using the FFT.

The convolution of two functionsr(t) ands(t), denotedr ∗ s, is mathematically
equal to their convolution in the opposite order,s ∗ r. Nevertheless, in most
applications the two functions have quite different meanings and characters. One of
the functions, says, is typically a signal or data stream, which goes on indefinitely
in time (or in whatever the appropriate independent variable may be). The other
functionr is a “response function,” typically a peaked function that falls to zero in
both directions from its maximum. The effect of convolution is to smear the signal
s(t) in time according to the recipe provided by the response functionr(t), as shown
in Figure 13.1.1. In particular, a spike or delta-function of unit area ins which occurs
at some timet0 is supposed to be smeared into the shape of the response function
itself, but translated from time 0 to timet0 asr(t − t0).

In the discrete case, the signals(t) is represented by its sampled values at equal
time intervalssj . The response function is also a discrete set of numbersrk, with the
following interpretation:r0 tells what multipleof the input signal in one channel (one
particular value ofj) is copied into the identical output channel (same value ofj);
r1 tells what multiple of input signal in channelj is additionally copied into output
channelj + 1; r

−1 tells the multiple that is copied into channelj − 1; and so on for
both positive and negative values ofk in rk. Figure 13.1.2 illustrates the situation.

Example: a response function withr0 = 1 and all otherrk’s equal to zero
is just the identity filter: convolution of a signal with this response function gives
identically the signal. Another example is the response function withr14 = 1.5 and
all otherrk’s equal to zero. This produces convolved output that is the input signal
multiplied by 1.5 and delayed by14 sample intervals.

Evidently, we have just described in words the following definition of discrete
convolution with a response function of finite durationM :

(r ∗ s)j ≡

M/2∑

k=−M/2+1

sj−k rk (13.1.1)

If a discrete response function is nonzero only in some range−M/2 < k ≤ M/2,
whereM is a sufficiently large even integer, then the response function is called a
finite impulse response (FIR), and itsdurationisM . (Notice that we are definingM
as the number of nonzerovaluesof rk; these values span a time interval ofM − 1
sampling times.) In most practical circumstances the case of finiteM is the case of
interest, either because the response really has a finite duration, or because we choose
to truncate it at some point and approximate it by a finite-duration response function.

Thediscrete convolution theoremis this: If a signalsj is periodicwith period
N , so that it is completely determined by theN valuess0, . . . , sN−1, then its

13.1 Convolution and Deconvolution Using the FFT 531

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

13.1 Convolution and Deconvolution Using
the FFT

We have defined theconvolutionof two functions for the continuous case in
equation (12.0.8), and have given theconvolution theoremas equation (12.0.9). The
theorem says that the Fourier transform of the convolution of two functions is equal
to the product of their individual Fourier transforms. Now, we want to deal with
the discrete case. We will mention first the context in which convolution is a useful
procedure, and then discuss how to compute it efficiently using the FFT.

The convolution of two functionsr(t) ands(t), denotedr ∗ s, is mathematically
equal to their convolution in the opposite order,s ∗ r. Nevertheless, in most
applications the two functions have quite different meanings and characters. One of
the functions, says, is typically a signal or data stream, which goes on indefinitely
in time (or in whatever the appropriate independent variable may be). The other
functionr is a “response function,” typically a peaked function that falls to zero in
both directions from its maximum. The effect of convolution is to smear the signal
s(t) in time according to the recipe provided by the response functionr(t), as shown
in Figure 13.1.1. In particular, a spike or delta-function of unit area ins which occurs
at some timet0 is supposed to be smeared into the shape of the response function
itself, but translated from time 0 to timet0 asr(t − t0).

In the discrete case, the signals(t) is represented by its sampled values at equal
time intervalssj . The response function is also a discrete set of numbersrk, with the
following interpretation:r0 tells what multipleof the input signal in one channel (one
particular value ofj) is copied into the identical output channel (same value ofj);
r1 tells what multiple of input signal in channelj is additionally copied into output
channelj + 1; r

−1 tells the multiple that is copied into channelj − 1; and so on for
both positive and negative values ofk in rk. Figure 13.1.2 illustrates the situation.

Example: a response function withr0 = 1 and all otherrk’s equal to zero
is just the identity filter: convolution of a signal with this response function gives
identically the signal. Another example is the response function withr14 = 1.5 and
all otherrk’s equal to zero. This produces convolved output that is the input signal
multiplied by 1.5 and delayed by14 sample intervals.

Evidently, we have just described in words the following definition of discrete
convolution with a response function of finite durationM :

(r ∗ s)j ≡

M/2∑

k=−M/2+1

sj−k rk (13.1.1)

If a discrete response function is nonzero only in some range−M/2 < k ≤ M/2,
whereM is a sufficiently large even integer, then the response function is called a
finite impulse response (FIR), and itsdurationisM . (Notice that we are definingM
as the number of nonzerovaluesof rk; these values span a time interval ofM − 1
sampling times.) In most practical circumstances the case of finiteM is the case of
interest, either because the response really has a finite duration, or because we choose
to truncate it at some point and approximate it by a finite-duration response function.

Thediscrete convolution theoremis this: If a signalsj is periodicwith period
N , so that it is completely determined by theN valuess0, . . . , sN−1, then its

532 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

s(t)

r(t)

r* s(t)

t

t

t

Figure 13.1.1. Example of the convolution of two functions. A signals(t) is convolved with a
response functionr(t). Since the response function is broader than some features in the original signal,
these are “washed out” in the convolution. In the absence of any additional noise, the process can be
reversed by deconvolution.

sj
0

0

0

N − 1
rk

(r* s)j

N − 1

N − 1

Figure 13.1.2. Convolution of discretely sampled functions. Note how the response function for negative
times is wrapped around and stored at the extreme right end of the arrayrk.

13.1 Convolution and Deconvolution Using the FFT 533

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

discrete convolution with a response functionof finite durationN is a member of
the discrete Fourier transform pair,

N/2∑

k=−N/2+1

sj−k rk ⇐⇒ SnRn (13.1.2)

Here Sn, (n = 0, . . . , N − 1) is the discrete Fourier transform of the values
sj , (j = 0, . . . , N − 1), while Rn, (n = 0, . . . , N − 1) is the discrete Fourier
transform of the valuesrk, (k = 0, . . . , N − 1). These values ofrk are the same
ones as for the rangek = −N/2 + 1, . . . , N/2, but in wrap-around order, exactly
as was described at the end of§12.2.

Treatment of End Effects by Zero Padding

The discrete convolution theorem presumes a set of two circumstances that
are not universal. First, it assumes that the input signal is periodic, whereas real
data often either go forever without repetition or else consist of one nonperiodic
stretch of finite length. Second, the convolution theorem takes the duration of the
response to be the same as the period of the data; they are bothN . We need to
work around these two constraints.

The second is very straightforward. Almost always, one is interested in a
response function whose durationM is much shorter than the length of the data
set N . In this case, you simply extend the response function to lengthN by
padding it with zeros, i.e., definerk = 0 for M/2 ≤ k ≤ N/2 and also for
−N/2 + 1 ≤ k ≤ −M/2 + 1. Dealing with the first constraint is more challenging.
Since the convolution theorem rashly assumes that the data are periodic, it will
falsely “pollute” the first output channel(r ∗ s)0 with some wrapped-around data
from the far end of the data streamsN−1, sN−2, etc. (See Figure 13.1.3.) So,
we need to set up a buffer zone of zero-padded values at the end of thesj vector,
in order to make this pollution zero. How many zero values do we need in this
buffer? Exactly as many as the most negative index for which the response function
is nonzero. For example, ifr

−3 is nonzero, whiler
−4, r−5, . . . are all zero, then we

need three zero pads at the end of the data:sN−3 = sN−2 = sN−1 = 0. These
zeros will protect the first output channel(r ∗ s)0 from wrap-around pollution. It
should be obvious that the second output channel(r ∗ s)1 and subsequent ones will
also be protected by these same zeros. LetK denote the number of padding zeros,
so that the last actual input data point issN−K−1.

What now about pollution of the verylast output channel? Since the data
now end withsN−K−1, the last output channel of interest is(r ∗ s)N−K−1. This
channel can be polluted by wrap-around from input channels0 unless the number
K is also large enough to take care of the most positive indexk for which the
response functionrk is nonzero. For example, ifr0 throughr6 are nonzero, while
r7, r8 . . . are all zero, then we need at leastK = 6 padding zeros at the end of the
data: sN−6 = . . . = sN−1 = 0.

To summarize — we need to pad the data with a number of zeroson one
end equal to the maximum positive durationor maximum negative duration of
the response function,whichever is larger. (For a symmetric response function of
durationM , you will need onlyM/2 zero pads.) Combining this operation with the

534 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

m+

spoiled spoiledunspoiled

m−

response function

sample of original function

convolution

m+

m−

Figure 13.1.3. The wrap-around problem in convolving finite segments of a function. Not only must
the response function wrap be viewed as cyclic, but so must the sampled originalfunction. Therefore
a portion at each end of the original function is erroneously wrapped around by convolution with the
response function.

response function

m+ m−

m−

m+ m−

m+

zero paddingoriginal function

spoiled
but irrelevant

unspoiled

not spoiled because zero

Figure 13.1.4. Zero padding as solution to the wrap-around problem. The original function isextended
by zeros, serving a dual purpose: When the zeros wrap around, they do not disturb the true convolution;
and while the original function wraps around onto the zero region, that region can be discarded.

13.1 Convolution and Deconvolution Using the FFT 535

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

padding of the responserk described above, we effectively insulate the data from
artifacts of undesired periodicity. Figure 13.1.4 illustrates matters.

Use of FFT for Convolution

The data, complete with zero padding, are now a set of real numberssj , j =
0, . . . , N − 1, and the response function is zero padded out to durationN and
arranged in wrap-around order. (Generally this means that a large contiguous section
of the rk’s, in the middle of that array, is zero, with nonzero values clustered at
the two extreme ends of the array.) You now compute the discrete convolution as
follows: Use the FFT algorithm to compute the discrete Fourier transform ofs and
of r. Multiply the two transforms together component by component, remembering
that the transforms consist of complex numbers. Then use the FFT algorithm to
take the inverse discrete Fourier transform of the products. The answer is the
convolutionr ∗ s.

What aboutdeconvolution? Deconvolution is the process ofundoing the
smearing in a data set that has occurred under the influence of a known response
function, for example, because of theknown effect of a less-than-perfect measuring
apparatus. The defining equation of deconvolution is the same as that for convolution,
namely (13.1.1), except now the left-hand side is taken to be known, and (13.1.1) is
to be considered as a set ofN linear equations for the unknown quantitiessj . Solving
these simultaneous linear equations in the time domain of (13.1.1) is unrealistic in
most cases, but the FFT renders the problem almost trivial. Instead of multiplying
the transform of the signal and response to get the transform of the convolution, we
just divide the transform of the (known) convolution by the transform of the response
to get the transform of the deconvolved signal.

This procedure can go wrongmathematicallyif the transform of the response
function is exactly zero for some valueRn, so that we can’t divide by it. This
indicates that the original convolution has truly lost all information at that one
frequency, so that a reconstruction of that frequency component is not possible.
You should be aware, however, that apart from mathematical problems, the process
of deconvolution has other practical shortcomings. The process is generally quite
sensitive to noise in the input data, and to theaccuracy to which the response function
rk is known. Perfectly reasonable attempts at deconvolution can sometimes produce
nonsense for these reasons. In such cases you may want to make use of the additional
process ofoptimal filtering, which is discussed in§13.3.

Here is our routine for convolution and deconvolution, using the FFT as
implemented infour1 of §12.2. Since the data and response functions are real,
not complex, both of their transforms can be taken simultaneously usingtwofft.
Note, however, that two calls torealft should be substituted ifdata andrespns
have very different magnitudes, to minimize roundoff. The data are assumed to be
stored in a real arraydata of lengthn, which must be an integer power of two.
The response function is assumed to be stored in wrap-around order in a real array
respns of lengthm. The value ofm can be anyodd integer less than or equal to
n, since the first thing the program does is to recopy the response function into the
appropriate wrap-around order in an array of lengthn. The answer is returned in
ans, which is also used as working space.

536 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE convlv(data,n,respns,m,isign,ans)
INTEGER isign,m,n,NMAX
REAL data(n),respns(n)
COMPLEX ans(n)
PARAMETER (NMAX=4096) Maximum anticipated size of FFT.

C USES realft,twofft
Convolves or deconvolves a real data set data(1:n) (including any user-supplied zero
padding) with a response function respns, stored in wrap-around order in a real array of
length m ≤ n. (m should be an odd integer.) Wrap-around order means that the first half
of the array respns contains the impulse response function at positive times, while the
second half of the array contains the impulse response function at negative times, counting
down from the highest element respns(m). On input isign is +1 for convolution, −1
for deconvolution. The answer is returned in the first n components of ans. However, ans
must be supplied in the calling program with length at least 2*n, for consistency with
twofft. n MUST be an integer power of two.

INTEGER i,no2
COMPLEX fft(NMAX)
do 11 i=1,(m-1)/2 Put respns in array of length n.

respns(n+1-i)=respns(m+1-i)
enddo 11

do 12 i=(m+3)/2,n-(m-1)/2 Pad with zeros.
respns(i)=0.0

enddo 12

call twofft(data,respns,fft,ans,n) FFT both at once.
no2=n/2
do 13 i=1,no2+1

if (isign.eq.1) then
ans(i)=fft(i)*ans(i)/no2 Multiply FFTs to convolve.

else if (isign.eq.-1) then
if (abs(ans(i)).eq.0.0) pause ’deconvolving at response zero in convlv’
ans(i)=fft(i)/ans(i)/no2 Divide FFTs to deconvolve.

else
pause ’no meaning for isign in convlv’

endif
enddo 13

ans(1)=cmplx(real(ans(1)),real(ans(no2+1))) Pack last element with first for realft.
call realft(ans,n,-1) Inverse transform back to time domain.
return
END

Convolving or Deconvolving Very Large Data Sets

If your data set is so long that you do not want to fit it into memory all at
once, then you must break it up into sections and convolveeach section separately.
Now, however, the treatment of end effects is a bit different. You have to worry
not only about spurious wrap-around effects, but also about the fact that the ends of
each section of datashouldhave been influenced by data at the nearby ends of the
immediately preceding and following sections of data, but were not so influenced
since only one section of data is in the machine at a time.

There are two, related, standard solutions to this problem. Both are fairly
obvious, so with a few words of description here, you ought to be able to implement
them for yourself. The first solution is called theoverlap-save method. In this
technique you pad only the very beginning of the data with enough zeros to avoid
wrap-around pollution. After this initial padding, you forget about zero padding
altogether. Bring in a section of data and convolve or deconvolve it. Then throw
out the points at each end that are polluted by wrap-around end effects. Output only
the remaining good points in the middle. Now bring in the next section of data, but
not all new data. The first points in each new section overlap the last points from

13.1 Convolution and Deconvolution Using the FFT 537

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

convolution (out)A A + B B B + C C

C

c

cba

A
b

B

0 0a

00

0 0

data (in)

Figure 13.1.5. The overlap-add method for convolving a response with a very long signal. The
signal data is broken up into smaller pieces. Each is zero padded at both ends and convolved (denoted
by bold arrows in the figure). Finally the pieces are added back together, including the overlapping
regions formed by the zero pads.

the preceding section of data. The sections must be overlapped sufficiently so that
the polluted output points at the end of one section are recomputed as the first of the
unpolluted output points from the subsequent section. With a bit of thought you can
easily determine how many points to overlap and save.

The second solution, called theoverlap-add method, is illustrated in Figure
13.1.5. Here youdon’t overlap the input data. Each section of data is disjoint
from the others and is used exactly once. However, you carefully zero-pad it at
both ends so that there is no wrap-around ambiguity in the output convolution or
deconvolution. Now you overlapand addthese sections of output. Thus, an output
point near the end of one section will have the response due to the input points at
the beginning of the next section of data properly added in to it, and likewise for an
output point near the beginning of a section,mutatis mutandis.

Even when computer memory is available, there is some slight gain in computing
speed in segmenting a long data set, since the FFTs’N log2 N is slightly slower than
linear inN . However, the log term is so slowly varying that you will often be much
happier to avoid the bookkeeping complexities of the overlap-add or overlap-save
methods: If it is practical to do so, just cram the whole data set into memory and
FFT away. Then you will have more time for the finer things in life, some of which
are described in succeeding sections of this chapter.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), Chap-
ter 13.

538 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

13.2 Correlation and Autocorrelation Using
the FFT

Correlation is the close mathematical cousin of convolution. It is in some
ways simpler, however, because the two functions that go into a correlation are not
as conceptually distinct as were the data and response functions that entered into
convolution. Rather, in correlation, the functions are represented by different, but
generally similar, data sets. We investigate their “correlation,” by comparing them
both directly superposed, and with one of them shifted left or right.

We have already defined in equation (12.0.10) the correlation between two
continuous functionsg(t) andh(t), which is denoted Corr(g, h), and is a function
of lag t. We will occasionally show this time dependence explicitly, with the rather
awkward notation Corr(g, h)(t). The correlation will be large at some value of
t if the first function (g) is a close copy of the second (h) but lags it in time by
t, i.e., if the first function is shifted to the right of the second. Likewise, the
correlation will be large for some negative value oft if the first functionleadsthe
second, i.e., is shifted to the left of the second. The relation that holds when the
two functions are interchanged is

Corr(g, h)(t) = Corr(h, g)(−t) (13.2.1)

The discrete correlation of two sampled functionsgk and hk, each periodic
with periodN , is defined by

Corr(g, h)j ≡

N−1∑

k=0

gj+khk (13.2.2)

The discrete correlation theoremsays that this discrete correlation of two real
functionsg andh is one member of the discrete Fourier transform pair

Corr(g, h)j ⇐⇒ GkHk* (13.2.3)

whereGk andHk are the discrete Fourier transforms ofgj andhj , and the asterisk
denotes complex conjugation. This theorem makes the same presumptions about the
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets,
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (call itrk) will formally be a complex vector
of lengthN . However, it will turn out to have all its imaginary parts zero since
the original data sets were both real. The components ofrk are the values of the
correlation at different lags, with positive and negative lags stored in the by now
familiar wrap-around order: The correlation at zero lag is inr0, the first component;
the correlation at lag 1 is inr1, the second component; the correlation at lag−1
is in rN−1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our
data will not, in general, be periodic as intended by the correlation theorem. Here
again, we can use zero padding. If you are interested in the correlation for lags as

538 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

13.2 Correlation and Autocorrelation Using
the FFT

Correlation is the close mathematical cousin of convolution. It is in some
ways simpler, however, because the two functions that go into a correlation are not
as conceptually distinct as were the data and response functions that entered into
convolution. Rather, in correlation, the functions are represented by different, but
generally similar, data sets. We investigate their “correlation,” by comparing them
both directly superposed, and with one of them shifted left or right.

We have already defined in equation (12.0.10) the correlation between two
continuous functionsg(t) andh(t), which is denoted Corr(g, h), and is a function
of lag t. We will occasionally show this time dependence explicitly, with the rather
awkward notation Corr(g, h)(t). The correlation will be large at some value of
t if the first function (g) is a close copy of the second (h) but lags it in time by
t, i.e., if the first function is shifted to the right of the second. Likewise, the
correlation will be large for some negative value oft if the first functionleadsthe
second, i.e., is shifted to the left of the second. The relation that holds when the
two functions are interchanged is

Corr(g, h)(t) = Corr(h, g)(−t) (13.2.1)

The discrete correlation of two sampled functionsgk and hk, each periodic
with periodN , is defined by

Corr(g, h)j ≡

N−1∑

k=0

gj+khk (13.2.2)

The discrete correlation theoremsays that this discrete correlation of two real
functionsg andh is one member of the discrete Fourier transform pair

Corr(g, h)j ⇐⇒ GkHk* (13.2.3)

whereGk andHk are the discrete Fourier transforms ofgj andhj , and the asterisk
denotes complex conjugation. This theorem makes the same presumptions about the
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets,
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (call itrk) will formally be a complex vector
of lengthN . However, it will turn out to have all its imaginary parts zero since
the original data sets were both real. The components ofrk are the values of the
correlation at different lags, with positive and negative lags stored in the by now
familiar wrap-around order: The correlation at zero lag is inr0, the first component;
the correlation at lag 1 is inr1, the second component; the correlation at lag−1
is in rN−1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our
data will not, in general, be periodic as intended by the correlation theorem. Here
again, we can use zero padding. If you are interested in the correlation for lags as

13.3 Optimal (Wiener) Filtering with the FFT 539

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

large as±K, then you must append a buffer zone ofK zeros at the end of both
input data sets. If you want all possible lags fromN data points (not a usual thing),
then you will need to pad the data with an equal number of zeros; this is the extreme
case. So here is the program:

SUBROUTINE correl(data1,data2,n,ans)
INTEGER n,NMAX
REAL data1(n),data2(n)
COMPLEX ans(n)
PARAMETER (NMAX=4096) Maximum anticipated FFT size.

C USES realft,twofft
Computes the correlation of two real data sets data1(1:n) and data2(1:n) (includ-
ing any user-supplied zero padding). n MUST be an integer power of two. The answer
is returned as the first n points in ans stored in wrap-around order, i.e., correlations at
increasingly negative lags are in ans(n) on down to ans(n/2+1), while correlations at
increasingly positive lags are in ans(1) (zero lag) on up to ans(n/2). Note that ans

must be supplied in the calling program with length at least 2*n, since it is also used as
working space. Sign convention of this routine: if data1 lags data2, i.e., is shifted to the
right of it, then ans will show a peak at positive lags.

INTEGER i,no2
COMPLEX fft(NMAX)
call twofft(data1,data2,fft,ans,n) Transform both data vectors at once.
no2=n/2 Normalization for inverse FFT.
do 11 i=1,no2+1

ans(i)=fft(i)*conjg(ans(i))/float(no2) Multiply to find FFT of their corre-
lation.enddo 11

ans(1)=cmplx(real(ans(1)),real(ans(no2+1))) Pack first and last into one element.
call realft(ans,n,-1) Inverse transform gives correlation.
return
END

As in convlv, it would be better to substitute two calls torealft for the one
call to twofft, if data1 anddata2 have very different magnitudes, to minimize
roundoff error.

The discrete autocorrelationof a sampled functiongj is just the discrete
correlation of the function with itself. Obviously this is always symmetric with
respect to positive and negative lags. Feel free to use the above routinecorrel

to obtain autocorrelations, simply calling it with the samedata vector in both
arguments. If the inefficiency bothers you, routinerealft can, of course, be used
to transform thedata vector instead.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §13–2.

13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely
handled with Fourier techniques. One of these is filtering for the removal of noise
from a “corrupted” signal. The particular situation we consider is this: There is some
underlying, uncorrupted signalu(t) that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement device is a
corrupted signalc(t). The signalc(t) may be less than perfect in either or both of
two respects. First, the apparatus may not have a perfect “delta-function” response,

13.3 Optimal (Wiener) Filtering with the FFT 539

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

large as±K, then you must append a buffer zone ofK zeros at the end of both
input data sets. If you want all possible lags fromN data points (not a usual thing),
then you will need to pad the data with an equal number of zeros; this is the extreme
case. So here is the program:

SUBROUTINE correl(data1,data2,n,ans)
INTEGER n,NMAX
REAL data1(n),data2(n)
COMPLEX ans(n)
PARAMETER (NMAX=4096) Maximum anticipated FFT size.

C USES realft,twofft
Computes the correlation of two real data sets data1(1:n) and data2(1:n) (includ-
ing any user-supplied zero padding). n MUST be an integer power of two. The answer
is returned as the first n points in ans stored in wrap-around order, i.e., correlations at
increasingly negative lags are in ans(n) on down to ans(n/2+1), while correlations at
increasingly positive lags are in ans(1) (zero lag) on up to ans(n/2). Note that ans

must be supplied in the calling program with length at least 2*n, since it is also used as
working space. Sign convention of this routine: if data1 lags data2, i.e., is shifted to the
right of it, then ans will show a peak at positive lags.

INTEGER i,no2
COMPLEX fft(NMAX)
call twofft(data1,data2,fft,ans,n) Transform both data vectors at once.
no2=n/2 Normalization for inverse FFT.
do 11 i=1,no2+1

ans(i)=fft(i)*conjg(ans(i))/float(no2) Multiply to find FFT of their corre-
lation.enddo 11

ans(1)=cmplx(real(ans(1)),real(ans(no2+1))) Pack first and last into one element.
call realft(ans,n,-1) Inverse transform gives correlation.
return
END

As in convlv, it would be better to substitute two calls torealft for the one
call to twofft, if data1 anddata2 have very different magnitudes, to minimize
roundoff error.

The discrete autocorrelationof a sampled functiongj is just the discrete
correlation of the function with itself. Obviously this is always symmetric with
respect to positive and negative lags. Feel free to use the above routinecorrel

to obtain autocorrelations, simply calling it with the samedata vector in both
arguments. If the inefficiency bothers you, routinerealft can, of course, be used
to transform thedata vector instead.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §13–2.

13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely
handled with Fourier techniques. One of these is filtering for the removal of noise
from a “corrupted” signal. The particular situation we consider is this: There is some
underlying, uncorrupted signalu(t) that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement device is a
corrupted signalc(t). The signalc(t) may be less than perfect in either or both of
two respects. First, the apparatus may not have a perfect “delta-function” response,

540 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

so that the true signalu(t) is convolved with (smeared out by) some known response
function r(t) to give a smeared signals(t),

s(t) =

∫
∞

−∞

r(t− τ)u(τ) dτ or S(f) = R(f)U(f) (13.3.1)

where S,R, U are the Fourier transforms ofs, r, u, respectively. Second, the
measured signalc(t) may contain an additional component of noisen(t),

c(t) = s(t) + n(t) (13.3.2)

We already know how to deconvolve the effects of the response functionr in
the absence of any noise (§13.1); we just divideC(f) byR(f) to get a deconvolved
signal. We now want to treat the analogous problem when noise is present. Our
task is to find theoptimal filter, φ(t) or Φ(f), which, when applied to the measured
signalc(t) or C(f), and then deconvolved byr(t) or R(f), produces a signal̃u(t)

or Ũ(f) that is as close as possible to the uncorrupted signalu(t) or U(f). In other
words we will estimate the true signalU by

Ũ(f) =
C(f)Φ(f)

R(f)
(13.3.3)

In what sense is̃U to be close toU? We ask that they beclose in the
least-square sense

∫
∞

−∞

|ũ(t) − u(t)|
2
dt =

∫
∞

−∞

∣∣∣Ũ(f) − U(f)
∣∣∣
2

df is minimized. (13.3.4)

Substituting equations (13.3.3) and (13.3.2), the right-hand side of (13.3.4) becomes

∫
∞

−∞

∣∣∣∣
[S(f) + N(f)]Φ(f)

R(f)
−

S(f)

R(f)

∣∣∣∣
2

df

=

∫
∞

−∞

|R(f)|
−2

{
|S(f)|

2
|1 − Φ(f)|

2
+ |N(f)|

2
|Φ(f)|

2

}
df

(13.3.5)

The signalS and the noiseN are uncorrelated, so their cross product, when
integrated over frequencyf , gave zero. (This is practically thedefinitionof what we
mean by noise!) Obviously (13.3.5) will be a minimum if and only if the integrand
is minimized with respect toΦ(f) at every value off . Let us search for such a
solution whereΦ(f) is a real function. Differentiating with respect toΦ, and setting
the result equal to zero gives

Φ(f) =
|S(f)|

2

|S(f)|
2
+ |N(f)|

2
(13.3.6)

This is the formula for the optimal filterΦ(f).
Notice that equation (13.3.6) involvesS, the smeared signal, andN , the noise.

The two of these add up to beC, the measured signal. Equation (13.3.6) does not

13.3 Optimal (Wiener) Filtering with the FFT 541

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

containU , the “true” signal. This makes for an important simplification: The optimal
filter can be determined independently of the determination of the deconvolution
function that relatesS and U .

To determine the optimal filter from equation (13.3.6) we need some way
of separately estimating|S|2 and |N |

2. There is no way to do this from the
measured signalC alone without some other information, or some assumption or
guess. Luckily, the extra information is often easy to obtain. For example, we
can sample a long stretch of datac(t) and plot its power spectral density using
equations (12.0.14), (12.1.8), and (12.1.5). This quantity is proportional to the sum
|S|

2
+ |N |

2, so we have

|S(f)|
2

+ |N(f)|
2
≈ Pc(f) = |C(f)|

2
0 ≤ f < fc (13.3.7)

(More sophisticated methods of estimating the power spectral density will be
discussed in§13.4 and§13.7, but the estimation above is almost always good enough
for the optimal filter problem.) The resulting plot (see Figure 13.3.1) will often
immediately show the spectral signature of a signal sticking up above a continuous
noise spectrum. The noise spectrum may be flat, or tilted, or smoothly varying; it
doesn’t matter, as long as we can guess a reasonable hypothesis as to what it is.
Draw a smooth curve through the noise spectrum, extrapolating it into the region
dominated by the signal as well. Now draw a smooth curve through the signal plus
noise power. The difference between these two curves is your smooth “model” of
the signal power. The quotient of your model of signal power to your model of
signal plus noise power is the optimal filterΦ(f). [Extend it to negative values off
by the formulaΦ(−f) = Φ(f).] Notice thatΦ(f) will be close to unity where the
noise is negligible, and close to zero where the noise is dominant. That is how it
does its job! The intermediate dependence given by equation (13.3.6) just turns out
to be the optimal way of going in between these two extremes.

Because the optimal filter results from a minimization problem, the quality of
the results obtained by optimal filtering differs from the true optimum by an amount
that issecond orderin the precision to which the optimal filter is determined. In other
words, even a fairly crudely determined optimal filter (sloppy, say, at the 10 percent
level) can give excellent results when it is applied to data. That is why the separation
of the measured signalC into signal and noise componentsS andN can usefully be
done “by eye” from a crude plot of power spectral density. All of this may give you
thoughts about iterating the procedure we have just described. For example, after
designing a filter with responseΦ(f) and using it to make a respectable guess at the
signalŨ(f) = Φ(f)C(f)/R(f), you might turn about and regard̃U(f) as a fresh
new signal which you could improve even further with the same filtering technique.
Don’t waste your time on this line of thought. The scheme converges to a signal of
S(f) = 0. Converging iterative methods do exist; this just isn’t one of them.

You can use the routinefour1 (§12.2) orrealft (§12.3) to FFT your data
when you are constructing an optimal filter. To apply the filter to your data, you
can use the methods described in§13.1. The specific routineconvlv is not needed
for optimal filtering, since your filter is constructed in the frequency domain to
begin with. If you are also deconvolving your data with a known response function,
however, you can modifyconvlv to multiply by your optimal filter just before it
takes the inverse Fourier transform.

542 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

 S 2 (deduced)

 N 2 (extrapolated)

 C 2 (measured)

lo
g

sc
al

e

f

Figure 13.3.1. Optimal (Wiener) filtering. The power spectrum of signal plus noise shows a signal peak
added to a noise tail. The tail is extrapolated back into the signal region as a “noise model.” Subtracting
gives the “signal model.” The models need not be accurate for the method to be useful. A simple
algebraic combination of the models gives the optimal filter (see text).

CITED REFERENCES AND FURTHER READING:

Rabiner, L.R., and Gold, B. 1975, Theory and Application of Digital Signal Processing (Englewood
Cliffs, NJ: Prentice-Hall).

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

13.4 Power Spectrum Estimation Using the FFT

In the previous section we “informally”estimated the power spectral density of a
functionc(t) by taking the modulus-squared of the discrete Fourier transform of some
finite, sampled stretch of it. In this section we’ll do roughly the same thing, but with
considerably greater attention to details. Our attention will uncover some surprises.

The first detail is power spectrum (also called a power spectral density or
PSD) normalization. In general there issomerelation of proportionality between a
measure of the squared amplitude of the function and a measure of the amplitude
of the PSD. Unfortunately there are several different conventions for describing
the normalization in each domain, and manyopportunities for getting wrong the
relationship between the two domains. Suppose that our functionc(t) is sampled at
N points to produce valuesc0 . . . cN−1, and that these points span a range of time
T , that isT = (N − 1)∆, where∆ is the sampling interval. Then here are several

542 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

 S 2 (deduced)

 N 2 (extrapolated)

 C 2 (measured)

lo
g

sc
al

e

f

Figure 13.3.1. Optimal (Wiener) filtering. The power spectrum of signal plus noise shows a signal peak
added to a noise tail. The tail is extrapolated back into the signal region as a “noise model.” Subtracting
gives the “signal model.” The models need not be accurate for the method to be useful. A simple
algebraic combination of the models gives the optimal filter (see text).

CITED REFERENCES AND FURTHER READING:

Rabiner, L.R., and Gold, B. 1975, Theory and Application of Digital Signal Processing (Englewood
Cliffs, NJ: Prentice-Hall).

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

13.4 Power Spectrum Estimation Using the FFT

In the previous section we “informally”estimated the power spectral density of a
functionc(t) by taking the modulus-squared of the discrete Fourier transform of some
finite, sampled stretch of it. In this section we’ll do roughly the same thing, but with
considerably greater attention to details. Our attention will uncover some surprises.

The first detail is power spectrum (also called a power spectral density or
PSD) normalization. In general there issomerelation of proportionality between a
measure of the squared amplitude of the function and a measure of the amplitude
of the PSD. Unfortunately there are several different conventions for describing
the normalization in each domain, and manyopportunities for getting wrong the
relationship between the two domains. Suppose that our functionc(t) is sampled at
N points to produce valuesc0 . . . cN−1, and that these points span a range of time
T , that isT = (N − 1)∆, where∆ is the sampling interval. Then here are several

13.4 Power Spectrum Estimation Using the FFT 543

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

different descriptions of the total power:

N−1
∑

j=0

|cj |2 ≡ “sum squared amplitude” (13.4.1)

1

T

∫ T

0

|c(t)|2 dt ≈ 1

N

N−1
∑

j=0

|cj |2 ≡ “mean squared amplitude” (13.4.2)

∫ T

0

|c(t)|2 dt ≈ ∆

N−1
∑

j=0

|cj|2 ≡ “time-integral squared amplitude” (13.4.3)

PSD estimators, as we shall see, have an even greater variety. In this section,
we consider a class of them that give estimates at discrete values of frequencyfi,
where i will range over integer values. In the next section, we will learn about
a different class of estimators that produce estimates that are continuous functions
of frequencyf . Even if it is agreed always to relate the PSD normalization to a
particular description of the function normalization (e.g., 13.4.2), there are at least
the following possibilities: The PSD is

• defined for discrete positive, zero, and negative frequencies, and its sum
over these is the function mean squared amplitude

• defined for zero and discrete positive frequencies only, and its sum over
these is the function mean squared amplitude

• defined in the Nyquist interval from−fc to fc, and its integral over this
range is the function mean squared amplitude

• defined from0 to fc, and its integral over this range is the function mean
squared amplitude

It nevermakes sense to integrate the PSD of a sampled function outside of the
Nyquist interval−fc andfc since, according to the sampling theorem, power there
will have been aliased into the Nyquist interval.

It is hopeless to define enough notation to distinguish all possible combinations
of normalizations. In what follows, we use the notationP (f) to meanany of the
above PSDs, stating ineach instance how the particularP (f) is normalized. Beware
the inconsistent notation in the literature.

The method of power spectrum estimation used in the previous section is a
simple version of an estimator called, historically, theperiodogram. If we take an
N -point sample of the functionc(t) at equal intervals and use the FFT to compute
its discrete Fourier transform

Ck =

N−1
∑

j=0

cj e
2πijk/N k = 0, . . . , N − 1 (13.4.4)

then the periodogram estimate of the power spectrum is defined atN/2 + 1

544 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

frequencies as

P (0) = P (f0) =
1

N2
|C0|2

P (fk) =
1

N2

[

|Ck|2 + |CN−k|2
]

k = 1, 2, . . . ,

(

N

2
− 1

)

P (fc) = P (fN/2) =
1

N2

∣

∣CN/2

∣

∣

2

(13.4.5)

wherefk is defined only for the zero and positive frequencies

fk ≡ k

N∆
= 2fc

k

N
k = 0, 1, . . . ,

N

2
(13.4.6)

By Parseval’s theorem, equation (12.1.10), we see immediately that equation (13.4.5)
is normalized so that the sum of theN/2 + 1 values ofP is equal to the mean
squared amplitude of the functioncj.

We must now ask this question. In what sense is the periodogram estimate
(13.4.5) a “true” estimator of the power spectrum of the underlying functionc(t)?
You can find the answer treated in considerable detail in the literature cited (see,
e.g.,[1] for an introduction). Here is a summary.

First, is theexpectation valueof the periodogram estimate equal to the power
spectrum, i.e., is the estimator correct on average? Well, yes and no. We wouldn’t
really expect one of theP (fk)’s to equal the continuousP (f) at exactlyfk, sincefk
is supposed to be representative of a whole frequency “bin” extending from halfway
from the preceding discrete frequency to halfway to the next one. Weshouldbe
expecting theP (fk) to be some kind of average ofP (f) over a narrow window
function centered on itsfk. For the periodogram estimate (13.4.6) that window
function, as a function ofs the frequency offsetin bins, is

W (s) =
1

N2

[

sin(πs)

sin(πs/N)

]2

(13.4.7)

Notice thatW (s) has oscillatory lobes but, apart from these, falls off only about as
W (s) ≈ (πs)−2. This is not a very rapid fall-off, and it results in significantleakage
(that is the technical term) from one frequency to another in the periodogramestimate.
Notice also thatW (s) happens to be zero fors equal to a nonzero integer. This means
that if the functionc(t) is a pure sine wave of frequency exactly equal to one of the
fk ’s, then there will beno leakage to adjacentfk ’s. But this is not the characteristic
case! If the frequency is, say, one-third of the way between two adjacent fk’s, then
the leakage will extendwell beyond those two adjacent bins. The solution to the
problem of leakage is calleddata windowing, and we will discuss it below.

Turn now to another question about the periodogram estimate. What is the
variance of that estimate asN goes to infinity? In other words, as we take more
sampled points from the original function (either sampling a longer stretch of data at
the same sampling rate, or else by resampling the same stretch of data with a faster
sampling rate), then how much more accurate do the estimatesPk become? The
unpleasant answer is that the periodogram estimatesdo not become more accurate
at all! In fact, the variance of the periodogram estimate at a frequencyfk is always

13.4 Power Spectrum Estimation Using the FFT 545

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

equal to the square of its expectation value at that frequency. In other words, the
standard deviation is always 100 percent of the value, independent ofN ! How can
this be? Where did all the information go as we added points? It all went into
producing estimates at a greater number of discrete frequenciesfk. If we sample a
longer run of data using the same sampling rate, then the Nyquist critical frequency
fc is unchanged, but we now have finer frequency resolution (morefk ’s) within the
Nyquist frequency interval; alternatively, if we sample the same length of data with a
finer sampling interval, then our frequency resolution is unchanged, but the Nyquist
range now extends up to a higher frequency. In neither case do the additional samples
reduce the variance of any one particular frequency’s estimated PSD.

You don’t have to live with PSD estimates with 100 percent standard deviations,
however. You simply have to know some techniques for reducing the variance of
the estimates. Here are two techniques that are very nearly identical mathematically,
though different in implementation. The first is to compute a periodogram estimate
with finer discrete frequency spacing than you really need, and then to sum the
periodogram estimates atK consecutive discrete frequencies to get one “smoother”
estimate at the mid frequency of thoseK. The variance of that summed estimate
will be smaller than the estimate itself by a factor of exactly1/K, i.e., the standard
deviation will be smaller than 100 percent by a factor1/

√
K. Thus, to estimate the

power spectrum atM +1 discrete frequencies between0 andfc inclusive, you begin
by taking the FFT of2MK points (which number had better be an integer power of
two!). You then take the modulus square of the resulting coefficients, add positive
and negative frequency pairs, and divide by(2MK)2, all according to equation
(13.4.5) withN = 2MK. Finally, you “bin” the results into summed (not averaged)
groups ofK. This procedure is very easy to program, so we will not bother to give
a routine for it. The reason that you sum, rather than average,K consecutive points
is so that your final PSD estimate will preserve the normalization property that the
sum of itsM + 1 values equals the mean square value of the function.

A second technique for estimating the PSD atM + 1 discrete frequencies in
the range0 to fc is to partition the original sampled data intoK segments each of
2M consecutive sampled points. Each segment is separately FFT’d to produce a
periodogram estimate (equation 13.4.5 withN ≡ 2M). Finally, theK periodogram
estimates are averaged at each frequency. It is this final averaging that reduces the
variance of the estimate by a factorK (standard deviation by

√
K). This second

technique is computationallymore efficient than the first technique above by a modest
factor, since it is logarithmically more efficient to take many shorter FFTs than one
longer one. The principal advantage of the second technique, however, is that only
2M data points are manipulated at a single time, not2KM as in the first technique.
This means that the second technique is the natural choice for processing long runs
of data, as from a magnetic tape or other data record. We will give a routine later
for implementing this second technique, but we need first to return to the matters of
leakage and data windowing which were brought up after equation (13.4.7) above.

Data Windowing

The purpose of data windowing is to modify equation (13.4.7), which expresses
the relation between the spectral estimatePk at a discrete frequency and the actual
underlying continuous spectrumP (f) at nearby frequencies. In general, the spectral

546 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

power in one “bin”k contains leakage from frequency components that are actually
s bins away, wheres is the independent variable in equation (13.4.7). There is, as
we pointed out, quite substantial leakage even from moderately large values ofs.

When we select a run ofN sampled points for periodogram spectral estimation,
we are in effect multiplying an infinite run of sampled datacj by a window function
in time, one that is zero except during the total sampling timeN∆, and is unity during
that time. In other words, the data are windowed by a square window function. By
the convolution theorem (12.0.9; but interchanging the roles off andt), the Fourier
transform of the product of the data with this square window function is equal to the
convolution of the data’s Fourier transform with the window’s Fourier transform. In
fact, we determined equation (13.4.7) as nothing more than the square of the discrete
Fourier transform of the unity window function.

W (s) =
1

N2

[

sin(πs)

sin(πs/N)

]2

=
1

N2

∣

∣

∣

∣

∣

N−1
∑

k=0

e2πisk/N

∣

∣

∣

∣

∣

2

(13.4.8)

The reason for the leakage at large values ofs, is that the square window function
turns on and off so rapidly. Its Fourier transform has substantial components
at high frequencies. To remedy this situation, we can multiply the input data
cj, j = 0, . . . , N − 1 by a window functionwj that changes more gradually from
zero to a maximum and then back to zero asj ranges from0 toN . In this case, the
equations for the periodogram estimator (13.4.4–13.4.5) become

Dk ≡
N−1
∑

j=0

cjwj e
2πijk/N k = 0, . . . , N − 1 (13.4.9)

P (0) = P (f0) =
1

Wss
|D0|2

P (fk) =
1

Wss

[

|Dk|2 + |DN−k|2
]

k = 1, 2, . . . ,

(

N

2
− 1

)

P (fc) = P (fN/2) =
1

Wss

∣

∣DN/2

∣

∣

2

(13.4.10)

whereWss stands for “window squared and summed,”

Wss ≡ N

N−1
∑

j=0

w2

j (13.4.11)

andfk is given by (13.4.6). The more general form of (13.4.7) can now be written
in terms of the window functionwj as

W (s) =
1

Wss

∣

∣

∣

∣

∣

N−1
∑

k=0

e2πisk/Nwk

∣

∣

∣

∣

∣

2

≈ 1

Wss

∣

∣

∣

∣

∣

∫ N/2

−N/2

cos(2πsk/N)w(k −N/2) dk

∣

∣

∣

∣

∣

2
(13.4.12)

13.4 Power Spectrum Estimation Using the FFT 547

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

am
pl

itu
de

0

.2

.4

.6

.8

1

0 50 100 150 200 250
bin number

Bartlett window

Welch window

square window

Hann window

Figure 13.4.1. Window functions commonly used in FFT power spectral estimation. The data segment,
here of length 256, is multiplied (bin by bin) by the window function before the FFT is computed. The
square window, which is equivalent to no windowing, is least recommended. The Welch and Bartlett
windows are good choices.

Here the approximate equality is useful for practical estimates, and holds for any
window that is left-right symmetric (the usual case), and fors ≪ N (the case of
interest for estimating leakage into nearby bins). The continuous functionw(k−N/2)
in the integral is meant to be some smooth function that passes through the pointswk.

There is a lot of perhaps unnecessary loreabout choice of a windowfunction, and
practically every function that rises from zero to a peak and then falls again has been
named after someone. A few of the more common (also shown in Figure 13.4.1) are:

wj = 1 −
∣

∣

∣

∣

j − 1

2
N

1

2
N

∣

∣

∣

∣

≡ “Bartlett window” (13.4.13)

(The “Parzen window” is very similar to this.)

wj =
1

2

[

1 − cos

(

2πj

N

)]

≡ “Hann window” (13.4.14)

(The “Hamming window” is similar but does not go exactly to zero at the ends.)

wj = 1 −
(

j − 1

2
N

1

2
N

)2

≡ “Welch window” (13.4.15)

We are inclined to follow Welch in recommending that you use either (13.4.13)
or (13.4.15) in practical work. However, at the level of this book, there is effectively

548 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

am
pl

itu
de

 o
f l

ea
ka

ge

0

.2

.4

.6

.8

1

−8 − 6 − 4 −2 0 2 4 6 8

Hann

Bartlett

Welch

offset in units of frequency bins

square

Figure 13.4.2. Leakage functions for the window functions of Figure 13.4.1. A signal whose
frequency is actually located at zero offset “leaks” into neighboring bins with the amplitude shown. The
purpose of windowing is to reduce the leakage at large offsets, where square (no) windowing has large
sidelobes. Offset can have a fractional value, since the actual signal frequency can be located between
two frequency bins of the FFT.

no differencebetween any of these (or similar) window functions. Their difference
lies in subtle trade-offs among the various figures of merit that can be used to
describe the narrowness or peakedness of the spectral leakage functions computed
by (13.4.12). These figures of merit have such names as:highest sidelobe level (dB),
sidelobe fall-off (dB per octave), equivalent noise bandwidth (bins), 3-dB bandwidth
(bins), scallop loss (dB), worst case process loss (dB). Roughly speaking, the principal
trade-off is between making the central peak as narrow as possible versus making
the tails of the distribution fall off as rapidly as possible. For details, see (e.g.)[2].
Figure 13.4.2 plots the leakage amplitudes for several windows already discussed.

There is particularly a lore about window functions that rise smoothly from
zero to unity in the first small fraction (say 10 percent) of the data, then stay at
unity until the last small fraction (again say 10 percent) of the data, during which
the window function falls smoothly back to zero. These windows will squeeze a
little bit of extra narrowness out of the main lobe of the leakage function (never as
much as a factor of two, however), but trade this off by widening the leakage tail
by a significant factor (e.g., the reciprocal of 10 percent, a factor of ten). If we
distinguish between thewidth of a window (number of samples for which it is at
its maximum value) and itsrise/fall time(number of samples during which it rises
and falls); and if we distinguish between theFWHM (full width to half maximum
value) of the leakage function’s main lobe and theleakage width(full width that
contains half of the spectral power that is not contained in the main lobe); then

13.4 Power Spectrum Estimation Using the FFT 549

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

these quantities are related roughly by

(FWHM in bins) ≈ N

(window width)
(13.4.16)

(leakage width in bins) ≈ N

(window rise/fall time)
(13.4.17)

For the windows given above in (13.4.13)–(13.4.15), the effective window
widths and the effective window rise/fall times are both of order1

2
N . Generally

speaking, we feel that the advantages of windows whose rise and fall times are
only small fractions of the data length are minor or nonexistent, and we avoid using
them. One sometimes hears it said that flat-topped windows “throw away less of
the data,” but we will now show you a better way of dealing with that problem by
use of overlapping data segments.

Let us now suppose that we have chosen a window function, and that we are
ready to segment the data intoK segments ofN = 2M points. Each segment will
be FFT’d, and the resultingK periodograms will be averaged together to obtain a
PSD estimate atM + 1 frequency values from0 to fc. We must now distinguish
between two possible situations. We might want to obtain the smallest variance
from a fixed amount of computation, without regard to the number of data points
used. This will generally be the goal when the data are being gathered in real time,
with the data-reduction being computer-limited. Alternatively, we might want to
obtain the smallest variance from a fixed number of available sampled data points.
This will generally be the goal in cases where the data are already recorded and
we are analyzing it after the fact.

In the first situation (smallest spectral variance per computer operation), it is
best to segment the data without any overlapping. The first2M data points constitute
segment number 1; the next2M data points constitute segment number 2; and so
on, up to segment numberK, for a total of2KM sampled points. The variance in
this case, relative to a single segment, is reduced by a factorK.

In the second situation (smallest spectral variance per data point), it turns out
to be optimal, or very nearly optimal, to overlap the segments by one half of their
length. The first and second sets ofM points are segment number 1; the second
and third sets ofM points are segment number 2; and so on, up to segment number
K, which is made of theKth andK + 1st sets ofM points. The total number of
sampled points is therefore(K+1)M , just over half as many as with nonoverlapping
segments. The reduction in the variance is not a full factor ofK, since the segments
are not statistically independent. It can be shown that the variance is instead reduced
by a factor of about9K/11 (see the paper by Welch in[3]). This is, however,
significantly better than the reduction of aboutK/2 that would have resulted if the
samenumberof data points were segmented without overlapping.

We can now codify these ideas into a routine for spectral estimation. While we
generally avoid input/output coding, we make an exception here to show how data
are read sequentially in one pass through a data file (hereFORTRAN Unit 9). Only a
small fraction of the data is in memory at any one time. Note thatspctrm returns the
power atM , notM + 1, frequencies, omitting the componentP (fc) at the Nyquist
frequency. It would also be straightforward to include that component.

550 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE spctrm(p,m,k,ovrlap,w1,w2)
INTEGER k,m
REAL p(m),w1(4*m),w2(m)
LOGICAL ovrlap True for overlapping segments, false otherwise.

C USES four1
Reads data from input unit 9 and returns as p(j) the data’s power (mean square amplitude)
at frequency (j-1)/(2*m) cycles per gridpoint, for j=1,2,...,m, based on (2*k+1)*m
data points (if ovrlap is set .true.) or 4*k*m data points (if ovrlap is set .false.).
The number of segments of the data is 2*k in both cases: The routine calls four1 k
times, each call with 2 partitions each of 2*m real data points. w1(1:4*m) and w2(1:m)
are user-supplied workspaces.

INTEGER j,j2,joff,joffn,kk,m4,m43,m44,mm
REAL den,facm,facp,sumw,w,window
window(j)=(1.-abs(((j-1)-facm)*facp)) Statement function defines Bartlett window.

C window(j)=1. Alternative for square window.
C window(j)=(1.-(((j-1)-facm)*facp)**2) Alternative for Welch window.

mm=m+m Useful factors.
m4=mm+mm
m44=m4+4
m43=m4+3
den=0.
facm=m Factors used by the window statement function.
facp=1./m
sumw=0. Accumulate the squared sum of the weights.
do 11 j=1,mm

sumw=sumw+window(j)**2
enddo 11

do 12 j=1,m Initialize the spectrum to zero.
p(j)=0.

enddo 12

if(ovrlap)then Initialize the “save” half-buffer.
read (9,*) (w2(j),j=1,m)

endif
do 18 kk=1,k Loop over data set segments in groups of two.

do 15 joff=-1,0,1 Get two complete segments into workspace.
if (ovrlap) then

do 13 j=1,m
w1(joff+j+j)=w2(j)

enddo 13

read (9,*) (w2(j),j=1,m)
joffn=joff+mm
do 14 j=1,m

w1(joffn+j+j)=w2(j)
enddo 14

else
read (9,*) (w1(j),j=joff+2,m4,2)

endif
enddo 15

do 16 j=1,mm Apply the window to the data.
j2=j+j
w=window(j)
w1(j2)=w1(j2)*w
w1(j2-1)=w1(j2-1)*w

enddo 16

call four1(w1,mm,1) Fourier transform the windowed data.
p(1)=p(1)+w1(1)**2+w1(2)**2 Sum results into previous segments.
do 17 j=2,m

j2=j+j
p(j)=p(j)+w1(j2)**2+w1(j2-1)**2

* +w1(m44-j2)**2+w1(m43-j2)**2
enddo 17

den=den+sumw
enddo 18

den=m4*den Correct normalization.

13.5 Digital Filtering in the Time Domain 551

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 19 j=1,m
p(j)=p(j)/den Normalize the output.

enddo 19

return
END

CITED REFERENCES AND FURTHER READING:

Oppenheim, A.V., and Schafer, R.W. 1989, Discrete-Time Signal Processing (Englewood Cliffs,
NJ: Prentice-Hall). [1]

Harris, F.J. 1978, Proceedings of the IEEE, vol. 66, pp. 51–83. [2]

Childers, D.G. (ed.) 1978, Modern Spectrum Analysis (New York: IEEE Press), paper by P.D.
Welch. [3]

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Aca-
demic Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Bloomfield, P. 1976, Fourier Analysis of Time Series – An Introduction (New York: Wiley).

Rabiner, L.R., and Gold, B. 1975, Theory and Application of Digital Signal Processing (Englewood
Cliffs, NJ: Prentice-Hall).

13.5 Digital Filtering in the Time Domain

Suppose that you have a signal that you want to filter digitally. For example, perhaps
you want to applyhigh-passor low-passfiltering, to eliminate noise at low or high frequencies
respectively; or perhaps the interesting part of your signal lies only in a certain frequency
band, so that you need abandpassfilter. Or, if your measurements are contaminated by 60
Hz power-line interference, you may need anotch filterto remove only a narrow band around
that frequency. This section speaks particularly about the case in which you have chosen to
do such filtering in the time domain.

Before continuing, we hope you will reconsider this choice. Remember how convenient
it is to filter in the Fourier domain. You just take your whole data record, FFT it, multiply
the FFT output by a filter functionH(f), and then do an inverse FFT to get back a filtered
data set in time domain. Here is some additional background on the Fourier technique that
you will want to take into account.

• Remember that you must define your filter functionH(f) for both positive and
negative frequencies, and that the magnitude of the frequency extremes is always
the Nyquist frequency1/(2∆), where∆ is the sampling interval. The magnitude
of the smallest nonzero frequencies in the FFT is±1/(N∆), whereN is the
number of (complex) points in the FFT. The positive and negative frequencies to
which this filter are applied are arranged in wrap-around order.

• If the measured data are real, and you want the filtered output also to be real, then
your arbitrary filter function should obeyH(−f) = H(f)*. You can arrange this
most easily by picking anH that is real and even inf .

• If your chosenH(f) has sharp vertical edges in it, then theimpulse responseof
your filter (the output arising from a short impulse as input) will have damped
“ringing” at frequencies corresponding to these edges. There is nothing wrong
with this, but if you don’t like it, then pick a smootherH(f). To get a first-hand
look at the impulse response of your filter, just take the inverse FFT of yourH(f).
If you smooth all edges of the filter function over some numberk of points, then
the impulse response function of your filter will have a span on the order of a
fraction 1/k of the whole data record.

13.5 Digital Filtering in the Time Domain 551

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 19 j=1,m
p(j)=p(j)/den Normalize the output.

enddo 19

return
END

CITED REFERENCES AND FURTHER READING:

Oppenheim, A.V., and Schafer, R.W. 1989, Discrete-Time Signal Processing (Englewood Cliffs,
NJ: Prentice-Hall). [1]

Harris, F.J. 1978, Proceedings of the IEEE, vol. 66, pp. 51–83. [2]

Childers, D.G. (ed.) 1978, Modern Spectrum Analysis (New York: IEEE Press), paper by P.D.
Welch. [3]

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Aca-
demic Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Bloomfield, P. 1976, Fourier Analysis of Time Series – An Introduction (New York: Wiley).

Rabiner, L.R., and Gold, B. 1975, Theory and Application of Digital Signal Processing (Englewood
Cliffs, NJ: Prentice-Hall).

13.5 Digital Filtering in the Time Domain

Suppose that you have a signal that you want to filter digitally. For example, perhaps
you want to applyhigh-passor low-passfiltering, to eliminate noise at low or high frequencies
respectively; or perhaps the interesting part of your signal lies only in a certain frequency
band, so that you need abandpassfilter. Or, if your measurements are contaminated by 60
Hz power-line interference, you may need anotch filterto remove only a narrow band around
that frequency. This section speaks particularly about the case in which you have chosen to
do such filtering in the time domain.

Before continuing, we hope you will reconsider this choice. Remember how convenient
it is to filter in the Fourier domain. You just take your whole data record, FFT it, multiply
the FFT output by a filter functionH(f), and then do an inverse FFT to get back a filtered
data set in time domain. Here is some additional background on the Fourier technique that
you will want to take into account.

• Remember that you must define your filter functionH(f) for both positive and
negative frequencies, and that the magnitude of the frequency extremes is always
the Nyquist frequency1/(2∆), where∆ is the sampling interval. The magnitude
of the smallest nonzero frequencies in the FFT is±1/(N∆), whereN is the
number of (complex) points in the FFT. The positive and negative frequencies to
which this filter are applied are arranged in wrap-around order.

• If the measured data are real, and you want the filtered output also to be real, then
your arbitrary filter function should obeyH(−f) = H(f)*. You can arrange this
most easily by picking anH that is real and even inf .

• If your chosenH(f) has sharp vertical edges in it, then theimpulse responseof
your filter (the output arising from a short impulse as input) will have damped
“ringing” at frequencies corresponding to these edges. There is nothing wrong
with this, but if you don’t like it, then pick a smootherH(f). To get a first-hand
look at the impulse response of your filter, just take the inverse FFT of yourH(f).
If you smooth all edges of the filter function over some numberk of points, then
the impulse response function of your filter will have a span on the order of a
fraction 1/k of the whole data record.

552 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• If your data set is too long to FFT all at once, then break it up into segments of
any convenient size, as long as they are much longer than the impulse response
function of the filter. Use zero-padding, if necessary.

• You should probably remove any trend from the data, by subtracting from it a
straight line through the first and last points (i.e., make the first and last points equal
to zero). If you are segmenting the data, then you can pick overlapping segments
and use only the middle section of each, comfortably distant from edge effects.

• A digital filter is said to becausalor physically realizableif its output for a
particular time-step depends only on inputs at that particular time-step or earlier.
It is said to beacausalif its output can depend on both earlier and later inputs.
Filtering in the Fourier domain is, in general,acausal, since the data are processed
“in a batch,” without regard to time ordering. Don’t let this bother you! Acausal
filters can generally give superior performance (e.g., less dispersion of phases,
sharper edges, less asymmetric impulse response functions). People use causal
filters not because they are better, but because some situations just don’t allow
access to out-of-time-order data. Time domain filters can, in principle, be either
causal or acausal, but they are most often used in applications where physical
realizability is a constraint. For this reason we will restrict ourselves to the causal
case in what follows.

If you are still favoring time-domain filtering after all we have said, it is probably because
you have a real-time application, for which you must process a continuous data stream and
wish to output filtered values at the same rate as you receive raw data. Otherwise, it may
be that the quantity of data to be processed is so large that you can afford only a very small
number of floating operations on each data point and cannot afford even a modest-sized FFT
(with a number of floating operations per data point several times the logarithm of the number
of points in the data set or segment).

Linear Filters

The most general linear filter takes a sequencexk of input points and produces a
sequenceyn of output points by the formula

yn =
M
∑

k=0

ck xn−k +
N
∑

j=1

dj yn−j (13.5.1)

Here theM + 1 coefficientsck and theN coefficientsdj are fixed and define the filter
response. The filter (13.5.1) produces each new output value from the current andM previous
input values, and from its ownN previous output values. IfN = 0, so that there is no
second sum in (13.5.1), then the filter is callednonrecursiveorfinite impulse response(FIR). If
N 6= 0, then it is calledrecursiveor infinite impulse response(IIR). (The term “IIR” connotes
only that such filters arecapableof having infinitely long impulse responses, not that their
impulse response is necessarily long in a particular application. Typically the response of an
IIR filter will drop off exponentially at late times, rapidly becoming negligible.)

The relation between theck’s anddj ’s and the filter response functionH(f) is

H(f) =

M
∑

k=0

cke
−2πik(f∆)

1 −
N
∑

j=1

dje−2πij(f∆)

(13.5.2)

where∆ is, as usual, the sampling interval. The Nyquist interval corresponds tof∆ between
−1/2 and1/2. For FIR filters the denominator of (13.5.2) is just unity.

Equation (13.5.2) tells how to determineH(f) from thec’s andd’s. To design a filter,
though, we need a way of doing the inverse, getting a suitable set ofc’s andd’s — as small
a set as possible, to minimize the computational burden — from a desiredH(f). Entire
books are devoted to this issue. Like many other “inverse problems,” it has no all-purpose

13.5 Digital Filtering in the Time Domain 553

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

solution. One clearly has to make compromises, sinceH(f) is a full continuous function,
while the short list ofc’s andd’s represents only a few adjustable parameters. The subject of
digital filter design concerns itself with the various ways of making these compromises.We
cannot hope to give any sort of complete treatment of the subject. We can, however, sketch
a couple of basic techniques to get you started. For further details, you will have to consult
some specialized books (see references).

FIR (Nonrecursive) Filters

When the denominator in (13.5.2) is unity, the right-hand side is just a discrete Fourier
transform. The transform is easily invertible, giving the desired small number ofck coefficients
in terms of the same small number of values ofH(fi) at some discrete frequenciesfi. This
fact, however, is not very useful. The reason is that, for values ofck computed in this way,
H(f) will tend to oscillate wildly in between the discrete frequencies where it is pinned
down to specific values.

A better strategy, and one which is the basis of several formal methods in theliterature,
is this: Start by pretending that you are willing to have a relatively large number of filter
coefficients, that is, a relatively large value ofM . ThenH(f) can be fixed to desired values
on a relatively fine mesh, and theM coefficientsck, k = 0, . . . ,M − 1 can be found by
an FFT. Next, truncate (set to zero) most of theck ’s, leaving nonzero only the first, say,
K , (c0, c1, . . . , cK−1) and lastK − 1, (cM−K+1, . . . , cM−1). The last fewck ’s are filter
coefficients atnegative lag, because of the wrap-around property of the FFT. But we don’t
want coefficients at negative lag. Therefore we cyclically shift the array ofck ’s, to bring
everything to positive lag. (This corresponds to introducing a time-delay into the filter.) Do
this by copying theck ’s into a new array of lengthM in the following order:

(cM−K+1, . . . , cM−1, c0, c1, . . . , cK−1, 0, 0, . . . , 0) (13.5.3)

To see if your truncation is acceptable, take the FFT of the array (13.5.3), giving an
approximation to your originalH(f). You will generally want to compare themodulus
|H(f)| to your original function, since the time-delay will have introduced complex phases
into the filter response.

If the new filter function is acceptable, then you are done and have a set of2K − 1
filter coefficients. If it is not acceptable, then you can either (i) increaseK and try again,
or (ii) do something fancier to improve the acceptability for the sameK . An example of
something fancier is to modify the magnitudes (but not the phases) of the unacceptableH(f)
to bring it more in line with your ideal, and then to FFT to get newck ’s. Once again set
to zero all but the first2K − 1 values of these (no need to cyclically shift since you have
preserved the time-delaying phases), then inverse transform to get a newH(f), which will
often be more acceptable. You can iterate this procedure. Note, however, that the procedure
will not converge if your requirements for acceptability are more stringent thanyour2K − 1
coefficients can handle.

The key idea, in other words, is to iterate between the space of coefficients and the space
of functionsH(f), until a Fourier conjugate pair that satisfies the imposed constraintsin both
spacesis found. A more formal technique for this kind of iteration is theRemes Exchange
Algorithm which produces the best Chebyshev approximation to a given desired frequency
response with a fixed number of filter coefficients (cf.§5.13).

IIR (Recursive) Filters

Recursive filters, whose output at a given time depends both on the current and previous
inputs and on previous outputs, can generally have performance that is superior to nonrecursive
filters with the same total number of coefficients (or same number of floating operations per
input point). The reason is fairly clear by inspection of (13.5.2): A nonrecursive filter has a
frequency response that is a polynomial in the variable1/z, where

z ≡ e2πi(f∆) (13.5.4)

554 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

By contrast, a recursive filter’s frequency response is arational functionin 1/z. The class of
rational functions is especially good at fitting functions with sharp edges or narrow features,
and most desired filter functions are in this category.

Nonrecursive filters are always stable. If you turn off the sequence of incomingxi’s,
then after no more thanM steps the sequence ofyj ’s produced by (13.5.1) will also turn off.
Recursive filters, feeding as they do on their own output, are not necessarily stable. If the
coefficientsdj are badly chosen, a recursive filter can have exponentially growing, so-called
homogeneous, modes, which become huge even after the input sequence has been turned off.
This is not good. The problem of designing recursive filters, therefore, is not just an inverse
problem; it is an inverse problem with an additional stability constraint.

How do you tell if the filter (13.5.1) is stable for a given set ofck anddj coefficients?
Stability depends only on thedj ’s. The filter is stable if and only if allN complex roots
of the characteristic polynomialequation

zN −
N
∑

j=1

djz
N−j = 0 (13.5.5)

are inside the unit circle, i.e., satisfy

|z| ≤ 1 (13.5.6)

The various methods for constructing stable recursive filters again form a subject area
for which you will need more specialized books. One very useful technique, however, is the
bilinear transformation method. For this topic we define a new variablew that reparametrizes
the frequencyf ,

w ≡ tan[π(f∆)] = i

(

1 − e2πi(f∆)

1 + e2πi(f∆)

)

= i

(

1 − z

1 + z

)

(13.5.7)

Don’t be fooled by thei’s in (13.5.7). This equation maps real frequenciesf into real values of
w. In fact, it maps the Nyquist interval− 1

2 < f∆ < 1
2 onto the realw axis−∞ < w < +∞.

The inverse equation to (13.5.7) is

z = e2πi(f∆) =
1 + iw

1 − iw
(13.5.8)

In reparametrizingf , w also reparametrizesz, of course. Therefore, the condition for
stability (13.5.5)–(13.5.6) can be rephrased in terms ofw: If the filter responseH(f) is
written as a function ofw, then the filter is stable if and only if the poles of the filter function
(zeros of its denominator) are all in the upper half complex plane,

Im(w) ≥ 0 (13.5.9)

The idea of the bilinear transformation method is that instead of specifyingyour desired
H(f), you specify only its desired modulus square,|H(f)|2 = H(f)H(f)* = H(f)H(−f).
Pick this to be approximated by some rational function inw2. Then find all the poles of this
function in thew complex plane. Every pole in the lower half-plane will have a corresponding
pole in the upper half-plane, by symmetry. The idea is to form a product only of the factors
with good poles, ones in the upper half-plane. This product is yourstably realizableH(f).
Now substitute equation (13.5.7) to write the function as a rational function inz, and compare
with equation (13.5.2) to read off thec’s andd’s.

The procedure becomes clearer when we go through an example. Suppose we want to
design a simple bandpass filter, whose lower cutoff frequency corresponds to a valuew = a,
and whose upper cutoff frequency corresponds to a valuew = b, with a andb both positive
numbers. A simple rational function that accomplishes this is

|H(f)|2 =

(

w2

w2 + a2

)(

b2

w2 + b2

)

(13.5.10)

This function does not have a very sharp cutoff, but it is illustrative of the moregeneral
case. To obtain sharper edges, one could take the function (13.5.10) to some positive integer

13.5 Digital Filtering in the Time Domain 555

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

power, or, equivalently, run the data sequentially through some number of copies of the filter
that we will obtain from (13.5.10).

The poles of (13.5.10) are evidently atw = ±ia andw = ±ib. Therefore the stably
realizableH(f) is

H(f) =

(

w

w − ia

)(

ib

w − ib

)

=

(

1−z
1+z

)

b
[(

1−z
1+z

)

− a
] [(

1−z
1+z

)

− b
] (13.5.11)

We put thei in the numerator of the second factor in order to end up with real-valued
coefficients. If we multiply out all the denominators, (13.5.11) can be rewritten in the form

H(f) =
− b

(1+a)(1+b) + b
(1+a)(1+b)z

−2

1 − (1+a)(1−b)+(1−a)(1+b)
(1+a)(1+b)

z−1 + (1−a)(1−b)
(1+a)(1+b)

z−2
(13.5.12)

from which one reads off the filter coefficients for equation (13.5.1),

c0 = −
b

(1 + a)(1 + b)

c1 = 0

c2 =
b

(1 + a)(1 + b)

d1 =
(1 + a)(1 − b) + (1 − a)(1 + b)

(1 + a)(1 + b)

d2 = −
(1 − a)(1 − b)

(1 + a)(1 + b)
(13.5.13)

This completes the design of the bandpass filter.
Sometimes you can figure out how to construct directly a rational function inw for

H(f), rather than having to start with its modulus square. The function that you construct
has to have its poles only in the upper half-plane, for stability. It should also have the
property of going into its own complex conjugate if you substitute−w for w, so that the
filter coefficients will be real.

For example, here is a function for a notch filter, designed to remove only a narrow
frequency band around some fiducial frequencyw = w0, wherew0 is a positive number,

H(f) =

(

w −w0

w − w0 − iǫw0

)(

w + w0

w + w0 − iǫw0

)

=
w2 − w2

0

(w − iǫw0)2 −w2
0

(13.5.14)

In (13.5.14) the parameterǫ is a small positive number that is the desired width of the notch, as a
fraction ofw0. Going through the arithmetic of substitutingz for w gives the filter coefficients

c0 =
1 + w2

0

(1 + ǫw0)2 + w2
0

c1 = −2
1 −w2

0

(1 + ǫw0)2 + w2
0

c2 =
1 + w2

0

(1 + ǫw0)2 + w2
0

d1 = 2
1 − ǫ2w2

0 −w2
0

(1 + ǫw0)2 + w2
0

d2 = −
(1− ǫw0)

2 + w2
0

(1 + ǫw0)2 + w2
0

(13.5.15)

556 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(a)

(b)

Figure 13.5.1. (a) A “chirp,” or signal whose frequency increases continuously with time. (b) Same
signal after it has passed through the notch filter (13.5.15). The parameterǫ is here 0.2.

Figure 13.5.1 shows the results of using a filter of the form (13.5.15) on a “chirp” input
signal, one that glides upwards in frequency, crossing the notch frequency along the way.

While the bilinear transformation may seem very general, its applications are limited
by some features of the resulting filters. The method isgood at getting the general shape
of the desired filter, and good where “flatness” is a desired goal. However, the nonlinear
mapping betweenw andf makes it difficult to design to a desired shape for a cutoff, and
may move cutoff frequencies (defined by a certain number of dB) from their desired places.
Consequently, practitioners of the art of digital filter design reserve the bilinear transformation
for specific situations, and arm themselves with a variety of other tricks. We suggest that
you do likewise, as your projects demand.

CITED REFERENCES AND FURTHER READING:

Hamming, R.W. 1983, Digital Filters, 2nd ed. (Englewood Cliffs, NJ: Prentice-Hall).

Antoniou, A. 1979, Digital Filters: Analysis and Design (New York: McGraw-Hill).

Parks, T.W., and Burrus, C.S. 1987, Digital Filter Design (New York: Wiley).

Oppenheim, A.V., and Schafer, R.W. 1989, Discrete-Time Signal Processing (Englewood Cliffs,
NJ: Prentice-Hall).

Rice, J.R. 1964, The Approximation of Functions (Reading, MA: Addison-Wesley); also 1969,
op. cit., Vol. 2.

Rabiner, L.R., and Gold, B. 1975, Theory and Application of Digital Signal Processing (Englewood
Cliffs, NJ: Prentice-Hall).

13.6 Linear Prediction and Linear Predictive Coding 557

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

13.6 Linear Prediction and Linear Predictive
Coding

We begin with a very general formulation that will allow us to make connections
to various special cases. Let{y′α} be a set of measured values for some underlying
set of true values of a quantityy, denoted{yα}, related to these true values by
the addition of random noise,

y′α = yα + nα (13.6.1)

(compare equation 13.3.2, with a somewhat different notation). Our use of a Greek
subscript to index the members of the set is meant to indicate that the data points
are not necessarily equally spaced along a line, or even ordered: they might be
“random” points in three-dimensional space, for example. Now, suppose we want to
construct the “best” estimate of the true value of some particular pointy⋆ as a linear
combination of the known, noisy, values. Writing

y⋆ =
∑

α

d⋆αy
′

α + x⋆ (13.6.2)

we want to find coefficientsd⋆α that minimize, in some way, thediscrepancyx⋆. The
coefficientsd⋆α have a “star” subscript to indicate that they depend on the choice of
point y⋆. Later, we might want to lety⋆ be one of the existingyα’s. In that case,
our problem becomes one of optimal filtering or estimation, closely related to the
discussion in§13.3. On the other hand, we might wanty⋆ to be a completely new
point. In that case, our problem will be one oflinear prediction.

A natural way to minimize the discrepancyx⋆ is in the statistical mean square
sense. If angle brackets denote statistical averages, then we seekd⋆α’s that minimize

〈

x2

⋆

〉

=

〈

[

∑

α

d⋆α(yα + nα) − y⋆

]2
〉

=
∑

αβ

(〈yαyβ〉 + 〈nαnβ〉)d⋆αd⋆β − 2
∑

α

〈y⋆yα〉 d⋆α +
〈

y2

⋆

〉

(13.6.3)

Here we have used the fact that noise is uncorrelated with signal, e.g.,〈nαyβ〉 = 0.
The quantities〈yαyβ〉 and 〈y⋆yα〉 describe the autocorrelation structure of the
underlying data. We have already seen an analogous expression, (13.2.2), for the
case of equally spaced data points on a line; we will meet correlation several times
again in its statistical sense in Chapters 14 and 15. The quantities〈nαnβ〉describe the
autocorrelation properties of the noise. Often, for point-to-point uncorrelated noise,
we have〈nαnβ〉 =

〈

n2

α

〉

δαβ. It is convenient to think of the various correlation
quantities as comprising matrices and vectors,

φαβ ≡ 〈yαyβ〉 φ⋆α ≡ 〈y⋆yα〉 ηαβ ≡ 〈nαnβ〉 or
〈

n2

α

〉

δαβ (13.6.4)

Setting the derivative of equation (13.6.3) with respect to thed⋆α’s equal to zero,
one readily obtains the set of linear equations,

∑

β

[φαβ + ηαβ]d⋆β = φ⋆α (13.6.5)

13.6 Linear Prediction and Linear Predictive Coding 557

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

13.6 Linear Prediction and Linear Predictive
Coding

We begin with a very general formulation that will allow us to make connections
to various special cases. Let{y′α} be a set of measured values for some underlying
set of true values of a quantityy, denoted{yα}, related to these true values by
the addition of random noise,

y′α = yα + nα (13.6.1)

(compare equation 13.3.2, with a somewhat different notation). Our use of a Greek
subscript to index the members of the set is meant to indicate that the data points
are not necessarily equally spaced along a line, or even ordered: they might be
“random” points in three-dimensional space, for example. Now, suppose we want to
construct the “best” estimate of the true value of some particular pointy⋆ as a linear
combination of the known, noisy, values. Writing

y⋆ =
∑

α

d⋆αy
′
α + x⋆ (13.6.2)

we want to find coefficientsd⋆α that minimize, in some way, thediscrepancyx⋆. The
coefficientsd⋆α have a “star” subscript to indicate that they depend on the choice of
point y⋆. Later, we might want to lety⋆ be one of the existingyα’s. In that case,
our problem becomes one of optimal filtering or estimation, closely related to the
discussion in§13.3. On the other hand, we might wanty⋆ to be a completely new
point. In that case, our problem will be one oflinear prediction.

A natural way to minimize the discrepancyx⋆ is in the statistical mean square
sense. If angle brackets denote statistical averages, then we seekd⋆α’s that minimize

〈
x2
⋆

〉
=

〈[∑

α

d⋆α(yα + nα) − y⋆

]2
〉

=
∑

αβ

(〈yαyβ〉 + 〈nαnβ〉)d⋆αd⋆β − 2
∑

α

〈y⋆yα〉 d⋆α +
〈
y2
⋆

〉 (13.6.3)

Here we have used the fact that noise is uncorrelated with signal, e.g.,〈nαyβ〉 = 0.
The quantities〈yαyβ〉 and 〈y⋆yα〉 describe the autocorrelation structure of the
underlying data. We have already seen an analogous expression, (13.2.2), for the
case of equally spaced data points on a line; we will meet correlation several times
again in its statistical sense in Chapters 14 and 15. The quantities〈nαnβ〉describe the
autocorrelation properties of the noise. Often, for point-to-point uncorrelated noise,
we have〈nαnβ〉 =

〈
n2
α

〉
δαβ. It is convenient to think of the various correlation

quantities as comprising matrices and vectors,

φαβ ≡ 〈yαyβ〉 φ⋆α ≡ 〈y⋆yα〉 ηαβ ≡ 〈nαnβ〉 or
〈
n2
α

〉
δαβ (13.6.4)

Setting the derivative of equation (13.6.3) with respect to thed⋆α’s equal to zero,
one readily obtains the set of linear equations,

∑

β

[φαβ + ηαβ]d⋆β = φ⋆α (13.6.5)

558 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If we write the solution as a matrix inverse, then the estimation equation (13.6.2)
becomes, omitting the minimized discrepancyx⋆,

y⋆ ≈
∑

αβ

φ⋆α [φµν + ηµν]
−1

αβ
y′β (13.6.6)

From equations (13.6.3) and (13.6.5) one can also calculate the expected mean square
value of the discrepancy at its minimum, denoted

〈
x2
⋆

〉
0
,

〈
x2
⋆

〉
0

=
〈
y2
⋆

〉
−

∑

β

d⋆βφ⋆β =
〈
y2
⋆

〉
−

∑

αβ

φ⋆α [φµν + ηµν]
−1

αβ
φ⋆β (13.6.7)

A final general result tells how much the mean square discrepancy
〈
x2
⋆

〉
is

increased if we use the estimation equation (13.6.2) not with the best valuesd⋆β, but
with some other valueŝd⋆β. The above equations then imply

〈
x2
⋆

〉
=

〈
x2
⋆

〉
0
+

∑

αβ

(d̂⋆α − d⋆α) [φαβ + ηαβ] (d̂⋆β − d⋆β) (13.6.8)

Since the second term is a pure quadratic form, we see that the increase in the
discrepancy is only second order in any error made in estimating thed⋆β ’s.

Connection to Optimal Filtering

If we change “star” to a Greek index, sayγ, then the above formulas describe
optimal filtering, generalizing the discussion of§13.3. One sees, for example, that
if the noise amplitudesnα go to zero, so likewise do the noise autocorrelations
ηαβ, and, canceling a matrix times its inverse, equation (13.6.6) simply becomes
yγ = y′γ . Another special case occurs if the matricesφαβ andηαβ are diagonal.
In that case, equation (13.6.6) becomes

yγ =
φγγ

φγγ + ηγγ
y′γ (13.6.9)

which is readily recognizable as equation (13.3.6) withS2 → φγγ ,N2 → ηγγ . What
is going on is this: For the case of equally spaced data points, and inthe Fourier
domain, autocorrelations become simply squares of Fourier amplitudes (Wiener-
Khinchin theorem, equation 12.0.12), and the optimal filter can be constructed
algebraically, as equation (13.6.9), without inverting any matrix.

More generally, in the time domain, or any other domain, an optimal filter (one
that minimizes the square of the discrepancy from the underlying true value in the
presence of measurement noise) can be constructed by estimating the autocorrelation
matricesφαβ and ηαβ, and applying equation (13.6.6) with⋆ → γ. (Equation
13.6.8 is in fact the basis for the§13.3’s statement that even crude optimal filtering
can be quite effective.)

13.6 Linear Prediction and Linear Predictive Coding 559

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Linear Prediction

Classicallinear predictionspecializes to the case where the data pointsyβ
are equally spaced along a line,yi, i = 1, 2, . . ., N , and we want to useM
consecutive values ofyi to predict anM + 1st. Stationarity is assumed. That is, the
autocorrelation〈yjyk〉 is assumed to depend only on the difference|j − k|, and not
on j or k individually, so that the autocorrelationφ has only a single index,

φj ≡ 〈yiyi+j〉 ≈
1

N − j

N−j∑

i=1

yiyi+j (13.6.10)

Here, the approximate equality shows one way to use the actual data set values to
estimate the autocorrelation components. (In fact, there is a better way to make these
estimates; see below.) In the situation described, the estimation equation (13.6.2) is

yn =

M∑

j=1

djyn−j + xn (13.6.11)

(compare equation 13.5.1) and equation (13.6.5) becomes the set ofM equations for
theM unknowndj ’s, now called thelinear prediction (LP) coefficients,

M∑

j=1

φ|j−k| dj = φk (k = 1, . . . ,M) (13.6.12)

Notice that while noise is not explicitly included in the equations, it is properly
accounted for,if it is point-to-point uncorrelated:φ0, as estimated by equation
(13.6.10) usingmeasuredvaluesy′i, actually estimates the diagonal part ofφαα+ηαα,
above. The mean square discrepancy

〈
x2
n

〉
is estimated by equation (13.6.7) as

〈
x2
n

〉
= φ0 − φ1d1 − φ2d2 − · · · − φMdM (13.6.13)

To use linear prediction, we first compute thedj ’s, using equations (13.6.10)
and (13.6.12). We then calculate equation (13.6.13) or, more concretely, apply
(13.6.11) to the known record to get an idea of how large are the discrepanciesxi.
If the discrepancies are small, then we can continue applying (13.6.11) right on into
the future, imagining the unknown “future” discrepanciesxi to be zero. In this
application, (13.6.11) is a kind of extrapolation formula. In many situations, this
extrapolation turns out to be vastly more powerful than any kind of simple polynomial
extrapolation. (By the way, you should not confuse the terms “linear prediction” and
“linear extrapolation”; the general functional form used by linear prediction ismuch
more complex than a straight line, or even a low-order polynomial!)

However, to achieve its full usefulness, linear prediction must be constrained in
one additional respect: One must take additional measures to guarantee itsstability.
Equation (13.6.11) is a special case of the general linear filter (13.5.1). The condition
that (13.6.11) be stable as a linear predictor is precisely that given in equations
(13.5.5) and (13.5.6), namely that the characteristic polynomial

zN −

N∑

j=1

djz
N−j = 0 (13.6.14)

560 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

have allN of its roots inside the unit circle,

|z| ≤ 1 (13.6.15)

There is no guarantee that the coefficients produced by equation (13.6.12) will have
this property. If the data contain many oscillations without any particular trend
towards increasing or decreasing amplitude, then the complex roots of (13.6.14)
will generally all be rather close to the unit circle. The finite length of the data
set will cause some of these roots to be inside the unit circle, others outside. In
some applications, where the resulting instabilities are slowly growing and the linear
prediction is not pushed too far, it is best to use the “unmassaged” LP coefficients
that come directly out of (13.6.12). For example, one might be extrapolating to fill a
short gap in a data set; then one might extrapolate both forwards across the gap and
backwards from the data beyond the gap. If the two extrapolations agree tolerably
well, then instability is not a problem.

When instabilityis a problem, you have to “massage” the LP coefficients. You
do this by (i) solving (numerically) equation (13.6.14) for itsN complex roots; (ii)
moving the roots to where you think they ought to be inside or on the unit circle; (iii)
reconstituting the now-modified LP coefficients. You may think that step (ii) sounds
a little vague. It is. There is no “best” procedure. If you think that your signal
is truly a sum of undamped sine and cosine waves (perhaps with incommensurate
periods), then you will want simply to move each rootzi onto the unit circle,

zi → zi/ |zi| (13.6.16)

In other circumstances it may seem appropriate to reflect a bad root across the
unit circle

zi → 1/zi* (13.6.17)

This alternative has the property that it preserves the amplitude of the output of
(13.6.11) when it is driven by a sinusoidal set ofxi’s. It assumes that (13.6.12)
has correctly identified the spectral width of a resonance, but only slipped up on
identifying its time sense so that signals that should be damped as time proceeds end
up growing in amplitude. The choice between (13.6.16) and (13.6.17) sometimes
might as well be based on voodoo. We prefer (13.6.17).

Also magical is the choice ofM , the number of LP coefficients to use. You
should chooseM to be as small as works for you, that is, you should choose it by
experimenting with your data. TryM = 5, 10, 20, 40. If you need largerM ’s than
this, be aware that the procedure of “massaging” all those complex roots is quite
sensitive to roundoff error. Use double precision.

Linear prediction is especially successful at extrapolatingsignals that aresmooth
and oscillatory, though not necessarily periodic. In such cases, linear prediction often
extrapolates accurately throughmany cyclesof the signal. By contrast, polynomial
extrapolation in general becomes seriously inaccurate after at most a cycle or two.
A prototypical example of a signal that can successfully be linearly predicted is the
height of ocean tides, for which the fundamental 12-hour period is modulated in
phase and amplitude over the course of the month and year, and for which local

13.6 Linear Prediction and Linear Predictive Coding 561

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

hydrodynamic effects may make even one cycle of the curve look rather different
in shape from a sine wave.

We already remarked that equation (13.6.10) is not necessarily the best way
to estimate the covariancesφk from the data set. In fact, results obtained from
linear prediction are remarkably sensitive to exactly how theφk’s are estimated.
One particularly good method is due to Burg[1], and involves a recursive procedure
for increasing the orderM by one unit at a time, at each stage re-estimating the
coefficientsdj, j = 1, . . . ,M so as to minimize the residual in equation (13.6.13).
Although further discussion of the Burg method is beyond our scope here, the method
is implemented in the following routine[1,2] for estimating the LP coefficientsdj
of a data set.

SUBROUTINE memcof(data,n,m,xms,d)
INTEGER m,n,MMAX,NMAX
REAL xms,d(m),data(n)
PARAMETER (MMAX=60,NMAX=2000)

Given a real vector of data(1:n), and given m, this routine returns m linear prediction
coefficients as d(1:m), and returns the mean square discrepancy as xms.

INTEGER i,j,k
REAL denom,p,pneum,wk1(NMAX),wk2(NMAX),wkm(MMAX)
if (m.gt.MMAX.or.n.gt.NMAX) pause ’workspace too small in memcof’
p=0.
do 11 j=1,n

p=p+data(j)**2
enddo 11

xms=p/n
wk1(1)=data(1)
wk2(n-1)=data(n)
do 12 j=2,n-1

wk1(j)=data(j)
wk2(j-1)=data(j)

enddo 12

do 17 k=1,m
pneum=0.
denom=0.
do 13 j=1,n-k

pneum=pneum+wk1(j)*wk2(j)
denom=denom+wk1(j)**2+wk2(j)**2

enddo 13

d(k)=2.*pneum/denom
xms=xms*(1.-d(k)**2)
do 14 i=1,k-1

d(i)=wkm(i)-d(k)*wkm(k-i)
enddo 14

The algorithm is recursive, building up the answer for larger and larger values of m until
the desired value is reached. At this point in the algorithm, one could return the vector
d and scalar xms for a set of LP coefficients with k (rather than m) terms.

if(k.eq.m)return
do 15 i=1,k

wkm(i)=d(i)
enddo 15

do 16 j=1,n-k-1
wk1(j)=wk1(j)-wkm(k)*wk2(j)
wk2(j)=wk2(j+1)-wkm(k)*wk1(j+1)

enddo 16

enddo 17

pause ’never get here in memcof’
END

562 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Here are procedures for rendering the LP coefficients stable (if you choose to
do so), and for extrapolating a data set by linear prediction, using the original or
massaged LP coefficients. The routinezroots (§9.5) is used to find all complex
roots of a polynomial.

SUBROUTINE fixrts(d,m)
INTEGER m,MMAX
REAL d(m)
PARAMETER (MMAX=100) Largest expected value of m.

C USES zroots
Given the LP coefficients d(1:m), this routine finds all roots of the characteristic polynomial
(13.6.14), reflects any roots that are outside the unit circle back inside, and then returns
a modified set of coefficients d(1:m).

INTEGER i,j
LOGICAL polish
COMPLEX a(MMAX),roots(MMAX)
a(m+1)=cmplx(1.,0.)
do 11 j=m,1,-1 Set up complex coefficients for polynomial root finder.

a(j)=cmplx(-d(m+1-j),0.)
enddo 11

polish=.true.
call zroots(a,m,roots,polish) Find all the roots.
do 12 j=1,m Look for a...

if(abs(roots(j)).gt.1.)then root outside the unit circle,
roots(j)=1./conjg(roots(j)) and reflect it back inside.

endif
enddo 12

a(1)=-roots(1) Now reconstruct the polynomial coefficients,
a(2)=cmplx(1.,0.)
do 14 j=2,m by looping over the roots

a(j+1)=cmplx(1.,0.)
do 13 i=j,2,-1 and synthetically multiplying.

a(i)=a(i-1)-roots(j)*a(i)
enddo 13

a(1)=-roots(j)*a(1)
enddo 14

do 15 j=1,m The polynomial coefficients are guaranteed to be real,
d(m+1-j)=-real(a(j)) so we need only return the real part as new LP coefficients.

enddo 15

return
END

SUBROUTINE predic(data,ndata,d,m,future,nfut)
INTEGER ndata,nfut,m,MMAX
REAL d(m),data(ndata),future(nfut)
PARAMETER (MMAX=100)

Given data(1:ndata), and given the data’s LP coefficients d(1:m), this routine applies
equation (13.6.11) to predict the next nfut data points, which it returns in the array
future(1:nfut). Note that the routine references only the last m values of data, as
initial values for the prediction.
Parameter: MMAX is the largest expected value of m.

INTEGER j,k
REAL discrp,sum,reg(MMAX)
do 11 j=1,m

reg(j)=data(ndata+1-j)
enddo 11

do 14 j=1,nfut
discrp=0. This is where you would put in a known discrepancy if you

were reconstructing a function by linear predictive coding
rather than extrapolating a function by linear prediction.
See text.

sum=discrp
do 12 k=1,m

13.6 Linear Prediction and Linear Predictive Coding 563

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

sum=sum+d(k)*reg(k)
enddo 12

do 13 k=m,2,-1 [If you want to implement circular arrays, you can avoid this
shifting of coefficients!]reg(k)=reg(k-1)

enddo 13

reg(1)=sum
future(j)=sum

enddo 14

return
END

Removing the Bias in Linear Prediction

You might expect that the sum of thedj ’s in equation (13.6.11) (or, more
generally, in equation 13.6.2) should be 1, so that (e.g.) adding a constant to all the
data pointsyi yields a prediction that is increased by the same constant. However,
thedj ’s do not sum to 1 but, in general, to a value slightly less than one. This fact
reveals a subtle point, that the estimator of classical linear prediction is notunbiased,
even though it does minimize the mean square discrepancy. At any place where the
measured autocorrelation does not imply a better estimate, the equations of linear
prediction tend to predict a value that tends towards zero.

Sometimes, that is just what you want. If the process that generates theyi’s
in fact has zero mean, then zero is the best guess absent other information. At
other times, however, this behavior is unwarranted. If you have data that show
only small variations around a positive value, you don’t want linear predictions
that droop towards zero.

Often it is a workable approximation to subtract the mean off your data set,
perform the linear prediction, and then add the mean back. This procedure contains
the germ of the correct solution; but the simple arithmetic mean is not quite the
correct constant to subtract. In fact, an unbiased estimator is obtained by subtracting
from every data point an autocorrelation-weighted mean defined by[3,4]

y ≡
∑

β

[φµν + ηµν]
−1

αβ
yβ

/∑

αβ

[φµν + ηµν]
−1

αβ
(13.6.18)

With this subtraction, the sum of the LP coefficients should be unity, up to roundoff
and differences in how theφk ’s are estimated.

Linear Predictive Coding (LPC)

A different, though related, method to which the formalism above can be
applied is the “compression” of a sampled signal so that it can be stored more
compactly. The original form should beexactlyrecoverable from the compressed
version. Obviously, compression can be accomplished only if there is redundancy
in the signal. Equation (13.6.11) describes one kind of redundancy: It says that
the signal, except for a small discrepancy, is predictable from its previous values
and from a small number of LP coefficients. Compression of a signal by the use of
(13.6.11) is thus calledlinear predictive coding, or LPC.

The basic idea of LPC (in its simplest form) is to record as a compressed file(i)
the number of LP coefficientsM , (ii) their M values, e.g., as obtained bymemcof,

564 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(iii) the first M data points, and then (iv) for each subsequent data point only its
residual discrepancyxi (equation 13.6.1). When you are creating the compressed
file, you find the residual by applying (13.6.1) to the previousM points, subtracting
the sum from the actual value of the current point. When you are reconstructing the
original file, you add the residual back in, at the point indicated in the routinepredic.

It may not be obvious why there is any compression at all in this scheme. After
all, we are storing one value of residual per data point! Why not just store the original
data point? The answer depends on the relative sizes of the numbers involved. The
residual is obtained by subtracting two very nearly equal numbers (the data and the
linear prediction). Therefore, the discrepancy typically has only a very small number
of nonzero bits. These can be stored in a compressed file. How do you do it in a
high-level language? Here is one way: Scale your data to have integer values, say
between+1000000 and−1000000 (supposing that you need six significant figures).
Modify equation (13.6.1) by enclosing the sum term in an “integer part of” operator.
The discrepancy will now, by definition, be an integer. Experiment with different
values ofM , to find LP coefficients that make the range of the discrepancy as small
as you can. If you can get to within a range of±127 (and in our experience this is not
at all difficult) then you can write it to a file as a single byte. This is a compression
factor of 4, compared to 4-byte integer or floating formats.

Notice that the LP coefficients are computed using thequantizeddata, and that
the discrepancy is also quantized, i.e., quantization is done both outside and inside
the LPC loop. If you are careful in following this prescription, then, apart from the
initial quantization of the data, you will not introduce even a single bit of roundoff
error into the compression-reconstruction process: While the evaluation of the sum
in (13.6.11) may have roundoff errors, the residual that you store is the value which,
when added back to the sum, givesexactlythe original (quantized) data value. Notice
also that you do not need to massage the LP coefficients for stability; by adding the
residual back in to each point, you never depart from the original data, so instabilities
cannot grow. There is therefore no need forfixrts, above.

Look at§20.4 to learn aboutHuffman coding, which will further compress the
residuals by taking advantage of the fact that smaller values of discrepancy will occur
more often than larger values. A very primitive version of Huffman coding would
be this: If most of the discrepancies are in the range±127, but an occasional one is
outside, then reserve the value 127 to mean “out of range,” and then record on the file
(immediately following the 127) a full-word value of the out-of-range discrepancy.
§20.4 explains how to do much better.

There are many variant procedures that all fall under the rubric of LPC.
• If the spectral character of the data is time-variable, then it is best not

to use a single set of LP coefficients for the whole data set, but rather
to partition the data into segments, computing and storing different LP
coefficients for each segment.

• If the data are really well characterized by their LP coefficients, and you
can tolerate some small amount of error, then don’t bother storing all of the
residuals. Just do linear prediction until you are outside of tolerances, then
reinitialize (usingM sequential stored residuals) and continue predicting.

• In some applications, most notably speech synthesis, one cares only about
the spectral content of the reconstructed signal, not the relative phases.
In this case, one need not store any starting values at all, but only the

13.7 Maximum Entropy (All Poles) Method 565

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

LP coefficients for each segment of the data. The output is reconstructed
by driving these coefficients with initial conditions consisting of all zeros
except for one nonzero spike. A speech synthesizer chip may have of
order 10 LP coefficients, which change perhaps 20 to 50 times per second.

• Some people believe that it is interesting to analyze a signal by LPC, even
when the residualsxi arenot small. Thexi’s are then interpreted as the
underlying “input signal” which, when filtered through the all-poles filter
defined by the LP coefficients (see§13.7), produces the observed “output
signal.” LPC reveals simultaneously, it is said, the nature of the filterand
the particular input that is driving it. We are skeptical of these applications;
the literature, however, is full of extravagant claims.

CITED REFERENCES AND FURTHER READING:

Childers, D.G. (ed.) 1978, Modern Spectrum Analysis (New York: IEEE Press), especially the
paper by J. Makhoul (reprinted from Proceedings of the IEEE, vol. 63, p. 561, 1975).

Burg, J.P. 1968, reprinted in Childers, 1978. [1]

Anderson, N. 1974, reprinted in Childers, 1978. [2]

Cressie, N. 1991, in Spatial Statistics and Digital Image Analysis (Washington: National Academy
Press). [3]

Press, W.H., and Rybicki, G.B. 1992, Astrophysical Journal, vol. 398, pp. 169–176. [4]

13.7 Power Spectrum Estimation by the
Maximum Entropy (All Poles) Method

The FFT is not the only way to estimate the power spectrum of a process, nor is it
necessarily the best way for all purposes. To see how one might devise another method,
let us enlarge our view for a moment, so that it includes not only real frequencies in the
Nyquist interval−fc < f < fc, but also the entire complex frequency plane. From that
vantage point, let us transform the complexf -plane to a new plane, called thez-transform
plane or z-plane, by the relation

z ≡ e
2πif∆ (13.7.1)

where∆ is, as usual, the sampling interval in the time domain. Notice that the Nyquist interval
on the real axis of thef -plane maps one-to-one onto the unit circle in the complexz-plane.

If we now compare (13.7.1) to equations (13.4.4) and (13.4.6), we see that the FFT
power spectrum estimate (13.4.5) for any real sampled functionck ≡ c(tk) can be written,
except for normalization convention, as

P (f) =

∣∣∣∣∣∣

N/2−1∑

k=−N/2

ckz
k

∣∣∣∣∣∣

2

(13.7.2)

Of course, (13.7.2) is not thetruepower spectrum of the underlying functionc(t), but only an
estimate. We can see in two related ways why the estimate is not likely to be exact. First, inthe
time domain, the estimate is based on only a finite range of the functionc(t) which may, for all
we know, have continued fromt = −∞ to∞. Second, in thez-plane of equation (13.7.2), the
finite Laurent series offers, in general, only an approximation to a general analytic functionof
z. In fact, a formal expression for representing “true” power spectra (up to normalization) is

P (f) =

∣∣∣∣∣

∞∑

k=−∞

ckz
k

∣∣∣∣∣

2

(13.7.3)

13.7 Maximum Entropy (All Poles) Method 565

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

LP coefficients for each segment of the data. The output is reconstructed
by driving these coefficients with initial conditions consisting of all zeros
except for one nonzero spike. A speech synthesizer chip may have of
order 10 LP coefficients, which change perhaps 20 to 50 times per second.

• Some people believe that it is interesting to analyze a signal by LPC, even
when the residualsxi arenot small. Thexi’s are then interpreted as the
underlying “input signal” which, when filtered through the all-poles filter
defined by the LP coefficients (see§13.7), produces the observed “output
signal.” LPC reveals simultaneously, it is said, the nature of the filterand
the particular input that is driving it. We are skeptical of these applications;
the literature, however, is full of extravagant claims.

CITED REFERENCES AND FURTHER READING:

Childers, D.G. (ed.) 1978, Modern Spectrum Analysis (New York: IEEE Press), especially the
paper by J. Makhoul (reprinted from Proceedings of the IEEE, vol. 63, p. 561, 1975).

Burg, J.P. 1968, reprinted in Childers, 1978. [1]

Anderson, N. 1974, reprinted in Childers, 1978. [2]

Cressie, N. 1991, in Spatial Statistics and Digital Image Analysis (Washington: National Academy
Press). [3]

Press, W.H., and Rybicki, G.B. 1992, Astrophysical Journal, vol. 398, pp. 169–176. [4]

13.7 Power Spectrum Estimation by the
Maximum Entropy (All Poles) Method

The FFT is not the only way to estimate the power spectrum of a process, nor is it
necessarily the best way for all purposes. To see how one might devise another method,
let us enlarge our view for a moment, so that it includes not only real frequencies in the
Nyquist interval−fc < f < fc, but also the entire complex frequency plane. From that
vantage point, let us transform the complexf -plane to a new plane, called thez-transform
plane or z-plane, by the relation

z ≡ e2πif∆ (13.7.1)

where∆ is, as usual, the sampling interval in the time domain. Notice that the Nyquist interval
on the real axis of thef -plane maps one-to-one onto the unit circle in the complexz-plane.

If we now compare (13.7.1) to equations (13.4.4) and (13.4.6), we see that the FFT
power spectrum estimate (13.4.5) for any real sampled functionck ≡ c(tk) can be written,
except for normalization convention, as

P (f) =

∣

∣

∣

∣

∣

∣

N/2−1
∑

k=−N/2

ckz
k

∣

∣

∣

∣

∣

∣

2

(13.7.2)

Of course, (13.7.2) is not thetruepower spectrum of the underlying functionc(t), but only an
estimate. We can see in two related ways why the estimate is not likely to be exact. First, inthe
time domain, the estimate is based on only a finite range of the functionc(t) which may, for all
we know, have continued fromt = −∞ to∞. Second, in thez-plane of equation (13.7.2), the
finite Laurent series offers, in general, only an approximation to a general analytic functionof
z. In fact, a formal expression for representing “true” power spectra (up to normalization) is

P (f) =

∣

∣

∣

∣

∣

∞
∑

k=−∞

ckz
k

∣

∣

∣

∣

∣

2

(13.7.3)

566 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

This is an infinite Laurent series which depends on an infinite number of valuesck. Equation
(13.7.2) is just one kind of analytic approximation to the analytic function ofz represented
by (13.7.3); the kind, in fact, that is implicit in the use of FFTs to estimate power spectra by
periodogram methods. It goes under several names, includingdirect method, all-zero model,
andmoving average (MA) model. The term “all-zero” in particular refers to the fact that the
model spectrum can have zeros in thez-plane, but not poles.

If we look at the problem of approximating (13.7.3) more generally it seems clear that
we could do a better job with a rational function, one with a series of type (13.7.2) in both the
numerator and the denominator. Less obviously, it turns out that there are some advantages in
an approximation whose free parameters all lie in thedenominator, namely,

P (f) ≈
1

∣

∣

∣

∣

∣

M/2
∑

k=−M/2

bkzk

∣

∣

∣

∣

∣

2
=

a0

∣

∣

∣

∣

1 +
M
∑

k=1

akzk
∣

∣

∣

∣

2
(13.7.4)

Here the second equality brings in a new set of coefficientsak ’s, which can be determined
from the bk ’s using the fact thatz lies on the unit circle. Thebk ’s can be thought of as
being determined by the condition that power series expansion of (13.7.4) agree with the
first M + 1 terms of (13.7.3). In practice, as we shall see, one determines thebk ’s or
ak ’s by another method.

The differences between the approximations (13.7.2) and (13.7.4) are not just cosmetic.
They are approximations with very different character. Most notable is the fact that (13.7.4)
can havepoles, corresponding to infinite power spectral density, on the unitz-circle, i.e., at
real frequencies in the Nyquist interval. Such poles can provide an accurate representation
for underlying power spectra that have sharp, discrete “lines” or delta-functions. By contrast,
(13.7.2) can have only zeros, not poles, at real frequencies in the Nyquist interval, and must
thus attempt to fit sharp spectral features with, essentially, a polynomial. The approximation
(13.7.4) goes under several names:all-poles model, maximum entropy method (MEM),
autoregressive model (AR). We need only find out how to compute the coefficientsa0 and the
ak ’s from a data set, so that we can actually use (13.7.4) to obtain spectral estimates.

A pleasant surprise is that we already know how! Look at equation (13.6.11) for linear
prediction. Compare it with linear filter equations (13.5.1) and (13.5.2), and you will see that,
viewed as a filter that takes inputx’s into outputy’s, linear prediction has a filter function

H(f) =
1

1 −
N
∑

j=1

djzj
(13.7.5)

Thus, the power spectrum of they’s should be equal to the power spectrum of thex’s
multiplied by |H(f)|2. Now let us think about what the spectrum of the inputx’s is, when
they are residual discrepancies from linear prediction. Although we will not prove it formally,
it is intuitively believable that thex’s are independently random and therefore have a flat
(white noise) spectrum. (Roughly speaking, any residual correlations left in thex’s would
have allowed a more accurate linear prediction, and would have been removed.) The overall
normalization of this flat spectrum is just the mean square amplitude of thex’s. But this is
exactly the quantity computed in equation (13.6.13) and returned by the routinememcof as
xms. Thus, the coefficientsa0 andak in equation (13.7.4) are related to the LP coefficients
returned bymemcof simply by

a0 = xms ak = −d(k), k = 1, . . . ,M (13.7.6)

There is also anotherway to describe the relation between theak ’s and the autocorrelation
componentsφk. The Wiener-Khinchin theorem (12.0.12) says that the Fourier transform of
the autocorrelation is equal to the power spectrum. Inz-transform language, this Fourier
transform is just a Laurent series inz. The equation that is to be satisfied by the coefficients
in equation (13.7.4) is thus

a0

∣

∣

∣

∣

1 +
M
∑

k=1

akzk
∣

∣

∣

∣

2
≈

M
∑

j=−M

φjz
j (13.7.7)

13.7 Maximum Entropy (All Poles) Method 567

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The approximately equal sign in (13.7.7) has a somewhat special interpretation. It means
that the series expansion of the left-hand side is supposed to agree with the right-hand side
term by term fromz−M to zM . Outside this range of terms, the right-hand side is obviously
zero, while the left-hand side will still havenonzero terms. Notice thatM , the number of
coefficients in the approximation on the left-hand side, can be any integer up toN , the total
number of autocorrelations available. (In practice, one often choosesM much smaller than
N .) M is called theorderor number of polesof the approximation.

Whatever the chosen value ofM , the series expansion of the left-hand side of (13.7.7)
defines a certain sort ofextrapolationof the autocorrelation function to lags larger thanM , in
fact even to lags larger thanN , i.e., larger than the run of data can actually measure. It turns
out that this particular extrapolation can be shown to have, among all possible extrapolations,
the maximumentropyin a definable information-theoretic sense. Hence the namemaximum
entropy method, or MEM. The maximum entropy property has caused MEM to acquire a
certain “cult” popularity; one sometimes hears that it gives an intrinsically “better” estimate
than is given by other methods. Don’t believe it. MEM has the very cute property of
being able to fit sharp spectral features, but there is nothing else magical about its power
spectrum estimates.

The operations count inmemcof scales as the product ofN (the number of data points)
andM (the desired order of the MEM approximation). IfM were chosen to be as large as
N , then the method would be much slower than theN logN FFT methods of the previous
section. In practice, however, one usually wants to limit the order (or number of poles) of the
MEM approximation to a few times the number of sharp spectral features that one desires it
to fit. With this restricted number of poles, the method will smooth the spectrum somewhat,
but this is often a desirable property. While exact values depend on the application, one
might takeM = 10 or 20 or 50 forN = 1000 or 10000. In that case MEM estimation is
not much slower than FFT estimation.

We feel obliged to warn you thatmemcof can be a bit quirky at times. If the number of
poles or number of data points is too large, roundoff error can be a problem, even in double
precision. With “peaky” data (i.e., data with extremely sharp spectral features), the algorithm
may suggest split peaks even at modest orders, and the peaks may shift with the phase of the
sine wave. Also, with noisy input functions, if you choose too high an order, you will find
spurious peaks galore! Some experts recommend the use of this algorithm in conjunction with
more conservative methods, like periodograms, to help choose the correct model order, and to
avoid getting too fooled by spurious spectral features. MEM can be finicky,but it can also do
remarkable things. We recommend that you try it out, cautiously, on your own problems. We
now turn to the evaluation of the MEM spectral estimate from its coefficients.

The MEM estimation (13.7.4) is a function of continuously varying frequencyf . There
is no special significance to specific equally spaced frequencies as there was in the FFT
case. In fact, since the MEM estimate may have very sharp spectral features, one wants
to be able to evaluate it on a very fine mesh near to those features, but perhaps only more
coarsely farther away from them. Here is a subroutine which, given the coefficients already
computed, evaluates (13.7.4) and returns the estimated power spectrum as a function off∆
(the frequency times the sampling interval). Of course,f∆ should lie in the Nyquist range
between−1/2 and 1/2.

FUNCTION evlmem(fdt,d,m,xms)
INTEGER m
REAL evlmem,fdt,xms,d(m)

Given d, m, xms as returned by memcof, this function returns the power spectrum estimate
P (f) as a function of fdt = f∆.

INTEGER i
REAL sumi,sumr
DOUBLE PRECISION theta,wi,wpi,wpr,wr,wtemp Trigonometric recurrences in double

precision.theta=6.28318530717959d0*fdt
wpr=cos(theta) Set up for recurrence relations.
wpi=sin(theta)
wr=1.d0
wi=0.d0
sumr=1. These will accumulate the denominator of (13.7.4).

568 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

po
w

er
 s

pe
ct

ra
l d

en
si

tty

0.1

1

10

100

1000

.1 .15 .2 .25 .3
frequency f

Figure 13.7.1. Sample output of maximum entropy spectral estimation. The input signal consists of
512 samples of the sum of two sinusoids of very nearly the same frequency, plus white noise with about
equal power. Shown is an expanded portion of the full Nyquist frequency interval (which would extend
from zero to 0.5). The dashed spectral estimate uses 20 poles; the dotted, 40; the solid, 150. With the
larger number of poles, the method can resolve the distinct sinusoids; but the flat noise backgroundis
beginning to show spurious peaks. (Note logarithmic scale.)

sumi=0.
do 11 i=1,m Loop over the terms in the sum.

wtemp=wr
wr=wr*wpr-wi*wpi
wi=wi*wpr+wtemp*wpi
sumr=sumr-d(i)*sngl(wr)
sumi=sumi-d(i)*sngl(wi)

enddo 11

evlmem=xms/(sumr**2+sumi**2) Equation (13.7.4).
return
END

Be sure to evaluateP (f) on a fine enough grid tofind any narrow features that may
be there! Such narrow features, if present, can contain virtually all of the power in the data.
You might also wish to know how theP (f) produced by the routinesmemcof andevlmem is
normalized with respect to the mean square value of the input data vector. The answer is

∫

1/2

−1/2

P (f∆)d(f∆) = 2

∫

1/2

0

P (f∆)d(f∆) = mean square value of data (13.7.8)

Sample spectra produced by the routinesmemcofandevlmemare shown in Figure 13.7.1.

13.8 Spectral Analysis of Unevenly Sampled Data 569

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Childers, D.G. (ed.) 1978, Modern Spectrum Analysis (New York: IEEE Press), Chapter II.

Kay, S.M., and Marple, S.L. 1981, Proceedings of the IEEE, vol. 69, pp. 1380–1419.

13.8 Spectral Analysis of Unevenly Sampled
Data

Thus far, we have been dealing exclusively with evenly sampled data,

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (13.8.1)

where∆ is the sampling interval, whose reciprocal is the sampling rate. Recall also (§12.1)
the significance of the Nyquist critical frequency

fc ≡
1

2∆
(13.8.2)

as codified by the sampling theorem: A sampled data set like equation (13.8.1) contains
completeinformation about all spectral components in a signalh(t) up to the Nyquist
frequency, and scrambled oraliasedinformation about any signal components at frequencies
larger than the Nyquist frequency. The sampling theorem thus defines both the attractiveness,
and the limitation, of any analysis of an evenly spaced data set.

There are situations, however, where evenly spaced data cannot be obtained. A common
case is where instrumental drop-outs occur, so that data is obtained only on a (not consecutive
integer) subset of equation (13.8.1), the so-calledmissing dataproblem. Another case,
common in observational sciences like astronomy, is that the observer cannot completely
control the time of the observations, but must simply accept a certain dictated set ofti’s.

There are some obvious ways to get from unevenly spacedti’s to evenly spaced ones, as
in equation (13.8.1). Interpolation is one way: lay down a grid of evenly spaced times on your
data and interpolate values onto that grid; then use FFT methods. In the missing data problem,
you only have to interpolate on missing data points. If a lot of consecutive points are missing,
you might as well just set them to zero, or perhaps “clamp” the value at the last measured point.
However, the experience of practitioners of such interpolation techniques is not reassuring.
Generally speaking, such techniques perform poorly. Long gaps in the data, for example,
often produce a spurious bulge of power at low frequencies (wavelengths comparable to gaps).

A completely different method of spectral analysis for unevenly sampled data, one that
mitigates these difficulties and has some other very desirable properties, was developed by
Lomb [1], based in part on earlier work by Barning[2] and Van´ıček[3], and additionally
elaborated by Scargle[4]. The Lomb method (as we will call it) evaluates data, and sines
and cosines, only at timesti that are actually measured. Suppose that there areN data
pointshi ≡ h(ti), i = 1, . . . , N . Then first find the mean and variance of the data by
the usual formulas,

h ≡
1

N

N
∑

1

hi σ2 ≡
1

N − 1

N
∑

1

(hi − h)2 (13.8.3)

Now, the Lombnormalized periodogram(spectral power as a function of angular
frequencyω ≡ 2πf > 0) is defined by

PN(ω) ≡
1

2σ2

[

∑

j(hj − h) cosω(tj − τ)
]2

∑

j cos2 ω(tj − τ)
+

[

∑

j(hj − h) sinω(tj − τ)
]2

∑

j sin2 ω(tj − τ)

(13.8.4)

13.8 Spectral Analysis of Unevenly Sampled Data 569

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Childers, D.G. (ed.) 1978, Modern Spectrum Analysis (New York: IEEE Press), Chapter II.

Kay, S.M., and Marple, S.L. 1981, Proceedings of the IEEE, vol. 69, pp. 1380–1419.

13.8 Spectral Analysis of Unevenly Sampled
Data

Thus far, we have been dealing exclusively with evenly sampled data,

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (13.8.1)

where∆ is the sampling interval, whose reciprocal is the sampling rate. Recall also (§12.1)
the significance of the Nyquist critical frequency

fc ≡
1

2∆
(13.8.2)

as codified by the sampling theorem: A sampled data set like equation (13.8.1) contains
completeinformation about all spectral components in a signalh(t) up to the Nyquist
frequency, and scrambled oraliasedinformation about any signal components at frequencies
larger than the Nyquist frequency. The sampling theorem thus defines both the attractiveness,
and the limitation, of any analysis of an evenly spaced data set.

There are situations, however, where evenly spaced data cannot be obtained. A common
case is where instrumental drop-outs occur, so that data is obtained only on a (not consecutive
integer) subset of equation (13.8.1), the so-calledmissing dataproblem. Another case,
common in observational sciences like astronomy, is that the observer cannot completely
control the time of the observations, but must simply accept a certain dictated set ofti’s.

There are some obvious ways to get from unevenly spacedti’s to evenly spaced ones, as
in equation (13.8.1). Interpolation is one way: lay down a grid of evenly spaced times on your
data and interpolate values onto that grid; then use FFT methods. In the missing data problem,
you only have to interpolate on missing data points. If a lot of consecutive points are missing,
you might as well just set them to zero, or perhaps “clamp” the value at the last measured point.
However, the experience of practitioners of such interpolation techniques is not reassuring.
Generally speaking, such techniques perform poorly. Long gaps in the data, for example,
often produce a spurious bulge of power at low frequencies (wavelengths comparable to gaps).

A completely different method of spectral analysis for unevenly sampled data, one that
mitigates these difficulties and has some other very desirable properties, was developed by
Lomb [1], based in part on earlier work by Barning[2] and Van´ıček[3], and additionally
elaborated by Scargle[4]. The Lomb method (as we will call it) evaluates data, and sines
and cosines, only at timesti that are actually measured. Suppose that there areN data
pointshi ≡ h(ti), i = 1, . . . , N . Then first find the mean and variance of the data by
the usual formulas,

h ≡
1

N

N∑

1

hi σ2
≡

1

N − 1

N∑

1

(hi − h)2 (13.8.3)

Now, the Lombnormalized periodogram(spectral power as a function of angular
frequencyω ≡ 2πf > 0) is defined by

PN(ω) ≡
1

2σ2

[∑
j(hj − h) cosω(tj − τ)

]
2

∑
j cos2 ω(tj − τ)

+

[∑
j(hj − h) sinω(tj − τ)

]
2

∑
j
sin2 ω(tj − τ)

(13.8.4)

570 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Here τ is defined by the relation

tan(2ωτ) =

∑
j sin 2ωtj∑
j cos 2ωtj

(13.8.5)

The constantτ is a kind of offset that makesPN(ω) completely independent of shifting
all the ti’s by any constant. Lomb shows that this particular choice of offset has another,
deeper, effect: It makes equation (13.8.4) identical to the equation that one would obtain if one
estimated the harmonic content of a data set, at a given frequencyω, by linear least-squares
fitting to the model

h(t) = A cosωt + B sinωt (13.8.6)

This fact gives some insight into why the method can give results superior to FFT methods: It
weights the data on a “per point” basis instead of on a “per time interval” basis, when uneven
sampling can render the latter seriously in error.

A very common occurrence is that the measured data pointshi are the sum of a periodic
signal and independent (white) Gaussian noise. If we are trying to determine the presence
or absence of such a periodic signal, we want to be able to give a quantitative answer to
the question, “How significant is a peak in the spectrumPN (ω)?” In this question, the null
hypothesis is that the data values are independent Gaussian random values. A very nice
property of the Lomb normalized periodogram is that the viability of the null hypothesis can
be tested fairly rigorously, as we now discuss.

The word “normalized” refers to the factorσ2 in the denominator of equation (13.8.4).
Scargle[4] shows that with this normalization, at any particularω andin the case of the null
hypothesis,PN (ω) has an exponential probability distribution with unit mean. In other words,
the probability thatPN(ω) will be between some positivez andz + dz is exp(−z)dz. It
readily follows that, if we scan someM independentfrequencies, the probability thatnone
give values larger thanz is (1 − e−z)M . So

P (> z) ≡ 1 − (1 − e−z)M (13.8.7)

is the false-alarm probability of the nullhypothesis, that is, thesignificance levelof any peak
in PN (ω) that we do see. A small value for the false-alarm probability indicates a highly
significant periodic signal.

To evaluate this significance, we need to knowM . After all, the more frequencies we
look at, the less significant is some one modest bump in the spectrum. (Look long enough,
find anything!) A typical procedure will be to plotPN(ω) as a function of many closely
spaced frequencies in some large frequency range. How many of these are independent?

Before answering, let us first see how accurately we need to knowM . The interesting
region is where the significance is a small (significant) number,≪ 1. There, equation (13.8.7)
can be series expanded to give

P (> z) ≈ Me−z (13.8.8)

We see that the significance scales linearly withM . Practical significance levels are numbers
like 0.05, 0.01, 0.001, etc. An error of even±50% in the estimated significance is often
tolerable, since quoted significance levels are typically spaced apart by factors of 5 or 10. So
our estimate ofM need not be very accurate.

Horne and Baliunas[5] give results from extensive Monte Carlo experiments for
determiningM in various cases. In generalM depends on the number of frequencies
sampled, the number of data pointsN , and their detailed spacing. It turns out thatM is
very nearly equal toN when the data points are approximately equally spaced, and when the
sampled frequencies “fill” (oversample) the frequency range from 0 to the Nyquist frequency
fc (equation 13.8.2). Further, the value ofM is not importantly different for random
spacing of the data points than for equal spacing. When a larger frequency range than the
Nyquist range is sampled,M increases proportionally. About the only case whereM differs
significantly from the case of evenly spaced points is when the points are closely clumped,
say into groups of 3; then (as one would expect) the number of independent frequencies is
reduced by a factor of about 3.

13.8 Spectral Analysis of Unevenly Sampled Data 571

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

−2

−1

0

1

2

0 10 20 30 40 50 60 70 80 90 100
time

am
pl

itu
de

.001

.005

.01

.05

.1

.5

0

2

4

6

8

10

12

14

po
w

er

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
frequency

sig
nif

ica
nc

e
lev

els

Figure 13.8.1. Example of the Lomb algorithm in action. The 100 data points (upper figure) are at
random times between 0 and 100. Their sinusoidal component is readily uncovered (lower figure) by
the algorithm, at a significance level better than 0.001. If the 100 data points had been evenly spaced at
unit interval, the Nyquist critical frequency would have been 0.5. Note that, for these unevenly spaced
points, there is no visible aliasing into the Nyquist range.

The programperiod, below, calculates an effective value forM based on the above
rough-and-ready rules and assumes that there is no important clumping. This will be adequate
for most purposes. In any particular case, if it really matters, it is not too difficult to compute
a better value ofM by simple Monte Carlo: Holding fixed the number of data points and their
locationsti, generate synthetic data sets of Gaussian (normal) deviates, find the largest values
of PN(ω) for each such data set (using the accompanying program), and fit the resulting
distribution forM in equation (13.8.7).

Figure 13.8.1 shows the results of applying the method as discussed so far. In the
upper figure, the data points are plotted against time. Their number isN = 100, and their
distribution int is Poisson random. There is certainly no sinusoidal signal evident to the eye.
The lower figure plotsPN(ω) against frequencyf = ω/2π. The Nyquist critical frequency
that would obtain if the points were evenly spaced is atf = fc = 0.5. Since we have searched
up to about twice that frequency, and oversampled thef ’s to the point where successivevalues
of PN(ω) vary smoothly, we takeM = 2N . The horizontal dashed and dotted lines are
(respectively from bottom to top) significance levels 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001.
One sees a highly significant peak at a frequency of 0.81. That is in fact the frequency of the
sine wave that is present in the data. (You will have to take our word for this!)

Note that two other peaks approach, but do not exceed the 50% significance level; that
is about what one might expect by chance. It is also worth commenting on the fact that the
significant peak was found (correctly)above the Nyquist frequencyand without any significant
aliasing down into the Nyquist interval! That would not be possible for evenly spaced data. It
is possible here because the randomly spaced data hassomepoints spaced much closer than

572 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the “average” sampling rate, and these remove ambiguity from any aliasing.
Implementation of the normalized periodogram in code is straightforward,with, however,

a few points to be kept in mind. We are dealing with aslowalgorithm. Typically, forN data
points, we may wish to examine on the order of2N or 4N frequencies. Each combination
of frequency and data point has, in equations (13.8.4) and (13.8.5), not just a few adds or
multiplies, but four calls to trigonometric functions; the operations count can easily reach
several hundred timesN2. It is highly desirable — in fact results in a factor 4 speedup —
to replace these trigonometric calls by recurrences. That is possible only if the sequence of
frequencies examined is a linear sequence. Since such a sequence is probably what most users
would want anyway, we have built this into the implementation.

At the end of this section we describe a way to evaluate equations (13.8.4) and (13.8.5)
— approximately, but to any desired degree of approximation — by a fast method[6] whose
operation count goes only asN logN . This faster method should be used for long data sets.

The lowest independent frequencyf to be examined is the inverse of the span of the
input data,maxi(ti)−mini(ti) ≡ T . This is the frequency such that the data can include one
complete cycle. In subtracting off the data’s mean, equation (13.8.4) already assumed that you
are not interested in the data’s zero-frequency piece — which is just that meanvalue. In an
FFT method, higher independent frequencies would be integer multiples of1/T . Because we
are interested in the statistical significance of any peak that may occur, however, we had better
(over-) sample more finely than at interval1/T , so that sample points lie close to the top of
any peak. Thus, the accompanying program includes an oversampling parameter, calledofac;
a valueofac >

∼
4 might be typical in use. We also want to specify how high in frequency

to go, sayfhi. One guide to choosingfhi is to compare it with the Nyquist frequencyfc
which would obtain if theN data points were evenly spaced over the same spanT , that is
fc = N/(2T). The accompanying program includes an input parameterhifac, defined as
fhi/fc. The number of different frequenciesNP returned by the program is then given by

NP =
ofac× hifac

2
N (13.8.9)

(You have to remember to dimension the output arrays to at least this size.)
The code does the trigonometric recurrences in double precision and embodies a few

tricks with trigonometric identities, to decrease roundoff errors. If you are an aficionado of
such things you can puzzle it out. A final detail is that equation (13.8.7) will fail because of
roundoff error ifz is too large; but equation (13.8.8) is fine in this regime.

SUBROUTINE period(x,y,n,ofac,hifac,px,py,np,nout,jmax,prob)
INTEGER jmax,n,nout,np,NMAX
REAL hifac,ofac,prob,px(np),py(np),x(n),y(n)
PARAMETER (NMAX=2000) Maximum expected value of n.

C USES avevar
Given n data points with abscissas x(1:n) (which need not be equally spaced) and ordinates
y(1:n), and given a desired oversampling factor ofac (a typical value being 4 or larger),
this routine fills array px with an increasing sequence of frequencies (not angular frequencies)
up to hifac times the “average” Nyquist frequency, and fills array py with the values of
the Lomb normalized periodogram at those frequencies. The arrays x and y are not altered.
np, the dimension of px and py, must be large enough to contain the output, or an error
(pause) results. The routine also returns jmax such that py(jmax) is the maximum element
in py, and prob, an estimate of the significance of that maximum against the hypothesis of
random noise. A small value of prob indicates that a significant periodic signal is present.

INTEGER i,j
REAL ave,c,cc,cwtau,effm,expy,pnow,pymax,s,ss,sumc,sumcy,

* sums,sumsh,sumsy,swtau,var,wtau,xave,xdif,xmax,xmin,yy
DOUBLE PRECISION arg,wtemp,wi(NMAX),wpi(NMAX),

* wpr(NMAX),wr(NMAX),TWOPID
PARAMETER (TWOPID=6.2831853071795865D0)
nout=0.5*ofac*hifac*n
if(nout.gt.np) pause ’output arrays too short in period’
call avevar(y,n,ave,var) Get mean and variance of the input data.
xmax=x(1)
xmin=x(1) Go through data to get the range of abscissas.

13.8 Spectral Analysis of Unevenly Sampled Data 573

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 11 j=1,n
if(x(j).gt.xmax)xmax=x(j)
if(x(j).lt.xmin)xmin=x(j)

enddo 11

xdif=xmax-xmin
xave=0.5*(xmax+xmin)
pymax=0.
pnow=1./(xdif*ofac) Starting frequency.
do 12 j=1,n Initialize values for the trigonometric recurrences

at each data point. The recurrences are done
in double precision.

arg=TWOPID*((x(j)-xave)*pnow)
wpr(j)=-2.d0*sin(0.5d0*arg)**2
wpi(j)=sin(arg)
wr(j)=cos(arg)
wi(j)=wpi(j)

enddo 12

do 15 i=1,nout Main loop over the frequencies to be evaluated.
px(i)=pnow
sumsh=0.
sumc=0. First, loop over the data to get τ and related quantities.
do 13 j=1,n

c=wr(j)
s=wi(j)
sumsh=sumsh+s*c
sumc=sumc+(c-s)*(c+s)

enddo 13

wtau=0.5*atan2(2.*sumsh,sumc)
swtau=sin(wtau)
cwtau=cos(wtau)
sums=0.
sumc=0.
sumsy=0. Then, loop over the data again to get the periodogram value.
sumcy=0.
do 14 j=1,n

s=wi(j)
c=wr(j)
ss=s*cwtau-c*swtau
cc=c*cwtau+s*swtau
sums=sums+ss**2
sumc=sumc+cc**2
yy=y(j)-ave
sumsy=sumsy+yy*ss
sumcy=sumcy+yy*cc
wtemp=wr(j) Update the trigonometric recurrences.
wr(j)=(wr(j)*wpr(j)-wi(j)*wpi(j))+wr(j)
wi(j)=(wi(j)*wpr(j)+wtemp*wpi(j))+wi(j)

enddo 14

py(i)=0.5*(sumcy**2/sumc+sumsy**2/sums)/var
if (py(i).ge.pymax) then

pymax=py(i)
jmax=i

endif
pnow=pnow+1./(ofac*xdif)The next frequency.

enddo 15

expy=exp(-pymax) Evaluate statistical significance of the maximum.
effm=2.*nout/ofac
prob=effm*expy
if(prob.gt.0.01)prob=1.-(1.-expy)**effm
return
END

574 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Fast Computation of the Lomb Periodogram

We here show how equations (13.8.4) and (13.8.5) can be calculated — approximately,
but to any desired precision — with an operation count only of orderNP logNP . The
method uses the FFT, but it is in no sense an FFT periodogram of the data. It is an actual
evaluation of equations (13.8.4) and (13.8.5), the Lomb normalized periodogram, with exactly
that method’s strengths and weaknesses. This fast algorithm, due to Press and Rybicki[6],
makes feasible the application of the Lomb method to data sets at least as large as106 points;
it is already faster than straightforward evaluation of equations (13.8.4) and (13.8.5) for data
sets as small as 60 or 100 points.

Notice that the trigonometric sums that occur in equations (13.8.5) and (13.8.4) can be
reduced to four simpler sums. If we define

Sh ≡

N∑

j=1

(hj − h̄) sin(ωtj) Ch ≡

N∑

j=1

(hj − h̄) cos(ωtj) (13.8.10)

and

S2 ≡

N∑

j=1

sin(2ωtj) C2 ≡

N∑

j=1

cos(2ωtj) (13.8.11)

then
N∑

j=1

(hj − h̄) cosω(tj − τ) = Ch cosωτ + Sh sinωτ

N∑

j=1

(hj − h̄) sinω(tj − τ) = Sh cosωτ −Ch sinωτ

N∑

j=1

cos2 ω(tj − τ) =
N

2
+

1

2
C2 cos(2ωτ) +

1

2
S2 sin(2ωτ)

N∑

j=1

sin2 ω(tj − τ) =
N

2
−

1

2
C2 cos(2ωτ) −

1

2
S2 sin(2ωτ)

(13.8.12)

Now notice thatif thetjswereevenly spaced, then the four quantitiesSh,Ch,S2, andC2 could
be evaluated by two complex FFTs, and the results could then be substituted back through
equation (13.8.12) to evaluate equations (13.8.5) and (13.8.4). The problem is therefore only
to evaluate equations (13.8.10) and (13.8.11) for unevenly spaced data.

Interpolation, or rather reverse interpolation — we will here call itextirpolation —
provides the key. Interpolation, as classically understood, uses several function values on a
regular mesh to construct an accurate approximation at an arbitrary point. Extirpolation, just
the opposite,replacesa function value at an arbitrary point by several function values on a
regular mesh, doing this in such a way that sums over the mesh are an accurate approximation
to sums over the original arbitrary point.

It is not hard to see that the weight functions for extirpolation are identical to those for
interpolation. Suppose that the functionh(t) to be extirpolated is known only at the discrete
(unevenly spaced) pointsh(ti) ≡ hi, and that the functiong(t) (which will be, e.g.,cosωt)
can be evaluated anywhere. Lett̂k be a sequence of evenly spaced points on a regular mesh.
Then Lagrange interpolation (§3.1) gives an approximation of the form

g(t) ≈
∑

k

wk(t)g(t̂k) (13.8.13)

wherewk(t) are interpolation weights. Now let us evaluate a sum of interest by the following
scheme:

N∑

j=1

hjg(tj) ≈
N∑

j=1

hj

[
∑

k

wk(tj)g(t̂k)

]

=
∑

k

[
N∑

j=1

hjwk(tj)

]

g(t̂k) ≡
∑

k

ĥk g(t̂k)

(13.8.14)

13.8 Spectral Analysis of Unevenly Sampled Data 575

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Here ĥk ≡
∑

j hjwk(tj). Notice that equation (13.8.14) replaces the original sum by one
on the regular mesh. Notice also that the accuracy of equation (13.8.13) depends only on the
fineness of the mesh with respect to the functiong and has nothing to do with the spacing of the
pointstj or the functionh; therefore the accuracy of equation (13.8.14) also has this property.

The general outline of the fast evaluation method is therefore this: (i)Choose a mesh
size large enough to accommodate some desired oversampling factor, and large enough to
have several extirpolation points per half-wavelength of the highest frequency of interest. (ii)
Extirpolate the valueshi onto the mesh and take the FFT; this givesSh andCh in equation
(13.8.10). (iii) Extirpolate the constant values1 onto another mesh, and take its FFT; this,
with some manipulation, givesS2 andC2 in equation (13.8.11). (iv) Evaluate equations
(13.8.12), (13.8.5), and (13.8.4), in that order.

There are several other tricks involved in implementing this algorithm efficiently.You
can figure most out from the code, but we will mention the following points: (a) A nice way
to get transform values at frequencies2ω instead ofω is to stretch the time-domain data by a
factor 2, and then wrap it to double-cover the original length. (This trick goes back to Tukey.)
In the program, this appears as a modulo function. (b) Trigonometric identities are used to get
from the left-hand side of equation (13.8.5) to the various needed trigonometric functions of
ωτ . FORTRAN identifiers like (e.g.)cwt andhs2wt represent quantities like (e.g.)cosωτ and
1

2
sin(2ωτ). (c) The subroutinespread does extirpolation onto theM most nearly centered

mesh points around an arbitrary point; its turgid code evaluates coefficients of the Lagrange
interpolating polynomials, in an efficient manner.

SUBROUTINE fasper(x,y,n,ofac,hifac,wk1,wk2,nwk,nout,jmax,prob)
INTEGER jmax,n,nout,nwk,MACC
REAL hifac,ofac,prob,wk1(nwk),wk2(nwk),x(n),y(n)
PARAMETER (MACC=4) Number of interpolation points per 1/4 cycle of highest fre-

quency.C USES avevar,realft,spread
Given n data points with abscissas x (which need not be equally spaced) and ordinates y,
and given a desired oversampling factor ofac (a typical value being 4 or larger), this routine
fills array wk1 with a sequence of nout increasing frequencies (not angular frequencies) up
to hifac times the “average” Nyquist frequency, and fills array wk2 with the values of the
Lomb normalized periodogram at those frequencies. The arrays x and y are not altered.
nwk, the dimension of wk1 and wk2, must be large enough for intermediate work space,
or an error (pause) results. The routine also returns jmax such that wk2(jmax) is the
maximum element in wk2, and prob, an estimate of the significance of that maximum
against the hypothesis of random noise. A small value of prob indicates that a significant
periodic signal is present.

INTEGER j,k,ndim,nfreq,nfreqt
REAL ave,ck,ckk,cterm,cwt,den,df,effm,expy,fac,fndim,hc2wt,

* hs2wt,hypo,pmax,sterm,swt,var,xdif,xmax,xmin
EXTERNAL spread
nout=0.5*ofac*hifac*n
nfreqt=ofac*hifac*n*MACC Size the FFT as next power of 2 above nfreqt.
nfreq=64

1 if (nfreq.lt.nfreqt) then
nfreq=nfreq*2

goto 1
endif
ndim=2*nfreq
if(ndim.gt.nwk) pause ’workspaces too small in fasper’
call avevar(y,n,ave,var) Compute the mean, variance, and range of the data.
xmin=x(1)
xmax=xmin
do 11 j=2,n

if(x(j).lt.xmin)xmin=x(j)
if(x(j).gt.xmax)xmax=x(j)

enddo 11

xdif=xmax-xmin
do 12 j=1,ndim Zero the workspaces.

wk1(j)=0.
wk2(j)=0.

enddo 12

576 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fac=ndim/(xdif*ofac)
fndim=ndim
do 13 j=1,n Extirpolate the data into the workspaces.

ck=1.+mod((x(j)-xmin)*fac,fndim)
ckk=1.+mod(2.*(ck-1.),fndim)
call spread(y(j)-ave,wk1,ndim,ck,MACC)
call spread(1.,wk2,ndim,ckk,MACC)

enddo 13

call realft(wk1,ndim,1) Take the Fast Fourier Transforms.
call realft(wk2,ndim,1)
df=1./(xdif*ofac)
k=3
pmax=-1.
do 14 j=1,nout Compute the Lomb value for each frequency.

hypo=sqrt(wk2(k)**2+wk2(k+1)**2)
hc2wt=0.5*wk2(k)/hypo
hs2wt=0.5*wk2(k+1)/hypo
cwt=sqrt(0.5+hc2wt)
swt=sign(sqrt(0.5-hc2wt),hs2wt)
den=0.5*n+hc2wt*wk2(k)+hs2wt*wk2(k+1)
cterm=(cwt*wk1(k)+swt*wk1(k+1))**2/den
sterm=(cwt*wk1(k+1)-swt*wk1(k))**2/(n-den)
wk1(j)=j*df
wk2(j)=(cterm+sterm)/(2.*var)
if (wk2(j).gt.pmax) then

pmax=wk2(j)
jmax=j

endif
k=k+2

enddo 14 Estimate significance of largest peak value.
expy=exp(-pmax)
effm=2.*nout/ofac
prob=effm*expy
if(prob.gt.0.01)prob=1.-(1.-expy)**effm
return
END

SUBROUTINE spread(y,yy,n,x,m)
INTEGER m,n
REAL x,y,yy(n)

Given an array yy of length n, extirpolate (spread) a value y into m actual array elements
that best approximate the “fictional” (i.e., possibly noninteger) array element number x.
The weights used are coefficients of the Lagrange interpolating polynomial.

INTEGER ihi,ilo,ix,j,nden,nfac(10)
REAL fac
SAVE nfac
DATA nfac /1,1,2,6,24,120,720,5040,40320,362880/
if(m.gt.10) pause ’factorial table too small in spread’
ix=x
if(x.eq.float(ix))then

yy(ix)=yy(ix)+y
else

ilo=min(max(int(x-0.5*m+1.0),1),n-m+1)
ihi=ilo+m-1
nden=nfac(m)
fac=x-ilo
do 11 j=ilo+1,ihi

fac=fac*(x-j)
enddo 11

yy(ihi)=yy(ihi)+y*fac/(nden*(x-ihi))
do 12 j=ihi-1,ilo,-1

nden=(nden/(j+1-ilo))*(j-ihi)

13.9 Computing Fourier Integrals Using the FFT 577

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

yy(j)=yy(j)+y*fac/(nden*(x-j))
enddo 12

endif
return
END

CITED REFERENCES AND FURTHER READING:

Lomb, N.R. 1976, Astrophysics and Space Science, vol. 39, pp. 447–462. [1]

Barning, F.J.M. 1963, Bulletin of the Astronomical Institutes of the Netherlands, vol. 17, pp. 22–
28. [2]

Vanı́ček, P. 1971, Astrophysics and Space Science, vol. 12, pp. 10–33. [3]

Scargle, J.D. 1982, Astrophysical Journal, vol. 263, pp. 835–853. [4]

Horne, J.H., and Baliunas, S.L. 1986, Astrophysical Journal, vol. 302, pp. 757–763. [5]

Press, W.H. and Rybicki, G.B. 1989, Astrophysical Journal, vol. 338, pp. 277–280. [6]

13.9 Computing Fourier Integrals Using the FFT

Not uncommonly, one wants to calculate accurate numerical values for integrals of
the form

I =

∫ b

a

eiωth(t)dt , (13.9.1)

or the equivalent real and imaginary parts

Ic =

∫ b

a

cos(ωt)h(t)dt Is =

∫ b

a

sin(ωt)h(t)dt , (13.9.2)

and one wants to evaluate this integral for many different values ofω. In cases of interest,h(t)
is often a smooth function, but it is not necessarily periodic in[a, b], nor does it necessarily
go to zero ata or b. While it seems intuitivelyobvious that theforce majeureof the FFT
ought to be applicable to this problem, doing so turns out to be a surprisingly subtle matter,
as we will now see.

Let us first approach the problem naively, to see where the difficulty lies. Divide the
interval [a, b] into M subintervals, whereM is a large integer, and define

∆ ≡
b− a

M
, tj ≡ a + j∆ , hj ≡ h(tj) , j = 0, . . . ,M (13.9.3)

Notice thath0 = h(a) and hM = h(b), and that there areM + 1 valueshj . We can
approximate the integralI by a sum,

I ≈ ∆

M−1∑

j=0

hj exp(iωtj) (13.9.4)

which is at any rate first-order accurate. (If we centered thehj ’s and thetj ’s in the intervals,
we could be accurate to second order.) Now for certain values ofω andM , the sum in
equation (13.9.4) can be made into a discrete Fourier transform, or DFT, and evaluated by
the fast Fourier transform (FFT) algorithm. In particular, we can chooseM to be an integer
power of 2, and define a set of specialω’s by

ωm∆ ≡
2πm

M
(13.9.5)

13.9 Computing Fourier Integrals Using the FFT 577

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

yy(j)=yy(j)+y*fac/(nden*(x-j))
enddo 12

endif
return
END

CITED REFERENCES AND FURTHER READING:

Lomb, N.R. 1976, Astrophysics and Space Science, vol. 39, pp. 447–462. [1]

Barning, F.J.M. 1963, Bulletin of the Astronomical Institutes of the Netherlands, vol. 17, pp. 22–
28. [2]

Vanı́ček, P. 1971, Astrophysics and Space Science, vol. 12, pp. 10–33. [3]

Scargle, J.D. 1982, Astrophysical Journal, vol. 263, pp. 835–853. [4]

Horne, J.H., and Baliunas, S.L. 1986, Astrophysical Journal, vol. 302, pp. 757–763. [5]

Press, W.H. and Rybicki, G.B. 1989, Astrophysical Journal, vol. 338, pp. 277–280. [6]

13.9 Computing Fourier Integrals Using the FFT

Not uncommonly, one wants to calculate accurate numerical values for integrals of
the form

I =

∫ b

a

eiωth(t)dt , (13.9.1)

or the equivalent real and imaginary parts

Ic =

∫ b

a

cos(ωt)h(t)dt Is =

∫ b

a

sin(ωt)h(t)dt , (13.9.2)

and one wants to evaluate this integral for many different values ofω. In cases of interest,h(t)
is often a smooth function, but it is not necessarily periodic in[a, b], nor does it necessarily
go to zero ata or b. While it seems intuitivelyobvious that theforce majeureof the FFT
ought to be applicable to this problem, doing so turns out to be a surprisingly subtle matter,
as we will now see.

Let us first approach the problem naively, to see where the difficulty lies. Divide the
interval [a, b] into M subintervals, whereM is a large integer, and define

∆ ≡
b− a

M
, tj ≡ a+ j∆ , hj ≡ h(tj) , j = 0, . . . ,M (13.9.3)

Notice thath0 = h(a) and hM = h(b), and that there areM + 1 valueshj . We can
approximate the integralI by a sum,

I ≈ ∆

M−1
∑

j=0

hj exp(iωtj) (13.9.4)

which is at any rate first-order accurate. (If we centered thehj ’s and thetj ’s in the intervals,
we could be accurate to second order.) Now for certain values ofω andM , the sum in
equation (13.9.4) can be made into a discrete Fourier transform, or DFT, and evaluated by
the fast Fourier transform (FFT) algorithm. In particular, we can chooseM to be an integer
power of 2, and define a set of specialω’s by

ωm∆ ≡
2πm

M
(13.9.5)

578 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

wherem has the valuesm = 0, 1, . . . ,M/2 − 1. Then equation (13.9.4) becomes

I(ωm) ≈ ∆eiωma
M−1
∑

j=0

hje
2πimj/M = ∆eiωma[DFT(h0 . . . hM−1)]m (13.9.6)

Equation (13.9.6), while simple and clear, is emphaticallynot recommendedfor use: It is
likely to give wrong answers!

The problem lies in the oscillatory nature of the integral (13.9.1). Ifh(t) is at all smooth,
and ifω is large enough to imply several cycles in the interval[a, b] — in fact,ωm in equation
(13.9.5) gives exactlym cycles — then the value ofI is typically very small, so small that
it is easily swamped by first-order, or even (with centered values) second-order, truncation
error. Furthermore, the characteristic “small parameter” that occurs in the errorterm is not
∆/(b− a) = 1/M , as it would be if the integrand were not oscillatory, butω∆, which can be
as large asπ for ω’s within the Nyquist interval of the DFT (cf. equation 13.9.5). The result
is that equation (13.9.6) becomes systematically inaccurate asω increases.

It is a sobering exercise to implement equation (13.9.6) for an integral that can be done
analytically, and to see just how bad it is. We recommend that you try it.

Let us therefore turn to a more sophisticated treatment. Given the sampled pointshj , we
can approximate the functionh(t) everywhere in the interval[a, b] by interpolation on nearby
hj ’s. The simplest case is linear interpolation, using the two nearesthj ’s, one to the left and
one to the right. A higher-order interpolation, e.g., would be cubic interpolation, using two
points to the left and two to the right — except in the first and last subintervals, where we
must interpolate with threehj ’s on one side, one on the other.

The formulas for such interpolation schemes are (piecewise) polynomial in the inde-
pendent variablet, but with coefficients that are of course linear in the function values
hj . Although one does not usually think of it in this way, interpolation can be viewed as
approximating a function by a sum of kernel functions (which depend only on the interpolation
scheme) times sample values (which depend only on the function). Let us write

h(t) ≈

M
∑

j=0

hj ψ

(

t − tj
∆

)

+
∑

j=endpoints

hj ϕj

(

t− tj
∆

)

(13.9.7)

Hereψ(s) is the kernel function of an interior point: It is zero fors sufficiently negative
or sufficiently positive, and becomesnonzero only whens is in the range where the
hj multiplying it is actually used in the interpolation. We always haveψ(0) = 1 and
ψ(m) = 0, m = ±1,±2, . . . , since interpolation right on a sample point should give the
sampled function value. For linear interpolationψ(s) is piecewise linear, rises from 0 to 1
for s in (−1, 0), and falls back to 0 fors in (0, 1). For higher-order interpolation,ψ(s) is
made up piecewise of segments of Lagrange interpolation polynomials. It has discontinuous
derivatives at integer values ofs, where the pieces join, because the set of points used in
the interpolation changes discretely.

As already remarked, the subintervals closest toa andb require different (noncentered)
interpolation formulas. This is reflected in equation (13.9.7) by the second sum, with the
special endpoint kernelsϕj(s). Actually, for reasons that will become clearer below, we have
includedall the points in thefirst sum (with kernelψ), so theϕj ’s are actually differences
between true endpoint kernels and the interior kernelψ. It is a tedious, but straightforward,
exercise to write down all theϕj(s)’s for any particular order of interpolation, each one
consisting of differences of Lagrange interpolating polynomials spliced together piecewise.

Now apply the integral operator
∫ b

a
dt exp(iωt) to both sides of equation (13.9.7),

interchange the sums and integral, and make the changes of variables = (t − tj)/∆ in the
first sum,s = (t − a)/∆ in the second sum. The result is

I ≈ ∆eiωa

[

W (θ)

M
∑

j=0

hje
ijθ +

∑

j=endpoints

hjαj(θ)

]

(13.9.8)

Hereθ ≡ ω∆, and the functionsW (θ) andαj(θ) are defined by

W (θ) ≡

∫

∞

−∞

ds eiθsψ(s) (13.9.9)

13.9 Computing Fourier Integrals Using the FFT 579

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

αj(θ) ≡

∫

∞

−∞

ds eiθsϕj(s− j) (13.9.10)

The key point is that equations (13.9.9) and (13.9.10) can be evaluated, analytically,
once and for all, for any given interpolation scheme. Then equation (13.9.8) is an algorithm
for applying “endpoint corrections” to a sum which (as we will see) can be done using the
FFT, giving a result with high-order accuracy.

We will consider only interpolations that are left-right symmetric. Then symmetry
implies

ϕM−j(s) = ϕj(−s) αM−j(θ) = eiθMα*
j(θ) = eiω(b−a)α*

j(θ) (13.9.11)

where* denotes complex conjugation. Also,ψ(s) = ψ(−s) implies thatW (θ) is real.
Turn now to the first sum in equation (13.9.8), which we want to do by FFT methods.

To do so, choose someN that is an integer power of 2 withN ≥ M + 1. (Note that
M need not be a power of two, soM = N − 1 is allowed.) IfN > M + 1, define
hj ≡ 0, M + 1 < j ≤ N − 1, i.e., “zero pad” the array ofhj ’s so thatj takes on the range
0 ≤ j ≤ N − 1. Then the sum can be done as a DFT for the special valuesω = ωn given by

ωn∆ ≡
2πn

N
≡ θ n = 0, 1, . . . ,

N

2
− 1 (13.9.12)

For fixedM , the largerN is chosen, the finer the sampling in frequency space. The
valueM , on the other hand, determines thehighestfrequency sampled, since∆ decreases
with increasingM (equation 13.9.3), and the largest value ofω∆ is always just underπ
(equation 13.9.12). In general it is advantageous to oversample byat leasta factor of 4, i.e.,
N > 4M (see below). We can now rewrite equation (13.9.8) in its final form as

I(ωn) = ∆eiωna

{

W (θ)[DFT(h0 . . . hN−1)]n

+ α0(θ)h0 + α1(θ)h1 + α2(θ)h2 + α3(θ)h3 + . . .

+ eiω(b−a)
[

α*
0(θ)hM + α*

1(θ)hM−1 + α*
2(θ)hM−2 + α*

3(θ)hM−3 + . . .
]

}

(13.9.13)
For cubic (or lower) polynomial interpolation, at most the terms explicitly shown above

are nonzero; the ellipses (. . .) can therefore be ignored, and we need explicit forms only for
the functionsW,α0, α1, α2, α3, calculated with equations (13.9.9) and (13.9.10). We have
worked these out for you, in the trapezoidal (second-order) and cubic (fourth-order) cases.
Here are the results, along with the first few terms of their power series expansions for smallθ:

Trapezoidal order:

W (θ) =
2(1 − cos θ)

θ2
≈ 1 −

1

12
θ
2 +

1

360
θ
4
−

1

20160
θ
6

α0(θ) = −

(1 − cos θ)

θ2
+ i

(θ − sin θ)

θ2

≈ −

1

2
+

1

24
θ
2
−

1

720
θ
4 +

1

40320
θ
6 + iθ

(

1

6
−

1

120
θ
2 +

1

5040
θ
4
−

1

362880
θ
6

)

α1 = α2 = α3 = 0

580 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Cubic order:

W (θ) =

(

6 + θ2

3θ4

)

(3 − 4 cos θ + cos2θ) ≈ 1 −

11

720
θ
4 +

23

15120
θ
6

α0(θ) =
(−42 + 5θ2) + (6 + θ2)(8 cos θ − cos 2θ)

6θ4
+ i

(−12θ + 6θ3) + (6 + θ2) sin 2θ

6θ4

≈ −

2

3
+

1

45
θ
2 +

103

15120
θ
4
−

169

226800
θ
6 + iθ

(

2

45
+

2

105
θ
2
−

8

2835
θ
4 +

86

467775
θ
6

)

α1(θ) =
14(3− θ2) − 7(6 + θ2) cos θ

6θ4
+ i

30θ − 5(6 + θ2) sin θ

6θ4

≈

7

24
−

7

180
θ
2 +

5

3456
θ
4
−

7

259200
θ
6 + iθ

(

7

72
−

1

168
θ
2 +

11

72576
θ
4
−

13

5987520
θ
6

)

α2(θ) =
−4(3 − θ2) + 2(6 + θ2) cos θ

3θ4
+ i

−12θ + 2(6 + θ2) sin θ

3θ4

≈ −

1

6
+

1

45
θ
2
−

5

6048
θ
4 +

1

64800
θ
6 + iθ

(

−

7

90
+

1

210
θ
2
−

11

90720
θ
4 +

13

7484400
θ
6

)

α3(θ) =
2(3 − θ2) − (6 + θ2) cos θ

6θ4
+ i

6θ − (6 + θ2) sin θ

6θ4

≈

1

24
−

1

180
θ
2 +

5

24192
θ
4
−

1

259200
θ
6 + iθ

(

7

360
−

1

840
θ
2 +

11

362880
θ
4
−

13

29937600
θ
6

)

The programdftcor, below, implements the endpoint corrections for the cubic case.
Given input values ofω,∆, a, b, and an array with the eight valuesh0, . . . , h3,hM−3, . . . , hM ,
it returns the real and imaginary parts of the endpoint corrections in equation (13.9.13), and the
factorW (θ). The code is turgid, but only because the formulas above are complicated. The
formulas have cancellations to high powers ofθ. It is therefore necessary to compute the right-
hand sides in double precision, even when the corrections are desired only to single precision.
It is also necessary to use the series expansion for small values ofθ. The optimal cross-over
value ofθ depends on your machine’s wordlength, but you can always find it experimentally
as the largest value where the two methods give identical results to machine precision.

SUBROUTINE dftcor(w,delta,a,b,endpts,corre,corim,corfac)
REAL a,b,corfac,corim,corre,delta,w,endpts(8)

For an integral approximated by a discrete Fourier transform, this routine computes the
correction factor that multiplies the DFT and the endpoint correction to be added. Input
is the angular frequency w, stepsize delta, lower and upper limits of the integral a and b,
while the array endpts contains the first 4 and last 4 function values. The correction factor
W (θ) is returned as corfac, while the real and imaginary parts of the endpoint correction
are returned as corre and corim.

REAL a0i,a0r,a1i,a1r,a2i,a2r,a3i,a3r,arg,c,cl,cr,s,sl,sr,t,
* t2,t4,t6

DOUBLE PRECISION cth,ctth,spth2,sth,sth4i,stth,th,th2,th4,
* tmth2,tth4i

th=w*delta
if (a.ge.b.or.th.lt.0.d0.or.th.gt.3.1416d0)

* pause ’bad arguments to dftcor’
if(abs(th).lt.5.d-2)then Use series.

t=th
t2=t*t
t4=t2*t2
t6=t4*t2
corfac=1.-(11./720.)*t4+(23./15120.)*t6
a0r=(-2./3.)+t2/45.+(103./15120.)*t4-(169./226800.)*t6
a1r=(7./24.)-(7./180.)*t2+(5./3456.)*t4-(7./259200.)*t6

13.9 Computing Fourier Integrals Using the FFT 581

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

a2r=(-1./6.)+t2/45.-(5./6048.)*t4+t6/64800.
a3r=(1./24.)-t2/180.+(5./24192.)*t4-t6/259200.
a0i=t*(2./45.+(2./105.)*t2-(8./2835.)*t4+(86./467775.)*t6)
a1i=t*(7./72.-t2/168.+(11./72576.)*t4-(13./5987520.)*t6)
a2i=t*(-7./90.+t2/210.-(11./90720.)*t4+(13./7484400.)*t6)
a3i=t*(7./360.-t2/840.+(11./362880.)*t4-(13./29937600.)*t6)

else Use trigonometric formulas in double precision.
cth=cos(th)
sth=sin(th)
ctth=cth**2-sth**2
stth=2.d0*sth*cth
th2=th*th
th4=th2*th2
tmth2=3.d0-th2
spth2=6.d0+th2
sth4i=1./(6.d0*th4)
tth4i=2.d0*sth4i
corfac=tth4i*spth2*(3.d0-4.d0*cth+ctth)
a0r=sth4i*(-42.d0+5.d0*th2+spth2*(8.d0*cth-ctth))
a0i=sth4i*(th*(-12.d0+6.d0*th2)+spth2*stth)
a1r=sth4i*(14.d0*tmth2-7.d0*spth2*cth)
a1i=sth4i*(30.d0*th-5.d0*spth2*sth)
a2r=tth4i*(-4.d0*tmth2+2.d0*spth2*cth)
a2i=tth4i*(-12.d0*th+2.d0*spth2*sth)
a3r=sth4i*(2.d0*tmth2-spth2*cth)
a3i=sth4i*(6.d0*th-spth2*sth)

endif
cl=a0r*endpts(1)+a1r*endpts(2)+a2r*endpts(3)+a3r*endpts(4)
sl=a0i*endpts(1)+a1i*endpts(2)+a2i*endpts(3)+a3i*endpts(4)
cr=a0r*endpts(8)+a1r*endpts(7)+a2r*endpts(6)+a3r*endpts(5)
sr=-a0i*endpts(8)-a1i*endpts(7)-a2i*endpts(6)-a3i*endpts(5)
arg=w*(b-a)
c=cos(arg)
s=sin(arg)
corre=cl+c*cr-s*sr
corim=sl+s*cr+c*sr
return
END

Since the use ofdftcor can be confusing, we also give an illustrative programdftint

which usesdftcor to compute equation (13.9.1) for generala, b, ω, andh(t). Several points
within this program bear mentioning: The parametersM andNDFT correspond toM andN
in the above discussion. On successive calls, we recompute the Fourier transform only ifa
or b has changed. (We should also recompute ifh(t) has changed, butFORTRAN doesn’t
provide a way for us to test this.)

Sincedftint is designed to work for any value ofω satisfyingω∆ < π, not just the
special values returned by the DFT (equation 13.9.12), we do polynomial interpolation of
degreeMPOL on the DFT spectrum. You should be warned that a large factor of oversampling
(N ≫ M) is required for this interpolation to be accurate. After interpolation, we add the
endpoint corrections fromdftcor, which can be evaluated for anyω.

While dftcor is good at what it does,dftint is illustrative only. It is not a general
purpose program, because it does not adapt its parametersM, NDFT, MPOL, or its interpolation
scheme, to any particular functionh(t). You will have to experiment with your own
application.

SUBROUTINE dftint(func,a,b,w,cosint,sinint)
INTEGER M,NDFT,MPOL
REAL a,b,cosint,sinint,w,func,TWOPI
PARAMETER (M=64,NDFT=1024,MPOL=6,TWOPI=2.*3.14159265)
EXTERNAL func

C USES dftcor,func,polint,realft

582 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Example program illustrating how to use the routine dftcor. The user supplies an external

function func that returns the quantity h(t). The routine then returns
∫ b
a cos(ωt)h(t)dt

as cosint and
∫ b
a sin(ωt)h(t)dt as sinint.

Parameters: The values of M, NDFT, and MPOL are merely illustrative and should be opti-
mized for your particular application. M is the number of subintervals, NDFT is the length of
the FFT (a power of 2), and MPOL is the degree of polynomial interpolation used to obtain
the desired frequency from the FFT.

INTEGER init,j,nn
REAL aold,bold,c,cdft,cerr,corfac,corim,corre,delta,en,s,

* sdft,serr,cpol(MPOL),data(NDFT),endpts(8),spol(MPOL),
* xpol(MPOL)

SAVE init,aold,bold,delta,data,endpts
DATA init/0/,aold/-1.e30/,bold/-1.e30/
if (init.ne.1.or.a.ne.aold.or.b.ne.bold) then Do we need to initialize, or is only ω

changed?init=1
aold=a
bold=b
delta=(b-a)/M
do 11 j=1,M+1 Load the function values into the data array.

data(j)=func(a+(j-1)*delta)
enddo 11

do 12 j=M+2,NDFT Zero pad the rest of the data array.
data(j)=0.

enddo 12

do 13 j=1,4 Load the endpoints.
endpts(j)=data(j)
endpts(j+4)=data(M-3+j)

enddo 13

call realft(data,NDFT,1)
realft returns the unused value corresponding to ωN/2 in data(2). We actually want
this element to contain the imaginary part corresponding to ω0, which is zero.

data(2)=0.
endif

Now interpolate on the DFT result for the desired frequency. If the frequency is an ωn, i.e.,
the quantity en is an integer, then cdft=data(2*en-1), sdft=data(2*en), and you could
omit the interpolation.

en=w*delta*NDFT/TWOPI+1.
nn=min(max(int(en-0.5*MPOL+1.),1),NDFT/2-MPOL+1) Leftmost point for the interpola-

tion.do 14 j=1,MPOL
cpol(j)=data(2*nn-1)
spol(j)=data(2*nn)
xpol(j)=nn
nn=nn+1

enddo 14

call polint(xpol,cpol,MPOL,en,cdft,cerr)
call polint(xpol,spol,MPOL,en,sdft,serr)
call dftcor(w,delta,a,b,endpts,corre,corim,corfac) Now get the endpoint cor-

rection and the multiplica-
tive factor W (θ).

cdft=cdft*corfac+corre
sdft=sdft*corfac+corim
c=delta*cos(w*a) Finally multiply by ∆ and exp(iωa).
s=delta*sin(w*a)
cosint=c*cdft-s*sdft
sinint=s*cdft+c*sdft
return
END

Sometimes one is interested only in the discrete frequenciesωm of equation (13.9.5),
the ones that have integral numbers of periods in the interval[a, b]. For smoothh(t), the
value ofI tends to be much smaller in magnitude at theseω’s than at values in between,
since the integral half-periods tend to cancel precisely. (That is why one must oversample for
interpolation to be accurate:I(ω) is oscillatory with small magnitude near theωm’s.) If you
want theseωm’s without messy (and possibly inaccurate) interpolation, you have to setN to

13.9 Computing Fourier Integrals Using the FFT 583

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

a multiple ofM (compare equations 13.9.5 and 13.9.12). In the method implemented above,
however,N must be at leastM + 1, so the smallest such multiple is2M , resulting in a factor
∼2 unnecessary computing. Alternatively, one can derive a formula like equation (13.9.13),
but with the last sample functionhM = h(b) omitted from the DFT, but included entirely in
the endpoint correction forhM . Then one can setM = N (an integer power of 2) and get the
special frequencies of equation (13.9.5) with no additional overhead. The modified formula is

I(ωm) = ∆eiωma

{

W (θ)[DFT(h0 . . . hM−1)]m

+ α0(θ)h0 + α1(θ)h1 + α2(θ)h2 + α3(θ)h3

+ eiω(b−a)
[

A(θ)hM + α*
1(θ)hM−1 + α*

2(θ)hM−2 + α*
3(θ)hM−3

]

}

(13.9.14)

whereθ ≡ ωm∆ andA(θ) is given by

A(θ) = −α0(θ) (13.9.15)

for the trapezoidal case, or

A(θ) =
(−6 + 11θ2) + (6 + θ2) cos 2θ

6θ4
− i Im[α0(θ)]

≈
1

3
+

1

45
θ2 −

8

945
θ4 +

11

14175
θ6 − i Im[α0(θ)]

(13.9.16)

for the cubic case.
Factors likeW (θ) arise naturally whenever one calculates Fourier coefficients of smooth

functions, and they are sometimes called attenuation factors[1]. However, the endpoint
corrections are equally important in obtaining accurate values of integrals. Narasimhan
and Karthikeyan[2] have given a formula that is algebraically equivalent to our trapezoidal
formula. However, their formula requires the evaluation oftwo FFTs, which is unnecessary.
The basic idea used here goes back at least to Filon[3] in 1928 (before the FFT!). He used
Simpson’s rule (quadratic interpolation). Since this interpolation is not left-right symmetric,
two Fourier transforms are required. An alternative algorithm for equation (13.9.14) has been
given by Lyness in[4]; for related references, see[5]. To our knowledge, the cubic-order
formulas derived here have not previously appeared in the literature.

Calculating Fourier transforms when the range of integration is(−∞,∞) can be tricky.
If the function falls off reasonably quickly at infinity, you can split the integral at a large
enough value oft. For example, the integration to+ ∞ can be written

∫

∞

a

eiωth(t) dt =

∫ b

a

eiωth(t) dt+

∫

∞

b

eiωth(t) dt

=

∫ b

a

eiωth(t) dt−
h(b)eiωb

iω
+
h′(b)eiωb

(iω)2
− · · · (13.9.17)

The splitting pointb must be chosen large enough that the remaining integral over(b,∞) is
small. Successive terms in its asymptotic expansion are found by integrating by parts. The
integral over(a, b) can be done usingdftint. You keep as many terms in the asymptotic
expansion as you can easily compute. See[6] for some examples of this idea. More
powerful methods, which work well for long-tailed functions but which do not use the FFT,
are described in[7-9].

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
p. 88. [1]

Narasimhan, M.S. and Karthikeyan, M. 1984, IEEE Transactions on Antennas & Propagation,
vol. 32, pp. 404–408. [2]

Filon, L.N.G. 1928, Proceedings of the Royal Society of Edinburgh, vol. 49, pp. 38–47. [3]

584 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Giunta, G. and Murli, A. 1987, ACM Transactions on Mathematical Software, vol. 13, pp. 97–
107. [4]

Lyness, J.N. 1987, in Numerical Integration, P. Keast and G. Fairweather, eds. (Dordrecht:
Reidel). [5]

Pantis, G. 1975, Journal of Computational Physics, vol. 17, pp. 229–233. [6]

Blakemore, M., Evans, G.A., and Hyslop, J. 1976, Journal of Computational Physics, vol. 22,
pp. 352–376. [7]

Lyness, J.N., and Kaper, T.J. 1987, SIAM Journal on Scientific and Statistical Computing, vol. 8,
pp. 1005–1011. [8]

Thakkar, A.J., and Smith, V.H. 1975, Computer Physics Communications, vol. 10, pp. 73–79. [9]

13.10 Wavelet Transforms

Like the fast Fourier transform (FFT), the discrete wavelet transform(DWT) is
a fast, linear operation that operates on a data vector whose length is an integer power
of two, transforming it into a numerically different vector of the same length. Also
like the FFT, the wavelet transform is invertible and in fact orthogonal — the inverse
transform, when viewed as a big matrix, is simply the transpose of the transform.
Both FFT and DWT, therefore, can be viewed as a rotation in function space, from
the input space (or time) domain, where the basis functions are the unit vectorsei,
or Dirac delta functions in the continuum limit, to a different domain. For the FFT,
this new domain has basis functions that are the familiar sines and cosines. In the
wavelet domain, the basis functions are somewhat more complicated and have the
fanciful names “mother functions” and “wavelets.”

Of course there are an infinity of possible bases for function space, almost all of
them uninteresting! What makes the wavelet basis interesting is that,unlikesines and
cosines, individual wavelet functions are quite localized in space; simultaneously,
like sines and cosines, individual wavelet functions are quite localized in frequency
or (more precisely) characteristic scale. As we will see below, the particular kind
of dual localization achieved by wavelets renders large classes of functions and
operators sparse, or sparse to some high accuracy, when transformedinto the wavelet
domain. Analogously with the Fourier domain, where a class of computations, like
convolutions, become computationally fast, there is a large class of computations
— those that can take advantage of sparsity — that become computationally fast
in the wavelet domain[1].

Unlike sines and cosines, which define a unique Fourier transform, there is
not one single unique set of wavelets; in fact, there are infinitely many possible
sets. Roughly, the different sets of wavelets make different trade-offs between
how compactly they are localized in space and how smooth they are. (There are
further fine distinctions.)

Daubechies Wavelet Filter Coefficients

A particular set of wavelets is specified by a particular set of numbers, called
wavelet filter coefficients. Here, we will largely restrict ourselves to wavelet filters
in a class discovered by Daubechies[2]. This class includes members ranging from
highly localized to highly smooth. The simplest (and most localized) member, often
calledDAUB4, has only four coefficients,c0, . . . , c3. For the moment we specialize
to this case for ease of notation.

584 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Giunta, G. and Murli, A. 1987, ACM Transactions on Mathematical Software, vol. 13, pp. 97–
107. [4]

Lyness, J.N. 1987, in Numerical Integration, P. Keast and G. Fairweather, eds. (Dordrecht:
Reidel). [5]

Pantis, G. 1975, Journal of Computational Physics, vol. 17, pp. 229–233. [6]

Blakemore, M., Evans, G.A., and Hyslop, J. 1976, Journal of Computational Physics, vol. 22,
pp. 352–376. [7]

Lyness, J.N., and Kaper, T.J. 1987, SIAM Journal on Scientific and Statistical Computing, vol. 8,
pp. 1005–1011. [8]

Thakkar, A.J., and Smith, V.H. 1975, Computer Physics Communications, vol. 10, pp. 73–79. [9]

13.10 Wavelet Transforms

Like the fast Fourier transform (FFT), the discrete wavelet transform(DWT) is
a fast, linear operation that operates on a data vector whose length is an integer power
of two, transforming it into a numerically different vector of the same length. Also
like the FFT, the wavelet transform is invertible and in fact orthogonal — the inverse
transform, when viewed as a big matrix, is simply the transpose of the transform.
Both FFT and DWT, therefore, can be viewed as a rotation in function space, from
the input space (or time) domain, where the basis functions are the unit vectorsei,
or Dirac delta functions in the continuum limit, to a different domain. For the FFT,
this new domain has basis functions that are the familiar sines and cosines. In the
wavelet domain, the basis functions are somewhat more complicated and have the
fanciful names “mother functions” and “wavelets.”

Of course there are an infinity of possible bases for function space, almost all of
them uninteresting! What makes the wavelet basis interesting is that,unlikesines and
cosines, individual wavelet functions are quite localized in space; simultaneously,
like sines and cosines, individual wavelet functions are quite localized in frequency
or (more precisely) characteristic scale. As we will see below, the particular kind
of dual localization achieved by wavelets renders large classes of functions and
operators sparse, or sparse to some high accuracy, when transformedinto the wavelet
domain. Analogously with the Fourier domain, where a class of computations, like
convolutions, become computationally fast, there is a large class of computations
— those that can take advantage of sparsity — that become computationally fast
in the wavelet domain[1].

Unlike sines and cosines, which define a unique Fourier transform, there is
not one single unique set of wavelets; in fact, there are infinitely many possible
sets. Roughly, the different sets of wavelets make different trade-offs between
how compactly they are localized in space and how smooth they are. (There are
further fine distinctions.)

Daubechies Wavelet Filter Coefficients

A particular set of wavelets is specified by a particular set of numbers, called
wavelet filter coefficients. Here, we will largely restrict ourselves to wavelet filters
in a class discovered by Daubechies[2]. This class includes members ranging from
highly localized to highly smooth. The simplest (and most localized) member, often
calledDAUB4, has only four coefficients,c0, . . . , c3. For the moment we specialize
to this case for ease of notation.

13.10 Wavelet Transforms 585

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Consider the following transformation matrix acting on a column vector of
data to its right:

c0 c1 c2 c3
c3 −c2 c1 −c0

c0 c1 c2 c3
c3 −c2 c1 −c0

...
...

...
c0 c1 c2 c3
c3 −c2 c1 −c0

c2 c3 c0 c1
c1 −c0 c3 −c2

(13.10.1)

Here blank entries signify zeroes. Note the structure of this matrix. The first row
generates one component of the data convolved with the filter coefficientsc0 . . . , c3.
Likewise the third, fifth, and other odd rows. If the even rows followed this pattern,
offset by one, then the matrix would be a circulant, that is, an ordinary convolution
that could be done by FFT methods. (Note how the last two rows wrap around
like convolutions with periodic boundary conditions.) Instead of convolving with
c0, . . . , c3, however, the even rows perform a different convolution, with coefficients
c3,−c2, c1,−c0. The action of the matrix, overall, is thus to perform two related
convolutions, then to decimateeach of them by half (throw away half the values),
and interleave the remaining halves.

It is useful to think of the filterc0, . . . , c3 as being a smoothing filter, call itH ,
something like a moving average of four points. Then, because of the minussigns,
the filterc3,−c2, c1,−c0, call it G, is not a smoothing filter. (In signal processing
contexts,H andG are calledquadrature mirror filters[3].) In fact, thec’s are chosen
so as to makeG yield, insofar as possible, azeroresponse to a sufficiently smooth
data vector. This is done by requiring the sequencec3,−c2, c1,−c0 to have a certain
number of vanishing moments. When this is the case forp moments (starting with
the zeroth), a set of wavelets is said to satisfy an “approximation condition of order
p.” This results in the output ofH , decimated by half, accurately representing the
data’s “smooth” information. The output ofG, also decimated, is referred to as
the data’s “detail” information[4].

For such a characterization to be useful, it must be possible to reconstruct the
original data vector of lengthN from itsN/2 smooth or s-components and itsN/2
detail or d-components. That is effected by requiring the matrix (13.10.1) to be
orthogonal, so that its inverse is just the transposed matrix

c0 c3 · · · c2 c1
c1 −c2 · · · c3 −c0
c2 c1 c0 c3
c3 −c0 c1 −c2

...
c2 c1 c0 c3
c3 −c0 c1 −c2

c2 c1 c0 c3
c3 −c0 c1 −c2

(13.10.2)

586 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

One sees immediately that matrix (13.10.2) is inverse to matrix (13.10.1) if and
only if these two equations hold,

c20 + c21 + c22 + c23 = 1

c2c0 + c3c1 = 0
(13.10.3)

If additionally we require the approximation condition of orderp = 2, then two
additional relations are required,

c3 − c2 + c1 − c0 = 0

0c3 − 1c2 + 2c1 − 3c0 = 0
(13.10.4)

Equations (13.10.3) and (13.10.4) are 4 equations for the 4 unknownsc0, . . . , c3,
first recognized and solved by Daubechies. The unique solution (up to a left-right
reversal) is

c0 = (1 +
√

3)/4
√

2 c1 = (3 +
√

3)/4
√

2

c2 = (3 −
√

3)/4
√

2 c3 = (1 −
√

3)/4
√

2
(13.10.5)

In fact, DAUB4 is only the most compact of a sequence of wavelet sets: If we
had six coefficients instead of four, there would be three orthogonality requirements
in equation (13.10.3) (with offsets of zero, two, and four), and we could require
the vanishing ofp = 3 moments in equation (13.10.4). In this case, DAUB6, the
solution coefficients can also be expressed in closed form,

c0 = (1 +
√

10 +
√

5 + 2
√

10)/16
√

2 c1 = (5 +
√

10 + 3
√

5 + 2
√

10)/16
√

2

c2 = (10− 2
√

10 + 2
√

5 + 2
√

10)/16
√

2 c3 = (10− 2
√

10 − 2
√

5 + 2
√

10)/16
√

2

c4 = (5 +
√

10 − 3
√

5 + 2
√

10)/16
√

2 c5 = (1 +
√

10 −
√

5 + 2
√

10)/16
√

2

(13.10.6)
For higherp, up to 10, Daubechies[2] has tabulated the coefficients numerically. The
number of coefficients increases by two each timep is increased by one.

Discrete Wavelet Transform

We have not yet defined the discrete wavelet transform (DWT), but we are
almost there: The DWT consists of applying a wavelet coefficient matrix like
(13.10.1)hierarchically, first to the full data vector of lengthN , then to the “smooth”
vector of lengthN/2, then to the “smooth-smooth” vector of lengthN/4, and
so on until only a trivial number of “smooth-. . .-smooth” components (usually 2)
remain. The procedure is sometimes called apyramidal algorithm[4], for obvious
reasons. The output of the DWT consists of these remaining components and all
the “detail” components that wereaccumulated along the way. A diagram should
make the procedure clear:

13.10 Wavelet Transforms 587

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15
y16

13.10.1−→

s1
d1

s2
d2

s3
d3

s4
d4

s5
d5

s6
d6

s7
d7

s8
d8

permute−→

s1
s2
s3
s4
s5
s6
s7
s8
d1

d2

d3

d4

d5

d6

d7

d8

13.10.1−→

S1

D1

S2

D2

S3

D3

S4

D4
d1

d2

d3

d4

d5

d6

d7

d8

permute−→

S1

S2

S3

S4
D1

D2

D3

D4
d1

d2

d3

d4

d5

d6

d7

d8

etc.−→

S1

S2
D1

D2
D1

D2

D3

D4
d1

d2

d3

d4

d5

d6

d7

d8

(13.10.7)
If the length of the data vector were a higher power of two, there would be

more stages of applying (13.10.1) (or any other wavelet coefficients) and permuting.
The endpoint will always be a vector with twoS ’s and a hierarchy ofD’s, D’s,
d’s, etc. Notice that onced’s are generated, they simply propagate through to all
subsequent stages.

A valuedi of any level is termed a “wavelet coefficient” of the original data
vector; the final valuesS1,S2 should strictlybe called “mother-functioncoefficients,”
although the term “wavelet coefficients” is often used loosely for bothd’s and final
S ’s. Since the full procedure is a composition of orthogonal linear operations, the
whole DWT is itself an orthogonal linear operator.

To invert the DWT, one simply reverses the procedure, starting with the smallest
level of the hierarchy and working (in equation 13.10.7) from right to left. The
inverse matrix (13.10.2) is of course used instead of the matrix (13.10.1).

As already noted, the matrices (13.10.1) and (13.10.2) embody periodic (“wrap-
around”) boundary conditions on the data vector. One normallyaccepts this as a
minor inconvenience: the last few wavelet coefficients ateach level of the hierarchy
are affected by data from both ends of the data vector. By circularly shifting the
matrix (13.10.1)N/2 columns to the left, one can symmetrize the wrap-around;
but this does not eliminate it. It is in fact possible to eliminate the wrap-around
completely by altering the coefficients in the first and lastN rows of (13.10.1),
giving an orthogonal matrix that is purely band-diagonal[5]. This variant, beyond
our scope here, is useful when, e.g., the data varies by many orders of magnitude
from one end of the data vector to the other.

Here is a routine,wt1, that performs the pyramidal algorithm (or its inverse
if isign is negative) on some data vectora(1:n). Successive applications of the
wavelet filter, and accompanying permutations, aredone by an assumed routine
wtstep, which must be provided. (We give examples of several differentwtstep

routines just below.)

SUBROUTINE wt1(a,n,isign,wtstep)
INTEGER isign,n
REAL a(n)
EXTERNAL wtstep

C USES wtstep
One-dimensional discrete wavelet transform. This routine implements the pyramid algo-
rithm, replacing a(1:n) by its wavelet transform (for isign=1), or performing the inverse
operation (for isign=-1). Note that n MUST be an integer power of 2. The subroutine

588 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

wtstep, whose actual name must be supplied in calling this routine, is the underlying
wavelet filter. Examples of wtstep are daub4 and (preceded by pwtset) pwt.

INTEGER nn
if (n.lt.4) return
if (isign.ge.0) then Wavelet transform.

nn=n Start at largest hierarchy,
1 if (nn.ge.4) then

call wtstep(a,nn,isign) and work towards smallest.
nn=nn/2

goto 1
endif

else Inverse wavelet transform.
nn=4 Start at smallest hierarchy,

2 if (nn.le.n) then
call wtstep(a,nn,isign)
nn=nn*2 and work towards largest.

goto 2
endif

endif
return
END

Here, as a specific instance ofwtstep, is a routine for the DAUB4 wavelets:

SUBROUTINE daub4(a,n,isign)
INTEGER n,isign,NMAX NMAX is the maximum allowed value of n.
REAL a(n),C3,C2,C1,C0
PARAMETER (C0=0.4829629131445341,C1=0.8365163037378079,

* C2=0.2241438680420134,C3=-0.1294095225512604,NMAX=1024)
Applies the Daubechies 4-coefficient wavelet filter to data vector a(1:n) (for isign=1) or
applies its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn.

REAL wksp(NMAX)
INTEGER nh,nh1,i,j
if(n.lt.4)return
if(n.gt.NMAX) pause ’wksp too small in daub4’
nh=n/2
nh1=nh+1
if (isign.ge.0) then Apply filter.

i=1
do 11 j=1,n-3,2

wksp(i)=C0*a(j)+C1*a(j+1)+C2*a(j+2)+C3*a(j+3)
wksp(i+nh)=C3*a(j)-C2*a(j+1)+C1*a(j+2)-C0*a(j+3)
i=i+1

enddo 11

wksp(i)=C0*a(n-1)+C1*a(n)+C2*a(1)+C3*a(2)
wksp(i+nh)=C3*a(n-1)-C2*a(n)+C1*a(1)-C0*a(2)

else Apply transpose filter.
wksp(1)=C2*a(nh)+C1*a(n)+C0*a(1)+C3*a(nh1)
wksp(2)=C3*a(nh)-C0*a(n)+C1*a(1)-C2*a(nh1)
j=3
do 12 i=1,nh-1

wksp(j)=C2*a(i)+C1*a(i+nh)+C0*a(i+1)+C3*a(i+nh1)
wksp(j+1)=C3*a(i)-C0*a(i+nh)+C1*a(i+1)-C2*a(i+nh1)
j=j+2

enddo 12

endif
do 13 i=1,n

a(i)=wksp(i)
enddo 13

return
END

13.10 Wavelet Transforms 589

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For larger sets of wavelet coefficients, the wrap-around of the last rows or
columns is a programming inconvenience. An efficient implementation would
handle the wrap-arounds as special cases, outside of the main loop. Here, we will
content ourselves with a more general scheme involving some extra arithmetic at
run time. The following routine sets up any particular wavelet coefficients whose
values you happen to know.

SUBROUTINE pwtset(n)
INTEGER n,NCMAX,ncof,ioff,joff
PARAMETER (NCMAX=50) Maximum number of wavelet coefficients passed to pwt.
REAL cc(NCMAX),cr(NCMAX)
COMMON /pwtcom/ cc,cr,ncof,ioff,joff

Initializing routine for pwt, here implementing the Daubechies wavelet filters with 4, 12,
and 20 coefficients, as selected by the input value n. Further wavelet filters can be included
in the obvious manner. This routine must be called (once) before the first use of pwt. (For
the case n=4, the specific routine daub4 is considerably faster than pwt.)

INTEGER k
REAL sig,c4(4),c12(12),c20(20)
SAVE c4,c12,c20,/pwtcom/
DATA c4/0.4829629131445341, 0.8365163037378079,

* 0.2241438680420134,-0.1294095225512604/
DATA c12 /.111540743350, .494623890398, .751133908021,

* .315250351709,-.226264693965,-.129766867567,
* .097501605587, .027522865530,-.031582039318,
* .000553842201, .004777257511,-.001077301085/

DATA c20 /.026670057901, .188176800078, .527201188932,
* .688459039454, .281172343661,-.249846424327,
* -.195946274377, .127369340336, .093057364604,
* -.071394147166,-.029457536822, .033212674059,
* .003606553567,-.010733175483, .001395351747,
* .001992405295,-.000685856695,-.000116466855,
* .000093588670,-.000013264203 /

ncof=n
sig=-1.
do 11 k=1,n

if(n.eq.4)then
cc(k)=c4(k)

else if(n.eq.12)then
cc(k)=c12(k)

else if(n.eq.20)then
cc(k)=c20(k)

else
pause ’unimplemented value n in pwtset’

endif
cr(ncof+1-k)=sig*cc(k)
sig=-sig

enddo 11

ioff=-n/2 These values center the “support” of the wavelets at each level.
Alternatively, the “peaks” of the wavelets can be approx-
imately centered by the choices ioff=-2 and joff=-n+2.
Note that daub4 and pwtset with n=4 use different default
centerings.

joff=-n/2
return
END

Oncepwtset has been called, the following routine can be used as a specific
instance ofwtstep.

SUBROUTINE pwt(a,n,isign)
INTEGER isign,n,NMAX,NCMAX,ncof,ioff,joff
PARAMETER (NMAX=2048,NCMAX=50)
REAL a(n),wksp(NMAX),cc(NCMAX),cr(NCMAX)
COMMON /pwtcom/ cc,cr,ncof,ioff,joff

590 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Partial wavelet transform: applies an arbitrary wavelet filter to data vector a(1:n) (for
isign=1) or applies its transpose (for isign=-1). Used hierarchically by routines wt1
and wtn. The actual filter is determined by a preceding (and required) call to pwtset,
which initializes the common block pwtcom.

INTEGER i,ii,j,jf,jr,k,n1,ni,nj,nh,nmod
REAL ai,ai1
SAVE /pwtcom/
if (n.lt.4) return
nmod=ncof*n A positive constant equal to zero mod n.
n1=n-1 Mask of all bits, since n a power of 2.
nh=n/2
do 11 j=1,n

wksp(j)=0.
enddo 11

if (isign.ge.0) then Apply filter.
ii=1
do 13 i=1,n,2

ni=i+nmod+ioff Pointer to be incremented and wrapped-around.
nj=i+nmod+joff
do 12 k=1,ncof

jf=iand(n1,ni+k) We use bitwise and to wrap-around the pointers.
jr=iand(n1,nj+k)
wksp(ii)=wksp(ii)+cc(k)*a(jf+1)
wksp(ii+nh)=wksp(ii+nh)+cr(k)*a(jr+1)

enddo 12

ii=ii+1
enddo 13

else Apply transpose filter.
ii=1
do 15 i=1,n,2

ai=a(ii)
ai1=a(ii+nh)
ni=i+nmod+ioff See comments above.
nj=i+nmod+joff
do 14 k=1,ncof

jf=iand(n1,ni+k)+1
jr=iand(n1,nj+k)+1
wksp(jf)=wksp(jf)+cc(k)*ai
wksp(jr)=wksp(jr)+cr(k)*ai1

enddo 14

ii=ii+1
enddo 15

endif
do 16 j=1,n Copy the results back from workspace.

a(j)=wksp(j)
enddo 16

return
END

What Do Wavelets Look Like?

We are now in a position actually to see some wavelets. To do so, we simply
run unit vectors through any of the above discrete wavelet transforms, withisign

negative so that the inverse transform is performed. Figure 13.10.1 shows the
DAUB4 wavelet that is the inverse DWT of a unit vector in the 5th component of a
vector of length 1024, and also the DAUB20 wavelet that is the inverse of the 22nd
component. (One needs to go to a later hierarchical level for DAUB20, to avoid a
wavelet with a wrapped-around tail.) Other unit vectors would give wavelets with
the same shapes, but different positions and scales.

13.10 Wavelet Transforms 591

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

−.1

−.05

0

.05

.1

−.1

−.05

0

.05

.1

DAUB20 e22

DAUB4 e5

Figure 13.10.1. Wavelet functions, that is, single basis functions from the wavelet families DAUB4
and DAUB20. A complete, orthonormal wavelet basis consists of scalings and translations of either one
of these functions. DAUB4 has an infinite number of cusps; DAUB20 would show similar behavior
in a higher derivative.

One sees that both DAUB4 and DAUB20 have wavelets that are continuous.
DAUB20 wavelets also have higher continuous derivatives. DAUB4 has the peculiar
property that its derivative exists onlyalmosteverywhere. Examples of where it
fails to exist are the pointsp/2n, wherep andn are integers; at such points, DAUB4
is left differentiable, but not right differentiable! This kind of discontinuity — at
least in some derivative — is a necessary feature of wavelets with compact support,
like the Daubechies series. For every increase in the number of waveletcoefficients
by two, the Daubechies wavelets gain abouthalf a derivative of continuity. (But not
exactly half; the actual orders of regularity are irrational numbers!)

Note that the fact that wavelets are not smooth does not prevent their having
exact representations for some smooth functions,as demanded by their approximation
orderp. The continuity of a wavelet is not the same as the continuity of functions
that a set of wavelets can represent. For example, DAUB4 can represent (piecewise)
linear functions of arbitrary slope: in the correct linear combinations,the cusps all
cancel out. Every increase of two in the number of coefficients allows one higher
order of polynomial to be exactly represented.

Figure 13.10.2 shows the result of performing the inverse DWT on the input
vectore10 + e58, again for the two different particular wavelets. Since 10 lies early
in the hierarchical range of9 − 16, that wavelet lies on the left side of the picture.
Since 58 lies in a later (smaller-scale) hierarchy, it is a narrower wavelet; in the range
of 33–64 it is towards the end, so it lies on the right side of the picture. Note that
smaller-scale wavelets are taller, so as to have the same squared integral.

592 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

−.2

0

.2

DAUB4 e10 + e58

−.2

0

.2

Lemarie e10 + e58

Figure 13.10.2. More wavelets, here generated from the sum of two unit vectors,e10 + e58, which
are in different hierarchical levels of scale, and also at different spatial positions. DAUB4 wavelets (a)
are defined by a filter in coordinate space (equation 13.10.5), while Lemarie wavelets (b) are defined by
a filter most easily written in Fourier space (equation 13.10.14).

Wavelet Filters in the Fourier Domain

The Fourier transform of a set of filter coefficientscj is given by

H(ω) =
∑

j

cje
ijω (13.10.8)

HereH is a function periodic in2π, and it has the same meaning as before: It is
the wavelet filter, now written in the Fourier domain. A very useful fact is that the
orthogonality conditions for thec’s (e.g., equation 13.10.3 above) collapse to two
simple relations in the Fourier domain,

1

2
|H(0)|2 = 1 (13.10.9)

and

1

2

[
|H(ω)|2 + |H(ω + π)|2

]
= 1 (13.10.10)

Likewise the approximation condition of orderp (e.g., equation 13.10.4 above)
has a simple formulation, requiring thatH(ω) have apth order zero atω = π,
or (equivalently)

H(m)(π) = 0 m = 0, 1, . . . , p− 1 (13.10.11)

13.10 Wavelet Transforms 593

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

It is thus relatively straightforward to invent wavelet sets in the Fourier domain.
You simply invent a functionH(ω) satisfying equations (13.10.9)–(13.10.11). To
find the actualcj ’s applicable to a data (ors-component) vector of lengthN , and
with periodic wrap-around as in matrices (13.10.1) and (13.10.2), you invert equation
(13.10.8) by the discrete Fourier transform

cj =
1

N

N−1∑

k=0

H(
2πk

N
)e−2πijk/N (13.10.12)

The quadrature mirror filterG (reversedcj ’s with alternating signs), incidentally,
has the Fourier representation

G(ω) = e−iωH*(ω + π) (13.10.13)

where asterisk denotes complex conjugation.
In general the above procedure willnot produce wavelet filters with compact

support. In other words, allN of the cj ’s, j = 0, . . . , N − 1 will in general be
nonzero (though they may be rapidly decreasing in magnitude). The Daubechies
wavelets, or other wavelets with compact support, are specially chosen so thatH(ω)
is a trigonometric polynomial with only a small number of Fourier components,
guaranteeing that there will be only a small number of nonzerocj ’s.

On the other hand, there is sometimes no particular reason to demand compact
support. Giving it up in fact allows the ready construction of relatively smoother
wavelets (higher values ofp). Even without compact support, the convolutions
implicit in the matrix (13.10.1) can be done efficiently by FFT methods.

Lemarie’s wavelet (see[4]) hasp = 4, does not have compact support, and is
defined by the choice ofH(ω),

H(ω) =

[
2(1 − u)4

315 − 420u+ 126u2 − 4u3

315 − 420v + 126v2 − 4v3

]1/2

(13.10.14)

where

u ≡ sin2 ω

2
v ≡ sin2 ω (13.10.15)

It is beyond our scope to explain where equation (13.10.14) comes from. An
informal description is that the quadrature mirror filterG(ω) deriving from equation
(13.10.14) has the property that it gives identically zero when applied to any function
whose odd-numbered samples are equal to the cubic spline interpolation of its
even-numbered samples. Since this class of functions includes many verysmooth
members, it follows thatH(ω) does a good job of truly selecting a function’s smooth
information content. Sample Lemarie wavelets are shown in Figure 13.10.2.

594 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

w
av

el
et

 a
m

pl
itu

de

.0001

10−7
10−6
10−5

.001
.01
.1
1

10

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
0

.5

1

1.5

wavelet number

Figure 13.10.3. (a) Arbitrary test function, with cusp, sampled on a vector of length 1024. (b)
Absolute value of the 1024 wavelet coefficients produced by the discrete wavelet transform of (a). Note
log scale. The dotted curve plots the same amplitudes when sorted by decreasing size. One seesthat
only 130 out of 1024 coefficients are larger than10−4 (or larger than about10−5 times the largest
coefficient, whose value is∼ 10).

Truncated Wavelet Approximations

Most of the usefulness of wavelets rests on the fact that wavelet transforms
can usefully be severely truncated, that is, turned into sparse expansions. The
case of Fourier transforms is different: FFTs are ordinarily used without truncation,
to compute fast convolutions, for example. This works because the convolution
operator is particularly simple in the Fourier basis. There are not, however, any
standard mathematical operations that are especially simple in the wavelet basis.

To see how truncation works, consider the simple example shown in Figure
13.10.3. The upper panel shows an arbitrarily chosen test function, smooth except
for a square-root cusp, sampled onto a vector of length210. The bottom panel
(solid curve) shows, on a log scale, the absolute value of the vector’s components
after it has been run through the DAUB4 discrete wavelet transform. One notes,
from right to left, the different levels of hierarchy, 513–1024, 257–512, 129–256,
etc. Within each level, the wavelet coefficients arenon-negligible only very near the
location of the cusp, or very near the left and right boundaries of the hierarchical
range (edge effects).

The dotted curve in the lower panel of Figure 13.10.3 plots the same amplitudes
as the solid curve, but sorted into decreasing order of size. One can read off, for
example, that the 130th largest wavelet coefficient has an amplitude less than10−5

of the largest coefficient, whose magnitude is∼ 10 (power or square integral ratio
less than10−10). Thus, the example function can be represented quite accurately
by only 130, rather than 1024, coefficients — the remaining ones being set to zero.
Note that this kind of truncation makes the vector sparse, but not shorter than 1024.
It is very important that vectors in wavelet space be truncated according to the
amplitudeof the components, not their position in the vector. Keeping the first 256

13.10 Wavelet Transforms 595

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

components of the vector (all levels of the hierarchy except the last two) would give
an extremely poor, and jagged, approximation to the function. When you compress
a function with wavelets, you have to record both the valuesand the positionsof
the nonzero coefficients.

Generally, compact (and therefore unsmooth) wavelets are better for lower
accuracy approximation and for functions with discontinuities (like edges), while
smooth (and therefore noncompact) wavelets are better for achieving high numerical
accuracy. This makes compact wavelets agood choice for image compression, for
example, while it makes smooth wavelets best for fast solution of integral equations.

Wavelet Transform in Multidimensions

A wavelet transform of ad-dimensional array is most easily obtained by
transforming the array sequentially on its first index (for all values of its other indices),
then on its second, and so on. Each transformation corresponds to multiplication
by an orthogonal matrix. By matrix associativity, the result is independent of the
order in which the indices were transformed. The situation is exactly like that for
multidimensional FFTs. A routine for effecting the multidimensional DWT can thus
be modeled on a multidimensional FFT routine likefourn:

SUBROUTINE wtn(a,nn,ndim,isign,wtstep)
INTEGER isign,ndim,nn(ndim),NMAX
REAL a(*)
EXTERNAL wtstep
PARAMETER (NMAX=1024)

C USES wtstep
Replaces a by its ndim-dimensional discrete wavelet transform, if isign is input as 1. nn
is an integer array of length ndim, containing the lengths of each dimension (number of real
values), which MUST all be powers of 2. a is a real array of length equal to the product
of these lengths, in which the data are stored as in a multidimensional real FORTRAN array.
If isign is input as −1, a is replaced by its inverse wavelet transform. The subroutine
wtstep, whose actual name must be supplied in calling this routine, is the underlying
wavelet filter. Examples of wtstep are daub4 and (preceded by pwtset) pwt.

INTEGER i1,i2,i3,idim,k,n,nnew,nprev,nt,ntot
REAL wksp(NMAX)
ntot=1
do 11 idim=1,ndim

ntot=ntot*nn(idim)
enddo 11

nprev=1
do 16 idim=1,ndim Main loop over the dimensions.

n=nn(idim)
nnew=n*nprev
if (n.gt.4) then

do 15 i2=0,ntot-1,nnew
do 14 i1=1,nprev

i3=i1+i2
do 12 k=1,n Copy the relevant row or column or etc. into

workspace.wksp(k)=a(i3)
i3=i3+nprev

enddo 12

if (isign.ge.0) then Do one-dimensional wavelet transform.
nt=n

1 if (nt.ge.4) then
call wtstep(wksp,nt,isign)
nt=nt/2
goto 1
endif

596 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

else Or inverse transform.
nt=4

2 if (nt.le.n) then
call wtstep(wksp,nt,isign)
nt=nt*2
goto 2
endif

endif
i3=i1+i2
do 13 k=1,n Copy back from workspace.

a(i3)=wksp(k)
i3=i3+nprev

enddo 13

enddo 14

enddo 15

endif
nprev=nnew

enddo 16

return
END

Here, as before,wtstep is an individual wavelet step, eitherdaub4 or pwt.

Compression of Images

An immediate application of the multidimensional transformwtn is to image
compression. The overall procedure is to take the wavelet transform of a digitized
image, and then to “allocate bits” among the wavelet coefficients in some highly
nonuniform, optimized, manner. In general, large wavelet coefficients get quantized
accurately, while small coefficients are quantized coarsely with only a bit or two
— or else are truncated completely. If the resulting quantization levels are still
statistically nonuniform, they may then be further compressed by a technique like
Huffman coding (§20.4).

While a more detailed description of the “back end” of this process, namely the
quantization and coding of the image, is beyond our scope, it is quite straightforward
to demonstrate the “front-end” wavelet encoding with a simple truncation: We keep
(with full accuracy) all wavelet coefficients larger than some threshold, and we delete
(set to zero) all smaller wavelet coefficients. We can then adjust the thresholdto
vary the fraction of preserved coefficients.

Figure 13.10.4 shows a sequence of images that differ in the number of wavelet
coefficients that have been kept. The original picture (a), which is an official IEEE
test image, has 256 by 256 pixels with an 8-bit grayscale. The two reproductions
following are reconstructed with 23% (b) and 5.5% (c) of the 65536 wavelet
coefficients. The latter image illustrates the kind of compromises made by the
truncated wavelet representation. High-contrast edges (the model’s right cheek and
hair highlights,e.g.) are maintained at a relatively high resolution, while low-contrast
areas (the model’s left eye and cheek, e.g.) are washed out into what amounts to
large constant pixels. Figure 13.10.4 (d) is the result of performing the identical
procedure with Fourier, instead of wavelet, transforms: The figure is reconstructed
from the 5.5% of 65536 real Fourier components having the largest magnitudes.
One sees that, since sines and cosines are nonlocal, the resolution is uniformly poor
across the picture; also, the deletion of any components produces a mottled “ringing”
everywhere. (Practical Fourier image compression schemes therefore break up an

13.10 Wavelet Transforms 597

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Figure 13.10.4. (a) IEEE test image,256×256pixels with 8-bit grayscale. (b) The image is transformed
into the wavelet basis; 77% of its wavelet components are set to zero (those of smallest magnitude); it
is then reconstructed from the remaining 23%. (c) Same as (b), but 94.5% of the wavelet components
are deleted. (d) Same as (c), but the Fourier transform is used instead of the wavelet transform. Wavelet
coefficients are better than the Fourier coefficients at preserving relevant details.

image into small blocks of pixels,16 × 16, say, and do rather elaborate smoothing
across block boundaries when the image is reconstructed.)

Fast Solution of Linear Systems

One of the most interesting, and promising, wavelet applications is linear
algebra. The basic idea[1] is to think of an integral operator (that is, a large matrix) as
a digital image. Suppose that the operator compresses well under a two-dimensional
wavelet transform, i.e., that a large fraction of its wavelet coefficients areso small
as to be negligible. Then any linear system involving the operator becomes a sparse

598 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

system in the wavelet basis. In other words, to solve

A · x = b (13.10.16)

we first wavelet-transform the operatorA and the right-hand sideb by

Ã ≡ W · A · WT , b̃ ≡ W · b (13.10.17)

whereW represents the one-dimensional wavelet transform, then solve

Ã · x̃ = b̃ (13.10.18)

and finally transform to the answer by the inverse wavelet transform

x = WT · x̃ (13.10.19)

(Note that the routinewtn does the complete transformation ofA into Ã.)
A typical integral operator that compresses well into wavelets has arbitrary (or

even nearly singular) elements near to its main diagonal, but becomes smooth away
from the diagonal. An example might be

Aij =

{
−1 if i = j
|i− j|−1/2 otherwise

(13.10.20)

Figure 13.10.5 shows a graphical representation of the wavelet transform of this
matrix, wherei andj range over1 . . .256, using the DAUB12 wavelets. Elements
larger in magnitude than10−3 times the maximum element are shown as black
pixels, while elements between10−3 and10−6 are shown in gray. White pixels are
< 10−6. The indicesi andj each number from the lower left.

In the figure, one sees the hierarchical decomposition into power-of-two sized
blocks. At the edges or corners of the various blocks, one sees edge effects caused
by the wrap-around wavelet boundary conditions. Apart from edge effects, within
each block, thenonnegligible elements are concentrated along the block diagonals.
This is a statement that, for this type of linear operator, a wavelet is coupled mainly
to near neighbors in its own hierarchy (square blocks along the main diagonal) and
near neighbors in other hierarchies (rectangular blocks off the diagonal).

The number of nonnegligible elements in a matrix like that in Figure 13.10.5
scales only asN , the linear size of the matrix; as a rough rule of thumb it is about
10N log10(1/ǫ), whereǫ is the truncation level, e.g.,10−6. For a 2000 by 2000
matrix, then, the matrix is sparse by a factor on the order of 30.

Various numerical schemes can be used to solve sparse linear systems of this
“hierarchically band diagonal” form. Beylkin, Coifman, and Rokhlin[1] make
the interesting observations that (1) the product of two such matrices is itself
hierarchically band diagonal (truncating, of course, newly generated elements that
are smaller than the predetermined thresholdǫ); and moreover that (2) the product
can be formed in orderN operations.

Fast matrix multiplication makes it possible to find the matrix inverse by
Schultz’s (or Hotelling’s) method, see§2.5.

13.10 Wavelet Transforms 599

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Figure 13.10.5. Wavelet transform of a256 × 256 matrix, represented graphically. The original matrix
has a discontinuous cusp along its diagonal, decaying smoothly away on both sides of the diagonal. In
wavelet basis, the matrix becomes sparse: Components larger than10−3 are shown as black, components
larger than10−6 as gray, and smaller-magnitude components are white. The matrix indicesi and j
number from the lower left.

Other schemes are also possible for fast solution of hierarchically band diagonal
forms. For example, one can use the conjugate gradient method, implemented in
§2.7 aslinbcg.

CITED REFERENCES AND FURTHER READING:

Daubechies, I. 1992, Wavelets (Philadelphia: S.I.A.M.).

Strang, G. 1989, SIAM Review, vol. 31, pp. 614–627.

Beylkin, G., Coifman, R., and Rokhlin, V. 1991, Communications on Pure and Applied Mathe-
matics, vol. 44, pp. 141–183. [1]

Daubechies, I. 1988, Communications on Pure and Applied Mathematics, vol. 41, pp. 909–996.
[2]

Vaidyanathan, P.P. 1990, Proceedings of the IEEE, vol. 78, pp. 56–93. [3]

Mallat, S.G. 1989, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11,
pp. 674–693. [4]

Freedman, M.H., and Press, W.H. 1992, preprint. [5]

600 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

13.11 Numerical Use of the Sampling Theorem

In §6.10 we implemented an approximating formula for Dawson’s integral due to
Rybicki. Now that we have become Fourier sophisticates, we can learn that the formula
derives fromnumericalapplication of the sampling theorem (§12.1), normally considered to
be a purely analytic tool. Our discussion is identical to Rybicki[1].

For present purposes, the sampling theorem is most conveniently stated as follows:
Consider an arbitrary functiong(t) and the grid of sampling pointstn = α + nh, wheren
ranges over the integers andα is a constant that allows an arbitrary shift of the sampling
grid. We then write

g(t) =

∞∑

n=−∞

g(tn) sinc
π

h
(t− tn) + e(t) (13.11.1)

wheresinc x ≡ sin x/x. The summation over the sampling points is called thesampling
representationof g(t), ande(t) is its error term. The sampling theorem asserts that the
sampling representation is exact, that is,e(t) ≡ 0, if the Fourier transform ofg(t),

G(ω) =

∫
∞

−∞

g(t)eiωt dt (13.11.2)

vanishes identically for|ω| ≥ π/h.
When can sampling representations be used to advantage for the approximate numerical

computation of functions? In order that the error term be small, the Fourier transformG(ω)
must be sufficiently small for|ω| ≥ π/h. On the other hand, in order for the summation
in (13.11.1) to be approximated by a reasonably small number of terms, the functiong(t)
itself should be very small outside of a fairly limited range of values oft. Thus we are
led to two conditions to be satisfied in order that (13.11.1) be useful numerically: Both the
function g(t) and its Fourier transformG(ω) must rapidly approach zero for large values
of their respective arguments.

Unfortunately, these two conditions are mutually antagonistic — the Uncertainty Princi-
ple in quantum mechanics. There exist strict limits on how rapidly the simultaneous approach
to zero can be in both arguments. According to a theorem of Hardy[2], if g(t) = O(e−t2)

as |t| → ∞ andG(ω) = O(e−ω2/4) as |ω| → ∞, then g(t) ≡ Ce−t2 , whereC is a
constant. This can be interpreted as saying that of all functions the Gaussian is the most
rapidly decaying in botht andω, and in this sense is the “best” function to be expressed
numerically as a sampling representation.

Let us then write for the Gaussiang(t) = e−t2 ,

e−t2 =
∞∑

n=−∞

e−t2
n sinc

π

h
(t− tn) + e(t) (13.11.3)

The errore(t) depends on the parametersh andα as well as ont, but it is sufficient for
the present purposes to state the bound,

|e(t)| < e−(π/2h)2 (13.11.4)

which can be understood simply as the order of magnitude of the Fourier transform of the
Gaussian at the point where it “spills over” into the region|ω| > π/h.

When the summation in (13.11.3) is approximated by one with finite limits, say from
N0 −N to N0 + N , whereN0 is the integer nearest to−α/h, there is a further truncation
error. However, ifN is chosen so thatN > π/(2h2), the truncation error in the summation
is less than the bound given by (13.11.4), and, since this bound is an overestimate, we
shall continue to use it for (13.11.3) as well. The truncated summation gives a remarkably
accurate representation for the Gaussian even for moderate values ofN . For example,
|e(t)| < 5 × 10−5 for h = 1/2 andN = 7; |e(t)| < 2 × 10−10 for h = 1/3 andN = 15;
and |e(t)| < 7 × 10−18 for h = 1/4 andN = 25.

600 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

13.11 Numerical Use of the Sampling Theorem

In §6.10 we implemented an approximating formula for Dawson’s integral due to
Rybicki. Now that we have become Fourier sophisticates, we can learn that the formula
derives fromnumericalapplication of the sampling theorem (§12.1), normally considered to
be a purely analytic tool. Our discussion is identical to Rybicki[1].

For present purposes, the sampling theorem is most conveniently stated as follows:
Consider an arbitrary functiong(t) and the grid of sampling pointstn = α + nh, wheren
ranges over the integers andα is a constant that allows an arbitrary shift of the sampling
grid. We then write

g(t) =

∞∑
n=−∞

g(tn) sinc
π

h
(t− tn) + e(t) (13.11.1)

wheresinc x ≡ sin x/x. The summation over the sampling points is called thesampling
representationof g(t), ande(t) is its error term. The sampling theorem asserts that the
sampling representation is exact, that is,e(t) ≡ 0, if the Fourier transform ofg(t),

G(ω) =

∫
∞

−∞

g(t)eiωt dt (13.11.2)

vanishes identically for|ω| ≥ π/h.
When can sampling representations be used to advantage for the approximate numerical

computation of functions? In order that the error term be small, the Fourier transformG(ω)
must be sufficiently small for|ω| ≥ π/h. On the other hand, in order for the summation
in (13.11.1) to be approximated by a reasonably small number of terms, the functiong(t)
itself should be very small outside of a fairly limited range of values oft. Thus we are
led to two conditions to be satisfied in order that (13.11.1) be useful numerically: Both the
function g(t) and its Fourier transformG(ω) must rapidly approach zero for large values
of their respective arguments.

Unfortunately, these two conditions are mutually antagonistic — the Uncertainty Princi-
ple in quantum mechanics. There exist strict limits on how rapidly the simultaneous approach
to zero can be in both arguments. According to a theorem of Hardy[2], if g(t) = O(e−t2)

as |t| → ∞ andG(ω) = O(e−ω2/4) as |ω| → ∞, then g(t) ≡ Ce−t2 , whereC is a
constant. This can be interpreted as saying that of all functions the Gaussian is the most
rapidly decaying in botht andω, and in this sense is the “best” function to be expressed
numerically as a sampling representation.

Let us then write for the Gaussiang(t) = e−t2 ,

e−t2 =
∞∑

n=−∞

e−t2
n sinc

π

h
(t− tn) + e(t) (13.11.3)

The errore(t) depends on the parametersh andα as well as ont, but it is sufficient for
the present purposes to state the bound,

|e(t)| < e−(π/2h)2 (13.11.4)

which can be understood simply as the order of magnitude of the Fourier transform of the
Gaussian at the point where it “spills over” into the region|ω| > π/h.

When the summation in (13.11.3) is approximated by one with finite limits, say from
N0 −N to N0 + N , whereN0 is the integer nearest to−α/h, there is a further truncation
error. However, ifN is chosen so thatN > π/(2h2), the truncation error in the summation
is less than the bound given by (13.11.4), and, since this bound is an overestimate, we
shall continue to use it for (13.11.3) as well. The truncated summation gives a remarkably
accurate representation for the Gaussian even for moderate values ofN . For example,
|e(t)| < 5 × 10−5 for h = 1/2 andN = 7; |e(t)| < 2 × 10−10 for h = 1/3 andN = 15;
and |e(t)| < 7 × 10−18 for h = 1/4 andN = 25.

13.11 Numerical Use of the Sampling Theorem 601

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

One may ask, what is the point of such a numerical representation for the Gaussian,
which can be computed so easily and quickly as an exponential? The answer is that many
transcendental functions can be expressed as an integral involving the Gaussian, and by
substituting (13.11.3) one can often find excellent approximations to the integrals as a sum
over elementary functions.

Let us consider as an example the functionw(z) of the complex variablez = x + iy,
related to the complex error function by

w(z) = e−z2

erfc(−iz) (13.11.5)

having the integral representation

w(z) =
1

πi

∫
C

e−t2 dt

t− z
(13.11.6)

where the contourC extends from−∞ to∞, passing belowz (see, e.g.,[3]). Many methods
exist for the evaluation of this function (e.g.,[4]). Substituting the sampling representation
(13.11.3) into (13.11.6) and performing the resulting elementary contour integrals, we obtain

w(z) ≈
1

πi

∞∑
n=−∞

he−t2
n

1 − (−1)ne−πi(α−z)/h

tn − z
(13.11.7)

where we now omit the error term. One should note that there is no singularity asz → tm
for somen = m, but a special treatment of themth term will be required in this case (for
example, by power series expansion).

An alternative form of equation (13.11.7) can be found by expressing the complex expo-
nential in (13.11.7) in terms of trigonometric functions and using the sampling representation
(13.11.3) withz replacingt. This yields

w(z) ≈ e−z2

+
1

πi

∞∑
n=−∞

he−t2
n

1− (−1)n cos π(α− z)/h

tn − z
(13.11.8)

This form is particularly useful in obtaining Rew(z) when|y| ≪ 1. Note that in evaluating
(13.11.7) the exponential inside the summation is a constant and needs to be evaluated only
once; a similar comment holds for the cosine in (13.11.8).

There are a variety of formulas that can now be derived from either equation (13.11.7)
or (13.11.8) by choosing particular values ofα. Eight interesting choices are:α = 0, x, iy,
or z, plus the values obtained by addingh/2 to each of these. Since the error bound (13.11.3)
assumed a real value ofα, the choices involving a complexα are useful only if the imaginary
part ofz is not too large. This is not the place to catalog all sixteen possible formulas, and we
give only two particular cases that show some of the important features.

First of all letα = 0 in equation (13.11.8), which yields,

w(z) ≈ e−z2

+
1

πi

∞∑
n=−∞

he−(nh)2 1 − (−1)n cos(πz/h)

nh− z
(13.11.9)

This approximation is good over the entirez-plane. As stated previously, one has to treat the
case where one denominator becomes small by expansion in a power series. Formulas for
the caseα = 0 were discussed briefly in[5]. They are similar, but not identical, to formulas
derived by Chiarella and Reichel[6], using the method of Goodwin[7].

Next, letα = z in (13.11.7), which yields

w(z) ≈ e−z2

−
2

πi

∑
n odd

e−(z−nh)2

n
(13.11.10)

the sum being over all odd integers (positive and negative). Note that we have made the
substitutionn → −n in the summation. This formula is simpler than (13.11.9) and contains
half the number of terms, but its error is worse ify is large. Equation (13.11.10) is the source
of the approximation formula (6.10.3) for Dawson’s integral, used in§6.10.

602 Chapter 13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Rybicki, G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 85–87. [1]

Hardy, G.H. 1933, Journal of the London Mathematical Society, vol. 8, pp. 227–231. [2]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [3]

Gautschi, W. 1970, SIAM Journal on Numerical Analysis, vol. 7, pp. 187–198. [4]

Armstrong, B.H., and Nicholls, R.W. 1972, Emission, Absorption and Transfer of Radiation in
Heated Atmospheres (New York: Pergamon). [5]

Chiarella, C., and Reichel, A. 1968, Mathematics of Computation, vol. 22, pp. 137–143. [6]

Goodwin, E.T. 1949, Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 241–245.
[7]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 14. Statistical Description
of Data

14.0 Introduction

In this chapter and the next, the concept ofdata enters the discussion more
prominently than before.

Data consist of numbers, of course. But these numbers are fed into the computer,
not produced by it. These are numbers to be treated with considerable respect, neither
to be tampered with, nor subjected to a numerical process whose character you do
not completely understand. You are well advised to acquire a reverence for data that
is rather different from the “sporty” attitude that is sometimes allowable, or even
commendable, in other numerical tasks.

The analysis of data inevitably involves some trafficking with the field of
statistics, that gray area which is not quite a branch of mathematics — and just as
surely not quite a branch of science. In the following sections, you will repeatedly
encounter the following paradigm:

• apply some formula to the data to compute “a statistic”
• compute where the value of that statistic falls in a probability distribution

that is computed on the basis of some “null hypothesis”
• if it falls in a very unlikely spot, way out on a tail of the distribution,

conclude that the null hypothesis isfalsefor your data set
If a statistic falls in areasonablepart of the distribution, you must not make

the mistake of concluding that the null hypothesis is “verified” or “proved.” That is
the curse of statistics, that it can never prove things, only disprove them! At best,
you can substantiate a hypothesis by ruling out, statistically, a whole long list of
competing hypotheses, every one that has ever been proposed. After a while your
adversaries and competitors will give up trying to think of alternative hypotheses,
or else they will grow old and die, andthen your hypothesis will become accepted.
Sounds crazy, we know, but that’s how science works!

In this book we make a somewhat arbitrary distinction between data analysis
procedures that aremodel-independentand those that aremodel-dependent. In the
former category, we include so-calleddescriptive statisticsthat characterize a data
set in general terms: its mean, variance, and so on. We also include statistical tests
that seek to establish the “sameness” or “differentness” of two or more data sets, or
that seek to establish and measure a degree ofcorrelation between two data sets.
These subjects are discussed in this chapter.

603

604 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In the other category, model-dependent statistics, we lump the whole subject of
fitting data to a theory, parameter estimation, least-squares fits, and so on. Those
subjects are introduced in Chapter 15.

Section 14.1 deals with so-calledmeasures of central tendency, the moments of
a distribution, the median and mode. In§14.2 we learn to test whether different data
sets are drawn from distributions with different values of thesemeasures of central
tendency. This leads naturally, in§14.3, to the more general question of whether two
distributions can be shown to be (significantly) different.

In §14.4–§14.7, we deal withmeasures of associationfor two distributions.
We want to determine whether two variables are “correlated” or “dependent” on
one another. If they are, we want to characterize the degree of correlation in
some simple ways. The distinction between parametric and nonparametric (rank)
methods is emphasized.

Section 14.8 introduces the concept of data smoothing, and discusses the
particular case of Savitzky-Golay smoothing filters.

This chapter draws mathematically on the material on special functions that
was presented in Chapter 6, especially§6.1–§6.4. You may wish, at this point,
to review those sections.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics].

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

14.1 Moments of a Distribution: Mean,
Variance, Skewness, and So Forth

When a set of values has a sufficiently strong central tendency, that is, a tendency
to cluster around some particular value, then it may be useful to characterize the
set by a few numbers that are related to itsmoments, the sums of integer powers
of the values.

Best known is themeanof the valuesx1, . . . , xN ,

x =
1

N

N∑

j=1

xj (14.1.1)

which estimates the value around which central clustering occurs. Note the use of
an overbar to denote the mean; angle brackets are an equally common notation, e.g.,
〈x〉. You should be aware that the mean is not the only available estimator of this

604 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In the other category, model-dependent statistics, we lump the whole subject of
fitting data to a theory, parameter estimation, least-squares fits, and so on. Those
subjects are introduced in Chapter 15.

Section 14.1 deals with so-calledmeasures of central tendency, the moments of
a distribution, the median and mode. In§14.2 we learn to test whether different data
sets are drawn from distributions with different values of thesemeasures of central
tendency. This leads naturally, in§14.3, to the more general question of whether two
distributions can be shown to be (significantly) different.

In §14.4–§14.7, we deal withmeasures of associationfor two distributions.
We want to determine whether two variables are “correlated” or “dependent” on
one another. If they are, we want to characterize the degree of correlation in
some simple ways. The distinction between parametric and nonparametric (rank)
methods is emphasized.

Section 14.8 introduces the concept of data smoothing, and discusses the
particular case of Savitzky-Golay smoothing filters.

This chapter draws mathematically on the material on special functions that
was presented in Chapter 6, especially§6.1–§6.4. You may wish, at this point,
to review those sections.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics].

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

14.1 Moments of a Distribution: Mean,
Variance, Skewness, and So Forth

When a set of values has a sufficiently strong central tendency, that is, a tendency
to cluster around some particular value, then it may be useful to characterize the
set by a few numbers that are related to itsmoments, the sums of integer powers
of the values.

Best known is themeanof the valuesx1, . . . , xN ,

x =
1

N

N
∑

j=1

xj (14.1.1)

which estimates the value around which central clustering occurs. Note the use of
an overbar to denote the mean; angle brackets are an equally common notation, e.g.,
〈x〉. You should be aware that the mean is not the only available estimator of this

14.1 Moments of a Distribution: Mean, Variance, Skewness 605

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

quantity, nor is it necessarily the best one. For values drawn from a probability
distribution with very broad “tails,” the mean may converge poorly, or not at all, as
the number of sampled points is increased. Alternative estimators, themedianand
the mode, are mentioned at the end of this section.

Having characterized a distribution’s central value, one conventionally next
characterizes its “width” or “variability” around that value. Here again, more than
one measure is available. Most common is thevariance,

Var(x1 . . . xN) =
1

N − 1

N
∑

j=1

(xj − x)2 (14.1.2)

or its square root, thestandard deviation,

σ(x1 . . . xN) =
√

Var(x1 . . . xN) (14.1.3)

Equation (14.1.2) estimates the mean squared deviation ofx from its mean value.
There is a long story about why the denominator of (14.1.2) isN − 1 instead of
N . If you have never heard that story, you may consult any good statistics text.
Here we will be content to note that theN − 1 shouldbe changed toN if you
are ever in the situation of measuring the variance of a distribution whose mean
x is known a priori rather than being estimated from the data. (We might also
comment that if the difference betweenN andN − 1 ever matters to you, then you
are probably up to no good anyway — e.g., trying to substantiate a questionable
hypothesis with marginal data.)

As the mean depends on the first moment of the data, so do the variance and
standard deviation depend on the second moment. It is not uncommon, in real
life, to be dealing with a distribution whose second moment does not exist (i.e., is
infinite). In this case, the variance or standard deviation is useless as a measure
of the data’s width around its central value: The values obtained from equations
(14.1.2) or (14.1.3) will not converge with increased numbers of points, nor show
any consistency from data set to data set drawn from the same distribution. This can
occur even when the width of the peak looks, by eye, perfectly finite. A more robust
estimator of the width is theaverage deviationormean absolutedeviation, defined by

ADev(x1 . . . xN) =
1

N

N
∑

j=1

|xj − x| (14.1.4)

One often substitutes the sample medianxmed for x in equation (14.1.4). For any
fixed sample, the median in fact minimizes the mean absolute deviation.

Statisticians have historically sniffed at the use of (14.1.4) instead of (14.1.2),
since the absolute value brackets in (14.1.4) are “nonanalytic” and make theorem-
proving difficult. In recent years, however, the fashion has changed, and the subject
of robust estimation(meaning, estimation for broad distributions with significant
numbers of “outlier” points) has become a popular and important one. Higher
moments, or statistics involving higher powers of the input data, are almost always
less robust than lower moments or statistics that involve only linear sums or (the
lowest moment of all) counting.

606 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(b)(a)

Skewness

negative positive

positive
(leptokurtic)

negative
(platykurtic)

Kurtosis

Figure 14.1.1. Distributions whose third and fourth moments are significantly different from a normal
(Gaussian) distribution. (a) Skewness or third moment. (b) Kurtosis or fourth moment.

That being the case, theskewnessor third moment, and thekurtosisor fourth
momentshould be used with caution or, better yet, not at all.

The skewness characterizes the degree of asymmetry of a distribution around its
mean. While the mean, standard deviation, and average deviation aredimensional
quantities, that is, have the same units as the measured quantitiesxj , the skewness
is conventionally defined in such a way as to make itnondimensional. It is a pure
number that characterizes only the shape of the distribution. The usual definition is

Skew(x1 . . . xN) =
1

N

N
∑

j=1

[

xj − x

σ

]3

(14.1.5)

whereσ = σ(x1 . . . xN) is the distribution’s standard deviation (14.1.3). A positive
value of skewness signifies a distribution with an asymmetric tail extending out
towards more positivex; a negative value signifies a distribution whose tail extends
out towards more negativex (see Figure 14.1.1).

Of course, any set ofN measured values is likely to give a nonzero value
for (14.1.5), even if the underlying distribution is in fact symmetrical (has zero
skewness). For (14.1.5) to be meaningful, we need to have some idea ofits
standard deviation as an estimator of the skewness of the underlying distribution.
Unfortunately, that depends on the shape of the underlying distribution, and rather
critically on its tails! For the idealized case of a normal (Gaussian) distribution, the
standard deviationof (14.1.5) is approximately

√

15/N . In real life it is good practice
to believe in skewnesses only when they are several or many times as large as this.

The kurtosis is also a nondimensional quantity. It measures the relative
peakedness or flatness of a distribution. Relative to what? A normal distribution,
what else! A distribution with positive kurtosis is termedleptokurtic; the outline
of the Matterhorn is an example. A distribution with negative kurtosis is termed
platykurtic; the outline of a loaf of bread is an example. (See Figure 14.1.1.) And,
as you no doubt expect, an in-between distribution is termedmesokurtic.

The conventional definition of the kurtosis is

Kurt(x1 . . . xN) =

1

N

N
∑

j=1

[

xj − x

σ

]4

− 3 (14.1.6)

where the−3 term makes the value zero for a normal distribution.

14.1 Moments of a Distribution: Mean, Variance, Skewness 607

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The standard deviation of (14.1.6) as an estimator of the kurtosis of an
underlying normal distribution is

√

96/N . However, the kurtosis depends on such
a high moment that there are many real-life distributions for which the standard
deviation of (14.1.6) as an estimator is effectively infinite.

Calculation of the quantities defined in this section is perfectly straightforward.
Many textbooks use the binomial theorem to expand out the definitions into sums
of various powers of the data, e.g., the familiar

Var(x1 . . . xN) =
1

N − 1

N
∑

j=1

x2
j

−Nx2

 ≈ x2 − x2 (14.1.7)

but this can magnify the roundoff error by a large factor and is generally unjustifiable
in terms of computing speed. A clever way to minimize roundoff error, especially
for large samples, is to use thecorrected two-pass algorithm[1]: First calculatex,
then calculate Var(x1 . . . xN) by

Var(x1 . . . xN) =
1

N − 1

N
∑

j=1

(xj − x)2 −
1

N

N
∑

j=1

(xj − x)

2

(14.1.8)

The second sum would be zero ifx were exact, but otherwise it does a good job of
correcting the roundoff error in the first term.

SUBROUTINE moment(data,n,ave,adev,sdev,var,skew,curt)
INTEGER n
REAL adev,ave,curt,sdev,skew,var,data(n)

Given an array of data(1:n), this routine returns its mean ave, average deviation adev,
standard deviation sdev, variance var, skewness skew, and kurtosis curt.

INTEGER j
REAL p,s,ep
if(n.le.1)pause ’n must be at least 2 in moment’
s=0. First pass to get the mean.
do 11 j=1,n

s=s+data(j)
enddo 11

ave=s/n
adev=0. Second pass to get the first (absolute), second, third, and fourth

moments of the deviation from the mean.var=0.
skew=0.
curt=0.
ep=0.
do 12 j=1,n

s=data(j)-ave
ep=ep+s
adev=adev+abs(s)
p=s*s
var=var+p
p=p*s
skew=skew+p
p=p*s
curt=curt+p

enddo 12

adev=adev/n Put the pieces together according to the conventional definitions.
var=(var-ep**2/n)/(n-1) Corrected two-pass formula.
sdev=sqrt(var)

608 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(var.ne.0.)then
skew=skew/(n*sdev**3)
curt=curt/(n*var**2)-3.

else
pause ’no skew or kurtosis when zero variance in moment’

endif
return
END

Semi-Invariants

The mean and variance of independent random variables are additive: If x andy are
drawn independently from two, possibly different, probability distributions, then

(x + y) = x + y Var(x + y) = Var(x) + Var(x) (14.1.9)

Higher moments are not, in general, additive. However, certain combinations of them,
called semi-invariants, are in fact additive. If the centered moments of a distribution are
denotedMk,

Mk ≡

〈

(xi − x)k
〉

(14.1.10)

so that, e.g.,M2 = Var(x), then the first few semi-invariants, denotedIk are given by

I2 = M2 I3 = M3 I4 = M4 − 3M2

2

I5 = M5 − 10M2M3 I6 = M6 − 15M2M4 − 10M2

3 + 30M3

2

(14.1.11)

Notice that the skewness and kurtosis, equations (14.1.5) and (14.1.6) are simple powers
of the semi-invariants,

Skew(x) = I3/I
3/2
2

Kurt(x) = I4/I
2

2 (14.1.12)

A Gaussian distribution has all its semi-invariants higher thanI2 equal to zero. A Poisson
distribution has all of its semi-invariants equal to its mean. For more details,see[2].

Median and Mode

The median of a probability distribution functionp(x) is the valuexmed for
which larger and smaller values ofx are equally probable:

∫ xmed

−∞

p(x) dx =
1

2
=

∫

∞

xmed

p(x) dx (14.1.13)

The median of a distribution is estimated from a sample of valuesx1, . . . ,
xN by finding that valuexi which has equal numbers of values above it and below
it. Of course, this is not possible whenN is even. In that case it is conventional
to estimate the median as the mean of the uniquetwo central values. If the values
xj j = 1, . . . , N are sorted into ascending (or, for that matter, descending) order,
then the formula for the median is

xmed =

{

x(N+1)/2, N odd
1
2 (xN/2 + x(N/2)+1), N even

(14.1.14)

14.2 Do Two Distributions Have the Same Means or Variances? 609

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If a distribution has a strong central tendency, so that most of its area is under
a single peak, then the median is an estimator of the central value. It is a more
robust estimator than the mean is: The median fails as an estimator only if the area
in the tails is large, while the mean fails if the first moment of the tails is large;
it is easy to construct examples where the first moment of the tails is large even
though their area is negligible.

To find the median of a set of values, one can proceed by sorting the set and
then applying (14.1.14). This is a process of orderN logN . You might rightly think
that this is wasteful, since it yields much more information than just the median
(e.g., the upper and lower quartile points, the deciles, etc.). In fact, we saw in
§8.5 that the elementx(N+1)/2 can be located in of orderN operations. Consult
that section for routines.

Themodeof a probability distribution functionp(x) is the value ofx where it
takes on a maximum value. The mode is useful primarily when there is a single, sharp
maximum, in which case it estimates the central value. Occasionally, a distribution
will be bimodal, with two relative maxima; then one may wish to know the two
modes individually. Note that, in such cases, the mean and median are not very
useful, since they will give only a “compromise” value between the two peaks.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 2.

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics], vol. 1, §10.15

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Chan, T.F., Golub, G.H., and LeVeque, R.J. 1983, American Statistician, vol. 37, pp. 242–247. [1]

Cramér, H. 1946, Mathematical Methods of Statistics (Princeton: Princeton University Press),
§15.10. [2]

14.2 Do Two Distributions Have the Same
Means or Variances?

Not uncommonly we want to know whether two distributions have the same
mean. For example, a first set of measured values may have been gathered before
some event, a second set after it. We want to know whether the event, a “treatment”
or a “change in a control parameter,” made a difference.

Our first thought is to ask “how many standard deviations” one sample mean is
from the other. That number may in fact be a useful thing to know. It does relate to
the strength or “importance” of a difference of meansif that difference is genuine.
However, by itself, it says nothing about whether the differenceis genuine, that is,
statistically significant. A difference of means can be very small compared to the
standard deviation, and yet very significant, if the number of data points is large.
Conversely, a difference may be moderately large but not significant, if the data

14.2 Do Two Distributions Have the Same Means or Variances? 609

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If a distribution has a strong central tendency, so that most of its area is under
a single peak, then the median is an estimator of the central value. It is a more
robust estimator than the mean is: The median fails as an estimator only if the area
in the tails is large, while the mean fails if the first moment of the tails is large;
it is easy to construct examples where the first moment of the tails is large even
though their area is negligible.

To find the median of a set of values, one can proceed by sorting the set and
then applying (14.1.14). This is a process of orderN logN . You might rightly think
that this is wasteful, since it yields much more information than just the median
(e.g., the upper and lower quartile points, the deciles, etc.). In fact, we saw in
§8.5 that the elementx(N+1)/2 can be located in of orderN operations. Consult
that section for routines.

Themodeof a probability distribution functionp(x) is the value ofx where it
takes on a maximum value. The mode is useful primarily when there is a single, sharp
maximum, in which case it estimates the central value. Occasionally, a distribution
will be bimodal, with two relative maxima; then one may wish to know the two
modes individually. Note that, in such cases, the mean and median are not very
useful, since they will give only a “compromise” value between the two peaks.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 2.

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics], vol. 1, §10.15

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Chan, T.F., Golub, G.H., and LeVeque, R.J. 1983, American Statistician, vol. 37, pp. 242–247. [1]

Cramér, H. 1946, Mathematical Methods of Statistics (Princeton: Princeton University Press),
§15.10. [2]

14.2 Do Two Distributions Have the Same
Means or Variances?

Not uncommonly we want to know whether two distributions have the same
mean. For example, a first set of measured values may have been gathered before
some event, a second set after it. We want to know whether the event, a “treatment”
or a “change in a control parameter,” made a difference.

Our first thought is to ask “how many standard deviations” one sample mean is
from the other. That number may in fact be a useful thing to know. It does relate to
the strength or “importance” of a difference of meansif that difference is genuine.
However, by itself, it says nothing about whether the differenceis genuine, that is,
statistically significant. A difference of means can be very small compared to the
standard deviation, and yet very significant, if the number of data points is large.
Conversely, a difference may be moderately large but not significant, if the data

610 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

are sparse. We will be meeting these distinct concepts ofstrengthandsignificance
several times in the next few sections.

A quantity that measures the significance of a difference of means is not the
number of standard deviations that they are apart, but the number of so-called
standard errorsthat they are apart. The standard error of a set of values measures
the accuracy with which the sample mean estimates thepopulation (or “true”) mean.
Typically the standard error is equal to the sample’s standard deviation divided by
the square root of the number of points in the sample.

Student’s t-test for Significantly Different Means

Applying the concept of standard error, the conventional statistic for measuring
the significance of a difference of means is termedStudent’s t. When the two
distributions are thought to have the same variance, but possibly different means,
then Student’st is computed as follows: First, estimate the standard error of the
difference of the means,sD, from the “pooled variance” by the formula

sD =

√

∑

i∈A(xi − xA)2 +
∑

i∈B(xi − xB)2

NA + NB − 2

(

1

NA
+

1

NB

)

(14.2.1)

where each sum is over the points in one sample, the first or second, each mean
likewise refers to one sample or the other, andNA andNB are the numbers of points
in the first and second samples, respectively. Second, computet by

t =
xA − xB

sD
(14.2.2)

Third, evaluate the significance of this value oft for Student’s distribution with
NA + NB − 2 degrees of freedom, by equations (6.4.7) and (6.4.9), and by the
routinebetai (incomplete beta function) of§6.4.

The significance is a number between zero and one, and is the probability that
|t| could be this large or larger just by chance, for distributions with equal means.
Therefore, a small numerical value of the significance (0.05 or 0.01) means that the
observed difference is “very significant.” The functionA(t|ν) in equation (6.4.7)
is one minus the significance.

As a routine, we have

SUBROUTINE ttest(data1,n1,data2,n2,t,prob)
INTEGER n1,n2
REAL prob,t,data1(n1),data2(n2)

C USES avevar,betai
Given the arrays data1(1:n1) and data2(1:n2), this routine returns Student’s t as t,
and its significance as prob, small values of prob indicating that the arrays have significantly
different means. The data arrays are assumed to be drawn from populations with the same
true variance.

REAL ave1,ave2,df,var,var1,var2,betai
call avevar(data1,n1,ave1,var1)
call avevar(data2,n2,ave2,var2)
df=n1+n2-2 Degrees of freedom.
var=((n1-1)*var1+(n2-1)*var2)/df Pooled variance.
t=(ave1-ave2)/sqrt(var*(1./n1+1./n2))
prob=betai(0.5*df,0.5,df/(df+t**2)) See equation (6.4.9).
return
END

14.2 Do Two Distributions Have the Same Means or Variances? 611

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

which makes use of the following routine for computing the mean and variance
of a set of numbers,

SUBROUTINE avevar(data,n,ave,var)
INTEGER n
REAL ave,var,data(n)

Given array data(1:n), returns its mean as ave and its variance as var.
INTEGER j
REAL s,ep
ave=0.0
do 11 j=1,n

ave=ave+data(j)
enddo 11

ave=ave/n
var=0.0
ep=0.0
do 12 j=1,n

s=data(j)-ave
ep=ep+s
var=var+s*s

enddo 12

var=(var-ep**2/n)/(n-1) Corrected two-pass formula (14.1.8).
return
END

The next case to consider is where the two distributions have significantly
different variances, but we nevertheless want to know if their means are the same or
different. (A treatment for baldness has caused some patients toloseall their hair
and turned others into werewolves, but we want to know if it helps cure baldnesson
the average!) Be suspicious of the unequal-variancet-test: If two distributions have
very different variances, then they may also be substantially different in shape; in
that case, the difference of the means may not be a particularly useful thing to know.

To find out whether the two data sets have variances that are significantly
different, you use theF-test, described later on in this section.

The relevant statistic for the unequal variancet-test is

t =
xA − xB

[Var(xA)/NA + Var(xB)/NB]1/2
(14.2.3)

This statistic is distributedapproximatelyas Student’st with a number of degrees
of freedom equal to

[

Var(xA)
NA

+
Var(xB)
NB

]2

[Var(xA)/NA]
2

NA − 1
+

[Var(xB)/NB]
2

NB − 1

(14.2.4)

Expression (14.2.4) is in general not an integer, but equation (6.4.7) doesn’t care.
The routine is

SUBROUTINE tutest(data1,n1,data2,n2,t,prob)
INTEGER n1,n2
REAL prob,t,data1(n1),data2(n2)

C USES avevar,betai
Given the arrays data1(1:n1) and data2(1:n2), this routine returns Student’s t as t,
and its significance as prob, small values of prob indicating that the arrays have significantly

612 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

different means. The data arrays are allowed to be drawn from populations with unequal
variances.

REAL ave1,ave2,df,var1,var2,betai
call avevar(data1,n1,ave1,var1)
call avevar(data2,n2,ave2,var2)
t=(ave1-ave2)/sqrt(var1/n1+var2/n2)
df=(var1/n1+var2/n2)**2/((var1/n1)**2/(n1-1)+(var2/n2)**2/(n2-1))
prob=betai(0.5*df,0.5,df/(df+t**2))
return
END

Our final example of a Student’st test is the case ofpaired samples. Here
we imagine that much of the variance inboth samples is due to effects that are
point-by-point identical in the two samples. For example, we might have two job
candidates who have each been rated by the same ten members of a hiring committee.
We want to know if the means of the ten scores differ significantly. We first try
ttest above, and obtain a value ofprob that is not especially significant (e.g.,
> 0.05). But perhaps the significance is being washed out by the tendency of some
committee members always to give high scores, others always to give low scores,
which increases the apparent variance and thus decreases the significance ofany
difference in the means. We thus try the paired-sample formulas,

Cov(xA, xB) ≡
1

N − 1

N
∑

i=1

(xAi − xA)(xBi − xB) (14.2.5)

sD =

[

Var(xA) + Var(xB) − 2Cov(xA, xB)

N

]1/2

(14.2.6)

t =
xA − xB

sD
(14.2.7)

whereN is the number in each sample (number of pairs). Notice that it is important
that a particular value ofi label the corresponding points ineach sample, that is,
the ones that are paired. The significance of thet statistic in (14.2.7) is evaluated
for N − 1 degrees of freedom.

The routine is

SUBROUTINE tptest(data1,data2,n,t,prob)
INTEGER n
REAL prob,t,data1(n),data2(n)

C USES avevar,betai
Given the paired arrays data1(1:n) and data2(1:n), this routine returns Student’s t for
paired data as t, and its significance as prob, small values of prob indicating a significant
difference of means.

INTEGER j
REAL ave1,ave2,cov,df,sd,var1,var2,betai
call avevar(data1,n,ave1,var1)
call avevar(data2,n,ave2,var2)
cov=0.
do 11 j=1,n

cov=cov+(data1(j)-ave1)*(data2(j)-ave2)
enddo 11

df=n-1
cov=cov/df
sd=sqrt((var1+var2-2.*cov)/n)
t=(ave1-ave2)/sd

14.2 Do Two Distributions Have the Same Means or Variances? 613

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

prob=betai(0.5*df,0.5,df/(df+t**2))
return
END

F-Test for Significantly Different Variances

The F-test tests the hypothesis that two samples have different variances by
trying to reject the null hypothesis that their variances are actually consistent. The
statisticF is the ratio of one variance to the other, so values either≫ 1 or ≪ 1
will indicate very significant differences. The distribution ofF in the null case is
given in equation (6.4.11), which is evaluated using the routinebetai. In the most
common case, we are willing to disprove the null hypothesis (of equal variances) by
either very large or very small values ofF , so the correct significance istwo-tailed,
the sum of two incomplete beta functions. It turns out, by equation (6.4.3), that the
two tails are always equal; we need compute only one, and double it. Occasionally,
when the null hypothesis is strongly viable, the identity of the two tails can become
confused, giving an indicated probability greater than one. Changing the probability
to two minus itself correctly exchanges the tails. These considerations and equation
(6.4.3) give the routine

SUBROUTINE ftest(data1,n1,data2,n2,f,prob)
INTEGER n1,n2
REAL f,prob,data1(n1),data2(n2)

C USES avevar,betai
Given the arrays data1(1:n1) and data2(1:n2), this routine returns the value of f, and
its significance as prob. Small values of prob indicate that the two arrays have significantly
different variances.

REAL ave1,ave2,df1,df2,var1,var2,betai
call avevar(data1,n1,ave1,var1)
call avevar(data2,n2,ave2,var2)
if(var1.gt.var2)then Make F the ratio of the larger variance to the smaller one.

f=var1/var2
df1=n1-1
df2=n2-1

else
f=var2/var1
df1=n2-1
df2=n1-1

endif
prob=2.*betai(0.5*df2,0.5*df1,df2/(df2+df1*f))
if(prob.gt.1.)prob=2.-prob
return
END

CITED REFERENCES AND FURTHER READING:

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapter IX(B).

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

614 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

14.3 Are Two Distributions Different?

Given two sets of data, we can generalize the questions asked in the previous
section and ask the single question: Are the two sets drawn from the same distribution
function, or from different distribution functions? Equivalently, in proper statistical
language, “Can we disprove, to a certain required level of significance, the null
hypothesis that two data sets are drawn from the same population distribution
function?” Disproving the null hypothesis in effect proves that the data sets are from
different distributions. Failing to disprove the null hypothesis, on the other hand,
only shows that the data sets can beconsistentwith a single distribution function.
One can neverprovethat two data sets come from a single distribution, since (e.g.)
no practical amount of data can distinguish between two distributions which differ
only by one part in1010.

Proving that two distributions are different, or showing that they are consistent,
is a task that comes up all the time in many areas of research: Are the visible stars
distributed uniformly in the sky? (That is, is the distribution of stars as a function
of declination — position in the sky — the same as the distribution of sky area as
a function of declination?) Are educational patterns the same in Brooklyn as in the
Bronx? (That is, are the distributions of people as a function of last-grade-attended
the same?) Do two brands of fluorescent lights have the same distribution of
burn-out times? Is the incidence of chicken pox the same for first-born, second-born,
third-born children, etc.?

These four examples illustrate the four combinations arising from two different
dichotomies: (1) The data are either continuous or binned. (2) Either we wish to
compare one data set to a known distribution, or we wish to compare two equally
unknown data sets. The data sets on fluorescent lights and on stars are continuous,
since we can be given lists of individual burnout times or of stellar positions. The
data sets on chicken pox and educational level are binned, since we are given
tables of numbers of events in discrete categories: first-born, second-born, etc.; or
6th Grade, 7th Grade, etc. Stars and chicken pox, on the other hand, share the
property that the null hypothesis is a known distribution (distribution of area in the
sky, or incidence of chicken pox in the general population). Fluorescent lights and
educational level involve the comparison of two equally unknown data sets (the two
brands, or Brooklyn and the Bronx).

One can always turn continuous data into binned data, by grouping the events
into specified ranges of the continuous variable(s): declinations between 0 and 10
degrees, 10 and 20, 20 and 30, etc. Binning involves a loss of information, however.
Also, there is often considerable arbitrariness as to how the bins should be chosen.
Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributions is thechi-square
test. For continuous data as a function of a single variable, the most generally
accepted test is theKolmogorov-Smirnov test. We consider each in turn.

Chi-Square Test

Suppose thatNi is the number of events observed in theith bin, and thatni is
the number expected according to someknown distribution. Note that theNi’s are

614 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

14.3 Are Two Distributions Different?

Given two sets of data, we can generalize the questions asked in the previous
section and ask the single question: Are the two sets drawn from the same distribution
function, or from different distribution functions? Equivalently, in proper statistical
language, “Can we disprove, to a certain required level of significance, the null
hypothesis that two data sets are drawn from the same population distribution
function?” Disproving the null hypothesis in effect proves that the data sets are from
different distributions. Failing to disprove the null hypothesis, on the other hand,
only shows that the data sets can beconsistentwith a single distribution function.
One can neverprovethat two data sets come from a single distribution, since (e.g.)
no practical amount of data can distinguish between two distributions which differ
only by one part in1010.

Proving that two distributions are different, or showing that they are consistent,
is a task that comes up all the time in many areas of research: Are the visible stars
distributed uniformly in the sky? (That is, is the distribution of stars as a function
of declination — position in the sky — the same as the distribution of sky area as
a function of declination?) Are educational patterns the same in Brooklyn as in the
Bronx? (That is, are the distributions of people as a function of last-grade-attended
the same?) Do two brands of fluorescent lights have the same distribution of
burn-out times? Is the incidence of chicken pox the same for first-born, second-born,
third-born children, etc.?

These four examples illustrate the four combinations arising from two different
dichotomies: (1) The data are either continuous or binned. (2) Either we wish to
compare one data set to a known distribution, or we wish to compare two equally
unknown data sets. The data sets on fluorescent lights and on stars are continuous,
since we can be given lists of individual burnout times or of stellar positions. The
data sets on chicken pox and educational level are binned, since we are given
tables of numbers of events in discrete categories: first-born, second-born, etc.; or
6th Grade, 7th Grade, etc. Stars and chicken pox, on the other hand, share the
property that the null hypothesis is a known distribution (distribution of area in the
sky, or incidence of chicken pox in the general population). Fluorescent lights and
educational level involve the comparison of two equally unknown data sets (the two
brands, or Brooklyn and the Bronx).

One can always turn continuous data into binned data, by grouping the events
into specified ranges of the continuous variable(s): declinations between 0 and 10
degrees, 10 and 20, 20 and 30, etc. Binning involves a loss of information, however.
Also, there is often considerable arbitrariness as to how the bins should be chosen.
Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributions is thechi-square
test. For continuous data as a function of a single variable, the most generally
accepted test is theKolmogorov-Smirnov test. We consider each in turn.

Chi-Square Test

Suppose thatNi is the number of events observed in theith bin, and thatni is
the number expected according to someknown distribution. Note that theNi’s are

14.3 Are Two Distributions Different? 615

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

integers, while theni’s may not be. Then the chi-square statistic is

χ2 =
∑

i

(Ni − ni)
2

ni

(14.3.1)

where the sum is over all bins. A large value ofχ2 indicates that the null hypothesis
(that theNi’s are drawn from thepopulation represented by theni’s) is rather unlikely.

Any termj in (14.3.1) with0 = nj = Nj should be omitted from the sum. A
term withnj = 0, Nj 6= 0 gives an infiniteχ2, as it should, since in this case the
Ni’s cannot possibly be drawn from theni’s!

Thechi-square probability functionQ(χ2|ν) is an incomplete gamma function,
and was already discussed in§6.2 (see equation 6.2.18). Strictly speakingQ(χ2|ν)
is the probability that the sum of the squares ofν randomnormalvariables of unit
variance (and zero mean) will be greater thanχ2. The terms in the sum (14.3.1)
are not individually normal. However, if either the number of bins is large (≫ 1),
or the number of events in each bin is large (≫ 1), then the chi-square probability
function is a good approximation to the distribution of (14.3.1) in the case of the null
hypothesis. Its use to estimate the significance of the chi-square test is standard.

The appropriate value ofν , the number of degrees of freedom, bears some
additional discussion. If the data are collected with the modelni’s fixed — that
is, not later renormalized to fit the total observed number of eventsΣNi — thenν
equals the number of binsNB . (Note that this isnot the total number ofevents!)
Much more commonly, theni’s are normalized after the fact so that their sum equals
the sum of theNi’s. In this case the correct value forν is NB − 1, and the model
is said to have one constraint (knstrn=1 in the program below). If the model that
gives theni’s has additional free parameters that were adjusted after the fact to agree
with the data, then each of these additional “fitted” parameters decreasesν (and
increasesknstrn) by one additional unit.

We have, then, the following program:

SUBROUTINE chsone(bins,ebins,nbins,knstrn,df,chsq,prob)
INTEGER knstrn,nbins
REAL chsq,df,prob,bins(nbins),ebins(nbins)

C USES gammq
Given the array bins(1:nbins) containing the observed numbers of events, and an array
ebins(1:nbins) containing the expected numbers of events, and given the number of
constraints knstrn (normally one), this routine returns (trivially) the number of degrees of
freedom df, and (nontrivially) the chi-square chsq and the significance prob. A small value
of prob indicates a significant difference between the distributions bins and ebins. Note
that bins and ebins are both real arrays, although bins will normally contain integer
values.

INTEGER j
REAL gammq
df=nbins-knstrn
chsq=0.
do 11 j=1,nbins

if(ebins(j).le.0.)pause ’bad expected number in chsone’
chsq=chsq+(bins(j)-ebins(j))**2/ebins(j)

enddo 11

prob=gammq(0.5*df,0.5*chsq) Chi-square probability function. See §6.2.
return
END

616 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Next we consider the case of comparingtwo binned data sets. LetRi be the
number of events in bini for the first data set,Si the number of events in the same
bin i for the second data set. Then the chi-square statistic is

χ2 =
∑

i

(Ri − Si)
2

Ri + Si

(14.3.2)

Comparing (14.3.2) to (14.3.1), you should note that the denominator of (14.3.2) is
not just the average ofRi andSi (which would be an estimator ofni in 14.3.1).
Rather, it is twice the average, the sum. The reason is that each term in a chi-square
sum is supposed to approximate the square of a normally distributed quantity with
unit variance. The variance of the difference of two normal quantities is the sum
of their individual variances, not the average.

If the data were collected in such a way that the sum of theRi’s is necessarily
equal to the sum ofSi’s, then the number of degrees of freedom is equal to one
less than the number of bins,NB − 1 (that is,knstrn = 1), the usual case. If
this requirement were absent, then the number of degrees of freedom would beNB .
Example: A birdwatcher wants to know whether the distribution of sighted birds
as a function of species is the same this year as last. Each bin corresponds to one
species. If the birdwatcher takes his data to be the first 1000 birds that he saw in
each year, then the number of degrees of freedom isNB − 1. If he takes his data to
be all the birds he saw on a random sample of days, the same days ineach year, then
the number of degrees of freedom isNB (knstrn = 0). In this latter case, note that
he is also testing whether the birds were more numerous overall in one year or the
other: That is the extra degree of freedom. Of course, any additional constraints on
the data set lower the number of degrees of freedom (i.e., increaseknstrn to more
positivevalues) in accordance with their number.

The program is

SUBROUTINE chstwo(bins1,bins2,nbins,knstrn,df,chsq,prob)
INTEGER knstrn,nbins
REAL chsq,df,prob,bins1(nbins),bins2(nbins)

C USES gammq
Given the arrays bins1(1:nbins) and bins2(1:nbins), containing two sets of binned
data, and given the number of constraints knstrn (normally 1 or 0), this routine returns
the number of degrees of freedom df, the chi-square chsq, and the significance prob.
A small value of prob indicates a significant difference between the distributions bins1
and bins2. Note that bins1 and bins2 are both real arrays, although they will normally
contain integer values.

INTEGER j
REAL gammq
df=nbins-knstrn
chsq=0.
do 11 j=1,nbins

if(bins1(j).eq.0..and.bins2(j).eq.0.)then
df=df-1. No data means one less degree of freedom.

else
chsq=chsq+(bins1(j)-bins2(j))**2/(bins1(j)+bins2(j))

endif
enddo 11

prob=gammq(0.5*df,0.5*chsq) Chi-square probability function. See §6.2.
return
END

14.3 Are Two Distributions Different? 617

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Equation (14.3.2) and the routinechstwo both apply to the case where the total
number of data points is the same in the two binned sets. For unequal numbers of
data points, the formula analogous to (14.3.2) is

χ2 =
∑

i

(
√

S/RRi −
√

R/SSi)
2

Ri + Si

(14.3.3)

where

R ≡
∑

i

Ri S ≡
∑

i

Si (14.3.4)

are the respective numbers of data points. It is straightforward to make the
corresponding change inchstwo.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (orK–S) test is applicable to unbinned distributions
that are functions of a single independent variable, that is, todata sets where each
data point can be associated with a single number (lifetime of each lightbulb when
it burns out, or declination of each star). In such cases, the list of data points can
be easily converted to an unbiased estimatorSN (x) of the cumulativedistribution
function of the probability distribution from which it was drawn: If theN events are
located at valuesxi, i = 1, . . . , N , thenSN (x) is the function giving the fraction
of data points to the left of a given valuex. This function is obviously constant
between consecutive (i.e., sorted into ascending order)xi’s, and jumps by the same
constant1/N at eachxi. (See Figure 14.3.1.)

Different distribution functions, or sets of data, give different cumulative
distribution function estimates by the above procedure. However, all cumulative
distribution functions agree at the smallest allowable value ofx (where they are
zero), and at the largest allowable value ofx (where they are unity). (The smallest
and largest values might of course be±∞.) So it is the behavior between the largest
and smallest values that distinguishes distributions.

One can think of any number of statistics to measure the overall difference
between two cumulative distribution functions: the absolute value of the area between
them, for example. Or their integrated mean square difference. The Kolmogorov-
SmirnovD is a particularly simple measure: It is defined as themaximum value
of the absolute difference between two cumulative distribution functions. Thus,
for comparing one data set’sSN (x) to a known cumulative distribution function
P (x), the K–S statistic is

D = max
−∞<x<∞

|SN (x) − P (x)| (14.3.5)

while for comparing two different cumulative distribution functionsSN1
(x) and

SN2
(x), the K–S statistic is

D = max
−∞<x<∞

|SN1
(x) − SN2

(x)| (14.3.6)

618 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

x

x

D

P(x)

SN (x)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

Figure 14.3.1. Kolmogorov-Smirnov statisticD. A measured distribution of values inx (shown
asN dots on the lower abscissa) is to be compared with a theoretical distribution whosecumulative
probability distribution is plotted asP (x). A step-function cumulative probability distributionSN (x) is
constructed, one that rises an equal amount at each measured point.D is the greatest distance between
the two cumulative distributions.

What makes the K–S statistic useful is thatits distribution in the case of the null
hypothesis (data sets drawn from the same distribution) can be calculated, at least to
useful approximation, thus giving the significance of any observed nonzero value of
D. A central feature of the K–S test is that it is invariant under reparametrization
of x; in other words, you can locally slide or stretch thex axis in Figure 14.3.1,
and the maximum distanceD remains unchanged. For example, you will get the
same significance usingx as usinglog x.

The function that enters into the calculation of the significance can be written
as the following sum:

QKS(λ) = 2

∞
∑

j=1

(−1)j−1 e−2j2λ2

(14.3.7)

which is a monotonic function with the limiting values

QKS(0) = 1 QKS(∞) = 0 (14.3.8)

In terms of this function, the significance level of an observed value ofD (as
a disproof of the null hypothesis that the distributions are the same) is given
approximately[1] by the formula

Probability(D > observed) = QKS

([

√

Ne + 0.12 + 0.11/
√

Ne

]

D
)

(14.3.9)

14.3 Are Two Distributions Different? 619

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

whereNe is the effective number of data points,Ne = N for the case (14.3.5)
of one distribution, and

Ne =
N1N2

N1 + N2

(14.3.10)

for the case (14.3.6) of two distributions, whereN1 is the number of data points in
the first distribution,N2 the number in the second.

The nature of the approximation involved in (14.3.9) is that it becomes
asymptotically accurate as theNe becomes large, but is already quite good for
Ne ≥ 4, as small a number as one might ever actually use. (See[1].)

So, we have the following routines for the cases of one and two distributions:

SUBROUTINE ksone(data,n,func,d,prob)
INTEGER n
REAL d,data(n),func,prob
EXTERNAL func

C USES probks,sort
Given an array data(1:n), and given a user-supplied function of a single variable func
which is a cumulative distribution function ranging from 0 (for smallest values of its argu-
ment) to 1 (for largest values of its argument), this routine returns the K–S statistic d, and
the significance level prob. Small values of prob show that the cumulative distribution
function of data is significantly different from func. The array data is modified by being
sorted into ascending order.

INTEGER j
REAL dt,en,ff,fn,fo,probks
call sort(n,data) If the data are already sorted into ascending or-

der, then this call can be omitted.en=n
d=0.
fo=0. Data’s c.d.f. before the next step.
do 11 j=1,n Loop over the sorted data points.

fn=j/en Data’s c.d.f. after this step.
ff=func(data(j)) Compare to the user-supplied function.
dt=max(abs(fo-ff),abs(fn-ff)) Maximum distance.
if(dt.gt.d)d=dt
fo=fn

enddo 11

en=sqrt(en)
prob=probks((en+0.12+0.11/en)*d) Compute significance.
return
END

SUBROUTINE kstwo(data1,n1,data2,n2,d,prob)
INTEGER n1,n2
REAL d,prob,data1(n1),data2(n2)

C USES probks,sort
Given an array data1(1:n1), and an array data2(1:n2), this routine returns the K–
S statistic d, and the significance level prob for the null hypothesis that the data sets
are drawn from the same distribution. Small values of prob show that the cumulative
distribution function of data1 is significantly different from that of data2. The arrays
data1 and data2 are modified by being sorted into ascending order.

INTEGER j1,j2
REAL d1,d2,dt,en1,en2,en,fn1,fn2,probks
call sort(n1,data1)
call sort(n2,data2)
en1=n1
en2=n2
j1=1 Next value of data1 to be processed.
j2=1 Ditto, data2.

620 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fn1=0.
fn2=0.
d=0.

1 if(j1.le.n1.and.j2.le.n2)then If we are not done...
d1=data1(j1)
d2=data2(j2)
if(d1.le.d2)then Next step is in data1.

fn1=j1/en1
j1=j1+1

endif
if(d2.le.d1)then Next step is in data2.

fn2=j2/en2
j2=j2+1

endif
dt=abs(fn2-fn1)
if(dt.gt.d)d=dt

goto 1
endif
en=sqrt(en1*en2/(en1+en2))
prob=probks((en+0.12+0.11/en)*d) Compute significance.
return
END

Both of the above routines use the following routine for calculating the function
QKS :

FUNCTION probks(alam)
REAL probks,alam,EPS1,EPS2
PARAMETER (EPS1=0.001, EPS2=1.e-8)

Kolmogorov-Smirnov probability function.
INTEGER j
REAL a2,fac,term,termbf
a2=-2.*alam**2
fac=2.
probks=0.
termbf=0. Previous term in sum.
do 11 j=1,100

term=fac*exp(a2*j**2)
probks=probks+term
if(abs(term).le.EPS1*termbf.or.abs(term).le.EPS2*probks)return
fac=-fac Alternating signs in sum.
termbf=abs(term)

enddo 11

probks=1. Get here only by failing to converge.
return
END

Variants on the K–S Test

The sensitivity of the K–S test to deviations from a cumulative distribution function
P (x) is not independent ofx. In fact, the K–S test tends to be most sensitive around the
median value, whereP (x) = 0.5, and less sensitive at the extreme ends of the distribution,
whereP (x) is near0 or 1. The reason is that the difference|SN (x) − P (x)| does not, in the
null hypothesis, have a probability distribution that is independent ofx. Rather, its variance is
proportional toP (x)[1− P (x)], which is largest atP = 0.5. Since the K–S statistic (14.3.5)
is the maximum difference over allx of two cumulative distribution functions, a deviation that
might be statistically significant atits ownvalue ofx gets compared to the expected chance
deviation atP = 0.5, and is thus discounted. A result is that, while the K–S test is good at

14.3 Are Two Distributions Different? 621

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

finding shifts in a probability distribution, especially changes in the median value, it is not
always so good at findingspreads, which more affect the tails of the probability distribution,
and which may leave the median unchanged.

One way of increasing the power of the K–S statistic out on the tails is to replace
D (equation 14.3.5) by a so-calledstabilizedor weightedstatistic[2-4], for example the
Anderson-Darling statistic,

D* = max
−∞<x<∞

|SN (x) − P (x)|
√

P (x)[1− P (x)]
(14.3.11)

Unfortunately, there is no simple formula analogous to equations (14.3.7) and (14.3.9) for this
statistic, although Noé[5] gives a computationalmethod using a recursion relation and provides
a graph of numerical results. There are many other possible similar statistics,for example

D** =

∫

1

P=0

|SN (x) − P (x)|
√

P (x)[1− P (x)]
dP (x) (14.3.12)

which is also discussed by Anderson and Darling (see[3]).
Another approach, which we prefer as simpler and more direct, is due to Kuiper[6,7].

We already mentioned that the standard K–S test is invariant under reparametrizations of the
variablex. An even more general symmetry, which guarantees equal sensitivities at all values
of x, is to wrap thex axis around into a circle (identifying the points at±∞), and to look for
a statistic that is now invariant under all shifts and parametrizations on the circle. This allows,
for example, a probability distribution to be “cut” at some central value ofx, and the left and
right halves to be interchanged, without altering the statistic or its significance.

Kuiper’s statistic, defined as

V = D+ + D− = max
−∞<x<∞

[SN (x) − P (x)] + max
−∞<x<∞

[P (x) − SN (x)] (14.3.13)

is the sum of the maximum distance ofSN (x) above and belowP (x). You should be able
to convince yourself that this statistic has the desired invariance on the circle: Sketch the
indefinite integral of two probability distributions defined on the circle as a function of angle
around the circle, as the angle goes through several times360◦. If you change the starting
point of the integration,D+ andD− change individually, but their sum is constant.

Furthermore, there is a simple formula for the asymptotic distribution of the statisticV ,
directly analogous to equations (14.3.7)–(14.3.10). Let

QKP (λ) = 2

∞
∑

j=1

(4j2λ2 − 1)e−2j2λ2

(14.3.14)

which is monotonic and satisfies

QKP (0) = 1 QKP (∞) = 0 (14.3.15)

In terms of this function the significance level is[1]

Probability(V > observed) = QKP

(

[√
Ne + 0.155 + 0.24/

√
Ne

]

D

)

(14.3.16)

Here Ne is N in the one-sample case, or is given by equation (14.3.10) in the case of
two samples.

Of course, Kuiper’s test is ideal for any problem originally defined on a circle, for
example, to test whether the distribution in longitude of something agrees with some theory,
or whether two somethings have different distributions in longitude. (See also[8].)

We will leave to you the coding of routines analogous toksone, kstwo, andprobks,
above. (Forλ < 0.4, don’t try to do the sum 14.3.14. Its value is 1, to 7 figures, but the series
can require many terms to converge, and loses accuracy to roundoff.)

Two final cautionary notes: First, we should mention that all varieties of K–S test lack
the ability to discriminate some kinds of distributions. A simple example isa probability
distribution with a narrow “notch” within which the probability falls to zero. Sucha
distribution is of course ruled out by the existence of even one data point within the notch,

622 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

but, because of its cumulative nature, a K–S test would require many data points in the notch
before signaling a discrepancy.

Second, we should note that, if you estimate any parameters from a data set (e.g., a mean
and variance), then the distribution of the K–S statisticD for a cumulative distribution function
P (x) thatuses the estimated parametersis no longer given by equation (14.3.9). In general,
you will have to determine the new distribution yourself, e.g., by Monte Carlo methods.

CITED REFERENCES AND FURTHER READING:

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapters IX(C) and IX(E).

Stephens, M.A. 1970, Journal of the Royal Statistical Society, ser. B, vol. 32, pp. 115–122. [1]

Anderson, T.W., and Darling, D.A. 1952, Annals of Mathematical Statistics, vol. 23, pp. 193–212.
[2]

Darling, D.A. 1957, Annals of Mathematical Statistics, vol. 28, pp. 823–838. [3]

Michael, J.R. 1983, Biometrika, vol. 70, no. 1, pp. 11–17. [4]

Noé, M. 1972, Annals of Mathematical Statistics, vol. 43, pp. 58–64. [5]

Kuiper, N.H. 1962, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen,
ser. A., vol. 63, pp. 38–47. [6]

Stephens, M.A. 1965, Biometrika, vol. 52, pp. 309–321. [7]

Fisher, N.I., Lewis, T., and Embleton, B.J.J. 1987, Statistical Analysis of Spherical Data (New
York: Cambridge University Press). [8]

14.4 Contingency Table Analysis of Two
Distributions

In this section, and the next two sections, we deal withmeasures of association
for two distributions. The situation is this: Each data point has two or more
different quantities associated with it, and we want to know whether knowledge of
one quantity gives us any demonstrable advantage in predicting the value of another
quantity. In many cases, one variable will be an “independent” or “control” variable,
and another will be a “dependent” or “measured” variable. Then, we want to know if
the latter variableis in fact dependent on orassociatedwith the former variable. If it
is, we want to have some quantitative measure of the strength of the association. One
often hears this loosely stated as the question of whether two variables arecorrelated
or uncorrelated, but we will reserve those terms for a particular kind of association
(linear, or at least monotonic), as discussed in§14.5 and§14.6.

Notice that, as in previous sections, the different concepts of significance and
strength appear: The association between two distributions may be very significant
even if that association is weak — if the quantity of data is large enough.

It is useful to distinguish among some different kinds of variables, with
different categories forming a loose hierarchy.

• A variable is callednominal if its values are the members of some
unordered set. For example, “state of residence” is a nominal variable
that (in the U.S.) takes on one of 50 values; in astrophysics, “type of
galaxy” is a nominal variable with the three values “spiral,” “elliptical,”
and “irregular.”

622 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

but, because of its cumulative nature, a K–S test would require many data points in the notch
before signaling a discrepancy.

Second, we should note that, if you estimate any parameters from a data set (e.g., a mean
and variance), then the distribution of the K–S statisticD for a cumulative distribution function
P (x) thatuses the estimated parametersis no longer given by equation (14.3.9). In general,
you will have to determine the new distribution yourself, e.g., by Monte Carlo methods.

CITED REFERENCES AND FURTHER READING:

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapters IX(C) and IX(E).

Stephens, M.A. 1970, Journal of the Royal Statistical Society, ser. B, vol. 32, pp. 115–122. [1]

Anderson, T.W., and Darling, D.A. 1952, Annals of Mathematical Statistics, vol. 23, pp. 193–212.
[2]

Darling, D.A. 1957, Annals of Mathematical Statistics, vol. 28, pp. 823–838. [3]

Michael, J.R. 1983, Biometrika, vol. 70, no. 1, pp. 11–17. [4]

Noé, M. 1972, Annals of Mathematical Statistics, vol. 43, pp. 58–64. [5]

Kuiper, N.H. 1962, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen,
ser. A., vol. 63, pp. 38–47. [6]

Stephens, M.A. 1965, Biometrika, vol. 52, pp. 309–321. [7]

Fisher, N.I., Lewis, T., and Embleton, B.J.J. 1987, Statistical Analysis of Spherical Data (New
York: Cambridge University Press). [8]

14.4 Contingency Table Analysis of Two
Distributions

In this section, and the next two sections, we deal withmeasures of association
for two distributions. The situation is this: Each data point has two or more
different quantities associated with it, and we want to know whether knowledge of
one quantity gives us any demonstrable advantage in predicting the value of another
quantity. In many cases, one variable will be an “independent” or “control” variable,
and another will be a “dependent” or “measured” variable. Then, we want to know if
the latter variableis in fact dependent on orassociatedwith the former variable. If it
is, we want to have some quantitative measure of the strength of the association. One
often hears this loosely stated as the question of whether two variables arecorrelated
or uncorrelated, but we will reserve those terms for a particular kind of association
(linear, or at least monotonic), as discussed in§14.5 and§14.6.

Notice that, as in previous sections, the different concepts of significance and
strength appear: The association between two distributions may be very significant
even if that association is weak — if the quantity of data is large enough.

It is useful to distinguish among some different kinds of variables, with
different categories forming a loose hierarchy.

• A variable is callednominal if its values are the members of some
unordered set. For example, “state of residence” is a nominal variable
that (in the U.S.) takes on one of 50 values; in astrophysics, “type of
galaxy” is a nominal variable with the three values “spiral,” “elliptical,”
and “irregular.”

14.4 Contingency Table Analysis of Two Distributions 623

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• A variable is termedordinal if its values are the members of a discrete, but
ordered, set. Examples are: grade in school, planetary order from the Sun
(Mercury = 1, Venus = 2,. . .), number of offspring. There need not be
any concept of “equal metric distance” between the values of an ordinal
variable, only that they be intrinsically ordered.

• We will call a variablecontinuousif its values are real numbers, as
are times, distances, temperatures, etc. (Social scientists sometimes
distinguish betweenintervalandratio continuous variables, but we do not
find that distinction very compelling.)

A continuous variable can always be made into an ordinal one by binning it
into ranges. If we choose to ignore the ordering of the bins, then we can turn it into
a nominal variable. Nominal variables constitute the lowest type of the hierarchy,
and therefore the most general. For example, a set ofseveralcontinuous or ordinal
variables can be turned, if crudely, into a single nominal variable, by coarsely
binning each variable and then taking each distinct combination of bin assignments
as a single nominal value. When multidimensional data are sparse, this is often
the only sensible way to proceed.

The remainder of this section will deal with measures of association between
nominalvariables. For any pair of nominal variables, the data can be displayed as
a contingency table, a table whose rows are labeled by the values of one nominal
variable, whose columns are labeled by the values of the other nominal variable,
and whose entries are nonnegative integers giving the number of observed events
for each combination of row and column (see Figure 14.4.1). The analysis of
association between nominal variables is thus calledcontingency table analysisor
crosstabulation analysis.

We will introduce two different approaches. The first approach, based on the
chi-square statistic, does a good job of characterizing the significance of association,
but is only so-so as a measure of the strength (principally because its numerical
values have no very direct interpretations). The second approach, based on the
information-theoreticconcept ofentropy, says nothing at all about the significance of
association (use chi-square for that!), but is capable of very elegantly characterizing
the strength of an association already known to be significant.

Measures of Association Based on Chi-Square

Some notation first: LetNij denote the number of events that occur with the
first variablex taking on itsith value, and the second variabley taking on itsjth
value. LetN denote the total number of events, the sum of all theNij ’s. Let Ni·

denote the number of events for which the first variablex takes on itsith value
regardless of the value ofy; N·j is the number of events with thejth value ofy
regardless ofx. So we have

Ni· =
∑

j

Nij N·j =
∑

i

Nij

N =
∑

i

Ni· =
∑

j

N·j

(14.4.1)

624 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
1. male

2. female

.

.

.

.

.

.

.

.

.
. . .

.

.

.

. . .

. . .

. . .

. . .1.
red

of
red males

N11

of
red females

N21

of
green females

N22

of
green males

N12

of
 males

N1⋅

of
females

N2⋅

2.
green

of red
N ⋅1

of green
N⋅2

total #
N

Figure 14.4.1. Example of a contingency table for two nominal variables, here sex and color. The
row and column marginals (totals) are shown. The variables are “nominal,” i.e., the order in which
their values are listed is arbitrary and does not affect the result of the contingency table analysis. If
the ordering of values has some intrinsic meaning, then the variables are “ordinal” or “continuous,” and
correlation techniques (§14.5-§14.6) can be utilized.

N·j andNi· are sometimes called therow and column totalsor marginals, but we
will use these terms cautiously since we can never keep straight which are the rows
and which are the columns!

The null hypothesis is that the two variablesx andy have no association. In this
case, the probability of a particular value ofx given a particular value ofy should
be the same as the probability of that value ofx regardless ofy. Therefore, in the
null hypothesis, the expected number for anyNij, which we will denotenij, can be
calculated from only the row and column totals,

nij

N·j

=
Ni·

N
which implies nij =

Ni·N·j

N
(14.4.2)

Notice that if a column or row total is zero, then the expected number for all the
entries in that column or row is also zero; in that case, the never-occurring bin of
x or y should simply be removed from the analysis.

The chi-square statistic is now given by equation (14.3.1), which, in the present
case, is summed over all entries in the table,

χ2 =
∑

i,j

(Nij − nij)
2

nij

(14.4.3)

The number of degrees of freedom is equal to the number of entries in the table
(product of its row size and column size) minus the number of constraints that have
arisen from our use of the data themselves to determine thenij. Each row total and
column total is a constraint, except that this overcounts by one, since the total of the

14.4 Contingency Table Analysis of Two Distributions 625

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

column totals and the total of the row totals both equalN , the total number of data
points. Therefore, if the table is of sizeI by J , the number of degrees of freedom is
IJ − I − J + 1. Equation (14.4.3), along with the chi-square probability function
(§6.2), now give the significance of an association between the variablesx andy.

Suppose there is a significant association. How do we quantify its strength, so
that (e.g.) we can compare the strength of one association with another? The idea
here is to find some reparametrization ofχ2 which maps it into some convenient
interval, like 0 to 1, where the result is not dependent on the quantity of data that we
happen to sample, but rather depends only on the underlying population from which
the data were drawn. There are several different ways of doing this. Two of the
more common are calledCramer’s Vand thecontingency coefficient C.

The formula for Cramer’sV is

V =

√

χ2

N min(I − 1, J − 1)
(14.4.4)

whereI and J are again the numbers of rows and columns, andN is the total
number of events. Cramer’sV has the pleasant property that it lies between zero
and one inclusive, equals zero when there is no association, and equals one only
when the association is perfect: All the events in any row lie in one unique column,
and vice versa. (In chess parlance, no two rooks, placed on a nonzero table entry,
can capture each other.)

In the case ofI = J = 2, Cramer’sV is also referred to as thephi statistic.
The contingency coefficientC is defined as

C =

√

χ2

χ2 + N
(14.4.5)

It also lies between zero and one, but (as is apparent from the formula) it can never
achieve the upper limit. While it can be used to compare the strength of association
of two tables with the sameI andJ , its upper limit depends onI andJ . Therefore
it can never be used to compare tables of different sizes.

The trouble with both Cramer’sV and the contingency coefficientC is that,
when they take on values in between their extremes, there is no very direct
interpretation of what that value means. For example, you are in Las Vegas, and a
friend tells you that there is a small, but significant, association betweenthe color of
a croupier’s eyes and the occurrence of red and black on his roulette wheel. Cramer’s
V is about 0.028, your friend tells you. You know what the usual odds against you
are (because of the green zero anddouble zero on the wheel). Is this association
sufficient for you to make money? Don’t ask us!

SUBROUTINE cntab1(nn,ni,nj,chisq,df,prob,cramrv,ccc)
INTEGER ni,nj,nn(ni,nj),MAXI,MAXJ
REAL ccc,chisq,cramrv,df,prob,TINY
PARAMETER (MAXI=100,MAXJ=100,TINY=1.e-30) Maximum table size, and a small num-

ber.C USES gammq
Given a two-dimensional contingency table in the form of an integer array nn(1:ni,1:nj),
this routine returns the chi-square chisq, the number of degrees of freedom df, the signif-
icance level prob (small values indicating a significant association), and two measures of
association, Cramer’s V (cramrv) and the contingency coefficient C (ccc).

INTEGER i,j,nni,nnj

626 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

REAL expctd,sum,sumi(MAXI),sumj(MAXJ),gammq
sum=0 Will be total number of events.
nni=ni Number of rows
nnj=nj and columns.
do 12 i=1,ni Get the row totals.

sumi(i)=0.
do 11 j=1,nj

sumi(i)=sumi(i)+nn(i,j)
sum=sum+nn(i,j)

enddo 11

if(sumi(i).eq.0.)nni=nni-1 Eliminate any zero rows by reducing the
number.enddo 12

do 14 j=1,nj Get the column totals.
sumj(j)=0.
do 13 i=1,ni

sumj(j)=sumj(j)+nn(i,j)
enddo 13

if(sumj(j).eq.0.)nnj=nnj-1 Eliminate any zero columns.
enddo 14

df=nni*nnj-nni-nnj+1 Corrected number of degrees of freedom.
chisq=0.
do 16 i=1,ni Do the chi-square sum.

do 15 j=1,nj
expctd=sumj(j)*sumi(i)/sum
chisq=chisq+(nn(i,j)-expctd)**2/(expctd+TINY) Here TINY guarantees that

any eliminated row or column will not
contribute to the sum.

enddo 15

enddo 16

prob=gammq(0.5*df,0.5*chisq) Chi-square probability function.
cramrv=sqrt(chisq/(sum*min(nni-1,nnj-1)))
ccc=sqrt(chisq/(chisq+sum))
return
END

Measures of Association Based on Entropy

Consider the game of “twenty questions,” where by repeated yes/no questions
you try to eliminate all except one correct possibility for an unknown object. Better
yet, consider a generalization of the game, where you are allowed to ask multiple
choice questions as well as binary (yes/no) ones. The categories in your multiple
choice questions are supposed to be mutually exclusive and exhaustive (as are
“yes” and “no”).

The value to you of an answer increases with the number of possibilities that
it eliminates. More specifically, an answer that eliminates all except a fractionp of
the remaining possibilities can be assigned a value− lnp (a positive number, since
p < 1). The purpose of the logarithm is to make the value additive, since (e.g.) one
question that eliminates all but 1/6 of the possibilities is considered as good as two
questions that, in sequence, reduce the number by factors 1/2 and 1/3.

So that is the value of an answer; but what is the value of a question? If there
areI possible answers to the question(i = 1, . . . , I) and the fraction of possibilities
consistent with theith answer ispi (with the sum of thepi’s equal to one), then the
value of the question is the expectation value of the value of the answer, denotedH ,

H = −

I
∑

i=1

pi lnpi (14.4.6)

14.4 Contingency Table Analysis of Two Distributions 627

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In evaluating (14.4.6), note that

lim
p→0

p lnp = 0 (14.4.7)

The valueH lies between 0 andln I. It is zero only when one of thepi’s is one, all
the others zero: In this case, the question is valueless, since its answer is preordained.
H takes on its maximum value when all thepi’s are equal, in which case the question
is sure to eliminate all but a fraction1/I of the remaining possibilities.

The valueH is conventionally termed theentropyof the distribution given by
the pi’s, a terminology borrowed from statistical physics.

So far we have said nothing about the association of two variables; but suppose
we are deciding what question to ask next in the game and have to choose between
two candidates, or possibly want to ask both in one order or another. Suppose that
one question,x, hasI possible answers, labeled byi, and that the other question,
y, asJ possible answers, labeled byj. Then the possible outcomes of asking both
questions form a contingency table whose entriesNij, when normalized by dividing
by the total number of remaining possibilitiesN , give all the information about the
p’s. In particular, we can make contact with the notation (14.4.1) by identifying

pij =
Nij

N

pi· =
Ni·

N
(outcomes of questionx alone)

p·j =
N·j

N
(outcomes of questiony alone)

(14.4.8)

The entropies of the questionsx andy are, respectively,

H(x) = −
∑

i

pi· ln pi· H(y) = −
∑

j

p·j lnp·j (14.4.9)

The entropy of the two questions together is

H(x, y) = −
∑

i,j

pij lnpij (14.4.10)

Now what is the entropy of the questiony givenx (that is, ifx is asked first)?
It is the expectation value over the answers tox of the entropy of the restricted
y distribution that lies in a single column of the contingency table (corresponding
to the x answer):

H(y|x) = −
∑

i

pi·
∑

j

pij
pi·

ln
pij
pi·

= −
∑

i,j

pij ln
pij
pi·

(14.4.11)

Correspondingly, the entropy ofx given y is

H(x|y) = −
∑

j

p·j
∑

i

pij
p·j

ln
pij
p·j

= −
∑

i,j

pij ln
pij
p·j

(14.4.12)

628 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

We can readily prove that the entropy ofy given x is never more than the
entropy ofy alone, i.e., that askingx first can only reduce the usefulness of asking
y (in which case the two variables areassociated!):

H(y|x) −H(y) = −
∑

i,j

pij ln
pij/pi·
p·j

=
∑

i,j

pij ln
p·jpi·
pij

≤
∑

i,j

pij

(

p·jpi·
pij

− 1

)

=
∑

i,j

pi·p·j −
∑

i,j

pij

= 1 − 1 = 0

(14.4.13)

where the inequality follows from the fact

lnw ≤ w − 1 (14.4.14)

We now have everything we need to define a measure of the “dependency” ofy
on x, that is to say a measure of association. This measure is sometimes called the
uncertainty coefficientof y. We will denote it asU(y|x),

U(y|x) ≡
H(y) −H(y|x)

H(y)
(14.4.15)

This measure lies between zero and one, with the value 0 indicating thatx andy
have no association, the value 1 indicating that knowledge ofx completely predicts
y. For in-between values,U(y|x) gives the fraction ofy’s entropyH(y) that is
lost if x is already known (i.e., that is redundant with the information inx). In our
game of “twenty questions,”U(y|x) is the fractional loss in the utility of question
y if questionx is to be asked first.

If we wish to viewx as the dependent variable,y as the independent one, then
interchangingx andy we can of course define the dependency ofx on y,

U(x|y) ≡
H(x) −H(x|y)

H(x)
(14.4.16)

If we want to treatx andy symmetrically, then the useful combination turns
out to be

U(x, y) ≡ 2

[

H(y) + H(x) −H(x, y)

H(x) + H(y)

]

(14.4.17)

If the two variables are completely independent, thenH(x, y) = H(x) + H(y), so
(14.4.17) vanishes. If the two variables are completely dependent, thenH(x) =
H(y) = H(x, y), so (14.4.16) equals unity. In fact, you can use the identities (easily
proved from equations 14.4.9–14.4.12)

H(x, y) = H(x) + H(y|x) = H(y) + H(x|y) (14.4.18)

14.4 Contingency Table Analysis of Two Distributions 629

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

to show that

U(x, y) =
H(x)U(x|y) + H(y)U(y|x)

H(x) + H(y)
(14.4.19)

i.e., that the symmetrical measure is just a weighted average of the two asymmetrical
measures (14.4.15) and (14.4.16), weighted by the entropy of each variable separately.

Here is a program for computing all the quantities discussed,H(x), H(y),
H(x|y), H(y|x), H(x, y), U(x|y), U(y|x), andU(x, y):

SUBROUTINE cntab2(nn,ni,nj,h,hx,hy,hygx,hxgy,uygx,uxgy,uxy)
INTEGER ni,nj,nn(ni,nj),MAXI,MAXJ
REAL h,hx,hxgy,hy,hygx,uxgy,uxy,uygx,TINY
PARAMETER (MAXI=100,MAXJ=100,TINY=1.e-30)

Given a two-dimensional contingency table in the form of an integer array nn(i,j), where
i labels the x variable and ranges from 1 to ni, j labels the y variable and ranges from 1 to
nj, this routine returns the entropy h of the whole table, the entropy hx of the x distribution,
the entropy hy of the y distribution, the entropy hygx of y given x, the entropy hxgy of
x given y, the dependency uygx of y on x (eq. 14.4.15), the dependency uxgy of x on y
(eq. 14.4.16), and the symmetrical dependency uxy (eq. 14.4.17).
Parameters: MAXI and MAXJ define the maximum size of table; TINY is a small number.

INTEGER i,j
REAL p,sum,sumi(MAXI),sumj(MAXJ)
sum=0
do 12 i=1,ni Get the row totals.

sumi(i)=0.0
do 11 j=1,nj

sumi(i)=sumi(i)+nn(i,j)
sum=sum+nn(i,j)

enddo 11

enddo 12

do 14 j=1,nj Get the column totals.
sumj(j)=0.
do 13 i=1,ni

sumj(j)=sumj(j)+nn(i,j)
enddo 13

enddo 14

hx=0. Entropy of the x distribution,
do 15 i=1,ni

if(sumi(i).ne.0.)then
p=sumi(i)/sum
hx=hx-p*log(p)

endif
enddo 15

hy=0. and of the y distribution.
do 16 j=1,nj

if(sumj(j).ne.0.)then
p=sumj(j)/sum
hy=hy-p*log(p)

endif
enddo 16

h=0.
do 18 i=1,ni Total entropy: loop over both x

do 17 j=1,nj and y.
if(nn(i,j).ne.0)then

p=nn(i,j)/sum
h=h-p*log(p)

endif
enddo 17

enddo 18

hygx=h-hx Uses equation (14.4.18),
hxgy=h-hy as does this.

630 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

uygx=(hy-hygx)/(hy+TINY) Equation (14.4.15).
uxgy=(hx-hxgy)/(hx+TINY) Equation (14.4.16).
uxy=2.*(hx+hy-h)/(hx+hy+TINY) Equation (14.4.17).
return
END

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Fano, R.M. 1961, Transmission of Information (New York: Wiley and MIT Press), Chapter 2.

14.5 Linear Correlation

We next turn to measures of association between variables that are ordinal
or continuous, rather than nominal. Most widely used is thelinear correlation
coefficient. For pairs of quantities(xi, yi), i = 1, . . . , N , the linear correlation
coefficientr (also called the product-moment correlation coefficient, orPearson’s
r) is given by the formula

r =

∑

i

(xi − x)(yi − y)

√

∑

i

(xi − x)2
√

∑

i

(yi − y)2
(14.5.1)

where, as usual,x is the mean of thexi’s, y is the mean of theyi’s.
The value ofr lies between−1 and1, inclusive. It takes on a value of1, termed

“complete positive correlation,” when the data points lie on a perfect straight line
with positive slope, withx andy increasing together. The value1 holds independent
of the magnitude of the slope. If the data points lie on a perfect straight line with
negative slope,y decreasing asx increases, thenr has the value−1; this is called
“complete negative correlation.” A value ofr near zero indicates that the variables
x and y are uncorrelated.

When a correlation is known to be significant,r is one conventional way of
summarizing its strength. In fact, the value ofr can be translated into a statement
about what residuals (root mean square deviations) are to be expected if the data are
fitted to a straight line by the least-squares method (see§15.2, especially equations
15.2.13 – 15.2.14). Unfortunately,r is a rather poor statistic for decidingwhether
an observed correlation is statistically significant, and/or whether one observed
correlation is significantly stronger than another. The reason is thatr is ignorant of
the individual distributions ofx andy, so there is no universal way to compute its
distribution in the case of the null hypothesis.

About the only general statement that can be made is this: If the null hypothesis
is that x and y are uncorrelated, and if the distributions forx and y each have
enough convergent moments (“tails” die off sufficiently rapidly), and ifN is large

630 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

uygx=(hy-hygx)/(hy+TINY) Equation (14.4.15).
uxgy=(hx-hxgy)/(hx+TINY) Equation (14.4.16).
uxy=2.*(hx+hy-h)/(hx+hy+TINY) Equation (14.4.17).
return
END

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Fano, R.M. 1961, Transmission of Information (New York: Wiley and MIT Press), Chapter 2.

14.5 Linear Correlation

We next turn to measures of association between variables that are ordinal
or continuous, rather than nominal. Most widely used is thelinear correlation
coefficient. For pairs of quantities(xi, yi), i = 1, . . . , N , the linear correlation
coefficientr (also called the product-moment correlation coefficient, orPearson’s
r) is given by the formula

r =

∑

i

(xi − x)(yi − y)

√

∑

i

(xi − x)2
√

∑

i

(yi − y)2
(14.5.1)

where, as usual,x is the mean of thexi’s, y is the mean of theyi’s.
The value ofr lies between−1 and1, inclusive. It takes on a value of1, termed

“complete positive correlation,” when the data points lie on a perfect straight line
with positive slope, withx andy increasing together. The value1 holds independent
of the magnitude of the slope. If the data points lie on a perfect straight line with
negative slope,y decreasing asx increases, thenr has the value−1; this is called
“complete negative correlation.” A value ofr near zero indicates that the variables
x and y are uncorrelated.

When a correlation is known to be significant,r is one conventional way of
summarizing its strength. In fact, the value ofr can be translated into a statement
about what residuals (root mean square deviations) are to be expected if the data are
fitted to a straight line by the least-squares method (see§15.2, especially equations
15.2.13 – 15.2.14). Unfortunately,r is a rather poor statistic for decidingwhether
an observed correlation is statistically significant, and/or whether one observed
correlation is significantly stronger than another. The reason is thatr is ignorant of
the individual distributions ofx andy, so there is no universal way to compute its
distribution in the case of the null hypothesis.

About the only general statement that can be made is this: If the null hypothesis
is that x and y are uncorrelated, and if the distributions forx and y each have
enough convergent moments (“tails” die off sufficiently rapidly), and ifN is large

14.5 Linear Correlation 631

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(typically> 500), thenr is distributed approximately normally, with a mean of zero
and a standard deviation of1/

√
N . In that case, the (double-sided) significance of

the correlation, that is, the probability that|r| should be larger than its observed
value in the null hypothesis, is

erfc

(

|r|
√
N√

2

)

(14.5.2)

where erfc(x) is the complementary error function, equation (6.2.8), computed by
the routineserfc or erfcc of §6.2. A small value of (14.5.2) indicates that the
two distributions are significantly correlated. (See expression 14.5.9 below for a
more accurate test.)

Most statistics books try to go beyond (14.5.2) and give additional statistical
tests that can be made usingr. In almost all cases, however, these tests are valid
only for a very special class of hypotheses, namely that the distributions ofx andy
jointly form abinormalor two-dimensional Gaussiandistribution around their mean
values, with joint probability density

p(x, y) dxdy = const.× exp

[

−1

2
(a11x

2 − 2a12xy + a22y
2)

]

dxdy (14.5.3)

wherea11, a12, anda22 are arbitrary constants. For this distributionr has the value

r = − a12√
a11a22

(14.5.4)

There are occasions when (14.5.3) may beknown to be a good model of the
data. There may be other occasions when we are willing to take (14.5.3) as at least
a rough and ready guess, since many two-dimensional distributions do resemble a
binormal distribution, at least not too far out on their tails. In either situation, we can
use (14.5.3) to go beyond (14.5.2) in any of several directions:

First, we can allow for the possibility that the numberN of data points is not
large. Here, it turns out that the statistic

t = r

√

N − 2

1 − r2
(14.5.5)

is distributed in the null case (of no correlation) like Student’st-distribution with
ν = N − 2 degrees of freedom, whose two-sided significance level is given by
1 − A(t|ν) (equation 6.4.7). AsN becomes large, this significance and (14.5.2)
become asymptotically the same, so that one never does worse by using (14.5.5),
even if the binormal assumption is not well substantiated.

Second, whenN is only moderately large (≥ 10), we can compare whether
the difference of two significantly nonzeror’s, e.g., from different experiments, is
itself significant. In other words, we can quantify whether a change in some control
variable significantly alters an existing correlation between two other variables. This
is done by usingFisher’s z-transformationto associate each measuredr with a
correspondingz,

z =
1

2
ln

(

1 + r

1− r

)

(14.5.6)

632 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Then, eachz is approximately normally distributed with a mean value

z =
1

2

[

ln

(

1 + rtrue

1 − rtrue

)

+
rtrue

N − 1

]

(14.5.7)

wherertrue is the actual or population value of the correlation coefficient, and with
a standard deviation

σ(z) ≈ 1√
N − 3

(14.5.8)

Equations (14.5.7) and (14.5.8), when they are valid, give several useful
statistical tests. For example, the significance level at which a measured value ofr
differs from some hypothesized valuertrue is given by

erfc

(|z − z|
√
N − 3√

2

)

(14.5.9)

wherez and z are given by (14.5.6) and (14.5.7), with small values of (14.5.9)
indicating a significant difference. (Settingz = 0 makes expression 14.5.9 a more
accurate replacement for expression 14.5.2 above.) Similarly, the significance of a
difference between two measured correlation coefficientsr1 andr2 is

erfc

|z1 − z2|
√

2
√

1

N1−3
+ 1

N2−3

 (14.5.10)

wherez1 andz2 are obtained fromr1 andr2 using (14.5.6), and whereN1 andN2

are, respectively, the number of data points in the measurement ofr1 andr2.
All of the significances above are two-sided. If you wish to disprove the null

hypothesis in favor of a one-sided hypothesis, such as thatr1 > r2 (where the sense
of the inequality was decideda priori), then (i) if your measuredr1 and r2 have
thewrongsense, you have failed to demonstrate your one-sided hypothesis, but (ii)
if they have the right ordering, you can multiply the significances given above by
0.5, which makes them more significant.

But keep in mind: These interpretations of ther statistic can be completely
meaningless if the joint probability distribution of your variablesx and y is too
different from a binormal distribution.

SUBROUTINE pearsn(x,y,n,r,prob,z)
INTEGER n
REAL prob,r,z,x(n),y(n),TINY
PARAMETER (TINY=1.e-20) Will regularize the unusual case of com-

plete correlation.C USES betai
Given two arrays x(1:n) and y(1:n), this routine computes their correlation coefficient
r (returned as r), the significance level at which the null hypothesis of zero correlation
is disproved (prob whose small value indicates a significant correlation), and Fisher’s z

(returned as z), whose value can be used in further statistical tests as described above.
INTEGER j
REAL ax,ay,df,sxx,sxy,syy,t,xt,yt,betai
ax=0.
ay=0.
do 11 j=1,n Find the means.

14.6 Nonparametric or Rank Correlation 633

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ax=ax+x(j)
ay=ay+y(j)

enddo 11

ax=ax/n
ay=ay/n
sxx=0.
syy=0.
sxy=0.
do 12 j=1,n Compute the correlation coefficient.

xt=x(j)-ax
yt=y(j)-ay
sxx=sxx+xt**2
syy=syy+yt**2
sxy=sxy+xt*yt

enddo 12

r=sxy/(sqrt(sxx*syy)+TINY)
z=0.5*log(((1.+r)+TINY)/((1.-r)+TINY)) Fisher’s z transformation.
df=n-2
t=r*sqrt(df/(((1.-r)+TINY)*((1.+r)+TINY))) Equation (14.5.5).
prob=betai(0.5*df,0.5,df/(df+t**2)) Student’s t probability.

C prob=erfcc(abs(z*sqrt(n-1.))/1.4142136) For large n, this easier computation of
prob, using the short routine erfcc,
would give approximately the same
value.

return
END

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

Hoel, P.G. 1971, Introduction to Mathematical Statistics, 4th ed. (New York: Wiley), Chapter 7.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapters IX(A) and IX(B).

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), §19.7.

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

14.6 Nonparametric or Rank Correlation

It is precisely the uncertainty in interpreting the significance of the linear
correlation coefficientr that leads us to the important concepts ofnonparametricor
rank correlation. As before, we are givenN pairs of measurements(xi, yi). Before,
difficulties arose because we did not necessarilyknow the probability distribution
function from which thexi’s or yi’s were drawn.

The key concept of nonparametric correlation is this: If we replace the value
of eachxi by the value of itsrank among all the otherxi’s in the sample, that
is, 1, 2, 3, . . ., N , then the resulting list of numbers will be drawn from a perfectly
known distribution function, namely uniformly from the integers between1 andN ,
inclusive. Better than uniformly, in fact, since if thexi’s are all distinct, then each
integer will occur precisely once. If some of thexi’s have identical values, it is
conventional to assign to all these “ties” the mean of the ranks that they would have
had if their values had been slightly different. Thismidrankwill sometimes be an

14.6 Nonparametric or Rank Correlation 633

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ax=ax+x(j)
ay=ay+y(j)

enddo 11

ax=ax/n
ay=ay/n
sxx=0.
syy=0.
sxy=0.
do 12 j=1,n Compute the correlation coefficient.

xt=x(j)-ax
yt=y(j)-ay
sxx=sxx+xt**2
syy=syy+yt**2
sxy=sxy+xt*yt

enddo 12

r=sxy/(sqrt(sxx*syy)+TINY)
z=0.5*log(((1.+r)+TINY)/((1.-r)+TINY)) Fisher’s z transformation.
df=n-2
t=r*sqrt(df/(((1.-r)+TINY)*((1.+r)+TINY))) Equation (14.5.5).
prob=betai(0.5*df,0.5,df/(df+t**2)) Student’s t probability.

C prob=erfcc(abs(z*sqrt(n-1.))/1.4142136) For large n, this easier computation of
prob, using the short routine erfcc,
would give approximately the same
value.

return
END

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

Hoel, P.G. 1971, Introduction to Mathematical Statistics, 4th ed. (New York: Wiley), Chapter 7.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapters IX(A) and IX(B).

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), §19.7.

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

14.6 Nonparametric or Rank Correlation

It is precisely the uncertainty in interpreting the significance of the linear
correlation coefficientr that leads us to the important concepts ofnonparametricor
rank correlation. As before, we are givenN pairs of measurements(xi, yi). Before,
difficulties arose because we did not necessarilyknow the probability distribution
function from which thexi’s or yi’s were drawn.

The key concept of nonparametric correlation is this: If we replace the value
of eachxi by the value of itsrank among all the otherxi’s in the sample, that
is, 1, 2, 3, . . ., N , then the resulting list of numbers will be drawn from a perfectly
known distribution function, namely uniformly from the integers between1 andN ,
inclusive. Better than uniformly, in fact, since if thexi’s are all distinct, then each
integer will occur precisely once. If some of thexi’s have identical values, it is
conventional to assign to all these “ties” the mean of the ranks that they would have
had if their values had been slightly different. Thismidrankwill sometimes be an

634 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

integer, sometimes a half-integer. In all cases the sum of all assigned ranks will be
the same as the sum of the integers from1 to N , namely 1

2
N(N + 1).

Of course we do exactly the same procedure for theyi’s, replacing each value
by its rank among the otheryi’s in the sample.

Now we are free to invent statistics for detecting correlation between uniform
sets of integers between1 andN , keeping in mind the possibility of ties in the ranks.
There is, of course, some loss of information in replacing the original numbers by
ranks. We could construct some rather artificial examples where a correlation could
be detected parametrically (e.g., in the linear correlation coefficientr), but could not
be detected nonparametrically. Such examples are very rare in real life, however,
and the slight loss of information in ranking is a small price to pay for a very major
advantage: When a correlation is demonstrated to be present nonparametrically,
then it is really there! (That is, to a certainty level that depends on the significance
chosen.) Nonparametric correlation is more robust than linear correlation, more
resistant to unplanned defects in the data, in the same sort of sense that the median
is more robust than the mean. For more on the concept of robustness, see§15.7.

As always in statistics, some particular choices of a statistic have already been
invented for us and consecrated, if not beatified, by popular use. We will discuss
two, theSpearman rank-order correlation coefficient(rs), andKendall’s tau(τ).

Spearman Rank-Order Correlation Coefficient

Let Ri be the rank ofxi among the otherx’s, Si be the rank ofyi among the
othery’s, ties being assigned the appropriate midrank as described above. Then the
rank-order correlation coefficient is defined to be the linear correlation coefficient
of the ranks, namely,

rs =

∑

i(Ri −R)(Si − S)
√

∑

i(Ri − R)2
√

∑

i(Si − S)2
(14.6.1)

The significance of a nonzero value ofrs is tested by computing

t = rs

√

N − 2

1 − r2
s

(14.6.2)

which is distributed approximately as Student’s distribution withN − 2 degrees of
freedom. A key point is that this approximation does not depend on the original
distribution of thex’s and y’s; it is always the same approximation, and always
pretty good.

It turns out thatrs is closely related to another conventional measure of
nonparametric correlation, the so-calledsum squared difference of ranks, defined as

D =

N
∑

i=1

(Ri − Si)
2 (14.6.3)

(This D is sometimes denotedD**, where the asterisks are used to indicate that
ties are treated by midranking.)

14.6 Nonparametric or Rank Correlation 635

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

When there are no ties in the data, then the exact relation betweenD andrs is

rs = 1 − 6D

N3 −N
(14.6.4)

When there are ties, then the exact relation is slightly more complicated: Letfk be
the number of ties in thekth group of ties among theRi’s, and letgm be the number
of ties in themth group of ties among theSi ’s. Then it turns out that

rs =
1 −

6

N3 −N

[

D + 1

12

∑

k(f3

k − fk) + 1

12

∑

m(g3

m − gm)
]

[

1 −
∑

k(f
3

k − fk)

N3 −N

]1/2 [

1 −
∑

m(g3

m − gm)

N3 −N

]1/2
(14.6.5)

holds exactly. Notice that if all thefk ’s and all thegm’s are equal to one, meaning
that there are no ties, then equation (14.6.5) reduces to equation (14.6.4).

In (14.6.2) we gave at-statistic that tests the significance of a nonzerors. It is
also possible to test the significance ofD directly. The expectation value ofD in
the null hypothesis of uncorrelated data sets is

D =
1

6
(N3 −N) − 1

12

∑

k

(f3

k − fk) −
1

12

∑

m

(g3

m − gm) (14.6.6)

its variance is

Var(D) =
(N − 1)N2(N + 1)2

36

×
[

1 −
∑

k(f
3

k − fk)

N3 −N

] [

1 −
∑

m(g3

m − gm)

N3 −N

] (14.6.7)

and it is approximately normally distributed, so that the significance level is a
complementary error function (cf. equation 14.5.2). Of course, (14.6.2) and (14.6.7)
are not independent tests, but simply variants of the same test. In the program that
follows, we return both the significance level obtained by using (14.6.2) and the
significance level obtained by using (14.6.7); their discrepancy will give you an idea
of how good the approximations are. You will also notice that we break off the task
of assigning ranks (including tied midranks) into a separate routine,crank.

SUBROUTINE spear(data1,data2,n,wksp1,wksp2,d,zd,probd,rs,probrs)
INTEGER n
REAL d,probd,probrs,rs,zd,data1(n),data2(n),wksp1(n),wksp2(n)

C USES betai,crank,erfcc,sort2
Given two data arrays, data1(1:n) and data2(1:n), each of length n, and given two
workspaces of the same length, this routine returns their sum-squared difference of ranks as
D, the number of standard deviations by which D deviates from its null-hypothesis expected
value as zd, the two-sided significance level of this deviation as probd, Spearman’s rank
correlation rs as rs, and the two-sided significance level of its deviation from zero as
probrs. The workspaces can be identical to the data arrays, but in that case the data
arrays are destroyed. The external routines crank (below) and sort2 (§8.2) are used. A

636 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

small value of either probd or probrs indicates a significant correlation (rs positive) or
anticorrelation (rs negative).

INTEGER j
REAL aved,df,en,en3n,fac,sf,sg,t,vard,betai,erfcc
do 11 j=1,n

wksp1(j)=data1(j)
wksp2(j)=data2(j)

enddo 11

call sort2(n,wksp1,wksp2) Sort each of the data arrays, and convert the entries to
ranks. The values sf and sg return the sums

∑

(f3

k
− fk)

and
∑

(g3
m − gm), respectively.

call crank(n,wksp1,sf)
call sort2(n,wksp2,wksp1)
call crank(n,wksp2,sg)
d=0.
do 12 j=1,n Sum the squared difference of ranks.

d=d+(wksp1(j)-wksp2(j))**2
enddo 12

en=n
en3n=en**3-en
aved=en3n/6.-(sf+sg)/12. Expectation value of D,
fac=(1.-sf/en3n)*(1.-sg/en3n)
vard=((en-1.)*en**2*(en+1.)**2/36.)*fac and variance of D give
zd=(d-aved)/sqrt(vard) number of standard deviations,
probd=erfcc(abs(zd)/1.4142136) and significance.
rs=(1.-(6./en3n)*(d+(sf+sg)/12.))/sqrt(fac) Rank correlation coefficient,
fac=(1.+rs)*(1.-rs)
if(fac.gt.0.)then

t=rs*sqrt((en-2.)/fac) and its t value,
df=en-2.
probrs=betai(0.5*df,0.5,df/(df+t**2)) give its significance.

else
probrs=0.

endif
return
END

SUBROUTINE crank(n,w,s)
INTEGER n
REAL s,w(n)

Given a sorted array w(1:n), replaces the elements by their rank, including midranking of
ties, and returns as s the sum of f3 − f , where f is the number of elements in each tie.

INTEGER j,ji,jt
REAL rank,t
s=0.
j=1 The next rank to be assigned.

1 if(j.lt.n)then “do while” structure.
if(w(j+1).ne.w(j))then Not a tie.

w(j)=j
j=j+1

else A tie:
do 11 jt=j+1,n How far does it go?

if(w(jt).ne.w(j))goto 2
enddo 11

jt=n+1 If here, it goes all the way to the last element.
2 rank=0.5*(j+jt-1) This is the mean rank of the tie,

do 12 ji=j,jt-1 so enter it into all the tied entries,
w(ji)=rank

enddo 12

t=jt-j
s=s+t**3-t and update s.
j=jt

endif
goto 1

14.6 Nonparametric or Rank Correlation 637

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
if(j.eq.n)w(n)=n If the last element was not tied, this is its rank.
return
END

Kendall’s Tau

Kendall’sτ is even more nonparametric than Spearman’srs or D. Instead of
using the numerical difference of ranks, it uses only the relative ordering of ranks:
higher in rank, lower in rank, or the same in rank. But in that case we don’t even
have to rank the data! Ranks will be higher, lower, or the same if and only if
the values are larger, smaller, or equal, respectively. On balance, we preferrs as
being the more straightforward nonparametric test, but both statistics are in general
use. In fact,τ and rs are very strongly correlated and, in most applications, are
effectively the same test.

To define τ , we start with theN data points(xi, yi). Now consider all
1

2
N(N − 1) pairs of data points, where a data point cannot be paired with itself,

and where the points in either order count as one pair. We call a pairconcordant
if the relative ordering of the ranks of the twox’s (or for that matter the twox’s
themselves) is the same as the relative ordering of the ranks of the twoy’s (or for
that matter the twoy’s themselves). We call a pairdiscordantif the relative ordering
of the ranks of the twox’s is opposite from the relative ordering of the ranks of the
two y’s. If there is a tie in either the ranks of the twox’s or the ranks of the two
y’s, then we don’t call the pair either concordant or discordant. If the tie is in the
x’s, we will call the pair an “extray pair.” If the tie is in they’s, we will call the
pair an “extrax pair.” If the tie is in both thex’s and they’s, we don’t call the pair
anything at all. Are you still with us?

Kendall’sτ is now the following simple combination of these various counts:

τ =
concordant− discordant√

concordant+ discordant+ extra-y
√

concordant+ discordant+ extra-x
(14.6.8)

You can easily convince yourself that this must lie between1 and−1, and that it
takes on the extreme values only for complete rank agreement or complete rank
reversal, respectively.

More important, Kendall has worked out, from the combinatorics, the approx-
imate distribution ofτ in the null hypothesis of no association betweenx and y.
In this caseτ is approximately normally distributed, with zero expectation value
and a variance of

Var(τ) =
4N + 10

9N(N − 1)
(14.6.9)

The following program proceeds according to the above description, and
therefore loops over all pairs of data points. Beware: This is anO(N2) algorithm,
unlike the algorithm forrs, whose dominant sort operations are of orderN logN . If
you are routinely computing Kendall’sτ for data sets of more than a few thousand
points, you may be in for some serious computing. If, however, you are willing to
bin your data into a moderate number of bins, then read on.

638 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE kendl1(data1,data2,n,tau,z,prob)
INTEGER n
REAL prob,tau,z,data1(n),data2(n)

C USES erfcc
Given data arrays data1(1:n) and data2(1:n), this program returns Kendall’s τ as tau,
its number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation (tau
negative).

INTEGER is,j,k,n1,n2
REAL a1,a2,aa,var,erfcc
n1=0 This will be the argument of one square root in (14.6.8),
n2=0 and this the other.
is=0 This will be the numerator in (14.6.8).
do 12 j=1,n-1 Loop over first member of pair,

do 11 k=j+1,n and second member.
a1=data1(j)-data1(k)
a2=data2(j)-data2(k)
aa=a1*a2
if(aa.ne.0.)then Neither array has a tie.

n1=n1+1
n2=n2+1
if(aa.gt.0.)then

is=is+1
else

is=is-1
endif

else One or both arrays have ties.
if(a1.ne.0.)n1=n1+1 An “extra x” event.
if(a2.ne.0.)n2=n2+1 An “extra y” event.

endif
enddo 11

enddo 12

tau=float(is)/sqrt(float(n1)*float(n2)) Equation (14.6.8).
var=(4.*n+10.)/(9.*n*(n-1.)) Equation (14.6.9).
z=tau/sqrt(var)
prob=erfcc(abs(z)/1.4142136) Significance.
return
END

Sometimes it happens that there are only a few possible values each forx and
y. In that case, the data can be recorded as a contingency table (see§14.4) that gives
the number of data points for each contingency ofx andy.

Spearman’s rank-order correlation coefficient is not a very natural statistic
under these circumstances, since it assigns toeachx andy bin a not-very-meaningful
midrank value and then totals up vast numbers of identical rank differences.Kendall’s
tau, on the other hand, with its simple counting, remains quite natural. Furthermore,
itsO(N2) algorithm is no longer a problem, since we can arrange for it to loop over
pairs of contingency table entries (each containing many data points)instead of over
pairs of data points. This is implemented in the program that follows.

Note that Kendall’s tau can be applied only to contingency tables where both
variables areordinal, i.e., well-ordered, and that it looks specifically for monotonic
correlations, not for arbitrary associations. These two properties make it less general
than the methods of§14.4, which applied tonominal, i.e., unordered, variables and
arbitrary associations.

Comparingkendl1 above withkendl2 below, you will see that we have
“floated” a number of variables. This is because the number of events in a
contingency table might be sufficiently large as to cause overflows in some of the

14.6 Nonparametric or Rank Correlation 639

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

integer arithmetic, while the number of individual data points in a list could not
possibly be that large [for anO(N2) routine!].

SUBROUTINE kendl2(tab,i,j,ip,jp,tau,z,prob)
INTEGER i,ip,j,jp
REAL prob,tau,z,tab(ip,jp)

C USES erfcc
Given a two-dimensional table tab of physical dimension (ip,jp) and logical dimension
(i,j), such that tab(k,l) contains the number of events falling in bin k of one variable
and bin l of another, this program returns Kendall’s τ as tau, its number of standard
deviations from zero as z, and its two-sided significance level as prob. Small values of prob
indicate a significant correlation (tau positive) or anticorrelation (tau negative) between
the two variables. Although tab is a real array, it will normally contain integral values.

INTEGER k,ki,kj,l,li,lj,m1,m2,mm,nn
REAL en1,en2,pairs,points,s,var,erfcc
en1=0. See kendl1 above.
en2=0.
s=0.
nn=i*j Total number of entries in contingency table.
points=tab(i,j)
do 12 k=0,nn-2 Loop over entries in table,

ki=k/j decoding a row index,
kj=k-j*ki and a column index.
points=points+tab(ki+1,kj+1) Increment the total count of events.
do 11 l=k+1,nn-1 Loop over other member of the pair,

li=l/j decoding its row
lj=l-j*li and column.
m1=li-ki
m2=lj-kj
mm=m1*m2
pairs=tab(ki+1,kj+1)*tab(li+1,lj+1)
if(mm.ne.0)then Not a tie.

en1=en1+pairs
en2=en2+pairs
if(mm.gt.0)then Concordant, or

s=s+pairs
else discordant.

s=s-pairs
endif

else
if(m1.ne.0)en1=en1+pairs
if(m2.ne.0)en2=en2+pairs

endif
enddo 11

enddo 12

tau=s/sqrt(en1*en2)
var=(4.*points+10.)/(9.*points*(points-1.))
z=tau/sqrt(var)
prob=erfcc(abs(z)/1.4142136)
return
END

CITED REFERENCES AND FURTHER READING:

Lehmann, E.L. 1975, Nonparametrics: Statistical Methods Based on Ranks (San Francisco:
Holden-Day).

Downie, N.M., and Heath, R.W. 1965, Basic Statistical Methods, 2nd ed. (New York: Harper &
Row), pp. 206–209.

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

640 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

14.7 Do Two-Dimensional Distributions Differ?

We here discuss a useful generalization of the K–S test (§14.3) to two-dimensional
distributions. This generalization is due to Fasano and Franceschini[1], a variant on an
earlier idea due to Peacock[2].

In a two-dimensional distribution, each data point is characterized by an(x, y) pair of
values. An example near to our hearts is that each of the 19 neutrinos that were detected
from Supernova 1987A is characterized by a timeti and by an energyEi (see[3]). We
might wish to know whether these measured pairs(ti, Ei), i = 1 . . . 19 are consistent with a
theoretical model that predicts neutrino flux as a function of both time and energy — that is,
a two-dimensional probability distribution in the(x, y) [here,(t, E)] plane. That would be a
one-sample test. Or, given two sets of neutrino detections, from two comparable detectors,
we might want to know whether they are compatible with each other, a two-sample test.

In the spirit of the tried-and-true, one-dimensional K–S test, we want to range over
the (x, y) plane in search of some kind of maximumcumulativedifference between two
two-dimensional distributions. Unfortunately, cumulative probability distribution is not
well-defined in more than one dimension! Peacock’s insight was that a good surrogate is
the integrated probability in each of four naturalquadrantsaround a given point(xi, yi),
namely the total probabilities (or fraction of data) in(x > xi, y > yi), (x < xi, y > yi),
(x < xi, y < yi), (x > xi, y < yi). The two-dimensional K–S statisticD is now taken
to be the maximum difference (ranging both over data points and over quadrants) of the
corresponding integrated probabilities. When comparing two data sets, the value ofD may
depend on which data set is ranged over. In that case, define an effectiveD as the average
of the two values obtained. If you are confused at this point about the exact definition of D,
don’t fret; the accompanying computer routines amount to a precise algorithmic definition.

Figure 14.7.1 gives a feeling for what is going on. The 65 triangles and 35 squares seem
to have somewhat different distributions in the plane. The dotted lines are centered on the
triangle that maximizes theD statistic; the maximum occurs in the upper-left quadrant. That
quadrant contains only 0.12 of all the triangles, but it contains 0.56 of all the squares. The
value ofD is thus 0.44. Is this statistically significant?

Even for fixed sample sizes, it is unfortunately not rigorously true that the distribution
of D in the null hypothesis is independent of the shape of the two-dimensional distribution.
In this respect the two-dimensional K–S test is not as natural as its one-dimensional parent.
However, extensive Monte Carlo integrations have shown that the distribution of the two-
dimensionalD is very nearlyidentical for even quite different distributions, as long as they
have the same coefficient of correlationr, defined in the usual way by equation (14.5.1). In
their paper, Fasano and Franceschini tabulate Monte Carlo results for (what amounts to) the
distribution ofD as a function of (of course)D, sample sizeN , and coefficient of correlation
r. Analyzing their results, one finds that the significance levels for the two-dimensional K–S
test can be summarized by the simple, though approximate, formulas,

Probability(D > observed) = QKS

(
√
N D

1 +
√

1 − r2(0.25 − 0.75/
√
N)

)

(14.7.1)

for the one-sample case, and the same for the two-sample case, but with

N =
N1N2

N1 + N2

. (14.7.2)

The above formulas are accurate enough whenN >∼ 20, and when the indicated
probability (significance level) is less than (more significant than)0.20 or so. When the
indicated probability is> 0.20, its value may not be accurate, but the implication that the
data and model (or two data sets) are not significantly different is certainly correct. Notice
that in the limit of r → 1 (perfect correlation), equations (14.7.1) and (14.7.2) reduce to
equations (14.3.9) and (14.3.10): The two-dimensional data lie on a perfect straight line, and
the two-dimensional K–S test becomes a one-dimensional K–S test.

640 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

14.7 Do Two-Dimensional Distributions Differ?

We here discuss a useful generalization of the K–S test (§14.3) to two-dimensional
distributions. This generalization is due to Fasano and Franceschini[1], a variant on an
earlier idea due to Peacock[2].

In a two-dimensional distribution, each data point is characterized by an(x, y) pair of
values. An example near to our hearts is that each of the 19 neutrinos that were detected
from Supernova 1987A is characterized by a timeti and by an energyEi (see[3]). We
might wish to know whether these measured pairs(ti, Ei), i = 1 . . . 19 are consistent with a
theoretical model that predicts neutrino flux as a function of both time and energy — that is,
a two-dimensional probability distribution in the(x, y) [here,(t, E)] plane. That would be a
one-sample test. Or, given two sets of neutrino detections, from two comparable detectors,
we might want to know whether they are compatible with each other, a two-sample test.

In the spirit of the tried-and-true, one-dimensional K–S test, we want to range over
the (x, y) plane in search of some kind of maximumcumulativedifference between two
two-dimensional distributions. Unfortunately, cumulative probability distribution is not
well-defined in more than one dimension! Peacock’s insight was that a good surrogate is
the integrated probability in each of four naturalquadrantsaround a given point(xi, yi),
namely the total probabilities (or fraction of data) in(x > xi, y > yi), (x < xi, y > yi),
(x < xi, y < yi), (x > xi, y < yi). The two-dimensional K–S statisticD is now taken
to be the maximum difference (ranging both over data points and over quadrants) of the
corresponding integrated probabilities. When comparing two data sets, the value ofD may
depend on which data set is ranged over. In that case, define an effectiveD as the average
of the two values obtained. If you are confused at this point about the exact definition of D,
don’t fret; the accompanying computer routines amount to a precise algorithmic definition.

Figure 14.7.1 gives a feeling for what is going on. The 65 triangles and 35 squares seem
to have somewhat different distributions in the plane. The dotted lines are centered on the
triangle that maximizes theD statistic; the maximum occurs in the upper-left quadrant. That
quadrant contains only 0.12 of all the triangles, but it contains 0.56 of all the squares. The
value ofD is thus 0.44. Is this statistically significant?

Even for fixed sample sizes, it is unfortunately not rigorously true that the distribution
of D in the null hypothesis is independent of the shape of the two-dimensional distribution.
In this respect the two-dimensional K–S test is not as natural as its one-dimensional parent.
However, extensive Monte Carlo integrations have shown that the distribution of the two-
dimensionalD is very nearlyidentical for even quite different distributions, as long as they
have the same coefficient of correlationr, defined in the usual way by equation (14.5.1). In
their paper, Fasano and Franceschini tabulate Monte Carlo results for (what amounts to) the
distribution ofD as a function of (of course)D, sample sizeN , and coefficient of correlation
r. Analyzing their results, one finds that the significance levels for the two-dimensional K–S
test can be summarized by the simple, though approximate, formulas,

Probability(D > observed) = QKS

(
√
N D

1 +
√

1 − r2(0.25 − 0.75/
√
N)

)

(14.7.1)

for the one-sample case, and the same for the two-sample case, but with

N =
N1N2

N1 + N2

. (14.7.2)

The above formulas are accurate enough whenN >
∼

20, and when the indicated
probability (significance level) is less than (more significant than)0.20 or so. When the
indicated probability is> 0.20, its value may not be accurate, but the implication that the
data and model (or two data sets) are not significantly different is certainly correct. Notice
that in the limit of r → 1 (perfect correlation), equations (14.7.1) and (14.7.2) reduce to
equations (14.3.9) and (14.3.10): The two-dimensional data lie on a perfect straight line, and
the two-dimensional K–S test becomes a one-dimensional K–S test.

14.7 Do Two-Dimensional Distributions Differ? 641

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

.11|.09

.65|.26

.12|.09

.12|.56

Figure 14.7.1. Two-dimensional distributions of 65 triangles and 35 squares. The two-dimensional K–S
test finds that point one of whose quadrants (shown by dotted lines) maximizes the difference between
fraction of triangles and fraction of squares. Then, equation (14.7.1) indicates whether the difference is
statistically significant, i.e., whether the triangles and squaresmust have different underlyingdistributions.

The significance level for the data in Figure 14.7.1, by the way, is about 0.001. This
establishes to a near-certainty that the triangles and squares were drawn from different
distributions. (As in fact they were.)

Of course, if you do not want to rely on the Monte Carlo experiments embodied in
equation (14.7.1), you can do your own: Generate a lot of synthetic data sets from your
model, each one with the same number of points as the real data set. ComputeD for each
synthetic data set, using the accompanying computer routines (but ignoring their calculated
probabilities), and count what fraction of the time these syntheticD’s exceed theD from the
real data. That fraction is your significance.

One disadvantage of the two-dimensional tests, by comparison with their one-
dimensional progenitors, is that the two-dimensional tests require of orderN2 operations:
Two nested loops of orderN take the place of anN logN sort. For small computers, this
restricts the usefulness of the tests toN less than several thousand.

We now give computer implementations. The one-sample case is embodied in the
routineks2d1s (that is, 2-dimensions, 1-sample). This routine calls a straightforward utility
routine quadct to count points in the four quadrants, and it calls a user-supplied routine
quadvl that must be capable of returning the integrated probability of an analytic model in
each of four quadrants around an arbitrary(x, y) point. A trivial samplequadvl is shown;
realisticquadvls can be quite complicated, often incorporating numerical quadratures over

642 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

analytic two-dimensional distributions.

SUBROUTINE ks2d1s(x1,y1,n1,quadvl,d1,prob)
INTEGER n1
REAL d1,prob,x1(n1),y1(n1)
EXTERNAL quadvl

C USES pearsn,probks,quadct,quadvl
Two-dimensional Kolmogorov-Smirnov test of one sample against a model. Given the x

and y coordinates of n1 data points in arrays x1(1:n1) and y1(1:n1), and given a
user-supplied function quadvl that exemplifies the model, this routine returns the two-
dimensional K-S statistic as d1, and its significance level as prob. Small values of prob
show that the sample is significantly different from the model. Note that the test is slightly
distribution-dependent, so prob is only an estimate.

INTEGER j
REAL dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,rr,sqen,probks
d1=0.0
do 11 j=1,n1 Loop over the data points.

call quadct(x1(j),y1(j),x1,y1,n1,fa,fb,fc,fd)
call quadvl(x1(j),y1(j),ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

For both the sample and the model, the distribution is integrated in each of four quad-
rants, and the maximum difference is saved.

enddo 11

call pearsn(x1,y1,n1,r1,dum,dumm) Get the linear correlation coefficient r1.
sqen=sqrt(float(n1))
rr=sqrt(1.0-r1**2)

Estimate the probability using the K-S probability function probks.
prob=probks(d1*sqen/(1.0+rr*(0.25-0.75/sqen)))
return
END

SUBROUTINE quadct(x,y,xx,yy,nn,fa,fb,fc,fd)
INTEGER nn
REAL fa,fb,fc,fd,x,y,xx(nn),yy(nn)

Given an origin (x, y), and an array of nn points with coordinates xx and yy, count how
many of them are in each quadrant around the origin, and return the normalized frac-
tions. Quadrants are labeled alphabetically, counterclockwise from the upper right. Used
by ks2d1s and ks2d2s.

INTEGER k,na,nb,nc,nd
REAL ff
na=0
nb=0
nc=0
nd=0
do 11 k=1,nn

if(yy(k).gt.y)then
if(xx(k).gt.x)then

na=na+1
else

nb=nb+1
endif

else
if(xx(k).gt.x)then

nd=nd+1
else

nc=nc+1
endif

endif
enddo 11

ff=1.0/nn
fa=ff*na
fb=ff*nb

14.7 Do Two-Dimensional Distributions Differ? 643

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fc=ff*nc
fd=ff*nd
return
END

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
REAL fa,fb,fc,fd,x,y

This is a sample of a user-supplied routine to be used with ks2d1s. In this case, the model
distribution is uniform inside the square −1 < x < 1, −1 < y < 1. In general this routine
should return, for any point (x, y), the fraction of the total distribution in each of the
four quadrants around that point. The fractions, fa, fb, fc, and fd, must add up to 1.
Quadrants are alphabetical, counterclockwise from the upper right.

REAL qa,qb,qc,qd
qa=min(2.,max(0.,1.-x))
qb=min(2.,max(0.,1.-y))
qc=min(2.,max(0.,x+1.))
qd=min(2.,max(0.,y+1.))
fa=0.25*qa*qb
fb=0.25*qb*qc
fc=0.25*qc*qd
fd=0.25*qd*qa
return
END

The routineks2d2s is the two-sample case of the two-dimensional K–S test. It also calls
quadct, pearsn, andprobks. Being a two-sample test, it does not need an analytic model.

SUBROUTINE ks2d2s(x1,y1,n1,x2,y2,n2,d,prob)
INTEGER n1,n2
REAL d,prob,x1(n1),x2(n2),y1(n1),y2(n2)

C USES pearsn,probks,quadct
Two-dimensional Kolmogorov-Smirnov test on two samples. Given the x and y coordinates
of the first sample as n1 values in arrays x1(1:n1) and y1(1:n1), and likewise for the
second sample, n2 values in arrays x2 and y2, this routine returns the two-dimensional, two-
sample K-S statistic as d, and its significance level as prob. Small values of prob show
that the two samples are significantly different. Note that the test is slightly distribution-
dependent, so prob is only an estimate.

INTEGER j
REAL d1,d2,dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,r2,rr,

* sqen,probks
d1=0.0
do 11 j=1,n1 First, use points in the first sample as origins.

call quadct(x1(j),y1(j),x1,y1,n1,fa,fb,fc,fd)
call quadct(x1(j),y1(j),x2,y2,n2,ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

enddo 11

d2=0.0
do 12 j=1,n2 Then, use points in the second sample as origins.

call quadct(x2(j),y2(j),x1,y1,n1,fa,fb,fc,fd)
call quadct(x2(j),y2(j),x2,y2,n2,ga,gb,gc,gd)
d2=max(d2,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

enddo 12

d=0.5*(d1+d2) Average the K-S statistics.
sqen=sqrt(float(n1)*float(n2)/float(n1+n2))
call pearsn(x1,y1,n1,r1,dum,dumm) Get the linear correlation coefficient for each sample.
call pearsn(x2,y2,n2,r2,dum,dumm)
rr=sqrt(1.0-0.5*(r1**2+r2**2))

Estimate the probability using the K-S probability function probks.
prob=probks(d*sqen/(1.0+rr*(0.25-0.75/sqen)))
return
END

644 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Fasano, G. and Franceschini, A. 1987, Monthly Notices of the Royal Astronomical Society,
vol. 225, pp. 155–170. [1]

Peacock, J.A. 1983, Monthly Notices of the Royal Astronomical Society, vol. 202, pp. 615–627.
[2]

Spergel, D.N., Piran, T., Loeb, A., Goodman, J., and Bahcall, J.N. 1987, Science, vol. 237,
pp. 1471–1473. [3]

14.8 Savitzky-Golay Smoothing Filters

In §13.5 we learned something about the construction and application of digital filters,
but little guidance was given onwhich particular filter to use. That, of course, depends
on what you want to accomplish by filtering. One obvious use forlow-passfilters is to
smooth noisy data.

The premise of data smoothing is that one is measuring a variable that is both slowly
varying and also corrupted by random noise. Then it can sometimes be useful to replace
each data point by some kind of local average of surrounding data points. Since nearby
points measure very nearly the same underlying value, averaging can reduce the level of noise
without (much) biasing the value obtained.

We must comment editorially that the smoothing of data lies in a murky area, beyond
the fringe of some better posed, and therefore more highly recommended, techniques that
are discussed elsewhere in this book. If you are fitting data to a parametric model, for
example (see Chapter 15), it is almost always better to use raw data than to use data that
has been pre-processed by a smoothing procedure. Another alternative to blind smoothing is
so-called “optimal” or Wiener filtering, as discussed in§13.3 and more generally in§13.6.
Data smoothing is probably most justified when it is used simply as a graphical technique, to
guide the eye through a forest of data points all with large error bars; or as a means of making
initial roughestimates of simple parameters from a graph.

In this section we discuss a particular type of low-pass filter, well-adapted for data
smoothing, and termed variouslySavitzky-Golay[1], least-squares[2], or DISPO (Digital
Smoothing Polynomial)[3] filters. Rather than having their properties defined in the Fourier
domain, and then translated to the time domain, Savitzky-Golay filters derive directly from
a particular formulation of the data smoothing problem in the time domain, as we will now
see. Savitzky-Golay filters were initially (and are still often) used to render visiblethe relative
widths and heights of spectral lines in noisy spectrometric data.

Recall that a digital filter is applied to a series of equally spaced data valuesfi ≡ f(ti),
whereti ≡ t0 + i∆ for some constant sample spacing∆ andi = . . . − 2,−1, 0, 1, 2,
We have seen (§13.5) that the simplest type of digital filter (the nonrecursive or finite impulse
response filter) replaces each data valuefi by a linear combinationgi of itself and some
number of nearby neighbors,

gi =

nR
∑

n=−nL

cnfi+n (14.8.1)

HerenL is the number of points used “to the left” of a data pointi, i.e., earlier than it, while
nR is the number used to the right, i.e., later. A so-calledcausalfilter would havenR = 0.

As a starting point for understanding Savitzky-Golay filters, consider the simplest
possible averaging procedure: For some fixednL = nR, compute eachgi as the average of
the data points fromfi−nL

to fi+nR
. This is sometimes calledmoving window averaging

and corresponds to equation (14.8.1) with constantcn = 1/(nL + nR + 1). If the underlying
function is constant, or is changing linearly with time (increasing or decreasing), then no
bias is introduced into the result. Higher points at one end of the averaging interval are on

644 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Fasano, G. and Franceschini, A. 1987, Monthly Notices of the Royal Astronomical Society,
vol. 225, pp. 155–170. [1]

Peacock, J.A. 1983, Monthly Notices of the Royal Astronomical Society, vol. 202, pp. 615–627.
[2]

Spergel, D.N., Piran, T., Loeb, A., Goodman, J., and Bahcall, J.N. 1987, Science, vol. 237,
pp. 1471–1473. [3]

14.8 Savitzky-Golay Smoothing Filters

In §13.5 we learned something about the construction and application of digital filters,
but little guidance was given onwhich particular filter to use. That, of course, depends
on what you want to accomplish by filtering. One obvious use forlow-passfilters is to
smooth noisy data.

The premise of data smoothing is that one is measuring a variable that is both slowly
varying and also corrupted by random noise. Then it can sometimes be useful to replace
each data point by some kind of local average of surrounding data points. Since nearby
points measure very nearly the same underlying value, averaging can reduce the level of noise
without (much) biasing the value obtained.

We must comment editorially that the smoothing of data lies in a murky area, beyond
the fringe of some better posed, and therefore more highly recommended, techniques that
are discussed elsewhere in this book. If you are fitting data to a parametric model, for
example (see Chapter 15), it is almost always better to use raw data than to use data that
has been pre-processed by a smoothing procedure. Another alternative to blind smoothing is
so-called “optimal” or Wiener filtering, as discussed in§13.3 and more generally in§13.6.
Data smoothing is probably most justified when it is used simply as a graphical technique, to
guide the eye through a forest of data points all with large error bars; or as a means of making
initial roughestimates of simple parameters from a graph.

In this section we discuss a particular type of low-pass filter, well-adapted for data
smoothing, and termed variouslySavitzky-Golay[1], least-squares[2], or DISPO (Digital
Smoothing Polynomial)[3] filters. Rather than having their properties defined in the Fourier
domain, and then translated to the time domain, Savitzky-Golay filters derive directly from
a particular formulation of the data smoothing problem in the time domain, as we will now
see. Savitzky-Golay filters were initially (and are still often) used to render visiblethe relative
widths and heights of spectral lines in noisy spectrometric data.

Recall that a digital filter is applied to a series of equally spaced data valuesfi ≡ f(ti),
whereti ≡ t0 + i∆ for some constant sample spacing∆ andi = . . . − 2,−1, 0, 1, 2,
We have seen (§13.5) that the simplest type of digital filter (the nonrecursive or finite impulse
response filter) replaces each data valuefi by a linear combinationgi of itself and some
number of nearby neighbors,

gi =

nR
∑

n=−nL

cnfi+n (14.8.1)

HerenL is the number of points used “to the left” of a data pointi, i.e., earlier than it, while
nR is the number used to the right, i.e., later. A so-calledcausalfilter would havenR = 0.

As a starting point for understanding Savitzky-Golay filters, consider the simplest
possible averaging procedure: For some fixednL = nR, compute eachgi as the average of
the data points fromfi−nL

to fi+nR
. This is sometimes calledmoving window averaging

and corresponds to equation (14.8.1) with constantcn = 1/(nL + nR + 1). If the underlying
function is constant, or is changing linearly with time (increasing or decreasing), then no
bias is introduced into the result. Higher points at one end of the averaging interval are on

14.8 Savitzky-Golay Smoothing Filters 645

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the average balanced by lower points at the other end. A bias is introduced, however, if
the underlying function has a nonzero second derivative. At a local maximum, for example,
moving window averaging always reduces the function value. In the spectrometric application,
a narrow spectral line has its height reduced and its width increased. Since these parameters
are themselves of physical interest, the bias introduced is distinctly undesirable.

Note, however, that moving window averaging does preserve the area under a spectral
line, which is its zeroth moment, and also (if the window is symmetric withnL = nR) its
mean position in time, which is its first moment. What is violated is the second moment,
equivalent to the line width.

The idea of Savitzky-Golay filtering is to find filter coefficientscn that preserve higher
moments. Equivalently, the idea is to approximate the underlying function within the moving
window not by a constant (whose estimate is the average), but by a polynomial of higher
order, typically quadratic or quartic: For each pointfi, we least-squares fit a polynomial to all
nL + nR + 1 points in the moving window, and then setgi to be the value of that polynomial
at positioni. (If you are not familiar with least-squares fitting, you might want to look ahead
to Chapter 15.) We make no use of the value of the polynomial at any other point. When we
move on to the next pointfi+1, we do a whole new least-squares fit using a shifted window.

All these least-squares fits would be laborious if done as described. Luckily, since the
process of least-squares fitting involves only a linear matrix inversion, the coefficients of a
fitted polynomial are themselves linear in the values of the data. That means that we can do
all the fitting in advance, for fictitious data consisting of all zeros exceptfor a single 1, and
then do the fits on the real data just by taking linear combinations. This is the key point, then:
There are particular sets of filter coefficientscn for which equation (14.8.1) “automatically”
accomplishes the process of polynomial least-squares fitting inside a moving window.

To derive such coefficients, consider howg0 might be obtained: We want to fit a
polynomial of degreeM in i, namelya0 + a1i + · · · + aM iM to the valuesf

−nL
, . . . , fnR

.
Theng0 will be the value of that polynomial ati = 0, namelya0. The design matrix for
this problem (§15.4) is

Aij = ij i = −nL, . . . , nR, j = 0, . . . ,M (14.8.2)

and the normal equations for the vector ofaj ’s in terms of the vector offi’s is in matrix notation

(AT
· A) · a = AT

· f or a = (AT
· A)−1

· (AT
· f) (14.8.3)

We also have the specific forms

{

AT
· A

}

ij
=

nR
∑

k=−nL

AkiAkj =

nR
∑

k=−nL

ki+j (14.8.4)

and
{

AT
· f
}

j
=

nR
∑

k=−nL

Akjfk =

nR
∑

k=−nL

kjfk (14.8.5)

Since the coefficientcn is the componenta0 whenf is replaced by the unit vectoren,
−nL ≤ n < nR, we have

cn =
{

(AT
· A)−1

· (AT
· en)

}

0

=

M
∑

m=0

{

(AT
· A)−1

}

0m
nm (14.8.6)

Note that equation (14.8.6) says that we need only one row of the inverse matrix. (Numerically
we can get this byLU decomposition with only a single backsubstitution.)

The subroutinesavgol, below, implements equation (14.8.6). As input, it takes the
parametersnl = nL, nr = nR, and m = M (the desired order). Also input isnp, the
physical length of the output arrayc, and a parameterld which for data fitting should be
zero. In fact,ld specifies which coefficient among theai’s should be returned, and we are
here interested ina0. For another purpose, namely the computation of numerical derivatives
(already mentioned in§5.7) the useful choice isld ≥ 1. With ld = 1, for example, the
filtered first derivative is the convolution (14.8.1) divided by the stepsize∆. For derivatives,
one usually wantsm = 4 or larger.

646 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

M nL nR Sample Savitzky-Golay Coefficients

2 2 2 −0.086 0.3430.486 0.343 −0.086

2 3 1 −0.143 0.171 0.3430.371 0.257

2 4 0 0.086 −0.143 −0.086 0.2570.886

2 5 5 −0.084 0.021 0.103 0.161 0.1960.207 0.196 0.161 0.103 0.021−0.084

4 4 4 0.035 −0.128 0.070 0.3150.417 0.315 0.070 −0.128 0.035

4 5 5 0.042 −0.105 −0.023 0.140 0.2800.333 0.280 0.140 −0.023 −0.105 0.042

SUBROUTINE savgol(c,np,nl,nr,ld,m)
INTEGER ld,m,nl,np,nr,MMAX
REAL c(np)
PARAMETER (MMAX=6)

C USES lubksb,ludcmp
Returns in c(1:np), in wrap-around order (N.B.!) consistent with the argument respns
in routine convlv, a set of Savitzky-Golay filter coefficients. nl is the number of leftward
(past) data points used, while nr is the number of rightward (future) data points, making
the total number of data points used nl+ nr+ 1. ld is the order of the derivative desired
(e.g., ld = 0 for smoothed function). m is the order of the smoothing polynomial, also
equal to the highest conserved moment; usual values are m = 2 or m = 4.

INTEGER imj,ipj,j,k,kk,mm,indx(MMAX+1)
REAL d,fac,sum,a(MMAX+1,MMAX+1),b(MMAX+1)
if(np.lt.nl+nr+1.or.nl.lt.0.or.nr.lt.0.or.ld.gt.m.or.m.gt.MMAX

* .or.nl+nr.lt.m) pause ’bad args in savgol’
do 14 ipj=0,2*m Set up the normal equations of the desired least-

squares fit.sum=0.
if(ipj.eq.0)sum=1.
do 11 k=1,nr

sum=sum+float(k)**ipj
enddo 11

do 12 k=1,nl
sum=sum+float(-k)**ipj

enddo 12

mm=min(ipj,2*m-ipj)
do 13 imj=-mm,mm,2

a(1+(ipj+imj)/2,1+(ipj-imj)/2)=sum
enddo 13

enddo 14

call ludcmp(a,m+1,MMAX+1,indx,d) Solve them: LU decomposition.
do 15 j=1,m+1

b(j)=0.
enddo 15

b(ld+1)=1. Right-hand side vector is unit vector, depending on which derivative we want.
call lubksb(a,m+1,MMAX+1,indx,b) Backsubstitute, giving one row of the inverse matrix.
do 16 kk=1,np Zero the output array (it may be bigger than number

of coefficients).c(kk)=0.
enddo 16

do 18 k=-nl,nr Each Savitzky-Golay coefficient is the dot product
of powers of an integer with the inverse matrix
row.

sum=b(1)
fac=1.
do 17 mm=1,m

fac=fac*k
sum=sum+b(mm+1)*fac

enddo 17

kk=mod(np-k,np)+1 Store in wrap-around order.
c(kk)=sum

enddo 18

return
END

14.8 Savitzky-Golay Smoothing Filters 647

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

8
6
4
2
0

after square (16,16,0)

0 100 200 300 400 500 600 700 800 900

8
6
4
2
0

after S–G (16,16,4)

0 100 200 300 400 500 600 700 800 900

8
6
4
2
0

before

0 100 200 300 400 500 600 700 800 900

Figure 14.8.1. Top: Synthetic noisy data consisting of a sequence of progressively narrower bumps,
and additive Gaussian white noise. Center: Result of smoothing the data by a simple moving window
average. The window extends 16 points leftward and rightward, for a total of 33 points. Note that narrow
features are broadened and suffer corresponding loss of amplitude. The dotted curve is the underlying
function used to generate the synthetic data. Bottom: Result of smoothing the data bya Savitzky-Golay
smoothing filter (of degree 4) using the same 33 points. While there is less smoothing of the broadest
feature, narrower features have their heights and widths preserved.

As output,savgol returns the coefficientscn, for −nL ≤ n ≤ nR. These are stored in
c in “wrap-around order”; that is,c0 is in c(1), c

−1 is in c(2), and so on for further negative
indices. The valuec1 is stored inc(np), c2 in c(np-1), and so on for positive indices. This
order may seem arcane, but it is the natural one where causal filters have nonzero coefficients
in low array elements ofc. It is also the order required by the subroutineconvlv in §13.1,
which can be used to apply the digital filter to a data set.

The accompanying table shows some typical output fromsavgol. For orders 2 and
4, the coefficients of Savitzky-Golay filters with several choices ofnL andnR are shown.
The central column is the coefficient applied to the datafi in obtaining the smoothedgi.
Coefficients to the left are applied to earlier data; to the right, to later. The coefficients
always add (within roundoff error) to unity. One sees that, as befits a smoothing operator,
the coefficients always have a central positive lobe, but with smaller, outlying corrections
of both positive and negative sign. In practice, the Savitzky-Golay filters aremost useful
for much larger values ofnL andnR, since these few-point formulas can accomplish only
a relatively small amount of smoothing.

Figure 14.8.1 shows a numerical experiment using a 33 point smoothing filter, that is,
nL = nR = 16. The upper panel shows a test function, constructed to have six “bumps” of
varying widths, all of height 8 units. To this function Gaussian white noise of unit variance
has been added. (The test function without noise is shown as the dotted curves in the center
and lower panels.) The widths of the bumps (full width at half of maximum, or FWHM) are
140, 43, 24, 17, 13, and 10, respectively.

The middle panel of Figure 14.8.1 shows the result of smoothing by a moving window

648 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

after S–G (32,32,4)

after S–G (32,32,2)

8
6
4
2
0

0 100 200 300 400 500 600 700 800 900

8
6
4
2
0

after S–G (32,32,6)

0 100 200 300 400 500 600 700 800 900

8
6
4
2
0

0 100 200 300 400 500 600 700 800 900

Figure 14.8.2. Result of applying wider 65 point Savitzky-Golay filters to the same data set as in Figure
14.8.1. Top: degree 2. Center: degree 4. Bottom: degree 6. All of these filters are inoptimallybroad
for the resolution of the narrow features. Higher-order filters do best at preserving feature heights and
widths, but do less smoothing on broader features.

average. One sees that the window of width 33 does quite a nice job of smoothing the broadest
bump, but that the narrower bumps suffer considerable loss of height and increase of width.
The underlying signal (dotted) is very badly represented.

The lower panel shows the result of smoothing with a Savitzky-Golay filter of the
identical width, and degreeM = 4. One sees that the heights and widths of the bumps are
quite extraordinarily preserved. A trade-off is that the broadest bump is less smoothed. That
is because the central positive lobe of the Savitzky-Golay filter coefficients fills only a fraction
of the full 33 point width. As a rough guideline, best results are obtained when the full width
of the degree 4 Savitzky-Golay filter is between 1 and 2 times the FWHM of desired features
in the data. (References[3] and[4] give additional practical hints.)

Figure 14.8.2 shows the result of smoothing the same noisy “data” with broader
Savitzky-Golay filters of 3 different orders. Here we havenL = nR = 32 (65 point filter)
andM = 2, 4, 6. One sees that, when the bumps are too narrow with respect to the filter
size, then even the Savitzky-Golay filter must at some point give out. The higher order filter
manages to track narrower features, but at the cost of less smoothing on broad features.

To summarize: Within limits, Savitzky-Golay filtering does manage to provide smoothing
without loss of resolution. It does this by assuming that relatively distant data points have
some significant redundancy that can be used to reduce the level of noise. The specific nature
of the assumed redundancy is that the underlying function should be locally well-fitted by a
polynomial. When this is true, as it is for smooth line profiles not too much narrowerthan
the filter width, then the performance of Savitzky-Golay filters can be spectacular. When it
is not true, then these filters have no compelling advantage over other classes of smoothing
filter coefficients.

A last remark concerns irregularly sampled data, where the valuesfi are not uniformly
spaced in time. The obvious generalization of Savitzky-Golay filtering would be to do a

14.8 Savitzky-Golay Smoothing Filters 649

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

least-squares fit within a moving window around each data point, one containing a fixed
number of data points to the left (nL) and right (nR). Because of the irregular spacing,
however, there is no way to obtain universal filter coefficients applicable to more than one
data point. One must instead do the actual least-squares fits for each data point. This becomes
computationally burdensome for largernL, nR, andM .

As a cheap alternative, one can simply pretend that the data pointsare equally spaced.
This amounts to virtually shifting, within each moving window, the data points to equally
spaced positions. Such a shift introduces the equivalent of an additional source of noise
into the function values. In those cases where smoothing is useful, this noise will often be
much smaller than the noise already present. Specifically, if the location of the points is
approximately random within the window, then a rough criterion is this: If the change inf

across the full width of theN = nL + nR + 1 point window is less than
√

N/2 times the
measurement noise on a single point, then the cheap method can be used.

CITED REFERENCES AND FURTHER READING:

Savitzky A., and Golay, M.J.E. 1964, Analytical Chemistry, vol. 36, pp. 1627–1639. [1]

Hamming, R.W. 1983, Digital Filters, 2nd ed. (Englewood Cliffs, NJ: Prentice-Hall). [2]

Ziegler, H. 1981, Applied Spectroscopy, vol. 35, pp. 88–92. [3]

Bromba, M.U.A., and Ziegler, H. 1981, Analytical Chemistry, vol. 53, pp. 1583–1586. [4]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 15. Modeling of Data

15.0 Introduction

Given a set of observations, one often wants to condense and summarize the
data by fitting it to a “model” that depends on adjustable parameters. Sometimes the
model is simply a convenient class of functions, such as polynomials or Gaussians,
and the fit supplies the appropriate coefficients. Other times, the model’s parameters
come from some underlying theory that the data are supposed to satisfy; examples
are coefficients of rate equations in a complex network of chemical reactions, or
orbital elements of a binary star. Modeling can also be used as a kind of constrained
interpolation, where you want to extend a few data points into a continuous function,
but with some underlying idea of what that function should look like.

The basic approach in all cases is usually the same: You choose or design a
figure-of-merit function(“merit function,” for short) that measures the agreement
between the data and the model with a particular choice of parameters. The merit
function is conventionally arranged so that small values represent close agreement.
The parameters of the model are then adjusted to achieve a minimum in the merit
function, yieldingbest-fit parameters. The adjustment process is thus a problem in
minimization in many dimensions. This optimization was the subject of Chapter 10;
however, there exist special, more efficient, methods that are specific to modeling,
and we will discuss these in this chapter.

There are important issues that go beyond the mere findingof best-fit parameters.
Data are generally not exact. They are subject tomeasurement errors(callednoise
in the context of signal-processing). Thus, typical data never exactly fit the model
that is being used, even when that model is correct. We need the means to assess
whether or not the model is appropriate, that is, we need to test thegoodness-of-fit
against some useful statistical standard.

We usually also need to know theaccuracy with which parameters are de-
termined by the data set. In other words, we need to know the likely errors of
the best-fit parameters.

Finally, it is not uncommon in fitting data to discover that the merit function
is not unimodal, with a single minimum. In some cases, we may be interested in
global rather than local questions. Not, “how good is this fit?” but rather, “how
sure am I that there is not avery much betterfit in some corner of parameter space?”
As we have seen in Chapter 10, especially§10.9, this kind of problem is generally
quite difficult to solve.

The important message we want to deliver is that fitting of parameters is not
the end-all of parameter estimation. To be genuinely useful, a fitting procedure

650

15.1 Least Squares as a Maximum Likelihood Estimator 651

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

should provide (i) parameters, (ii) error estimates on the parameters, and (iii) a
statistical measure of goodness-of-fit. When the third item suggests that the model
is an unlikely match to the data, then items (i) and (ii) are probably worthless.
Unfortunately, many practitioners of parameter estimation never proceed beyond
item (i). They deem a fit acceptable if a graph of data and model “looks good.” This
approach is known aschi-by-eye. Luckily, its practitioners get what they deserve.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapter X.

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), Chapters 18–19.

15.1 Least Squares as a Maximum Likelihood
Estimator

Suppose that we are fittingN data points(xi, yi) i = 1, . . . , N , to a model that
hasM adjustable parametersaj, j = 1, . . . ,M . The model predicts a functional
relationship between the measured independent and dependent variables,

y(x) = y(x; a1 . . . aM) (15.1.1)

where the dependence on the parameters is indicated explicitly on the right-hand side.
What, exactly, do we want to minimize to get fitted values for theaj ’s? The

first thing that comes to mind is the familiar least-squares fit,

minimize overa1 . . . aM :

N∑

i=1

[yi − y(xi; a1 . . . aM)]
2

(15.1.2)

But where does this come from? What general principles is it based on? The answer
to these questions takes us into the subject ofmaximum likelihood estimators.

Given a particular data set ofxi’s andyi’s, we have the intuitive feeling that
some parameter setsa1 . . . aM are very unlikely — those for which the model
functiony(x) looksnothing likethe data — while others may be very likely — those
that closely resemble the data. How can we quantify this intuitive feeling? How can
we select fitted parameters that are “most likely” to be correct? It is not meaningful
to ask the question, “What is the probability that a particular set of fitted parameters
a1 . . . aM is correct?” The reason is that there is no statistical universe of models
from which the parameters are drawn. There is just one model, the correct one, and
a statistical universe of data sets that are drawn from it!

15.1 Least Squares as a Maximum Likelihood Estimator 651

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

should provide (i) parameters, (ii) error estimates on the parameters, and (iii) a
statistical measure of goodness-of-fit. When the third item suggests that the model
is an unlikely match to the data, then items (i) and (ii) are probably worthless.
Unfortunately, many practitioners of parameter estimation never proceed beyond
item (i). They deem a fit acceptable if a graph of data and model “looks good.” This
approach is known aschi-by-eye. Luckily, its practitioners get what they deserve.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapter X.

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), Chapters 18–19.

15.1 Least Squares as a Maximum Likelihood
Estimator

Suppose that we are fittingN data points(xi, yi) i = 1, . . . , N , to a model that
hasM adjustable parametersaj, j = 1, . . . ,M . The model predicts a functional
relationship between the measured independent and dependent variables,

y(x) = y(x; a1 . . . aM) (15.1.1)

where the dependence on the parameters is indicated explicitly on the right-hand side.
What, exactly, do we want to minimize to get fitted values for theaj ’s? The

first thing that comes to mind is the familiar least-squares fit,

minimize overa1 . . . aM :

N
∑

i=1

[yi − y(xi; a1 . . . aM)]
2

(15.1.2)

But where does this come from? What general principles is it based on? The answer
to these questions takes us into the subject ofmaximum likelihood estimators.

Given a particular data set ofxi’s andyi’s, we have the intuitive feeling that
some parameter setsa1 . . . aM are very unlikely — those for which the model
functiony(x) looksnothing likethe data — while others may be very likely — those
that closely resemble the data. How can we quantify this intuitive feeling? How can
we select fitted parameters that are “most likely” to be correct? It is not meaningful
to ask the question, “What is the probability that a particular set of fitted parameters
a1 . . . aM is correct?” The reason is that there is no statistical universe of models
from which the parameters are drawn. There is just one model, the correct one, and
a statistical universe of data sets that are drawn from it!

652 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

That being the case, we can, however, turn the question around, and ask, “Given
a particular set of parameters, what is the probability that this data set could have
occurred?” If theyi’s take on continuous values, the probability will always be
zero unless we add the phrase, “...plus or minus some fixed∆y on each data point.”
So let’s always take this phrase as understood. If the probability of obtaining the
data set is infinitesimally small, then we can conclude that the parameters under
consideration are “unlikely” to be right. Conversely, our intuition tells us that the
data set should not be too improbable for the correct choice of parameters.

In other words, we identify the probability of the data given the parameters
(which is a mathematically computable number), as thelikelihoodof the parameters
given the data. This identification is entirely based on intuition. It has no formal
mathematical basis in and of itself; as we already remarked, statistics isnot a
branch of mathematics!

Once we make this intuitive identification, however, it is only a small further
step to decide to fit for the parametersa1 . . . aM precisely by finding those values
that maximizethe likelihood defined in the above way. This form of parameter
estimation ismaximum likelihood estimation.

We are now ready to make the connection to (15.1.2). Suppose thateach data
pointyi has a measurement error that is independently random and distributed as a
normal (Gaussian) distribution around the “true” modely(x). And suppose that the
standard deviationsσ of these normal distributions are the same for all points. Then
the probability of the data set is the product of the probabilities ofeach point,

P ∝
N
∏

i=1

{

exp

[

−1

2

(

yi − y(xi)

σ

)2
]

∆y

}

(15.1.3)

Notice that there is a factor∆y in each term in the product. Maximizing (15.1.3) is
equivalent to maximizing its logarithm, or minimizing the negative of its logarithm,
namely,

[

N
∑

i=1

[yi − y(xi)]
2

2σ2

]

−N log ∆y (15.1.4)

SinceN , σ, and ∆y are all constants, minimizing this equation is equivalent to
minimizing (15.1.2).

What we see is that least-squares fittingis a maximum likelihood estimation
of the fitted parametersif the measurement errors are independent and normally
distributed with constant standard deviation. Notice that we made no assumption
about the linearity or nonlinearity of the modely(x; a1 . . .) in its parameters
a1 . . . aM . Just below, we will relax our assumption of constant standard deviations
and obtain the very similar formulas for what is called “chi-square fitting” or
“weighted least-squares fitting.” First, however, let us discuss further our very
stringent assumption of a normal distribution.

For a hundred years or so, mathematical statisticians have been in love with
the fact that the probability distribution of the sum of a very large number of very
small random deviations almost always converges to a normal distribution. (For
precise statements of thiscentral limit theorem, consult[1] or other standard works
on mathematical statistics.) This infatuation tended to focus interest away from the

15.1 Least Squares as a Maximum Likelihood Estimator 653

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fact that, for real data, the normal distribution is often rather poorly realized, if it is
realized at all. We are often taught, rather casually, that, on average, measurements
will fall within ±σ of the true value 68 percent of the time, within±2σ 95 percent
of the time, and within±3σ 99.7 percent of the time. Extending this, one would
expect a measurement to be off by±20σ only one time out of2 × 1088. We all
know that “glitches” are much more likely thanthat!

In some instances, the deviations from a normal distribution are easy to
understand and quantify. For example, in measurements obtained by counting
events, the measurement errors are usually distributed as a Poisson distribution,
whose cumulative probability function was already discussed in§6.2. When the
number of counts going intoone data point is large, the Poisson distributionconverges
towards a Gaussian. However, the convergence is not uniform when measured in
fractional accuracy. The more standard deviations out on the tail of the distribution,
the larger the number of counts must be before a value close to the Gaussian is
realized. The sign of the effect is always the same: The Gaussian predicts that “tail”
events are much less likely than they actually (by Poisson) are. This causes such
events, when they occur, to skew a least-squares fit much more than they ought.

Other times, the deviations from a normal distribution are not so easy to
understand in detail. Experimental points are occasionally justway off. Perhaps
the power flickered during a point’s measurement, or someone kicked the apparatus,
or someone wrote down a wrong number. Points like this are calledoutliers.
They can easily turn a least-squares fit on otherwise adequate data into nonsense.
Their probability of occurrence in the assumed Gaussian model is so small that the
maximum likelihood estimator is willing to distort the whole curve to try to bring
them, mistakenly, into line.

The subject ofrobust statisticsdeals with cases where the normal or Gaussian
model is a bad approximation, or cases where outliers are important. We will discuss
robust methods briefly in§15.7. All the sections between this one and that one
assume, one way or the other, a Gaussian model for the measurement errors in the
data. It it quite important that you keep the limitations of that model in mind, even
as you use the very useful methods that follow from assuming it.

Finally, note that our discussion of measurement errors has been limited to
statistical errors, the kind that will average away if we only take enough data.
Measurements are also susceptible tosystematicerrors that will not go away with
any amount of averaging. For example, the calibration of a metal meter stick might
depend on its temperature. If we take all our measurements at the same wrong
temperature, then no amount of averaging or numerical processing will correct for
this unrecognized systematic error.

Chi-Square Fitting

We considered the chi-square statistic once before, in§14.3. Here it arises
in a slightly different context.

If each data point(xi, yi) has its own, known standard deviationσi, then
equation (15.1.3) is modified only by putting a subscripti on the symbolσ. That
subscript also propagates docilely into (15.1.4), so that the maximum likelihood

654 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

estimate of the model parameters is obtained by minimizing the quantity

χ2 ≡
N
∑

i=1

(

yi − y(xi; a1 . . . aM)

σi

)2

(15.1.5)

called the “chi-square.”
To whatever extent the measurement errors actuallyarenormally distributed, the

quantityχ2 is correspondingly a sum ofN squares of normally distributed quantities,
each normalized to unit variance. Once we have adjusted thea1 . . . aM to minimize
the value ofχ2, the terms in the sum are not all statistically independent. For models
that are linear in thea’s, however, it turns out that the probability distribution for
different values ofχ2 at its minimum can nevertheless be derived analytically, and
is thechi-square distribution forN − M degrees of freedom. We learned how to
compute this probability function using the incomplete gamma functiongammq in
§6.2. In particular, equation (6.2.18) gives the probabilityQ that the chi-square
should exceed a particular valueχ2 by chance, whereν = N −M is thenumber of
degrees of freedom. The quantityQ, or its complementP ≡ 1 − Q, is frequently
tabulated in appendices to statistics books, but we generally find it easier to use
gammq and compute our own values:Q = gammq (0.5ν, 0.5χ2). It is quite common,
and usually not too wrong, to assume that the chi-square distribution holds even for
models that are not strictly linear in thea’s.

This computed probability gives a quantitative measure for the goodness-of-fit
of the model. IfQ is a very small probability for some particular data set, then the
apparent discrepancies are unlikely to be chance fluctuations. Much more probably
either (i) the model is wrong — can be statistically rejected, or (ii) someone has lied to
you about the size of the measurement errorsσi — they are really larger than stated.

It is an important point that the chi-square probabilityQ does not directly
measure the credibility of the assumption that the measurement errors are normally
distributed. It assumes they are. In most, but not all, cases, however, the effect of
nonnormal errors is to create an abundance of outlier points. These decrease the
probabilityQ, so that we can add another possible, though less definitive, conclusion
to the above list: (iii) the measurement errors may not be normally distributed.

Possibility (iii) is fairly common, and also fairly benign. It is for this reason
that reasonable experimenters are often rather tolerant of low probabilitiesQ. It is
not uncommon to deem acceptable on equal terms any models with, say,Q > 0.001.
This is not as sloppy as it sounds: Trulywrongmodels will often be rejected with
vastly smaller values ofQ, 10−18, say. However, if day-in and day-out you find
yourselfaccepting models withQ ∼ 10−3, you really should track down the cause.

If you happen to know the actual distribution law of your measurement errors,
then you might wish toMonte Carlo simulatesome data sets drawn from a particular
model, cf.§7.2–§7.3. You can then subject these synthetic data sets to your actual
fitting procedure, so as to determine both the probability distribution of theχ2

statistic, and also the accuracy with whichyour model parameters are reproduced
by the fit. We discuss this further in§15.6. The technique is very general, but it
can also be very expensive.

At the oppositeextreme, it sometimes happens that the probabilityQ is too large,
too near to1, literally too good to be true! Nonnormal measurement errors cannot
in general produce this disease, since the normal distribution is about as “compact”

15.2 Fitting Data to a Straight Line 655

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

as a distribution can be. Almost always, the cause of too good a chi-square fit
is that the experimenter, in a “fit” of conservativism, hasoverestimatedhis or her
measurement errors. Very rarely, too good a chi-square signals actual fraud, data
that has been “fudged” to fit the model.

A rule of thumb is that a “typical” value ofχ2 for a “moderately” good fit is
χ2 ≈ ν . More precise is the statement that theχ2 statistichas a meanν and a standard
deviation

√
2ν, and, asymptotically for largeν , becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not
known in advance, and considerations related toχ2 fitting are used to derive a value
for σ. If we assume that all measurements have the same standard deviation,σi = σ,
and that the model does fit well, then we can proceed by first assigning an arbitrary
constantσ to all points, next fitting for the model parameters by minimizingχ2,
and finally recomputing

σ2 =

N
∑

i=1

[yi − y(xi)]
2/(N −M) (15.1.6)

Obviously, this approach prohibits an independent assessment of goodness-of-fit, a
fact occasionally missed by its adherents. When, however, the measurement error
is not known, this approach at least allowssomekind of error bar to be assigned
to the points.

If we take the derivative of equation (15.1.5) with respect to the parametersak,
we obtain equations that must hold at the chi-square minimum,

0 =

N
∑

i=1

(

yi − y(xi)

σ2

i

)(

∂y(xi; . . . ak . . .)

∂ak

)

k = 1, . . . ,M (15.1.7)

Equation (15.1.7) is, in general, a set ofM nonlinear equations for theM unknown
ak. Various of the procedures described subsequently in this chapter derive from
(15.1.7) and its specializations.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 1–4.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), §VI.C. [1]

15.2 Fitting Data to a Straight Line

A concrete example will make the considerations of the previous section more
meaningful. We consider the problem of fitting a set ofN data points(xi, yi) to
a straight-line model

y(x) = y(x; a, b) = a + bx (15.2.1)

15.2 Fitting Data to a Straight Line 655

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

as a distribution can be. Almost always, the cause of too good a chi-square fit
is that the experimenter, in a “fit” of conservativism, hasoverestimatedhis or her
measurement errors. Very rarely, too good a chi-square signals actual fraud, data
that has been “fudged” to fit the model.

A rule of thumb is that a “typical” value ofχ2 for a “moderately” good fit is
χ2 ≈ ν . More precise is the statement that theχ2 statistichas a meanν and a standard
deviation

√
2ν, and, asymptotically for largeν , becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not
known in advance, and considerations related toχ2 fitting are used to derive a value
for σ. If we assume that all measurements have the same standard deviation,σi = σ,
and that the model does fit well, then we can proceed by first assigning an arbitrary
constantσ to all points, next fitting for the model parameters by minimizingχ2,
and finally recomputing

σ2 =

N
∑

i=1

[yi − y(xi)]
2/(N −M) (15.1.6)

Obviously, this approach prohibits an independent assessment of goodness-of-fit, a
fact occasionally missed by its adherents. When, however, the measurement error
is not known, this approach at least allowssomekind of error bar to be assigned
to the points.

If we take the derivative of equation (15.1.5) with respect to the parametersak,
we obtain equations that must hold at the chi-square minimum,

0 =

N
∑

i=1

(

yi − y(xi)

σ2

i

)(

∂y(xi; . . . ak . . .)

∂ak

)

k = 1, . . . ,M (15.1.7)

Equation (15.1.7) is, in general, a set ofM nonlinear equations for theM unknown
ak. Various of the procedures described subsequently in this chapter derive from
(15.1.7) and its specializations.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 1–4.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), §VI.C. [1]

15.2 Fitting Data to a Straight Line

A concrete example will make the considerations of the previous section more
meaningful. We consider the problem of fitting a set ofN data points(xi, yi) to
a straight-line model

y(x) = y(x; a, b) = a + bx (15.2.1)

656 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

This problem is often calledlinear regression, a terminology that originated, long
ago, in the social sciences. We assume that the uncertaintyσi associated with
each measurementyi is known, and that thexi’s (values of the dependent variable)
are known exactly.

To measure how well the model agrees with the data, we use the chi-square
merit function (15.1.5), which in this case is

χ2(a, b) =

N
∑

i=1

(

yi − a− bxi

σi

)2

(15.2.2)

If the measurement errors are normally distributed, then this merit function will give
maximum likelihood parameter estimations ofa andb; if the errors are not normally
distributed, then the estimations are not maximum likelihood, but may still be useful
in a practical sense. In§15.7, we will treat the case where outlier points are so
numerous as to render theχ2 merit function useless.

Equation (15.2.2) is minimized to determinea and b. At its minimum,
derivatives ofχ2(a, b) with respect toa, b vanish.

0 =
∂χ2

∂a
= −2

N
∑

i=1

yi − a− bxi

σ2

i

0 =
∂χ2

∂b
= −2

N
∑

i=1

xi(yi − a− bxi)

σ2

i

(15.2.3)

These conditions can be rewritten in a convenient form if we define the following
sums:

S ≡
N
∑

i=1

1

σ2

i

Sx ≡
N
∑

i=1

xi

σ2

i

Sy ≡
N
∑

i=1

yi
σ2

i

Sxx ≡
N
∑

i=1

x2

i

σ2

i

Sxy ≡
N
∑

i=1

xiyi
σ2

i

(15.2.4)

With these definitions (15.2.3) becomes

aS + bSx = Sy

aSx + bSxx = Sxy

(15.2.5)

The solution of these two equations in two unknowns is calculated as

∆ ≡ SSxx − (Sx)2

a =
SxxSy − SxSxy

∆

b =
SSxy − SxSy

∆

(15.2.6)

Equation (15.2.6) gives the solution for the best-fit model parametersa andb.

15.2 Fitting Data to a Straight Line 657

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

We are not done, however. We must estimate the probable uncertainties in
the estimates ofa andb, since obviously the measurement errors in the data must
introduce some uncertainty in the determination of those parameters. If the data
are independent, then each contributes its own bit of uncertainty to the parameters.
Consideration of propagation of errors shows that the varianceσ2

f in the value of
any function will be

σ2

f =
N
∑

i=1

σ2

i

(

∂f

∂yi

)2

(15.2.7)

For the straight line, the derivatives ofa and b with respect toyi can be directly
evaluated from the solution:

∂a

∂yi
=

Sxx − Sxxi

σ2

i ∆

∂b

∂yi
=

Sxi − Sx

σ2

i ∆

(15.2.8)

Summing over the points as in (15.2.7), we get

σ2

a = Sxx/∆

σ2

b = S/∆
(15.2.9)

which are the variances in the estimates ofa and b, respectively. We will see in
§15.6 that an additional number is also needed to characterize properly the probable
uncertainty of the parameter estimation. That number is thecovarianceof a andb,
and (as we will see below) is given by

Cov(a, b) = −Sx/∆ (15.2.10)

The coefficient of correlation between the uncertainty ina and the uncertainty
in b, which is a number between−1 and 1, follows from (15.2.10) (compare
equation 14.5.1),

rab =
−Sx√
SSxx

(15.2.11)

A positive value ofrab indicates that the errors ina and b are likely to have the
same sign, while a negative value indicates the errors are anticorrelated, likely to
have opposite signs.

We arestill not done. We must estimate the goodness-of-fit of the data to the
model. Absent this estimate, we have not the slightest indication that the parameters
a and b in the model have any meaning at all! The probabilityQ that a value of
chi-square aspoor as the value (15.2.2) should occur by chance is

Q = gammq

(

N − 2

2
,
χ2

2

)

(15.2.12)

658 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Here gammq is our routine for the incomplete gamma functionQ(a, x), §6.2. If
Q is larger than, say,0.1, then the goodness-of-fit is believable. If it is larger
than, say,0.001, then the fitmaybe acceptable if the errors arenonnormal or have
been moderately underestimated. IfQ is less than0.001 then the model and/or
estimation procedure can rightly be called into question. In this latter case, turn
to §15.7 to proceed further.

If you do not know the individual measurement errors of the pointsσi, and are
proceeding (dangerously) to use equation (15.1.6) for estimating these errors, then
here is the procedure for estimating the probable uncertainties of the parametersa
and b: Set σi ≡ 1 in all equations through (15.2.6), and multiplyσa andσb, as
obtained from equation (15.2.9), by the additional factor

√

χ2/(N − 2), whereχ2

is computed by (15.2.2) using the fitted parametersa andb. As discussed above,
this procedure is equivalent toassuminga good fit, so you get no independent
goodness-of-fit probabilityQ.

In §14.5 we promised a relation between the linear correlation coefficient
r (equation 14.5.1) and a goodness-of-fit measure,χ2 (equation 15.2.2). For
unweighted data (allσi = 1), that relation is

χ2 = (1 − r2)NVar (y1 . . . yN) (15.2.13)

where

NVar(y1 . . . yN) ≡
N
∑

i=1

(yi − y)2 (15.2.14)

For data with varying weightsσi, the above equations remain valid if the sums in
equation (14.5.1) are weighted by1/σ2

i .

The following subroutine,fit, carries out exactly the operations that we have
discussed. When the weightsσ are known in advance, the calculations exactly
correspond to the formulas above. However, when weightsσ are unavailable,
the routineassumesequal values ofσ for each point andassumesa good fit, as
discussed in§15.1.

The formulas (15.2.6) are susceptible to roundoff error. Accordingly, we
rewrite them as follows: Define

ti =
1

σi

(

xi −
Sx

S

)

, i = 1, 2, . . ., N (15.2.15)

and

Stt =

N
∑

i=1

t2i (15.2.16)

Then, as you can verify by direct substitution,

b =
1

Stt

N
∑

i=1

tiyi
σi

(15.2.17)

a =
Sy − Sxb

S
(15.2.18)

15.2 Fitting Data to a Straight Line 659

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

σ2

a =
1

S

(

1 +
S2

x

SStt

)

(15.2.19)

σ2

b =
1

Stt

(15.2.20)

Cov(a, b) = − Sx

SStt

(15.2.21)

rab =
Cov(a, b)
σaσb

(15.2.22)

SUBROUTINE fit(x,y,ndata,sig,mwt,a,b,siga,sigb,chi2,q)
INTEGER mwt,ndata
REAL a,b,chi2,q,siga,sigb,sig(ndata),x(ndata),y(ndata)

C USES gammq
Given a set of data points x(1:ndata),y(1:ndata) with individual standard deviations
sig(1:ndata), fit them to a straight line y = a + bx by minimizing χ2. Returned are
a,b and their respective probable uncertainties siga and sigb, the chi-square chi2, and
the goodness-of-fit probability q (that the fit would have χ2 this large or larger). If mwt=0
on input, then the standard deviations are assumed to be unavailable: q is returned as 1.0
and the normalization of chi2 is to unit standard deviation on all points.

INTEGER i
REAL sigdat,ss,st2,sx,sxoss,sy,t,wt,gammq
sx=0. Initialize sums to zero.
sy=0.
st2=0.
b=0.
if(mwt.ne.0) then Accumulate sums ...

ss=0.
do 11 i=1,ndata ...with weights

wt=1./(sig(i)**2)
ss=ss+wt
sx=sx+x(i)*wt
sy=sy+y(i)*wt

enddo 11

else
do 12 i=1,ndata ...or without weights.

sx=sx+x(i)
sy=sy+y(i)

enddo 12

ss=float(ndata)
endif
sxoss=sx/ss
if(mwt.ne.0) then

do 13 i=1,ndata
t=(x(i)-sxoss)/sig(i)
st2=st2+t*t
b=b+t*y(i)/sig(i)

enddo 13

else
do 14 i=1,ndata

t=x(i)-sxoss
st2=st2+t*t
b=b+t*y(i)

enddo 14

endif
b=b/st2 Solve for a, b, σa, and σb.
a=(sy-sx*b)/ss
siga=sqrt((1.+sx*sx/(ss*st2))/ss)
sigb=sqrt(1./st2)
chi2=0. Calculate χ2.

660 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

q=1.
if(mwt.eq.0) then

do 15 i=1,ndata
chi2=chi2+(y(i)-a-b*x(i))**2

enddo 15

sigdat=sqrt(chi2/(ndata-2)) For unweighted data evaluate typical sig us-
ing chi2, and adjust the standard devia-
tions.

siga=siga*sigdat
sigb=sigb*sigdat

else
do 16 i=1,ndata

chi2=chi2+((y(i)-a-b*x(i))/sig(i))**2
enddo 16

if(ndata.gt.2) q=gammq(0.5*(ndata-2),0.5*chi2) Equation (15.2.12).
endif
return
END

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 6.

15.3 Straight-Line Data with Errors in Both
Coordinates

If experimental data are subject to measurement error not only in theyi’s, but also in
the xi’s, then the task of fitting a straight-line model

y(x) = a + bx (15.3.1)

is considerably harder. It is straightforward to write down theχ2 merit function for this case,

χ2(a, b) =
N
∑

i=1

(yi − a− bxi)
2

σ2

y i + b2σ2

x i

(15.3.2)

whereσx i andσy i are, respectively, thex andy standard deviations for theith point. The
weighted sum of variances in the denominator of equation (15.3.2) can be understood both
as the variance in the direction of the smallestχ2 between each data point and the line with
slopeb, and also as the variance of the linear combinationyi − a − bxi of two random
variablesxi and yi,

Var(yi − a− bxi) = Var(yi) + b2Var(xi) = σ2

y i + b2σ2

x i ≡ 1/wi (15.3.3)

The sum of the square ofN random variables, each normalized by its variance, is thus
χ2-distributed.

We want to minimize equation (15.3.2) with respect toa and b. Unfortunately, the
occurrence ofb in the denominator of equation (15.3.2) makes the resulting equation for
the slope∂χ2/∂b = 0 nonlinear. However, the corresponding condition for the intercept,
∂χ2/∂a = 0, is still linear and yields

a =

[

∑

i

wi(yi − bxi)

]/

∑

i

wi (15.3.4)

where thewi’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the
machinery of Chapter 10 (e.g., the routinebrent) for minimizing a general one-dimensional

660 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

q=1.
if(mwt.eq.0) then

do 15 i=1,ndata
chi2=chi2+(y(i)-a-b*x(i))**2

enddo 15

sigdat=sqrt(chi2/(ndata-2)) For unweighted data evaluate typical sig us-
ing chi2, and adjust the standard devia-
tions.

siga=siga*sigdat
sigb=sigb*sigdat

else
do 16 i=1,ndata

chi2=chi2+((y(i)-a-b*x(i))/sig(i))**2
enddo 16

if(ndata.gt.2) q=gammq(0.5*(ndata-2),0.5*chi2) Equation (15.2.12).
endif
return
END

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 6.

15.3 Straight-Line Data with Errors in Both
Coordinates

If experimental data are subject to measurement error not only in theyi’s, but also in
the xi’s, then the task of fitting a straight-line model

y(x) = a + bx (15.3.1)

is considerably harder. It is straightforward to write down theχ2 merit function for this case,

χ2(a, b) =
N
∑

i=1

(yi − a− bxi)
2

σ2

y i + b2σ2

x i

(15.3.2)

whereσx i andσy i are, respectively, thex andy standard deviations for theith point. The
weighted sum of variances in the denominator of equation (15.3.2) can be understood both
as the variance in the direction of the smallestχ2 between each data point and the line with
slopeb, and also as the variance of the linear combinationyi − a − bxi of two random
variablesxi and yi,

Var(yi − a− bxi) = Var(yi) + b2Var(xi) = σ2

y i + b2σ2

x i ≡ 1/wi (15.3.3)

The sum of the square ofN random variables, each normalized by its variance, is thus
χ2-distributed.

We want to minimize equation (15.3.2) with respect toa and b. Unfortunately, the
occurrence ofb in the denominator of equation (15.3.2) makes the resulting equation for
the slope∂χ2/∂b = 0 nonlinear. However, the corresponding condition for the intercept,
∂χ2/∂a = 0, is still linear and yields

a =

[

∑

i

wi(yi − bxi)

]/

∑

i

wi (15.3.4)

where thewi’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the
machinery of Chapter 10 (e.g., the routinebrent) for minimizing a general one-dimensional

15.3 Straight-Line Data with Errors in Both Coordinates 661

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

∆χ2 = 1

σa

A

B

σb

0

b

a

s

r

Figure 15.3.1. Standard errors for the parametersa andb. The pointB can be found by varying the
slopeb while simultaneously minimizing the intercepta. This gives the standard errorσb, and also the
values. The standard errorσa can then be found by the geometric relationσ2

a = s2 + r2.

function to minimize with respect tob, while using equation (15.3.4) at each stage to ensure
that the minimum with respect tob is also minimized with respect toa.

Because of the finite error bars on thexi’s, the minimumχ2 as a function ofb will
be finite, though usually large, whenb equals infinity (line of infinite slope). The angle
θ ≡ arctan b is thus more suitable as a parametrization of slope thanb itself. The value ofχ2

will then be periodic inθ with periodπ (not 2π!). If any data points have very smallσy ’s
but moderate or largeσx ’s, then it is also possible to have a maximum inχ2 near zero slope,
θ ≈ 0. In that case, there can sometimes be twoχ2 minima, one at positive slope and the
other at negative. Only one of these is the correct global minimum. It is therefore important
to have a good starting guess forb (or θ). Our strategy, implemented below, is to scale the
yi’s so as to have variance equal to thexi’s, then to do a conventional (as in§15.2) linear fit
with weights derived from the (scaled) sumσ2

y i + σ2

x i. This yields a good starting guess for
b if the data are evenplausibly related to a straight-line model.

Finding the standard errorsσa andσb on the parametersa andb is more complicated.
We will see in§15.6 that, in appropriate circumstances, the standard errors ina andb are the
respective projections onto thea andb axes of the “confidence region boundary” whereχ2

takes on a value one greater than its minimum,∆χ2 = 1. In the linear case of§15.2, these
projections follow from the Taylor series expansion

∆χ2
≈

1

2

[

∂2χ2

∂a2
(∆a)2 +

∂2χ2

∂b2
(∆b)2

]

+
∂2χ2

∂a∂b
∆a∆b (15.3.5)

Because of the present nonlinearity inb, however, analytic formulas for the second derivatives
are quite unwieldy; more important, the lowest-order term frequently gives a poor approxima-
tion to∆χ2. Our strategy is therefore to find the roots of∆χ2 = 1 numerically, by adjusting
the value of the slopeb away from the minimum. In the program below the general root finder
zbrent is used. It may occur that there are no roots at all — for example, if all error bars are
so large that all the data points are compatible with each other. It is important, therefore, to
make some effort at bracketing a putative root before refining it (cf.§9.1).

Becausea is minimized at each stage of varyingb, successful numerical root-finding
leads to a value of∆a that minimizesχ2 for the value of∆b that gives∆χ2 = 1. This (see
Figure 15.3.1) directly gives the tangent projection of the confidence region onto theb axis,

662 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and thusσb. It does not, however, give the tangent projection of the confidence region onto
thea axis. In the figure, we have found the point labeledB; to find σa we need to find the
point A. Geometry to the rescue: To the extent that the confidence region is approximated
by an ellipse, then you can prove (see figure) thatσ2

a = r2 + s2. The value ofs is known
from having found the pointB. The value ofr follows from equations (15.3.2) and (15.3.3)
applied at theχ2 minimum (pointO in the figure), giving

r2 = 1

/

∑

i

wi (15.3.6)

Actually, sinceb can go through infinity, this whole procedure makes more sense in
(a, θ) space than in(a, b) space. That is in fact how the following program works. Since
it is conventional, however, to return standard errors fora andb, not a andθ, we finally
use the relation

σb = σθ/ cos2 θ (15.3.7)

We caution that ifb and its standard error are both large, so that the confidence region actually
includes infinite slope, then the standard errorσb is not very meaningful. The functionchixy
is normally called only by the routinefitexy. However, if you want, you can yourself
explore the confidence region by making repeated calls tochixy (whose argument is an angle
θ, not a slopeb), after a single initializing call tofitexy.

A final caution, repeated from§15.0, is that if the goodness-of-fit is not acceptable
(returned probability is too small), the standard errorsσa andσb are surely not believable. In
dire circumstances, you might try scaling all yourx andy error bars by a constant factor until
the probability isacceptable (0.5, say), to get more plausible values forσa andσb.

SUBROUTINE fitexy(x,y,ndat,sigx,sigy,a,b,siga,sigb,chi2,q)
INTEGER ndat,NMAX
REAL x(ndat),y(ndat),sigx(ndat),sigy(ndat),a,b,siga,sigb,chi2,

* q,POTN,PI,BIG,ACC
PARAMETER (NMAX=1000,POTN=1.571000,BIG=1.e30,PI=3.14159265,

* ACC=1.e-3)
C USES avevar,brent,chixy,fit,gammq,mnbrak,zbrent

Straight-line fit to input data x(1:ndat) and y(1:ndat) with errors in both x and y, the
respective standard deviations being the input quantities sigx(1:ndat) and sigy(1:ndat).
Output quantities are a and b such that y = a + bx minimizes χ2, whose value is returned
as chi2. The χ2 probability is returned as q, a small value indicating a poor fit (sometimes
indicating underestimated errors). Standard errors on a and b are returned as siga and
sigb. These are not meaningful if either (i) the fit is poor, or (ii) b is so large that the
data are consistent with a vertical (infinite b) line. If siga and sigb are returned as BIG,
then the data are consistent with all values of b.

INTEGER j,nn
REAL xx(NMAX),yy(NMAX),sx(NMAX),sy(NMAX),ww(NMAX),swap,amx,amn

* ,varx,vary,aa,offs,ang(6),ch(6),scale,bmn,bmx,d1,d2
* ,r2,dum1,dum2,dum3,dum4,dum5,brent,chixy,gammq,zbrent

COMMON /fitxyc/ xx,yy,sx,sy,ww,aa,offs,nn
EXTERNAL chixy
if (ndat.gt.NMAX) pause ’NMAX too small in fitexy’
call avevar(x,ndat,dum1,varx) Find the x and y variances, and scale the data

into the common block for communication
with the function chixy.

call avevar(y,ndat,dum1,vary)
scale=sqrt(varx/vary)
nn=ndat
do 11 j=1,ndat

xx(j)=x(j)
yy(j)=y(j)*scale
sx(j)=sigx(j)
sy(j)=sigy(j)*scale
ww(j)=sqrt(sx(j)**2+sy(j)**2) Use both x and y weights in first trial fit.

enddo 11

call fit(xx,yy,nn,ww,1,dum1,b,dum2,dum3,dum4,dum5) Trial fit for b.
offs=0.

15.3 Straight-Line Data with Errors in Both Coordinates 663

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ang(1)=0. Construct several angles for reference points.
ang(2)=atan(b) Make b an angle.
ang(4)=0.
ang(5)=ang(2)
ang(6)=POTN
do 12 j=4,6

ch(j)=chixy(ang(j))
enddo 12

call mnbrak(ang(1),ang(2),ang(3),ch(1),ch(2),ch(3),chixy) Bracket the χ2 min-
imum and then locate it with brent.chi2=brent(ang(1),ang(2),ang(3),chixy,ACC,b)

chi2=chixy(b)
a=aa
q=gammq(0.5*(nn-2),0.5*chi2) Compute χ2 probability.
r2=0.
do 13 j=1,nn Save the inverse sum of weights at the mini-

mum.r2=r2+ww(j)
enddo 13

r2=1./r2
bmx=BIG Now, find standard errors for b as points where

∆χ2 = 1.bmn=BIG
offs=chi2+1.
do 14 j=1,6 Go through saved values to bracket the desired

roots. Note periodicity in slope angles.if (ch(j).gt.offs) then
d1=mod(abs(ang(j)-b),PI)
d2=PI-d1
if(ang(j).lt.b)then

swap=d1
d1=d2
d2=swap

endif
if (d1.lt.bmx) bmx=d1
if (d2.lt.bmn) bmn=d2

endif
enddo 14

if (bmx.lt. BIG) then Call zbrent to find the roots.
bmx=zbrent(chixy,b,b+bmx,ACC)-b
amx=aa-a
bmn=zbrent(chixy,b,b-bmn,ACC)-b
amn=aa-a
sigb=sqrt(0.5*(bmx**2+bmn**2))/(scale*cos(b)**2)
siga=sqrt(0.5*(amx**2+amn**2)+r2)/scale Error in a has additional piece r2.

else
sigb=BIG
siga=BIG

endif
a=a/scale Unscale the answers.
b=tan(b)/scale
return
END

FUNCTION chixy(bang)
REAL chixy,bang,BIG
INTEGER NMAX
PARAMETER (NMAX=1000,BIG=1.E30)

Captive function of fitexy, returns the value of (χ2
−offs) for the slope b=tan(bang).

Scaled data and offs are communicated via the common block /fitxyc/.
INTEGER nn,j
REAL xx(NMAX),yy(NMAX),sx(NMAX),sy(NMAX),ww(NMAX),aa,offs,

* avex,avey,sumw,b
COMMON /fitxyc/ xx,yy,sx,sy,ww,aa,offs,nn
b=tan(bang)
avex=0.

664 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

avey=0.
sumw=0.
do 11 j=1,nn

ww(j)=(b*sx(j))**2+sy(j)**2
if(ww(j).lt.1./BIG) then

ww(j)=BIG
else

ww(j)=1./ww(j)
endif
sumw=sumw+ww(j)
avex=avex+ww(j)*xx(j)
avey=avey+ww(j)*yy(j)

enddo 11

avex=avex/sumw
avey=avey/sumw
aa=avey-b*avex
chixy=-offs
do 12 j=1,nn

chixy=chixy+ww(j)*(yy(j)-aa-b*xx(j))**2
enddo 12

return
END

Be aware that the literature on the seemingly straightforward subject of this section
is generally confusing and sometimes plain wrong. Deming’s[1] early treatment is sound,
but its reliance on Taylor expansions gives inaccurate error estimates. References[2-4] are
reliable, more recent, general treatments with critiques of earlier work. York[5] and Reed[6]
usefully discuss the simple case of a straight line as treated here, but the latter paper has
some errors, corrected in[7]. All this commotion has attracted the Bayesians[8-10], who
have still different points of view.

CITED REFERENCES AND FURTHER READING:

Deming, W.E. 1943, Statistical Adjustment of Data (New York: Wiley), reprinted 1964 (New York:
Dover). [1]

Jefferys, W.H. 1980, Astronomical Journal, vol. 85, pp. 177–181; see also vol. 95, p. 1299
(1988). [2]

Jefferys, W.H. 1981, Astronomical Journal, vol. 86, pp. 149–155; see also vol. 95, p. 1300
(1988). [3]

Lybanon, M. 1984, American Journal of Physics, vol. 52, pp. 22–26. [4]

York, D. 1966, Canadian Journal of Physics, vol. 44, pp. 1079–1086. [5]

Reed, B.C. 1989, American Journal of Physics, vol. 57, pp. 642–646; see also vol. 58, p. 189,
and vol. 58, p. 1209. [6]

Reed, B.C. 1992, American Journal of Physics, vol. 60, pp. 59–62. [7]

Zellner, A. 1971, An Introduction to Bayesian Inference in Econometrics (New York: Wiley);
reprinted 1987 (Malabar, FL: R. E. Krieger Pub. Co.). [8]

Gull, S.F. 1989, in Maximum Entropy and Bayesian Methods, J. Skilling, ed. (Boston: Kluwer). [9]

Jaynes, E.T. 1991, in Maximum-Entropy and Bayesian Methods, Proc. 10th Int. Workshop,
W.T. Grandy, Jr., and L.H. Schick, eds. (Boston: Kluwer). [10]

Macdonald, J.R., and Thompson, W.J. 1992, American Journal of Physics, vol. 60, pp. 66–73.

15.4 General Linear Least Squares 665

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

15.4 General Linear Least Squares

An immediate generalization of§15.2 is to fit a set of data points(xi, yi) to a
model that is not just a linear combination of1 andx (namelya + bx), but rather a
linear combination ofanyM specified functions ofx. For example, the functions
could be1, x, x2, . . . , xM−1, in which case their general linear combination,

y(x) = a1 + a2x + a3x
2 + · · ·+ aMxM−1 (15.4.1)

is a polynomial of degreeM − 1. Or, the functions could be sines and cosines, in
which case their general linear combination is a harmonic series.

The general form of this kind of model is

y(x) =

M
∑

k=1

akXk(x) (15.4.2)

where X1(x), . . . , XM (x) are arbitrary fixed functions ofx, called thebasis
functions.

Note that the functionsXk(x) can be wildly nonlinear functions ofx. In this
discussion “linear” refers only to the model’s dependence on itsparametersak.

For these linear models we generalize the discussion of the previous section
by defining a merit function

χ2 =

N
∑

i=1

[

yi −
∑M

k=1
akXk(xi)

σi

]2

(15.4.3)

As before,σi is the measurement error (standard deviation) of theith data point,
presumed to be known. If the measurement errors are not known, they may all (as
discussed at the end of§15.1) be set to the constant valueσ = 1.

Once again, we will pick as best parameters those that minimizeχ2. There are
several different techniques available for finding this minimum. Two are particularly
useful, and we will discuss both in this section. To introduce them and elucidate
their relationship, we need some notation.

Let A be a matrix whoseN × M components are constructed from theM
basis functions evaluated at theN abscissasxi, and from theN measurement errors
σi, by the prescription

Aij =
Xj(xi)

σi

(15.4.4)

The matrixA is called thedesign matrixof the fitting problem. Notice that in general
A has more rows than columns,N ≥M , since there must be more data points than
model parameters to be solved for. (You can fit a straight line to two points, but not a
very meaningful quintic!) The design matrix is shown schematically in Figure 15.4.1.

Also define a vectorb of lengthN by

bi =
yi

σi

(15.4.5)

and denote theM vector whose components are the parameters to be fitted,
a1, . . . , aM , by a.

15.4 General Linear Least Squares 665

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

15.4 General Linear Least Squares

An immediate generalization of§15.2 is to fit a set of data points(xi, yi) to a
model that is not just a linear combination of1 andx (namelya + bx), but rather a
linear combination ofanyM specified functions ofx. For example, the functions
could be1, x, x2, . . . , xM−1, in which case their general linear combination,

y(x) = a1 + a2x + a3x
2 + · · ·+ aMxM−1 (15.4.1)

is a polynomial of degreeM − 1. Or, the functions could be sines and cosines, in
which case their general linear combination is a harmonic series.

The general form of this kind of model is

y(x) =

M
∑

k=1

akXk(x) (15.4.2)

where X1(x), . . . , XM (x) are arbitrary fixed functions ofx, called thebasis
functions.

Note that the functionsXk(x) can be wildly nonlinear functions ofx. In this
discussion “linear” refers only to the model’s dependence on itsparametersak.

For these linear models we generalize the discussion of the previous section
by defining a merit function

χ2 =

N
∑

i=1

[

yi −
∑M

k=1 akXk(xi)

σi

]2

(15.4.3)

As before,σi is the measurement error (standard deviation) of theith data point,
presumed to be known. If the measurement errors are not known, they may all (as
discussed at the end of§15.1) be set to the constant valueσ = 1.

Once again, we will pick as best parameters those that minimizeχ2. There are
several different techniques available for finding this minimum. Two are particularly
useful, and we will discuss both in this section. To introduce them and elucidate
their relationship, we need some notation.

Let A be a matrix whoseN × M components are constructed from theM
basis functions evaluated at theN abscissasxi, and from theN measurement errors
σi, by the prescription

Aij =
Xj(xi)

σi

(15.4.4)

The matrixA is called thedesign matrixof the fitting problem. Notice that in general
A has more rows than columns,N ≥M , since there must be more data points than
model parameters to be solved for. (You can fit a straight line to two points, but not a
very meaningful quintic!) The design matrix is shown schematically in Figure 15.4.1.

Also define a vectorb of lengthN by

bi =
yi
σi

(15.4.5)

and denote theM vector whose components are the parameters to be fitted,
a1, . . . , aM , by a.

666 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
X1(x1)

σ1

x1 X2(x1)
σ1

. . . XM(x1)
σ1

X1() X2() . . . XM()

X1(x2)
σ2

x2 X2(x2)
σ2

. . . XM(x2)
σ2

...
...

...
...

...
...

...

X1(xN)
σN

xN X2(xN)
σN

. . . XM(xN)
σN

da
ta

 p
oi

nt
s

basis functions

Figure 15.4.1. Design matrix for the least-squares fit of a linear combination ofM basis functions toN
data points. The matrix elements involve the basis functions evaluated at the values of the independent
variable at which measurementsare made, and the standard deviations of the measured dependentvariable.
The measured values of the dependent variable do not enter the design matrix.

Solution by Use of the Normal Equations

The minimum of (15.4.3) occurs where the derivative ofχ2 with respect to all
M parametersak vanishes. Specializing equation (15.1.7) to the case of the model
(15.4.2), this condition yields theM equations

0 =

N
∑

i=1

1

σ2
i

yi −
M
∑

j=1

ajXj(xi)

Xk(xi) k = 1, . . . ,M (15.4.6)

Interchanging the order of summations, we can write (15.4.6) as the matrix equation

M
∑

j=1

αkjaj = βk (15.4.7)

where

αkj =

N
∑

i=1

Xj(xi)Xk(xi)

σ2
i

or equivalently [α] = AT · A (15.4.8)

an M × M matrix, and

βk =

N
∑

i=1

yiXk(xi)

σ2
i

or equivalently [β] = AT · b (15.4.9)

15.4 General Linear Least Squares 667

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

a vector of lengthM .
The equations (15.4.6) or (15.4.7) are called thenormal equationsof the least-

squares problem. They can be solved for the vector of parametersa by the standard
methods of Chapter 2, notablyLU decomposition and backsubstitution, Choleksy
decomposition, or Gauss-Jordan elimination. In matrix form, the normal equations
can be written as either

[α] · a = [β] or as
(

AT · A
)

· a = AT · b (15.4.10)

The inverse matrixCjk ≡ [α]−1
jk is closely related to the probable (or, more

precisely,standard) uncertainties of the estimated parametersa. To estimate these
uncertainties, consider that

aj =

M
∑

k=1

[α]−1
jk βk =

M
∑

k=1

Cjk

[

N
∑

i=1

yiXk(xi)

σ2
i

]

(15.4.11)

and that the variance associated with the estimateaj can be found as in (15.2.7) from

σ2(aj) =

N
∑

i=1

σ2
i

(

∂aj
∂yi

)2

(15.4.12)

Note thatαjk is independent ofyi, so that

∂aj
∂yi

=
M
∑

k=1

CjkXk(xi)/σ
2
i (15.4.13)

Consequently, we find that

σ2(aj) =

M
∑

k=1

M
∑

l=1

CjkCjl

[

N
∑

i=1

Xk(xi)Xl(xi)

σ2
i

]

(15.4.14)

The final term in brackets is just the matrix[α]. Since this is the matrix inverse
of [C], (15.4.14) reduces immediately to

σ2(aj) = Cjj (15.4.15)

In other words, the diagonal elements of[C] are the variances (squared
uncertainties) of the fitted parametersa. It should not surprise you to learn that the
off-diagonal elementsCjk are the covariances betweenaj andak (cf. 15.2.10); but
we shall defer discussion of these to§15.6.

We will now give a routine that implements the above formulas for the general
linear least-squares problem, by the method of normal equations. Since we wish to
compute not only the solution vectora but also the covariance matrix[C], it is most
convenient to use Gauss-Jordan elimination (routinegaussj of §2.1) to perform the
linear algebra. The operation count, in this application, is no larger than that forLU
decomposition. If you have no need for the covariance matrix, however, you can
save a factor of 3 on the linear algebra by switching toLU decomposition, without

668 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

computation of the matrix inverse. In theory, sinceAT · A is positive definite,
Cholesky decomposition is the most efficient way to solve the normal equations.
However, in practice most of the computing time is spent in looping over the data
to form the equations, and Gauss-Jordan is quite adequate.

We need to warn you that the solution of a least-squares problem directly from
the normal equations is rather susceptible to roundoff error. An alternative, and
preferred, technique involvesQR decomposition (§2.10, §11.3, and§11.6) of the
design matrixA. This is essentially what we did at the end of§15.2 for fitting data to
a straight line, but without invoking all the machinery ofQR to derive the necessary
formulas. Later in this section, we will discuss other difficulties in the least-squares
problem, for which the cure issingular value decomposition(SVD), of which we give
an implementation. It turns out that SVD also fixes the roundoff problem, so it is our
recommended technique for all but “easy” least-squares problems. It is for these easy
problems that the following routine, which solves the normal equations, is intended.

The routine below introduces one bookkeeping trick that is quite useful in
practical work. Frequently it is a matter of “art” to decide which parametersak
in a model should be fit from the data set, and which should be held constant at
fixed values, for example values predicted by a theory or measured in a previous
experiment. One wants, therefore, to have a convenient means for “freezing”
and “unfreezing” the parametersak. In the following routine the total number of
parametersak is denotedma (calledM above). As input to the routine, you supply
an arrayia(1:ma), whose components are either zero or nonzero (e.g., 1). Zeros
indicate that you want the corresponding elements of the parameter vectora(1:ma)

to be held fixed at their input values. Nonzeros indicate parameters that should be
fitted for. On output, any frozen parameters will have their variances, and all their
covariances, set to zero in the covariance matrix.

SUBROUTINE lfit(x,y,sig,ndat,a,ia,ma,covar,npc,chisq,funcs)
INTEGER ma,ia(ma),npc,ndat,MMAX
REAL chisq,a(ma),covar(npc,npc),sig(ndat),x(ndat),y(ndat)
EXTERNAL funcs
PARAMETER (MMAX=50) Set to the maximum number of coefficients ma.

C USES covsrt,gaussj
Given a set of data points x(1:ndat), y(1:ndat) with individual standard deviations
sig(1:ndat), use χ2 minimization to fit for some or all of the coefficients a(1:ma) of a
function that depends linearly on a, y =

∑

i
ai×afunci(x). The input array ia(1:ma) in-

dicates by nonzero entries those components of a that should be fitted for, and by zero entries
those components that should be held fixed at their input values. The program returns values
for a(1:ma), χ2 = chisq, and the covariance matrix covar(1:ma,1:ma). (Parameters
held fixed will return zero covariances.) npc is the physical dimension of covar(npc,npc)
in the calling routine. The user supplies a subroutine funcs(x,afunc,ma) that returns
the ma basis functions evaluated at x = x in the array afunc.

INTEGER i,j,k,l,m,mfit
REAL sig2i,sum,wt,ym,afunc(MMAX),beta(MMAX)
mfit=0
do 11 j=1,ma

if(ia(j).ne.0) mfit=mfit+1
enddo 11

if(mfit.eq.0) pause ’lfit: no parameters to be fitted’
do 13 j=1,mfit Initialize the (symmetric) matrix.

do 12 k=1,mfit
covar(j,k)=0.

enddo 12

beta(j)=0.
enddo 13

15.4 General Linear Least Squares 669

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 17 i=1,ndat Loop over data to accumulate coefficients of the normal
equations.call funcs(x(i),afunc,ma)

ym=y(i)
if(mfit.lt.ma) then Subtract off dependences on known pieces of the fitting

function.do 14 j=1,ma
if(ia(j).eq.0) ym=ym-a(j)*afunc(j)

enddo 14

endif
sig2i=1./sig(i)**2
j=0
do 16 l=1,ma

if (ia(l).ne.0) then
j=j+1
wt=afunc(l)*sig2i
k=0
do 15 m=1,l

if (ia(m).ne.0) then
k=k+1
covar(j,k)=covar(j,k)+wt*afunc(m)

endif
enddo 15

beta(j)=beta(j)+ym*wt
endif

enddo 16

enddo 17

do 19 j=2,mfit Fill in above the diagonal from symmetry.
do 18 k=1,j-1

covar(k,j)=covar(j,k)
enddo 18

enddo 19

call gaussj(covar,mfit,npc,beta,1,1) Matrix solution.
j=0
do 21 l=1,ma

if(ia(l).ne.0) then
j=j+1
a(l)=beta(j) Partition solution to appropriate coefficients a.

endif
enddo 21

chisq=0. Evaluate χ2 of the fit.
do 23 i=1,ndat

call funcs(x(i),afunc,ma)
sum=0.
do 22 j=1,ma

sum=sum+a(j)*afunc(j)
enddo 22

chisq=chisq+((y(i)-sum)/sig(i))**2
enddo 23

call covsrt(covar,npc,ma,ia,mfit) Sort covariance matrix to true order of fitting
return coefficients.
END

That last call to a subroutinecovsrt is only for the purpose of spreading
the covariances back into the fullma × ma covariance matrix, in the proper rows
and columns and with zero variances and covariances set for variables whichwere
held frozen.

The subroutinecovsrt is as follows.
SUBROUTINE covsrt(covar,npc,ma,ia,mfit)
INTEGER ma,mfit,npc,ia(ma)
REAL covar(npc,npc)

Expand in storage the covariance matrix covar, so as to take into account parameters that
are being held fixed. (For the latter, return zero covariances.)

INTEGER i,j,k
REAL swap

670 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 12 i=mfit+1,ma
do 11 j=1,i

covar(i,j)=0.
covar(j,i)=0.

enddo 11

enddo 12

k=mfit
do 15 j=ma,1,-1

if(ia(j).ne.0)then
do 13 i=1,ma

swap=covar(i,k)
covar(i,k)=covar(i,j)
covar(i,j)=swap

enddo 13

do 14 i=1,ma
swap=covar(k,i)
covar(k,i)=covar(j,i)
covar(j,i)=swap

enddo 14

k=k-1
endif

enddo 15

return
END

Solution by Use of Singular Value Decomposition

In some applications, the normal equations are perfectly adequate for linear
least-squares problems. However, in many cases the normal equations are very close
to singular. A zero pivot element may be encountered during the solution of the
linear equations (e.g., ingaussj), in which case you get no solution at all. Or a
very small pivot may occur, in which case you typically get fitted parametersak
with very large magnitudes that are delicately (and unstably) balanced to cancel out
almost precisely when the fitted function is evaluated.

Why does this commonly occur? The reason is that, more often than experi-
menters would like to admit, data do not clearly distinguish between two or more of
the basis functions provided. If two such functions, or two different combinations
of functions, happen to fit the data about equally well — or equally badly — then
the matrix [α], unable to distinguish between them, neatly folds up its tent and
becomes singular. There is a certain mathematical irony in the fact that least-squares
problems areboth overdetermined (number of data points greater than number of
parameters)and underdetermined (ambiguous combinations of parameters exist);
but that is how it frequently is. The ambiguities can be extremely hard to notice
a priori in complicated problems.

Enter singular value decomposition (SVD). This would be a good time for you
to review the material in§2.6, which we will not repeat here. In the case of an
overdetermined system, SVD produces a solution that is the best approximation in
the least-squares sense, cf. equation (2.6.10). That is exactly what we want. In
the case of an underdetermined system, SVD produces a solution whose values (for
us, theak ’s) are smallest in the least-squares sense, cf. equation (2.6.8). That is
also what we want: When some combination of basis functions is irrelevant to the
fit, that combination will be driven down to a small, innocuous, value, rather than
pushed up to delicately canceling infinities.

15.4 General Linear Least Squares 671

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In terms of the design matrixA (equation 15.4.4) and the vectorb (equation
15.4.5), minimization ofχ2 in (15.4.3) can be written as

find a that minimizes χ2 = |A · a− b|2 (15.4.16)

Comparing to equation (2.6.9), we see that this is precisely the problem that routines
svdcmp andsvbksb are designed to solve. The solution, which is given by equation
(2.6.12), can be rewritten as follows: IfU and V enter the SVD decomposition
of A according to equation (2.6.1), as computed bysvdcmp, then let the vectors
U(i) i = 1, . . . ,M denote thecolumnsof U (each one a vector of lengthN); and
let the vectorsV(i); i = 1, . . . ,M denote thecolumnsof V (each one a vector
of lengthM). Then the solution (2.6.12) of the least-squares problem (15.4.16)
can be written as

a =
M
∑

i=1

(

U(i) · b

wi

)

V(i) (15.4.17)

where thewi are, as in§2.6, the singular values returned bysvdcmp.
Equation (15.4.17) says that the fitted parametersa are linear combinations of

the columns ofV, with coefficients obtained by forming dot products of the columns
of U with the weighted data vector (15.4.5). Though it is beyond our scope to prove
here, it turns out that the standard (loosely, “probable”) errors in the fitted parameters
are also linear combinations of the columns ofV. In fact, equation (15.4.17) can
be written in a form displaying these errors as

a =

[

M
∑

i=1

(

U(i) · b
wi

)

V(i)

]

± 1

w1
V(1) ± · · · ± 1

wM

V(M) (15.4.18)

Here each± is followed by a standard deviation. The amazing fact is that,
decomposed in this fashion, the standard deviations are all mutually independent
(uncorrelated). Therefore they can be added together in root-mean-square fashion.
What is going on is that the vectorsV(i) are the principal axes of the error ellipsoid
of the fitted parametersa (see§15.6).

It follows that the variance in the estimate of a parameteraj is given by

σ2(aj) =

M
∑

i=1

1

w2
i

[V(i)]
2
j =

M
∑

i=1

(

Vji

wi

)2

(15.4.19)

whose result should be identical with (15.4.14). As before, you should not be
surprised at the formula for the covariances, here given without proof,

Cov(aj , ak) =

M
∑

i=1

(

VjiVki

w2
i

)

(15.4.20)

We introduced this subsection by noting that the normal equations can fail
by encountering a zero pivot. We have not yet, however, mentioned how SVD
overcomes this problem. The answer is: If any singular valuewi is zero, its

672 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

reciprocal in equation (15.4.18) should be set to zero, not infinity. (Compare the
discussion preceding equation 2.6.7.) This corresponds to adding to the fitted
parametersa a zeromultiple, rather than some random large multiple, of any linear
combination of basis functions that are degenerate in the fit. It is a good thing to do!

Moreover, if a singular valuewi is nonzero but very small, you should also
define its reciprocal to be zero, since its apparent value is probably an artifact of
roundoff error, not a meaningful number. A plausible answer to the question “how
small is small?” is to edit in this fashion all singular values whose ratio to the
largest singular value is less thanN times the machine precisionǫ. (You might
argue for

√
N , or a constant, instead ofN as the multiple; that starts getting into

hardware-dependent questions.)
There is another reason for editing evenadditionalsingular values, ones large

enough that roundoff error is not a question. Singular value decomposition allows
you to identify linear combinations of variables that just happen not to contribute
much to reducing theχ2 of your data set. Editing these can sometimes reduce the
probable error on your coefficients quite significantly, while increasing the minimum
χ2 only negligibly. We will learn more about identifying and treating such cases
in §15.6. In the following routine, the point at which this kind of editing would
occur is indicated.

Generally speaking, we recommend that you always use SVD techniques instead
of using the normal equations. SVD’s only significant disadvantage is that it requires
an extra array of sizeN × M to store the whole design matrix. This storage
is overwritten by the matrixU. Storage is also required for theM × M matrix
V, but this is instead of the same-sized matrix for the coefficients of the normal
equations. SVD can be significantly slower than solving the normal equations;
however, its great advantage, that it (theoretically)cannot fail, more than makes
up for the speed disadvantage.

In the routine that follows, the matricesu,v and the vectorw are input as working
space.np andmp are their various physical dimensions. The logical dimensions of the
problem arendata data points byma basis functions (and fitted parameters). If you
care only about the valuesa of the fitted parameters, thenu,v,w contain no useful
information on output. If you want probable errors for the fitted parameters, read on.

SUBROUTINE svdfit(x,y,sig,ndata,a,ma,u,v,w,mp,np,
* chisq,funcs)

INTEGER ma,mp,ndata,np,NMAX,MMAX
REAL chisq,a(ma),sig(ndata),u(mp,np),v(np,np),w(np),

* x(ndata),y(ndata),TOL
EXTERNAL funcs
PARAMETER (NMAX=1000,MMAX=50,TOL=1.e-5) Max expected ndata and ma.

C USES svbksb,svdcmp
Given a set of data points x(1:ndata),y(1:ndata) with individual standard deviations
sig(1:ndata), use χ2 minimization to determine the ma coefficients a of the fitting func-
tion y =

∑

i
ai×afunci(x). Here we solve the fitting equations using singular value decom-

position of the ndata by ma matrix, as in §2.6. Arrays u(1:mp,1:np),v(1:np,1:np),
w(1:np) provide workspace on input; on output they define the singular value decomposi-
tion, and can be used to obtain the covariance matrix. mp,np are the physical dimensions
of the matrices u,v,w, as indicated above. It is necessary that mp≥ndata, np ≥ ma. The
program returns values for the ma fit parameters a, and χ2, chisq. The user supplies a
subroutine funcs(x,afunc,ma) that returns the ma basis functions evaluated at x = x
in the array afunc.

INTEGER i,j
REAL sum,thresh,tmp,wmax,afunc(MMAX),b(NMAX)

15.4 General Linear Least Squares 673

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 12 i=1,ndata Accumulate coefficients of the fitting ma-
trix.call funcs(x(i),afunc,ma)

tmp=1./sig(i)
do 11 j=1,ma

u(i,j)=afunc(j)*tmp
enddo 11

b(i)=y(i)*tmp
enddo 12

call svdcmp(u,ndata,ma,mp,np,w,v) Singular value decomposition.
wmax=0. Edit the singular values, given TOL from the

parameter statement, between here ...do 13 j=1,ma
if(w(j).gt.wmax)wmax=w(j)

enddo 13

thresh=TOL*wmax
do 14 j=1,ma

if(w(j).lt.thresh)w(j)=0.
enddo 14 ...and here.
call svbksb(u,w,v,ndata,ma,mp,np,b,a)
chisq=0. Evaluate chi-square.
do 16 i=1,ndata

call funcs(x(i),afunc,ma)
sum=0.
do 15 j=1,ma

sum=sum+a(j)*afunc(j)
enddo 15

chisq=chisq+((y(i)-sum)/sig(i))**2
enddo 16

return
END

Feeding the matrixv and vectorw output by the above program into the
following short routine, you easily obtain variances and covariances ofthe fitted
parametersa. The square roots of the variances are the standard deviations of
the fitted parameters. The routine straightforwardly implements equation (15.4.20)
above, with the convention that singular values equal to zero are recognized as
having been edited out of the fit.

SUBROUTINE svdvar(v,ma,np,w,cvm,ncvm)
INTEGER ma,ncvm,np,MMAX
REAL cvm(ncvm,ncvm),v(np,np),w(np)
PARAMETER (MMAX=20) Set to the maximum number of fit parameters.

To evaluate the covariance matrix cvm of the fit for ma parameters obtained by svdfit,
call this routine with matrices v,w as returned from svdfit. np,ncvm give the physical
dimensions of v,w,cvm as indicated.

INTEGER i,j,k
REAL sum,wti(MMAX)
do 11 i=1,ma

wti(i)=0.
if(w(i).ne.0.) wti(i)=1./(w(i)*w(i))

enddo 11

do 14 i=1,ma Sum contributions to covariance matrix (15.4.20).
do 13 j=1,i

sum=0.
do 12 k=1,ma

sum=sum+v(i,k)*v(j,k)*wti(k)
enddo 12

cvm(i,j)=sum
cvm(j,i)=sum

enddo 13

enddo 14

return
END

674 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Examples

Be aware that some apparently nonlinear problems can be expressed so that
they are linear. For example, an exponential model with two parametersa andb,

y(x) = a exp(−bx) (15.4.21)
can be rewritten as

log[y(x)] = c− bx (15.4.22)

which is linear in its parametersc andb. (Of course you must be aware that such
transformations do not exactly take Gaussian errors into Gaussian errors.)

Also watch out for “non-parameters,” as in

y(x) = a exp(−bx + d) (15.4.23)

Here the parametersa andd are, in fact, indistinguishable. This is a good example of
where the normal equations will be exactly singular, and where SVD will find a zero
singular value. SVD will then make a “least-squares” choice for setting a balance
betweena andd (or, rather, their equivalents in the linear model derived by taking
the logarithms). However — and this is true whenever SVD returns a zero singular
value — you are better advised to figure out analytically where the degeneracy is
among your basis functions, and then make appropriate deletions in the basis set.

Here are two examples for user-supplied routinesfuncs. The first one is trivial
and fits a general polynomial to a set of data:

SUBROUTINE fpoly(x,p,np)
INTEGER np
REAL x,p(np)

Fitting routine for a polynomial of degree np-1, with np coefficients.
INTEGER j
p(1)=1.
do 11 j=2,np

p(j)=p(j-1)*x
enddo 11

return
END

The second example is slightly less trivial. It is used to fit Legendre polynomials
up to some ordernl-1 through a data set.

SUBROUTINE fleg(x,pl,nl)
INTEGER nl
REAL x,pl(nl)

Fitting routine for an expansion with nl Legendre polynomials pl, evaluated using the
recurrence relation as in §5.5.

INTEGER j
REAL d,f1,f2,twox
pl(1)=1.
pl(2)=x
if(nl.gt.2) then

twox=2.*x
f2=x
d=1.

15.5 Nonlinear Models 675

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 11 j=3,nl
f1=d
f2=f2+twox
d=d+1.
pl(j)=(f2*pl(j-1)-f1*pl(j-2))/d

enddo 11

endif
return
END

Multidimensional Fits

If you are measuring a single variabley as a function of more than one variable
— say, avectorof variablesx, then your basis functions will be functions of a vector,
X1(x), . . . , XM (x). Theχ2 merit function is now

χ2 =

N
∑

i=1

[

yi −
∑M

k=1 akXk(xi)
σi

]2

(15.4.24)

All of the preceding discussion goes through unchanged, withx replaced byx. In
fact, if you are willing to tolerate a bit of programming hack, you can use the above
programs without any modification: In bothlfit andsvdfit, the only use made
of the array elementsx(i) is that each element is in turn passed to the user-supplied
routinefuncs, which duly returns the values of the basis functions at that point. If
you setx(i)=i before callinglfit or svdfit, and independently providefuncs
with the true vector values of your data points (e.g., in aCOMMON block), thenfuncs
can translate from the fictitiousx(i)’s to the actual data points before doing its work.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 8–9.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.

15.5 Nonlinear Models

We now consider fitting when the model dependsnonlinearlyon the set ofM
unknown parametersak, k = 1, 2, . . .,M . We use the same approach as in previous
sections, namely to define aχ2 merit function and determine best-fit parameters
by its minimization. With nonlinear dependences, however, the minimization must
proceed iteratively. Given trial values for the parameters, we developa procedure
that improves the trial solution. The procedure is then repeated untilχ2 stops (or
effectively stops) decreasing.

15.5 Nonlinear Models 675

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 11 j=3,nl
f1=d
f2=f2+twox
d=d+1.
pl(j)=(f2*pl(j-1)-f1*pl(j-2))/d

enddo 11

endif
return
END

Multidimensional Fits

If you are measuring a single variabley as a function of more than one variable
— say, avectorof variablesx, then your basis functions will be functions of a vector,
X1(x), . . . , XM (x). Theχ2 merit function is now

χ2 =

N
∑

i=1

[

yi −
∑M

k=1 akXk(xi)
σi

]2

(15.4.24)

All of the preceding discussion goes through unchanged, withx replaced byx. In
fact, if you are willing to tolerate a bit of programming hack, you can use the above
programs without any modification: In bothlfit andsvdfit, the only use made
of the array elementsx(i) is that each element is in turn passed to the user-supplied
routinefuncs, which duly returns the values of the basis functions at that point. If
you setx(i)=i before callinglfit or svdfit, and independently providefuncs
with the true vector values of your data points (e.g., in aCOMMON block), thenfuncs
can translate from the fictitiousx(i)’s to the actual data points before doing its work.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 8–9.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.

15.5 Nonlinear Models

We now consider fitting when the model dependsnonlinearlyon the set ofM
unknown parametersak, k = 1, 2, . . .,M . We use the same approach as in previous
sections, namely to define aχ2 merit function and determine best-fit parameters
by its minimization. With nonlinear dependences, however, the minimization must
proceed iteratively. Given trial values for the parameters, we developa procedure
that improves the trial solution. The procedure is then repeated untilχ2 stops (or
effectively stops) decreasing.

676 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

How is this problem different from the general nonlinear function minimization
problem already dealt with in Chapter 10? Superficially, not at all: Sufficiently
close to the minimum, we expect theχ2 function to be well approximated by a
quadratic form, which we can write as

χ2(a) ≈ γ − d · a +
1

2
a · D · a (15.5.1)

whered is anM -vector andD is anM ×M matrix. (Compare equation 10.6.1.)
If the approximation is a good one, we know how to jump from the current trial
parametersacur to the minimizing onesamin in a single leap, namely

amin = acur + D−1 ·
[

−∇χ2(acur)
]

(15.5.2)

(Compare equation 10.7.4.)
On the other hand, (15.5.1) might be a poor local approximation to the shape

of the function that we are trying to minimize atacur. In that case, about all we
can do is take a step down the gradient, as in the steepest descent method (§10.6).
In other words,

anext = acur − constant×∇χ2(acur) (15.5.3)

where the constant is small enough not to exhaust the downhill direction.
To use (15.5.2) or (15.5.3), we must be able to compute the gradient of theχ2

function at any set of parametersa. To use (15.5.2) we also need the matrixD, which
is the second derivative matrix (Hessian matrix) of theχ2 merit function, at anya.

Now, this is the crucial difference from Chapter 10: There, we had no way of
directly evaluating the Hessian matrix. We were given only the ability to evaluate
the function to be minimized and (in some cases) its gradient. Therefore, we had
to resort to iterative methodsnot justbecause our function wasnonlinear,but also
in order to build up information about the Hessian matrix. Sections 10.7 and 10.6
concerned themselves with two different techniques for building up this information.

Here, life is much simpler. Weknowexactly the form ofχ2, since it is based
on a model function that we ourselves have specified. Therefore the Hessian matrix
is known to us. Thus we are free to use (15.5.2) whenever we care to do so. The
only reason to use (15.5.3) will be failure of (15.5.2) to improve the fit, signaling
failure of (15.5.1) as a good local approximation.

Calculation of the Gradient and Hessian

The model to be fitted is

y = y(x; a) (15.5.4)

and theχ2 merit function is

χ2(a) =

N
∑

i=1

[

yi − y(xi; a)
σi

]2

(15.5.5)

15.5 Nonlinear Models 677

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The gradient ofχ2 with respect to the parametersa, which will be zero at theχ2

minimum, has components

∂χ2

∂ak
= −2

N
∑

i=1

[yi − y(xi; a)]
σ2
i

∂y(xi; a)

∂ak
k = 1, 2, . . . ,M (15.5.6)

Taking an additional partial derivative gives

∂2χ2

∂ak∂al
= 2

N
∑

i=1

1

σ2
i

[

∂y(xi; a)

∂ak

∂y(xi; a)
∂al

− [yi − y(xi; a)]
∂2y(xi; a)
∂al∂ak

]

(15.5.7)

It is conventional to remove the factors of 2 by defining

βk ≡ −
1

2

∂χ2

∂ak
αkl ≡

1

2

∂2χ2

∂ak∂al
(15.5.8)

making [α] = 1
2D in equation (15.5.2), in terms of which that equation can be

rewritten as the set of linear equations

M
∑

l=1

αkl δal = βk (15.5.9)

This set is solved for the incrementsδal that, added to the current approximation,
give the next approximation. In the context of least-squares, the matrix[α], equal to
one-half times the Hessian matrix, is usually called thecurvature matrix.

Equation (15.5.3), the steepest descent formula, translates to

δal = constant× βl (15.5.10)

Note that the componentsαkl of the Hessian matrix (15.5.7) depend both on the
first derivatives and on the second derivatives of the basis functions with respect to
their parameters. Some treatments proceed to ignore the second derivative without
comment. We will ignore it also, but onlyafter a few comments.

Second derivatives occur because the gradient (15.5.6) already has a dependence
on∂y/∂ak , so the next derivative simply must contain terms involving∂2y/∂al∂ak.
The second derivative term can be dismissed when it is zero (as in the linear case
of equation 15.4.8), or small enough to be negligible when compared to the term
involving the first derivative. It also has an additional possibility of being ignorably
small in practice: The term multiplying the second derivative in equation (15.5.7)
is [yi − y(xi; a)]. For a successful model, this term should just be the random
measurement error of each point. This error can have either sign, and should in
general be uncorrelated with the model. Therefore, the second derivative terms tend
to cancel out when summed overi.

Inclusion of the second-derivative term can in fact be destabilizing if the model
fits badly or is contaminated by outlier points that are unlikely to be offset by

678 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

compensating points of opposite sign. From this point on, we will always use as
the definition ofαkl the formula

αkl =

N
∑

i=1

1

σ2
i

[

∂y(xi; a)

∂ak

∂y(xi; a)
∂al

]

(15.5.11)

This expression more closely resembles its linear cousin (15.4.8). You should
understand that minor (or even major) fiddling with[α] has no effect at all on
what final set of parametersa is reached, but affects only the iterative route that is
taken in getting there. The condition at theχ2 minimum, thatβk = 0 for all k,
is independent of how[α] is defined.

Levenberg-Marquardt Method

Marquardt[1] has put forth an elegant method, related to an earlier suggestion
of Levenberg, for varying smoothly between the extremes of the inverse-Hessian
method (15.5.9) and the steepest descent method (15.5.10). The latter method is
used far from the minimum, switching continuously to the former as the minimum
is approached. ThisLevenberg-Marquardt method(also calledMarquardt method)
works very well in practice and has become the standard of nonlinear least-squares
routines.

The method is based on two elementary, but important, insights. Consider the
“constant” in equation (15.5.10). What should it be, even in order of magnitude?
What sets its scale? There is no information about the answer in the gradient. That
tells only the slope, not how far that slope extends. Marquardt’s first insight is that
the components of the Hessian matrix, even if they are not usable in any precise
fashion, givesomeinformation about the order-of-magnitude scale of the problem.

The quantityχ2 is nondimensional, i.e., is a pure number; this is evident from
its definition (15.5.5). On the other hand,βk has the dimensions of1/ak, which
may well be dimensional, i.e., have units like cm−1, or kilowatt-hours, or whatever.
(In fact, each component ofβk can have different dimensions!) The constant of
proportionality betweenβk andδak must therefore have the dimensions ofa2

k. Scan
the components of[α] and you see that there is only one obvious quantity with these
dimensions, and that is1/αkk, the reciprocal of the diagonal element. So that must
set the scale of the constant. But that scale might itself be too big. So let’s divide
the constant by some (nondimensional) fudge factorλ, with the possibility of setting
λ ≫ 1 to cut down the step. In other words, replace equation (15.5.10) by

δal =
1

λαll

βl or λαll δal = βl (15.5.12)

It is necessary thatall be positive, but this is guaranteed by definition (15.5.11) —
another reason for adopting that equation.

Marquardt’s second insight is that equations (15.5.12) and (15.5.9) can be
combined if we define a new matrixα′ by the following prescription

α′

jj ≡ αjj(1 + λ)

α′

jk ≡ αjk (j 6= k)
(15.5.13)

15.5 Nonlinear Models 679

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and then replace both (15.5.12) and (15.5.9) by

M
∑

l=1

α′

kl δal = βk (15.5.14)

Whenλ is very large, the matrixα′ is forced into beingdiagonally dominant, so
equation (15.5.14) goes over to be identical to (15.5.12). On the other hand, asλ
approaches zero, equation (15.5.14) goes over to (15.5.9).

Given an initial guess for the set of fitted parametersa, the recommended
Marquardt recipe is as follows:

• Computeχ2(a).
• Pick a modest value forλ, sayλ = 0.001.
• (†) Solve the linear equations (15.5.14) forδa and evaluateχ2(a + δa).
• If χ2(a + δa) ≥χ2(a), increaseλ by a factor of 10 (or any other

substantial factor) and go back to (†).
• If χ2(a + δa) < χ2(a), decreaseλ by a factor of 10, update the trial

solutiona ← a + δa, and go back to (†).
Also necessary is a condition for stopping. Iterating to convergence (to machine

accuracy or to the roundoff limit) is generally wasteful and unnecessary since the
minimum is at best only a statistical estimate of the parametersa. As we will see
in §15.6, a change in the parameters that changesχ2 by an amount≪ 1 is never
statistically meaningful.

Furthermore, it is not uncommon to find the parameters wandering
around near the minimum in a flat valley of complicated topography. The rea-
son is that Marquardt’s method generalizes the method of normal equations (§15.4),
hence has the same problem as that method with regard to near-degeneracy of the
minimum. Outright failure by a zero pivot is possible, but unlikely. More often,
a small pivot will generate a large correction which is then rejected, the value of
λ being then increased. For sufficiently largeλ the matrix[α′] is positive definite
and can have no small pivots. Thus the method does tend to stay away from zero
pivots, but at the cost of a tendency to wander around doing steepest descent in
very un-steep degenerate valleys.

These considerations suggest that, in practice, one might as well stop iterating
on the first or second occasion thatχ2 decreases by a negligible amount, say either
less than0.01 absolutely or (in case roundoff prevents that being reached) some
fractional amount like10−3. Don’t stop after a step whereχ2 increases: That only
shows thatλ has not yet adjusted itself optimally.

Once the acceptable minimum has been found, one wants to setλ = 0 and
compute the matrix

[C] ≡ [α]−1 (15.5.15)

which, as before, is the estimated covariance matrix of the standard errors in the
fitted parametersa (see next section).

The following pair of subroutines encodes Marquardt’s method for nonlinear
parameter estimation. Much of the organization matches that used inlfit of
§15.4. In particular the arrayia(1:ma) must be input with components one or zero
corresponding to whether the respective parameter valuesa(1:ma) are to be fitted
for or held fixed at their input values, respectively.

680 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The routinemrqmin performs one iteration of Marquardt’s method. It is first
called (once) withalamda < 0, which signals the routine to initialize.alamda is
returned on the first and all subsequent calls as the suggested value ofλ for the
next iteration;a and chisq are always returned as the best parameters found so
far and theirχ2. When convergence is deemed satisfactory, setalamda to zero
before a final call. The matricesalpha andcovar (which were used as workspace
in all previous calls) will then be set to the curvature and covariance matrices for
the converged parameter values. The argumentsalpha, a, andchisq must not be
modified between calls, nor shouldalamda be, except to set it to zero for the final
call. When an uphill step is taken,chisq anda are returned with their input (best)
values, butalamda is returned with an increased value.

The routinemrqmin calls the routinemrqcof for the computation of the matrix
[α] (equation 15.5.11) and vectorβ (equations 15.5.6 and 15.5.8). In turnmrqcof
calls the user-supplied routinefuncs(x,a,y,dyda), which for input valuesx ≡ xi

anda ≡ a returns the model functiony ≡ y(xi; a) and the vector of derivatives
dyda ≡ ∂y/∂ak.

SUBROUTINE mrqmin(x,y,sig,ndata,a,ia,ma,covar,alpha,nca,
* chisq,funcs,alamda)

INTEGER ma,nca,ndata,ia(ma),MMAX
REAL alamda,chisq,funcs,a(ma),alpha(nca,nca),covar(nca,nca),

* sig(ndata),x(ndata),y(ndata)
PARAMETER (MMAX=20) Set to largest number of fit parameters.

C USES covsrt,gaussj,mrqcof
Levenberg-Marquardt method, attempting to reduce the value χ2 of a fit between a set of
data points x(1:ndata), y(1:ndata)with individual standard deviations sig(1:ndata),
and a nonlinear function dependent on ma coefficients a(1:ma). The input array ia(1:ma)
indicates by nonzero entries those components of a that should be fitted for, and by zero
entries those components that should be held fixed at their input values. The program
returns current best-fit values for the parameters a(1:ma), and χ2 = chisq. The ar-
rays covar(1:nca,1:nca), alpha(1:nca,1:nca) with physical dimension nca (≥ the
number of fitted parameters) are used as working space during most iterations. Supply a
subroutine funcs(x,a,yfit,dyda,ma) that evaluates the fitting function yfit, and its
derivatives dyda with respect to the fitting parameters a at x. On the first call provide
an initial guess for the parameters a, and set alamda<0 for initialization (which then sets
alamda=.001). If a step succeeds chisq becomes smaller and alamda decreases by a
factor of 10. If a step fails alamda grows by a factor of 10. You must call this routine
repeatedly until convergence is achieved. Then, make one final call with alamda=0, so
that covar(1:ma,1:ma) returns the covariance matrix, and alpha the curvature matrix.
(Parameters held fixed will return zero covariances.)

INTEGER j,k,l,mfit
REAL ochisq,atry(MMAX),beta(MMAX),da(MMAX)
SAVE ochisq,atry,beta,da,mfit
if(alamda.lt.0.)then Initialization.

mfit=0
do 11 j=1,ma

if (ia(j).ne.0) mfit=mfit+1
enddo 11

alamda=0.001
call mrqcof(x,y,sig,ndata,a,ia,ma,alpha,beta,nca,chisq,funcs)
ochisq=chisq
do 12 j=1,ma

atry(j)=a(j)
enddo 12

endif
do 14 j=1,mfit Alter linearized fitting matrix, by augmenting

diagonal elements.do 13 k=1,mfit

15.5 Nonlinear Models 681

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

covar(j,k)=alpha(j,k)
enddo 13

covar(j,j)=alpha(j,j)*(1.+alamda)
da(j)=beta(j)

enddo 14

call gaussj(covar,mfit,nca,da,1,1) Matrix solution.
if(alamda.eq.0.)then Once converged, evaluate covariance matrix.

call covsrt(covar,nca,ma,ia,mfit)
call covsrt(alpha,nca,ma,ia,mfit) Spread out alpha to its full size too.
return

endif
j=0
do 15 l=1,ma Did the trial succeed?

if(ia(l).ne.0) then
j=j+1
atry(l)=a(l)+da(j)

endif
enddo 15

call mrqcof(x,y,sig,ndata,atry,ia,ma,covar,da,nca,chisq,funcs)
if(chisq.lt.ochisq)then Success, accept the new solution.

alamda=0.1*alamda
ochisq=chisq
do 17 j=1,mfit

do 16 k=1,mfit
alpha(j,k)=covar(j,k)

enddo 16

beta(j)=da(j)
enddo 17

do 18 l=1,ma
a(l)=atry(l)

enddo 18

else Failure, increase alamda and return.
alamda=10.*alamda
chisq=ochisq

endif
return
END

Notice the use of the routinecovsrt from §15.4. This is merely for rearranging
the covariance matrixcovar into the order of allma parameters. The above routine
also makes use of

SUBROUTINE mrqcof(x,y,sig,ndata,a,ia,ma,alpha,beta,nalp,
* chisq,funcs)

INTEGER ma,nalp,ndata,ia(ma),MMAX
REAL chisq,a(ma),alpha(nalp,nalp),beta(ma),sig(ndata),x(ndata),

* y(ndata)
EXTERNAL funcs
PARAMETER (MMAX=20)

Used by mrqmin to evaluate the linearized fitting matrix alpha, and vector beta as in
(15.5.8), and calculate χ2.

INTEGER mfit,i,j,k,l,m
REAL dy,sig2i,wt,ymod,dyda(MMAX)
mfit=0
do 11 j=1,ma

if (ia(j).ne.0) mfit=mfit+1
enddo 11

do 13 j=1,mfit Initialize (symmetric) alpha, beta.
do 12 k=1,j

682 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

alpha(j,k)=0.
enddo 12

beta(j)=0.
enddo 13

chisq=0.
do 16 i=1,ndata Summation loop over all data.

call funcs(x(i),a,ymod,dyda,ma)
sig2i=1./(sig(i)*sig(i))
dy=y(i)-ymod
j=0
do 15 l=1,ma

if(ia(l).ne.0) then
j=j+1
wt=dyda(l)*sig2i
k=0
do 14 m=1,l

if(ia(m).ne.0) then
k=k+1
alpha(j,k)=alpha(j,k)+wt*dyda(m)

endif
enddo 14

beta(j)=beta(j)+dy*wt
endif

enddo 15

chisq=chisq+dy*dy*sig2i And find χ2.
enddo 16

do 18 j=2,mfit Fill in the symmetric side.
do 17 k=1,j-1

alpha(k,j)=alpha(j,k)
enddo 17

enddo 18

return
END

Example

The following subroutinefgauss is an example of a user-supplied subroutine
funcs. Used with the above routinemrqmin (in turn usingmrqcof, covsrt, and
gaussj), it fits for the model

y(x) =

K
∑

k=1

Bk exp

[

−

(

x−Ek

Gk

)2
]

(15.5.16)

which is a sum ofK Gaussians, each having a variable position, amplitude, and
width. We store the parameters in the orderB1, E1, G1, B2, E2, G2, . . . , BK ,
EK , GK.

15.5 Nonlinear Models 683

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE fgauss(x,a,y,dyda,na)
INTEGER na
REAL x,y,a(na),dyda(na)

y(x; a) is the sum of na/3 Gaussians (15.5.16). The amplitude, center, and width of the
Gaussians are stored in consecutive locations of a: a(i) = Bk, a(i+1)= Ek, a(i+2)=
Gk , k = 1, ..., na/3.

INTEGER i
REAL arg,ex,fac
y=0.
do 11 i=1,na-1,3

arg=(x-a(i+1))/a(i+2)
ex=exp(-arg**2)
fac=a(i)*ex*2.*arg
y=y+a(i)*ex
dyda(i)=ex
dyda(i+1)=fac/a(i+2)
dyda(i+2)=fac*arg/a(i+2)

enddo 11

return
END

More Advanced Methods for Nonlinear L east Squares

The Levenberg-Marquardt algorithm can be implemented as a model-trust
region method for minimization (see§9.7 and ref.[2]) applied to the special case
of a least squares function. A code of this kind due to Moré [3] can be found in
MINPACK [4]. Another algorithm for nonlinear least-squares keeps the second-
derivative term we dropped in the Levenberg-Marquardt method whenever it would
be better to do so. These methods are called “full Newton-type” methods and are
reputed to be more robust than Levenberg-Marquardt, but more complex. One
implementation is the code NL2SOL[5].

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapter 11.

Marquardt, D.W. 1963, Journal of the Society for Industrial and Applied Mathematics, vol. 11,
pp. 431–441. [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter III.2 (by J.E. Dennis).

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [2]

Moré, J.J. 1977, in Numerical Analysis, Lecture Notes in Mathematics, vol. 630, G.A. Watson,
ed. (Berlin: Springer-Verlag), pp. 105–116. [3]

Moré, J.J., Garbow, B.S., and Hillstrom, K.E. 1980, User Guide for MINPACK-1, Argonne National
Laboratory Report ANL-80-74. [4]

Dennis, J.E., Gay, D.M, and Welsch, R.E. 1981, ACM Transactions on Mathematical Software,
vol. 7, pp. 348–368; op. cit., pp. 369–383. [5].

684 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

15.6 Confidence Limits on Estimated Model
Parameters

Several times already in this chapter we have made statements about the standard
errors, or uncertainties, in a set ofM estimated parametersa. We have given some
formulas for computing standard deviations or variances of individual parameters
(equations 15.2.9, 15.4.15, 15.4.19), as well as some formulas for covariances
between pairs of parameters (equation 15.2.10; remark following equation 15.4.15;
equation 15.4.20; equation 15.5.15).

In this section, we want to be more explicit regarding the precise meaning
of these quantitative uncertainties, and to give further information about how
quantitative confidence limits on fitted parameters can be estimated. The subject
can get somewhat technical, and even somewhat confusing, so we will try to make
precise statements, even when they must be offered without proof.

Figure 15.6.1 shows the conceptual scheme of an experiment that “measures”
a set of parameters. There is some underlying true set of parametersatrue that are
known to Mother Nature but hidden from the experimenter. These true parameters
are statistically realized, along with random measurement errors, as a measured data
set, which we will symbolize asD(0). The data setD(0) isknown to the experimenter.
He or she fits the data to a model byχ2 minimization or some other technique, and
obtains measured, i.e., fitted, values for the parameters, which we here denotea(0).

Because measurement errors have a random component,D(0) is not a unique
realization of the true parametersatrue. Rather, there are infinitely many other
realizations of the true parameters as “hypothetical data sets”each of whichcould
have been the one measured, but happened not to be. Let us symbolize these
by D(1),D(2), Each one, had it been realized, would have given a slightly
different set of fitted parameters,a(1), a(2), . . . , respectively. These parameter sets
a(i) therefore occur with some probability distribution in theM -dimensional space
of all possible parameter setsa. The actual measured seta(0) is one member drawn
from this distribution.

Even more interesting than the probability distribution ofa(i) would be the
distribution of the differencea(i) − atrue. This distribution differs from the former
one by a translation that puts Mother Nature’s true value at the origin. If we knewthis
distribution, we would know everything that there is to know about the quantitative
uncertainties in our experimental measurementa(0).

So the name of the game is to find some way of estimating or approximating
the probability distribution ofa(i)−atrue without knowingatrue and without having
available to us an infinite universe of hypothetical data sets.

Monte Carlo Simulation of Synthetic Data Sets

Although the measured parameter seta(0) is not the true one, let us consider
a fictitious world in which itwas the true one. Since we hope that our measured
parameters are nottoo wrong, we hope that that fictitious world is not too different
from the actual world with parametersatrue. In particular, let us hope — no, let us
assume— that the shape of the probability distributiona(i) − a(0) in the fictitious
world is the same, or very nearly the same, as the shape of the probabilitydistribution

684 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

15.6 Confidence Limits on Estimated Model
Parameters

Several times already in this chapter we have made statements about the standard
errors, or uncertainties, in a set ofM estimated parametersa. We have given some
formulas for computing standard deviations or variances of individual parameters
(equations 15.2.9, 15.4.15, 15.4.19), as well as some formulas for covariances
between pairs of parameters (equation 15.2.10; remark following equation 15.4.15;
equation 15.4.20; equation 15.5.15).

In this section, we want to be more explicit regarding the precise meaning
of these quantitative uncertainties, and to give further information about how
quantitative confidence limits on fitted parameters can be estimated. The subject
can get somewhat technical, and even somewhat confusing, so we will try to make
precise statements, even when they must be offered without proof.

Figure 15.6.1 shows the conceptual scheme of an experiment that “measures”
a set of parameters. There is some underlying true set of parametersatrue that are
known to Mother Nature but hidden from the experimenter. These true parameters
are statistically realized, along with random measurement errors, as a measured data
set, which we will symbolize asD(0). The data setD(0) isknown to the experimenter.
He or she fits the data to a model byχ2 minimization or some other technique, and
obtains measured, i.e., fitted, values for the parameters, which we here denotea(0).

Because measurement errors have a random component,D(0) is not a unique
realization of the true parametersatrue. Rather, there are infinitely many other
realizations of the true parameters as “hypothetical data sets”each of whichcould
have been the one measured, but happened not to be. Let us symbolize these
by D(1),D(2), Each one, had it been realized, would have given a slightly
different set of fitted parameters,a(1), a(2), . . . , respectively. These parameter sets
a(i) therefore occur with some probability distribution in theM -dimensional space
of all possible parameter setsa. The actual measured seta(0) is one member drawn
from this distribution.

Even more interesting than the probability distribution ofa(i) would be the
distribution of the differencea(i) − atrue. This distribution differs from the former
one by a translation that puts Mother Nature’s true value at the origin. If we knewthis
distribution, we would know everything that there is to know about the quantitative
uncertainties in our experimental measurementa(0).

So the name of the game is to find some way of estimating or approximating
the probability distribution ofa(i) −atrue without knowingatrue and without having
available to us an infinite universe of hypothetical data sets.

Monte Carlo Simulation of Synthetic Data Sets

Although the measured parameter seta(0) is not the true one, let us consider
a fictitious world in which itwas the true one. Since we hope that our measured
parameters are nottoo wrong, we hope that that fictitious world is not too different
from the actual world with parametersatrue. In particular, let us hope — no, let us
assume— that the shape of the probability distributiona(i) − a(0) in the fictitious
world is the same, or very nearly the same, as the shape of the probabilitydistribution

15.6 Confidence Limits on Estimated Model Parameters 685

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

actual data set

hypothetical
data set

hypothetical
data set

hypothetical
data set

a3

a2

a1

fitted
parameters
 a0

χ2

min

true parameters
atrue

ex
pe

rim
en

ta
l r

ea
liz

at
io

n

.

.

.
.
.
.

Figure 15.6.1. A statistical universe of data sets from an underlying model. True parametersatrue are
realized in a data set, from which fitted (observed) parametersa0 are obtained. If the experiment were
repeated many times, new data sets and new values of the fitted parameters would be obtained.

a(i) − atrue in the real world. Notice that we are not assuming thata(0) andatrue are
equal; they are certainly not. We are only assuming that the way in which random
errors enter the experiment and data analysis does not vary rapidly as a function of
atrue, so thata(0) can serve as a reasonable surrogate.

Now, often, the distribution ofa(i) − a(0) in the fictitious worldis within our
power to calculate (see Figure 15.6.2). If we know something about the process
that generated our data, given an assumed set of parametersa(0), then we can
usually figure out how tosimulateour own sets of “synthetic” realizations of these
parameters as “synthetic data sets.” The procedure is to draw random numbers from
appropriate distributions (cf.§7.2–§7.3) so as to mimic our best understanding of
the underlying process and measurement errors in our apparatus. With such random
draws, we construct data sets with exactly the same numbers of measured points,
and precisely the same values of all control (independent) variables, as our actual
data setD(0). Let us call these simulated data setsDS

(1),DS
(2), By construction

these are supposed to have exactly the same statistical relationship toa(0) as the
D(i)’s have toatrue. (For the case where you don’t know enough about what you
are measuring to do a credible job of simulating it, see below.)

Next, for eachDS
(j), perform exactly the same procedure for estimation of

parameters, e.g.,χ2 minimization, as was performed on the actual data to get
the parametersa(0), giving simulated measured parametersaS(1), a

S
(2), Each

simulated measured parameter set yields a pointaS(i) − a(0). Simulate enough data
sets and enough derived simulated measured parameters, and you map out the desired
probability distribution inM dimensions.

In fact, the ability to doMonte Carlo simulationsin this fashion has revo-

686 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

synthetic
data set 1

synthetic
data set 2

synthetic
data set 3

synthetic
data set 4

a2

χ2

min

χ2

min

(s)

a1
(s)

a3
(s)

a4
(s)

Monte Carlo
parameters

M
on

te
 C

ar
lo

 re
al

iz
at

io
n

fitted
parameters
 a0

actual
data set

Figure 15.6.2. Monte Carlo simulation of an experiment. The fitted parameters froman actual experiment
are used as surrogates for the true parameters. Computer-generated random numbers are used to simulate
many synthetic data sets. Each of these is analyzed to obtain its fitted parameters. The distribution of
these fitted parameters around the (known) surrogate true parameters is thus studied.

lutionized many fields of modern experimental science. Not only is one able to
characterize the errors of parameter estimation in a very precise way; one can also
try out on the computer different methods of parameter estimation, or different data
reduction techniques, and seek to minimize the uncertainty of the resultaccording
to any desired criteria. Offered the choice between mastery of a five-foot shelf of
analytical statistics books and middling ability at performing statistical Monte Carlo
simulations, we would surely choose to have the latter skill.

Quick-and-Dirty Monte Carlo: The Bootstrap Method

Here is a powerful technique that can often be used when you don’t know
enough about the underlying process, or the nature of your measurement errors,
to do a credible Monte Carlo simulation. Suppose that your data set consists of
N independent and identically distributed(or iid) “data points.” Each data point
probably consists of several numbers, e.g., one or more control variables (uniformly
distributed, say, in the range that you have decided to measure) and one or more
associated measured values (each distributed however Mother Nature chooses).
“Iid” means that the sequential order of the data points is not of consequence to
the process that you are using to get the fitted parametersa. For example, aχ2

sum like (15.5.5) does not care in what order the points are added. Even simpler
examples are the mean value of a measured quantity, or the mean of some function
of the measured quantities.

Thebootstrap method[1] uses the actual data setDS
(0), with itsN data points, to

generate any number of synthetic data setsDS
(1),DS

(2), . . . , also withN data points.
The procedure is simply to drawN data points at a timewith replacementfrom the

15.6 Confidence Limits on Estimated Model Parameters 687

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

setDS
(0). Because of the replacement, you do not simply get backyour original

data set each time. You get sets in which a random fraction of the original points,
typically ∼ 1/e ≈ 37%, are replaced byduplicatedoriginal points. Now, exactly
as in the previous discussion, you subject these data sets to the same estimation
procedure as was performed on the actual data, giving a set of simulated measured
parametersaS(1), a

S
(2), These will be distributed arounda(0) in close to the same

way thata(0) is distributed aroundatrue.
Sounds like getting something for nothing, doesn’t it? In fact, it has taken more

than a decade for thebootstrap method to becomeaccepted by statisticians. By now,
however, enough theorems have been proved to render the bootstrap reputable (see[2]

for references). The basic idea behind the bootstrap is that the actual data set, viewed
as a probability distribution consisting of delta functions at the measured values, is
in most cases the best — or only — available estimator of the underlying probability
distribution. It takes courage, but one can often simply usethat distribution as the
basis for Monte Carlo simulations.

Watch out for cases where the bootstrap’s “iid” assumption is violated. For
example, if you have made measurements at evenly spaced intervals of some control
variable, then you canusuallyget away with pretending that these are “iid,” uniformly
distributed over the measured range. However, some estimators ofa (e.g., ones
involving Fourier methods) might be particularly sensitive to all the points on a grid
being present. In that case, the bootstrap is going to give a wrong distribution. Also
watch out for estimators that look at anything like small-scale clumpiness within the
N data points, or estimators that sort the data and look at sequential differences.
Obviously the bootstrap will fail on these, too. (The theorems justifying the method
are still true, but some of their technical assumptions are violated by these examples.)

For a large class of problems, however, the bootstrap does yield easy,very
quick, Monte Carlo estimates of the errors in an estimated parameter set.

Confidence Limits

Rather than present all details of the probability distribution of errors in
parameter estimation, it is common practice to summarize the distribution in the
form of confidence limits. The full probability distribution is a function defined
on theM -dimensional space of parametersa. A confidence region(or confidence
interval) is just a region of thatM -dimensional space (hopefully a small region) that
contains a certain (hopefully large) percentage of the total probability distribution.
You point to a confidence region and say, e.g., “there is a 99 percent chance that the
true parameter values fall within this region around the measured value.”

It is worth emphasizing that you, the experimenter, get to pick both the
confidence level(99 percent in the above example), and the shape of the confidence
region. The only requirement is that your region does include the stated percentage
of probability. Certain percentages are, however, customary in scientific usage:
68.3 percent (the lowest confidence worthy of quoting), 90 percent, 95.4 percent, 99
percent, and 99.73 percent. Higher confidence levels are conventionally “ninety-nine
point nine. . . nine.” As for shape, obviously you want a region that is compact
and reasonably centered on your measurementa(0), since the whole purpose of a
confidence limit is to inspire confidence in that measured value. In one dimension,

688 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

68% confidence interval on a2

68% confidence
interval on a1

68% confidence region
on a1 and a2 jointly

bias

a(i)1 − a(0)1
(s)

a(i)2 − a(0)2
(s)

Figure 15.6.3. Confidence intervals in 1 and 2 dimensions. The same fraction of measured points (here
68%) lies (i) between the two vertical lines, (ii) between the two horizontal lines, (iii) within the ellipse.

the convention is to use a line segment centered on the measured value; in higher
dimensions, ellipses or ellipsoids are most frequently used.

You might suspect, correctly, that the numbers 68.3 percent, 95.4 percent,
and 99.73 percent, and the use of ellipsoids, have some connection with a normal
distribution. That is true historically, but not always relevant nowadays. In general,
the probability distribution of the parameters will not be normal, and the above
numbers, used as levels of confidence, are purely matters of convention.

Figure 15.6.3 sketches a possible probability distribution for the caseM = 2.
Shown are three different confidence regions which might usefully be given, all at the
same confidence level. The two vertical lines enclose a band (horizontal inverval)
which represents the 68 percent confidence interval for the variablea1 without regard
to the value ofa2. Similarly the horizontal lines enclose a 68 percent confidence
interval for a2. The ellipse shows a 68 percent confidence interval fora1 anda2

jointly. Notice that to enclose the same probability as the two bands, the ellipse must
necessarily extend outside of both of them (a point we will return to below).

Constant Chi-Square Boundaries as Confidence Limits

When the method used to estimate the parametersa(0) is chi-square minimiza-
tion, as in the previous sections of this chapter, then there is a natural choice for the

15.6 Confidence Limits on Estimated Model Parameters 689

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

C

B

A

Z ′

Z

C ′

∆χ2 = 6.63

∆χ2 = 2.71

∆χ2 = 1.00

∆χ2 = 2.30A′

B′

Figure 15.6.4. Confidence region ellipses corresponding to values of chi-square larger than the fitted
minimum. The solid curves, with∆χ2 = 1.00,2.71,6.63 project onto one-dimensional intervalsAA′ ,
BB′, CC′ . These intervals — not the ellipses themselves — contain 68.3%, 90%,and 99% of normally
distributed data. The ellipse that contains 68.3% of normally distributed data is shown dashed, and has
∆χ2 = 2.30. For additional numerical values, see accompanying table.

shape of confidence intervals, whose use is almost universal. For the observed data
setD(0), the value ofχ2 is a minimum ata(0). Call this minimum valueχ2

min. If
the vectora of parameter values is perturbed away froma(0), thenχ2 increases. The
region within whichχ2 increases by no more than a set amount∆χ2 defines some
M -dimensional confidence region arounda(0). If ∆χ2 is set to be a large number,
this will be a big region; if it is small, it will be small. Somewhere in between there
will be choices of∆χ2 that cause the region to contain, variously, 68 percent, 90
percent, etc. of probability distribution fora’s, as defined above. These regions are
taken as the confidence regions for the parametersa(0).

Very frequently one is interested not in the fullM -dimensional confidence
region, but in individual confidence regions for some smaller numberν of parameters.
For example, one might be interested in the confidence interval ofeach parameter
taken separately (the bands in Figure 15.6.3), in which caseν = 1. In that case,
the natural confidence regions in theν-dimensional subspace of theM -dimensional
parameter space are theprojectionsof theM -dimensional regions defined by fixed
∆χ2 into theν-dimensional spaces of interest. In Figure 15.6.4, for the caseM = 2,
we show regions corresponding to several values of∆χ2. The one-dimensional
confidence interval ina2 corresponding to the region bounded by∆χ2 = 1 lies
between the linesA and A′.

Notice that the projection of the higher-dimensional region on the lower-
dimension space is used, not the intersection. The intersection would be the band
betweenZ andZ′. It is neverused. It is shown in the figure only for the purpose of

690 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

making this cautionary point, that it should not be confused with the projection.

Probability Distribution of Parameters in the Normal Case

You may be wondering why we have, in this section up to now, made no
connection at all with the error estimates that come out of theχ2 fitting procedure,
most notably the covariance matrixCij. The reason is this:χ2 minimization
is a useful means for estimating parameters even if the measurement errors are
not normally distributed. While normally distributed errors are required if theχ2

parameter estimate is to be a maximum likelihood estimator (§15.1), one is often
willing to give up that property in return for the relative convenience of theχ2

procedure. Only in extreme cases, measurement error distributions with very large
“tails,” is χ2 minimization abandoned in favor of more robust techniques, as will
be discussed in§15.7.

However, the formal covariance matrix that comes out of aχ2 minimization has
a clear quantitative interpretationonly if (or to the extent that) the measurement errors
actually are normally distributed. In the case ofnonnormal errors, you are “allowed”

• to fit for parameters by minimizingχ2

• to use a contour of constant∆χ2 as the boundary of your confidence region
• to use Monte Carlo simulation or detailed analytic calculation in deter-

miningwhichcontour∆χ2 is the correct one for your desired confidence
level

• to give the covariance matrixCij as the “formal covariance matrix of
the fit.”

You are not allowed
• to use formulas that we now give for the case of normal errors, which

establish quantitative relationships among∆χ2, Cij, and the confidence
level.

Here are the key theorems that hold when (i) the measurement errors are
normally distributed, and either (ii) the model is linear in its parameters or (iii) the
sample size is large enough that the uncertainties in the fitted parametersa do not
extend outside a region in which the model could be replaced by a suitable linearized
model. [Note that condition (iii) does not preclude your use of a nonlinear routine
like mqrfit to find the fitted parameters.]

Theorem A. χ2
min is distributed as a chi-square distribution withN − M

degrees of freedom, whereN is the number of data points andM is the number of
fitted parameters. This is the basic theorem that lets you evaluate the goodness-of-fit
of the model, as discussed above in§15.1. We list it first to remind you that unless
the goodness-of-fit is credible, the whole estimation of parameters is suspect.

Theorem B. If aS(j) is drawn from the universe of simulated data sets with

actual parametersa(0), then the probability distribution ofδa ≡ aS(j) − a(0) is the
multivariate normal distribution

P (δa) da1 . . . daM = const.× exp

(

−1

2
δa · [α] · δa

)

da1 . . . daM

where[α] is the curvature matrix defined in equation (15.5.8).
Theorem C. If aS(j) is drawn from the universe of simulated data sets with

actual parametersa(0), then the quantity∆χ2 ≡ χ2(a(j)) − χ2(a(0)) is distributed

15.6 Confidence Limits on Estimated Model Parameters 691

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

as a chi-square distribution withM degrees of freedom. Here theχ2’s are all
evaluated using the fixed (actual) data setD(0). This theorem makes the connection
between particular values of∆χ2 and the fraction of the probability distribution
that they enclose as anM -dimensional region, i.e., the confidence level of the
M -dimensional confidence region.

Theorem D. Suppose thataS(j) is drawn from the universe of simulated data
sets (as above), that its firstν componentsa1, . . . , aν are held fixed, and that its
remainingM − ν components are varied so as to minimizeχ2. Call this minimum
valueχ2

ν . Then∆χ2
ν ≡ χ2

ν − χ2
min is distributed as a chi-square distribution with

ν degrees of freedom. If you consult Figure 15.6.4, you will see that this theorem
connects theprojected∆χ2 region with a confidence level. In the figure, a point that
is held fixed ina2 and allowed to vary ina1 minimizingχ2 will seek out the ellipse
whose top or bottom edge is tangent to the line of constanta2, and is therefore the
line that projects it onto the smaller-dimensional space.

As a first example, let us consider the caseν = 1, where we want to find
the confidence interval of a single parameter, saya1. Notice that the chi-square
distributionwithν = 1 degree of freedom is the same distributionas that of the square
of a single normally distributed quantity. Thus∆χ2

ν < 1 occurs 68.3 percent of the
time (1-σ for the normal distribution),∆χ2

ν < 4 occurs 95.4 percent of the time (2-σ
for the normal distribution),∆χ2

ν < 9 occurs 99.73 percent of the time (3-σ for the
normal distribution), etc. In this manner you find the∆χ2

ν that corresponds to your
desired confidence level. (Additional values are given in the accompanying table.)

Let δa be a change in the parameters whose first component is arbitrary,δa1,
but the rest of whose components are chosen to minimize the∆χ2. Then Theorem
D applies. The value of∆χ2 is given in general by

∆χ2 = δa · [α] · δa (15.6.1)

which follows from equation (15.5.8) applied atχ2
min whereβk = 0. Sinceδa

by hypothesis minimizesχ2 in all but its first component, the second throughM th
components of the normal equations (15.5.9) continue to hold. Therefore, the
solution of (15.5.9) is

δa = [α]−1 ·

c
0
...
0

= [C] ·

c
0
...
0

(15.6.2)

wherec is one arbitrary constant that we get to adjust to make (15.6.1) give the
desired left-hand value. Plugging (15.6.2) into (15.6.1) and using the fact that[C]
and [α] are inverse matrices of one another, we get

c = δa1/C11 and ∆χ2
ν = (δa1)

2/C11 (15.6.3)

or

δa1 = ±
√

∆χ2
ν

√

C11 (15.6.4)

At last! A relation between the confidence interval±δa1 and the formal
standard errorσ1 ≡

√
C11. Not unreasonably, we find that the 68 percent confidence

interval is±σ1, the 95 percent confidence interval is±2σ1, etc.

692 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

∆χ2 as a Function of Confidence Level and Degrees of Freedom

ν

p 1 2 3 4 5 6

68.3% 1.00 2.30 3.53 4.72 5.89 7.04

90% 2.71 4.61 6.25 7.78 9.24 10.6

95.4% 4.00 6.17 8.02 9.70 11.3 12.8

99% 6.63 9.21 11.3 13.3 15.1 16.8

99.73% 9.00 11.8 14.2 16.3 18.2 20.1

99.99% 15.1 18.4 21.1 23.5 25.7 27.8

These considerations hold not just for the individual parametersai, but also
for any linear combination of them: If

b ≡
M
∑

k=1

ciai = c · a (15.6.5)

then the 68 percent confidence interval onb is

δb = ±
√

c · [C] · c (15.6.6)

However, these simple, normal-sounding numerical relationships donot hold
in the caseν > 1 [3]. In particular,∆χ2 = 1 is not the boundary, nor does it project
onto the boundary, of a 68.3 percent confidence region whenν > 1. If you want
to calculate not confidence intervals in one parameter, but confidence ellipses in
two parameters jointly, or ellipsoids in three, or higher, then you must follow the
following prescription for implementing Theorems C and D above:

• Letν be the number of fitted parameters whose joint confidence region you
wish to display,ν ≤M . Call these parameters the “parameters of interest.”

• Let p be the confidence limit desired, e.g.,p = 0.68 or p = 0.95.
• Find ∆ (i.e., ∆χ2) such that the probability of a chi-square variable with

ν degrees of freedom being less than∆ is p. For some useful values ofp
andν , ∆ is given in the table. For other values, you can use the routine
gammq and a simple root-finding routine (e.g., bisection) to find∆ such
that gammq(ν/2, ∆/2) = 1 − p.

• Take theM × M covariance matrix[C] = [α]−1 of the chi-square fit.
Copy the intersection of theν rows and columns corresponding to the
parameters of interest into aν × ν matrix denoted[Cproj].

• Invert the matrix[Cproj]. (In the one-dimensional case this was just taking
the reciprocal of the elementC11.)

• The equation for the elliptical boundary of your desired confidence region
in the ν-dimensional subspace of interest is

∆ = δa′ · [Cproj]
−1 · δa′ (15.6.7)

whereδa′ is theν-dimensional vector of parameters of interest.

15.6 Confidence Limits on Estimated Model Parameters 693

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

1
w2

V(2)

V(1)

∆χ2 = 1

a2

a1

length

length
1
w1

Figure 15.6.5. Relation of the confidence region ellipse∆χ2 = 1 to quantities computed by singular
value decomposition. The vectorsV(i) are unit vectors along the principal axes of the confidence region.
The semi-axes have lengths equal to the reciprocal of the singular valueswi . If the axes are all scaled
by some constant factorα, ∆χ2 is scaled by the factorα2.

If you are confused at this point, you may find it helpful to compare Figure
15.6.4 and the accompanying table, considering the caseM = 2 with ν = 1 and
ν = 2. You should be able to verify the following statements: (i) The horizontal
band betweenC andC ′ contains 99 percent of the probability distribution, so it
is a confidence limit ona2 alone at this level of confidence. (ii) Ditto the band
betweenB andB′ at the 90 percent confidence level. (iii) The dashed ellipse,
labeled by∆χ2 = 2.30, contains 68.3 percent of the probability distribution, so it is
a confidence region fora1 anda2 jointly, at this level of confidence.

Confidence Limits from Singular Value Decomposition

When you have obtained yourχ2 fit by singular value decomposition (§15.4), the
information about the fit’s formal errors comes packaged in a somewhat different, but
generally more convenient, form. The columns of the matrixV are an orthonormal
set of M vectors that are the principal axes of the∆χ2 = constant ellipsoids.
We denote the columns asV(1) . . .V(M). The lengths of those axes are inversely
proportional to the corresponding singular valuesw1 . . .wM ; see Figure 15.6.5. The
boundaries of the ellipsoids are thus given by

∆χ2 = w2
1(V(1) · δa)2 + · · ·+ w2

M (V(M) · δa)2 (15.6.8)

which is the justification for writing equation (15.4.18) above. Keep in mind that
it is mucheasier to plot an ellipsoid given a list of its vector principal axes, than
given its matrix quadratic form!

The formula for the covariance matrix[C] in terms of the columnsV(i) is

[C] =

M
∑

i=1

1

w2
i

V(i) ⊗ V(i) (15.6.9)

or, in components,

694 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Cjk =

M
∑

i=1

1

w2
i

VjiVki (15.6.10)

CITED REFERENCES AND FURTHER READING:

Efron, B. 1982, The Jackknife, the Bootstrap, and Other Resampling Plans (Philadelphia:
S.I.A.M.). [1]

Efron, B., and Tibshirani, R. 1986, Statistical Science vol. 1, pp. 54–77. [2]

Avni, Y. 1976, Astrophysical Journal, vol. 210, pp. 642–646. [3]

Lampton, M., Margon, M., and Bowyer, S. 1976, Astrophysical Journal, vol. 208, pp. 177–190.

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

15.7 Robust Estimation

The concept ofrobustnesshas been mentioned in passing several times already.
In §14.1 we noted that the median was a more robust estimator of central value than
the mean; in§14.6 it was mentioned that rank correlation is more robust than linear
correlation. The concept of outlier points as exceptions to a Gaussian model for
experimental error was discussed in§15.1.

The term “robust” was coined in statistics by G.E.P. Box in1953. Various
definitions of greater or lesser mathematical rigor are possible for the term, but in
general, referring to a statistical estimator, it means “insensitive to small departures
from the idealized assumptions for which the estimator is optimized.”[1,2] The word
“small” can have two different interpretations, both important: either fractionally
small departures for all data points, or else fractionally large departures for a small
number of data points. It is the latter interpretation, leading to the notion of outlier
points, that is generally the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estimators. Many,
if not most, can be grouped in one of three categories.

M-estimatesfollow from maximum-likelihood arguments very much as equa-
tions (15.1.5) and (15.1.7) followed from equation (15.1.3). M-estimates are usually
the most relevant class for model-fitting, that is, estimation of parameters. We
therefore consider these estimates in some detail below.

L-estimatesare “linear combinations of order statistics.” These are most
applicable to estimations of central value and central tendency, though they can
occasionally be applied to some problems in estimation of parameters. Two
“typical” L-estimates will give you the general idea. They are (i) the median,and
(ii) Tukey’s trimean, defined as the weighted average of the first, second, and third
quartile points in a distribution, with weights 1/4, 1/2, and 1/4, respectively.

R-estimatesare estimates based on rank tests. For example, the equality or
inequality of two distributions can be estimated by theWilcoxon testof computing
the mean rank of one distribution in a combined sample of both distributions.
The Kolmogorov-Smirnov statistic (equation 14.3.6) and the Spearman rank-order

694 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Cjk =

M
∑

i=1

1

w2

i

VjiVki (15.6.10)

CITED REFERENCES AND FURTHER READING:

Efron, B. 1982, The Jackknife, the Bootstrap, and Other Resampling Plans (Philadelphia:
S.I.A.M.). [1]

Efron, B., and Tibshirani, R. 1986, Statistical Science vol. 1, pp. 54–77. [2]

Avni, Y. 1976, Astrophysical Journal, vol. 210, pp. 642–646. [3]

Lampton, M., Margon, M., and Bowyer, S. 1976, Astrophysical Journal, vol. 208, pp. 177–190.

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

15.7 Robust Estimation

The concept ofrobustnesshas been mentioned in passing several times already.
In §14.1 we noted that the median was a more robust estimator of central value than
the mean; in§14.6 it was mentioned that rank correlation is more robust than linear
correlation. The concept of outlier points as exceptions to a Gaussian model for
experimental error was discussed in§15.1.

The term “robust” was coined in statistics by G.E.P. Box in1953. Various
definitions of greater or lesser mathematical rigor are possible for the term, but in
general, referring to a statistical estimator, it means “insensitive to small departures
from the idealized assumptions for which the estimator is optimized.”[1,2] The word
“small” can have two different interpretations, both important: either fractionally
small departures for all data points, or else fractionally large departures for a small
number of data points. It is the latter interpretation, leading to the notion of outlier
points, that is generally the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estimators. Many,
if not most, can be grouped in one of three categories.

M-estimatesfollow from maximum-likelihood arguments very much as equa-
tions (15.1.5) and (15.1.7) followed from equation (15.1.3). M-estimates are usually
the most relevant class for model-fitting, that is, estimation of parameters. We
therefore consider these estimates in some detail below.

L-estimatesare “linear combinations of order statistics.” These are most
applicable to estimations of central value and central tendency, though they can
occasionally be applied to some problems in estimation of parameters. Two
“typical” L-estimates will give you the general idea. They are (i) the median,and
(ii) Tukey’s trimean, defined as the weighted average of the first, second, and third
quartile points in a distribution, with weights 1/4, 1/2, and 1/4, respectively.

R-estimatesare estimates based on rank tests. For example, the equality or
inequality of two distributions can be estimated by theWilcoxon testof computing
the mean rank of one distribution in a combined sample of both distributions.
The Kolmogorov-Smirnov statistic (equation 14.3.6) and the Spearman rank-order

15.7 Robust Estimation 695

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

narrow
central peak

tail of
outliers

least squares fit

robust straight-line fit

(a)

(b)

Figure 15.7.1. Examples where robust statistical methods are desirable: (a) A one-dimensional
distribution with a tail of outliers; statistical fluctuations in these outliers can preventaccurate determination
of the position of the central peak. (b) A distribution in two dimensions fittedto a straight line;non-robust
techniques such as least-squares fitting can haveundesired sensitivity to outlying points.

correlation coefficient (14.6.1) are R-estimates in essence, if not always by formal
definition.

Some other kinds of robust techniques, coming from the fields of optimal control
and filtering rather than from the field of mathematical statistics, are mentioned at the
end of this section. Some examples where robust statistical methods are desirable
are shown in Figure 15.7.1.

Estimation of Parameters by Local M-Estimates

Suppose we know that our measurement errors are not normally distributed.
Then, in deriving a maximum-likelihood formula for the estimated parametersa in a
modely(x; a), we would write instead of equation (15.1.3)

P =

N
∏

i=1

{exp [−ρ(yi, y {xi; a})]∆y} (15.7.1)

696 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

where the functionρ is the negative logarithm of the probability density. Taking the
logarithm of (15.7.1) analogously with (15.1.4), we find that we want to minimize
the expression

N
∑

i=1

ρ(yi, y {xi; a}) (15.7.2)

Very often, it is the case that the functionρ depends not independently on its
two arguments, measuredyi and predictedy(xi), but only on their difference, at least
if scaled by some weight factorsσi which we are able to assign to each point. In this
case the M-estimate is said to belocal, and we can replace (15.7.2) by the prescription

minimize over a
N
∑

i=1

ρ

(

yi − y(xi; a)

σi

)

(15.7.3)

where the functionρ(z) is a function of a single variablez ≡ [yi − y(xi)]/σi.
If we now define the derivative ofρ(z) to be a functionψ(z),

ψ(z) ≡
dρ(z)

dz
(15.7.4)

then the generalization of (15.1.7) to the case of a general M-estimate is

0 =

N
∑

i=1

1

σi
ψ

(

yi − y(xi)

σi

)(

∂y(xi; a)
∂ak

)

k = 1, . . . ,M (15.7.5)

If you compare (15.7.3) to (15.1.3), and (15.7.5) to (15.1.7), you see at once
that the specialization for normally distributed errors is

ρ(z) =
1

2
z2 ψ(z) = z (normal) (15.7.6)

If the errors are distributed as adoubleor two-sided exponential, namely

Prob{yi − y(xi)} ∼ exp

(

−

∣

∣

∣

∣

yi − y(xi)

σi

∣

∣

∣

∣

)

(15.7.7)

then, by contrast,

ρ(x) = |z| ψ(z) = sgn(z) (double exponential) (15.7.8)

Comparing to equation (15.7.3), we see that in this case the maximum likelihood
estimator is obtained by minimizing themean absolute deviation, rather than the
mean square deviation. Here the tails of the distribution, although exponentially
decreasing, are asymptotically much larger than any corresponding Gaussian.

A distribution with even more extensive — therefore sometimes even more
realistic — tails is theCauchyor Lorentziandistribution,

Prob{yi − y(xi)} ∼
1

1 +
1

2

(

yi − y(xi)

σi

)2
(15.7.9)

15.7 Robust Estimation 697

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

This implies

ρ(z) = log

(

1 +
1

2
z2

)

ψ(z) =
z

1 + 1

2
z2

(Lorentzian) (15.7.10)

Notice that theψ function occurs as a weighting function in the generalized
normal equations (15.7.5). For normally distributed errors, equation (15.7.6) says
that the more deviant the points, the greater the weight. By contrast, when tails are
somewhat more prominent, as in (15.7.7), then (15.7.8) says that all deviant points
get the same relative weight, with only the sign information used. Finally, when
the tails are even larger, (15.7.10) says theψ increases with deviation, then starts
decreasing, so that very deviant points — the true outliers — are not counted at all
in the estimation of the parameters.

This general idea, that the weight given individual points should first increase
with deviation, then decrease, motivates some additional prescriptions forψ which
do not especially correspond to standard, textbook probability distributions. Two
examples are

Andrew’s sine

ψ(z) =

{

sin(z/c)
0

|z| < cπ
|z| > cπ

(15.7.11)

If the measurement errors happen to be normal after all, with standard deviationsσi,
then it can be shown that the optimal value for the constantc is c = 2.1.

Tukey’s biweight

ψ(z) =

{

z(1 − z2/c2)2

0
|z| < c
|z| > c

(15.7.12)

where the optimal value ofc for normal errors isc = 6.0.

Numerical Calculation of M-Estimates

To fit a model by means of an M-estimate, you first decide which M-estimate
you want, that is, which matching pairρ, ψ you want to use. We rather like
(15.7.8) or (15.7.10).

You then have to make an unpleasant choice between two fairly difficult
problems. Either find the solution of the nonlinear set ofM equations (15.7.5), or
else minimize the single function inM variables (15.7.3).

Notice that the function (15.7.8) has a discontinuousψ, and a discontinuous
derivative for ρ. Such discontinuities frequently wreak havoc on both general
nonlinear equation solvers and general function minimizing routines. You might
now think of rejecting (15.7.8) in favor of (15.7.10), which is smoother. However,
you will find that the latter choice is also bad news for many general equation solving
or minimization routines: small changes in the fitted parameters can driveψ(z)
off its peak into one or the other of its asymptotically small regimes. Therefore,
different terms in the equation spring into or out of action (almost as bad as analytic
discontinuities).

Don’t despair. If your computer budget (or, for personal computers, patience)
is up to it, this is an excellent application for the downhill simplex minimization

698 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

algorithm exemplified inamoeba §10.4 oramebsa in §10.9. Those algorithms make
no assumptions about continuity; they just ooze downhill and will work for virtually
any sane choice of the functionρ.

It is very much to your (financial) advantage to find good starting values,
however. Often this is done by first fitting the model by the standardχ2 (nonrobust)
techniques, e.g., as described in§15.4 or§15.5. The fitted parameters thus obtained
are then used as starting values inamoeba, now using the robust choice ofρ and
minimizing the expression (15.7.3).

Fitting a Line by Minimizing Absolute Deviation

Occasionally there is a special case that happens to be much easier than is
suggested by the general strategy outlined above. The case of equations (15.7.7)–
(15.7.8), when the model is a simple straight line

y(x; a, b) = a+ bx (15.7.13)

and where the weightsσi are all equal, happens to be such a case. The problem is
precisely the robust version of the problem posed in equation (15.2.1) above, namely
fit a straight line through a set of data points. The merit function to be minimized is

N
∑

i=1

|yi − a− bxi| (15.7.14)

rather than theχ2 given by equation (15.2.2).
The key simplification is based on the following fact: The mediancM of a set

of numbersci is also that value which minimizes the sum of the absolute deviations
∑

i

|ci − cM |

(Proof: Differentiate the above expression with respect tocM and set it to zero.)
It follows that, for fixedb, the value ofa that minimizes (15.7.14) is

a = median{yi − bxi} (15.7.15)

Equation (15.7.5) for the parameterb is

0 =

N
∑

i=1

xi sgn(yi − a− bxi) (15.7.16)

(where sgn(0) is to be interpreted as zero). If we replacea in this equation by the
implied functiona(b) of (15.7.15), then we are left with an equation in a single
variable which can be solved by bracketing and bisection, as described in§9.1.
(In fact, it is dangerous to use any fancier method of root-finding, because of the
discontinuities in equation 15.7.16.)

Here is a routine that does all this. It callsselect (§8.5) to find the median.
The bracketing and bisection are built in to the routine, as is theχ2 solution that
generates the initial guesses fora andb. Notice that the evaluation of the right-hand
side of (15.7.16) occurs in the functionrofunc, with communication via a common
block. To save memory, you could generate your data arrays directly into that
common block, deleting them from this routine’s calling sequence.

15.7 Robust Estimation 699

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE medfit(x,y,ndata,a,b,abdev)
INTEGER ndata,NMAX,ndatat
PARAMETER (NMAX=1000)
REAL a,abdev,b,x(ndata),y(ndata),

* arr(NMAX),xt(NMAX),yt(NMAX),aa,abdevt
COMMON /arrays/ xt,yt,arr,aa,abdevt,ndatat

C USES rofunc
Fits y = a + bx by the criterion of least absolute deviations. The arrays x(1:ndata)
and y(1:ndata) are the input experimental points. The fitted parameters a and b are
output, along with abdev, which is the mean absolute deviation (in y) of the experimental
points from the fitted line. This routine uses the routine rofunc, with communication via
a common block.

INTEGER j
REAL b1,b2,bb,chisq,del,f,f1,f2,sigb,sx,sxx,sxy,sy,rofunc
sx=0.
sy=0.
sxy=0.
sxx=0.
do 11 j=1,ndata As a first guess for a and b, we will find the least-squares

fitting line.xt(j)=x(j)
yt(j)=y(j)
sx=sx+x(j)
sy=sy+y(j)
sxy=sxy+x(j)*y(j)
sxx=sxx+x(j)**2

enddo 11

ndatat=ndata
del=ndata*sxx-sx**2
aa=(sxx*sy-sx*sxy)/del Least-squares solutions.
bb=(ndata*sxy-sx*sy)/del
chisq=0.
do 12 j=1,ndata

chisq=chisq+(y(j)-(aa+bb*x(j)))**2
enddo 12

sigb=sqrt(chisq/del) The standard deviation will give some idea of how big an
iteration step to take.b1=bb

f1=rofunc(b1)
b2=bb+sign(3.*sigb,f1) Guess bracket as 3-σ away, in the downhill direction known

from f1.f2=rofunc(b2)
if(b2.eq.b1)then

a=aa
b=bb
abdev=abdevt/ndata
return

endif
1 if(f1*f2.gt.0.)then Bracketing.

bb=b2+1.6*(b2-b1)
b1=b2
f1=f2
b2=bb
f2=rofunc(b2)
goto 1

endif
sigb=0.01*sigb Refine until error a negligible number of standard deviations.

2 if(abs(b2-b1).gt.sigb)then Bisection.
bb=b1+0.5*(b2-b1)
if(bb.eq.b1.or.bb.eq.b2)goto 3
f=rofunc(bb)
if(f*f1.ge.0.)then

f1=f
b1=bb

else
f2=f
b2=bb

endif
goto 2

endif
3 a=aa

700 Chapter 15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

b=bb
abdev=abdevt/ndata
return
END

FUNCTION rofunc(b)
INTEGER NMAX
REAL rofunc,b,EPS
PARAMETER (NMAX=1000,EPS=1.e-7)

C USES select
Evaluates the right-hand side of equation (15.7.16) for a given value of b. Communication
with the program medfit is through a common block.

INTEGER j,ndata
REAL aa,abdev,d,sum,arr(NMAX),x(NMAX),y(NMAX),select
COMMON /arrays/ x,y,arr,aa,abdev,ndata
do 11 j=1,ndata

arr(j)=y(j)-b*x(j)
enddo 11

if (mod(ndata,2).eq.0) then
j=ndata/2
aa=0.5*(select(j,ndata,arr)+select(j+1,ndata,arr))

else
aa=select((ndata+1)/2,ndata,arr)

endif
sum=0.
abdev=0.
do 12 j=1,ndata

d=y(j)-(b*x(j)+aa)
abdev=abdev+abs(d)
if (y(j).ne.0.) d=d/abs(y(j))
if (abs(d).gt.EPS) sum=sum+x(j)*sign(1.0,d)

enddo 12

rofunc=sum
return
END

Other Robust Techniques

Sometimes you may havea priori knowledge about the probable values and probable
uncertainties of some parameters that you are trying to estimate from a data set. In such
cases you may want to perform a fit that takes this advance information properly into account,
neither completely freezing a parameter at a predetermined value (as inlfit §15.4) nor
completely leaving it to be determined by the data set. The formalism for doing this is called
“use of a priori covariances.”

A related problem occurs in signal processing and control theory, where it is sometimes
desired to “track” (i.e., maintain an estimate of) a time-varying signal in the presence of
noise. If the signal is known to be characterized by some number of parameters that vary only
slowly, then the formalism ofKalman filteringtells how the incoming, raw measurements of
the signal should be processed to produce best parameter estimates as a function of time. For
example, if the signal is a frequency-modulated sine wave, then the slowly varying parameter
might be the instantaneous frequency. The Kalman filter for this case is called aphase-locked
loop and is implemented in the circuitry of good radio receivers[3,4].

CITED REFERENCES AND FURTHER READING:

Huber, P.J. 1981, Robust Statistics (New York: Wiley). [1]

Launer, R.L., and Wilkinson, G.N. (eds.) 1979, Robustness in Statistics (New York: Academic
Press). [2]

Bryson, A. E., and Ho, Y.C. 1969, Applied Optimal Control (Waltham, MA: Ginn). [3]

Jazwinski, A. H. 1970, Stochastic Processes and Filtering Theory (New York: Academic
Press). [4]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
Chapter 16. Integration of Ordinary

Differential Equations

16.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be
reduced to the study of sets of first-order differential equations. For example the
second-order equation

d2y

dx2
+ q(x)

dy

dx
= r(x) (16.0.1)

can be rewritten as two first-order equations

dy

dx
= z(x)

dz

dx
= r(x) − q(x)z(x)

(16.0.2)

wherez is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivativesof each other (and
of the original variable). Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable,
for the purpose of mitigating singular behavior that could result in overflows or
increased roundoff error. Let common sense be your guide: If you find that the
original variables are smooth in a solution, while your auxiliary variables are doing
crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the
study of a set ofN coupledfirst-order differential equations for the functions
yi, i = 1, 2, . . . , N , having the general form

dyi(x)

dx
= fi(x, y1, . . . , yN), i = 1, . . . , N (16.0.3)

where the functionsfi on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations. Even

more crucial in determining how to attack the problem numerically is the nature of
the problem’s boundary conditions. Boundary conditions are algebraic conditions

701

702 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

on the values of the functionsyi in (16.0.3). In general they can be satisfied at
discrete specified points, but do not hold between those points, i.e., are not preserved
automatically by the differential equations. Boundary conditions can be as simple as
requiring that certain variables have certain numerical values, or as complicated as
a set of nonlinear algebraic equations among the variables.

Usually, it is the nature of the boundary conditions that determines which
numerical methods will be feasible. Boundary conditions divide into two broad
categories.

• In initial value problemsall theyi are given at some starting valuexs, and
it is desired to find theyi’s at some final pointxf , or at some discrete list
of points (for example, at tabulated intervals).

• In two-point boundary value problems, on the other hand, boundary
conditions are specified at more than onex. Typically, some of the
conditions will be specified atxs and the remainder atxf .

This chapter will consider exclusively the initial value problem, deferring two-
point boundary value problems, which are generally more difficult, to Chapter 17.

The underlying idea of any routine for solving the initial value problem is
always this: Rewrite thedy’s anddx’s in (16.0.3) as finite steps∆y and∆x, and
multiply the equations by∆x. This gives algebraic formulas for the change in the
functions when the independent variablex is “stepped” by one “stepsize”∆x. In
the limit of making the stepsize very small, a good approximation to the underlying
differential equation is achieved. Literal implementation of this procedure results
in Euler’s method(16.1.1, below), which is, however,not recommended for any
practical use. Euler’s method is conceptually important, however; one way or
another, practical methods all come down to this same idea: Add small increments
to your functions corresponding to derivatives (right-hand sides of the equations)
multiplied by stepsizes.

In this chapter we consider three major types of practical numerical methods
for solving initial value problems for ODEs:

• Runge-Kutta methods
• Richardson extrapolationand its particular implementation as the Bulirsch-

Stoer method
• predictor-corrector methods.
A brief description of each of these types follows.
1. Runge-Kuttamethods propagate a solution over an interval by combining

the information from several Euler-style steps (each involving one evaluation of the
right-handf ’s), and then using the information obtained to match a Taylor series
expansion up to some higher order.

2. Richardson extrapolationuses the powerful idea of extrapolating a computed
result to the value thatwould have been obtained if the stepsize had been very
much smaller than it actually was. In particular, extrapolation to zero stepsize is
the desired goal. The first practical ODE integrator that implemented thisidea was
developed by Bulirsch and Stoer, and so extrapolation methods are often called
Bulirsch-Stoer methods.

3. Predictor-corrector methods store the solution along the way, and use
those results to extrapolate the solution one step advanced; they then correct the
extrapolation using derivative information at the new point. These are best for
very smooth functions.

16.0 Introduction 703

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Runge-Kutta is what you use when (i) you don’t know any better, or (ii) you
have an intransigentproblem where Bulirsch-Stoer is failing, or (iii) you have a trivial
problem where computational efficiency is of no concern. Runge-Kutta succeeds
virtually always; but it is not usually fastest, except when evaluatingfi is cheap and
moderate accuracy (<∼ 10−5) is required. Predictor-corrector methods, since they
use past information, are somewhat more difficult to start up, but, for many smooth
problems, they are computationally more efficient than Runge-Kutta. In recent years
Bulirsch-Stoer has been replacing predictor-corrector in many applications, but it
is too soon to say that predictor-corrector is dominated in all cases. However, it
appears that only rather sophisticated predictor-corrector routines are competitive.
Accordingly, we have chosennot to give an implementation of predictor-corrector
in this book. We discuss predictor-corrector further in§16.7, so that you can use
a canned routine should you encounter a suitable problem. In our experience, the
relatively simple Runge-Kutta and Bulirsch-Stoer routines we give are adequate
for most problems.

Each of the three types of methods can be organized to monitor internal
consistency. This allows numerical errors which are inevitably introduced into
the solution to be controlled by automatic, (adaptive) changing of the fundamental
stepsize. We always recommend that adaptive stepsize control be implemented,
and we will do so below.

In general, all three types of methods can be applied to any initial value
problem. Each comes with its own set of debits and credits that must be understood
before it is used.

We have organized the routines in this chapter into three nested levels. The
lowest or “nitty-gritty” level is the piece we call thealgorithm routine. This
implements the basic formulas of the method, starts with dependent variablesyi atx,
and returns new values of the dependent variables at the valuex+ h. The algorithm
routine also yields up some information about the quality of the solution after the
step. The routine is dumb, however, and it is unable to make any adaptive decision
about whether the solution is ofacceptable quality or not.

That quality-control decision we encode in astepperroutine. The stepper
routine calls the algorithm routine. It may reject the result, set a smaller stepsize, and
call the algorithm routine again, until compatibility with a predeterminedaccuracy
criterion has been achieved. The stepper’s fundamental task is to take the largest
stepsize consistent with specified performance. Only when this is accomplished does
the true power of an algorithm come to light.

Above the stepper is thedriver routine, which starts and stops the integration,
stores intermediate results, and generally acts as an interface with the user. There is
nothing at all canonical about our driver routines. You should consider them to be
examples, and you can customize them for your particular application.

Of the routines that follow,rk4, rkck, mmid, stoerm, andsimpr are algorithm
routines;rkqs, bsstep, stiff, and stifbs are steppers;rkdumb and odeint

are drivers.
Section 16.6 of this chapter treats the subject ofstiff equations, relevant both to

ordinary differential equations and also to partial differential equations (Chapter 19).

704 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall).

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 7.

Lambert, J. 1973, Computational Methods in Ordinary Differential Equations (New York: Wiley).

Lapidus, L., and Seinfeld, J. 1971, Numerical Solution of Ordinary Differential Equations (New
York: Academic Press).

16.1 Runge-Kutta Method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) (16.1.1)

which advances a solution fromxn toxn+1 ≡ xn+h. The formula is unsymmetrical:
It advances the solution through an intervalh, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power ofh smaller
than the correction, i.eO(h2) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of bothx and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(xn, yn)

k2 = hf
(

xn + 1

2
h, yn + 1

2
k1

)

yn+1 = yn + k2 + O(h3)

(16.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the methodsecond order. [A method is conventionally callednth
order if its error term isO(hn+1).] In fact, (16.1.2) is called thesecond-order
Runge-Kuttaor midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(x, y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun[1], and Gear[2], give various specific formulas that derive from this basic

704 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall).

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 7.

Lambert, J. 1973, Computational Methods in Ordinary Differential Equations (New York: Wiley).

Lapidus, L., and Seinfeld, J. 1971, Numerical Solution of Ordinary Differential Equations (New
York: Academic Press).

16.1 Runge-Kutta Method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) (16.1.1)

which advances a solution fromxn toxn+1 ≡ xn+h. The formula is unsymmetrical:
It advances the solution through an intervalh, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power ofh smaller
than the correction, i.eO(h2) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of bothx and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(xn, yn)

k2 = hf
(

xn + 1

2
h, yn + 1

2
k1

)

yn+1 = yn + k2 + O(h3)

(16.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the methodsecond order. [A method is conventionally callednth
order if its error term isO(hn+1).] In fact, (16.1.2) is called thesecond-order
Runge-Kuttaor midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(x, y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun[1], and Gear[2], give various specific formulas that derive from this basic

16.1 Runge-Kutta Method 705

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

y(x)

1

2

x1 x2 x3 x

Figure 16.1.1. Euler’s method. In this simplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy.

y(x)

1

2

x1 x2 x3 x

3

4

5

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at
each step to find a point halfway across the interval, then using the midpoint derivative across the full
width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.

idea. By far the most often used is the classicalfourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5) (16.1.3)

The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per steph (see Figure 16.1.3). This will be superior to the midpoint method
(16.1.2)if at least twice as large a step is possible with (16.1.3) for the same accuracy.
Is that so? The answer is: often, perhaps even usually, but surely not always! This
takes us back to a central theme, namely thathigh order does not always mean
high accuracy. The statement “fourth-order Runge-Kutta is generally superior to
second-order” is a true one, but you should recognize it as a statement about the

706 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

1

2

3

4

yn + 1

yn

Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives the
final function value (shown as a filled dot) is calculated. (See text for details.)

contemporary practice of science rather than as a statement about strict mathematics.
That is, it reflects the nature of the problems that contemporary scientists like to solve.

For many scientific users, fourth-order Runge-Kutta is not just the first word on
ODE integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive stepsize algorithm. Keep
in mind, however, that the old workhorse’s last trip may well be to take you to the
poorhouse: Bulirsch-Stoer or predictor-corrector methods can be very much more
efficient for problems where very high accuracy is a requirement. Those methods
are the high-strung racehorses. Runge-Kutta is for ploughing the fields. However,
even the old workhorse is more nimble with new horseshoes. In§16.2 we will give
a modern implementation of a Runge-Kutta method that is quite competitive as long
as very high accuracy is not required. An excellent discussion of the pitfalls in
constructing a good Runge-Kutta code is given in[3].

Here is the routine for carrying out one classical Runge-Kutta step on a set
of n differential equations. You input the values of the independent variables, and
you get out new values which are stepped by a stepsizeh (which can be positive or
negative). You will notice that the routine requires you to supply not only function
derivs for calculating the right-hand side, but also values of the derivativesat the
starting point. Why not let the routine callderivs for this first value? The answer
will become clear only in the next section, but in brief is this: This call may not
be your only one with these starting conditions. You may have taken a previous
step with too large a stepsize, and this is your replacement. In that case, you do not
want to callderivs unnecessarily at the start. Note that the routine that follows
has, therefore, only three calls toderivs.

SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)
INTEGER n,NMAX
REAL h,x,dydx(n),y(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Set to the maximum number of functions.

Given values for the variables y(1:n) and their derivatives dydx(1:n) known at x, use
the fourth-order Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout(1:n), which need not be a distinct array from y. The
user supplies the subroutine derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER i
REAL h6,hh,xh,dym(NMAX),dyt(NMAX),yt(NMAX)
hh=h*0.5
h6=h/6.
xh=x+hh

16.1 Runge-Kutta Method 707

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 11 i=1,n First step.
yt(i)=y(i)+hh*dydx(i)

enddo 11

call derivs(xh,yt,dyt) Second step.
do 12 i=1,n

yt(i)=y(i)+hh*dyt(i)
enddo 12

call derivs(xh,yt,dym) Third step.
do 13 i=1,n

yt(i)=y(i)+h*dym(i)
dym(i)=dyt(i)+dym(i)

enddo 13

call derivs(x+h,yt,dyt) Fourth step.
do 14 i=1,n Accumulate increments with proper weights.

yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.*dym(i))
enddo 14

return
END

The Runge-Kutta method treats every step in a sequence of steps in identical
manner. Prior behavior of a solution is not used in its propagation. This is
mathematically proper, since any point along the trajectory of an ordinary differential
equation can serve as an initial point. The fact that all steps are treated identically also
makes it easy to incorporate Runge-Kutta into relatively simple “driver” schemes.

We consider adaptive stepsize control, discussed in the next section, an essential
for serious computing. Occasionally, however, you just want to tabulate a function at
equally spaced intervals, and without particularlyhighaccuracy. In the most common
case, you want to produce a graph of the function. Then all you need may be a
simple driver program that goes from an initialxs to a finalxf in a specified number
of steps. To check accuracy,double the number of steps, repeat the integration, and
compare results. This approach surely does not minimize computer time, and it can
fail for problems whose naturerequiresa variable stepsize, but it may well minimize
user effort. On small problems, this may be the paramount consideration.

Here is such a driver, self-explanatory, which tabulates the integrated functions
in a common blockpath.

SUBROUTINE rkdumb(vstart,nvar,x1,x2,nstep,derivs)
INTEGER nstep,nvar,NMAX,NSTPMX
PARAMETER (NMAX=50,NSTPMX=200) Maximum number of functions and

maximum number of values to
be stored.

REAL x1,x2,vstart(nvar),xx(NSTPMX),y(NMAX,NSTPMX)
EXTERNAL derivs
COMMON /path/ xx,y Storage of results.

C USES rk4
Starting from initial values vstart(1:nvar) known at x1 use fourth-order Runge-Kutta to
advance nstep equal increments to x2. The user-supplied subroutine derivs(x,v,dvdx)
evaluates derivatives. Results are stored in the common block path. Be sure to dimension
the common block appropriately.

INTEGER i,k
REAL h,x,dv(NMAX),v(NMAX)
do 11 i=1,nvar Load starting values.

v(i)=vstart(i)
y(i,1)=v(i)

enddo 11

xx(1)=x1
x=x1
h=(x2-x1)/nstep
do 13 k=1,nstep Take nstep steps.

call derivs(x,v,dv)

708 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call rk4(v,dv,nvar,x,h,v,derivs)
if(x+h.eq.x)pause ’stepsize not significant in rkdumb’
x=x+h
xx(k+1)=x Store intermediate steps.
do 12 i=1,nvar

y(i,k+1)=v(i)
enddo 12

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.5. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), Chapter 2. [2]

Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York:
Academic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5,
pp. 93–121. [3]

Rice, J.R. 1983, Numerical Methods, Software, and Analysis (New York: McGraw-Hill), §9.2.

16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator should exert someadaptivecontrol over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimesaccuracy
may be demanded not directly in the solution itself, but in some related conserved
quantity that can be monitored.

Implementation of adaptive stepsize control requires that the stepping algorithm
return information about its performance,most important, an estimate of its truncation
error. In this section we will learn how such information can be obtained. Obviously,
the calculation of this information will add to the computational overhead, but the
investment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is
step doubling(see, e.g.,[1]). We take each step twice, once as a full step, then,
independently, as two half steps (see Figure 16.2.1). How much overhead is this,
say in terms of the number of evaluations of the right-hand sides? Each of the
three separate Runge-Kutta steps in the procedure requires 4 evaluations, but the
single and double sequences share a starting point, so the total is 11. This is to be
compared not to 4, but to 8 (the two half-steps), since — stepsize control aside —
we are achieving the accuracy of the smaller (half) stepsize. The overhead costis
therefore a factor 1.375. What does it buy us?

708 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call rk4(v,dv,nvar,x,h,v,derivs)
if(x+h.eq.x)pause ’stepsize not significant in rkdumb’
x=x+h
xx(k+1)=x Store intermediate steps.
do 12 i=1,nvar

y(i,k+1)=v(i)
enddo 12

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.5. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), Chapter 2. [2]

Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York:
Academic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5,
pp. 93–121. [3]

Rice, J.R. 1983, Numerical Methods, Software, and Analysis (New York: McGraw-Hill), §9.2.

16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator should exert someadaptivecontrol over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimesaccuracy
may be demanded not directly in the solution itself, but in some related conserved
quantity that can be monitored.

Implementation of adaptive stepsize control requires that the stepping algorithm
return information about its performance,most important, an estimate of its truncation
error. In this section we will learn how such information can be obtained. Obviously,
the calculation of this information will add to the computational overhead, but the
investment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is
step doubling(see, e.g.,[1]). We take each step twice, once as a full step, then,
independently, as two half steps (see Figure 16.2.1). How much overhead is this,
say in terms of the number of evaluations of the right-hand sides? Each of the
three separate Runge-Kutta steps in the procedure requires 4 evaluations, but the
single and double sequences share a starting point, so the total is 11. This is to be
compared not to 4, but to 8 (the two half-steps), since — stepsize control aside —
we are achieving the accuracy of the smaller (half) stepsize. The overhead costis
therefore a factor 1.375. What does it buy us?

16.2 Adaptive Stepsize Control for Runge-Kutta 709

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

two small steps

big step

x

Figure 16.2.1. Step-doubling as a means for adaptive stepsize control in fourth-order Runge-Kutta.
Points where the derivative is evaluated are shown as filled circles. The open circlerepresents the same
derivatives as the filled circle immediately above it, so the total number of evaluationsis 11 per two
steps. Comparing the accuracy of the big step with the two small steps gives a criterion for adjusting the
stepsize on the next step, or for rejecting the current step as inaccurate.

Let us denote the exact solution for an advance fromx tox + 2h by y(x + 2h)
and the two approximate solutions byy1 (one step2h) andy2 (2 steps each of size
h). Since the basic method is fourth order, the true solution and the two numerical
approximations are related by

y(x + 2h) = y1 + (2h)5φ + O(h6) + . . .

y(x + 2h) = y2 + 2(h5)φ + O(h6) + . . .
(16.2.1)

where, to orderh5, the valueφ remains constant over the step. [Taylor series
expansion tells us theφ is a number whose order of magnitude isy(5)(x)/5!.] The
first expression in (16.2.1) involves(2h)5 since the stepsize is2h, while the second
expression involves2(h5) since the error on each step ish5φ. The difference
between the two numerical estimates is a convenient indicator of truncation error

∆ ≡ y2 − y1 (16.2.2)

It is this difference that we shall endeavor to keep to a desired degree of accuracy,
neither too large nor too small. We do this by adjustingh.

It might also occur to you that, ignoring terms of orderh6 and higher, we can
solve the two equations in (16.2.1) to improve our numerical estimate of the true
solution y(x + 2h), namely,

y(x + 2h) = y2 +
∆

15
+ O(h6) (16.2.3)

This estimate is accurate tofifth order, one order higher than the originalRunge-Kutta
steps. However, we can’t have our cake and eat it: (16.2.3) may be fifth-order
accurate, but we have no way of monitoringits truncation error. Higher order is
not always higher accuracy! Use of (16.2.3) rarely does harm, but we haveno
way of directly knowing whether it is doing any good. Therefore we should use
∆ as the error estimate and take as “gravy” any additional accuracy gain derived
from (16.2.3). In the technical literature, use of a procedure like (16.2.3) is called
“local extrapolation.”

An alternative stepsize adjustment algorithm is based on theembedded Runge-
Kutta formulas, originally invented by Fehlberg. An interesting fact about Runge-
Kutta formulas is that for ordersM higher than four, more thanM function

710 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

evaluations (though never more thanM + 2) are required. This accounts for the
popularity of the classical fourth-order method: It seems to give the most bang
for the buck. However, Fehlberg discovered a fifth-order method with six function
evaluations where another combination of the six functions gives a fourth-order
method. The difference between the two estimates ofy(x + h) can then be used as
an estimate of the truncation error to adjust the stepsize. Since Fehlberg’s original
formula, several other embedded Runge-Kutta formulas have been found.

Many practitioners were at one time wary of the robustness of Runge-Kutta-
Fehlberg methods. The feeling was that using the same evaluation points to advance
the function and to estimate the error was riskier than step-doubling, where the
error estimate is based on independent function evaluations. However, experience
has shown that this concern is not a problem in practice. Accordingly, embedded
Runge-Kutta formulas, which are roughly a factor of two more efficient, have
superseded algorithms based on step-doubling.

The general form of a fifth-order Runge-Kutta formula is

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

· · ·

k6 = hf(xn + a6h, yn + b61k1 + · · ·+ b65k5)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 + O(h6)

(16.2.4)

The embedded fourth-order formula is

y∗n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 + O(h5) (16.2.5)

and so the error estimate is

∆ ≡ yn+1 − y∗n+1 =

6
∑

i=1

(ci − c∗i)ki (16.2.6)

The particular values of the various constants that we favor are those found by Cash
and Karp[2], and given in the accompanying table. These give a more efficient
method than Fehlberg’s original values, with somewhat better error properties.

Now that we know, at least approximately, what our error is, we need to
consider how to keep it within desired bounds. What is the relation between∆
andh? According to (16.2.4) – (16.2.5),∆ scales ash5. If we take a steph1

and produce an error∆1, therefore, the steph0 that would have givensome other
value ∆0 is readily estimated as

h0 = h1

∣

∣

∣

∣

∆0

∆1

∣

∣

∣

∣

0.2

(16.2.7)

Henceforth we will let∆0 denote thedesiredaccuracy. Then equation (16.2.7) is
used in two ways: If∆1 is larger than∆0 in magnitude, the equation tells how
much to decrease the stepsizewhen we retry the present (failed) step. If ∆1 is

16.2 Adaptive Stepsize Control for Runge-Kutta 711

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Cash-Karp Parameters for Embedded Runga-Kutta Method

i ai bij ci c∗i

1 37
378

2825
27648

2 1
5

1
5 0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10

− 9
10

6
5

125
594

13525
55296

5 1 −11
54

5
2 −70

27
35
27 0 277

14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j = 1 2 3 4 5

smaller than∆0, on the other hand, then the equation tells how much we can safely
increase the stepsizefor the next step. Local extrapolation consists in accepting
the fifth order valueyn+1, even though the error estimate actually applies to the
fourth order valuey∗n+1.

Our notation hides the fact that∆0 is actually a vector of desired accuracies,
one for each equation in the set of ODEs. In general, our accuracy requirement will
be that all equations are within their respective allowed errors. In other words, we
will rescale the stepsize according to the needs of the “worst-offender”equation.

How is∆0, the desired accuracy, related to some looser prescription like “get a
solution good to one part in106”? That can be a subtle question, and it depends on
exactly what your application is! You may be dealing with a set of equations whose
dependent variables differ enormously in magnitude. In that case, you probably
want to use fractional errors,∆0 = ǫy, whereǫ is the number like10−6 or whatever.
On the other hand, you may have oscillatory functions that pass through zero but
are bounded by some maximum values. In that case you probably want to set∆0

equal toǫ times those maximum values.
A convenient way to fold these considerations into a generally useful stepper

routine is this: One of the arguments of the routine will of course be the vector of
dependent variables at the beginning of a proposed step. Call thaty(1:n). Let us
require the user to specify for each step another, corresponding, vector argument
yscal(1:n), and also an overall tolerance leveleps. Then the desired accuracy
for the ith equation will be taken to be

∆0 = eps× yscal(i) (16.2.8)

If you desire constant fractional errors, plugy into the yscal calling slot (no need to
copy the values into a different array). If you desire constant absolute errors relative
to some maximum values, set the elements ofyscal equal to those maximum
values. A useful “trick” for getting constant fractional errorsexcept“very” near
zero crossings is to setyscal(i) equal to|y(i)| + |h× dydx(i)|. (The routine
odeint, below, does this.)

Here is a more technical point. We have to consider one additional possibility
for yscal. The error criteria mentioned thus far are “local,” in that they bound the
error of each step individually. In some applications you may beunusually sensitive

712 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

about a “global”accumulation of errors, from beginning to end of the integration
and in the worst possible case where the errors all are presumed to addwith the
same sign. Then, the smaller the stepsizeh, the smaller the value∆0 that you will
need to impose. Why? Because there will bemore stepsbetween your starting
and ending values ofx. In such cases you will want to setyscal proportional to
h, typically to something like

∆0 = ǫh× dydx(i) (16.2.9)

This enforces fractional accuracyǫ not on the values ofy but (much more stringently)
on theincrementsto those values at each step. But now look back at (16.2.7). If∆0

has an implicit scaling withh, then the exponent0.20 is no longer correct: When
the stepsize is reduced from a too-large value, the new predicted valueh1 will fail to
meet the desired accuracy whenyscal is also altered to this newh1 value. Instead
of 0.20 = 1/5, we must scale by the exponent0.25 = 1/4 for things to work out.

The exponents0.20 and0.25 are not really very different. This motivates us
to adopt the following pragmatic approach, one that frees us from having to know
in advance whether or not you, the user, plan to scale youryscal’s with stepsize.
Whenever we decrease a stepsize, let us use the larger value of the exponent (whether
we need it or not!), and whenever we increase a stepsize, let us use the smaller
exponent. Furthermore, because our estimates of error are not exact, but only
accurate to the leading order inh, we are advised to put in a safety factorS which is
a few percent smaller than unity. Equation (16.2.7) is thus replaced by

h0 =

Sh1

∣

∣

∣

∣

∆0

∆1

∣

∣

∣

∣

0.20

∆0 ≥ ∆1

Sh1

∣

∣

∣

∣

∆0

∆1

∣

∣

∣

∣

0.25

∆0 < ∆1

(16.2.10)

We have found this prescription to be a reliable one in practice.
Here, then, is a stepper program that takes one “quality-controlled” Runge-

Kutta step.

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER n,NMAX
REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Maximum number of equations.

C USES derivs,rkck
Fifth-order Runge-Kutta step with monitoring of local truncation error to ensure accuracy
and adjust stepsize. Input are the dependent variable vector y(1:n) and its derivative
dydx(1:n) at the starting value of the independent variable x. Also input are the stepsize
to be attempted htry, the required accuracy eps, and the vector yscal(1:n) against
which the error is scaled. On output, y and x are replaced by their new values, hdid is the
stepsize that was actually accomplished, and hnext is the estimated next stepsize. derivs
is the user-supplied subroutine that computes the right-hand side derivatives.

INTEGER i
REAL errmax,h,htemp,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,

* PSHRNK,ERRCON
PARAMETER (SAFETY=0.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.89e-4)

The value ERRCON equals (5/SAFETY)**(1/PGROW), see use below.
h=htry Set stepsize to the initial trial value.

1 call rkck(y,dydx,n,x,h,ytemp,yerr,derivs) Take a step.

16.2 Adaptive Stepsize Control for Runge-Kutta 713

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

errmax=0. Evaluate accuracy.
do 11 i=1,n

errmax=max(errmax,abs(yerr(i)/yscal(i)))
enddo 11

errmax=errmax/eps Scale relative to required tolerance.
if(errmax.gt.1.)then Truncation error too large, reduce stepsize.

htemp=SAFETY*h*(errmax**PSHRNK)
h=sign(max(abs(htemp),0.1*abs(h)),h) No more than a factor of 10.
xnew=x+h
if(xnew.eq.x)pause ’stepsize underflow in rkqs’
goto 1 For another try.

else Step succeeded. Compute size of next step.
if(errmax.gt.ERRCON)then

hnext=SAFETY*h*(errmax**PGROW)
else No more than a factor of 5 increase.

hnext=5.*h
endif
hdid=h
x=x+h
do 12 i=1,n

y(i)=ytemp(i)
enddo 12

return
endif
END

The routinerkqs calls the routinerkck to take a Cash-Karp Runge-Kutta step:

SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs)
INTEGER n,NMAX
REAL h,x,dydx(n),y(n),yerr(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=50) Set to the maximum number of functions.

C USES derivs
Given values for n variables y and their derivatives dydx known at x, use the fifth-order
Cash-Karp Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout. Also return an estimate of the local truncation er-
ror in yout using the embedded fourth-order method. The user supplies the subroutine
derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER i
REAL ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX),

* ytemp(NMAX),A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,
* B52,B53,B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,
* DC4,DC5,DC6

PARAMETER (A2=.2,A3=.3,A4=.6,A5=1.,A6=.875,B21=.2,B31=3./40.,
* B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54.,B52=2.5,
* B53=-70./27.,B54=35./27.,B61=1631./55296.,B62=175./512.,
* B63=575./13824.,B64=44275./110592.,B65=253./4096.,
* C1=37./378.,C3=250./621.,C4=125./594.,C6=512./1771.,
* DC1=C1-2825./27648.,DC3=C3-18575./48384.,
* DC4=C4-13525./55296.,DC5=-277./14336.,DC6=C6-.25)

do 11 i=1,n First step.
ytemp(i)=y(i)+B21*h*dydx(i)

enddo 11

call derivs(x+A2*h,ytemp,ak2) Second step.
do 12 i=1,n

ytemp(i)=y(i)+h*(B31*dydx(i)+B32*ak2(i))
enddo 12

call derivs(x+A3*h,ytemp,ak3) Third step.
do 13 i=1,n

ytemp(i)=y(i)+h*(B41*dydx(i)+B42*ak2(i)+B43*ak3(i))

714 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 13

call derivs(x+A4*h,ytemp,ak4) Fourth step.
do 14 i=1,n

ytemp(i)=y(i)+h*(B51*dydx(i)+B52*ak2(i)+B53*ak3(i)+
* B54*ak4(i))

enddo 14

call derivs(x+A5*h,ytemp,ak5) Fifth step.
do 15 i=1,n

ytemp(i)=y(i)+h*(B61*dydx(i)+B62*ak2(i)+B63*ak3(i)+
* B64*ak4(i)+B65*ak5(i))

enddo 15

call derivs(x+A6*h,ytemp,ak6) Sixth step.
do 16 i=1,n Accumulate increments with proper weights.

yout(i)=y(i)+h*(C1*dydx(i)+C3*ak3(i)+C4*ak4(i)+
* C6*ak6(i))

enddo 16

do 17 i=1,n
Estimate error as difference between fourth and fifth order methods.
yerr(i)=h*(DC1*dydx(i)+DC3*ak3(i)+DC4*ak4(i)+DC5*ak5(i)

* +DC6*ak6(i))
enddo 17

return
END

Noting that the above routines are all in single precision, don’t be too greedy in
specifyingeps. The punishment for excessive greediness is interestingand worthy of
Gilbert and Sullivan’sMikado: The routinecan always achieve an apparentzeroerror
by making the stepsize so small that quantities of orderhy′ add to quantities of order
y as if they were zero. Then the routine chugs happily along taking infinitely many
infinitesimal steps and never changing the dependent variables one iota. (You guard
against this catastrophic loss of your computer budget by signaling on abnormally
small stepsizes or on the dependent variable vector remaining unchanged from step
to step. On a personal workstation you guard against it by not taking too long a
lunch hour while your program is running.)

Here is a full-fledged “driver” for Runge-Kutta with adaptive stepsize control.
We warmly recommend this routine, or one like it, for a variety of problems, notably
including garden-variety ODEs or sets of ODEs, and definite integrals (augmenting
the methods of Chapter 4). For storage of intermediate results (if you desire to
inspect them) we assume a common blockpath, which can hold up toKMAXX steps.
Because steps occur at unequal intervals results are stored only at intervals greater
thandxsav. Also in the block iskmax, indicating the number of steps that can be
stored. Ifkmax=0 there is no intermediate storage, and the rest of the common block
need not exist. Otherwise you should setkmax = KMAXX. Storage of steps stops
if kmax is exceeded, except that the ending values are always stored. Again, these
controls are merely indicative of what you might need. The routineodeint should
be customized to the problem at hand.

SUBROUTINE odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad,derivs,rkqs)
INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX
REAL eps,h1,hmin,x1,x2,ystart(nvar),TINY
EXTERNAL derivs,rkqs
PARAMETER (MAXSTP=10000,NMAX=50,KMAXX=200,TINY=1.e-30)

Runge-Kutta driver with adaptive stepsize control. Integrate the starting values ystart(1:nvar)
from x1 to x2 with accuracy eps, storing intermediate results in the common block /path/.
h1 should be set as a guessed first stepsize, hmin as the minimum allowed stepsize (can
be zero). On output nok and nbad are the number of good and bad (but retried and

16.2 Adaptive Stepsize Control for Runge-Kutta 715

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fixed) steps taken, and ystart is replaced by values at the end of the integration interval.
derivs is the user-supplied subroutine for calculating the right-hand side derivative, while
rkqs is the name of the stepper routine to be used. /path/ contains its own information
about how often an intermediate value is to be stored.

INTEGER i,kmax,kount,nstp
REAL dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX),

* yp(NMAX,KMAXX),yscal(NMAX)
COMMON /path/ kmax,kount,dxsav,xp,yp

User storage for intermediate results. Preset dxsav and kmax.
x=x1
h=sign(h1,x2-x1)
nok=0
nbad=0
kount=0
do 11 i=1,nvar

y(i)=ystart(i)
enddo 11

if (kmax.gt.0) xsav=x-2.*dxsav Assures storage of first step.
do 16 nstp=1,MAXSTP Take at most MAXSTP steps.

call derivs(x,y,dydx)
do 12 i=1,nvar

Scaling used to monitor accuracy. This general-purpose choice can be modified if need
be.
yscal(i)=abs(y(i))+abs(h*dydx(i))+TINY

enddo 12

if(kmax.gt.0)then
if(abs(x-xsav).gt.abs(dxsav)) then Store intermediate results.

if(kount.lt.kmax-1)then
kount=kount+1
xp(kount)=x
do 13 i=1,nvar

yp(i,kount)=y(i)
enddo 13

xsav=x
endif

endif
endif
if((x+h-x2)*(x+h-x1).gt.0.) h=x2-x If stepsize can overshoot, decrease.
call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,derivs)
if(hdid.eq.h)then

nok=nok+1
else

nbad=nbad+1
endif
if((x-x2)*(x2-x1).ge.0.)then Are we done?

do 14 i=1,nvar
ystart(i)=y(i)

enddo 14

if(kmax.ne.0)then
kount=kount+1 Save final step.
xp(kount)=x
do 15 i=1,nvar

yp(i,kount)=y(i)
enddo 15

endif
return Normal exit.

endif
if(abs(hnext).lt.hmin) pause ’stepsize smaller than minimum in odeint’
h=hnext

enddo 16

pause ’too many steps in odeint’
return
END

716 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall). [1]

Cash, J.R., and Karp, A.H. 1990, ACM Transactions on Mathematical Software, vol. 16, pp. 201–
222. [2]

Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York:
Academic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5,
pp. 93–121.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall).

16.3 Modified Midpoint Method

This section discusses themodified midpoint method, which advances a vector
of dependent variablesy(x) from a pointx to a pointx + H by a sequence ofn
substeps each of sizeh,

h = H/n (16.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique, treated in§16.4. You can therefore
consider this section as a preamble to§16.4.

The number of right-hand side evaluations required by the modified midpoint
method isn + 1. The formulas for the method are

z0 ≡ y(x)

z1 = z0 + hf(x, z0)

zm+1 = zm−1 + 2hf(x + mh, zm) for m = 1, 2, . . . , n− 1

y(x + H) ≈ yn ≡
1

2
[zn + zn−1 + hf(x + H, zn)]

(16.3.2)

Here thez’s are intermediate approximations which march along in steps ofh, while
yn is the final approximation toy(x + H). The method is basically a “centered
difference” or “midpoint” method (compare equation 16.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpoint method is a second-order method, like (16.1.2), but with
the advantage of requiring (asymptotically for largen) only one derivative evaluation
per steph instead of the two required by second-order Runge-Kutta. Perhaps there
are applications where the simplicity of (16.3.2), easily coded in-line in some other
program, recommends it. In general, however, use of the modified midpoint method
by itself will be dominated by the embedded Runge-Kutta method with adaptive
stepsize control, as implemented in the preceding section.

The usefulness of the modified midpoint method to the Bulirsch-Stoer technique
(§16.4) derives from a “deep” result about equations (16.3.2), due to Gragg. It turns

716 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall). [1]

Cash, J.R., and Karp, A.H. 1990, ACM Transactions on Mathematical Software, vol. 16, pp. 201–
222. [2]

Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York:
Academic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5,
pp. 93–121.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall).

16.3 Modified Midpoint Method

This section discusses themodified midpoint method, which advances a vector
of dependent variablesy(x) from a pointx to a pointx + H by a sequence ofn
substeps each of sizeh,

h = H/n (16.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique, treated in§16.4. You can therefore
consider this section as a preamble to§16.4.

The number of right-hand side evaluations required by the modified midpoint
method isn + 1. The formulas for the method are

z0 ≡ y(x)

z1 = z0 + hf(x, z0)

zm+1 = zm−1 + 2hf(x + mh, zm) for m = 1, 2, . . . , n− 1

y(x + H) ≈ yn ≡
1

2
[zn + zn−1 + hf(x + H, zn)]

(16.3.2)

Here thez’s are intermediate approximations which march along in steps ofh, while
yn is the final approximation toy(x + H). The method is basically a “centered
difference” or “midpoint” method (compare equation 16.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpoint method is a second-order method, like (16.1.2), but with
the advantage of requiring (asymptotically for largen) only one derivative evaluation
per steph instead of the two required by second-order Runge-Kutta. Perhaps there
are applications where the simplicity of (16.3.2), easily coded in-line in some other
program, recommends it. In general, however, use of the modified midpoint method
by itself will be dominated by the embedded Runge-Kutta method with adaptive
stepsize control, as implemented in the preceding section.

The usefulness of the modified midpoint method to the Bulirsch-Stoer technique
(§16.4) derives from a “deep” result about equations (16.3.2), due to Gragg. It turns

16.3 Modified Midpoint Method 717

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

out that the error of (16.3.2), expressed as a power series inh, the stepsize, contains
only even powers ofh,

yn − y(x + H) =

∞∑

i=1

αih
2i (16.3.3)

whereH is held constant, buth changes by varyingn in (16.3.1). The importance
of this even power series is that, if we play our usual tricks of combining steps to
knock out higher-order error terms, we can gaintwo orders at a time!

For example, supposen is even, and letyn/2 denote the result of applying
(16.3.1) and (16.3.2) with half as many steps,n → n/2. Then the estimate

y(x + H) ≈
4yn − yn/2

3
(16.3.4)

is fourth-orderaccurate, the same as fourth-order Runge-Kutta, but requires only
about 1.5 derivative evaluations per steph instead of Runge-Kutta’s 4 evaluations.
Don’t be too anxious to implement (16.3.4), since we will soon do even better.

Now would be a good time to look back at the routineqsimp in §4.2, and
especially to compare equation (4.2.4) with equation (16.3.4) above. You will see
that the transition in Chapter 4 to the idea of Richardson extrapolation, as embodied
in Romberg integration of§4.3, is exactly analogous to the transition in going from
this section to the next one.

Here is the routine that implements the modified midpoint method, which will
be used below.

SUBROUTINE mmid(y,dydx,nvar,xs,htot,nstep,yout,derivs)
INTEGER nstep,nvar,NMAX
REAL htot,xs,dydx(nvar),y(nvar),yout(nvar)
EXTERNAL derivs
PARAMETER (NMAX=50)

Modified midpoint step. Dependent variable vector y(1:nvar) and its derivative vector
dydx(1:nvar) are input at xs. Also input is htot, the total step to be made, and nstep,
the number of substeps to be used. The output is returned as yout(1:nvar), which need
not be a distinct array from y; if it is distinct, however, then y and dydx are returned
undamaged.

INTEGER i,n
REAL h,h2,swap,x,ym(NMAX),yn(NMAX)
h=htot/nstep Stepsize this trip.
do 11 i=1,nvar

ym(i)=y(i)
yn(i)=y(i)+h*dydx(i) First step.

enddo 11

x=xs+h
call derivs(x,yn,yout) Will use yout for temporary storage of derivatives.
h2=2.*h
do 13 n=2,nstep General step.

do 12 i=1,nvar
swap=ym(i)+h2*yout(i)
ym(i)=yn(i)
yn(i)=swap

enddo 12

x=x+h
call derivs(x,yn,yout)

718 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 13

do 14 i=1,nvar Last step.
yout(i)=0.5*(ym(i)+yn(i)+h*yout(i))

enddo 14

return
END

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§7.2.12.

16.4 Richardson Extrapolation and the
Bulirsch-Stoer Method

The techniques described in this section are not for differential equations
containing nonsmooth functions. For example, you might have a differential
equation whose right-hand side involves a function that is evaluated by table look-up
and interpolation. If so, go back to Runge-Kutta with adaptive stepsize choice:
That method does an excellent job of feeling its way through rocky or discontinuous
terrain. It is also an excellent choice for quick-and-dirty, low-accuracy solution
of a set of equations. A second warning is that the techniques in this section are
not particularly good for differential equations that have singular pointsinsidethe
interval of integration. A regular solution must tiptoe very carefully across such
points. Runge-Kutta with adaptive stepsize can sometimes effect this;more generally,
there are special techniques available for such problems, beyond our scope here.

Apart from those two caveats, we believe that the Bulirsch-Stoer method,
discussed in this section, is the best known way to obtain high-accuracy solutions
to ordinary differential equations with minimal computational effort. (A possible
exception, infrequently encountered in practice, is discussed in§16.7.)

Three key ideas are involved. The first isRichardson’s deferred approach
to the limit, which we already met in§4.3 on Romberg integration. The idea is
to consider the final answer of a numerical calculation as itself being an analytic
function (if a complicated one) of an adjustable parameter like the stepsizeh. That
analytic function can be probed by performing the calculation with various values
of h, noneof them being necessarily small enough to yield theaccuracy that we
desire. When we know enough about the function, wefit it to some analytic form,
and thenevaluateit at that mythical and golden pointh = 0 (see Figure 16.4.1).
Richardson extrapolation is a method for turning straw into gold! (Lead into gold
for alchemist readers.)

The second idea has to do with what kind of fitting function is used. Bulirsch and
Stoer first recognized the strength ofrational function extrapolationin Richardson-
type applications. That strength is to break the shackles of the power series and its
limited radius of convergence, out only to the distance of the first pole in the complex

718 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 13

do 14 i=1,nvar Last step.
yout(i)=0.5*(ym(i)+yn(i)+h*yout(i))

enddo 14

return
END

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§7.2.12.

16.4 Richardson Extrapolation and the
Bulirsch-Stoer Method

The techniques described in this section are not for differential equations
containing nonsmooth functions. For example, you might have a differential
equation whose right-hand side involves a function that is evaluated by table look-up
and interpolation. If so, go back to Runge-Kutta with adaptive stepsize choice:
That method does an excellent job of feeling its way through rocky or discontinuous
terrain. It is also an excellent choice for quick-and-dirty, low-accuracy solution
of a set of equations. A second warning is that the techniques in this section are
not particularly good for differential equations that have singular pointsinsidethe
interval of integration. A regular solution must tiptoe very carefully across such
points. Runge-Kutta with adaptive stepsize can sometimes effect this;more generally,
there are special techniques available for such problems, beyond our scope here.

Apart from those two caveats, we believe that the Bulirsch-Stoer method,
discussed in this section, is the best known way to obtain high-accuracy solutions
to ordinary differential equations with minimal computational effort. (A possible
exception, infrequently encountered in practice, is discussed in§16.7.)

Three key ideas are involved. The first isRichardson’s deferred approach
to the limit, which we already met in§4.3 on Romberg integration. The idea is
to consider the final answer of a numerical calculation as itself being an analytic
function (if a complicated one) of an adjustable parameter like the stepsizeh. That
analytic function can be probed by performing the calculation with various values
of h, noneof them being necessarily small enough to yield theaccuracy that we
desire. When we know enough about the function, wefit it to some analytic form,
and thenevaluateit at that mythical and golden pointh = 0 (see Figure 16.4.1).
Richardson extrapolation is a method for turning straw into gold! (Lead into gold
for alchemist readers.)

The second idea has to do with what kind of fitting function is used. Bulirsch and
Stoer first recognized the strength ofrational function extrapolationin Richardson-
type applications. That strength is to break the shackles of the power series and its
limited radius of convergence, out only to the distance of the first pole in the complex

16.4 Richardson Extrapolation and the Bulirsch-Stoer Method 719

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

6 steps

2 steps 4 steps ⊗

extrapolation
to ∞ steps

x x + H

y

Figure 16.4.1. Richardson extrapolation as used in the Bulirsch-Stoer method. A large interval H is
spanned by different sequences of finer and finer substeps. Their results are extrapolated to ananswer
that is supposed to correspond to infinitely fine substeps. In the Bulirsch-Stoer method, the integrations
are done by the modified midpoint method, and the extrapolation technique is rational function or
polynomial extrapolation.

plane. Rational function fits can remain good approximations to analytic functions
even after the various terms in powers ofh all have comparable magnitudes. In
other words,h can be so large as to make the whole notion of the “order” of the
method meaningless — and the method can still work superbly. Nevertheless, more
recent experience suggests that for smooth problems straightforward polynomial
extrapolation is slightly more efficient than rational function extrapolation. We will
accordingly adopt polynomial extrapolation as the default, but the routinebsstep

below allows easy substitution of one kind of extrapolation for the other. You
might wish at this point to review§3.1–§3.2, where polynomial and rational function
extrapolation were already discussed.

The third idea was discussed in the section before this one, namely to use
a method whose error function is strictly even, allowing the rational function or
polynomial approximation to be in terms of the variableh2 instead of justh.

Put these ideas together and you have theBulirsch-Stoer method[1]. A single
Bulirsch-Stoer step takes us fromx tox+H , whereH is supposed to be quite a large
— not at all infinitesimal — distance. That single step is a grand leap consisting
of many (e.g., dozens to hundreds) substeps of modified midpoint method, which
are then extrapolated to zero stepsize.

The sequence of separate attempts to cross the intervalH is made with
increasing values ofn, the number of substeps. Bulirsch and Stoer originally
proposed the sequence

n = 2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, . . . , [nj = 2nj−2], . . . (16.4.1)

More recent work by Deuflhard[2,3] suggests that the sequence

n = 2, 4, 6, 8, 10, 12, 14, . . ., [nj = 2j], . . . (16.4.2)

is usually more efficient. For each step, we do notknow in advance how far up this
sequence we will go. After each successiven is tried, a polynomial extrapolation is

720 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

attempted. That extrapolation returns both extrapolated values and error estimates.
If the errors are not satisfactory, we go higher inn. If they are satisfactory, we go
on to the next step and begin anew withn = 2.

Of course there must be some upper limit, beyond which we conclude that there
is some obstacle in our path in the intervalH , so that we must reduceH rather than
just subdivide it more finely. In the implementations below, the maximum number
of n’s to be tried is calledKMAXX. For reasons described below we usually take this
equal to 8; the8th value of the sequence (16.4.2) is16, so this is the maximum
number of subdivisions ofH that we allow.

We enforce error control, as in the Runge-Kutta method, by monitoring internal
consistency, and adapting stepsize to match a prescribed bound on the local truncation
error. Each new result from the sequence of modified midpoint integrations allows a
tableau like that in§3.1 to be extended by one additional set of diagonals. The size of
the new correction added at each stage is taken as the (conservative) error estimate.
How should we use this error estimate to adjust the stepsize? The best strategy now
known is due to Deuflhard[2,3]. For completeness we describe it here:

Suppose the absolute value of the error estimate returned from thekth column (and hence
thek + 1st row) of the extrapolation tableau isǫk+1,k. Error control is enforced by requiring

ǫk+1,k < ǫ (16.4.3)

as the criterion for accepting the current step, whereǫ is the required tolerance. For the even
sequence (16.4.2) the order of the method is2k + 1:

ǫk+1,k ∼ H2k+1 (16.4.4)

Thus a simple estimate of a new stepsizeHk to obtain convergence in a fixed columnkwould be

Hk = H

(

ǫ

ǫk+1,k

)1/(2k+1)

(16.4.5)

Which columnk should we aim to achieve convergence in? Let’s compare the work
required for differentk. SupposeAk is the work to obtain rowk of the extrapolation tableau,
soAk+1 is the work to obtain columnk. We will assume the work is dominated by the cost
of evaluating the functions defining the right-hand sides of the differential equations. Fornk

subdivisions inH , the number of function evaluations can be found from the recurrence

A1 = n1 + 1

Ak+1 = Ak + nk+1

(16.4.6)

The work per unit step to get columnk is Ak+1/Hk, which we nondimensionalize with a
factor of H and write as

Wk =
Ak+1

Hk
H (16.4.7)

= Ak+1

(ǫk+1,k

ǫ

)1/(2k+1)

(16.4.8)

The quantitiesWk can be calculated during the integration. The optimal column indexq
is then defined by

Wq = min
k=1,...,kf

Wk (16.4.9)

wherekf is the final column, in which the error criterion (16.4.3) was satisfied. Theq
determined from (16.4.9) defines the stepsizeHq to be used as the next basic stepsize, so that
we can expect to get convergence in the optimal columnq.

Two important refinements have to be made to the strategy outlined so far:

16.4 Richardson Extrapolation and the Bulirsch-Stoer Method 721

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• If the currentH is “too small,” thenkf will be “too small,” and soq remains
“too small.” It may be desirable to increaseH and aim for convergence in a
column q > kf .

• If the currentH is “too big,” we may not converge at all on the current step and we
will have to decreaseH . We would like to detect this by monitoring the quantities
ǫk+1,k for eachk so we can stop the current step as soon as possible.

Deuflhard’s prescription for dealing with these two problems uses ideas from communi-
cation theory to determine the “average expected convergence behavior” of the extrapolation.
His model produces certain correction factorsα(k, q) by whichHk is to be multiplied to try
to get convergence in columnq. The factorsα(k, q) depend only onǫ and the sequence{ni}
and so can be computed once during initialization:

α(k, q) = ǫ
Ak+1−Aq+1

(2k+1)(Aq+1−A1+1) for k < q (16.4.10)

with α(q, q) = 1.
Now to handle the first problem, suppose convergence occurs in columnq = kf . Then

rather than takingHq for the next step, we might aim to increase the stepsize to get convergence
in columnq+1. Since we don’t haveHq+1 available from the computation, we estimate it as

Hq+1 = Hqα(q, q + 1) (16.4.11)

By equation (16.4.7) this replacement is efficient, i.e., reduces the work per unit step, if

Aq+1

Hq
>

Aq+2

Hq+1
(16.4.12)

or
Aq+1α(q, q + 1) > Aq+2 (16.4.13)

During initialization, this inequality can be checked forq = 1, 2, . . . to determinekmax, the
largest allowed column. Then when (16.4.12) is satisfied it will always be efficient to use
Hq+1. (In practice we limitkmax to 8 even whenǫ is very small as there is very little further
gain in efficiency whereas roundoff can become a problem.)

The problem of stepsize reduction is handled by computing stepsize estimates

H̄k ≡ Hkα(k, q), k = 1, . . . , q − 1 (16.4.14)

during the current step. ThēH ’s are estimates of the stepsize to get convergence in the
optimal columnq. If any H̄k is “too small,” we abandon the current step and restart using
H̄k. The criterion of being “too small” is taken to be

Hkα(k, q + 1) < H (16.4.15)

The α’s satisfyα(k, q + 1) > α(k, q).
During the first step, when we have no information about the solution, the stepsize

reduction check is made for allk. Afterwards, we test for convergence and for possible
stepsize reduction only in an “order window”

max(1, q − 1) ≤ k ≤ min(kmax, q + 1) (16.4.16)

The rationale for the order window is that if convergence appears to occur fork < q − 1 it
is often spurious, resulting from some fortuitously small error estimate in the extrapolation.
On the other hand, if you need to go beyondk = q + 1 to obtain convergence, your local
model of the convergence behavior is obviously not very good and you need to cut the
stepsize and reestablish it.

In the routinebsstep, these various tests are actually carried out using quantities

ǫ(k) ≡
H

Hk
=

(ǫk+1,k

ǫ

)1/(2k+1)

(16.4.17)

callederr(k) in the code. As usual, we include a “safety factor” in the stepsize selection.
This is implemented by replacingǫ by 0.25ǫ. Other safety factors are explained in the
program comments.

Note that while the optimal convergence column is restricted to increase by at most one
on each step, a sudden drop in order is allowed by equation (16.4.9). This gives the method
a degree of robustness for problems with discontinuities.

722 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Let us remind you once again thatscalingof the variables is often crucial for
successful integration of differential equations. The scaling “trick” suggested in
the discussion following equation (16.2.8) is a good general purpose choice, but
not foolproof. Scaling by the maximum values of the variables is more robust, but
requires you to have some prior information.

The following implementation of a Bulirsch-Stoer step has exactly the same
calling sequence as the quality-controlled Runge-Kutta stepperrkqs. This means
that the driverodeint in §16.2 can be used for Bulirsch-Stoer as well as Runge-
Kutta: Just substitutebsstep for rkqs in odeint’s argument list. The routine
bsstep callsmmid to take the modified midpoint sequences, and callspzextr, given
below, to do the polynomial extrapolation.

SUBROUTINE bsstep(y,dydx,nv,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER nv,NMAX,KMAXX,IMAX
REAL eps,hdid,hnext,htry,x,dydx(nv),y(nv),yscal(nv),SAFE1,

* SAFE2,REDMAX,REDMIN,TINY,SCALMX
PARAMETER (NMAX=50,KMAXX=8,IMAX=KMAXX+1,SAFE1=.25,SAFE2=.7,

* REDMAX=1.e-5,REDMIN=.7,TINY=1.e-30,SCALMX=.1)
C USES derivs,mmid,pzextr

Bulirsch-Stoer step with monitoring of local truncation error to ensure accuracy and adjust
stepsize. Input are the dependent variable vector y(1:nv) and its derivative dydx(1:nv)
at the starting value of the independent variable x. Also input are the stepsize to be at-
tempted htry, the required accuracy eps, and the vector yscal(1:nv) against which the
error is scaled. On output, y and x are replaced by their new values, hdid is the stepsize
that was actually accomplished, and hnext is the estimated next stepsize. derivs is the
user-supplied subroutine that computes the right-hand side derivatives. Be sure to set htry
on successive steps to the value of hnext returned from the previous step, as is the case
if the routine is called by odeint.
Parameters: NMAX is the maximum value of nv; KMAXX is the maximum row number used
in the extrapolation; IMAX is the next row number; SAFE1 and SAFE2 are safety factors;
REDMAX is the maximum factor used when a stepsize is reduced, REDMIN the minimum;
TINY prevents division by zero; 1/SCALMX is the maximum factor by which a stepsize can
be increased.

INTEGER i,iq,k,kk,km,kmax,kopt,nseq(IMAX)
REAL eps1,epsold,errmax,fact,h,red,scale,work,wrkmin,xest,

* xnew,a(IMAX),alf(KMAXX,KMAXX),err(KMAXX),yerr(NMAX),
* ysav(NMAX),yseq(NMAX)

LOGICAL first,reduct
SAVE a,alf,epsold,first,kmax,kopt,nseq,xnew
EXTERNAL derivs
DATA first/.true./,epsold/-1./
DATA nseq /2,4,6,8,10,12,14,16,18/
if(eps.ne.epsold)then A new tolerance, so reinitialize.

hnext=-1.e29 “Impossible” values.
xnew=-1.e29
eps1=SAFE1*eps
a(1)=nseq(1)+1 Compute work coefficients Ak.
do 11 k=1,KMAXX

a(k+1)=a(k)+nseq(k+1)
enddo 11

do 13 iq=2,KMAXX Compute α(k, q).
do 12 k=1,iq-1

alf(k,iq)=eps1**((a(k+1)-a(iq+1))/
* ((a(iq+1)-a(1)+1.)*(2*k+1)))

enddo 12

enddo 13

epsold=eps
do 14 kopt=2,KMAXX-1 Determine optimal row number for conver-

gence.if(a(kopt+1).gt.a(kopt)*alf(kopt-1,kopt))goto 1
enddo 14

16.4 Richardson Extrapolation and the Bulirsch-Stoer Method 723

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

1 kmax=kopt
endif
h=htry
do 15 i=1,nv Save the starting values.

ysav(i)=y(i)
enddo 15

if(h.ne.hnext.or.x.ne.xnew)then A new stepsize or a new integration: re-establish
the order window.first=.true.

kopt=kmax
endif
reduct=.false.

2 do 17 k=1,kmax Evaluate the sequence of modified midpoint
integrations.xnew=x+h

if(xnew.eq.x)pause ’step size underflow in bsstep’
call mmid(ysav,dydx,nv,x,h,nseq(k),yseq,derivs)
xest=(h/nseq(k))**2 Squared, since error series is even.
call pzextr(k,xest,yseq,y,yerr,nv) Perform extrapolation.
if(k.ne.1)then Compute normalized error estimate ǫ(k).

errmax=TINY
do 16 i=1,nv

errmax=max(errmax,abs(yerr(i)/yscal(i)))
enddo 16

errmax=errmax/eps Scale error relative to tolerance.
km=k-1
err(km)=(errmax/SAFE1)**(1./(2*km+1))

endif
if(k.ne.1.and.(k.ge.kopt-1.or.first))then In order window.

if(errmax.lt.1.)goto 4 Converged.
if(k.eq.kmax.or.k.eq.kopt+1)then Check for possible stepsize reduction.

red=SAFE2/err(km)
goto 3

else if(k.eq.kopt)then
if(alf(kopt-1,kopt).lt.err(km))then

red=1./err(km)
goto 3

endif
else if(kopt.eq.kmax)then

if(alf(km,kmax-1).lt.err(km))then
red=alf(km,kmax-1)*

* SAFE2/err(km)
goto 3

endif
else if(alf(km,kopt).lt.err(km))then

red=alf(km,kopt-1)/err(km)
goto 3

endif
endif

enddo 17

3 red=min(red,REDMIN) Reduce stepsize by at least REDMIN and at
most REDMAX.red=max(red,REDMAX)

h=h*red
reduct=.true.
goto 2 Try again.

4 x=xnew Successful step taken.
hdid=h
first=.false.
wrkmin=1.e35 Compute optimal row for convergence and

corresponding stepsize.do 18 kk=1,km
fact=max(err(kk),SCALMX)
work=fact*a(kk+1)
if(work.lt.wrkmin)then

scale=fact
wrkmin=work
kopt=kk+1

724 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
enddo 18

hnext=h/scale
if(kopt.ge.k.and.kopt.ne.kmax.and..not.reduct)then Check for possible order in-

crease, but not if step-
size was just reduced.

fact=max(scale/alf(kopt-1,kopt),SCALMX)
if(a(kopt+1)*fact.le.wrkmin)then

hnext=h/fact
kopt=kopt+1

endif
endif
return
END

The polynomial extrapolation routine is based on the same algorithm aspolint

§3.1. It is simpler in that it is always extrapolating to zero, rather than to an arbitrary
value. However, it is more complicated in that it must individually extrapolate each
component of a vector of quantities.

SUBROUTINE pzextr(iest,xest,yest,yz,dy,nv)
INTEGER iest,nv,IMAX,NMAX
REAL xest,dy(nv),yest(nv),yz(nv)
PARAMETER (IMAX=13,NMAX=50)

Use polynomial extrapolation to evaluate nv functions at x = 0 by fitting a polynomial to a
sequence of estimates with progressively smaller values x = xest, and corresponding func-
tion vectors yest(1:nv). This call is number iest in the sequence of calls. Extrapolated
function values are output as yz(1:nv), and their estimated error is output as dy(1:nv).
Parameters: Maximum expected value of iest is IMAX; of nv is NMAX.

INTEGER j,k1
REAL delta,f1,f2,q,d(NMAX),qcol(NMAX,IMAX),x(IMAX)
SAVE qcol,x
x(iest)=xest Save current independent variable.
do 11 j=1,nv

dy(j)=yest(j)
yz(j)=yest(j)

enddo 11

if(iest.eq.1) then Store first estimate in first column.
do 12 j=1,nv

qcol(j,1)=yest(j)
enddo 12

else
do 13 j=1,nv

d(j)=yest(j)
enddo 13

do 15 k1=1,iest-1
delta=1./(x(iest-k1)-xest)
f1=xest*delta
f2=x(iest-k1)*delta
do 14 j=1,nv Propagate tableau 1 diagonal more.

q=qcol(j,k1)
qcol(j,k1)=dy(j)
delta=d(j)-q
dy(j)=f1*delta
d(j)=f2*delta
yz(j)=yz(j)+dy(j)

enddo 14

enddo 15

do 16 j=1,nv
qcol(j,iest)=dy(j)

enddo 16

endif
return
END

16.4 Richardson Extrapolation and the Bulirsch-Stoer Method 725

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Current wisdom favors polynomial extrapolation over rational function extrap-
olation in the Bulirsch-Stoer method. However, our feeling is that this view is guided
more by the kinds of problems used for tests than by one method being actually
“better.” Accordingly, we provide the optional routinerzextr for rational function
extrapolation, an exact substitution forpzextr above.

SUBROUTINE rzextr(iest,xest,yest,yz,dy,nv)
INTEGER iest,nv,IMAX,NMAX
REAL xest,dy(nv),yest(nv),yz(nv)
PARAMETER (IMAX=13,NMAX=50)

Exact substitute for pzextr, but uses diagonal rational function extrapolation instead of
polynomial extrapolation.

INTEGER j,k
REAL b,b1,c,ddy,v,yy,d(NMAX,IMAX),fx(IMAX),x(IMAX)
SAVE d,x
x(iest)=xest Save current independent variable.
if(iest.eq.1) then

do 11 j=1,nv
yz(j)=yest(j)
d(j,1)=yest(j)
dy(j)=yest(j)

enddo 11

else
do 12 k=1,iest-1

fx(k+1)=x(iest-k)/xest
enddo 12

do 14 j=1,nv Evaluate next diagonal in tableau.
yy=yest(j)
v=d(j,1)
c=yy
d(j,1)=yy
do 13 k=2,iest

b1=fx(k)*v
b=b1-c
if(b.ne.0.) then

b=(c-v)/b
ddy=c*b
c=b1*b

else Care needed to avoid division by 0.
ddy=v

endif
if (k.ne.iest) v=d(j,k)
d(j,k)=ddy
yy=yy+ddy

enddo 13

dy(j)=ddy
yz(j)=yy

enddo 14

endif
return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§7.2.14. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Deuflhard, P. 1983, Numerische Mathematik, vol. 41, pp. 399–422. [2]

Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505–535. [3]

726 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

16.5 Second-Order Conservative Equations

Usually when you have a system of high-order differential equations to solve it is best
to reformulate them as a system of first-order equations, as discussed in§16.0. There is
a particular class of equations that occurs quite frequently in practice where you can gain
about a factor of two in efficiency by differencing the equations directly. The equations are
second-order systems where the derivative does not appear on the right-hand side:

y′′ = f(x, y), y(x0) = y0, y′(x0) = z0 (16.5.1)

As usual,y can denote a vector of values.
Stoermer’s rule, dating back to 1907, has been a popular method for discretizing such

systems. Withh = H/m we have

y1 = y0 + h[z0 + 1
2hf(x0, y0)]

yk+1 − 2yk + yk−1 = h2f(x0 + kh, yk), k = 1, . . . ,m− 1

zm = (ym − ym−1)/h + 1
2hf(x0 + H, ym)

(16.5.2)

Herezm is y′(x0 +H). Henrici showed how to rewrite equations (16.5.2) to reduce roundoff
error by using the quantities∆k ≡ yk+1 − yk. Start with

∆0 = h[z0 + 1
2hf(x0, y0)]

y1 = y0 + ∆0

(16.5.3)

Then for k = 1, . . . ,m − 1, set

∆k = ∆k−1 + h2f(x0 + kh, yk)

yk+1 = yk + ∆k

(16.5.4)

Finally compute the derivative from

zm = ∆m−1/h + 1
2
hf(x0 + H, ym) (16.5.5)

Gragg again showed that the error series for equations (16.5.3)–(16.5.5) contains only
even powers ofh, and so the method is a logical candidate for extrapolation `a la Bulirsch-Stoer.
We replacemmid by the following routinestoerm:

SUBROUTINE stoerm(y,d2y,nv,xs,htot,nstep,yout,derivs)
INTEGER nstep,nv,NMAX
REAL htot,xs,d2y(nv),y(nv),yout(nv)
EXTERNAL derivs
PARAMETER (NMAX=50) Maximum value of nv.

C USES derivs
Stoermer’s rule for integrating y′′ = f(x, y) for a system of n = nv/2 equations. On input
y(1:nv) contains y in its first n elements and y′ in its second n elements, all evaluated
at xs. d2y(1:nv) contains the right-hand side function f (also evaluated at xs) in its
first n elements. Its second n elements are not referenced. Also input is htot, the total
step to be taken, and nstep, the number of substeps to be used. The output is returned
as yout(1:nv), with the same storage arrangement as y. derivs is the user-supplied
subroutine that calculates f .

INTEGER i,n,neqns,nn
REAL h,h2,halfh,x,ytemp(NMAX)
h=htot/nstep Stepsize this trip.
halfh=0.5*h
neqns=nv/2 Number of equations.
do 11 i=1,neqns First step.

n=neqns+i
ytemp(n)=h*(y(n)+halfh*d2y(i))

726 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

16.5 Second-Order Conservative Equations

Usually when you have a system of high-order differential equations to solve it is best
to reformulate them as a system of first-order equations, as discussed in§16.0. There is
a particular class of equations that occurs quite frequently in practice where you can gain
about a factor of two in efficiency by differencing the equations directly. The equations are
second-order systems where the derivative does not appear on the right-hand side:

y′′ = f(x, y), y(x0) = y0, y′(x0) = z0 (16.5.1)

As usual,y can denote a vector of values.
Stoermer’s rule, dating back to 1907, has been a popular method for discretizing such

systems. Withh = H/m we have

y1 = y0 + h[z0 + 1

2
hf(x0, y0)]

yk+1 − 2yk + yk−1 = h2f(x0 + kh, yk), k = 1, . . . ,m− 1

zm = (ym − ym−1)/h + 1

2
hf(x0 + H, ym)

(16.5.2)

Herezm is y′(x0 +H). Henrici showed how to rewrite equations (16.5.2) to reduce roundoff
error by using the quantities∆k ≡ yk+1 − yk. Start with

∆0 = h[z0 + 1

2
hf(x0, y0)]

y1 = y0 + ∆0

(16.5.3)

Then for k = 1, . . . ,m − 1, set

∆k = ∆k−1 + h2f(x0 + kh, yk)

yk+1 = yk + ∆k

(16.5.4)

Finally compute the derivative from

zm = ∆m−1/h + 1

2
hf(x0 + H, ym) (16.5.5)

Gragg again showed that the error series for equations (16.5.3)–(16.5.5) contains only
even powers ofh, and so the method is a logical candidate for extrapolation `a la Bulirsch-Stoer.
We replacemmid by the following routinestoerm:

SUBROUTINE stoerm(y,d2y,nv,xs,htot,nstep,yout,derivs)
INTEGER nstep,nv,NMAX
REAL htot,xs,d2y(nv),y(nv),yout(nv)
EXTERNAL derivs
PARAMETER (NMAX=50) Maximum value of nv.

C USES derivs
Stoermer’s rule for integrating y′′ = f(x, y) for a system of n = nv/2 equations. On input
y(1:nv) contains y in its first n elements and y′ in its second n elements, all evaluated
at xs. d2y(1:nv) contains the right-hand side function f (also evaluated at xs) in its
first n elements. Its second n elements are not referenced. Also input is htot, the total
step to be taken, and nstep, the number of substeps to be used. The output is returned
as yout(1:nv), with the same storage arrangement as y. derivs is the user-supplied
subroutine that calculates f .

INTEGER i,n,neqns,nn
REAL h,h2,halfh,x,ytemp(NMAX)
h=htot/nstep Stepsize this trip.
halfh=0.5*h
neqns=nv/2 Number of equations.
do 11 i=1,neqns First step.

n=neqns+i
ytemp(n)=h*(y(n)+halfh*d2y(i))

16.6 Stiff Sets of Equations 727

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ytemp(i)=y(i)+ytemp(n)
enddo 11

x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
h2=h*h
do 13 nn=2,nstep General step.

do 12 i=1,neqns
n=neqns+i
ytemp(n)=ytemp(n)+h2*yout(i)
ytemp(i)=ytemp(i)+ytemp(n)

enddo 12

x=x+h
call derivs(x,ytemp,yout)

enddo 13

do 14 i=1,neqns Last step.
n=neqns+i
yout(n)=ytemp(n)/h+halfh*yout(i)
yout(i)=ytemp(i)

enddo 14

return
END

Note that for compatibility withbsstep the arraysy andd2y are of length2n for a
system ofn second-order equations. The values ofy are stored in the firstn elements ofy,
while the first derivatives are stored in the secondn elements. The right-hand sidef is stored
in the firstn elements of the arrayd2y; the secondn elements are unused. With this storage
arrangement you can usebsstep simply by replacing the call tommid with one tostoerm
using the same arguments; just be sure that the argumentnv of bsstep is set to2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n = 1, 2, 3, 4, 5, . . . (16.5.6)

and setKMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:

Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505–535.

16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of astiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of equations[1]:

u
′ = 998u+ 1998v

v
′ = −999u− 1999v

(16.6.1)

with boundary conditions

u(0) = 1 v(0) = 0 (16.6.2)

16.6 Stiff Sets of Equations 727

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ytemp(i)=y(i)+ytemp(n)
enddo 11

x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
h2=h*h
do 13 nn=2,nstep General step.

do 12 i=1,neqns
n=neqns+i
ytemp(n)=ytemp(n)+h2*yout(i)
ytemp(i)=ytemp(i)+ytemp(n)

enddo 12

x=x+h
call derivs(x,ytemp,yout)

enddo 13

do 14 i=1,neqns Last step.
n=neqns+i
yout(n)=ytemp(n)/h+halfh*yout(i)
yout(i)=ytemp(i)

enddo 14

return
END

Note that for compatibility withbsstep the arraysy andd2y are of length2n for a
system ofn second-order equations. The values ofy are stored in the firstn elements ofy,
while the first derivatives are stored in the secondn elements. The right-hand sidef is stored
in the firstn elements of the arrayd2y; the secondn elements are unused. With this storage
arrangement you can usebsstep simply by replacing the call tommid with one tostoerm
using the same arguments; just be sure that the argumentnv of bsstep is set to2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n = 1, 2, 3, 4, 5, . . . (16.5.6)

and setKMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:

Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505–535.

16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of astiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of equations[1]:

u′ = 998u+ 1998v

v′ = −999u− 1999v
(16.6.1)

with boundary conditions

u(0) = 1 v(0) = 0 (16.6.2)

728 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

x

y

Figure 16.6.1. Example of an instability encountered in integrating a stiff equation (schematic). Here
it is supposed that the equation has two solutions, shown as solid and dashed lines. Althoughthe initial
conditions are such as to give the solid solution, the stability of the integration(shown as the unstable
dotted sequence of segments) is determined by the more rapidly varying dashed solution, even after that
solution has effectively died away to zero. Implicit integration methods are the cure.

By means of the transformation

u = 2y − z v = −y + z (16.6.3)

we find the solution

u = 2e−x − e−1000x

v = −e−x + e−1000x
(16.6.4)

If we integrated the system (16.6.1) with any of the methods given so far in this
chapter, the presence of thee−1000x term would require a stepsizeh ≪ 1/1000 for
the method to be stable (the reason for this is explained below). This is so even
though thee−1000x term is completely negligible in determining the values ofu and
v as soon as one is away from the origin (see Figure 16.6.1).

This is the generic disease of stiff equations: we are required to follow the
variation in the solution on the shortest length scale to maintain stability of the
integration, even thoughaccuracy requirements allow a much larger stepsize.

To see how we might cure this problem, consider the single equation

y′ = −cy (16.6.5)

wherec > 0 is a constant. The explicit (orforward) Euler scheme for integrating
this equation with stepsizeh is

yn+1 = yn + hy′
n

= (1 − ch)yn (16.6.6)

The method is called explicit because the new valueyn+1 is given explicitly in
terms of the old valueyn. Clearly the method is unstable ifh > 2/c, for then
|yn| → ∞ as n → ∞.

16.6 Stiff Sets of Equations 729

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The simplest cure is to resort toimplicit differencing, where the right-hand side
is evaluated at thenewy location. In this case, we get thebackward Eulerscheme:

yn+1 = yn + hy′
n+1 (16.6.7)

or

yn+1 =
yn

1 + ch
(16.6.8)

The method is absolutely stable: even ash → ∞, yn+1 → 0, which is in fact the
correct solution of the differential equation. If we think ofx as representing time,
then the implicit method converges to the true equilibrium solution (i.e., the solution
at late times) for large stepsizes. This nice feature of implicit methods holds only
for linear systems, but even in the general case implicit methods give better stability.
Of course, we give upaccuracyin following the evolution towards equilibrium if
we use large stepsizes, but we maintainstability.

These considerations can easily be generalized to sets of linear equations with
constant coefficients:

y′ = −C · y (16.6.9)

whereC is a positive definite matrix. Explicit differencing gives

y
n+1 = (1− Ch) · y

n
(16.6.10)

Now a matrixAn tends to zero asn → ∞ only if the largest eigenvalue ofA
has magnitude less than unity. Thusy

n
is bounded asn → ∞ only if the largest

eigenvalue of1 − Ch is less than 1, or in other words

h <
2

λmax

(16.6.11)

whereλmax is the largest eigenvalue ofC.
On the other hand, implicit differencing gives

y
n+1 = y

n
+ hy′

n+1 (16.6.12)

or

y
n+1 = (1 + Ch)−1 · y

n
(16.6.13)

If the eigenvalues ofC areλ, then the eigenvalues of(1 + Ch)−1 are(1 + λh)−1,
which has magnitude less than one for allh. (Recall that all the eigenvalues
of a positive definite matrix are nonnegative.) Thus the method is stable for all
stepsizesh. The penalty we pay for this stability is that we are required to invert
a matrix at each step.

Not all equations are linear with constant coefficients, unfortunately! For
the system

y′ = f(y) (16.6.14)

implicit differencing gives

y
n+1 = y

n
+ hf(y

n+1) (16.6.15)

730 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In general this is some nasty set of nonlinear equations that has to be solved iteratively
at each step. Suppose we try linearizing the equations, as in Newton’s method:

y
n+1 = y

n
+ h

[
f(y

n
) +

∂f
∂y

∣∣∣∣
y

n

· (y
n+1 − y

n
)

]
(16.6.16)

Here∂f/∂y is the matrix of the partial derivatives of the right-hand side (the Jacobian
matrix). Rearrange equation (16.6.16) into the form

y
n+1 = y

n
+ h

[
1− h

∂f
∂y

]−1

· f(y
n
) (16.6.17)

If h is not too big, only one iteration of Newton’s method may be accurate enough
to solve equation (16.6.15) using equation (16.6.17). In other words, at each step
we have to invert the matrix

1− h
∂f
∂y

(16.6.18)

to find y
n+1. Solving implicit methods by linearization is called a “semi-implicit”

method, so equation (16.6.17) is thesemi-implicit Euler method. It is not guaranteed
to be stable, but it usually is, because the behavior is locally similarto the case of
a constant matrixC described above.

So far we have dealt only with implicit methods that are first-orderaccurate.
While these are very robust, most problems will benefit from higher-order methods.
There are three important classes of higher-order methods for stiff systems:

• Generalizations of the Runge-Kutta method, of which the most useful
are the Rosenbrock methods. The first practical implementation of these
ideas was by Kaps and Rentrop, and so these methods are also called
Kaps-Rentrop methods.

• Generalizations of the Bulirsch-Stoer method, in particular a semi-implicit
extrapolation method due to Bader and Deuflhard.

• Predictor-corrector methods, most of which are descendants of Gear’s
backward differentiation method.

We shall give implementations of the first two methods. Note that systems where
the right-hand side depends explicitly onx, f(y, x), can be handled by addingx to
the list of dependent variables so that the system to be solved is

(
y
x

)
′

=

(
f
1

)
(16.6.19)

In both the routines to be given in this section, we have explicitly carried out this
replacement foryou, so the routines can handle right-hand sides of the formf(y, x)
without any special effort on your part.

We now mention an important point:It is absolutely crucial to scale your vari-
ables properly when integrating stiff problems with automatic stepsize adjustment.
As in our nonstiff routines, you will be asked to supply a vectoryscal with which
the error is to be scaled. For example, to get constant fractional errors, simply set
yscal = |y|. You can get constant absolute errors relative to some maximum values

16.6 Stiff Sets of Equations 731

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

by settingyscal equal to those maximum values. In stiff problems, there are often
strongly decreasing pieces of the solution which you are not particularly interested
in following once they are small. You can control the relative error above some
thresholdC and the absolute error below the threshold by setting

yscal = max(C, |y|) (16.6.20)

If you are using appropriate nondimensional units, theneach component ofC should
be of order unity. If you are not sure what values to take forC, simply try
settingeach component equal to unity.We strongly advocate the choice (16.6.20)
for stiff problems.

One final warning: Solving stiff problems can sometimes lead to catastrophic
precision loss. Be alert for situations where double precision is necessary.

Rosenbrock Methods

These methods have the advantage of being relatively simple to understand and imple-
ment. For moderate accuracies (ǫ <∼ 10−4 – 10−5 in the error criterion) and moderate-sized
systems (N <∼ 10), they are competitive with the more complicated algorithms. For more
stringent parameters, Rosenbrock methods remain reliable; they merely become less efficient
than competitors like the semi-implicit extrapolation method (see below).

A Rosenbrock method seeks a solution of the form

y(x0 + h) = y0 +

s∑

i=1

ciki (16.6.21)

where the correctionski are found by solvings linear equations that generalize the structure
in (16.6.17):

(1− γhf ′) · ki = hf

(

y0 +

i−1∑

j=1

αijkj

)

+ hf ′ ·
i−1∑

j=1

γijkj , i = 1, . . . , s (16.6.22)

Here we denote the Jacobian matrix byf ′. The coefficientsγ, ci, αij , andγij are fixed
constants independent of the problem. Ifγ = γij = 0, this is simply a Runge-Kutta scheme.
Equations (16.6.22) can be solved successively fork1, k2,

Crucial to the success of a stiff integration scheme is an automatic stepsize adjustment
algorithm. Kaps and Rentrop[2] discovered anembeddedor Runge-Kutta-Fehlberg method
as described in§16.2: Two estimates of the form (16.6.21) are computed, the “real” oney
and a lower-order estimatêy with different coefficientŝci, i = 1, . . . , ŝ, whereŝ < s but the
ki are the same. The difference betweeny andŷ leads to an estimate of the local truncation
error, which can then be used for stepsize control. Kaps and Rentrop showedthat the smallest
value ofs for which embedding is possible iss = 4, ŝ = 3, leading to a fourth-order method.

To minimize the matrix-vector multiplications on the right-hand side of (16.6.22), we
rewrite the equations in terms of quantities

gi =

i−1∑

j=1

γijkj + γki (16.6.23)

The equations then take the form

(1/γh− f ′) · g1 = f(y0)

(1/γh− f ′) · g2 = f(y0 + a21g1) + c21g1/h

(1/γh− f ′) · g3 = f(y0 + a31g1 + a32g2) + (c31g1 + c32g2)/h

(1/γh− f ′) · g4 = f(y0 + a41g1 + a42g2 + a43g3) + (c41g1 + c42g2 + c43g3)/h

(16.6.24)

732 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In our implementationstiff of the Kaps-Rentrop algorithm, we have carried out the
replacement (16.6.19) explicitly in equations (16.6.24), so you need not concernyourself
about it. Simply provide a subroutine (calledderivs in stiff) that returnsf (calleddydx)
as a function ofx andy. Also supply a subroutinejacobn that returnsf ′ (dfdy) and∂f/∂x
(dfdx) as functions ofx andy. If x does not occur explicitly on the right-hand side, thendfdx
will be zero. Usually the Jacobian matrix will be available to you by analyticdifferentiation of
the right-hand sidef. If not, your subroutine will have to compute it by numerical differencing
with appropriate increments∆y.

Kaps and Rentrop gave two different sets of parameters, which have slightly different
stability properties. Several other sets have been proposed. Our default choice is that of
Shampine[3], but we also give you one of the Kaps-Rentrop sets as an option. Some proposed
parameter sets require function evaluations outside the domain of integration; we prefer to
avoid that complication.

The calling sequence ofstiff is exactly the same as the nonstiff routines given earlier
in this chapter. It is thus “plug-compatible” with them in the general ODE integrating routine
odeint. This compatibility requires, unfortunately, one slight anomaly: While the user-
supplied routinederivs is a dummy argument (which can therefore have any actual name),
the other user-supplied routine isnot an argument and must be named (exactly)jacobn.

stiff begins by saving the initial values, in case the step has to be repeated because
the error tolerance is exceeded. The linear equations (16.6.24) are solved by first computing
the LU decomposition of the matrix1/γh − f ′ using the routineludcmp. Then the four
gi are found by back-substitution of the four different right-hand sides usinglubksb. Note
that each step of the integration requires one call tojacobn and three calls toderivs (one
call to getdydx before callingstiff, and two calls insidestiff). The reason only three
calls are needed and not four is that the parameters have been chosen so that the last two
calls in equation (16.6.24) are done with the same arguments. Counting the evaluation of
the Jacobian matrix as roughly equivalent toN evaluations of the right-hand sidef, we see
that the Kaps-Rentrop scheme involves aboutN + 3 function evaluations per step. Note that
if N is large and the Jacobian matrix is sparse, you should replace theLU decomposition
by a suitable sparse matrix procedure.

Stepsize control depends on the fact that

yexact = y + O(h5)

yexact = ŷ + O(h4)
(16.6.25)

Thus

|y − ŷ| = O(h4) (16.6.26)

Referring back to the steps leading from equation (16.2.4) to equation (16.2.10), we see
that the new stepsize should be chosen as in equation (16.2.10) but with the exponents 1/4
and 1/5 replaced by 1/3 and 1/4, respectively. Also, experience shows that it is wise to
prevent too large a stepsize change in one step, otherwise we will probably have to undo
the large change in the next step. We adopt 0.5 and 1.5 as the maximum allowed decrease
and increase ofh in one step.

SUBROUTINE stiff(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER n,NMAX,MAXTRY
REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n),SAFETY,GROW,

* PGROW,SHRNK,PSHRNK,ERRCON,GAM,A21,A31,A32,A2X,A3X,C21,
* C31,C32,C41,C42,C43,B1,B2,B3,B4,E1,E2,E3,E4,C1X,C2X,C3X,
* C4X

EXTERNAL derivs
PARAMETER (NMAX=50,SAFETY=0.9,GROW=1.5,PGROW=-.25,

* SHRNK=0.5,PSHRNK=-1./3.,ERRCON=.1296,MAXTRY=40)
PARAMETER (GAM=1./2.,A21=2.,A31=48./25.,A32=6./25.,C21=-8.,

* C31=372./25.,C32=12./5.,C41=-112./125.,C42=-54./125.,
* C43=-2./5.,B1=19./9.,B2=1./2.,B3=25./108.,B4=125./108.,
* E1=17./54.,E2=7./36.,E3=0.,E4=125./108.,C1X=1./2.,

16.6 Stiff Sets of Equations 733

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

* C2X=-3./2.,C3X=121./50.,C4X=29./250.,A2X=1.,A3X=3./5.)
C USES derivs,jacobn,lubksb,ludcmp

Fourth-order Rosenbrock step for integrating stiff o.d.e.’s, with monitoring of local trun-
cation error to adjust stepsize. Input are the dependent variable vector y(1:n) and its
derivative dydx(1:n) at the starting value of the independent variable x. Also input are
the stepsize to be attempted htry, the required accuracy eps, and the vector yscal(1:n)
against which the error is scaled. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.
derivs is a user-supplied subroutine that computes the derivatives of the right-hand side
with respect to x, while jacobn (a fixed name) is a user-supplied subroutine that computes
the Jacobi matrix of derivatives of the right-hand side with respect to the components of y.
Parameters: NMAX is the maximum value of n; GROW and SHRNK are the largest and smallest
factors by which stepsize can change in one step; ERRCON=(GROW/SAFETY)**(1/PGROW)
and handles the case when errmax ≃ 0.

INTEGER i,j,jtry,indx(NMAX)
REAL d,errmax,h,xsav,a(NMAX,NMAX),dfdx(NMAX),dfdy(NMAX,NMAX),

* dysav(NMAX),err(NMAX),g1(NMAX),g2(NMAX),g3(NMAX),
* g4(NMAX),ysav(NMAX)

xsav=x Save initial values.
do 11 i=1,n

ysav(i)=y(i)
dysav(i)=dydx(i)

enddo 11

call jacobn(xsav,ysav,dfdx,dfdy,n,NMAX)
The user must supply this subroutine to return the n-by-n matrix dfdy and the vector dfdx.

h=htry Set stepsize to the initial trial value.
do 23 jtry=1,MAXTRY

do 13 i=1,n Set up the matrix 1 − γhf ′.
do 12 j=1,n

a(i,j)=-dfdy(i,j)
enddo 12

a(i,i)=1./(GAM*h)+a(i,i)
enddo 13

call ludcmp(a,n,NMAX,indx,d) LU decomposition of the matrix.
do 14 i=1,n Set up right-hand side for g1.

g1(i)=dysav(i)+h*C1X*dfdx(i)
enddo 14

call lubksb(a,n,NMAX,indx,g1) Solve for g1.
do 15 i=1,n Compute intermediate values of y and x.

y(i)=ysav(i)+A21*g1(i)
enddo 15

x=xsav+A2X*h
call derivs(x,y,dydx) Compute dydx at the intermediate values.
do 16 i=1,n Set up right-hand side for g2.

g2(i)=dydx(i)+h*C2X*dfdx(i)+C21*g1(i)/h
enddo 16

call lubksb(a,n,NMAX,indx,g2) Solve for g2.
do 17 i=1,n Compute intermediate values of y and x.

y(i)=ysav(i)+A31*g1(i)+A32*g2(i)
enddo 17

x=xsav+A3X*h
call derivs(x,y,dydx) Compute dydx at the intermediate values.
do 18 i=1,n Set up right-hand side for g3.

g3(i)=dydx(i)+h*C3X*dfdx(i)+(C31*g1(i)+
* C32*g2(i))/h

enddo 18

call lubksb(a,n,NMAX,indx,g3) Solve for g3.
do 19 i=1,n Set up right-hand side for g4.

g4(i)=dydx(i)+h*C4X*dfdx(i)+(C41*g1(i)+
* C42*g2(i)+C43*g3(i))/h

enddo 19

call lubksb(a,n,NMAX,indx,g4) Solve for g4.
do 21 i=1,n Get fourth-order estimate of y and error estimate.

y(i)=ysav(i)+B1*g1(i)+B2*g2(i)+B3*g3(i)+B4*g4(i)

734 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

err(i)=E1*g1(i)+E2*g2(i)+E3*g3(i)+E4*g4(i)
enddo 21

x=xsav+h
if(x.eq.xsav)pause ’stepsize not significant in stiff’
errmax=0. Evaluate accuracy.
do 22 i=1,n

errmax=max(errmax,abs(err(i)/yscal(i)))
enddo 22

errmax=errmax/eps Scale relative to required tolerance.
if(errmax.le.1.)then Step succeeded. Compute size of next step and re-

turn.hdid=h
if(errmax.gt.ERRCON)then

hnext=SAFETY*h*errmax**PGROW
else

hnext=GROW*h
endif
return

else Truncation error too large, reduce stepsize.
hnext=SAFETY*h*errmax**PSHRNK
h=sign(max(abs(hnext),SHRNK*abs(h)),h)

endif
enddo 23 Go back and re-try step.
pause ’exceeded MAXTRY in stiff’
END

Here are the Kaps-Rentrop parameters, which can be substituted for those of Shampine
simply by replacing thePARAMETER statement:

PARAMETER (GAM=.231,A21=2.,A31=4.52470820736,A32=4.16352878860,
* C21=-5.07167533877,C31=6.02015272865,C32=.159750684673,
* C41=-1.856343618677,C42=-8.50538085819,C43=
* -2.08407513602,B1=3.95750374663,B2=4.62489238836,B3=
* .617477263873,B4=1.282612945268,E1=-2.30215540292,
* E2=-3.07363448539,E3=.873280801802,E4=1.282612945268,
* C1X=GAM,C2X=-.396296677520e-01,C3X=.550778939579,
* C4X=-.553509845700e-01,A2X=.462,A3X=.880208333333)

As an example of howstiff is used, one can solve the system

y′1 = −.013y1 − 1000y1y3

y′2 = −2500y2y3

y′3 = −.013y1 − 1000y1y3 − 2500y2y3

(16.6.27)

with initial conditions

y1(0) = 1, y2(0) = 1, y3(0) = 0 (16.6.28)

(This is test problem D4 in[4].) We integrate the system up tox = 50 with an initial stepsize
of h = 2.9 × 10−4 usingodeint. The components ofC in (16.6.20) are all set to unity.
The routinesderivs andjacobn for this problem are given below. Even though the ratio
of largest to smallest decay constants for this problem is around106, stiff succeeds in
integrating this set in only 29 steps withǫ = 10−4. By contrast, the Runge-Kutta routine
rkqs requires 51,012 steps!

SUBROUTINE jacobn(x,y,dfdx,dfdy,n,nmax)
INTEGER n,nmax,i
REAL x,y(*),dfdx(*),dfdy(nmax,nmax)
do 11 i=1,3

dfdx(i)=0.
enddo 11

16.6 Stiff Sets of Equations 735

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

dfdy(1,1)=-.013-1000.*y(3)
dfdy(1,2)=0.
dfdy(1,3)=-1000.*y(1)
dfdy(2,1)=0.
dfdy(2,2)=-2500.*y(3)
dfdy(2,3)=-2500.*y(2)
dfdy(3,1)=-.013-1000.*y(3)
dfdy(3,2)=-2500.*y(3)
dfdy(3,3)=-1000.*y(1)-2500.*y(2)
return
END

SUBROUTINE derivs(x,y,dydx)
REAL x,y(*),dydx(*)
dydx(1)=-.013*y(1)-1000.*y(1)*y(3)
dydx(2)=-2500.*y(2)*y(3)
dydx(3)=-.013*y(1)-1000.*y(1)*y(3)-2500.*y(2)*y(3)
return
END

Semi-implicit Extrapolation Method

The Bulirsch-Stoer method, which discretizes the differential equation using the modified
midpoint rule, does not work for stiff problems. Bader and Deuflhard[5] discovered a semi-
implicit discretization that works very well and that lends itself to extrapolation exactly as
in the original Bulirsch-Stoer method.

The starting point is an implicit form of the midpoint rule:

yn+1 − yn−1 = 2hf
(

yn+1 + yn−1

2

)
(16.6.29)

Convert this equation into semi-implicit form by linearizing the right-hand sideaboutf(yn).
The result is thesemi-implicit midpoint rule:

[
1− h

∂f
∂y

]
· yn+1 =

[
1 + h

∂f
∂y

]
· yn−1 + 2h

[
f(yn) −

∂f
∂y

· yn

]
(16.6.30)

It is used with a special first step, the semi-implicit Euler step (16.6.17), and a special
“smoothing” last step in which the lastyn is replaced by

yn ≡ 1

2
(yn+1 + yn−1) (16.6.31)

Bader and Deuflhard showed that the error series for this method once again involves only
even powers ofh.

For practical implementation, it is better to rewrite the equations using∆k ≡ yk+1 −yk.
With h = H/m, start by calculating

∆0 =

[
1− h

∂f
∂y

]
−1

· hf(y0)

y1 = y0 + ∆0

(16.6.32)

Then for k = 1, . . . ,m − 1, set

∆k = ∆k−1 + 2

[
1− h

∂f
∂y

]
−1

· [hf(yk) − ∆k−1]

yk+1 = yk + ∆k

(16.6.33)

736 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Finally compute

∆m =

[
1− h

∂f
∂y

]
−1

· [hf(ym) − ∆m−1]

ym = ym + ∆m

(16.6.34)

It is easy to incorporate the replacement (16.6.19) in the above formulas. The additional
terms in the Jacobian that come from∂f/∂x all cancel out of the semi-implicit midpoint rule
(16.6.30). In the special first step (16.6.17), and in the corresponding equation (16.6.32), the
termhf becomeshf + h2∂f/∂x. The remaining equations are all unchanged.

This algorithm is implemented in the routinesimpr:

SUBROUTINE simpr(y,dydx,dfdx,dfdy,nmax,n,xs,htot,nstep,yout,
* derivs)

INTEGER n,nmax,nstep,NMAXX
REAL htot,xs,dfdx(n),dfdy(nmax,nmax),dydx(n),y(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAXX=50) Maximum expected value of n.

C USES derivs,lubksb,ludcmp
Performs one step of semi-implicit midpoint rule. Input are the dependent variable y(1:n),
its derivative dydx(1:n), the derivative of the right-hand side with respect to x, dfdx(1:n),
and the Jacobian dfdy(1:nmax,1:nmax) at xs. Also input are htot, the total step
to be taken, and nstep, the number of substeps to be used. The output is returned as
yout(1:n). derivs is the user-supplied subroutine that calculates dydx.

INTEGER i,j,nn,indx(NMAXX)
REAL d,h,x,a(NMAXX,NMAXX),del(NMAXX),ytemp(NMAXX)
h=htot/nstep Stepsize this trip.
do 12 i=1,n Set up the matrix 1 − hf ′.

do 11 j=1,n
a(i,j)=-h*dfdy(i,j)

enddo 11

a(i,i)=a(i,i)+1.
enddo 12

call ludcmp(a,n,NMAXX,indx,d) LU decomposition of the matrix.
do 13 i=1,n Set up right-hand side for first step. Use yout for

temporary storage.yout(i)=h*(dydx(i)+h*dfdx(i))
enddo 13

call lubksb(a,n,NMAXX,indx,yout)
do 14 i=1,n First step.

del(i)=yout(i)
ytemp(i)=y(i)+del(i)

enddo 14

x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
do 17 nn=2,nstep General step.

do 15 i=1,n Set up right-hand side for general step.
yout(i)=h*yout(i)-del(i)

enddo 15

call lubksb(a,n,NMAXX,indx,yout)
do 16 i=1,n

del(i)=del(i)+2.*yout(i)
ytemp(i)=ytemp(i)+del(i)

enddo 16

x=x+h
call derivs(x,ytemp,yout)

enddo 17

do 18 i=1,n Set up right-hand side for last step.
yout(i)=h*yout(i)-del(i)

enddo 18

call lubksb(a,n,NMAXX,indx,yout)
do 19 i=1,n Take last step.

yout(i)=ytemp(i)+yout(i)

16.6 Stiff Sets of Equations 737

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 19

return
END

The routinesimpr is intended to be used in a routinestifbs that is almost exactly the
same asbsstep. The only differences are:

• The stepsize sequence is

n = 2, 6, 10, 14, 22, 34, 50, . . . , (16.6.35)

where each member differs from its predecessor by the smallest multiple of 4 that
makes the ratio of successive terms be≤ 5

7
. The parameterKMAXX is taken to be 7.

• The work per unit step now includes the cost of Jacobian evaluations as well
as function evaluations. We count one Jacobian evaluation as equivalent toN
function evaluations, whereN is the number of equations.

• Once again the user-supplied routinederivs is a dummy argument and so can have
any name. However, to maintain “plug-compatibility” withrkqs, bsstep and
stiff, the routinejacobn is not an argument andmusthave exactly this name. It
is called once per step to returnf ′ (dfdy) and∂f/∂x (dfdx) as functions ofx andy.

Here is the routine, with comments pointing out only the differences frombsstep:

SUBROUTINE stifbs(y,dydx,nv,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER nv,NMAX,KMAXX,IMAX
REAL eps,hdid,hnext,htry,x,dydx(nv),y(nv),yscal(nv),SAFE1,

* SAFE2,REDMAX,REDMIN,TINY,SCALMX
EXTERNAL derivs
PARAMETER (NMAX=50,KMAXX=7,IMAX=KMAXX+1,SAFE1=.25,SAFE2=.7,

* REDMAX=1.e-5,REDMIN=.7,TINY=1.e-30,SCALMX=.1)
C USES derivs,jacobn,simpr,pzextr

Semi-implicit extrapolation step for integrating stiff o.d.e.’s, with monitoring of local trun-
cation error to adjust stepsize. Input are the dependent variable vector y(1:n) and its
derivative dydx(1:n) at the starting value of the independent variable x. Also input are
the stepsize to be attempted htry, the required accuracy eps, and the vector yscal(1:n)
against which the error is scaled. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.
derivs is a user-supplied subroutine that computes the derivatives of the right-hand side
with respect to x, while jacobn (a fixed name) is a user-supplied subroutine that computes
the Jacobi matrix of derivatives of the right-hand side with respect to the components of y.
Be sure to set htry on successive steps to the value of hnext returned from the previous
step, as is the case if the routine is called by odeint.

INTEGER i,iq,k,kk,km,kmax,kopt,nvold,nseq(IMAX)
REAL eps1,epsold,errmax,fact,h,red,scale,work,wrkmin,xest,xnew,

* a(IMAX),alf(KMAXX,KMAXX),dfdx(NMAX),dfdy(NMAX,NMAX),
* err(KMAXX),yerr(NMAX),ysav(NMAX),yseq(NMAX)

LOGICAL first,reduct
SAVE a,alf,epsold,first,kmax,kopt,nseq,nvold,xnew
DATA first/.true./,epsold/-1./,nvold/-1/
DATA nseq /2,6,10,14,22,34,50,70/ Sequence is different from bsstep.
if(eps.ne.epsold.or.nv.ne.nvold)then Reinitialize also if nv has changed.

hnext=-1.e29
xnew=-1.e29
eps1=SAFE1*eps
a(1)=nseq(1)+1
do 11 k=1,KMAXX

a(k+1)=a(k)+nseq(k+1)
enddo 11

do 13 iq=2,KMAXX
do 12 k=1,iq-1

alf(k,iq)=eps1**((a(k+1)-a(iq+1))/
* ((a(iq+1)-a(1)+1.)*(2*k+1)))

enddo 12

enddo 13

738 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

epsold=eps
nvold=nv Save nv.
a(1)=nv+a(1) Add cost of Jacobian evaluations to work co-

efficients.do 14 k=1,KMAXX
a(k+1)=a(k)+nseq(k+1)

enddo 14

do 15 kopt=2,KMAXX-1
if(a(kopt+1).gt.a(kopt)*alf(kopt-1,kopt))goto 1

enddo 15

1 kmax=kopt
endif
h=htry
do 16 i=1,nv

ysav(i)=y(i)
enddo 16

call jacobn(x,y,dfdx,dfdy,nv,nmax) Evaluate Jacobian.
if(h.ne.hnext.or.x.ne.xnew)then

first=.true.
kopt=kmax

endif
reduct=.false.

2 do 18 k=1,kmax
xnew=x+h
if(xnew.eq.x)pause ’stepsize underflow in stifbs’
call simpr(ysav,dydx,dfdx,dfdy,nmax,nv,x,h,nseq(k),yseq,

* derivs) Semi-implicit midpoint rule.
xest=(h/nseq(k))**2 The rest of the routine is identical to bsstep.
call pzextr(k,xest,yseq,y,yerr,nv)
if(k.ne.1)then

errmax=TINY
do 17 i=1,nv

errmax=max(errmax,abs(yerr(i)/yscal(i)))
enddo 17

errmax=errmax/eps
km=k-1
err(km)=(errmax/SAFE1)**(1./(2*km+1))

endif
if(k.ne.1.and.(k.ge.kopt-1.or.first))then

if(errmax.lt.1.)goto 4
if(k.eq.kmax.or.k.eq.kopt+1)then

red=SAFE2/err(km)
goto 3

else if(k.eq.kopt)then
if(alf(kopt-1,kopt).lt.err(km))then

red=1./err(km)
goto 3

endif
else if(kopt.eq.kmax)then

if(alf(km,kmax-1).lt.err(km))then
red=alf(km,kmax-1)*

* SAFE2/err(km)
goto 3

endif
else if(alf(km,kopt).lt.err(km))then

red=alf(km,kopt-1)/err(km)
goto 3

endif
endif

enddo 18

3 red=min(red,REDMIN)
red=max(red,REDMAX)
h=h*red
reduct=.true.
goto 2

16.6 Stiff Sets of Equations 739

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

4 x=xnew
hdid=h
first=.false.
wrkmin=1.e35
do 19 kk=1,km

fact=max(err(kk),SCALMX)
work=fact*a(kk+1)
if(work.lt.wrkmin)then

scale=fact
wrkmin=work
kopt=kk+1

endif
enddo 19

hnext=h/scale
if(kopt.ge.k.and.kopt.ne.kmax.and..not.reduct)then

fact=max(scale/alf(kopt-1,kopt),SCALMX)
if(a(kopt+1)*fact.le.wrkmin)then

hnext=h/fact
kopt=kopt+1

endif
endif
return
END

The routinestifbs is an excellent routine for all stiff problems, competitive with
the best Gear-type routines.stiff is comparable in execution time for moderateN and
ǫ <∼ 10−4. By the timeǫ ∼ 10−8, stifbs is roughly an order of magnitude faster. There
are further improvements that could be applied tostifbs to make it even more robust. For
example, very occasionallyludcmp in simpr will encounter a singular matrix. You could
arrange for the stepsize to be reduced, say by a factor of the currentnseq(k). There are
also certain stability restrictions on the stepsize that come into play on some problems. For
a discussion of how to implement these automatically, see[6].

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall). [1]

Kaps, P., and Rentrop, P. 1979, Numerische Mathematik, vol. 33, pp. 55–68. [2]

Shampine, L.F. 1982, ACM Transactions on Mathematical Software, vol. 8, pp. 93–113. [3]

Enright, W.H., and Pryce, J.D. 1987, ACM Transactions on Mathematical Software, vol. 13,
pp. 1–27. [4]

Bader, G., and Deuflhard, P. 1983, Numerische Mathematik, vol. 41, pp. 373–398. [5]

Deuflhard, P. 1983, Numerische Mathematik, vol. 41, pp. 399–422.

Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505–535.

Deuflhard, P. 1987, “Uniqueness Theorems for Stiff ODE Initial Value Problems,” Preprint SC-
87-3 (Berlin: Konrad Zuse Zentrum für Informationstechnik). [6]

Enright, W.H., Hull, T.E., and Lindberg, B. 1975, BIT, vol. 15, pp. 10–48.

Wanner, G. 1988, in Numerical Analysis 1987, Pitman Research Notes in Mathematics, vol. 170,
D.F. Griffiths and G.A. Watson, eds. (Harlow, Essex, U.K.: Longman Scientific and Tech-
nical).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag).

740 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

16.7 Multistep, Multivalue, and
Predictor-Corrector Methods

The terms multistepand multivaluedescribe two different ways of implementing
essentially the same integration technique for ODEs. Predictor-corrector is a partic-
ular subcategrory of these methods — in fact, the most widely used. Accordingly,
the name predictor-corrector is often loosely used to denote all these methods.

We suspect that predictor-corrector integrators have had their day, and that they
are no longer the method of choice for most problems in ODEs. For high-precision
applications, or applications where evaluations of the right-hand sides are expensive,
Bulirsch-Stoer dominates. For convenience, or for low precision, adaptive-stepsize
Runge-Kutta dominates. Predictor-corrector methods have been, we think, squeezed
out in the middle. There is possibly only one exceptional case: high-precision
solution of very smooth equations with very complicated right-hand sides, as we
will describe later.

Nevertheless, these methods have had a long historical run. Textbooks are
full of information on them, and there are a lot of standard ODE programs around
that are based on predictor-corrector methods. Many capable researchers have a
lot of experience with predictor-corrector routines, and they see noreason to make
a precipitous change of habit. It is not a bad idea for you to be familiar with the
principles involved, and even with the sorts of bookkeeping details that are the bane
of these methods. Otherwise there will be a big surprise in store when you first have
to fix a problem in a predictor-corrector routine.

Let us first consider the multistep approach. Think about how integrating an
ODE is different from finding the integral of a function: For a function, the integrand
has a known dependence on the independent variablex, and can be evaluated at
will. For an ODE, the “integrand” is the right-hand side, which depends both on
x and on the dependent variablesy. Thus to advance the solution ofy′ = f(x, y)
from xn to x, we have

y(x) = yn +

∫
x

xn

f(x′, y) dx′ (16.7.1)

In a single-step method like Runge-Kutta or Bulirsch-Stoer, the valueyn+1 atxn+1

depends only onyn. In a multistep method, we approximatef(x, y) by a polynomial
passing throughseveralprevious pointsxn, xn−1, . . . and possibly also through
xn+1. The result of evaluating the integral (16.7.1) atx = xn+1 is then of the form

yn+1 = yn + h(β0y
′

n+1 + β1y
′

n
+ β2y

′

n−1 + β3y
′

n−2 + · · ·) (16.7.2)

wherey′
n

denotesf(xn, yn), and so on. Ifβ0 = 0, the method is explicit; otherwise
it is implicit. The order of the method depends on how many previous steps we
use to get each new value ofy.

Consider how we might solve an implicit formula of the form (16.7.2) foryn+1.
Two methods suggest themselves:functional iterationand Newton’s method. In
functional iteration, we take some initial guess foryn+1, insert it into the right-hand
side of (16.7.2) to get an updated value ofyn+1, insert this updated value back into
the right-hand side, and continue iterating. But how are we to get an initial guess for

740 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

16.7 Multistep, Multivalue, and
Predictor-Corrector Methods

The terms multistepand multivaluedescribe two different ways of implementing
essentially the same integration technique for ODEs. Predictor-corrector is a partic-
ular subcategrory of these methods — in fact, the most widely used. Accordingly,
the name predictor-corrector is often loosely used to denote all these methods.

We suspect that predictor-corrector integrators have had their day, and that they
are no longer the method of choice for most problems in ODEs. For high-precision
applications, or applications where evaluations of the right-hand sides are expensive,
Bulirsch-Stoer dominates. For convenience, or for low precision, adaptive-stepsize
Runge-Kutta dominates. Predictor-corrector methods have been, we think, squeezed
out in the middle. There is possibly only one exceptional case: high-precision
solution of very smooth equations with very complicated right-hand sides, as we
will describe later.

Nevertheless, these methods have had a long historical run. Textbooks are
full of information on them, and there are a lot of standard ODE programs around
that are based on predictor-corrector methods. Many capable researchers have a
lot of experience with predictor-corrector routines, and they see noreason to make
a precipitous change of habit. It is not a bad idea for you to be familiar with the
principles involved, and even with the sorts of bookkeeping details that are the bane
of these methods. Otherwise there will be a big surprise in store when you first have
to fix a problem in a predictor-corrector routine.

Let us first consider the multistep approach. Think about how integrating an
ODE is different from finding the integral of a function: For a function, the integrand
has a known dependence on the independent variablex, and can be evaluated at
will. For an ODE, the “integrand” is the right-hand side, which depends both on
x and on the dependent variablesy. Thus to advance the solution ofy′ = f(x, y)
from xn to x, we have

y(x) = yn +

∫
x

xn

f(x′, y) dx′ (16.7.1)

In a single-step method like Runge-Kutta or Bulirsch-Stoer, the valueyn+1 atxn+1

depends only onyn. In a multistep method, we approximatef(x, y) by a polynomial
passing throughseveralprevious pointsxn, xn−1, . . . and possibly also through
xn+1. The result of evaluating the integral (16.7.1) atx = xn+1 is then of the form

yn+1 = yn + h(β0y
′

n+1 + β1y
′

n
+ β2y

′

n−1 + β3y
′

n−2 + · · ·) (16.7.2)

wherey′
n

denotesf(xn, yn), and so on. Ifβ0 = 0, the method is explicit; otherwise
it is implicit. The order of the method depends on how many previous steps we
use to get each new value ofy.

Consider how we might solve an implicit formula of the form (16.7.2) foryn+1.
Two methods suggest themselves:functional iterationand Newton’s method. In
functional iteration, we take some initial guess foryn+1, insert it into the right-hand
side of (16.7.2) to get an updated value ofyn+1, insert this updated value back into
the right-hand side, and continue iterating. But how are we to get an initial guess for

16.7 Multistep, Multivalue, and Predictor-Corrector Methods 741

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

yn+1? Easy! Just use someexplicit formula of the same form as (16.7.2). This is
called thepredictor step. In the predictor step we are essentiallyextrapolatingthe
polynomial fit to the derivative from the previous points to the new pointxn+1 and
then doing the integral (16.7.1) in a Simpson-like manner fromxn to xn+1. The
subsequent Simpson-like integration, using the prediction step’s value ofyn+1 to
interpolatethe derivative, is called thecorrector step. The difference between the
predicted and corrected function values supplies information on the local truncation
error that can be used to control accuracy and to adjust stepsize.

If one corrector step is good, aren’t many better? Why not useeach corrector
as an improved predictor and iterate to convergence oneach step? Answer: Even if
you had aperfectpredictor, the step would still beaccurate only to the finite order
of the corrector. This incurable error term is on the same order as that which your
iteration is supposed to cure, so you are at best changing only the coefficient in front
of the error term by a fractional amount. So dubious an improvement is certainly not
worth the effort. Your extra effort would be better spent in taking a smaller stepsize.

As described so far, you might think it desirable or necessary to predict several
intervals ahead at each step, then to use all these intervals, with various weights, in
a Simpson-like corrector step. That is not a good idea. Extrapolation is the least
stable part of the procedure, and it is desirable to minimize its effect. Therefore, the
integration steps of a predictor-corrector method are overlapping,each one involving
several stepsize intervalsh, but extending just one such interval farther than the
previous ones. Only that one extended interval is extrapolated by eachpredictor step.

The most popular predictor-corrector methods are probably the Adams-
Bashforth-Moulton schemes, which have good stability properties. The Adams-
Bashforth part is the predictor. For example, the third-order case is

predictor: yn+1 = yn +
h

12
(23y′

n
− 16y′

n−1 + 5y′
n−2) + O(h4) (16.7.3)

Here information at the current pointxn, together with the two previous pointsxn−1

andxn−2 (assumed equally spaced), is used to predict the valueyn+1 at the next
point,xn+1. The Adams-Moulton part is the corrector. The third-order case is

corrector: yn+1 = yn +
h

12
(5y′

n+1 + 8y′
n
− y′

n−1) + O(h4) (16.7.4)

Without the trial value ofyn+1 from the predictor step to insert on the right-hand
side, the corrector would be a nasty implicit equation foryn+1.

There are actually three separate processes occurring in a predictor-corrector
method: the predictor step, which we call P, the evaluation of the derivativey′

n+1

from the latest value ofy, which we call E, and the corrector step, which we call
C. In this notation, iteratingm times with the corrector (a practice we inveighed
against earlier) would be written P(EC)m. One also has the choice of finishing with
a C or an E step. The lore is that a final E is superior, so the strategy usually
recommended is PECE.

Notice that a PC method with a fixed number of iterations (say, one) is an
explicit method! When we fix the number of iterations in advance, then the final
value ofyn+1 can be written as some complicated function of known quantities. Thus
fixed iteration PC methods lose the strong stability properties of implicit methods
and should only be used for nonstiff problems.

742 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For stiff problems wemustuse an implicit method if we want to avoid having
tiny stepsizes. (Not all implicit methods are good for stiff problems, but fortunately
some good ones such as the Gear formulas are known.) We then appear to have two
choices for solving the implicit equations: functional iteration to convergence, or
Newton iteration. However, it turns out that for stiff problems functional iteration
will not even converge unless we use tiny stepsizes, no matter how close our
prediction is! Thus Newton iteration is usually an essential part of a multistep
stiff solver. For convergence, Newton’s method doesn’t particularly care what the
stepsize is, as long as the prediction is accurate enough.

Multistep methods, as we have described them so far, suffer from two serious
difficulties when one tries to implement them:

• Since the formulas require results from equally spaced steps, adjusting
the stepsize is difficult.

• Starting and stopping present problems. For starting, we need the initial
values plus several previous steps to prime the pump. Stopping is a
problem because equal steps are unlikely to land directly on the desired
termination point.

Older implementations of PC methods have various cumbersome ways of
dealing with these problems. For example, they might use Runge-Kutta to start
and stop. Changing the stepsize requires considerable bookkeeping to do some
kind of interpolation procedure. Fortunately both these drawbacks disappear with
the multivalue approach.

For multivalue methods the basic data available to the integrator are the first
few terms of the Taylor series expansion of the solution at the current pointxn. The
aim is to advance the solution and obtain the expansion coefficients at the next point
xn+1. This is in contrast to multistep methods, where the data are the values of
the solution atxn, xn−1, We’ll illustrate the idea by considering a four-value
method, for which the basic data are

y
n
≡

yn
hy′

n

(h2/2)y′′
n

(h3/6)y′′′
n

 (16.7.5)

It is also conventional to scale the derivatives with the powers ofh = xn+1 − xn

as shown. Note that here we use the vector notationy to denote the solution and
its first few derivatives at a point, not the fact that we are solving a system of
equations with many componentsy.

In terms of the data in (16.7.5), we can approximate the value of the solution
y at some pointx:

y(x) = yn + (x− xn)y′
n

+
(x− xn)2

2
y′′
n

+
(x− xn)3

6
y′′′
n

(16.7.6)

Setx = xn+1 in equation (16.7.6) to get an approximation toyn+1. Differentiate
equation (16.7.6) and setx = xn+1 to get an approximation toy′

n+1, and similarly for
y′′
n+1 andy′′′

n+1. Call the resulting approximatioñyn+1, where the tilde is a reminder

16.7 Multistep, Multivalue, and Predictor-Corrector Methods 743

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

that all we have done so far is a polynomial extrapolation of the solution and its
derivatives; we have not yet used the differential equation. You can easily verify that

ỹn+1 = B · y
n

(16.7.7)

where the matrixB is

B =

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

 (16.7.8)

We now write the actual approximation toy
n+1 that we will use by adding a

correction toỹn+1:

y
n+1 = ỹn+1 + αr (16.7.9)

Herer will be a fixed vector of numbers, in the same way thatB is a fixed matrix.
We fix α by requiring that the differential equation

y′
n+1 = f(xn+1, yn+1) (16.7.10)

be satisfied. The second of the equations in (16.7.9) is

hy′
n+1 = hỹ ′

n+1 + αr2 (16.7.11)

and this will be consistent with (16.7.10) provided

r2 = 1, α = hf(xn+1, yn+1) − hỹ ′

n+1 (16.7.12)

The values ofr1, r3, andr4 are free for the inventor of a given four-value method to
choose. Different choices give different orders of method (i.e., through what order
in h the final expression 16.7.9 actually approximates the solution), and different
stability properties.

An interesting result, not obvious from our presentation, is that multivalue and
multistep methods are entirely equivalent. In other words, the valueyn+1 given by
a multivalue method with givenB and r is exactly the same value given by some
multistep method with givenβ’s in equation (16.7.2). For example, it turns out
that the Adams-Bashforth formula (16.7.3) corresponds to a four-value method with
r1 = 0, r3 = 3/4, andr4 = 1/6. The method is explicit becauser1 = 0. The
Adams-Moulton method (16.7.4) corresponds to the implicit four-value method with
r1 = 5/12, r3 = 3/4, andr4 = 1/6. Implicit multivalue methods are solved the
same way as implicit multistep methods: either by a predictor-corrector approach
using an explicit method for the predictor, or by Newton iteration for stiff systems.

Why go to all the trouble of introducing a whole new method that turns out
to be equivalent to a method you already knew? The reason is that multivalue
methods allow an easy solution to the two difficulties we mentioned above in
actually implementing multistep methods.

Consider first the question of stepsize adjustment. To change stepsize fromh
to h′ at some pointxn, simply multiply the components ofy

n
in (16.7.5) by the

appropriate powers ofh′/h, and you are ready to continue toxn + h′.

744 Chapter 16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Multivalue methods also allow a relatively easy change in theorder of the
method: Simply changer . The usual strategy for this is first to determine the new
stepsize with the current order from the error estimate. Then check what stepsize
would be predicted using an order one greater and one smaller than the current
order. Choose the order that allows you to take the biggest next step. Being able to
change order also allows an easy solution to the starting problem: Simply start with
a first-order method and let the order automatically increase to the appropriate level.

For low accuracy requirements, a Runge-Kutta routine likerkqs is almost
always the most efficient choice. For high accuracy,bsstep is both robust and
efficient. For very smooth functions, a variable-order PC method can invoke very
high orders. If the right-hand side of the equation is relatively complicated, so that
the expense of evaluating it outweighs the bookkeeping expense, then the best PC
packages can outperform Bulirsch-Stoer on such problems. As you can imagine,
however, such a variable-stepsize, variable-order method is not trivial to program. If
you suspect that your problem is suitable for this treatment, we recommend use of a
canned PC package. For further details consult Gear[1] or Shampine and Gordon[2].

Our prediction, nevertheless, is that, as extrapolation methods like Bulirsch-
Stoer continue to gain sophistication, they will eventually beat out PC methods in
all applications. We are willing, however, to be corrected.

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), Chapter 9. [1]

Shampine, L.F., and Gordon, M.K. 1975, Computer Solution of Ordinary Differential Equations.
The Initial Value Problem. (San Francisco: W.H Freeman). [2]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 5.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 8.

Hamming, R.W. 1962, Numerical Methods for Engineers and Scientists; reprinted 1986 (New
York: Dover), Chapters 14–15.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 7.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Chapter 17. Two Point Boundary
Value Problems

17.0 Introduction

When ordinary differential equations are required to satisfy boundary conditions
at more than one value of the independent variable, the resulting problem is called a
two point boundary value problem. As the terminology indicates, the most common
case by far is where boundary conditions are supposed to be satisfied at two points —
usually the starting and ending values of the integration. However, the phrase “two
point boundary value problem” is also used loosely to include more complicated
cases, e.g., where some conditions are specified at endpoints, others at interior
(usually singular) points.

The crucial distinction between initial value problems (Chapter 16) and two
point boundary value problems (this chapter) is that in the former case we are able
to start an acceptable solution at its beginning (initial values) and just march it along
by numerical integration to its end (final values); while in the present case, the
boundary conditions at the starting point do not determine a unique solution to start
with — and a “random” choice among the solutions that satisfy these (incomplete)
starting boundary conditions is almost certainnot to satisfy the boundary conditions
at the other specified point(s).

It should not surprise you that iteration is in general required to meld these
spatially scattered boundary conditions into a single global solution of the differential
equations. For this reason, two point boundary value problems require considerably
more effort to solve than do initial value problems. You have to integrate your dif-
ferential equations over the interval of interest, or perform an analogous “relaxation”
procedure (see below), at least several, and sometimes very many, times. Onlyin
the special case of linear differential equations can you say in advance just how
many such iterations will be required.

The “standard” two point boundary value problem has the following form: We
desire the solution to a set ofN coupled first-order ordinary differential equations,
satisfyingn1 boundary conditions at the starting pointx1, and a remaining set of
n2 = N − n1 boundary conditions at the final pointx2. (Recall that all differential
equations of order higher than first can be written as coupled sets of first-order
equations, cf.§16.0.)

The differential equations are

dyi(x)

dx
= gi(x, y1, y2, . . . , yN) i = 1, 2, . . . , N (17.0.1)

745

746 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

required
boundary
value

desired
boundary
value

1

3

2

y

x

Figure 17.0.1. Shooting method (schematic). Trial integrations that satisfy the boundary condition at one
endpoint are “launched.” The discrepancies from the desired boundary condition at the other endpoint are
used to adjust the starting conditions, until boundary conditions at both endpoints are ultimately satisfied.

At x1, the solution is supposed to satisfy

B1j(x1, y1, y2, . . . , yN) = 0 j = 1, . . . , n1 (17.0.2)

while at x2, it is supposed to satisfy

B2k(x2, y1, y2, . . . , yN) = 0 k = 1, . . . , n2 (17.0.3)

There are two distinct classes of numerical methods for solving two point
boundary value problems. In theshooting method(§17.1) we choose values for all
of the dependent variables at one boundary. These values must be consistent with
any boundary conditions forthat boundary, but otherwise are arranged to depend
on arbitrary free parameters whose values we initially “randomly” guess. We then
integrate theODEs by initial valuemethods,arriving at theother boundary (and/or any
interior points with boundary conditions specified). In general, we find discrepancies
from the desired boundary values there. Now we have a multidimensional root-
finding problem, as was treated in§9.6 and§9.7: Find the adjustment of the free
parameters at the starting point that zeros the discrepancies at the other boundary
point(s). If we liken integrating the differential equations to following the trajectory
of a shot from gun to target, then picking the initial conditions corresponds to aiming
(see Figure 17.0.1). The shooting method provides a systematic approach to taking
a set of “ranging” shots that allow us to improve our “aim” systematically.

As another variant of the shooting method (§17.2), we can guess unknown free
parameters at both ends of the domain, integrate the equations to a common midpoint,
and seek to adjust the guessed parameters so that the solution joins “smoothly” at
the fitting point. In all shooting methods, trial solutions satisfy the differential
equations “exactly” (or as exactly as we care to make our numerical integration),
but the trial solutions come to satisfy the required boundary conditions only after
the iterations are finished.

Relaxation methodsuse a different approach. The differential equations are
replaced by finite-difference equations on a mesh of points that covers the range of

17.0 Introduction 747

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

required
boundary
value

required
boundary
value

initial guess
1st iteration

2nd iteration

true solution

Figure 17.0.2. Relaxation method (schematic). An initial solution is guessed that approximately satisfies
the differential equation and boundary conditions. An iterative process adjusts the function to bring it
into close agreement with the true solution.

the integration. A trial solution consists of values for the dependent variables at each
mesh point,notsatisfying the desired finite-differenceequations, nor necessarily even
satisfying the required boundary conditions. The iteration, now calledrelaxation,
consists of adjusting all the values on the mesh so as to bring them into successively
closer agreement with the finite-difference equations and, simultaneously, with the
boundary conditions (see Figure 17.0.2). For example, if the problem involves three
coupled equations and a mesh of one hundred points, we must guess and improve
three hundred variables representing the solution.

With all this adjustment, you may be surprised that relaxation is ever an efficient
method, but (for the right problems) it really is! Relaxation works better than
shooting when the boundary conditions are especially delicate or subtle, or where
they involve complicated algebraic relations that cannot easily be solved in closed
form. Relaxation works best when the solution is smooth and not highly oscillatory.
Such oscillations would require many grid points foraccurate representation. The
number and positionof required points may not be knowna priori. Shootingmethods
are usually preferred in such cases, because their variable stepsize integrations adjust
naturally to a solution’s peculiarities.

Relaxation methods are often preferred when the ODEs have extraneous
solutions which, while not appearing in the final solution satisfying all boundary
conditions, may wreak havoc on the initial value integrations required by shooting.
The typical case is that of trying to maintain a dying exponential in the presence
of growing exponentials.

Good initial guesses are the secret of efficient relaxation methods. Often one
has to solve a problem many times, each time with a slightly different value of some
parameter. In that case, the previous solution is usually a good initial guess when
the parameter is changed, and relaxation will work well.

Until you have enough experience to make your own judgment between the two
methods, you might wish to follow the advice of your authors, who are notorious
computer gunslingers: We always shoot first, and only then relax.

748 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Problems Reducible to the Standard Boundary Problem

There are two important problems that can be reduced to the standard boundary
value problem described by equations (17.0.1) – (17.0.3). The first is theeigenvalue
problem for differential equations. Here the right-hand side of the system of
differential equations depends on a parameterλ,

dyi(x)

dx
= gi(x, y1, . . . , yN , λ) (17.0.4)

and one has to satisfyN + 1 boundary conditions instead of justN . The problem
is overdetermined and in general there is no solution for arbitrary values ofλ. For
certain special values ofλ, the eigenvalues, equation (17.0.4) does have a solution.

We reduce this problem to the standard case by introducing a new dependent
variable

yN+1 ≡ λ (17.0.5)

and another differential equation

dyN+1

dx
= 0 (17.0.6)

An example of this trick is given in§17.4.
The other case that can be put in the standard form is afree boundary problem.

Here only one boundary abscissax1 is specified, while the other boundaryx2 is to
be determined so that the system (17.0.1) has a solution satisfying a total ofN + 1
boundary conditions. Here we again add an extra constant dependent variable:

yN+1 ≡ x2 − x1 (17.0.7)

dyN+1

dx
= 0 (17.0.8)

We also define a newindependentvariablet by setting

x− x1 ≡ t yN+1, 0 ≤ t ≤ 1 (17.0.9)

The system ofN + 1 differential equations fordyi/dt is now in the standard form,
with t varying between the known limits0 and1.

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

Eggleton, P.P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.

London, R.A., and Flannery, B.P. 1982, Astrophysical Journal, vol. 258, pp. 260–269.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3–7.4.

17.1 The Shooting Method 749

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

17.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (§9.7). It seeks to zeron2 functions
of n2 variables. The functions are obtained by integratingN differential equations
from x1 to x2. Let us see how this works:

At the starting pointx1 there areN starting valuesyi to be specified, but
subject ton1 conditions. Therefore there aren2 = N −n1 freely specifiablestarting
values. Let us imagine that these freely specifiable values are the components of a
vectorV that lives in a vector space of dimensionn2. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a subroutine that
generates a complete set ofN starting valuesy, satisfying the boundary conditions
atx1, from an arbitrary vector value ofV in which there are no restrictions on then2

component values. In other words, (17.0.2) converts to a prescription

yi(x1) = yi(x1; V1, . . . , Vn2
) i = 1, . . . , N (17.1.1)

Below, the subroutine that implements (17.1.1) will be calledload.
Notice that the components ofV might be exactly the values of certain “free”

components ofy, with the other components ofy determined by the boundary
conditions. Alternatively, the components ofV might parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations among theyi, rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set ofyi ’s. It makes no difference
which way you go, as long as your vector space ofV’s generates (through 17.1.1)
all allowed starting vectorsy.

Given a particularV, a particulary(x1) is thus generated. It can then be turned
into ay(x2) by integrating the ODEs tox2 as an initial value problem (e.g., using
Chapter 16’sodeint). Now, atx2, let us define adiscrepancyvector F, also of
dimensionn2, whose components measure how far we are from satisfying then2

boundary conditions atx2 (17.0.3). Simplest of all is just to use the right-hand
sides of (17.0.3),

Fk = B2k(x2, y) k = 1, . . . , n2 (17.1.2)

As in the case ofV, however, you can use any other convenient parametrization,
as long as your space ofF’s spans the space of possible discrepancies from the
desired boundary conditions, with all components ofF equal to zero if and only if
the boundary conditions atx2 are satisfied. Below, you will be asked to supply a
user-written subroutinescorewhich uses (17.0.3) to convert anN -vector of ending
valuesy(x2) into ann2-vector of discrepanciesF.

17.1 The Shooting Method 749

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

17.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (§9.7). It seeks to zeron2 functions
of n2 variables. The functions are obtained by integratingN differential equations
from x1 to x2. Let us see how this works:

At the starting pointx1 there areN starting valuesyi to be specified, but
subject ton1 conditions. Therefore there aren2 = N −n1 freely specifiablestarting
values. Let us imagine that these freely specifiable values are the components of a
vectorV that lives in a vector space of dimensionn2. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a subroutine that
generates a complete set ofN starting valuesy, satisfying the boundary conditions
atx1, from an arbitrary vector value ofV in which there are no restrictions on then2

component values. In other words, (17.0.2) converts to a prescription

yi(x1) = yi(x1; V1, . . . , Vn2
) i = 1, . . . , N (17.1.1)

Below, the subroutine that implements (17.1.1) will be calledload.
Notice that the components ofV might be exactly the values of certain “free”

components ofy, with the other components ofy determined by the boundary
conditions. Alternatively, the components ofV might parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations among theyi, rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set ofyi ’s. It makes no difference
which way you go, as long as your vector space ofV’s generates (through 17.1.1)
all allowed starting vectorsy.

Given a particularV, a particulary(x1) is thus generated. It can then be turned
into ay(x2) by integrating the ODEs tox2 as an initial value problem (e.g., using
Chapter 16’sodeint). Now, atx2, let us define adiscrepancyvector F, also of
dimensionn2, whose components measure how far we are from satisfying then2

boundary conditions atx2 (17.0.3). Simplest of all is just to use the right-hand
sides of (17.0.3),

Fk = B2k(x2, y) k = 1, . . . , n2 (17.1.2)

As in the case ofV, however, you can use any other convenient parametrization,
as long as your space ofF’s spans the space of possible discrepancies from the
desired boundary conditions, with all components ofF equal to zero if and only if
the boundary conditions atx2 are satisfied. Below, you will be asked to supply a
user-written subroutinescorewhich uses (17.0.3) to convert anN -vector of ending
valuesy(x2) into ann2-vector of discrepanciesF.

750 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value ofV that zeros the vector value ofF. We do this
by invoking the globally convergent Newton’s method implemented in the routine
newt of §9.7. Recall that the heart of Newton’s method involves solving the set
of n2 linear equations

J · δV = −F (17.1.3)

and then adding the correction back,

Vnew = Vold + δV (17.1.4)

In (17.1.3), the Jacobian matrixJ has components given by

Jij =
∂Fi

∂Vj

(17.1.5)

It is not feasible to compute these partial derivatives analytically. Rather, each
requires aseparateintegration of theN ODEs, followed by the evaluation of

∂Fi

∂Vj

≈
Fi(V1, . . . , Vj + ∆Vj, . . .) − Fi(V1, . . . , Vj, . . .)

∆Vj

(17.1.6)

This is done automatically for you in the routinefdjac that comes withnewt. The
only input tonewt that you have to provide is the routinefuncv that calculatesF
by integrating the ODEs. Here is the appropriate routine:

C SUBROUTINE shoot(n2,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n2,v,f)
INTEGER n2,nvar,kmax,kount,KMAXX,NMAX
REAL f(n2),v(n2),x1,x2,dxsav,xp,yp,EPS
PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX coupled ODEs.
COMMON /caller/ x1,x2,nvar
COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar coupled
ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated
from the n2 input coefficients v(1:n2), using the user-supplied routine load. The routine
integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize
h1, and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to
evaluate the n2 functions f(1:n2) that ought to be zero to satisfy the boundary conditions
at x2. The functions f are returned on output. newt uses a globally convergent Newton’s
method to adjust the values of v until the functions f are zero. The user-supplied subroutine
derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter
16). The common block caller receives its values from the main program so that funcv
can have the syntax required by newt. The common block path is included for compatibility
with odeint.

INTEGER nbad,nok
REAL h1,hmin,y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load(x1,v,y)
call odeint(y,nvar,x1,x2,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(x2,y,f)
return
END

17.2 Shooting to a Fitting Point 751

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For some problems the initial stepsize∆V might depend sensitively upon the
initial conditions. It is straightforward to alterload to include a suggested stepsize
h1 as another returned argument and feed it tofdjac via a common block.

A complete cycle of the shooting method thus requiresn2 + 1 integrations of
theN coupled ODEs: one integration to evaluate the current degree of mismatch,
andn2 for the partial derivatives. Each new cycle requires a new round ofn2 + 1
integrations. This illustrates the enormous extra effort involved in solving two point
boundary value problems compared with intial value problems.

If the differential equations arelinear, then only one complete cycle is required,
since (17.1.3)–(17.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never all) of the roundoff error.

As given here,shoot uses the quality controlled Runge-Kutta method of§16.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just as
well be used.

You, the user, must supplyshoot with: (i) a subroutineload(x1,v,y)which
returns then-vectory(1:n) (satisfying the starting boundary conditions, of course),
given the freely specifiable variables ofv(1:n2) at the initial pointx1; (ii) a
subroutinescore(x2,y,f) which returns the discrepancy vectorf(1:n2) of the
ending boundary conditions, given the vectory(1:n) at the endpointx2; (iii) a
starting vectorv(1:n2); (iv) a subroutinederivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to useshoot.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

17.2 Shooting to a Fitting Point

The shooting method described in§17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initial solution can’t even get fromx1 to x2 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a square root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such cases it is
feasible to integrate in the directionaway from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrateinto
a singular point, if only because one has not usually expended the same analytic

17.2 Shooting to a Fitting Point 751

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For some problems the initial stepsize∆V might depend sensitively upon the
initial conditions. It is straightforward to alterload to include a suggested stepsize
h1 as another returned argument and feed it tofdjac via a common block.

A complete cycle of the shooting method thus requiresn2 + 1 integrations of
theN coupled ODEs: one integration to evaluate the current degree of mismatch,
andn2 for the partial derivatives. Each new cycle requires a new round ofn2 + 1
integrations. This illustrates the enormous extra effort involved in solving two point
boundary value problems compared with intial value problems.

If the differential equations arelinear, then only one complete cycle is required,
since (17.1.3)–(17.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never all) of the roundoff error.

As given here,shoot uses the quality controlled Runge-Kutta method of§16.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just as
well be used.

You, the user, must supplyshoot with: (i) a subroutineload(x1,v,y)which
returns then-vectory(1:n) (satisfying the starting boundary conditions, of course),
given the freely specifiable variables ofv(1:n2) at the initial pointx1; (ii) a
subroutinescore(x2,y,f) which returns the discrepancy vectorf(1:n2) of the
ending boundary conditions, given the vectory(1:n) at the endpointx2; (iii) a
starting vectorv(1:n2); (iv) a subroutinederivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to useshoot.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

17.2 Shooting to a Fitting Point

The shooting method described in§17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initial solution can’t even get fromx1 to x2 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a square root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such cases it is
feasible to integrate in the directionaway from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrateinto
a singular point, if only because one has not usually expended the same analytic

752 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties isshooting to a fitting point.
Instead of integrating fromx1 tox2, we integrate first fromx1 to some pointxf that
is betweenx1 andx2; and second fromx2 (in the opposite direction) toxf .

If (as before) the number of boundary conditions imposed atx1 is n1, and the
number imposed atx2 is n2, then there aren2 freely specifiable starting values at
x1 andn1 freely specifiable starting values atx2. (If you are confused by this, go
back to§17.1.) We can therefore define ann2-vectorV(1) of starting parameters
at x1, and a prescriptionload1(x1,v1,y) for mappingV(1) into ay that satisfies
the boundary conditions atx1,

yi(x1) = yi(x1; V(1)1, . . . , V(1)n2
) i = 1, . . . , N (17.2.1)

Likewise we can define ann1-vector V(2) of starting parameters atx2, and a
prescriptionload2(x2,v2,y) for mappingV(2) into ay that satisfies the boundary
conditions atx2,

yi(x2) = yi(x2; V(2)1, . . . , V(2)n1
) i = 1, . . . , N (17.2.2)

We thus have a total ofN freely adjustable parameters in the combination of
V(1) andV(2). TheN conditions that must be satisfied are that there be agreement
in N components ofy at xf between the values obtained integrating from one side
and from the other,

yi(xf ; V(1)) = yi(xf ; V(2)) i = 1, . . . , N (17.2.3)

In some problems, theN matching conditions can be better described (physically,
mathematically, or numerically) by usingN different functionsFi, i = 1 . . .N , each
possibly depending on theN componentsyi. In those cases, (17.2.3) is replaced by

Fi[y(xf ; V(1))] = Fi[y(xf ; V(2))] i = 1, . . . , N (17.2.4)

In the program below, the user-supplied subroutinescore(xf,y,f) is supposed
to map an inputN -vectory into an outputN -vectorF. In most cases, you can
dummy this subroutine as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
as in§17.1. Comparing closely with the routineshoot of the previous section, you
should have no difficulty in understanding the following routineshootf. The main
differences in use are that you have to supply bothload1 andload2. Also, in the
calling program you must supply initial guesses forv1(1:n2) andv2(1:n1). Once
again a sample program illustrating shooting to a fitting point is given in§17.4.

C SUBROUTINE shootf(n,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n,v,f)
INTEGER n,nvar,nn2,kmax,kount,KMAXX,NMAX
REAL f(n),v(n),x1,x2,xf,dxsav,xp,yp,EPS
PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX equations.
COMMON /caller/ x1,x2,xf,nvar,nn2
COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load1,load2,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar cou-
pled ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar

17.3 Relaxation Methods 753

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ODEs at x1 (x2) are generated from the n2 (n1) coefficients v1 (v2), using the user-
supplied routine load1 (load2). The coefficients v1 and v2 should be stored in a sin-
gle array v(1:n1+n2) in the main program by an EQUIVALENCE statement of the form
(v1(1),v(1)),(v2(1),v(n2+1)). The input parameter n = n1+n2 = nvar. The rou-
tine integrates the ODEs to xf using the Runge-Kutta method with tolerance EPS, initial
stepsize h1, and minimum stepsize hmin. At xf it calls the user-supplied subroutine score
to evaluate the nvar functions f1 and f2 that ought to match at xf. The differences f are
returned on output. newt uses a globally convergent Newton’s method to adjust the val-
ues of v until the functions f are zero. The user-supplied subroutine derivs(x,y,dydx)
supplies derivative information to the ODE integrator (see Chapter 16). The common block
caller receives its values from the main program so that funcv can have the syntax
required by newt. Set nn2 = n2 in the main program. The common block path is for
compatibility with odeint.

INTEGER i,nbad,nok
REAL h1,hmin,f1(NMAX),f2(NMAX),y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load1(x1,v,y) Path from x1 to xf with best trial values v1.
call odeint(y,nvar,x1,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f1)
call load2(x2,v(nn2+1),y) Path from x2 to xf with best trial values v2.
call odeint(y,nvar,x2,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f2)
do 11 i=1,n

f(i)=f1(i)-f2(i)
enddo 11

return
END

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see[1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3.5–7.3.6. [1]

17.3 Relaxation Methods

In relaxation methodswe replace ODEs by approximatefinite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example,
we could replace a general first-order differential equation

dy

dx
= g(x, y) (17.3.1)

with an algebraic equation relating function values at two pointsk, k − 1:

yk − yk−1 − (xk − xk−1) g
[

1

2
(xk + xk−1),

1

2
(yk + yk−1)

]

= 0 (17.3.2)

17.3 Relaxation Methods 753

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ODEs at x1 (x2) are generated from the n2 (n1) coefficients v1 (v2), using the user-
supplied routine load1 (load2). The coefficients v1 and v2 should be stored in a sin-
gle array v(1:n1+n2) in the main program by an EQUIVALENCE statement of the form
(v1(1),v(1)),(v2(1),v(n2+1)). The input parameter n = n1+n2 = nvar. The rou-
tine integrates the ODEs to xf using the Runge-Kutta method with tolerance EPS, initial
stepsize h1, and minimum stepsize hmin. At xf it calls the user-supplied subroutine score
to evaluate the nvar functions f1 and f2 that ought to match at xf. The differences f are
returned on output. newt uses a globally convergent Newton’s method to adjust the val-
ues of v until the functions f are zero. The user-supplied subroutine derivs(x,y,dydx)
supplies derivative information to the ODE integrator (see Chapter 16). The common block
caller receives its values from the main program so that funcv can have the syntax
required by newt. Set nn2 = n2 in the main program. The common block path is for
compatibility with odeint.

INTEGER i,nbad,nok
REAL h1,hmin,f1(NMAX),f2(NMAX),y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load1(x1,v,y) Path from x1 to xf with best trial values v1.
call odeint(y,nvar,x1,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f1)
call load2(x2,v(nn2+1),y) Path from x2 to xf with best trial values v2.
call odeint(y,nvar,x2,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f2)
do 11 i=1,n

f(i)=f1(i)-f2(i)
enddo 11

return
END

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see[1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3.5–7.3.6. [1]

17.3 Relaxation Methods

In relaxation methodswe replace ODEs by approximatefinite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example,
we could replace a general first-order differential equation

dy

dx
= g(x, y) (17.3.1)

with an algebraic equation relating function values at two pointsk, k − 1:

yk − yk−1 − (xk − xk−1) g
[

1

2
(xk + xk−1),

1

2
(yk + yk−1)

]

= 0 (17.3.2)

754 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: Thereare many
ways to turn the ODE into an FDE. When the problem involvesN coupled first-order ODEs
represented by FDEs on a mesh ofM points, a solution consists of values forN dependent
functions given at each of theM mesh points, orN × M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said torelax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size(MN) × (MN). SinceMN can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)–(17.0.3) where we
hadN coupledfirst-order equations that satisfyn1 boundary conditions atx1 andn2 = N−n1

boundary conditions atx2. We first define a mesh or grid by a set ofk = 1, 2, ...,M points
at which we supply values for the independent variablexk. In particular,x1 is the initial
boundary, andxM is the final boundary. We use the notationyk to refer to the entire set of
dependent variablesy1, y2, . . . , yN at pointxk. At an arbitrary pointk in the middle of the
mesh, we approximate the set ofN first-order ODEs by algebraic relations of the form

0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1, yk, yk−1), k = 2, 3, . . . ,M (17.3.3)

The notation signifies thatgk can be evaluated using information from both pointsk, k − 1.
The FDEs labeled byEk provideN equations coupling2N variables at pointsk, k − 1.
There areM − 1 points,k = 2, 3, . . . ,M , at which difference equations of the form (17.3.3)
apply. Thus the FDEs provide a total of(M − 1)N equations for theMN unknowns. The
remainingN equations come from the boundary conditions.

At the first boundary we have

0 = E1 ≡ B(x1, y1) (17.3.4)

while at the second boundary

0 = EM+1 ≡ C(xM , yM) (17.3.5)

The vectorsE1 andB have onlyn1 nonzero components, corresponding to then1 boundary
conditions atx1. It will turn out to be useful to take these nonzero components to be the
last n1 components. In other words,Ej,1 6= 0 only for j = n2 + 1, n2 + 2, . . . , N . At
the other boundary, only the firstn2 components ofEM+1 andC are nonzero:Ej,M+1 6= 0
only for j = 1, 2, . . . , n2.

The “solution” of the FDE problem in (17.3.3)–(17.3.5) consists of a set of variables
yj,k, the values of theN variablesyj at theM points xk. The algorithm we describe
below requires an initial guess for theyj,k. We then determine increments∆yj,k such that
yj,k + ∆yj,k is an improved approximation to the solution.

Equations for the increments are developed by expanding the FDEs in first-order Taylor
series with respect to small changes∆yk. At an interior point,k = 2, 3, . . . ,M this gives:

Ek(yk + ∆yk, yk−1 + ∆yk−1) ≈ Ek(yk, yk−1)

+

N
∑

n=1

∂Ek

∂yn,k−1

∆yn,k−1 +

N
∑

n=1

∂Ek

∂yn,k

∆yn,k

(17.3.6)

For a solution we want the updated valueE(y+∆y) to be zero, so the general set of equations
at an interior point can be written in matrix form as

N
∑

n=1

Sj,n∆yn,k−1 +

2N
∑

n=N+1

Sj,n∆yn−N,k = −Ej,k , j = 1, 2, . . . , N (17.3.7)

17.3 Relaxation Methods 755

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

where

Sj,n =
∂Ej,k

∂yn,k−1

, Sj,n+N =
∂Ej,k

∂yn,k

, n = 1, 2, . . . , N (17.3.8)

The quantitySj,n is anN × 2N matrix at each pointk. Each interior point thus supplies a
block ofN equations coupling2N corrections to the solution variables at the pointsk, k − 1.

Similarly, the algebraic relations at the boundaries can be expanded in a first-order
Taylor series for increments that improve the solution. SinceE1 depends only ony1, we
find at the first boundary:

N
∑

n=1

Sj,n∆yn,1 = −Ej,1, j = n2 + 1, n2 + 2, . . . , N (17.3.9)

where

Sj,n =
∂Ej,1

∂yn,1

, n = 1, 2, . . . , N (17.3.10)

At the second boundary,

N
∑

n=1

Sj,n∆yn,M = −Ej,M+1, j = 1, 2, . . . , n2 (17.3.11)

where

Sj,n =
∂Ej,M+1

∂yn,M

, n = 1, 2, . . . , N (17.3.12)

We thus have in equations (17.3.7)–(17.3.12) a set of linear equations to be solved for
the corrections∆y, iterating until the corrections are sufficiently small. The equations have
a special structure, because eachSj,n couples only pointsk, k − 1. Figure 17.3.1 illustrates
the typical structure of the complete matrix equation for the case of 5 variables and 4 mesh
points, with 3 boundary conditions at the first boundary and 2 at the second. The3 × 5
block of nonzero entries in the top left-hand corner of the matrix comes from the boundary
conditionSj,n at pointk = 1. The next three5 × 10 blocks are theSj,n at the interior
points, coupling variables at mesh points (2,1), (3,2), and (4,3). Finally we have the block
corresponding to the second boundary condition.

We can solve equations (17.3.7)–(17.3.12) for the increments∆y using a form of
Gaussian elimination that exploits the special structure of the matrix to minimize the total
number of operations, and that minimizes storage of matrix coefficients by packing the
elements in a special blocked structure. (You might wish to review Chapter 2, especially
§2.2, if you are unfamiliar with the steps involved in Gaussian elimination.) Recall that
Gaussian elimination consists of manipulating the equations by elementary operations such
as dividing rows of coefficients by a common factor to produce unity in diagonal elements,
and adding appropriate multiples of other rows to produce zeros below the diagonal. Here
we take advantage of the block structure by performing a bit more reduction than in pure
Gaussian elimination, so that the storage of coefficients is minimized. Figure 17.3.2 shows
the form that we wish to achieve by elimination, just prior to the backsubstitution step. Only a
small subset of the reducedMN ×MN matrix elements needs to be stored as the elimination
progresses. Once the matrix elements reach the stage in Figure 17.3.2, the solution follows
quickly by a backsubstitution procedure.

Furthermore, the entire procedure, except the backsubstitution step, operates only on
one block of the matrix at a time. The procedure contains four types of operations: (1)
partial reduction to zero of certain elements of a block using results from a previous step,
(2) elimination of the square structure of the remaining block elements such that the square
section contains unity along the diagonal, and zero in off-diagonal elements, (3) storage ofthe
remaining nonzero coefficients for use in later steps, and (4) backsubstitution. We illustrate
the steps schematically by figures.

Consider the block of equations describing corrections available from the initial boundary
conditions. We haven1 equations forN unknown corrections. We wish to transform the first

756 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Figure 17.3.1. Matrix structure of a set of linear finite-difference equations (FDEs) with boundary
conditions imposed at both endpoints. HereX represents a coefficient of the FDEs,V represents a
component of the unknown solution vector, andB is a component of the known right-hand side. Empty
spaces represent zeros. The matrix equation is to be solved by a special form of Gaussian elimination.
(See text for details.)

1
1

1

X
X
X
1

X
X
X

1

1

1

1

X
X
X
X
X
1

X
X
X
X
X

1

1

1

1

X
X
X
X
X
1

1

1

1

X
X
X
X
X
1

X
X
X
X
X

1

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

X
X
X
X
X

1

Figure 17.3.2. Target structure of the Gaussian elimination. Once the matrix of Figure 17.3.1 has been
reduced to this form, the solution follows quickly by backsubstitution.

17.3 Relaxation Methods 757

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

block so that its left-handn1 × n1 square section becomes unity along the diagonal, and zero
in off-diagonal elements. Figure 17.3.3 shows the original and final form of the first block
of the matrix. In the figure we designate matrix elements that are subject to diagonalization
by “D”, and elements that will be altered by “A”; in the final block, elements that are stored
are labeled by “S”. We get from start to finish by selecting in turnn1 “pivot” elements from
among the firstn1 columns, normalizing the pivot row so that the value of the “pivot” element
is unity, and adding appropriate multiples of this row to the remaining rows so that they
contain zeros in the pivot column. In its final form, the reduced block expresses values for the
corrections to the firstn1 variables at mesh point1 in terms of values for the remainingn2

unknown corrections at point1, i.e., we now know what the firstn1 elements are in terms of
the remainingn2 elements. We store only the final set ofn2 nonzero columns from the initial
block, plus the column for the altered right-hand side of the matrix equation.

We must emphasize here an important detail of the method. To exploit the reduced
storage allowed by operating on blocks, it is essential that the ordering of columns in thes
matrix of derivatives be such that pivot elements can be found among the firstn1 rows of
the matrix. This means that then1 boundary conditions at the first point must contain some
dependence on the firstj=1,2,...,n1 dependent variables,y(j,1). If not, then the original
squaren1 × n1 subsection of the first block will appear to be singular, and the method will
fail. Alternatively, we would have to allow the search for pivot elements to involve all N
columns of the block, and this would require column swapping and far more bookkeeping.
The code provides a simple method of reordering the variables, i.e., the columns of thes
matrix, so that this can be done easily. End of important detail.

Next consider the block ofN equations representing the FDEs that describe the relation
between the2N corrections at points 2 and 1. The elements of that block, together with results
from the previous step, are illustrated in Figure 17.3.4. Note that by adding suitable multiples
of rows from the first block we can reduce to zero the firstn1 columns of the block (labeled
by “Z”), and, to do so, we will need to alter only the columns fromn1 + 1 to N and the
vector element on the right-hand side. Of the remaining columns we can diagonalize a square
subsection ofN ×N elements, labeled by “D” in the figure. In the process we alter the final
set ofn2 + 1 columns, denoted “A” in the figure. The second half of the figure shows the
block when we finish operating on it, with the stored(n2 + 1) ×N elements labeled by “S.”

If we operate on the next set of equations corresponding to the FDEs coupling corrections
at points 3 and 2, we see that the state of available results and new equations exactly reproduces
the situation described in the previous paragraph. Thus, we can carry out those steps again
for each block in turn through blockM . Finally on blockM + 1 we encounter the remaining
boundary conditions.

Figure 17.3.5 shows the final block ofn2 FDEs relating theN corrections for variables
at mesh pointM , together with the result of reducing the previous block. Again, we can first
use the prior results to zero the firstn1 columns of the block. Now, when we diagonalize
the remaining square section, we strike gold: We get values for the finaln2 corrections
at mesh pointM .

With the final block reduced, the matrix has the desired form shown previously in
Figure 17.3.2, and the matrix is ripe for backsubstitution. Starting with the bottomrow and
working up towards the top, at each stage we can simply determine one unknown correction
in terms of known quantities.

The subroutinesolvde organizes the steps described above. The principal procedures
used in the algorithm are performed by subroutines called internally bysolvde. The
subroutinered eliminates leading columns of thes matrix using results from prior blocks.
pinvs diagonalizes the square subsection ofs and stores unreduced coefficients.bksub
carries out the backsubstitution step. The user ofsolvde must understand the calling
arguments, as described below, and supply a subroutinedifeq, called bysolvde, that
evaluates thes matrix for each block.

Most of the arguments in the call tosolvde have already been described, but some
require discussion. Arrayy(j,k) contains the initial guess for the solution, withj labeling
the dependent variables at mesh pointsk. The problem involvesne FDEs spanning points
k=1,..., m. nb boundary conditions apply at the first pointk=1. The arrayindexv(j)
establishes the correspondencebetween columns of thesmatrix, equations (17.3.8), (17.3.10),

758 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(a)

(b)

D
D
D

1
0
0

D
D
D

0
1
0

D
D
D

0
0
1

A
A
A

S
S
S

A
A
A

S
S
S

V
V
V

V
V
V

A
A
A

S
S
S

Figure 17.3.3. Reduction process for the first (upper left) block of the matrix in Figure17.3.1. (a)
Original form of the block, (b) final form. (See text for explanation.)

(a) 1
0
0
Z
Z
Z
Z
Z

V
V
V
V
V
V
V
V

S
S
S
A
A
A
A
A

(b) 1
0
0
0
0
0
0
0

0
0
1
0
0

V
V
V
V
V
V
V
V

S
S
S
S
S
S
S
S

0
1
0
Z
Z
Z
Z
Z

0
0
1
Z
Z
Z
Z
Z

S
S
S
D
D
D
D
D

S
S
S
D
D
D
D
D

D
D
D
D
D

D
D
D
D
D

D
D
D
D
D

A
A
A
A
A

A
A
A
A
A

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

S
S
S
1
0
0
0
0

S
S
S
0
1
0
0
0

0
0
0
1
0

0
0
0
0
1

S
S
S
S
S

S
S
S
S
S

Figure 17.3.4. Reduction process for intermediate blocks of the matrix in Figure 17.3.1. (a) Original
form, (b) final form. (See text for explanation.)

(a) 0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0
Z
Z

0
0
0
1
0
Z
Z

0
0
0
0
1
Z
Z

S
S
S
S
S
D
D

S
S
S
S
S
D
D

V
V
V
V
V
V
V

S
S
S
S
S
A
A

(b) 0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0
0
0

0
0
0
1
0
0
0

0
0
0
0
1
0
0

S
S
S
S
S
1
0

S
S
S
S
S
0
1

V
V
V
V
V
V
V

S
S
S
S
S
S
S

Figure 17.3.5. Reduction process for the last (lower right) block of the matrix inFigure 17.3.1. (a)
Original form, (b) final form. (See text for explanation.)

17.3 Relaxation Methods 759

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and (17.3.12), and the dependent variables. As described above it is essential that thenb
boundary conditions atk=1 involve the dependentvariables referenced by the firstnb columns
of thes matrix. Thus, columnsj of thes matrix can be ordered by the user indifeq to refer
to derivatives with respect to the dependent variableindexv(j).

The subroutine only attemptsitmax correction cycles before returning, even if the
solution has not converged. The parametersconv, slowc, scalv relate to convergence.
Each inversion of the matrix produces corrections forne variables atm mesh points. We want
these to become vanishingly small as the iterations proceed, but we must define a measure for
the size of corrections. This error “norm” is very problem specific, so the user might wish
to rewrite this section of the code as appropriate. In the program below we compute a value
for the average correctionerr by summing the absolute value of all corrections, weighted by
a scale factor appropriate to each type of variable:

err =
1

m× ne

m
∑

k=1

ne
∑

j=1

|∆Y (j,k)|

scalv(j)
(17.3.13)

Whenerr≤conv, the method has converged. Note that the user gets to supply an array
scalv which measures the typical size of each variable.

Obviously, if err is large, we are far from a solution, and perhaps it is a bad idea
to believe that the corrections generated from a first-order Taylor series are accurate. The
numberslowc modulates application of corrections. After each iteration we apply only a
fraction of the corrections found by matrix inversion:

Y (j,k)→ Y (j,k)+
slowc

max(slowc,err)
∆Y (j,k) (17.3.14)

Thus, whenerr>slowc only a fraction of the corrections are used, but whenerr≤slowc
the entire correction gets applied.

The call statement also suppliessolvde with the arrayy(1:nyj,1:nyk) containing
the initial trial solution, and workspace arraysc(1:nci,1:ncj,1:nck), s(1:nsi,1:nsj).
The arrayc is the blockbuster: It stores the unreduced elements of the matrix built up for the
backsubstitution step. If there arem mesh points, then there will benck=m+1 blocks, each
requiringnci=ne rows andncj=ne-nb+1 columns. Although large, this is small compared
with (ne×m)2 elements required for the whole matrix if we did not break it into blocks.

We now describe the workings of the user-supplied subroutinedifeq. The parameters
of the subroutine are given by

SUBROUTINE difeq(k,k1,k2,jsf,is1,isf,indexv,ne,s,nsi,nsj,y,nyj,nyk)

The only information returned fromdifeq to solvde is the matrix of derivatives
s(i,j); all other arguments are input todifeq and should not be altered.k indicates the
current mesh point, or block number.k1,k2 label the first and last point in the mesh. Ifk=k1
or k>k2, the block involves the boundary conditions at the first or final points; otherwise the
block acts on FDEs coupling variables at pointsk-1, k.

The convention on storing information into the arrays(i,j) follows that used in
equations (17.3.8), (17.3.10), and (17.3.12): Rowsi label equations, columnsj refer to
derivatives with respect to dependent variables in the solution. Recall that each equation will
depend on thene dependent variables at either one or two points. Thus,j runs from1 to
eitherne or 2*ne. The column ordering for dependent variables at each point must agree
with the list supplied inindexv(j). Thus, for a block not at a boundary, the first column
multiplies∆Y (l=indexv(1),k-1), and the columnne+1multiplies∆Y (l=indexv(1),k).
is1,isf give the numbers of the starting and finalrowsthat need to be filled in thes matrix
for this block. jsf labels the column in which the difference equationsEj,k of equations
(17.3.3)–(17.3.5) are stored. Thus,−s(i,jsf) is the vector on the right-hand side of the
matrix. The reason for the minus sign is thatdifeq supplies the actual difference equation,
Ej,k, not its negative. Note thatsolvde supplies a value forjsf such that the difference
equation is put in the columnjust afterall derivatives in thes matrix. Thus,difeq expects to
find values entered intos(i,j) for rowsis1 ≤ i ≤ isf and1 ≤ j ≤ jsf.

760 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Finally, s(1:nsi,1:nsj) andy(1:nyj,1:nyk) supplydifeq with storage fors and
the solution variablesy for this iteration. An example of how to use this routine is given
in the next section.

Many ideas in the following code are due to Eggleton[1].

SUBROUTINE solvde(itmax,conv,slowc,scalv,indexv,ne,nb,m,
* y,nyj,nyk,c,nci,ncj,nck,s,nsi,nsj)

INTEGER itmax,m,nb,nci,ncj,nck,ne,nsi,nsj,
* nyj,nyk,indexv(nyj),NMAX

REAL conv,slowc,c(nci,ncj,nck),s(nsi,nsj),
* scalv(nyj),y(nyj,nyk)

PARAMETER (NMAX=10) Largest expected value of ne.
C USES bksub,difeq,pinvs,red

Driver routine for solution of two point boundary value problems by relaxation. itmax is the
maximum number of iterations. conv is the convergence criterion (see text). slowc con-
trols the fraction of corrections actually used after each iteration. scalv(1:nyj) contains
typical sizes for each dependent variable, used to weight errors. indexv(1:nyj) lists the
column ordering of variables used to construct the matrix s of derivatives. (The nb boundary
conditions at the first mesh point must contain some dependence on the first nb variables
listed in indexv.) The problem involves ne equations for ne adjustable dependent variables
at each point. At the first mesh point there are nb boundary conditions. There are a total
of m mesh points. y(1:nyj,1:nyk) is the two-dimensional array that contains the initial
guess for all the dependent variables at each mesh point. On each iteration, it is updated by
the calculated correction. The arrays c(1:nci,1:ncj,1:nck), s(1:nsi,1:nsj) sup-
ply dummy storage used by the relaxation code; the minimum dimensions must satisfy:
nci=ne, ncj=ne-nb+1, nck=m+1, nsi=ne, nsj=2*ne+1.

INTEGER ic1,ic2,ic3,ic4,it,j,j1,j2,j3,j4,j5,j6,j7,j8,
* j9,jc1,jcf,jv,k,k1,k2,km,kp,nvars,kmax(NMAX)

REAL err,errj,fac,vmax,vz,ermax(NMAX)
k1=1 Set up row and column markers.
k2=m
nvars=ne*m
j1=1
j2=nb
j3=nb+1
j4=ne
j5=j4+j1
j6=j4+j2
j7=j4+j3
j8=j4+j4
j9=j8+j1
ic1=1
ic2=ne-nb
ic3=ic2+1
ic4=ne
jc1=1
jcf=ic3
do 16 it=1,itmax Primary iteration loop.

k=k1 Boundary conditions at first point.
call difeq(k,k1,k2,j9,ic3,ic4,indexv,ne,s,nsi,nsj,y,nyj,nyk)
call pinvs(ic3,ic4,j5,j9,jc1,k1,c,nci,ncj,nck,s,nsi,nsj)
do 11 k=k1+1,k2 Finite difference equations at all point pairs.

kp=k-1
call difeq(k,k1,k2,j9,ic1,ic4,indexv,ne,s,nsi,nsj,y,nyj,nyk)
call red(ic1,ic4,j1,j2,j3,j4,j9,ic3,jc1,jcf,kp,

* c,nci,ncj,nck,s,nsi,nsj)
call pinvs(ic1,ic4,j3,j9,jc1,k,c,nci,ncj,nck,s,nsi,nsj)

enddo 11

k=k2+1 Final boundary conditions.
call difeq(k,k1,k2,j9,ic1,ic2,indexv,ne,s,nsi,nsj,y,nyj,nyk)
call red(ic1,ic2,j5,j6,j7,j8,j9,ic3,jc1,jcf,k2,

* c,nci,ncj,nck,s,nsi,nsj)
call pinvs(ic1,ic2,j7,j9,jcf,k2+1,c,nci,ncj,nck,s,nsi,nsj)

17.3 Relaxation Methods 761

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call bksub(ne,nb,jcf,k1,k2,c,nci,ncj,nck) Backsubstitution.
err=0.
do 13 j=1,ne Convergence check, accumulate average error.

jv=indexv(j)
errj=0.
km=0
vmax=0.
do 12 k=k1,k2 Find point with largest error, for each dependent variable.

vz=abs(c(jv,1,k))
if(vz.gt.vmax) then

vmax=vz
km=k

endif
errj=errj+vz

enddo 12

err=err+errj/scalv(j) Note weighting for each dependent variable.
ermax(j)=c(jv,1,km)/scalv(j)
kmax(j)=km

enddo 13

err=err/nvars
fac=slowc/max(slowc,err) Reduce correction applied when error is large.
do 15 j=1,ne Apply corrections.

jv=indexv(j)
do 14 k=k1,k2

y(j,k)=y(j,k)-fac*c(jv,1,k)
enddo 14

enddo 15

write(*,100) it,err,fac Summary of corrections for this step. Point with largest
error for each variable can be monitored by writ-
ing out kmax and ermax.

if(err.lt.conv) return
enddo 16

pause ’itmax exceeded in solvde’ Convergence failed.
100 format(1x,i4,2f12.6)

return
END

SUBROUTINE bksub(ne,nb,jf,k1,k2,c,nci,ncj,nck)
INTEGER jf,k1,k2,nb,nci,ncj,nck,ne
REAL c(nci,ncj,nck)

Backsubstitution, used internally by solvde.
INTEGER i,im,j,k,kp,nbf
REAL xx
nbf=ne-nb
im=1
do 13 k=k2,k1,-1 Use recurrence relations to eliminate remaining dependences.

if (k.eq.k1) im=nbf+1 Special handling of first point.
kp=k+1
do 12 j=1,nbf

xx=c(j,jf,kp)
do 11 i=im,ne

c(i,jf,k)=c(i,jf,k)-c(i,j,k)*xx
enddo 11

enddo 12

enddo 13

do 16 k=k1,k2 Reorder corrections to be in column 1.
kp=k+1
do 14 i=1,nb

c(i,1,k)=c(i+nbf,jf,k)
enddo 14

do 15 i=1,nbf
c(i+nb,1,k)=c(i,jf,kp)

enddo 15

enddo 16

return
END

762 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE pinvs(ie1,ie2,je1,jsf,jc1,k,c,nci,ncj,nck,s,nsi,nsj)
INTEGER ie1,ie2,jc1,je1,jsf,k,nci,ncj,nck,nsi,nsj,NMAX
REAL c(nci,ncj,nck),s(nsi,nsj)
PARAMETER (NMAX=10)

Diagonalize the square subsection of the s matrix, and store the recursion coefficients in
c; used internally by solvde.

INTEGER i,icoff,id,ipiv,irow,j,jcoff,je2,jp,jpiv,js1,indxr(NMAX)
REAL big,dum,piv,pivinv,pscl(NMAX)
je2=je1+ie2-ie1
js1=je2+1
do 12 i=ie1,ie2 Implicit pivoting, as in §2.1.

big=0.
do 11 j=je1,je2

if(abs(s(i,j)).gt.big) big=abs(s(i,j))
enddo 11

if(big.eq.0.) pause ’singular matrix, row all 0 in pinvs’
pscl(i)=1./big
indxr(i)=0

enddo 12

do 18 id=ie1,ie2
piv=0.
do 14 i=ie1,ie2 Find pivot element.

if(indxr(i).eq.0) then
big=0.
do 13 j=je1,je2

if(abs(s(i,j)).gt.big) then
jp=j
big=abs(s(i,j))

endif
enddo 13

if(big*pscl(i).gt.piv) then
ipiv=i
jpiv=jp
piv=big*pscl(i)

endif
endif

enddo 14

if(s(ipiv,jpiv).eq.0.) pause ’singular matrix in pinvs’
indxr(ipiv)=jpiv In place reduction. Save column ordering.
pivinv=1./s(ipiv,jpiv)
do 15 j=je1,jsf Normalize pivot row.

s(ipiv,j)=s(ipiv,j)*pivinv
enddo 15

s(ipiv,jpiv)=1.
do 17 i=ie1,ie2 Reduce nonpivot elements in column.

if(indxr(i).ne.jpiv) then
if(s(i,jpiv).ne.0.) then

dum=s(i,jpiv)
do 16 j=je1,jsf

s(i,j)=s(i,j)-dum*s(ipiv,j)
enddo 16

s(i,jpiv)=0.
endif

endif
enddo 17

enddo 18

jcoff=jc1-js1 Sort and store unreduced coefficients.
icoff=ie1-je1
do 21 i=ie1,ie2

irow=indxr(i)+icoff
do 19 j=js1,jsf

c(irow,j+jcoff,k)=s(i,j)
enddo 19

enddo 21

17.3 Relaxation Methods 763

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

return
END

SUBROUTINE red(iz1,iz2,jz1,jz2,jm1,jm2,jmf,ic1,jc1,jcf,kc,
* c,nci,ncj,nck,s,nsi,nsj)

INTEGER ic1,iz1,iz2,jc1,jcf,jm1,jm2,jmf,jz1,jz2,kc,nci,ncj,
* nck,nsi,nsj

REAL c(nci,ncj,nck),s(nsi,nsj)
Reduce columns jz1-jz2 of the s matrix, using previous results as stored in the c matrix.
Only columns jm1-jm2,jmf are affected by the prior results. red is used internally by
solvde.

INTEGER i,ic,j,l,loff
REAL vx
loff=jc1-jm1
ic=ic1
do 14 j=jz1,jz2 Loop over columns to be zeroed.

do 12 l=jm1,jm2 Loop over columns altered.
vx=c(ic,l+loff,kc)
do 11 i=iz1,iz2 Loop over rows.

s(i,l)=s(i,l)-s(i,j)*vx
enddo 11

enddo 12

vx=c(ic,jcf,kc)
do 13 i=iz1,iz2 Plus final element.

s(i,jmf)=s(i,jmf)-s(i,j)*vx
enddo 13

ic=ic+1
enddo 14

return
END

“Algebraically Difficult” Sets of Differential Equations

Relaxation methods allow you to take advantage of an additional opportunity that, while
not obvious, can speed up some calculations enormously. It is not necessary that the set
of variablesyj,k correspond exactly with the dependent variables of the original differential
equations. They can be related to those variables through algebraic equations. Obviously, it
is necessary only that the solution variables allow us toevaluatethe functionsy, g,B,C that
are used to construct the FDEs from the ODEs. In some problemsg depends on functions of
y that are known only implicitly, so that iterative solutions are necessary to evaluate functions
in the ODEs. Often one can dispense with this “internal” nonlinear problem by defining
a new set of variables from which bothy, g and the boundary conditions can be obtained
directly. A typical example occurs in physical problems where the equations require solution
of a complex equation of state that can be expressed in more convenient terms using variables
other than the original dependent variables in the ODE. While this approach is analogous to
performing ananalytic change of variables directly on the original ODEs, such an analytic
transformation might be prohibitively complicated. The change of variables in the relaxation
method is easy and requires no analytic manipulations.

CITED REFERENCES AND FURTHER READING:

Eggleton, P.P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.
[1]

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

764 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

17.4 A Worked Example: Spheroidal Harmonics

The best way to understand the algorithms of the previous sections is to see
them employed to solve an actual problem. As a sample problem, we have selected
the computation of spheroidal harmonics. (The more common name is spheroidal
angle functions, but we prefer the explicit reminder of the kinship with spherical
harmonics.) We will show how to find spheroidal harmonics, first by the method
of relaxation (§17.3), and then by the methods of shooting (§17.1) and shooting
to a fitting point (§17.2).

Spheroidal harmonics typically arise when certain partial differential
equations are solved by separation of variables in spheroidal coordinates. They
satisfy the following differential equation on the interval−1 ≤ x ≤ 1:

d

dx

[

(1 − x2)
dS

dx

]

+

(

λ− c2x2 −
m2

1 − x2

)

S = 0 (17.4.1)

Herem is an integer,c is the “oblateness parameter,” andλ is the eigenvalue. Despite
the notation,c2 can be positive or negative. Forc2 > 0 the functions are called
“prolate,” while if c2 < 0 they are called “oblate.” The equation has singular points
atx = ±1 and is to be solved subject to the boundary conditions that the solution be
regular atx = ±1. Only for certain values ofλ, the eigenvalues, will this be possible.

If we consider first the spherical case, wherec = 0, we recognize the differential
equation for Legendre functionsPm

n (x). In this case the eigenvalues areλmn =
n(n + 1), n = m,m + 1, The integern labels successive eigenvalues for
fixed m: When n = m we have the lowest eigenvalue, and the corresponding
eigenfunction has no nodes in the interval−1 < x < 1; whenn = m + 1 we have
the next eigenvalue, and the eigenfunction has one node inside(−1, 1); and so on.

A similar situation holds for the general casec2 6= 0. We write the eigenvalues
of (17.4.1) asλmn(c) and the eigenfunctions asSmn(x; c). For fixedm, n =
m,m + 1, . . . labels the successive eigenvalues.

The computation ofλmn(c) andSmn(x; c) traditionally has been quite difficult.
Complicated recurrence relations, power series expansions, etc., can be found
in references[1-3]. Cheap computing makes evaluation by direct solution of the
differential equation quite feasible.

The first step is to investigate the behavior of the solution near the singular
pointsx = ±1. Substituting a power series expansion of the form

S = (1 ± x)α
∞
∑

k=0

ak(1 ± x)k (17.4.2)

in equation (17.4.1), we find that the regular solution hasα = m/2. (Without loss
of generality we can takem ≥ 0 sincem → −m is a symmetry of the equation.)
We get an equation that is numerically more tractable if we factor out this behavior.
Accordingly we set

S = (1 − x2)m/2y (17.4.3)

We then find from (17.4.1) thaty satisfies the equation

(1 − x2)
d2y

dx2
− 2(m + 1)x

dy

dx
+ (µ− c2x2)y = 0 (17.4.4)

764 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

17.4 A Worked Example: Spheroidal Harmonics

The best way to understand the algorithms of the previous sections is to see
them employed to solve an actual problem. As a sample problem, we have selected
the computation of spheroidal harmonics. (The more common name is spheroidal
angle functions, but we prefer the explicit reminder of the kinship with spherical
harmonics.) We will show how to find spheroidal harmonics, first by the method
of relaxation (§17.3), and then by the methods of shooting (§17.1) and shooting
to a fitting point (§17.2).

Spheroidal harmonics typically arise when certain partial differential
equations are solved by separation of variables in spheroidal coordinates. They
satisfy the following differential equation on the interval−1 ≤ x ≤ 1:

d

dx

[

(1 − x2)
dS

dx

]

+

(

λ− c2x2 −
m2

1 − x2

)

S = 0 (17.4.1)

Herem is an integer,c is the “oblateness parameter,” andλ is the eigenvalue. Despite
the notation,c2 can be positive or negative. Forc2 > 0 the functions are called
“prolate,” while if c2 < 0 they are called “oblate.” The equation has singular points
atx = ±1 and is to be solved subject to the boundary conditions that the solution be
regular atx = ±1. Only for certain values ofλ, the eigenvalues, will this be possible.

If we consider first the spherical case, wherec = 0, we recognize the differential
equation for Legendre functionsPm

n (x). In this case the eigenvalues areλmn =
n(n + 1), n = m,m + 1, The integern labels successive eigenvalues for
fixed m: When n = m we have the lowest eigenvalue, and the corresponding
eigenfunction has no nodes in the interval−1 < x < 1; whenn = m + 1 we have
the next eigenvalue, and the eigenfunction has one node inside(−1, 1); and so on.

A similar situation holds for the general casec2 6= 0. We write the eigenvalues
of (17.4.1) asλmn(c) and the eigenfunctions asSmn(x; c). For fixedm, n =
m,m + 1, . . . labels the successive eigenvalues.

The computation ofλmn(c) andSmn(x; c) traditionally has been quite difficult.
Complicated recurrence relations, power series expansions, etc., can be found
in references[1-3]. Cheap computing makes evaluation by direct solution of the
differential equation quite feasible.

The first step is to investigate the behavior of the solution near the singular
pointsx = ±1. Substituting a power series expansion of the form

S = (1 ± x)α
∞
∑

k=0

ak(1 ± x)k (17.4.2)

in equation (17.4.1), we find that the regular solution hasα = m/2. (Without loss
of generality we can takem ≥ 0 sincem → −m is a symmetry of the equation.)
We get an equation that is numerically more tractable if we factor out this behavior.
Accordingly we set

S = (1 − x2)m/2y (17.4.3)

We then find from (17.4.1) thaty satisfies the equation

(1 − x2)
d2y

dx2
− 2(m + 1)x

dy

dx
+ (µ− c2x2)y = 0 (17.4.4)

17.4 A Worked Example: Spheroidal Harmonics 765

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

where

µ ≡ λ−m(m + 1) (17.4.5)

Both equations (17.4.1) and (17.4.4) are invariant under the replacement
x → −x. Thus the functionsS andy must also be invariant, except possibly for an
overall scale factor. (Since the equations are linear, a constant multiple of a solution
is also a solution.) Because the solutions will be normalized, the scale factor can
only be±1. If n−m is odd, there are an odd number of zeros in the interval(−1, 1).
Thus we must choose the antisymmetric solutiony(−x) = −y(x) which has a zero
atx = 0. Conversely, ifn−m is even we must have the symmetric solution. Thus

ymn(−x) = (−1)n−mymn(x) (17.4.6)

and similarly forSmn.
The boundary conditions on (17.4.4) require thaty be regular atx = ±1. In

other words, near the endpoints the solution takes the form

y = a0 + a1(1 − x2) + a2(1 − x2)2 + . . . (17.4.7)

Substituting this expansion in equation (17.4.4) and lettingx → 1, we find that

a1 = −
µ− c2

4(m+ 1)
a0 (17.4.8)

Equivalently,

y′(1) =
µ− c2

2(m + 1)
y(1) (17.4.9)

A similar equation holds atx = −1 with a minus sign on the right-hand side.
The irregular solution has a different relation between function and derivative at
the endpoints.

Instead of integrating the equation from−1 to 1, we can exploit the symmetry
(17.4.6) to integrate from 0 to 1. The boundary condition atx = 0 is

y(0) = 0, n−m odd

y′(0) = 0, n−m even
(17.4.10)

A third boundary condition comes from the fact that any constant multiple
of a solutiony is a solution. We can thusnormalizethe solution. We adopt the
normalization that the functionSmn has the same limiting behavior asPm

n atx = 1:

lim
x→1

(1 − x2)−m/2Smn(x; c) = lim
x→1

(1 − x2)−m/2Pm
n (x) (17.4.11)

Various normalization conventions in the literature are tabulated by Flammer[1].

766 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Imposing three boundary conditions for the second-order equation (17.4.4)
turns it into an eigenvalue problem forλ or equivalently forµ. We write it in the
standard form by setting

y1 = y (17.4.12)

y2 = y′ (17.4.13)

y3 = µ (17.4.14)

Then

y′1 = y2 (17.4.15)

y′2 =
1

1 − x2

[

2x(m+ 1)y2 − (y3 − c2x2)y1

]

(17.4.16)

y′3 = 0 (17.4.17)

The boundary condition atx = 0 in this notation is

y1 = 0, n−m odd

y2 = 0, n−m even
(17.4.18)

At x = 1 we have two conditions:

y2 =
y3 − c2

2(m + 1)
y1 (17.4.19)

y1 = lim
x→1

(1 − x2)−m/2Pm
n (x) =

(−1)m(n + m)!

2mm!(n−m)!
≡ γ (17.4.20)

We are now ready to illustrate the use of the methods of previous sections
on this problem.

Relaxation

If we just want a few isolated values ofλ orS, shooting is probably the quickest
method. However, if we want values for a large sequence of values ofc, relaxation
is better. Relaxation rewards a good initial guess with rapid convergence, and the
previous solution should be a good initial guess ifc is changed only slightly.

For simplicity, we choose a uniform grid on the interval0 ≤ x ≤ 1. For a
total of M mesh points, we have

h =
1

M − 1
(17.4.21)

xk = (k − 1)h, k = 1, 2, . . . ,M (17.4.22)

At interior pointsk = 2, 3, . . .,M , equation (17.4.15) gives

E1,k = y1,k − y1,k−1 −
h

2
(y2,k + y2,k−1) (17.4.23)

17.4 A Worked Example: Spheroidal Harmonics 767

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Equation (17.4.16) gives

E2,k = y2,k − y2,k−1 − βk

×

[

(xk + xk−1)(m + 1)(y2,k + y2,k−1)

2
− αk

(y1,k + y1,k−1)

2

] (17.4.24)

where

αk =
y3,k + y3,k−1

2
−

c2(xk + xk−1)
2

4
(17.4.25)

βk =
h

1 − 1

4
(xk + xk−1)2

(17.4.26)

Finally, equation (17.4.17) gives

E3,k = y3,k − y3,k−1 (17.4.27)

Now recall that the matrix of partial derivativesSi,j of equation (17.3.8) is
defined so thati labels the equation andj the variable. In our case,j runs from 1 to
3 for yj at k − 1 and from 4 to 6 foryj at k. Thus equation (17.4.23) gives

S1,1 = −1, S1,2 = −
h

2
, S1,3 = 0

S1,4 = 1, S1,5 = −
h

2
, S1,6 = 0

(17.4.28)

Similarly equation (17.4.24) yields

S2,1 = αkβk/2, S2,2 = −1 − βk(xk + xk−1)(m + 1)/2,

S2,3 = βk(y1,k + y1,k−1)/4 S2,4 = S2,1,

S2,5 = 2 + S2,2, S2,6 = S2,3

(17.4.29)
while from equation (17.4.27) we find

S3,1 = 0, S3,2 = 0, S3,3 = −1

S3,4 = 0, S3,5 = 0, S3,6 = 1
(17.4.30)

At x = 0 we have the boundary condition

E3,1 =

{

y1,1, n−m odd

y2,1, n−m even
(17.4.31)

Recall the convention adopted in thesolvde routine that for one boundary condition
at k = 1 only S3,j can be nonzero. Also,j takes on the values 4 to 6 since the
boundary condition involves onlyyk, not yk−1. Accordingly, the only nonzero
values ofS3,j at x = 0 are

S3,4 = 1, n−m odd

S3,5 = 1, n−m even
(17.4.32)

768 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

At x = 1 we have

E1,M+1 = y2,M −
y3,M − c2

2(m+ 1)
y1,M (17.4.33)

E2,M+1 = y1,M − γ (17.4.34)

Thus

S1,4 = −
y3,M − c2

2(m+ 1)
, S1,5 = 1, S1,6 = −

y1,M

2(m + 1)
(17.4.35)

S2,4 = 1, S2,5 = 0, S2,6 = 0 (17.4.36)

Here now is the sample program that implements the above algorithm. We need
a main program,sfroid, that calls the routinesolvde, and we must supply the
subroutinedifeq called bysolvde. For simplicity we choose an equally spaced
mesh ofm = 41 points, that is,h = .025. As we shall see, this gives goodaccuracy
for the eigenvalues up to moderate values ofn − m.

Since the boundary condition atx = 0 does not involvey1 if n −m is even,
we have to use theindexv feature ofsolvde. Recall that the value ofindexv(j)
describes which column ofs(i,j) the variabley(j) has been put in. Ifn − m
is even, we need to interchange the columns fory1 and y2 so that there is not a
zero pivot element ins(i,j).

The program prompts for values ofm andn. It then computes an initial guess
for y based on the Legendre functionPm

n . It next prompts forc2, solves fory,
prompts forc2, solves fory using the previous values as an initial guess, and so on.

PROGRAM sfroid
INTEGER NE,M,NB,NCI,NCJ,NCK,NSI,NSJ,NYJ,NYK
COMMON /sfrcom/ x,h,mm,n,c2,anorm Communicates with difeq.
PARAMETER (NE=3,M=41,NB=1,NCI=NE,NCJ=NE-NB+1,NCK=M+1,NSI=NE,

* NSJ=2*NE+1,NYJ=NE,NYK=M)
C USES plgndr,solvde

Sample program using solvde. Computes eigenvalues of spheroidal harmonics Smn(x; c)
for m ≥ 0 and n ≥ m. In the program, m is mm, c2 is c2, and γ of equation (17.4.20)
is anorm.

INTEGER i,itmax,k,mm,n,indexv(NE)
REAL anorm,c2,conv,deriv,fac1,fac2,h,q1,slowc,

* c(NCI,NCJ,NCK),s(NSI,NSJ),scalv(NE),x(M),y(NE,M),plgndr
itmax=100
conv=5.e-6
slowc=1.
h=1./(M-1)
c2=0.
write(*,*)’ENTER M,N’
read(*,*)mm,n
if(mod(n+mm,2).eq.1)then No interchanges necessary.

indexv(1)=1
indexv(2)=2
indexv(3)=3

else Interchange y1 and y2.
indexv(1)=2
indexv(2)=1
indexv(3)=3

endif
anorm=1. Compute γ.

17.4 A Worked Example: Spheroidal Harmonics 769

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(mm.NE.0)then
q1=n
do 11 i=1,mm

anorm=-.5*anorm*(n+i)*(q1/i)
q1=q1-1.

enddo 11

endif
do 12 k=1,M-1 Initial guess.

x(k)=(k-1)*h
fac1=1.-x(k)**2
fac2=fac1**(-mm/2.)
y(1,k)=plgndr(n,mm,x(k))*fac2 Pm

n
from §6.8.

deriv=-((n-mm+1)*plgndr(n+1,mm,x(k))-(n+1)*
* x(k)*plgndr(n,mm,x(k)))/fac1 Derivative of Pm

n from a recurrence re-
lation.y(2,k)=mm*x(k)*y(1,k)/fac1+deriv*fac2

y(3,k)=n*(n+1)-mm*(mm+1)
enddo 12

x(M)=1. Initial guess at x = 1 done separately.
y(1,M)=anorm
y(3,M)=n*(n+1)-mm*(mm+1)
y(2,M)=(y(3,M)-c2)*y(1,M)/(2.*(mm+1.))
scalv(1)=abs(anorm)
scalv(2)=max(abs(anorm),y(2,M))
scalv(3)=max(1.,y(3,M))

1 continue
write (*,*) ’ENTER C**2 OR 999 TO END’
read (*,*) c2
if (c2.eq.999.) stop
call solvde(itmax,conv,slowc,scalv,indexv,NE,NB,M,y,NYJ,NYK,

* c,NCI,NCJ,NCK,s,NSI,NSJ)
write (*,*) ’ M = ’,mm,’ N = ’,n,

* ’ C**2 = ’,c2,’ LAMBDA = ’,y(3,1)+mm*(mm+1)
goto 1 for another value of c2.
END

SUBROUTINE difeq(k,k1,k2,jsf,is1,isf,indexv,ne,s,nsi,nsj,y,nyj,nyk)
INTEGER is1,isf,jsf,k,k1,k2,ne,nsi,nsj,nyj,nyk,indexv(nyj),M
REAL s(nsi,nsj),y(nyj,nyk)
COMMON /sfrcom/ x,h,mm,n,c2,anorm
PARAMETER (M=41)

Returns matrix s(i,j) for solvde.
INTEGER mm,n
REAL anorm,c2,h,temp,temp2,x(M)
if(k.eq.k1) then Boundary condition at first point.

if(mod(n+mm,2).eq.1)then
s(3,3+indexv(1))=1. Equation (17.4.32).
s(3,3+indexv(2))=0.
s(3,3+indexv(3))=0.
s(3,jsf)=y(1,1) Equation (17.4.31).

else
s(3,3+indexv(1))=0. Equation (17.4.32).
s(3,3+indexv(2))=1.
s(3,3+indexv(3))=0.
s(3,jsf)=y(2,1) Equation (17.4.31).

endif
else if(k.gt.k2) then Boundary conditions at last point.

s(1,3+indexv(1))=-(y(3,M)-c2)/(2.*(mm+1.)) Equation (17.4.35).
s(1,3+indexv(2))=1.
s(1,3+indexv(3))=-y(1,M)/(2.*(mm+1.))
s(1,jsf)=y(2,M)-(y(3,M)-c2)*y(1,M)/(2.*(mm+1.)) Equation (17.4.33).
s(2,3+indexv(1))=1. Equation (17.4.36).
s(2,3+indexv(2))=0.

770 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

s(2,3+indexv(3))=0.
s(2,jsf)=y(1,M)-anorm Equation (17.4.34).

else Interior point.
s(1,indexv(1))=-1. Equation (17.4.28).
s(1,indexv(2))=-.5*h
s(1,indexv(3))=0.
s(1,3+indexv(1))=1.
s(1,3+indexv(2))=-.5*h
s(1,3+indexv(3))=0.
temp=h/(1.-(x(k)+x(k-1))**2*.25)
temp2=.5*(y(3,k)+y(3,k-1))-c2*.25*(x(k)+x(k-1))**2
s(2,indexv(1))=temp*temp2*.5 Equation (17.4.29).
s(2,indexv(2))=-1.-.5*temp*(mm+1.)*(x(k)+x(k-1))
s(2,indexv(3))=.25*temp*(y(1,k)+y(1,k-1))
s(2,3+indexv(1))=s(2,indexv(1))
s(2,3+indexv(2))=2.+s(2,indexv(2))
s(2,3+indexv(3))=s(2,indexv(3))
s(3,indexv(1))=0. Equation (17.4.30).
s(3,indexv(2))=0.
s(3,indexv(3))=-1.
s(3,3+indexv(1))=0.
s(3,3+indexv(2))=0.
s(3,3+indexv(3))=1.
s(1,jsf)=y(1,k)-y(1,k-1)-.5*h*(y(2,k)+y(2,k-1)) Equation (17.4.23).
s(2,jsf)=y(2,k)-y(2,k-1)-temp*((x(k)+x(k-1)) Equation (17.4.24).

* *.5*(mm+1.)*(y(2,k)+y(2,k-1))-temp2*
* .5*(y(1,k)+y(1,k-1)))

s(3,jsf)=y(3,k)-y(3,k-1) Equation (17.4.27).
endif
return
END

You can run the program and check it against values ofλmn(c) given in
the tables at the back of Flammer’s book[1] or in Table 21.1 of Abramowitz and
Stegun[2]. Typically it converges in about 3 iterations. The table below gives
a few comparisons.

Selected Output ofsfroid

m n c2 λexact λsfroid

2 2 0.1 6.01427 6.01427
1.0 6.14095 6.14095
4.0 6.54250 6.54253

2 5 1.0 30.4361 30.4372
16.0 36.9963 37.0135

4 11 −1.0 131.560 131.554

Shooting

To solve the same problem via shooting (§17.1), we supply a subroutinederivs
that implements equations (17.4.15)–(17.4.17). We will integrate the equations over
the range−1 ≤ x ≤ 0. We provide the subroutineload which sets the eigenvalue
y3 to its current best estimate,v(1). It also sets the boundary values ofy1 and

17.4 A Worked Example: Spheroidal Harmonics 771

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

y2 using equations (17.4.20) and (17.4.19) (with a minus sign corresponding to
x = −1). Note that the boundary condition is actually applied a distancedx from
the boundary to avoid having to evaluatey′2 right on the boundary. The subroutine
score follows from equation (17.4.18).

PROGRAM sphoot
Sample program using shoot. Computes eigenvalues of spheroidal harmonics Smn(x; c) for
m ≥ 0 and n ≥ m. Be sure that routine funcv for newt is provided by shoot (§17.1).

INTEGER i,m,n,nvar,N2
PARAMETER (N2=1)
REAL c2,dx,gamma,q1,x1,x2,v(N2)
LOGICAL check
COMMON /sphcom/ c2,gamma,dx,m,n Communicates with load, score, and derivs.
COMMON /caller/ x1,x2,nvar Communicates with shoot.

C USES newt
dx=1.e-4 Avoid evaluating derivatives exactly at x = −1.
nvar=3 Number of equations.

1 write(*,*) ’input m,n,c-squared (999 to end)’
read(*,*) m,n,c2
if (c2.eq.999.) stop
if ((n.lt.m).or.(m.lt.0)) goto 1
gamma=1.0 Compute γ of equation (17.4.20).
q1=n
do 11 i=1,m

gamma=-0.5*gamma*(n+i)*(q1/i)
q1=q1-1.0

enddo 11

v(1)=n*(n+1)-m*(m+1)+c2/2.0 Initial guess for eigenvalue.
x1=-1.0+dx Set range of integration.
x2=0.0
call newt(v,N2,check) Find v that zeros function f in score.
if(check)then

write(*,*)’shoot failed; bad initial guess’
else

write(*,’(1x,t6,a)’) ’mu(m,n)’
write(*,’(1x,f12.6)’) v(1)
goto 1

endif
END

SUBROUTINE load(x1,v,y)
INTEGER m,n
REAL c2,dx,gamma,x1,y1,v(1),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Supplies starting values for integration at x = −1 + dx.
y(3)=v(1)
if(mod(n-m,2).eq.0)then

y1=gamma
else

y1=-gamma
endif
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
return
END

SUBROUTINE score(x2,y,f)
INTEGER m,n
REAL c2,dx,gamma,x2,f(1),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Tests whether boundary condition at x = 0 is satisfied.
if (mod(n-m,2).eq.0) then

f(1)=y(2)

772 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

else
f(1)=y(1)

endif
return
END

SUBROUTINE derivs(x,y,dydx)
INTEGER m,n
REAL c2,dx,gamma,x,dydx(3),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Evaluates derivatives for odeint.
dydx(1)=y(2)
dydx(2)=(2.0*x*(m+1.0)*y(2)-(y(3)-c2*x*x)*y(1))/(1.0-x*x)
dydx(3)=0.0
return
END

Shooting to a Fitting Point

For variety we illustrateshootf from §17.2 by integrating over the whole
range−1 + dx ≤ x ≤ 1 − dx, with the fitting point chosen to be atx = 0. The
routinederivs is identical to the one forshoot. Now, however, there are two load
routines. The routineload1 for x = −1 is essentially identical toload above. At
x = 1, load2 sets the function valuey1 and the eigenvaluey3 to their best current
estimates,v2(1) andv2(2), respectively. If you quite sensibly make your initial
guess of the eigenvalue the same in the two intervals, thenv1(1) will stay equal to
v2(2) during the iteration. The subroutinescore simply checks whether all three
function values match at the fitting point.

PROGRAM sphfpt
Sample program using shootf. Computes eigenvalues of spheroidal harmonics Smn(x; c)
for m ≥ 0 and n ≥ m. Be sure that routine funcv for newt is provided by shootf (§17.2).
The routine derivs is the same as for sphoot.

INTEGER i,m,n,nvar,nn2,N1,N2,NTOT
REAL DXX
PARAMETER (N1=2,N2=1,NTOT=N1+N2,DXX=1.e-4)
REAL c2,dx,gamma,q1,x1,x2,xf,v1(N2),v2(N1),v(NTOT)
LOGICAL check
COMMON /sphcom/ c2,gamma,dx,m,n

Communicates with load1, load2, score, and derivs.
COMMON /caller/ x1,x2,xf,nvar,nn2 Communicates with shootf.
EQUIVALENCE (v1(1),v(1)),(v2(1),v(N2+1))

C USES newt
nvar=NTOT Number of equations.
nn2=N2
dx=DXX Avoid evaluating derivatives exactly at x = ±1.

1 write(*,*) ’input m,n,c-squared (999 to end)’
read(*,*) m,n,c2
if (c2.eq.999.) stop
if ((n.lt.m).or.(m.lt.0)) goto 1
gamma=1.0 Compute γ of equation (17.4.20).
q1=n
do 11 i=1,m

gamma=-0.5*gamma*(n+i)*(q1/i)
q1=q1-1.0

enddo 11

v1(1)=n*(n+1)-m*(m+1)+c2/2.0 Initial guess for eigenvalue and function value.
v2(2)=v1(1)

17.4 A Worked Example: Spheroidal Harmonics 773

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

v2(1)=gamma*(1.-(v2(2)-c2)*dx/(2*(m+1)))
x1=-1.0+dx Set range of integration.
x2=1.0-dx
xf=0. Fitting point.
call newt(v,NTOT,check) Find v that zeros function f in score.
if(check)then

write(*,*)’shootf failed; bad initial guess’
else

write(*,’(1x,t6,a)’) ’mu(m,n)’
write(*,’(1x,f12.6)’) v1(1)
goto 1

endif
END

SUBROUTINE load1(x1,v1,y)
INTEGER m,n
REAL c2,dx,gamma,x1,y1,v1(1),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Supplies starting values for integration at x = −1 + dx.
y(3)=v1(1)
if(mod(n-m,2).eq.0)then

y1=gamma
else

y1=-gamma
endif
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
return
END

SUBROUTINE load2(x2,v2,y)
INTEGER m,n
REAL c2,dx,gamma,x2,v2(2),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Supplies starting values for integration at x = 1 − dx.
y(3)=v2(2)
y(1)=v2(1)
y(2)=(y(3)-c2)*y(1)/(2*(m+1))
return
END

SUBROUTINE score(xf,y,f)
INTEGER i,m,n
REAL c2,gamma,dx,xf,f(3),y(3)
COMMON /sphcom/ c2,gamma,dx,m,n

Tests whether solutions match at fitting point x = 0.
do 12 i=1,3

f(i)=y(i)
enddo 12

return
END

CITED REFERENCES AND FURTHER READING:

Flammer, C. 1957, Spheroidal Wave Functions (Stanford, CA: Stanford University Press). [1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §21. [2]

Morse, P.M., and Feshbach, H. 1953, Methods of Theoretical Physics, Part II (New York: McGraw-
Hill), pp. 1502ff. [3]

774 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

17.5 Automated Allocation of Mesh Points

In relaxation problems, you have to choose values for the independent variable at the
mesh points. This is calledallocating the grid or mesh. The usual procedure is to pick
a plausible set of values and, if it works, to be content. If it doesn’t work, increasing the
number of points usually cures the problem.

If we know ahead of time where our solutions will be rapidly varying, we can put more
grid points there and less elsewhere. Alternatively, we can solve the problem first on a uniform
mesh and then examine the solution to see where we should add more points. We then repeat
the solution with the improved grid. The object of the exercise is to allocate points in such
a way as to represent the solution accurately.

It is also possible to automate the allocation of mesh points, so that it is done
“dynamically” during the relaxation process. This powerful technique not only improves
the accuracy of the relaxation method, but also (as we will see in the next section) allows
internal singularities to be handled in quite a neat way. Here we learn how toaccomplish
the automatic allocation.

We want to focus attention on the independent variablex, and consider two alternative
reparametrizations of it. The first, we termq; this is just the coordinate corresponding to the
mesh points themselves, so thatq = 1 atk = 1, q = 2 atk = 2, and so on. Between any two
mesh points we have∆q = 1. In the change of independent variable in the ODEs fromx to q,

dy
dx

= g (17.5.1)

becomes
dy
dq

= g
dx

dq
(17.5.2)

In terms ofq, equation (17.5.2) as an FDE might be written

y
k
− y

k−1
−

1

2

[(

g
dx

dq

)

k

+

(

g
dx

dq

)

k−1

]

= 0 (17.5.3)

or some related version. Note thatdx/dq should accompanyg. The transformation between
x andq depends only on theJacobiandx/dq. Its reciprocaldq/dx is proportional to the
density of mesh points.

Now, given the functiony(x), or its approximation at the current stage of relaxation,
we are supposed to have some idea of how we want to specify the density of mesh points.
For example, we might wantdq/dx to be larger wherey is changing rapidly, or near to the
boundaries, or both. In fact, we can probably make up a formula for what we would like
dq/dx to be proportional to. The problem is that we do not know the proportionality constant.
That is, the formula that we might invent would not have the correct integral over the whole
range ofx so as to makeq vary from1 toM , according to its definition. To solve this problem
we introduce a second reparametrizationQ(q), whereQ is a new independent variable. The
relation betweenQ andq is taken to belinear, so that a mesh spacing formula fordQ/dx
differs only in its unknown proportionality constant. A linear relation implies

d2Q

dq2
= 0 (17.5.4)

or, expressed in the usual manner as coupled first-order equations,

dQ(x)

dq
= ψ

dψ

dq
= 0 (17.5.5)

whereψ is a new intermediate variable. We add these two equations to the set of ODEs
being solved.

Completing the prescription, we add a third ODE that is just our desired mesh-density
function, namely

φ(x) =
dQ

dx
=
dQ

dq

dq

dx
(17.5.6)

774 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

17.5 Automated Allocation of Mesh Points

In relaxation problems, you have to choose values for the independent variable at the
mesh points. This is calledallocating the grid or mesh. The usual procedure is to pick
a plausible set of values and, if it works, to be content. If it doesn’t work, increasing the
number of points usually cures the problem.

If we know ahead of time where our solutions will be rapidly varying, we can put more
grid points there and less elsewhere. Alternatively, we can solve the problem first on a uniform
mesh and then examine the solution to see where we should add more points. We then repeat
the solution with the improved grid. The object of the exercise is to allocate points in such
a way as to represent the solution accurately.

It is also possible to automate the allocation of mesh points, so that it is done
“dynamically” during the relaxation process. This powerful technique not only improves
the accuracy of the relaxation method, but also (as we will see in the next section) allows
internal singularities to be handled in quite a neat way. Here we learn how toaccomplish
the automatic allocation.

We want to focus attention on the independent variablex, and consider two alternative
reparametrizations of it. The first, we termq; this is just the coordinate corresponding to the
mesh points themselves, so thatq = 1 atk = 1, q = 2 atk = 2, and so on. Between any two
mesh points we have∆q = 1. In the change of independent variable in the ODEs fromx to q,

dy
dx

= g (17.5.1)

becomes
dy
dq

= g
dx

dq
(17.5.2)

In terms ofq, equation (17.5.2) as an FDE might be written

y
k
− y

k−1
− 1

2

[(

g
dx

dq

)

k

+

(

g
dx

dq

)

k−1

]

= 0 (17.5.3)

or some related version. Note thatdx/dq should accompanyg. The transformation between
x andq depends only on theJacobiandx/dq. Its reciprocaldq/dx is proportional to the
density of mesh points.

Now, given the functiony(x), or its approximation at the current stage of relaxation,
we are supposed to have some idea of how we want to specify the density of mesh points.
For example, we might wantdq/dx to be larger wherey is changing rapidly, or near to the
boundaries, or both. In fact, we can probably make up a formula for what we would like
dq/dx to be proportional to. The problem is that we do not know the proportionality constant.
That is, the formula that we might invent would not have the correct integral over the whole
range ofx so as to makeq vary from1 toM , according to its definition. To solve this problem
we introduce a second reparametrizationQ(q), whereQ is a new independent variable. The
relation betweenQ andq is taken to belinear, so that a mesh spacing formula fordQ/dx
differs only in its unknown proportionality constant. A linear relation implies

d2Q

dq2
= 0 (17.5.4)

or, expressed in the usual manner as coupled first-order equations,

dQ(x)

dq
= ψ

dψ

dq
= 0 (17.5.5)

whereψ is a new intermediate variable. We add these two equations to the set of ODEs
being solved.

Completing the prescription, we add a third ODE that is just our desired mesh-density
function, namely

φ(x) =
dQ

dx
=
dQ

dq

dq

dx
(17.5.6)

17.6 Handling Internal Boundary Conditions or Singular Points 775

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

whereφ(x) is chosen by us. Written in terms of the mesh variableq, this equation is

dx

dq
=

ψ

φ(x)
(17.5.7)

Notice thatφ(x) should be chosen to be positive definite, so that the density of mesh points is
everywhere positive. Otherwise (17.5.7) can have a zero in its denominator.

To use automated mesh spacing, you add the three ODEs (17.5.5) and (17.5.7) to your
set of equations, i.e., to the arrayy(j,k). Now x becomes a dependent variable!Q andψ
also become new dependent variables. Normally, evaluatingφ requires little extra work since
it will be composed from pieces of theg’s that exist anyway. The automated procedure allows
one to investigate quickly how the numerical results might be affected by various strategies
for mesh spacing. (A special case occurs if the desired mesh spacing functionQ can be found
analytically, i.e.,dQ/dx is directly integrable. Then, you need to add only two equations,
those in 17.5.5, and two new variablesx, ψ.)

As an example of a typical strategy for implementing this scheme, consider a system
with one dependent variabley(x). We could set

dQ =
dx

∆
+

|d ln y|

δ
(17.5.8)

or

φ(x) =
dQ

dx
=

1

∆
+

∣

∣

∣

∣

dy/dx

yδ

∣

∣

∣

∣

(17.5.9)

where∆ andδ are constants that we choose. The first term would give a uniform spacing
in x if it alone were present. The second term forces more grid points to be used wherey is
changing rapidly. The constants act to make every logarithmic change iny of an amountδ
about as “attractive” to a grid point as a change inx of amount∆. You adjust the constants
according to taste. Other strategies are possible, such as a logarithmic spacing inx, replacing
dx in the first term withd lnx.

CITED REFERENCES AND FURTHER READING:

Eggleton, P. P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

17.6 Handling Internal Boundary Conditions
or Singular Points

Singularities can occur in the interiors of two pointboundary value problems. Typically,
there is a pointxs at which a derivative must be evaluated by an expression of the form

S(xs) =
N(xs, y)
D(xs, y)

(17.6.1)

where the denominatorD(xs, y) = 0. In physical problems with finite answers, singular
points usually come with their own cure: WhereD → 0, there the physical solutiony must
be such as to makeN → 0 simultaneously, in such a way that the ratio takes on a meaningful
value. This constraint on the solutiony is often called aregularity condition. The condition
thatD(xs, y) satisfy some special constraint atxs is entirely analogous to an extra boundary
condition, an algebraic relation among the dependent variables that must hold at a point.

We discussed a related situation earlier, in§17.2, when we described the “fitting point
method” to handle the task of integrating equations with singular behavior at the boundaries.
In those problems you are unable to integrate from one side of the domain to the other.

17.6 Handling Internal Boundary Conditions or Singular Points 775

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

whereφ(x) is chosen by us. Written in terms of the mesh variableq, this equation is

dx

dq
=

ψ

φ(x)
(17.5.7)

Notice thatφ(x) should be chosen to be positive definite, so that the density of mesh points is
everywhere positive. Otherwise (17.5.7) can have a zero in its denominator.

To use automated mesh spacing, you add the three ODEs (17.5.5) and (17.5.7) to your
set of equations, i.e., to the arrayy(j,k). Now x becomes a dependent variable!Q andψ
also become new dependent variables. Normally, evaluatingφ requires little extra work since
it will be composed from pieces of theg’s that exist anyway. The automated procedure allows
one to investigate quickly how the numerical results might be affected by various strategies
for mesh spacing. (A special case occurs if the desired mesh spacing functionQ can be found
analytically, i.e.,dQ/dx is directly integrable. Then, you need to add only two equations,
those in 17.5.5, and two new variablesx, ψ.)

As an example of a typical strategy for implementing this scheme, consider a system
with one dependent variabley(x). We could set

dQ =
dx

∆
+

|d ln y|

δ
(17.5.8)

or

φ(x) =
dQ

dx
=

1

∆
+

∣

∣

∣

∣

dy/dx

yδ

∣

∣

∣

∣

(17.5.9)

where∆ andδ are constants that we choose. The first term would give a uniform spacing
in x if it alone were present. The second term forces more grid points to be used wherey is
changing rapidly. The constants act to make every logarithmic change iny of an amountδ
about as “attractive” to a grid point as a change inx of amount∆. You adjust the constants
according to taste. Other strategies are possible, such as a logarithmic spacing inx, replacing
dx in the first term withd lnx.

CITED REFERENCES AND FURTHER READING:

Eggleton, P. P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

17.6 Handling Internal Boundary Conditions
or Singular Points

Singularities can occur in the interiors of two pointboundary value problems. Typically,
there is a pointxs at which a derivative must be evaluated by an expression of the form

S(xs) =
N(xs, y)
D(xs, y)

(17.6.1)

where the denominatorD(xs, y) = 0. In physical problems with finite answers, singular
points usually come with their own cure: WhereD → 0, there the physical solutiony must
be such as to makeN → 0 simultaneously, in such a way that the ratio takes on a meaningful
value. This constraint on the solutiony is often called aregularity condition. The condition
thatD(xs, y) satisfy some special constraint atxs is entirely analogous to an extra boundary
condition, an algebraic relation among the dependent variables that must hold at a point.

We discussed a related situation earlier, in§17.2, when we described the “fitting point
method” to handle the task of integrating equations with singular behavior at the boundaries.
In those problems you are unable to integrate from one side of the domain to the other.

776 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

1

X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

V
V
V
V
V
V

B
B
B
B
B
B

1
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

V
V
V
V
V
V
V

V
V
V
V
V
V

V
V
V
V
V
V
V

X
X
X
X
X

X
X
X
X
X

1

1

1

X

1

X
X
X
X
X

X
1

X
X
X
X
X

1

X
X
X
X
X

1

1

X
X

1

X
X

1

X
X
1

1

1

(b)

B
B
B
B
B
B
B

sp
ec

ial
 b

loc
k

sp
ec

ial
 b

loc
k

(a)

B
B
B
B
B
B
B
B
B
B
B
B
B

Figure 17.6.1. FDE matrix structure with an internal boundary condition. The internal condition
introduces a special block. (a) Original form, compare with Figure 17.3.1; (b) final form, compare
with Figure 17.3.2.

However, the ODEs do have well-behaved derivatives and solutions in the neighborhood of
the singularity, so it is readily possible to integrate away from the point. Both the relaxation
method and the method of “shooting” to a fitting point handle such problems easily. Also,
in those problems the presence of singular behavior served to isolate some special boundary
values that had to be satisfied to solve the equations.

The difference here is that we are concerned with singularities arising at intermediate
points, where the location of the singular point depends on the solution, so is not knowna
priori . Consequently, we face a circular task: The singularity prevents us from finding a
numerical solution, but we need a numerical solution to find its location. Such singularities
are also associated with selecting a special value for some variable which allows the solution
to satisfy the regularity condition at the singular point. Thus, internal singularities take on
aspects of being internal boundary conditions.

One way of handling internal singularities is to treat the problem as a freeboundary
problem, as discussed at the end of§17.0. Suppose, as a simple example, we consider
the equation

dy

dx
=
N(x, y)

D(x, y)
(17.6.2)

whereN andD are required to pass through zero at some unknown pointxs. We add
the equation

z ≡ xs − x1

dz

dx
= 0 (17.6.3)

17.6 Handling Internal Boundary Conditions or Singular Points 777

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

wherexs is the unknown location of the singularity, and change the independent variable
to t by setting

x− x1 = tz, 0 ≤ t ≤ 1 (17.6.4)

The boundary conditions at t = 1 become

N(x, y) = 0, D(x, y) = 0 (17.6.5)

Use of an adaptive mesh as discussed in the previous section is another way to overcome
the difficulties of an internal singularity. For the problem (17.6.2), we add the mesh spacing
equations

dQ

dq
= ψ (17.6.6)

dψ

dq
= 0 (17.6.7)

with a simple mesh spacing function that mapsx uniformly into q, whereq runs from1 to
M , the number of mesh points:

Q(x) = x− x1,
dQ

dx
= 1 (17.6.8)

Having added three first-order differential equations, we must also add their corresponding
boundary conditions. If there were no singularity, these could simply be

at q = 1 : x = x1, Q = 0 (17.6.9)

at q = M : x = x2 (17.6.10)

and a total ofN valuesyi specified atq = 1. In this case the problem is essentially an
initial value problem with allboundary conditions specified atx1 and the mesh spacing
function is superfluous.

However, in the actual case at hand we impose the conditions

at q = 1 : x = x1, Q = 0 (17.6.11)

at q = M : N(x, y) = 0, D(x, y) = 0 (17.6.12)

andN − 1 valuesyi at q = 1. The “missing”yi is to be adjusted, in other words, so as
to make the solution go through the singular point in a regular (zero-over-zero) rather than
irregular (finite-over-zero) manner. Notice also that these boundary conditions do not directly
impose a value forx2, which becomes an adjustable parameter that the code varies in an
attempt to match the regularity condition.

In this example the singularity occurred at a boundary, and the complication arose
because the location of the boundary was unknown. In other problems we might wish to
continue the integration beyond the internal singularity. For the example given above, we
could simply integrate the ODEs to the singular point, then as a separate problem recommence
the integration from the singular point on as far we care to go. However, in other cases the
singularity occurs internally, but does not completely determine the problem: There are still
some more boundary conditions to be satisfied further along in the mesh. Such cases present
no difficulty in principle, but do require some adaptation of the relaxation code given in§17.3.
In effect all you need to do is to add a “special” block of equations at the mesh point where
the internal boundary conditions occur, and do the proper bookkeeping.

Figure 17.6.1 illustrates a concrete example where the overall problem contains 5
equations with 2 boundary conditions at the first point, one “internal” boundary condition, and
two final boundary conditions. The figure shows the structure of the overall matrix equations
along the diagonal in the vicinity of the special block. In the middle of the domain, blocks
typically involve 5 equations (rows) in 10 unknowns (columns). For each block prior to
the special block, the initialboundary conditions provided enough information to zero the
first two columns of the blocks. The five FDEs eliminate five more columns, and the final
three columns need to be stored for the backsubstitution step (as described in§17.3). To
handle the extra condition we break the normal cycle and add a special block with only one

778 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

equation: the internal boundary condition. This effectively reduces the required storage of
unreduced coefficients by one column for the rest of the grid, and allows us to reduce to
zero the first three columns of subsequent blocks. The subroutinesred, pinvs, bksub can
readily handle these cases with minor recoding, but each problem makes for a special case,
and you will have to make the modifications as required.

CITED REFERENCES AND FURTHER READING:

London, R.A., and Flannery, B.P. 1982, Astrophysical Journal, vol. 258, pp. 260–269.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
Chapter 18. Integral Equations

and Inverse Theory

18.0 Introduction

Many people, otherwise numerically knowledgable, imagine that the numerical
solution of integral equations must be an extremely arcane topic, since, until recently,
it was almost never treated in numerical analysis textbooks. Actually there is a
large and growing literature on the numerical solution of integral equations; several
monographs have by now appeared[1-3]. One reason for the sheer volume of this
activity is that there are many different kinds of equations, each with many different
possible pitfalls; often many different algorithms have been proposed to deal with
a single case.

There is a close correspondence between linear integral equations, which specify
linear, integral relations among functions in an infinite-dimensional function space,
and plain old linear equations, which specify analogous relations among vectors
in a finite-dimensional vector space. Because this correspondence lies at the heart
of most computational algorithms, it is worth making it explicit as we recall how
integral equations are classified.

Fredholm equationsinvolve definite integrals with fixed upper and lower limits.
An inhomogeneous Fredholm equation of the first kindhas the form

g(t) =

∫ b

a

K(t, s)f(s) ds (18.0.1)

Heref(t) is the unknown function to be solved for, whileg(t) is a known “right-hand
side.” (In integral equations, for some odd reason, the familiar “right-hand side” is
conventionally written on the left!) The function of two variables,K(t, s) is called
thekernel. Equation (18.0.1) is analogous to the matrix equation

K · f = g (18.0.2)

whose solution isf = K−1 · g, whereK−1 is the matrix inverse. Like equation
(18.0.2), equation (18.0.1) has a unique solution wheneverg is nonzero (the
homogeneous case withg = 0 is almost never useful) andK is invertible. However,
as we shall see, this latter condition is as often the exception as the rule.

The analog of the finite-dimensional eigenvalue problem

(K − σ1) · f = g (18.0.3)

779

780 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

is called aFredholm equation of the second kind, usually written

f(t) = λ

∫ b

a

K(t, s)f(s) ds + g(t) (18.0.4)

Again, the notational conventions do not exactly correspond:λ in equation (18.0.4)
is 1/σ in (18.0.3), whileg is −g/λ. If g (or g) is zero, then the equation is said
to behomogeneous. If the kernelK(t, s) is bounded, then, like equation (18.0.3),
equation (18.0.4) has the property that its homogeneous form has solutions for
at most a denumerably infinite setλ = λn, n = 1, 2, . . . , the eigenvalues. The
corresponding solutionsfn(t) are theeigenfunctions. The eigenvalues are real if
the kernel is symmetric.

In the inhomogeneouscase of nonzerog (or g), equations (18.0.3) and (18.0.4)
are solubleexceptwhenλ (or σ) is an eigenvalue — because the integral operator
(or matrix) is singular then. In integral equations this dichotomy is calledthe
Fredholm alternative.

Fredholm equations of the first kind are often extremely ill-conditioned. Ap-
plying the kernel to a function is generally a smoothing operation, so the solution,
which requires inverting the operator, will be extremely sensitive to small changes
or errors in the input. Smoothing often actually loses information, and there is no
way to get it back in an inverse operation. Specialized methods have been developed
for such equations, which are often calledinverse problems. In general, a method
must augment the information given with some prior knowledge of the nature of the
solution. This prior knowledge is then used, in one way or another, to restore lost
information. We will introduce such techniques in§18.4.

Inhomogeneous Fredholm equations of the second kind are much less often
ill-conditioned. Equation (18.0.4) can be rewritten as

∫ b

a

[K(t, s) − σδ(t − s)]f(s) ds = −σg(t) (18.0.5)

whereδ(t − s) is a Dirac delta function (and where we have changed fromλ to its
reciprocalσ for clarity). If σ is large enough in magnitude, then equation (18.0.5)
is, in effect, diagonally dominant and thus well-conditioned. Only ifσ is small do
we go back to the ill-conditioned case.

Homogeneous Fredholm equations of the second kind are likewise not partic-
ularly ill-posed. IfK is a smoothing operator, then it will map manyf ’s to zero,
or near-zero; there will thus be a large number of degenerate or nearly degenerate
eigenvalues aroundσ = 0 (λ → ∞), but this will cause no particular computational
difficulties. In fact, we can now see that the magnitude ofσ needed to rescue the
inhomogeneous equation (18.0.5) from an ill-conditioned fate is generally muchless
than that required for diagonal dominance. Since theσ term shifts all eigenvalues,
it is enough that it be large enough to shift a smoothing operator’s forest of near-
zero eigenvalues away from zero, so that the resulting operator becomes invertible
(except, of course, at the discrete eigenvalues).

Volterra equationsare a special case of Fredholm equations withK(t, s) = 0
for s > t. Chopping off the unnecessary part of the integration, Volterraequations are
written in a form where the upper limit of integration is the independent variablet.

18.0 Introduction 781

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The Volterra equation of the first kind

g(t) =

∫ t

a

K(t, s)f(s) ds (18.0.6)

has as its analog the matrix equation (now written out in components)

k∑
j=1

Kkjfj = gk (18.0.7)

Comparing with equation (18.0.2), we see that the Volterra equation corresponds to
a matrixK that is lower (i.e., left) triangular, with zero entries above the diagonal.
As we know from Chapter 2, such matrix equations are trivially soluble by forward
substitution. Techniques for solving Volterra equations are similarly straightforward.
When experimental measurement noise does not dominate, Volterra equations of the
first kind tendnot to be ill-conditioned; the upper limit to the integral introduces a
sharp step that conveniently spoils any smoothing properties of the kernel.

The Volterra equation of the second kind is written

f(t) =

∫ t

a

K(t, s)f(s) ds + g(t) (18.0.8)

whose matrix analog is the equation

(K − 1) · f = g (18.0.9)

with K lower triangular. The reason there is noλ in these equations is that (i) in
the inhomogeneous case (nonzerog) it can be absorbed intoK, while (ii) in the
homogeneous case (g = 0), it is a theorem that Volterra equations of the second kind
with bounded kernels have no eigenvalues with square-integrable eigenfunctions.

We have specialized our definitions to the case of linear integral equations.
The integrand in a nonlinear version of equation (18.0.1) or (18.0.6) would be
K(t, s, f(s)) instead ofK(t, s)f(s); a nonlinear version of equation (18.0.4) or
(18.0.8) would have an integrandK(t, s, f(t), f(s)). Nonlinear Fredholm equations
are considerably more complicated than their linear counterparts. Fortunately, they
do not occur as frequently in practice and we shall by and large ignore them in this
chapter. By contrast, solving nonlinear Volterra equations usually involves only a
slight modification of the algorithm for linear equations, as we shall see.

Almost all methods for solving integral equations numerically make use of
quadrature rules, frequently Gaussian quadratures. This would be a good time
for you to go back and review§4.5, especially the advanced material towards the
end of that section.

In the sections that follow, we first discuss Fredholm equations of the second
kind with smooth kernels (§18.1). Nontrivial quadrature rules come into the
discussion, but we will be dealing with well-conditioned systems of equations. We
then return to Volterra equations (§18.2), and find that simple and straightforward
methods are generally satisfactory for these equations.

In §18.3 we discuss how to proceed in the case of singular kernels, focusing
largely on Fredholm equations (both first and second kinds). Singularities require

782 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

special quadrature rules, but they are also sometimes blessings in disguise, since they
can spoil a kernel’s smoothing and make problems well-conditioned.

In §§18.4–18.7 we face up to the issues of inverse problems.§18.4 is an
introduction to this large subject.

We should note here that wavelet transforms, already discussed in§13.10, are
applicable not only to data compression and signal processing, but can also be used
to transform some classes of integral equations into sparse linear problems that allow
fast solution. You may wish to review§13.10 as part of reading this chapter.

Some subjects, such asintegro-differential equations, we must simply declare
to be beyond our scope. For a review of methods for integro-differential equations,
see Brunner[4].

It should go without saying that this one short chapter can only barely touch on
a few of the most basic methods involved in this complicated subject.

CITED REFERENCES AND FURTHER READING:

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [1]

Linz, P. 1985, Analytical and Numerical Methods for Volterra Equations (Philadelphia: S.I.A.M.).
[2]

Atkinson, K.E. 1976, A Survey of Numerical Methods for the Solution of Fredholm Integral
Equations of the Second Kind (Philadelphia: S.I.A.M.). [3]

Brunner, H. 1988, in Numerical Analysis 1987, Pitman Research Notes in Mathematics vol. 170,
D.F. Griffiths and G.A. Watson, eds. (Harlow, Essex, U.K.: Longman Scientific and Tech-
nical), pp. 18–38. [4]

Smithies, F. 1958, Integral Equations (Cambridge, U.K.: Cambridge University Press).

Kanwal, R.P. 1971, Linear Integral Equations (New York: Academic Press).

Green, C.D. 1969, Integral Equation Methods (New York: Barnes & Noble).

18.1 Fredholm Equations of the Second Kind

We desire a numerical solution forf(t) in the equation

f(t) = λ

∫ b

a

K(t, s)f(s) ds + g(t) (18.1.1)

The method we describe, a very basic one, is called theNystrom method. It requires
the choice of some approximatequadrature rule:

∫ b

a

y(s) ds =

N∑
j=1

wjy(sj) (18.1.2)

Here the set{wj} are the weights of the quadrature rule, while theN points{sj}
are the abscissas.

What quadrature rule should we use? It is certainly possible to solve integral
equations with low-order quadrature rules like the repeated trapezoidal or Simpson’s

782 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

special quadrature rules, but they are also sometimes blessings in disguise, since they
can spoil a kernel’s smoothing and make problems well-conditioned.

In §§18.4–18.7 we face up to the issues of inverse problems.§18.4 is an
introduction to this large subject.

We should note here that wavelet transforms, already discussed in§13.10, are
applicable not only to data compression and signal processing, but can also be used
to transform some classes of integral equations into sparse linear problems that allow
fast solution. You may wish to review§13.10 as part of reading this chapter.

Some subjects, such asintegro-differential equations, we must simply declare
to be beyond our scope. For a review of methods for integro-differential equations,
see Brunner[4].

It should go without saying that this one short chapter can only barely touch on
a few of the most basic methods involved in this complicated subject.

CITED REFERENCES AND FURTHER READING:

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [1]

Linz, P. 1985, Analytical and Numerical Methods for Volterra Equations (Philadelphia: S.I.A.M.).
[2]

Atkinson, K.E. 1976, A Survey of Numerical Methods for the Solution of Fredholm Integral
Equations of the Second Kind (Philadelphia: S.I.A.M.). [3]

Brunner, H. 1988, in Numerical Analysis 1987, Pitman Research Notes in Mathematics vol. 170,
D.F. Griffiths and G.A. Watson, eds. (Harlow, Essex, U.K.: Longman Scientific and Tech-
nical), pp. 18–38. [4]

Smithies, F. 1958, Integral Equations (Cambridge, U.K.: Cambridge University Press).

Kanwal, R.P. 1971, Linear Integral Equations (New York: Academic Press).

Green, C.D. 1969, Integral Equation Methods (New York: Barnes & Noble).

18.1 Fredholm Equations of the Second Kind

We desire a numerical solution forf(t) in the equation

f(t) = λ

∫ b

a

K(t, s)f(s) ds + g(t) (18.1.1)

The method we describe, a very basic one, is called theNystrom method. It requires
the choice of some approximatequadrature rule:

∫ b

a

y(s) ds =

N∑

j=1

wjy(sj) (18.1.2)

Here the set{wj} are the weights of the quadrature rule, while theN points{sj}
are the abscissas.

What quadrature rule should we use? It is certainly possible to solve integral
equations with low-order quadrature rules like the repeated trapezoidal or Simpson’s

18.1 Fredholm Equations of the Second Kind 783

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

rules. We will see, however, that the solution method involvesO(N3) operations,
and so the most efficient methods tend to use high-order quadrature rules to keep
N as small as possible. For smooth, nonsingular problems, nothing beats Gaussian
quadrature (e.g., Gauss-Legendre quadrature,§4.5). (For non-smooth or singular
kernels, see§18.3.)

Delves and Mohamed[1] investigated methods more complicated than the
Nystrom method. For straightforward Fredholm equations of the second kind, they
concluded “. . . the clear winner of this contest has been the Nystrom routine. . .with
theN -point Gauss-Legendre rule. This routine is extremely simple. . . . Such results
are enough to make a numerical analyst weep.”

If we apply the quadrature rule (18.1.2) to equation (18.1.1), we get

f(t) = λ
N∑

j=1

wjK(t, sj)f(sj) + g(t) (18.1.3)

Evaluate equation (18.1.3) at the quadrature points:

f(ti) = λ

N∑

j=1

wjK(ti, sj)f(sj) + g(ti) (18.1.4)

Let fi be the vectorf(ti), gi the vectorg(ti), Kij the matrixK(ti, sj), and define

K̃ij = Kijwj (18.1.5)

Then in matrix notation equation (18.1.4) becomes

(1− λK̃) · f = g (18.1.6)

This is a set ofN linear algebraic equations inN unknowns that can be solved
by standard triangular decomposition techniques (§2.3) — that is where theO(N3)
operations count comes in. The solution is usually well-conditioned, unlessλ is
very close to an eigenvalue.

Having obtained the solution at the quadrature points{ti}, how do you get the
solution at some other pointt? You donot simply use polynomial interpolation.
This destroys all the accuracy you have worked so hard to achieve. Nystrom’s key
observation was that you should use equation (18.1.3) as an interpolatory formula,
maintaining the accuracy of the solution.

We here give two subroutines for use with linear Fredholm equations of the
second kind. The routinefred2 sets up equation (18.1.6) and then solves it byLU
decomposition with calls to the routinesludcmp andlubksb. The Gauss-Legendre
quadrature is implemented by first getting the weights and abscissas with a call to
gauleg. Routinefred2 requires that you provide an external function that returns
g(t) and another that returnsλKij. It then returns the solutionf at the quadrature
points. It also returns the quadrature points and weights. These are used by the
second routinefredin to carry out the Nystrom interpolation of equation (18.1.3)
and return the value off at any point in the interval[a, b].

784 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE fred2(n,a,b,t,f,w,g,ak)
INTEGER n,NMAX
REAL a,b,f(n),t(n),w(n),g,ak
EXTERNAL ak,g
PARAMETER (NMAX=200)

C USES ak,g,gauleg,lubksb,ludcmp
Solves a linear Fredholm equation of the second kind. On input, a and b are the limits of
integration, and n is the number of points to use in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(t) and λK(t, s). The routine
returns arrays t(1:n) and f(1:n) containing the abscissas ti of the Gaussian quadrature
and the solution f at these abscissas. Also returned is the array w(1:n) of Gaussian weights
for use with the Nystrom interpolation routine fredin.

INTEGER i,j,indx(NMAX)
REAL d,omk(NMAX,NMAX)
if(n.gt.NMAX) pause ’increase NMAX in fred2’
call gauleg(a,b,t,w,n) Replace gauleg with another routine if not using

Gauss-Legendre quadrature.do 12 i=1,n
do 11 j=1,n Form 1 − λK̃.

if(i.eq.j)then
omk(i,j)=1.

else
omk(i,j)=0.

endif
omk(i,j)=omk(i,j)-ak(t(i),t(j))*w(j)

enddo 11

f(i)=g(t(i))
enddo 12

call ludcmp(omk,n,NMAX,indx,d) Solve linear equations.
call lubksb(omk,n,NMAX,indx,f)
return
END

FUNCTION fredin(x,n,a,b,t,f,w,g,ak)
INTEGER n
REAL fredin,a,b,x,f(n),t(n),w(n),g,ak
EXTERNAL ak,g

C USES ak,g
Given arrays t(1:n) and w(1:n) containing the abscissas and weights of the Gaussian
quadrature, and given the solution array f(1:n) from fred2, this function returns the
value of f at x using the Nystrom interpolation formula. On input, a and b are the limits
of integration, and n is the number of points used in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(t) and λK(t, s).

INTEGER i
REAL sum
sum=0.
do 11 i=1,n

sum=sum+ak(x,t(i))*w(i)*f(i)
enddo 11

fredin=g(x)+sum
return
END

One disadvantage of a method based on Gaussian quadrature is that there is no
simple way to obtain an estimate of the error in the result. The best practical method
is to increaseN by 50%, say, and treat the difference between the two estimates as a
conservative estimate of the error in the result obtained with the larger value ofN .

18.1 Fredholm Equations of the Second Kind 785

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Turn now to solutions of the homogeneous equation. If we setλ = 1/σ and
g = 0, then equation (18.1.6) becomes a standard eigenvalue equation

K̃ · f = σf (18.1.7)

which we can solve with any convenient matrix eigenvalue routine (see Chapter
11). Note that if our original problem had a symmetric kernel, then the matrixK
is symmetric. However, since the weightswj are not equal for most quadrature
rules, the matrixK̃ (equation 18.1.5) is not symmetric. The matrix eigenvalue
problem is much easier for symmetric matrices, and so we should restore the
symmetry if possible. Provided the weights are positive (which they are for Gaussian
quadrature), we can define the diagonal matrixD = diag(wj) and its square root,
D1/2 = diag(

√
wj). Then equation (18.1.7) becomes

K · D · f = σf

Multiplying by D1/2, we get

(
D1/2 · K · D1/2

)
· h = σh (18.1.8)

whereh = D1/2 · f. Equation (18.1.8) is now in the form of a symmetric eigenvalue
problem.

Solution of equations (18.1.7) or (18.1.8) will in general giveN eigenvalues,
whereN is the number of quadrature points used. For square-integrable kernels,
these will provide good approximations to the lowestN eigenvalues of the integral
equation. Kernels offinite rank(also calleddegenerateor separablekernels) have
only a finite number of nonzero eigenvalues (possibly none). You can diagnose
this situation by a cluster of eigenvaluesσ that are zero to machine precision. The
number of nonzero eigenvalues will stay constant as you increaseN to improve
their accuracy. Some care is required here: Anondegenerate kernel can have an
infinite number of eigenvalues that have an accumulation point atσ = 0. You
distinguish the two cases by the behavior of the solution as you increaseN . If you
suspect a degenerate kernel, you will usually be able to solve the problem by analytic
techniques described in all the textbooks.

CITED REFERENCES AND FURTHER READING:

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [1]

Atkinson, K.E. 1976, A Survey of Numerical Methods for the Solution of Fredholm Integral
Equations of the Second Kind (Philadelphia: S.I.A.M.).

786 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

18.2 Volterra Equations

Let us now turn to Volterra equations, of which our prototype is the Volterra
equation of the second kind,

f(t) =

∫ t

a

K(t, s)f(s) ds + g(t) (18.2.1)

Most algorithmsfor Volterraequations march out fromt = a, buildingup the solution
as they go. In this sense they resemble not only forward substitution (as discussed
in §18.0), but also initial-value problems for ordinary differential equations. In fact,
many algorithms for ODEs have counterparts for Volterra equations.

The simplest way to proceed is to solve the equation on a mesh with uniform
spacing:

ti = a + ih, i = 0, 1, . . . , N, h ≡ b− a

N
(18.2.2)

To do so, we must choose a quadrature rule. For a uniform mesh, the simplest
scheme is the trapezoidal rule, equation (4.1.11):

∫ ti

a

K(ti, s)f(s) ds = h

1

2
Ki0f0 +

i−1∑

j=1

Kijfj + 1

2
Kiifi

 (18.2.3)

Thus the trapezoidal method for equation (18.2.1) is:

f0 = g0

(1 − 1

2
hKii)fi = h

1

2
Ki0f0 +

i−1∑

j=1

Kijfj

 + gi, i = 1, . . . , N
(18.2.4)

(For a Volterra equation of the first kind, the leading1 on the left would be absent,
andg would have opposite sign, with corresponding straightforward changes in the
rest of the discussion.)

Equation (18.2.4) is an explicit prescription that gives the solution inO(N2)
operations. Unlike Fredholm equations, it is not necessary to solve a system of linear
equations. Volterra equations thus usually involve less work than the corresponding
Fredholm equations which, as we have seen, do involve the inversion of, sometimes
large, linear systems.

The efficiency of solving Volterra equations is somewhat counterbalanced by
the fact thatsystemsof these equations occur more frequently in practice. If we
interpret equation (18.2.1) as avectorequation for the vector ofm functionsf(t),
then the kernelK(t, s) is anm × m matrix. Equation (18.2.4) must now also be
understood as a vector equation. Foreachi, we have to solve them × m set of
linear algebraic equations by Gaussian elimination.

The routinevoltra below implements this algorithm. You must supply an
external function that returns thekth function of the vectorg(t) at the pointt, and
another that returns the(k, l) element of the matrixK(t, s) at (t, s). The routine
voltra then returns the vectorf(t) at the regularly spaced pointsti.

786 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

18.2 Volterra Equations

Let us now turn to Volterra equations, of which our prototype is the Volterra
equation of the second kind,

f(t) =

∫ t

a

K(t, s)f(s) ds + g(t) (18.2.1)

Most algorithmsfor Volterraequations march out fromt = a, buildingup the solution
as they go. In this sense they resemble not only forward substitution (as discussed
in §18.0), but also initial-value problems for ordinary differential equations. In fact,
many algorithms for ODEs have counterparts for Volterra equations.

The simplest way to proceed is to solve the equation on a mesh with uniform
spacing:

ti = a + ih, i = 0, 1, . . . , N, h ≡
b− a

N
(18.2.2)

To do so, we must choose a quadrature rule. For a uniform mesh, the simplest
scheme is the trapezoidal rule, equation (4.1.11):

∫ ti

a

K(ti, s)f(s) ds = h

1

2
Ki0f0 +

i−1
∑

j=1

Kijfj + 1

2
Kiifi

 (18.2.3)

Thus the trapezoidal method for equation (18.2.1) is:

f0 = g0

(1 − 1

2
hKii)fi = h

1

2
Ki0f0 +

i−1
∑

j=1

Kijfj

 + gi, i = 1, . . . , N
(18.2.4)

(For a Volterra equation of the first kind, the leading1 on the left would be absent,
andg would have opposite sign, with corresponding straightforward changes in the
rest of the discussion.)

Equation (18.2.4) is an explicit prescription that gives the solution inO(N2)
operations. Unlike Fredholm equations, it is not necessary to solve a system of linear
equations. Volterra equations thus usually involve less work than the corresponding
Fredholm equations which, as we have seen, do involve the inversion of, sometimes
large, linear systems.

The efficiency of solving Volterra equations is somewhat counterbalanced by
the fact thatsystemsof these equations occur more frequently in practice. If we
interpret equation (18.2.1) as avectorequation for the vector ofm functionsf(t),
then the kernelK(t, s) is anm × m matrix. Equation (18.2.4) must now also be
understood as a vector equation. Foreachi, we have to solve them × m set of
linear algebraic equations by Gaussian elimination.

The routinevoltra below implements this algorithm. You must supply an
external function that returns thekth function of the vectorg(t) at the pointt, and
another that returns the(k, l) element of the matrixK(t, s) at (t, s). The routine
voltra then returns the vectorf(t) at the regularly spaced pointsti.

18.2 Volterra Equations 787

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE voltra(n,m,t0,h,t,f,g,ak)
INTEGER m,n,MMAX
REAL h,t0,f(m,n),t(n),g,ak
EXTERNAL ak,g
PARAMETER (MMAX=5)

C USES ak,g,lubksb,ludcmp
Solves a set of m linear Volterra equations of the second kind using the extended trapezoidal
rule. On input, t0 is the starting point of the integration and n-1 is the number of steps
of size h to be taken. g(k,t) is a user-supplied external function that returns gk(t), while
ak(k,l,t,s) is another user-supplied external function that returns the (k, l) element
of the matrix K(t, s). The solution is returned in f(1:m,1:n), with the corresponding
abscissas in t(1:n).

INTEGER i,j,k,l,indx(MMAX)
REAL d,sum,a(MMAX,MMAX),b(MMAX)
t(1)=t0
do 11 k=1,m Initialize.

f(k,1)=g(k,t(1))
enddo 11

do 16 i=2,n Take a step h.
t(i)=t(i-1)+h
do 14 k=1,m

sum=g(k,t(i)) Accumulate right-hand side of linear equations in
sum.do 13 l=1,m

sum=sum+0.5*h*ak(k,l,t(i),t(1))*f(l,1)
do 12 j=2,i-1

sum=sum+h*ak(k,l,t(i),t(j))*f(l,j)
enddo 12

if(k.eq.l)then Left-hand side goes in matrix a.
a(k,l)=1.

else
a(k,l)=0.

endif
a(k,l)=a(k,l)-0.5*h*ak(k,l,t(i),t(i))

enddo 13

b(k)=sum
enddo 14

call ludcmp(a,m,MMAX,indx,d) Solve linear equations.
call lubksb(a,m,MMAX,indx,b)
do 15 k=1,m

f(k,i)=b(k)
enddo 15

enddo 16

return
END

For nonlinear Volterra equations, equation (18.2.4) holds with the productKiifi
replaced byKii(fi), and similarly for the other two products ofK’s andf ’s. Thus
for each i we solve a nonlinear equation forfi with a known right-hand side.
Newton’s method (§9.4 or §9.6) with an initial guess offi−1 usually works very
well provided the stepsize is not too big.

Higher-order methods for solving Volterra equations are, in our opinion, not as
important as for Fredholm equations, since Volterra equations are relatively easy to
solve. However, there is an extensive literature on the subject. Several difficulties
arise. First, any method that achieves higher order by operating on several quadrature
points simultaneously will need a special method to get started, when values at the
first few points are not yet known.

Second, stable quadrature rules can give rise to unexpected instabilities in
integral equations. For example, suppose we try to replace the trapezoidal rule in

788 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the algorithm above with Simpson’s rule. Simpson’s rule naturally integrates over
an interval2h, so we easily get the function values at the even mesh points. For the
odd mesh points, we could try appending one panel of trapezoidal rule. But to which
end of the integration should we append it? We could do one step of trapezoidal rule
followed by all Simpson’s rule, or Simpson’s rule with one step of trapezoidal rule
at the end. Surprisingly, the former scheme is unstable, while the latter is fine!

A simple approach that can be used with the trapezoidal method given above
is Richardson extrapolation: Compute the solution with stepsizeh andh/2. Then,
assuming the error scales withh2, compute

fE =
4f(h/2) − f(h)

3
(18.2.5)

This procedure can be repeated as with Romberg integration.
The general consensus is that the best of the higher order methods is the

block-by-block method(see[1]). Another important topic is the use of variable
stepsize methods, which are much more efficient if there are sharp features inK or
f . Variable stepsize methods are quite a bit more complicated than their counterparts
for differential equations; we refer you to the literature[1,2] for a discussion.

You should also be on the lookout for singularities in the integrand. If you find
them, then look to§18.3 for additional ideas.

CITED REFERENCES AND FURTHER READING:

Linz, P. 1985, Analytical and Numerical Methods for Volterra Equations (Philadelphia: S.I.A.M.).
[1]

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [2]

18.3 Integral Equations with Singular Kernels

Many integral equations have singularities in either the kernel or the solution or both.
A simple quadrature method will show poor convergence withN if such singularities are
ignored. There is sometimes art in how singularities are best handled.

We start with a few straightforward suggestions:
1. Integrable singularities can often be removed by a change of variable. For example, the

singular behaviorK(t, s) ∼ s1/2 or s−1/2 nears = 0 can be removed by the transformation
z = s1/2. Note that we are assuming that the singular behavior is confined toK , whereas
the quadrature actually involves the productK(t, s)f(s), and it is this product that must
be “fixed.” Ideally, you must deduce the singular nature of the product before you try a
numerical solution, and take the appropriate action. Commonly, however, a singular kernel
doesnot produce a singular solutionf(t). (The highly singular kernelK(t, s) = δ(t − s)
is simply the identity operator, for example.)

2. If K(t, s) can be factored asw(s)K(t, s), wherew(s) is singular andK(t, s) is
smooth, then a Gaussian quadrature based onw(s) as a weight function will work well. Even
if the factorization is only approximate, the convergence is often improved dramatically. All
you have to do is replacegauleg in the routinefred2 by another quadrature routine. Section
4.5 explained how to construct such quadratures; or you can find tabulated abscissas and
weights in the standard references[1,2]. You must of course supplyK instead ofK .

788 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

the algorithm above with Simpson’s rule. Simpson’s rule naturally integrates over
an interval2h, so we easily get the function values at the even mesh points. For the
odd mesh points, we could try appending one panel of trapezoidal rule. But to which
end of the integration should we append it? We could do one step of trapezoidal rule
followed by all Simpson’s rule, or Simpson’s rule with one step of trapezoidal rule
at the end. Surprisingly, the former scheme is unstable, while the latter is fine!

A simple approach that can be used with the trapezoidal method given above
is Richardson extrapolation: Compute the solution with stepsizeh andh/2. Then,
assuming the error scales withh2, compute

fE =
4f(h/2) − f(h)

3
(18.2.5)

This procedure can be repeated as with Romberg integration.
The general consensus is that the best of the higher order methods is the

block-by-block method(see[1]). Another important topic is the use of variable
stepsize methods, which are much more efficient if there are sharp features inK or
f . Variable stepsize methods are quite a bit more complicated than their counterparts
for differential equations; we refer you to the literature[1,2] for a discussion.

You should also be on the lookout for singularities in the integrand. If you find
them, then look to§18.3 for additional ideas.

CITED REFERENCES AND FURTHER READING:

Linz, P. 1985, Analytical and Numerical Methods for Volterra Equations (Philadelphia: S.I.A.M.).
[1]

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [2]

18.3 Integral Equations with Singular Kernels

Many integral equations have singularities in either the kernel or the solution or both.
A simple quadrature method will show poor convergence withN if such singularities are
ignored. There is sometimes art in how singularities are best handled.

We start with a few straightforward suggestions:
1. Integrable singularities can often be removed by a change of variable. For example, the

singular behaviorK(t, s) ∼ s1/2 or s−1/2 nears = 0 can be removed by the transformation
z = s1/2. Note that we are assuming that the singular behavior is confined toK , whereas
the quadrature actually involves the productK(t, s)f(s), and it is this product that must
be “fixed.” Ideally, you must deduce the singular nature of the product before you try a
numerical solution, and take the appropriate action. Commonly, however, a singular kernel
doesnot produce a singular solutionf(t). (The highly singular kernelK(t, s) = δ(t − s)
is simply the identity operator, for example.)

2. If K(t, s) can be factored asw(s)K(t, s), wherew(s) is singular andK(t, s) is
smooth, then a Gaussian quadrature based onw(s) as a weight function will work well. Even
if the factorization is only approximate, the convergence is often improved dramatically. All
you have to do is replacegauleg in the routinefred2 by another quadrature routine. Section
4.5 explained how to construct such quadratures; or you can find tabulated abscissas and
weights in the standard references[1,2]. You must of course supplyK instead ofK .

18.3 Integral Equations with Singular Kernels 789

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

This method is a special case of theproduct Nystrom method[3,4], where one factors out
a singular termp(t, s) depending on botht ands from K and constructs suitable weights for
its Gaussian quadrature. The calculations in the general case are quite cumbersome, because
the weights depend on the chosen{ti} as well as the form ofp(t, s).

We prefer to implement the productNystrom method on a uniform grid, with a quadrature
scheme that generalizes the extended Simpson’s 3/8 rule (equation 4.1.5) to arbitrary weight
functions. We discuss this in the subsections below.

3. Special quadrature formulas are also useful when the kernel is not strictly singular,
but is “almost” so. One example is when the kernel is concentrated neart = s on a scale much
smaller than the scale on which the solutionf(t) varies. In that case, a quadrature formula
can be based on locally approximatingf(s) by a polynomial or spline, while calculating the
first few momentsof the kernelK(t, s) at the tabulation pointsti. In such a scheme the
narrow width of the kernel becomes an asset, rather than a liability: The quadrature becomes
exact as the width of the kernel goes to zero.

4. An infinite range of integration is also a form of singularity. Truncating the rangeat a
large finite value should be used only as a last resort. If the kernel goes rapidly to zero, then
a Gauss-Laguerre [w ∼ exp(−αs)] or Gauss-Hermite [w ∼ exp(−s2)] quadrature should
work well. Long-tailed functions often succumb to the transformation

s =
2α

z + 1
− α (18.3.1)

which maps0 < s < ∞ to 1 > z > −1 so that Gauss-Legendre integration can be used.
Hereα > 0 is a constant that you adjust to improve the convergence.

5. A common situation in practice is thatK(t, s) is singular along the diagonal line
t = s. Here the Nystrom method fails completely because the kernel gets evaluated at(ti, si).
Subtraction of the singularityis one possible cure:

∫ b

a

K(t, s)f(s) ds =

∫ b

a

K(t, s)[f(s) − f(t)]ds +

∫ b

a

K(t, s)f(t)ds

=

∫ b

a

K(t, s)[f(s) − f(t)]ds + r(t)f(t)

(18.3.2)

wherer(t) =
∫ b

a
K(t, s) ds is computed analytically or numerically. If the first term on

the right-hand side is now regular, we can use the Nystrom method. Instead of equation
(18.1.4), we get

fi = λ

N
∑

j=1
j 6=i

wjKij [fj − fi] + λrifi + gi (18.3.3)

Sometimes the subtraction process must be repeated before the kernel is completely regularized.
See[3] for details. (And read on for a different, we think better, way to handle diagonal
singularities.)

Quadrature on a Uniform Mesh with Arbitrary Weight

It is possible in general to findn-point linear quadrature rules that approximate the
integral of a functionf(x), times an arbitrary weight functionw(x), over an arbitrary range
of integration(a, b), as the sum of weights timesn evenly spaced values of the functionf(x),
say atx = kh, (k+1)h, . . . , (k +n− 1)h. The general scheme for deriving such quadrature
rules is to write down then linear equations that must be satisfied if the quadrature rule is
to be exact for then functionsf(x) = const, x, x2, . . . , xn−1, and then solve these for the
coefficients. This can be done analytically, once and for all, if the moments of the weight
function over the same range of integration,

Wn ≡ 1

hn

∫ b

a

x
n
w(x)dx (18.3.4)

790 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

are assumed to be known. Here the prefactorh−n is chosen to makeWn scale ash if (as
in the usual case)b − a is proportional toh.

Carrying out this prescription for the four-point case gives the result
∫ b

a
w(x)f(x)dx =

1

6
f(kh)

[

(k + 1)(k + 2)(k + 3)W0 − (3k2 + 12k + 11)W1 + 3(k + 2)W2 −W3

]

+
1

2
f([k + 1]h)

[

− k(k + 2)(k + 3)W0 + (3k2 + 10k + 6)W1 − (3k + 5)W2 + W3

]

+
1

2
f([k + 2]h)

[

k(k + 1)(k + 3)W0 − (3k2 + 8k + 3)W1 + (3k + 4)W2 −W3

]

+
1

6
f([k + 3]h)

[

− k(k + 1)(k + 2)W0 + (3k2 + 6k + 2)W1 − 3(k + 1)W2 + W3

]

(18.3.5)
While the terms in brackets superficially appear to scale ask2, there is typically cancellation
at bothO(k2) and O(k).

Equation (18.3.5) can be specialized to various choices of(a, b). The obvious choice
is a = kh, b = (k + 3)h, in which case we get a four-point quadrature rule that generalizes
Simpson’s 3/8 rule (equation 4.1.5). In fact, we can recover this special case bysetting
w(x) = 1, in which case (18.3.4) becomes

Wn =
h

n + 1
[(k + 3)n+1 − k

n+1] (18.3.6)

The four terms in square brackets equation (18.3.5) each become independent ofk, and
(18.3.5) in fact reduces to
∫ (k+3)h

kh

f(x)dx =
3h

8
f(kh)+

9h

8
f([k+1]h)+

9h

8
f([k+2]h)+

3h

8
f([k+3]h) (18.3.7)

Back to the case of generalw(x), some other choices fora andb are also useful. For
example, we may want to choose(a, b) to be([k + 1]h, [k + 3]h) or ([k + 2]h, [k + 3]h),
allowing us to finish off an extended rule whose number of intervals isnot a multiple
of three, without loss of accuracy: The integral will be estimated using the four values
f(kh), . . . , f([k+ 3]h). Even more useful is to choose(a, b) to be([k + 1]h, [k +2]h), thus
using four points to integrate a centered single interval. These weights, when sewed together
into an extended formula, give quadrature schemes that have smooth coefficients, i.e., without
the Simpson-like2, 4, 2, 4, 2 alternation. (In fact, this was the technique that we used to derive
equation 4.1.14, which you may now wish to reexamine.)

All these rules are of the same order as the extended Simpson’s rule, that is, exact
for f(x) a cubic polynomial. Rules of lower order, if desired, are similarly obtained. The
three point formula is

∫ b

a

w(x)f(x)dx =
1

2
f(kh)

[

(k + 1)(k + 2)W0 − (2k + 3)W1 + W2

]

+ f([k + 1]h)

[

− k(k + 2)W0 + 2(k + 1)W1 −W2

]

+
1

2
f([k + 2]h)

[

k(k + 1)W0 − (2k + 1)W1 + W2

]

(18.3.8)

Here the simple special case is to take,w(x) = 1, so that

Wn =
h

n + 1
[(k + 2)n+1 − k

n+1] (18.3.9)

Then equation (18.3.8) becomes Simpson’s rule,
∫ (k+2)h

kh

f(x)dx =
h

3
f(kh) +

4h

3
f([k + 1]h) +

h

3
f([k + 2]h) (18.3.10)

18.3 Integral Equations with Singular Kernels 791

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For nonconstant weight functionsw(x), however, equation (18.3.8) gives rules of one order
less than Simpson, since they do not benefit from the extra symmetry of the constant case.

The two point formula is simply
∫ (k+1)h

kh

w(x)f(x)dx = f(kh)[(k+1)W0 −W1] + f([k+ 1]h)[−kW0 +W1] (18.3.11)

Here is a routinewwghts that uses the above formulas to return an extendedN -point
quadrature rule for the interval(a, b) = (0, [N − 1]h). Input towwghts is a user-supplied
routine,kermom, that is called to get the first fourindefinite-integralmoments ofw(x), namely

Fm(y) ≡
∫ y

s
m
w(s)ds m = 0, 1, 2, 3 (18.3.12)

(The lower limit is arbitrary and can be chosen for convenience.) Cautionary note: When
called withN < 4, wwghts returns a rule of lower order than Simpson; you should structure
your problem to avoid this.

SUBROUTINE wwghts(wghts,n,h,kermom)
INTEGER n
REAL wghts(n),h
EXTERNAL kermom

C USES kermom
Constructs in wghts(1:n) weights for the n-point equal-interval quadrature from 0 to
(n−1)h of a function f(x) times an arbitrary (possibly singular) weight function w(x) whose
indefinite-integral moments Fn(y) are provided by the user-supplied subroutine kermom.

INTEGER j,k
DOUBLE PRECISION wold(4),wnew(4),w(4),hh,hi,c,fac,a,b
hh=h Double precision on internal calculations even though

the interface is in single precision.hi=1.d0/hh
do 11 j=1,n Zero all the weights so we can sum into them.

wghts(j)=0.
enddo 11

call kermom(wold,0.d0,4) Evaluate indefinite integrals at lower end.
if (n.ge.4) then Use highest available order.

b=0.d0 For another problem, you might change this lower
limit.do 14 j=1,n-3

c=j-1 This is called k in equation (18.3.5).
a=b Set upper and lower limits for this step.
b=a+hh
if (j.eq.n-3) b=(n-1)*hh Last interval: go all the way to end.
call kermom(wnew,b,4)
fac=1.d0
do 12 k=1,4 Equation (18.3.4).

w(k)=(wnew(k)-wold(k))*fac
fac=fac*hi

enddo 12

wghts(j)=wghts(j)+ Equation (18.3.5).
* ((c+1.d0)*(c+2.d0)*(c+3.d0)*w(1)
* -(11.d0+c*(12.d0+c*3.d0))*w(2)
* +3.d0*(c+2.d0)*w(3)-w(4))/6.d0

wghts(j+1)=wghts(j+1)+
* (-c*(c+2.d0)*(c+3.d0)*w(1)
* +(6.d0+c*(10.d0+c*3.d0))*w(2)
* -(3.d0*c+5.d0)*w(3)+w(4))*.5d0

wghts(j+2)=wghts(j+2)+
* (c*(c+1.d0)*(c+3.d0)*w(1)
* -(3.d0+c*(8.d0+c*3.d0))*w(2)
* +(3.d0*c+4.d0)*w(3)-w(4))*.5d0

wghts(j+3)=wghts(j+3)+
* (-c*(c+1.d0)*(c+2.d0)*w(1)
* +(2.d0+c*(6.d0+c*3.d0))*w(2)
* -3.d0*(c+1.d0)*w(3)+w(4))/6.d0

do 13 k=1,4 Reset lower limits for moments.

792 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

wold(k)=wnew(k)
enddo 13

enddo 14

else if (n.eq.3) then Lower-order cases; not recommended.
call kermom(wnew,hh+hh,3)
w(1)=wnew(1)-wold(1)
w(2)=hi*(wnew(2)-wold(2))
w(3)=hi**2*(wnew(3)-wold(3))
wghts(1)=w(1)-1.5d0*w(2)+0.5d0*w(3)
wghts(2)=2.d0*w(2)-w(3)
wghts(3)=0.5d0*(w(3)-w(2))

else if (n.eq.2) then
call kermom(wnew,hh,2)
wghts(2)=hi*(wnew(2)-wold(2))
wghts(1)=wnew(1)-wold(1)-wghts(2)

endif
END

We will now give an example of how to applywwghts to a singular integral equation.

Worked Example: A Diagonally Singular Kernel

As a particular example, consider the integral equation

f(x) +

∫ π

0

K(x, y)f(y)dy = sinx (18.3.13)

with the (arbitrarily chosen) nasty kernel

K(x, y) = cos x cos y ×
{

ln(x− y) y < x√
y − x y ≥ x

(18.3.14)

which has a logarithmic singularity on the left of the diagonal, combined with a square-root
discontinuity on the right.

The first step is to do (analytically, in this case) the required moment integrals over
the singular part of the kernel, equation (18.3.12). Since these integrals are done at a fixed
value ofx, we can usex as the lower limit. For any specified value ofy, the required
indefinite integral is then either

Fm(y;x) =

∫ y

x

s
m(s− x)1/2ds =

∫ y−x

0

(x + t)mt
1/2

dt if y > x (18.3.15)

or

Fm(y;x) =

∫ y

x

s
m ln(x− s)ds =

∫ x−y

0

(x− t)m ln t dt if y < x (18.3.16)

(where a change of variable has been made in the second equality ineach case). Doing these
integrals analytically (actually, we used a symbolic integration package!), wepackage the
resulting formulas in the following routine. Note thatw(j + 1) returnsFj(y;x).

SUBROUTINE kermom(w,y,m)
Returns in w(1:m) the first m indefinite-integral moments of one row of the singular part
of the kernel. (For this example, m is hard-wired to be 4.) The input variable y labels the
column, while x (in COMMON) is the row.

INTEGER m
DOUBLE PRECISION w(m),y,x,d,df,clog,x2,x3,x4
COMMON /momcom/ x

We can take x as the lower limit of integration. Thus, we return the moment integrals either
purely to the left or purely to the right of the diagonal.

if (y.ge.x) then
d=y-x
df=2.d0*sqrt(d)*d
w(1)=df/3.d0

18.3 Integral Equations with Singular Kernels 793

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

w(2)=df*(x/3.d0+d/5.d0)
w(3)=df*((x/3.d0 + 0.4d0*d)*x + d**2/7.d0)
w(4)=df*(((x/3.d0 + 0.6d0*d)*x + 3.d0*d**2/7.d0)*x

* + d**3/9.d0)
else

x2=x**2
x3=x2*x
x4=x2*x2
d=x-y
clog=log(d)
w(1)=d*(clog-1.d0)
w(2)=-0.25d0*(3.d0*x+y-2.d0*clog*(x+y))*d
w(3)=(-11.d0*x3+y*(6.d0*x2+y*(3.d0*x+2.d0*y))

* +6.d0*clog*(x3-y**3))/18.d0
w(4)=(-25.d0*x4+y*(12.d0*x3+y*(6.d0*x2+y*

* (4.d0*x+3.d0*y)))+12.d0*clog*(x4-y**4))/48.d0
endif
return
END

Next, we write a routine that constructs the quadrature matrix.

SUBROUTINE quadmx(a,n,np)
INTEGER n,np,NMAX
REAL a(np,np),PI
DOUBLE PRECISION xx
PARAMETER (PI=3.14159265,NMAX=257)
COMMON /momcom/ xx
EXTERNAL kermom

C USES wwghts,kermom
Constructs in a(1:n,1:n) the quadrature matrix for an example Fredholm equation of the
second kind. The nonsingular part of the kernel is computed within this routine, while the
quadrature weights which integrate the singular part of the kernel are obtained via calls
to wwghts. An external routine kermom, which supplies indefinite-integral moments of the
singular part of the kernel, is passed to wwghts.

INTEGER j,k
REAL h,wt(NMAX),x,cx,y
h=PI/(n-1)
do 12 j=1,n

x=(j-1)*h
xx=x Put x in COMMON for use by kermom.
call wwghts(wt,n,h,kermom)
cx=cos(x) Part of nonsingular kernel.
do 11 k=1,n

y=(k-1)*h
a(j,k)=wt(k)*cx*cos(y) Put together all the pieces of the kernel.

enddo 11

a(j,j)=a(j,j)+1. Since equation of the second kind, there is diagonal
piece independent of h.enddo 12

return
END

Finally, we solve the linear system for any particular right-hand side, heresin x.

PROGRAM fredex
INTEGER NMAX
REAL PI
PARAMETER (NMAX=100,PI=3.14159265)
INTEGER indx(NMAX),j,n
REAL a(NMAX,NMAX),g(NMAX),x,d

C USES quadmx,ludcmp,lubksb

794 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

32.521.51.50

0

.5

1

−.5

f(
x)

x

n = 10
n = 20
n = 40

Figure 18.3.1. Solution of the example integral equation (18.3.14) with grid sizesN = 10, 20, and40.
The tabulated solution values have been connected by straight lines; in practice one would interpolate
a smallN solution more smoothly.

This sample program shows how to solve a Fredholm equation of the second kind using
the product Nystrom method and a quadrature rule especially constructed for a particular,
singular, kernel.

n=40 Here the size of the grid is specified.
call quadmx(a,n,NMAX) Make the quadrature matrix; all the action is here.
call ludcmp(a,n,NMAX,indx,d) Decompose the matrix.
do 11 j=1,n Construct the right hand side, here sinx.

x=(j-1)*PI/(n-1)
g(j)=sin(x)

enddo 11

call lubksb(a,n,NMAX,indx,g) Backsubstitute.
do 12 j=1,n Write out the solution.

x=(j-1)*PI/(n-1)
write (*,*) j,x,g(j)

enddo 12

write (*,*) ’normal completion’
END

With N = 40, this program gives accuracy at about the10−5 level. The accuracy
increases asN4 (as it should for our Simpson-order quadrature scheme)despitethe highly
singular kernel. Figure 18.3.1 shows the solution obtained, also plotting the solution for
smaller values ofN , which are themselves seen to be remarkably faithful. Notice that the
solution is smooth, even though the kernel is singular, a common occurrence.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [1]

Stroud, A.H., and Secrest, D. 1966, Gaussian Quadrature Formulas (Englewood Cliffs, NJ:
Prentice-Hall). [2]

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [3]

Atkinson, K.E. 1976, A Survey of Numerical Methods for the Solution of Fredholm Integral
Equations of the Second Kind (Philadelphia: S.I.A.M.). [4]

18.4 Inverse Problems and the Use of A Priori Information 795

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

18.4 Inverse Problems and the Use of A Priori
Information

Later discussion will be facilitated by some preliminary mention of a couple
of mathematical points. Suppose thatu is an “unknown” vector that we plan to
determine by some minimization principle. LetA[u] > 0 andB[u] > 0 be two
positive functionals ofu, so that we can try to determineu by either

minimize: A[u] or minimize: B[u] (18.4.1)

(Of course these will generally give different answers foru.) As another possibility,
now suppose that we want to minimizeA[u] subject to theconstraintthatB[u] have
some particular value, sayb. The method of Lagrange multipliers gives the variation

δ

δu
{A[u] + λ1(B[u]− b)} =

δ

δu
(A[u] + λ1B[u]) = 0 (18.4.2)

whereλ1 is a Lagrange multiplier. Notice thatb is absent in the second equality,
since it doesn’t depend onu.

Next, suppose that we change our minds and decide to minimizeB[u] subject
to the constraint thatA[u] have a particular value,a. Instead of equation (18.4.2)
we have

δ

δu
{B[u] + λ2(A[u]− a)} =

δ

δu
(B[u] + λ2A[u]) = 0 (18.4.3)

with, this time,λ2 the Lagrange multiplier. Multiplying equation (18.4.3) by the
constant1/λ2, and identifying1/λ2 with λ1, we see that the actual variations are
exactly the same in the two cases. Both cases will yield the same one-parameter
family of solutions, say,u(λ1). As λ1 varies from0 to ∞, the solutionu(λ1)
varies along a so-calledtrade-off curvebetween the problem of minimizingA and
the problem of minimizingB. Any solution along this curve can equally well
be thought of as either (i) a minimization ofA for some constrained value ofB,
or (ii) a minimization ofB for some constrained value ofA, or (iii) a weighted
minimization of the sumA + λ1B.

The second preliminary pointhas to do withdegenerateminimization principles.
In the example above, now suppose thatA[u] has the particular form

A[u] = |A · u − c|2 (18.4.4)

for some matrixA and vectorc. If A has fewer rows than columns, or ifA is square
but degenerate (has a nontrivial nullspace, see§2.6, especially Figure 2.6.1), then
minimizingA[u] will not give a unique solution foru. (To see why, review§15.4,
and note that for a “design matrix”A with fewer rows than columns, the matrix
AT · A in the normal equations 15.4.10 is degenerate.)However, if we add any
multipleλ times a nondegenerate quadratic formB[u], for exampleu · H · u with H
a positive definite matrix, then minimization ofA[u] + λB[u] will lead to a unique
solution foru. (The sum of two quadratic forms is itself a quadratic form, with the
second piece guaranteeing nondegeneracy.)

18.4 Inverse Problems and the Use of A Priori Information 795

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

18.4 Inverse Problems and the Use of A Priori
Information

Later discussion will be facilitated by some preliminary mention of a couple
of mathematical points. Suppose thatu is an “unknown” vector that we plan to
determine by some minimization principle. LetA[u] > 0 andB[u] > 0 be two
positive functionals ofu, so that we can try to determineu by either

minimize: A[u] or minimize: B[u] (18.4.1)

(Of course these will generally give different answers foru.) As another possibility,
now suppose that we want to minimizeA[u] subject to theconstraintthatB[u] have
some particular value, sayb. The method of Lagrange multipliers gives the variation

δ

δu
{A[u] + λ1(B[u]− b)} =

δ

δu
(A[u] + λ1B[u]) = 0 (18.4.2)

whereλ1 is a Lagrange multiplier. Notice thatb is absent in the second equality,
since it doesn’t depend onu.

Next, suppose that we change our minds and decide to minimizeB[u] subject
to the constraint thatA[u] have a particular value,a. Instead of equation (18.4.2)
we have

δ

δu
{B[u] + λ2(A[u]− a)} =

δ

δu
(B[u] + λ2A[u]) = 0 (18.4.3)

with, this time,λ2 the Lagrange multiplier. Multiplying equation (18.4.3) by the
constant1/λ2, and identifying1/λ2 with λ1, we see that the actual variations are
exactly the same in the two cases. Both cases will yield the same one-parameter
family of solutions, say,u(λ1). As λ1 varies from0 to ∞, the solutionu(λ1)
varies along a so-calledtrade-off curvebetween the problem of minimizingA and
the problem of minimizingB. Any solution along this curve can equally well
be thought of as either (i) a minimization ofA for some constrained value ofB,
or (ii) a minimization ofB for some constrained value ofA, or (iii) a weighted
minimization of the sumA + λ1B.

The second preliminary pointhas to do withdegenerateminimization principles.
In the example above, now suppose thatA[u] has the particular form

A[u] = |A · u − c|2 (18.4.4)

for some matrixA and vectorc. If A has fewer rows than columns, or ifA is square
but degenerate (has a nontrivial nullspace, see§2.6, especially Figure 2.6.1), then
minimizingA[u] will not give a unique solution foru. (To see why, review§15.4,
and note that for a “design matrix”A with fewer rows than columns, the matrix
AT · A in the normal equations 15.4.10 is degenerate.)However, if we add any
multipleλ times a nondegenerate quadratic formB[u], for exampleu · H · u with H
a positive definite matrix, then minimization ofA[u] + λB[u] will lead to a unique
solution foru. (The sum of two quadratic forms is itself a quadratic form, with the
second piece guaranteeing nondegeneracy.)

796 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

We can combine these two points, for this conclusion: When a quadratic
minimization principle is combined with a quadratic constraint, and both are
positive, onlyoneof the two need be nondegenerate for the overall problem to be
well-posed. We are now equipped to face the subject of inverse problems.

The Inverse Problem with Zeroth-Order Regularization

Suppose thatu(x) is some unknown or underlying (u stands for both unknown
and underlying!) physical process, which we hope to determine by a set ofN
measurementsci, i = 1, 2, . . . , N . The relation betweenu(x) and theci’s is that
eachci measures a (hopefully distinct) aspect ofu(x) through its own linear response
kernelri, and with its own measurement errorni. In other words,

ci ≡ si + ni =

∫
ri(x)u(x)dx + ni (18.4.5)

(compare this to equations 13.3.1 and 13.3.2). Within the assumption of linearity,
this is quite a general formulation. Theci’s might approximate values ofu(x) at
certain locationsxi, in which caseri(x) would have the form of a more or less
narrow instrumental response centered aroundx = xi. Or, theci’s might “live” in an
entirely different function space fromu(x), measuring different Fourier components
of u(x) for example.

Theinverse problemis, given theci’s, theri(x)’s, and perhaps some information
about the errorsni such as their covariance matrix

Sij ≡ Covar[ni, nj] (18.4.6)

how do we find a good statistical estimator ofu(x), call it û(x)?
It should be obvious that this is an ill-posed problem. After all, how can we

reconstruct a whole function̂u(x) from only a finite number of discrete valuesci?
Yet, whether formally or informally, we do this all the time in science. We routinely
measure “enough points” and then “draw a curve through them.” In doing so, we
are making some assumptions, either about the underlying functionu(x), or about
the nature of the response functionsri(x), or both. Our purpose now is to formalize
these assumptions, and to extend our abilities to cases where the measurements and
underlying function live in quite different function spaces. (How do you “draw a
curve” through a scattering of Fourier coefficients?)

We can’t really want every pointx of the functionû(x). We do want some
large numberM of discrete pointsxµ, µ = 1, 2, . . .,M , whereM is sufficiently
large, and thexµ’s are sufficiently evenly spaced, that neitheru(x) nor ri(x) varies
much between anyxµ andxµ+1. (Here and following we will use Greek letters like
µ to denote values in the space of the underlying process, and Roman letters likei
to denote values of immediate observables.) For such a dense set ofxµ’s, we can
replace equation (18.4.5) by a quadrature like

ci =
∑

µ

Riµu(xµ) + ni (18.4.7)

where theN × M matrix R has components

Riµ ≡ ri(xµ)(xµ+1 − xµ−1)/2 (18.4.8)

18.4 Inverse Problems and the Use of A Priori Information 797

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(or any other simple quadrature — it rarely matters which). We will view equations
(18.4.5) and (18.4.7) as being equivalent for practical purposes.

How do you solve a set of equations like equation (18.4.7) for the unknown
u(xµ)’s? Here is a bad way, but one that contains the germ of some correct ideas:
Form aχ2 measure of how well a model̂u(x) agrees with the measured data,

χ2 =

N∑

i=1

N∑

j=1

[
ci −

M∑

µ=1

Riµû(xµ)

]
S−1

ij

[
cj −

M∑

µ=1

Rjµû(xµ)

]

≈

N∑

i=1

[
ci −

∑M
µ=1

Riµû(xµ)

σi

]2
(18.4.9)

(compare with equation 15.1.5). HereS−1 is the inverse of the covariance matrix,
and the approximate equality holds if you can neglect the off-diagonal covariances,
with σi ≡ (Covar[i, i])1/2.

Now you can use the method of singular value decomposition (SVD) in§15.4
to find the vector̂u that minimizes equation (18.4.9). Don’t try to use the method
of normal equations; sinceM is greater thanN they will be singular, as we already
discussed. The SVD process will thus surely find a large number of zero singular
values, indicative of a highly non-unique solution. Among the infinity of degenerate
solutions (most of them badly behaved with arbitrarily largeû(xµ)’s) SVD will
select the one with smallest|û| in the sense of

∑

µ

[û(xµ)]2 a minimum (18.4.10)

(look at Figure 2.6.1). This solution is often called theprincipal solution. It
is a limiting case of what is calledzeroth-order regularization, corresponding to
minimizing the sum of the two positive functionals

minimize: χ2[û] + λ(û · û) (18.4.11)

in the limit of smallλ. Below, we will learn how to do such minimizations, as well
as more general ones, without thead hocuse of SVD.

What happens if we determinêu by equation (18.4.11) with a non-infinitesimal
value ofλ? First, note that ifM ≫ N (many more unknowns than equations), then
u will often have enough freedom to be able to makeχ2 (equation 18.4.9) quite
unrealistically small, if not zero. In the language of§15.1, the number of degrees of
freedomν = N − M , which is approximately the expected value ofχ2 whenν is
large, is being driven down to zero (and, not meaningfully, beyond). Yet, we know
that for thetrue underlying functionu(x), which has no adjustable parameters, the
number of degrees of freedom and the expected value ofχ2 should be aboutν ≈ N .

Increasingλ pulls the solution away from minimizingχ2 in favor of minimizing
û · û. From the preliminary discussion above, we can view this as minimizingû · û
subject to theconstraint that χ2 have some constant nonzero value. A popular
choice, in fact, is to find that value ofλ which yieldsχ2 = N , that is, to get about as
much extra regularization as a plausible value ofχ2 dictates. The resultinĝu(x) is
calledthe solution of the inverse problem with zeroth-order regularization.

798 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

best agreement
(independent of smoothness)

be
st

 s
m

oo
th

ne
ss

(in

de
pe

nd
en

t o
f a

gr
ee

m
en

t)

best solutions

Better Smoothness

B
et

te
r A

gr
ee

m
en

t

achievable solutions

Figure 18.4.1. Almost all inverse problem methods involve a trade-off between two optimizations:
agreementbetween data and solution, or “sharpness”of mappingbetween true and estimated solution (here
denotedA), and smoothness or stability of the solution (here denotedB). Among all possible solutions,
shown here schematically as the shaded region, those on the boundary connecting the unconstrained
minimum ofA and the unconstrained minimum ofB are the “best” solutions, in the sense that every
other solution is dominated by at least one solution on the curve.

The valueN is actually a surrogate for any value drawn from a Gaussian
distribution with meanN and standard deviation(2N)1/2 (the asymptoticχ2

distribution). One might equally plausibly try two values ofλ, one givingχ2 =
N + (2N)1/2, the otherN − (2N)1/2.

Zeroth-order regularization, though dominated by better methods, demonstrates
most of the basic ideas that are used in inverse problem theory. In general, there are
two positive functionals, call themA andB. The first,A, measures something like
the agreement of a model to the data (e.g.,χ2), or sometimes a related quantity like
the “sharpness” of the mapping between the solution and the underlying function.
WhenA by itself is minimized, the agreement or sharpness becomes very good
(often impossibly good), but the solution becomes unstable, wildly oscillating, or in
other ways unrealistic, reflecting thatA alone typically defines a highly degenerate
minimization problem.

That is whereB comes in. It measures something like the “smoothness” of the
desired solution, or sometimes a related quantity that parametrizes the stability of
the solution with respect to variations in the data, or sometimes a quantity reflecting
a priori judgments about the likelihood of a solution.B is called thestabilizing
functionalor regularizing operator. In any case, minimizingB by itself is supposed
to give a solution that is “smooth” or “stable” or “likely” — and that has nothing
at all to do with the measured data.

18.5 Linear Regularization Methods 799

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The single central idea in inverse theory is the prescription

minimize: A + λB (18.4.12)

for various values of0 < λ < ∞ along the so-called trade-off curve (see Figure
18.4.1), and then to settle on a “best” value ofλ by one or another criterion, ranging
from fairly objective (e.g., makingχ2 = N) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choices ofA and
B, as to whether the prescription (18.4.12) yields linear or nonlinear equations, as
to their recommended method for selecting a finalλ, and as to their practicality for
computer-intensive two-dimensional problems like image processing.

They also differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian” in a
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that
B has something to do witha priori expectation, or knowledge, of a solution, while
A has something to do witha posterioriknowledge. The constantλ adjudicates a
delicate compromise between the two. Some inverse methods have acquired a more
Bayesian stamp than others, but we think that this is purely an accident of history.
An outsider looking only at the equations that are actually solved, and not at the
accompanying philosophical justifications, would have a difficult time separating the
so-called Bayesian methods from the so-called empirical ones, we think.

The next three sections discuss three different approaches to the problem of
inversion, which have had considerable success in different fields. All three fit
within the general framework that we have outlined, but they are quite different in
detail and in implementation.

CITED REFERENCES AND FURTHER READING:

Craig, I.J.D., and Brown, J.C. 1986, Inverse Problems in Astronomy (Bristol, U.K.: Adam Hilger).

Twomey, S. 1977, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements (Amsterdam: Elsevier).

Tikhonov, A.N., and Arsenin, V.Y. 1977, Solutions of Ill-Posed Problems (New York: Wiley).

Tikhonov, A.N., and Goncharsky, A.V. (eds.) 1987, Ill-Posed Problems in the Natural Sciences
(Moscow: MIR).

Parker, R.L. 1977, Annual Review of Earth and Planetary Science, vol. 5, pp. 35–64.

Frieden, B.R. 1975, in Picture Processing and Digital Filtering, T.S. Huang, ed. (New York:
Springer-Verlag).

Tarantola, A. 1987, Inverse Problem Theory (Amsterdam: Elsevier).

Baumeister, J. 1987, Stable Solution of Inverse Problems (Braunschweig, Germany: Friedr. Vieweg
& Sohn) [mathematically oriented].

Titterington, D.M. 1985, Astronomy and Astrophysics, vol. 144, pp. 381–387.

Jeffrey, W., and Rosner, R. 1986, Astrophysical Journal, vol. 310, pp. 463–472.

18.5 Linear Regularization Methods

What we will call linear regularization is also called thePhillips-Twomey
method[1,2], theconstrained linear inversion method[3], themethod of regulariza-
tion [4], andTikhonov-Miller regularization[5-7]. (It probably has other names also,

18.5 Linear Regularization Methods 799

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The single central idea in inverse theory is the prescription

minimize: A + λB (18.4.12)

for various values of0 < λ < ∞ along the so-called trade-off curve (see Figure
18.4.1), and then to settle on a “best” value ofλ by one or another criterion, ranging
from fairly objective (e.g., makingχ2 = N) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choices ofA and
B, as to whether the prescription (18.4.12) yields linear or nonlinear equations, as
to their recommended method for selecting a finalλ, and as to their practicality for
computer-intensive two-dimensional problems like image processing.

They also differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian” in a
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that
B has something to do witha priori expectation, or knowledge, of a solution, while
A has something to do witha posterioriknowledge. The constantλ adjudicates a
delicate compromise between the two. Some inverse methods have acquired a more
Bayesian stamp than others, but we think that this is purely an accident of history.
An outsider looking only at the equations that are actually solved, and not at the
accompanying philosophical justifications, would have a difficult time separating the
so-called Bayesian methods from the so-called empirical ones, we think.

The next three sections discuss three different approaches to the problem of
inversion, which have had considerable success in different fields. All three fit
within the general framework that we have outlined, but they are quite different in
detail and in implementation.

CITED REFERENCES AND FURTHER READING:

Craig, I.J.D., and Brown, J.C. 1986, Inverse Problems in Astronomy (Bristol, U.K.: Adam Hilger).

Twomey, S. 1977, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements (Amsterdam: Elsevier).

Tikhonov, A.N., and Arsenin, V.Y. 1977, Solutions of Ill-Posed Problems (New York: Wiley).

Tikhonov, A.N., and Goncharsky, A.V. (eds.) 1987, Ill-Posed Problems in the Natural Sciences
(Moscow: MIR).

Parker, R.L. 1977, Annual Review of Earth and Planetary Science, vol. 5, pp. 35–64.

Frieden, B.R. 1975, in Picture Processing and Digital Filtering, T.S. Huang, ed. (New York:
Springer-Verlag).

Tarantola, A. 1987, Inverse Problem Theory (Amsterdam: Elsevier).

Baumeister, J. 1987, Stable Solution of Inverse Problems (Braunschweig, Germany: Friedr. Vieweg
& Sohn) [mathematically oriented].

Titterington, D.M. 1985, Astronomy and Astrophysics, vol. 144, pp. 381–387.

Jeffrey, W., and Rosner, R. 1986, Astrophysical Journal, vol. 310, pp. 463–472.

18.5 Linear Regularization Methods

What we will call linear regularization is also called thePhillips-Twomey
method[1,2], theconstrained linear inversion method[3], themethod of regulariza-
tion [4], andTikhonov-Miller regularization[5-7]. (It probably has other names also,

800 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

since it is so obviously a good idea.) In its simplest form, the method is an immediate
generalization of zeroth-order regularization (equation 18.4.11, above). As before,
the functionalA is taken to be theχ2 deviation, equation (18.4.9), but the functional
B is replaced by more sophisticated measures of smoothness that derive from first
or higher derivatives.

For example, suppose that youra priori belief is that a credibleu(x) is not too
different from a constant. Then a reasonable functional to minimize is

B ∝

∫
[û′(x)]2dx ∝

M−1∑

µ=1

[ûµ − ûµ+1]
2 (18.5.1)

since it is nonnegative and equal to zero only whenû(x) is constant. Here
ûµ ≡ û(xµ), and the second equality (proportionality) assumes that thexµ’s are
uniformly spaced. We can write the second form ofB as

B = |B · û|2 = û · (BT · B) · û ≡ û · H · û (18.5.2)

whereû is the vector of componentŝuµ, µ = 1, . . . ,M , B is the (M − 1) × M
first difference matrix

B =

−1 1 0 0 0 0 0 · · · 0
0 −1 1 0 0 0 0 · · · 0
...

...
...

0 · · · 0 0 0 0 −1 1 0
0 · · · 0 0 0 0 0 −1 1

(18.5.3)

and H is the M × M matrix

H = BT · B =

1 −1 0 0 0 0 0 · · · 0
−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0
...

...
...

0 · · · 0 0 0 −1 2 −1 0
0 · · · 0 0 0 0 −1 2 −1
0 · · · 0 0 0 0 0 −1 1

(18.5.4)

Note thatB has one fewer row than column. It follows that the symmetricH
is degenerate; it has exactly one zero eigenvalue corresponding to thevalueof a
constant function, any one of which makesB exactly zero.

If, just as in §15.4, we write

Aiµ ≡ Riµ/σi bi ≡ ci/σi (18.5.5)

then, using equation (18.4.9), the minimization principle (18.4.12) is

minimize: A + λB = |A · û − b|2 + λû · H · û (18.5.6)

This can readily be reduced to a linear set ofnormal equations, just as in§15.4: The
componentŝuµ of the solution satisfy the set ofM equations inM unknowns,

∑

ρ

[(∑

i

AiµAiρ

)
+ λHµρ

]
ûρ =

∑

i

Aiµbi µ = 1, 2, . . . ,M (18.5.7)

18.5 Linear Regularization Methods 801

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

or, in vector notation,

(AT · A + λH) · û = AT · b (18.5.8)

Equations (18.5.7) or (18.5.8) can be solved by the standard techniques of
Chapter 2, e.g.,LU decomposition. The usual warnings about normal equations
being ill-conditioned do not apply, since the whole purpose of theλ term is to cure
that same ill-conditioning. Note, however, that theλ termby itself is ill-conditioned,
since it does not select a preferred constant value. You hope your data can at
least do that!

Although inversion of the matrix(AT ·A +λH) is not generally the best way to
solve forû, let us digress to write the solution to equation (18.5.8) schematically as

û =

(
1

AT · A + λH
· AT · A

)
A−1 · b (schematic only!) (18.5.9)

where the identity matrix in the formA · A−1 has been inserted. This is schematic
not only because the matrix inverse is fancifully written as a denominator, but
also because, in general, the inverse matrixA−1 does not exist. However, it is
illuminating to compare equation (18.5.9) with equation (13.3.6) for optimal or
Wiener filtering, or with equation (13.6.6) for general linear prediction. One sees
that AT · A plays the role ofS2, the signal power or autocorrelation, whileλH
plays the role ofN2, the noise power or autocorrelation. The term in parentheses
in equation (18.5.9) is something like an optimal filter, whose effect is to pass the
ill-posed inverseA−1 · b through unmodified whenAT · A is sufficiently large, but
to suppress it whenAT · A is small.

The above choices ofB andH are only the simplest in an obvious sequence of
derivatives. If youra priori belief is that alinear function is a good approximation
to u(x), then minimize

B ∝

∫
[û′′(x)]2dx ∝

M−2∑

µ=1

[−ûµ + 2ûµ+1 − ûµ+2]
2 (18.5.10)

implying

B =

−1 2 −1 0 0 0 0 · · · 0
0 −1 2 −1 0 0 0 · · · 0
...

...
...

0 · · · 0 0 0 −1 2 −1 0
0 · · · 0 0 0 0 −1 2 −1

(18.5.11)

and

H = BT · B =

1 −2 1 0 0 0 0 · · · 0
−2 5 −4 1 0 0 0 · · · 0

1 −4 6 −4 1 0 0 · · · 0
0 1 −4 6 −4 1 0 · · · 0
...

...
...

0 · · · 0 1 −4 6 −4 1 0
0 · · · 0 0 1 −4 6 −4 1
0 · · · 0 0 0 1 −4 5 −2
0 · · · 0 0 0 0 1 −2 1

(18.5.12)

802 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ThisH has two zero eigenvalues, corresponding to the two undetermined parameters
of a linear function.

If your a priori belief is that aquadraticfunction is preferable, then minimize

B ∝

∫
[û′′′(x)]2dx ∝

M−3∑

µ=1

[−ûµ + 3ûµ+1 − 3ûµ+2 + ûµ+3]
2 (18.5.13)

with

B =

−1 3 −3 1 0 0 0 · · · 0
0 −1 3 −3 1 0 0 · · · 0
...

...
...

0 · · · 0 0 −1 3 −3 1 0
0 · · · 0 0 0 −1 3 −3 1

(18.5.14)

and now

H =

1 −3 3 −1 0 0 0 0 0 · · · 0
−3 10 −12 6 −1 0 0 0 0 · · · 0

3 −12 19 −15 6 −1 0 0 0 · · · 0
−1 6 −15 20 −15 6 −1 0 0 · · · 0

0 −1 6 −15 20 −15 6 −1 0 · · · 0
...

...
...

0 · · · 0 −1 6 −15 20 −15 6 −1 0
0 · · · 0 0 −1 6 −15 20 −15 6 −1
0 · · · 0 0 0 −1 6 −15 19 −12 3
0 · · · 0 0 0 0 −1 6 −12 10 −3
0 · · · 0 0 0 0 0 −1 3 −3 1

(18.5.15)
(We’ll leave the calculation of cubics and above to the compulsive reader.)

Notice that you can regularize with “closeness to a differential equation,” if
you want. Just pickB to be the appropriate sum of finite-difference operators (the
coefficients can depend onx), and calculateH = BT · B. You don’t need to know
the values of your boundary conditions, sinceB can have fewer rows than columns,
as above; hopefully, your data will determine them. Of course, if you do know some
boundary conditions, you can build these intoB too.

With all the proportionality signs above, you may have lost track of what actual
value ofλ to try first. A simple trick for at least getting “on the map” is to first try

λ = Tr(AT · A)/Tr(H) (18.5.16)

where Tr is the trace of the matrix (sum of diagonal components). This choice
will tend to make the two parts of the minimization have comparable weights, and
you can adjust from there.

As for what is the “correct” value ofλ, an objective criterion, if you know
your errorsσi with reasonable accuracy, is to makeχ2 (that is,|A · û − b|2) equal
to N , the number of measurements. We remarked above on the twinacceptable
choicesN ± (2N)1/2. A subjective criterion is to pick any value that you like in the

18.5 Linear Regularization Methods 803

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

range0 < λ < ∞, depending on your relative degree of belief in thea priori anda
posteriorievidence. (Yes, people actually do that. Don’t blame us.)

Two-Dimensional Problems and Iterative Methods

Up to now our notation has been indicative of a one-dimensional problem,
finding û(x) or ûµ = û(xµ). However, all of the discussion easily generalizes to the
problem of estimating a two-dimensional set of unknownsûµκ, µ = 1, . . . ,M, κ =
1, . . . , K, corresponding, say, to the pixel intensities of a measured image. In this
case, equation (18.5.8) is still the one we want to solve.

In image processing, it is usual to have the same number of input pixels in a
measured “raw” or “dirty” image as desired “clean” pixels in the processed output
image, so the matricesR andA (equation 18.5.5) are square and of sizeMK×MK.
A is typically much too large to represent as a full matrix, but often it is either (i)
sparse, with coefficients blurring an underlying pixel(i, j) only into measurements
(i±few, j±few), or (ii) translationally invariant, so thatA(i,j)(µ,ν) = A(i−µ, j−ν).
Both of these situations lead to tractable problems.

In the case of translational invariance, fast Fourier transforms (FFTs) are the
obvious method of choice. The general linear relation between underlying function
and measured values (18.4.7) now becomes a discrete convolution like equation
(13.1.1). If k denotes a two-dimensional wave-vector, then the two-dimensional
FFT takes us back and forth between the transform pairs

A(i−µ, j− ν) ⇐⇒ Ã(k) b(i,j) ⇐⇒ b̃(k) û(i,j) ⇐⇒ ũ(k) (18.5.17)

We also need a regularization or smoothing operatorB and the derivedH = BT · B.
One popular choice forB is the five-point finite-difference approximation of the
Laplacian operator, that is, the difference between the value of each point andthe
average of its four Cartesian neighbors. In Fourier space, this choice implies,

B̃(k) ∝ sin2(πk1/M) sin2(πk2/K)

H̃(k) ∝ sin4(πk1/M) sin4(πk2/K)
(18.5.18)

In Fourier space, equation (18.5.7) is merely algebraic, with solution

ũ(k) =
Ã*(k)̃b(k)

|Ã(k)|2 + λH̃(k)
(18.5.19)

where asterisk denotes complex conjugation. You can make use of the FFT routines
for real data in§12.5.

Turn now to the case whereA is not translationally invariant. Direct solution
of (18.5.8) is now hopeless, since the matrixA is just too large. We need some
kind of iterative scheme.

One way to proceed is to use the full machinery of the conjugate gradient
method in§10.6 to find the minimum ofA + λB, equation (18.5.6). Of the various
methods in Chapter 10, conjugate gradient is the unique best choice because (i)
it does not require storage of a Hessian matrix, which would be infeasible here,

804 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and (ii) it does exploit gradient information, which we can readily compute: The
gradient of equation (18.5.6) is

∇(A + λB) = 2[(AT · A + λH) · û − AT · b] (18.5.20)

(cf. 18.5.8). Evaluation of both the function and the gradient should of course take
advantage of the sparsity ofA, for example via the routinessprsax andsprstx
in §2.7. We will discuss the conjugate gradient technique further in§18.7, in the
context of the (nonlinear) maximum entropy method. Some of that discussion can
apply here as well.

The conjugate gradient method notwithstanding, application of the unsophis-
ticated steepest descent method (see§10.6) can sometimes produce useful results,
particularly when combined with projections onto convex sets (see below). If the
solution afterk iterations is denoted̂u(k), then afterk + 1 iterations we have

û(k+1) = [1− ǫ(AT · A + λH)] · û(k) + ǫAT · b (18.5.21)

Hereǫ is a parameter that dictates how far to move in the downhill gradient direction.
The method converges whenǫ is small enough, in particular satisfying

0 < ǫ <
2

max eigenvalue(AT · A + λH)
(18.5.22)

There exist complicated schemes for finding optimal values or sequences forǫ,
see[7]; or, one can adopt an experimental approach, evaluating (18.5.6) to be sure
that downhill steps are in fact being taken.

In those image processing problems where the final measure of success is
somewhat subjective (e.g., “how good does the picture look?”), iteration (18.5.21)
sometimes produces significantly improved images long before convergence is
achieved. This probably accounts for much of its use, since its mathematical
convergence is extremely slow. In fact, (18.5.21) can be used withH = 0, in
which case the solution is not regularized at all, and full convergence would be
disastrous! This is calledVan Cittert’s methodand goes back to the 1930s. A number
of iterations the order of 1000 is not uncommon[7].

Deterministic Constraints: Projections onto Convex Sets

A set of possible underlying functions (or images){û} is said to beconvexif,
for any two elementŝua andûb in the set, all the linearly interpolated combinations

(1 − η)ûa + ηûb 0 ≤ η ≤ 1 (18.5.23)

are also in the set. Manydeterministic constraintsthat one might want to impose on
the solution̂u to an inverse problem in fact define convex sets, for example:

• positivity
• compact support (i.e., zero value outside of a certain region)

18.5 Linear Regularization Methods 805

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• known bounds (i.e.,uL(x) ≤ û(x) ≤ uU (x) for specified functionsuL

and uU).
(In this last case, the bounds might be related to an initial estimate and its error bars,
e.g., û0(x) ± γσ(x), whereγ is of order 1 or 2.) Notice that these, and similar,
constraints can be either in the image space, or in the Fourier transform space, or
(in fact) in the space of any linear transformation ofû.

If Ci is a convex set, thenPi is called anonexpansive projection operatoronto
that set if (i)Pi leaves unchanged anŷu already inCi, and (ii)Pi maps anŷu outside
Ci to theclosestelement ofCi, in the sense that

|Piû − û| ≤ |ûa − û| for all ûa in Ci (18.5.24)

While this definition sounds complicated, examples are very simple: A nonexpansive
projection onto the set of positivêu’s is “set all negative components ofû equal
to zero.” A nonexpansive projection onto the set ofû(x)’s bounded byuL(x) ≤
û(x) ≤ uU (x) is “set all values less than the lower bound equal to that bound, and
set all values greater than the upper bound equal tothat bound.” A nonexpansive
projection onto functions with compact support is“zero the values outside of the
region of support.”

The usefulness of these definitions is the following remarkable theorem: LetC
be the intersection ofm convex setsC1, C2, . . . , Cm. Then the iteration

û(k+1)
= (P1P2 · · ·Pm)û(k)

(18.5.25)

will converge toC from all starting points, ask → ∞. Also, if C is empty (there
is no intersection), then the iteration will have no limit point. Application of this
theorem is called themethod of projections onto convex setsor sometimesPOCS[7].

A generalization of the POCS theorem is that thePi’s can be replaced by
a set ofTi’s,

Ti ≡ 1 + βi(Pi − 1) 0 < βi < 2 (18.5.26)

A well-chosen set ofβi’s can accelerate the convergence to the intersection setC.
Some inverse problems can be completely solved by iteration (18.5.25) alone!

For example, a problem that occurs in both astronomical imaging and X-ray
diffraction work is to recover an image given only themodulusof its Fourier
transform (equivalent to its power spectrum or autocorrelation) and not thephase.
Here three convex sets can be utilized: the set of all images whose Fourier transform
has the specified modulus to within specified error bounds; the set of all positive
images; and the set of all images with zero intensity outside of some specified region.
In this case the POCS iteration (18.5.25) cycles among these three, imposing each
constraint in turn; FFTs are used to get in and out of Fourier space eachtime the
Fourier constraint is imposed.

The specific application of POCS to constraints alternately in the spatial and
Fourier domains is also known as theGerchberg-Saxtonalgorithm[8]. While this
algorithm is non-expansive, and is frequently convergent in practice, it has not been
proved to converge in all cases[9]. In the phase-retrieval problem mentioned above,
the algorithm often “gets stuck” on a plateau for many iterations before making
sudden, dramatic improvements. As many as104 to 105 iterations are sometimes

806 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

necessary. (For “unsticking” procedures, see[10].) The uniqueness of the solution
is also not well understood, although for two-dimensional images of reasonable
complexity it is believed to be unique.

Deterministic constraints can be incorporated, via projection operators, into
iterative methods of linear regularization. In particular, rearranging terms somewhat,
we can write the iteration (18.5.21) as

û(k+1) = [1− ǫλH] · û(k) + ǫAT · (b − A · û(k)) (18.5.27)

If the iteration is modified by the insertion of projection operators at each step

û(k+1) = (P1P2 · · · Pm)[1− ǫλH] · û(k) + ǫAT · (b − A · û(k)) (18.5.28)

(or, instead ofPi’s, theTi operators of equation 18.5.26), then it can be shown that
the convergence condition (18.5.22) is unmodified, and the iteration will converge
to minimize the quadratic functional (18.5.6) subject to the desired nonlinear
deterministic constraints. See[7] for references to more sophisticated, and faster
converging, iterations along these lines.

CITED REFERENCES AND FURTHER READING:

Phillips, D.L. 1962, Journal of the Association for Computing Machinery, vol. 9, pp. 84–97. [1]

Twomey, S. 1963, Journal of the Association for Computing Machinery, vol. 10, pp. 97–101. [2]

Twomey, S. 1977, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements (Amsterdam: Elsevier). [3]

Craig, I.J.D., and Brown, J.C. 1986, Inverse Problems in Astronomy (Bristol, U.K.: Adam Hilger).
[4]

Tikhonov, A.N., and Arsenin, V.Y. 1977, Solutions of Ill-Posed Problems (New York: Wiley). [5]

Tikhonov, A.N., and Goncharsky, A.V. (eds.) 1987, Ill-Posed Problems in the Natural Sciences
(Moscow: MIR).

Miller, K. 1970, SIAM Journal on Mathematical Analysis, vol. 1, pp. 52–74. [6]

Schafer, R.W., Mersereau, R.M., and Richards, M.A. 1981, Proceedings of the IEEE, vol. 69,
pp. 432–450.

Biemond, J., Lagendijk, R.L., and Mersereau, R.M. 1990, Proceedings of the IEEE, vol. 78,
pp. 856–883. [7]

Gerchberg, R.W., and Saxton, W.O. 1972, Optik, vol. 35, pp. 237–246. [8]

Fienup, J.R. 1982, Applied Optics, vol. 15, pp. 2758–2769. [9]

Fienup, J.R., and Wackerman, C.C. 1986, Journal of the Optical Society of America A, vol. 3,
pp. 1897–1907. [10]

18.6 Backus-Gilbert Method

TheBackus-Gilbert method[1,2] (see, e.g.,[3] or [4] for summaries) differs from
other regularization methods in the nature of its functionalsA andB. For B, the
method seeks to maximize thestabilityof the solution̂u(x) rather than, in the first
instance, its smoothness. That is,

B ≡ Var[û(x)] (18.6.1)

806 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

necessary. (For “unsticking” procedures, see[10].) The uniqueness of the solution
is also not well understood, although for two-dimensional images of reasonable
complexity it is believed to be unique.

Deterministic constraints can be incorporated, via projection operators, into
iterative methods of linear regularization. In particular, rearranging terms somewhat,
we can write the iteration (18.5.21) as

û(k+1) = [1− ǫλH] · û(k) + ǫAT
· (b − A · û(k)) (18.5.27)

If the iteration is modified by the insertion of projection operators at each step

û(k+1) = (P1P2 · · · Pm)[1− ǫλH] · û(k) + ǫAT
· (b − A · û(k)) (18.5.28)

(or, instead ofPi’s, theTi operators of equation 18.5.26), then it can be shown that
the convergence condition (18.5.22) is unmodified, and the iteration will converge
to minimize the quadratic functional (18.5.6) subject to the desired nonlinear
deterministic constraints. See[7] for references to more sophisticated, and faster
converging, iterations along these lines.

CITED REFERENCES AND FURTHER READING:

Phillips, D.L. 1962, Journal of the Association for Computing Machinery, vol. 9, pp. 84–97. [1]

Twomey, S. 1963, Journal of the Association for Computing Machinery, vol. 10, pp. 97–101. [2]

Twomey, S. 1977, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements (Amsterdam: Elsevier). [3]

Craig, I.J.D., and Brown, J.C. 1986, Inverse Problems in Astronomy (Bristol, U.K.: Adam Hilger).
[4]

Tikhonov, A.N., and Arsenin, V.Y. 1977, Solutions of Ill-Posed Problems (New York: Wiley). [5]

Tikhonov, A.N., and Goncharsky, A.V. (eds.) 1987, Ill-Posed Problems in the Natural Sciences
(Moscow: MIR).

Miller, K. 1970, SIAM Journal on Mathematical Analysis, vol. 1, pp. 52–74. [6]

Schafer, R.W., Mersereau, R.M., and Richards, M.A. 1981, Proceedings of the IEEE, vol. 69,
pp. 432–450.

Biemond, J., Lagendijk, R.L., and Mersereau, R.M. 1990, Proceedings of the IEEE, vol. 78,
pp. 856–883. [7]

Gerchberg, R.W., and Saxton, W.O. 1972, Optik, vol. 35, pp. 237–246. [8]

Fienup, J.R. 1982, Applied Optics, vol. 15, pp. 2758–2769. [9]

Fienup, J.R., and Wackerman, C.C. 1986, Journal of the Optical Society of America A, vol. 3,
pp. 1897–1907. [10]

18.6 Backus-Gilbert Method

TheBackus-Gilbert method[1,2] (see, e.g.,[3] or [4] for summaries) differs from
other regularization methods in the nature of its functionalsA andB. For B, the
method seeks to maximize thestabilityof the solution̂u(x) rather than, in the first
instance, its smoothness. That is,

B ≡ Var[û(x)] (18.6.1)

18.6 Backus-Gilbert Method 807

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

is used as a measure of how much the solutionû(x) varies as the data vary within
their measurement errors. Note that this variance is not the expected deviation of
û(x) from the trueu(x) — that will be constrained byA — but rather measures
the expected experiment-to-experiment scatter among estimatesû(x) if the whole
experiment were to be repeated many times.

ForA the Backus-Gilbert method looks at the relationship between the solution
û(x) and the true functionu(x), and seeks to make the mapping between these as
close to the identity map as possible in the limit of error-free data. The method is
linear, so the relationship between̂u(x) andu(x) can be written as

û(x) =

∫
δ̂(x, x′)u(x′)dx′ (18.6.2)

for some so-calledresolution functionor averaging kernel̂δ(x, x′). The Backus-
Gilbert method seeks to minimize the width orspreadof δ̂ (that is, maximize the
resolving power).A is chosen to be some positive measure of the spread.

While Backus-Gilbert’s philosophy is thus rather different from that of Phillips-
Twomey and related methods, in practice the differences between the methods are
less than one might think. Astablesolution is almost inevitably bound to be
smooth: The wild, unstable oscillations that result from an unregularized solution
are always exquisitely sensitive to small changes in the data. Likewise, making
û(x) close tou(x) inevitably will bring error-free data into agreement with the
model. ThusA andB play roles closely analogous to their corresponding roles
in the previous two sections.

The principal advantage of the Backus-Gilbert formulation is that it gives good
control over just those properties that it seeks to measure, namely stability and
resolving power. Moreover, in the Backus-Gilbert method, the choice ofλ (playing
its usual role of compromise betweenA andB) is conventionally made, or at least
can easily be made,beforeany actual data are processed. One’s uneasiness at making
apost hoc, and therefore potentially subjectively biased, choice ofλ is thus removed.
Backus-Gilbert is often recommended as the method of choice for designing, and
predicting the performance of, experiments that require data inversion.

Let’s see how this all works. Starting with equation (18.4.5),

ci ≡ si + ni =

∫
ri(x)u(x)dx + ni (18.6.3)

and building in linearity from the start, we seek a set ofinverse response kernels
qi(x) such that

û(x) =
∑

i

qi(x)ci (18.6.4)

is the desired estimator ofu(x). It is useful to define the integrals of the response
kernels for each data point,

Ri ≡

∫
ri(x)dx (18.6.5)

808 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Substituting equation (18.6.4) into equation (18.6.3), and comparing with equation
(18.6.2), we see that

δ̂(x, x′) =
∑

i

qi(x)ri(x
′) (18.6.6)

We can require this averaging kernel to have unit area at everyx, giving

1 =

∫
δ̂(x, x′)dx′ =

∑

i

qi(x)

∫
ri(x

′)dx′ =
∑

i

qi(x)Ri ≡ q(x) · R (18.6.7)

whereq(x) andR are each vectors of lengthN , the number of measurements.
Standard propagation of errors, and equation (18.6.1), give

B = Var[û(x)] =
∑

i

∑

j

qi(x)Sijqj(x) = q(x) · S · q(x) (18.6.8)

whereSij is the covariance matrix (equation 18.4.6). If one can neglect off-diagonal
covariances (as when the errors on theci’s are independent), thenSij = δijσ

2
i

is diagonal.
We now need to define a measure of the width or spread ofδ̂(x, x′) at each

value ofx. While many choices are possible, Backus and Gilbert choose the second
moment of its square. This measure becomes the functionalA,

A ≡ w(x) =

∫
(x′

− x)2[δ̂(x, x′)]2dx′

=
∑

i

∑

j

qi(x)Wij(x)qj(x) ≡ q(x) · W(x) · q(x)
(18.6.9)

where we have here used equation (18.6.6) and defined thespread matrixW(x) by

Wij(x) ≡

∫
(x′

− x)2ri(x
′)rj(x

′)dx′ (18.6.10)

The functionsqi(x) are now determined by the minimization principle

minimize: A + λB = q(x) ·
[
W(x) + λS

]
· q(x) (18.6.11)

subject to the constraint (18.6.7) thatq(x) · R = 1.
The solution of equation (18.6.11) is

q(x) =
[W(x) + λS]−1 · R

R · [W(x) + λS]−1 · R
(18.6.12)

(Reference[4] gives an accessible proof.) For any particular data setc (set of
measurementsci), the solutionû(x) is thus

û(x) =
c · [W(x) + λS]−1 · R
R · [W(x) + λS]−1 · R

(18.6.13)

18.7 Maximum Entropy Image Restoration 809

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(Don’t let this notation mislead you into inverting the full matrixW(x) + λS. You
only need to solve for somey the linear system(W(x) + λS) · y = R, and then
substitutey into both the numerators and denominators of 18.6.12 or 18.6.13.)

Equations (18.6.12) and (18.6.13) have a completely different character from
the linearly regularized solutions to (18.5.7) and (18.5.8). The vectors and matrices in
(18.6.12) all have sizeN , the number of measurements. There is no discretization of
the underlying variablex, soM does not come into play at all. One solves a different
N ×N set of linear equations for each desired value ofx. By contrast, in (18.5.8),
one solves anM ×M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitable
for other than one-dimensional problems.

How does one chooseλ within the Backus-Gilbert scheme? As already
mentioned, you can (in some casesshould) make the choicebeforeyou see any
actual data. For a given trial value ofλ, and for a sequence ofx’s, use equation
(18.6.12) to calculateq(x); then use equation (18.6.6) to plot the resolution functions
δ̂(x, x′) as a function ofx′. These plots will exhibit the amplitude with which
different underlying valuesx′ contribute to the point̂u(x) of your estimate. For the
same value ofλ, also plot the function

√
Var[û(x)] using equation (18.6.8). (You

need an estimate of your measurement covariance matrix for this.)
As you changeλ you will see very explicitly the trade-off between resolution

and stability. Pick the value that meets your needs. You can even chooseλ to be a
function ofx, λ = λ(x), in equations (18.6.12) and (18.6.13), should you desire to
do so. (This is one benefit of solving a separate set of equations for eachx.) For
the chosen value or values ofλ, you now have a quantitative understanding of your
inverse solution procedure. This can prove invaluable if — once you are processing
real data — you need to judge whether a particular feature, a spike or jump for
example, is genuine, and/or is actually resolved. The Backus-Gilbert method has
found particular success among geophysicists, who use it to obtain information about
the structure of the Earth (e.g., density run with depth) from seismic travel time data.

CITED REFERENCES AND FURTHER READING:

Backus, G.E., and Gilbert, F. 1968, Geophysical Journal of the Royal Astronomical Society,
vol. 16, pp. 169–205. [1]

Backus, G.E., and Gilbert, F. 1970, Philosophical Transactions of the Royal Society of London
A, vol. 266, pp. 123–192. [2]

Parker, R.L. 1977, Annual Review of Earth and Planetary Science, vol. 5, pp. 35–64. [3]

Loredo, T.J., and Epstein, R.I. 1989, Astrophysical Journal, vol. 336, pp. 896–919. [4]

18.7 Maximum Entropy Image Restoration

Above, we commented that the association of certain inversion methods
with Bayesian arguments is more historical accident than intellectual imperative.
Maximum entropy methods, so-called, are notorious in this regard; to summarize
these methods without some, at least introductory, Bayesian invocations would be
to serve a steak without the sizzle, or a sundae without the cherry. We should

18.7 Maximum Entropy Image Restoration 809

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(Don’t let this notation mislead you into inverting the full matrixW(x) + λS. You
only need to solve for somey the linear system(W(x) + λS) · y = R, and then
substitutey into both the numerators and denominators of 18.6.12 or 18.6.13.)

Equations (18.6.12) and (18.6.13) have a completely different character from
the linearly regularized solutions to (18.5.7) and (18.5.8). The vectors and matrices in
(18.6.12) all have sizeN , the number of measurements. There is no discretization of
the underlying variablex, soM does not come into play at all. One solves a different
N ×N set of linear equations for each desired value ofx. By contrast, in (18.5.8),
one solves anM ×M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitable
for other than one-dimensional problems.

How does one chooseλ within the Backus-Gilbert scheme? As already
mentioned, you can (in some casesshould) make the choicebeforeyou see any
actual data. For a given trial value ofλ, and for a sequence ofx’s, use equation
(18.6.12) to calculateq(x); then use equation (18.6.6) to plot the resolution functions
δ̂(x, x′) as a function ofx′. These plots will exhibit the amplitude with which
different underlying valuesx′ contribute to the point̂u(x) of your estimate. For the
same value ofλ, also plot the function

√
Var[û(x)] using equation (18.6.8). (You

need an estimate of your measurement covariance matrix for this.)
As you changeλ you will see very explicitly the trade-off between resolution

and stability. Pick the value that meets your needs. You can even chooseλ to be a
function ofx, λ = λ(x), in equations (18.6.12) and (18.6.13), should you desire to
do so. (This is one benefit of solving a separate set of equations for eachx.) For
the chosen value or values ofλ, you now have a quantitative understanding of your
inverse solution procedure. This can prove invaluable if — once you are processing
real data — you need to judge whether a particular feature, a spike or jump for
example, is genuine, and/or is actually resolved. The Backus-Gilbert method has
found particular success among geophysicists, who use it to obtain information about
the structure of the Earth (e.g., density run with depth) from seismic travel time data.

CITED REFERENCES AND FURTHER READING:

Backus, G.E., and Gilbert, F. 1968, Geophysical Journal of the Royal Astronomical Society,
vol. 16, pp. 169–205. [1]

Backus, G.E., and Gilbert, F. 1970, Philosophical Transactions of the Royal Society of London
A, vol. 266, pp. 123–192. [2]

Parker, R.L. 1977, Annual Review of Earth and Planetary Science, vol. 5, pp. 35–64. [3]

Loredo, T.J., and Epstein, R.I. 1989, Astrophysical Journal, vol. 336, pp. 896–919. [4]

18.7 Maximum Entropy Image Restoration

Above, we commented that the association of certain inversion methods
with Bayesian arguments is more historical accident than intellectual imperative.
Maximum entropy methods, so-called, are notorious in this regard; to summarize
these methods without some, at least introductory, Bayesian invocations would be
to serve a steak without the sizzle, or a sundae without the cherry. We should

810 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

also comment in passing that the connection between maximum entropy inversion
methods, considered here, and maximum entropy spectral estimation, discussed in
§13.7, is rather abstract. For practical purposes the two techniques, though both
namedmaximum entropy methodor MEM, are unrelated.

Bayes’ Theorem, which follows from the standard axioms of probability, relates
the conditional probabilities of two events, sayA andB:

Prob(A|B) = Prob(A)
Prob(B|A)

Prob(B)
(18.7.1)

Here Prob(A|B) is the probability ofA giventhatB has occurred, and similarly for
Prob(B|A), while Prob(A) and Prob(B) are unconditional probabilities.

“Bayesians” (so-called) adopt a broader interpretation of probabilities than do
so-called “frequentists.” To a Bayesian,P (A|B) is a measure of the degree of
plausibility ofA (givenB) on a scale ranging from zero to one. In this broader view,
A andB need not be repeatable events; they can be propositions or hypotheses.
The equations of probability theory then become a set of consistent rules for
conducting inference[1,2]. Since plausibility is itself always conditioned on some,
perhaps unarticulated, set of assumptions, all Bayesian probabilities are viewed as
conditional on some collective background informationI.

SupposeH is some hypothesis. Even before there exist any explicit data,
a Bayesian can assign toH some degree of plausibility Prob(H |I), called the
“Bayesian prior.” Now, when some dataD1 comes along, Bayes theorem tells how
to reassess the plausibility ofH ,

Prob(H |D1I) = Prob(H |I)Prob(D1|HI)

Prob(D1|I)
(18.7.2)

The factor in the numerator on the right of equation (18.7.2) is calculable as the
probability of a data setgiventhe hypothesis (compare with “likelihood” in§15.1).
The denominator, called the “prior predictive probability” of the data, is in this case
merely a normalization constant which can be calculated by the requirement that
the probability of all hypotheses should sum to unity. (In other Bayesian contexts,
the prior predictive probabilities of two qualitatively different models can be used
to assess their relative plausibility.)

If some additional dataD2 comes along tomorrow, we can further refine our
estimate ofH ’s probability, as

Prob(H |D2D1I) = Prob(H |D1I)
Prob(D2|HD1I)

Prob(D1|D1I)
(18.7.3)

Using the product rule for probabilities, Prob(AB|C) = Prob(A|C)Prob(B|AC),
we find that equations (18.7.2) and (18.7.3) imply

Prob(H |D2D1I) = Prob(H |I)Prob(D2D1|HI)

Prob(D2D1|I)
(18.7.4)

which shows that we would have gotten the same answer if all the dataD1D2

had been taken together.

18.7 Maximum Entropy Image Restoration 811

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

From a Bayesian perspective, inverse problems are inference problems[3,4].
The underlying parameter setu is a hypothesis whose probability, given the measured
data valuesc, and the Bayesian prior Prob(u|I) can be calculated. We might want
to report a single “best” inverseu, the one that maximizes

Prob(u|cI) = Prob(c|uI)Prob(u|I)
Prob(c|I) (18.7.5)

over all possible choices ofu. Bayesian analysis also admits the possibility of
reporting additional information that characterizes the region of possibleu’s with
high relative probability, the so-called “posterior bubble” inu.

The calculation of the probability of the datac, given the hypothesisu proceeds
exactly as in the maximum likelihoodmethod. For Gaussian errors, e.g., it is given by

Prob(c|uI) = exp(−1

2
χ2)∆u1∆u2 · · ·∆uM (18.7.6)

whereχ2 is calculated fromu and c using equation (18.4.9), and the∆uµ’s are
constant, small ranges of the components ofu whose actual magnitude is irrelevant,
because they do not depend onu (compare equations 15.1.3 and 15.1.4).

In maximum likelihood estimation we, in effect, chose the prior Prob(u|I) to
be constant. That was a luxury that we could afford when estimating a small number
of parameters from a large amount of data. Here, the number of “parameters”
(components ofu) is comparable to or larger than the number of measured values
(components ofc); we needto have a nontrivial prior, Prob(u|I), to resolve the
degeneracy of the solution.

In maximum entropy image restoration, that is whereentropycomes in. The
entropy of a physical system in some macroscopic state, usually denotedS, is the
logarithm of the number of microscopically distinct configurations that all have
the same macroscopic observables (i.e., consistent with the observed macroscopic
state). Actually, we will find it useful to denote thenegativeof the entropy, also
called thenegentropy, by H ≡ −S (a notation that goes back to Boltzmann). In
situations where there is reason to believe that thea priori probabilities of the
microscopicconfigurations are all the same (these situations are calledergodic), then
the Bayesian prior Prob(u|I) for a macroscopicstate with entropyS is proportional
to exp(S) or exp(−H).

MEM uses this concept to assign a prior probability to any given underlying
functionu. For example[5-7], suppose that the measurement of luminance ineach
pixel is quantized to (in some units) an integer value. Let

U =

M∑

µ=1

uµ (18.7.7)

be the total number of luminance quanta in the whole image. Then we can base our
“prior” on the notion that each luminance quantum has an equala priori chance of
being in any pixel. (See[8] for a more abstract justification of this idea.) The number
of ways of getting a particular configurationu is

U !

u1!u2! · · ·uM !
∝ exp

[
−
∑

µ

uµ ln(uµ/U) +
1

2

(
lnU −

∑

µ

lnuµ

)]
(18.7.8)

812 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Here the left side can be understood as the number of distinct orderings of all
the luminance quanta, divided by the numbers of equivalent reorderings within
each pixel, while the right side follows by Stirling’s approximation to the factorial
function. Taking the negative of the logarithm, and neglecting terms of orderlogU
in the presence of terms of orderU , we get the negentropy

H(u) =

M∑

µ=1

uµ ln(uµ/U) (18.7.9)

From equations (18.7.5), (18.7.6), and (18.7.9) we now seek to maximize

Prob(u|c) ∝ exp

[
−1

2
χ2

]
exp[−H(u)] (18.7.10)

or, equivalently,

minimize: − ln [Prob(u|c)] =
1

2
χ2[u] + H(u) =

1

2
χ2[u] +

M∑

µ=1

uµ ln(uµ/U)

(18.7.11)

This ought to remind you of equation (18.4.11), or equation (18.5.6), or in fact any of
our previous minimization principles along the lines ofA + λB, whereλB = H(u)
is a regularizing operator. Where isλ? We need to put it in for exactly the reason
discussed following equation (18.4.11): Degenerate inversions are likely to be able
to achieve unrealistically small values ofχ2. We need an adjustable parameter to
bringχ2 into its expected narrow statistical range ofN±(2N)1/2. The discussion at
the beginning of§18.4 showed that it makes no difference which term we attach the
λ to. For consistency in notation, we absorb a factor 2 intoλ and put it on the entropy
term. (Another way to see the necessity of an undeterminedλ factor is to note that it
is necessary if our minimization principle is to be invariant under changing the units
in which u is quantized, e.g., if an 8-bit analog-to-digital converter is replaced by a
12-bit one.) We can now also put “hats” back to indicate that this is the procedure
for obtaining our chosen statistical estimator:

minimize: A + λB = χ2[û] + λH(û) = χ2[û] + λ

M∑

µ=1

ûµ ln(ûµ) (18.7.12)

(Formally, we might also add a second Lagrange multiplierλ′U , to constrain the
total intensityU to be constant.)

It is not hard to see that the negentropy,H(û), is in fact a regularizing operator,
similar to û · û (equation 18.4.11) or̂u · H · û (equation 18.5.6). The following of
its properties are noteworthy:

1. WhenU is held constant,H(û) is minimized forûµ = U/M = constant, so it
smooths in the sense of trying to achieve a constant solution, similar to equation
(18.5.4). The fact that the constant solution is a minimum follows from the fact
that the second derivative ofu lnu is positive.

18.7 Maximum Entropy Image Restoration 813

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

2. Unlike equation (18.5.4), however,H(û) is local, in the sense that it does not
difference neighboring pixels. It simply sums some functionf , here

f(u) = u lnu (18.7.13)

over all pixels; it is invariant, in fact, under a complete scrambling of the pixels
in an image. This form implies thatH(û) is not seriously increased by the
occurrence of a small number of very bright pixels (point sources) embedded
in a low-intensity smooth background.

3. H(û) goes to infinite slope as any one pixel goes to zero. This causes it to
enforce positivityof the image, without the necessity of additional deterministic
constraints.

4. The biggest difference betweenH(û) and the other regularizing operators that
we have met is thatH(û) is not a quadratic functional of̂u, so the equations
obtained by varying equation (18.7.12) arenonlinear. This fact is itself worthy
of some additional discussion.
Nonlinear equations are harder to solve than linear equations. For image

processing, however, the large number of equations usually dictates an iterative
solution procedure,even for linear equations,so the practical effect of thenonlinearity
is somewhat mitigated. Below, we will summarize some of the methods that are
successfully used for MEM inverse problems.

For some problems, notably the problem in radio-astronomy of image recovery
from an incomplete set of Fourier coefficients, the superior performance of MEM
inversion can be, in part, traced to thenonlinearity ofH(û). One way to see this[5]

is to consider the limit of perfect measurementsσi → 0. In this case theχ2 term in
the minimization principle (18.7.12) gets replaced by a set of constraints, each with
its own Lagrange multiplier, requiring agreement between model and data; that is,

minimize:
∑

j

λj

[
cj −

∑

µ

Rjµûµ

]
+ H(û) (18.7.14)

(cf. equation 18.4.7). Setting the formal derivative with respect toûµ to zero gives

∂H

∂ûµ
= f ′(ûµ) =

∑

j

λjRjµ (18.7.15)

or defining a functionG as the inverse function off ′,

ûµ = G

∑

j

λjRjµ

 (18.7.16)

This solution is only formal, since theλj ’s must be found by requiring that equation
(18.7.16) satisfy all the constraints built into equation (18.7.14). However, equation
(18.7.16) does show the crucial fact that ifG is linear, then the solution̂ucontainsonly
a linear combination of basis functionsRjµ corresponding to actual measurements
j. This is equivalent to setting unmeasuredcj ’s to zero. Notice that the principal
solution obtained from equation (18.4.11) in fact has a linearG.

814 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In the problem of incomplete Fourier image reconstruction, the typicalRjµ

has the formexp(−2πikj · xµ), wherexµ is a two-dimensional vector in the image
space andkµ is a two-dimensional wave-vector. If an image contains strong point
sources, then the effect of setting unmeasuredcj ’s to zero is to produce sidelobe
ripples throughout the image plane. These ripples can mask any actual extended,
low-intensity image features lying between the point sources. If, however, the slope
of G is smaller for small values of its argument, larger for large values, then ripples
in low-intensity portions of the image are relatively suppressed, while strong point
sources will be relatively sharpened (“superresolution”). This behavior on the slope
of G is equivalent to requiringf ′′′(u) < 0. For f(u) = u lnu, we in fact have
f ′′′(u) = −1/u2 < 0.

In more picturesque language, the nonlinearity acts to “create” nonzero values
for the unmeasuredci’s, so as to suppress the low-intensity ripple and sharpen the
point sources.

Is MEM Really Magical?

How unique is the negentropy functional (18.7.9)? Recall that that equation is
based on the assumption that luminance elements area priori distributed over the
pixels uniformly. If we instead had some other preferreda priori image in mind, one
with pixel intensitiesmµ, then it is easy to show that the negentropy becomes

H(u) =

M∑

µ=1

uµ ln(uµ/mµ) + constant (18.7.17)

(the constant can then be ignored). All the rest of the discussion then goes through.
More fundamentally, and despite statements byzealots to the contrary[7], there

is actually nothing universal about the functional formf(u) = u lnu. In some
other physical situations (for example, the entropy of an electromagnetic field in the
limit of many photons per mode, as in radio-astronomy) the physical negentropy
functional is actuallyf(u) = − lnu (see[5] for other examples). In general, the
question, “Entropy of what?” is not uniquely answerable in any particular situation.
(See reference[9] for an attempt at articulating a more general principle that reduces
to one or another entropy functional under appropriate circumstances.)

The four numbered properties summarized above, plus the desirable sign for
nonlinearity,f ′′′(u) < 0, are all as true forf(u) = − lnu as forf(u) = u lnu. In
fact these properties are shared by a nonlinear function as simple asf(u) = −√

u,
which has no information theoretic justification at all (no logarithms!). MEM
reconstructions of test images using any of these entropy forms are virtually
indistinguishable[5].

By all available evidence, MEM seems to be neither more nor less than one
usefully nonlinear version of the general regularization schemeA+λB that we have
by now considered in many forms. Its peculiarities become strengths when applied
to the reconstruction from incomplete Fourier data of images that are expected
to be dominated by very bright point sources, but which also contain interesting
low-intensity, extended sources. For images of some other character, there is no
reason to suppose that MEM methods will generally dominate other regularization
schemes, either ones already known or yet to be invented.

18.7 Maximum Entropy Image Restoration 815

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Algorithms for MEM

The goal is to find the vector̂u that minimizesA + λB where in the notation
of equations (18.5.5), (18.5.6), and (18.7.13),

A = |b − A · û|2 B =
∑

µ

f(ûµ) (18.7.18)

Compared with a “general” minimization problem, we have the advantage that
we can compute the gradients and the second partial derivative matrices (Hessian
matrices) explicitly,

∇A = 2(AT · A · û − AT · b)
∂2A

∂ûµ∂ûρ

= [2AT · A]µρ

[∇B]µ = f ′(ûµ)
∂2B

∂ûµ∂ûρ

= δµρf
′′(ûµ)

(18.7.19)

It is important to note that whileA’s second partial derivative matrix cannot be
stored (its size is the square of the number of pixels), it can be applied to any vector
by first applyingA, thenAT . In the case of reconstruction from incomplete Fourier
data, or in the case of convolution with a translation invariant point spread function,
these applications will typically involve several FFTs. Likewise, the calculation of
the gradient∇A will involve FFTs in the application ofA andAT .

While some success has been achieved with the classical conjugate gradient
method (§10.6), it is often found that the nonlinearity inf(u) = u lnu causes
problems. Attempted steps that giveû with even one negative value must be cut in
magnitude, sometimes so severely as to slow the solution to a crawl. The underlying
problem is that the conjugate gradient method develops its information about the
inverse of the Hessian matrix a bit at a time, while changing its location in the search
space. When anonlinear function is quite different from a pure quadratic form, the
old information becomes obsolete before it gets usefully exploited.

Skilling and collaborators[6,7,10,11] developed a complicated but highly suc-
cessful scheme, wherein a minimum is repeatedly sought not along a single search
direction, but in a small- (typically three-) dimensional subspace, spanned by vectors
that are calculated anew at each landing point. The subspace basis vectors are
chosen in such a way as to avoid directions leading to negative values. One ofthe
most successful choices is the three-dimensional subspace spanned by the vectors
with components given by

e(1)
µ = ûµ[∇A]µ

e(2)
µ = ûµ[∇B]µ

e(3)
µ =

ûµ

∑
ρ(∂

2A/∂ûµ∂ûρ)ûρ[∇B]ρ√∑
ρ ûρ ([∇B]ρ)

2
−

ûµ

∑
ρ(∂

2A/∂ûµ∂ûρ)ûρ[∇A]ρ√∑
ρ ûρ ([∇A]ρ)

2

(18.7.20)

(In these equations there is no sum overµ.) The form of thee(3) has some justification
if one views dot products as occurring in a space with the metricgµν = δµν/uµ,
chosen to make zero values “far away”; see[6].

816 Chapter 18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Within the three-dimensional subspace, the three-component gradient and nine-
component Hessian matrix are computed by projection from the large space, and
the minimum in the subspace is estimated by (trivially) solving three simultaneous
linear equations, as in§10.7, equation (10.7.4). The size of a step∆û is required
to be limited by the inequality

∑

µ

(∆ûµ)2/ûµ < (0.1 to 0.5)U (18.7.21)

Because the gradient directions∇A and∇B are separately available, it is possible
to combine the minimum search with a simultaneous adjustment ofλ so as finally to
satisfy the desired constraint. There are various further tricks employed.

A less general, but in practice often equally satisfactory, approach is dueto
Cornwell and Evans[12]. Here, noting thatB’s Hessian (second partial derivative)
matrix is diagonal, one asks whether there is a useful diagonal approximation to
A’s Hessian, namely2AT · A. If Λµ denotes the diagonal components of such an
approximation, then a useful step in̂u would be

∆ûµ = − 1

Λµ + λf ′′(ûµ)
(∇A + λ∇B) (18.7.22)

(again compare equation 10.7.4). Even more extreme, one might seek an approx-
imation with constant diagonal elements,Λµ = Λ, so that

∆ûµ = − 1

Λ + λf ′′(ûµ)
(∇A + λ∇B) (18.7.23)

SinceAT · A has something of the nature of a doubly convolved point spread
function, and since in real cases one often has a point spread function with a sharp
central peak, even the more extreme of these approximations is often fruitful. One
starts with a rough estimate ofΛ obtained from theAiµ ’s, e.g.,

Λ ∼
〈
∑

i

[Aiµ]2

〉
(18.7.24)

An accurate value is not important, since in practiceΛ is adjusted adaptively: IfΛ
is too large, then equation (18.7.23)’s steps will be too small (that is, larger steps in
the same direction will produce even greater decrease inA + λB). If Λ is too small,
then attempted steps will land in an unfeasible region (negative values ofûµ), or will
result in an increasedA+λB. There is an obvious similarity between the adjustment
of Λ here and the Levenberg-Marquardt method of§15.5; this should not be too
surprising, since MEM is closely akin to the problem of nonlinear least-squares
fitting. Reference[12] also discusses how the value ofΛ + λf ′′(ûµ) can be used to
adjust the Lagrange multiplierλ so as to converge to the desired value ofχ2.

All practical MEM algorithms are found to require on the order of 30 to 50
iterations to converge. This convergence behavior is not now understood in any
fundamental way.

“Bayesian” versus “Historic” Maximum Entropy

Several more recent developments in maximum entropy image restoration
go under the rubric “Bayesian” to distinguish them from the previous “historic”
methods. See[13] for details and references.

18.7 Maximum Entropy Image Restoration 817

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• Better priors: We already noted that the entropy functional (equation
18.7.13) is invariant under scrambling all pixels and has no notion of
smoothness. The so-called “intrinsic correlation function” (ICF) model
(Ref.[13], where it is called “New MaxEnt”) is similar enough to the
entropy functional to allow similar algorithms, but it makes the values of
neighboring pixels correlated, enforcing smoothness.

• Better estimation ofλ: Above we choseλ to bringχ2 into its expected
narrow statistical range ofN ± (2N)1/2. This in effect overestimatesχ2,
however, since some effective numberγ of parameters are being “fitted”
in doing the reconstruction. A Bayesian approach leads to a self-consistent
estimate of thisγ and an objectively better choice forλ.

CITED REFERENCES AND FURTHER READING:

Jaynes, E.T. 1976, in Foundations of Probability Theory, Statistical Inference, and Statistical
Theories of Science, W.L. Harper and C.A. Hooker, eds. (Dordrecht: Reidel). [1]

Jaynes, E.T. 1985, in Maximum-Entropy and Bayesian Methods in Inverse Problems, C.R. Smith
and W.T. Grandy, Jr., eds. (Dordrecht: Reidel). [2]

Jaynes, E.T. 1984, in SIAM-AMS Proceedings, vol. 14, D.W. McLaughlin, ed. (Providence, RI:
American Mathematical Society). [3]

Titterington, D.M. 1985, Astronomy and Astrophysics, vol. 144, 381–387. [4]

Narayan, R., and Nityananda, R. 1986, Annual Review of Astronomy and Astrophysics, vol. 24,
pp. 127–170. [5]

Skilling, J., and Bryan, R.K. 1984, Monthly Notices of the Royal Astronomical Society, vol. 211,
pp. 111–124. [6]

Burch, S.F., Gull, S.F., and Skilling, J. 1983, Computer Vision, Graphics and Image Processing,
vol. 23, pp. 113–128. [7]

Skilling, J. 1989, in Maximum Entropy and Bayesian Methods, J. Skilling, ed. (Boston: Kluwer). [8]

Frieden, B.R. 1983, Journal of the Optical Society of America, vol. 73, pp. 927–938. [9]

Skilling, J., and Gull, S.F. 1985, in Maximum-Entropy and Bayesian Methods in Inverse Problems,
C.R. Smith and W.T. Grandy, Jr., eds. (Dordrecht: Reidel). [10]

Skilling, J. 1986, in Maximum Entropy and Bayesian Methods in Applied Statistics, J.H. Justice,
ed. (Cambridge: Cambridge University Press). [11]

Cornwell, T.J., and Evans, K.F. 1985, Astronomy and Astrophysics, vol. 143, pp. 77–83. [12]

Gull, S.F. 1989, in Maximum Entropy and Bayesian Methods, J. Skilling, ed. (Boston: Kluwer).
[13]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
Chapter 19. Partial Differential

Equations

19.0 Introduction

The numerical treatment of partial differential equations is, by itself, a vast
subject. Partial differential equations are at the heart of many, if not most,
computer analyses or simulations of continuous physical systems, such as fluids,
electromagnetic fields, the human body, and so on. The intent of this chapter is to
give the briefest possible useful introduction. Ideally, there would be an entire second
volume ofNumerical Recipesdealing with partial differential equations alone. (The
references[1-4] provide, of course, available alternatives.)

In most mathematics books, partial differential equations (PDEs) are classified
into the three categories,hyperbolic, parabolic,and elliptic, on the basis of their
characteristics, or curves of information propagation. The prototypical example of
a hyperbolic equation is the one-dimensionalwaveequation

∂2u

∂t2
= v2 ∂

2u

∂x2
(19.0.1)

wherev = constant is the velocity of wave propagation. The prototypical parabolic
equation is thediffusion equation

∂u

∂t
=

∂

∂x

(

D
∂u

∂x

)

(19.0.2)

whereD is the diffusion coefficient. The prototypical elliptic equation is the
Poissonequation

∂2u

∂x2
+

∂2u

∂y2
= ρ(x, y) (19.0.3)

where the source termρ is given. If the source term is equal to zero, the equation
is Laplace’s equation.

From a computational point of view, the classification into these three canonical
types is not very meaningful — or at least not as important as some other essential
distinctions. Equations (19.0.1) and (19.0.2) both defineinitial value or Cauchy
problems: If information onu (perhaps including time derivative information) is

818

19.0 Introduction 819

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

boundary
conditions

initial values
(a)

boundary
values

(b)

Figure 19.0.1. Initial value problem (a) andboundary value problem (b) are contrasted. In (a) initial
values are given on one “time slice,” and it is desired to advance the solution in time, computing
successive rows of open dots in the direction shown by the arrows. Boundary conditions at the left and
right edges of each row (⊗) must also be supplied, but only one row at a time. Only one, or a few,
previous rows need be maintained in memory. In (b), boundary values are specified around the edge of
a grid, and an iterative process is employed to find the values of all the internalpoints (open circles).
All grid points must be maintained in memory.

given at some initial timet0 for all x, then the equations describe howu(x, t)
propagates itself forward in time. In other words, equations (19.0.1) and (19.0.2)
describe time evolution. The goal of a numerical code should be to track that time
evolution with some desired accuracy.

By contrast, equation (19.0.3) directs us to find a single “static” functionu(x, y)
which satisfies the equation within some(x, y) region of interest, and which — one
must also specify — has some desired behavior on the boundary of the region of
interest. These problems are calledboundary value problems. In general it is not

820 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

possible stably to just “integrate in from the boundary” in the same sense that an
initial value problem can be “integrated forward in time.” Therefore, the goal of a
numerical code is somehow to converge on the correct solution everywhere at once.

This, then, is the most important classification from a computational point
of view: Is the problem at hand aninitial value (time evolution) problem? or
is it a boundary value(static solution) problem? Figure 19.0.1 emphasizes the
distinction. Notice that while the italicized terminology is standard, the terminology
in parentheses is a much better description of the dichotomy from a computational
perspective. The subclassification of initial value problems into parabolic and
hyperbolic is much less important because (i) many actual problems are of a mixed
type, and (ii) as we will see, most hyperbolic problems get parabolic pieces mixed
into them by the time one is discussing practical computational schemes.

Initial Value Problems

An initial value problem is defined by answers to the following questions:
• What are the dependent variables to be propagated forward in time?
• What is the evolution equation for each variable? Usually the evolution

equations will all be coupled, with more than one dependent variable
appearing on the right-hand side of each equation.

• What is the highest time derivative that occurs in each variable’s evolution
equation? If possible, this time derivative should be put alone on the
equation’s left-hand side. Not only the value of a variable, but also the
value of all its time derivatives — up to the highest one — must be
specified to define the evolution.

• What special equations (boundary conditions) govern the evolution in time
of points on the boundary of the spatial region of interest? Examples:
Dirichlet conditionsspecify the values of the boundary points as a function
of time;Neumann conditionsspecify the values of the normal gradients on
the boundary;outgoing-wave boundary conditionsare just what they say.

Sections 19.1–19.3 of this chapter deal with initial value problems of several
different forms. We make no pretence of completeness, but rather hope to convey a
certain amount of generalizable information through a few carefully chosen model
examples. These examples will illustrate an important point: One’s principal
computationalconcern must be thestability of the algorithm. Many reasonable-
looking algorithms for initial value problems just don’t work — they are numerically
unstable.

Boundary Value Problems

The questions that define a boundary value problem are:
• What are the variables?
• What equations are satisfied in the interior of the region of interest?
• What equations are satisfied by points on the boundary of the region of

interest? (Here Dirichlet and Neumann conditions are possible choices for
ellipticsecond-order equations, but more complicated boundary conditions
can also be encountered.)

19.0 Introduction 821

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In contrast to initial value problems, stability is relatively easy to achieve
for boundary value problems. Thus, theefficiencyof the algorithms, both in
computational load and storage requirements, becomes the principal concern.

Because all the conditions on a boundary value problem must be satisfied
“simultaneously,” these problems usually boil down, at least conceptually, to the
solution of large numbers of simultaneous algebraic equations. When such equations
are nonlinear, they are usually solved by linearization and iteration; so without much
loss of generality we can view the problem as being the solution of special, large
linear sets of equations.

As an example, one which we will refer to in§§19.4–19.6 as our “model
problem,” let us consider the solution of equation (19.0.3) by thefinite-difference
method. We represent the functionu(x, y) by its values at the discrete set of points

xj = x0 + j∆, j = 0, 1, ..., J

yl = y0 + l∆, l = 0, 1, ..., L
(19.0.4)

where∆ is thegrid spacing. From now on, we will writeuj,l for u(xj, yl), and
ρj,l for ρ(xj , yl). For (19.0.3) we substitute a finite-difference representation (see
Figure 19.0.2),

uj+1,l − 2uj,l + uj−1,l

∆2
+

uj,l+1 − 2uj,l + uj,l−1

∆2
= ρj,l (19.0.5)

or equivalently

uj+1,l + uj−1,l + uj,l+1 + uj,l−1 − 4uj,l = ∆2ρj,l (19.0.6)

To write this system of linear equations in matrix form we need to make a
vector out ofu. Let us number the two dimensions of grid points in a single
one-dimensional sequence by defining

i ≡ j(L + 1) + l for j = 0, 1, ..., J, l = 0, 1, ..., L (19.0.7)

In other words,i increases most rapidly along the columns representingy values.
Equation (19.0.6) now becomes

ui+L+1 + ui−(L+1) + ui+1 + ui−1 − 4ui = ∆2ρi (19.0.8)

This equation holds only at the interior pointsj = 1, 2, ..., J − 1; l = 1, 2, ...,
L − 1.

The points where

j = 0

j = J

l = 0

l = L

[i.e., i = 0, ..., L]

[i.e., i = J(L + 1), ..., J(L+ 1) + L]

[i.e., i = 0, L + 1, ..., J(L+ 1)]

[i.e., i = L, L+ 1 + L, ..., J(L+ 1) + L]

(19.0.9)

822 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

yL

∆

y1

y0
x0 xJx1 . . .

∆

A

B

Figure 19.0.2. Finite-difference representation of a second-order elliptic equation on a two-dimensional
grid. The second derivatives at the pointA are evaluated using the points to whichA is shown connected.
The second derivatives at pointB are evaluated using the connected points and also using “right-hand
side” boundary information, shown schematically as⊗.

are boundary points where eitheru or its derivative has been specified. If we pull
all this “known” information over to the right-hand side of equation (19.0.8), then
the equation takes the form

A · u = b (19.0.10)

whereA has the form shown in Figure 19.0.3. The matrixA is called “tridiagonal
with fringes.” A general linear second-order elliptic equation

a(x, y)
∂2u

∂x2
+ b(x, y)

∂u

∂x
+ c(x, y)

∂2u

∂y2
+ d(x, y)

∂u

∂y

+ e(x, y)
∂2u

∂x∂y
+ f(x, y)u = g(x, y)

(19.0.11)

will lead to a matrix of similar structure except that the nonzero entries will not
be constants.

As a rough classification, there are three different approaches to the solution
of equation (19.0.10), not all applicable in all cases: relaxation methods, “rapid”
methods (e.g., Fourier methods), and direct matrix methods.

19.0 Introduction 823

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

−4

1

1

−4

•

1

•

•

•

•

1

•

−4

1

1

−4

J + 1
blocks

in
cr

ea
si

ng
 i

increasing j

J + 1 blocks

1

1

•

•

•

•

−4

1

1

−4

•

1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1

•

−4

1

1

−4

−4

1

1

−4

•

1

•

•

•

•

1

•

−4

1

1

−4

•

•

•

•

•

•

1

•

•

•

•

1

•

•

•

•

1

1

1

1

•

•

•

1

•

•

•

•

•

•

1

1

•

•

•

•

•

•

•

•

1

1

each
block
(L + 1) ×
(L + 1)

Figure 19.0.3. Matrix structure derived from a second-order elliptic equation (here equation 19.0.6). All
elements not shown are zero. The matrix has diagonal blocks that are themselves tridiagonal, andsub-
and super-diagonal blocks that are diagonal. This form is called “tridiagonal with fringes.” Amatrix this
sparse would never be stored in its full form as shown here.

Relaxation methods make immediate use of the structure of the sparse matrix
A. The matrix is split into two parts

A = E − F (19.0.12)

whereE is easily invertible andF is the remainder. Then (19.0.10) becomes

E · u = F · u + b (19.0.13)

The relaxation method involves choosing an initial guessu(0) and then solving
successively for iteratesu(r) from

E · u(r) = F · u(r−1) + b (19.0.14)

SinceE is chosen to be easily invertible, each iteration is fast. We will discuss
relaxation methods in some detail in§19.5 and§19.6.

824 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

So-called rapid methods[5] apply for only a rather special class of equations:
those with constant coefficients, or, more generally, those that are separable in the
chosen coordinates. In addition, the boundaries must coincide with coordinate lines.
This special class of equations is met quite often in practice. We defer detailed
discussion to§19.4. Note, however, that the multigrid relaxation methods discussed
in §19.6 can be faster than “rapid” methods.

Matrix methods attempt to solve the equation

A · x = b (19.0.15)

directly. The degree to which this is practical depends very strongly on the exact
structure of the matrixA for the problem at hand, so our discussion can go no farther
than a few remarks and references at this point.

Sparseness of the matrixmust be the guiding force. Otherwise the matrix
problem is prohibitively large. For example, the simplest problem on a100 × 100
spatial grid would involve 10000 unknownuj,l’s, implying a10000× 10000 matrix
A, containing108 elements!

As we discussed at the end of§2.7, if A is symmetric and positive definite
(as it usually is in elliptic problems), the conjugate-gradient algorithm can be
used. In practice, rounding error often spoils the effectiveness of the conjugate
gradient algorithm for solving finite-difference equations. However, it is useful
when incorporated in methods that first rewrite the equations so thatA is transformed
to a matrixA′ that is close to the identity matrix. The quadratic surface defined by the
equations then has almost spherical contours, and the conjugate gradient algorithm
works very well. In§2.7, in the routinelinbcg, an analogouspreconditioner
was exploited for non-positive definite problems with the more general biconjugate
gradient method. For the positive definite case that arises in PDEs, an example of
a successful implementation is theincomplete Cholesky conjugate gradient method
(ICCG) (see[6-8]).

Another method that relies on a transformation approach is thestrongly implicit
procedureof Stone[9]. A program called SIPSOL that implements this routine has
been published[10].

A third class of matrix methods is the Analyze-Factorize-Operate approach as
described in§2.7.

Generally speaking, when you have the storage available to implement these
methods — not nearly as much as the108 above, but usually much more than is
required by relaxation methods — then you should consider doing so. Only multigrid
relaxation methods (§19.6) are competitive with the best matrix methods. For grids
larger than, say,300 × 300, however, it is generally found that only relaxation
methods, or “rapid” methods when they are applicable, are possible.

There Is More to Life than Finite Differencing

Besides finite differencing, there are other methods for solving PDEs. Most
important are finite element, Monte Carlo, spectral, and variational methods. Unfor-
tunately, we shall barely be able to do justice to finite differencing in this chapter,
and so shall not be able to discuss these other methods in this book. Finite element
methods[11-12] are often preferred by practitioners in solid mechanics and structural

19.1 Flux-Conservative Initial Value Problems 825

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

engineering; these methods allow considerable freedom in putting computational
elements where you want them, important when dealing with highly irregular geome-
tries. Spectral methods[13-15] are preferred for very regular geometries and smooth
functions; they converge more rapidly than finite-difference methods (cf.§19.4), but
they do not work well for problems with discontinuities.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press). [1]

Richtmyer, R.D., and Morton, K.W. 1967, Difference Methods for Initial Value Problems, 2nd ed.
(New York: Wiley-Interscience). [2]

Roache, P.J. 1976, Computational Fluid Dynamics (Albuquerque: Hermosa). [3]

Mitchell, A.R., and Griffiths, D.F. 1980, The Finite Difference Method in Partial Differential Equa-
tions (New York: Wiley) [includes discussion of finite element methods]. [4]

Dorr, F.W. 1970, SIAM Review, vol. 12, pp. 248–263. [5]

Meijerink, J.A., and van der Vorst, H.A. 1977, Mathematics of Computation, vol. 31, pp. 148–
162. [6]

van der Vorst, H.A. 1981, Journal of Computational Physics, vol. 44, pp. 1–19 [review of sparse
iterative methods]. [7]

Kershaw, D.S. 1970, Journal of Computational Physics, vol. 26, pp. 43–65. [8]

Stone, H.J. 1968, SIAM Journal on Numerical Analysis, vol. 5, pp. 530–558. [9]

Jesshope, C.R. 1979, Computer Physics Communications, vol. 17, pp. 383–391. [10]

Strang, G., and Fix, G. 1973, An Analysis of the Finite Element Method (Englewood Cliffs, NJ:
Prentice-Hall). [11]

Burnett, D.S. 1987, Finite Element Analysis: From Concepts to Applications (Reading, MA:
Addison-Wesley). [12]

Gottlieb, D. and Orszag, S.A. 1977, Numerical Analysis of Spectral Methods: Theory and Ap-
plications (Philadelphia: S.I.A.M.). [13]

Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A. 1988, Spectral Methods in Fluid
Dynamics (New York: Springer-Verlag). [14]

Boyd, J.P. 1989, Chebyshev and Fourier Spectral Methods (New York: Springer-Verlag). [15]

19.1 Flux-Conservative Initial Value Problems

A large class of initial value (time-evolution) PDEs in one space dimension can
be cast into the form of aflux-conservative equation,

∂u
∂t

= −
∂F(u)

∂x
(19.1.1)

whereu andF are vectors, and where (in some cases)F may depend not only onu
but also on spatial derivatives ofu. The vectorF is called theconserved flux.

For example, the prototypical hyperbolic equation, the one-dimensional wave
equation with constant velocity of propagationv

∂2u

∂t2
= v2 ∂

2u

∂x2
(19.1.2)

19.1 Flux-Conservative Initial Value Problems 825

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

engineering; these methods allow considerable freedom in putting computational
elements where you want them, important when dealing with highly irregular geome-
tries. Spectral methods[13-15] are preferred for very regular geometries and smooth
functions; they converge more rapidly than finite-difference methods (cf.§19.4), but
they do not work well for problems with discontinuities.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press). [1]

Richtmyer, R.D., and Morton, K.W. 1967, Difference Methods for Initial Value Problems, 2nd ed.
(New York: Wiley-Interscience). [2]

Roache, P.J. 1976, Computational Fluid Dynamics (Albuquerque: Hermosa). [3]

Mitchell, A.R., and Griffiths, D.F. 1980, The Finite Difference Method in Partial Differential Equa-
tions (New York: Wiley) [includes discussion of finite element methods]. [4]

Dorr, F.W. 1970, SIAM Review, vol. 12, pp. 248–263. [5]

Meijerink, J.A., and van der Vorst, H.A. 1977, Mathematics of Computation, vol. 31, pp. 148–
162. [6]

van der Vorst, H.A. 1981, Journal of Computational Physics, vol. 44, pp. 1–19 [review of sparse
iterative methods]. [7]

Kershaw, D.S. 1970, Journal of Computational Physics, vol. 26, pp. 43–65. [8]

Stone, H.J. 1968, SIAM Journal on Numerical Analysis, vol. 5, pp. 530–558. [9]

Jesshope, C.R. 1979, Computer Physics Communications, vol. 17, pp. 383–391. [10]

Strang, G., and Fix, G. 1973, An Analysis of the Finite Element Method (Englewood Cliffs, NJ:
Prentice-Hall). [11]

Burnett, D.S. 1987, Finite Element Analysis: From Concepts to Applications (Reading, MA:
Addison-Wesley). [12]

Gottlieb, D. and Orszag, S.A. 1977, Numerical Analysis of Spectral Methods: Theory and Ap-
plications (Philadelphia: S.I.A.M.). [13]

Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A. 1988, Spectral Methods in Fluid
Dynamics (New York: Springer-Verlag). [14]

Boyd, J.P. 1989, Chebyshev and Fourier Spectral Methods (New York: Springer-Verlag). [15]

19.1 Flux-Conservative Initial Value Problems

A large class of initial value (time-evolution) PDEs in one space dimension can
be cast into the form of aflux-conservative equation,

∂u
∂t

= −
∂F(u)

∂x
(19.1.1)

whereu andF are vectors, and where (in some cases)F may depend not only onu
but also on spatial derivatives ofu. The vectorF is called theconserved flux.

For example, the prototypical hyperbolic equation, the one-dimensional wave
equation with constant velocity of propagationv

∂2u

∂t2
= v2 ∂

2u

∂x2
(19.1.2)

826 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

can be rewritten as a set of two first-order equations

∂r

∂t
= v

∂s

∂x
∂s

∂t
= v

∂r

∂x
(19.1.3)

where

r ≡ v
∂u

∂x

s ≡
∂u

∂t
(19.1.4)

In this caser and s become the two components ofu, and the flux is given by
the linear matrix relation

F(u) =

(

0 −v
−v 0

)

· u (19.1.5)

(The physicist-reader may recognize equations (19.1.3) as analogous to Maxwell’s
equations for one-dimensional propagation of electromagnetic waves.)

We will consider, in this section, a prototypical example of the general flux-
conservative equation (19.1.1), namely the equation for a scalaru,

∂u

∂t
= −v

∂u

∂x
(19.1.6)

with v a constant. As it happens, we already know analytically that the general
solution of this equation is a wave propagating in the positivex-direction,

u = f(x − vt) (19.1.7)

wheref is an arbitrary function. However, the numerical strategies that we develop
will be equally applicable to the more general equations represented by (19.1.1). In
some contexts, equation (19.1.6) is called anadvectiveequation, because the quantity
u is transported by a “fluid flow” with a velocityv.

How do we go about finite differencing equation (19.1.6) (or, analogously,
19.1.1)? The straightforward approach is to choose equally spaced points along both
the t- and x-axes. Thus denote

xj = x0 + j∆x, j = 0, 1, . . . , J

tn = t0 + n∆t, n = 0, 1, . . ., N
(19.1.8)

Let un
j denoteu(tn, xj). We have several choices for representing the time

derivative term. The obvious way is to set

∂u

∂t

∣

∣

∣

∣

j,n

=
un+1
j − un

j

∆t
+ O(∆t) (19.1.9)

This is calledforward Eulerdifferencing (cf. equation 16.1.1). While forward Euler
is only first-order accurate in∆t, it has the advantage that one is able to calculate

19.1 Flux-Conservative Initial Value Problems 827

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t or n

x or j

FTCS

Figure 19.1.1. Representation of the Forward Time Centered Space (FTCS) differencingscheme. In this
and subsequent figures, the open circle is the new point at which the solution is desired; filledcircles are
known points whose function values are used in calculating the new point; the solid lines connect points
that are used to calculate spatial derivatives; the dashed lines connect points that are usedto calculate time
derivatives. The FTCS scheme is generally unstable for hyperbolic problems and cannot usually be used.

quantities at timestepn + 1 in terms of only quantities known at timestepn. For the
space derivative, we can use a second-order representation still using only quantities
known at timestepn:

∂u

∂x

∣

∣

∣

∣

j,n

=
un
j+1 − un

j−1

2∆x
+ O(∆x2) (19.1.10)

The resulting finite-difference approximation to equation (19.1.6) is called the FTCS
representation (Forward Time Centered Space),

un+1
j − un

j

∆t
= −v

(

un
j+1 − un

j−1

2∆x

)

(19.1.11)

which can easily be rearranged to be a formula forun+1
j in terms of the other

quantities. The FTCS scheme is illustrated in Figure 19.1.1. It’s a fine example of
an algorithm that is easy to derive, takes little storage, and executes quickly. Too
bad it doesn’t work! (See below.)

The FTCS representation is anexplicitscheme. This means thatun+1
j for each

j can be calculated explicitly from the quantities that are already known. Later we
shall meetimplicit schemes, which require us to solve implicit equations coupling
the un+1

j for variousj. (Explicit and implicit methods for ordinary differential
equations were discussed in§16.6.) The FTCS algorithm is also an example of
a single-levelscheme, since only values at time leveln have to be stored to find
values at time leveln + 1.

von Neumann Stability Analysis

Unfortunately, equation (19.1.11) is of very limited usefulness. It is anunstable
method, which can be used only (if at all) to study waves for a short fraction of one
oscillation period. To find alternative methods with more general applicability, we
must introduce thevon Neumann stability analysis.

The von Neumann analysis is local: We imagine that the coefficients of the
difference equations are so slowly varying as to be considered constant in space
and time. In that case, the independent solutions, oreigenmodes, of the difference
equations are all of the form

un
j = ξneikj∆x (19.1.12)

828 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t or n

x or j

Lax

Figure 19.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability
criterion for this scheme is the Courant condition.

wherek is a real spatial wave number (which can have any value) andξ = ξ(k) is
a complex number that depends onk. The key fact is that the time dependence of
a single eigenmode is nothing more than successive integer powers of the complex
numberξ. Therefore, the difference equations are unstable (have exponentially
growing modes) if|ξ(k)| > 1 for somek. The numberξ is called theamplification
factor at a given wave numberk.

To find ξ(k), we simply substitute (19.1.12) back into (19.1.11). Dividing
by ξn, we get

ξ(k) = 1 − i
v∆t

∆x
sin k∆x (19.1.13)

whose modulus is> 1 for all k; so the FTCS scheme is unconditionally unstable.
If the velocityv were a function oft andx, then we would writevnj in equation

(19.1.11). In the von Neumann stability analysis we would still treatv as a constant,
the idea being that forv slowly varying the analysis is local. In fact, even in the
case of strictly constantv, the von Neumann analysis does not rigorously treat the
end effects atj = 0 and j = N .

More generally, if the equation’s right-hand side were nonlinear inu, then a
von Neumann analysis would linearize by writingu = u0 + δu, expanding to linear
order inδu. Assuming that theu0 quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode ofδu.

Despite its lack of rigor, the von Neumann method generally gives valid
answers and is much easier to apply than more careful methods. Weaccordingly
adopt it exclusively. (See, for example,[1] for a discussion of other methods of
stability analysis.)

Lax Method

The instability in the FTCS method can be cured by a simple change due to Lax.
One replaces the termun

j in the time derivative term by its average (Figure 19.1.2):

un
j →

1

2

(

un
j+1 + un

j−1

)

(19.1.14)

This turns (19.1.11) into

un+1
j =

1

2

(

un
j+1 + un

j−1

)

−
v∆t

2∆x

(

un
j+1 − un

j−1

)

(19.1.15)

19.1 Flux-Conservative Initial Value Problems 829

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
t or n

∆t

x or j

∆t

∆x∆x

unstablestable

(a) (b)

Figure 19.1.3. Courant condition for stability of a differencing scheme.The solution of ahyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor

ξ = cos k∆x− i
v∆t

∆x
sin k∆x (19.1.16)

The stability condition|ξ|2 ≤ 1 leads to the requirement

|v|∆t

∆x
≤ 1 (19.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply theCourant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantityun+1

j in equation (19.1.15) is
computed from information at pointsj − 1 andj + 1 at timen. In other words,
xj−1 andxj+1 are the boundaries of the spatial region that is allowed to communicate
information toun+1

j . Now recall that in the continuum wave equation, information

actually propagates with a maximum velocityv. If the pointun+1
j is outside of

the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore,∆t cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the
FTCS and Lax schemes by rewriting equation (19.1.15) so that it is in the form of
equation (19.1.11) with a remainder term:

un+1
j − un

j

∆t
= −v

(

un
j+1 − un

j−1

2∆x

)

+
1

2

(

un
j+1 − 2un

j + un
j−1

∆t

)

(19.1.18)

But this is exactly the FTCS representation of the equation

∂u

∂t
= −v

∂u

∂x
+

(∆x)2

2∆t
∇2u (19.1.19)

830 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

where∇2 = ∂2/∂x2 in one dimension. We have, in effect, added a diffusion term to
the equation, or, if you recall the form of the Navier-Stokes equation for viscous fluid
flow, a dissipative term. The Lax scheme is thus said to havenumerical dissipation,
or numerical viscosity. We can see this also in the amplification factor. Unless|v|∆t
is exactly equal to∆x, |ξ|< 1 and the amplitude of the wave decreases spuriously.

Isn’t a spurious decrease as bad as a spurious increase? No. The scales that we
hope to studyaccurately are those that encompass many grid points, so that they have
k∆x ≪ 1. (The spatial wave numberk is defined by equation 19.1.12.) For these
scales, the amplification factor can be seen to be very close to one, in both thestable
and unstable schemes. The stable and unstable schemes are therefore about equally
accurate. For the unstable scheme, however, short scales withk∆x ∼ 1, which we
are not interested in, will blow up and swamp the interesting part of the solution.
Much better to have a stable scheme in which these short wavelengths die away
innocuously. Both the stable and the unstable schemes areinaccuratefor these short
wavelengths, but the inaccuracy is of a tolerable character when the scheme is stable.

When the independent variableu is a vector, then the von Neumann analysis
is slightly more complicated. For example, we can consider equation (19.1.3),
rewritten as

∂

∂t

[

r
s

]

=
∂

∂x

[

vs
vr

]

(19.1.20)

The Lax method for this equation is

rn+1
j =

1

2
(rnj+1 + rnj−1) +

v∆t

2∆x
(snj+1 − snj−1)

sn+1
j =

1

2
(snj+1 + snj−1) +

v∆t

2∆x
(rnj+1 − rnj−1)

(19.1.21)

The von Neumann stability analysis now proceeds by assuming that the eigenmode
is of the following (vector) form,

[

rnj
snj

]

= ξneikj∆x

[

r0

s0

]

(19.1.22)

Here the vector on the right-hand side is a constant (both in space and in time)
eigenvector, andξ is a complex number, as before. Substituting (19.1.22) into
(19.1.21), and dividing by the powerξn, gives the homogeneous vector equation

(cos k∆x)− ξ i
v∆t

∆x
sin k∆x

i
v∆t

∆x
sin k∆x (cos k∆x)− ξ

 ·

r0

s0

 =

0

0

 (19.1.23)

This admits a solution only if the determinant of the matrix on the left vanishes, a
condition easily shown to yield the two rootsξ

ξ = cos k∆x± i
v∆t

∆x
sin k∆x (19.1.24)

The stability condition is that both roots satisfy|ξ| ≤ 1. This again turns out to be
simply the Courant condition (19.1.17).

19.1 Flux-Conservative Initial Value Problems 831

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Other Varieties of Error

Thus far we have been concerned withamplitude error, because of its intimate
connection with the stability or instability of a differencing scheme. Other varieties
of error are relevant when we shift our concern to accuracy, rather than stability.

Finite-difference schemes for hyperbolic equations can exhibit dispersion, or
phase errors. For example, equation (19.1.16) can be rewritten as

ξ = e−ik∆x + i

(

1 −
v∆t

∆x

)

sin k∆x (19.1.25)

An arbitrary initial wave packet is a superposition of modes with differentk’s.
At each timestep the modes get multiplied by different phase factors (19.1.25),
depending on their value ofk. If ∆t = ∆x/v, then the exact solution for each mode
of a wave packetf(x−vt) is obtained if each mode gets multiplied by exp(−ik∆x).
For this value of∆t, equation (19.1.25) shows that the finite-difference solution
gives the exact analytic result. However, ifv∆t/∆x is not exactly 1, the phase
relations of the modes can become hopelessly garbled and the wave packet disperses.
Note from (19.1.25) that the dispersion becomes large as soon as the wavelength
becomes comparable to the grid spacing∆x.

A third type of error is one associated with nonlinear hyperbolic equations and
is therefore sometimes callednonlinear instability. For example, a piece of the Euler
or Navier-Stokes equations for fluid flow looks like

∂v

∂t
= −v

∂v

∂x
+ . . . (19.1.26)

The nonlinear term inv can cause a transfer of energy in Fourier space from
long wavelengths to short wavelengths. This results in a wave profile steepening
until a vertical profile or “shock” develops. Since the von Neumann analysis
suggests that the stability can depend onk∆x, a scheme that was stable for shallow
profiles can become unstable for steep profiles. This kind of difficulty arises in
a differencing scheme where the cascade in Fourier space is halted at the shortest
wavelength representable on the grid, that is, atk ∼ 1/∆x. If energy simply
accumulates in these modes, it eventually swamps the energy in the long wavelength
modes of interest.

Nonlinear instability and shock formation is thus somewhat controlled by
numerical viscosity such as that discussed in connection with equation (19.1.18)
above. In some fluid problems,however, shock formation is not merely an annoyance,
but an actual physical behavior of the fluid whose detailed study is a goal. Then,
numerical viscosity alone may not be adequate or sufficiently controllable. This is a
complicated subject which we discuss further in the subsection on fluid dynamics,
below.

For wave equations, propagation errors (amplitude or phase) are usually most
worrisome. For advective equations, on the other hand,transport errorsare usually
of greater concern. In the Lax scheme, equation (19.1.15), a disturbance in the
advected quantityu at mesh pointj propagates to mesh pointsj + 1 andj − 1 at
the next timestep. In reality, however, if the velocityv is positive then only mesh
point j + 1 should be affected.

832 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t or n

x or j

v

upwind

v

Figure 19.1.4. Representation of upwind differencing schemes. The upper scheme is stable when the
advection constantv is negative, as shown; the lower scheme is stable when the advection constantv is
positive, also as shown. The Courant condition must, of course, also be satisfied.

The simplest way to model the transport properties “better” is to useupwind
differencing(see Figure 19.1.4):

un+1
j − un

j

∆t
= −vnj

un
j − un

j−1

∆x
, vnj > 0

un
j+1 − un

j

∆x
, vnj < 0

(19.1.27)

Note that this scheme is only first-order, not second-order,accurate in the
calculation of the spatial derivatives. How can it be “better”? The answer is
one that annoys the mathematicians: The goal of numerical simulations is not
always “accuracy” in a strictly mathematical sense, but sometimes “fidelity” to the
underlying physics in a sense that is looser and more pragmatic. In such contexts,
some kinds of error are much more tolerable than others. Upwind differencing
generally adds fidelity to problems where the advected variables are liable to undergo
sudden changes of state, e.g., as they pass through shocks or other discontinuities.
You will have to be guided by the specific nature of your own problem.

For the differencing scheme (19.1.27), the amplification factor (for constantv) is

ξ = 1 −

∣

∣

∣

∣

v∆t

∆x

∣

∣

∣

∣

(1 − cos k∆x)− i
v∆t

∆x
sin k∆x (19.1.28)

|ξ|2 = 1 − 2

∣

∣

∣

∣

v∆t

∆x

∣

∣

∣

∣

(

1 −

∣

∣

∣

∣

v∆t

∆x

∣

∣

∣

∣

)

(1 − cos k∆x) (19.1.29)

So the stability criterion|ξ|2 ≤ 1 is (again) simply the Courant condition (19.1.17).
There are various ways of improving the accuracy of first-order upwind

differencing. In the continuum equation, material originally a distancev∆t away

19.1 Flux-Conservative Initial Value Problems 833

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

staggered
leapfrog

t or n

x or j

Figure 19.1.5. Representation of the staggered leapfrog differencing scheme. Note thatinformation
from two previous time slices is used in obtaining the desired point. This scheme is second-order
accurate in both space and time.

arrives at a given point after a time interval∆t. In the first-order method, the
material always arrives from∆x away. Ifv∆t ≪ ∆x (to insure accuracy), this can
cause a large error. One way of reducing this error is to interpolateu betweenj − 1
andj before transporting it. This gives effectively a second-order method. Various
schemes for second-order upwind differencing are discussed and compared in[2-3].

Second-Order Accuracy in Time

When using a method that is first-order accurate in time but second-order
accurate in space, one generally has to takev∆t significantly smaller than∆x to
achieve desired accuracy, say, by at least a factor of 5. Thus the Courant condition
is not actually the limiting factor with such schemes in practice. However, there are
schemes that are second-orderaccurate in both space and time, and these can often be
pushed right to their stability limit, with correspondingly smaller computation times.

For example, thestaggered leapfrogmethod for the conservation equation
(19.1.1) is defined as follows (Figure 19.1.5): Using the values ofun at time tn,
compute the fluxesF n

j . Then compute new valuesun+1 using the time-centered
values of the fluxes:

un+1
j − un−1

j = −
∆t

∆x
(F n

j+1 − F n
j−1) (19.1.30)

The name comes from the fact that the time levels in the time derivative term
“leapfrog” over the time levels in the space derivative term. The method requires
that un−1 andun be stored to computeun+1.

For our simple model equation (19.1.6), staggered leapfrog takes the form

un+1
j − un−1

j = −
v∆t

∆x
(un

j+1 − un
j−1) (19.1.31)

The von Neumann stability analysis now gives a quadratic equation forξ, rather than
a linear one, because of the occurrence of three consecutive powers ofξ when the

834 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

form (19.1.12) for an eigenmode is substituted into equation (19.1.31),

ξ2 − 1 = −2iξ
v∆t

∆x
sin k∆x (19.1.32)

whose solution is

ξ = −i
v∆t

∆x
sin k∆x±

√

1 −

(

v∆t

∆x
sink∆x

)2

(19.1.33)

Thus the Courant condition is again required for stability. In fact, in equation
(19.1.33),|ξ|2 = 1 for anyv∆t ≤ ∆x. This is the great advantage of the staggered
leapfrog method: There is no amplitude dissipation.

Staggered leapfrog differencing of equations like (19.1.20) is most transparent
if the variables are centered on appropriate half-mesh points:

rnj+1/2 ≡ v
∂u

∂x

∣

∣

∣

∣

n

j+1/2

= v
un
j+1 − un

j

∆x

s
n+1/2
j ≡

∂u

∂t

∣

∣

∣

∣

n+1/2

j

=
un+1
j − un

j

∆t

(19.1.34)

This is purely a notational convenience: we can think of the mesh on whichr and
s are defined as being twice as fine as the mesh on which the original variableu is
defined. The leapfrog differencing of equation (19.1.20) is

rn+1

j+1/2 − rnj+1/2

∆t
=

s
n+1/2
j+1 − s

n+1/2
j

∆x

s
n+1/2
j − s

n−1/2
j

∆t
= v

rnj+1/2 − rnj−1/2

∆x

(19.1.35)

If you substitute equation (19.1.22) in equation (19.1.35), you will find that once
again the Courant condition is required for stability, and that there is no amplitude
dissipation when it is satisfied.

If we substitute equation (19.1.34) in equation (19.1.35), we find that equation
(19.1.35) is equivalent to

un+1
j − 2un

j + un−1
j

(∆t)2
= v2

un
j+1 − 2un

j + un
j−1

(∆x)2
(19.1.36)

This is just the “usual” second-order differencing of the wave equation (19.1.2). We
see that it is a two-level scheme, requiring bothun andun−1 to obtainun+1. In
equation (19.1.35) this shows up as bothsn−1/2 and rn being needed to advance
the solution.

For equations more complicated than our simple model equation, especially
nonlinear equations, the leapfrog method usually becomes unstable when the gradi-
ents get large. The instability is related to the fact that odd and even mesh points are
completely decoupled, like the black and white squares of a chess board, as shown

19.1 Flux-Conservative Initial Value Problems 835

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Figure 19.1.6. Origin of mesh-drift instabilities in a staggered leapfrog scheme. If the mesh points
are imagined to lie in the squares of a chess board, then white squares couple to themselves, black to
themselves, but there is no coupling between white and black. The fix is to introduce a small diffusive
mesh-coupling piece.

in Figure 19.1.6. This mesh drifting instability is cured by coupling the two meshes
through a numerical viscosity term, e.g., adding to the right side of (19.1.31) a small
coefficient (≪ 1) timesun

j+1 − 2un
j + un

j−1. For more on stabilizing difference
schemes by adding numerical dissipation, see, e.g.,[4].

The Two-Step Lax-Wendroffscheme is a second-order in time method that
avoids large numerical dissipation and mesh drifting. One defines intermediate
valuesuj+1/2 at the half timestepstn+1/2 and the half mesh pointsxj+1/2. These
are calculated by the Lax scheme:

u
n+1/2
j+1/2 =

1

2
(un

j+1 + un
j) −

∆t

2∆x
(F n

j+1 − F n
j) (19.1.37)

Using these variables, one calculates the fluxesF
n+1/2
j+1/2 . Then the updated values

un+1
j are calculated by the properly centered expression

un+1
j = un

j −
∆t

∆x

(

F
n+1/2
j+1/2 − F

n+1/2
j−1/2

)

(19.1.38)

The provisional valuesun+1/2
j+1/2 are now discarded. (See Figure 19.1.7.)

Let us investigate the stability of this method for our model advective equation,
whereF = vu. Substitute (19.1.37) in (19.1.38) to get

un+1
j = un

j − α

[

1

2
(un

j+1 + un
j) −

1

2
α(un

j+1 − un
j)

−
1

2
(un

j + un
j−1) +

1

2
α(un

j − un
j−1)

] (19.1.39)

836 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t or n

x or j

halfstep points

two-step Lax Wendroff

Figure 19.1.7. Representation of the two-step Lax-Wendroff differencing scheme. Twohalfstep points
(⊗) are calculated by the Lax method. These, plus one of the original points, produce the new point via
staggered leapfrog. Halfstep points are used only temporarily and do not require storage allocation on the
grid. This scheme is second-order accurate in both space and time.

where

α ≡
v∆t

∆x
(19.1.40)

Then

ξ = 1 − iα sin k∆x− α2(1 − cos k∆x) (19.1.41)

so

|ξ|2 = 1 − α2(1 − α2)(1 − cos k∆x)2 (19.1.42)

The stability criterion|ξ|2 ≤ 1 is thereforeα2 ≤ 1, or v∆t ≤ ∆x as usual.
Incidentally, you should not think that the Courant condition is the only stability
requirement that ever turns up in PDEs. It keeps doing so in our model examples
just because those examples are so simple in form. The method of analysis is,
however, general.

Except whenα = 1, |ξ|2 < 1 in (19.1.42), so some amplitude damping does
occur. The effect is relatively small, however, for wavelengths large compared with
the mesh size∆x. If we expand (19.1.42) for smallk∆x, we find

|ξ|2 = 1 − α2(1 − α2)
(k∆x)4

4
+ . . . (19.1.43)

The departure from unity occurs only at fourth order ink. This should be contrasted
with equation (19.1.16) for the Lax method, which shows that

|ξ|2 = 1 − (1 − α2)(k∆x)2 + . . . (19.1.44)

for small k∆x.

19.1 Flux-Conservative Initial Value Problems 837

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In summary, our recommendation for initial value problems that can be cast
in flux-conservative form, and especially problems related to the wave equation,
is to use the staggered leapfrog method when possible. We have personally had
better success with it than with the Two-Step Lax-Wendroff method. For problems
sensitive to transport errors, upwind differencing or one of its refinements should
be considered.

Fluid Dynamics with Shocks

As we alluded to earlier, the treatment of fluid dynamics problems with shocks
has become a very complicated and very sophisticated subject. All we can attempt
to do here is to guide you to some starting points in the literature.

There are basically three important general methods for handling shocks. The
oldest and simplest method, invented by von Neumann and Richtmyer, is to add
artificial viscosity to the equations, modeling the way Nature uses real viscosity
to smooth discontinuities. A good starting point for trying out this method is the
differencing scheme in§12.11 of[1]. This scheme is excellent for nearly all problems
in one spatial dimension.

The second method combines a high-order differencing scheme that is accurate
for smooth flows with a low order scheme that is very dissipative and can smooth
the shocks. Typically, various upwind differencing schemes are combined using
weights chosen to zero the low order scheme unless steep gradients are present, and
also chosen to enforce various “monotonicity” constraints that prevent nonphysical
oscillations from appearing in the numerical solution. References[2-3,5] are a good
place to start with these methods.

The third, and potentially most powerful method, is Godunov’s approach. Here
one gives up the simple linearization inherent in finite differencing based on Taylor
series and includes the nonlinearity of the equations explicitly. There is an analytic
solution for the evolution of two uniformstates of a fluid separated by a discontinuity,
the Riemann shock problem. Godunov’s idea was to approximate the fluid by a
large number of cells of uniform states, and piece them together using the Riemann
solution. There have been many generalizations of Godunov’s approach, of which
the most powerful is probably the PPM method[6].

Readable reviews of all these methods, discussing the difficulties arising when
one-dimensional methods are generalized to multidimensions, are given in[7-9].

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press), Chapter 4.

Richtmyer, R.D., and Morton, K.W. 1967, Difference Methods for Initial Value Problems, 2nd ed.
(New York: Wiley-Interscience). [1]

Centrella, J., and Wilson, J.R. 1984, Astrophysical Journal Supplement, vol. 54, pp. 229–249,
Appendix B. [2]

Hawley, J.F., Smarr, L.L., and Wilson, J.R. 1984, Astrophysical Journal Supplement, vol. 55,
pp. 211–246, §2c. [3]

Kreiss, H.-O. 1978, Numerical Methods for Solving Time-Dependent Problems for Partial Differ-
ential Equations (Montreal: University of Montreal Press), pp. 66ff. [4]

Harten, A., Lax, P.D., and Van Leer, B. 1983, SIAM Review, vol. 25, pp. 36–61. [5]

Woodward, P., and Colella, P. 1984, Journal of Computational Physics, vol. 54, pp. 174–201. [6]

838 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Roache, P.J. 1976, Computational Fluid Dynamics (Albuquerque: Hermosa). [7]

Woodward, P., and Colella, P. 1984, Journal of Computational Physics, vol. 54, pp. 115–173. [8]

Rizzi, A., and Engquist, B. 1987, Journal of Computational Physics, vol. 72, pp. 1–69. [9]

19.2 Diffusive Initial Value Problems

Recall the model parabolic equation, the diffusion equation in one space
dimension,

∂u

∂t
=

∂

∂x

(

D
∂u

∂x

)

(19.2.1)

whereD is the diffusion coefficient. Actually, this equation is a flux-conservative
equation of the form considered in the previous section, with

F = −D
∂u

∂x
(19.2.2)

the flux in thex-direction. We will assumeD ≥ 0, otherwise equation (19.2.1) has
physically unstable solutions: A small disturbance evolves to become more and more
concentrated instead of dispersing. (Don’t make the mistake of trying to find a stable
differencing scheme for a problem whose underlying PDEs are themselves unstable!)

Even though (19.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (19.2.2), and its direct
generalizations, occur quite frequently in practice. Moreover, we have already seen
that numerical viscosity and artificial viscosity can introduce diffusive pieces like
the right-hand side of (19.2.1) in many other situations.

Consider first the case whenD is a constant. Then the equation

∂u

∂t
= D

∂2u

∂x2
(19.2.3)

can be differenced in the obvious way:

un+1
j − un

j

∆t
= D

[

un
j+1 − 2un

j + un
j−1

(∆x)2

]

(19.2.4)

This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The
FTCS scheme was unstable for the hyperbolicequation; however, a quick calculation
shows that the amplification factor for equation (19.2.4) is

ξ = 1 −
4D∆t

(∆x)2
sin2

(

k∆x

2

)

(19.2.5)

The requirement|ξ| ≤ 1 leads to the stability criterion

2D∆t

(∆x)2
≤ 1 (19.2.6)

838 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Roache, P.J. 1976, Computational Fluid Dynamics (Albuquerque: Hermosa). [7]

Woodward, P., and Colella, P. 1984, Journal of Computational Physics, vol. 54, pp. 115–173. [8]

Rizzi, A., and Engquist, B. 1987, Journal of Computational Physics, vol. 72, pp. 1–69. [9]

19.2 Diffusive Initial Value Problems

Recall the model parabolic equation, the diffusion equation in one space
dimension,

∂u

∂t
=

∂

∂x

(

D
∂u

∂x

)

(19.2.1)

whereD is the diffusion coefficient. Actually, this equation is a flux-conservative
equation of the form considered in the previous section, with

F = −D
∂u

∂x
(19.2.2)

the flux in thex-direction. We will assumeD ≥ 0, otherwise equation (19.2.1) has
physically unstable solutions: A small disturbance evolves to become more and more
concentrated instead of dispersing. (Don’t make the mistake of trying to find a stable
differencing scheme for a problem whose underlying PDEs are themselves unstable!)

Even though (19.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (19.2.2), and its direct
generalizations, occur quite frequently in practice. Moreover, we have already seen
that numerical viscosity and artificial viscosity can introduce diffusive pieces like
the right-hand side of (19.2.1) in many other situations.

Consider first the case whenD is a constant. Then the equation

∂u

∂t
= D

∂2u

∂x2
(19.2.3)

can be differenced in the obvious way:

un+1

j − unj
∆t

= D

[

unj+1 − 2unj + unj−1

(∆x)2

]

(19.2.4)

This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The
FTCS scheme was unstable for the hyperbolicequation; however, a quick calculation
shows that the amplification factor for equation (19.2.4) is

ξ = 1 −
4D∆t

(∆x)2
sin2

(

k∆x

2

)

(19.2.5)

The requirement|ξ| ≤ 1 leads to the stability criterion

2D∆t

(∆x)2
≤ 1 (19.2.6)

19.2 Diffusive Initial Value Problems 839

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The physical interpretation of the restriction (19.2.6) is that the maximum
allowed timestep is, up to a numerical factor, the diffusion time across a cell of
width ∆x.

More generally, the diffusion timeτ across a spatial scale of sizeλ is of order

τ ∼
λ2

D
(19.2.7)

Usually we are interested in modeling accurately the evolution of features with
spatial scalesλ ≫ ∆x. If we are limited to timesteps satisfying (19.2.6), we will
need to evolve through of orderλ2/(∆x)2 steps before things start to happen on the
scale of interest. This number of steps is usually prohibitive. We must therefore
find a stable way of taking timesteps comparable to, or perhaps — for accuracy—
somewhat smaller than, the time scale of (19.2.7).

This goal poses an immediate “philosophical” question. Obviously the large
timesteps that we propose to take are going to be woefully inaccurate for the small
scales that we have decided not to be interested in. We want those scales todo
something stable, “innocuous,” and perhaps not too physically unreasonable. We
want to build this innocuous behavior into our differencing scheme. What should
it be?

There are two different answers, each of which has its pros and cons. The
first answer is to seek a differencing scheme that drives small-scale features to their
equilibrium forms, e.g., satisfying equation (19.2.3) with the left-hand side set to
zero. This answer generally makes the best physical sense; but, as we will see, it leads
to a differencing scheme (“fully implicit”) that is onlyfirst-orderaccurate in time for
the scales that we are interested in. The second answer is to let small-scale features
maintain their initial amplitudes, so that the evolution of the larger-scale features
of interest takes place superposed with a kind of “frozen in” (though fluctuating)
background of small-scale stuff. This answer gives a differencing scheme (“Crank-
Nicholson”) that issecond-orderaccurate in time. Toward the end of an evolution
calculation, however, one might want to switch over to some steps of the other kind,
to drive the small-scale stuff into equilibrium. Let us now see where these distinct
differencing schemes come from:

Consider the following differencing of (19.2.3),

un+1

j − unj
∆t

= D

[

un+1

j+1 − 2un+1

j + un+1

j−1

(∆x)2

]

(19.2.8)

This is exactly like the FTCS scheme (19.2.4), except that the spatial derivatives on
the right-hand side are evaluated at timestepn + 1. Schemes with this character are
calledfully implicit or backward time, by contrast with FTCS (which is calledfully
explicit). To solve equation (19.2.8) one has to solve a set of simultaneous linear
equations at each timestep for theun+1

j . Fortunately, this is a simple problem because
the system is tridiagonal: Just group the terms in equation (19.2.8) appropriately:

−αun+1

j−1 + (1 + 2α)un+1

j − αun+1

j+1 = unj , j = 1, 2...J − 1 (19.2.9)

where

α ≡
D∆t

(∆x)2
(19.2.10)

840 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Supplemented by Dirichlet or Neumann boundary conditions atj = 0 andj = J ,
equation (19.2.9) is clearly a tridiagonal system, which can easily be solved ateach
timestep by the method of§2.4.

What is the behavior of (19.2.8) for very large timesteps? The answer is seen
most clearly in (19.2.9), in the limitα→ ∞ (∆t→ ∞). Dividing byα, we see that
the difference equations are just the finite-difference form of the equilibriumequation

∂2u

∂x2
= 0 (19.2.11)

What about stability? The amplification factor for equation (19.2.8) is

ξ =
1

1 + 4α sin2

(

k∆x

2

) (19.2.12)

Clearly|ξ| < 1 for any stepsize∆t. The scheme is unconditionally stable. The details
of the small-scale evolution from the initial conditions are obviously inaccurate for
large∆t. But, as advertised, the correct equilibrium solution is obtained. This is
the characteristic feature of implicit methods.

Here, on the other hand, is how one gets to the second of our above philosophical
answers, combining the stability of an implicit method with theaccuracy of a method
that is second-order in both space and time. Simply form the average of the explicit
and implicit FTCS schemes:

un+1

j − unj
∆t

=
D

2

[

(un+1

j+1
− 2un+1

j + un+1

j−1
) + (unj+1 − 2unj + unj−1)

(∆x)2

]

(19.2.13)

Here both the left- and right-hand sides are centered at timestepn+ 1

2
, so the method

is second-orderaccurate in time as claimed. The amplification factor is

ξ =

1 − 2α sin2

(

k∆x

2

)

1 + 2α sin2

(

k∆x

2

) (19.2.14)

so the method is stable for any size∆t. This scheme is called theCrank-Nicholson
scheme, and is our recommended method for any simple diffusion problem (perhaps
supplemented by a few fully implicit steps at the end). (See Figure 19.2.1.)

Now turn to some generalizations of the simple diffusion equation (19.2.3).
Suppose first that the diffusion coefficientD is not constant, sayD = D(x). We can
adopt either of two strategies. First, we can make an analytic change of variable

y =

∫

dx

D(x)
(19.2.15)

19.2 Diffusive Initial Value Problems 841

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

t or n

x or j

FTCS

(a)

Fully Implicit(b) Crank-Nicholson(c)

Figure 19.2.1. Three differencing schemes for diffusive problems (shown as in Figure 19.1.2). (a)
Forward Time Center Space is first-order accurate, but stable only for sufficiently small timesteps.
(b) Fully Implicit is stable for arbitrarily large timesteps, but is still only first-orderaccurate. (c)
Crank-Nicholson is second-order accurate, and is usually stable for large timesteps.

Then
∂u

∂t
=

∂

∂x
D(x)

∂u

∂x
(19.2.16)

becomes
∂u

∂t
=

1

D(y)

∂2u

∂y2
(19.2.17)

and we evaluateD at the appropriateyj . Heuristically, the stability criterion (19.2.6)
in an explicit scheme becomes

∆t ≤ min
j

[

(∆y)2

2D−1

j

]

(19.2.18)

Note that constant spacing∆y in y does not imply constant spacing inx.
An alternative method that does not require analytically tractable forms for

D is simply to difference equation (19.2.16) as it stands, centering everything
appropriately. Thus the FTCS method becomes

un+1

j − unj
∆t

=
Dj+1/2(u

n
j+1 − unj) −Dj−1/2(u

n
j − unj−1)

(∆x)2
(19.2.19)

where

Dj+1/2 ≡ D(xj+1/2) (19.2.20)

842 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and the heuristic stability criterion is

∆t ≤ min
j

[

(∆x)2

2Dj+1/2

]

(19.2.21)

The Crank-Nicholson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem,

for example whereD = D(u). Explicit schemes can be generalized in the obvious
way. For example, in equation (19.2.19) write

Dj+1/2 =
1

2

[

D(unj+1) +D(unj)
]

(19.2.22)

Implicit schemes are not as easy. The replacement (19.2.22) withn→ n+ 1 leaves
us with a nasty set of coupled nonlinear equations to solve ateach timestep. Often
there is an easier way: If the form ofD(u) allows us to integrate

dz = D(u)du (19.2.23)

analytically forz(u), then the right-hand side of (19.2.1) becomes∂2z/∂x2, which
we difference implicitly as

zn+1

j+1
− 2zn+1

j + zn+1

j−1

(∆x)2
(19.2.24)

Now linearize each term on the right-hand side of equation (19.2.24),for example

zn+1

j ≡ z(un+1

j) = z(unj) + (un+1

j − unj)
∂z

∂u

∣

∣

∣

∣

j,n

= z(unj) + (un+1

j − unj)D(unj)

(19.2.25)

This reduces the problem to tridiagonal form again and in practice usually retains
the stability advantages of fully implicit differencing.

Schr ödinger Equation

Sometimes the physical problem being solved imposes constraints on the
differencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schrödinger equation of quantum mechanics. This is basically a
parabolic equation for the evolution of a complex quantityψ. For the scattering of a
wavepacket by a one-dimensional potentialV (x), the equation has the form

i
∂ψ

∂t
= −

∂2ψ

∂x2
+ V (x)ψ (19.2.26)

(Here we have chosen units so that Planck’s constanth̄ = 1 and the particle mass
m = 1/2.) One is given the initial wavepacket,ψ(x, t = 0), together with boundary

19.2 Diffusive Initial Value Problems 843

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

conditions thatψ → 0 at x → ±∞. Suppose we content ourselves with first-
order accuracy in time, but want to use an implicit scheme, for stability. A slight
generalization of (19.2.8) leads to

i

[

ψn+1

j − ψn
j

∆t

]

= −

[

ψn+1

j+1
− 2ψn+1

j + ψn+1

j−1

(∆x)2

]

+ Vjψ
n+1

j (19.2.27)

for which

ξ =
1

1 + i

[

4∆t

(∆x)2
sin2

(

k∆x

2

)

+ Vj∆t

] (19.2.28)

This is unconditionally stable, but unfortunately is notunitary. The underlying
physical problem requires that the total probability of finding the particle somewhere
remains unity. This is represented formally by the modulus-square norm ofψ
remaining unity:

∫

∞

−∞

|ψ|2dx = 1 (19.2.29)

The initial wave functionψ(x, 0) is normalized to satisfy (19.2.29). The Schrödinger
equation (19.2.26) then guarantees that this condition is satisfied at all later times.

Let us write equation (19.2.26) in the form

i
∂ψ

∂t
= Hψ (19.2.30)

where the operatorH is

H = −
∂2

∂x2
+ V (x) (19.2.31)

The formal solution of equation (19.2.30) is

ψ(x, t) = e−iHtψ(x, 0) (19.2.32)

where the exponential of the operator is defined by its power series expansion.
The unstable explicit FTCS scheme approximates (19.2.32) as

ψn+1

j = (1 − iH∆t)ψn
j (19.2.33)

whereH is represented by a centered finite-difference approximation inx. The
stable implicit scheme (19.2.27) is, by contrast,

ψn+1

j = (1 + iH∆t)−1ψn
j (19.2.34)

These are both first-order accurate in time, as can be seen by expanding equation
(19.2.32). However, neither operator in (19.2.33) or (19.2.34) is unitary.

844 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The correct way to difference Schrödinger’s equation[1,2] is to useCayley’s
formfor the finite-difference representation ofe−iHt, which is second-orderaccurate
and unitary:

e−iHt ≃
1 − 1

2
iH∆t

1 + 1

2
iH∆t

(19.2.35)

In other words,

(

1 + 1

2
iH∆t

)

ψn+1

j =
(

1 − 1

2
iH∆t

)

ψn
j (19.2.36)

On replacingH by its finite-difference approximation inx, we have a complex
tridiagonal system to solve. The method is stable, unitary, and second-orderaccurate
in space and time. In fact, it is simply the Crank-Nicholson method once again!

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press), Chapter 2.

Goldberg, A., Schey, H.M., and Schwartz, J.L. 1967, American Journal of Physics, vol. 35,
pp. 177–186. [1]

Galbraith, I., Ching, Y.S., and Abraham, E. 1984, American Journal of Physics, vol. 52, pp. 60–
68. [2]

19.3 Initial Value Problems in Multidimensions

The methods described in§19.1 and§19.2 for problems in1 + 1 dimension
(one space and one time dimension) can easily be generalized toN + 1 dimensions.
However, the computing power necessary to solve the resulting equations is enor-
mous. If you have solved a one-dimensional problem with 100 spatial grid points,
solving the two-dimensional version with 100× 100 mesh points requiresat least
100 times as much computing. You generally have to be content with very modest
spatial resolution in multidimensional problems.

Indulge us in offering a bit of advice about the development and testing of
multidimensional PDE codes: You should always first run your programs onvery
small grids, e.g.,8 × 8, even though the resultingaccuracy is sopoor as to be
useless. When your program is all debugged and demonstrably stable,thenyou can
increase the grid size to a reasonable one and start looking at the results. We have
actually heard someone protest, “my program would be unstable for a crude grid,
but I am sure the instability will go away on a larger grid.” That is nonsense of a
most pernicious sort, evidencing total confusion between accuracy and stability. In
fact, new instabilities sometimes do show up onlarger grids; but old instabilities
never (in our experience) just go away.

Forced to live with modest grid sizes, some people recommend going to higher-
order methods in an attempt to improveaccuracy. This is very dangerous. Unless the
solution you are looking for is known to be smooth, and the high-order method you

844 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The correct way to difference Schrödinger’s equation[1,2] is to useCayley’s
formfor the finite-difference representation ofe−iHt, which is second-orderaccurate
and unitary:

e−iHt ≃ 1 − 1
2 iH∆t

1 + 1
2 iH∆t

(19.2.35)

In other words,

(

1 + 1
2
iH∆t

)

ψn+1
j =

(

1 − 1
2
iH∆t

)

ψn
j (19.2.36)

On replacingH by its finite-difference approximation inx, we have a complex
tridiagonal system to solve. The method is stable, unitary, and second-orderaccurate
in space and time. In fact, it is simply the Crank-Nicholson method once again!

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press), Chapter 2.

Goldberg, A., Schey, H.M., and Schwartz, J.L. 1967, American Journal of Physics, vol. 35,
pp. 177–186. [1]

Galbraith, I., Ching, Y.S., and Abraham, E. 1984, American Journal of Physics, vol. 52, pp. 60–
68. [2]

19.3 Initial Value Problems in Multidimensions

The methods described in§19.1 and§19.2 for problems in1 + 1 dimension
(one space and one time dimension) can easily be generalized toN + 1 dimensions.
However, the computing power necessary to solve the resulting equations is enor-
mous. If you have solved a one-dimensional problem with 100 spatial grid points,
solving the two-dimensional version with 100× 100 mesh points requiresat least
100 times as much computing. You generally have to be content with very modest
spatial resolution in multidimensional problems.

Indulge us in offering a bit of advice about the development and testing of
multidimensional PDE codes: You should always first run your programs onvery
small grids, e.g.,8 × 8, even though the resultingaccuracy is sopoor as to be
useless. When your program is all debugged and demonstrably stable,thenyou can
increase the grid size to a reasonable one and start looking at the results. We have
actually heard someone protest, “my program would be unstable for a crude grid,
but I am sure the instability will go away on a larger grid.” That is nonsense of a
most pernicious sort, evidencing total confusion between accuracy and stability. In
fact, new instabilities sometimes do show up onlarger grids; but old instabilities
never (in our experience) just go away.

Forced to live with modest grid sizes, some people recommend going to higher-
order methods in an attempt to improveaccuracy. This is very dangerous. Unless the
solution you are looking for is known to be smooth, and the high-order method you

19.3 Initial Value Problems in Multidimensions 845

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

are using is known to be extremely stable, we do not recommend anything higher
than second-order in time (for sets of first-order equations). For spatial differencing,
we recommend the order of the underlying PDEs, perhaps allowing second-order
spatial differencing for first-order-in-space PDEs. When you increase the order of
a differencing method to greater than the order of the original PDEs, you introduce
spurious solutions to the difference equations. This does not create a problem if they
all happen to decay exponentially; otherwise you are going to see all hell break loose!

Lax Method for a Flux-Conservative Equation

As an example, we show how to generalize the Lax method (19.1.15) to two
dimensions for the conservation equation

∂u

∂t
= −∇ · F = −

(

∂Fx

∂x
+
∂Fy

∂y

)

(19.3.1)

Use a spatial grid with

xj = x0 + j∆

yl = y0 + l∆
(19.3.2)

We have chosen∆x = ∆y ≡ ∆ for simplicity. Then the Lax scheme is

un+1
j,l =

1

4
(unj+1,l + unj−1,l + unj,l+1 + unj,l−1)

− ∆t

2∆
(F n

j+1,l − F n
j−1,l + F n

j,l+1 − F n
j,l−1)

(19.3.3)

Note that as an abbreviated notationFj+1 andFj−1 refer toFx, while Fl+1 and
Fl−1 refer to Fy.

Let us carry out a stability analysis for the model advective equation (analog
of 19.1.6) with

Fx = vxu, Fy = vyu (19.3.4)

This requires an eigenmode with two dimensions in space, though still only a simple
dependence on powers ofξ in time,

unj,l = ξneikxj∆eikyl∆ (19.3.5)

Substituting in equation (19.3.3), we find

ξ =
1

2
(cos kx∆ + cos ky∆) − iαx sin kx∆ − iαy sin ky∆ (19.3.6)

where

αx =
vx∆t

∆
, αy =

vy∆t

∆
(19.3.7)

846 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The expression for|ξ|2 can be manipulated into the form

|ξ|2 = 1 − (sin2 kx∆ + sin2 ky∆)

[

1

2
− (α2

x + α2
y)

]

− 1

4
(cos kx∆ − cos ky∆)2 − (αy sin kx∆− αx sin ky∆)2

(19.3.8)

The last two terms are negative, and so the stability requirement|ξ|2 ≤ 1 becomes

1

2
− (α2

x + α2
y) ≥ 0 (19.3.9)

or

∆t ≤ ∆√
2(v2

x + v2
y)

1/2
(19.3.10)

This is an example of the general result for theN -dimensional Courant
condition: If |v| is the maximum propagation velocity in the problem, then

∆t ≤ ∆√
N |v|

(19.3.11)

is the Courant condition.

Diffusion Equation in Multidimensions

Let us consider the two-dimensional diffusion equation,

∂u

∂t
= D

(

∂2u

∂x2
+
∂2u

∂y2

)

(19.3.12)

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obvious way. However, we have seen that diffusive problems are usually
best treated implicitly. Suppose we try to implement the Crank-Nicholson scheme
in two dimensions. This would give us

un+1
j,l = unj,l +

1

2
α
(

δ2xu
n+1
j,l + δ2xu

n
j,l + δ2yu

n+1
j,l + δ2yu

n
j,l

)

(19.3.13)

Here

α ≡ D∆t

∆2
∆ ≡ ∆x = ∆y (19.3.14)

δ2xu
n
j,l ≡ unj+1,l − 2unj,l + unj−1,l (19.3.15)

and similarly forδ2yu
n
j,l. This is certainly a viable scheme; the problem arises in

solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility is to use a suitable sparse matrix technique (see§2.7 and§19.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicholson algorithm. It is still second-orderaccurate in time
and space, and unconditionally stable, but the equations are easier to solve than

19.3 Initial Value Problems in Multidimensions 847

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(19.3.13). Called thealternating-direction implicit method (ADI), this embodies the
powerful concept ofoperator splittingor time splitting, about which we will say
more below. Here, the idea is to divide each timestep into two steps ofsize∆t/2.
In each substep, a different dimension is treated implicitly:

u
n+1/2
j,l = unj,l +

1

2
α
(

δ2xu
n+1/2
j,l + δ2yu

n
j,l

)

un+1
j,l = u

n+1/2
j,l +

1

2
α
(

δ2xu
n+1/2
j,l + δ2yu

n+1
j,l

)

(19.3.16)

The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system.

Operator Splitting Methods Generally

The basic idea of operator splitting, which is also calledtime splittingor the
method of fractional steps, is this: Suppose you have an initial value equation of
the form

∂u

∂t
= Lu (19.3.17)

whereL is some operator. WhileL is not necessarily linear, suppose that it can at
least be written as a linear sum ofm pieces, which act additively on u,

Lu = L1u+ L2u+ · · ·+ Lmu (19.3.18)

Finally, suppose that foreachof the pieces, you alreadyknow a differencing scheme
for updating the variableu from timestepn to timestepn + 1, valid if that piece
of the operator were theonly one on the right-hand side. We will write these
updatings symbolically as

un+1 = U1(u
n,∆t)

un+1 = U2(u
n,∆t)

· · ·

un+1 = Um(un,∆t)

(19.3.19)

Now, one form of operator splitting would be to get fromn to n + 1 by the
following sequence of updatings:

un+(1/m) = U1(u
n,∆t)

un+(2/m) = U2(u
n+(1/m),∆t)

· · ·

un+1 = Um(un+(m−1)/m,∆t)

(19.3.20)

848 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For example, a combined advective-diffusion equation, such as

∂u

∂t
= −v∂u

∂x
+D

∂2u

∂x2
(19.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicholson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: LetU1 now denote an updating method that
includes algebraicallyall the pieces of the total operatorL, but which is desirably
stableonly for theL1 piece; likewiseU2, . . .Um. Then a method of getting from
un to un+1 is

un+1/m = U1(u
n,∆t/m)

un+2/m = U2(u
n+1/m,∆t/m)

· · ·

un+1 = Um(un+(m−1)/m,∆t/m)

(19.3.22)

The timestep for each fractional step in (19.3.22) is now only1/mof the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) is usually, though not always, stable as a differencing scheme
for the operatorL. In fact, as a rule of thumb, it is often sufficient to have stableUi’s
only for the operator pieces having the highest number of spatial derivatives — the
otherUi’s can beunstable— to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in§19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A · u = b (19.4.1)

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.

848 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

For example, a combined advective-diffusion equation, such as

∂u

∂t
= −v

∂u

∂x
+ D

∂2u

∂x2
(19.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicholson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: LetU1 now denote an updating method that
includes algebraicallyall the pieces of the total operatorL, but which is desirably
stableonly for theL1 piece; likewiseU2, . . .Um. Then a method of getting from
un to un+1 is

un+1/m = U1(u
n,∆t/m)

un+2/m = U2(u
n+1/m,∆t/m)

· · ·

un+1 = Um(un+(m−1)/m,∆t/m)

(19.3.22)

The timestep for each fractional step in (19.3.22) is now only1/mof the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) is usually, though not always, stable as a differencing scheme
for the operatorL. In fact, as a rule of thumb, it is often sufficient to have stableUi’s
only for the operator pieces having the highest number of spatial derivatives — the
otherUi’s can beunstable— to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in§19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A · u = b (19.4.1)

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.

19.4 Fourier and Cyclic Reduction Methods 849

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Two important techniques lead to “rapid” solution of equation (19.4.1) when
the sparse matrix is of certain frequently occurring forms. TheFourier transform
methodis directly applicable when the equations have coefficients that are constant
in space. Thecyclic reductionmethod is somewhat more general; its applicability
is related to the question of whether the equations are separable (in the sense of
“separation of variables”). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods calledFACR (Fourier Analysis and Cyclic Reduction). We
now consider each method in turn, using equation (19.0.3), with finite-difference
representation (19.0.6), as a model example. Generally speaking, the methods in this
section are faster, when they apply, than the simpler relaxation methods discussed
in §19.5; but they are not necessarily faster than the more complicated multigrid
methods discussed in§19.6.

Fourier Transform Method

The discrete inverse Fourier transform in bothx andy is

ujl =
1

JL

J−1∑

m=0

L−1∑

n=0

ûmne
−2πijm/Je−2πiln/L (19.4.2)

This can be computed using the FFT independently in each dimension, or elseall at
once via the routinefourn of §12.4 or the routinerlft3 of §12.5. Similarly,

ρjl =
1

JL

J−1∑

m=0

L−1∑

n=0

ρ̂mne
−2πijm/Je−2πiln/L (19.4.3)

If we substitute expressions (19.4.2) and (19.4.3) in our model problem (19.0.6),
we find

ûmn

(
e2πim/J + e−2πim/J + e2πin/L + e−2πin/L − 4

)
= ρ̂mn∆2 (19.4.4)

or

ûmn =
ρ̂mn∆2

2

(
cos

2πm

J
+ cos

2πn

L
− 2

) (19.4.5)

Thus the strategy for solving equation (19.0.6) by FFT techniques is:
• Computeρ̂mn as the Fourier transform

ρ̂mn =

J−1∑

j=0

L−1∑

l=0

ρjl e
2πimj/Je2πinl/L (19.4.6)

• Computeûmn from equation (19.4.5).

850 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• Computeujl by the inverse Fourier transform (19.4.2).
The above procedure is valid for periodic boundary conditions. In other words,

the solution satisfies

ujl = uj+J,l = uj,l+L (19.4.7)

Next consider a Dirichlet boundary conditionu = 0 on the rectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves:

ujl =
2

J

2

L

J−1∑

m=1

L−1∑

n=1

ûmn sin
πjm

J
sin

πln

L
(19.4.8)

This satisfies the boundary conditions thatu = 0 at j = 0, J and atl = 0, L. If we
substitute this expansion and the analogous one forρjl into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

• Computeρ̂mn by the sine transform

ρ̂mn =

J−1∑

j=1

L−1∑

l=1

ρjl sin
πjm

J
sin

πln

L
(19.4.9)

(A fast sine transform algorithm was given in§12.3.)
• Computêumn from the expression analogous to (19.4.5),

ûmn =
∆2ρ̂mn

2
(
cos

πm

J
+ cos

πn

L
− 2

) (19.4.10)

• Computeujl by the inverse sine transform (19.4.8).
If we have inhomogeneous boundary conditions, for exampleu = 0 on all

boundaries exceptu = f(y) on the boundaryx = J∆, we have to add to the above
solution a solutionuH of the homogeneous equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (19.4.11)

that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

uH =
∑

n

An sinh
nπx

J∆
sin

nπy

L∆
(19.4.12)

whereAn would be found by requiring thatu = f(y) at x = J∆. In the discrete
case, we have

uH
jl =

2

L

L−1∑

n=1

An sinh
πnj

J
sin

πnl

L
(19.4.13)

19.4 Fourier and Cyclic Reduction Methods 851

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If f(y = l∆) ≡ fl, then we getAn from the inverse formula

An =
1

sinhπn

L−1∑

l=1

fl sin
πnl

L
(19.4.14)

The complete solution to the problem is

u = ujl + uH
jl (19.4.15)

By adding appropriate terms of the form (19.4.12), we can handle inhomogeneous
terms on any boundary surface.

A much simpler procedure for handling inhomogeneous terms is to note that
whenever boundary terms appear on the left-hand side of (19.0.6), they can be taken
over to the right-hand side since they are known. The effective source term is
thereforeρjl plus a contribution from the boundary terms. To implement this idea
formally, write the solution as

u = u′ + uB (19.4.16)

where u′ = 0 on the boundary, whileuB vanishes everywhereexcepton the
boundary. There it takes on the given boundary value. In the above example, the
only nonzero values ofuB would be

uB
J,l = fl (19.4.17)

The model equation (19.0.3) becomes

∇2u′ = −∇2uB + ρ (19.4.18)

or, in finite-difference form,

u′

j+1,l + u′

j−1,l + u′

j,l+1 + u′

j,l−1 − 4u′

j,l =

− (uB
j+1,l + uB

j−1,l + uB
j,l+1 + uB

j,l−1 − 4uB
j,l) + ∆2ρj,l

(19.4.19)

All the uB terms in equation (19.4.19) vanish except when the equation is evaluated
at j = J − 1, where

u′

J,l + u′

J−2,l + u′

J−1,l+1 + u′

J−1,l−1 − 4u′

J−1,l = −fl + ∆2ρJ−1,l (19.4.20)

Thus the problem is now equivalent to the case of zero boundary conditions, except
that one row of the source term is modified by the replacement

∆2ρJ−1,l → ∆2ρJ−1,l − fl (19.4.21)

The case of Neumann boundary conditions∇u = 0 is handled by the cosine
expansion (12.3.17):

ujl =
2

J

2

L

J∑′′

m=0

L∑′′

n=0

ûmn cos
πjm

J
cos

πln

L
(19.4.22)

852 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Here the double prime notation means that the terms form = 0 andm = J should
be multiplied by 1

2 , and similarly forn = 0 andn = L. Inhomogeneous terms
∇u = g can be again included by adding a suitable solution of the homogeneous
equation, or more simply by taking boundary terms over to the right-hand side.
For example, the condition

∂u

∂x
= g(y) at x = 0 (19.4.23)

becomes
u1,l − u−1,l

2∆
= gl (19.4.24)

wheregl ≡ g(y = l∆). Once again we write the solution in the form (19.4.16),
where now∇u′ = 0 on the boundary. This time∇uB takes on the prescribed value
on the boundary, butuB vanishes everywhere except justoutsidethe boundary.
Thus equation (19.4.24) gives

uB
−1,l = −2∆gl (19.4.25)

All the uB terms in equation (19.4.19) vanish except whenj = 0:

u′

1,l + u′

−1,l + u′

0,l+1 + u′

0,l−1 − 4u′

0,l = 2∆gl + ∆2ρ0,l (19.4.26)

Thusu′ is the solution of a zero-gradient problem, with the source term modified
by the replacement

∆2ρ0,l → ∆2ρ0,l + 2∆gl (19.4.27)

Sometimes Neumann boundary conditions are handled by using a staggered
grid, with theu’s defined midway between zone boundaries so that first derivatives
are centered on the mesh points. You can solve such problems using similar
techniques to those described above if you use the alternative form of the cosine
transform, equation (12.3.23).

Cyclic Reduction

Evidently the FFT method works only when the original PDE has constant
coefficients, and boundaries that coincide with the coordinate lines. An alternative
algorithm, which can be used on somewhat more general equations, is calledcyclic
reduction (CR).

We illustrate cyclic reduction on the equation

∂2u

∂x2
+

∂2u

∂y2
+ b(y)

∂u

∂y
+ c(y)u = g(x, y) (19.4.28)

This form arises very often in practice from the Helmholtz or Poisson equations in
polar, cylindrical, or spherical coordinate systems. More general separable equations
are treated in[1].

19.4 Fourier and Cyclic Reduction Methods 853

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The finite-difference form of equation (19.4.28) can be written as a set of
vector equations

uj−1 + T · uj + uj+1 = gj∆
2 (19.4.29)

Here the indexj comes from differencing in thex-direction, while they-differencing
(denoted by the indexl previously) has been left in vector form. The matrixT
has the form

T = B − 21 (19.4.30)

where the21comes from thex-differencing and the matrixB from they-differencing.
The matrixB, and henceT, is tridiagonal with variable coefficients.

The CR method is derived by writing down three successive equations like
(19.4.29):

uj−2 + T · uj−1 + uj = gj−1∆
2

uj−1 + T · uj + uj+1 = gj∆
2

uj + T · uj+1 + uj+2 = gj+1∆
2

(19.4.31)

Matrix-multiplying the middle equation by−T and then adding the three equations,
we get

uj−2 + T(1) · uj + uj+2 = g(1)
j ∆2 (19.4.32)

This is an equation of the same form as (19.4.29), with

T(1) = 21− T2

g(1)
j = ∆2(gj−1 − T · gj + gj+1)

(19.4.33)

After one level of CR, we have reduced the number of equations by a factor of
two. Since the resulting equations are of the same form as the original equation, we
can repeat the process. Taking the number of mesh points to be a power of 2 for
simplicity, we finally end up with a single equation for the central line of variables:

T(f) · uJ/2 = ∆2g(f)
J/2 − u0 − uJ (19.4.34)

Here we have movedu0 and uJ to the right-hand side because they areknown
boundary values. Equation (19.4.34) can be solved foruJ/2 by the standard
tridiagonal algorithm. The two equations at levelf − 1 involveuJ/4 andu3J/4. The
equation foruJ/4 involvesu0 anduJ/2, both of which are known, and hence can be
solved by the usual tridiagonal routine. A similar result holds true at every stage,
so we end up solvingJ − 1 tridiagonal systems.

In practice, equations (19.4.33) should be rewritten to avoid numerical instabil-
ity. For these and other practical details, refer to[2].

854 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FACR Method

The bestway to solve equations of the form (19.4.28), including the constant
coefficient problem(19.0.3), is acombination of Fourier analysis and cyclic reduction,
the FACR method[3-6]. If at therth stage of CR we Fourier analyze the equations of
the form (19.4.32) alongy, that is, with respect to the suppressed vector index, we
will have a tridiagonal system in thex-direction for eachy-Fourier mode:

ûk
j−2r + λ

(r)
k ûk

j + ûk
j+2r = ∆2g

(r)k
j (19.4.35)

Hereλ
(r)
k is the eigenvalue ofT(r) corresponding to thekth Fourier mode. For

the equation (19.0.3), equation (19.4.5) shows thatλ
(r)
k will involve terms like

cos(2πk/L)− 2 raised to a power. Solve the tridiagonal systems forûk
j at the levels

j = 2r, 2 × 2r, 4 × 2r, ..., J − 2r. Fourier synthesize to get they-values on these
x-lines. Then fill in the intermediatex-lines as in the original CR algorithm.

The trick is to choose the number of levels of CR so as to minimize the total
number of arithmetic operations. One can show that for a typical case of a128×128
mesh, the optimal level isr = 2; asymptotically,r → log2(log2 J).

A rough estimate of running times for these algorithms for equation (19.0.3)
is as follows: The FFT method (in bothx andy) and the CR method are roughly
comparable. FACR withr = 0 (that is, FFT in one dimension and solve the
tridiagonal equations by the usual algorithm in the other dimension) gives about a
factor of two gain in speed. The optimal FACR withr = 2 gives another factor
of two gain in speed.

CITED REFERENCES AND FURTHER READING:

Swartzrauber, P.N. 1977, SIAM Review, vol. 19, pp. 490–501. [1]

Buzbee, B.L, Golub, G.H., and Nielson, C.W. 1970, SIAM Journal on Numerical Analysis, vol. 7,
pp. 627–656; see also op. cit. vol. 11, pp. 753–763. [2]

Hockney, R.W. 1965, Journal of the Association for Computing Machinery, vol. 12, pp. 95–113. [3]

Hockney, R.W. 1970, in Methods of Computational Physics, vol. 9 (New York: Academic Press),
pp. 135–211. [4]

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6. [5]

Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314–329. [6]

19.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in§19.0, relaxation methods involve splitting the sparse
matrix that arises from finite differencing and then iterating until a solution is found.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the elliptic equation

Lu = ρ (19.5.1)

854 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FACR Method

The bestway to solve equations of the form (19.4.28), including the constant
coefficient problem(19.0.3), is acombination of Fourier analysis and cyclic reduction,
the FACR method[3-6]. If at therth stage of CR we Fourier analyze the equations of
the form (19.4.32) alongy, that is, with respect to the suppressed vector index, we
will have a tridiagonal system in thex-direction for eachy-Fourier mode:

ûk
j−2r + λ

(r)
k ûk

j + ûk
j+2r = ∆2g

(r)k
j (19.4.35)

Hereλ
(r)
k is the eigenvalue ofT(r) corresponding to thekth Fourier mode. For

the equation (19.0.3), equation (19.4.5) shows thatλ
(r)
k will involve terms like

cos(2πk/L)− 2 raised to a power. Solve the tridiagonal systems forûk
j at the levels

j = 2r, 2 × 2r, 4 × 2r, ..., J − 2r. Fourier synthesize to get they-values on these
x-lines. Then fill in the intermediatex-lines as in the original CR algorithm.

The trick is to choose the number of levels of CR so as to minimize the total
number of arithmetic operations. One can show that for a typical case of a128×128
mesh, the optimal level isr = 2; asymptotically,r → log2(log2 J).

A rough estimate of running times for these algorithms for equation (19.0.3)
is as follows: The FFT method (in bothx andy) and the CR method are roughly
comparable. FACR withr = 0 (that is, FFT in one dimension and solve the
tridiagonal equations by the usual algorithm in the other dimension) gives about a
factor of two gain in speed. The optimal FACR withr = 2 gives another factor
of two gain in speed.

CITED REFERENCES AND FURTHER READING:

Swartzrauber, P.N. 1977, SIAM Review, vol. 19, pp. 490–501. [1]

Buzbee, B.L, Golub, G.H., and Nielson, C.W. 1970, SIAM Journal on Numerical Analysis, vol. 7,
pp. 627–656; see also op. cit. vol. 11, pp. 753–763. [2]

Hockney, R.W. 1965, Journal of the Association for Computing Machinery, vol. 12, pp. 95–113. [3]

Hockney, R.W. 1970, in Methods of Computational Physics, vol. 9 (New York: Academic Press),
pp. 135–211. [4]

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6. [5]

Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314–329. [6]

19.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in§19.0, relaxation methods involve splitting the sparse
matrix that arises from finite differencing and then iterating until a solution is found.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the elliptic equation

Lu = ρ (19.5.1)

19.5 Relaxation Methods for Boundary Value Problems 855

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

whereL represents some elliptic operator andρ is the source term. Rewrite the
equation as a diffusion equation,

∂u

∂t
= Lu− ρ (19.5.2)

An initial distribution u relaxes to an equilibrium solution ast → ∞. This
equilibrium has all time derivatives vanishing. Therefore it is the solution of the
original ellipticproblem (19.5.1). We see that all the machinery of§19.2, on diffusive
initial value equations, can be brought to bear on the solution of boundary value
problems by relaxation methods.

Let us apply this idea to our model problem (19.0.3). The diffusion equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− ρ (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

un+1
j,l = un

j,l +
∆t

∆2

(
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1 − 4un
j,l

)
− ρj,l∆t (19.5.4)

Recall from (19.2.6) that FTCS differencing is stable in one spatial dimension only if
∆t/∆2 ≤ 1

2 . In two dimensions this becomes∆t/∆2 ≤ 1
4 . Suppose we try to take

the largest possible timestep, and set∆t = ∆2/4. Then equation (19.5.4) becomes

un+1
j,l =

1

4

(
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1

)
−

∆2

4
ρj,l (19.5.5)

Thus the algorithm consists of using the average ofu at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the
last century, calledJacobi’s method(not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are always
compared with it.

Another classical method is theGauss-Seidelmethod, which turns out to be
important in multigrid methods (§19.6). Here we make use of updated values ofu on
the right-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementingj for fixed l, we have

un+1
j,l =

1

4

(
un
j+1,l + un+1

j−1,l + un
j,l+1 + un+1

j,l−1

)
−

∆2

4
ρj,l (19.5.6)

This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and callu “x,” to conform to standard matrix
notation. To solve

A · x = b (19.5.7)

856 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

we can consider splittingA as

A = L + D + U (19.5.8)

whereD is the diagonal part ofA, L is the lower triangle ofA with zeros on the
diagonal, andU is the upper triangle ofA with zeros on the diagonal.

In the Jacobi method we write for therth step of iteration

D · x(r) = −(L + U) · x(r−1) + b (19.5.9)

For our model problem (19.5.5),D is simply the identity matrix. The Jacobi method
converges for matricesA that are “diagonally dominant” in a sense that can be
made mathematically precise. For matrices arising from finite differencing, this
condition is usually met.

What is the rate of convergence of the Jacobi method? A detailed analysis is
beyond our scope, but here is some of the flavor: The matrix−D−1 · (L + U) is
the iteration matrixwhich, apart from an additive term, maps one set ofx’s into the
next. The iteration matrix has eigenvalues, each one of which reflects thefactor by
which the amplitude of a particular eigenmode of undesired residual is suppressed
during one iteration. Evidently those factors had better all have modulus< 1 for
the relaxation to work at all! The rate of convergence of the method is set by the
rate for the slowest-decaying eigenmode, i.e., the factor with largest modulus. The
modulus of this largest factor, therefore lying between 0 and 1, is called thespectral
radius of the relaxation operator, denotedρs.

The number of iterationsr required to reduce the overall error by a factor
10−p is thus estimated by

r ≈
p ln 10

(− ln ρs)
(19.5.10)

In general, the spectral radiusρs goes asymptotically to the value1 as the grid
sizeJ is increased, so that more iterations are required. For any given equation,
grid geometry,and boundary condition, the spectral radius can, in principle, be
computed analytically. For example, for equation (19.5.5) on aJ × J grid with
Dirichlet boundary conditions on all four sides, the asymptotic formula for large
J turns out to be

ρs ≃ 1 −
π2

2J2
(19.5.11)

The number of iterationsr required to reduce the error by a factor of10−p is thus

r ≃
2pJ2 ln 10

π2
≃

1

2
pJ2 (19.5.12)

In other words, the number of iterations is proportional to the number of mesh points,
J2. Since100 × 100 and larger problems are common, it is clear that the Jacobi
method is only of theoretical interest.

19.5 Relaxation Methods for Boundary Value Problems 857

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The Gauss-Seidel method, equation (19.5.6), corresponds to the matrix de-
composition

(L + D) · x(r) = −U · x(r−1) + b (19.5.13)

The fact thatL is on the left-hand side of the equation follows from the updating
in place, as you can easily check if you write out (19.5.13) in components. One
can show[1-3] that the spectral radius is just the square of the spectral radius of the
Jacobi method. For our model problem, therefore,

ρs ≃ 1 −
π2

J2
(19.5.14)

r ≃
pJ2 ln 10

π2
≃

1

4
pJ2 (19.5.15)

The factor of two improvement in the number of iterations over the Jacobi method
still leaves the method impractical.

Successive Overrelaxation (SOR)

We get a better algorithm — one that was the standard algorithm until the 1970s
— if we make anovercorrectionto the value ofx(r) at therth stage of Gauss-Seidel
iteration, thus anticipating future corrections. Solve (19.5.13) forx(r), add and
subtractx(r−1) on the right-hand side, and hence write the Gauss-Seidel method as

x(r) = x(r−1) − (L + D)−1 · [(L + D + U) · x(r−1) − b] (19.5.16)

The term in square brackets is just the residual vectorξ(r−1), so

x(r) = x(r−1) − (L + D)−1 · ξ(r−1) (19.5.17)

Now overcorrect, defining

x(r) = x(r−1) − ω(L + D)−1 · ξ(r−1) (19.5.18)

Hereω is called theoverrelaxation parameter, and the method is calledsuccessive
overrelaxation(SOR).

The following theorems can be proved[1-3]:
• The method is convergent only for0 < ω < 2. If 0 < ω < 1, we speak

of underrelaxation.
• Under certain mathematical restrictions generally satisfied by matrices

arising from finite differencing, only overrelaxation (1 < ω < 2) can give
faster convergence than the Gauss-Seidel method.

• If ρJacobi is the spectral radius of the Jacobi iteration (so that the square
of it is the spectral radius of the Gauss-Seidel iteration), then theoptimal
choice forω is given by

ω =
2

1 +
√

1 − ρ2
Jacobi

(19.5.19)

858 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• For this optimal choice, the spectral radius for SOR is

ρSOR =

(
ρJacobi

1 +
√

1 − ρ2
Jacobi

)2

(19.5.20)

As an application of the above results, consider our model problem for which
ρJacobi is given by equation (19.5.11). Then equations (19.5.19) and (19.5.20) give

ω ≃
2

1 + π/J
(19.5.21)

ρSOR ≃ 1 −
2π

J
for large J (19.5.22)

Equation (19.5.10) gives for the number of iterations to reduce the initial error by
a factor of 10−p,

r ≃
pJ ln 10

2π
≃

1

3
pJ (19.5.23)

Comparing with equation (19.5.12) or (19.5.15), we see that optimal SOR requires
of orderJ iterations, as opposed to of orderJ2. SinceJ is typically 100 or larger,
this makes a tremendous difference! Equation (19.5.23) leads to the mnemonic
that 3-figure accuracy (p = 3) requires a number of iterations equal to the number
of mesh points along a side of the grid. For 6-figure accuracy, we require about
twice as many iterations.

How do we chooseω for a problem for which the answer is not known
analytically? That is just the weak point of SOR! The advantages of SOR obtain
only in a fairly narrow window around the correct value ofω. It is better to takeω
slightly too large, rather than slightly too small, but best to get it right.

One way to chooseω is to map your problem approximately onto a known
problem, replacing the coefficients in the equation by average values. Note, however,
that the known problem must have the same grid size and boundary conditions as the
actual problem. We give for reference purposes the value ofρJacobi for our model
problem on a rectangularJ × L grid, allowing for the possibility that∆x 6= ∆y:

ρJacobi =

cos
π

J
+

(
∆x

∆y

)2

cos
π

L

1 +

(
∆x

∆y

)2 (19.5.24)

Equation (19.5.24) holds for homogeneous Dirichlet or Neumann boundary condi-
tions. For periodic boundary conditions, make the replacementπ → 2π.

A second way, which is especially useful if you plan to solve many similar
elliptic equationseach time with slightly different coefficients, is to determine the
optimum valueω empirically on the first equation and then use that value for the
remaining equations. Various automated schemes for doing this and for “seeking
out” the best values ofω are described in the literature.

While the matrix notation introduced earlier is useful for theoretical analyses,
for practical implementation of the SOR algorithm we need explicit formulas.

19.5 Relaxation Methods for Boundary Value Problems 859

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Consider a general second-order elliptic equation inx andy, finite differenced on
a square as for our model equation. Corresponding toeach row of the matrixA
is an equation of the form

aj,luj+1,l + bj,luj−1,l + cj,luj,l+1 + dj,luj,l−1 + ej,luj,l = fj,l (19.5.25)

For our model equation, we hada = b = c = d = 1, e = −4. The quantity
f is proportional to the source term. The iterative procedure is defined by solving
(19.5.25) foruj,l:

u*j,l =
1

ej,l
(fj,l − aj,luj+1,l − bj,luj−1,l − cj,luj,l+1 − dj,luj,l−1) (19.5.26)

Then unew
j,l is a weighted average

unew
j,l = ωu*j,l + (1 − ω)uold

j,l (19.5.27)

We calculate it as follows: The residual at any stage is

ξj,l = aj,luj+1,l + bj,luj−1,l + cj,luj,l+1 + dj,luj,l−1 + ej,luj,l − fj,l (19.5.28)

and the SOR algorithm (19.5.18) or (19.5.27) is

unew
j,l = uold

j,l − ω
ξj,l
ej,l

(19.5.29)

This formulation is very easy to program, and the norm of the residual vectorξj,l
can be used as a criterion for terminating the iteration.

Another practical point concerns the order in which mesh points are processed.
The obvious strategy is simply to proceed in order down the rows (or columns).
Alternatively, suppose we divide the mesh into “odd” and “even” meshes, like the
red and black squares of a checkerboard. Then equation (19.5.26) shows that the
odd points depend only on the even mesh values and vice versa. Accordingly,
we can carry out one half-sweep updating the odd points, say, and then another
half-sweep updating the even points with the new odd values. For the version of
SOR implemented below, we shall adopt odd-even ordering.

The last practical point is that in practice the asymptotic rate of convergence
in SOR is not attained until of orderJ iterations. The error often grows by a
factor of 20 before convergence sets in. A trivial modification to SOR resolves this
problem. It is based on the observation that, whileω is the optimumasymptotic
relaxation parameter, it is not necessarily a good initial choice. In SOR with
Chebyshev acceleration, one uses odd-even ordering and changesω at each half-
sweep according to the following prescription:

ω(0) = 1

ω(1/2) = 1/(1 − ρ2
Jacobi/2)

ω(n+1/2) = 1/(1 − ρ2
Jacobiω

(n)/4), n = 1/2, 1, ...,∞

ω(∞) → ωoptimal

(19.5.30)

860 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The beauty of Chebyshev acceleration is that the norm of the error always decreases
with each iteration. (This is the norm of the actual error inuj,l. The norm of
the residualξj,l need not decrease monotonically.) While the asymptotic rate of
convergence is the same as ordinary SOR, there is never any excuse for not using
Chebyshev acceleration to reduce the total number of iterations required.

Here we give a routine for SOR with Chebyshev acceleration.

SUBROUTINE sor(a,b,c,d,e,f,u,jmax,rjac)
INTEGER jmax,MAXITS
DOUBLE PRECISION rjac,a(jmax,jmax),b(jmax,jmax),

* c(jmax,jmax),d(jmax,jmax),e(jmax,jmax),
* f(jmax,jmax),u(jmax,jmax),EPS

PARAMETER (MAXITS=1000,EPS=1.d-5)
Successive overrelaxation solution of equation (19.5.25) with Chebyshev acceleration. a,
b, c, d, e, and f are input as the coefficients of the equation, each dimensioned to the
grid size JMAX × JMAX. u is input as the initial guess to the solution, usually zero, and
returns with the final value. rjac is input as the spectral radius of the Jacobi iteration,
or an estimate of it.

INTEGER ipass,j,jsw,l,lsw,n
DOUBLE PRECISION anorm,anormf,

* omega,resid Double precision is a good idea for JMAX bigger than about 25.
anormf=0.d0 Compute initial norm of residual and terminate iteration when

norm has been reduced by a factor EPS.do 12 j=2,jmax-1
do 11 l=2,jmax-1

anormf=anormf+abs(f(j,l)) Assumes initial u is zero.
enddo 11

enddo 12

omega=1.d0
do 16 n=1,MAXITS

anorm=0.d0
jsw=1
do 15 ipass=1,2 Odd-even ordering.

lsw=jsw
do 14 j=2,jmax-1

do 13 l=lsw+1,jmax-1,2
resid=a(j,l)*u(j+1,l)+b(j,l)*u(j-1,l)+

* c(j,l)*u(j,l+1)+d(j,l)*u(j,l-1)+
* e(j,l)*u(j,l)-f(j,l)

anorm=anorm+abs(resid)
u(j,l)=u(j,l)-omega*resid/e(j,l)

enddo 13

lsw=3-lsw
enddo 14

jsw=3-jsw
if(n.eq.1.and.ipass.eq.1) then

omega=1.d0/(1.d0-.5d0*rjac**2)
else

omega=1.d0/(1.d0-.25d0*rjac**2*omega)
endif

enddo 15

if(anorm.lt.EPS*anormf)return
enddo 16

pause ’MAXITS exceeded in sor’
END

The main advantage of SOR is that it is very easy to program. Its main
disadvantage is that it is still very inefficient on large problems.

19.5 Relaxation Methods for Boundary Value Problems 861

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ADI (Alternating-Direction Implicit) Method

The ADI method of§19.3 for diffusion equations can be turned into a relaxation
method for elliptic equations[1-4]. In §19.3, we discussed ADI as a method for
solving the time-dependent heat-flow equation

∂u

∂t
= ∇2u− ρ (19.5.31)

By lettingt → ∞ one also gets an iterative method for solving the elliptic equation

∇2u = ρ (19.5.32)

In either case, the operator splitting is of the form

L = Lx + Ly (19.5.33)

whereLx represents the differencing inx andLy that in y.
For example, in our model problem (19.0.6) with∆x = ∆y = ∆, we have

Lxu = 2uj,l − uj+1,l − uj−1,l

Lyu = 2uj,l − uj,l+1 − uj,l−1

(19.5.34)

More complicated operators may be similarly split, but there is some art involved.
A bad choice of splitting can lead to an algorithm that fails to converge. Usually
one tries to base the splitting on the physical nature of the problem. We know for
our model problem that an initial transient diffuses away, and we set up thex and
y splitting to mimic diffusion ineach dimension.

Having chosen a splitting, we difference the time-dependent equation (19.5.31)
implicitly in two half-steps:

un+1/2 − un

∆t/2
= −

Lxu
n+1/2 + Lyu

n

∆2
− ρ

un+1 − un+1/2

∆t/2
= −

Lxu
n+1/2 + Lyu

n+1

∆2
− ρ

(19.5.35)

(cf. equation 19.3.16). Here we have suppressed the spatial indices (j, l). In matrix
notation, equations (19.5.35) are

(Lx + r1) · un+1/2 = (r1− Ly) · un − ∆2ρ (19.5.36)

(Ly + r1) · un+1 = (r1− Lx) · un+1/2 − ∆2ρ (19.5.37)

where

r ≡
2∆2

∆t
(19.5.38)

The matrices on the left-hand sides of equations (19.5.36) and (19.5.37) are
tridiagonal (and usually positive definite), so the equations can be solved by the

862 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

standard tridiagonal algorithm. Givenun, onesolves (19.5.36) forun+1/2, substitutes
on the right-hand side of (19.5.37), and then solves forun+1. The key question
is how to choose the iteration parameterr, the analog of a choice of timestep for
an initial value problem.

As usual, the goal is to minimize the spectral radius of the iteration matrix.
Although it is beyond our scope to go into details here, it turns out that, for the
optimal choice ofr, the ADI method has the same rate of convergence as SOR.
The individual iteration steps in the ADI method are much more complicated than
in SOR, so the ADI method would appear to be inferior. This is in fact true if we
choose the same parameterr for every iteration step. However, it is possible to
choose adifferent r for each step. If this isdone optimally, then ADI is generally
more efficient than SOR. We refer you to the literature[1-4] for details.

Our reason for not fully implementing ADI here is that, in most applications,
it has been superseded by the multigrid methods described in the next section. Our
advice is to use SOR for trivial problems (e.g.,20 × 20), or for solving a larger
problem once only, where ease of programming outweighs expense of computer
time. Occasionally, the sparse matrix methods of§2.7 are useful for solving a set
of difference equations directly. For production solution of large elliptic problems,
however, multigrid is now almost always the method of choice.

CITED REFERENCES AND FURTHER READING:

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6.

Young, D.M. 1971, Iterative Solution of Large Linear Systems (New York: Academic Press). [1]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§8.3–8.6. [2]

Varga, R.S. 1962, Matrix Iterative Analysis (Englewood Cliffs, NJ: Prentice-Hall). [3]

Spanier, J. 1967, in Mathematical Methods for Digital Computers, Volume 2 (New York: Wiley),
Chapter 11. [4]

19.6 Multigrid Methods for Boundary Value
Problems

Practical multigrid methods were first introduced in the 1970s by Brandt. These
methods can solve elliptic PDEs discretized onN grid points inO(N) operations.
The “rapid” direct elliptic solvers discussed in§19.4 solve special kinds of elliptic
equations inO(N logN) operations. The numerical coefficients in these estimates
are such that multigrid methods are comparable to the rapid methods in execution
speed. Unlike the rapid methods, however, the multigrid methods can solve general
elliptic equations with nonconstant coefficients with hardly any loss in efficiency.
Even nonlinear equations can be solved with comparable speed.

Unfortunately there is not a single multigrid algorithm that solves all elliptic
problems. Rather there is a multigrid technique that provides the framework for
solving these problems. You have to adjust the various components of the algorithm
within this framework to solve your specific problem. We can only give a brief

862 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

standard tridiagonal algorithm. Givenun, onesolves (19.5.36) forun+1/2, substitutes
on the right-hand side of (19.5.37), and then solves forun+1. The key question
is how to choose the iteration parameterr, the analog of a choice of timestep for
an initial value problem.

As usual, the goal is to minimize the spectral radius of the iteration matrix.
Although it is beyond our scope to go into details here, it turns out that, for the
optimal choice ofr, the ADI method has the same rate of convergence as SOR.
The individual iteration steps in the ADI method are much more complicated than
in SOR, so the ADI method would appear to be inferior. This is in fact true if we
choose the same parameterr for every iteration step. However, it is possible to
choose adifferent r for each step. If this isdone optimally, then ADI is generally
more efficient than SOR. We refer you to the literature[1-4] for details.

Our reason for not fully implementing ADI here is that, in most applications,
it has been superseded by the multigrid methods described in the next section. Our
advice is to use SOR for trivial problems (e.g.,20 × 20), or for solving a larger
problem once only, where ease of programming outweighs expense of computer
time. Occasionally, the sparse matrix methods of§2.7 are useful for solving a set
of difference equations directly. For production solution of large elliptic problems,
however, multigrid is now almost always the method of choice.

CITED REFERENCES AND FURTHER READING:

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6.

Young, D.M. 1971, Iterative Solution of Large Linear Systems (New York: Academic Press). [1]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§8.3–8.6. [2]

Varga, R.S. 1962, Matrix Iterative Analysis (Englewood Cliffs, NJ: Prentice-Hall). [3]

Spanier, J. 1967, in Mathematical Methods for Digital Computers, Volume 2 (New York: Wiley),
Chapter 11. [4]

19.6 Multigrid Methods for Boundary Value
Problems

Practical multigrid methods were first introduced in the 1970s by Brandt. These
methods can solve elliptic PDEs discretized onN grid points inO(N) operations.
The “rapid” direct elliptic solvers discussed in§19.4 solve special kinds of elliptic
equations inO(N logN) operations. The numerical coefficients in these estimates
are such that multigrid methods are comparable to the rapid methods in execution
speed. Unlike the rapid methods, however, the multigrid methods can solve general
elliptic equations with nonconstant coefficients with hardly any loss in efficiency.
Even nonlinear equations can be solved with comparable speed.

Unfortunately there is not a single multigrid algorithm that solves all elliptic
problems. Rather there is a multigrid technique that provides the framework for
solving these problems. You have to adjust the various components of the algorithm
within this framework to solve your specific problem. We can only give a brief

19.6 Multigrid Methods for Boundary Value Problems 863

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

introduction to the subject here. In particular, we will give two sample multigrid
routines, one linear and one nonlinear. By following these prototypes and by
perusing the references[1-4], you should be able to develop routines to solve your
own problems.

There are two related, but distinct, approaches to the use of multigrid techniques.
The first, termed “the multigrid method,” is a means for speeding up the convergence
of a traditional relaxation method, as defined by you on a grid of pre-specified
fineness. In this case, you need define your problem (e.g., evaluate its source terms)
only on this grid. Other, coarser, grids defined by the method can be viewed as
temporary computational adjuncts.

The second approach, termed (perhaps confusingly) “the full multigrid (FMG)
method,” requires you to be able to define your problem on grids of various sizes
(generally by discretizing the same underlying PDE into different-sized sets of finite-
difference equations). In this approach, the method obtains successive solutions on
finer and finer grids. You can stop the solution either at a pre-specified fineness, or
you can monitor the truncation error due to the discretization, quitting only when
it is tolerably small.

In this section we will first discuss the “multigrid method,” then use the concepts
developed to introduce the FMG method. The latter algorithm is the one that we
implement in the accompanying programs.

From One-Grid, through Two-Grid, to Multigrid

The key idea of the multigrid method can be understood by considering the
simplest case of a two-grid method. Suppose we are trying to solve the linear
elliptic problem

Lu = f (19.6.1)

whereL is some linear elliptic operator andf is the source term. Discretize equation
(19.6.1) on a uniform grid with mesh sizeh. Write the resulting set of linear
algebraic equations as

Lhuh = fh (19.6.2)

Let ũh denote some approximate solution to equation (19.6.2). We will use the
symboluh to denote the exact solution to the difference equations (19.6.2). Then
the error in ũh or the correction is

vh = uh − ũh (19.6.3)

The residual or defect is

dh = Lhũh − fh (19.6.4)

(Beware: some authors define residual as minus the defect, and there is not universal
agreement about which of these two quantities 19.6.4 defines.) SinceLh is linear,
the error satisfies

Lhvh = −dh (19.6.5)

864 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

At this point we need to make an approximation toLh in order to findvh. The
classical iteration methods, such as Jacobi or Gauss-Seidel, do this by finding, at
each stage, an approximate solution of the equation

L̂hv̂h = −dh (19.6.6)

whereL̂h is a “simpler” operator thanLh. For example,̂Lh is the diagonal part of
Lh for Jacobi iteration, or the lower triangle for Gauss-Seidel iteration. The next
approximation is generated by

ũnew
h = ũh + v̂h (19.6.7)

Now consider, as an alternative, a completely different type of approximation
for Lh, one in which we “coarsify” rather than “simplify.” That is, we form some
appropriate approximationLH of Lh on a coarser grid with mesh sizeH (we will
always takeH = 2h, but other choices are possible). The residual equation (19.6.5)
is now approximated by

LHvH = −dH (19.6.8)

SinceLH has smaller dimension, this equation will be easier to solve than equation
(19.6.5). To define the defectdH on the coarse grid, we need arestriction operator
R that restrictsdh to the coarse grid:

dH = Rdh (19.6.9)

The restriction operator is also called thefine-to-coarse operatoror the injection
operator. Once we have a solutioñvH to equation (19.6.8), we need aprolongation
operatorP that prolongates or interpolates the correction to the fine grid:

ṽh = P ṽH (19.6.10)

The prolongation operator is also called thecoarse-to-fine operatoror the inter-
polation operator. Both R andP are chosen to be linear operators. Finally the
approximationũh can be updated:

ũnew
h = ũh + ṽh (19.6.11)

One step of thiscoarse-grid correction schemeis thus:

Coarse-Grid Correction

• Compute the defect on the fine grid from (19.6.4).
• Restrict the defect by (19.6.9).
• Solve (19.6.8) exactly on the coarse grid for the correction.
• Interpolate the correction to the fine grid by (19.6.10).

19.6 Multigrid Methods for Boundary Value Problems 865

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• Compute the next approximation by (19.6.11).

Let’s contrast the advantages and disadvantages of relaxation and the coarse-grid
correction scheme. Consider the errorvh expanded into a discrete Fourier series. Call
the components in the lower half of the frequency spectrum thesmooth components
and the high-frequency components thenonsmooth components. We have seen that
relaxation becomes very slowly convergent in the limith → 0, i.e., when there are a
large number of mesh points. The reason turns out to be that the smooth components
are only slightly reduced in amplitude on each iteration. However, manyrelaxation
methods reduce the amplitude of the nonsmooth components by large factors on
each iteration: They aregoodsmoothing operators.

For the two-grid iteration, on the other hand, components of the error with
wavelengths<∼ 2H are not even representable on the coarse grid and so cannot be
reduced to zero on this grid. But it is exactly these high-frequency components that
can be reduced by relaxation on the fine grid! This leads us to combine the ideas
of relaxation and coarse-grid correction:

Two-Grid Iteration

• Pre-smoothing: Computēuh by applyingν1 ≥ 0 steps of a relaxation
method toũh.

• Coarse-grid correction: As above, usingūh to give ūnew
h .

• Post-smoothing: Computẽunew
h by applyingν2 ≥ 0 steps of the relaxation

method toūnew
h .

It is only a short step from the above two-grid method to a multigrid method.
Instead of solving the coarse-grid defect equation (19.6.8) exactly, we can get
an approximate solution of it by introducing an even coarser grid and using the
two-grid iteration method. If the convergence factor of the two-grid method is
small enough, we will need only a few steps of this iteration to get a good enough
approximate solution. We denote the number of such iterations byγ. Obviously
we can apply this idea recursively down to some coarsest grid. There the solution
is found easily, for example by direct matrix inversion or by iterating the relaxation
scheme to convergence.

One iteration of a multigrid method, from finest grid to coarser grids and back
to finest grid again, is called acycle. The exact structure of a cycle depends on
the value ofγ, the number of two-grid iterations at each intermediate stage. The
caseγ = 1 is called a V-cycle, whileγ = 2 is called a W-cycle (see Figure 19.6.1).
These are the most important cases in practice.

Note that once more than two grids are involved, the pre-smoothing steps after
the first one on the finest grid need an initial approximation for the errorv. This
should be taken to be zero.

Smoothing, Restriction, and Prolongation Operators

The most popular smoothing method, and the one you should try first, is
Gauss-Seidel, since it usually leads to a good convergence rate. If we order the mesh
points from 1 toN , then the Gauss-Seidel scheme is

ui = −
(N∑

j=1

j 6=i

Lijuj − fi

) 1

Lii
i = 1, . . . , N (19.6.12)

866 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

E

γ = 2γ = 1

2-grid

3-grid

4-gridS

S

S

S

S

S

E

S

S

S S

E

S

S

S

E

S

S S

E

S

S

S

S

E

S S

E

S

S

S

S

E

S

S S

E

S S

S

Figure 19.6.1. Structure of multigrid cycles. S denotes smoothing,while E denotes exact solution
on the coarsest grid. Each descending line\ denotes restriction (R) and each ascending line/ denotes
prolongation (P). The finest grid is at the top level of each diagram. For the V-cycles (γ = 1) the E
step is replaced by one 2-grid iteration each time the number of grid levels is increased by one. Forthe
W-cycles (γ = 2), each E step gets replaced by two 2-grid iterations.

where new values ofu are used on the right-hand side as they become available. The
exact form of the Gauss-Seidel method depends on the ordering chosen for the mesh
points. For typical second-order elliptic equations like our model problem equation
(19.0.3), as differenced in equation (19.0.8), it is usually best to use red-black
ordering, making one pass through the mesh updating the “even” points (like the red
squares of a checkerboard) and another pass updating the “odd” points (the black
squares). When quantities are more strongly coupled along one dimension than
another, one should relax a whole line along that dimension simultaneously. Line
relaxation for nearest-neighbor coupling involves solving a tridiagonal system, and
so is still efficient. Relaxing odd and even lines on successive passes is called zebra
relaxation and is usually preferred over simple line relaxation.

Note that SOR shouldnot be used as a smoothing operator. The overrelaxation
destroys the high-frequency smoothing that is so crucial for the multigrid method.

A succint notation for the prolongation and restriction operators is to give their
symbol. The symbol ofP is found by consideringvH to be 1 at some mesh point
(x, y), zero elsewhere, and then asking for the values ofPvH . The most popular
prolongation operator is simple bilinear interpolation. It gives nonzero values at
the 9 points(x, y), (x + h, y), . . . , (x− h, y − h), where the values are1, 1

2
, . . . , 1

4
.

19.6 Multigrid Methods for Boundary Value Problems 867

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Its symbol is therefore

1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4

 (19.6.13)

The symbol ofR is defined by consideringvh to be defined everywhere on the
fine grid, and then asking what isRvh at (x, y) as a linear combination of these
values. The simplest possible choice forR is straight injection, which means simply
filling each coarse-grid point with the value from the corresponding fine-grid point.
Its symbol is “[1].” However, difficulties can arise in practice with this choice. It
turns out that a safe choice forR is to make it the adjoint operator toP. To define the
adjoint, define the scalar product of two grid functionsuh andvh for mesh sizeh as

〈uh|vh〉h ≡ h2
∑

x,y

uh(x, y)vh(x, y) (19.6.14)

Then the adjoint ofP, denotedP†, is defined by

〈uH |P†vh〉H = 〈PuH |vh〉h (19.6.15)

Now takeP to be bilinear interpolation,and chooseuH = 1 at(x, y), zero elsewhere.
SetP† = R in (19.6.15) andH = 2h. You will find that

(Rvh)(x,y) = 1
4vh(x, y) + 1

8vh(x + h, y) + 1
16vh(x + h, y + h) + · · · (19.6.16)

so that the symbol ofR is

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 (19.6.17)

Note the simple rule: The symbol ofR is 1
4 the transpose of the matrix defining the

symbol ofP, equation (19.6.13). This rule is general wheneverR = P† andH = 2h.
The particular choice ofR in (19.6.17) is calledfull weighting. Another popular

choice for R is half weighting, “halfway” between full weighting and straight
injection. Its symbol is

0 1
8 0

1
8

1
2

1
8

0 1
8 0

 (19.6.18)

A similar notation can be used to describe the difference operatorLh. For
example, the standard differencing of the model problem, equation (19.0.6), is
represented by thefive-point difference star

Lh =
1

h2

0 1 0
1 −4 1
0 1 0

 (19.6.19)

868 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

If you are confronted with a new problem and you are not sure whatP andR
choices are likely to work well, here is a safe rule: Supposemp is the order of the
interpolationP (i.e., it interpolates polynomials of degreemp − 1 exactly). Suppose
mr is the order ofR, and thatR is the adjoint of someP (not necessarily theP you
intend to use). Then ifm is the order of the differential operatorLh, you should
satisfy the inequalitymp + mr > m. For example, bilinear interpolation and its
adjoint, full weighting, for Poisson’s equation satisfymp + mr = 4 > m = 2.

Of course theP andR operators should enforce the boundary conditions for
your problem. The easiest way to do this is to rewrite the difference equation to
have homogeneous boundary conditions by modifying the source term if necessary
(cf. §19.4). Enforcing homogeneous boundary conditions simply requires theP
operator to produce zeros at the appropriate boundary points. The corresponding
R is then found byR = P†.

Full Multigrid Algorithm

So far we have described multigrid as an iterative scheme, where one starts
with some initial guess on the finest grid and carries out enough cycles (V-cycles,
W-cycles,. . .) to achieve convergence. This is the simplest way to use multigrid:
Simply apply enough cycles until some appropriate convergence criterion is met.
However, efficiency can be improved by using theFull Multigrid Algorithm (FMG),
also known asnested iteration.

Instead of starting with an arbitrary approximation on the finest grid (e.g.,
uh = 0), the first approximation is obtained by interpolating from a coarse-grid
solution:

uh = PuH (19.6.20)

The coarse-grid solution itself is found by a similar FMG process from even coarser
grids. At the coarsest level, you start with the exact solution. Rather than proceed as
in Figure 19.6.1, then, FMG gets to its solution by a series of increasingly tall “N’s,”
each taller one probing a finer grid (see Figure 19.6.2).

Note thatP in (19.6.20) need not be the sameP used in the multigrid cycles.
It should be at least of the same order as the discretizationLh, but sometimes a
higher-order operator leads to greater efficiency.

It turns out that you usually need one or at most two multigrid cycles ateach
level before proceeding down to the next finer grid. While there is theoretical
guidance on the required number of cycles (e.g.,[2]), you can easily determine it
empirically. Fix the finest level and study the solution values as you increase the
number of cycles per level. The asymptotic value of the solution is the exact solution
of the difference equations. The difference between this exact solution and the
solution for a small number of cycles is the iteration error. Now fix the number of
cycles to be large, and vary the number of levels, i.e., the smallest value of h used. In
this way you can estimate the truncation error for a givenh. In your final production
code, there is no point in using more cycles than you need to get the iteration error
down to the size of the truncation error.

The simple multigrid iteration (cycle) needs the right-hand sidef only at the
finest level. FMG needsf at all levels. If the boundary conditions are homogeneous,

19.6 Multigrid Methods for Boundary Value Problems 869

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

4-grid
ncycle = 1

4-grid
ncycle = 2

SS

S

S

S

SS

S

S S

S

EE

S

S

S

S

S

EEE

S S S S

S

EE

S

S

S

E

S

S

S

S

S

E

E

S

S

S

S

E

S

S

S

S

S

E

S S

S

EE

S

S

S

S

S

S

S

S

E

Figure 19.6.2. Structure of cycles for the full multigrid (FMG) method. This method starts on the
coarsest grid, interpolates, and then refines (by “V’s”), the solution onto gridsof increasing fineness.

you can usefH = Rfh. This prescription is not always safe for inhomogeneous
boundary conditions. In that case it is better to discretizef on each coarse grid.

Note that the FMG algorithm produces the solution on all levels. It can therefore
be combined with techniques like Richardson extrapolation.

We now give a routinemglin that implements the Full Multigrid Algorithm
for a linear equation, the model problem (19.0.6). It uses red-black Gauss-Seidel
as the smoothing operator, bilinear interpolation forP, and half-weighting forR.
To change the routine to handle another linear problem, all you need do is modify
the subroutinesrelax, resid, andslvsml appropriately. A feature of the routine
is the dynamical allocation of storage for variables defined on the various grids.
The subroutinemaloc emulates theC function malloc. It allows you to write
subroutines that operate on two-dimensional arrays in the usual way, but to allocate
storage for these arrays in the calling program “on the fly” out of a single long
one-dimensional array.

SUBROUTINE mglin(u,n,ncycle)
INTEGER n,ncycle,NPRE,NPOST,NG,MEMLEN
DOUBLE PRECISION u(n,n)
PARAMETER (NG=5,MEMLEN=13*2**(2*NG)/3+14*2**NG+8*NG-100/3)
PARAMETER (NPRE=1,NPOST=1)

C USES addint,copy,fill0,interp,maloc,relax,resid,rstrct,slvsml
Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem
(19.0.6). On input u(1:n,1:n) contains the right-hand side ρ, while on output it returns
the solution. The dimension n is related to the number of grid levels used in the solution,
NG below, by n = 2**NG+ 1. ncycle is the number of V-cycles to be used at each level.
Parameters: NG is the number of grid levels used; MEMLEN is the maximum amount of
memory that can be allocated by calls to maloc; NPRE and NPOST are the number of
relaxation sweeps before and after the coarse-grid correction is computed.

INTEGER j,jcycle,jj,jpost,jpre,mem,nf,ngrid,nn,ires(NG),
* irho(NG),irhs(NG),iu(NG),maloc

DOUBLE PRECISION z

870 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

COMMON /memory/ z(MEMLEN),mem Storage for grid functions is allocated by maloc
from array z.mem=0

nn=n/2+1
ngrid=NG-1
irho(ngrid)=maloc(nn**2) Allocate storage for r.h.s. on grid NG− 1,
call rstrct(z(irho(ngrid)),u,nn) and fill it by restricting from the fine grid.

1 if (nn.gt.3) then Similarly allocate storage and fill r.h.s. on all
coarse grids.nn=nn/2+1

ngrid=ngrid-1
irho(ngrid)=maloc(nn**2)
call rstrct(z(irho(ngrid)),z(irho(ngrid+1)),nn)

goto 1
endif
nn=3
iu(1)=maloc(nn**2)
irhs(1)=maloc(nn**2)
call slvsml(z(iu(1)),z(irho(1))) Initial solution on coarsest grid.
ngrid=NG
do 16 j=2,ngrid Nested iteration loop.

nn=2*nn-1
iu(j)=maloc(nn**2)
irhs(j)=maloc(nn**2)
ires(j)=maloc(nn**2)
call interp(z(iu(j)),z(iu(j-1)),nn) Interpolate from coarse grid to next finer grid.
if (j.ne.ngrid) then

call copy(z(irhs(j)),z(irho(j)),nn) Set up r.h.s.
else

call copy(z(irhs(j)),u,nn)
endif
do 15 jcycle=1,ncycle V-cycle loop.
nf=nn
do 12 jj=j,2,-1 Downward stoke of the V.

do 11 jpre=1,NPRE Pre-smoothing.
call relax(z(iu(jj)),z(irhs(jj)),nf)
enddo 11

call resid(z(ires(jj)),z(iu(jj)),z(irhs(jj)),nf)
nf=nf/2+1
call rstrct(z(irhs(jj-1)),z(ires(jj)),nf)

Restriction of the residual is the next r.h.s.
call fill0(z(iu(jj-1)),nf) Zero for initial guess in next relaxation.

enddo 12

call slvsml(z(iu(1)),z(irhs(1))) Bottom of V: solve on coarsest grid.
nf=3
do 14 jj=2,j Upward stroke of V.

nf=2*nf-1
call addint(z(iu(jj)),z(iu(jj-1)),z(ires(jj)),nf)

Use res for temporary storage inside addint.
do 13 jpost=1,NPOST Post-smoothing.
call relax(z(iu(jj)),z(irhs(jj)),nf)
enddo 13

enddo 14

enddo 15

enddo 16

call copy(u,z(iu(ngrid)),n) Return solution in u.
return
END

SUBROUTINE rstrct(uc,uf,nc)
INTEGER nc
DOUBLE PRECISION uc(nc,nc),uf(2*nc-1,2*nc-1)

Half-weighting restriction. nc is the coarse-grid dimension. The fine-grid solution is input
in uf(1:2*nc-1,1:2*nc-1), the coarse-grid solution is returned in uc(1:nc,1:nc).

INTEGER ic,if,jc,jf

19.6 Multigrid Methods for Boundary Value Problems 871

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 12 jc=2,nc-1 Interior points.
jf=2*jc-1
do 11 ic=2,nc-1

if=2*ic-1
uc(ic,jc)=.5d0*uf(if,jf)+.125d0*(uf(if+1,jf)+

* uf(if-1,jf)+uf(if,jf+1)+uf(if,jf-1))
enddo 11

enddo 12

do 13 ic=1,nc Boundary points.
uc(ic,1)=uf(2*ic-1,1)
uc(ic,nc)=uf(2*ic-1,2*nc-1)

enddo 13

do 14 jc=1,nc
uc(1,jc)=uf(1,2*jc-1)
uc(nc,jc)=uf(2*nc-1,2*jc-1)

enddo 14

return
END

SUBROUTINE interp(uf,uc,nf)
INTEGER nf
DOUBLE PRECISION uc(nf/2+1,nf/2+1),uf(nf,nf)
INTEGER ic,if,jc,jf,nc

Coarse-to-fine prolongation by bilinear interpolation. nf is the fine-grid dimension. The
coarse-grid solution is input as uc(1:nc,1:nc), where nc = nf/2 + 1. The fine-grid
solution is returned in uf(1:nf,1:nf).

nc=nf/2+1
do 12 jc=1,nc Do elements that are copies.

jf=2*jc-1
do 11 ic=1,nc

uf(2*ic-1,jf)=uc(ic,jc)
enddo 11

enddo 12

do 14 jf=1,nf,2 Do odd-numbered columns, interpolating ver-
tically.do 13 if=2,nf-1,2

uf(if,jf)=.5d0*(uf(if+1,jf)+uf(if-1,jf))
enddo 13

enddo 14

do 16 jf=2,nf-1,2 Do even-numbered columns, interpolating hor-
izontally.do 15 if=1,nf

uf(if,jf)=.5d0*(uf(if,jf+1)+uf(if,jf-1))
enddo 15

enddo 16

return
END

SUBROUTINE addint(uf,uc,res,nf)
INTEGER nf
DOUBLE PRECISION res(nf,nf),uc(nf/2+1,nf/2+1),uf(nf,nf)

C USES interp
Does coarse-to-fine interpolation and adds result to uf. nf is the fine-grid dimension. The
coarse-grid solution is input as uc(1:nc,1:nc), where nc = nf/2 + 1. The fine-grid
solution is returned in uf(1:nf,1:nf). res(1:nf,1:nf) is used for temporary storage.

INTEGER i,j
call interp(res,uc,nf)
do 12 j=1,nf

do 11 i=1,nf
uf(i,j)=uf(i,j)+res(i,j)

enddo 11

enddo 12

return
END

872 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE slvsml(u,rhs)
DOUBLE PRECISION rhs(3,3),u(3,3)

C USES fill0
Solution of the model problem on the coarsest grid, where h = 1

2
. The right-hand side is

input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).
DOUBLE PRECISION h
call fill0(u,3)
h=.5d0
u(2,2)=-h*h*rhs(2,2)/4.d0
return
END

SUBROUTINE relax(u,rhs,n)
INTEGER n
DOUBLE PRECISION rhs(n,n),u(n,n)

Red-black Gauss-Seidel relaxation for model problem. The current value of the solution
u(1:n,1:n) is updated, using the right-hand side function rhs(1:n,1:n).

INTEGER i,ipass,isw,j,jsw
DOUBLE PRECISION h,h2
h=1.d0/(n-1)
h2=h*h
jsw=1
do 13 ipass=1,2 Red and black sweeps.

isw=jsw
do 12 j=2,n-1

do 11 i=isw+1,n-1,2 Gauss-Seidel formula.
u(i,j)=0.25d0*(u(i+1,j)+u(i-1,j)+u(i,j+1)

* +u(i,j-1)-h2*rhs(i,j))
enddo 11

isw=3-isw
enddo 12

jsw=3-jsw
enddo 13

return
END

SUBROUTINE resid(res,u,rhs,n)
INTEGER n
DOUBLE PRECISION res(n,n),rhs(n,n),u(n,n)

Returns minusthe residual for the model problem. Input quantities are u(1:n,1:n) and
rhs(1:n,1:n), while res(1:n,1:n) is returned.

INTEGER i,j
DOUBLE PRECISION h,h2i
h=1.d0/(n-1)
h2i=1.d0/(h*h)
do 12 j=2,n-1 Interior points.

do 11 i=2,n-1
res(i,j)=-h2i*(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)-

* 4.d0*u(i,j))+rhs(i,j)
enddo 11

enddo 12

do 13 i=1,n Boundary points.
res(i,1)=0.d0
res(i,n)=0.d0
res(1,i)=0.d0
res(n,i)=0.d0

enddo 13

return
END

19.6 Multigrid Methods for Boundary Value Problems 873

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE copy(aout,ain,n)
INTEGER n
DOUBLE PRECISION ain(n,n),aout(n,n)

Copies ain(1:n,1:n) to aout(1:n,1:n).
INTEGER i,j
do 12 i=1,n

do 11 j=1,n
aout(j,i)=ain(j,i)

enddo 11

enddo 12

return
END

SUBROUTINE fill0(u,n)
INTEGER n
DOUBLE PRECISION u(n,n)

Fills u(1:n,1:n) with zeros.
INTEGER i,j
do 12 j=1,n

do 11 i=1,n
u(i,j)=0.d0

enddo 11

enddo 12

return
END

FUNCTION maloc(len)
INTEGER maloc,len,NG,MEMLEN
PARAMETER (NG=5,MEMLEN=13*2**(2*NG)/3+14*2**NG+8*NG-100/3) for mglin

C PARAMETER (NG=5,MEMLEN=17*2**(2*NG)/3+18*2**NG+10*NG-86/3) for mgfas, N.B.!
INTEGER mem
DOUBLE PRECISION z
COMMON /memory/ z(MEMLEN),mem

Dynamical storage allocation. Returns integer pointer to the starting position for len array
elements in the array z. The preceding array element is filled with the value of len, and
the variable mem is updated to point to the last element of z that has been used.

if (mem+len+1.gt.MEMLEN) pause ’insufficient memory in maloc’
z(mem+1)=len
maloc=mem+2
mem=mem+len+1
return
END

The routinemglin is written for clarity, not maximum efficiency, so that it is
easy to modify. Several simple changes will speed up the execution time:

• The defectdh vanishes identically at all black mesh points after a red-black
Gauss-Seidel step. ThusdH = Rdh for half-weighting reduces to simply
copying half the defect from the fine grid to the corresponding coarse-grid
point. The calls toresid followed by rstrct in the first part of the
V-cycle can be replaced by a routine that loops only over the coarse grid,
filling it with half the defect.

• Similarly, the quantitỹunew
h = ũh + P ṽH need not be computed at red

mesh points, since they will immediately be redefined in the subsequent
Gauss-Seidel sweep. This means thataddint need only loop over black
points.

874 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

• You can speed uprelax in several ways. First, you can have a special
form when the initial guess is zero, and omit the routinefill0. Next, you
can storeh2fh on the various grids and save a multiplication. Finally, it
is possible to save an addition in the Gauss-Seidel formula by rewriting
it with intermediate variables.

• On typical problems,mglin with ncycle = 1 will return a solution with
the iteration error bigger than the truncation error for the given size ofh.
To knock the error down to the size of the truncation error, you have to
setncycle = 2 or, more cheaply,npre = 2. A more efficient way turns
out to be to use a higher-orderP in (19.6.20) than the linear interpolation
used in the V-cycle.

Implementing all the above features typically gives up to a factor of two
improvement in execution time and is certainly worthwhile in a production code.

Nonlinear Multigrid: The FAS Algorithm

Now turn to solving a nonlinear elliptic equation, which we write symbolically as

L(u) = 0 (19.6.21)

Any explicit source term has been moved to the left-hand side. Suppose equation (19.6.21)
is suitably discretized:

Lh(uh) = 0 (19.6.22)

We will see below that in the multigrid algorithm we will have to consider equationswhere a
nonzero right-hand side is generated during the course of the solution:

Lh(uh) = fh (19.6.23)

One way of solving nonlinear problems with multigrid is to use Newton’s method, which
produces linear equations for the correction term at each iteration. We can then use linear
multigrid to solve these equations. A great strength of the multigrid idea, however, is that it
can be applieddirectly to nonlinear problems. All we need is a suitablenonlinearrelaxation
method to smooth the errors, plus a procedure for approximating corrections on coarser grids.
This direct approach is Brandt’s Full Approximation Storage Algorithm (FAS). No nonlinear
equations need be solved, except perhaps on the coarsest grid.

To develop the nonlinear algorithm, suppose we have a relaxation procedure that can
smooth the residual vector as we did in the linear case. Then we can seek a smooth correction
vh to solve (19.6.23):

Lh(ũh + vh) = fh (19.6.24)

To find vh, note that

Lh(ũh + vh) −Lh(ũh) = fh − Lh(ũh)

= −dh
(19.6.25)

The right-hand side is smooth after a few nonlinear relaxation sweeps. Thus we can transfer
the left-hand side to a coarse grid:

LH(uH) −LH(Rũh) = −Rdh (19.6.26)

that is, we solve

LH(uH) = LH(Rũh) −Rdh (19.6.27)

on the coarse grid. (This is how nonzero right-hand sides appear.) Suppose the approximate
solution is ũH . Then the coarse-grid correction is

ṽH = ũH −Rũh (19.6.28)

19.6 Multigrid Methods for Boundary Value Problems 875

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and
ũnew
h = ũh + P(ũH −Rũh) (19.6.29)

Note thatPR 6= 1 in general, sõunew
h 6= PũH . This is a key point: In equation (19.6.29) the

interpolation error comes only from the correction, not from the full solutionũH .
Equation (19.6.27) shows that one is solving for the full approximationuH , not just the

error as in the linear algorithm. This is the origin of the name FAS.
The FAS multigrid algorithm thus looks very similar to the linear multigrid algorithm.

The only differences are that both the defectdh and the relaxed approximationuh have to be
restricted to the coarse grid, where now it is equation (19.6.27) that is solved by recursive
invocation of the algorithm. However, instead of implementing the algorithm this way, we
will first describe the so-calleddual viewpoint, which leads to a powerful alternative way
of looking at the multigrid idea.

The dual viewpoint considers thelocal truncation error, defined as

τ ≡ Lh(u) − fh (19.6.30)

whereu is the exact solution of the oiginal continuum equation. If we rewrite this as

Lh(u) = fh + τ (19.6.31)

we see thatτ can be regarded as the correction tofh so that the solution of the fine-grid
equation will be the exact solutionu.

Now consider therelative truncation errorτh, which is defined on theH-grid relative
to the h-grid:

τh ≡ LH (Ruh) −RLh(uh) (19.6.32)

SinceLh(uh) = fh, this can be rewritten as

LH(uH) = fH + τh (19.6.33)

In other words, we can think ofτh as the correction tofH that makes the solution of the
coarse-grid equation equal to the fine-grid solution. Of course we cannot computeτh, but we
do have an approximation to it from using̃uh in equation (19.6.32):

τh ≃ τ̃h ≡ LH (Rũh) −RLh(ũh) (19.6.34)

Replacingτh by τ̃h in equation (19.6.33) gives

LH(uH) = LH(Rũh) −Rdh (19.6.35)

which is just the coarse-grid equation (19.6.27)!
Thus we see that there are two complementary viewpoints for the relation between

coarse and fine grids:

• Coarse grids are used to accelerate the convergence of the smooth components
of the fine-grid residuals.

• Fine grids are used to compute correction terms to the coarse-grid equations,
yielding fine-grid accuracy on the coarse grids.

One benefit of this new viewpoint is that it allows us to derive a natural stopping criterion
for a multigrid iteration. Normally the criterion would be

‖dh‖ ≤ ǫ (19.6.36)

and the question is how to chooseǫ. There is clearly no benefit in iterating beyond the
point when the remaining error is dominated by the local truncation errorτ . The computable
quantity isτ̃h. What is the relation betweenτ andτ̃h? For the typical case of a second-order
accurate differencing scheme,

τ = Lh(u) −Lh(uh) = h2τ2(x, y) + · · · (19.6.37)

876 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Assume the solution satisfiesuh = u + h2u2(x, y) + · · · . Then, assumingR is of high
enough order that we can neglect its effect, equation (19.6.32) gives

τh ≃ LH(u + h2u2) − Lh(u + h2u2)

= LH(u) −Lh(u) + h2[L′

H(u2) −L′

h(u2)] + · · ·

= (H2 − h2)τ2 + O(h4)

(19.6.38)

For the usual case ofH = 2h we therefore have

τ ≃ 1

3
τh ≃ 1

3
τ̃h (19.6.39)

The stopping criterion is thus equation (19.6.36) with

ǫ = α‖τ̃h‖, α ∼ 1

3
(19.6.40)

We have one remaining task before implementing our nonlinear multigrid algorithm:
choosing a nonlinear relaxation scheme. Once again, your first choice should probably be
the nonlinear Gauss-Seidel scheme. If the discretized equation (19.6.23) is written with
some choice of ordering as

Li(u1, . . . , uN) = fi, i = 1, . . . , N (19.6.41)

then the nonlinear Gauss-Seidel schemes solves

Li(u1, . . . , ui−1, u
new
i , ui+1, . . . , uN) = fi (19.6.42)

forunew
i . As usualnewu’s replace oldu’s as soon as they have been computed. Often equation

(19.6.42) is linear inunew
i , since the nonlinear terms are discretized by means of its neighbors.

If this is not the case, we replace equation (19.6.42) by one step of a Newton iteration:

unew
i = uold

i −
Li(u

old
i) − fi

∂Li(uold
i)/∂ui

(19.6.43)

For example, consider the simple nonlinear equation

∇2u + u2 = ρ (19.6.44)

In two-dimensional notation, we have

L(ui,j) = (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j)/h
2 + u2

i,j − ρi,j = 0 (19.6.45)

Since

∂L

∂ui,j

= −4/h2 + 2ui,j (19.6.46)

the Newton Gauss-Seidel iteration is

unew
i,j = ui,j −

L(ui,j)

−4/h2 + 2ui,j

(19.6.47)

Here is a routinemgfas that solves equation (19.6.44) using the Full Multigrid Algorithm
and the FAS scheme. Restriction and prolongation are done as inmglin. We have included
the convergencetest based on equation (19.6.40). A successfulmultigrid solution of a problem
should aim to satisfy this condition with the maximum number of V-cycles,maxcyc, equal
to 1 or 2. The routinemgfas uses the same subroutinescopy, interp, maloc, andrstrct
asmglin, but with a larger storage requirementMEMLEN in maloc (be sure to change the
PARAMETER statement in that routine, as indicated by the commented line).

19.6 Multigrid Methods for Boundary Value Problems 877

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE mgfas(u,n,maxcyc)
INTEGER maxcyc,n,NPRE,NPOST,NG,MEMLEN
DOUBLE PRECISION u(n,n),ALPHA
PARAMETER (NG=5,MEMLEN=17*2**(2*NG)/3+18*2**NG+10*NG-86/3)
PARAMETER (NPRE=1,NPOST=1,ALPHA=.33d0)

C USES anorm2,copy,interp,lop,maloc,matadd,matsub,relax2,rstrct,slvsm2
Full Multigrid Algorithm for FAS solution of nonlinear elliptic equation, here equation
(19.6.44). On input u(1:n,1:n) contains the right-hand side ρ, while on output it re-
turns the solution. The dimension n is related to the number of grid levels used in the
solution, NG below, by n = 2**NG + 1. maxcyc is the maximum number of V-cycles to
be used at each level.
Parameters: NG is the number of grid levels used; MEMLEN is the maximum amount of
memory that can be allocated by calls to maloc; NPRE and NPOST are the number of
relaxation sweeps before and after the coarse-grid correction is computed; ALPHA relates
the estimated truncation error to the norm of the residual.

INTEGER j,jcycle,jj,jm1,jpost,jpre,mem,nf,ngrid,nn,irho(NG),
* irhs(NG),itau(NG),itemp(NG),iu(NG),maloc

DOUBLE PRECISION res,trerr,z,anorm2
COMMON /memory/ z(MEMLEN),mem Storage for grid functions is allocated by maloc

from array z.mem=0
nn=n/2+1
ngrid=NG-1
irho(ngrid)=maloc(nn**2) Allocate storage for r.h.s. on grid NG− 1,
call rstrct(z(irho(ngrid)),u,nn) and fill it by restricting from the fine grid.

1 if (nn.gt.3) then Similarly allocate storage and fill r.h.s. on all
coarse grids.nn=nn/2+1

ngrid=ngrid-1
irho(ngrid)=maloc(nn**2)
call rstrct(z(irho(ngrid)),z(irho(ngrid+1)),nn)

goto 1
endif
nn=3
iu(1)=maloc(nn**2)
irhs(1)=maloc(nn**2)
itau(1)=maloc(nn**2)
itemp(1)=maloc(nn**2)
call slvsm2(z(iu(1)),z(irho(1))) Initial solution on coarsest grid.
ngrid=NG
do 16 j=2,ngrid Nested iteration loop.

nn=2*nn-1
iu(j)=maloc(nn**2)
irhs(j)=maloc(nn**2)
itau(j)=maloc(nn**2)
itemp(j)=maloc(nn**2)
call interp(z(iu(j)),z(iu(j-1)),nn) Interpolate from coarse grid to next finer grid.
if (j.ne.ngrid) then

call copy(z(irhs(j)),z(irho(j)),nn) Set up r.h.s.
else

call copy(z(irhs(j)),u,nn)
endif
do 15 jcycle=1,maxcyc V-cycle loop.
nf=nn
do 12 jj=j,2,-1 Downward stoke of the V.

do 11 jpre=1,NPRE Pre-smoothing.
call relax2(z(iu(jj)),z(irhs(jj)),nf)
enddo 11

call lop(z(itemp(jj)),z(iu(jj)),nf) Lh(ũh).
nf=nf/2+1
jm1=jj-1
call rstrct(z(itemp(jm1)),z(itemp(jj)),nf) RLh(ũh).
call rstrct(z(iu(jm1)),z(iu(jj)),nf) Rũh.
call lop(z(itau(jm1)),z(iu(jm1)),nf) LH(Rũh) stored temporarily in τ̃h.
call matsub(z(itau(jm1)),z(itemp(jm1)),z(itau(jm1)),nf) Form τ̃h.
if(jj.eq.j)trerr=ALPHA*anorm2(z(itau(jm1)),nf) Estimate truncation error τ .

878 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call rstrct(z(irhs(jm1)),z(irhs(jj)),nf) fH .
call matadd(z(irhs(jm1)),z(itau(jm1)),z(irhs(jm1)),nf) fH + τ̃h.

enddo 12

call slvsm2(z(iu(1)),z(irhs(1))) Bottom of V: Solve on coarsest grid.
nf=3
do 14 jj=2,j Upward stroke of V.

jm1=jj-1
call rstrct(z(itemp(jm1)),z(iu(jj)),nf) Rũh.
call matsub(z(iu(jm1)),z(itemp(jm1)),z(itemp(jm1)),nf) ũH − Rũh.
nf=2*nf-1
call interp(z(itau(jj)),z(itemp(jm1)),nf) P(ũH−Rũh) stored in τ̃h.
call matadd(z(iu(jj)),z(itau(jj)),z(iu(jj)),nf) Form ũnew

h .
do 13 jpost=1,NPOST Post-smoothing.
call relax2(z(iu(jj)),z(irhs(jj)),nf)
enddo 13

enddo 14

call lop(z(itemp(j)),z(iu(j)),nf) Form residual ‖dh‖.
call matsub(z(itemp(j)),z(irhs(j)),z(itemp(j)),nf)
res=anorm2(z(itemp(j)),nf)
if(res.lt.trerr)goto 2 No more V-cycles needed if residual small

enough.enddo 15

2 continue
enddo 16

call copy(u,z(iu(ngrid)),n) Return solution in u.
return
END

SUBROUTINE relax2(u,rhs,n)
INTEGER n
DOUBLE PRECISION rhs(n,n),u(n,n)

Red-black Gauss-Seidel relaxation for equation (19.6.44). The current value of the solution
u(1:n,1:n) is updated, using the right-hand side function rhs(1:n,1:n).

INTEGER i,ipass,isw,j,jsw
DOUBLE PRECISION foh2,h,h2i,res
h=1.d0/(n-1)
h2i=1.d0/(h*h)
foh2=-4.d0*h2i
jsw=1
do 13 ipass=1,2 Red and black sweeps.

isw=jsw
do 12 j=2,n-1

do 11 i=isw+1,n-1,2
res=h2i*(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)-

* 4.d0*u(i,j))+u(i,j)**2-rhs(i,j)
u(i,j)=u(i,j)-res/(foh2+2.d0*u(i,j)) Newton Gauss-Seidel formula.

enddo 11

isw=3-isw
enddo 12

jsw=3-jsw
enddo 13

return
END

SUBROUTINE slvsm2(u,rhs)
DOUBLE PRECISION rhs(3,3),u(3,3)

C USES fill0
Solution of equation (19.6.44) on the coarsest grid, where h = 1

2
. The right-hand side is

input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).
DOUBLE PRECISION disc,fact,h
call fill0(u,3)
h=.5d0
fact=2.d0/h**2
disc=sqrt(fact**2+rhs(2,2))

19.6 Multigrid Methods for Boundary Value Problems 879

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

u(2,2)=-rhs(2,2)/(fact+disc)
return
END

SUBROUTINE lop(out,u,n)
INTEGER n
DOUBLE PRECISION out(n,n),u(n,n)

Given u(1:n,1:n), returns Lh(ũh) for equation (19.6.44) in out(1:n,1:n).
INTEGER i,j
DOUBLE PRECISION h,h2i
h=1.d0/(n-1)
h2i=1.d0/(h*h)
do 12 j=2,n-1 Interior points.

do 11 i=2,n-1
out(i,j)=h2i*(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)-

* 4.d0*u(i,j))+u(i,j)**2
enddo 11

enddo 12

do 13 i=1,n Boundary points.
out(i,1)=0.d0
out(i,n)=0.d0
out(1,i)=0.d0
out(n,i)=0.d0

enddo 13

return
END

SUBROUTINE matadd(a,b,c,n)
INTEGER n
DOUBLE PRECISION a(n,n),b(n,n),c(n,n)

Adds a(1:n,1:n) to b(1:n,1:n) and returns result in c(1:n,1:n).
INTEGER i,j
do 12 j=1,n

do 11 i=1,n
c(i,j)=a(i,j)+b(i,j)

enddo 11

enddo 12

return
END

SUBROUTINE matsub(a,b,c,n)
INTEGER n
DOUBLE PRECISION a(n,n),b(n,n),c(n,n)

Subtracts b(1:n,1:n) from a(1:n,1:n) and returns result in c(1:n,1:n).
INTEGER i,j
do 12 j=1,n

do 11 i=1,n
c(i,j)=a(i,j)-b(i,j)

enddo 11

enddo 12

return
END

DOUBLE PRECISION FUNCTION anorm2(a,n)
INTEGER n
DOUBLE PRECISION a(n,n)

Returns the Euclidean norm of the matrix a(1:n,1:n).
INTEGER i,j
DOUBLE PRECISION sum
sum=0.d0
do 12 j=1,n

do 11 i=1,n

880 Chapter 19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

sum=sum+a(i,j)**2
enddo 11

enddo 12

anorm2=sqrt(sum)/n
return
END

CITED REFERENCES AND FURTHER READING:

Brandt, A. 1977, Mathematics of Computation, vol. 31, pp. 333–390. [1]

Hackbusch, W. 1985, Multi-Grid Methods and Applications (New York: Springer-Verlag). [2]

Stuben, K., and Trottenberg, U. 1982, in Multigrid Methods, W. Hackbusch and U. Trottenberg,
eds. (Springer Lecture Notes in Mathematics No. 960) (New York: Springer-Verlag), pp. 1–
176. [3]

Brandt, A. 1982, in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds. (Springer Lecture
Notes in Mathematics No. 960) (New York: Springer-Verlag). [4]

Baker, L. 1991, More C Tools for Scientists and Engineers (New York: McGraw-Hill).

Briggs, W.L. 1987, A Multigrid Tutorial (Philadelphia: S.I.A.M.).

Jespersen, D. 1984, Multrigrid Methods for Partial Differential Equations (Washington: Mathe-
matical Association of America).

McCormick, S.F. (ed.) 1988, Multigrid Methods: Theory, Applications, and Supercomputing (New
York: Marcel Dekker).

Hackbusch, W., and Trottenberg, U. (eds.) 1991, Multigrid Methods III (Boston: Birkhauser).

Wesseling, P. 1992, An Introduction to Multigrid Methods (New York: Wiley).

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
Chapter 20. Less-Numerical

Algorithms

20.0 Introduction

You can stop reading now. You are done withNumerical Recipes, as such. This
final chapter is an idiosyncratic collection of “less-numerical recipes” which, for one
reason or another, we have decided to include between the covers of an otherwise
more-numerically oriented book. Authors of computer science texts, we’ve noticed,
like to throw in a token numerical subject (usually quite a dull one — quadrature,
for example). We find that we are not free of the reverse tendency.

Our selection of material is not completely arbitrary. One topic, Gray codes, was
already used in the construction of quasi-random sequences (§7.7), and here needs
only some additional explication. Two other topics, on diagnosing a computer’s
floating-point parameters, and on arbitrary precision arithmetic, give additional
insight into the machinery behind the casual assumption that computers are useful
for doing things with numbers (as opposed to bits or characters). The latter of these
topics also shows a very different use for Chapter 12’s fast Fourier transform.

The three other topics (checksums, Huffman and arithmetic coding) involve
different aspects of data coding, compression, and validation. If you handle a large
amount of data — numerical data, even — then a passing familiarity with these
subjects might at some point come in handy. In§13.6, for example, we already
encountered a good use for Huffman coding.

But again, you don’t have to read this chapter. (And you should learn about
quadrature from Chapters 4 and 16, not from a computer science text!)

20.1 Diagnosing Machine Parameters

A convenient fiction is that a computer’s floating-point arithmetic is“accurate
enough.” If you believe this fiction, then numerical analysis becomes a very clean
subject. Roundoff error disappears from view; many finite algorithms become
“exact”; only docile truncation error (§1.2) stands between you and a perfect
calculation. Sounds rather naive, doesn’t it?

Yes, it is naive. Notwithstanding, it is a fiction necessarily adopted throughout
most of this book. To do a good job of answering the question of how roundoff error

881

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
Chapter 20. Less-Numerical

Algorithms

20.0 Introduction

You can stop reading now. You are done withNumerical Recipes, as such. This
final chapter is an idiosyncratic collection of “less-numerical recipes” which, for one
reason or another, we have decided to include between the covers of an otherwise
more-numerically oriented book. Authors of computer science texts, we’ve noticed,
like to throw in a token numerical subject (usually quite a dull one — quadrature,
for example). We find that we are not free of the reverse tendency.

Our selection of material is not completely arbitrary. One topic, Gray codes, was
already used in the construction of quasi-random sequences (§7.7), and here needs
only some additional explication. Two other topics, on diagnosing a computer’s
floating-point parameters, and on arbitrary precision arithmetic, give additional
insight into the machinery behind the casual assumption that computers are useful
for doing things with numbers (as opposed to bits or characters). The latter of these
topics also shows a very different use for Chapter 12’s fast Fourier transform.

The three other topics (checksums, Huffman and arithmetic coding) involve
different aspects of data coding, compression, and validation. If you handle a large
amount of data — numerical data, even — then a passing familiarity with these
subjects might at some point come in handy. In§13.6, for example, we already
encountered a good use for Huffman coding.

But again, you don’t have to read this chapter. (And you should learn about
quadrature from Chapters 4 and 16, not from a computer science text!)

20.1 Diagnosing Machine Parameters

A convenient fiction is that a computer’s floating-point arithmetic is“accurate
enough.” If you believe this fiction, then numerical analysis becomes a very clean
subject. Roundoff error disappears from view; many finite algorithms become
“exact”; only docile truncation error (§1.2) stands between you and a perfect
calculation. Sounds rather naive, doesn’t it?

Yes, it is naive. Notwithstanding, it is a fiction necessarily adopted throughout
most of this book. To do a good job of answering the question of how roundoff error

881

882 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

propagates, or can be bounded, for every algorithm that we have discussed would be
impractical. In fact, it would not be possible: Rigorous analysis of many practical
algorithms has never been made, by us or anyone.

Proper numerical analysts cringe when they hear a user say, “I was getting
roundoff errors with single precision, so I switched to double.” The actual meaning
is, “for this particular algorithm, and my particular data, double precisionseemed
able to restore my erroneous belief in the ‘convenient fiction’.” We admit that most
of the mentions of precision or roundoff inNumerical Recipesare only slightly more
quantitative in character. That comes along with our trying to be “practical.”

It is important to know what the limitations of your machine’s floating-point
arithmetic actually are — the more so when your treatment of floating-point roundoff
error is going to be intuitive, experimental, or casual. Methods for determining
useful floating-point parameters experimentally have been developed by Cody[1],
Malcolm [2], and others, and are embodied in the routinemachar, below, which
follows Cody’s implementation.

All of machar’s arguments are returned values. Here is what they mean:
• ibeta (calledB in §1.2) is the radix in which numbers are represented,

almost always 2, but occasionally 16, or even 10.
• it is the number of base-ibeta digits in the floating-point mantissaM

(see Figure 1.2.1).
• machep is the exponent of the smallest (most negative) power ofibeta

that, added to1.0, gives something different from1.0.
• eps is the floating-point numberibetamachep, loosely referred to as the

“floating-point precision.”
• negep is the exponent of the smallest power ofibeta that, subtracted

from 1.0, gives something different from1.0.
• epsneg is ibetanegep, another way of defining floating-point precision.

Not infrequentlyepsneg is 0.5 timeseps; occasionallyeps andepsneg
are equal.

• iexp is the number of bits in the exponent (including its sign or bias).
• minexp is the smallest (most negative) power ofibeta consistent with

there being no leading zeros in the mantissa.
• xmin is the floating-point numberibetaminexp, generally the smallest

(in magnitude) useable floating value.
• maxexp is the smallest (positive) power ofibeta that causes overflow.
• xmax is(1−epsneg)×ibetamaxexp, generally the largest (in magnitude)

useable floating value.
• irnd returns a code in the range0 . . .5, giving information on what kind of

rounding is done in addition, and on how underflow is handled. See below.
• ngrd is the number of “guard digits” used when truncating the product of

two mantissas to fit the representation.
There is a lot of subtlety in a program likemachar, whose purpose is to ferret

out machine properties that are supposed to be transparent to the user. Further, it must
do so avoiding error conditions, like overflow and underflow, that might interrupt
its execution. In some cases the program is able to do this only by recognizing
certain characteristics of “standard” representations. For example, it recognizes
the IEEE standard representation[3] by its rounding behavior, and assumes certain
features of its exponent representation as a consequence. We refer you to[1] and

20.1 Diagnosing Machine Parameters 883

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Sample Results Returned bymachar

typical IEEE-compliant machine DEC VAX

precision single double single

ibeta 2 2 2

it 24 53 24

machep −23 −52 −24

eps 1.19× 10−7 2.22× 10−16 5.96× 10−8

negep −24 −53 −24

epsneg 5.96× 10−8 1.11× 10−16 5.96× 10−8

iexp 8 11 8

minexp −126 −1022 −128

xmin 1.18× 10−38 2.23× 10−308 2.94× 10−39

maxexp 128 1024 127

xmax 3.40× 1038 1.79× 10308 1.70× 1038

irnd 5 5 1

ngrd 0 0 0

references therein for details. Be aware thatmachar can give incorrect results on
some nonstandard machines.

The parameterirnd needs some additional explanation. In the IEEE standard,
bit patterns correspond to exact, “representable” numbers. The specified method
for rounding an addition is to add two representable numbers “exactly,” and then
round the sum to the closest representable number. If the sum is precisely halfway
between two representable numbers, it should be rounded to the even one (low-order
bit zero). The same behavior should hold for all the other arithmetic operations,
that is, they should be done in a manner equivalent to infinite precision, and then
rounded to the closest representable number.

If irnd returns 2 or 5, then your computer is compliant with this standard. If it
returns 1 or 4, then it is doing some kind of rounding, but not the IEEE standard. If
irnd returns 0 or 3, then it is truncating the result, not rounding it — not desirable.

The other issue addressed byirnd concerns underflow. If a floating value is
less thanxmin, many computers underflow its value to zero. Valuesirnd = 0, 1,
or 2 indicate this behavior. The IEEE standard specifies a more graceful kind of
underflow: As a value becomes smaller thanxmin, its exponent is frozen at the
smallest allowed value, while its mantissa is decreased, acquiring leadingzeros and
“gracefully” losing precision. This is indicated byirnd = 3, 4, or 5.

884 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE machar(ibeta,it,irnd,ngrd,machep,negep,iexp,minexp,
* maxexp,eps,epsneg,xmin,xmax)

INTEGER ibeta,iexp,irnd,it,machep,maxexp,minexp,negep,ngrd
REAL eps,epsneg,xmax,xmin

Determines and returns machine-specific parameters affecting floating-point arithmetic. Re-
turned values include ibeta, the floating-point radix; it, the number of base-ibeta digits
in the floating-point mantissa; eps, the smallest positive number that, added to 1.0, is not
equal to 1.0; epsneg, the smallest positive number that, subtracted from 1.0, is not equal to
1.0; xmin, the smallest representable positive number; and xmax, the largest representable
positive number. See text for description of other returned parameters.

INTEGER i,itemp,iz,j,k,mx,nxres
REAL a,b,beta,betah,betain,one,t,temp,temp1,tempa,two,y,z

* ,zero,CONV
CONV(i)=float(i) Change to dble(i), and change REAL declaration above to

DOUBLE PRECISION to find double precision parameters.one=CONV(1)
two=one+one
zero=one-one
a=one Determine ibeta and beta by the method of M. Malcolm.

1 continue
a=a+a
temp=a+one
temp1=temp-a

if (temp1-one.eq.zero) goto 1
b=one

2 continue
b=b+b
temp=a+b
itemp=int(temp-a)

if (itemp.eq.0) goto 2
ibeta=itemp
beta=CONV(ibeta)
it=0 Determine it and irnd.
b=one

3 continue
it=it+1
b=b*beta
temp=b+one
temp1=temp-b

if (temp1-one.eq.zero) goto 3
irnd=0
betah=beta/two
temp=a+betah
if (temp-a.ne.zero) irnd=1
tempa=a+beta
temp=tempa+betah
if ((irnd.eq.0).and.(temp-tempa.ne.zero)) irnd=2
negep=it+3 Determine negep and epsneg.
betain=one/beta
a=one
do 11 i=1, negep

a=a*betain
enddo 11

b=a
4 continue

temp=one-a
if (temp-one.ne.zero) goto 5
a=a*beta
negep=negep-1

goto 4
5 negep=-negep

epsneg=a
machep=-it-3 Determine machep and eps.
a=b

6 continue

20.1 Diagnosing Machine Parameters 885

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

temp=one+a
if (temp-one.ne.zero) goto 7
a=a*beta
machep=machep+1

goto 6
7 eps=a

ngrd=0 Determine ngrd.
temp=one+eps
if ((irnd.eq.0).and.(temp*one-one.ne.zero)) ngrd=1
i=0 Determine iexp.
k=1
z=betain
t=one+eps
nxres=0

8 continue Loop until an underflow occurs, then exit.
y=z
z=y*y
a=z*one Check here for the underflow.
temp=z*t
if ((a+a.eq.zero).or.(abs(z).ge.y)) goto 9
temp1=temp*betain
if (temp1*beta.eq.z) goto 9
i=i+1
k=k+k

goto 8
9 if (ibeta.ne.10) then

iexp=i+1
mx=k+k

else For decimal machines only.
iexp=2
iz=ibeta

10 if (k.ge.iz) then
iz=iz*ibeta
iexp=iexp+1

goto 10
endif
mx=iz+iz-1

endif
20 xmin=y To determine minexp and xmin, loop until an underflow oc-

curs, then exit.y=y*betain
a=y*one Check here for the underflow.
temp=y*t
if (((a+a).ne.zero).and.(abs(y).lt.xmin)) then

k=k+1
temp1=temp*betain
if ((temp1*beta.ne.y).or.(temp.eq.y)) then

goto 20
else

nxres=3
xmin=y

endif
endif
minexp=-k Determine maxexp, xmax.
if ((mx.le.k+k-3).and.(ibeta.ne.10)) then

mx=mx+mx
iexp=iexp+1

endif
maxexp=mx+minexp
irnd=irnd+nxres Adjust irnd to reflect partial underflow.
if (irnd.ge.2) maxexp=maxexp-2 Adjust for IEEE-style machines.
i=maxexp+minexp

Adjust for machines with implicit leading bit in binary mantissa, and machines with radix
point at extreme right of mantissa.

if ((ibeta.eq.2).and.(i.eq.0)) maxexp=maxexp-1

886 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if (i.gt.20) maxexp=maxexp-1
if (a.ne.y) maxexp=maxexp-2
xmax=one-epsneg
if (xmax*one.ne.xmax) xmax=one-beta*epsneg
xmax=xmax/(beta*beta*beta*xmin)
i=maxexp+minexp+3
do 12 j=1,i

if (ibeta.eq.2) xmax=xmax+xmax
if (ibeta.ne.2) xmax=xmax*beta

enddo 12

return
END

Some typical values returned bymachar are given in the table, above. IEEE-
compliant machines referred to in the table include most UNIX workstations (SUN,
DEC, MIPS), and Apple Macintosh IIs. IBM PCs with floating co-processors
are generally IEEE-compliant, except that some compilersunderflow intermediate
results ungracefully, yieldingirnd = 2 rather than5. Notice, as in the case of a VAX
(fourth column), that representations with a “phantom” leading 1 bit in the mantissa
achieve a smallereps for the same wordlength, but cannot underflow gracefully.

CITED REFERENCES AND FURTHER READING:

Goldberg, D. 1991, ACM Computing Surveys, vol. 23, pp. 5–48.

Cody, W.J. 1988, ACM Transactions on Mathematical Software, vol. 14, pp. 303–311. [1]

Malcolm, M.A. 1972, Communications of the ACM, vol. 15, pp. 949–951. [2]

IEEE Standard for Binary Floating-Point Numbers, ANSI/IEEE Std 754–1985 (New York: IEEE,
1985). [3]

20.2 Gray Codes

A Gray code is a functionG(i) of the integersi, that for each integerN ≥ 0
is one-to-one for0 ≤ i ≤ 2N − 1, and that has the following remarkable property:
The binary representation ofG(i) andG(i+1) differ in exactly one bit. An example
of a Gray code (in fact, the most commonly used one) is the sequence 0000, 0001,
0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, and
1000, fori = 0, . . . , 15. The algorithm for generating this code is simply to form
the bitwise exclusive-or (XOR) ofi with i/2 (integer part). Think about how the
carries work when you add one to a number in binary, and you will be able to see
why this works. You will also see thatG(i) andG(i+ 1) differ in the bit position of
the rightmost zero bit ofi (prefixing a leading zero if necessary).

The spelling is “Gray,” not “gray”: The codes are named after one Frank Gray,
who first patented the idea for use in shaft encoders. A shaft encoder is a wheel with
concentric coded stripes each of which is “read” by a fixed conducting brush. The
idea is to generate a binary code describing the angle of the wheel. The obvious,
but wrong, way to build a shaft encoder is to have one stripe (the innermost, say)
conducting on half the wheel, but insulating on the other half; the next stripe is
conducting in quadrants 1 and 3; the next stripe is conducting in octants 1, 3, 5,
and 7; and so on. The brushes together then read a direct binary code for the
position of the wheel.

886 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if (i.gt.20) maxexp=maxexp-1
if (a.ne.y) maxexp=maxexp-2
xmax=one-epsneg
if (xmax*one.ne.xmax) xmax=one-beta*epsneg
xmax=xmax/(beta*beta*beta*xmin)
i=maxexp+minexp+3
do 12 j=1,i

if (ibeta.eq.2) xmax=xmax+xmax
if (ibeta.ne.2) xmax=xmax*beta

enddo 12

return
END

Some typical values returned bymachar are given in the table, above. IEEE-
compliant machines referred to in the table include most UNIX workstations (SUN,
DEC, MIPS), and Apple Macintosh IIs. IBM PCs with floating co-processors
are generally IEEE-compliant, except that some compilersunderflow intermediate
results ungracefully, yieldingirnd = 2 rather than5. Notice, as in the case of a VAX
(fourth column), that representations with a “phantom” leading 1 bit in the mantissa
achieve a smallereps for the same wordlength, but cannot underflow gracefully.

CITED REFERENCES AND FURTHER READING:

Goldberg, D. 1991, ACM Computing Surveys, vol. 23, pp. 5–48.

Cody, W.J. 1988, ACM Transactions on Mathematical Software, vol. 14, pp. 303–311. [1]

Malcolm, M.A. 1972, Communications of the ACM, vol. 15, pp. 949–951. [2]

IEEE Standard for Binary Floating-Point Numbers, ANSI/IEEE Std 754–1985 (New York: IEEE,
1985). [3]

20.2 Gray Codes

A Gray code is a functionG(i) of the integersi, that for each integerN ≥ 0
is one-to-one for0 ≤ i ≤ 2N − 1, and that has the following remarkable property:
The binary representation ofG(i) andG(i+1) differ in exactly one bit. An example
of a Gray code (in fact, the most commonly used one) is the sequence 0000, 0001,
0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, and
1000, fori = 0, . . . , 15. The algorithm for generating this code is simply to form
the bitwise exclusive-or (XOR) ofi with i/2 (integer part). Think about how the
carries work when you add one to a number in binary, and you will be able to see
why this works. You will also see thatG(i) andG(i+ 1) differ in the bit position of
the rightmost zero bit ofi (prefixing a leading zero if necessary).

The spelling is “Gray,” not “gray”: The codes are named after one Frank Gray,
who first patented the idea for use in shaft encoders. A shaft encoder is a wheel with
concentric coded stripes each of which is “read” by a fixed conducting brush. The
idea is to generate a binary code describing the angle of the wheel. The obvious,
but wrong, way to build a shaft encoder is to have one stripe (the innermost, say)
conducting on half the wheel, but insulating on the other half; the next stripe is
conducting in quadrants 1 and 3; the next stripe is conducting in octants 1, 3, 5,
and 7; and so on. The brushes together then read a direct binary code for the
position of the wheel.

20.2 Gray Codes 887

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

4

3

2

1

0

MSB

LSB

G(i)

4

3

2

1

0

i

4

3

2

1

0

MSB

LSB

i

4

3

2

1

0

G(i)

(a)

(b)

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

Figure 20.2.1. Single-bit operations for calculating the Gray codeG(i) from i (a), or the inverse (b).
LSB and MSB indicate the least and most significant bits, respectively. XOR denotes exclusive-or.

The reason this method is bad, is that there is no way to guarantee that all the
brushes will make or break contactexactlysimultaneously as the wheel turns. Going
from position 7 (0111) to 8 (1000), one might pass spuriously and transiently through
6 (0110), 14 (1110), and 10 (1010), as the different brushes make or break contact.
Use of a Gray code on the encoding stripes guarantees that there is no transient state
between 7 (0100 in the sequence above) and 8 (1100).

Of course we then need circuitry, or algorithmics, to translate fromG(i) to i.
Figure 20.2.1 (b) shows how this is done by a cascade of XOR gates. The idea is
that each output bit should be the XOR of all more significant input bits. To do
N bits of Gray code inversion requiresN − 1 steps (or gate delays) in the circuit.
(Nevertheless, this is typically very fast in circuitry.) In a register with word-wide
binary operations, we don’t have to doN consecutive operations, but onlyln2 N .
The trick is to use the associativity of XOR and group the operations hierarchically.
This involves sequential right-shifts by1, 2, 4, 8, . . . bits until the wordlength is
exhausted. Here is a piece of code for doing bothG(i) and its inverse.

888 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION igray(n,is)
INTEGER igray,is,n

For zero or positive values of is, return the Gray code of n; if is is negative, return the
inverse Gray code of n.

INTEGER idiv,ish
if (is.ge.0) then This is the easy direction!

igray=ieor(n,n/2)
else This is the more complicated direction: In hierarchical stages,

starting with a one-bit right shift, cause each bit to be
XORed with all more significant bits.

ish=-1
igray=n

1 continue
idiv=ishft(igray,ish)
igray=ieor(igray,idiv)
if(idiv.le.1.or.ish.eq.-16)return
ish=ish+ish Double the amount of shift on the next cycle.

goto 1
endif
return
END

In numerical work, Gray codes can be useful when you need to do some task
that depends intimately on the bits ofi, looping over many values ofi. Then, if there
are economies in repeating the task for values differing by only one bit, it makes
sense to do things in Gray code order rather than consecutive order. We saw an
example of this in§7.7, for the generation of quasi-random sequences.

CITED REFERENCES AND FURTHER READING:

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (New York: Cambridge University
Press), §8.02.

Knuth, D.E. Combinatorial Algorithms, vol. 4 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §7.2.1. [Unpublished. Will it be always so?]

20.3 Cyclic Redundancy and Other Checksums

When you send a sequence of bits from point A to point B, you want to know
that it will arrive without error. A common form of insurance is the “parity bit,”
attached to 7-bit ASCII characters to put them into 8-bit format. The parity bit is
chosen so as to make the total number of one-bits (versus zero-bits) either always
even (“even parity”) or always odd (“odd parity”). Anysingle biterror in a character
will thereby be detected. When errors are sufficiently rare, and do not occur closely
bunched in time, use of parity provides sufficient error detection.

Unfortunately, in real situations, a single noise “event” is likely to disrupt more
than one bit. Since the parity bit has two possible values (0 and 1), it gives, on
average, only a 50% chance of detecting an erroneous character with more than one
wrong bit. That probability, 50%, is not nearly good enough for most applications.
Most communications protocols[1] use a multibit generalization of the parity bit
called a “cyclic redundancy check” or CRC. In typical applications the CRC is16
bits long (two bytes or two characters), so that the chance of a random error going
undetected is 1 in216 = 65536. Moreover,M -bit CRCs have the mathematical
property of detectingall errors that occur inM or fewerconsecutivebits, for any

888 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION igray(n,is)
INTEGER igray,is,n

For zero or positive values of is, return the Gray code of n; if is is negative, return the
inverse Gray code of n.

INTEGER idiv,ish
if (is.ge.0) then This is the easy direction!

igray=ieor(n,n/2)
else This is the more complicated direction: In hierarchical stages,

starting with a one-bit right shift, cause each bit to be
XORed with all more significant bits.

ish=-1
igray=n

1 continue
idiv=ishft(igray,ish)
igray=ieor(igray,idiv)
if(idiv.le.1.or.ish.eq.-16)return
ish=ish+ish Double the amount of shift on the next cycle.

goto 1
endif
return
END

In numerical work, Gray codes can be useful when you need to do some task
that depends intimately on the bits ofi, looping over many values ofi. Then, if there
are economies in repeating the task for values differing by only one bit, it makes
sense to do things in Gray code order rather than consecutive order. We saw an
example of this in§7.7, for the generation of quasi-random sequences.

CITED REFERENCES AND FURTHER READING:

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (New York: Cambridge University
Press), §8.02.

Knuth, D.E. Combinatorial Algorithms, vol. 4 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §7.2.1. [Unpublished. Will it be always so?]

20.3 Cyclic Redundancy and Other Checksums

When you send a sequence of bits from point A to point B, you want to know
that it will arrive without error. A common form of insurance is the “parity bit,”
attached to 7-bit ASCII characters to put them into 8-bit format. The parity bit is
chosen so as to make the total number of one-bits (versus zero-bits) either always
even (“even parity”) or always odd (“odd parity”). Anysingle biterror in a character
will thereby be detected. When errors are sufficiently rare, and do not occur closely
bunched in time, use of parity provides sufficient error detection.

Unfortunately, in real situations, a single noise “event” is likely to disrupt more
than one bit. Since the parity bit has two possible values (0 and 1), it gives, on
average, only a 50% chance of detecting an erroneous character with more than one
wrong bit. That probability, 50%, is not nearly good enough for most applications.
Most communications protocols[1] use a multibit generalization of the parity bit
called a “cyclic redundancy check” or CRC. In typical applications the CRC is16
bits long (two bytes or two characters), so that the chance of a random error going
undetected is 1 in216 = 65536. Moreover,M -bit CRCs have the mathematical
property of detectingall errors that occur inM or fewerconsecutivebits, for any

20.3 Cyclic Redundancy and Other Checksums 889

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

length of message. (We prove this below.) Since noise in communication channels
tends to be “bursty,” with short sequences of adjacent bits getting corrupted, this
consecutive-bit property is highly desirable.

Normally CRCs lie in the province of communications software experts and
chip-level hardware designers — people with bits under their fingernails. However,
there are at least two kinds of situations where some understanding of CRCs can be
useful to the rest of us. First, we sometimes need to be able to communicate with
a lower-level piece of hardware or software that expects a valid CRC as part of its
input. For example, it can be convenient to have a program generate XMODEM
or Kermit [2] packets directly into the communications line rather than having to
store the data in a local file.

Second, in the manipulation of large quantities of (e.g., experimental) data, it
is useful to be able to tag aggregates of data (whether numbers, records, lines, or
whole files) with a statistically unique “key,” its CRC. Aggregates of any size can
then be compared for identity by comparing only their short CRC keys. Differing
keys imply nonidentical records. Identical keys imply, to high statistical certainty,
identical records. If you can’t tolerate the very small probability of being wrong, you
can do a full comparison of the records when the keys are identical. When there is a
possibility of files or data records being inadvertently or irresponsibly modified (for
example, by a computer virus), it is useful to have their prior CRCs stored externally
on a physically secure medium, like a floppy disk.

Sometimes CRCs can be used to compress data as it is recorded. If identical data
records occur frequently, one can keep sorted in memory the CRCs of previously
encountered records. A new record is archived in full if its CRC is different,
otherwise only a pointer to a previous record need be archived. In this application
one might desire a 4- or 8-byte CRC, to make the odds of mistakenly discarding
a different data record be tolerably small; or, if previous records can be randomly
accessed, a full comparison can be made to decide whether records with identical
CRCs are in fact identical.

Now let us briefly discuss the theory of CRCs. After that, we will give
implementations of various (related) CRCs that are used by the official or de facto
standard protocols[1-3] listed in the accompanying table.

The mathematics underlying CRCs is “polynomials over the integers modulo
2.” Any binary message can be thought of as a polynomial with coefficients 0 and 1.
For example, the message “1100001101” is the polynomialx9 + x8 + x3 + x2 + 1.
Since 0 and 1 are the only integers modulo 2, a power ofx in the polynomial is
either present (1) or absent (0). A polynomial over the integers modulo 2 may be
irreducible, meaning that it can’t be factored. A subset of the irreduciblepolynomials
are the “primitive” polynomials. These generate maximum length sequences when
used in shift registers, as described in§7.4. The polynomialx2 +1 is not irreducible:
x2+1 = (x+1)(x+1), so it is also not primitive. The polynomialx4+x3+x2+x+1
is irreducible, but it turns out not to be primitive. The polynomialx4 + x + 1 is
both irreducible and primitive.

An M -bit long CRC is based on a particular primitive polynomial of degree
M , called the generator polynomial. The choice of which primitive polynomial
to use is only a matter of convention. For 16-bit CRC’s, the CCITT (Comité
Consultatif International T́elégraphique et T́eléphonique) has anointed the “CCITT
polynomial,” which isx16 + x12 + x5 + 1. This polynomial is used by all of the

890 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Conventions and Test Values for Various CRC Protocols

icrc args Test Values(C2C1 in hex) Packet

Protocol jinit jrev T CatMouse987654321 Format CRC

XMODEM 0 1 1A71 E556 S1S2 . . . SNC2C1 0

X.25 255 −1 1B26 F56E S1S2 . . . SNC1C2 F0B8

(no name) 255 −1 1B26 F56E S1S2 . . . SNC1C2 0

SDLC (IBM) same as X.25

HDLC (ISO) same as X.25

CRC-CCITT 0 −1 14A1 C28D S1S2 . . . SNC1C2 0

(no name) 0 −1 14A1 C28D S1S2 . . . SNC1C2 F0B8

Kermit same as CRC-CCITT see Notes

Notes: Overbar denotes bit complement.S1 . . . SN are character data.C1 is CRC’s least
significant 8 bits,C2 is its most significant 8 bits, soCRC = 256C2 + C1 (shown
in hex). Kermit (block check level 3) sends the CRC as 3 printable ASCII characters
(sends value+32). These contain, respectively, 4 most significant bits, 6 middle bits,
6 least significant bits.

protocols listed in the table. Another common choice is the “CRC-16” polynomial
x16 + x15 + x2 + 1, which is used for EBCDIC messages in IBM’s BISYNCH[1].
A common 12-bit choice, “CRC-12,” isx12 + x11 + x3 + x+ 1. A common 32-bit
choice, “AUTODIN-II,” is x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 +
x7 +x5 +x4 +x2 +x+1. For a table of some other primitive polynomials, see§7.4.

Given the generator polynomialG of degreeM (which can be written either
in polynomial form or as a bit-string, e.g., 10001000000100001 for CCITT), here is
how you compute the CRC for a sequence of bitsS: First, multiplyS byxM , that is,
appendM zero bits to it. Second divide — by long division —G into SxM . Keep
in mind that the subtractions in the long division are done modulo 2, so that there
are never any “borrows”: Modulo 2 subtraction is the same as logical exclusive-or
(XOR). Third, ignore the quotient you get. Fourth, when you eventually get to a
remainder, it is the CRC, call itC. C will be a polynomial of degreeM − 1 or less,
otherwise you would not have finished the long division. Therefore, in bit string
form, it hasM bits, which may include leading zeros. (C might even be all zeros,
see below.) See[3] for a worked example.

If you work through the above steps in an example, you will see that most of
what you write down in the long-division tableau is superfluous. You are actually
just left-shifting sequential bits ofS, from the right, into anM -bit register. Every
time a 1 bit gets shifted off the left end of this register, you zap the register by an
XOR with theM low order bits ofG (that is, all the bits ofG except its leading
1). When a 0 bit is shifted off the left end you don’t zap the register. When the
last bit that was originally part ofS gets shifted off the left end of the register,
what remains is the CRC.

You can immediately recognize how efficiently this procedure can be imple-
mented in hardware. It requires only a shift register with a few hard-wired XOR
taps into it. That is how CRCs are computed in communications devices, by a single
chip (or small part of one). In software, the implementation is not so elegant, since

20.3 Cyclic Redundancy and Other Checksums 891

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

bit-shifting is not generally very efficient. One therefore typically finds (as in our
implementation below) table-driven routines that pre-calculate the result of a bunch
of shifts and XORs, say for each of 256 possible 8-bit inputs[4].

We can now see how the CRC gets its ability to detect all errors inM
consecutive bits. Suppose two messages,S andT , differ only within a frame ofM
bits. Then their CRCs differ by an amount that is the remainder whenG is divided
into (S−T)xM ≡ D. NowD has the form of leading zeros (which can be ignored),
followed by some 1’s in anM -bit frame, followed by trailing zeros (which are just
multiplicative factors ofx). Since factorization is unique,G cannot possibly divide
D: G is primitive of degreeM , whileD is a power ofx times a factor of (at most)
degreeM − 1. ThereforeS andT have inevitably different CRCs.

In most protocols, a transmitted block of data consists of someN data bits,
directly followed by theM bits of their CRC (or the CRC XORed with a constant,
see below). There are two equivalent ways of validating a block atthe receiving end.
Most obviously, the receiver can compute the CRC of the data bits, and compare it to
the transmitted CRC bits. Less obviously, but more elegantly, the receiver can simply
compute the CRC of the total block, withN +M bits, and verify that a result of zero
is obtained. Proof: The total block is the polynomialSxM + C (data left-shifted to
make room for the CRC bits). The definition ofC is thatSxm = QG + C, where
Q is the discarded quotient. But thenSxM + C = QG+ C + C = QG (remember
modulo 2), which is a perfect multiple ofG. It remains a multiple ofG when it gets
multiplied by an additionalxM on the receiving end, so it has a zeroCRC, q.e.d.

A couple of small variations on the basic procedure need to be mentioned[1,3]:
First, when the CRC is computed, theM -bit register need not be initialized to zero.
Initializing it to some otherM -bit value (e.g., all 1’s) in effect prefaces all blocks by
a phantom message that would have given the initialization value as its remainder.
It is advantageous to do this, since the CRC described thus far otherwise cannot
detect the addition or removal of any number of initial zero bits. (Loss of an initial
bit, or insertion of zero bits, are common “clocking errors.”) Second, one can add
(XOR) anyM -bit constantK to the CRC before it is transmitted. This constant
can either be XORed away at the receiving end, or else it just changes the expected
CRC of the whole block by a known amount, namely the remainder of dividingG
intoKxM . The constantK is frequently “all bits,” changing the CRC into its ones
complement. This has the advantage of detecting another kind of error that the CRC
would otherwise not find: deletion of an initial 1 bit in the message with spurious
insertion of a 1 bit at the end of the block.

The accompanying functionicrc implements the above CRC calculation,
including the possibility of the mentioned variations. Input to the function is the
starting address of an array of characters, and the length of that array. (In practice,
FORTRAN allows you to use the address ofany data structure;icrc will treat it as
a byte array.) Output is in both of two formats. The function value returns the
CRC as a 4-byte integer in the range 0 to 65535. The character arraycrc, of
length 2, returns the CRC as two 8-bit characters.icrc has two “switch” arguments
that specify variations in the CRC calculation. A zero or positive value ofjinit

causes the 16-bit register to have each byte initialized with the valuejinit. A
negative value ofjrev causes each input character to be interpreted as its bit-reverse
image, and a similar bit reversal to be done on the output CRC. You do not have
to understand this; just use the values ofjinit and jrev specified in the table.

892 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

(If you insist on knowing, the explanation is that serial data ports send characters
least-significant bit first(!), and many protocols shift bits into the CRC register in
exactly the order received.) The table shows how to construct a block of characters
from the input array and output CRC oficrc. You should not need to do any
additional bit-reversal outside oficrc.

The switchjinit has one additional use: When negative it causes the input
value of the arraycrc to be used as initialization of the register. Ifcrc is unmodified
since the last call toicrc, this in effect appends the current input array to that of the
previous call or calls. Use this feature, for example, to build up the CRC of a whole
file a line at a time, without keeping the whole file in memory.

At initialization, the routineicrc figures out the order in which the bytes occur
when a 4-byte character array is equivalenced to a 4-byte integer. This is not strictly
portableFORTRAN, but it should work on all machines with 32-bit word lengths.
icrc is loosely based on a more portable C function in[4], a good place to turn if
you have trouble running the program here.

Here is how to understand the operation oficrc: First look at the function
icrc1. This incorporates one input character into a 16-bit CRC register. The only
trick used is that character bits are XORed into the most significant bits, eight at a
time, instead of being fed into the least significant bit, one bit at a time, at the time
of the register shift. This works because XOR is associative and commutative — we
can feed in character bitsany time before they will determine whether to zap with
the generator polynomial. (The decimal constant 4129 has the generator’s bits in it.)

FUNCTION icrc1(crc,onech,ib1,ib2,ib3)
INTEGER icrc1,ib1,ib2,ib3

Given a remainder up to now, return the new CRC after one character is added. This routine
is functionally equivalent to icrc(,,1,-1,1), but slower. It is used by icrc to initialize
its table.

INTEGER i,ichr,ireg
CHARACTER*1 onech,crc(4),creg(4)
EQUIVALENCE (creg,ireg)
ireg=0
creg(ib1)=crc(ib1) Here is where the character is folded into the register.
creg(ib2)=char(ieor(ichar(crc(ib2)),ichar(onech)))
do 11 i=1,8 Here is where 8 one-bit shifts, and some XORs with the gen-

erator polynomial, are done.ichr=ichar(creg(ib2))
ireg=ireg+ireg
creg(ib3)=char(0)
if(ichr.gt.127)ireg=ieor(ireg,4129)

enddo 11

icrc1=ireg
return
END

Now look aticrc. There are two parts to understand, how it builds a table
when it initializes, and how it uses that table later on. Go back to thinking about
a character’s bits being shifted into the CRC register from the least significant end.
The key observation is that while 8 bits are being shifted into the register’s low
end, all the generator zapping is being determined by the bits already in the high
end. Since XOR is commutative and associative, all we need is a table of the
result of all this zapping, for each of 256 possible high-bit configurations. Then we
can play catch-up and XOR an input character into the result of a lookup into this
table. The routine makes repeated use of an equivalenced 4-byte integer and 4-byte

20.3 Cyclic Redundancy and Other Checksums 893

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

character array to get at different 8-bit chunks.The only other content toicrc is the
construction at initialization time of an 8-bit bit-reverse table from the 4-bit table
stored init, and the logic associated with doing the bit reversals. References[4-6]

give further details on table-driven CRC computations.

FUNCTION icrc(crc,bufptr,len,jinit,jrev)
INTEGER icrc,jinit,jrev,len
CHARACTER*1 bufptr(*),crc(2)

C USES icrc1
Computes a 16-bit Cyclic Redundancy Check for an array bufptr of length len bytes,
using any of several conventions as determined by the settings of jinit and jrev (see
accompanying table). The result is returned both as an integer icrc and as a 2-byte array
crc. If jinit is negative, then crc is used on input to initialize the remainder register, in
effect concatenating bufptr to the previous call.

INTEGER ich,init,ireg,j,icrctb(0:255),it(0:15),icrc1,ib1,ib2,ib3
CHARACTER*1 creg(4),rchr(0:255)
SAVE icrctb,rchr,init,it,ib1,ib2,ib3
EQUIVALENCE (creg,ireg) Used to get at the 4 bytes in an integer.
DATA it/0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15/, init /0/

Table of 4-bit bit-reverses, and flag for initialization.
if (init.eq.0) then Do we need to initialize tables?

init=1
ireg=256*(256*ichar(’3’)+ichar(’2’))+ichar(’1’)
do 11 j=1,4 Figure out which component of creg addresses which

byte of ireg.if (creg(j).eq.’1’) ib1=j
if (creg(j).eq.’2’) ib2=j
if (creg(j).eq.’3’) ib3=j

enddo 11

do 12 j=0,255 The two tables are: CRCs of all characters, and bit-reverses
of all characters.ireg=j*256

icrctb(j)=icrc1(creg,char(0),ib1,ib2,ib3)
ich=it(mod(j,16))*16+it(j/16)
rchr(j)=char(ich)

enddo 12

endif
if (jinit.ge.0) then Initialize the remainder register.

crc(1)=char(jinit)
crc(2)=char(jinit)

else if (jrev.lt.0) then If not initializing, do we reverse the register?
ich=ichar(crc(1))
crc(1)=rchr(ichar(crc(2)))
crc(2)=rchr(ich)

endif
do 13 j=1,len Main loop over the characters in the array.

ich=ichar(bufptr(j))
if(jrev.lt.0)ich=ichar(rchr(ich))
ireg=icrctb(ieor(ich,ichar(crc(2))))
crc(2)=char(ieor(ichar(creg(ib2)),ichar(crc(1))))
crc(1)=creg(ib1)

enddo 13

if (jrev.ge.0) then Do we need to reverse the output?
creg(ib1)=crc(1)
creg(ib2)=crc(2)

else
creg(ib2)=rchr(ichar(crc(1)))
creg(ib1)=rchr(ichar(crc(2)))
crc(1)=creg(ib1)
crc(2)=creg(ib2)

endif
icrc=ireg
return
END

894 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

What if you need a 32-bit checksum? For a true 32-bit CRC, you will need
to rewrite the routines given to work with a longer generating polynomial. For
example,x32 +x7 +x5 +x3 +x2 +x+1 is primitivemodulo 2, and has nonleading,
nonzero bits only in its least significant byte (which makes for some simplification).
The idea of table lookup on only the most significant byte of the CRC register goes
through unchanged. Pay attention to the fact thatFORTRAN does not have unsigned
integers, so half of your CRCs will appear to be negative in integer format.

If you do not care about theM -consecutive bit property of the checksum, but
rather only need a statistically random 32 bits, then you can useicrc as given
here: Call it once withjrev = 1 to get 16 bits, andagainwith jrev = −1 to get
another 16 bits. The internal bit reversals make these two 16-bit CRCs in effect
totally independent of each other.

Other Kinds of Checksums

Quite different from CRCs are the various techniques used to append a decimal
“check digit” to numbers that are handled by human beings (e.g., typed into a
computer). Check digits need to be proof against the kinds of highly structured
errors that humans tend to make, such as transposing consecutive digits.Wagner and
Putter[7] give an interesting introduction to this subject, including specific algorithms.

Checksums now in widespread use vary from fair to poor. The 10-digit ISBN
(International Standard Book Number) that you find on most books, including this
one, uses the check equation

10d1 + 9d2 + 8d3 + · · ·+ 2d9 + d10 = 0 (mod 11) (20.3.1)

whered10 is the right-hand check digit. The character “X” is used to represent a
check digit value of 10. Another popular scheme is the so-called “IBM check,” often
used for account numbers (including, e.g., MasterCard). Here, the check equation is

2#d1 + d2 + 2#d3 + d4 + · · · = 0 (mod 10) (20.3.2)

where2#d means, “multiplyd by two and add the resulting decimal digits.” United
States banks code checks with a 9-digit processing number whose check equation is

3a1 + 7a2 + a3 + 3a4 + 7a5 + a6 + 3a7 + 7a8 + a9 = 0 (mod 10) (20.3.3)

The bar code put on many envelopes by the U.S. Postal Service is decoded by
removing the single tall marker bars at each end, and breaking the remainingbars
into 6 or 10 groups of five. Ineach group the five bars signify(from left to right)
the values 7,4,2,1,0. Exactly two of them will be tall. Their sum is the represented
digit, except that zero is represented as7 + 4. The 5- or 9-digit Zip Code is followed
by a check digit, with the check equation

∑
di = 0 (mod 10) (20.3.4)

None of these schemes is close to optimal. An elegant scheme due to Verhoeff
is described in[7]. The underlying idea is to use the ten-elementdihedral groupD5,

20.3 Cyclic Redundancy and Other Checksums 895

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

which corresponds to the symmetries of a pentagon, instead of the cyclic group of
the integers modulo 10. The check equation is

a1*f(a2)*f
2(a3)* · · ·*f

n−1(an) = 0 (20.3.5)

where* is (noncommutative) multiplication inD5, andf i denotes theith iteration
of a certain fixed permutation. Verhoeff’s method findsall single errors in a string,
andall adjacent transpositions. It also finds about 95% of twin errors (aa → bb),
jump transpositions (acb → bca), and jump twin errors (aca → bcb). Here is an
implementation:

LOGICAL FUNCTION decchk(string,n,ch)
INTEGER n
CHARACTER string*(*),ch*1

Decimal check digit computation or verification. Returns as ch a check digit for appending
to string(1:n), that is, for storing into string(n+1:n+1). In this mode, ignore the
returned logical value. If string(1:n) already ends with a check digit (string(n:n)),
returns the function value .true. if the check digit is valid, otherwise .false. In this
mode, ignore the returned value of ch. Note that string and ch contain ASCII characters
corresponding to the digits 0-9, not byte values in that range. Other ASCII characters are
allowed in string, and are ignored in calculating the check digit.

INTEGER ij(10,10),ip(10,8),i,j,k,m
SAVE ij,ip Group multiplication and permutation tables.
DATA ip/0,1,2,3,4,5,6,7,8,9,1,5,7,6,2,8,3,0,9,4,

* 5,8,0,3,7,9,6,1,4,2,8,9,1,6,0,4,3,5,2,7,9,4,5,3,1,2,6,8,7,0,
* 4,2,8,6,5,7,3,9,0,1,2,7,9,3,8,0,6,4,1,5,7,0,4,6,9,1,3,2,5,8/,
* ij/0,1,2,3,4,5,6,7,8,9,1,2,3,4,0,9,5,6,7,8,2,3,4,0,1,8,9,5,6,
* 7,3,4,0,1,2,7,8,9,5,6,4,0,1,2,3,6,7,8,9,5,5,6,7,8,9,0,1,2,3,
* 4,6,7,8,9,5,4,0,1,2,3,7,8,9,5,6,3,4,0,1,2,8,9,5,6,7,2,3,4,0,
* 1,9,5,6,7,8,1,2,3,4,0/

k=0
m=0
do 11 j=1,n Look at successive characters.

i=ichar(string(j:j))
if (i.ge.48.and.i.le.57)then Ignore everything except digits.

k=ij(k+1,ip(mod(i+2,10)+1,mod(m,8)+1)+1)
m=m+1

endif
enddo 11

decchk=(k.eq.0)
do 12 i=0,9 Find which appended digit will check properly.

if (ij(k+1,ip(i+1,mod(m,8)+1)+1).eq.0) goto 1
enddo 12

1 ch=char(i+48) Convert to ASCII.
return
end

CITED REFERENCES AND FURTHER READING:

McNamara, J.E. 1982, Technical Aspects of Data Communication, 2nd ed. (Bedford, MA: Digital
Press). [1]

da Cruz, F. 1987, Kermit, A File Transfer Protocol (Bedford, MA: Digital Press). [2]

Morse, G. 1986, Byte, vol. 11, pp. 115–124 (September). [3]

LeVan, J. 1987, Byte, vol. 12, pp. 339–341 (November). [4]

Sarwate, D.V. 1988, Communications of the ACM, vol. 31, pp. 1008–1013. [5]

Griffiths, G., and Stones, G.C. 1987, Communications of the ACM, vol. 30, pp. 617–620. [6]

Wagner, N.R., and Putter, P.S. 1989, Communications of the ACM, vol. 32, pp. 106–110. [7]

896 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

20.4 Huffman Coding and Compression of Data

A lossless data compression algorithm takes a string of symbols (typically
ASCII characters or bytes) and translates itreversiblyinto another string, one that
is on the averageof shorter length. The words “on the average” are crucial; it
is obvious that no reversible algorithm can make all strings shorter — there just
aren’t enough short strings to be in one-to-one correspondence with longer strings.
Compression algorithms are possible only when, on the input side, some strings, or
some input symbols, are more common than others. These can then be encoded in
fewer bits than rarer input strings or symbols, giving a net average gain.

There exist many, quite different, compression techniques, corresponding to
different ways of detecting and using departures from equiprobability in input strings.
In this section and the next we shall consider onlyvariable length codeswith defined
word inputs. In these, the input is sliced into fixed units, for example ASCII
characters, while the corresponding output comes in chunks of variable size. The
simplest such method is Huffman coding[1], discussed in this section. Another
example,arithmetic compression, is discussed in§20.5.

At the opposite extreme from defined-word, variable length codes are schemes
that divide up theinputinto units of variable length (words or phrases of English text,
for example) and then transmit these, often with a fixed-length output code. The most
widely used code of this type is the Ziv-Lempel code[2]. References[3-6] give the
flavor of some other compression techniques, with references to the large literature.

The idea behind Huffman coding is simply to use shorter bit patterns for more
common characters. We can make this idea quantitative by considering the concept
of entropy. Suppose the input alphabet hasNch characters, and that these occur in
the input string with respective probabilitiespi, i = 1, . . . , Nch, so that

∑
pi = 1.

Then the fundamental theorem of information theory says that strings consisting of
independently random sequences of these characters (a conservative, but not always
realistic assumption) require, on the average, at least

H = −
∑

pi log
2
pi (20.4.1)

bits per character. HereH is the entropy of the probability distribution. Moreover,
coding schemes exist which approach the bound arbitrarily closely. For the case of
equiprobable characters, with allpi = 1/Nch, one easily sees thatH = log2 Nch,
which is the case of no compression at all. Any other set ofpi’s gives a smaller
entropy, allowing some useful compression.

Notice that the bound of (20.4.1) would be achieved if we could encode character
i with a code of lengthLi = − log2 pi bits: Equation (20.4.1) would then be the
average

∑
piLi. The trouble with such a scheme is that− log2 pi is not generally

an integer. How can we encode the letter “Q” in 5.32 bits? Huffman coding makes
a stab at this by, in effect, approximating all the probabilitiespi by integer powers
of 1/2, so that all theLi’s are integral. If all thepi’s are in fact of this form, then a
Huffman code does achieve the entropy boundH .

The construction of a Huffman code is best illustrated by example. Imagine
a language, Vowellish, with theNch = 5 character alphabet A, E, I, O, and U,
occurring with the respective probabilities 0.12, 0.42, 0.09, 0.30, and 0.07. Then the
construction of a Huffman code for Vowellish isaccomplished in the following table:

896 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

20.4 Huffman Coding and Compression of Data

A lossless data compression algorithm takes a string of symbols (typically
ASCII characters or bytes) and translates itreversiblyinto another string, one that
is on the averageof shorter length. The words “on the average” are crucial; it
is obvious that no reversible algorithm can make all strings shorter — there just
aren’t enough short strings to be in one-to-one correspondence with longer strings.
Compression algorithms are possible only when, on the input side, some strings, or
some input symbols, are more common than others. These can then be encoded in
fewer bits than rarer input strings or symbols, giving a net average gain.

There exist many, quite different, compression techniques, corresponding to
different ways of detecting and using departures from equiprobability in input strings.
In this section and the next we shall consider onlyvariable length codeswith defined
word inputs. In these, the input is sliced into fixed units, for example ASCII
characters, while the corresponding output comes in chunks of variable size. The
simplest such method is Huffman coding[1], discussed in this section. Another
example,arithmetic compression, is discussed in§20.5.

At the opposite extreme from defined-word, variable length codes are schemes
that divide up theinputinto units of variable length (words or phrases of English text,
for example) and then transmit these, often with a fixed-length output code. The most
widely used code of this type is the Ziv-Lempel code[2]. References[3-6] give the
flavor of some other compression techniques, with references to the large literature.

The idea behind Huffman coding is simply to use shorter bit patterns for more
common characters. We can make this idea quantitative by considering the concept
of entropy. Suppose the input alphabet hasNch characters, and that these occur in
the input string with respective probabilitiespi, i = 1, . . . , Nch, so that

∑
pi = 1.

Then the fundamental theorem of information theory says that strings consisting of
independently random sequences of these characters (a conservative, but not always
realistic assumption) require, on the average, at least

H = −
∑

pi log
2
pi (20.4.1)

bits per character. HereH is the entropy of the probability distribution. Moreover,
coding schemes exist which approach the bound arbitrarily closely. For the case of
equiprobable characters, with allpi = 1/Nch, one easily sees thatH = log

2
Nch,

which is the case of no compression at all. Any other set ofpi’s gives a smaller
entropy, allowing some useful compression.

Notice that the bound of (20.4.1) would be achieved if we could encode character
i with a code of lengthLi = − log

2
pi bits: Equation (20.4.1) would then be the

average
∑

piLi. The trouble with such a scheme is that− log
2
pi is not generally

an integer. How can we encode the letter “Q” in 5.32 bits? Huffman coding makes
a stab at this by, in effect, approximating all the probabilitiespi by integer powers
of 1/2, so that all theLi’s are integral. If all thepi’s are in fact of this form, then a
Huffman code does achieve the entropy boundH .

The construction of a Huffman code is best illustrated by example. Imagine
a language, Vowellish, with theNch = 5 character alphabet A, E, I, O, and U,
occurring with the respective probabilities 0.12, 0.42, 0.09, 0.30, and 0.07. Then the
construction of a Huffman code for Vowellish isaccomplished in the following table:

20.4 Huffman Coding and Compression of Data 897

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Node Stage: 1 2 3 4 5

1 A: 0.12 0.12

2 E: 0.42 0.42 0.42 0.42

3 I: 0.09

4 O: 0.30 0.30 0.30

5 U: 0.07

6 UI: 0.16

7 AUI: 0.28

8 AUIO: 0.58

9 EAUIO: 1.00

Here is how it works, proceeding in sequence throughNch stages, represented
by the columns of the table. The first stage starts withNch nodes, one foreach
letter of the alphabet, containing their respective relative frequencies. At each stage,
the two smallest probabilities are found, summed to make a new node, and then
dropped from the list of active nodes. (A “block” denotes the stage where a node is
dropped.) All active nodes (including the new composite) are then carried over to
the next stage (column). In the table, the names assigned to new nodes (e.g., AUI)
are inconsequential. In the example shown, it happens that (after stage 1) the two
smallest nodes are always an original node and a composite one; this need not be
true in general: The two smallest probabilities might be both original nodes, or both
composites, or one of each. At the last stage, allnodes will have been collected into
one grand composite of total probability 1.

Now, to see the code, you redraw the data in the above table as a tree (Figure
20.4.1). As shown, eachnode of the tree corresponds to a node (row) in the table,
indicated by the integer to its left and probability value to its right. Terminal nodes,
so called, are shown as circles; these are single alphabetic characters.The branches
of the tree are labeled 0 and 1. The code for a character is the sequence ofzeros and
ones that lead to it, from the top down. For example, E is simply 0, while U is 1010.

Any string of zeros and ones can now be decoded into an alphabetic sequence.
Consider, for example, the string 1011111010. Starting at the top of the tree we
descend through 1011 to I, the first character. Since we have reached a terminal
node, we reset to the top of the tree, next descending through 11 to O. Finally 1010
gives U. The string thus decodes to IOU.

These ideas are embodied in the following routines. Input to the first routine
hufmak is an integer vector of the frequency of occurrence of thenchin ≡ Nch

alphabetic characters, i.e., a set of integers proportional to thepi’s. hufmak, along
with hufapp, which it calls, performs the construction of the above table, and also the
tree of Figure 20.4.1. The routine utilizes a heap structure (see§8.3) for efficiency;
for a detailed description, see Sedgewick[7].

898 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).
E

EAUIO

A

U

AUI

AUIO

UI

I

O

1.00

0.58

0.28 0.30

0.090.07 35

0.1660.12

0.422

9

8

7 4

1

10

10

10

10

Figure 20.4.1. Huffman code for the fictitious language Vowellish, in tree form. A letter (A, E, I,
O, or U) is encoded or decoded by traversing the tree from the top down; the code is the sequence of
0’s and 1’s on the branches. The value to the right of each node is its probability; to the left, its node
number in the accompanying table.

SUBROUTINE hufmak(nfreq,nchin,ilong,nlong)
INTEGER ilong,nchin,nlong,nfreq(nchin),MC,MQ
PARAMETER (MC=512,MQ=2*MC-1)

C USES hufapp
Given the frequency of occurrence table nfreq(1:nchin) of nchin characters, construct
in the common block /hufcom/ the Huffman code. Returned values ilong and nlong
are the character number that produced the longest code symbol, and the length of that
symbol. You should check that nlong is not larger than your machine’s word length.

INTEGER ibit,j,k,n,nch,node,nodemx,nused,ibset,index(MQ),
* iup(MQ),icod(MQ),left(MQ),iright(MQ),ncod(MQ),nprob(MQ)

COMMON /hufcom/ icod,ncod,nprob,left,iright,nch,nodemx
SAVE /hufcom/
nch=nchin Initialization.
nused=0
do 11 j=1,nch

nprob(j)=nfreq(j)
icod(j)=0
ncod(j)=0
if(nfreq(j).ne.0)then

nused=nused+1
index(nused)=j

endif
enddo 11

do 12 j=nused,1,-1 Sort nprob into a heap structure in index.
call hufapp(index,nprob,nused,j)

enddo 12

k=nch
1 if(nused.gt.1)then Combine heap nodes, remaking the heap at each stage.

node=index(1)
index(1)=index(nused)
nused=nused-1
call hufapp(index,nprob,nused,1)
k=k+1

20.4 Huffman Coding and Compression of Data 899

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

nprob(k)=nprob(index(1))+nprob(node)
left(k)=node Store left and right children of a node.
iright(k)=index(1)
iup(index(1)) = -k Indicate whether a node is a left or right child of its parent.
iup(node)=k
index(1)=k
call hufapp(index,nprob,nused,1)

goto 1
endif
nodemx=k
iup(nodemx)=0
do 13 j=1,nch Make the Huffman code from the tree.

if(nprob(j).ne.0)then
n=0
ibit=0
node=iup(j)

2 if(node.ne.0)then
if(node.lt.0)then

n=ibset(n,ibit)
node = -node

endif
node=iup(node)
ibit=ibit+1

goto 2
endif
icod(j)=n
ncod(j)=ibit

endif
enddo 13

nlong=0
do 14 j=1,nch

if(ncod(j).gt.nlong)then
nlong=ncod(j)
ilong=j-1

endif
enddo 14

return
END

SUBROUTINE hufapp(index,nprob,m,l)
INTEGER m,l,MC,MQ
PARAMETER (MC=512,MQ=2*MC-1)
INTEGER index(MQ),nprob(MQ)

Used by hufmak to maintain a heap structure in the array index(1:l).
INTEGER i,j,k,n
n=m
i=l
k=index(i)

2 if(i.le.n/2)then
j=i+i
if (j.lt.n.and.nprob(index(j)).gt.nprob(index(j+1))) j=j+1
if (nprob(k).le.nprob(index(j))) goto 3
index(i)=index(j)
i=j

goto 2
endif

3 index(i)=k
return
END

900 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Once the code is constructed, one encodes a string of characters by repeated
calls tohufenc, which simply does a table lookup of the code and appends it to
the output message.

SUBROUTINE hufenc(ich,code,lcode,nb)
INTEGER ich,lcode,nb,MC,MQ
PARAMETER (MC=512,MQ=2*MC-1)

Huffman encode the single character ich (in the range 0..nch-1), write the result to the
character array code(1:lcode) starting at bit nb (whose smallest valid value is zero),
and increment nb appropriately. This routine is called repeatedly to encode consecutive
characters in a message, but must be preceded by a single initializing call to hufmak.

INTEGER k,l,n,nc,nch,nodemx,ntmp,ibset
INTEGER icod(MQ),left(MQ),iright(MQ),ncod(MQ),nprob(MQ)
LOGICAL btest
CHARACTER*1 code(*)
COMMON /hufcom/ icod,ncod,nprob,left,iright,nch,nodemx
SAVE /hufcom/
k=ich+1 Convert character range 0..nch-1 to array index range 1..nch.
if(k.gt.nch.or.k.lt.1)pause ’ich out of range in hufenc.’
do 11 n=ncod(k),1,-1 Loop over the bits in the stored Huffman code for ich.

nc=nb/8+1
if (nc.gt.lcode) pause ’lcode too small in hufenc.’
l=mod(nb,8)
if (l.eq.0) code(nc)=char(0)
if(btest(icod(k),n-1))then Set appropriate bits in code.

ntmp=ibset(ichar(code(nc)),l)
code(nc)=char(ntmp)

endif
nb=nb+1

enddo 11

return
END

Decoding a Huffman-encoded message is slightly more complicated. The
coding tree must be traversed from the top down, using up a variable number of bits:

SUBROUTINE hufdec(ich,code,lcode,nb)
INTEGER ich,lcode,nb,MC,MQ
PARAMETER (MC=512,MQ=2*MC-1)

Starting at bit number nb in the character array code(1:lcode), use the Huffman code
stored in common block /hufcom/ to decode a single character (returned as ich in the
range 0..nch-1) and increment nb appropriately. Repeated calls, starting with nb = 0

will return successive characters in a compressed message. The returned value ich=nch
indicates end-of-message. This routine must be preceded by a single initializing call to
hufmak.
Parameters: MC is the maximum value of nch, the input alphabet size.

INTEGER l,nc,nch,node,nodemx
INTEGER icod(MQ),left(MQ),iright(MQ),ncod(MQ),nprob(MQ)
LOGICAL btest
CHARACTER*1 code(lcode)
COMMON /hufcom/ icod,ncod,nprob,left,iright,nch,nodemx
SAVE /hufcom/
node=nodemx Set node to the top of the decoding tree.

1 continue Loop until a valid character is obtained.
nc=nb/8+1
if (nc.gt.lcode)then Ran out of input; with ich=nch indicating end of message.

ich=nch
return

endif
l=mod(nb,8) Now decoding this bit.
nb=nb+1

20.4 Huffman Coding and Compression of Data 901

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(btest(ichar(code(nc)),l))then Branch left or right in tree, depending on its
value.node=iright(node)

else
node=left(node)

endif
if(node.le.nch)then If we reach a terminal node, we have a complete character

and can return.ich=node-1
return

endif
goto 1
END

For simplicity, hufdec quits when it runs out of code bytes; if your coded
message is not an integral number of bytes, and ifNch is less than 256,hufdec
can return a spurious final character or two, decoded from the spurious trailing
bits in your last code byte. If you have independent knowledge of the number of
characters sent, you can readily discard these. Otherwise, you can fix this behavior
by providing a bit, not byte, count, and modifying the routineaccordingly. (When
Nch is 256 or larger,hufdec will normally run out of code in the middle of a
spurious character, and it will be discarded.)

Run-Length Encoding

For the compression of highly correlated bit-streams (for example the black or
white values along a facsimile scan line), Huffman compression is often combined
with run-length encoding: Instead of sending each bit, the input stream is converted
to a series of integers indicating how many consecutive bits have the same value.
These integers are then Huffman-compressed. The Group 3 CCITT facsimile
standard functions in this manner, with a fixed, immutable, Huffman code, optimized
for a set of eight standard documents[8,9].

CITED REFERENCES AND FURTHER READING:

Gallager, R.G. 1968, Information Theory and Reliable Communication (New York: Wiley).

Hamming, R.W. 1980, Coding and Information Theory (Englewood Cliffs, NJ: Prentice-Hall).

Storer, J.A. 1988, Data Compression: Methods and Theory (Rockville, MD: Computer Science
Press).

Nelson, M. 1991, The Data Compression Book (Redwood City, CA: M&T Books).

Huffman, D.A. 1952, Proceedings of the Institute of Radio Engineers, vol. 40, pp. 1098–1101. [1]

Ziv, J., and Lempel, A. 1978, IEEE Transactions on Information Theory, vol. IT-24, pp. 530–536.
[2]

Cleary, J.G., and Witten, I.H. 1984, IEEE Transactions on Communications, vol. COM-32,
pp. 396–402. [3]

Welch, T.A. 1984, Computer, vol. 17, no. 6, pp. 8–19. [4]

Bentley, J.L., Sleator, D.D., Tarjan, R.E., and Wei, V.K. 1986, Communications of the ACM,
vol. 29, pp. 320–330. [5]

Jones, D.W. 1988, Communications of the ACM, vol. 31, pp. 996–1007. [6]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 22. [7]

Hunter, R., and Robinson, A.H. 1980, Proceedings of the IEEE, vol. 68, pp. 854–867. [8]

Marking, M.P. 1990, The C Users’ Journal, vol. 8, no. 6, pp. 45–54. [9]

902 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

20.5 Arithmetic Coding

We saw in the previous section that a perfect (entropy-bounded) coding scheme
would useLi = − log

2
pi bits to encode characteri (in the range1 ≤ i ≤ Nch),

if pi is its probability of occurrence. Huffman coding gives a way of rounding the
Li’s to close integer values and constructing a code with those lengths.Arithmetic
coding[1], which we now discuss, actually does manage to encode characters using
noninteger numbers of bits! It also provides a convenient way to output the result
not as a stream of bits, but as a stream of symbols in any desired radix. This latter
property is particularly useful if you want, e.g., to convert data from bytes (radix
256) to printable ASCII characters (radix 94), or to case-independent alphanumeric
sequences containing only A-Z and 0-9 (radix 36).

In arithmetic coding, an input message of any length is represented as a real
numberR in the range0 ≤ R < 1. The longer the message, the more precision
required ofR. This is best illustrated by an example, so let us return to the fictitious
language, Vowellish, of the previous section. Recall that Vowellish has a 5 character
alphabet (A, E, I, O, U), with occurrence probabilities 0.12, 0.42, 0.09, 0.30, and
0.07, respectively. Figure 20.5.1 shows how a message beginning “IOU” is encoded:
The interval[0, 1) is divided into segments corresponding to the 5 alphabetical
characters; the length of a segment is the correspondingpi. We see that the first
message character, “I”, narrows the range ofR to 0.37 ≤ R < 0.46. This interval is
now subdivided into five subintervals, again with lengths proportional to thepi’s. The
second message character, “O”, narrows the range ofR to 0.3763 ≤ R < 0.4033.
The “U” character further narrows the range to0.37630 ≤ R < 0.37819. Anyvalue
of R in this range can be sent as encoding “IOU”. In particular, the binary fraction
.011000001 is in this range, so “IOU” can be sent in 9 bits. (Huffman coding took
10 bits for this example, see§20.4.)

Of course there is the problem of knowing when to stop decoding. The
fraction.011000001 represents not simply “IOU,” but “IOU. . . ,” where the ellipses
represent an infinite string of successor characters. To resolve this ambiguity,
arithmetic coding generally assumes the existence of a specialNch + 1th character,
EOM (end of message), which occurs only once at the end of the input. Since
EOM has a low probability of occurrence, it gets allocated only a very tiny piece
of the number line.

In the above example, we gaveR as a binary fraction. We could just as well
have output it in any other radix, e.g., base 94 or base 36, whatever is convenient
for the anticipated storage or communication channel.

You might wonder how one deals with the seemingly incredible precision
required ofR for a long message. The answer is thatR is never actually represented
all at once. At any give stage we have upper and lower bounds forR represented
as a finite number of digits in the output radix. As digits of the upper and lower
bounds become identical, we can left-shift them away and bring in new digits at the
low-significance end. The routines below have a parameterNWK for the number of
working digits to keep around. This must be large enough to make the chance of
an accidental degeneracy vanishingly small. (The routines signal if a degeneracy
ever occurs.) Since the process of discarding old digits and bringing in new ones is
performed identically on encoding and decoding, everything stays synchronized.

902 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

20.5 Arithmetic Coding

We saw in the previous section that a perfect (entropy-bounded) coding scheme
would useLi = − log

2
pi bits to encode characteri (in the range1 ≤ i ≤ Nch),

if pi is its probability of occurrence. Huffman coding gives a way of rounding the
Li’s to close integer values and constructing a code with those lengths.Arithmetic
coding[1], which we now discuss, actually does manage to encode characters using
noninteger numbers of bits! It also provides a convenient way to output the result
not as a stream of bits, but as a stream of symbols in any desired radix. This latter
property is particularly useful if you want, e.g., to convert data from bytes (radix
256) to printable ASCII characters (radix 94), or to case-independent alphanumeric
sequences containing only A-Z and 0-9 (radix 36).

In arithmetic coding, an input message of any length is represented as a real
numberR in the range0 ≤ R < 1. The longer the message, the more precision
required ofR. This is best illustrated by an example, so let us return to the fictitious
language, Vowellish, of the previous section. Recall that Vowellish has a 5 character
alphabet (A, E, I, O, U), with occurrence probabilities 0.12, 0.42, 0.09, 0.30, and
0.07, respectively. Figure 20.5.1 shows how a message beginning “IOU” is encoded:
The interval[0, 1) is divided into segments corresponding to the 5 alphabetical
characters; the length of a segment is the correspondingpi. We see that the first
message character, “I”, narrows the range ofR to 0.37 ≤ R < 0.46. This interval is
now subdivided into five subintervals, again with lengths proportional to thepi’s. The
second message character, “O”, narrows the range ofR to 0.3763 ≤ R < 0.4033.
The “U” character further narrows the range to0.37630 ≤ R < 0.37819. Anyvalue
of R in this range can be sent as encoding “IOU”. In particular, the binary fraction
.011000001 is in this range, so “IOU” can be sent in 9 bits. (Huffman coding took
10 bits for this example, see§20.4.)

Of course there is the problem of knowing when to stop decoding. The
fraction.011000001 represents not simply “IOU,” but “IOU. . . ,” where the ellipses
represent an infinite string of successor characters. To resolve this ambiguity,
arithmetic coding generally assumes the existence of a specialNch + 1th character,
EOM (end of message), which occurs only once at the end of the input. Since
EOM has a low probability of occurrence, it gets allocated only a very tiny piece
of the number line.

In the above example, we gaveR as a binary fraction. We could just as well
have output it in any other radix, e.g., base 94 or base 36, whatever is convenient
for the anticipated storage or communication channel.

You might wonder how one deals with the seemingly incredible precision
required ofR for a long message. The answer is thatR is never actually represented
all at once. At any give stage we have upper and lower bounds forR represented
as a finite number of digits in the output radix. As digits of the upper and lower
bounds become identical, we can left-shift them away and bring in new digits at the
low-significance end. The routines below have a parameterNWK for the number of
working digits to keep around. This must be large enough to make the chance of
an accidental degeneracy vanishingly small. (The routines signal if a degeneracy
ever occurs.) Since the process of discarding old digits and bringing in new ones is
performed identically on encoding and decoding, everything stays synchronized.

20.5 Arithmetic Coding 903

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

A

E

I

O

U

A

E

I

O

U

A

E

I

O

U

A

E

I

O

U

0.46

0.42

0.41

0.37

0.385

0.380

0.4033

0.3763

0.37819

0.37630

0.3780

0.3764

0.44

0.43

0.390

0.395

0.400

0.3766

0.3768

0.3772

0.3774

0.3778

0.3776

0.45

0.40

0.39

0.38

0.3770

Figure 20.5.1. Arithmetic coding of the message “IOU...” in the fictitious language Vowellish.
Successive characters give successively finer subdivisions of the initial interval between 0 and 1. The
final value can be output as the digits of a fraction in any desired radix. Note how the subinterval allocated
to a character is proportional to its probability of occurrence.

The routinearcmak constructs the cumulative frequency distribution table used
to partition the interval ateach stage. In the principal routinearcode, when an
interval of sizejdif is to be partitioned in the proportions of somen to somentot,
say, then we must compute(n*jdif)/ntot. With integer arithmetic, the numerator
is likely to overflow; and, unfortunately, an expression likejdif/(ntot/n) is not
equivalent. In the implementation below, we resort to double precision floating
arithmetic for this calculation. Not only is this inefficient, but different roundoff
errors can (albeit very rarely) make different machines encode differently, though any
one type of machine will decode exactly what it encoded, since identical roundoff
errors occur in the two processes. For serious use, one needs to replace this floating
calculation with an integer computation in a double register (not available to the
FORTRAN programmer).

The internally set variableminint, which is the minimum allowed number
of discrete steps between the upper and lower bounds, determines when new low-
significance digits are added.minint must be large enough to provide resolution of
all the input characters. That is, we must havepi × minint > 1 for all i. A value
of 100Nch, or 1.1/minpi, whichever is larger, is generally adequate. However, for
safety, the routine below takesminint to be as large as possible, with the product
minint*nradd just smaller than overflow. This results in some time inefficiency,
and in a few unnecessary characters being output at the end of a message. Youcan

904 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

decreaseminint if you want to live closer to the edge.
A final safety feature inarcmak is its refusal to believe zero values in the table

nfreq; a 0 is treated as if it were a1. If this were not done, the occurrence in a
message of a single character whosenfreq entry is zero would result in scrambling
the entire rest of the message. If you want to live dangerously, with a very slightly
more efficient coding, you can delete themax(,1) operation.

SUBROUTINE arcmak(nfreq,nchh,nradd)
INTEGER nchh,nradd,nfreq(nchh),MC,NWK,MAXINT
PARAMETER (MC=512,NWK=20,MAXINT=2147483647)

Given a table nfreq(1:nchh) of the frequency of occurrence of nchh symbols, and given
a desired output radix nradd, initialize the cumulative frequency table and other variables
for arithmetic compression.
Parameters: MC is largest anticipated value of nchh; NWK is the number of working digits
(see text); MAXINT is a large positive integer that does not overflow.

INTEGER j,jdif,minint,nc,nch,nrad,ncum,
* ncumfq(MC+2),ilob(NWK),iupb(NWK)

COMMON /arccom/ ncumfq,iupb,ilob,nch,nrad,minint,jdif,nc,ncum
SAVE /arccom/
if(nchh.gt.MC)pause ’MC too small in arcmak’
if(nradd.gt.256)pause ’nradd may not exceed 256 in arcmak’
minint=MAXINT/nradd
nch=nchh
nrad=nradd
ncumfq(1)=0
do 11 j=2,nch+1

ncumfq(j)=ncumfq(j-1)+max(nfreq(j-1),1)
enddo 11

ncumfq(nch+2)=ncumfq(nch+1)+1
ncum=ncumfq(nch+2)
return
END

Individual characters in a message are coded or decoded by the routinearcode,
which in turn uses the utilityarcsum.

SUBROUTINE arcode(ich,code,lcode,lcd,isign)
INTEGER ich,isign,lcd,lcode,MC,NWK
CHARACTER*1 code(lcode)
PARAMETER (MC=512,NWK=20)

C USES arcsum
Compress (isign = 1) or decompress (isign = −1) the single character ich into or out
of the character array code(1:lcode), starting with byte code(lcd) and (if necessary)
incrementing lcd so that, on return, lcd points to the first unused byte in code. Note
that this routine saves the result of previous calls until a new byte of code is produced, and
only then increments lcd. An initializing call with isign=0 is required for each different
array code. The routine arcmakmust have previously been called to initialize the common
block /arccom/. A call with ich=nch (as set in arcmak) has the reserved meaning “end
of message.”

INTEGER ihi,j,ja,jdif,jh,jl,k,m,minint,nc,nch,nrad,ilob(NWK),
* iupb(NWK),ncumfq(MC+2),ncum,JTRY

COMMON /arccom/ ncumfq,iupb,ilob,nch,nrad,minint,jdif,nc,ncum
SAVE /arccom/

The following statement function is used to calculate (k*j)/m without overflow. Program
efficiency can be improved by substituting an assembly language routine that does integer
multiply to a double register.

JTRY(j,k,m)=int((dble(k)*dble(j))/dble(m))
if (isign.eq.0) then Initialize enough digits of the upper and lower bounds.

jdif=nrad-1
do 11 j=NWK,1,-1

20.5 Arithmetic Coding 905

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

iupb(j)=nrad-1
ilob(j)=0
nc=j
if(jdif.gt.minint)return Initialization complete.
jdif=(jdif+1)*nrad-1

enddo 11

pause ’NWK too small in arcode’
else

if (isign.gt.0) then If encoding, check for valid input character.
if(ich.gt.nch.or.ich.lt.0)pause ’bad ich in arcode’

else If decoding, locate the character ich by bisection.
ja=ichar(code(lcd))-ilob(nc)
do 12 j=nc+1,NWK

ja=ja*nrad+(ichar(code(j+lcd-nc))-ilob(j))
enddo 12

ich=0
ihi=nch+1

1 if(ihi-ich.gt.1) then
m=(ich+ihi)/2
if (ja.ge.JTRY(jdif,ncumfq(m+1),ncum)) then

ich=m
else

ihi=m
endif

goto 1
endif
if(ich.eq.nch)return Detected end of message.

endif
Following code is common for encoding and decoding. Convert character ich to a new
subrange [ilob,iupb).

jh=JTRY(jdif,ncumfq(ich+2),ncum)
jl=JTRY(jdif,ncumfq(ich+1),ncum)
jdif=jh-jl
call arcsum(ilob,iupb,jh,NWK,nrad,nc)
call arcsum(ilob,ilob,jl,NWK,nrad,nc) How many leading digits to output

(if encoding) or skip over?do 13 j=nc,NWK
if(ich.ne.nch.and.iupb(j).ne.ilob(j))goto 2
if(lcd.gt.lcode)pause ’lcode too small in arcode’
if(isign.gt.0) code(lcd)=char(ilob(j))
lcd=lcd+1

enddo 13

return Ran out of message. Did someone forget to encode
a terminating ncd?2 nc=j

j=0 How many digits to shift?
3 if (jdif.lt.minint) then

j=j+1
jdif=jdif*nrad

goto 3
endif
if (nc-j.lt.1) pause ’NWK too small in arcode’
if(j.ne.0)then Shift them.

do 14 k=nc,NWK
iupb(k-j)=iupb(k)
ilob(k-j)=ilob(k)

enddo 14

endif
nc=nc-j
do 15 k=NWK-j+1,NWK

iupb(k)=0
ilob(k)=0

enddo 15

endif
return Normal return.
END

906 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE arcsum(iin,iout,ja,nwk,nrad,nc)
INTEGER ja,nc,nrad,nwk,iin(*),iout(*)

Used by arcode. Add the integer ja to the radix nradmultiple-precision integer iin(nc..nwk).
Return the result in iout(nc..nwk).

INTEGER j,jtmp,karry
karry=0
do 11 j=nwk,nc+1,-1

jtmp=ja
ja=ja/nrad
iout(j)=iin(j)+(jtmp-ja*nrad)+karry
if (iout(j).ge.nrad) then

iout(j)=iout(j)-nrad
karry=1

else
karry=0

endif
enddo 11

iout(nc)=iin(nc)+ja+karry
return
END

If radix-changing, rather than compression, is your primary aim (for example
to convert an arbitrary file into printable characters) then you are of course free to
set all the components ofnfreq equal, say, to 1.

CITED REFERENCES AND FURTHER READING:

Bell, T.C., Cleary, J.G., and Witten, I.H. 1990, Text Compression (Englewood Cliffs, NJ: Prentice-
Hall).

Nelson, M. 1991, The Data Compression Book (Redwood City, CA: M&T Books).

Witten, I.H., Neal, R.M., and Cleary, J.G. 1987, Communications of the ACM, vol. 30, pp. 520–
540. [1]

20.6 Arithmetic at Arbitrary Precision

Let’s compute the numberπ to a couple of thousand decimal places. In doing
so, we’ll learn some things about multiple precision arithmetic on computers and
meet quite an unusual application of the fast Fourier transform (FFT). We’ll also
develop a set of routines that you can use for other calculations at any desired level
of arithmetic precision.

To start with, we need an analytic algorithm forπ. Useful algorithms are
quadratically convergent, i.e., they double the number of significant digits at
each iteration. Quadratically convergent algorithms forπ are based on theAGM
(arithmetic geometric mean)method, which also finds application to the calculation
of elliptic integrals (cf.§6.11) and in advanced implementations of the ADI method
for elliptic partial differential equations (§19.5). Borwein and Borwein[1] treat this
subject, which is beyond our scope here. One of their algorithms forπ starts with
the initializations

X0 =
√

2

π0 = 2 +
√

2

Y0 =
4
√

2

(20.6.1)

906 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE arcsum(iin,iout,ja,nwk,nrad,nc)
INTEGER ja,nc,nrad,nwk,iin(*),iout(*)

Used by arcode. Add the integer ja to the radix nradmultiple-precision integer iin(nc..nwk).
Return the result in iout(nc..nwk).

INTEGER j,jtmp,karry
karry=0
do 11 j=nwk,nc+1,-1

jtmp=ja
ja=ja/nrad
iout(j)=iin(j)+(jtmp-ja*nrad)+karry
if (iout(j).ge.nrad) then

iout(j)=iout(j)-nrad
karry=1

else
karry=0

endif
enddo 11

iout(nc)=iin(nc)+ja+karry
return
END

If radix-changing, rather than compression, is your primary aim (for example
to convert an arbitrary file into printable characters) then you are of course free to
set all the components ofnfreq equal, say, to 1.

CITED REFERENCES AND FURTHER READING:

Bell, T.C., Cleary, J.G., and Witten, I.H. 1990, Text Compression (Englewood Cliffs, NJ: Prentice-
Hall).

Nelson, M. 1991, The Data Compression Book (Redwood City, CA: M&T Books).

Witten, I.H., Neal, R.M., and Cleary, J.G. 1987, Communications of the ACM, vol. 30, pp. 520–
540. [1]

20.6 Arithmetic at Arbitrary Precision

Let’s compute the numberπ to a couple of thousand decimal places. In doing
so, we’ll learn some things about multiple precision arithmetic on computers and
meet quite an unusual application of the fast Fourier transform (FFT). We’ll also
develop a set of routines that you can use for other calculations at any desired level
of arithmetic precision.

To start with, we need an analytic algorithm forπ. Useful algorithms are
quadratically convergent, i.e., they double the number of significant digits at
each iteration. Quadratically convergent algorithms forπ are based on theAGM
(arithmetic geometric mean)method, which also finds application to the calculation
of elliptic integrals (cf.§6.11) and in advanced implementations of the ADI method
for elliptic partial differential equations (§19.5). Borwein and Borwein[1] treat this
subject, which is beyond our scope here. One of their algorithms forπ starts with
the initializations

X0 =
√

2

π0 = 2 +
√

2

Y0 =
4
√

2

(20.6.1)

20.6 Arithmetic at Arbitrary Precision 907

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and then, fori = 0, 1, . . . , repeats the iteration

Xi+1 =
1

2

(

√

Xi +
1√
Xi

)

πi+1 = πi

(

Xi+1 + 1

Yi + 1

)

Yi+1 =

Yi

√

Xi+1 + 1
√

Xi+1

Yi + 1

(20.6.2)

The valueπ emerges as the limitπ∞.
Now, to the question of how to do arithmetic to arbitrary precision: In a

high-level language likeFORTRAN, a natural choice is to work in radix (base) 256, so
that character arrays can be directly interpreted as strings of digits. At the very end of
our calculation, we will want to convert our answer to radix 10, but that is essentially
a frill for the benefit of human ears, accustomed to the familiar chant, “three point
one four one five nine. . . .” For any less frivolous calculation, we would likely never
leave base 256 (or the thence trivially reachable hexadecimal, octal, or binary bases).

We will adopt the convention of storing digit strings in the “human” ordering,
that is, with the first stored digit in an array being most significant, the last stored
digit being least significant. The opposite convention would, of course, also be
possible. “Carries,” where we need to partition a number larger than 255 into a
low-order byte and a high-order carry, present a minor programming annoyance,
solved, in the routines below, by the use ofFORTRAN’s EQUIVALENCE facility, and
some initial testing of the order in which bytes are stored in aFORTRAN integer.

It is easy at this point, following Knuth[2], to write a routine for the “fast”
arithmetic operations: short addition (adding a single byte to a string), addition,
subtraction, short multiplication (multiplying a string by a single byte), short
division, ones-complement negation; and a couple of utility operations, copying
and left-shifting strings.

SUBROUTINE mpops(w,u,v)
CHARACTER*1 w(*),u(*),v(*)

Multiple precision arithmetic operations done on character strings, interpreted as radix 256
numbers. This routine collects the simpler operations.

INTEGER i,ireg,j,n,ir,is,iv,ii1,ii2
CHARACTER*1 creg(4)
SAVE ii1,ii2
EQUIVALENCE (ireg,creg)

It is assumed that with the above equivalence, creg(ii1) addresses the low-order byte of
ireg, and creg(ii2) addresses the next higher order byte. The values ii1 and ii2 are
set by an initial call to mpinit.

ENTRY mpinit
ireg=256*ichar(’2’)+ichar(’1’)
do 11 j=1,4 Figure out the byte ordering.

if (creg(j).eq.’1’) ii1=j
if (creg(j).eq.’2’) ii2=j

enddo 11

return
ENTRY mpadd(w,u,v,n)

Adds the unsigned radix 256 integers u(1:n) and v(1:n) yielding the unsigned integer
w(1:n+1).
ireg=0
do 12 j=n,1,-1

908 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ireg=ichar(u(j))+ichar(v(j))+ichar(creg(ii2))
w(j+1)=creg(ii1)

enddo 12

w(1)=creg(ii2)
return
ENTRY mpsub(is,w,u,v,n)

Subtracts the unsigned radix 256 integer v(1:n) from u(1:n) yielding the unsigned integer
w(1:n). If the result is negative (wraps around), is is returned as −1; otherwise it is
returned as 0.
ireg=256
do 13 j=n,1,-1

ireg=255+ichar(u(j))-ichar(v(j))+ichar(creg(ii2))
w(j)=creg(ii1)

enddo 13

is=ichar(creg(ii2))-1
return
ENTRY mpsad(w,u,n,iv)

Short addition: the integer iv (in the range 0 ≤ iv ≤ 255) is added to the unsigned radix
256 integer u(1:n), yielding w(1:n+1).
ireg=256*iv
do 14 j=n,1,-1

ireg=ichar(u(j))+ichar(creg(ii2))
w(j+1)=creg(ii1)

enddo 14

w(1)=creg(ii2)
return
ENTRY mpsmu(w,u,n,iv)

Short multiplication: the unsigned radix 256 integer u(1:n) is multiplied by the integer iv
(in the range 0 ≤ iv ≤ 255), yielding w(1:n+1).
ireg=0
do 15 j=n,1,-1

ireg=ichar(u(j))*iv+ichar(creg(ii2))
w(j+1)=creg(ii1)

enddo 15

w(1)=creg(ii2)
return
ENTRY mpsdv(w,u,n,iv,ir)

Short division: the unsigned radix 256 integer u(1:n) is divided by the integer iv (in the
range 0 ≤ iv ≤ 255), yielding a quotient w(1:n) and a remainder ir (with 0 ≤ ir ≤ 255).
ir=0
do 16 j=1,n

i=256*ir+ichar(u(j))
w(j)=char(i/iv)
ir=mod(i,iv)

enddo 16

return
ENTRY mpneg(u,n)

Ones-complement negate the unsigned radix 256 integer u(1:n).
ireg=256
do 17 j=n,1,-1

ireg=255-ichar(u(j))+ichar(creg(ii2))
u(j)=creg(ii1)

enddo 17

return
ENTRY mpmov(u,v,n)

Move v(1:n) onto u(1:n).
do 18 j=1,n

u(j)=v(j)
enddo 18

return
ENTRY mplsh(u,n)

Left shift u(2..n+1) onto u(1:n).
do 19 j=1,n

u(j)=u(j+1)

20.6 Arithmetic at Arbitrary Precision 909

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 19

return
END

Full multiplication of two digit strings, if done by the traditional hand method,
is not a fast operation: In multiplying two strings of lengthN , the multiplicand
would be short-multiplied in turn byeach byte of the multiplier, requiringO(N2)
operations in all. We will see, however, thatall the arithmetic operations on numbers
of lengthN can in fact be done inO(N × logN × log logN) operations.

The trick is to recognize that multiplication is essentially aconvolution(§13.1)
of the digits of the multiplicand and multiplier, followed by some kind of carry
operation. Consider, for example, two ways of writing the calculation456× 789:

456
× 789

4104
3648

3192

359784

4 5 6
× 7 8 9

36 45 54
32 40 48

28 35 42

28 67 118 93 54

3 5 9 7 8 4

The tableau on the left shows the conventional method of multiplication, in which
three separate short multiplications of the full multiplicand (by 9, 8, and 7) are
added to obtain the final result. The tableau on the right shows a different method
(sometimes taught for mental arithmetic), where the single-digit cross products are
all computed (e.g.8 × 6 = 48), then added in columns to obtain an incompletely
carried result (here, the list28, 67, 118, 93, 54). The final step is a single pass from
right to left, recording the single least-significant digit and carrying the higher digit
or digits into the total to the left (e.g.93 + 5 = 98, record the 8, carry 9).

You can see immediately that the column sums in the right-hand method are
components of the convolution of the digit strings, for example118 = 4 × 9 + 5 ×
8 + 6 × 7. In §13.1 we learned how to compute the convolution of two vectors by
the fast Fourier transform (FFT): Each vector is FFT’d, the two complex transforms
are multiplied, and the result is inverse-FFT’d. Since the transforms are done with
floating arithmetic, we need sufficient precision so that the exact integervalue of
each component of the result is discernible in the presence of roundoff error. We
should therefore allow a (conservative) few timeslog2(log2 N) bits for roundoff
in the FFT. A number of lengthN bytes in radix 256 can generate convolution
components as large as the order of(256)2N , thus requiring16 + log2 N bits of
precision for exact storage. Ifit is the number of bits in the floating mantissa
(cf. §20.1), we obtain the condition

16 + log2 N + few× log2 log2 N < it (20.6.3)

We see that single precision, say withit = 24, is inadequate for any interesting
value ofN , while double precision, say withit = 53, allows N to be greater
than106, corresponding to some millions of decimal digits. The following routine

910 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

therefore presumes double precision versions ofrealft (§12.3) andfour1 (§12.2),
here calleddrealft anddfour1. (These routines are included on theNumerical
Recipesdiskettes.)

SUBROUTINE mpmul(w,u,v,n,m)
INTEGER m,n,NMAX
CHARACTER*1 w(n+m),u(n),v(m)
DOUBLE PRECISION RX
PARAMETER (NMAX=8192,RX=256.D0)

C USES drealft DOUBLE PRECISION version of realft.
Uses Fast Fourier Transform to multiply the unsigned radix 256 integers u(1:n) and
v(1:m), yielding a product w(1:n+m).

INTEGER j,mn,nn
DOUBLE PRECISION cy,t,a(NMAX),b(NMAX)
mn=max(m,n)
nn=1 Find the smallest useable power of two for the transform.

1 if(nn.lt.mn) then
nn=nn+nn

goto 1
endif
nn=nn+nn
if(nn.gt.NMAX)pause ’NMAX too small in fftmul’
do 11 j=1,n Move U to a double precision floating array.

a(j)=ichar(u(j))
enddo 11

do 12 j=n+1,nn
a(j)=0.D0

enddo 12

do 13 j=1,m Move V to a double precision floating array.
b(j)=ichar(v(j))

enddo 13

do 14 j=m+1,nn
b(j)=0.D0

enddo 14 Perform the convolution: First, the two Fourier transforms.
call drealft(a,nn,1)
call drealft(b,nn,1)
b(1)=b(1)*a(1) Then multiply the complex results (real and imaginary parts).
b(2)=b(2)*a(2)
do 15 j=3,nn,2

t=b(j)
b(j)=t*a(j)-b(j+1)*a(j+1)
b(j+1)=t*a(j+1)+b(j+1)*a(j)

enddo 15

call drealft(b,nn,-1) Then do the inverse Fourier transform.
cy=0. Make a final pass to do all the carries.
do 16 j=nn,1,-1

t=b(j)/(nn/2)+cy+0.5D0 The 0.5 allows for roundoff error.
b(j)=mod(t,RX)
cy=int(t/RX)

enddo 16

if (cy.ge.RX) pause ’cannot happen in fftmul’
w(1)=char(int(cy)) Copy answer to output.
do 17 j=2,n+m

w(j)=char(int(b(j-1)))
enddo 17

return
END

With multiplication thus a “fast” operation, division is best performed by
multiplying the dividend by the reciprocal of the divisor. The reciprocal of a value

20.6 Arithmetic at Arbitrary Precision 911

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

V is calculated by iteration of Newton’s rule,

Ui+1 = Ui(2 − V Ui) (20.6.4)

which results in the quadratic convergence ofU∞ to 1/V , as you can easily
prove. (Many supercomputers and RISC machines actually use this iteration to
perform divisions.) We can now see where the operations countN logN log logN ,
mentioned above, originates:N logN is in the Fourier transform, with the iteration
to converge Newton’s rule giving an additional factor oflog logN .

SUBROUTINE mpinv(u,v,n,m)
INTEGER m,n,MF,NMAX
CHARACTER*1 u(n),v(m)
REAL BI
PARAMETER (MF=4,BI=1./256.,NMAX=8192)

Character string v(1:m) is interpreted as a radix 256 number with the radix point after
(nonzero) v(1); u(1:n) is set to the most significant digits of its reciprocal, with the radix
point after u(1).

C USES mpmov,mpmul,mpneg
INTEGER i,j,mm
REAL fu,fv
CHARACTER*1 rr(2*NMAX+1),s(NMAX)
if(max(n,m).gt.NMAX)pause ’NMAX too small in mpinv’
mm=min(MF,m)
fv=ichar(v(mm)) Use ordinary floating arithmetic to get an initial ap-

proximation.do 11 j=mm-1,1,-1
fv=fv*BI+ichar(v(j))

enddo 11

fu=1./fv
do 12 j=1,n

i=int(fu)
u(j)=char(i)
fu=256.*(fu-i)

enddo 12

1 continue Iterate Newton’s rule to convergence.
call mpmul(rr,u,v,n,m) Construct 2 − UV in S.
call mpmov(s,rr(2),n)
call mpneg(s,n)
s(1)=char(ichar(s(1))-254) Multiply SU into U .
call mpmul(rr,s,u,n,n)
call mpmov(u,rr(2),n)
do 13 j=2,n-1 If fractional part of S is not zero, it has not converged

to 1.if(ichar(s(j)).ne.0)goto 1
enddo 13

continue
return
END

Divisionnow follows as a simple corollary, withonly the necessity of calculating
the reciprocal to sufficient accuracy to get an exactquotient and remainder.

SUBROUTINE mpdiv(q,r,u,v,n,m)
INTEGER m,n,NMAX,MACC
CHARACTER*1 q(n-m+1),r(m),u(n),v(m)
PARAMETER (NMAX=8192,MACC=6)

Divides unsigned radix 256 integers u(1:n) by v(1:m) (with m ≤ n required), yielding a
quotient q(1:n-m+1) and a remainder r(1:m).

C USES mpinv,mpmov,mpmul,mpsad,mpsub
INTEGER is
CHARACTER*1 rr(2*NMAX),s(2*NMAX)
if(n+MACC.gt.NMAX)pause ’NMAX too small in mpdiv’

912 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

call mpinv(s,v,n+MACC,m) Set S = 1/V .
call mpmul(rr,s,u,n+MACC,n) Set Q = SU .
call mpsad(s,rr,n+n+MACC/2,1)
call mpmov(q,s(3),n-m+1)
call mpmul(rr,q,v,n-m+1,m) Multiply and subtract to get the remainder.
call mpsub(is,rr(2),u,rr(2),n)
if (is.ne.0) pause ’MACC too small in mpdiv’
call mpmov(r,rr(n-m+2),m)
return
END

Square roots are calculated by a Newton’s rule much like division. If

Ui+1 =
1

2
Ui(3 − V U2

i
) (20.6.5)

thenU∞ converges quadratically to1/
√
V . A final multiplication byV gives

√
V .

SUBROUTINE mpsqrt(w,u,v,n,m)
INTEGER m,n,NMAX,MF
CHARACTER*1 w(*),u(*),v(*)
REAL BI
PARAMETER (NMAX=2048,MF=3,BI=1./256.)

C USES mplsh,mpmov,mpmul,mpneg,mpsdv
Character string v(1:m) is interpreted as a radix 256 number with the radix point after
v(1); w(1:n) is set to its square root (radix point after w(1)), and u(1:n) is set to the
reciprocal thereof (radix point before u(1)). w and u need not be distinct, in which case
they are set to the square root.

INTEGER i,ir,j,mm
REAL fu,fv
CHARACTER*1 r(NMAX),s(NMAX)
if(2*n+1.gt.NMAX)pause ’NMAX too small in mpsqrt’
mm=min(m,MF)
fv=ichar(v(mm)) Use ordinary floating arithmetic to get an initial approx-

imation.do 11 j=mm-1,1,-1
fv=BI*fv+ichar(v(j))

enddo 11

fu=1./sqrt(fv)
do 12 j=1,n

i=int(fu)
u(j)=char(i)
fu=256.*(fu-i)

enddo 12

1 continue Iterate Newton’s rule to convergence.
call mpmul(r,u,u,n,n) Construct S = (3 − V U2)/2.
call mplsh(r,n)
call mpmul(s,r,v,n,m)
call mplsh(s,n)
call mpneg(s,n)
s(1)=char(ichar(s(1))-253)
call mpsdv(s,s,n,2,ir)
do 13 j=2,n-1 If fractional part of S is not zero, it has not converged

to 1.if(ichar(s(j)).ne.0)goto 2
enddo 13

call mpmul(r,u,v,n,m) Get square root from reciprocal and return.
call mpmov(w,r(2),n)
return

2 continue
call mpmul(r,s,u,n,n) Replace U by SU .
call mpmov(u,r(2),n)

goto 1
END

20.6 Arithmetic at Arbitrary Precision 913

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

We already mentioned that radix conversion to decimal is a merely cosmetic
operation that should normally be omitted. The simplest way to convert a fraction to
decimal is to multiply it repeatedly by10, picking off (and subtracting) the resulting
integer part. This, has an operations count ofO(N2), however, since each liberated
decimal digit takes anO(N) operation. Itis possible to do the radix conversion as
a fast operation by a “divide and conquer” strategy, in which the fraction is (fast)
multiplied by a large power of 10, enough to move about half the desired digits
to the left of the radix point. The integer and fractional pieces are now processed
independently, each further subdivided. If our goal were a few billion digits ofπ,
instead of a few thousand, we would need to implement this scheme. For present
purposes, the following lazy routine is adequate:

SUBROUTINE mp2dfr(a,s,n,m)
INTEGER m,n,IAZ
CHARACTER*1 a(*),s(*)
PARAMETER (IAZ=48)

C USES mplsh,mpsmu
Converts a radix 256 fraction a(1:n) (radix point before a(1)) to a decimal fraction
represented as an ascii string s(1:m), where m is a returned value. The input array a(1:n)
is destroyed. NOTE: For simplicity, this routine implements a slow (∝ N2) algorithm. Fast
(∝ N lnN), more complicated, radix conversion algorithms do exist.

INTEGER j
m=2.408*n
do 11 j=1,m

call mpsmu(a,a,n,10)
s(j)=char(ichar(a(1))+IAZ)
call mplsh(a,n)

enddo 11

return
END

Finally, then, we arrive at a routine implementing equations (20.6.1) and
(20.6.2):

SUBROUTINE mppi(n)
INTEGER n,IAOFF,NMAX
PARAMETER (IAOFF=48,NMAX=8192)

C USES mpinit,mp2dfr,mpadd,mpinv,mplsh,mpmov,mpmul,mpsdv,mpsqrt
Demonstrate multiple precision routines by calculating and printing the first n bytes of π.

INTEGER ir,j,m
CHARACTER*1 x(NMAX),y(NMAX),sx(NMAX),sxi(NMAX),t(NMAX),s(3*NMAX),

* pi(NMAX)
call mpinit
t(1)=char(2) Set T = 2.
do 11 j=2,n

t(j)=char(0)
enddo 11

call mpsqrt(x,x,t,n,n) Set X0 =
√

2.

call mpadd(pi,t,x,n) Set π0 = 2 +
√

2.
call mplsh(pi,n)

call mpsqrt(sx,sxi,x,n,n) Set Y0 = 21/4.
call mpmov(y,sx,n)

1 continue
call mpadd(x,sx,sxi,n) Set Xi+1 = (X

1/2
i + X

−1/2
i)/2.

call mpsdv(x,x(2),n,2,ir)

call mpsqrt(sx,sxi,x,n,n) Form the temporary T = YiX
1/2
i+1 + X

−1/2
i+1 .

call mpmul(t,y,sx,n,n)
call mpadd(t(2),t(2),sxi,n)

914 Chapter 20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

3.1415926535897932384626433832795028841971693993751058209749445923078164062
862089986280348253421170679821480865132823066470938446095505822317253594081
284811174502841027019385211055596446229489549303819644288109756659334461284
756482337867831652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903600113305305488
204665213841469519415116094330572703657595919530921861173819326117931051185
480744623799627495673518857527248912279381830119491298336733624406566430860
213949463952247371907021798609437027705392171762931767523846748184676694051
320005681271452635608277857713427577896091736371787214684409012249534301465
495853710507922796892589235420199561121290219608640344181598136297747713099
605187072113499999983729780499510597317328160963185950244594553469083026425
223082533446850352619311881710100031378387528865875332083814206171776691473
035982534904287554687311595628638823537875937519577818577805321712268066130
019278766111959092164201989380952572010654858632788659361533818279682303019
520353018529689957736225994138912497217752834791315155748572424541506959508
295331168617278558890750983817546374649393192550604009277016711390098488240
128583616035637076601047101819429555961989467678374494482553797747268471040
475346462080466842590694912933136770289891521047521620569660240580381501935
112533824300355876402474964732639141992726042699227967823547816360093417216
412199245863150302861829745557067498385054945885869269956909272107975093029
553211653449872027559602364806654991198818347977535663698074265425278625518
184175746728909777727938000816470600161452491921732172147723501414419735685
481613611573525521334757418494684385233239073941433345477624168625189835694
855620992192221842725502542568876717904946016534668049886272327917860857843
838279679766814541009538837863609506800642251252051173929848960841284886269
456042419652850222106611863067442786220391949450471237137869609563643719172
874677646575739624138908658326459958133904780275900994657640789512694683983
525957098258226205224894077267194782684826014769909026401363944374553050682
034962524517493996514314298091906592509372216964615157098583874105978859597
729754989301617539284681382686838689427741559918559252459539594310499725246
808459872736446958486538367362226260991246080512438843904512441365497627807
977156914359977001296160894416948685558484063534220722258284886481584560285

Figure 20.6.1. The first 2398 decimal digits ofπ, computed by the routines in this section.

x(1)=char(ichar(x(1))+1) Increment Xi+1 and Yi by 1.
y(1)=char(ichar(y(1))+1)
call mpinv(s,y,n,n) Set Yi+1 = T/(Yi + 1).
call mpmul(y,t(3),s,n,n)
call mplsh(y,n)
call mpmul(t,x,s,n,n) Form temporary T = (Xi+1 + 1)/(Yi + 1).
continue If T = 1 then we have converged.

m=mod(255+ichar(t(2)),256)
do 12 j=3,n

if(ichar(t(j)).ne.m)goto 2
enddo 12

if (abs(ichar(t(n+1))-m).gt.1)goto 2
write (*,*) ’pi=’
s(1)=char(ichar(pi(1))+IAOFF)
s(2)=’.’
call mp2dfr(pi(2),s(3),n-1,m)

Convert to decimal for printing. NOTE: The conversion routine, for this demonstra-
tion only, is a slow (∝ N2) algorithm. Fast (∝ N lnN), more complicated, radix
conversion algorithms do exist.

write (*,’(1x,64a1)’) (s(j),j=1,m+1)
return

2 continue
call mpmul(s,pi,t(2),n,n) Set πi+1 = Tπi.
call mpmov(pi,s(2),n)

goto 1
END

20.6 Arithmetic at Arbitrary Precision 915

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Figure 20.6.1 gives the result, computed withn = 1000. As an exercise, you
might enjoy checking the first hundred digits of the figure against the first 12 terms
of Ramanujan’s celebrated identity[3]

1

π
=

√
8

9801

∞
∑

n=0

(4n)! (1103 + 26390n)

(n! 396n)4
(20.6.6)

using the above routines. You might also use the routines to verify that the
number 2512 + 1 is not a prime, but has factors 2,424,833 and
7,455,602,825,647,884,208,337,395,736,200,454,918,783,366,342,657 (which are
in fact prime; the remaining prime factor being about7.416× 1098) [4].

CITED REFERENCES AND FURTHER READING:

Borwein, J.M., and Borwein, P.B. 1987, Pi and the AGM: A Study in Analytic Number Theory
and Computational Complexity (New York: Wiley). [1]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.3. [2]

Ramanujan, S. 1927, Collected Papers of Srinivasa Ramanujan, G.H. Hardy, P.V. Seshu Aiyar,
and B.M. Wilson, eds. (Cambridge, U.K.: Cambridge University Press), pp. 23–39. [3]

Kolata, G. 1990, June 20, The New York Times. [4]

Kronsjö, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley).

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

References

The references collected here are those of general usefulness, usually cited in
more than one section of this book. More specialized sources, usually cited in a
single section, are not repeated here.

We first list a small number of books that form the nucleus of a recommended
personal reference collection on numerical methods, numerical analysis, and closely
related subjects. These are the books that we like to have within easy reach.

Abramowitz, M., and Stegun, I.A. 1964,Handbook of Mathematical
Functions, Applied Mathematics Series, Volume 55 (Washington:
National Bureau of Standards; reprinted 1968 by Dover Publications,
New York)

Acton, F.S. 1970,Numerical Methods That Work; 1990, corrected edition
(Washington: Mathematical Association of America)

Ames, W.F. 1977,Numerical Methods for Partial Differential Equations,
2nd ed. (New York: Academic Press)

Bratley, P., Fox, B.L., and Schrage, E.L.1983,A Guide to Simulation(New
York: Springer-Verlag)

Dahlquist, G., and Bjorck, A. 1974,Numerical Methods(Englewood
Cliffs, NJ: Prentice-Hall)

Delves, L.M., and Mohamed, J.L. 1985,Computational Methods for Inte-
gral Equations(Cambridge, U.K.: Cambridge University Press)

Dennis, J.E., and Schnabel, R.B.1983, Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations(Englewood Cliffs,
NJ: Prentice-Hall)

Gill, P.E., Murray, W., and Wright, M.H.1991,Numerical Linear Algebra
and Optimization, vol. 1 (Redwood City, CA: Addison-Wesley)

Golub, G.H., and Van Loan, C.F. 1989,Matrix Computations, 2nd ed.
(Baltimore: Johns Hopkins University Press)

Oppenheim, A.V., and Schafer, R.W. 1989,Discrete-Time Signal Process-
ing (Englewood Cliffs, NJ: Prentice-Hall)

Ralston, A., and Rabinowitz, P. 1978,A First Course in Numerical Analysis,
2nd ed. (New York: McGraw-Hill)

Sedgewick, R. 1988,Algorithms, 2nd ed. (Reading, MA: Addison-Wesley)

Stoer, J., and Bulirsch, R. 1980,Introduction to Numerical Analysis(New
York: Springer-Verlag)

Wilkinson,J.H., and Reinsch, C. 1971,Linear Algebra, vol. II of Handbook
for Automatic Computation(New York: Springer-Verlag)

916

References 917

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

We next list the larger collection of books,which, in our view, shouldbe included
in any serious research library on computing, numerical methods, or analysis.

Bevington, P.R. 1969,Data Reduction and Error Analysis for the Physical Sciences
(New York: McGraw-Hill)

Bloomfield, P. 1976,Fourier Analysis of Time Series – An Introduction(New York:
Wiley)

Bowers, R.L., and Wilson, J.R. 1991,Numerical Modeling in Applied Physics and
Astrophysics(Boston: Jones & Bartlett)

Brent, R.P. 1973,Algorithms for Minimization without Derivatives(Englewood
Cliffs, NJ: Prentice-Hall)

Brigham, E.O. 1974,The Fast Fourier Transform(Englewood Cliffs, NJ: Prentice-
Hall)

Brownlee, K.A. 1965,Statistical Theory and Methodology, 2nd ed. (New York:
Wiley)

Bunch, J.R., and Rose, D.J. (eds.) 1976,Sparse Matrix Computations(New York:
Academic Press)

Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A. 1988,Spectral Methods
in Fluid Dynamics(New York: Springer-Verlag)

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969,Applied Numerical Methods
(New York: Wiley)

Champeney,D.C. 1973,Fourier Transformsand Their Physical Applications(New
York: Academic Press)

Childers, D.G. (ed.) 1978,Modern Spectrum Analysis(New York: IEEE Press)
Cooper, L., and Steinberg, D. 1970,Introduction to Methods of Optimization

(Philadelphia: Saunders)
Dantzig, G.B. 1963,Linear Programmingand Extensions(Princeton, NJ: Princeton

University Press)
Devroye, L. 1986,Non-Uniform Random Variate Generation(New York: Springer-

Verlag)
Dongarra, J.J., et al. 1979,LINPACK User’s Guide(Philadelphia: S.I.A.M.)
Downie, N.M., and Heath, R.W. 1965,Basic Statistical Methods, 2nd ed. (New

York: Harper & Row)
Duff, I.S., and Stewart, G.W. (eds.) 1979,Sparse Matrix Proceedings 1978

(Philadelphia: S.I.A.M.)
Elliott, D.F., and Rao, K.R.1982,Fast Transforms: Algorithms, Analyses, Appli-

cations(New York: Academic Press)
Fike, C.T. 1968,Computer Evaluation of Mathematical Functions(Englewood

Cliffs, NJ: Prentice-Hall)
Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977,Computer Methods for

Mathematical Computations(Englewood Cliffs, NJ: Prentice-Hall)
Forsythe, G.E., and Moler, C.B. 1967,Computer Solution of Linear Algebraic

Systems(Englewood Cliffs, NJ: Prentice-Hall)
Gass, S.T. 1969,Linear Programming, 3rd ed. (New York: McGraw-Hill)
Gear, C.W. 1971,Numerical Initial Value Problems in Ordinary Differential Equa-

tions (Englewood Cliffs, NJ: Prentice-Hall)
Goodwin, E.T. (ed.) 1961,Modern Computing Methods, 2nd ed. (New York:

Philosophical Library)
Gottlieb, D. and Orszag, S.A.1977, Numerical Analysis of Spectral Methods:

Theory and Applications(Philadelphia: S.I.A.M.)
Hackbusch, W. 1985,Multi-Grid Methods and Applications(New York: Springer-

Verlag)

918 References

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Hamming, R.W. 1962,Numerical Methods for Engineers and Scientists; reprinted
1986 (New York: Dover)

Hart, J.F., et al. 1968,Computer Approximations(New York: Wiley)
Hastings, C. 1955,Approximations for Digital Computers(Princeton: Princeton

University Press)
Hildebrand, F.B. 1974,Introduction to Numerical Analysis, 2nd ed.; reprinted 1987

(New York: Dover)
Hoel, P.G. 1971,Introduction to Mathematical Statistics, 4th ed. (New York: Wiley)
Horn, R.A., and Johnson, C.R. 1985,Matrix Analysis(Cambridge: Cambridge

University Press)
Householder, A.S. 1970,The Numerical Treatment of a Single Nonlinear Equation

(New York: McGraw-Hill)
Huber, P.J. 1981,Robust Statistics(New York: Wiley)
Isaacson, E., and Keller, H.B. 1966,Analysis of Numerical Methods(New York:

Wiley)
Jacobs, D.A.H. (ed.) 1977,The State of the Art in Numerical Analysis(London:

Academic Press)
Johnson, L.W., and Riess, R.D. 1982,Numerical Analysis, 2nd ed. (Reading, MA:

Addison-Wesley)
Kahaner, D., Moler, C., and Nash, S. 1989,Numerical Methods and Software

(Englewood Cliffs, NJ: Prentice Hall)
Keller, H.B. 1968,Numerical Methods for Two-Point Boundary-Value Problems

(Waltham, MA: Blaisdell)
Knuth, D.E. 1968,Fundamental Algorithms, vol. 1 of The Art of Computer

Programming(Reading, MA: Addison-Wesley)
Knuth, D.E. 1981,Seminumerical Algorithms, 2nd ed., vol. 2 ofThe Art of

Computer Programming(Reading, MA: Addison-Wesley)
Knuth, D.E. 1973,Sorting and Searching, vol. 3 ofThe Art of Computer Program-

ming (Reading, MA: Addison-Wesley)
Koonin, S.E., and Meredith, D.C. 1990,Computational Physics, Fortran Version

(Redwood City, CA: Addison-Wesley)
Kuenzi, H.P., Tzschach, H.G., and Zehnder, C.A. 1971,Numerical Methods of

Mathematical Optimization(New York: Academic Press)
Lanczos, C. 1956,Applied Analysis; reprinted 1988 (New York: Dover)
Land, A.H., and Powell, S. 1973,Fortran Codes for Mathematical Programming

(London: Wiley-Interscience)
Lawson, C.L., and Hanson, R. 1974,Solving Least Squares Problems(Englewood

Cliffs, NJ: Prentice-Hall)
Lehmann, E.L. 1975,Nonparametrics: Statistical Methods Based on Ranks(San

Francisco: Holden-Day)
Luke, Y.L. 1975,Mathematical Functions and Their Approximations(New York:

Academic Press)
Magnus, W., and Oberhettinger, F. 1949,Formulas and Theoremsfor the Functions

of Mathematical Physics(New York: Chelsea)
Martin, B.R. 1971,Statistics for Physicists(New York: Academic Press)
Mathews, J., and Walker, R.L. 1970,Mathematical Methods of Physics, 2nd ed.

(Reading, MA: W.A. Benjamin/Addison-Wesley)
von Mises, R. 1964,Mathematical Theory of Probability and Statistics(New York:

Academic Press)
Murty, K.G. 1976,Linear and Combinatorial Programming(New York: Wiley)
Norusis, M.J. 1982,SPSS Introductory Guide: Basic Statistics and Operations; and

1985,SPSS-X Advanced Statistics Guide(New York: McGraw-Hill)

References 919

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Nussbaumer, H.J. 1982,Fast Fourier Transform and Convolution Algorithms
(New York: Springer-Verlag)

Ortega, J., and Rheinboldt, W. 1970,Iterative Solution of Nonlinear Equations in
Several Variables(New York: Academic Press)

Ostrowski, A.M. 1966,Solutions of Equations and Systems of Equations, 2nd ed.
(New York: Academic Press)

Polak, E. 1971,Computational Methods in Optimization(New York: Academic
Press)

Rice, J.R. 1983,Numerical Methods, Software, and Analysis(New York: McGraw-
Hill)

Richtmyer, R.D., and Morton, K.W. 1967,Difference Methods for Initial Value
Problems, 2nd ed. (New York: Wiley-Interscience)

Roache, P.J. 1976,Computational Fluid Dynamics(Albuquerque: Hermosa)
Robinson, E.A., and Treitel, S. 1980,Geophysical Signal Analysis(Englewood

Cliffs, NJ: Prentice-Hall)
Smith, B.T., et al. 1976,Matrix Eigensystem Routines — EISPACK Guide, 2nd ed.,

vol. 6 of Lecture Notes in Computer Science (New York: Springer-Verlag)
Stuart, A., and Ord, J.K. 1987,Kendall’s Advanced Theory of Statistics, 5th ed.

(London: Griffin and Co.) [previous eds. published as Kendall, M., and Stuart,
A., The Advanced Theory of Statistics]

Tewarson, R.P. 1973,Sparse Matrices(New York: Academic Press)
Westlake, J.R. 1968,A Handbook of Numerical Matrix Inversion and Solution of

Linear Equations(New York: Wiley)
Wilkinson, J.H. 1965,The Algebraic Eigenvalue Problem(New York: Oxford

University Press)
Young, D.M., and Gregory, R.T. 1973,A Survey of NumericalMathematics, 2 vols.;

reprinted 1988 (New York: Dover)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Index of Programs and Dependencies

The following table lists, in alphabetical order, all the routines inNumerical
Recipes. When a routine requires subsidiary routines, either from this book or else
user-supplied, the full dependency tree is shown: A routine calls directly all routines
to which it is connected by a solid line in the column immediately to its right; it
calls indirectly the connected routines in all columns to its right. Typographical
conventions: Routines from this book are in typewriter font (e.g.,eulsum, gammln).
The smaller, slanted font is used for the second and subsequent occurences of a
routine in a single dependency tree. (When you are getting routines from the
Numerical Recipesdiskettes, or their archive files, you need only specify names in
the larger, upright font.) User-supplied routines are indicated by the use of text
font and square brackets, e.g., [funcv]. Consult the text for individual specifications
of these routines. The right-hand side of the table lists section and page numbers
for each program.

addint interp §19.6 (p. 871)

airy bessik §6.7 (p. 244)
bessjy beschb chebev

amebsa ran1 §10.9 (p. 445)
amotsa [funk]

ran1

[funk]

amoeba amotry [funk] §10.4 (p. 404)
[funk]

amotry [funk] §10.4 (p. 405)

amotsa [funk] §10.9 (p. 446)
ran1

anneal ran3 §10.9 (p. 439)
irbit1

trncst

metrop ran3

trnspt

revcst

revers

anorm2 §19.6 (p. 879)

arcmak §20.5 (p. 904)

arcode arcsum §20.5 (p. 904)

arcsum §20.5 (p. 906)

avevar §14.2 (p. 611)

badluk julday §1.1 (p. 14)
flmoon

balanc §11.5 (p. 477)

920

Index of Programs and Dependencies 921

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

banbks §2.4 (p. 46)

bandec §2.4 (p. 45)

banmul §2.4 (p. 44)

bcucof §3.6 (p. 119)

bcuint bcucof §3.6 (p. 120)

beschb chebev §6.7 (p. 239)

bessi bessi0 §6.6 (p. 233)

bessi0 §6.6 (p. 230)

bessi1 §6.6 (p. 231)

bessik beschb chebev §6.7 (p. 241)

bessj bessj0 §6.5 (p. 228)
bessj1

bessj0 §6.5 (p. 225)

bessj1 §6.5 (p. 226)

bessjy beschb chebev §6.7 (p. 236)

bessk bessk0 bessi0 §6.6 (p. 232)
bessk1 bessi1

bessk0 bessi0 §6.6 (p. 231)

bessk1 bessi1 §6.6 (p. 232)

bessy bessy1 bessj1 §6.5 (p. 227)
bessy0 bessj0

bessy0 bessj0 §6.5 (p. 226)

bessy1 bessj1 §6.5 (p. 227)

beta gammln §6.1 (p. 209)

betacf §6.4 (p. 221)

betai gammln §6.4 (p. 220)
betacf

bico factln gammln §6.1 (p. 208)

bksub §17.3 (p. 761)

bnldev ran1 §7.3 (p. 285)
gammln

brent [func] §10.2 (p. 397)

broydn fmin §9.7 (p. 383)
fdjac [funcv]
qrdcmp

qrupdt rotate

rsolv

lnsrch fmin [funcv]

bsstep mmid [derivs] §16.4 (p. 722)
pzextr

caldat §1.1 (p. 16)

922 Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

chder §5.9 (p. 189)

chebev §5.8 (p. 187)

chebft [func] §5.8 (p. 186)

chebpc §5.10 (p. 191)

chint §5.9 (p. 189)

chixy §15.3 (p. 663)

choldc §2.9 (p. 90)

cholsl §2.9 (p. 90)

chsone gammq gser §14.3 (p. 615)
gcf gammln

chstwo gammq gser §14.3 (p. 616)
gcf gammln

cisi §6.9 (p. 251)

cntab1 gammq gser §14.4 (p. 625)
gcf gammln

cntab2 §14.4 (p. 629)

convlv twofft §13.1 (p. 536)
realft four1

copy §19.6 (p. 873)

correl twofft §13.2 (p. 539)
realft four1

cosft1 realft four1 §12.3 (p. 512)

cosft2 realft four1 §12.3 (p. 514)

covsrt §15.4 (p. 669)

crank §14.6 (p. 636)

cyclic tridag §2.7 (p. 68)

daub4 §13.10 (p. 588)

dawson §6.10 (p. 253)

dbrent [func] §10.3 (p. 400)
[dfunc]

ddpoly §5.3 (p. 168)

decchk §20.3 (p. 895)

df1dim [dfunc] §10.6 (p. 417)

dfour1 DOUBLE PRECISION version offour1, q.v.

dfpmin [func] §10.7 (p. 421)
[dfunc]
lnsrch [func]

dfridr [func] §5.7 (p. 182)

dftcor §13.9 (p. 580)

Index of Programs and Dependencies 923

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

dftint [func] §13.9 (p. 581)
realft four1

polint

dftcor

difeq §17.4 (p. 769)

dpythag DOUBLE PRECISION version ofpythag, q.v.

drealft DOUBLE PRECISION version ofrealft, q.v.

dsprsax DOUBLE PRECISION version ofsprsax, q.v.

dsprstx DOUBLE PRECISION version ofsprstx, q.v.

dsvbksb DOUBLE PRECISION version ofsvbksb, q.v.

dsvdcmp DOUBLE PRECISION version ofsvdcmp, q.v.

eclass §8.6 (p. 338)

eclazz [equiv] §8.6 (p. 339)

ei §6.3 (p. 218)

eigsrt §11.1 (p. 462)

elle rf §6.11 (p. 261)
rd

ellf rf §6.11 (p. 260)

ellpi rf §6.11 (p. 261)
rj rc

rf

elmhes §11.5 (p. 479)

erf gammp gser §6.2 (p. 213)
gcf gammln

erfc gammp gser §6.2 (p. 214)
gcf gammln

gammq gser

gcf gammln

erfcc §6.2 (p. 214)

eulsum §5.1 (p. 161)

evlmem §13.7 (p. 567)

expdev ran1 §7.2 (p. 278)

expint §6.3 (p. 217)

f1dim [func] §10.5 (p. 413)

factln gammln §6.1 (p. 208)

factrl gammln §6.1 (p. 207)

fasper avevar §13.8 (p. 575)
spread

realft four1

fdjac [funcv] §9.7 (p. 381)

fgauss §15.5 (p. 683)

fill0 §19.6 (p. 873)

924 Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fit gammq gser §15.2 (p. 659)
gcf gammln

fitexy avevar §15.3 (p. 662)
fit gammq gser

gcf gammln

chixy

mnbrak

brent

gammq gser

gcf gammln

zbrent chixy

fixrts zroots laguer §13.6 (p. 562)

fleg §15.4 (p. 674)

flmoon §1.0 (p. 1)

fmin [funcv] §9.7 (p. 381)

four1 §12.2 (p. 501)

fourew §12.6 (p. 528)

fourfs fourew §12.6 (p. 525)

fourn §12.4 (p. 518)

fpoly §15.4 (p. 674)

fred2 gauleg §18.1 (p. 784)
[ak]
[g]
ludcmp

lubksb

fredex quadmx wwghts kermom §18.3 (p. 793)
ludcmp

lubksb

fredin [ak] §18.1 (p. 784)
[g]

frenel §6.9 (p. 249)

frprmn [func] §10.6 (p. 416)
[dfunc]
linmin mnbrak

brent f1dim [func]

ftest avevar §14.2 (p. 613)
betai gammln

betacf

gamdev ran1 §7.3 (p. 283)

gammln §6.1 (p. 207)

gammp gser §6.2 (p. 211)
gcf gammln

Index of Programs and Dependencies 925

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

gammq gser §6.2 (p. 211)
gcf gammln

gasdev ran1 §7.2 (p. 280)

gaucof tqli pythag §4.5 (p. 151)
eigsrt

gauher §4.5 (p. 147)

gaujac gammln §4.5 (p. 148)

gaulag gammln §4.5 (p. 146)

gauleg §4.5 (p. 145)

gaussj §2.1 (p. 30)

gcf gammln §6.2 (p. 212)

golden [func] §10.1 (p. 394)

gser gammln §6.2 (p. 212)

hpsel sort §8.5 (p. 336)

hpsort §8.3 (p. 329)

hqr §11.6 (p. 484)

hufapp §20.4 (p. 899)

hufdec §20.4 (p. 900)

hufenc §20.4 (p. 900)

hufmak hufapp §20.4 (p. 898)

hunt §3.4 (p. 112)

hypdrv §6.12 (p. 265)

hypgeo hypser §6.12 (p. 264)
odeint bsstep mmid

pzextr

hypdrv

hypser §6.12 (p. 264)

icrc icrc1 §20.3 (p. 893)

icrc1 §20.3 (p. 892)

igray §20.2 (p. 888)

iindexx INTEGER version ofindexx, q.v.

indexx §8.4 (p. 330)

interp §19.6 (p. 871)

irbit1 §7.4 (p. 288)

irbit2 §7.4 (p. 290)

jacobi §11.1 (p. 460)

jacobn §16.6 (p. 734)

julday §1.1 (p. 13)

kendl1 erfcc §14.6 (p. 638)

kendl2 erfcc §14.6 (p. 639)

kermom §18.3 (p. 792)

926 Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

ks2d1s quadct §14.7 (p. 642)
quadvl

pearsn betai gammln

betacf

probks

ks2d2s quadct §14.7 (p. 643)
pearsn betai gammln

betacf

probks

ksone sort §14.3 (p. 619)
[func]
probks

kstwo sort §14.3 (p. 619)
probks

laguer §9.5 (p. 366)

lfit [funcs] §15.4 (p. 668)
gaussj

covsrt

linbcg atimes §2.7 (p. 79)
snrm

asolve

linmin mnbrak §10.5 (p. 412)
brent f1dim [func]

lnsrch [func] §9.7 (p. 378)

locate §3.4 (p. 111)

lop §19.6 (p. 879)

lubksb §2.3 (p. 39)

ludcmp §2.3 (p. 38)

machar §20.1 (p. 884)

maloc §19.6 (p. 873)

matadd §19.6 (p. 879)

matsub §19.6 (p. 879)

medfit rofunc select §15.7 (p. 699)

memcof §13.6 (p. 561)

metrop ran3 §10.9 (p. 443)

mgfas maloc §19.6 (p. 877)
rstrct

slvsm2 fill0

interp

copy

relax2

lop

matsub

Index of Programs and Dependencies 927

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

anorm2

matadd

mglin maloc §19.6 (p. 869)
rstrct

slvsml fill0

interp

copy

relax

resid

fill0

addint interp

midinf [func] §4.4 (p. 138)

midpnt [func] §4.4 (p. 136)

miser ranpt ran1 §7.8 (p. 316)
[func]

mmid [derivs] §16.3 (p. 717)

mnbrak [func] §10.1 (p. 393)

mnewt [usrfun] §9.6 (p. 374)
ludcmp

lubksb

moment §14.1 (p. 607)

mp2dfr mpops §20.6 (p. 913)

mpdiv mpinv mpmul drealft dfour1 . . §20.6 (p. 911)
mpops

mpmul drealft dfour1

mpops

mpinv mpmul drealft dfour1 §20.6 (p. 911)
mpops

mpmul drealft dfour1 §20.6 (p. 910)

mpops §20.6 (p. 907)

mppi mpsqrt mpmul drealft dfour1 . . §20.6 (p. 913)
mpops

mpops

mpmul drealft dfour1

mpinv mpmul drealft dfour1

mp2dfr mpops

mprove lubksb §2.5 (p. 48)

mpsqrt mpmul drealft dfour1 §20.6 (p. 912)
mpops

mrqcof [funcs] §15.5 (p. 681)

mrqmin mrqcof [funcs] §15.5 (p. 680)
gaussj

covsrt

928 Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

newt fmin §9.7 (p. 379)
fdjac [funcv]
ludcmp

lubksb

lnsrch fmin [funcv]

odeint [derivs] §16.2 (p. 714)
rkqs [derivs]

rkck [derivs]

orthog §4.5 (p. 153)

pade ludcmp §5.12 (p. 196)
lubksb

mprove lubksb

pccheb §5.11 (p. 193)

pcshft §5.10 (p. 192)

pearsn betai gammln §14.5 (p. 632)
betacf

period avevar §13.8 (p. 572)

piksr2 §8.1 (p. 322)

piksrt §8.1 (p. 321)

pinvs §17.3 (p. 762)

plgndr §6.8 (p. 247)

poidev ran1 §7.3 (p. 284)
gammln

polcoe §3.5 (p. 114)

polcof polint §3.5 (p. 115)

poldiv §5.3 (p. 169)

polin2 polint §3.6 (p. 118)

polint §3.1 (p. 103)

powell [func] §10.5 (p. 411)
linmin mnbrak

brent f1dim [func]

predic §13.6 (p. 562)

probks §14.3 (p. 620)

psdes §7.5 (p. 293)

pwt §13.10 (p. 589)

pwtset §13.10 (p. 589)

pythag §2.6 (p. 62)

pzextr §16.4 (p. 724)

qgaus [func] §4.5 (p. 141)

qrdcmp §2.10 (p. 92)

Index of Programs and Dependencies 929

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

qromb trapzd [func] §4.3 (p. 134)
polint

qromo midpnt [func] §4.4 (p. 137)
polint

qroot poldiv §9.5 (p. 371)

qrsolv rsolv §2.10 (p. 93)

qrupdt rotate §2.10 (p. 94)

qsimp trapzd [func] §4.2 (p. 133)

qtrap trapzd [func] §4.2 (p. 131)

quad3d qgaus [func] §4.6 (p. 157)
[y1]
[y2]
[z1]
[z2]

quadct §14.7 (p. 642)

quadmx wwghts kermom §18.3 (p. 793)

quadvl §14.7 (p. 643)

ran0 §7.1 (p. 270)

ran1 §7.1 (p. 271)

ran2 §7.1 (p. 272)

ran3 §7.1 (p. 273)

ran4 psdes §7.5 (p. 294)

rank §8.4 (p. 333)

ranpt ran1 §7.8 (p. 318)

ratint §3.2 (p. 106)

ratlsq [fn] §5.13 (p. 200)
dsvdcmp dpythag

dsvbksb

ratval

ratval §5.3 (p. 170)

rc §6.11 (p. 259)

rd §6.11 (p. 257)

realft four1 §12.3 (p. 507)

rebin §7.8 (p. 314)

red §17.3 (p. 763)

relax §19.6 (p. 872)

relax2 §19.6 (p. 878)

resid §19.6 (p. 872)

revcst §10.9 (p. 441)

revers §10.9 (p. 442)

rf §6.11 (p. 257)

930 Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

rj rc §6.11 (p. 258)
rf

rk4 [derivs] §16.1 (p. 706)

rkck [derivs] §16.2 (p. 713)

rkdumb [derivs] §16.1 (p. 707)
rk4 [derivs]

rkqs rkck [derivs] §16.2 (p. 712)

rlft3 fourn §12.5 (p. 522)

rofunc select §15.7 (p. 700)

rotate §2.10 (p. 95)

rsolv §2.10 (p. 93)

rstrct §19.6 (p. 870)

rtbis [func] §9.1 (p. 347)

rtflsp [func] §9.2 (p. 349)

rtnewt [funcd] §9.4 (p. 358)

rtsafe [funcd] §9.4 (p. 359)

rtsec [func] §9.2 (p. 350)

rzextr §16.4 (p. 725)

savgol ludcmp §14.8 (p. 646)
lubksb

scrsho [func] §9.0 (p. 342)

select §8.5 (p. 334)

selip shell §8.5 (p. 335)

sfroid plgndr §17.4 (p. 768)
solvde difeq

pinvs

red

bksub

shell §8.1 (p. 323)

shoot [load] §17.1 (p. 750)
odeint [derivs]

rkqs rkck [derivs]
[score]

shootf [load1] §17.2 (p. 752)
odeint [derivs]

rkqs rkck [derivs]
[score]
[load2]

simp1 §10.8 (p. 434)

simp2 §10.8 (p. 434)

simp3 §10.8 (p. 435)

Index of Programs and Dependencies 931

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

simplx simp1 §10.8 (p. 432)
simp2

simp3

simpr ludcmp §16.6 (p. 736)
lubksb

[derivs]

sinft realft four1 §12.3 (p. 511)

slvsm2 fill0 §19.6 (p. 878)

slvsml fill0 §19.6 (p. 872)

sncndn §6.11 (p. 262)

snrm §2.7 (p. 81)

sobseq §7.7 (p. 302)

solvde difeq §17.3 (p. 760)
pinvs

red

bksub

sor §19.5 (p. 860)

sort §8.2 (p. 324)

sort2 §8.2 (p. 326)

sort3 indexx §8.4 (p. 332)

spctrm four1 §13.4 (p. 550)

spear sort2 §14.6 (p. 635)
crank

erfcc

betai gammln

betacf

sphbes bessjy beschb chebev §6.7 (p. 245)

sphfpt newt fdjac shootf (q.v.) §17.4 (p. 772)
lnsrch

fmin shootf (q.v.)
ludcmp

lubksb

sphoot newt fdjac shoot (q.v.) §17.4 (p. 771)
lnsrch

fmin shoot (q.v.)
ludcmp

lubksb

splie2 spline §3.6 (p. 121)

splin2 splint §3.6 (p. 121)
spline

spline §3.3 (p. 109)

splint §3.3 (p. 110)

spread §13.8 (p. 576)

932 Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

sprsax §2.7 (p. 72)

sprsin §2.7 (p. 72)

sprspm §2.7 (p. 75)

sprstm §2.7 (p. 76)

sprstp iindexx §2.7 (p. 73)

sprstx §2.7 (p. 73)

stifbs jacobn §16.6 (p. 737)
simpr ludcmp

lubksb

[derivs]
pzextr

stiff jacobn §16.6 (p. 732)
ludcmp

lubksb

[derivs]

stoerm [derivs] §16.5 (p. 726)

svbksb §2.6 (p. 56)

svdcmp pythag §2.6 (p. 59)

svdfit [funcs] §15.4 (p. 672)
svdcmp pythag

svbksb

svdvar §15.4 (p. 673)

toeplz §2.8 (p. 88)

tptest avevar §14.2 (p. 612)
betai gammln

betacf

tqli pythag §11.3 (p. 473)

trapzd [func] §4.2 (p. 131)

tred2 §11.2 (p. 467)

tridag §2.4 (p. 43)

trncst §10.9 (p. 442)

trnspt §10.9 (p. 442)

ttest avevar §14.2 (p. 610)
betai gammln

betacf

tutest avevar §14.2 (p. 611)
betai gammln

betacf

twofft four1 §12.3 (p. 505)

vander §2.8 (p. 84)

Index of Programs and Dependencies 933

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

vegas rebin §7.8 (p. 311)
ran2

[fxn]

voltra [g] §18.2 (p. 787)
[ak]
ludcmp

lubksb

wt1 daub4 §13.10 (p. 587)

wtn daub4 §13.10 (p. 595)

wwghts kermom §18.3 (p. 791)

zbrac [func] §9.1 (p. 345)

zbrak [func] §9.1 (p. 345)

zbrent [func] §9.3 (p. 354)

zrhqr balanc §9.5 (p. 368)
hqr

zriddr [func] §9.2 (p. 351)

zroots laguer §9.5 (p. 367)

General Index to Volumes 1 and 2

In this index, page numbers 1 through 934 refer to Volume 1,Numerical Recipes in Fortran 77, while
page numbers 935 through 1446 refer to Volume 2,Numerical Recipes in Fortran 90. Front matter in
Volume 1 is indicated by page numbers in the range 1/i through 1/xxxi, while front matter in Volume
2 is indicated 2/i through 2/xx.

Abstract data types 2/xiii,1030
Accelerated convergence of series 160ff.,

1070
Accuracy 19f.

achievable in minimization 392, 397, 404
achievable in root finding 346f.
contrasted with fidelity 832, 840
CPU different from memory 181
vs. stability 704, 729, 830, 844

Accuracy parameters 1362f.
Acknowledgments 1/xvi, 2/ix
Ada 2/x
Adams-Bashford-Moulton method 741
Adams’ stopping criterion 366
Adaptive integration 123, 135, 703, 708ff.,

720, 726, 731f., 737, 742ff., 788, 1298ff.,
1303, 1308f.

Monte Carlo 306ff., 1161ff.
Addition, multiple precision 907, 1353
Addition theorem, elliptic integrals 255
ADI (alternating direction implicit) method

847, 861f., 906
Adjoint operator 867
Adobe Illustrator 1/xvi, 2/xx
Advective equation 826
AGM (arithmetic geometric mean) 906
Airy function 204, 234, 243f.

routine for 244f., 1121
Aitken’s delta squared process 160
Aitken’s interpolation algorithm 102
Algol 2/x, 2/xiv
Algorithms, non-numerical 881ff., 1343ff.
Aliasing 495, 569

see alsoFourier transform
all() intrinsic function 945, 948
All-poles model 566

see alsoMaximum entropy method (MEM)
All-zeros model 566

see alsoPeriodogram
Allocatable array 938, 941, 952ff., 1197,

1212, 1266, 1293, 1306, 1336
allocate statement 938f., 941, 953f., 1197,

1266, 1293, 1306, 1336
allocated() intrinsic function 938, 952ff.,

1197, 1266, 1293
Allocation status 938, 952ff., 961, 1197,

1266, 1293

Alpha AXP 2/xix
Alternating-direction implicit method (ADI)

847, 861f., 906
Alternating series 160f., 1070
Alternative extended Simpson’s rule 128
American National Standards Institute (ANSI)

2/x, 2/xiii
Amoeba 403

see alsoSimplex, method of Nelder and
Mead

Amplification factor 828, 830, 832, 840, 845f.
Amplitude error 831
Analog-to-digital converter 812, 886
Analyticity 195
Analyze/factorize/operate package 64, 824
Anderson-Darling statistic 621
Andrew’s sine 697
Annealing, method of simulated 387f., 436ff.,

1219ff.
assessment 447
for continuous variables 437, 443ff., 1222
schedule 438
thermodynamic analogy 437
traveling salesman problem 438ff., 1219ff.

ANSI (American National Standards Institute)
2/x, 2/xiii

Antonov-Saleev variant of Sobol’ sequence
300, 1160

any() intrinsic function 945, 948
APL (computer language) 2/xi
Apple 1/xxiii

Macintosh 2/xix, 4, 886
Approximate inverse of matrix 49
Approximation of functions 99, 1043

by Chebyshev polynomials 185f., 513,
1076ff.

Padé approximant 194ff., 1080f.
by rational functions 197ff., 1081f.
by wavelets 594f., 782
see alsoFitting

Argument
keyword 2/xiv, 947f., 1341
optional 2/xiv, 947f., 1092, 1228, 1230,

1256, 1272, 1275, 1340
Argument checking 994f., 1086, 1090, 1092,

1370f.

934

Index to Volumes 1 and 2 935

Arithmetic
arbitrary precision 881, 906ff., 1352ff.
floating point 881, 1343
IEEE standard 276, 882, 1343
rounding 882, 1343

Arithmetic coding 881, 902ff., 1349ff.
Arithmetic-geometric mean (AGM) method

906
Arithmetic-if statement 2/xi
Arithmetic progression 971f., 996, 1072,

1127, 1365, 1371f.
Array 953ff.

allocatable 938, 941, 952ff., 1197, 1212,
1266, 1293, 1306, 1336

allocated with pointer 941
allocation 953
array manipulation functions 950
array sections 939, 941, 943ff.
of arrays 2/xii, 956, 1336
associated pointer 953f.
assumed-shape 942
automatic 938, 954, 1197, 1212, 1336
centered subarray of 113
conformable to a scalar 942f., 965, 1094
constructor 2/xii, 968, 971, 1022, 1052,

1055, 1127
copying 991, 1034, 1327f., 1365f.
cumulative product 997f., 1072, 1086,

1375
cumulative sum 997, 1280f., 1365, 1375
deallocation 938, 953f., 1197, 1266, 1293
disassociated pointer 953
extents 938, 949
in Fortran 90 941
increasing storage for 955, 1070, 1302
index loss 967f.
index table 1173ff.
indices 942
inquiry functions 948ff.
intrinsic procedures 2/xiii,948ff.
of length 0 944
of length 1 949
location of first “true” 993, 1041, 1369
location of maximum value 993, 1015,

1017, 1365, 1369
location of minimum value 993, 1369f.
manipulation functions 950, 1247
masked swapping of elements in two arrays

1368
operations on 942, 949, 964ff., 969, 1026,

1040, 1050, 1200, 1326
outer product 949, 1076
parallel features 941ff., 964ff., 985
passing variable number of arguments to

function 1022
of pointers forbidden 956, 1337
rank 938, 949
reallocation 955, 992, 1070f., 1365, 1368f.
reduction functions 948ff.
shape 938, 944, 949
size 938
skew sections 945, 985
stride 944
subscript bounds 942
subscript triplet 944

swapping elements of two arrays 991,
1015, 1365ff.

target 938
three-dimensional, in Fortran 90 1248
transformational functions 948ff.
unary and binary functions 949
undefined status 952ff., 961, 1266, 1293
zero-length 944

Array section 2/xiii,943ff., 960
matches by shape 944
pointer alias 939, 944f., 1286, 1333
skew 2/xii, 945, 960, 985, 1284
vs. eoshift 1078

array copy() utility function 988, 991, 1034,
1153, 1278, 1328

arth() utility function 972, 974, 988, 996,
1072, 1086, 1127

replaces do-list 968
Artificial viscosity 831, 837
Ascending transformation, elliptic integrals

256
ASCII character set 6, 888, 896, 902
Assembly language 269
assert() utility function 988, 994, 1086, 1090,

1249
asserteq() utility function 988, 995, 1022
associated() intrinsic function 952f.
Associated Legendre polynomials 246ff., 764,

1122f., 1319
recurrence relation for 247
relation to Legendre polynomials 246

Association, measures of 604, 622ff., 1275
Assumed-shape array 942
Asymptotic series 161

exponential integral 218
Attenuation factors 583, 1261
Autocorrelation 492

in linear prediction 558
use of FFT 538f., 1254
Wiener-Khinchin theorem 492, 566f.

AUTODIN-II polynomial 890
Automatic array 938, 954, 1197, 1212, 1336

specifying size of 938, 954
Automatic deallocation 2/xv, 961
Autonomous differential equations 729f.
Autoregressive model (AR)seeMaximum en-

tropy method (MEM)
Average deviation of distribution 605, 1269
Averaging kernel, in Backus-Gilbert method

807

Backsubstitution 33ff., 39, 42, 92,1017
in band diagonal matrix 46, 1021
in Cholesky decomposition 90,1039
complex equations 41
direct for computingA−1

· B 40
with QR decomposition 93,1040
relaxation solution of boundary value prob-

lems 755, 1316
in singular value decomposition 56, 1022f.

Backtracking 419
in quasi-Newton methods 376f., 1195

Backus-Gilbert method 806ff.
Backus, John 2/x
Backward deflation 363

936 Index to Volumes 1 and 2

Bader-Deuflhard method 730, 735, 1310f.
Bairstow’s method 364, 370, 1193
Balancing 476f., 1230f.
Band diagonal matrix 42ff., 1019

backsubstitution 46,1021
LU decomposition 45,1020
multiply by vector 44,1019
storage 44, 1019

Band-pass filter 551, 554f.
wavelets 584, 592f.

Bandwidth limited function 495
Bank accounts, checksum for 894
Bar codes, checksum for 894
Bartlett window 547, 1254ff.
Base case, of recursive procedure 958
Base of representation 19, 882, 1343
BASIC, Numerical Recipes in 1, 2/x, 2/xviii
Basis functions in general linear least squares

665
Bayes’ Theorem 810
Bayesian

approach to inverse problems 799, 810f.,
816f.

contrasted with frequentist 810
vs. historic maximum entropy method

816f.
views on straight line fitting 664

Bays’ shuffle 270
Bernoulli number 132
Bessel functions 223ff., 234ff., 936, 1101ff.

asymptotic form 223f., 229f.
complex 204
continued fraction 234, 239
double precision 223
fractional order 223, 234ff., 1115ff.
Miller’s algorithm 175, 228, 1106
modified 229ff.
modified, fractional order 239ff.
modified, normalization formula 232, 240
modified, routines for 230ff., 1109ff.
normalization formula 175
parallel computation of 1107ff.
recurrence relation 172, 224, 232, 234
reflection formulas 236
reflection formulas, modified functions

241
routines for 225ff., 236ff., 1101ff.
routines for modified functions 241ff.,

1118
series for 160, 223
series forKν 241
series forYν 235
spherical 234, 245, 1121f.
turning point 234
Wronskian 234, 239

Best-fit parameters 650, 656, 660, 698, 1285ff.
see alsoFitting

Beta function 206ff., 1089
incompleteseeIncomplete beta function

BFGS algorithmseeBroyden-Fletcher-Goldfarb-
Shanno algorithm

Bias, of exponent 19
Bias, removal in linear prediction 563
Biconjugacy 77

Biconjugate gradient method
elliptic partial differential equations 824
preconditioning 78f., 824, 1037
for sparse system 77, 599, 1034ff.

Bicubic interpolation 118f., 1049f.
Bicubic spline 120f., 1050f.
Big-endian 293
Bilinear interpolation 117
Binary constant, initialization 959
Binomial coefficients 206ff., 1087f.

recurrences for 209
Binomial probability function 208

cumulative 222f.
deviates from 281, 285f., 1155

Binormal distribution 631, 690
Biorthogonality 77
Bisection 111, 359, 1045f.

compared to minimum bracketing 390ff.
minimum finding with derivatives 399
root finding 343, 346f., 352f., 390, 469,

1184f.
BISYNCH 890
Bit 18

manipulation functionsseeBitwise logical
functions

reversal in fast Fourier transform (FFT)
499f., 525

bit size() intrinsic function 951
Bitwise logical functions 2/xiii, 17,287,

890f., 951
Block-by-block method 788
Block of statements 7
Bode’s rule 126
Boltzmann probability distribution 437
Boltzmann’s constant 437
Bootstrap method 686f.
Bordering method for Toeplitz matrix 85f.
Borwein and Borwein method forπ 906,

1357
Boundary 155f., 425f., 745
Boundary conditions

for differential equations 701f.
initial value problems 702
in multigrid method 868f.
partial differential equations 508, 819ff.,

848ff.
for spheroidal harmonics 764
two-point boundary value problems 702,

745ff., 1314ff.
Boundary value problemsseeDifferential

equations; Elliptic partial differential
equations; Two-point boundary value
problems

Box-Muller algorithm for normal deviate 279f.,
1152

Bracketing
of function minimum 343, 390ff., 402,

1201f.
of roots 341, 343ff., 353f., 362, 364, 369,

390, 1183f.
Branch cut, for hypergeometric function 203
Branching 9
Break iteration 14
Brenner, N.M. 500, 517

Index to Volumes 1 and 2 937

Brent’s method
minimization 389, 395ff., 660f., 1204ff.,

1286
minimization, using derivative 389, 399,

1205
root finding 341, 349, 660f., 1188f., 1286

Broadcast (parallel capability)965ff.
Broyden-Fletcher-Goldfarb-Shanno algorithm

390, 418ff., 1215
Broyden’s method 373, 382f., 386, 1199f.

singular Jacobian 386
btest() intrinsic function 951
Bubble sort 321, 1168
Bugs 4

in compilers 1/xvii
how to report 1/iv, 2/iv

Bulirsch-Stoer
algorithm for rational function interpolation

105f., 1043
method (differential equations) 202, 263,

702f., 706, 716, 718ff., 726, 740, 1138,
1303ff.

method (differential equations), stepsize
control 719, 726

for second order equations 726, 1307
Burg’s LP algorithm 561, 1256
Byte 18

C (programming language) 13, 2/viii
and case construct 1010
Numerical Recipes in 1, 2/x, 2/xvii

C++ 1/xiv, 2/viii, 2/xvi, 7f.
class templates 1083, 1106

Calendar algorithms 1f., 13ff., 1010ff.
Calibration 653
Capital letters in programs 3, 937
Cards, sorting a hand of 321
Carlson’s elliptic integrals255f., 1128ff.
case construct 2/xiv, 1010

trapping errors 1036
Cash-Karp parameters 710, 1299f.
Cauchy probability distributionseeLorentzian

probability distribution
Cauchy problem for partial differential equa-

tions 818f.
Cayley’s representation ofexp(−iHt) 844
CCITT (Comité Consultatif International T´elé-

graphique et T´eléphonique) 889f., 901
CCITT polynomial 889f.
ceiling() intrinsic function 947
Center of mass 295ff.
Central limit theorem 652f.
Central tendency, measures of 604ff., 1269
Change of variable

in integration 137ff., 788, 1056ff.
in Monte Carlo integration 298
in probability distribution 279

Character functions 952
Character variables, in Fortran 90 1183
Characteristic polynomial

digital filter 554
eigensystems 449, 469
linear prediction 559
matrix with a specified 368, 1193
of recurrence relation 175

Characteristics of partial differential equations
818

Chebyshev acceleration in successive over-
relaxation (SOR) 859f., 1332

Chebyshev approximation 84, 124, 183, 184ff.,
1076ff.

Clenshaw-Curtis quadrature 190
Clenshaw’s recurrence formula 187, 1076
coefficients for 185f., 1076
contrasted with Pad´e approximation 195
derivative of approximated function 183,

189, 1077f.
economization of series 192f., 195, 1080
for error function 214, 1095
even function 188
and fast cosine transform 513
gamma functions 236, 1118
integral of approximated function 189,

1078
odd function 188
polynomial fits derived from 191, 1078
rational function 197ff., 1081f.
Remes exchange algorithm for filter 553

Chebyshev polynomials 184ff., 1076ff.
continuous orthonormality 184
discrete orthonormality 185
explicit formulas for 184
formula forxk in terms of 193, 1080

Check digit 894, 1345f.
Checksum 881, 888

cyclic redundancy (CRC) 888ff., 1344f.
Cherry, sundae without a 809
Chi-by-eye 651
Chi-square fittingseeFitting; Least squares

fitting
Chi-square probability function209ff., 215,

615, 654, 798, 1272
as boundary of confidence region 688f.
related to incomplete gamma function 215

Chi-square test 614f.
for binned data 614f., 1272
chi-by-eye 651
and confidence limit estimation 688f.
for contingency table 623ff., 1275
degrees of freedom 615f.
for inverse problems 797
least squares fitting653ff., 1285
nonlinear models 675ff., 1292
rule of thumb 655
for straight line fitting 655ff., 1285
for straight line fitting, errors in both coor-

dinates 660, 1286ff.
for two binned data sets 616, 1272
unequal size samples 617

Chip rate 290
Chirp signal 556
Cholesky decomposition 89f.,423, 455, 1038

backsubstitution 90,1039
operation count 90
pivoting 90
solution of normal equations 668

Circulant 585
Class, data type 7
Clenshaw-Curtis quadrature 124, 190, 512f.

938 Index to Volumes 1 and 2

Clenshaw’s recurrence formula 176f., 191,
1078

for Chebyshev polynomials 187, 1076
stability 176f.

Clocking errors 891
CM computers (Thinking Machines Inc.) 964
CM Fortran 2/xv
cn function 261, 1137f.
Coarse-grid correction 864f.
Coarse-to-fine operator 864, 1337
Coding

arithmetic 902ff., 1349ff.
checksums 888, 1344
decoding a Huffman-encoded message

900, 1349
Huffman 896f., 1346ff.
run-length 901
variable length code 896, 1346ff.
Ziv-Lempel 896
see alsoArithmetic coding; Huffman cod-

ing
Coefficients

binomial 208, 1087f.
for Gaussian quadrature 140ff., 1059ff.
for Gaussian quadrature, nonclassical weight

function 151ff., 788f., 1064
for quadrature formulas 125ff., 789, 1328

Cohen, Malcolm 2/xiv
Column degeneracy 22
Column operations on matrix 29, 31f.
Column totals 624
Combinatorial minimizationseeAnnealing
Comité Consultatif International T´elégraphique

et Téléphonique (CCITT) 889f., 901
Common block

obsolescent 2/xif.
superseded by internal subprogram 957,

1067
superseded by module 940, 953, 1298,

1320, 1322, 1324, 1330
Communication costs, in parallel processing

969, 981, 1250
Communication theory, use in adaptive integra-

tion 721
Communications protocol 888
Comparison function for rejection method

281
Compilers 964, 1364

CM Fortran 968
DEC (Digital Equipment Corp.) 2/viii
IBM (International Business Machines)

2/viii
Microsoft Fortran PowerStation 2/viii
NAG (Numerical Algorithms Group) 2/viii,

2/xiv
for parallel supercomputers 2/viii

Complementary error function 1094f.
seeError function

Complete elliptic integralseeElliptic integrals
Complex arithmetic 171f.

avoidance of in path integration 203
cubic equations 179f.
for linear equations 41
quadratic equations 178

Complex error function 252

Complex plane
fractal structure for Newton’s rule 360f.
path integration for function evaluation

201ff., 263, 1138
poles in 105, 160, 202f., 206, 554, 566,

718f.
Complex systems of linear equations 41f.
Compression of data 596f.
Concordant pair for Kendall’s tau 637, 1281
Condition number 53, 78
Confidence level 687, 691ff.
Confidence limits

bootstrap method 687f.
and chi-square 688f.
confidence region, confidence interval 687
on estimated model parameters 684ff.
by Monte Carlo simulation 684ff.
from singular value decomposition (SVD)

693f.
Confluent hypergeometric function 204, 239
Conformable arrays 942f., 1094
Conjugate directions 408f., 414ff., 1210
Conjugate gradient method

biconjugate 77, 1034
compared to variable metric method 418
elliptic partial differential equations 824
for minimization 390, 413ff., 804, 815,

1210, 1214
minimum residual method 78
preconditioner 78f., 1037
for sparse system 77ff., 599, 1034
and wavelets 599

Conservative differential equations 726, 1307
Constrained linear inversion method 799ff.
Constrained linear optimizationseeLinear pro-

gramming
Constrained optimization 387
Constraints, deterministic 804ff.
Constraints, linear 423
CONTAINS statement 954, 957, 1067, 1134,

1202
Contingency coefficient C 625, 1275
Contingency table 622ff., 638, 1275f.

statistics based on chi-square 623ff., 1275
statistics based on entropy 626ff., 1275f.

Continued fraction 163ff.
Bessel functions 234
convergence criterion 165
equivalence transformation 166
evaluation 163ff.
evaluation along with normalization condi-

tion 240
even and odd parts 166, 211, 216
even part 249, 251
exponential integral 216
Fresnel integral 248f.
incomplete beta function 219f., 1099f.
incomplete gamma function 211, 1092f.
Lentz’s method 165, 212
modified Lentz’s method 165
Pincherle’s theorem 175
ratio of Bessel functions 239
rational function approximation 164, 211,

219f.
recurrence for evaluating 164f.

Index to Volumes 1 and 2 939

and recurrence relation 175
sine and cosine integrals 250f.
Steed’s method 164f.
tangent function 164
typography for 163

Continuous variable (statistics) 623
Control structures 7ff., 2/xiv

bad 15
named 959, 1219, 1305

Convergence
accelerated, for series 160ff., 1070
of algorithm for pi 906
criteria for 347, 392, 404, 483, 488, 679,

759
eigenvalues accelerated by shifting 470f.
golden ratio 349, 399
of golden section search 392f.
of Levenberg-Marquardt method 679
linear 346, 393
of QL method 470f.
quadratic 49, 351, 356, 409f., 419, 906
rate 346f., 353, 356
recurrence relation 175
of Ridders’ method 351
series vs. continued fraction 163f.
and spectral radius 856ff., 862

Conversion intrinsic functions 946f.
Convex sets, use in inverse problems 804
Convolution

denoted by asterisk 492
finite impulse response (FIR) 531
of functions 492, 503f.
of large data sets 536f.
for multiple precision arithmetic909,

1354
multiplication as 909, 1354
necessity for optimal filtering 535
overlap-add method 537
overlap-save method 536f.
and polynomial interpolation 113
relation to wavelet transform 585
theorem 492, 531ff., 546
theorem, discrete 531ff.
treatment of end effects 533
use of FFT 523, 531ff., 1253
wraparound problem 533

Cooley-Tukey FFT algorithm 503, 1250
parallel version 1239f.

Co-processor, floating point 886
Copyright rules 1/xx, 2/xix
Cornwell-Evans algorithm 816
Corporate promotion ladder 328
Corrected two-pass algorithm 607, 1269
Correction, in multigrid method 863
Correlation coefficient (linear) 630ff., 1276
Correlation function 492

autocorrelation 492, 539, 558
and Fourier transforms 492
theorem 492, 538
treatment of end effects 538f.
using FFT 538f., 1254
Wiener-Khinchin theorem 492, 566f.

Correlation, statistical 603f., 622
Kendall’s tau 634, 637ff., 1279

linear correlation coefficient 630ff., 658,
1276

linear related to least square fitting630,
658

nonparametric or rank statistical 633ff.,
1277

among parameters in a fit 657, 667, 670
in random number generators 268
Spearman rank-order coefficient 634f.,

1277
sum squared difference of ranks 634,

1277
Cosine function, recurrence 172
Cosine integral 248, 250ff., 1125f.

continued fraction 250
routine for 251f., 1125
series 250

Cosine transformseeFast Fourier transform
(FFT); Fourier transform

Coulomb wave function 204, 234
count() intrinsic function 948
Courant condition 829, 832ff., 836

multidimensional 846
Courant-Friedrichs-Lewy stability criterionsee

Courant condition
Covariance

a priori 700
in general linear least squares 667, 671,

1288ff.
matrix, by Cholesky decomposition 91,

667
matrix, of errors 796, 808
matrix, is inverse of Hessian matrix 679
matrix, when it is meaningful 690ff.
in nonlinear models 679, 681, 1292
relation to chi-square 690ff.
from singular value decomposition (SVD)

693f.
in straight line fitting 657

cpu time() intrinsic function (Fortran 95) 961
CR methodseeCyclic reduction (CR)
Cramer’s V 625, 1275
Crank-Nicholson method 840, 844, 846
Cray computers 964
CRC (cyclic redundancy check) 888ff., 1344f.
CRC-12 890
CRC-16 polynomial 890
CRC-CCITT 890
Creativity, essay on 9
Critical (Nyquist) sampling 494, 543
Cross (denotes matrix outer product) 66
Crosstabulation analysis 623

see alsoContingency table
Crout’s algorithm 36ff., 45, 1017
cshift() intrinsic function 950

communication bottleneck 969
Cubic equations 178ff., 360
Cubic spline interpolation 107ff., 1044f.

see alsoSpline
cumprod() utility function 974, 988, 997,

1072, 1086
cumsum() utility function 974, 989, 997,

1280, 1305
Cumulant, of a polynomial 977, 999, 1071f.,

1192

940 Index to Volumes 1 and 2

Cumulative binomial distribution 222f.
Cumulative Poisson function 214

related to incomplete gamma function 214
Curvature matrixseeHessian matrix
cycle statement 959, 1219
Cycle, in multigrid method 865
Cyclic Jacobi method 459, 1225
Cyclic reduction (CR) 848f., 852ff.

linear recurrences 974
tridiagonal systems 976, 1018

Cyclic redundancy check (CRC) 888ff., 1344f.
Cyclic tridiagonal systems 67, 1030

D .C. (direct current) 492
Danielson-Lanczos lemma 498f., 525, 1235ff.
DAP Fortran 2/xi
Data

assigning keys to 889
continuous vs. binned 614
entropy 626ff., 896, 1275
essay on 603
fitting 650ff., 1285ff.
fraudulent 655
glitches in 653
iid (independent and identically distributed)

686
modeling 650ff., 1285ff.
serial port 892
smoothing 604, 644ff., 1283f.
statistical tests 603ff., 1269ff.
unevenly or irregularly sampled 569, 574,

648f., 1258ff.
use of CRCs in manipulating 889
windowing 545ff., 1254
see alsoStatistical tests

Data compression 596f., 881
arithmetic coding 902ff., 1349ff.
cosine transform 513
Huffman coding 896f., 902, 1346ff.
linear predictive coding (LPC) 563ff.
lossless 896

Data Encryption Standard (DES) 290ff., 1144,
1147f., 1156ff.

Data hiding 956ff., 1209, 1293, 1296
Data parallelism 941, 964ff., 985
DATA statement 959

for binary, octal, hexadecimal constants
959

repeat count feature 959
superseded by initialization expression

943, 959, 1127
Data type 18, 936

accuracy parameters 1362f.
character 1183
derived 2/xiii, 937, 1030, 1336, 1346
derived, for array of arrays 956, 1336
derived, initialization 2/xv
derived, for Numerical Recipes 1361
derived, storage allocation 955
DP (double precision) 1361f.
DPC (double precision complex) 1361
I1B (1 byte integer) 1361
I2B (2 byte integer) 1361
I4B (4 byte integer) 1361

intrinsic 937
LGT (default logical type) 1361
nrtype.f90 1361f.
passing complex as real 1140
SP (single precision) 1361f.
SPC (single precision complex) 1361
user-defined 1346

DAUB4 584ff., 588, 590f., 594, 1264f.
DAUB6 586
DAUB12 598
DAUB20 590f., 1265
Daubechies wavelet coefficients 584ff., 588,

590f., 594, 598, 1264ff.
Davidon-Fletcher-Powell algorithm 390, 418ff.,

1215
Dawson’s integral 252ff., 600, 1127f.

approximation for 252f.
routine for 253f., 1127

dble() intrinsic function (deprecated) 947
deallocate statement 938f., 953f., 1197, 1266,

1293
Deallocation, of allocatable array 938, 953f.,

1197, 1266, 1293
Debugging 8
DEC (Digital Equipment Corp.) 1/xxiii, 2/xix,

886
Alpha AXP 2/viii
Fortran 90 compiler 2/viii
quadruple precision option 1362
VAX 4

DecompositionseeCholesky decomposition;
LU decomposition; QR decomposition;
Singular value decomposition (SVD)

Deconvolution 535, 540, 1253
see alsoConvolution; Fast Fourier trans-

form (FFT); Fourier transform
Defect, in multigrid method 863
Deferred approach to the limitseeRichard-

son’s deferred approach to the limit
Deflation

of matrix 471
of polynomials 362ff., 370f., 977

Degeneracy of linear algebraic equations 22,
53, 57, 670

Degenerate kernel 785
Degenerate minimization principle 795
Degrees of freedom 615f., 654, 691
Dekker, T.J. 353
Demonstration programs 3, 936
Deprecated features

common block 2/xif., 940, 953, 957,
1067, 1298, 1320, 1322, 1324, 1330

dble() intrinsic function 947
EQUIVALENCE statement 2/xif., 1161,

1286
statement function 1057, 1256

Derivatives
computation via Chebyshev approximation

183, 189, 1077f.
computation via Savitzky-Golay filters

183, 645
matrix of first partialseeJacobian determi-

nant
matrix of second partialseeHessian ma-

trix

Index to Volumes 1 and 2 941

numerical computation 180ff., 379, 645,
732, 750, 771, 1075, 1197, 1309

of polynomial 167, 978, 1071f.
use in optimization 388f., 399, 1205ff.

Derived data typeseeData type, derived
DES seeData Encryption Standard
Descending transformation, elliptic integrals

256
Descent direction 376, 382, 419
Descriptive statistics 603ff., 1269ff.

see alsoStatistical tests
Design matrix 645, 665, 795, 801, 1082
Determinant 25, 41
Deviates, randomseeRandom deviates
DFP algorithmseeDavidon-Fletcher-Powell

algorithm
diagadd() utility function 985, 989, 1004
diagmult() utility function 985, 989, 1004,

1294
Diagonal dominance 43, 679, 780, 856
Difference equations, finiteseeFinite differ-

ence equations (FDEs)
Difference operator 161
Differential equations 701ff., 1297ff.

accuracy vs. stability 704, 729
Adams-Bashforth-Moulton schemes 741
adaptive stepsize control 703, 708ff., 719,

726, 731, 737, 742f., 1298ff., 1303ff.,
1308f., 1311ff.

algebraically difficult sets 763
backward Euler’s method 729
Bader-Deuflhard method for stiff 730,

735, 1310f.
boundary conditions 701f., 745ff., 749,

751f., 771, 1314ff.
Bulirsch-Stoer method 202, 263, 702, 706,

716, 718ff., 740, 1138, 1303
Bulirsch-Stoer method for conservative

equations 726, 1307
comparison of methods 702f., 739f., 743
conservative 726, 1307
danger of too small stepsize 714
eigenvalue problem 748, 764ff., 770ff.,

1319ff.
embedded Runge-Kutta method 709f.,

731, 1298, 1308
equivalence of multistep and multivalue

methods 743
Euler’s method 702, 704, 728f.
forward Euler’s method 728
free boundary problem 748, 776
high-order implicit methods 730ff., 1308ff.
implicit differencing 729, 740, 1308
initial value problems 702
internal boundary conditions 775ff.
internal singular points 775ff.
interpolation on right-hand sides 111
Kaps-Rentrop method for stiff 730, 1308
local extrapolation 709
modified midpoint method 716f., 719,

1302f.
multistep methods 740ff.
multivalue methods 740
order of method 704f., 719

path integration for function evaluation
201ff., 263, 1138

predictor-corrector methods 702, 730,
740ff.

reduction to first-order sets 701, 745
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff.,

1319ff.
r.h.s. independent ofx 729f.
Rosenbrock methods for stiff 730, 1308f.
Runge-Kutta method 702, 704ff., 708ff.,

731, 740, 1297f., 1308
Runge-Kutta method, high-order 705,

1297
Runge-Kutta-Fehlberg method 709ff.,

1298
scaling stepsize to required accuracy 709
second order 726, 1307
semi-implicit differencing 730
semi-implicit Euler method 730, 735f.
semi-implicit extrapolation method 730,

735f., 1311ff.
semi-implicit midpoint rule 735f., 1310f.
shooting method 746, 749ff., 1314ff.
shooting method, example 770ff., 1321ff.
similarity to Volterra integral equations

786
singular points 718f., 751, 775ff., 1315f.,

1323ff.
step doubling 708f.
stepsize control 703, 708ff., 719, 726,

731, 737, 742f., 1298, 1303ff., 1308f.
stiff 703, 727ff., 1308ff.
stiff methods compared 739
Stoermer’s rule 726, 1307
see alsoPartial differential equations; Two-

point boundary value problems
Diffusion equation 818, 838ff., 855

Crank-Nicholson method 840, 844, 846
Forward Time Centered Space (FTCS)

839ff., 855
implicit differencing 840
multidimensional 846

Digamma function 216
Digital filtering seeFilter
Dihedral groupD5 894
dim optional argument 948
Dimensional expansion 965ff.
Dimensions (units) 678
Diminishing increment sort 322, 1168
Dirac delta function 284, 780
Direct methodseePeriodogram
Direct methods for linear algebraic equations

26, 1014
Direct productseeOuter product of matrices
Direction of largest decrease 410f.
Direction numbers, Sobol’s sequence 300
Direction-set methods for minimization 389,

406f., 1210ff.
Dirichlet boundary conditions 820, 840, 850,

856, 858
Disclaimer of warranty 1/xx, 2/xvii
Discordant pair for Kendall’s tau 637, 1281
Discrete convolution theorem 531ff.

942 Index to Volumes 1 and 2

Discrete Fourier transform (DFT) 495ff.,
1235ff.

as approximate continuous transform 497
see alsoFast Fourier transform (FFT)

Discrete optimization 436ff., 1219ff.
Discriminant 178, 457
Diskettes

are ANSI standard 3
how to order 1/xxi, 2/xvii

Dispersion 831
DISPOseeSavitzky-Golay filters
Dissipation, numerical 830
Divergent series 161
Divide and conquer algorithm 1226, 1229
Division

complex 171
multiple precision 910f., 1356
of polynomials 169, 362, 370, 1072

dn function 261, 1137f.
Do-list, implied 968, 971, 1127
Do-loop 2/xiv
Do-until iteration 14
Do-while iteration 13
Dogleg step methods 386
Domain of integration 155f.
Dominant solution of recurrence relation 174
Dot (denotes matrix multiplication) 23
dot product() intrinsic function 945, 949,

969, 1216
Double exponential error distribution 696
Double precision

converting to 1362
as refuge of scoundrels 882
use in iterative improvement 47, 1022

Double root 341
Downhill simplex methodseeSimplex, method

of Nelder and Mead
DP, defined 937
Driver programs 3
Dual viewpoint, in multigrid method 875
Duplication theorem, elliptic integrals 256
DWT (discrete wavelet transform)seeWavelet

transform
Dynamical allocation of storage 2/xiii,869,

938, 941f., 953ff., 1327, 1336
garbage collection 956
increasing 955, 1070, 1302

Eardley, D.M. 338
EBCDIC 890
Economization of power series 192f., 195,

1080
Eigensystems 449ff., 1225ff.

balancing matrix 476f., 1230f.
bounds on eigenvalues 50
calculation of few eigenvalues 454, 488
canned routines 454f.
characteristic polynomial 449, 469
completeness 450
defective 450, 476, 489
deflation 471
degenerate eigenvalues 449ff.
elimination method 453, 478, 1231
factorization method 453

fast Givens reduction 463
generalized eigenproblem 455
Givens reduction 462f.
Hermitian matrix 475
Hessenberg matrix 453, 470, 476ff., 488,

1232
Householder transformation 453, 462ff.,

469, 473, 475, 478, 1227f., 1231
ill-conditioned eigenvalues 477
implicit shifts 472ff., 1228f.
and integral equations 779, 785
invariance under similarity transform 452
inverse iteration 455, 469, 476, 487ff.,

1230
Jacobi transformation 453, 456ff., 462,

475, 489, 1225f.
left eigenvalues 451
list of tasks 454f.
multiple eigenvalues 489
nonlinear 455
nonsymmetric matrix 476ff., 1230ff.
operation count of balancing 476
operation count of Givens reduction 463
operation count of Householder reduction

467
operation count of inverse iteration 488
operation count of Jacobi method 460
operation count of QL method 470, 473
operation count of QR method for Hessen-

berg matrices 484
operation count of reduction to Hessenberg

form 479
orthogonality 450
parallel algorithms 1226, 1229
polynomial roots and 368, 1193
QL method 469ff., 475, 488f.
QL method with implicit shifts 472ff.,

1228f.
QR method 52, 453, 456, 469ff., 1228
QR method for Hessenberg matrices 480ff.,

1232ff.
real, symmetric matrix 150, 467, 785,

1225, 1228
reduction to Hessenberg form 478f., 1231
right eigenvalues 451
shifting eigenvalues 449, 470f., 480
special matrices 454
termination criterion 484, 488
tridiagonal matrix 453, 469ff., 488, 1228

Eigenvalue and eigenvector, defined 449
Eigenvalue problem for differential equations

748, 764ff., 770ff., 1319ff.
Eigenvalues and polynomial root finding 368,

1193
EISPACK 454, 475
Electromagnetic potential 519
ELEMENTAL attribute (Fortran 95) 961,

1084
Elemental functions 2/xiii, 2/xv,940, 942,

946f., 961, 986, 1015, 1083, 1097f.
Elimination seeGaussian elimination
Ellipse in confidence limit estimation 688
Elliptic integrals 254ff., 906

addition theorem 255

Index to Volumes 1 and 2 943

Carlson’s forms and algorithms 255f.,
1128ff.

Cauchy principal value 256f.
duplication theorem 256
Legendre 254ff., 260f., 1135ff.
routines for 257ff., 1128ff.
symmetric form 255
Weierstrass 255

Elliptic partial differential equations818,
1332ff.

alternating-direction implicit method (ADI)
861f., 906

analyze/factorize/operate package 824
biconjugate gradient method 824
boundary conditions 820
comparison of rapid methods 854
conjugate gradient method 824
cyclic reduction 848f., 852ff.
Fourier analysis and cyclic reduction (FACR)

848ff., 854
Gauss-Seidel method 855, 864ff., 876,

1338, 1341
incomplete Cholesky conjugate gradient

method (ICCG) 824
Jacobi’s method 855f., 864
matrix methods 824
multigrid method 824, 862ff., 1009, 1334ff.
rapid (Fourier) method 824, 848ff.
relaxation method 823, 854ff., 1332
strongly implicit procedure 824
successive over-relaxation (SOR) 857ff.,

862, 866, 1332
elsewhere construct 943
Emacs, GNU 1/xvi
Embedded Runge-Kutta method 709f., 731,

1298, 1308
Encapsulation, in programs 7
Encryption 290, 1156
enddo statement 12, 17
Entropy 896

of data 626ff., 811, 1275
EOM (end of message) 902
eoshift() intrinsic function 950

communication bottleneck 969
vector shift argument 1019f.
vs. array section 1078

epsilon() intrinsic function 951, 1189
Equality constraints 423
Equations

cubic 178ff., 360
normal (fitting) 645, 666ff., 800, 1288
quadratic 20, 178
see alsoDifferential equations; Partial dif-

ferential equations; Root finding
Equivalence classes 337f., 1180
EQUIVALENCE statement 2/xif., 1161, 1286
Equivalence transformation 166
Error

checksums for preventing 891
clocking 891
double exponential distribution 696
local truncation 875
Lorentzian distribution 696f.
in multigrid method 863
nonnormal 653, 690, 694ff.

relative truncation 875
roundoff 180f., 881, 1362
series, advantage of an even 132f., 717,

1362
systematic vs. statistical 653, 1362
truncation 20f., 180, 399, 709, 881, 1362
varieties found by check digits 895
varieties of, in PDEs 831ff.
see alsoRoundoff error

Error function 213f., 601, 1094f.
approximation via sampling theorem 601
Chebyshev approximation 214, 1095
complex 252
for Fisher’s z-transformation 632, 1276
relation to Dawson’s integral 252, 1127
relation to Fresnel integrals 248
relation to incomplete gamma function

213
routine for 214, 1094
for significance of correlation 631, 1276
for sum squared difference of ranks 635,

1277
Error handling in programs 2/xii, 2/xvi, 3,

994f., 1036, 1370f.
Estimation of parametersseeFitting; Maxi-

mum likelihood estimate
Estimation of power spectrum 542ff., 565ff.,

1254ff., 1258
Euler equation (fluid flow) 831
Euler-Maclaurin summation formula 132, 135
Euler’s constant 216ff., 250
Euler’s method for differential equations 702,

704, 728f.
Euler’s transformation 160f., 1070

generalized form 162f.
Evaluation of functionsseeFunction
Even and odd parts, of continued fraction

166, 211, 216
Even parity 888
Exception handling in programsseeError han-

dling in programs
exit statement 959, 1219
Explicit differencing 827
Exponent in floating point format 19, 882,

1343
exponent intrinsic function 1107
Exponential deviate 278, 1151f.
Exponential integral 215ff., 1096f.

asymptotic expansion 218
continued fraction 216
recurrence relation 172
related to incomplete gamma function 215
relation to cosine integral 250
routine forEi(x) 218, 1097
routine forEn(x) 217, 1096
series 216

Exponential probability distribution 570
Extended midpoint rule 124f., 129f., 135,

1054f.
Extended Simpson’s rule 128, 788, 790
Extended Simpson’s three-eighths rule 789
Extended trapezoidal rule 125, 127, 130ff.,

135, 786, 1052ff., 1326
roundoff error 132

Extirpolation (so-called) 574, 1261

944 Index to Volumes 1 and 2

Extrapolation 99ff.
in Bulirsch-Stoer method 718ff., 726,

1305ff.
differential equations 702
by linear prediction 557ff., 1256f.
local 709
maximum entropy method as type of 567
polynomial 724, 726, 740, 1305f.
rational function 718ff., 726, 1306f.
relation to interpolation 101
for Romberg integration 134
see alsoInterpolation

ExtremizationseeMinimization

F -distribution probability function 222
F-test for differences of variances 611, 613,

1271
FACR seeFourier analysis and cyclic reduc-

tion (FACR)
Facsimile standard 901
Factorial

double (denoted “!!”) 247
evaluation of 159, 1072, 1086
relation to gamma function 206
routine for 207f., 1086ff.

False position 347ff., 1185f.
Family tree 338
FAS (full approximation storage algorithm)

874, 1339ff.
Fast Fourier transform (FFT) 498ff., 881,

981, 1235f.
alternative algorithms 503f.
as approximation to continuous transform

497
Bartlett window 547, 1254
bit reversal 499f., 525
and Clenshaw-Curtis quadrature 190
column-parallel algorithm 981, 1237ff.
communication bottleneck969, 981, 1250
convolution 503f., 523, 531ff., 909, 1253,

1354
convolution of large data sets 536f.
Cooley-Tukey algorithm 503, 1250
Cooley-Tukey algorithm, parallel 1239f.
correlation 538f., 1254
cosine transform 190, 511ff., 851, 1245f.
cosine transform, second form 513, 852,

1246
Danielson-Lanczos lemma 498f., 525
data sets not a power of 2 503
data smoothing 645
data windowing 545ff., 1254
decimation-in-frequency algorithm 503
decimation-in-time algorithm 503
discrete autocorrelation 539, 1254
discrete convolution theorem 531ff.
discrete correlation theorem 538
at double frequency 575
effect of caching 982
endpoint corrections 578f., 1261ff.
external storage 525
figures of merit for data windows 548
filtering 551ff.
FIR filter 553
four-step framework 983, 1239

Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Hamming window 547
Hann window 547
history 498
IIR filter 553ff.
image processing 803, 805
integrals using 124
inverse of cosine transform 512ff.
inverse of sine transform 511
large data sets 525
leakage 544
memory-local algorithm 528
multidimensional 515ff., 1236f., 1241,

1246, 1251
for multiple precision arithmetic 906
for multiple precision multiplication 909,

1354
number-theoretic transforms 503f.
operation count 498
optimal (Wiener) filtering 539ff., 558
order of storage in 501
parallel algorithms 981ff., 1235ff.
partial differential equations 824, 848ff.
Parzen window 547
periodicity of 497
periodogram 543ff., 566
power spectrum estimation 542ff., 1254ff.
for quadrature 124
of real data in 2D and 3D 519ff., 1248f.
of real functions 504ff., 519ff., 1242f.,

1248f.
related algorithms 503f.
row-parallel algorithm 981, 1235f.
Sande-Tukey algorithm 503
sine transform 508ff., 850, 1245
Singleton’s algorithm 525
six-step framework 983, 1240
square window 546, 1254
timing 982
treatment of end effects in convolution

533
treatment of end effects in correlation

538f.
Tukey’s trick for frequency doubling 575
use in smoothing data 645
used for Lomb periodogram 574, 1259
variance of power spectrum estimate 544f.,

549
virtual memory machine 528
Welch window 547, 1254
Winograd algorithms 503
see alsoDiscrete Fourier transform (DFT);

Fourier transform; Spectral density
Faure sequence 300
Fax (facsimile) Group 3 standard 901
Feasible vector 424
FFT seeFast Fourier transform (FFT)
Field, in data record 329
Figure-of-merit function 650
Filon’s method 583
Filter 551ff.

acausal 552
bilinear transformation method 554
causal 552, 644

Index to Volumes 1 and 2 945

characteristic polynomial 554
data smoothing 644f., 1283f.
digital 551ff.
DISPO 644
by fast Fourier transform (FFT) 523,

551ff.
finite impulse response (FIR) 531, 552
homogeneous modes of 554
infinite impulse response(IIR) 552ff., 566
Kalman 700
linear 552ff.
low-pass for smoothing 644ff., 1283f.
nonrecursive 552
optimal (Wiener) 535, 539ff., 558, 644
quadrature mirror 585, 593
realizable 552, 554f.
recursive 552ff., 566
Remes exchange algorithm 553
Savitzky-Golay 183, 644ff., 1283f.
stability of 554f.
in the time domain 551ff.

Fine-to-coarse operator 864, 1337
Finite difference equations (FDEs) 753, 763,

774
alternating-direction implicit method (ADI)

847, 861f.
art not science 829
Cayley’s form for unitary operator 844
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicholson method 840, 844, 846
eigenmodes of 827f.
explicit vs. implicit schemes 827
forward Euler 826f.
Forward Time Centered Space (FTCS)

827ff., 839ff., 843, 855
implicit scheme 840
Lax method 828ff., 836
Lax method (multidimensional)845f.
mesh drifting instability 834f.
numerical derivatives 181
partial differential equations 821ff.
in relaxation methods 753ff.
staggered leapfrog method 833f.
two-step Lax-Wendroff method 835ff.
upwind differencing 832f., 837
see alsoPartial differential equations

Finite element methods, partial differential
equations 824

Finite impulse response (FIR) 531
Finkelstein, S. 1/xvi, 2/ix
FIR (finite impulse response) filter 552
Fisher’s z-transformation 631f., 1276
Fitting 650ff., 1285ff.

basis functions 665
by Chebyshev approximation 185f., 1076
chi-square 653ff., 1285ff.
confidence levels related to chi-square val-

ues 691ff.
confidence levels from singular value de-

composition (SVD) 693f.
confidence limits on fitted parameters 684ff.
covariance matrix not always meaningful

651, 690
degeneracy of parameters 674

an exponential 674
freezing parameters in 668, 700
Gaussians, a sum of 682, 1294
general linear least squares 665ff., 1288,

1290f.
Kalman filter 700
K–S test, caution regarding 621f.
least squares 651ff., 1285
Legendre polynomials 674, 1291f.
Levenberg-Marquardt method 678ff., 816,

1292f.
linear regression 655ff., 1285ff.
maximum likelihood estimation 652f.,

694ff.
Monte Carlo simulation 622, 654, 684ff.
multidimensional 675
nonlinear models 675ff., 1292f.
nonlinear models, advanced methods 683
nonlinear problems that are linear 674
nonnormal errors 656, 690, 694ff.
polynomial 83, 114, 191, 645, 665, 674,

1078, 1291
by rational Chebyshev approximation 197ff.,

1081f.
robust methods 694ff., 1294
of sharp spectral features 566
standard (probable) errors on fitted pa-

rameters 657f., 661, 667, 671, 684ff.,
1285f., 1288, 1290

straight line 655ff., 667f., 698, 1285ff.,
1294ff.

straight line, errors in both coordinates
660ff., 1286ff.

see alsoError; Least squares fitting; Max-
imum likelihood estimate; Robust esti-
mation

Five-point difference star 867
Fixed point format 18
Fletcher-Powell algorithmseeDavidon-Fletcher-

Powell algorithm
Fletcher-Reeves algorithm 390, 414ff., 1214
Floating point co-processor 886
Floating point format 18ff., 882, 1343

care in numerical derivatives 181
IEEE 276, 882, 1343

floor() intrinsic function 948
Flux-conservative initial value problems825ff.
FMG (full multigrid method) 863, 868, 1334ff.
FOR iteration 9f., 12
forall statement 2/xii, 2/xv, 960, 964, 986

access to associated index 968
skew array sections 985, 1007

Formats of numbers 18ff., 882, 1343
Fortran 9

arithmetic-if statement 2/xi
COMMON block 2/xif., 953, 957
deprecated features 2/xif., 947, 1057,

1161, 1256, 1286
dynamical allocation of storage 869, 1336
EQUIVALENCE statement 2/xif., 1161,

1286
evolution of 2/xivff.
exception handling 2/xii, 2/xvi
filenames 935
Fortran 2000 (planned) 2/xvi

946 Index to Volumes 1 and 2

Fortran 95 2/xv, 945, 947, 1084, 1100,
1364

HPF (High-Performance Fortran) 2/xvf.
Numerical Recipes in 2/x, 2/xvii, 1
obsolescent features 2/xif.
side effects 960
see alsoFortran 90

Fortran D 2/xv
Fortran 77 1/xix

bit manipulation functions 17
hexadecimal constants 17

Fortran 8x 2/xi, 2/xiii
Fortran 90 3

abstract data types 2/xiii,1030
all() intrinsic function 945, 948
allocatable array 938, 941, 953ff., 1197,

1212, 1266, 1293, 1306, 1336
allocate statement 938f., 941, 953f., 1197,

1266, 1293, 1306, 1336
allocated() intrinsic function 938, 952ff.,

1197, 1266, 1293
any() intrinsic function 945, 948
array allocation and deallocation 953
array of arrays 2/xii, 956, 1336
array constructor 2/xii, 968, 971, 1022,

1052, 1055, 1127
array constructor with implied do-list 968,

971
array extents 938, 949
array features 941ff., 953ff.
array intrinsic procedures 2/xiii,948ff.
array of length 0 944
array of length 1 949
array manipulation functions 950
array parallel operations 964f.
array rank 938, 949
array reallocation 955
array section 2/xiif., 2/xiii,939, 941ff.,

960, 1078, 1284, 1286, 1333
array shape 938, 949
array size 938, 942
array transpose 981f.
array unary and binary functions 949
associated() intrinsic function 952f.
associated pointer 953f.
assumed-shape array 942
automatic array 938, 954, 1197, 1212,

1336
backwards-compatibility935, 946
bit manipulation functions 2/xiii, 951
bit size() intrinsic function 951
broadcasts 965f.
btest() intrinsic function 951
case construct 1010, 1036
case insensitive 937
ceiling() intrinsic function 947
character functions 952
character variables 1183
cmplx function 1125
communication bottlenecks969, 981,

1250
compatibility with Fortran 77 935, 946
compilers 2/viii, 2/xiv,1364
compiling 936
conformable arrays 942f., 1094

CONTAINS statement 954, 957, 985,
1067, 1134, 1202

control structure 2/xiv, 959, 1219, 1305
conversion elemental functions 946
count() intrinsic function 948
cshift() intrinsic function 950, 969
cycle statement 959, 1219
data hiding 956ff., 1209
data parallelism 964
DATA statement 959
data types 937, 1336, 1346, 1361
deallocate statement 938f., 953f., 1197,

1266, 1293
deallocating array 938, 953f., 1197, 1266,

1293
defined types 956
deprecated features 947, 1057, 1161,

1256, 1286
derived types 937, 955
dimensional expansion 965ff.
do-loop 2/xiv
dot product() intrinsic function 945, 949,

969, 1216
dynamical allocation of storage 2/xiii,

938, 941f., 953ff., 1327, 1336
elemental functions 940, 942, 946f., 951,

1015, 1083, 1364
elsewhere construct 943
eoshift() intrinsic function 950, 969, 1019f.,

1078
epsilon() intrinsic function 951, 1189
evolution 2/xivff., 959, 987f.
example 936
exit statement 959, 1219
exponent() intrinsic function 1107
floor() intrinsic function 948
Fortran tip icon 1009
garbage collection 956
gather-scatter operations 2/xiif., 969, 981,

984, 1002, 1032, 1034, 1250
generic interface 2/xiii,1083
generic procedures 939, 1015, 1083, 1094,

1096, 1364
global variables 955, 957, 1210
history 2/xff.
huge() intrinsic function 951
iand() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
ibset() intrinsic function 951
ieor() intrinsic function 951
IMPLICIT NONE statement 2/xiv, 936
implied do-list 968, 971, 1127
index loss 967f.
initialization expression943, 959, 1012,

1127
inquiry functions 948
integer model 1144, 1149, 1156
INTENT attribute 1072, 1092
interface 939, 942, 1067, 1084, 1384
internal subprogram 2/xii, 2/xiv, 957,

1057, 1067, 1202f., 1256, 1302
interprocessor communication 969, 981,

1250
intrinsic data types 937

Index to Volumes 1 and 2 947

intrinsic procedures 939, 945ff., 987, 1016
ior() intrinsic function 951
ishft() intrinsic function 951
ishftc() intrinsic function 951
ISO (International Standards Organization)

2/xf., 2/xiiif.
keyword argument 2/xiv, 947f., 1341
kind() intrinsic function 951
KIND parameter 937, 946, 1125, 1144,

1192, 1254, 1261, 1284, 1361
language features 935ff.
lbound() intrinsic function 949
lexical comparison 952
linear algebra 969f., 1000ff., 1018f., 1026,

1040, 1200, 1326
linear recurrence 971, 988
linking 936
literal constant 937, 1361
logo for tips 2/viii, 1009
mask 948, 967f., 1006f., 1038, 1102,

1200, 1226, 1305, 1333f., 1368, 1378,
1382

matmul() intrinsic function 945, 949, 969,
1026, 1040, 1050, 1076, 1200, 1216,
1290, 1326

maxexponent() intrinsic function 1107
maxloc() intrinsic function 949, 961,

992f., 1015
maxval() intrinsic function 945, 948, 961,

1016, 1273
memory leaks 953, 956, 1327
memory management 938, 953ff.
merge() intrinsic function 945, 950, 1010,

1094f., 1099f.
Metcalf and Reid (M&R) 935
minloc() intrinsic function 949, 961, 992f.
minval() intrinsic function 948, 961
missing language features 983ff., 987ff.
modularization 956f.
MODULE facility 2/xiii, 936f., 939f.,

953f., 957, 1067, 1298, 1320, 1322,
1324, 1330, 1346

MODULE subprograms 940
modulo() intrinsic function 946, 1156
named constant 940, 1012, 1361
named control structure 959, 1219, 1305
nearest() intrinsic function 952, 1146
nested where construct forbidden 943
not() intrinsic function 951
nullify statement 953f., 1070, 1302
numerical representation functions 951
ONLY option 941, 957, 1067
operator overloading 2/xiif.
operator, user-defined 2/xii
optional argument 2/xiv, 947f., 1092,

1228, 1230, 1256, 1272, 1275, 1340
outer product 969f.
overloading 940, 1083, 1102
pack() intrinsic function 945, 950, 964,

969, 991, 1170, 1176, 1178
pack, for selective evaluation 1087
parallel extensions 2/xv, 959ff., 964, 981,

984, 987, 1002, 1032
parallel programming 963ff.
PARAMETER attribute 1012

pointer 2/xiiif., 938f., 941, 944f., 952ff.,
1067, 1070, 1197, 1210, 1212, 1266,
1302, 1327, 1336

pointer to function (missing) 1067
portability 963
present() intrinsic function 952
PRIVATE attribute 957, 1067
product() intrinsic function 948
programming conventions 937
PUBLIC attribute 957, 1067
quick start 936
radix() intrinsic function 1231
random number() intrinsic function 1141,

1143
random seed() intrinsic function 1141
real() intrinsic function 947, 1125
RECURSIVE keyword 958, 1065, 1067
recursive procedure 2/xiv, 958, 1065,

1067, 1166
reduction functions 948
reshape() intrinsic function 950, 969, 1247
RESULT keyword 958, 1073
SAVE attribute 953f., 958f., 1052, 1070,

1266, 1293
scale() intrinsic function 1107
scatter-with-combine (missing function)

984
scope 956ff.
scoping units 939
select case statement 2/xiv, 1010, 1036
shape() intrinsic function 938, 949
size() intrinsic function 938, 942, 945,

948
skew sections 985
sparse matrix representation 1030
specification statement 2/xiv
spread() intrinsic function 945, 950, 966ff.,

969, 1000, 1094, 1290f.
statement functions deprecated 1057
stride (of an array) 944
structure constructor 2/xii
subscript triplet 944
sum() intrinsic function 945, 948, 966
tiny() intrinsic function 952
transformational functions 948
transpose() intrinsic function 950, 960,

969, 981, 1247
tricks 1009, 1072, 1146, 1274, 1278, 1280
truncation elemental functions 946
type checking 1140
ubound() intrinsic function 949
undefined pointer 953
unpack() intrinsic function 950, 964, 969
USE statement 936, 939f., 954, 957, 1067,

1384
utility functions 987ff.
vector subscripts 2/xiif., 969, 981, 984,

1002, 1032, 1034, 1250
visibility 956ff., 1209, 1293, 1296
WG5 technical committee 2/xi, 2/xiii,

2/xvf.
where construct 943, 985, 1060, 1291
X3J3 Committee 2/viii, 2/xff., 2/xv,947,

959, 964, 968, 990
zero-length array 944

948 Index to Volumes 1 and 2

see alsoIntrinsic procedures
see alsoFortran

Fortran 95 947, 959ff.
allocatable variables 961
blocks 960
cpu time() intrinsic function 961
elemental functions 2/xiii, 2/xv,940, 961,

986, 1015, 1083f., 1097f.
forall statement 2/xii, 2/xv, 960, 964, 968,

986, 1007
initialization of derived data type 2/xv
initialization of pointer 2/xv, 961
minor changes from Fortran 90 961
modified intrinsic functions 961
nested where construct 2/xv, 960, 1100
pointer association status 961
pointers 961
PURE attribute 2/xv, 960f., 964, 986
SAVE attribute 961
side effects 960
and skew array section 945, 985
see alsoFortran

Fortran 2000 2/xvi
Forward deflation 363
Forward difference operator 161
Forward Euler differencing 826f.
Forward Time Centered SpaceseeFTCS
Four-step framework, for FFT 983, 1239
Fourier analysis and cyclic reduction (FACR)

848f., 854
Fourier integrals

attenuation factors 583, 1261
endpoint corrections 578f., 1261
tail integration by parts 583
use of fast Fourier transform (FFT) 577ff.,

1261ff.
Fourier transform 99, 490ff., 1235ff.

aliasing 495, 569
approximation of Dawson’s integral 253
autocorrelation 492
basis functions compared 508f.
contrasted with wavelet transform 584,

594
convolution 492, 503f., 531ff., 909, 1253,

1354
correlation 492, 538f., 1254
cosine transform 190, 511ff., 851, 1245f.
cosine transform, second form 513, 852,

1246
critical sampling 494, 543, 545
definition 490
discrete Fourier transform (DFT) 184,

495ff.
Gaussian function 600
image processing 803, 805
infinite range 583
inverse of discrete Fourier transform 497
method for partial differential equations

848ff.
missing data 569
missing data, fast algorithm 574f., 1259
Nyquist frequency 494ff., 520, 543, 545,

569, 571
optimal (Wiener) filtering 539ff., 558
Parseval’s theorem 492, 498, 544

power spectral density (PSD) 492f.
power spectrum estimation by FFT 542ff.,

1254ff.
power spectrum estimation by maximum

entropy method 565ff., 1258
properties of 491f.
sampling theorem 495, 543, 545, 600
scalings of 491
significance of a peak in 570
sine transform 508ff., 850, 1245
symmetries of 491
uneven sampling, fast algorithm 574f.,

1259
unevenly sampled data 569ff., 574, 1258
and wavelets 592f.
Wiener-Khinchin theorem 492, 558, 566f.
see alsoFast Fourier transform (FFT);

Spectral density
Fractal region 360f.
Fractional step methods 847f.
Fredholm alternative 780
Fredholm equations 779f.

eigenvalue problems 780, 785
error estimate in solution 784
first kind 779
Fredholm alternative 780
homogeneous, second kind 785, 1325
homogeneous vs. inhomogeneous 779f.
ill-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779f.
nonlinear 781
Nystrom method 782ff., 789, 1325
product Nystrom method 789, 1328ff.
second kind 779f., 782ff., 1325, 1331
with singularities 788, 1328ff.
with singularities, worked example792,

1328ff.
subtraction of singularity 789
symmetric kernel 785
see alsoInverse problems

Frequency domain 490
Frequency spectrumseeFast Fourier transform

(FFT)
Frequentist, contrasted with Bayesian 810
Fresnel integrals 248ff.

asymptotic form 249
continued fraction 248f.
routine for 249f., 1123
series 248

Friday the Thirteenth 14f., 1011f.
FTCS (forward time centered space) 827ff.,

839ff., 843
stability of 827ff., 839ff., 855

Full approximation storage (FAS) algorithm
874, 1339ff.

Full moon 14f., 936, 1011f.
Full multigrid method (FMG) 863, 868, 1334ff.
Full Newton methods, nonlinear least squares

683
Full pivoting 29, 1014
Full weighting 867
Function

Airy 204, 243f., 1121

Index to Volumes 1 and 2 949

approximation 99ff., 184ff., 1043, 1076ff.
associated Legendre polynomial 246ff.,

764, 1122f., 1319
autocorrelation of 492
bandwidth limited 495
Bessel 172, 204, 223ff., 234, 1101ff.,

1115ff.
beta 209, 1089
binomial coefficients 208f., 1087f.
branch cuts of 202f.
chi-square probability215, 798
complex 202
confluent hypergeometric 204, 239
convolution of 492
correlation of 492
cosine integral 250f., 1123f.
Coulomb wave 204, 234
cumulative binomial probability222f.
cumulative Poisson 209ff.
Dawson’s integral 252ff., 600, 1127f.
digamma 216
elliptic integrals 254ff., 906, 1128ff.
error 213f., 248, 252, 601, 631, 635,

1094f., 1127, 1276f.
evaluation 159ff., 1070ff.
evaluation by path integration 201ff., 263,

1138
exponential integral 172, 215ff., 250,

1096f.
F-distribution probability 222
Fresnel integral 248ff., 1123
gamma 206, 1085
hypergeometric 202f., 263ff., 1138ff.
incomplete beta 219ff., 610, 1098ff., 1269
incomplete gamma 209ff., 615, 654, 657f.,

1089ff., 1272, 1285
inverse hyperbolic 178, 255
inverse trigonometric 255
Jacobian elliptic 261, 1137f.
Kolmogorov-Smirnov probability 618f.,

640, 1274, 1281
Legendre polynomial 172, 246, 674, 1122,

1291
logarithm 255
modified Bessel 229ff., 1109ff.
modified Bessel, fractional order 239ff.,

1118ff.
overloading 1083
parallel evaluation 986, 1009, 1084, 1087,

1090, 1102, 1128, 1134
path integration to evaluate 201ff.
pathological 99f., 343
Poisson cumulant 214
representations of 490
routine for plotting a 342, 1182
sine and cosine integrals 248, 250ff.,

1125f.
sn, dn, cn 261, 1137f.
spherical harmonics 246ff., 1122
spheroidal harmonic 764ff., 770ff., 1319ff.,

1323ff.
Student’s probability 221f.
variable number of arguments 1022
Weber 204

Functional iteration, for implicit equations
740f.

FWHM (full width at half maximum) 548f.

Gamma deviate 282f., 1153f.
Gamma function 206ff., 1085

incompleteseeIncomplete gamma func-
tion

Garbage collection 956
Gather-scatter operations 2/xiif., 984, 1002,

1032, 1034
communication bottleneck969, 981, 1250
many-to-one 984, 1002, 1032, 1034

Gauss-Chebyshev integration 141, 144, 512f.
Gauss-Hermite integration 144, 789

abscissas and weights 147, 1062
normalization 147

Gauss-Jacobi integration 144
abscissas and weights 148, 1063

Gauss-Jordan elimination 27ff., 33, 64, 1014f.
operation count 34, 39
solution of normal equations 667, 1288
storage requirements 30

Gauss-Kronrod quadrature 154
Gauss-Laguerre integration 144, 789, 1060
Gauss-Legendre integration 145f., 1059

see alsoGaussian integration
Gauss-Lobatto quadrature 154, 190, 512
Gauss-Radau quadrature 154
Gauss-Seidel method (relaxation) 855, 857,

864ff., 1338
nonlinear 876, 1341

Gauss transformation 256
Gaussian (normal) distribution 267, 652, 798

central limit theorem 652f.
deviates from 279f., 571, 1152
kurtosis of 606
multivariate 690
semi-invariants of 608
tails compared to Poisson 653
two-dimensional (binormal) 631
variance of skewness of 606

Gaussian elimination 33f., 51, 55, 1014f.
fill-in 45, 64
integral equations 786, 1326
operation count 34
outer product variant 1017
in reduction to Hessenberg form 478,

1231
relaxation solution of boundary value prob-

lems 753ff., 777, 1316
Gaussian function

Hardy’s theorem on Fourier transforms
600

see alsoGaussian (normal) distribution
Gaussian integration 127, 140ff., 789, 1059ff.

calculation of abscissas and weights 142ff.,
1009, 1059ff.

error estimate in solution 784
extensions of 153f.
Golub-Welsch algorithm for weights and

abscissas 150, 1064
for integral equations 781, 783, 1325
from known recurrence relation 150, 1064

950 Index to Volumes 1 and 2

nonclassical weight function 151ff., 788f.,
1064f., 1328f.

and orthogonal polynomials 142, 1009,
1061

parallel calculation of formulas 1009,
1061

preassigned nodes 153f.
weight functionlogx 153
weight functions 140ff., 788f., 1059ff.,

1328f.
Gear’s method (stiff ODEs) 730
Geiger counter 266
Generalized eigenvalue problems 455
Generalized minimum residual method (GM-

RES) 78
Generic interfaceseeInterface, generic
Generic procedures 939, 1083, 1094, 1096,

1364
elemental 940, 942, 946f., 1015, 1083

Geometric progression 972, 996f., 1365,
1372ff.

geop() utility function 972, 974, 989, 996,
1127

Geophysics, use of Backus-Gilbert method
809

Gerchberg-Saxton algorithm 805
get diag() utility function 985, 989, 1005,

1226
Gilbert and Sullivan 714
Givens reduction 462f., 473

fast 463
operation count 463

Glassman, A.J. 180
Global optimization 387f., 436ff., 650, 1219ff.

continuous variables 443f., 1222
Global variables 940, 953f., 1210

allocatable array method 954, 1197, 1212,
1266, 1287, 1298

communicated via internal subprogram
954, 957f., 1067, 1226

danger of 957, 1209, 1293, 1296
pointer method 954, 1197, 1212, 1266,

1287, 1302
Globally convergent

minimization 418ff., 1215
root finding 373, 376ff., 382, 749f., 752,

1196, 1314f.
GMRES (generalized minimum residual method)

78
GNU Emacs 1/xvi
Godunov’s method 837
Golden mean (golden ratio) 21, 349, 392f.,

399
Golden section search 341, 389ff., 395, 1202ff.
Golub-Welsch algorithm, for Gaussian quadra-

ture 150, 1064
Goodness-of-fit 650, 654, 657f., 662, 690,

1285
GOTO statements, danger of 9, 959
Gram-Schmidt

biorthogonalization 415f.
orthogonalization 94, 450f., 1039
SVD as alternative to 58

Graphics, function plotting342, 1182f.
Gravitational potential 519

Gray code 300, 881, 886ff., 1344
Greenbaum, A. 79
Gregorian calendar 13, 16, 1011, 1013
Grid square 116f.
Group, dihedral 894, 1345
Guard digits 882, 1343

Half weighting 867, 1337
Halton’s quasi-random sequence 300
Hamming window 547
Hamming’s motto 341
Hann window 547
Harmonic analysisseeFourier transform
Hashing 293, 1144, 1148, 1156

for random number seeds 1147f.
HDLC checksum 890
Heap (data structure) 327f., 336, 897, 1179
Heapsort 320, 327f., 336, 1171f., 1179
Helmholtz equation 852
Hermite polynomials 144, 147

approximation of roots 1062
Hermitian matrix 450ff., 475
Hertz (unit of frequency) 490
Hessenberg matrix 94, 453, 470, 476ff., 488,

1231
see alsoMatrix

Hessian matrix 382, 408, 415f., 419f., 676ff.,
803, 815

is inverse of covariance matrix 667, 679
second derivatives in 676

Hexadecimal constants 17f., 276, 293
initialization 959

Hierarchically band diagonal matrix 598
Hierarchy of program structure 6ff.
High-order not same as high-accuracy 100f.,

124, 389, 399, 705, 709, 741
High-pass filter 551
High-Performance Fortran (HPF) 2/xvf., 964,

981, 984
scatter-with-add 1032

Hilbert matrix 83
Home page, Numerical Recipes 1/xx, 2/xvii
Homogeneous linear equations 53
Hook step methods 386
Hotelling’s method for matrix inverse 49, 598
Householder transformation 52, 453, 462ff.,

469, 473, 475, 478, 481ff., 1227f.
operation count 467
in QR decomposition 92,1039

HPF seeHigh-Performance Fortran
Huffman coding 564, 881, 896f., 902, 1346ff.
huge() intrinsic function 951
Hyperbolic functions, explicit formulas for

inverse 178
Hyperbolic partial differential equations 818

advective equation 826
flux-conservative initial value problems

825ff.
Hypergeometric function 202f., 263ff.

routine for 264f., 1138
Hypothesis, null 603

I2B, defined 937

Index to Volumes 1 and 2 951

I4B, defined 937
iand() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
IBM 1/xxiii, 2/xix

bad random number generator 268
Fortran 90 compiler 2/viii
PC 4, 276, 293, 886
PC-RT 4
radix base for floating point arithmetic

476
RS6000 2/viii, 4

IBM checksum 894
ibset() intrinsic function 951
ICCG (incomplete Cholesky conjugate gradient

method) 824
ICF (intrinsic correlation function) model 817
Identity (unit) matrix 25
IEEE floating point format 276, 882f., 1343
ieor() intrinsic function 951
if statement, arithmetic 2/xi
if structure 12f.
ifirstloc() utility function 989, 993, 1041,

1346
IIR (infinite impulse response) filter 552ff.,

566
Ill-conditioned integral equations 780
Image processing 519, 803

cosine transform 513
fast Fourier transform (FFT) 519, 523,

803
as an inverse problem 803
maximum entropy method (MEM) 809ff.
from modulus of Fourier transform 805
wavelet transform 596f., 1267f.

imaxloc() utility function 989, 993, 1017
iminloc() utility function 989, 993, 1046,

1076
Implicit

function theorem 340
pivoting 30, 1014
shifts in QL method 472ff.

Implicit differencing 827
for diffusion equation 840
for stiff equations 729, 740, 1308

IMPLICIT NONE statement 2/xiv, 936
Implied do-list 968, 971, 1127
Importance sampling, in Monte Carlo 306f.
Improper integrals 135ff., 1055
Impulse response function 531, 540, 552
IMSL 1/xxiii, 2/xx, 26, 64,205, 364, 369,

454
In-place selection 335, 1178f.
Included file, superseded by module 940
Incomplete beta function 219ff., 1098ff.

for F-test 613, 1271
routine for 220f., 1097
for Student’s t 610, 613, 1269

Incomplete Cholesky conjugate gradient method
(ICCG) 824

Incomplete gamma function 209ff., 1089ff.
for chi-square 615, 654, 657f., 1272, 1285
deviates from 282f., 1153
in mode estimation 610
routine for 211f., 1089

Increment of linear congruential generator
268

Indentation of blocks 9
Index 934ff., 1446ff.

this entry 1464
Index loss 967f., 1038
Index table 320, 329f., 1173ff., 1176
Inequality constraints 423
Inheritance 8
Initial value problems 702, 818f.

see alsoDifferential equations;
Partial differential equations

Initialization of derived data type 2/xv
Initialization expression943, 959, 1012, 1127
Injection operator 864, 1337
Instability seeStability
Integer model, in Fortran 90 1144, 1149,

1156
Integer programming 436
Integral equations 779ff.

adaptive stepsize control 788
block-by-block method 788
correspondence with linear algebraic equa-

tions 779ff.
degenerate kernel 785
eigenvalue problems 780, 785
error estimate in solution 784
Fredholm 779f., 782ff., 1325, 1331
Fredholm alternative 780
homogeneous, second kind 785, 1325
ill-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779
nonlinear 781, 787
Nystrom method 782ff., 789, 1325
product Nystrom method 789, 1328ff.
with singularities 788ff., 1328ff.
with singularities, worked example792,

1328ff.
subtraction of singularity 789
symmetric kernel 785
unstable quadrature 787f.
Volterra 780f., 786ff., 1326f.
wavelets 782
see alsoInverse problems

Integral operator, wavelet approximation of
597, 782

Integration of functions 123ff., 1052ff.
cosine integrals 250, 1125
Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Fresnel integrals 248, 1123
Gauss-Hermite 147f., 1062
Gauss-Jacobi 148, 1063
Gauss-Laguerre 146, 1060
Gauss-Legendre 145, 1059
integrals that are elliptic integrals 254
path integration 201ff.
sine integrals 250, 1125
see alsoQuadrature

Integro-differential equations 782
INTENT attribute 1072, 1092
Interface (Fortran 90) 939, 942, 1067

952 Index to Volumes 1 and 2

for communication between program parts
957, 1209, 1293, 1296

explicit 939, 942, 1067, 1384
generic 2/xiii,940, 1015, 1083, 1094,

1096
implicit 939
for Numerical Recipes 1384ff.

Interface block 939, 1084, 1384
Interface, in programs 2, 8
Intermediate value theorem 343
Internal subprogram (Fortran 90) 2/xiv, 954,

957, 1067, 1202f., 1226
nesting of 2/xii
resembles C macro 1302
supersedes statement function 1057, 1256

International Standards Organization (ISO)
2/xf., 2/xiii

Internet, availability of code over 1/xx, 2/xvii
Interpolation 99ff.

Aitken’s algorithm 102
avoid 2-stage method 100
avoid in Fourier analysis 569
bicubic 118f., 1049f.
bilinear 117
caution on high-order 100
coefficients of polynomial 100, 113ff.,

191, 575, 1047f., 1078
for computing Fourier integrals 578
error estimates for 100
of functions with poles 104ff., 1043f.
inverse quadratic 353, 395ff., 1204
multidimensional 101f., 116ff., 1049ff.
in multigrid method 866, 1337
Neville’s algorithm 102f., 182, 1043
Nystrom 783, 1326
offset arrays 104, 113
operation count for 100
operator 864, 1337
order of 100
and ordinary differential equations 101
oscillations of polynomial 100, 116, 389,

399
parabolic, for minimum finding 395, 1204
polynomial 99, 102ff., 182, 1043
rational Chebyshev approximation 197ff.,

1081
rational function 99, 104ff., 194ff., 225,

718ff., 726, 1043f., 1080, 1306
reverse (extirpolation) 574, 1261
spline 100, 107ff., 120f., 1044f., 1050f.
trigonometric 99
see alsoFitting

Interprocessor communication 969, 981
Interval variable (statistics) 623
Intrinsic correlation function (ICF) model 817
Intrinsic data types 937
Intrinsic procedures

array inquiry 938, 942, 948ff.
array manipulation 950
array reduction 948
array unary and binary functions 949
backwards-compatibility 946
bit manipulation 2/xiii, 951
character 952
cmplx 1254

conversion elemental 946
elemental 940, 942, 946f., 951, 1083,

1364
generic 939, 1083f., 1364
lexical comparison 952
numeric inquiry 2/xiv, 1107, 1231, 1343
numerical 946, 951f.
numerical representation 951
pack used for sorting 1171
random number 1143
real 1254
top 10 945
truncation 946f.
see alsoFortran 90

Inverse hyperbolic function 178, 255
Inverse iterationseeEigensystems
Inverse problems 779, 795ff.

Backus-Gilbert method 806ff.
Bayesian approach 799, 810f., 816f.
central idea 799
constrained linear inversion method 799ff.
data inversion 807
deterministic constraints 804ff.
in geophysics 809
Gerchberg-Saxton algorithm 805
incomplete Fourier coefficients 813
and integral equations 780
linear regularization 799ff.
maximum entropy method (MEM) 810,

815f.
MEM demystified 814
Phillips-Twomey method799ff.
principal solution 797
regularization 796ff.
regularizing operator 798
stabilizing functional 798
Tikhonov-Miller regularization 799ff.
trade-off curve 795
trade-off curve, Backus-Gilbert method

809
two-dimensional regularization 803
use of conjugate gradient minimization

804, 815
use of convex sets 804
use of Fourier transform 803, 805
Van Cittert’s method 804

Inverse quadratic interpolation 353, 395ff.,
1204

Inverse response kernel, in Backus-Gilbert
method 807

Inverse trigonometric function 255
ior() intrinsic function 951
ISBN (International Standard Book Number)

checksum 894
ishft() intrinsic function 951
ishftc() intrinsic function 951
ISO (International Standards Organization)

2/xf., 2/xiii
Iterated integrals 155
Iteration 9f.

functional 740f.
to improve solution of linear algebraic

equations 47ff., 195, 1022
for linear algebraic equations 26

Index to Volumes 1 and 2 953

required for two-point boundary value
problems 745

in root finding 340f.
Iteration matrix 856
ITPACK 71
Iverson, John 2/xi

J acobi matrix, for Gaussian quadrature 150,
1064

Jacobi polynomials, approximation of roots
1064

Jacobi transformation (or rotation) 94, 453,
456ff., 462, 475, 489, 1041, 1225

Jacobian determinant 279, 774
Jacobian elliptic functions261, 1137f.
Jacobian matrix 374, 376, 379, 382, 731,

1197f., 1309
singular in Newton’s rule 386

Jacobi’s method (relaxation) 855ff., 864
Jenkins-Traub method 369
Julian Day 1, 13, 16, 936, 1010ff.
Jump transposition errors 895

K -S testseeKolmogorov-Smirnov test
Kalman filter 700
Kanji 2/xii
Kaps-Rentrop method 730, 1308
Kendall’s tau 634, 637ff., 1279
Kennedy, Ken 2/xv
Kepler’s equation 1061
Kermit checksum 889
Kernel 779

averaging, in Backus-Gilbert method 807
degenerate 785
finite rank 785
inverse response 807
separable 785
singular 788f., 1328
symmetric 785

Keys used in sorting 329, 889
Keyword argument 2/xiv, 947f., 1341
kind() intrinsic function 951
KIND parameter 946, 1261, 1284

and cmplx() intrinsic function 1125, 1192,
1254

default 937
for Numerical Recipes 1361
for random numbers 1144
and real() intrinsic function 1125

Kolmogorov-Smirnov test 614, 617ff., 694,
1273f.

two-dimensional 640, 1281ff.
variants 620ff., 640, 1281

Kuiper’s statistic 621
Kurtosis 606, 608, 1269

L-estimate 694
Labels, statement 9
Lag 492, 538, 553
Lagged Fibonacci generator 1142, 1148ff.
Lagrange multiplier 795
Lagrange’s formula for polynomial interpola-

tion 84, 102f., 575, 578

Laguerre polynomials, approximation of roots
1061

Laguerre’s method 341, 365f., 1191f.
Lanczos lemma 498f.
Lanczos method for gamma function 206,

1085
Landen transformation 256
LAPACK 26, 1230
Laplace’s equation 246, 818

see alsoPoisson equation
Las Vegas 625
Latin square or hypercube 305f.
Laurent series 566
Lax method 828ff., 836, 845f.

multidimensional 845f.
Lax-Wendroff method 835ff.
lbound() intrinsic function 949
Leakage in power spectrum estimation 544,

548
Leakage width 548f.
Leapfrog method 833f.
Least squares filtersseeSavitzky-Golay filters
Least squares fitting645, 651ff., 655ff., 660ff.,

665ff., 1285f., 1288f.
contrasted to general minimization prob-

lems 684ff.
degeneracies in 671f., 674
Fourier components 570
as M-estimate for normal errors 696
as maximum likelihood estimator 652
as method for smoothing data 645, 1283
Fourier components 1258
freezing parameters in 668, 700
general linear case 665ff., 1288, 1290f.
Levenberg-Marquardt method 678ff., 816,

1292f.
Lomb periodogram 570, 1258
multidimensional 675
nonlinear 386, 675ff., 816, 1292
nonlinear, advanced methods 683
normal equations 645, 666f., 800, 1288
normal equations often singular 670, 674
optimal (Wiener) filtering 540f.
QR method in 94, 668
for rational Chebyshev approximation

199f., 1081f.
relation to linear correlation 630, 658
Savitzky-Golay filter as 645, 1283
singular value decomposition (SVD) 25f.,

51ff., 199f., 670ff., 1081, 1290
skewed by outliers 653
for spectral analysis 570, 1258
standard (probable) errors on fitted parame-

ters 667, 671
weighted 652
see alsoFitting

L’Ecuyer’s long period random generator 271,
273

Least squares fitting
standard (probable) errors on fitted parame-

ters 1288, 1290
weighted 1285

Left eigenvalues or eigenvectors 451
Legal matters 1/xx, 2/xvii
Legendre elliptic integralseeElliptic integrals

954 Index to Volumes 1 and 2

Legendre polynomials 246, 1122
fitting data to 674, 1291f.
recurrence relation 172
shifted monic 151
see alsoAssociated Legendre polynomials;

Spherical harmonics
Lehmer-Schur algorithm 369
Lemarie’s wavelet 593
Lentz’s method for continued fraction 165,

212
Lepage, P. 309
Leptokurtic distribution 606
Levenberg-Marquardt algorithm 386, 678ff.,

816, 1292
advanced implementation 683

Levinson’s method 86, 1038
Lewis, H.W. 275
Lexical comparison functions 952
LGT, defined 937
License information 1/xx, 2/xviiff.
Limbo 356
Limit cycle, in Laguerre’s method 365
Line minimizationseeMinimization, along a

ray
Line searchseeMinimization, along a ray
Linear algebra, intrinsic functions for paral-

lelization 969f., 1026, 1040, 1200,
1326

Linear algebraic equations 22ff., 1014
band diagonal 43ff., 1019
biconjugate gradient method 77, 1034ff.
Cholesky decomposition 89f.,423, 455,

668, 1038f.
complex 41
computingA−1

· B 40
conjugate gradient method 77ff., 599,

1034
cyclic tridiagonal 67, 1030
direct methods 26, 64, 1014, 1030
Fortran 90 vs. library routines 1016
Gauss-Jordan elimination 27ff., 1014
Gaussian elimination 33f., 1014f.
Hilbert matrix 83
Hotelling’s method 49, 598
and integral equations 779ff., 783, 1325
iterative improvement 47ff., 195, 1022
iterative methods 26, 77ff., 1034
large sets of 23
least squares solution 53ff., 57f., 199f.,

671, 1081, 1290
LU decomposition 34ff.,195, 386, 732,

783, 786, 801, 1016, 1022, 1325f.
nonsingular 23
overdetermined 25f., 199, 670, 797
partitioned 70
QR decomposition 91f.,382, 386, 668,

1039f., 1199
row vs. column elimination 31f.
Schultz’s method 49, 598
Sherman-Morrison formula 65ff., 83
singular 22, 53, 58, 199, 670
singular value decomposition (SVD) 51ff.,

199f., 670ff., 797, 1022, 1081, 1290
sparse 23, 43, 63ff., 732, 804, 1020f.,

1030

summary of tasks 25f.
Toeplitz 82, 85ff.,195, 1038
tridiagonal 26, 42f., 64, 109, 150, 453f.,

462ff., 469ff., 488, 839f., 853, 861f.,
1018f., 1227ff.

Vandermonde 82ff., 114, 1037, 1047
wavelet solution 597ff., 782
Woodbury formula 68ff., 83
see alsoEigensystems

Linear congruential random number generator
267ff., 1142

choice of constants for 274ff.
Linear constraints 423
Linear convergence 346, 393
Linear correlation (statistics) 630ff., 1276
Linear dependency

constructing orthonormal basis 58, 94
of directions inN -dimensional space 409
in linear algebraic equations 22f.

Linear equationsseeDifferential equations;
Integral equations; Linear algebraic
equations

Linear inversion method, constrained 799ff.
Linear prediction 557ff.

characteristic polynomial 559
coefficients 557ff., 1256
compared to maximum entropy method

558
compared with regularization 801
contrasted to polynomial extrapolation

560
related to optimal filtering 558
removal of bias in 563
stability 559f., 1257

Linear predictive coding (LPC) 563ff.
Linear programming 387, 423ff., 1216ff.

artificial variables 429
auxiliary objective function 430
basic variables 426
composite simplex algorithm 435
constraints 423
convergence criteria 432
degenerate feasible vector 429
dual problem 435
equality constraints 423
feasible basis vector 426
feasible vector 424
fundamental theorem 426
inequality constraints 423
left-hand variables 426
nonbasic variables 426
normal form 426
objective function 424
optimal feasible vector 424
pivot element 428f.
primal-dual algorithm 435
primal problem 435
reduction to normal form 429ff.
restricted normal form 426ff.
revised simplex method 435
right-hand variables 426
simplex method 402, 423ff., 431ff., 1216ff.
slack variables 429
tableau 427
vertex of simplex 426

Index to Volumes 1 and 2 955

Linear recurrenceseeRecurrence relation
Linear regression 655ff., 660ff., 1285ff.

see alsoFitting
Linear regularization 799ff.
LINPACK 26
Literal constant 937, 1361
Little-endian 293
Local extrapolation 709
Local extremum 387f., 437
Localization of rootsseeBracketing
Logarithmic function 255
Lomb periodogram method of spectral analysis

569f., 1258f.
fast algorithm 574f., 1259

Loops 9f.
Lorentzian probability distribution282, 696f.
Low-pass filter 551, 644f., 1283f.
Lower subscript 944
lower triangle() utility function 989, 1007,

1200
LP coefficientsseeLinear prediction
LPC (linear predictive coding) 563ff.
LU decomposition 34ff., 47f., 51, 55, 64, 97,

374, 667, 732, 1016, 1022
for A−1

· B 40
backsubstitution 39,1017
band diagonal matrix 43ff., 1020
complex equations 41f.
Crout’s algorithm 36ff., 45, 1017
for integral equations 783, 786, 1325f.
for inverse iteration of eigenvectors 488
for inverse problems 801
for matrix determinant 41
for matrix inverse 40, 1016
for nonlinear sets of equations 374, 386,

1196
operation count 36, 39
outer product Gaussian elimination 1017
for Padé approximant 195, 1080
pivoting 37f., 1017
repeated backsubstitution 40, 46
solution of linear algebraic equations 40,

1017
solution of normal equations 667
for Toeplitz matrix 87

Lucifer 290

M&R (Metcalf and Reid) 935
M-estimates 694ff.

how to compute 697f.
local 695ff.
see alsoMaximum likelihood estimate

Machine accuracy 19f., 881f., 1189, 1343
Macintosh,seeApple Macintosh
Maehly’s procedure 364, 371
Magic

in MEM image restoration 814
in Padé approximation 195

Mantissa in floating point format 19, 882,
909, 1343

Marginals 624
Marquardt method (least squares fitting) 678ff.,

816, 1292f.
Marsaglia shift register 1142, 1148ff.
Marsaglia, G. 1142, 1149

mask 1006f., 1102, 1200, 1226, 1305, 1333f.,
1368, 1378, 1382

optional argument 948
optional argument, facilitates parallelism

967f., 1038
Mass, center of 295ff.
MasterCard checksum 894
Mathematical Center (Amsterdam) 353
Mathematical intrinsic functions 946, 951f.
matmul() intrinsic function 945, 949, 969,

1026, 1040, 1050, 1076, 1200, 1216,
1290, 1326

Matrix 23ff.
add vector to diagonal 1004, 1234, 1366,

1381
approximation of 58f., 598f.
band diagonal 42ff., 64, 1019
band triangular 64
banded 26, 454
bidiagonal 52
block diagonal 64, 754
block triangular 64
block tridiagonal 64
bordered 64
characteristic polynomial 449, 469
Cholesky decomposition 89f.,423, 455,

668, 1038f.
column augmented 28, 1014
complex 41
condition number 53, 78
create unit matrix 1006, 1382
curvature 677
cyclic banded 64
cyclic tridiagonal 67, 1030
defective 450, 476, 489
of derivativesseeHessian matrix; Jacobian

determinant
design (fitting) 645, 665, 801, 1082
determinant of 25, 41
diagonal of sparse matrix 1033ff.
diagonalization 452ff., 1225ff.
elementary row and column operations

28f.
finite differencing of partial differential

equations 821ff.
get diagonal 985, 1005, 1226f., 1366,

1381f.
Hermitian 450, 454, 475
Hermitian conjugate 450
Hessenberg 94, 453, 470, 476ff., 488,

1231ff.
HessianseeHessian matrix
hierarchically band diagonal 598
Hilbert 83
identity 25
ill-conditioned 53, 56, 114
indexed storage of 71f., 1030
and integral equations 779, 783, 1325
inverse 25, 27, 34, 40, 65ff., 70, 95ff.,

1014, 1016f.
inverse, approximate 49
inverse by Hotelling’s method 49, 598
inverse by Schultz’s method 49, 598
inverse multiplied by a matrix 40
iteration for inverse 49, 598

956 Index to Volumes 1 and 2

Jacobi transformation 453, 456ff., 462,
1225f.

Jacobian 731, 1309
logical dimension 24
lower triangular 34f., 89, 781, 1016
lower triangular mask 1007, 1200, 1382
multiplication denoted by dot 23
multiplication, intrinsic function 949, 969,

1026, 1040, 1050, 1200, 1326
norm 50
normal 450ff.
nullity 53
nullspace 25, 53f., 449, 795
orthogonal 91, 450, 463ff., 587
orthogonal transformation 452, 463ff.,

469, 1227
orthonormal basis 58, 94
outer product denoted by cross 66, 420
partitioning for determinant 70
partitioning for inverse 70
pattern multiply of sparse 74
physical dimension 24
positive definite 26, 89f.,668, 1038
QR decomposition 91f.,382, 386, 668,

1039, 1199
range 53
rank 53
residual 49
row and column indices 23
row vs. column operations 31f.
self-adjoint 450
set diagonal elements 1005, 1200, 1366,

1382
similarity transform 452ff., 456, 476, 478,

482
singular 53f., 58, 449
singular value decomposition 26, 51ff.,

797
sparse 23, 63ff., 71, 598, 732, 754, 804,

1030ff.
special forms 26
splitting in relaxation method856f.
spread 808
square root of 423, 455
symmetric 26, 89, 450, 454, 462ff., 668,

785, 1038, 1225, 1227
threshold multiply of sparse 74,1031
Toeplitz 82, 85ff.,195, 1038
transpose() intrinsic function 950
transpose of sparse 73f., 1033
triangular 453
tridiagonal 26, 42f., 64, 109, 150, 453f.,

462ff., 469ff., 488, 839f., 853, 861f.,
1018f., 1227ff.

tridiagonal with fringes 822
unitary 450
updating 94, 382, 386, 1041, 1199
upper triangular 34f., 91, 1016
upper triangular mask 1006, 1226, 1305,

1382
Vandermonde 82ff., 114, 1037, 1047
see alsoEigensystems

Matrix equationsseeLinear algebraic equa-
tions

Matterhorn 606

maxexponent() intrinsic function 1107
MaximizationseeMinimization
Maximum entropy method (MEM) 565ff.,

1258
algorithms for image restoration 815f.
Bayesian 816f.
Cornwell-Evans algorithm 816
demystified 814
historic vs. Bayesian 816f.
image restoration 809ff.
intrinsic correlation function (ICF) model

817
for inverse problems 809ff.
operation count 567
see alsoLinear prediction

Maximum likelihood estimate (M-estimates)
690, 694ff.

and Bayes’ Theorem 811
chi-square test 690
defined 652
how to compute 697f.
mean absolute deviation 696, 698, 1294
relation to least squares 652

maxloc() intrinsic function 949, 992f., 1015
modified in Fortran 95 961

maxval() intrinsic function 945, 948, 961,
1016, 1273

Maxwell’s equations 825f.
Mean(s)

of distribution 604f., 608f., 1269
statistical differences between two 609ff.,

1269f.
Mean absolute deviation of distribution 605,

696, 1294
related to median 698

Measurement errors 650
Median 320

calculating 333
of distribution 605, 608f.
as L-estimate 694
role in robust straight line fitting 698
by selection 698, 1294

Median-of-three, in Quicksort 324
MEM seeMaximum entropy method (MEM)
Memory leak 953, 956, 1071, 1327
Memory management 938, 941f., 953ff.,

1327, 1336
merge construct 945, 950, 1099f.

for conditional scalar expression 1010,
1094f.

contrasted with where 1023
parallelization 1011

Merge-with-dummy-values idiom 1090
Merit function 650

in general linear least squares 665
for inverse problems 797
nonlinear models 675
for straight line fitting 656, 698
for straight line fitting, errors in both coor-

dinates 660, 1286
Mesh-drift instability 834f.
Mesokurtic distribution 606
Metcalf, Michael 2/viii

see alsoM&R
Method of regularization 799ff.

Index to Volumes 1 and 2 957

Metropolis algorithm 437f., 1219
Microsoft 1/xxii, 2/xix
Microsoft Fortran PowerStation 2/viii
Midpoint methodseeModified midpoint method;

Semi-implicit midpoint rule
Mikado, or Town of Titipu 714
Miller’s algorithm 175, 228, 1106
MIMD machines (Multiple Instruction Multiple

Data) 964, 985, 1071, 1084
Minimal solution of recurrence relation 174
Minimax polynomial 186, 198, 1076
Minimax rational function 198
Minimization 387ff.

along a ray 77, 376f., 389, 406ff., 412f.,
415f., 418, 1195f., 1211, 1213

annealing, method of simulated 387f.,
436ff., 1219ff.

bracketing of minimum 390ff., 402, 1201f.
Brent’s method 389, 395ff., 399, 660f.,

1204ff., 1286
Broyden-Fletcher-Goldfarb-Shanno algo-

rithm 390, 418ff., 1215
chi-square 653ff., 675ff., 1285, 1292
choice of methods 388f.
combinatorial 436f., 1219
conjugate gradient method 390, 413ff.,

804, 815, 1210, 1214
convergence rate 393, 409
Davidon-Fletcher-Powell algorithm 390,

418ff., 1215
degenerate 795
direction-set methods 389, 406ff., 1210ff.
downhill simplex method 389, 402ff.,

444, 697f., 1208, 1222ff.
finding best-fit parameters 650
Fletcher-Reeves algorithm 390, 414ff.,

1214
functional 795
global 387f., 443f., 650, 1219, 1222
globally convergent multidimensional 418,

1215
golden section search 390ff., 395, 1202ff.
multidimensional 388f., 402ff., 1208ff.,

1214
in nonlinear model fitting 675f., 1292
Polak-Ribiere algorithm 389, 414ff., 1214
Powell’s method 389, 402, 406ff., 1210ff.
quasi-Newton methods 376, 390, 418ff.,

1215
and root finding 375
scaling of variables 420
by searching smaller subspaces 815
steepest descent method 414, 804
termination criterion 392, 404
use in finding double roots 341
use for sparse linear systems 77ff.
using derivatives 389f., 399ff., 1205ff.
variable metric methods 390, 418ff., 1215
see alsoLinear programming

Minimum residual method, for sparse system
78

minloc() intrinsic function 949, 992f.
modified in Fortran 95 961

MINPACK 683
minval() intrinsic function 948, 961

MIPS 886
Missing data problem 569
Mississippi River 438f., 447
MMP (massively multiprocessor) machines

965ff., 974, 981, 984, 1016ff., 1021,
1045, 1226ff., 1250

Mode of distribution 605, 609
Modeling of dataseeFitting
Model-trust region 386, 683
Modes, homogeneous, of recursive filters 554
Modified Bessel functionsseeBessel func-

tions
Modified Lentz’s method, for continued frac-

tions 165
Modified midpoint method 716ff., 720, 1302f.
Modified moments 152
Modula-2 7
Modular arithmetic, without overflow 269,

271, 275
Modular programming 2/xiii, 7f., 956ff.,

1209, 1293, 1296, 1346
MODULE facility 2/xiii, 936f., 939f., 957,

1067, 1298, 1320, 1322, 1324, 1330,
1346

initializing random number generator 1144ff.
in nr.f90 936, 941f., 1362, 1384ff.
in nrtype.f90 936f., 1361f.
in nrutil.f90 936, 1070, 1362, 1364ff.
sparse matrix 1031
undefined variables on exit 953, 1266

Module subprogram 940
modulo() intrinsic function 946, 1156
Modulus of linear congruential generator 268
Moments

of distribution 604ff., 1269
filter that preserves 645
modified problem of 151f.
problem of 83
and quadrature formulas 791, 1328
semi-invariants 608

Monic polynomial 142f.
Monotonicity constraint, in upwind differenc-

ing 837
Monte Carlo 155ff., 267

adaptive 306ff., 1161ff.
bootstrap method 686f.
comparison of sampling methods 309
exploration of binary tree 290
importance sampling 306f.
integration 124, 155ff., 295ff., 306ff.,

1161
integration, recursive 314ff., 1164ff.
integration, using Sobol’ sequence 304
integration, VEGAS algorithm 309ff.,

1161
and Kolmogorov-Smirnov statistic 622,

640
partial differential equations 824
quasi-random sequences in 299ff.
quick and dirty 686f.
recursive 306ff., 314ff., 1161, 1164ff.
significance of Lomb periodogram 570
simulation of data 654, 684ff., 690
stratified sampling 308f., 314, 1164

958 Index to Volumes 1 and 2

Moon, calculate phases of 1f., 14f., 936,
1010f.

Mother functions 584
Mother Nature 684, 686
Moving average (MA) model 566
Moving window averaging 644
Mozart 9
MS 1/xxii, 2/xix
Muller’s method 364, 372
Multidimensional

confidence levels of fitting688f.
data, use of binning 623
Fourier transform 515ff., 1241, 1246,

1251
Fourier transform, real data 519ff., 1248f.
initial value problems 844ff.
integrals 124, 155ff., 295ff., 306ff., 1065ff.,

1161ff.
interpolation 116ff., 1049ff.
Kolmogorov-Smirnov test 640, 1281
least squares fitting 675
minimization 402ff., 406ff., 413ff., 1208ff.,

1214f., 1222ff.
Monte Carlo integration 295ff., 306ff.,

1161ff.
normal (Gaussian) distribution 690
optimization 388f.
partial differential equations 844ff.
root finding 340ff., 358, 370, 372ff., 746,

749f., 752, 754, 1194ff., 1314ff.
search using quasi-random sequence 300
secant method 373, 382f., 1199f.
wavelet transform 595, 1267f.

Multigrid method 824, 862ff., 1334ff.
avoid SOR 866
boundary conditions 868f.
choice of operators 868
coarse-to-fine operator 864, 1337
coarse-grid correction 864f.
cycle 865
dual viewpoint 875
fine-to-coarse operator 864, 1337
full approximation storage (FAS) algorithm

874, 1339ff.
full multigrid method (FMG) 863, 868,

1334ff.
full weighting 867
Gauss-Seidel relaxation 865f., 1338
half weighting 867, 1337
importance of adjoint operator 867
injection operator 864, 1337
interpolation operator 864, 1337
line relaxation 866
local truncation error 875
Newton’s rule 874, 876, 1339, 1341
nonlinear equations 874ff., 1339ff.
nonlinear Gauss-Seidel relaxation 876,

1341
odd-even ordering 866, 869, 1338
operation count 862
prolongation operator 864, 1337
recursive nature 865, 1009, 1336
relative truncation error 875
relaxation as smoothing operator 865
restriction operator 864, 1337

speeding up FMG algorithm 873
stopping criterion 875f.
straight injection 867
symbol of operator 866f.
use of Richardson extrapolation 869
V-cycle 865, 1336
W-cycle 865, 1336
zebra relaxation 866

Multiple precision arithmetic 906ff., 1352ff.
Multiple roots 341, 362
Multiplication, complex 171
Multiplication, multiple precision 907, 909,

1353f.
Multiplier of linear congruential generator

268
Multistep and multivalue methods (ODEs)

740ff.
see alsoDifferential Equations; Predictor-

corrector methods
Multivariate normal distribution 690
Murphy’s Law 407
Musical scores 5f.

NAG 1/xxiii, 2/xx, 26, 64,205, 454
Fortran 90 compiler 2/viii, 2/xiv

Named constant 940
initialization 1012
for Numerical Recipes 1361

Named control structure 959, 1219, 1305
National Science Foundation (U.S.) 1/xvii,

1/xix, 2/ix
Natural cubic spline 109, 1044f.
Navier-Stokes equation 830f.
nearest() intrinsic function 952, 1146
Needle, eye of (minimization) 403
Negation, multiple precision907, 1353f.
Negentropy 811, 896
Nelder-Mead minimization method 389, 402,

1208
Nested iteration 868
Neumann boundary conditions 820, 840, 851,

858
Neutrino 640
Neville’s algorithm 102f., 105, 134, 182,

1043
Newton-Cotes formulas 125ff., 140
Newton-Raphson methodseeNewton’s rule
Newton’s rule 143f., 180, 341, 355ff., 362,

364, 469, 1059, 1189
with backtracking 376, 1196
caution on use of numerical derivatives

356ff.
fractal domain of convergence 360f.
globally convergent multidimensional 373,

376ff., 382, 749f., 752, 1196, 1199,
1314f.

for matrix inverse 49, 598
in multidimensions 370, 372ff., 749f.,

752, 754, 1194ff., 1314ff.
in nonlinear multigrid 874, 876, 1339,

1341
nonlinear Volterra equations 787
for reciprocal of number 911, 1355
safe 359, 1190
scaling of variables 381

Index to Volumes 1 and 2 959

singular Jacobian 386
solving stiff ODEs 740
for square root of number 912, 1356

Niederreiter sequence 300
NL2SOL 683
Noise

bursty 889
effect on maximum entropy method 567
equivalent bandwidth 548
fitting data which contains647f., 650
model, for optimal filtering 541

Nominal variable (statistics) 623
Nonexpansive projection operator 805
Non-interfering directionsseeConjugate direc-

tions
Nonlinear eigenvalue problems 455
Nonlinear elliptic equations, multigrid method

874ff., 1339ff.
Nonlinear equations, in MEM inverse prob-

lems 813
Nonlinear equations, roots of 340ff.
Nonlinear instability 831
Nonlinear integral equations 781, 787
Nonlinear programming 436
Nonnegativity constraints 423
Nonparametric statistics 633ff., 1277ff.
Nonpolynomial complete (NP-complete) 438
Norm, of matrix 50
Normal (Gaussian) distribution 267, 652, 682,

798, 1294
central limit theorem 652f.
deviates from 279f., 571, 1152
kurtosis of 607
multivariate 690
semi-invariants of 608
tails compared to Poisson 653
two-dimensional (binormal) 631
variance of skewness of 606

Normal equations (fitting) 26, 645, 666ff.,
795, 800, 1288

often are singular 670
Normalization

of Bessel functions 175
of floating-point representation 19, 882,

1343
of functions 142, 765
of modified Bessel functions 232

not() intrinsic function 951
Notch filter 551, 555f.
NP-complete problem 438
nr.f90 (module file) 936, 1362, 1384ff.
nrerror() utility function 989, 995
nrtype.f90 (module file) 936f.

named constants 1361
nrutil.f90 (module file) 936, 1070, 1362,

1364ff.
table of contents 1364

Null hypothesis 603
nullify statement 953f., 1070, 1302
Nullity 53
Nullspace 25, 53f., 449, 795
Number-theoretic transforms 503f.
Numeric inquiry functions 2/xiv, 1107, 1231,

1343
Numerical derivatives 180ff., 645, 1075

Numerical integrationseeQuadrature
Numerical intrinsic functions 946, 951f.
Numerical Recipes

compatibility with First Edition 4
Example Book 3
Fortran 90 types 936f., 1361
how to get programs 1/xx, 2/xvii
how to report bugs 1/iv, 2/iv
interface blocks (Fortran 90) 937, 941f.,

1084, 1384ff.
no warranty on 1/xx, 2/xvii
plan of two-volume edition 1/xiii
table of dependencies 921ff., 1434ff.
as trademark 1/xxiii, 2/xx
utility functions (Fortran 90) 936f., 945,

968, 970, 972ff., 977, 984, 987ff., 1015,
1071f., 1361ff.

Numerical Recipes Software 1/xv, 1/xxiiff.,
2/xviiff.

address and fax number 1/iv, 1/xxii, 2/iv,
2/xix

Web home page 1/xx, 2/xvii
Nyquist frequency 494ff., 520, 543, 545,

569ff.
Nystrom method 782f., 789, 1325

product version 789, 1331

Object extensibility 8
Objective function 424
Object-oriented programming 2/xvi, 2, 8
Oblateness parameter 764
Obsolete featuresseeFortran, Obsolescent fea-

tures
Octal constant, initialization 959
Odd-even ordering

allows parallelization 1333
in Gauss-Seidel relaxation 866, 869, 1338
in successive over-relaxation (SOR) 859,

1332
Odd parity 888
OEM information 1/xxii
One-sided power spectral density 492
ONLY option, for USE statement 941, 957,

1067
Operation count

balancing 476
Bessel function evaluation 228
bisection method 346
Cholesky decomposition 90
coefficients of interpolating polynomial

114f.
complex multiplication 97
cubic spline interpolation 109
evaluating polynomial 168
fast Fourier transform (FFT) 498
Gauss-Jordan elimination 34, 39
Gaussian elimination 34
Givens reduction 463
Householder reduction 467
interpolation 100
inverse iteration 488
iterative improvement 48
Jacobi transformation 460
Kendall’s tau 637

960 Index to Volumes 1 and 2

linear congruential generator 268
LU decomposition 36, 39
matrix inversion 97
matrix multiplication 96
maximum entropy method 567
multidimensional minimization413f.
multigrid method 862
multiplication 909
polynomial evaluation 97f., 168
QL method 470, 473
QR decomposition 92
QR method for Hessenberg matrices 484
reduction to Hessenberg form 479
selection by partitioning 333
sorting 320ff.
Spearman rank-order coefficient 638
Toeplitz matrix 83
Vandermonde matrix 83

Operator overloading 2/xiif., 7
Operator splitting 823, 847f., 861
Operator, user-defined 2/xii
Optimal feasible vector 424
Optimal (Wiener) filtering 535, 539ff., 558,

644
compared with regularization 801

OptimizationseeMinimization
Optimization of code 2/xiii
Optional argument 2/xiv, 947f., 1092, 1228,

1230, 1256, 1272, 1275, 1340
dim 948
mask 948, 968, 1038
testing for 952

Ordering Numerical Recipes 1/xxf., 2/xviif.
Ordinal variable (statistics) 623
Ordinary differential equationsseeDifferential

equations
OrthogonalseeOrthonormal functions; Or-

thonormal polynomials
Orthogonal transformation 452, 463ff., 469,

584, 1227
Orthonormal basis, constructing 58, 94, 1039
Orthonormal functions 142, 246
Orthonormal polynomials

Chebyshev 144, 184ff., 1076ff.
construct for arbitrary weight 151ff., 1064
in Gauss-Hermite integration 147, 1062
and Gaussian quadrature 142, 1009, 1061
Gaussian weights from recurrence 150,

1064
Hermite 144, 1062
Jacobi 144, 1063
Laguerre 144, 1060
Legendre 144, 1059
weight functionlogx 153

Orthonormality 51, 142, 463
Outer product Gaussian elimination 1017
Outer product of matrices (denoted by cross)

66, 420, 949, 969f., 989, 1000ff., 1017,
1026, 1040, 1076, 1200, 1216, 1275

outerand() utility function 989, 1002, 1015
outerdiff() utility function 989, 1001
outerdiv() utility function 989, 1001
outerprod() utility function 970, 989, 1000,

1017, 1026, 1040, 1076, 1200, 1216,
1275

outersum() utility function 989, 1001
Outgoing wave boundary conditions 820
Outlier 605, 653, 656, 694, 697

see alsoRobust estimation
Overcorrection 857
Overflow 882, 1343

how to avoid in modulo multiplication
269

in complex arithmetic 171
Overlap-add and overlap-save methods 536f.
Overloading

operator 2/xiif.
procedures 940, 1015, 1083, 1094, 1096

Overrelaxation parameter 857, 1332
choice of 858

Pack() intrinsic function 945, 950, 964, 991,
1031

communication bottleneck 969
for index table 1176
for partition-exchange1170
for selection 1178
for selective evaluation 1087

Pack-unpack idiom 1087, 1134, 1153
Padé approximant 194ff., 1080f.
Padé approximation 105
Parabolic interpolation 395, 1204
Parabolic partial differential equations 818,

838ff.
Parallel axis theorem 308
Parallel programming 2/xv, 941, 958ff., 962ff.,

965f., 968f., 987
array operations 964f.
array ranking 1278f.
band diagonal linear equations 1021
Bessel functions 1107ff.
broadcasts 965ff.
C and C++ 2/viii
communication costs 969, 981, 1250
counting do-loops 1015
cyclic reduction 974
deflation 977ff.
design matrix 1082
dimensional expansion 965ff.
eigensystems 1226, 1229f.
fast Fourier transform (FFT) 981, 1235ff.,

1250
in Fortran 90 963ff.
Fortran 90 tricks 1009, 1274, 1278, 1280
function evaluation 986, 1009, 1084f.,

1087, 1090, 1102, 1128, 1134
Gaussian quadrature 1009, 1061
geometric progressions 972
index loss 967f., 1038
index table 1176f.
interprocessor communication 981
Kendall’s tau 1280
linear algebra 969f., 1000ff., 1018f., 1026,

1040, 1200, 1326
linear recurrence 973f., 1073ff.
logo 2/viii, 1009
masks 967f., 1006f., 1038, 1102, 1200,

1226, 1305, 1333f., 1368, 1378, 1382
merge statement 1010

Index to Volumes 1 and 2 961

MIMD (multiple instruction, multiple data)
964, 985f., 1084

MMP (massively multiprocessor) machines
965ff., 974, 984, 1016ff., 1226ff., 1250

nrutil.f90 (module file) 1364ff.
odd-even ordering 1333
one-dimensional FFT 982f.
parallel note icon 1009
partial differential equations 1333
in-place selection 1178f.
polynomial coefficients from roots 980
polynomial evaluation 972f., 977, 998
random numbers 1009, 1141ff.
recursive doubling 973f., 976f., 979, 988,

999, 1071ff.
scatter-with-combine 984, 1002f., 1032f.
second order recurrence 974f., 1074
SIMD (Single Instruction Multiple Data)

964, 985f., 1009, 1084f.
singular value decomposition (SVD) 1026
sorting 1167ff., 1171, 1176f.
special functions 1009
SSP (small-scale parallel) machines 965ff.,

984, 1010ff., 1016ff., 1059f., 1226ff.,
1250

subvector scaling 972, 974, 996, 1000
successive over-relaxation (SOR) 1333
supercomputers 2/viii, 962
SVD algorithm 1026
synthetic division 977ff., 999, 1048, 1071f.,

1079, 1192
tridiagonal systems 975f., 1018, 1229f.
utilities 1364ff.
vector reduction 972f., 977, 998
vs. serial programming 965, 987

PARAMETER attribute 1012
Parameters in fitting function651, 684ff.
Parity bit 888
Park and Miller minimal standard random gen-

erator 269, 1142
Parkinson’s Law 328
Parseval’s Theorem 492, 544

discrete form 498
Partial differential equations 818ff., 1332ff.

advective equation 826
alternating-direction implicit method (ADI)

847, 861f.
amplification factor 828, 834
analyze/factorize/operate package 824
artificial viscosity 831, 837
biconjugate gradient method 824
boundary conditions 819ff.
boundary value problems 819, 848
Cauchy problem 818f.
caution on high-order methods 844f.
Cayley’s form 844
characteristics 818
Chebyshev acceleration 859f., 1332
classification of 818f.
comparison of rapid methods 854
conjugate gradient method 824
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicholson method 840, 842, 844,

846

cyclic reduction (CR) method 848f., 852ff.
diffusion equation 818, 838ff., 846, 855
Dirichlet boundary conditions 508, 820,

840, 850, 856, 858
elliptic, defined 818
error, varieties of 831ff.
explicit vs. implicit differencing 827
FACR method 854
finite difference method 821ff.
finite element methods 824
flux-conservative initial value problems

825ff.
forward Euler differencing 826f.
Forward Time Centered Space (FTCS)

827ff., 839ff., 843, 855
Fourier analysis and cyclic reduction (FACR)

848ff., 854
Gauss-Seidel method (relaxation) 855,

864ff., 876, 1338, 1341
Godunov’s method 837
Helmholtz equation 852
hyperbolic 818, 825f.
implicit differencing 840
incomplete Cholesky conjugate gradient

method (ICCG) 824
inhomogeneous boundary conditions 850f.
initial value problems 818f.
initial value problems, recommendations on

838ff.
Jacobi’s method (relaxation) 855ff., 864
Laplace’s equation 818
Lax method 828ff., 836, 845f.
Lax method (multidimensional)845f.
matrix methods 824
mesh-drift instability 834f.
Monte Carlo methods 824
multidimensional initial value problems

844ff.
multigrid method 824, 862ff., 1009, 1334ff.
Neumann boundary conditions 508, 820,

840, 851, 858
nonlinear diffusion equation 842
nonlinear instability 831
numerical dissipation or viscosity 830
operator splitting 823, 847f., 861
outgoing wave boundary conditions 820
parabolic 818, 838ff.
parallel computing 1333
periodic boundary conditions 850, 858
piecewise parabolic method (PPM) 837
Poisson equation 818, 852
rapid (Fourier) methods 508ff., 824, 848ff.
relaxation methods 823, 854ff., 1332f.
Schrödinger equation 842ff.
second-order accuracy 833ff., 840
shock 831, 837
sparse matrices from 64
spectral methods 825
spectral radius 856ff., 862
stability vs.accuracy 830
stability vs. efficiency 821
staggered grids 513, 852
staggered leapfrog method 833f.
strongly implicit procedure 824

962 Index to Volumes 1 and 2

successive over-relaxation (SOR) 857ff.,
862, 866, 1332f.

time splitting 847f., 861
two-step Lax-Wendroff method 835ff.
upwind differencing 832f., 837
variational methods 824
varieties of error 831ff.
von Neumann stability analysis827f.,

830, 833f., 840
wave equation 818, 825f.
see alsoElliptic partial differential equa-

tions; Finite difference equations (FDEs)
Partial pivoting 29
Partition-exchange323, 333

and pack() intrinsic function 1170
Partitioned matrix, inverse of 70
Party tricks 95ff., 168
Parzen window 547
Pascal, Numerical Recipes in 2/x, 2/xvii, 1
Pass-the-buck idiom 1102, 1128
Path integration, for function evaluation 201ff.,

263, 1138
Pattern multiply of sparse matrices 74
PBCG (preconditioned biconjugate gradient

method) 78f., 824
PC methodsseePredictor-corrector methods
PCGPACK 71
PDEsseePartial differential equations
Pearson’s r 630ff., 1276
PECE method 741
Pentagon, symmetries of 895
Percentile 320
Period of linear congruential generator 268
Periodic boundary conditions 850, 858
Periodogram 543ff., 566, 1258ff.

Lomb’s normalized 569f., 574f., 1258ff.
variance of 544f.

Perl (programming language) 1/xvi
Perron’s theorems, for convergence of recur-

rence relations 174f.
Perturbation methods for matrix inversion

65ff.
Phase error 831
Phase-locked loop 700
Phi statistic 625
Phillips-Twomey method 799ff.
Pi, computation of 906ff., 1352ff., 1357f.
Piecewise parabolic method (PPM) 837
Pincherle’s theorem 175
Pivot element 29, 33, 757

in linear programming 428f.
Pivoting 27, 29ff., 46, 66, 90, 1014

full 29, 1014
implicit 30, 38, 1014, 1017
in LU decomposition 37f.,1017
partial 29, 33, 37f., 1017
and QR decomposition 92
in reduction to Hessenberg form 478
in relaxation method 757
as row and column operations 32
for tridiagonal systems 43

Pixel 519, 596, 803, 811
PL/1 2/x
Planck’s constant 842

Plane rotationseeGivens reduction; Jacobi
transformation (or rotation)

Platykurtic distribution 606
Plotting of functions 342, 1182f.
POCS (projection onto convex sets) 805
Poetry 5f.
Pointer (Fortran 90) 2/xiiif.,938f., 944f.,

953ff., 1197, 1212, 1266
as alias 939, 944f., 1286, 1333
allocating an array 941
allocating storage for derived type 955
for array of arrays 956, 1336
array of, forbidden 956, 1337
associated with target 938f., 944f., 952f.,

1197
in Fortran 95 961
to function, forbidden 1067, 1210
initialization to null 2/xv, 961
returning array of unknown size 955f.,

1184, 1259, 1261, 1327
undefined status 952f., 961, 1070, 1266,

1302
Poisson equation 519, 818, 852
Poisson probability function

cumulative 214
deviates from 281, 283ff., 571, 1154
semi-invariants of 608
tails compared to Gaussian 653

Poisson process 278, 282ff., 1153
Polak-Ribiere algorithm 390, 414ff., 1214
PolesseeComplex plane, poles in
Polishing of roots 356, 363ff., 370f., 1193
poly() utility function 973, 977, 989, 998,

1072, 1096, 1192, 1258, 1284
Polymorphism 8
Polynomial interpolation 99, 102ff., 1043

Aitken’s algorithm 102
in Bulirsch-Stoer method 724, 726, 1305
coefficients for 113ff., 1047f.
Lagrange’s formula 84, 102f.
multidimensional 116ff., 1049ff.
Neville’s algorithm 102f., 105, 134, 182,

1043
pathology in determining coefficients for

116
in predictor-corrector method 740
smoothing filters 645
see alsoInterpolation

Polynomials 167ff.
algebraic manipulations 169, 1072
approximate roots of Hermite polynomials

1062
approximate roots of Jacobi polynomials

1064
approximate roots of Laguerre polynomials

1061
approximating modified Bessel functions

230
approximation from Chebyshev coefficients

191, 1078f.
AUTODIN-II 890
CCITT 889f.
characteristic 368, 1193
characteristic, for digital filters 554, 559,

1257

Index to Volumes 1 and 2 963

characteristic, for eigenvalues of matrix
449, 469

Chebyshev 184ff., 1076ff.
coefficients from roots 980
CRC-16 890
cumulants of 977, 999, 1071f., 1192,

1365, 1378f.
deflation 362ff., 370f., 977
derivatives of 167, 978, 1071
division 84, 169, 362, 370, 977, 1072
evaluation of 167, 972, 977, 998f., 1071,

1258, 1365, 1376ff.
evaluation of derivatives 167, 978, 1071
extrapolation in Bulirsch-Stoer method

724, 726, 1305f.
extrapolation in Romberg integration 134
fitting 83, 114, 191, 645, 665, 674, 1078f.,

1291
generator for CRC 889
ill-conditioned 362
masked evaluation of 1378
matrix method for roots 368, 1193
minimax 186, 198, 1076
monic 142f.
multiplication 169
operation count for 168
orthonormal 142, 184, 1009, 1061
parallel operations on 977ff., 998f., 1071f.,

1192
primitive modulo 2 287ff., 301f., 889
roots of 178ff., 362ff., 368, 1191ff.
shifting of 192f., 978, 1079
stopping criterion in root finding 366

poly term() utility function 974, 977, 989,
999, 1071f., 1192

Port, serial data 892
Portability 3, 963
Portable random number generatorseeRan-

dom number generator
Positive definite matrix, testing for 90
Positivity constraints 423
Postal Service (U.S.), barcode 894
PostScript 1/xvi, 1/xxiii, 2/xx
Powell’s method 389, 402, 406ff., 1210ff.
Power (in a signal) 492f.
Power series 159ff., 167, 195

economization of 192f., 1061, 1080
Padé approximant of 194ff., 1080f.

Power spectral densityseeFourier transform;
Spectral density

Power spectrum estimationseeFourier trans-
form; Spectral density

PowerStation, Microsoft Fortran 2/xix
PPM (piecewise parabolic method) 837
Precision

converting to double 1362
floating point 882, 937, 1343, 1361ff.
multiple 906ff., 1352ff., 1362

Preconditioned biconjugate gradient method
(PBCG) 78f.

Preconditioning, in conjugate gradient methods
824

Predictor-corrector methods 702, 730, 740ff.
Adams-Bashforth-Moulton schemes 741
adaptive order methods 744

compared to other methods 740
fallacy of multiple correction 741
with fixed number of iterations 741
functional iteration vs. Newton’s rule 742
multivalue compared with multistep742ff.
starting and stopping 742, 744
stepsize control 742f.

present() intrinsic function 952
Prime numbers 915
Primitive polynomials modulo 2 287ff., 301f.,

889
Principal directions 408f., 1210
Principal solution, of inverse problem 797
PRIVATE attribute 957, 1067
Prize,$1000 offered 272, 1141, 1150f.
ProbabilityseeRandom number generator;

Statistical tests
Probability density, change of variables in

278f.
ProcedureseeProgram(s); Subprogram
Process loss 548
product() intrinsic function 948
Product Nystrom method 789, 1331
Program(s)

as black boxes 1/xviii, 6, 26, 52,205,
341, 406

dependencies 921ff., 1434ff.
encapsulation 7
interfaces 2, 8
modularization 7f.
organization 5ff.
type declarations 2
typography of 2f., 12, 937
validation 3f.

Programming, serial vs. parallel 965, 987
Projection onto convex sets (POCS) 805
Projection operator, nonexpansive 805
Prolongation operator 864, 1337
Protocol, for communications 888
PSD (power spectral density)seeFourier

transform; Spectral density
Pseudo-random numbers 266ff., 1141ff.
PUBLIC attribute 957, 1067
Puns, particularly bad 167, 744, 747
PURE attribute 2/xv, 960f., 964, 986
put diag() utility function 985, 990, 1005,

1200
Pyramidal algorithm 586, 1264
Pythagoreans 392

QL seeEigensystems
QR seeEigensystems
QR decomposition 91f.,382, 386, 1039f.,

1199
backsubstitution 92,1040
and least squares 668
operation count 92
pivoting 92
updating 94, 382, 386, 1041, 1199
use for orthonormal basis 58, 94

Quadratic
convergence 49, 256, 351, 356, 409f.,

419, 906
equations 20, 178, 391, 457

964 Index to Volumes 1 and 2

interpolation 353, 364
programming 436

Quadrature 123ff., 1052ff.
adaptive 123, 190, 788
alternative extended Simpson’s rule 128
arbitrary weight function 151ff., 789,

1064, 1328
automatic 154
Bode’s rule 126
change of variable in 137ff., 788, 1056ff.
by Chebyshev fitting 124, 189, 1078
classical formulas for 124ff.
Clenshaw-Curtis 124, 190, 512f.
closed formulas 125, 127f.
and computer science 881
by cubic splines 124
error estimate in solution 784
extended midpoint rule 129f., 135, 1054f.
extended rules 127ff., 134f., 786, 788ff.,

1326, 1328
extended Simpson’s rule 128
Fourier integrals 577ff., 1261ff.
Fourier integrals, infinite range 583
Gauss-Chebyshev 144, 512f.
Gauss-Hermite 144, 789, 1062
Gauss-Jacobi 144, 1063
Gauss-Kronrod 154
Gauss-Laguerre 144, 789, 1060
Gauss-Legendre 144, 783, 789, 1059,

1325
Gauss-Lobatto 154, 190, 512
Gauss-Radau 154
Gaussian integration 127, 140ff., 781,

783, 788f., 1009, 1059ff., 1325, 1328f.
Gaussian integration, nonclassical weight

function 151ff., 788f., 1064f., 1328f.
for improper integrals 135ff., 789, 1055,

1328
for integral equations 781f., 786, 1325ff.
Monte Carlo 124, 155ff., 295ff., 306ff.,

1161ff.
multidimensional 124, 155ff., 1052, 1065ff.
multidimensional, by recursion1052,

1065
Newton-Cotes formulas 125ff., 140
open formulas 125ff., 129f., 135
related to differential equations 123
related to predictor-corrector methods 740
Romberg integration 124, 134f., 137, 182,

717, 788, 1054f., 1065, 1067
semi-open formulas 130
Simpson’s rule 126, 133, 136f., 583, 782,

788ff., 1053
Simpson’s three-eighths rule 126, 789f.
singularity removal 137ff., 788, 1057ff.,

1328ff.
singularity removal, worked example 792,

1328ff.
trapezoidal rule 125, 127, 130ff., 134f.,

579, 583, 782, 786, 1052ff., 1326f.
using FFTs 124
weight functionlogx 153
see alsoIntegration of functions

Quadrature mirror filter 585, 593

Quantum mechanics, Uncertainty Principle
600

Quartile value 320
Quasi-Newton methods for minimization 390,

418ff., 1215
Quasi-random sequence 299ff., 318, 881, 888

Halton’s 300
for Monte Carlo integration 304, 309, 318
Sobol’s 300ff., 1160
see alsoRandom number generator

Quicksort 320, 323ff., 330, 333, 1169f.
Quotient-difference algorithm 164

R-estimates 694
Radioactive decay 278
Radix base for floating point arithmetic 476,

882, 907, 913, 1231, 1343, 1357
Radix conversion 902, 906, 913, 1357
radix() intrinsic function 1231
Radix sort 1172
Ramanujan’s identity forπ 915
Random bits, generation of 287ff., 1159f.
Random deviates 266ff., 1141ff.

binomial 285f., 1155
exponential 278, 1151f.
gamma distribution 282f., 1153
Gaussian 267, 279f., 571, 798, 1152f.
normal 267, 279f., 571, 1152f.
Poisson 283ff., 571, 1154f.
quasi-random sequences 299ff., 881, 888,

1160f.
uniform 267ff., 1158f., 1166
uniform integer 270, 274ff.

Random number generator 266ff., 1141ff.
bitwise operations 287
Box-Muller algorithm 279, 1152
Data Encryption Standard 290ff., 1144,

1156ff.
good choices for modulus, multiplier and

increment 274ff.
initializing 1144ff.
for integer-valued probability distribution

283f., 1154
integer vs. real implementation 273
L’Ecuyer’s long period 271f.
lagged Fibonacci generator 1142, 1148ff.
linear congruential generator 267ff., 1142
machine language 269
Marsaglia shift register 1142, 1148ff.
Minimal Standard, Park and Miller’s269,

1142
nonrandomness of low-order bits 268f.
parallel 1009
perfect 272, 1141, 1150f.
planes, numbers lie on 268
portable 269ff., 1142
primitive polynomials modulo 2 287ff.
pseudo-DES 291, 1144, 1156ff.
quasi-random sequences 299ff., 881, 888,

1160f.
quick and dirty 274
quicker and dirtier 275
in Quicksort 324
random access tonth number 293

Index to Volumes 1 and 2 965

random bits 287ff., 1159f.
recommendations 276f.
rejection method 281ff.
serial 1141f.
shuffling procedure 270, 272
in simulated annealing method 438
spectral test 274
state space 1143f.
state space exhaustion 1141
subtractive method 273, 1143
system-supplied 267f.
timings 276f., 1151
transformation method 277ff.
trick for trigonometric functions 280

Random numbersseeMonte Carlo; Random
deviates

Random walk 20
random number() intrinsic function 1141,

1143
random seed() intrinsic function 1141
RANDU, infamous routine 268
Range 53f.
Rank (matrix) 53

kernel of finite 785
Rank (sorting) 320, 332, 1176
Rank (statistics) 633ff., 694f., 1277

Kendall’s tau 637ff., 1279
Spearman correlation coefficient 634f.,

1277ff.
sum squared differences of 634, 1277

Ratio variable (statistics) 623
Rational Chebyshev approximation 197ff.,

1081f.
Rational function 99, 167ff., 194ff., 1080f.

approximation for Bessel functions 225
approximation for continued fraction 164,

211, 219f.
Chebyshev approximation 197ff., 1081f.
evaluation of 170, 1072f.
extrapolation in Bulirsch-Stoer method

718ff., 726, 1306f.
interpolation and extrapolation using 99,

104ff., 194ff., 718ff., 726
as power spectrum estimate 566
interpolation and extrapolation using 1043f.,

1080ff., 1306
minimax 198

Re-entrant procedure 1052
real() intrinsic function, ambiguity of 947
Realizable (causal) 552, 554f.
reallocate() utility function 955, 990, 992,

1070, 1302
RearrangingseeSorting
Reciprocal, multiple precision910f., 1355f.
Record, in data file 329
Recurrence relation 172ff., 971ff.

arithmetic progression 971f., 996
associated Legendre polynomials 247
Bessel function 172, 224, 227f., 234
binomial coefficients 209
Bulirsch-Stoer 105f.
characteristic polynomial of tridiagonal

matrix 469
Clenshaw’s recurrence formula 176f.
and continued fraction 175

continued fraction evaluation 164f.
convergence 175
cosine function 172, 500
cyclic reduction 974
dominant solution 174
exponential integrals 172
gamma function 206
generation of random bits 287f.
geometric progression 972, 996
Golden Mean 21
Legendre polynomials 172
minimal vs. dominant solution 174
modified Bessel function 232
Neville’s 103, 182
orthonormal polynomials 142
Perron’s theorems 174f.
Pincherle’s theorem 175
for polynomial cumulants 977, 999, 1071f.
polynomial interpolation 103, 183
primitive polynomials modulo 2 287f.
random number generator 268
rational function interpolation 105f., 1043
recursive doubling 973, 977, 988, 999,

1071f., 1073
second order 974f., 1074
sequence of trig functions 173
sine function 172, 500
spherical harmonics 247
stability of 21,173ff., 177, 224f., 227f.,

232, 247, 975
trig functions 572
weight of Gaussian quadrature 144f.

Recursion
in Fortran 90 958
in multigrid method 865, 1009, 1336

Recursive doubling 973f., 979
cumulants of polynomial 977, 999, 1071f.
linear recurrences 973, 988, 1073
tridiagonal systems 976

RECURSIVE keyword 958, 1065, 1067
Recursive Monte Carlo integration 306ff.,

1161
Recursive procedure 2/xiv, 958, 1065, 1067,

1166
as parallelization tool 958
base case 958
for multigrid method 1009, 1336
re-entrant 1052

Recursive stratified sampling 314ff., 1164ff.
Red-blackseeOdd-even ordering
Reduction functions 948ff.
Reduction of variance in Monte Carlo integra-

tion 299, 306ff.
References (explanation) 4f.
References (general bibliography) 916ff.,

1359f.
Reflection formula for gamma function 206
Regula falsi (false position) 347ff., 1185f.
Regularity condition 775
Regularization

compared with optimal filtering 801
constrained linear inversion method 799ff.
of inverse problems 796ff.
linear 799ff.
nonlinear 813

966 Index to Volumes 1 and 2

objective criterion 802
Phillips-Twomey method799ff.
Tikhonov-Miller 799ff.
trade-off curve 799
two-dimensional 803
zeroth order 797
see alsoInverse problems

Regularizing operator 798
Reid, John 2/xiv, 2/xvi
Rejection method for random number genera-

tor 281ff.
Relaxation method

for algebraically difficult sets 763
automated allocation of mesh points 774f.,

777
computation of spheroidal harmonics 764ff.,

1319ff.
for differential equations 746f., 753ff.,

1316ff.
elliptic partial differential equations823,

854ff., 1332f.
example 764ff., 1319ff.
Gauss-Seidel method 855, 864ff., 876,

1338, 1341
internal boundary conditions 775ff.
internal singular points 775ff.
Jacobi’s method 855f., 864
successive over-relaxation (SOR) 857ff.,

862, 866, 1332f.
see alsoMultigrid method

Remes algorithms
exchange algorithm 553
for minimax rational function 199

reshape() intrinsic function 950
communication bottleneck 969
order keyword 1050, 1246

Residual 49, 54, 78
in multigrid method 863, 1338

Resolution function, in Backus-Gilbert method
807

Response function 531
Restriction operator 864, 1337
RESULT keyword 958, 1073
Reward,$1000 offered 272, 1141, 1150f.
Richardson’s deferred approach to the limit

134, 137, 182, 702, 718ff., 726, 788,
869

see alsoBulirsch-Stoer method
Richtmyer artificial viscosity 837
Ridders’ method, for numerical derivatives

182, 1075
Ridders’ method, root finding 341, 349, 351,

1187
Riemann shock problem 837
Right eigenvalues and eigenvectors 451
Rise/fall time 548f.
Robust estimation 653, 694ff., 700, 1294

Andrew’s sine 697
average deviation 605
double exponential errors 696
Kalman filtering 700
Lorentzian errors 696f.
mean absolute deviation 605
nonparametric correlation 633ff., 1277
Tukey’s biweight 697

use of a priori covariances 700
see alsoStatistical tests

Romberg integration 124, 134f., 137, 182,
717, 788, 1054f., 1065

Root finding 143, 340ff., 1009, 1059
advanced implementations of Newton’s rule

386
Bairstow’s method 364, 370, 1193
bisection 343, 346f., 352f., 359, 390, 469,

698, 1184f.
bracketing of roots 341, 343ff., 353f.,

362, 364, 369, 1183f.
Brent’s method 341, 349, 660f., 1188f.,

1286
Broyden’s method 373, 382f., 386, 1199
compared with multidimensional minimiza-

tion 375
complex analytic functions 364
in complex plane 204
convergence criteria 347, 374
deflation of polynomials 362ff., 370f.,

1192
without derivatives 354
double root 341
eigenvalue methods 368, 1193
false position 347ff., 1185f.
Jenkins-Traub method 369
Laguerre’s method 341, 366f., 1191f.
Lehmer-Schur algorithm 369
Maehly’s procedure 364, 371
matrix method 368, 1193
Muller’s method 364, 372
multiple roots 341
Newton’s rule 143f., 180, 341, 355ff.,

362, 364, 370, 372ff., 376, 469, 740,
749f., 754, 787, 874, 876, 911f., 1059,
1189, 1194, 1196, 1314ff., 1339, 1341,
1355f.

pathological cases 343, 356, 362, 372
polynomials 341, 362ff., 449, 1191f.
in relaxation method 754, 1316
Ridders’ method 341, 349, 351, 1187
root-polishing 356, 363ff., 369ff., 1193
safe Newton’s rule 359, 1190
secant method 347ff., 358, 364, 399,

1186f.
in shooting method 746, 749f., 1314f.
singular Jacobian in Newton’s rule 386
stopping criterion for polynomials 366
use of minimum finding 341
using derivatives 355ff., 1189
zero suppression 372
see alsoRoots

Root polishing 356, 363ff., 369ff., 1193
Roots

Chebyshev polynomials 184
complexnth root of unity 999f., 1379
cubic equations 179f.
Hermite polynomials, approximate 1062
Jacobi polynomials, approximate 1064
Laguerre polynomials, approximate 1061
multiple 341, 364ff., 1192
nonlinear equations 340ff.
polynomials 341, 362ff., 449, 1191f.
quadratic equations 178

Index to Volumes 1 and 2 967

reflection in unit circle 560, 1257
square, multiple precision912, 1356
see alsoRoot finding

Rosenbrock method 730, 1308
compared with semi-implicit extrapolation

739
stepsize control 731, 1308f.

Roundoff error 20, 881, 1362
bracketing a minimum 399
compile time vs. run time 1012
conjugate gradient method 824
eigensystems 458, 467, 470, 473, 476,

479, 483
extended trapezoidal rule 132
general linear least squares 668, 672
graceful 883, 1343
hardware aspects 882, 1343
Householder reduction 466
IEEE standard 882f., 1343
interpolation 100
least squares fitting658, 668
Levenberg-Marquardt method 679
linear algebraic equations 23, 27, 29, 47,

56, 84, 1022
linear predictive coding (LPC) 564
magnification of 20, 47, 1022
maximum entropy method (MEM) 567
measuring 881f., 1343
multidimensional minimization418, 422
multiple roots 362
numerical derivatives 180f.
recurrence relations 173
reduction to Hessenberg form 479
series 164f.
straight line fitting 658
variance 607

Row degeneracy 22
Row-indexed sparse storage 71f., 1030

transpose 73f.
Row operations on matrix 28, 31f.
Row totals 624
RSS algorithm 314ff., 1164
RST properties (reflexive, symmetric, transi-

tive) 338
Runge-Kutta method 702, 704ff., 731, 740,

1297ff., 1308
Cash-Karp parameters 710, 1299f.
embedded 709f., 731, 1298, 1308
high-order 705
quality control 722
stepsize control 708ff.

Run-length encoding 901
Runge-Kutta method

high-order 1297
stepsize control 1298f.

Rybicki, G.B. 84ff., 114, 145, 252, 522, 574,
600

S-box for Data Encryption Standard 1148
Sampling

importance 306f.
Latin square or hypercube 305f.
recursive stratified 314ff., 1164
stratified 308f.
uneven or irregular 569, 648f., 1258

Sampling theorem 495, 543
for numerical approximation 600ff.

Sande-Tukey FFT algorithm 503
SAVE attribute 953f., 958f., 961, 1052, 1070,

1266, 1293
redundant use of 958f.

SAVE statements 3
Savitzky-Golay filters

for data smoothing 644ff., 1283f.
for numerical derivatives 183, 645

scale() intrinsic function 1107
Scallop loss 548
Scatter-with-combine functions 984, 1002f.,

1032, 1366, 1380f.
scatteradd() utility function 984, 990, 1002,

1032
scattermax() utility function 984, 990, 1003
Schonfelder, Lawrie 2/xi
Schrage’s algorithm 269
Schrödinger equation 842ff.
Schultz’s method for matrix inverse 49, 598
Scope 956ff., 1209, 1293, 1296
Scoping unit 939
SDLC checksum 890
Searching

with correlated values 111, 1046f.
an ordered table 110f., 1045f.
selection 333, 1177f.

Secant method 341, 347ff., 358, 364, 399,
1186f.

Broyden’s method 382f., 1199f.
multidimensional (Broyden’s) 373, 382f.,

1199
Second Euler-Maclaurin summation formula

135f.
Second order differential equations 726, 1307
Seed of random number generator 267, 1146f.
select case statement 2/xiv, 1010, 1036
Selection 320, 333, 1177f.

find m largest elements 336, 1179f.
heap algorithm 336, 1179
for median 698, 1294
operation count 333
by packing 1178
parallel algorithms 1178
by partition-exchange333, 1177f.
without rearrangement 335, 1178f.
timings 336
use to find median 609

Semi-implicit Euler method 730, 735f.
Semi-implicit extrapolation method 730,

735f., 1310f.
compared with Rosenbrock method 739
stepsize control 737, 1311f.

Semi-implicit midpoint rule 735f., 1310f.
Semi-invariants of a distribution 608
Sentinel, in Quicksort 324, 333
Separable kernel 785
Separation of variables 246
Serial computing

convergence of quadrature 1060
random numbers 1141
sorting 1167

Serial data port 892

968 Index to Volumes 1 and 2

Series 159ff.
accelerating convergence of 159ff.
alternating 160f., 1070
asymptotic 161
Bessel functionKν 241
Bessel functionYν 235
Bessel functions 160, 223
cosine integral 250
divergent 161
economization 192f., 195, 1080
Euler’s transformation 160f., 1070
exponential integral 216, 218
Fresnel integral 248
hypergeometric 202, 263, 1138
incomplete beta function 219
incomplete gamma function 210, 1090f.
Laurent 566
relation to continued fractions 163f.
roundoff error in 164f.
sine and cosine integrals 250
sine function 160
Taylor 355f., 408, 702, 709, 754, 759
transformation of 160ff., 1070
van Wijngaarden’s algorithm 161, 1070

Shaft encoder 886
Shakespeare 9
Shampine’s Rosenbrock parameters 732, 1308
shape() intrinsic function 938, 949
Shell algorithm (Shell’s sort) 321ff., 1168
Sherman-Morrison formula 65ff., 83, 382
Shifting of eigenvalues 449, 470f., 480
Shock wave 831, 837
Shooting method

computation of spheroidal harmonics 772,
1321ff.

for differential equations 746, 749ff.,
770ff., 1314ff., 1321ff.

for difficult cases 753, 1315f.
example 770ff., 1321ff.
interior fitting point 752, 1315f., 1323ff.

Shuffling to improve random number generator
270, 272

Side effects
prevented by data hiding 957, 1209, 1293,

1296
and PURE subprograms 960

Sidelobe fall-off 548
Sidelobe level 548
sign() intrinsic function, modified in Fortran 95

961
Signal, bandwidth limited 495
Significance (numerical) 19
Significance (statistical) 609f.

one- vs. two-sided 632
peak in Lomb periodogram 570
of 2-d K-S test 640, 1281
two-tailed 613

SIMD machines (Single Instruction Multiple
Data) 964, 985f., 1009, 1084f.

Similarity transform 452ff., 456, 476, 478,
482

Simplex
defined 402
method in linear programming 389, 402,

423ff., 431ff., 1216ff.

method of Nelder and Mead 389, 402ff.,
444, 697f., 1208f., 1222ff.

use in simulated annealing 444, 1222ff.
Simpson’s rule 124ff., 128, 133, 136f., 583,

782, 788f., 1053f.
Simpson’s three-eighths rule 126, 789f.
Simulated annealingseeAnnealing, method of

simulated
SimulationseeMonte Carlo
Sine function

evaluated fromtan(θ/2) 173
recurrence 172
series 160

Sine integral 248, 250ff., 1123, 1125f.
continued fraction 250
series 250
see alsoCosine integral

Sine transformseeFast Fourier transform
(FFT); Fourier transform

Singleton’s algorithm for FFT 525
Singular value decomposition (SVD) 23, 25,

51ff., 1022
approximation of matrices 58f.
backsubstitution 56,1022f.
and bases for nullspace and range 53
confidence levels from 693f.
covariance matrix 693f.
fewer equations than unknowns 57
for inverse problems 797
and least squares 54ff., 199f., 668, 670ff.,

1081, 1290f.
in minimization 410
more equations than unknowns 57f.
parallel algorithms 1026
and rational Chebyshev approximation

199f., 1081f.
of square matrix 53ff., 1023
use for ill-conditioned matrices 56, 58,

449
use for orthonormal basis 58, 94

Singularities
of hypergeometric function 203, 263
in integral equations 788ff., 1328
in integral equations, worked example

792, 1328ff.
in integrands 135ff., 788, 1055, 1328ff.
removal in numerical integration 137ff.,

788, 1057ff., 1328ff.
Singularity, subtraction of the 789
SIPSOL 824
Six-step framework, for FFT 983, 1240
size() intrinsic function 938, 942, 945, 948
Skew array section 2/xii, 945, 960, 985, 1284
Skewness of distribution 606, 608, 1269
Smoothing

of data 114, 644ff., 1283f.
of data in integral equations 781
importance in multigrid method 865

sn function 261, 1137f.
Snyder, N.L. 1/xvi
Sobol’s quasi-random sequence 300ff., 1160f.
Sonata 9
Sonnet 9
Sorting 320ff., 1167ff.

bubble sort 1168

Index to Volumes 1 and 2 969

bubble sort cautioned against 321
compared to selection 333
covariance matrix 669, 681, 1289
eigenvectors 461f., 1227
Heapsort 320, 327f., 336, 1171f., 1179
index table 320, 329f., 1170, 1173ff.,

1176
operation count 320ff.
by packing 1171
parallel algorithms 1168, 1171f., 1176
Quicksort 320, 323ff., 330, 333, 1169f.
radix sort 1172
rank table 320, 332, 1176
ranking 329, 1176
by reshaping array slices 1168
Shell’s method 321ff., 1168
straight insertion 321f., 461f., 1167, 1227

SP, defined 937
SPARC or SPARCstation 1/xxii, 2/xix, 4
Sparse linear equations 23, 63ff., 732, 1030

band diagonal 43, 1019ff.
biconjugate gradient method 77, 599,

1034
data type for 1030
indexed storage 71f., 1030
in inverse problems 804
minimum residual method 78
named patterns 64, 822
partial differential equations 822ff.
relaxation method for boundary value prob-

lems 754, 1316
row-indexed storage 71f., 1030
wavelet transform 584, 598
see alsoMatrix

Spearman rank-order coefficient 634f., 694f.,
1277

Special functionsseeFunction
Spectral analysisseeFourier transform; Peri-

odogram
Spectral density 541

and data windowing 545ff.
figures of merit for data windows 548f.
normalization conventions 542f.
one-sided PSD 492
periodogram 543ff., 566, 1258ff.
power spectral density (PSD) 492f.
power spectral density per unit time 493
power spectrum estimation by FFT 542ff.,

1254ff.
power spectrum estimation by MEM 565ff.,

1258
two-sided PSD 493
variance reduction in spectral estimation

545
Spectral lines, how to smooth 644
Spectral methods for partial differential equa-

tions 825
Spectral radius 856ff., 862
Spectral test for random number generator

274
SpectrumseeFourier transform
Spherical Bessel functions 234

routine for 245, 1121
Spherical harmonics 246ff.

orthogonality 246

routine for 247f., 1122
stable recurrence for 247
table of 246
see alsoAssociated Legendre polynomials

Spheroidal harmonics 764ff., 770ff., 1319ff.
boundary conditions 765
normalization 765
routine for 768ff., 1319ff., 1323ff.

Spline 100
cubic 107ff., 1044f.
gives tridiagonal system 109
natural 109, 1044f.
operation count 109
two-dimensional (bicubic) 120f., 1050f.

spread() intrinsic function 945, 950, 969,
1000, 1094, 1290f.

and dimensional expansion 966ff.
Spread matrix 808
Spread spectrum 290
Square root, complex 172
Square root, multiple precision912, 1356f.
Square window 546, 1254ff.
SSP (small-scale parallel) machines 965ff.,

972, 974, 984, 1011, 1016ff., 1021,
1059f., 1226ff., 1250

Stability 20f.
of Clenshaw’s recurrence 177
Courant condition 829, 832ff., 836, 846
diffusion equation 840
of Gauss-Jordan elimination 27, 29
of implicit differencing 729, 840
mesh-drift in PDEs 834f.
nonlinear 831, 837
partial differential equations 820, 827f.
of polynomial deflation 363
in quadrature solution of Volterra equation

787f.
of recurrence relations 173ff., 177, 224f.,

227f., 232, 247
and stiff differential equations 728f.
von Neumann analysis for PDEs 827f.,

830, 833f., 840
see alsoAccuracy

Stabilized Kolmogorov-Smirnov test 621
Stabilizing functional 798
Staggered leapfrog method 833f.
Standard (probable) errors 1288, 1290
Standard deviation

of a distribution 605, 1269
of Fisher’s z 632
of linear correlation coefficient 630
of sum squared difference of ranks 635,

1277
Standard (probable) errors 610, 656, 661,

667, 671, 684
Stars, as text separator 1009
Statement function, superseded by internal sub-

program 1057, 1256
Statement labels 9
Statistical error 653
Statistical tests 603ff., 1269ff.

Anderson-Darling 621
average deviation 605, 1269
bootstrap method 686f.
chi-square 614f., 623ff., 1272, 1275f.

970 Index to Volumes 1 and 2

contingency coefficient C 625, 1275
contingency tables 622ff., 638, 1275f.
correlation 603f.
Cramer’s V 625, 1275
difference of distributions 614ff., 1272
difference of means 609ff., 1269f.
difference of variances 611, 613, 1271
entropy measures of association 626ff.,

1275f.
F-test 611, 613, 1271
Fisher’s z-transformation 631f., 1276
general paradigm 603
Kendall’s tau 634, 637ff., 1279
Kolmogorov-Smirnov 614, 617ff., 640,

694, 1273f., 1281
Kuiper’s statistic 621
kurtosis 606, 608, 1269
L-estimates 694
linear correlation coefficient 630ff., 1276
M-estimates 694ff.
mean 603ff., 608ff., 1269f.
measures of association 604, 622ff., 1275
measures of central tendency 604ff., 1269
median 605, 694
mode 605
moments 604ff., 608, 1269
nonparametric correlation 633ff., 1277
Pearson’s r 630ff., 1276
for periodic signal 570
phi statistic 625
R-estimates 694
rank correlation 633ff., 1277
robust 605, 634, 694ff.
semi-invariants 608
for shift vs. for spread 620f.
significance 609f., 1269ff.
significance, one- vs. two-sided 613, 632
skewness 606, 608, 1269
Spearman rank-order coefficient 634f.,

694f., 1277
standard deviation 605, 1269
strength vs. significance 609f., 622
Student’s t 610, 631, 1269
Student’s t, for correlation 631
Student’s t, paired samples 612, 1271
Student’s t, Spearman rank-order coeffi-

cient 634, 1277
Student’s t, unequal variances 611, 1270
sum squared difference of ranks 635,

1277
Tukey’s trimean 694
two-dimensional 640, 1281ff.
variance 603ff., 607f., 612f., 1269ff.
Wilcoxon 694
see alsoError; Robust estimation

Steak, without sizzle 809
Steed’s method

Bessel functions 234, 239
continued fractions 164f.

Steepest descent method 414
in inverse problems 804

Step
doubling 130, 708f., 1052
tripling 136, 1055

Stieltjes, procedure of 151

Stiff equations 703, 727ff., 1308ff.
Kaps-Rentrop method 730, 1308
methods compared 739
predictor-corrector method 730
r.h.s. independent ofx 729f.
Rosenbrock method 730, 1308
scaling of variables 730
semi-implicit extrapolation method 730,

1310f.
semi-implicit midpoint rule 735f., 1310f.

Stiff functions 100, 399
Stirling’s approximation 206, 812
Stoermer’s rule 726, 1307
Stopping criterion, in multigrid method 875f.
Stopping criterion, in polynomial root finding

366
Storage

band diagonal matrix 44, 1019
sparse matrices 71f., 1030

Storage association 2/xiv
Straight injection 867
Straight insertion 321f., 461f., 1167, 1227
Straight line fitting 655ff., 667f., 1285ff.

errors in both coordinates 660ff., 1286ff.
robust estimation 698, 1294ff.

Strassen’s fast matrix algorithms 96f.
Stratified sampling, Monte Carlo 308f., 314
Stride (of an array) 944

communication bottleneck 969
Strongly implicit procedure (SIPSOL) 824
Structure constructor 2/xii
Structured programming 5ff.
Student’s probability distribution221f.
Student’s t-test

for correlation 631
for difference of means 610, 1269
for difference of means (paired samples)

612, 1271
for difference of means (unequal variances)

611, 1270
for difference of ranks 635, 1277
Spearman rank-order coefficient 634,

1277
Sturmian sequence 469
Sub-random sequencesseeQuasi-random se-

quence
Subprogram 938

for data hiding 957, 1209, 1293, 1296
internal 954, 957, 1057, 1067, 1226, 1256
in module 940
undefined variables on exit 952f., 961,

1070, 1266, 1293, 1302
Subscript triplet (for array) 944
Subtraction, multiple precision907, 1353
Subtractive method for random number genera-

tor 273, 1143
Subvector scaling 972, 974, 996, 1000
Successive over-relaxation (SOR) 857ff., 862,

1332f.
bad in multigrid method 866
Chebyshev acceleration 859f., 1332f.
choice of overrelaxation parameter 858
with logical mask 1333f.
parallelization 1333

sum() intrinsic function 945, 948, 966

Index to Volumes 1 and 2 971

Sum squared difference of ranks 634, 1277
SumsseeSeries
Sun 1/xxii, 2/xix, 886

SPARCstation 1/xxii, 2/xix, 4
Supernova 1987A 640
SVD seeSingular value decomposition (SVD)
swap() utility function 987, 990f., 1015, 1210
Symbol, of operator 866f.
Synthetic division 84, 167, 362, 370

parallel algorithms 977ff., 999, 1048,
1071f., 1079, 1192

repeated 978f.
Systematic errors 653

T ableau (interpolation) 103, 183
Tangent function, continued fraction 163
Target, for pointer 938f., 945, 952f.
Taylor series 180, 355f., 408, 702, 709, 742,

754, 759
Test programs 3
Thermodynamics, analogy for simulated an-

nealing 437
Thinking Machines, Inc. 964
Threshold multiply of sparse matrices 74,

1031
Tides 560f.
Tikhonov-Miller regularization 799ff.
Time domain 490
Time splitting 847f., 861
tiny() intrinsic function 952
Toeplitz matrix 82, 85ff.,195, 1038

LU decomposition 87
new, fast algorithms 88f.
nonsymmetric 86ff., 1038

Tongue twisters 333
Torus 297f., 304
Trade-off curve 795, 809
Trademarks 1/xxii, 2/xixf.
Transformation

Gauss 256
Landen 256
method for random number generator 277ff.

Transformational functions 948ff.
Transforms, number theoretic 503f.
Transport error 831ff.
transpose() intrinsic function 950, 960, 969,

981, 1050, 1246
Transpose of sparse matrix 73f.
Trapezoidal rule 125, 127, 130ff., 134f., 579,

583, 782, 786, 1052, 1326f.
Traveling salesman problem 438ff., 1219ff.
Tridiagonal matrix 42, 63, 150, 453f., 488,

839f., 1018f.
in alternating-direction implicit method

(ADI) 861f.
from cubic spline 109
cyclic 67, 1030
in cyclic reduction 853
eigenvalues 469ff., 1228
with fringes 822
from operator splitting 861f.
parallel algorithm 975, 1018, 1229f.
recursive splitting 1229f.
reduction of symmetric matrix to 462ff.,

470, 1227f.

serial algorithm 1018f.
see alsoMatrix

Trigonometric
functions, linear sequences 173
functions, recurrence relation 172, 572
functions,tan(θ/2) as minimal 173
interpolation 99
solution of cubic equation 179f.

Truncation error 20f., 399, 709, 881, 1362
in multigrid method 875
in numerical derivatives 180

Tukey’s biweight 697
Tukey’s trimean 694
Turbo Pascal (Borland) 8
Twin errors 895
Two-dimensionalseeMultidimensional
Two-dimensional K–S test 640, 1281ff.
Two-pass algorithm for variance 607, 1269
Two-point boundary value problems 702,

745ff., 1314ff.
automated allocation of mesh points 774f.,

777
boundary conditions 745ff., 749, 751f.,

771, 1314ff.
difficult cases 753, 1315f.
eigenvalue problem for differential equa-

tions 748, 764ff., 770ff., 1319ff.
free boundary problem 748, 776
grid (mesh) points 746f., 754, 774f., 777
internal boundary conditions 775ff.
internal singular points 775ff.
linear requires no iteration 751
multiple shooting 753
problems reducible to standard form 748
regularity condition 775
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff.,

1319
shooting to a fitting point 751ff., 1315f.,

1323ff.
shooting method 746, 749ff., 770ff., 1314ff.,

1321ff.
shooting method, example of 770ff., 1321ff.
singular endpoints 751, 764, 771, 1315f.,

1319ff.
see alsoElliptic partial differential equa-

tions
Two-sided exponential error distribution 696
Two-sided power spectral density 493
Two-step Lax-Wendroff method 835ff.
Two-volume edition, plan of 1/xiii
Two’s complement arithmetic 1144
Type declarations, explicit vs. implicit 2

Ubound() intrinsic function 949
ULTRIX 1/xxiii, 2/xix
Uncertainty coefficient 628
Uncertainty principle 600
Undefined status, of arrays and pointers 952f.,

961, 1070, 1266, 1293, 1302
Underflow, in IEEE arithmetic 883, 1343
Underrelaxation 857
Uniform deviatesseeRandom deviates, uni-

form

972 Index to Volumes 1 and 2

Unitary (function) 843f.
Unitary (matrix)seeMatrix
unit matrix() utility function 985, 990, 1006,

1216, 1226, 1325
UNIX 1/xxiii, 2/viii, 2/xix, 4, 17, 276, 293,

886
Upper Hessenberg matrixseeHessenberg ma-

trix
U.S. Postal Service barcode 894
unpack() intrinsic function 950, 964

communication bottleneck 969
Upper subscript 944
upper triangle() utility function 990, 1006,

1226, 1305
Upwind differencing 832f., 837
USE statement 936, 939f., 954, 957, 1067,

1384
USES keyword in program listings 2
Utility functions 987ff., 1364ff.

add vector to matrix diagonal 1004, 1234,
1366, 1381

alphabetical listing 988ff.
argument checking 994f., 1370f.
arithmetic progression 996, 1072, 1127,

1365, 1371f.
array reallocation 992, 1070f., 1365, 1368f.
assertion of numerical equality995, 1022,

1365, 1370f.
compared to intrinsics 990ff.
complexnth root of unity 999f., 1379
copying arrays 991, 1034, 1327f., 1365f.
create unit matrix 1006, 1382
cumulative product of an array 997f.,

1072, 1086, 1375
cumulative sum of an array 997, 1280f.,

1365, 1375
data types 1361
elemental functions 1364
error handling 994f., 1036, 1370f.
generic functions 1364
geometric progression 996f., 1365, 1372ff.
get diagonal of matrix 1005, 1226f., 1366,

1381f.
length of a vector 1008, 1383
linear recurrence 996
location in an array 992ff., 1015, 1017ff.
location of first logical “true” 993, 1041,

1369
location of maximum array value 993,

1015, 1017, 1365, 1369
location of minimum array value 993,

1369f.
logical assertion 994, 1086, 1090, 1092,

1365, 1370
lower triangular mask 1007, 1200, 1382
masked polynomial evaluation 1378
masked swap of elements in two arrays

1368
moving data 990ff., 1015
multiply vector into matrix diagonal 1004f.,

1366, 1381
nrutil.f90 (module file) 1364ff.
outer difference of vectors 1001, 1366,

1380
outer logical and of vectors 1002

outer operations on vectors 1000ff., 1379f.
outer product of vectors 1000f., 1076,

1365f., 1379
outer quotient of vectors 1001, 1379
outer sum of vectors 1001, 1379f.
overloading 1364
partial cumulants of a polynomial 999,

1071, 1192f., 1365, 1378f.
polynomial evaluation 996, 998f., 1258,

1365, 1376ff.
scatter-with-add 1002f., 1032f., 1366,

1380f.
scatter-with-combine 1002f., 1032f., 1380f.
scatter-with-max 1003f., 1366, 1381
set diagonal elements of matrix 1005,

1200, 1366, 1382
skew operation on matrices 1004ff., 1381ff.
swap elements of two arrays 991, 1015,

1365ff.
upper triangular mask 1006, 1226, 1305,

1382

V -cycle 865, 1336
vabs() utility function 990, 1008, 1290
Validation of Numerical Recipes procedures

3f.
Valley, long or narrow 403, 407, 410
Van Cittert’s method 804
Van Wijngaarden-Dekker-Brent methodsee

Brent’s method
Vandermonde matrix 82ff., 114, 1037, 1047
Variable length code 896, 1346ff.
Variable metric method 390, 418ff., 1215

compared to conjugate gradient method
418

Variable step-size integration 123, 135, 703,
707ff., 720, 726, 731, 737, 742ff., 1298ff.,
1303, 1308f., 1311ff.

Variance(s)
correlation 605
of distribution 603ff., 608, 611, 613, 1269
pooled 610
reduction of (in Monte Carlo) 299, 306ff.
statistical differences between two 609,

1271
two-pass algorithm for computing 607,

1269
see alsoCovariance

Variational methods, partial differential equa-
tions 824

VAX 275, 293
Vector(s)

length 1008, 1383
norms 1036
outer difference 1001, 1366, 1380
outer operations 1000ff., 1379f.
outer product 1000f., 1076, 1365f., 1379

Vector reduction 972, 977, 998
Vector subscripts 2/xiif., 984, 1002, 1032,

1034
communication bottleneck969, 981, 1250

VEGAS algorithm for Monte Carlo 309ff.,
1161

Verhoeff’s algorithm for checksums 894f.,
1345

Index to Volumes 1 and 2 973

Viète’s formulas for cubic roots 179
Vienna Fortran 2/xv
Virus, computer 889
Viscosity

artificial 831, 837
numerical 830f., 837

Visibility 956ff., 1209, 1293, 1296
VMS 1/xxii, 2/xix
Volterra equations 780f., 1326

adaptive stepsize control 788
analogy with ODEs 786
block-by-block method 788
first kind 781, 786
nonlinear 781, 787
second kind 781, 786ff., 1326f.
unstable quadrature 787f.

von Neuman, John 963, 965
von Neumann-Richtmyer artificial viscosity

837
von Neumann stability analysis for PDEs827f.,

830, 833f., 840
Vowellish (coding example)896f., 902

W -cycle 865, 1336
Warranty, disclaimer of 1/xx, 2/xvii
Wave equation 246, 818, 825f.
Wavelet transform 584ff., 1264ff.

appearance of wavelets 590ff.
approximation condition of orderp 585
coefficient values 586, 589, 1265
contrasted with Fourier transform 584,

594
Daubechies wavelet filter coefficients 584ff.,

588, 590f., 594, 598, 1264ff.
detail information 585
discrete wavelet transform (DWT) 586f.,

1264
DWT (discrete wavelet transform) 586f.,

1264ff.
eliminating wrap-around 587
fast solution of linear equations 597ff.
filters 592f.
and Fourier domain 592f.
image processing 596f.
for integral equations 782
inverse 587
Lemarie’s wavelet 593
of linear operator 597ff.
mother-function coefficient 587
mother functions 584
multidimensional 595, 1267f.
nonsmoothness of wavelets 591
pyramidal algorithm 586, 1264
quadrature mirror filter 585
smooth information 585
truncation 594f.
wavelet filter coefficient 584, 587
wavelets 584, 590ff.

WaveletsseeWavelet transform
Weber function 204
Weighted Kolmogorov-Smirnov test 621
Weighted least-squares fittingseeLeast squares

fitting

Weighting, full vs. half in multigrid 867
Weights for Gaussian quadrature 140ff., 788f.,

1059ff., 1328f.
nonclassical weight function 151ff., 788f.,

1064f., 1328f.
Welch window 547, 1254ff.
WG5 (ISO/IEC JTC1/SC22/WG5 Committee)

2/xiff.
where construct 943, 1291

contrasted with merge 1023
for iteration of a vector 1060
nested 2/xv, 943, 960, 1100
not MIMD 985

While iteration 13
Wiener filtering 535, 539ff., 558, 644

compared to regularization 801
Wiener-Khinchin theorem 492, 558, 566f.
Wilcoxon test 694
Window function

Bartlett 547, 1254ff.
flat-topped 549
Hamming 547
Hann 547
Parzen 547
square 544, 546, 1254ff.
Welch 547, 1254ff.

Windowing for spectral estimation 1255f.
Windows 95 2/xix
Windows NT 2/xix
Winograd Fourier transform algorithms 503
Woodbury formula 68ff., 83
Wordlength 18
Workspace, reallocation in Fortran 90 1070f.
World Wide Web, Numerical Recipes site

1/xx, 2/xvii
Wraparound

in integer arithmetic 1146, 1148
order for storing spectrum 501
problem in convolution 533

Wronskian, of Bessel functions 234, 239

X .25 protocol 890
X3J3 Committee 2/viii, 2/xff., 2/xv,947, 959,

964, 968, 990
XMODEM checksum 889
X-ray diffraction pattern, processing of 805

Y ale Sparse Matrix Package 64, 71

Z -transform 554, 559, 565
Z-transformation, Fisher’s 631f., 1276
Zaman, A. 1149
Zealots 814
Zebra relaxation 866
Zero contours 372
Zero-length array 944
Zeroth-order regularization 796ff.
Zip code, barcode for 894
Ziv-Lempel compression 896
zroots unity() utility function 974, 990, 999

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Fortran 90 Code Chapters B1–B20

Fortran 90 versions of all the Numerical Recipes routines appear in the following
Chapters B1 through B20, numbered in correspondence with Chapters 1 through 20
in Volume 1. Within each chapter, the routines appear in the same order as in Volume
1, but not broken out separately by section number within Volume 1’s chapters.

There are commentaries accompanying many of the routines, generally follow-
ing the printed listing of the routine to which they apply. These are of two kinds:
issues related to parallelizing the algorithm in question, and issues related to the
Fortran 90 implementation. To distinguish between these two, rather different, kinds
of discussions, we use the two icons,

f90
the left icon (above) indicating a “parallel note,” and the right icon denoting a
“Fortran 90 tip.” Specific code segments of the routine that are discussed in these
commentaries are singled out by reproducing some of the code as an “index line”
next to the icon, or at the beginning of subsequent paragraphs if there are several
items that are commented on.

d=merge(FPMIN,d,abs(d)<FPMIN) This would be the start of a discussion of
code that begins at the line in the listing containing the indicated code fragment.

⋆ ⋆ ⋆

A row of stars, like the above, is used between unrelated routines, or at the
beginning and end of related groups of routines.

Some chapters contain discussions that are more general than commentary on
individual routines, but that were deemed too specific for inclusion in Chapters 21
through 23. Here are some highlights of this additional material:

• Approximations to roots of orthogonal polynomials for parallel computa-
tion of Gaussian quadrature formulas (Chapter B4)

• Difficulty of, and tricks for, parallel calculation of special function values
in a SIMD model of computation (Chapter B6)

• Parallel random number generation (Chapter B7)
• Fortran 90 tricks for dealing with ties in sorted arrays, counting things in

boxes, etc. (Chapter B14)
• Use of recursion in implementing multigrid elliptic PDE solvers (Chapter

B19)

1009

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B1. Preliminaries

SUBROUTINE flmoon(n,nph,jd,frac)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n,nph
INTEGER(I4B), INTENT(OUT) :: jd
REAL(SP), INTENT(OUT) :: frac

Our programs begin with an introductory comment summarizing their purpose and explain-
ing their calling sequence. This routine calculates the phases of the moon. Given an integer
n and a code nph for the phase desired (nph = 0 for new moon, 1 for first quarter, 2 for
full, 3 for last quarter), the routine returns the Julian Day Number jd, and the fractional
part of a day frac to be added to it, of the nth such phase since January, 1900. Greenwich
Mean Time is assumed.

REAL(SP), PARAMETER :: RAD=PI/180.0_sp
INTEGER(I4B) :: i
REAL(SP) :: am,as,c,t,t2,xtra
c=n+nph/4.0_sp This is how we comment an individual line.
t=c/1236.85_sp
t2=t**2
as=359.2242_sp+29.105356_sp*c You aren’t really intended to understand this al-

gorithm, but it does work!am=306.0253_sp+385.816918_sp*c+0.010730_sp*t2
jd=2415020+28*n+7*nph
xtra=0.75933_sp+1.53058868_sp*c+(1.178e-4_sp-1.55e-7_sp*t)*t2
select case(nph)

case(0,2)
xtra=xtra+(0.1734_sp-3.93e-4_sp*t)*sin(RAD*as)-0.4068_sp*sin(RAD*am)

case(1,3)
xtra=xtra+(0.1721_sp-4.0e-4_sp*t)*sin(RAD*as)-0.6280_sp*sin(RAD*am)

case default
call nrerror(’flmoon: nph is unknown’) This is how we will indicate error

conditions.end select
i=int(merge(xtra,xtra-1.0_sp, xtra >= 0.0))
jd=jd+i
frac=xtra-i
END SUBROUTINE flmoon

f90
select case(nph)...case(0,2)...end select Fortran 90 includes a
case construction that executes at most one of several blocks of code,
depending on the value of an integer, logical, or character expression.

Ideally, thecase construction will execute more efficiently than a long sequence of
cascadedif...else if...else if... constructions.C programmers should note that
the Fortran 90 construction, perhaps mercifully, does not haveC’s “drop-through”
feature.

merge(xtra,xtra-1.0_sp, xtra >= 0.0) The merge construction in Fortran
90, while intended primarily for use with vector arguments, is also a convenient way
of generating conditional scalar expressions, that is, expressions with one value, or
another, depending on the result of a logical test.

1010

Chapter B1. Preliminaries 1011

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

When the arguments of amerge are vectors, parallelization by the
compiler is straightforward as an array parallel operation (see p. 964).
Less obvious is how the scalar case, as above, is handled. For small-scale

parallel (SSP) machines, the natural gain is via speculative evaluation of both of the
first two arguments simultaneously with evaluation of the test.

A good compiler should not penalize a scalar machine for use of either the
scalar or vectormerge construction. The Fortran 90 standard states that “it is not
necessary for a processor to evaluate all of the operands of an expression, or to
evaluate entirely each operand, if the value of the expression can be determined
otherwise.” Therefore, for each test on a scalar machine, only one or the other of
the first two argument components need be evaluated.

⋆ ⋆ ⋆

FUNCTION julday(mm,id,iyyy)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: mm,id,iyyy
INTEGER(I4B) :: julday

In this routine julday returns the Julian Day Number that begins at noon of the calendar
date specified by month mm, day id, and year iyyy, all integer variables. Positive year
signifies A.D.; negative, B.C. Remember that the year after 1 B.C. was 1 A.D.

INTEGER(I4B), PARAMETER :: IGREG=15+31*(10+12*1582) Gregorian Calendar adopted
Oct. 15, 1582.INTEGER(I4B) :: ja,jm,jy

jy=iyyy
if (jy == 0) call nrerror(’julday: there is no year zero’)
if (jy < 0) jy=jy+1
if (mm > 2) then Here is an example of a block IF-structure.

jm=mm+1
else

jy=jy-1
jm=mm+13

end if
julday=int(365.25_sp*jy)+int(30.6001_sp*jm)+id+1720995
if (id+31*(mm+12*iyyy) >= IGREG) then Test whether to change to Gregorian Cal-

endar.ja=int(0.01_sp*jy)
julday=julday+2-ja+int(0.25_sp*ja)

end if
END FUNCTION julday

⋆ ⋆ ⋆

PROGRAM badluk
USE nrtype
USE nr, ONLY : flmoon,julday
IMPLICIT NONE
INTEGER(I4B) :: ic,icon,idwk,ifrac,im,iyyy,jd,jday,n
INTEGER(I4B) :: iybeg=1900,iyend=2000 The range of dates to be searched.
REAL(SP) :: frac
REAL(SP), PARAMETER :: TIMZON=-5.0_sp/24.0_sp
Time zone −5 is Eastern Standard Time.

write (*,’(1x,a,i5,a,i5)’) ’Full moons on Friday the 13th from’,&
iybeg,’ to’,iyend

do iyyy=iybeg,iyend Loop over each year,
do im=1,12 and each month.

jday=julday(im,13,iyyy) Is the 13th a Friday?
idwk=mod(jday+1,7)

1012 Chapter B1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (idwk == 5) then
n=12.37_sp*(iyyy-1900+(im-0.5_sp)/12.0_sp)
This value n is a first approximation to how many full moons have occurred
since 1900. We will feed it into the phase routine and adjust it up or down until
we determine that our desired 13th was or was not a full moon. The variable
icon signals the direction of adjustment.

icon=0
do

call flmoon(n,2,jd,frac) Get date of full moon n.
ifrac=nint(24.0_sp*(frac+TIMZON)) Convert to hours in correct time

zone.if (ifrac < 0) then
jd=jd-1 Convert from Julian Days beginning at noon

to civil days beginning at midnight.ifrac=ifrac+24
end if
if (ifrac > 12) then

jd=jd+1
ifrac=ifrac-12

else
ifrac=ifrac+12

end if
if (jd == jday) then Did we hit our target day?

write (*,’(/1x,i2,a,i2,a,i4)’) im,’/’,13,’/’,iyyy
write (*,’(1x,a,i2,a)’) ’Full moon ’,ifrac,&

’ hrs after midnight (EST).’
Don’t worry if you are unfamiliar with FORTRAN’s esoteric input/output
statements; very few programs in this book do any input/output.

exit Part of the break-structure, case of a match.
else Didn’t hit it.

ic=isign(1,jday-jd)
if (ic == -icon) exit Another break, case of no match.
icon=ic
n=n+ic

end if
end do

end if
end do

end do
END PROGRAM badluk

f90
...IGREG=15+31*(10+12*1582) (in julday), ...TIMZON=-5.0_sp/24.0_sp

(in badluk) These are two examples of initialization expressions for
“named constants” (that is,PARAMETERs). Because the initialization

expressions will generally be evaluated at compile time, Fortran 90 puts some
restrictions on what kinds of intrinsic functions they can contain. Although the
evaluation of a real expression like-5.0_sp/24.0_sp oughtto give identical results
at compile time and at execution time, all the way down to the least significant
bit, in our opinion the conservative programmer shouldn’t count on strict identity at
the level of floating-point roundoff error. (In the special case ofcross-compilers,
such roundoff-level discrepancies between compile time and run time are almost
inevitable.)

⋆ ⋆ ⋆

Chapter B1. Preliminaries 1013

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE caldat(julian,mm,id,iyyy)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: julian
INTEGER(I4B), INTENT(OUT) :: mm,id,iyyy

Inverse of the function julday given above. Here julian is input as a Julian Day Number,
and the routine outputs mm,id, and iyyy as the month, day, and year on which the specified
Julian Day started at noon.

INTEGER(I4B) :: ja,jalpha,jb,jc,jd,je
INTEGER(I4B), PARAMETER :: IGREG=2299161
if (julian >= IGREG) then Cross-over to Gregorian Calendar produces this

correction.jalpha=int(((julian-1867216)-0.25_sp)/36524.25_sp)
ja=julian+1+jalpha-int(0.25_sp*jalpha)

else if (julian < 0) then Make day number positive by adding integer num-
ber of Julian centuries, then subtract them
off at the end.

ja=julian+36525*(1-julian/36525)
else

ja=julian
end if
jb=ja+1524
jc=int(6680.0_sp+((jb-2439870)-122.1_sp)/365.25_sp)
jd=365*jc+int(0.25_sp*jc)
je=int((jb-jd)/30.6001_sp)
id=jb-jd-int(30.6001_sp*je)
mm=je-1
if (mm > 12) mm=mm-12
iyyy=jc-4715
if (mm > 2) iyyy=iyyy-1
if (iyyy <= 0) iyyy=iyyy-1
if (julian < 0) iyyy=iyyy-100*(1-julian/36525)
END SUBROUTINE caldat

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

C1. Listing of Utility Modules
(nrtype and nrutil)

C1.1 Numerical Recipes Types (nrtype)

The file supplied asnrtype.f90 contains a single module namednrtype,
which in turn contains definitions for a number of named constants (that is,
PARAMETERs), and a couple of elementary derived data types used by the sparse
matrix routines in this book. Of the named constants, by far the most important are
those that define theKIND types of virtually all the variables used in this book:I4B,
I2B, andI1B for integer variables,SP andDP for real variables (andSPC andDPC
for the corresponding complex cases), andLGT for the default logical type.

MODULE nrtype
Symbolic names for kind types of 4-, 2-, and 1-byte integers:

INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)

Symbolic names for kind types of single- and double-precision reals:
INTEGER, PARAMETER :: SP = KIND(1.0)
INTEGER, PARAMETER :: DP = KIND(1.0D0)

Symbolic names for kind types of single- and double-precision complex:
INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))
INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))

Symbolic name for kind type of default logical:
INTEGER, PARAMETER :: LGT = KIND(.true.)

Frequently used mathematical constants (with precision to spare):
REAL(SP), PARAMETER :: PI=3.141592653589793238462643383279502884197_sp
REAL(SP), PARAMETER :: PIO2=1.57079632679489661923132169163975144209858_sp
REAL(SP), PARAMETER :: TWOPI=6.283185307179586476925286766559005768394_sp
REAL(SP), PARAMETER :: SQRT2=1.41421356237309504880168872420969807856967_sp
REAL(SP), PARAMETER :: EULER=0.5772156649015328606065120900824024310422_sp
REAL(DP), PARAMETER :: PI_D=3.141592653589793238462643383279502884197_dp
REAL(DP), PARAMETER :: PIO2_D=1.57079632679489661923132169163975144209858_dp
REAL(DP), PARAMETER :: TWOPI_D=6.283185307179586476925286766559005768394_dp

Derived data types for sparse matrices, single and double precision (see use in Chapter B2):
TYPE sprs2_sp

INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_sp
TYPE sprs2_dp

INTEGER(I4B) :: n,len
REAL(DP), DIMENSION(:), POINTER :: val

1361

1362 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_dp
END MODULE nrtype

About Converting to Higher Precision

You might hope that changing all the Numerical Recipes routines from single
precision to double precision would be as simple as redefining the values ofSP and
DP in nrtype. Well . . . not quite.

Converting algorithms to a higher precision is not a purely mechanical task
because of the distinction between “roundoff error” and “truncation error.” (Please
see Volume 1,§1.2, if you are not familiar with these concepts.) While increasing the
precision implied by the kind valuesSP andDPwill indeed reduce a routine’s roundoff
error, it will not reduce any truncation error that may be intrinsic to the algorithm.
Sometimes, a routine contains “accuracy parameters” that can be adjusted to reduce
the truncation error to the new, desired level. In other cases, however, the truncation
error cannot be so easily reduced; then, a whole new algorithm is needed. Clearly
such new algorithms are beyond the scope of a simple mechanical “conversion.”

If, despite these cautionary words, you want to proceed with converting some
routines to a higher precision, here are some hints:

If your machine has a kind type that is distinct from, and has equal or greater
precision than, the kind type that we use forDP, then, innrtype, you can simply
redefineDP to this new highest precision and redefineSP to what was previously
DP. For example, DEC machines usually have a “quadruple precision” real type
available, which can be used in this way. You should not need to make any further
edits of nrtype or nrutil.

If, on the other hand, the kind type that we already use forDP is the highest
precision available, then you must leaveDP defined as it is, and redefineSP in
nrtype to be this same kind type. Now, however, you will also have to edit
nrutil, because some overloaded routines that were previously distinguishable (by
the different kind types) will now be seen by the compiler as indistinguishable —
and it will object strenuously. Simply delete all the “dp” function names from the
list of overloaded procedures (i.e., from theMODULE PROCEDURE statements). Note
that it is not necessary to delete the routines from theMODULE itself. Similarly, in the
interface filenr.f90 you must delete the “dp” interfaces,exceptfor thesprs...
routines. (Since they haveTYPE(sprs2 dp) or TYPE(sprs2 sp), they are treated
as distinct even though they have functionally equivalent kind types.)

Finally, the following table gives some suggestions for changing the accuracy
parameters, or constants, in some of the routines. Please note that this table is not
necessarily complete, and that higher-precision performance is not guaranteed for all
the routines,even ifyou make all the changes indicated. The above edits, and these
suggestions, do, however, work in the majority of cases.

C1.1 Numerical Recipes Types (nrtype) 1363

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

In routine... change... to...

beschb NUSE1=5,NUSE2=5 NUSE1=7,NUSE2=8

bessi IACC=40 IACC=200

bessik EPS=1.0e-10 dp EPS=epsilon(x)

bessj IACC=40 IACC=160

bessjy EPS=1.0e-10 dp EPS=epsilon(x)

broydn TOLF=1.0e-4 sp TOLF=1.0e-8 sp

TOLMIN=1.0e-6 sp TOLMIN=1.0e-12 sp

fdjac EPS=1.0e-4 sp EPS=1.0e-8 sp

frprmn EPS=1.0e-10 sp EPS=1.0e-18 sp

gauher EPS=3.0e-13 dp EPS=1.0e-14 dp

gaujac EPS=3.0e-14 dp EPS=1.0e-14 dp

gaulag EPS=3.0e-13 dp EPS=1.0e-14 dp

gauleg EPS=3.0e-14 dp EPS=1.0e-14 dp

hypgeo EPS=1.0e-6 sp EPS=1.0e-14 sp

linmin TOL=1.0e-4 sp TOL=1.0e-8 sp

newt TOLF=1.0e-4 sp TOLF=1.0e-8 sp

TOLMIN=1.0e-6 sp TOLMIN=1.0e-12 sp

probks EPS1=0.001 sp EPS1=1.0e-6 sp

EPS2=1.0e-8 sp EPS2=1.0e-16 sp

qromb EPS=1.0e-6 sp EPS=1.0e-10 sp

qromo EPS=1.0e-6 sp EPS=1.0e-10 sp

qroot TINY=1.0e-6 sp TINY=1.0e-14 sp

qsimp EPS=1.0e-6 sp EPS=1.0e-10 sp

qtrap EPS=1.0e-6 sp EPS=1.0e-10 sp

rc ERRTOL=0.04 sp ERRTOL=0.0012 sp

rd ERRTOL=0.05 sp ERRTOL=0.0015 sp

rf ERRTOL=0.08 sp ERRTOL=0.0025 sp

rj ERRTOL=0.05 sp ERRTOL=0.0015 sp

sfroid conv=5.0e-6 sp conv=1.0e-14 sp

shoot EPS=1.0e-6 sp EPS=1.0e-14 sp

shootf EPS=1.0e-6 sp EPS=1.0e-14 sp

simplx EPS=1.0e-6 sp EPS=1.0e-14 sp

sncndn CA=0.0003 sp CA=1.0e-8 sp

sor EPS=1.0e-5 dp EPS=1.0e-13 dp

sphfpt DXX=1.0e-4 sp DXX=1.0e-8 sp

sphoot dx=1.0e-4 sp dx=1.0e-8 sp

svdfit TOL=1.0e-5 sp TOL=1.0e-13 sp

zroots EPS=1.0e-6 sp EPS=1.0e-14 sp

1364 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

C1.2 Numerical Recipes Utilities (nrutil)

The file supplied asnrutil.f90 contains a single module namednrutil,
which contains specific implementations for all the Numerical Recipes utility
functions described in detail in Chapter 23.

The specific implementations given are something of a compromise between
demonstrating parallel techniques (when they can be achieved in Fortran 90) and
running efficiently on conventional, serial machines. The parameters at the beginning
of the module (names beginning withNPAR) are typically related to array lengths
below whichthe implementations revert to serial operations. On a purely serial
machine, these can be set to large values to suppress many parallel constructions.

The length and repetitiveness of thenrutil.f90 file stems in large part from
its extensive use of overloading. Indeed, the file would be even longer if we
overloaded versions for all the applicable data types that each utility could, in
principle, instantiate. The descriptions in Chapter 23 detail both the full set of
intended data types and shapes for each routine, and also the types and shapes
actually here implemented (which can also be gleaned by examining the file). The
intended result of all this overloading is, in essence, to give the utility routines the
desirable properties of many of the Fortran 90 intrinsic functions, namely, to be
bothgeneric(apply to many data types) andelemental(apply element-by-element
to arbitrary shapes). Fortran 95’s provision of user-defined elemental functions will
reduce the multiplicity of overloading in some of our routines; unfortunately the
necessity to overload for multiple data types will still be present.

Finally, it is worth reemphasizing the following point, already made in Chapter
23: The purpose of thenrutil utilities is to remove from the Numerical Recipes
programs just those programming tasks and “idioms” whose efficient implementation
is most hardware and compiler dependent, so as to allow for specific, efficient
implementations on different machines. One should therefore not expect the utmost
in efficiency from the general purpose, one-size-fits-all, implementation listed here.

Correspondingly, we would encourage the incorporation of efficientnrutil

implementations, and/or comparable capabilities under different names, with as
broad as possible a set of overloaded data types, in libraries associated with specific
compilers or machines. In supportof this goal, we have specifically put this Appendix
C1, and the filesnrtype.f90 andnrutil.f90, into the public domain.

MODULE nrutil
TABLE OF CONTENTS OF THE NRUTIL MODULE:

routines that move data:
array copy, swap, reallocate

routines returning a location as an integer value
ifirstloc, imaxloc, iminloc

routines for argument checking and error handling:
assert, assert eq, nrerror

routines relating to polynomials and recurrences
arth, geop, cumsum, cumprod, poly, polyterm,
zroots unity

routines for ”outer” operations on vectors
outerand, outersum, outerdiff, outerprod, outerdiv

routines for scatter-with-combine
scatter add, scatter max

routines for skew operations on matrices
diagadd, diagmult, get diag, put diag,

C1.2 Numerical Recipes Utilities (nrutil) 1365

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

unit matrix, lower triangle, upper triangle
miscellaneous routines

vabs
USE nrtype

Parameters for crossover from serial to parallel algorithms (these are used only within this
nrutil module):

IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8 Each NPAR2 must be ≤ the

corresponding NPAR.INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8

Next, generic interfaces for routines with overloaded versions. Naming conventions for ap-
pended codes in the names of overloaded routines are as follows: r=real, d=double pre-
cision, i=integer, c=complex, z=double-precision complex, h=character, l=logical. Any of
r,d,i,c,z,h,l may be followed by v=vector or m=matrix (v,m suffixes are used only when
needed to resolve ambiguities).
Routines that move data:

INTERFACE array_copy
MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i

END INTERFACE
INTERFACE swap

MODULE PROCEDURE swap_i,swap_r,swap_rv,swap_c, &
swap_cv,swap_cm,swap_z,swap_zv,swap_zm, &
masked_swap_rs,masked_swap_rv,masked_swap_rm

END INTERFACE
INTERFACE reallocate

MODULE PROCEDURE reallocate_rv,reallocate_rm,&
reallocate_iv,reallocate_im,reallocate_hv

END INTERFACE
Routines returning a location as an integer value (ifirstloc, iminloc are not currently over-
loaded and so do not have a generic interface here):

INTERFACE imaxloc
MODULE PROCEDURE imaxloc_r,imaxloc_i

END INTERFACE
Routines for argument checking and error handling (nrerror is not currently overloaded):

INTERFACE assert
MODULE PROCEDURE assert1,assert2,assert3,assert4,assert_v

END INTERFACE
INTERFACE assert_eq

MODULE PROCEDURE assert_eq2,assert_eq3,assert_eq4,assert_eqn
END INTERFACE

Routines relating to polynomials and recurrences (cumprod, zroots unity are not currently
overloaded):

INTERFACE arth
MODULE PROCEDURE arth_r, arth_d, arth_i

END INTERFACE
INTERFACE geop

MODULE PROCEDURE geop_r, geop_d, geop_i, geop_c, geop_dv
END INTERFACE
INTERFACE cumsum

MODULE PROCEDURE cumsum_r,cumsum_i
END INTERFACE
INTERFACE poly

MODULE PROCEDURE poly_rr,poly_rrv,poly_dd,poly_ddv,&
poly_rc,poly_cc,poly_msk_rrv,poly_msk_ddv

END INTERFACE
INTERFACE poly_term

MODULE PROCEDURE poly_term_rr,poly_term_cc
END INTERFACE

Routines for “outer” operations on vectors (outerand, outersum, outerdiv are not currently
overloaded):

INTERFACE outerprod

1366 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

MODULE PROCEDURE outerprod_r,outerprod_d
END INTERFACE
INTERFACE outerdiff

MODULE PROCEDURE outerdiff_r,outerdiff_d,outerdiff_i
END INTERFACE

Routines for scatter-with-combine, scatter add, scatter max:
INTERFACE scatter_add

MODULE PROCEDURE scatter_add_r,scatter_add_d
END INTERFACE
INTERFACE scatter_max

MODULE PROCEDURE scatter_max_r,scatter_max_d
END INTERFACE

Routines for skew operations on matrices (unit matrix, lower triangle, upper triangle not
currently overloaded):

INTERFACE diagadd
MODULE PROCEDURE diagadd_rv,diagadd_r

END INTERFACE
INTERFACE diagmult

MODULE PROCEDURE diagmult_rv,diagmult_r
END INTERFACE
INTERFACE get_diag

MODULE PROCEDURE get_diag_rv, get_diag_dv
END INTERFACE
INTERFACE put_diag

MODULE PROCEDURE put_diag_rv, put_diag_r
END INTERFACE

Other routines (vabs is not currently overloaded):
CONTAINS

Routines that move data:
SUBROUTINE array_copy_r(src,dest,n_copied,n_not_copied)

Copy array where size of source not known in advance.
REAL(SP), DIMENSION(:), INTENT(IN) :: src
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)
END SUBROUTINE array_copy_r

SUBROUTINE array_copy_d(src,dest,n_copied,n_not_copied)
REAL(DP), DIMENSION(:), INTENT(IN) :: src
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)
END SUBROUTINE array_copy_d

SUBROUTINE array_copy_i(src,dest,n_copied,n_not_copied)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: src
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)
END SUBROUTINE array_copy_i

SUBROUTINE swap_i(a,b)
Swap the contents of a and b.

INTEGER(I4B), INTENT(INOUT) :: a,b
INTEGER(I4B) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_i

C1.2 Numerical Recipes Utilities (nrutil) 1367

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE swap_r(a,b)
REAL(SP), INTENT(INOUT) :: a,b
REAL(SP) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_r

SUBROUTINE swap_rv(a,b)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_rv

SUBROUTINE swap_c(a,b)
COMPLEX(SPC), INTENT(INOUT) :: a,b
COMPLEX(SPC) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_c

SUBROUTINE swap_cv(a,b)
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: a,b
COMPLEX(SPC), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_cv

SUBROUTINE swap_cm(a,b)
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
COMPLEX(SPC), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_cm

SUBROUTINE swap_z(a,b)
COMPLEX(DPC), INTENT(INOUT) :: a,b
COMPLEX(DPC) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_z

SUBROUTINE swap_zv(a,b)
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: a,b
COMPLEX(DPC), DIMENSION(SIZE(a)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_zv

SUBROUTINE swap_zm(a,b)
COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: a,b
COMPLEX(DPC), DIMENSION(size(a,1),size(a,2)) :: dum
dum=a
a=b
b=dum
END SUBROUTINE swap_zm

SUBROUTINE masked_swap_rs(a,b,mask)
REAL(SP), INTENT(INOUT) :: a,b
LOGICAL(LGT), INTENT(IN) :: mask
REAL(SP) :: swp

1368 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (mask) then
swp=a
a=b
b=swp

end if
END SUBROUTINE masked_swap_rs

SUBROUTINE masked_swap_rv(a,b,mask)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(a)) :: swp
where (mask)

swp=a
a=b
b=swp

end where
END SUBROUTINE masked_swap_rv

SUBROUTINE masked_swap_rm(a,b,mask)
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a,b
LOGICAL(LGT), DIMENSION(:,:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(a,1),size(a,2)) :: swp
where (mask)

swp=a
a=b
b=swp

end where
END SUBROUTINE masked_swap_rm

FUNCTION reallocate_rv(p,n)
Reallocate a pointer to a new size, preserving its previous contents.

REAL(SP), DIMENSION(:), POINTER :: p, reallocate_rv
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B) :: nold,ierr
allocate(reallocate_rv(n),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate_rv: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p)
reallocate_rv(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)
END FUNCTION reallocate_rv

FUNCTION reallocate_iv(p,n)
INTEGER(I4B), DIMENSION(:), POINTER :: p, reallocate_iv
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B) :: nold,ierr
allocate(reallocate_iv(n),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate_iv: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p)
reallocate_iv(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)
END FUNCTION reallocate_iv

FUNCTION reallocate_hv(p,n)
CHARACTER(1), DIMENSION(:), POINTER :: p, reallocate_hv
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B) :: nold,ierr
allocate(reallocate_hv(n),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate_hv: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p)
reallocate_hv(1:min(nold,n))=p(1:min(nold,n))

C1.2 Numerical Recipes Utilities (nrutil) 1369

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

deallocate(p)
END FUNCTION reallocate_hv

FUNCTION reallocate_rm(p,n,m)
REAL(SP), DIMENSION(:,:), POINTER :: p, reallocate_rm
INTEGER(I4B), INTENT(IN) :: n,m
INTEGER(I4B) :: nold,mold,ierr
allocate(reallocate_rm(n,m),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate_rm: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p,1)
mold=size(p,2)
reallocate_rm(1:min(nold,n),1:min(mold,m))=&

p(1:min(nold,n),1:min(mold,m))
deallocate(p)
END FUNCTION reallocate_rm

FUNCTION reallocate_im(p,n,m)
INTEGER(I4B), DIMENSION(:,:), POINTER :: p, reallocate_im
INTEGER(I4B), INTENT(IN) :: n,m
INTEGER(I4B) :: nold,mold,ierr
allocate(reallocate_im(n,m),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate_im: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p,1)
mold=size(p,2)
reallocate_im(1:min(nold,n),1:min(mold,m))=&

p(1:min(nold,n),1:min(mold,m))
deallocate(p)
END FUNCTION reallocate_im

Routines returning a location as an integer value:
FUNCTION ifirstloc(mask)

Index of first occurrence of .true. in a logical vector.
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
INTEGER(I4B) :: ifirstloc
INTEGER(I4B), DIMENSION(1) :: loc
loc=maxloc(merge(1,0,mask))
ifirstloc=loc(1)
if (.not. mask(ifirstloc)) ifirstloc=size(mask)+1
END FUNCTION ifirstloc

FUNCTION imaxloc_r(arr)
Index of maxloc on an array.

REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B) :: imaxloc_r
INTEGER(I4B), DIMENSION(1) :: imax
imax=maxloc(arr(:))
imaxloc_r=imax(1)
END FUNCTION imaxloc_r

FUNCTION imaxloc_i(iarr)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iarr
INTEGER(I4B), DIMENSION(1) :: imax
INTEGER(I4B) :: imaxloc_i
imax=maxloc(iarr(:))
imaxloc_i=imax(1)
END FUNCTION imaxloc_i

FUNCTION iminloc(arr)
Index of minloc on an array.

REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(1) :: imin
INTEGER(I4B) :: iminloc
imin=minloc(arr(:))

1370 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

iminloc=imin(1)
END FUNCTION iminloc

Routines for argument checking and error handling:
SUBROUTINE assert1(n1,string)

Report and die if any logical is false (used for arg range checking).
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1
if (.not. n1) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert1’
end if
END SUBROUTINE assert1

SUBROUTINE assert2(n1,n2,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2
if (.not. (n1 .and. n2)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert2’
end if
END SUBROUTINE assert2

SUBROUTINE assert3(n1,n2,n3,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,n3
if (.not. (n1 .and. n2 .and. n3)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert3’
end if
END SUBROUTINE assert3

SUBROUTINE assert4(n1,n2,n3,n4,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,n3,n4
if (.not. (n1 .and. n2 .and. n3 .and. n4)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert4’
end if
END SUBROUTINE assert4

SUBROUTINE assert_v(n,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, DIMENSION(:), INTENT(IN) :: n
if (.not. all(n)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, &
string

STOP ’program terminated by assert_v’
end if
END SUBROUTINE assert_v

FUNCTION assert_eq2(n1,n2,string)
Report and die if integers not all equal (used for size checking).

CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2
INTEGER :: assert_eq2
if (n1 == n2) then

assert_eq2=n1
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, &
string

STOP ’program terminated by assert_eq2’
end if

C1.2 Numerical Recipes Utilities (nrutil) 1371

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END FUNCTION assert_eq2

FUNCTION assert_eq3(n1,n2,n3,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2,n3
INTEGER :: assert_eq3
if (n1 == n2 .and. n2 == n3) then

assert_eq3=n1
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, &
string

STOP ’program terminated by assert_eq3’
end if
END FUNCTION assert_eq3

FUNCTION assert_eq4(n1,n2,n3,n4,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2,n3,n4
INTEGER :: assert_eq4
if (n1 == n2 .and. n2 == n3 .and. n3 == n4) then

assert_eq4=n1
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, &
string

STOP ’program terminated by assert_eq4’
end if
END FUNCTION assert_eq4

FUNCTION assert_eqn(nn,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, DIMENSION(:), INTENT(IN) :: nn
INTEGER :: assert_eqn
if (all(nn(2:) == nn(1))) then

assert_eqn=nn(1)
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, &
string

STOP ’program terminated by assert_eqn’
end if
END FUNCTION assert_eqn

SUBROUTINE nrerror(string)
Report a message, then die.

CHARACTER(LEN=*), INTENT(IN) :: string
write (*,*) ’nrerror: ’,string
STOP ’program terminated by nrerror’
END SUBROUTINE nrerror

Routines relating to polynomials and recurrences:
FUNCTION arth_r(first,increment,n)

Array function returning an arithmetic progression.
REAL(SP), INTENT(IN) :: first,increment
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: arth_r
INTEGER(I4B) :: k,k2
REAL(SP) :: temp
if (n > 0) arth_r(1)=first
if (n <= NPAR_ARTH) then

do k=2,n
arth_r(k)=arth_r(k-1)+increment

end do
else

do k=2,NPAR2_ARTH
arth_r(k)=arth_r(k-1)+increment

end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH

1372 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

do
if (k >= n) exit
k2=k+k
arth_r(k+1:min(k2,n))=temp+arth_r(1:min(k,n-k))
temp=temp+temp
k=k2

end do
end if
END FUNCTION arth_r

FUNCTION arth_d(first,increment,n)
REAL(DP), INTENT(IN) :: first,increment
INTEGER(I4B), INTENT(IN) :: n
REAL(DP), DIMENSION(n) :: arth_d
INTEGER(I4B) :: k,k2
REAL(DP) :: temp
if (n > 0) arth_d(1)=first
if (n <= NPAR_ARTH) then

do k=2,n
arth_d(k)=arth_d(k-1)+increment

end do
else

do k=2,NPAR2_ARTH
arth_d(k)=arth_d(k-1)+increment

end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do

if (k >= n) exit
k2=k+k
arth_d(k+1:min(k2,n))=temp+arth_d(1:min(k,n-k))
temp=temp+temp
k=k2

end do
end if
END FUNCTION arth_d

FUNCTION arth_i(first,increment,n)
INTEGER(I4B), INTENT(IN) :: first,increment,n
INTEGER(I4B), DIMENSION(n) :: arth_i
INTEGER(I4B) :: k,k2,temp
if (n > 0) arth_i(1)=first
if (n <= NPAR_ARTH) then

do k=2,n
arth_i(k)=arth_i(k-1)+increment

end do
else

do k=2,NPAR2_ARTH
arth_i(k)=arth_i(k-1)+increment

end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do

if (k >= n) exit
k2=k+k
arth_i(k+1:min(k2,n))=temp+arth_i(1:min(k,n-k))
temp=temp+temp
k=k2

end do
end if
END FUNCTION arth_i

FUNCTION geop_r(first,factor,n)
Array function returning a geometric progression.

REAL(SP), INTENT(IN) :: first,factor

C1.2 Numerical Recipes Utilities (nrutil) 1373

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: geop_r
INTEGER(I4B) :: k,k2
REAL(SP) :: temp
if (n > 0) geop_r(1)=first
if (n <= NPAR_GEOP) then

do k=2,n
geop_r(k)=geop_r(k-1)*factor

end do
else

do k=2,NPAR2_GEOP
geop_r(k)=geop_r(k-1)*factor

end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do

if (k >= n) exit
k2=k+k
geop_r(k+1:min(k2,n))=temp*geop_r(1:min(k,n-k))
temp=temp*temp
k=k2

end do
end if
END FUNCTION geop_r

FUNCTION geop_d(first,factor,n)
REAL(DP), INTENT(IN) :: first,factor
INTEGER(I4B), INTENT(IN) :: n
REAL(DP), DIMENSION(n) :: geop_d
INTEGER(I4B) :: k,k2
REAL(DP) :: temp
if (n > 0) geop_d(1)=first
if (n <= NPAR_GEOP) then

do k=2,n
geop_d(k)=geop_d(k-1)*factor

end do
else

do k=2,NPAR2_GEOP
geop_d(k)=geop_d(k-1)*factor

end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do

if (k >= n) exit
k2=k+k
geop_d(k+1:min(k2,n))=temp*geop_d(1:min(k,n-k))
temp=temp*temp
k=k2

end do
end if
END FUNCTION geop_d

FUNCTION geop_i(first,factor,n)
INTEGER(I4B), INTENT(IN) :: first,factor,n
INTEGER(I4B), DIMENSION(n) :: geop_i
INTEGER(I4B) :: k,k2,temp
if (n > 0) geop_i(1)=first
if (n <= NPAR_GEOP) then

do k=2,n
geop_i(k)=geop_i(k-1)*factor

end do
else

do k=2,NPAR2_GEOP
geop_i(k)=geop_i(k-1)*factor

end do

1374 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do

if (k >= n) exit
k2=k+k
geop_i(k+1:min(k2,n))=temp*geop_i(1:min(k,n-k))
temp=temp*temp
k=k2

end do
end if
END FUNCTION geop_i

FUNCTION geop_c(first,factor,n)
COMPLEX(SP), INTENT(IN) :: first,factor
INTEGER(I4B), INTENT(IN) :: n
COMPLEX(SP), DIMENSION(n) :: geop_c
INTEGER(I4B) :: k,k2
COMPLEX(SP) :: temp
if (n > 0) geop_c(1)=first
if (n <= NPAR_GEOP) then

do k=2,n
geop_c(k)=geop_c(k-1)*factor

end do
else

do k=2,NPAR2_GEOP
geop_c(k)=geop_c(k-1)*factor

end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do

if (k >= n) exit
k2=k+k
geop_c(k+1:min(k2,n))=temp*geop_c(1:min(k,n-k))
temp=temp*temp
k=k2

end do
end if
END FUNCTION geop_c

FUNCTION geop_dv(first,factor,n)
REAL(DP), DIMENSION(:), INTENT(IN) :: first,factor
INTEGER(I4B), INTENT(IN) :: n
REAL(DP), DIMENSION(size(first),n) :: geop_dv
INTEGER(I4B) :: k,k2
REAL(DP), DIMENSION(size(first)) :: temp
if (n > 0) geop_dv(:,1)=first(:)
if (n <= NPAR_GEOP) then

do k=2,n
geop_dv(:,k)=geop_dv(:,k-1)*factor(:)

end do
else

do k=2,NPAR2_GEOP
geop_dv(:,k)=geop_dv(:,k-1)*factor(:)

end do
temp=factor**NPAR2_GEOP
k=NPAR2_GEOP
do

if (k >= n) exit
k2=k+k
geop_dv(:,k+1:min(k2,n))=geop_dv(:,1:min(k,n-k))*&

spread(temp,2,size(geop_dv(:,1:min(k,n-k)),2))
temp=temp*temp
k=k2

end do
end if

C1.2 Numerical Recipes Utilities (nrutil) 1375

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END FUNCTION geop_dv

RECURSIVE FUNCTION cumsum_r(arr,seed) RESULT(ans)
Cumulative sum on an array, with optional additive seed.

REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), OPTIONAL, INTENT(IN) :: seed
REAL(SP), DIMENSION(size(arr)) :: ans
INTEGER(I4B) :: n,j
REAL(SP) :: sd
n=size(arr)
if (n == 0_i4b) RETURN
sd=0.0_sp
if (present(seed)) sd=seed
ans(1)=arr(1)+sd
if (n < NPAR_CUMSUM) then

do j=2,n
ans(j)=ans(j-1)+arr(j)

end do
else

ans(2:n:2)=cumsum_r(arr(2:n:2)+arr(1:n-1:2),sd)
ans(3:n:2)=ans(2:n-1:2)+arr(3:n:2)

end if
END FUNCTION cumsum_r

RECURSIVE FUNCTION cumsum_i(arr,seed) RESULT(ans)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), OPTIONAL, INTENT(IN) :: seed
INTEGER(I4B), DIMENSION(size(arr)) :: ans
INTEGER(I4B) :: n,j,sd
n=size(arr)
if (n == 0_i4b) RETURN
sd=0_i4b
if (present(seed)) sd=seed
ans(1)=arr(1)+sd
if (n < NPAR_CUMSUM) then

do j=2,n
ans(j)=ans(j-1)+arr(j)

end do
else

ans(2:n:2)=cumsum_i(arr(2:n:2)+arr(1:n-1:2),sd)
ans(3:n:2)=ans(2:n-1:2)+arr(3:n:2)

end if
END FUNCTION cumsum_i

RECURSIVE FUNCTION cumprod(arr,seed) RESULT(ans)
Cumulative product on an array, with optional multiplicative seed.

REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), OPTIONAL, INTENT(IN) :: seed
REAL(SP), DIMENSION(size(arr)) :: ans
INTEGER(I4B) :: n,j
REAL(SP) :: sd
n=size(arr)
if (n == 0_i4b) RETURN
sd=1.0_sp
if (present(seed)) sd=seed
ans(1)=arr(1)*sd
if (n < NPAR_CUMPROD) then

do j=2,n
ans(j)=ans(j-1)*arr(j)

end do
else

ans(2:n:2)=cumprod(arr(2:n:2)*arr(1:n-1:2),sd)
ans(3:n:2)=ans(2:n-1:2)*arr(3:n:2)

end if
END FUNCTION cumprod

1376 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION poly_rr(x,coeffs)
Polynomial evaluation.

REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs
REAL(SP) :: poly_rr
REAL(SP) :: pow
REAL(SP), DIMENSION(:), ALLOCATABLE :: vec
INTEGER(I4B) :: i,n,nn
n=size(coeffs)
if (n <= 0) then

poly_rr=0.0_sp
else if (n < NPAR_POLY) then

poly_rr=coeffs(n)
do i=n-1,1,-1

poly_rr=x*poly_rr+coeffs(i)
end do

else
allocate(vec(n+1))
pow=x
vec(1:n)=coeffs
do

vec(n+1)=0.0_sp
nn=ishft(n+1,-1)
vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
if (nn == 1) exit
pow=pow*pow
n=nn

end do
poly_rr=vec(1)
deallocate(vec)

end if
END FUNCTION poly_rr

FUNCTION poly_dd(x,coeffs)
REAL(DP), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(IN) :: coeffs
REAL(DP) :: poly_dd
REAL(DP) :: pow
REAL(DP), DIMENSION(:), ALLOCATABLE :: vec
INTEGER(I4B) :: i,n,nn
n=size(coeffs)
if (n <= 0) then

poly_dd=0.0_dp
else if (n < NPAR_POLY) then

poly_dd=coeffs(n)
do i=n-1,1,-1

poly_dd=x*poly_dd+coeffs(i)
end do

else
allocate(vec(n+1))
pow=x
vec(1:n)=coeffs
do

vec(n+1)=0.0_dp
nn=ishft(n+1,-1)
vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
if (nn == 1) exit
pow=pow*pow
n=nn

end do
poly_dd=vec(1)
deallocate(vec)

end if
END FUNCTION poly_dd

C1.2 Numerical Recipes Utilities (nrutil) 1377

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION poly_rc(x,coeffs)
COMPLEX(SPC), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs
COMPLEX(SPC) :: poly_rc
COMPLEX(SPC) :: pow
COMPLEX(SPC), DIMENSION(:), ALLOCATABLE :: vec
INTEGER(I4B) :: i,n,nn
n=size(coeffs)
if (n <= 0) then

poly_rc=0.0_sp
else if (n < NPAR_POLY) then

poly_rc=coeffs(n)
do i=n-1,1,-1

poly_rc=x*poly_rc+coeffs(i)
end do

else
allocate(vec(n+1))
pow=x
vec(1:n)=coeffs
do

vec(n+1)=0.0_sp
nn=ishft(n+1,-1)
vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
if (nn == 1) exit
pow=pow*pow
n=nn

end do
poly_rc=vec(1)
deallocate(vec)

end if
END FUNCTION poly_rc

FUNCTION poly_cc(x,coeffs)
COMPLEX(SPC), INTENT(IN) :: x
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: coeffs
COMPLEX(SPC) :: poly_cc
COMPLEX(SPC) :: pow
COMPLEX(SPC), DIMENSION(:), ALLOCATABLE :: vec
INTEGER(I4B) :: i,n,nn
n=size(coeffs)
if (n <= 0) then

poly_cc=0.0_sp
else if (n < NPAR_POLY) then

poly_cc=coeffs(n)
do i=n-1,1,-1

poly_cc=x*poly_cc+coeffs(i)
end do

else
allocate(vec(n+1))
pow=x
vec(1:n)=coeffs
do

vec(n+1)=0.0_sp
nn=ishft(n+1,-1)
vec(1:nn)=vec(1:n:2)+pow*vec(2:n+1:2)
if (nn == 1) exit
pow=pow*pow
n=nn

end do
poly_cc=vec(1)
deallocate(vec)

end if
END FUNCTION poly_cc

FUNCTION poly_rrv(x,coeffs)

1378 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs,x
REAL(SP), DIMENSION(size(x)) :: poly_rrv
INTEGER(I4B) :: i,n,m
m=size(coeffs)
n=size(x)
if (m <= 0) then

poly_rrv=0.0_sp
else if (m < n .or. m < NPAR_POLY) then

poly_rrv=coeffs(m)
do i=m-1,1,-1

poly_rrv=x*poly_rrv+coeffs(i)
end do

else
do i=1,n

poly_rrv(i)=poly_rr(x(i),coeffs)
end do

end if
END FUNCTION poly_rrv

FUNCTION poly_ddv(x,coeffs)
REAL(DP), DIMENSION(:), INTENT(IN) :: coeffs,x
REAL(DP), DIMENSION(size(x)) :: poly_ddv
INTEGER(I4B) :: i,n,m
m=size(coeffs)
n=size(x)
if (m <= 0) then

poly_ddv=0.0_dp
else if (m < n .or. m < NPAR_POLY) then

poly_ddv=coeffs(m)
do i=m-1,1,-1

poly_ddv=x*poly_ddv+coeffs(i)
end do

else
do i=1,n

poly_ddv(i)=poly_dd(x(i),coeffs)
end do

end if
END FUNCTION poly_ddv

FUNCTION poly_msk_rrv(x,coeffs,mask)
REAL(SP), DIMENSION(:), INTENT(IN) :: coeffs,x
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(x)) :: poly_msk_rrv
poly_msk_rrv=unpack(poly_rrv(pack(x,mask),coeffs),mask,0.0_sp)
END FUNCTION poly_msk_rrv

FUNCTION poly_msk_ddv(x,coeffs,mask)
REAL(DP), DIMENSION(:), INTENT(IN) :: coeffs,x
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: mask
REAL(DP), DIMENSION(size(x)) :: poly_msk_ddv
poly_msk_ddv=unpack(poly_ddv(pack(x,mask),coeffs),mask,0.0_dp)
END FUNCTION poly_msk_ddv

RECURSIVE FUNCTION poly_term_rr(a,b) RESULT(u)
Tabulate cumulants of a polynomial.

REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), INTENT(IN) :: b
REAL(SP), DIMENSION(size(a)) :: u
INTEGER(I4B) :: n,j
n=size(a)
if (n <= 0) RETURN
u(1)=a(1)
if (n < NPAR_POLYTERM) then

do j=2,n
u(j)=a(j)+b*u(j-1)

end do

C1.2 Numerical Recipes Utilities (nrutil) 1379

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

else
u(2:n:2)=poly_term_rr(a(2:n:2)+a(1:n-1:2)*b,b*b)
u(3:n:2)=a(3:n:2)+b*u(2:n-1:2)

end if
END FUNCTION poly_term_rr

RECURSIVE FUNCTION poly_term_cc(a,b) RESULT(u)
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
COMPLEX(SPC), INTENT(IN) :: b
COMPLEX(SPC), DIMENSION(size(a)) :: u
INTEGER(I4B) :: n,j
n=size(a)
if (n <= 0) RETURN
u(1)=a(1)
if (n < NPAR_POLYTERM) then

do j=2,n
u(j)=a(j)+b*u(j-1)

end do
else

u(2:n:2)=poly_term_cc(a(2:n:2)+a(1:n-1:2)*b,b*b)
u(3:n:2)=a(3:n:2)+b*u(2:n-1:2)

end if
END FUNCTION poly_term_cc

FUNCTION zroots_unity(n,nn)
Complex function returning nn powers of the nth root of unity.

INTEGER(I4B), INTENT(IN) :: n,nn
COMPLEX(SPC), DIMENSION(nn) :: zroots_unity
INTEGER(I4B) :: k
REAL(SP) :: theta
zroots_unity(1)=1.0
theta=TWOPI/n
k=1
do

if (k >= nn) exit
zroots_unity(k+1)=cmplx(cos(k*theta),sin(k*theta),SPC)
zroots_unity(k+2:min(2*k,nn))=zroots_unity(k+1)*&

zroots_unity(2:min(k,nn-k))
k=2*k

end do
END FUNCTION zroots_unity

Routines for “outer” operations on vectors. The order convention is: result(i,j) = first operand(i)
(op) second operand(j).

FUNCTION outerprod_r(a,b)
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a),size(b)) :: outerprod_r
outerprod_r = spread(a,dim=2,ncopies=size(b)) * &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerprod_r

FUNCTION outerprod_d(a,b)
REAL(DP), DIMENSION(:), INTENT(IN) :: a,b
REAL(DP), DIMENSION(size(a),size(b)) :: outerprod_d
outerprod_d = spread(a,dim=2,ncopies=size(b)) * &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerprod_d

FUNCTION outerdiv(a,b)
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a),size(b)) :: outerdiv
outerdiv = spread(a,dim=2,ncopies=size(b)) / &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiv

FUNCTION outersum(a,b)
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b

1380 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), DIMENSION(size(a),size(b)) :: outersum
outersum = spread(a,dim=2,ncopies=size(b)) + &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outersum

FUNCTION outerdiff_r(a,b)
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a),size(b)) :: outerdiff_r
outerdiff_r = spread(a,dim=2,ncopies=size(b)) - &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiff_r

FUNCTION outerdiff_d(a,b)
REAL(DP), DIMENSION(:), INTENT(IN) :: a,b
REAL(DP), DIMENSION(size(a),size(b)) :: outerdiff_d
outerdiff_d = spread(a,dim=2,ncopies=size(b)) - &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiff_d

FUNCTION outerdiff_i(a,b)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: a,b
INTEGER(I4B), DIMENSION(size(a),size(b)) :: outerdiff_i
outerdiff_i = spread(a,dim=2,ncopies=size(b)) - &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerdiff_i

FUNCTION outerand(a,b)
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: a,b
LOGICAL(LGT), DIMENSION(size(a),size(b)) :: outerand
outerand = spread(a,dim=2,ncopies=size(b)) .and. &

spread(b,dim=1,ncopies=size(a))
END FUNCTION outerand

Routines for scatter-with-combine.
SUBROUTINE scatter_add_r(dest,source,dest_index)
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
REAL(SP), DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
n=assert_eq2(size(source),size(dest_index),’scatter_add_r’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=dest(i)+source(j)

end do
END SUBROUTINE scatter_add_r
SUBROUTINE scatter_add_d(dest,source,dest_index)
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
REAL(DP), DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
n=assert_eq2(size(source),size(dest_index),’scatter_add_d’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=dest(i)+source(j)

end do
END SUBROUTINE scatter_add_d
SUBROUTINE scatter_max_r(dest,source,dest_index)
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
REAL(SP), DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
n=assert_eq2(size(source),size(dest_index),’scatter_max_r’)
m=size(dest)
do j=1,n

i=dest_index(j)

C1.2 Numerical Recipes Utilities (nrutil) 1381

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (i > 0 .and. i <= m) dest(i)=max(dest(i),source(j))
end do
END SUBROUTINE scatter_max_r
SUBROUTINE scatter_max_d(dest,source,dest_index)
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
REAL(DP), DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
INTEGER(I4B) :: m,n,j,i
n=assert_eq2(size(source),size(dest_index),’scatter_max_d’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=max(dest(i),source(j))

end do
END SUBROUTINE scatter_max_d

Routines for skew operations on matrices:
SUBROUTINE diagadd_rv(mat,diag)

Adds vector or scalar diag to the diagonal of matrix mat.
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
REAL(SP), DIMENSION(:), INTENT(IN) :: diag
INTEGER(I4B) :: j,n
n = assert_eq2(size(diag),min(size(mat,1),size(mat,2)),’diagadd_rv’)
do j=1,n

mat(j,j)=mat(j,j)+diag(j)
end do
END SUBROUTINE diagadd_rv

SUBROUTINE diagadd_r(mat,diag)
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
REAL(SP), INTENT(IN) :: diag
INTEGER(I4B) :: j,n
n = min(size(mat,1),size(mat,2))
do j=1,n

mat(j,j)=mat(j,j)+diag
end do
END SUBROUTINE diagadd_r

SUBROUTINE diagmult_rv(mat,diag)
Multiplies vector or scalar diag into the diagonal of matrix mat.

REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
REAL(SP), DIMENSION(:), INTENT(IN) :: diag
INTEGER(I4B) :: j,n
n = assert_eq2(size(diag),min(size(mat,1),size(mat,2)),’diagmult_rv’)
do j=1,n

mat(j,j)=mat(j,j)*diag(j)
end do
END SUBROUTINE diagmult_rv

SUBROUTINE diagmult_r(mat,diag)
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
REAL(SP), INTENT(IN) :: diag
INTEGER(I4B) :: j,n
n = min(size(mat,1),size(mat,2))
do j=1,n

mat(j,j)=mat(j,j)*diag
end do
END SUBROUTINE diagmult_r

FUNCTION get_diag_rv(mat)
Return as a vector the diagonal of matrix mat.

REAL(SP), DIMENSION(:,:), INTENT(IN) :: mat
REAL(SP), DIMENSION(size(mat,1)) :: get_diag_rv
INTEGER(I4B) :: j
j=assert_eq2(size(mat,1),size(mat,2),’get_diag_rv’)
do j=1,size(mat,1)

get_diag_rv(j)=mat(j,j)

1382 Appendix C1. Listing of Utility Modules (nrtype and nrutil)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
END FUNCTION get_diag_rv

FUNCTION get_diag_dv(mat)
REAL(DP), DIMENSION(:,:), INTENT(IN) :: mat
REAL(DP), DIMENSION(size(mat,1)) :: get_diag_dv
INTEGER(I4B) :: j
j=assert_eq2(size(mat,1),size(mat,2),’get_diag_dv’)
do j=1,size(mat,1)

get_diag_dv(j)=mat(j,j)
end do
END FUNCTION get_diag_dv

SUBROUTINE put_diag_rv(diagv,mat)
Set the diagonal of matrix mat to the values of a vector or scalar.

REAL(SP), DIMENSION(:), INTENT(IN) :: diagv
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
INTEGER(I4B) :: j,n
n=assert_eq2(size(diagv),min(size(mat,1),size(mat,2)),’put_diag_rv’)
do j=1,n

mat(j,j)=diagv(j)
end do
END SUBROUTINE put_diag_rv

SUBROUTINE put_diag_r(scal,mat)
REAL(SP), INTENT(IN) :: scal
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: mat
INTEGER(I4B) :: j,n
n = min(size(mat,1),size(mat,2))
do j=1,n

mat(j,j)=scal
end do
END SUBROUTINE put_diag_r

SUBROUTINE unit_matrix(mat)
Set the matrix mat to be a unit matrix (if it is square).

REAL(SP), DIMENSION(:,:), INTENT(OUT) :: mat
INTEGER(I4B) :: i,n
n=min(size(mat,1),size(mat,2))
mat(:,:)=0.0_sp
do i=1,n

mat(i,i)=1.0_sp
end do
END SUBROUTINE unit_matrix

FUNCTION upper_triangle(j,k,extra)
Return an upper triangular logical mask.

INTEGER(I4B), INTENT(IN) :: j,k
INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
LOGICAL(LGT), DIMENSION(j,k) :: upper_triangle
INTEGER(I4B) :: n
n=0
if (present(extra)) n=extra
upper_triangle=(outerdiff(arth_i(1,1,j),arth_i(1,1,k)) < n)
END FUNCTION upper_triangle

FUNCTION lower_triangle(j,k,extra)
Return a lower triangular logical mask.

INTEGER(I4B), INTENT(IN) :: j,k
INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
LOGICAL(LGT), DIMENSION(j,k) :: lower_triangle
INTEGER(I4B) :: n
n=0
if (present(extra)) n=extra
lower_triangle=(outerdiff(arth_i(1,1,j),arth_i(1,1,k)) > -n)
END FUNCTION lower_triangle

Other routines:

C1.2 Numerical Recipes Utilities (nrutil) 1383

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION vabs(v)
Return the length (ordinary L2 norm) of a vector.

REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP) :: vabs
vabs=sqrt(dot_product(v,v))
END FUNCTION vabs

END MODULE nrutil

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

C2. Alphabetical Listing of
Explicit Interfaces

The file supplied asnr.f90 contains explicit interfaces for all the Numerical
Recipes routines (except those already in the modulenrutil). The interfaces are
in alphabetical order, by the generic interface name, if one exists, or by the specific
routine name if there is no generic name.

The filenr.f90 is normally invoked via aUSE statement within a main program
or subroutine that references a Numerical Recipes routine. See§21.1 for an example.

MODULE nr
INTERFACE

SUBROUTINE airy(x,ai,bi,aip,bip)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ai,bi,aip,bip
END SUBROUTINE airy

END INTERFACE
INTERFACE

SUBROUTINE amebsa(p,y,pb,yb,ftol,func,iter,temptr)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: iter
REAL(SP), INTENT(INOUT) :: yb
REAL(SP), INTENT(IN) :: ftol,temptr
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y,pb
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE amebsa

END INTERFACE
INTERFACE

SUBROUTINE amoeba(p,y,ftol,func,iter)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE

1384

Appendix C2. Alphabetical Listing of Explicit Interfaces 1385

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END SUBROUTINE amoeba
END INTERFACE
INTERFACE

SUBROUTINE anneal(x,y,iorder)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
END SUBROUTINE anneal

END INTERFACE
INTERFACE

SUBROUTINE asolve(b,x,itrnsp)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), INTENT(IN) :: itrnsp
END SUBROUTINE asolve

END INTERFACE
INTERFACE

SUBROUTINE atimes(x,r,itrnsp)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: r
INTEGER(I4B), INTENT(IN) :: itrnsp
END SUBROUTINE atimes

END INTERFACE
INTERFACE

SUBROUTINE avevar(data,ave,var)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), INTENT(OUT) :: ave,var
END SUBROUTINE avevar

END INTERFACE
INTERFACE

SUBROUTINE balanc(a)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
END SUBROUTINE balanc

END INTERFACE
INTERFACE

SUBROUTINE banbks(a,m1,m2,al,indx,b)
USE nrtype
INTEGER(I4B), INTENT(IN) :: m1,m2
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,al
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE banbks

END INTERFACE
INTERFACE

SUBROUTINE bandec(a,m1,m2,al,indx,d)
USE nrtype
INTEGER(I4B), INTENT(IN) :: m1,m2
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: al
END SUBROUTINE bandec

END INTERFACE
INTERFACE

SUBROUTINE banmul(a,m1,m2,x,b)
USE nrtype
INTEGER(I4B), INTENT(IN) :: m1,m2
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: b
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a

1386 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END SUBROUTINE banmul
END INTERFACE
INTERFACE

SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c)
USE nrtype
REAL(SP), INTENT(IN) :: d1,d2
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), DIMENSION(4,4), INTENT(OUT) :: c
END SUBROUTINE bcucof

END INTERFACE
INTERFACE

SUBROUTINE bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2,ansy,&
ansy1,ansy2)

USE nrtype
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), INTENT(IN) :: x1l,x1u,x2l,x2u,x1,x2
REAL(SP), INTENT(OUT) :: ansy,ansy1,ansy2
END SUBROUTINE bcuint

END INTERFACE
INTERFACE beschb

SUBROUTINE beschb_s(x,gam1,gam2,gampl,gammi)
USE nrtype
REAL(DP), INTENT(IN) :: x
REAL(DP), INTENT(OUT) :: gam1,gam2,gampl,gammi
END SUBROUTINE beschb_s

SUBROUTINE beschb_v(x,gam1,gam2,gampl,gammi)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: gam1,gam2,gampl,gammi
END SUBROUTINE beschb_v

END INTERFACE
INTERFACE bessi

FUNCTION bessi_s(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi_s
END FUNCTION bessi_s

FUNCTION bessi_v(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi_v
END FUNCTION bessi_v

END INTERFACE
INTERFACE bessi0

FUNCTION bessi0_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi0_s
END FUNCTION bessi0_s

FUNCTION bessi0_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi0_v
END FUNCTION bessi0_v

END INTERFACE
INTERFACE bessi1

FUNCTION bessi1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi1_s
END FUNCTION bessi1_s

Appendix C2. Alphabetical Listing of Explicit Interfaces 1387

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION bessi1_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi1_v
END FUNCTION bessi1_v

END INTERFACE
INTERFACE

SUBROUTINE bessik(x,xnu,ri,rk,rip,rkp)
USE nrtype
REAL(SP), INTENT(IN) :: x,xnu
REAL(SP), INTENT(OUT) :: ri,rk,rip,rkp
END SUBROUTINE bessik

END INTERFACE
INTERFACE bessj

FUNCTION bessj_s(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj_s
END FUNCTION bessj_s

FUNCTION bessj_v(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj_v
END FUNCTION bessj_v

END INTERFACE
INTERFACE bessj0

FUNCTION bessj0_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj0_s
END FUNCTION bessj0_s

FUNCTION bessj0_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj0_v
END FUNCTION bessj0_v

END INTERFACE
INTERFACE bessj1

FUNCTION bessj1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj1_s
END FUNCTION bessj1_s

FUNCTION bessj1_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj1_v
END FUNCTION bessj1_v

END INTERFACE
INTERFACE bessjy

SUBROUTINE bessjy_s(x,xnu,rj,ry,rjp,ryp)
USE nrtype
REAL(SP), INTENT(IN) :: x,xnu
REAL(SP), INTENT(OUT) :: rj,ry,rjp,ryp
END SUBROUTINE bessjy_s

SUBROUTINE bessjy_v(x,xnu,rj,ry,rjp,ryp)
USE nrtype
REAL(SP), INTENT(IN) :: xnu
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: rj,rjp,ry,ryp

1388 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END SUBROUTINE bessjy_v
END INTERFACE
INTERFACE bessk

FUNCTION bessk_s(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk_s
END FUNCTION bessk_s

FUNCTION bessk_v(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk_v
END FUNCTION bessk_v

END INTERFACE
INTERFACE bessk0

FUNCTION bessk0_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk0_s
END FUNCTION bessk0_s

FUNCTION bessk0_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk0_v
END FUNCTION bessk0_v

END INTERFACE
INTERFACE bessk1

FUNCTION bessk1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk1_s
END FUNCTION bessk1_s

FUNCTION bessk1_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk1_v
END FUNCTION bessk1_v

END INTERFACE
INTERFACE bessy

FUNCTION bessy_s(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy_s
END FUNCTION bessy_s

FUNCTION bessy_v(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy_v
END FUNCTION bessy_v

END INTERFACE
INTERFACE bessy0

FUNCTION bessy0_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy0_s
END FUNCTION bessy0_s

FUNCTION bessy0_v(x)
USE nrtype

Appendix C2. Alphabetical Listing of Explicit Interfaces 1389

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy0_v
END FUNCTION bessy0_v

END INTERFACE
INTERFACE bessy1

FUNCTION bessy1_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy1_s
END FUNCTION bessy1_s

FUNCTION bessy1_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy1_v
END FUNCTION bessy1_v

END INTERFACE
INTERFACE beta

FUNCTION beta_s(z,w)
USE nrtype
REAL(SP), INTENT(IN) :: z,w
REAL(SP) :: beta_s
END FUNCTION beta_s

FUNCTION beta_v(z,w)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: z,w
REAL(SP), DIMENSION(size(z)) :: beta_v
END FUNCTION beta_v

END INTERFACE
INTERFACE betacf

FUNCTION betacf_s(a,b,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP) :: betacf_s
END FUNCTION betacf_s

FUNCTION betacf_v(a,b,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(x)) :: betacf_v
END FUNCTION betacf_v

END INTERFACE
INTERFACE betai

FUNCTION betai_s(a,b,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP) :: betai_s
END FUNCTION betai_s

FUNCTION betai_v(a,b,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(a)) :: betai_v
END FUNCTION betai_v

END INTERFACE
INTERFACE bico

FUNCTION bico_s(n,k)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n,k
REAL(SP) :: bico_s
END FUNCTION bico_s

FUNCTION bico_v(n,k)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n,k
REAL(SP), DIMENSION(size(n)) :: bico_v

1390 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END FUNCTION bico_v
END INTERFACE
INTERFACE

FUNCTION bnldev(pp,n)
USE nrtype
REAL(SP), INTENT(IN) :: pp
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: bnldev
END FUNCTION bnldev

END INTERFACE
INTERFACE

FUNCTION brent(ax,bx,cx,func,tol,xmin)
USE nrtype
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: brent
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION brent

END INTERFACE
INTERFACE

SUBROUTINE broydn(x,check)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
LOGICAL(LGT), INTENT(OUT) :: check
END SUBROUTINE broydn

END INTERFACE
INTERFACE

SUBROUTINE bsstep(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE bsstep

END INTERFACE
INTERFACE

SUBROUTINE caldat(julian,mm,id,iyyy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: julian
INTEGER(I4B), INTENT(OUT) :: mm,id,iyyy
END SUBROUTINE caldat

END INTERFACE
INTERFACE

FUNCTION chder(a,b,c)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chder
END FUNCTION chder

Appendix C2. Alphabetical Listing of Explicit Interfaces 1391

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END INTERFACE
INTERFACE chebev

FUNCTION chebev_s(a,b,c,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP) :: chebev_s
END FUNCTION chebev_s

FUNCTION chebev_v(a,b,c,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c,x
REAL(SP), DIMENSION(size(x)) :: chebev_v
END FUNCTION chebev_v

END INTERFACE
INTERFACE

FUNCTION chebft(a,b,n,func)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: chebft
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END FUNCTION chebft

END INTERFACE
INTERFACE

FUNCTION chebpc(c)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chebpc
END FUNCTION chebpc

END INTERFACE
INTERFACE

FUNCTION chint(a,b,c)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chint
END FUNCTION chint

END INTERFACE
INTERFACE

SUBROUTINE choldc(a,p)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: p
END SUBROUTINE choldc

END INTERFACE
INTERFACE

SUBROUTINE cholsl(a,p,b,x)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: p,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
END SUBROUTINE cholsl

END INTERFACE
INTERFACE

SUBROUTINE chsone(bins,ebins,knstrn,df,chsq,prob)
USE nrtype

1392 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df,chsq,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins,ebins
END SUBROUTINE chsone

END INTERFACE
INTERFACE

SUBROUTINE chstwo(bins1,bins2,knstrn,df,chsq,prob)
USE nrtype
INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df,chsq,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins1,bins2
END SUBROUTINE chstwo

END INTERFACE
INTERFACE

SUBROUTINE cisi(x,ci,si)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ci,si
END SUBROUTINE cisi

END INTERFACE
INTERFACE

SUBROUTINE cntab1(nn,chisq,df,prob,cramrv,ccc)
USE nrtype
INTEGER(I4B), DIMENSION(:,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: chisq,df,prob,cramrv,ccc
END SUBROUTINE cntab1

END INTERFACE
INTERFACE

SUBROUTINE cntab2(nn,h,hx,hy,hygx,hxgy,uygx,uxgy,uxy)
USE nrtype
INTEGER(I4B), DIMENSION(:,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: h,hx,hy,hygx,hxgy,uygx,uxgy,uxy
END SUBROUTINE cntab2

END INTERFACE
INTERFACE

FUNCTION convlv(data,respns,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), DIMENSION(:), INTENT(IN) :: respns
INTEGER(I4B), INTENT(IN) :: isign
REAL(SP), DIMENSION(size(data)) :: convlv
END FUNCTION convlv

END INTERFACE
INTERFACE

FUNCTION correl(data1,data2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), DIMENSION(size(data1)) :: correl
END FUNCTION correl

END INTERFACE
INTERFACE

SUBROUTINE cosft1(y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
END SUBROUTINE cosft1

END INTERFACE
INTERFACE

SUBROUTINE cosft2(y,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE cosft2

END INTERFACE
INTERFACE

Appendix C2. Alphabetical Listing of Explicit Interfaces 1393

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE covsrt(covar,maska)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: covar
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
END SUBROUTINE covsrt

END INTERFACE
INTERFACE

SUBROUTINE cyclic(a,b,c,alpha,beta,r,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN):: a,b,c,r
REAL(SP), INTENT(IN) :: alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT):: x
END SUBROUTINE cyclic

END INTERFACE
INTERFACE

SUBROUTINE daub4(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE daub4

END INTERFACE
INTERFACE dawson

FUNCTION dawson_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dawson_s
END FUNCTION dawson_s

FUNCTION dawson_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dawson_v
END FUNCTION dawson_v

END INTERFACE
INTERFACE

FUNCTION dbrent(ax,bx,cx,func,dbrent_dfunc,tol,xmin)
USE nrtype
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: dbrent
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

FUNCTION dbrent_dfunc(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dbrent_dfunc
END FUNCTION dbrent_dfunc

END INTERFACE
END FUNCTION dbrent

END INTERFACE
INTERFACE

SUBROUTINE ddpoly(c,x,pd)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(:), INTENT(OUT) :: pd
END SUBROUTINE ddpoly

END INTERFACE
INTERFACE

FUNCTION decchk(string,ch)

1394 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(IN) :: string
CHARACTER(1), INTENT(OUT) :: ch
LOGICAL(LGT) :: decchk
END FUNCTION decchk

END INTERFACE
INTERFACE

SUBROUTINE dfpmin(p,gtol,iter,fret,func,dfunc)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: gtol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(p)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(p)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc

END INTERFACE
END SUBROUTINE dfpmin

END INTERFACE
INTERFACE

FUNCTION dfridr(func,x,h,err)
USE nrtype
REAL(SP), INTENT(IN) :: x,h
REAL(SP), INTENT(OUT) :: err
REAL(SP) :: dfridr
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION dfridr

END INTERFACE
INTERFACE

SUBROUTINE dftcor(w,delta,a,b,endpts,corre,corim,corfac)
USE nrtype
REAL(SP), INTENT(IN) :: w,delta,a,b
REAL(SP), INTENT(OUT) :: corre,corim,corfac
REAL(SP), DIMENSION(:), INTENT(IN) :: endpts
END SUBROUTINE dftcor

END INTERFACE
INTERFACE

SUBROUTINE dftint(func,a,b,w,cosint,sinint)
USE nrtype
REAL(SP), INTENT(IN) :: a,b,w
REAL(SP), INTENT(OUT) :: cosint,sinint
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE dftint

Appendix C2. Alphabetical Listing of Explicit Interfaces 1395

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END INTERFACE
INTERFACE

SUBROUTINE difeq(k,k1,k2,jsf,is1,isf,indexv,s,y)
USE nrtype
INTEGER(I4B), INTENT(IN) :: is1,isf,jsf,k,k1,k2
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indexv
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: s
REAL(SP), DIMENSION(:,:), INTENT(IN) :: y
END SUBROUTINE difeq

END INTERFACE
INTERFACE

FUNCTION eclass(lista,listb,n)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: lista,listb
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), DIMENSION(n) :: eclass
END FUNCTION eclass

END INTERFACE
INTERFACE

FUNCTION eclazz(equiv,n)
USE nrtype
INTERFACE

FUNCTION equiv(i,j)
USE nrtype
LOGICAL(LGT) :: equiv
INTEGER(I4B), INTENT(IN) :: i,j
END FUNCTION equiv

END INTERFACE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), DIMENSION(n) :: eclazz
END FUNCTION eclazz

END INTERFACE
INTERFACE

FUNCTION ei(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: ei
END FUNCTION ei

END INTERFACE
INTERFACE

SUBROUTINE eigsrt(d,v)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: v
END SUBROUTINE eigsrt

END INTERFACE
INTERFACE elle

FUNCTION elle_s(phi,ak)
USE nrtype
REAL(SP), INTENT(IN) :: phi,ak
REAL(SP) :: elle_s
END FUNCTION elle_s

FUNCTION elle_v(phi,ak)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: elle_v
END FUNCTION elle_v

END INTERFACE
INTERFACE ellf

FUNCTION ellf_s(phi,ak)
USE nrtype
REAL(SP), INTENT(IN) :: phi,ak
REAL(SP) :: ellf_s

1396 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END FUNCTION ellf_s

FUNCTION ellf_v(phi,ak)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: ellf_v
END FUNCTION ellf_v

END INTERFACE
INTERFACE ellpi

FUNCTION ellpi_s(phi,en,ak)
USE nrtype
REAL(SP), INTENT(IN) :: phi,en,ak
REAL(SP) :: ellpi_s
END FUNCTION ellpi_s

FUNCTION ellpi_v(phi,en,ak)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,en,ak
REAL(SP), DIMENSION(size(phi)) :: ellpi_v
END FUNCTION ellpi_v

END INTERFACE
INTERFACE

SUBROUTINE elmhes(a)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
END SUBROUTINE elmhes

END INTERFACE
INTERFACE erf

FUNCTION erf_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erf_s
END FUNCTION erf_s

FUNCTION erf_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erf_v
END FUNCTION erf_v

END INTERFACE
INTERFACE erfc

FUNCTION erfc_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfc_s
END FUNCTION erfc_s

FUNCTION erfc_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfc_v
END FUNCTION erfc_v

END INTERFACE
INTERFACE erfcc

FUNCTION erfcc_s(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfcc_s
END FUNCTION erfcc_s

FUNCTION erfcc_v(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfcc_v
END FUNCTION erfcc_v

END INTERFACE
INTERFACE

Appendix C2. Alphabetical Listing of Explicit Interfaces 1397

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE eulsum(sum,term,jterm)
USE nrtype
REAL(SP), INTENT(INOUT) :: sum
REAL(SP), INTENT(IN) :: term
INTEGER(I4B), INTENT(IN) :: jterm
END SUBROUTINE eulsum

END INTERFACE
INTERFACE

FUNCTION evlmem(fdt,d,xms)
USE nrtype
REAL(SP), INTENT(IN) :: fdt,xms
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP) :: evlmem
END FUNCTION evlmem

END INTERFACE
INTERFACE expdev

SUBROUTINE expdev_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE expdev_s

SUBROUTINE expdev_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE expdev_v

END INTERFACE
INTERFACE

FUNCTION expint(n,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: expint
END FUNCTION expint

END INTERFACE
INTERFACE factln

FUNCTION factln_s(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: factln_s
END FUNCTION factln_s

FUNCTION factln_v(n)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factln_v
END FUNCTION factln_v

END INTERFACE
INTERFACE factrl

FUNCTION factrl_s(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: factrl_s
END FUNCTION factrl_s

FUNCTION factrl_v(n)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factrl_v
END FUNCTION factrl_v

END INTERFACE
INTERFACE

SUBROUTINE fasper(x,y,ofac,hifac,px,py,jmax,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(IN) :: ofac,hifac
INTEGER(I4B), INTENT(OUT) :: jmax

1398 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), INTENT(OUT) :: prob
REAL(SP), DIMENSION(:), POINTER :: px,py
END SUBROUTINE fasper

END INTERFACE
INTERFACE

SUBROUTINE fdjac(x,fvec,df)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: fvec
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: df
END SUBROUTINE fdjac

END INTERFACE
INTERFACE

SUBROUTINE fgauss(x,a,y,dyda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE fgauss

END INTERFACE
INTERFACE

SUBROUTINE fit(x,y,a,b,siga,sigb,chi2,q,sig)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(IN) :: sig
END SUBROUTINE fit

END INTERFACE
INTERFACE

SUBROUTINE fitexy(x,y,sigx,sigy,a,b,siga,sigb,chi2,q)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sigx,sigy
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
END SUBROUTINE fitexy

END INTERFACE
INTERFACE

SUBROUTINE fixrts(d)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
END SUBROUTINE fixrts

END INTERFACE
INTERFACE

FUNCTION fleg(x,n)
USE nrtype
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: fleg
END FUNCTION fleg

END INTERFACE
INTERFACE

SUBROUTINE flmoon(n,nph,jd,frac)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n,nph
INTEGER(I4B), INTENT(OUT) :: jd
REAL(SP), INTENT(OUT) :: frac
END SUBROUTINE flmoon

END INTERFACE
INTERFACE four1

SUBROUTINE four1_dp(data,isign)
USE nrtype
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_dp

Appendix C2. Alphabetical Listing of Explicit Interfaces 1399

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE four1_sp(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_sp

END INTERFACE
INTERFACE

SUBROUTINE four1_alt(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_alt

END INTERFACE
INTERFACE

SUBROUTINE four1_gather(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four1_gather

END INTERFACE
INTERFACE

SUBROUTINE four2(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B),INTENT(IN) :: isign
END SUBROUTINE four2

END INTERFACE
INTERFACE

SUBROUTINE four2_alt(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four2_alt

END INTERFACE
INTERFACE

SUBROUTINE four3(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B),INTENT(IN) :: isign
END SUBROUTINE four3

END INTERFACE
INTERFACE

SUBROUTINE four3_alt(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE four3_alt

END INTERFACE
INTERFACE

SUBROUTINE fourcol(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourcol

END INTERFACE
INTERFACE

SUBROUTINE fourcol_3d(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourcol_3d

END INTERFACE
INTERFACE

SUBROUTINE fourn_gather(data,nn,isign)

1400 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nn
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourn_gather

END INTERFACE
INTERFACE fourrow

SUBROUTINE fourrow_dp(data,isign)
USE nrtype
COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourrow_dp

SUBROUTINE fourrow_sp(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourrow_sp

END INTERFACE
INTERFACE

SUBROUTINE fourrow_3d(data,isign)
USE nrtype
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE fourrow_3d

END INTERFACE
INTERFACE

FUNCTION fpoly(x,n)
USE nrtype
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: fpoly
END FUNCTION fpoly

END INTERFACE
INTERFACE

SUBROUTINE fred2(a,b,t,f,w,g,ak)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: t,f,w
INTERFACE

FUNCTION g(t)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g
END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak

END INTERFACE
END SUBROUTINE fred2

END INTERFACE
INTERFACE

FUNCTION fredin(x,a,b,t,f,w,g,ak)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: x,t,f,w
REAL(SP), DIMENSION(size(x)) :: fredin
INTERFACE

FUNCTION g(t)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g

Appendix C2. Alphabetical Listing of Explicit Interfaces 1401

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak

END INTERFACE
END FUNCTION fredin

END INTERFACE
INTERFACE

SUBROUTINE frenel(x,s,c)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: s,c
END SUBROUTINE frenel

END INTERFACE
INTERFACE

SUBROUTINE frprmn(p,ftol,iter,fret)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
END SUBROUTINE frprmn

END INTERFACE
INTERFACE

SUBROUTINE ftest(data1,data2,f,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: f,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
END SUBROUTINE ftest

END INTERFACE
INTERFACE

FUNCTION gamdev(ia)
USE nrtype
INTEGER(I4B), INTENT(IN) :: ia
REAL(SP) :: gamdev
END FUNCTION gamdev

END INTERFACE
INTERFACE gammln

FUNCTION gammln_s(xx)
USE nrtype
REAL(SP), INTENT(IN) :: xx
REAL(SP) :: gammln_s
END FUNCTION gammln_s

FUNCTION gammln_v(xx)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: gammln_v
END FUNCTION gammln_v

END INTERFACE
INTERFACE gammp

FUNCTION gammp_s(a,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammp_s
END FUNCTION gammp_s

FUNCTION gammp_v(a,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(a)) :: gammp_v
END FUNCTION gammp_v

END INTERFACE

1402 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTERFACE gammq
FUNCTION gammq_s(a,x)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammq_s
END FUNCTION gammq_s

FUNCTION gammq_v(a,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(a)) :: gammq_v
END FUNCTION gammq_v

END INTERFACE
INTERFACE gasdev

SUBROUTINE gasdev_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE gasdev_s

SUBROUTINE gasdev_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE gasdev_v

END INTERFACE
INTERFACE

SUBROUTINE gaucof(a,b,amu0,x,w)
USE nrtype
REAL(SP), INTENT(IN) :: amu0
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gaucof

END INTERFACE
INTERFACE

SUBROUTINE gauher(x,w)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gauher

END INTERFACE
INTERFACE

SUBROUTINE gaujac(x,w,alf,bet)
USE nrtype
REAL(SP), INTENT(IN) :: alf,bet
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gaujac

END INTERFACE
INTERFACE

SUBROUTINE gaulag(x,w,alf)
USE nrtype
REAL(SP), INTENT(IN) :: alf
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gaulag

END INTERFACE
INTERFACE

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
END SUBROUTINE gauleg

END INTERFACE
INTERFACE

SUBROUTINE gaussj(a,b)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a,b
END SUBROUTINE gaussj

END INTERFACE

Appendix C2. Alphabetical Listing of Explicit Interfaces 1403

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTERFACE gcf
FUNCTION gcf_s(a,x,gln)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gcf_s
END FUNCTION gcf_s

FUNCTION gcf_v(a,x,gln)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gcf_v
END FUNCTION gcf_v

END INTERFACE
INTERFACE

FUNCTION golden(ax,bx,cx,func,tol,xmin)
USE nrtype
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: golden
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION golden

END INTERFACE
INTERFACE gser

FUNCTION gser_s(a,x,gln)
USE nrtype
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gser_s
END FUNCTION gser_s

FUNCTION gser_v(a,x,gln)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gser_v
END FUNCTION gser_v

END INTERFACE
INTERFACE

SUBROUTINE hqr(a,wr,wi)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: wr,wi
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
END SUBROUTINE hqr

END INTERFACE
INTERFACE

SUBROUTINE hunt(xx,x,jlo)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: jlo
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
END SUBROUTINE hunt

END INTERFACE
INTERFACE

SUBROUTINE hypdrv(s,ry,rdyds)
USE nrtype
REAL(SP), INTENT(IN) :: s
REAL(SP), DIMENSION(:), INTENT(IN) :: ry

1404 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), DIMENSION(:), INTENT(OUT) :: rdyds
END SUBROUTINE hypdrv

END INTERFACE
INTERFACE

FUNCTION hypgeo(a,b,c,z)
USE nrtype
COMPLEX(SPC), INTENT(IN) :: a,b,c,z
COMPLEX(SPC) :: hypgeo
END FUNCTION hypgeo

END INTERFACE
INTERFACE

SUBROUTINE hypser(a,b,c,z,series,deriv)
USE nrtype
COMPLEX(SPC), INTENT(IN) :: a,b,c,z
COMPLEX(SPC), INTENT(OUT) :: series,deriv
END SUBROUTINE hypser

END INTERFACE
INTERFACE

FUNCTION icrc(crc,buf,jinit,jrev)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(IN) :: buf
INTEGER(I2B), INTENT(IN) :: crc,jinit
INTEGER(I4B), INTENT(IN) :: jrev
INTEGER(I2B) :: icrc
END FUNCTION icrc

END INTERFACE
INTERFACE

FUNCTION igray(n,is)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n,is
INTEGER(I4B) :: igray
END FUNCTION igray

END INTERFACE
INTERFACE

RECURSIVE SUBROUTINE index_bypack(arr,index,partial)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: index
INTEGER, OPTIONAL, INTENT(IN) :: partial
END SUBROUTINE index_bypack

END INTERFACE
INTERFACE indexx

SUBROUTINE indexx_sp(arr,index)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: index
END SUBROUTINE indexx_sp
SUBROUTINE indexx_i4b(iarr,index)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iarr
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: index
END SUBROUTINE indexx_i4b

END INTERFACE
INTERFACE

FUNCTION interp(uc)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: uc
REAL(DP), DIMENSION(2*size(uc,1)-1,2*size(uc,1)-1) :: interp
END FUNCTION interp

END INTERFACE
INTERFACE

FUNCTION rank(indx)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx

Appendix C2. Alphabetical Listing of Explicit Interfaces 1405

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), DIMENSION(size(indx)) :: rank
END FUNCTION rank

END INTERFACE
INTERFACE

FUNCTION irbit1(iseed)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit1
END FUNCTION irbit1

END INTERFACE
INTERFACE

FUNCTION irbit2(iseed)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit2
END FUNCTION irbit2

END INTERFACE
INTERFACE

SUBROUTINE jacobi(a,d,v,nrot)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: nrot
REAL(SP), DIMENSION(:), INTENT(OUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v
END SUBROUTINE jacobi

END INTERFACE
INTERFACE

SUBROUTINE jacobn(x,y,dfdx,dfdy)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy
END SUBROUTINE jacobn

END INTERFACE
INTERFACE

FUNCTION julday(mm,id,iyyy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: mm,id,iyyy
INTEGER(I4B) :: julday
END FUNCTION julday

END INTERFACE
INTERFACE

SUBROUTINE kendl1(data1,data2,tau,z,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: tau,z,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
END SUBROUTINE kendl1

END INTERFACE
INTERFACE

SUBROUTINE kendl2(tab,tau,z,prob)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: tab
REAL(SP), INTENT(OUT) :: tau,z,prob
END SUBROUTINE kendl2

END INTERFACE
INTERFACE

FUNCTION kermom(y,m)
USE nrtype
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom
END FUNCTION kermom

END INTERFACE

1406 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTERFACE
SUBROUTINE ks2d1s(x1,y1,quadvl,d1,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1
REAL(SP), INTENT(OUT) :: d1,prob
INTERFACE

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadvl

END INTERFACE
END SUBROUTINE ks2d1s

END INTERFACE
INTERFACE

SUBROUTINE ks2d2s(x1,y1,x2,y2,d,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1,x2,y2
REAL(SP), INTENT(OUT) :: d,prob
END SUBROUTINE ks2d2s

END INTERFACE
INTERFACE

SUBROUTINE ksone(data,func,d,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE ksone

END INTERFACE
INTERFACE

SUBROUTINE kstwo(data1,data2,d,prob)
USE nrtype
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
END SUBROUTINE kstwo

END INTERFACE
INTERFACE

SUBROUTINE laguer(a,x,its)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: its
COMPLEX(SPC), INTENT(INOUT) :: x
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
END SUBROUTINE laguer

END INTERFACE
INTERFACE

SUBROUTINE lfit(x,y,sig,a,maska,covar,chisq,funcs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: covar
REAL(SP), INTENT(OUT) :: chisq
INTERFACE

SUBROUTINE funcs(x,arr)
USE nrtype
REAL(SP),INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: arr
END SUBROUTINE funcs

Appendix C2. Alphabetical Listing of Explicit Interfaces 1407

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END INTERFACE
END SUBROUTINE lfit

END INTERFACE
INTERFACE

SUBROUTINE linbcg(b,x,itol,tol,itmax,iter,err)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: b
REAL(DP), DIMENSION(:), INTENT(INOUT) :: x
INTEGER(I4B), INTENT(IN) :: itol,itmax
REAL(DP), INTENT(IN) :: tol
INTEGER(I4B), INTENT(OUT) :: iter
REAL(DP), INTENT(OUT) :: err
END SUBROUTINE linbcg

END INTERFACE
INTERFACE

SUBROUTINE linmin(p,xi,fret)
USE nrtype
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET, INTENT(INOUT) :: p,xi
END SUBROUTINE linmin

END INTERFACE
INTERFACE

SUBROUTINE lnsrch(xold,fold,g,p,x,f,stpmax,check,func)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xold,g
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), INTENT(IN) :: fold,stpmax
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
REAL(SP), INTENT(OUT) :: f
LOGICAL(LGT), INTENT(OUT) :: check
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func

END INTERFACE
END SUBROUTINE lnsrch

END INTERFACE
INTERFACE

FUNCTION locate(xx,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), INTENT(IN) :: x
INTEGER(I4B) :: locate
END FUNCTION locate

END INTERFACE
INTERFACE

FUNCTION lop(u)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: lop
END FUNCTION lop

END INTERFACE
INTERFACE

SUBROUTINE lubksb(a,indx,b)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE lubksb

END INTERFACE
INTERFACE

SUBROUTINE ludcmp(a,indx,d)

1408 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d
END SUBROUTINE ludcmp

END INTERFACE
INTERFACE

SUBROUTINE machar(ibeta,it,irnd,ngrd,machep,negep,iexp,minexp,&
maxexp,eps,epsneg,xmin,xmax)

USE nrtype
INTEGER(I4B), INTENT(OUT) :: ibeta,iexp,irnd,it,machep,maxexp,&

minexp,negep,ngrd
REAL(SP), INTENT(OUT) :: eps,epsneg,xmax,xmin
END SUBROUTINE machar

END INTERFACE
INTERFACE

SUBROUTINE medfit(x,y,a,b,abdev)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,abdev
END SUBROUTINE medfit

END INTERFACE
INTERFACE

SUBROUTINE memcof(data,xms,d)
USE nrtype
REAL(SP), INTENT(OUT) :: xms
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), DIMENSION(:), INTENT(OUT) :: d
END SUBROUTINE memcof

END INTERFACE
INTERFACE

SUBROUTINE mgfas(u,maxcyc)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: maxcyc
END SUBROUTINE mgfas

END INTERFACE
INTERFACE

SUBROUTINE mglin(u,ncycle)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: ncycle
END SUBROUTINE mglin

END INTERFACE
INTERFACE

SUBROUTINE midexp(funk,aa,bb,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE midexp

END INTERFACE
INTERFACE

SUBROUTINE midinf(funk,aa,bb,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s

Appendix C2. Alphabetical Listing of Explicit Interfaces 1409

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE midinf

END INTERFACE
INTERFACE

SUBROUTINE midpnt(func,a,b,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE midpnt

END INTERFACE
INTERFACE

SUBROUTINE midsql(funk,aa,bb,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE midsql

END INTERFACE
INTERFACE

SUBROUTINE midsqu(funk,aa,bb,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE midsqu

END INTERFACE
INTERFACE

RECURSIVE SUBROUTINE miser(func,regn,ndim,npts,dith,ave,var)
USE nrtype
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func

1410 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END INTERFACE
REAL(SP), DIMENSION(:), INTENT(IN) :: regn
INTEGER(I4B), INTENT(IN) :: ndim,npts
REAL(SP), INTENT(IN) :: dith
REAL(SP), INTENT(OUT) :: ave,var
END SUBROUTINE miser

END INTERFACE
INTERFACE

SUBROUTINE mmid(y,dydx,xs,htot,nstep,yout,derivs)
USE nrtype
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE mmid

END INTERFACE
INTERFACE

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)
USE nrtype
REAL(SP), INTENT(INOUT) :: ax,bx
REAL(SP), INTENT(OUT) :: cx,fa,fb,fc
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE mnbrak

END INTERFACE
INTERFACE

SUBROUTINE mnewt(ntrial,x,tolx,tolf,usrfun)
USE nrtype
INTEGER(I4B), INTENT(IN) :: ntrial
REAL(SP), INTENT(IN) :: tolx,tolf
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
INTERFACE

SUBROUTINE usrfun(x,fvec,fjac)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: fvec
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: fjac
END SUBROUTINE usrfun

END INTERFACE
END SUBROUTINE mnewt

END INTERFACE
INTERFACE

SUBROUTINE moment(data,ave,adev,sdev,var,skew,curt)
USE nrtype
REAL(SP), INTENT(OUT) :: ave,adev,sdev,var,skew,curt
REAL(SP), DIMENSION(:), INTENT(IN) :: data
END SUBROUTINE moment

END INTERFACE
INTERFACE

SUBROUTINE mp2dfr(a,s,n,m)
USE nrtype

Appendix C2. Alphabetical Listing of Explicit Interfaces 1411

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(OUT) :: m
CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: a
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: s
END SUBROUTINE mp2dfr

END INTERFACE
INTERFACE

SUBROUTINE mpdiv(q,r,u,v,n,m)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: q,r
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
INTEGER(I4B), INTENT(IN) :: n,m
END SUBROUTINE mpdiv

END INTERFACE
INTERFACE

SUBROUTINE mpinv(u,v,n,m)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n,m
END SUBROUTINE mpinv

END INTERFACE
INTERFACE

SUBROUTINE mpmul(w,u,v,n,m)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
INTEGER(I4B), INTENT(IN) :: n,m
END SUBROUTINE mpmul

END INTERFACE
INTERFACE

SUBROUTINE mppi(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
END SUBROUTINE mppi

END INTERFACE
INTERFACE

SUBROUTINE mprove(a,alud,indx,b,x)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,alud
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(IN) :: b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
END SUBROUTINE mprove

END INTERFACE
INTERFACE

SUBROUTINE mpsqrt(w,u,v,n,m)
USE nrtype
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w,u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n,m
END SUBROUTINE mpsqrt

END INTERFACE
INTERFACE

SUBROUTINE mrqcof(x,y,sig,a,maska,alpha,beta,chisq,funcs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,a,sig
REAL(SP), DIMENSION(:), INTENT(OUT) :: beta
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: alpha
REAL(SP), INTENT(OUT) :: chisq
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
INTERFACE

SUBROUTINE funcs(x,a,yfit,dyda)
USE nrtype

1412 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: yfit
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE funcs

END INTERFACE
END SUBROUTINE mrqcof

END INTERFACE
INTERFACE

SUBROUTINE mrqmin(x,y,sig,a,maska,covar,alpha,chisq,funcs,alamda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: covar,alpha
REAL(SP), INTENT(OUT) :: chisq
REAL(SP), INTENT(INOUT) :: alamda
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
INTERFACE

SUBROUTINE funcs(x,a,yfit,dyda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: yfit
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE funcs

END INTERFACE
END SUBROUTINE mrqmin

END INTERFACE
INTERFACE

SUBROUTINE newt(x,check)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
LOGICAL(LGT), INTENT(OUT) :: check
END SUBROUTINE newt

END INTERFACE
INTERFACE

SUBROUTINE odeint(ystart,x1,x2,eps,h1,hmin,derivs,rkqs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: ystart
REAL(SP), INTENT(IN) :: x1,x2,eps,h1,hmin
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE rkqs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext

INTERFACE
SUBROUTINE derivs(x,y,dydx)

USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rkqs

END INTERFACE
END SUBROUTINE odeint

Appendix C2. Alphabetical Listing of Explicit Interfaces 1413

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END INTERFACE
INTERFACE

SUBROUTINE orthog(anu,alpha,beta,a,b)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: anu,alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT) :: a,b
END SUBROUTINE orthog

END INTERFACE
INTERFACE

SUBROUTINE pade(cof,resid)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(INOUT) :: cof
REAL(SP), INTENT(OUT) :: resid
END SUBROUTINE pade

END INTERFACE
INTERFACE

FUNCTION pccheb(d)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(size(d)) :: pccheb
END FUNCTION pccheb

END INTERFACE
INTERFACE

SUBROUTINE pcshft(a,b,d)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
END SUBROUTINE pcshft

END INTERFACE
INTERFACE

SUBROUTINE pearsn(x,y,r,prob,z)
USE nrtype
REAL(SP), INTENT(OUT) :: r,prob,z
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
END SUBROUTINE pearsn

END INTERFACE
INTERFACE

SUBROUTINE period(x,y,ofac,hifac,px,py,jmax,prob)
USE nrtype
INTEGER(I4B), INTENT(OUT) :: jmax
REAL(SP), INTENT(IN) :: ofac,hifac
REAL(SP), INTENT(OUT) :: prob
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), POINTER :: px,py
END SUBROUTINE period

END INTERFACE
INTERFACE plgndr

FUNCTION plgndr_s(l,m,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: l,m
REAL(SP), INTENT(IN) :: x
REAL(SP) :: plgndr_s
END FUNCTION plgndr_s

FUNCTION plgndr_v(l,m,x)
USE nrtype
INTEGER(I4B), INTENT(IN) :: l,m
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: plgndr_v
END FUNCTION plgndr_v

END INTERFACE
INTERFACE

FUNCTION poidev(xm)
USE nrtype

1414 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), INTENT(IN) :: xm
REAL(SP) :: poidev
END FUNCTION poidev

END INTERFACE
INTERFACE

FUNCTION polcoe(x,y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: polcoe
END FUNCTION polcoe

END INTERFACE
INTERFACE

FUNCTION polcof(xa,ya)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), DIMENSION(size(xa)) :: polcof
END FUNCTION polcof

END INTERFACE
INTERFACE

SUBROUTINE poldiv(u,v,q,r)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(OUT) :: q,r
END SUBROUTINE poldiv

END INTERFACE
INTERFACE

SUBROUTINE polin2(x1a,x2a,ya,x1,x2,y,dy)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: y,dy
END SUBROUTINE polin2

END INTERFACE
INTERFACE

SUBROUTINE polint(xa,ya,x,y,dy)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy
END SUBROUTINE polint

END INTERFACE
INTERFACE

SUBROUTINE powell(p,xi,ftol,iter,fret)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: xi
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
END SUBROUTINE powell

END INTERFACE
INTERFACE

FUNCTION predic(data,d,nfut)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data,d
INTEGER(I4B), INTENT(IN) :: nfut
REAL(SP), DIMENSION(nfut) :: predic
END FUNCTION predic

END INTERFACE
INTERFACE

FUNCTION probks(alam)
USE nrtype
REAL(SP), INTENT(IN) :: alam

Appendix C2. Alphabetical Listing of Explicit Interfaces 1415

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP) :: probks
END FUNCTION probks

END INTERFACE
INTERFACE psdes

SUBROUTINE psdes_s(lword,rword)
USE nrtype
INTEGER(I4B), INTENT(INOUT) :: lword,rword
END SUBROUTINE psdes_s

SUBROUTINE psdes_v(lword,rword)
USE nrtype
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
END SUBROUTINE psdes_v

END INTERFACE
INTERFACE

SUBROUTINE pwt(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE pwt

END INTERFACE
INTERFACE

SUBROUTINE pwtset(n)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
END SUBROUTINE pwtset

END INTERFACE
INTERFACE pythag

FUNCTION pythag_dp(a,b)
USE nrtype
REAL(DP), INTENT(IN) :: a,b
REAL(DP) :: pythag_dp
END FUNCTION pythag_dp

FUNCTION pythag_sp(a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: pythag_sp
END FUNCTION pythag_sp

END INTERFACE
INTERFACE

SUBROUTINE pzextr(iest,xest,yest,yz,dy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: iest
REAL(SP), INTENT(IN) :: xest
REAL(SP), DIMENSION(:), INTENT(IN) :: yest
REAL(SP), DIMENSION(:), INTENT(OUT) :: yz,dy
END SUBROUTINE pzextr

END INTERFACE
INTERFACE

SUBROUTINE qrdcmp(a,c,d,sing)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: c,d
LOGICAL(LGT), INTENT(OUT) :: sing
END SUBROUTINE qrdcmp

END INTERFACE
INTERFACE

FUNCTION qromb(func,a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromb
INTERFACE

FUNCTION func(x)
USE nrtype

1416 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END FUNCTION qromb

END INTERFACE
INTERFACE

FUNCTION qromo(func,a,b,choose)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromo
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTERFACE

SUBROUTINE choose(funk,aa,bb,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE choose

END INTERFACE
END FUNCTION qromo

END INTERFACE
INTERFACE

SUBROUTINE qroot(p,b,c,eps)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: eps
END SUBROUTINE qroot

END INTERFACE
INTERFACE

SUBROUTINE qrsolv(a,c,d,b)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: c,d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE qrsolv

END INTERFACE
INTERFACE

SUBROUTINE qrupdt(r,qt,u,v)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: r,qt
REAL(SP), DIMENSION(:), INTENT(INOUT) :: u
REAL(SP), DIMENSION(:), INTENT(IN) :: v
END SUBROUTINE qrupdt

END INTERFACE
INTERFACE

FUNCTION qsimp(func,a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qsimp

Appendix C2. Alphabetical Listing of Explicit Interfaces 1417

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTERFACE
FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END FUNCTION qsimp

END INTERFACE
INTERFACE

FUNCTION qtrap(func,a,b)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qtrap
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END FUNCTION qtrap

END INTERFACE
INTERFACE

SUBROUTINE quadct(x,y,xx,yy,fa,fb,fc,fd)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: xx,yy
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadct

END INTERFACE
INTERFACE

SUBROUTINE quadmx(a)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: a
END SUBROUTINE quadmx

END INTERFACE
INTERFACE

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadvl

END INTERFACE
INTERFACE

FUNCTION ran(idum)
INTEGER(selected_int_kind(9)), INTENT(INOUT) :: idum
REAL :: ran
END FUNCTION ran

END INTERFACE
INTERFACE ran0

SUBROUTINE ran0_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran0_s

SUBROUTINE ran0_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE ran0_v

END INTERFACE
INTERFACE ran1

SUBROUTINE ran1_s(harvest)
USE nrtype

1418 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran1_s

SUBROUTINE ran1_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE ran1_v

END INTERFACE
INTERFACE ran2

SUBROUTINE ran2_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran2_s

SUBROUTINE ran2_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE ran2_v

END INTERFACE
INTERFACE ran3

SUBROUTINE ran3_s(harvest)
USE nrtype
REAL(SP), INTENT(OUT) :: harvest
END SUBROUTINE ran3_s

SUBROUTINE ran3_v(harvest)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
END SUBROUTINE ran3_v

END INTERFACE
INTERFACE

SUBROUTINE ratint(xa,ya,x,y,dy)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy
END SUBROUTINE ratint

END INTERFACE
INTERFACE

SUBROUTINE ratlsq(func,a,b,mm,kk,cof,dev)
USE nrtype
REAL(DP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(:), INTENT(OUT) :: cof
REAL(DP), INTENT(OUT) :: dev
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE ratlsq

END INTERFACE
INTERFACE ratval

FUNCTION ratval_s(x,cof,mm,kk)
USE nrtype
REAL(DP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP) :: ratval_s
END FUNCTION ratval_s

FUNCTION ratval_v(x,cof,mm,kk)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x

Appendix C2. Alphabetical Listing of Explicit Interfaces 1419

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP), DIMENSION(size(x)) :: ratval_v
END FUNCTION ratval_v

END INTERFACE
INTERFACE rc

FUNCTION rc_s(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: rc_s
END FUNCTION rc_s

FUNCTION rc_v(x,y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: rc_v
END FUNCTION rc_v

END INTERFACE
INTERFACE rd

FUNCTION rd_s(x,y,z)
USE nrtype
REAL(SP), INTENT(IN) :: x,y,z
REAL(SP) :: rd_s
END FUNCTION rd_s

FUNCTION rd_v(x,y,z)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z
REAL(SP), DIMENSION(size(x)) :: rd_v
END FUNCTION rd_v

END INTERFACE
INTERFACE realft

SUBROUTINE realft_dp(data,isign,zdata)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(DPC), DIMENSION(:), OPTIONAL, TARGET :: zdata
END SUBROUTINE realft_dp

SUBROUTINE realft_sp(data,isign,zdata)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(SPC), DIMENSION(:), OPTIONAL, TARGET :: zdata
END SUBROUTINE realft_sp

END INTERFACE
INTERFACE

RECURSIVE FUNCTION recur1(a,b) RESULT(u)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a)) :: u
END FUNCTION recur1

END INTERFACE
INTERFACE

FUNCTION recur2(a,b,c)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c
REAL(SP), DIMENSION(size(a)) :: recur2
END FUNCTION recur2

END INTERFACE
INTERFACE

SUBROUTINE relax(u,rhs)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs
END SUBROUTINE relax

1420 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END INTERFACE
INTERFACE

SUBROUTINE relax2(u,rhs)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs
END SUBROUTINE relax2

END INTERFACE
INTERFACE
FUNCTION resid(u,rhs)

USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u,rhs
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: resid
END FUNCTION resid

END INTERFACE
INTERFACE rf

FUNCTION rf_s(x,y,z)
USE nrtype
REAL(SP), INTENT(IN) :: x,y,z
REAL(SP) :: rf_s
END FUNCTION rf_s

FUNCTION rf_v(x,y,z)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z
REAL(SP), DIMENSION(size(x)) :: rf_v
END FUNCTION rf_v

END INTERFACE
INTERFACE rj

FUNCTION rj_s(x,y,z,p)
USE nrtype
REAL(SP), INTENT(IN) :: x,y,z,p
REAL(SP) :: rj_s
END FUNCTION rj_s

FUNCTION rj_v(x,y,z,p)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z,p
REAL(SP), DIMENSION(size(x)) :: rj_v
END FUNCTION rj_v

END INTERFACE
INTERFACE

SUBROUTINE rk4(y,dydx,x,h,yout,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), INTENT(IN) :: x,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rk4

END INTERFACE
INTERFACE

SUBROUTINE rkck(y,dydx,x,h,yout,yerr,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), INTENT(IN) :: x,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout,yerr
INTERFACE

SUBROUTINE derivs(x,y,dydx)

Appendix C2. Alphabetical Listing of Explicit Interfaces 1421

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rkck

END INTERFACE
INTERFACE

SUBROUTINE rkdumb(vstart,x1,x2,nstep,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: vstart
REAL(SP), INTENT(IN) :: x1,x2
INTEGER(I4B), INTENT(IN) :: nstep
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rkdumb

END INTERFACE
INTERFACE

SUBROUTINE rkqs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rkqs

END INTERFACE
INTERFACE

SUBROUTINE rlft2(data,spec,speq,isign)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,:), INTENT(OUT) :: spec
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: speq
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE rlft2

END INTERFACE
INTERFACE

SUBROUTINE rlft3(data,spec,speq,isign)
USE nrtype
REAL(SP), DIMENSION(:,:,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(OUT) :: spec
COMPLEX(SPC), DIMENSION(:,:), INTENT(OUT) :: speq
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE rlft3

END INTERFACE
INTERFACE

SUBROUTINE rotate(r,qt,i,a,b)
USE nrtype
REAL(SP), DIMENSION(:,:), TARGET, INTENT(INOUT) :: r,qt

1422 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), INTENT(IN) :: i
REAL(SP), INTENT(IN) :: a,b
END SUBROUTINE rotate

END INTERFACE
INTERFACE

SUBROUTINE rsolv(a,d,b)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b
END SUBROUTINE rsolv

END INTERFACE
INTERFACE

FUNCTION rstrct(uf)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: uf
REAL(DP), DIMENSION((size(uf,1)+1)/2,(size(uf,1)+1)/2) :: rstrct
END FUNCTION rstrct

END INTERFACE
INTERFACE

FUNCTION rtbis(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtbis
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION rtbis

END INTERFACE
INTERFACE

FUNCTION rtflsp(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtflsp
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION rtflsp

END INTERFACE
INTERFACE

FUNCTION rtnewt(funcd,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtnewt
INTERFACE

SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd

END INTERFACE
END FUNCTION rtnewt

END INTERFACE
INTERFACE

FUNCTION rtsafe(funcd,x1,x2,xacc)
USE nrtype

Appendix C2. Alphabetical Listing of Explicit Interfaces 1423

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsafe
INTERFACE

SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd

END INTERFACE
END FUNCTION rtsafe

END INTERFACE
INTERFACE

FUNCTION rtsec(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsec
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION rtsec

END INTERFACE
INTERFACE

SUBROUTINE rzextr(iest,xest,yest,yz,dy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: iest
REAL(SP), INTENT(IN) :: xest
REAL(SP), DIMENSION(:), INTENT(IN) :: yest
REAL(SP), DIMENSION(:), INTENT(OUT) :: yz,dy
END SUBROUTINE rzextr

END INTERFACE
INTERFACE

FUNCTION savgol(nl,nrr,ld,m)
USE nrtype
INTEGER(I4B), INTENT(IN) :: nl,nrr,ld,m
REAL(SP), DIMENSION(nl+nrr+1) :: savgol
END FUNCTION savgol

END INTERFACE
INTERFACE

SUBROUTINE scrsho(func)
USE nrtype
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE scrsho

END INTERFACE
INTERFACE

FUNCTION select(k,arr)
USE nrtype
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
REAL(SP) :: select
END FUNCTION select

END INTERFACE
INTERFACE

FUNCTION select_bypack(k,arr)
USE nrtype

1424 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
REAL(SP) :: select_bypack
END FUNCTION select_bypack

END INTERFACE
INTERFACE

SUBROUTINE select_heap(arr,heap)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), DIMENSION(:), INTENT(OUT) :: heap
END SUBROUTINE select_heap

END INTERFACE
INTERFACE

FUNCTION select_inplace(k,arr)
USE nrtype
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP) :: select_inplace
END FUNCTION select_inplace

END INTERFACE
INTERFACE

SUBROUTINE simplx(a,m1,m2,m3,icase,izrov,iposv)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2,m3
INTEGER(I4B), INTENT(OUT) :: icase
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: izrov,iposv
END SUBROUTINE simplx

END INTERFACE
INTERFACE

SUBROUTINE simpr(y,dydx,dfdx,dfdy,xs,htot,nstep,yout,derivs)
USE nrtype
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx,dfdx
REAL(SP), DIMENSION(:,:), INTENT(IN) :: dfdy
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE simpr

END INTERFACE
INTERFACE

SUBROUTINE sinft(y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
END SUBROUTINE sinft

END INTERFACE
INTERFACE

SUBROUTINE slvsm2(u,rhs)
USE nrtype
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs
END SUBROUTINE slvsm2

END INTERFACE
INTERFACE

SUBROUTINE slvsml(u,rhs)
USE nrtype
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u

Appendix C2. Alphabetical Listing of Explicit Interfaces 1425

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs
END SUBROUTINE slvsml

END INTERFACE
INTERFACE

SUBROUTINE sncndn(uu,emmc,sn,cn,dn)
USE nrtype
REAL(SP), INTENT(IN) :: uu,emmc
REAL(SP), INTENT(OUT) :: sn,cn,dn
END SUBROUTINE sncndn

END INTERFACE
INTERFACE

FUNCTION snrm(sx,itol)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: sx
INTEGER(I4B), INTENT(IN) :: itol
REAL(DP) :: snrm
END FUNCTION snrm

END INTERFACE
INTERFACE

SUBROUTINE sobseq(x,init)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), OPTIONAL, INTENT(IN) :: init
END SUBROUTINE sobseq

END INTERFACE
INTERFACE

SUBROUTINE solvde(itmax,conv,slowc,scalv,indexv,nb,y)
USE nrtype
INTEGER(I4B), INTENT(IN) :: itmax,nb
REAL(SP), INTENT(IN) :: conv,slowc
REAL(SP), DIMENSION(:), INTENT(IN) :: scalv
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indexv
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: y
END SUBROUTINE solvde

END INTERFACE
INTERFACE

SUBROUTINE sor(a,b,c,d,e,f,u,rjac)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: a,b,c,d,e,f
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), INTENT(IN) :: rjac
END SUBROUTINE sor

END INTERFACE
INTERFACE

SUBROUTINE sort(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort

END INTERFACE
INTERFACE

SUBROUTINE sort2(arr,slave)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr,slave
END SUBROUTINE sort2

END INTERFACE
INTERFACE

SUBROUTINE sort3(arr,slave1,slave2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr,slave1,slave2
END SUBROUTINE sort3

END INTERFACE
INTERFACE

SUBROUTINE sort_bypack(arr)
USE nrtype

1426 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_bypack

END INTERFACE
INTERFACE

SUBROUTINE sort_byreshape(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_byreshape

END INTERFACE
INTERFACE

SUBROUTINE sort_heap(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_heap

END INTERFACE
INTERFACE

SUBROUTINE sort_pick(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_pick

END INTERFACE
INTERFACE

SUBROUTINE sort_radix(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_radix

END INTERFACE
INTERFACE

SUBROUTINE sort_shell(arr)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
END SUBROUTINE sort_shell

END INTERFACE
INTERFACE

SUBROUTINE spctrm(p,k,ovrlap,unit,n_window)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(OUT) :: p
INTEGER(I4B), INTENT(IN) :: k
LOGICAL(LGT), INTENT(IN) :: ovrlap
INTEGER(I4B), OPTIONAL, INTENT(IN) :: n_window,unit
END SUBROUTINE spctrm

END INTERFACE
INTERFACE

SUBROUTINE spear(data1,data2,d,zd,probd,rs,probrs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: d,zd,probd,rs,probrs
END SUBROUTINE spear

END INTERFACE
INTERFACE sphbes

SUBROUTINE sphbes_s(n,x,sj,sy,sjp,syp)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: sj,sy,sjp,syp
END SUBROUTINE sphbes_s

SUBROUTINE sphbes_v(n,x,sj,sy,sjp,syp)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: sj,sy,sjp,syp
END SUBROUTINE sphbes_v

END INTERFACE

Appendix C2. Alphabetical Listing of Explicit Interfaces 1427

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTERFACE
SUBROUTINE splie2(x1a,x2a,ya,y2a)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: y2a
END SUBROUTINE splie2

END INTERFACE
INTERFACE

FUNCTION splin2(x1a,x2a,ya,y2a,x1,x2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya,y2a
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP) :: splin2
END FUNCTION splin2

END INTERFACE
INTERFACE

SUBROUTINE spline(x,y,yp1,ypn,y2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(IN) :: yp1,ypn
REAL(SP), DIMENSION(:), INTENT(OUT) :: y2
END SUBROUTINE spline

END INTERFACE
INTERFACE

FUNCTION splint(xa,ya,y2a,x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya,y2a
REAL(SP), INTENT(IN) :: x
REAL(SP) :: splint
END FUNCTION splint

END INTERFACE
INTERFACE sprsax

SUBROUTINE sprsax_dp(sa,x,b)
USE nrtype
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprsax_dp

SUBROUTINE sprsax_sp(sa,x,b)
USE nrtype
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprsax_sp

END INTERFACE
INTERFACE sprsdiag

SUBROUTINE sprsdiag_dp(sa,b)
USE nrtype
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION(:), INTENT(OUT) :: b
END SUBROUTINE sprsdiag_dp

SUBROUTINE sprsdiag_sp(sa,b)
USE nrtype
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION(:), INTENT(OUT) :: b
END SUBROUTINE sprsdiag_sp

END INTERFACE
INTERFACE sprsin

SUBROUTINE sprsin_sp(a,thresh,sa)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a

1428 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), INTENT(IN) :: thresh
TYPE(sprs2_sp), INTENT(OUT) :: sa
END SUBROUTINE sprsin_sp

SUBROUTINE sprsin_dp(a,thresh,sa)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: a
REAL(DP), INTENT(IN) :: thresh
TYPE(sprs2_dp), INTENT(OUT) :: sa
END SUBROUTINE sprsin_dp

END INTERFACE
INTERFACE

SUBROUTINE sprstp(sa)
USE nrtype
TYPE(sprs2_sp), INTENT(INOUT) :: sa
END SUBROUTINE sprstp

END INTERFACE
INTERFACE sprstx

SUBROUTINE sprstx_dp(sa,x,b)
USE nrtype
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprstx_dp

SUBROUTINE sprstx_sp(sa,x,b)
USE nrtype
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b
END SUBROUTINE sprstx_sp

END INTERFACE
INTERFACE

SUBROUTINE stifbs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE stifbs

END INTERFACE
INTERFACE

SUBROUTINE stiff(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

Appendix C2. Alphabetical Listing of Explicit Interfaces 1429

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END INTERFACE
END SUBROUTINE stiff

END INTERFACE
INTERFACE

SUBROUTINE stoerm(y,d2y,xs,htot,nstep,yout,derivs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: y,d2y
REAL(SP), INTENT(IN) :: xs,htot
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE stoerm

END INTERFACE
INTERFACE svbksb

SUBROUTINE svbksb_dp(u,w,v,b,x)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u,v
REAL(DP), DIMENSION(:), INTENT(IN) :: w,b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
END SUBROUTINE svbksb_dp

SUBROUTINE svbksb_sp(u,w,v,b,x)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(IN) :: w,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
END SUBROUTINE svbksb_sp

END INTERFACE
INTERFACE svdcmp

SUBROUTINE svdcmp_dp(a,w,v)
USE nrtype
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(DP), DIMENSION(:), INTENT(OUT) :: w
REAL(DP), DIMENSION(:,:), INTENT(OUT) :: v
END SUBROUTINE svdcmp_dp

SUBROUTINE svdcmp_sp(a,w,v)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v
END SUBROUTINE svdcmp_sp

END INTERFACE
INTERFACE

SUBROUTINE svdfit(x,y,sig,a,v,w,chisq,funcs)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(OUT) :: a,w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v
REAL(SP), INTENT(OUT) :: chisq
INTERFACE

FUNCTION funcs(x,n)
USE nrtype
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: funcs
END FUNCTION funcs

END INTERFACE

1430 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END SUBROUTINE svdfit
END INTERFACE
INTERFACE

SUBROUTINE svdvar(v,w,cvm)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(IN) :: v
REAL(SP), DIMENSION(:), INTENT(IN) :: w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: cvm
END SUBROUTINE svdvar

END INTERFACE
INTERFACE

FUNCTION toeplz(r,y)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: r,y
REAL(SP), DIMENSION(size(y)) :: toeplz
END FUNCTION toeplz

END INTERFACE
INTERFACE

SUBROUTINE tptest(data1,data2,t,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob
END SUBROUTINE tptest

END INTERFACE
INTERFACE

SUBROUTINE tqli(d,e,z)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d,e
REAL(SP), DIMENSION(:,:), OPTIONAL, INTENT(INOUT) :: z
END SUBROUTINE tqli

END INTERFACE
INTERFACE

SUBROUTINE trapzd(func,a,b,s,n)
USE nrtype
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE trapzd

END INTERFACE
INTERFACE

SUBROUTINE tred2(a,d,e,novectors)
USE nrtype
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: d,e
LOGICAL(LGT), OPTIONAL, INTENT(IN) :: novectors
END SUBROUTINE tred2

END INTERFACE
! On a purely serial machine, for greater efficiency, remove
! the generic name tridag from the following interface,
! and put it on the next one after that.

INTERFACE tridag
RECURSIVE SUBROUTINE tridag_par(a,b,c,r,u)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
REAL(SP), DIMENSION(:), INTENT(OUT) :: u
END SUBROUTINE tridag_par

END INTERFACE

Appendix C2. Alphabetical Listing of Explicit Interfaces 1431

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTERFACE
SUBROUTINE tridag_ser(a,b,c,r,u)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
REAL(SP), DIMENSION(:), INTENT(OUT) :: u
END SUBROUTINE tridag_ser

END INTERFACE
INTERFACE

SUBROUTINE ttest(data1,data2,t,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob
END SUBROUTINE ttest

END INTERFACE
INTERFACE

SUBROUTINE tutest(data1,data2,t,prob)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob
END SUBROUTINE tutest

END INTERFACE
INTERFACE

SUBROUTINE twofft(data1,data2,fft1,fft2)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: fft1,fft2
END SUBROUTINE twofft

END INTERFACE
INTERFACE

FUNCTION vander(x,q)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x,q
REAL(DP), DIMENSION(size(x)) :: vander
END FUNCTION vander

END INTERFACE
INTERFACE

SUBROUTINE vegas(region,func,init,ncall,itmx,nprn,tgral,sd,chi2a)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: region
INTEGER(I4B), INTENT(IN) :: init,ncall,itmx,nprn
REAL(SP), INTENT(OUT) :: tgral,sd,chi2a
INTERFACE

FUNCTION func(pt,wgt)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: pt
REAL(SP), INTENT(IN) :: wgt
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE vegas

END INTERFACE
INTERFACE

SUBROUTINE voltra(t0,h,t,f,g,ak)
USE nrtype
REAL(SP), INTENT(IN) :: t0,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: t
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: f
INTERFACE

FUNCTION g(t)
USE nrtype
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
END FUNCTION g

1432 Appendix C2. Alphabetical Listing of Explicit Interfaces

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION ak(t,s)
USE nrtype
REAL(SP), INTENT(IN) :: t,s
REAL(SP), DIMENSION(:,:), POINTER :: ak
END FUNCTION ak

END INTERFACE
END SUBROUTINE voltra

END INTERFACE
INTERFACE

SUBROUTINE wt1(a,isign,wtstep)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE

SUBROUTINE wtstep(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE wtstep

END INTERFACE
END SUBROUTINE wt1

END INTERFACE
INTERFACE

SUBROUTINE wtn(a,nn,isign,wtstep)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nn
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE

SUBROUTINE wtstep(a,isign)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE wtstep

END INTERFACE
END SUBROUTINE wtn

END INTERFACE
INTERFACE

FUNCTION wwghts(n,h,kermom)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: h
REAL(SP), DIMENSION(n) :: wwghts
INTERFACE

FUNCTION kermom(y,m)
USE nrtype
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom
END FUNCTION kermom

END INTERFACE
END FUNCTION wwghts

END INTERFACE
INTERFACE

SUBROUTINE zbrac(func,x1,x2,succes)
USE nrtype
REAL(SP), INTENT(INOUT) :: x1,x2
LOGICAL(LGT), INTENT(OUT) :: succes
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

Appendix C2. Alphabetical Listing of Explicit Interfaces 1433

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END INTERFACE
END SUBROUTINE zbrac

END INTERFACE
INTERFACE

SUBROUTINE zbrak(func,x1,x2,n,xb1,xb2,nb)
USE nrtype
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(OUT) :: nb
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), POINTER :: xb1,xb2
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END SUBROUTINE zbrak

END INTERFACE
INTERFACE

FUNCTION zbrent(func,x1,x2,tol)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,tol
REAL(SP) :: zbrent
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION zbrent

END INTERFACE
INTERFACE

SUBROUTINE zrhqr(a,rtr,rti)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: rtr,rti
END SUBROUTINE zrhqr

END INTERFACE
INTERFACE

FUNCTION zriddr(func,x1,x2,xacc)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: zriddr
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
END FUNCTION zriddr

END INTERFACE
INTERFACE

SUBROUTINE zroots(a,roots,polish)
USE nrtype
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: roots
LOGICAL(LGT), INTENT(IN) :: polish
END SUBROUTINE zroots

END INTERFACE
END MODULE nr

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

C3. Index of Programs and
Dependencies

The following table lists, in alphabetical order, all the routines in Volume 2
of Numerical Recipes. When a routine requires subsidiary routines, either from
this book or else user-supplied, the full dependency tree is shown: A routine
calls directly all routines to which it is connected by a solid line in the column
immediately to its right; it calls indirectly the connected routines in all columns to
its right. Typographical conventions: Routines from this book are in typewriter
font (e.g.,eulsum, gammln). The smaller, slanted font is used for the second and
subsequent occurrences of a routine in a single dependency tree. (When you are
getting routines from theNumerical Recipesmachine-readable media or hypertext
archives, you need specify names only in the larger, upright font.) User-supplied
routines are indicated by the use of text font and square brackets, e.g., [funcv].
Consult the text for individual specifications of these routines. The right-hand side
of the table lists chapter and page numbers for each program.

airy bessik B6 (p.1121)
bessjy beschb chebev

amebsa ran1 ran state B10 (p.1222)
[func]

amoeba [func] B10 (p.1208)

anneal ran1 ran state B10 (p.1219)

arcmak B20 (p.1349)

arcode arcmak B20 (p.1350)

avevar B14 (p.1270)

badluk julday B1 (p.1011)
flmoon

balanc B11 (p.1230)

banbks B2 (p.1021)

bandec B2 (p.1020)

banmul B2 (p.1019)

bcucof B3 (p.1049)

bcuint bcucof B3 (p.1050)

beschb chebev B6 (p.1118)

1434

Appendix C3. Index of Programs and Dependencies 1435

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

bessi bessi0 B6 (p.1114)

bessi0 B6 (p.1109)

bessi1 B6 (p.1111)

bessik beschb chebev B6 (p.1118)

bessj bessj0 B6 (p.1106)
bessj1

bessj0 B6 (p.1101)

bessj1 B6 (p.1103)

bessjy beschb chebev B6 (p.1115)

bessk bessk0 bessi0 B6 (p.1113)
bessk1 bessi1

bessk0 bessi0 B6 (p.1110)

bessk1 bessi1 B6 (p.1112)

bessy bessy1 bessj1 B6 (p.1105)
bessy0 bessj0

bessy0 bessj0 B6 (p.1102)

bessy1 bessj1 B6 (p.1104)

beta gammln B6 (p.1089)

betacf B6 (p.1099)

betai gammln B6 (p.1098)
betacf

bico factln gammln B6 (p.1087)

bnldev ran1 ran state B7 (p.1155)
gammln

brent [func] B10 (p.1204)

broydn fmin B9 (p.1199)
fdjac [funcv]
qrdcmp

qrupdt rotate

pythag

rsolv

lnsrch fmin [funcv]

bsstep mmid [derivs] B16 (p.1303)
pzextr

caldat B1 (p.1013)

chder B5 (p.1077)

chebev B5 (p.1076)

chebft [func] B5 (p.1076)

chebpc B5 (p.1078)

chint B5 (p.1078)

chixy B15 (p.1287)

1436 Appendix C3. Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

choldc B2 (p.1038)

cholsl B2 (p.1039)

chsone gammq gser B14 (p.1272)
gcf gammln

chstwo gammq gser B14 (p.1272)
gcf gammln

cisi B6 (p.1125)

cntab1 gammq gser B14 (p.1275)
gcf gammln

cntab2 B14 (p.1275)

convlv realft four1 fourrow B13 (p. 1253)

correl realft four1 fourrow B13 (p. 1254)

cosft1 realft four1 fourrow B12 (p. 1245)

cosft2 realft four1 fourrow B12 (p. 1246)

covsrt B15 (p.1289)

cyclic tridag B2 (p.1030)

daub4 B13 (p.1264)

dawson B6 (p.1127)

dbrent [func] B10 (p.1205)
[dfunc]

ddpoly B5 (p.1071)

decchk B20 (p.1345)

dfpmin [func] B10 (p.1215)
[dfunc]
lnsrch [func]

dfridr [func] B5 (p.1075)

dftcor B13 (p.1261)

dftint [func] B13 (p.1263)
realft four1 fourrow

polint

dftcor

difeq B17 (p.1320)

dlinmin mnbrak B10 (p.1212)
dbrent [func]

[dfunc]

eclass B8 (p.1180)

eclazz [equiv] B8 (p.1180)

ei B6 (p.1097)

eigsrt B11 (p.1227)

elle rf B6 (p.1136)
rd

Appendix C3. Index of Programs and Dependencies 1437

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ellf rf B6 (p.1135)

ellpi rf B6 (p.1136)
rj rc

rf

elmhes B11 (p.1231)

erf gammp gser B6 (p.1094)
gcf gammln

erfc gammp gser B6 (p.1094)
gcf gammln

gammq gser

gcf gammln

erfcc B6 (p.1095)

eulsum B5 (p.1070)

evlmem B13 (p.1258)

expdev ran1 ran state B7 (p.1151)

expint B6 (p.1096)

factln gammln B6 (p.1088)

factrl gammln B6 (p.1086)

fasper avevar B13 (p.1259)
realft four1 fourrow

fdjac [funcv] B9 (p.1197)

fgauss B15 (p.1294)

fit gammq gser B15 (p.1285)
gcf gammln

fitexy avevar B15 (p.1286)
fit gammq gser

gcf gammln

chixy

mnbrak

brent

gammq gser

gcf gammln

zbrent chixy

fixrts zroots laguer B13 (p.1257)
indexx

fleg B15 (p.1291)

flmoon B1 (p.1010)

fmin [funcv] B9 (p.1198)

four1 fourrow B12 (p.1239)

four1 alt fourcol B12 (p.1240)

four1 gather B12 (p.1250)

four2 fourrow B12 (p.1241)

1438 Appendix C3. Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

four2 alt fourcol B12 (p.1242)

four3 fourrow 3d B12 (p.1246)

four3 alt fourcol 3d B12 (p.1247)

fourcol B12 (p.1237)

fourcol 3d B12 (p.1238)

fourn gather B12 (p.1251)

fourrow B12 (p.1235)

fourrow 3d B12 (p.1236)

fpoly B15 (p.1291)

fred2 gauleg B18 (p.1325)
[ak]
[g]
ludcmp

lubksb

fredex quadmx wwghts kermom B18 (p. 1331)
ludcmp

lubksb

fredin [ak] B18 (p.1326)
[g]

frenel B6 (p.1123)

frprmn [func] B10 (p.1214)
[dfunc]
linmin mnbrak

brent [func]

ftest avevar B14 (p.1271)
betai gammln

betacf

gamdev ran1 ran state B7 (p.1153)

gammln B6 (p.1085)

gammp gser B6 (p.1089)
gcf gammln

gammq gser B6 (p.1090)
gcf gammln

gasdev ran1 ran state B7 (p.1152)

gaucof tqli pythag B4 (p.1064)
eigsrt

gauher B4 (p.1062)

gaujac gammln B4 (p.1063)

gaulag gammln B4 (p.1060)

gauleg B4 (p.1059)

gaussj B2 (p.1014)

gcf gammln B6 (p.1092)

Appendix C3. Index of Programs and Dependencies 1439

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

golden [func] B10 (p.1202)

gser gammln B6 (p.1090)

hqr B11 (p.1232)

hufdec hufmak B20 (p.1349)

hufenc hufmak B20 (p.1348)

hufmak B20 (p.1346)

hunt B3 (p.1046)

hypdrv B6 (p.1139)

hypgeo hypser B6 (p.1138)
odeint bsstep mmid

pzextr

hypdrv

hypser B6 (p.1139)

icrc B20 (p.1344)

igray B20 (p.1344)

index bypack B8 (p.1176)

indexx B8 (p.1173)

interp B19 (p.1337)

irbit1 B7 (p.1159)

irbit2 B7 (p.1160)

jacobi B11 (p.1225)

jacobn B16 (p.1309)

julday B1 (p.1011)

kendl1 erfcc B14 (p.1279)

kendl2 erfcc B14 (p.1279)

kermom B18 (p.1329)

ks2d1s quadct B14 (p.1281)
quadvl

pearsn betai gammln

betacf

probks

ks2d2s quadct B14 (p.1283)
pearsn betai gammln

betacf

probks

ksone sort B14 (p.1273)
[func]
probks

kstwo sort2 B14 (p.1273)
probks

laguer B9 (p.1191)

1440 Appendix C3. Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

lfit [funcs] B15 (p.1288)
gaussj

covsrt

linbcg atimes B2 (p.1034)
snrm

asolve

linmin mnbrak B10 (p.1211)
brent [func]

lnsrch [func] B9 (p.1195)

locate B3 (p.1045)

lop B19 (p.1342)

lubksb B2 (p.1017)

ludcmp B2 (p.1016)

machar B20 (p.1343)

medfit select B15 (p.1294)

memcof B13 (p.1256)

mgfas rstrct B19 (p.1339)
slvsm2

interp

relax2

lop

mglin rstrct B19 (p.1334)
slvsml

interp

relax

resid

midexp [funk] B4 (p.1058)

midinf [funk] B4 (p.1056)

midpnt [func] B4 (p.1054)

midsql [funk] B4 (p.1057)

midsqu [funk] B4 (p.1057)

miser ran1 ran state B7 (p.1164)
[func]

mmid [derivs] B16 (p.1302)

mnbrak [func] B10 (p.1201)

mnewt [usrfun] B9 (p.1194)
ludcmp

lubksb

moment B14 (p.1269)

mp2dfr mpops B20 (p.1357)

Appendix C3. Index of Programs and Dependencies 1441

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

mpdiv mpinv mpmul realft four1 fourrow B20 (p. 1356)
mpops

mpmul realft four1 fourrow

mpops

mpinv mpmul realft four1 fourrow . B20 (p. 1355)
mpops

mpmul realft four1 fourrow B20 (p. 1354)

mpops B20 (p.1352)

mppi mpsqrt mpmul realft four1 fourrow B20 (p. 1357)
mpops

mpops

mpmul realft four1 fourrow

mpinv mpmul realft four1 fourrow

mp2dfr mpops

mprove lubksb B2 (p.1022)

mpsqrt mpmul realft four1 fourrow . B20 (p. 1356)
mpops

mrqmin gaussj B15 (p.1292)
covsrt

[funcs]

newt fmin B9 (p.1196)
fdjac [funcv]
ludcmp

lubksb

lnsrch fmin [funcv]

odeint [derivs] B16 (p.1300)
rkqs [derivs]

rkck [derivs]

orthog B4 (p.1064)

pade ludcmp B5 (p.1080)
lubksb

mprove lubksb

pccheb B5 (p.1080)

pcshft B5 (p.1079)

pearsn betai gammln B14 (p.1276)
betacf

period avevar B13 (p.1258)

plgndr B6 (p.1122)

poidev ran1 ran state B7 (p.1154)
gammln

polcoe B3 (p.1047)

polcof polint B3 (p.1048)

poldiv B5 (p.1072)

1442 Appendix C3. Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

polin2 polint B3 (p.1049)

polint B3 (p.1043)

powell [func] B10 (p.1210)
linmin mnbrak

brent [func]

predic B13 (p.1257)

probks B14 (p.1274)

psdes B7 (p.1156)

pwt pwtset B13 (p.1266)

pwtset B13 (p.1265)

pythag B2 (p.1029)

pzextr B16 (p.1305)

qrdcmp B2 (p.1039)

qromb trapzd [func] B4 (p.1054)
polint

qromo midpnt [func] B4 (p.1055)
polint

qroot poldiv B9 (p.1193)

qrsolv rsolv B2 (p.1040)

qrupdt rotate B2 (p.1041)
pythag

qsimp trapzd [func] B4 (p.1053)

qtrap trapzd [func] B4 (p.1053)

quad3d polint B4 (p.1065)
[func]
[y1]
[y2]
[z1]
[z2]

quadct B14 (p.1282)

quadmx wwghts kermom B18 (p.1330)

quadvl B14 (p.1282)

ran B7 (p.1142)

ran0 ran state B7 (p.1148)

ran1 ran state B7 (p.1149)

ran2 ran state B7 (p.1150)

ran3 ran state B7 (p.1158)

ran state B7 (p.1144)

rank B8 (p.1176)

ratint B3 (p.1043)

Appendix C3. Index of Programs and Dependencies 1443

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ratlsq [func] B5 (p.1081)
svdcmp pythag

svbksb

ratval

ratval B5 (p.1072)

rc B6 (p.1134)

rd B6 (p.1130)

realft four1 fourrow B12 (p.1243)

recur1 B5 (p.1073)

recur2 B5 (p.1074)

relax B19 (p.1338)

relax2 B19 (p.1341)

resid B19 (p.1338)

rf B6 (p.1128)

rj rc B6 (p.1131)
rf

rk4 [derivs] B16 (p.1297)

rkck [derivs] B16 (p.1299)

rkdumb [derivs] B16 (p.1297)
rk4 [derivs]

rkqs rkck [derivs] B16 (p.1298)

rlft2 four2 fourrow B12 (p.1248)

rlft3 four3 fourrow 3d B12 (p. 1249)

rotate B2 (p.1041)

rsolv B2 (p.1040)

rstrct B19 (p.1337)

rtbis [func] B9 (p.1184)

rtflsp [func] B9 (p.1185)

rtnewt [funcd] B9 (p.1189)

rtsafe [funcd] B9 (p.1190)

rtsec [func] B9 (p.1186)

rzextr B16 (p.1306)

savgol ludcmp B14 (p.1283)
lubksb

scrsho [func] B9 (p.1182)

select B8 (p.1177)

select bypack B8 (p.1178)

select heap sort B8 (p.1179)

select inplace select B8 (p.1178)

1444 Appendix C3. Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sfroid plgndr B17 (p.1319)
solvde difeq

shoot [load] B17 (p.1314)
odeint [derivs]

rkqs rkck [derivs]
[score]

shootf [load1] B17 (p.1315)
odeint [derivs]

rkqs rkck [derivs]
[score]
[load2]

simplx B10 (p.1216)

simpr ludcmp B16 (p.1310)
lubksb

[derivs]

sinft realft four1 fourrow B12 (p. 1245)

slvsm2 B19 (p.1342)

slvsml B19 (p.1337)

sncndn B6 (p.1137)

snrm B2 (p.1036)

sobseq B7 (p.1160)

solvde difeq B17 (p.1316)

sor B19 (p.1332)

sort B8 (p.1169)

sort2 indexx B8 (p.1170)

sort3 indexx B8 (p.1175)

sort bypack B8 (p.1171)

sort byreshape B8 (p.1168)

sort heap B8 (p.1171)

sort pick B8 (p.1167)

sort radix B8 (p.1172)

sort shell B8 (p.1168)

spctrm four1 fourrow B13 (p.1254)

spear sort2 B14 (p.1277)
erfcc

betai gammln

betacf

sphbes bessjy beschb chebev B6 (p. 1121)

Appendix C3. Index of Programs and Dependencies 1445

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sphfpt newt fdjac shootf (q.v.) . . . B17 (p. 1322)
lnsrch

fmin shootf (q.v.)
ludcmp

lubksb

sphoot newt fdjac shoot (q.v.) B17 (p. 1321)
lnsrch

fmin shoot (q.v.)
ludcmp

lubksb

splie2 spline tridag B3 (p.1050)

splin2 splint locate B3 (p.1051)
spline tridag

spline tridag B3 (p.1044)

splint locate B3 (p.1045)

sprsax B2 (p.1032)

sprsdiag B2 (p.1033)

sprsin B2 (p.1031)

sprstp B2 (p.1033)

sprstx B2 (p.1032)

stifbs jacobn B16 (p.1311)
simpr ludcmp

lubksb

pzextr

stiff jacobn B16 (p.1308)
ludcmp

lubksb

stoerm [derivs] B16 (p.1307)

svbksb B2 (p.1022)

svdcmp pythag B2 (p.1023)

svdfit [funcs] B15 (p.1290)
svdcmp pythag

svbksb

svdvar B15 (p.1290)

toeplz B2 (p.1038)

tptest avevar B14 (p.1271)
betai gammln

betacf

tqli pythag B11 (p.1228)

trapzd [func] B4 (p.1052)

tred2 B11 (p.1227)

tridag B2 (p.1018)

1446 Appendix C3. Index of Programs and Dependencies

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ttest avevar B14 (p.1269)
betai gammln

betacf

tutest avevar B14 (p.1270)
betai gammln

betacf

twofft four1 fourrow B12 (p.1242)

vander B2 (p.1037)

vegas ran1 ran state B7 (p.1161)
[func]

voltra [g] B18 (p.1326)
[ak]
ludcmp

lubksb

wt1 daub4 B13 (p.1264)

wtn daub4 B13 (p.1267)

wwghts kermom B18 (p.1328)

zbrac [func] B9 (p.1183)

zbrak [func] B9 (p.1184)

zbrent [func] B9 (p.1188)

zrhqr balanc B9 (p.1193)
hqr

indexx

zriddr [func] B9 (p.1187)

zroots laguer B9 (p.1192)
indexx

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B2. Solution of
Linear Algebraic
Equations

SUBROUTINE gaussj(a,b)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,outerand,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a,b

Linear equation solution by Gauss-Jordan elimination, equation (2.1.1). a is an N×N input
coefficient matrix. b is an N ×M input matrix containing M right-hand-side vectors. On
output, a is replaced by its matrix inverse, and b is replaced by the corresponding set of
solution vectors.

INTEGER(I4B), DIMENSION(size(a,1)) :: ipiv,indxr,indxc
These arrays are used for bookkeeping on the pivoting.

LOGICAL(LGT), DIMENSION(size(a,1)) :: lpiv
REAL(SP) :: pivinv
REAL(SP), DIMENSION(size(a,1)) :: dumc
INTEGER(I4B), TARGET :: irc(2)
INTEGER(I4B) :: i,l,n
INTEGER(I4B), POINTER :: irow,icol
n=assert_eq(size(a,1),size(a,2),size(b,1),’gaussj’)
irow => irc(1)
icol => irc(2)
ipiv=0
do i=1,n Main loop over columns to be reduced.

lpiv = (ipiv == 0) Begin search for a pivot element.
irc=maxloc(abs(a),outerand(lpiv,lpiv))
ipiv(icol)=ipiv(icol)+1
if (ipiv(icol) > 1) call nrerror(’gaussj: singular matrix (1)’)

We now have the pivot element, so we interchange rows, if needed, to put the pivot
element on the diagonal. The columns are not physically interchanged, only relabeled:
indxc(i), the column of the ith pivot element, is the ith column that is reduced, while
indxr(i) is the row in which that pivot element was originally located. If indxr(i) �=
indxc(i) there is an implied column interchange. With this form of bookkeeping, the
solution b’s will end up in the correct order, and the inverse matrix will be scrambled
by columns.

if (irow /= icol) then
call swap(a(irow,:),a(icol,:))
call swap(b(irow,:),b(icol,:))

end if
indxr(i)=irow We are now ready to divide the pivot row by the pivot

element, located at irow and icol.indxc(i)=icol
if (a(icol,icol) == 0.0) &

call nrerror(’gaussj: singular matrix (2)’)
pivinv=1.0_sp/a(icol,icol)
a(icol,icol)=1.0
a(icol,:)=a(icol,:)*pivinv
b(icol,:)=b(icol,:)*pivinv
dumc=a(:,icol) Next, we reduce the rows, except for the pivot one, of

course.a(:,icol)=0.0

1014

Chapter B2. Solution of Linear Algebraic Equations 1015

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

a(icol,icol)=pivinv
a(1:icol-1,:)=a(1:icol-1,:)-outerprod(dumc(1:icol-1),a(icol,:))
b(1:icol-1,:)=b(1:icol-1,:)-outerprod(dumc(1:icol-1),b(icol,:))
a(icol+1:,:)=a(icol+1:,:)-outerprod(dumc(icol+1:),a(icol,:))
b(icol+1:,:)=b(icol+1:,:)-outerprod(dumc(icol+1:),b(icol,:))

end do
It only remains to unscramble the solution in view of the column interchanges. We do this
by interchanging pairs of columns in the reverse order that the permutation was built up.

do l=n,1,-1
call swap(a(:,indxr(l)),a(:,indxc(l)))

end do
END SUBROUTINE gaussj

f90
irow => irc(1) ... icol => irc(2) The maxloc intrinsic returns the
location of the maximum value of an array as an integer array, in this
case of size 2. Pre-pointing pointer variables to components of the array

that will be thus set makes possible convenient references to the desired row and
column positions.

irc=maxloc(abs(a),outerand(lpiv,lpiv)) The combination ofmaxloc and
one of theouter... routines fromnrutil allows for a very concise formulation.
If this task is done with loops, it becomes the ungainly “flying vee,”

aa=0.0
do i=1,n

if (lpiv(i)) then
do j=1,n

if (lpiv(j)) then
if (abs(a(i,j)) > aa) then

aa=abs(a(i,j))
irow=i
icol=j

endif
endif

end do
end do

end do

call swap(a(irow,:),a(icol,:)) The swap routine (in nrutil) is concise
and convenient. Fortran 90’s ability to overload multiple routines onto a single name
is vital here: Much of the convenience would vanish if we had to remember variant
routine names for each variable type and rank of object that might be swapped.

Even better, here, than overloading would be if Fortran 90 allowed user-written
elementalprocedures (procedures with unspecified or arbitrary rank and shape),
like the intrinsic elemental procedures built into the language. Fortran 95 will,
but Fortran 90 doesn’t.

One quick (if superficial) test for how much parallelism is achieved in
a Fortran 90 routine is to count its do-loops, and compare that number
to the number of do-loops in the Fortran 77 version of the same routine.

Here, ingaussj, 13 do-loops are reduced to 2.

a(1:icol-1,:)=... b(1:icol-1,:)=...

a(icol+1:,:)=... b(icol+1:,:)=...

1016 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Here the same operation is applied to every row ofa, and to every row ofb, except
row numbericol. On a massively multiprocessor (MMP) machine it would be
better to use a logical mask and do all ofa in a single statement, all ofb in another
one. For a small-scale parallel (SSP) machine, the lines as written should saturate the
machine’s concurrency, and they avoid the additional overhead of testing the mask.

This would be a good place to point out, however, that linear algebra routines
written in Fortran 90 are likelyneverto be competitive with the hand-coded library
routines that are generally supplied as part of MMP programming environments. If
you are using our routines instead of library routines written specifically for your
architecture, you are wasting cycles!

⋆ ⋆ ⋆

SUBROUTINE ludcmp(a,indx,d)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,nrerror,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d

Given an N × N input matrix a, this routine replaces it by the LU decomposition of a
rowwise permutation of itself. On output, a is arranged as in equation (2.3.14); indx is an
output vector of length N that records the row permutation effected by the partial pivoting;
d is output as ±1 depending on whether the number of row interchanges was even or odd,
respectively. This routine is used in combination with lubksb to solve linear equations or
invert a matrix.

REAL(SP), DIMENSION(size(a,1)) :: vv vv stores the implicit scaling of each row.
REAL(SP), PARAMETER :: TINY=1.0e-20_sp A small number.
INTEGER(I4B) :: j,n,imax
n=assert_eq(size(a,1),size(a,2),size(indx),’ludcmp’)
d=1.0 No row interchanges yet.
vv=maxval(abs(a),dim=2) Loop over rows to get the implicit scaling

information.if (any(vv == 0.0)) call nrerror(’singular matrix in ludcmp’)
There is a row of zeros.

vv=1.0_sp/vv Save the scaling.
do j=1,n

imax=(j-1)+imaxloc(vv(j:n)*abs(a(j:n,j))) Find the pivot row.
if (j /= imax) then Do we need to interchange rows?

call swap(a(imax,:),a(j,:)) Yes, do so...
d=-d ...and change the parity of d.
vv(imax)=vv(j) Also interchange the scale factor.

end if
indx(j)=imax
if (a(j,j) == 0.0) a(j,j)=TINY

If the pivot element is zero the matrix is singular (at least to the precision of the al-
gorithm). For some applications on singular matrices, it is desirable to substitute TINY
for zero.

a(j+1:n,j)=a(j+1:n,j)/a(j,j) Divide by the pivot element.
a(j+1:n,j+1:n)=a(j+1:n,j+1:n)-outerprod(a(j+1:n,j),a(j,j+1:n))

Reduce remaining submatrix.
end do
END SUBROUTINE ludcmp

f90
vv=maxval(abs(a),dim=2) A single statement finds the maximum abso-
lute value in each row. Fortran 90 intrinsics likemaxval generally “do
their thing” in the dimension specified bydim and return a result with

a shape corresponding to theother dimensions. Thus, here,vv’s size is that of
the first dimension ofa.

Chapter B2. Solution of Linear Algebraic Equations 1017

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

imax=(j-1)+imaxloc(vv(j:n)*abs(a(j:n,j)) Here we see why thenrutil
routine imaxloc is handy: We want the index, in the range1:n of a quantity
to be searched for only in the limited rangej:n. Using imaxloc, we just add
back the proper offset ofj-1. (Using only Fortran 90 intrinsics, we could write
imax=(j-1)+sum(maxloc(vv(j:n)*abs(a(j:n,j)))), but the use ofsum just to turn an
array of length1 into a scalar seems sufficiently confusing as to be avoided.)

a(j+1:n,j+1:n)=a(j+1:n,j+1:n)-outerprod(a(j+1:n,j),a(j,j+1:n))

The Fortran 77 version ofludcmp, using Crout’s algorithm for the
reduction, does not parallelize well: The elements are updated byO(N 2)

separate dot product operations in a particular order. Here we use a slightly different
reduction, termed “outer product Gaussian elimination” by Golub and Van Loan[1],
that requires justN steps of matrix-parallel reduction. (See their§3.2.3 and§3.2.9
for the algorithm, and their§3.4.1 to understand how the pivoting is performed.)

We usenrutil’s routineouterprod instead of the more cumbersome pure
Fortran 90 construction:

spread(a(j+1:n,j),dim=2,ncopies=n-j)*spread(a(j,j+1:n),dim=1,ncopies=n-j)

SUBROUTINE lubksb(a,indx,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b

Solves the set of N linear equations A ·X = B. Here the N × N matrix a is input, not
as the original matrix A, but rather as its LU decomposition, determined by the routine
ludcmp. indx is input as the permutation vector of length N returned by ludcmp. b is
input as the right-hand-side vector B, also of length N , and returns with the solution vector
X . a and indx are not modified by this routine and can be left in place for successive calls
with different right-hand sides b. This routine takes into account the possibility that b will
begin with many zero elements, so it is efficient for use in matrix inversion.

INTEGER(I4B) :: i,n,ii,ll
REAL(SP) :: summ
n=assert_eq(size(a,1),size(a,2),size(indx),’lubksb’)
ii=0 When ii is set to a positive value, it will become the in-

dex of the first nonvanishing element of b. We now do
the forward substitution, equation (2.3.6). The only new
wrinkle is to unscramble the permutation as we go.

do i=1,n
ll=indx(i)
summ=b(ll)
b(ll)=b(i)
if (ii /= 0) then

summ=summ-dot_product(a(i,ii:i-1),b(ii:i-1))
else if (summ /= 0.0) then

ii=i A nonzero element was encountered, so from now on we will
have to do the dot product above.end if

b(i)=summ
end do
do i=n,1,-1 Now we do the backsubstitution, equation (2.3.7).

b(i) = (b(i)-dot_product(a(i,i+1:n),b(i+1:n)))/a(i,i)
end do
END SUBROUTINE lubksb

Conceptually, the search for the first nonvanishingelement of b (indexii)
should be moved out of the first do-loop. However, in practice, the need
to unscramble the permutation, and also considerations of performance

1018 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

on scalar machines, cause us to write this very scalar-looking code. The performance
penalty on parallel machines should be minimal.

⋆ ⋆ ⋆

Serial and parallel algorithms for tridiagonal problems are quite different.
We therefore provide separate routinestridag ser and tridag par. In the
MODULE nr interface file, one or the other of these (your choice) is given the generic
nametridag. Of course,either version will work correctly on any computer;
it is only a question of efficiency. See§22.2 for the numbering of the equation
coefficients, and for a description of the parallel algorithm.

SUBROUTINE tridag_ser(a,b,c,r,u)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
REAL(SP), DIMENSION(:), INTENT(OUT) :: u

Solves for a vector u of size N the tridiagonal linear set given by equation (2.4.1) using a
serial algorithm. Input vectors b (diagonal elements) and r (right-hand sides) have size N ,
while a and c (off-diagonal elements) are size N − 1.

REAL(SP), DIMENSION(size(b)) :: gam One vector of workspace, gam is needed.
INTEGER(I4B) :: n,j
REAL(SP) :: bet
n=assert_eq((/size(a)+1,size(b),size(c)+1,size(r),size(u)/),’tridag_ser’)
bet=b(1)
if (bet == 0.0) call nrerror(’tridag_ser: Error at code stage 1’)

If this happens then you should rewrite your equations as a set of order N − 1, with u2

trivially eliminated.
u(1)=r(1)/bet
do j=2,n Decomposition and forward substitution.

gam(j)=c(j-1)/bet
bet=b(j)-a(j-1)*gam(j)
if (bet == 0.0) & Algorithm fails; see below routine in Vol. 1.

call nrerror(’tridag_ser: Error at code stage 2’)
u(j)=(r(j)-a(j-1)*u(j-1))/bet

end do
do j=n-1,1,-1 Backsubstitution.

u(j)=u(j)-gam(j+1)*u(j+1)
end do
END SUBROUTINE tridag_ser

RECURSIVE SUBROUTINE tridag_par(a,b,c,r,u)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : tridag_ser
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c,r
REAL(SP), DIMENSION(:), INTENT(OUT) :: u

Solves for a vector u of size N the tridiagonal linear set given by equation (2.4.1) using a
parallel algorithm. Input vectors b (diagonal elements) and r (right-hand sides) have size
N , while a and c (off-diagonal elements) are size N − 1.

INTEGER(I4B), PARAMETER :: NPAR_TRIDAG=4 Determines when serial algorithm is in-
voked.INTEGER(I4B) :: n,n2,nm,nx

REAL(SP), DIMENSION(size(b)/2) :: y,q,piva
REAL(SP), DIMENSION(size(b)/2-1) :: x,z
REAL(SP), DIMENSION(size(a)/2) :: pivc
n=assert_eq((/size(a)+1,size(b),size(c)+1,size(r),size(u)/),’tridag_par’)
if (n < NPAR_TRIDAG) then

call tridag_ser(a,b,c,r,u)
else

if (maxval(abs(b(1:n))) == 0.0) & Algorithm fails; see below routine in Vol. 1.

Chapter B2. Solution of Linear Algebraic Equations 1019

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

call nrerror(’tridag_par: possible singular matrix’)
n2=size(y)
nm=size(pivc)
nx=size(x)
piva = a(1:n-1:2)/b(1:n-1:2) Zero the odd a’s and even c’s, giving x,

y, z, q.pivc = c(2:n-1:2)/b(3:n:2)
y(1:nm) = b(2:n-1:2)-piva(1:nm)*c(1:n-2:2)-pivc*a(2:n-1:2)
q(1:nm) = r(2:n-1:2)-piva(1:nm)*r(1:n-2:2)-pivc*r(3:n:2)
if (nm < n2) then

y(n2) = b(n)-piva(n2)*c(n-1)
q(n2) = r(n)-piva(n2)*r(n-1)

end if
x = -piva(2:n2)*a(2:n-2:2)
z = -pivc(1:nx)*c(3:n-1:2)
call tridag_par(x,y,z,q,u(2:n:2)) Recurse and get even u’s.
u(1) = (r(1)-c(1)*u(2))/b(1) Substitute and get odd u’s.
u(3:n-1:2) = (r(3:n-1:2)-a(2:n-2:2)*u(2:n-2:2) &

-c(3:n-1:2)*u(4:n:2))/b(3:n-1:2)
if (nm == n2) u(n)=(r(n)-a(n-1)*u(n-1))/b(n)

end if
END SUBROUTINE tridag_par

f90
The serial versiontridag ser is called when the routine has recursed
its way down to sufficiently small subproblems. The point at which
this occurs is determined by the parameterNPAR TRIDAGwhose optimal

value is likely machine-dependent. Notice thattridag ser must here be called
by its specific name, not by the generictridag (which might itself be overloaded
with either tridag ser or tridag par).

⋆ ⋆ ⋆

SUBROUTINE banmul(a,m1,m2,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq,arth
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: b

Matrix multiply b = A · x, where A is band diagonal with m1 rows below the diagonal and
m2 rows above. If the input vector x and output vector b are of length N , then the array
a(1:N,1:m1+m2+1) stores A as follows: The diagonal elements are in a(1:N,m1+1).
Subdiagonal elements are in a(j:N,1:m1) (with j > 1 appropriate to the number of
elements on each subdiagonal). Superdiagonal elements are in a(1:j,m1+2:m1+m2+1)
with j < N appropriate to the number of elements on each superdiagonal.

INTEGER(I4B) :: m,n
n=assert_eq(size(a,1),size(b),size(x),’banmul: n’)
m=assert_eq(size(a,2),m1+m2+1,’banmul: m’)
b=sum(a*eoshift(spread(x,dim=2,ncopies=m), &

dim=1,shift=arth(-m1,1,m)),dim=2)
END SUBROUTINE banmul

f90
b=sum(a*eoshift(spread(x,dim=2,ncopies=m), &

dim=1,shift=arth(-m1,1,m)),dim=2)

This is a good example of Fortran 90 at both its best and its worst: best,
because it allows quite subtle combinations of fully parallel operations to be built
up; worst, because the resulting code is virtually incomprehensible!

1020 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

What is going on becomes clearer if we imagine a temporary arrayy with a
declaration likeREAL(SP), DIMENSION(size(a,1),size(a,2)) :: y. Then, the above
single line decomposes into
y=spread(x,dim=2,ncopies=m) [Duplicatex into columns ofy.]
y=eoshift(y,dim=1,shift=arth(-m1,1,m)) [Shift columns by a linear progression.]
b=sum(a*y,dim=2) [Multiply by the band-diagonal elements,

and sum.]
We use here a relatively rare subcase of theeoshift intrinsic, using a vector value for
theshift argument to accomplish the simultaneous shifting of a bunch of columns,
by different amounts (here specified by the linear progression returned byarth).

If you still don’t see how this accomplishes the multiplicationof a band diagonal
matrix by a vector, work through a simple example by hand.

SUBROUTINE bandec(a,m1,m2,al,indx,d)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,swap,arth
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: al
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: indx
REAL(SP), INTENT(OUT) :: d
REAL(SP), PARAMETER :: TINY=1.0e-20_sp

Given an N × N band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal
rows, compactly stored in the array a(1:N,1:m1+m2+1) as described in the comment for
routine banmul, this routine constructs an LU decomposition of a rowwise permutation of
A. The upper triangular matrix replaces a, while the lower triangular matrix is returned in
al(1:N,1:m1). indx is an output vector of length N that records the row permutation
effected by the partial pivoting; d is output as ±1 depending on whether the number of
row interchanges was even or odd, respectively. This routine is used in combination with
banbks to solve band-diagonal sets of equations.

INTEGER(I4B) :: i,k,l,mdum,mm,n
REAL(SP) :: dum
n=assert_eq(size(a,1),size(al,1),size(indx),’bandec: n’)
mm=assert_eq(size(a,2),m1+m2+1,’bandec: mm’)
mdum=assert_eq(size(al,2),m1,’bandec: mdum’)
a(1:m1,:)=eoshift(a(1:m1,:),dim=2,shift=arth(m1,-1,m1)) Rearrange the storage a

bit.d=1.0
do k=1,n For each row...

l=min(m1+k,n)
i=imaxloc(abs(a(k:l,1)))+k-1 Find the pivot element.
dum=a(i,1)
if (dum == 0.0) a(k,1)=TINY

Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in some
applications).

indx(k)=i
if (i /= k) then Interchange rows.

d=-d
call swap(a(k,1:mm),a(i,1:mm))

end if
do i=k+1,l Do the elimination.

dum=a(i,1)/a(k,1)
al(k,i-k)=dum
a(i,1:mm-1)=a(i,2:mm)-dum*a(k,2:mm)
a(i,mm)=0.0

end do
end do
END SUBROUTINE bandec

Chapter B2. Solution of Linear Algebraic Equations 1021

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
a(1:m1,:)=eoshift(a(1:m1,:),... See similar discussion ofeoshift
for banmul, just above.

i=imaxloc(abs(a(k:l,1)))+k-1 See discussion ofimaxloc on p. 1017.

Notice that the above isnot well parallelized for MMP machines:
the outer do-loop is doneN times, whereN , the diagonal length, is
potentially the largest dimension in the problem. Small-scale parallel

(SSP) machines, and scalar machines, are not disadvantaged, because the parallelism
of ordermm=m1+m2+1 in the inner loops can be enough to saturate their concurrency.

We don’t know of anN -parallel algorithm for decomposing band diagonal
matrices, at least one that has any reasonably concise expression in Fortran 90.
Conceptually, one can view a band diagonal matrix as ablock tridiagonalmatrix,
and then apply the same recursive strategy as was used intridag par. However, the
implementation details of this are daunting. (We would welcome a user-contributed
routine, clear, concise, and with parallelism of orderN .)

SUBROUTINE banbks(a,m1,m2,al,indx,b)
USE nrtype; USE nrutil, ONLY : assert_eq,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,al
INTEGER(I4B), INTENT(IN) :: m1,m2
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b

Given the arrays a, al, and indx as returned from bandec, and given a right-hand-side
vector b, solves the band diagonal linear equations A·x = b. The solution vector x overwrites
b. The other input arrays are not modified, and can be left in place for successive calls with
different right-hand sides.

INTEGER(I4B) :: i,k,l,mdum,mm,n
n=assert_eq(size(a,1),size(al,1),size(b),size(indx),’banbks: n’)
mm=assert_eq(size(a,2),m1+m2+1,’banbks: mm’)
mdum=assert_eq(size(al,2),m1,’banbks: mdum’)
do k=1,n Forward substitution, unscrambling the permuted rows as we

go.l=min(n,m1+k)
i=indx(k)
if (i /= k) call swap(b(i),b(k))
b(k+1:l)=b(k+1:l)-al(k,1:l-k)*b(k)

end do
do i=n,1,-1 Backsubstitution.

l=min(mm,n-i+1)
b(i)=(b(i)-dot_product(a(i,2:l),b(1+i:i+l-1)))/a(i,1)

end do
END SUBROUTINE banbks

As for bandec, the routinebanbks is not parallelized on the large
dimensionN , though it does give the compiler the opportunity for ample
small-scale parallelization inside the loops.

⋆ ⋆ ⋆

1022 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE mprove(a,alud,indx,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : lubksb
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a,alud
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indx
REAL(SP), DIMENSION(:), INTENT(IN) :: b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x

Improves a solution vector x of the linear set of equations A ·X = B. The N ×N matrix a
and the N -dimensional vectors b and x are input. Also input is alud, the LU decomposition
of a as returned by ludcmp, and the N -dimensional vector indx also returned by that
routine. On output, only x is modified, to an improved set of values.

INTEGER(I4B) :: ndum
REAL(SP), DIMENSION(size(a,1)) :: r
ndum=assert_eq((/size(a,1),size(a,2),size(alud,1),size(alud,2),size(b),&

size(x),size(indx)/),’mprove’)
r=matmul(real(a,dp),real(x,dp))-real(b,dp)

Calculate the right-hand side, accumulating the residual in double precision.
call lubksb(alud,indx,r) Solve for the error term,
x=x-r and subtract it from the old solution.
END SUBROUTINE mprove

f90
assert_eq((/.../),’mprove’) This overloaded version of thenrutil
routineassert eq makes use of a trick for passing a variable number
of scalar arguments to a routine: Put them into an array constructor,

(/.../), and pass the array. The receiving routine can use thesize intrinsic to
count them. The technique has some obvious limitations: All the arguments in the
array must be of the same type; and the arguments are passed, in effect, byvalue,
not by address, so they must be, in effect,INTENT(IN).

r=matmul(real(a,dp),real(x,dp))-real(b,dp) Since Fortran 90’s elemental
intrinsics operate with the type of their arguments, we can use thereal(...,dp)’s
to force thematmul matrix multiplication to be done in double precision, which is
what we want. In Fortran 77, we would have to do the matrix multiplication with
temporary double precision variables, both inconvenient and (since Fortran 77 has
no dynamic memory allocation) a waste of memory.

⋆ ⋆ ⋆

SUBROUTINE svbksb_sp(u,w,v,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
REAL(SP), DIMENSION(:,:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(IN) :: w,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: x

Solves A · X = B for a vector X , where A is specified by the arrays u, v, w as returned
by svdcmp. Here u is M × N , v is N ×N , and w is of length N . b is the M -dimensional
input right-hand side. x is the N -dimensional output solution vector. No input quantities
are destroyed, so the routine may be called sequentially with different b’s.

INTEGER(I4B) :: mdum,ndum
REAL(SP), DIMENSION(size(x)) :: tmp
mdum=assert_eq(size(u,1),size(b),’svbksb_sp: mdum’)
ndum=assert_eq((/size(u,2),size(v,1),size(v,2),size(w),size(x)/),&

’svbksb_sp: ndum’)
where (w /= 0.0)

tmp=matmul(b,u)/w Calculate diag(1/wj)U
TB,

elsewhere
tmp=0.0 but replace 1/wj by zero if wj = 0.

end where

Chapter B2. Solution of Linear Algebraic Equations 1023

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

x=matmul(v,tmp) Matrix multiply by V to get answer.
END SUBROUTINE svbksb_sp

f90
where (w /= 0.0)...tmp=...elsewhere...tmp= Normally, when awhere
...elsewhere construction is used to set a variable (heretmp) to one
or another value, we like to replace it with amerge expression. Here,

however, thewhere is required to guarantee that a division by zero doesn’t occur.
The rule is thatwherewill neverevaluate expressions that are excluded by the mask
in the where line, but other constructions, likemerge, might perform speculative
evaluation of more than one possible outcome before selecting the applicable one.

Because singular value decomposition is something that one often wants to do
in double precision, we include a double-precision version. Innr, the single- and
double-precision versions are overloaded onto the namesvbksb.

SUBROUTINE svbksb_dp(u,w,v,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u,v
REAL(DP), DIMENSION(:), INTENT(IN) :: w,b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B) :: mdum,ndum
REAL(DP), DIMENSION(size(x)) :: tmp
mdum=assert_eq(size(u,1),size(b),’svbksb_dp: mdum’)
ndum=assert_eq((/size(u,2),size(v,1),size(v,2),size(w),size(x)/),&

’svbksb_dp: ndum’)
where (w /= 0.0)

tmp=matmul(b,u)/w
elsewhere

tmp=0.0
end where
x=matmul(v,tmp)
END SUBROUTINE svbksb_dp

SUBROUTINE svdcmp_sp(a,w,v)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,outerprod
USE nr, ONLY : pythag
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v

Given an M × N matrix a, this routine computes its singular value decomposition, A =

U · W · V T . The matrix U replaces a on output. The diagonal matrix of singular values
W is output as the N -dimensional vector w. The N ×N matrix V (not the transpose V T)
is output as v.

INTEGER(I4B) :: i,its,j,k,l,m,n,nm
REAL(SP) :: anorm,c,f,g,h,s,scale,x,y,z
REAL(SP), DIMENSION(size(a,1)) :: tempm
REAL(SP), DIMENSION(size(a,2)) :: rv1,tempn
m=size(a,1)
n=assert_eq(size(a,2),size(v,1),size(v,2),size(w),’svdcmp_sp’)
g=0.0
scale=0.0
do i=1,n Householder reduction to bidiagonal form.

l=i+1
rv1(i)=scale*g
g=0.0
scale=0.0
if (i <= m) then

1024 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

scale=sum(abs(a(i:m,i)))
if (scale /= 0.0) then

a(i:m,i)=a(i:m,i)/scale
s=dot_product(a(i:m,i),a(i:m,i))
f=a(i,i)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,i)=f-g
tempn(l:n)=matmul(a(i:m,i),a(i:m,l:n))/h
a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),tempn(l:n))
a(i:m,i)=scale*a(i:m,i)

end if
end if
w(i)=scale*g
g=0.0
scale=0.0
if ((i <= m) .and. (i /= n)) then

scale=sum(abs(a(i,l:n)))
if (scale /= 0.0) then

a(i,l:n)=a(i,l:n)/scale
s=dot_product(a(i,l:n),a(i,l:n))
f=a(i,l)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,l)=f-g
rv1(l:n)=a(i,l:n)/h
tempm(l:m)=matmul(a(l:m,l:n),a(i,l:n))
a(l:m,l:n)=a(l:m,l:n)+outerprod(tempm(l:m),rv1(l:n))
a(i,l:n)=scale*a(i,l:n)

end if
end if

end do
anorm=maxval(abs(w)+abs(rv1))
do i=n,1,-1 Accumulation of right-hand transformations.

if (i < n) then
if (g /= 0.0) then

v(l:n,i)=(a(i,l:n)/a(i,l))/g Double division to avoid possible under-
flow.tempn(l:n)=matmul(a(i,l:n),v(l:n,l:n))

v(l:n,l:n)=v(l:n,l:n)+outerprod(v(l:n,i),tempn(l:n))
end if
v(i,l:n)=0.0
v(l:n,i)=0.0

end if
v(i,i)=1.0
g=rv1(i)
l=i

end do
do i=min(m,n),1,-1 Accumulation of left-hand transformations.

l=i+1
g=w(i)
a(i,l:n)=0.0
if (g /= 0.0) then

g=1.0_sp/g
tempn(l:n)=(matmul(a(l:m,i),a(l:m,l:n))/a(i,i))*g
a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),tempn(l:n))
a(i:m,i)=a(i:m,i)*g

else
a(i:m,i)=0.0

end if
a(i,i)=a(i,i)+1.0_sp

end do
do k=n,1,-1 Diagonalization of the bidiagonal form: Loop over

singular values, and over allowed iterations.do its=1,30
do l=k,1,-1 Test for splitting.

Chapter B2. Solution of Linear Algebraic Equations 1025

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

nm=l-1
if ((abs(rv1(l))+anorm) == anorm) exit

Note that rv1(1) is always zero, so can never fall through bottom of loop.
if ((abs(w(nm))+anorm) == anorm) then

c=0.0 Cancellation of rv1(l), if l > 1.
s=1.0
do i=l,k

f=s*rv1(i)
rv1(i)=c*rv1(i)
if ((abs(f)+anorm) == anorm) exit
g=w(i)
h=pythag(f,g)
w(i)=h
h=1.0_sp/h
c= (g*h)
s=-(f*h)
tempm(1:m)=a(1:m,nm)
a(1:m,nm)=a(1:m,nm)*c+a(1:m,i)*s
a(1:m,i)=-tempm(1:m)*s+a(1:m,i)*c

end do
exit

end if
end do
z=w(k)
if (l == k) then Convergence.

if (z < 0.0) then Singular value is made nonnegative.
w(k)=-z
v(1:n,k)=-v(1:n,k)

end if
exit

end if
if (its == 30) call nrerror(’svdcmp_sp: no convergence in svdcmp’)
x=w(l) Shift from bottom 2-by-2 minor.
nm=k-1
y=w(nm)
g=rv1(nm)
h=rv1(k)
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0_sp*h*y)
g=pythag(f,1.0_sp)
f=((x-z)*(x+z)+h*((y/(f+sign(g,f)))-h))/x
c=1.0 Next QR transformation:
s=1.0
do j=l,nm

i=j+1
g=rv1(i)
y=w(i)
h=s*g
g=c*g
z=pythag(f,h)
rv1(j)=z
c=f/z
s=h/z
f= (x*c)+(g*s)
g=-(x*s)+(g*c)
h=y*s
y=y*c
tempn(1:n)=v(1:n,j)
v(1:n,j)=v(1:n,j)*c+v(1:n,i)*s
v(1:n,i)=-tempn(1:n)*s+v(1:n,i)*c
z=pythag(f,h)
w(j)=z Rotation can be arbitrary if z = 0.
if (z /= 0.0) then

z=1.0_sp/z
c=f*z

1026 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

s=h*z
end if
f= (c*g)+(s*y)
x=-(s*g)+(c*y)
tempm(1:m)=a(1:m,j)
a(1:m,j)=a(1:m,j)*c+a(1:m,i)*s
a(1:m,i)=-tempm(1:m)*s+a(1:m,i)*c

end do
rv1(l)=0.0
rv1(k)=f
w(k)=x

end do
end do
END SUBROUTINE svdcmp_sp

The SVD algorithm implemented above does not parallelize very well.
There are two parts to the algorithm. The first, reduction to bidiagonal
form, can be parallelized. The second, the iterative diagonalization of

the bidiagonal form, uses QR transformations that are intrinsically serial. There
have been proposals for parallel SVD algorithms[2], but we do not have sufficient
experience with them yet to recommend them over the well-established serial
algorithm.

tempn(l:n)=matmul...a(i:m,l:n)=...outerprod... Here is an example of an
update as in equation (22.1.6). In this casebi is independent ofi: It is simply1/h.
The lines beginningtempm(l:m)=matmul about 16 lines down are of a similar form,
but with the terms in the opposite order in thematmul.

f90
As with svbksb, single- and double-precision versions of the routines
are overloaded onto the namesvdcmp in nr.

SUBROUTINE svdcmp_dp(a,w,v)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,outerprod
USE nr, ONLY : pythag
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(DP), DIMENSION(:), INTENT(OUT) :: w
REAL(DP), DIMENSION(:,:), INTENT(OUT) :: v
INTEGER(I4B) :: i,its,j,k,l,m,n,nm
REAL(DP) :: anorm,c,f,g,h,s,scale,x,y,z
REAL(DP), DIMENSION(size(a,1)) :: tempm
REAL(DP), DIMENSION(size(a,2)) :: rv1,tempn
m=size(a,1)
n=assert_eq(size(a,2),size(v,1),size(v,2),size(w),’svdcmp_dp’)
g=0.0
scale=0.0
do i=1,n

l=i+1
rv1(i)=scale*g
g=0.0
scale=0.0
if (i <= m) then

scale=sum(abs(a(i:m,i)))
if (scale /= 0.0) then

a(i:m,i)=a(i:m,i)/scale
s=dot_product(a(i:m,i),a(i:m,i))
f=a(i,i)
g=-sign(sqrt(s),f)

Chapter B2. Solution of Linear Algebraic Equations 1027

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

h=f*g-s
a(i,i)=f-g
tempn(l:n)=matmul(a(i:m,i),a(i:m,l:n))/h
a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),tempn(l:n))
a(i:m,i)=scale*a(i:m,i)

end if
end if
w(i)=scale*g
g=0.0
scale=0.0
if ((i <= m) .and. (i /= n)) then

scale=sum(abs(a(i,l:n)))
if (scale /= 0.0) then

a(i,l:n)=a(i,l:n)/scale
s=dot_product(a(i,l:n),a(i,l:n))
f=a(i,l)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,l)=f-g
rv1(l:n)=a(i,l:n)/h
tempm(l:m)=matmul(a(l:m,l:n),a(i,l:n))
a(l:m,l:n)=a(l:m,l:n)+outerprod(tempm(l:m),rv1(l:n))
a(i,l:n)=scale*a(i,l:n)

end if
end if

end do
anorm=maxval(abs(w)+abs(rv1))
do i=n,1,-1

if (i < n) then
if (g /= 0.0) then

v(l:n,i)=(a(i,l:n)/a(i,l))/g
tempn(l:n)=matmul(a(i,l:n),v(l:n,l:n))
v(l:n,l:n)=v(l:n,l:n)+outerprod(v(l:n,i),tempn(l:n))

end if
v(i,l:n)=0.0
v(l:n,i)=0.0

end if
v(i,i)=1.0
g=rv1(i)
l=i

end do
do i=min(m,n),1,-1

l=i+1
g=w(i)
a(i,l:n)=0.0
if (g /= 0.0) then

g=1.0_dp/g
tempn(l:n)=(matmul(a(l:m,i),a(l:m,l:n))/a(i,i))*g
a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),tempn(l:n))
a(i:m,i)=a(i:m,i)*g

else
a(i:m,i)=0.0

end if
a(i,i)=a(i,i)+1.0_dp

end do
do k=n,1,-1

do its=1,30
do l=k,1,-1

nm=l-1
if ((abs(rv1(l))+anorm) == anorm) exit
if ((abs(w(nm))+anorm) == anorm) then

c=0.0
s=1.0
do i=l,k

1028 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f=s*rv1(i)
rv1(i)=c*rv1(i)
if ((abs(f)+anorm) == anorm) exit
g=w(i)
h=pythag(f,g)
w(i)=h
h=1.0_dp/h
c= (g*h)
s=-(f*h)
tempm(1:m)=a(1:m,nm)
a(1:m,nm)=a(1:m,nm)*c+a(1:m,i)*s
a(1:m,i)=-tempm(1:m)*s+a(1:m,i)*c

end do
exit

end if
end do
z=w(k)
if (l == k) then

if (z < 0.0) then
w(k)=-z
v(1:n,k)=-v(1:n,k)

end if
exit

end if
if (its == 30) call nrerror(’svdcmp_dp: no convergence in svdcmp’)
x=w(l)
nm=k-1
y=w(nm)
g=rv1(nm)
h=rv1(k)
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0_dp*h*y)
g=pythag(f,1.0_dp)
f=((x-z)*(x+z)+h*((y/(f+sign(g,f)))-h))/x
c=1.0
s=1.0
do j=l,nm

i=j+1
g=rv1(i)
y=w(i)
h=s*g
g=c*g
z=pythag(f,h)
rv1(j)=z
c=f/z
s=h/z
f= (x*c)+(g*s)
g=-(x*s)+(g*c)
h=y*s
y=y*c
tempn(1:n)=v(1:n,j)
v(1:n,j)=v(1:n,j)*c+v(1:n,i)*s
v(1:n,i)=-tempn(1:n)*s+v(1:n,i)*c
z=pythag(f,h)
w(j)=z
if (z /= 0.0) then

z=1.0_dp/z
c=f*z
s=h*z

end if
f= (c*g)+(s*y)
x=-(s*g)+(c*y)
tempm(1:m)=a(1:m,j)
a(1:m,j)=a(1:m,j)*c+a(1:m,i)*s
a(1:m,i)=-tempm(1:m)*s+a(1:m,i)*c

Chapter B2. Solution of Linear Algebraic Equations 1029

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
rv1(l)=0.0
rv1(k)=f
w(k)=x

end do
end do
END SUBROUTINE svdcmp_dp

FUNCTION pythag_sp(a,b)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: pythag_sp

Computes (a2 + b2)1/2 without destructive underflow or overflow.
REAL(SP) :: absa,absb
absa=abs(a)
absb=abs(b)
if (absa > absb) then

pythag_sp=absa*sqrt(1.0_sp+(absb/absa)**2)
else

if (absb == 0.0) then
pythag_sp=0.0

else
pythag_sp=absb*sqrt(1.0_sp+(absa/absb)**2)

end if
end if
END FUNCTION pythag_sp

FUNCTION pythag_dp(a,b)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: a,b
REAL(DP) :: pythag_dp
REAL(DP) :: absa,absb
absa=abs(a)
absb=abs(b)
if (absa > absb) then

pythag_dp=absa*sqrt(1.0_dp+(absb/absa)**2)
else

if (absb == 0.0) then
pythag_dp=0.0

else
pythag_dp=absb*sqrt(1.0_dp+(absa/absb)**2)

end if
end if
END FUNCTION pythag_dp

⋆ ⋆ ⋆

1030 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE cyclic(a,b,c,alpha,beta,r,x)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : tridag
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN):: a,b,c,r
REAL(SP), INTENT(IN) :: alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT):: x

Solves the “cyclic” set of linear equations given by equation (2.7.9). a, b, c, and r are
input vectors, while x is the output solution vector, all of the same size. alpha and beta
are the corner entries in the matrix. The input is not modified.

INTEGER(I4B) :: n
REAL(SP) :: fact,gamma
REAL(SP), DIMENSION(size(x)) :: bb,u,z
n=assert_eq((/size(a),size(b),size(c),size(r),size(x)/),’cyclic’)
call assert(n > 2, ’cyclic arg’)
gamma=-b(1) Avoid subtraction error in forming bb(1).
bb(1)=b(1)-gamma Set up the diagonal of the modified tridiag-

onal system.bb(n)=b(n)-alpha*beta/gamma
bb(2:n-1)=b(2:n-1)
call tridag(a(2:n),bb,c(1:n-1),r,x) Solve A · x = r .
u(1)=gamma Set up the vector u.
u(n)=alpha
u(2:n-1)=0.0
call tridag(a(2:n),bb,c(1:n-1),u,z) Solve A · z = u.
fact=(x(1)+beta*x(n)/gamma)/(1.0_sp+z(1)+beta*z(n)/gamma) Form v·x/(1+v·z).
x=x-fact*z Now get the solution vector x.
END SUBROUTINE cyclic

The parallelism incyclic is in tridag. Users with multiprocessor
machines will want to be sure that, innrutil, they have set the name
tridag to be overloaded withtridag par instead oftridag ser.

⋆ ⋆ ⋆

The routinessprsin, sprsax, sprstx, sprstp, andsprsdiag give roughly
equivalent functionality to the corresponding Fortran 77 routines, but they arenot
plug compatible. Instead, they take advantage of (and illustrate) several Fortran 90
features that are not present in Fortran 77.

In the modulenrtypewe define aTYPE sprs2 sp for two-dimensional sparse,
square, matrices, in single precision, as follows

TYPE sprs2_sp
INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_sp

This has much less structure to it than the “row-indexed sparse storage mode” used
in Volume 1. Here, a sparse matrix is just a list of values, and corresponding lists
giving the row and column number that each value is in. Two integersn andlen
give, respectively, the underlying size (number of rows or columns) in the full matrix,
and the number of stored nonzero values. While the previously used row-indexed
scheme can be somewhat more efficient for serial machines, it does not parallelize
conveniently, while this one does (though with some caveats; see below).

Chapter B2. Solution of Linear Algebraic Equations 1031

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE sprsin_sp(a,thresh,sa)
USE nrtype; USE nrutil, ONLY : arth,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), INTENT(IN) :: thresh
TYPE(sprs2_sp), INTENT(OUT) :: sa

Converts a square matrix a to sparse storage format as sa. Only elements of a with mag-
nitude ≥ thresh are retained.

INTEGER(I4B) :: n,len
LOGICAL(LGT), DIMENSION(size(a,1),size(a,2)) :: mask
n=assert_eq(size(a,1),size(a,2),’sprsin_sp’)
mask=abs(a)>thresh
len=count(mask) How many elements to store?
allocate(sa%val(len),sa%irow(len),sa%jcol(len))
sa%n=n
sa%len=len
sa%val=pack(a,mask) Grab the values, row, and column numbers.
sa%irow=pack(spread(arth(1,1,n),2,n),mask)
sa%jcol=pack(spread(arth(1,1,n),1,n),mask)
END SUBROUTINE sprsin_sp

SUBROUTINE sprsin_dp(a,thresh,sa)
USE nrtype; USE nrutil, ONLY : arth,assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: a
REAL(DP), INTENT(IN) :: thresh
TYPE(sprs2_dp), INTENT(OUT) :: sa
INTEGER(I4B) :: n,len
LOGICAL(LGT), DIMENSION(size(a,1),size(a,2)) :: mask
n=assert_eq(size(a,1),size(a,2),’sprsin_dp’)
mask=abs(a)>thresh
len=count(mask)
allocate(sa%val(len),sa%irow(len),sa%jcol(len))
sa%n=n
sa%len=len
sa%val=pack(a,mask)
sa%irow=pack(spread(arth(1,1,n),2,n),mask)
sa%jcol=pack(spread(arth(1,1,n),1,n),mask)
END SUBROUTINE sprsin_dp

f90
Note that the routinessprsin sp andsprsin dp — single and double
precision versions of the same algorithm — are overloaded onto the
namesprsin in modulenr. We supply both forms because the routine

linbcg, below, works in double precision.

sa%irow=pack(spread(arth(1,1,n),2,n),mask) The trick here is to use the same
mask,abs(a)>thresh, in three consecutivepack expressions, thus guaranteeing
that the corresponding elements of the array argument get selected for packing.
The first time, we get the desired matrix element values. The second time (above
code fragment), we construct a matrix with each element having the value of its
row number. The third time, we construct a matrix with each element having the
value of its column number.

1032 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE sprsax_sp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq,scatter_add
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b

Multiply a matrix sa in sparse matrix format by a vector x, giving a vector b.
INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),’sprsax_sp’)
b=0.0_sp
call scatter_add(b,sa%val*x(sa%jcol),sa%irow)

Each sparse matrix entry adds a term to some component of b.
END SUBROUTINE sprsax_sp

SUBROUTINE sprsax_dp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq,scatter_add
IMPLICIT NONE
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),’sprsax_dp’)
b=0.0_dp
call scatter_add(b,sa%val*x(sa%jcol),sa%irow)
END SUBROUTINE sprsax_dp

call scatter_add(b,sa%val*x(sa%jcol),sa%irow) Since more than one
component of the middle vector argument will, in general, need to be
added into the same component ofb, we must resort to a call to the

nrutil routine scatter add to achieve parallelism.However, this parallelism
is achieved only if a parallel version ofscatter add is available! As we have
discussed previously (p. 984), Fortran 90 does not provide any scatter-with-combine
(here, scatter-with-add) facility, insisting instead that indexed operations yield non-
colliding addresses. Luckily, almost all parallel machines do provide such a facility
as a library program. In HPF, for example, the equivalent ofscatter add is
SUM SCATTER.

The call toscatter add above is equivalent to the do-loop

b=0.0
do k=1,sa%len

b(sa%irow(k))=b(sa%irow(k))+sa%val(k)*x(sa%jcol(k))
end do

SUBROUTINE sprstx_sp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq,scatter_add
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION (:), INTENT(IN) :: x
REAL(SP), DIMENSION (:), INTENT(OUT) :: b

Multiply the transpose of a matrix sa in sparse matrix format by a vector x, giving a vector b.
INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),’sprstx_sp’)
b=0.0_sp
call scatter_add(b,sa%val*x(sa%irow),sa%jcol)

Each sparse matrix entry adds a term to some component of b.
END SUBROUTINE sprstx_sp

Chapter B2. Solution of Linear Algebraic Equations 1033

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE sprstx_dp(sa,x,b)
USE nrtype; USE nrutil, ONLY : assert_eq,scatter_add
IMPLICIT NONE
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION (:), INTENT(IN) :: x
REAL(DP), DIMENSION (:), INTENT(OUT) :: b
INTEGER(I4B) :: ndum
ndum=assert_eq(sa%n,size(x),size(b),’sprstx_dp’)
b=0.0_dp
call scatter_add(b,sa%val*x(sa%irow),sa%jcol)
END SUBROUTINE sprstx_dp

Precisely the same comments as forsprsax apply tosprstx. The call
to scatter add is here equivalent to

b=0.0
do k=1,sa%len

b(sa%jcol(k))=b(sa%jcol(k))+sa%val(k)*x(sa%irow(k))
end do

SUBROUTINE sprstp(sa)
USE nrtype
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(INOUT) :: sa

Replaces sa, in sparse matrix format, by its transpose.
INTEGER(I4B), DIMENSION(:), POINTER :: temp
temp=>sa%irow We need only swap the row and column pointers.
sa%irow=>sa%jcol
sa%jcol=>temp
END SUBROUTINE sprstp

SUBROUTINE sprsdiag_sp(sa,b)
USE nrtype; USE nrutil, ONLY : array_copy,assert_eq
IMPLICIT NONE
TYPE(sprs2_sp), INTENT(IN) :: sa
REAL(SP), DIMENSION(:), INTENT(OUT) :: b

Extracts the diagonal of a matrix sa in sparse matrix format into a vector b.
REAL(SP), DIMENSION(size(b)) :: val
INTEGER(I4B) :: k,l,ndum,nerr
INTEGER(I4B), DIMENSION(size(b)) :: i
LOGICAL(LGT), DIMENSION(:), ALLOCATABLE :: mask
ndum=assert_eq(sa%n,size(b),’sprsdiag_sp’)
l=sa%len
allocate(mask(l))
mask = (sa%irow(1:l) == sa%jcol(1:l)) Find diagonal elements.
call array_copy(pack(sa%val(1:l),mask),val,k,nerr) Grab the values...
i(1:k)=pack(sa%irow(1:l),mask) ...and their locations.
deallocate(mask)
b=0.0 Zero b because zero values not stored in sa.
b(i(1:k))=val(1:k) Scatter values into correct slots.
END SUBROUTINE sprsdiag_sp

1034 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE sprsdiag_dp(sa,b)
USE nrtype; USE nrutil, ONLY : array_copy,assert_eq
IMPLICIT NONE
TYPE(sprs2_dp), INTENT(IN) :: sa
REAL(DP), DIMENSION(:), INTENT(OUT) :: b
REAL(DP), DIMENSION(size(b)) :: val
INTEGER(I4B) :: k,l,ndum,nerr
INTEGER(I4B), DIMENSION(size(b)) :: i
LOGICAL(LGT), DIMENSION(:), ALLOCATABLE :: mask
ndum=assert_eq(sa%n,size(b),’sprsdiag_dp’)
l=sa%len
allocate(mask(l))
mask = (sa%irow(1:l) == sa%jcol(1:l))
call array_copy(pack(sa%val(1:l),mask),val,k,nerr)
i(1:k)=pack(sa%irow(1:l),mask)
deallocate(mask)
b=0.0
b(i(1:k))=val(1:k)
END SUBROUTINE sprsdiag_dp

f90
call array_copy(pack(sa%val(1:l),mask),val,k,nerr) We use the
nrutil routinearray copy because we don’t know in advance how
many nonzero diagonal elements will be selected bymask. Of course

we could count them with acount(mask), but this is an extra step, and inefficient
on scalar machines.

i(1:k)=pack(sa%irow(1:l),mask) Using the same mask, we pick out the cor-
responding locations of the diagonal elements. No need to usearray copy now,
since we know the value ofk.

b(i(1:k))=val(1:k) Finally, we can put each element in the right place.
Notice that if the sparse matrix is ill-formed, with more than one value stored for the
same diagonal element (which should not happen!) then the vector subscripti(1:k)

is a “many-one section” and its use on the left-hand side is illegal.

⋆ ⋆ ⋆

SUBROUTINE linbcg(b,x,itol,tol,itmax,iter,err)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : atimes,asolve,snrm
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: b Double precision is a good idea in this

routine.REAL(DP), DIMENSION(:), INTENT(INOUT) :: x
INTEGER(I4B), INTENT(IN) :: itol,itmax
REAL(DP), INTENT(IN) :: tol
INTEGER(I4B), INTENT(OUT) :: iter
REAL(DP), INTENT(OUT) :: err
REAL(DP), PARAMETER :: EPS=1.0e-14_dp

Solves A · x = b for x, given b of the same length, by the iterative biconjugate gradient
method. On input x should be set to an initial guess of the solution (or all zeros); itol is
1,2,3, or 4, specifying which convergence test is applied (see text); itmax is the maximum
number of allowed iterations; and tol is the desired convergence tolerance. On output, x
is reset to the improved solution, iter is the number of iterations actually taken, and err
is the estimated error. The matrix A is referenced only through the user-supplied routines
atimes, which computes the product of either A or its transpose on a vector; and asolve,

Chapter B2. Solution of Linear Algebraic Equations 1035

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

which solves Ã · x = b or Ã
T · x = b for some preconditioner matrix Ã (possibly the trivial

diagonal part of A).
INTEGER(I4B) :: n
REAL(DP) :: ak,akden,bk,bkden,bknum,bnrm,dxnrm,xnrm,zm1nrm,znrm
REAL(DP), DIMENSION(size(b)) :: p,pp,r,rr,z,zz
n=assert_eq(size(b),size(x),’linbcg’)
iter=0
call atimes(x,r,0) Calculate initial residual. Input to atimes is

x(1:n), output is r(1:n); the final 0

indicates that the matrix (not its trans-
pose) is to be used.

r=b-r
rr=r

! call atimes(r,rr,0)
Uncomment this line to get the “minimum residual” variant of the algorithm.

select case(itol) Calculate norms for use in stopping criterion,
and initialize z.case(1)

bnrm=snrm(b,itol)
call asolve(r,z,0) Input to asolve is r(1:n), output is z(1:n);

the final 0 indicates that the matrix Ã
(not its transpose) is to be used.

case(2)
call asolve(b,z,0)
bnrm=snrm(z,itol)
call asolve(r,z,0)

case(3:4)
call asolve(b,z,0)
bnrm=snrm(z,itol)
call asolve(r,z,0)
znrm=snrm(z,itol)

case default
call nrerror(’illegal itol in linbcg’)

end select
do Main loop.

if (iter > itmax) exit
iter=iter+1

call asolve(rr,zz,1) Final 1 indicates use of transpose matrix Ã
T
.

bknum=dot_product(z,rr) Calculate coefficient bk and direction vectors
p and pp.if (iter == 1) then

p=z
pp=zz

else
bk=bknum/bkden
p=bk*p+z
pp=bk*pp+zz

end if
bkden=bknum Calculate coefficient ak, new iterate x, and

new residuals r and rr.call atimes(p,z,0)
akden=dot_product(z,pp)
ak=bknum/akden
call atimes(pp,zz,1)
x=x+ak*p
r=r-ak*z
rr=rr-ak*zz
call asolve(r,z,0) Solve Ã ·z = r and check stopping criterion.
select case(itol)

case(1)
err=snrm(r,itol)/bnrm

case(2)
err=snrm(z,itol)/bnrm

case(3:4)
zm1nrm=znrm
znrm=snrm(z,itol)
if (abs(zm1nrm-znrm) > EPS*znrm) then

dxnrm=abs(ak)*snrm(p,itol)
err=znrm/abs(zm1nrm-znrm)*dxnrm

else
err=znrm/bnrm Error may not be accurate, so loop again.
cycle

1036 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
xnrm=snrm(x,itol)
if (err <= 0.5_dp*xnrm) then

err=err/xnrm
else

err=znrm/bnrm Error may not be accurate, so loop again.
cycle

end if
end select
write (*,*) ’ iter=’,iter,’ err=’,err
if (err <= tol) exit

end do
END SUBROUTINE linbcg

f90
case default...call nrerror(’illegal itol in linbcg’) It’s always a
good idea to trap errors when the value of a case construction is supplied
externally to the routine, as here.

FUNCTION snrm(sx,itol)
USE nrtype
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: sx
INTEGER(I4B), INTENT(IN) :: itol
REAL(DP) :: snrm

Compute one of two norms for a vector sx, as signaled by itol. Used by linbcg.
if (itol <= 3) then

snrm=sqrt(dot_product(sx,sx)) Vector magnitude norm.
else

snrm=maxval(abs(sx)) Largest component norm.
end if
END FUNCTION snrm

SUBROUTINE atimes(x,r,itrnsp)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : sprsax,sprstx DOUBLE PRECISION versions of sprsax and sprstx.
USE xlinbcg_data The matrix is accessed through this module.
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: r
INTEGER(I4B), INTENT(IN) :: itrnsp
INTEGER(I4B) :: n
n=assert_eq(size(x),size(r),’atimes’)
if (itrnsp == 0) then

call sprsax(sa,x,r)
else

call sprstx(sa,x,r)
end if
END SUBROUTINE atimes

Chapter B2. Solution of Linear Algebraic Equations 1037

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE asolve(b,x,itrnsp)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : sprsdiag DOUBLE PRECISION version of sprsdiag.
USE xlinbcg_data The matrix is accessed through this module.
REAL(DP), DIMENSION(:), INTENT(IN) :: b
REAL(DP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), INTENT(IN) :: itrnsp
INTEGER(I4B) :: ndum
ndum=assert_eq(size(b),size(x),’asolve’)
call sprsdiag(sa,x)

The matrix Ã is taken to be the diagonal part of A. Since the transpose matrix has the same
diagonal, the flag itrnsp is not used.

if (any(x == 0.0)) call nrerror(’asolve: singular diagonal matrix’)
x=b/x
END SUBROUTINE asolve

f90
The routinesatimes andasolve are examples of user-supplied routines
that interfacelinbcg to a user-supplied method for multiplying the
user’s sparse matrix by a vector, and for solving the preconditioner matrix

equation. Here, we have used these routines to connectlinbcg to the sparse matrix
machinery developed above. If we were instead using the different sparse matrix
machinery of Volume 1, we would modifyatimes andasolve accordingly.

USE xlinbcg_data This user-supplied module is assumed to havesa (the
sparse matrix) in it.

⋆ ⋆ ⋆

FUNCTION vander(x,q)
USE nrtype; USE nrutil, ONLY : assert_eq,outerdiff
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: x,q
REAL(DP), DIMENSION(size(x)) :: vander

Solves the Vandermonde linear system
∑N

i=1 x
k−1
i wi = qk (k = 1, . . . ,N). Input consists

of the vectors x and q of length N . The solution w (also of lengthN) is returned in vander.
REAL(DP), DIMENSION(size(x)) :: c
REAL(DP), DIMENSION(size(x),size(x)) :: a
INTEGER(I4B) :: i,n
n=assert_eq(size(x),size(q),’vander’)
if (n == 1) then

vander(1)=q(1)
else

c(:)=0.0 Initialize array.
c(n)=-x(1) Coefficients of the master polynomial are found

by recursion.do i=2,n
c(n+1-i:n-1)=c(n+1-i:n-1)-x(i)*c(n+2-i:n)
c(n)=c(n)-x(i)

end do
a(:,:)=outerdiff(x,x) Make vector wj =

∏
n�=j(xj − xn).

vander(:)=product(a,dim=2,mask=(a /= 0.0))
Now do synthetic division by x− xj . The division for all xj can be done in parallel (on
a parallel machine), since the : in the loop below is over j.

a(:,1)=-c(1)/x(:)
do i=2,n

a(:,i)=-(c(i)-a(:,i-1))/x(:)
end do
vander(:)=matmul(a,q)/vander(:) Solve linear system and supply denomina-

tor.end if
END FUNCTION vander

1038 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
a=outerdiff...w=product... Here is an example of the coding of equa-
tion (22.1.4). Since in this case the product is over the second index (n

in xj − xn), we havedim=2 in the product.

FUNCTION toeplz(r,y)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: r,y
REAL(SP), DIMENSION(size(y)) :: toeplz

Solves the Toeplitz system
∑N

j=1 R(N+i−j)xj = yi (i = 1, . . . , N). The Toeplitz matrix

need not be symmetric. y (of length N) and r (of length 2N − 1) are input arrays; the
solution x (of length N) is returned in toeplz.

INTEGER(I4B) :: m,m1,n,ndum
REAL(SP) :: sd,sgd,sgn,shn,sxn
REAL(SP), DIMENSION(size(y)) :: g,h,t
n=size(y)
ndum=assert_eq(2*n-1,size(r),’toeplz: ndum’)
if (r(n) == 0.0) call nrerror(’toeplz: initial singular minor’)
toeplz(1)=y(1)/r(n) Initialize for the recursion.
if (n == 1) RETURN
g(1)=r(n-1)/r(n)
h(1)=r(n+1)/r(n)
do m=1,n Main loop over the recursion.

m1=m+1
sxn=-y(m1)+dot_product(r(n+1:n+m),toeplz(m:1:-1))

Compute numerator and denominator for x,
sd=-r(n)+dot_product(r(n+1:n+m),g(1:m))
if (sd == 0.0) exit
toeplz(m1)=sxn/sd whence x.
toeplz(1:m)=toeplz(1:m)-toeplz(m1)*g(m:1:-1)
if (m1 == n) RETURN
sgn=-r(n-m1)+dot_product(r(n-m:n-1),g(1:m)) Compute numerator and denom-

inator for G and H ,shn=-r(n+m1)+dot_product(r(n+m:n+1:-1),h(1:m))
sgd=-r(n)+dot_product(r(n-m:n-1),h(m:1:-1))
if (sd == 0.0 .or. sgd == 0.0) exit
g(m1)=sgn/sgd whence G and H .
h(m1)=shn/sd
t(1:m)=g(1:m)
g(1:m)=g(1:m)-g(m1)*h(m:1:-1)
h(1:m)=h(1:m)-h(m1)*t(m:1:-1)

end do Back for another recurrence.
if (m > n) call nrerror(’toeplz: sanity check failed in routine’)
call nrerror(’toeplz: singular principal minor’)
END FUNCTION toeplz

⋆ ⋆ ⋆

SUBROUTINE choldc(a,p)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: p

Given an N × N positive-definite symmetric matrix a, this routine constructs its Cholesky
decomposition, A = L · LT . On input, only the upper triangle of a need be given; it is
not modified. The Cholesky factor L is returned in the lower triangle of a, except for its
diagonal elements, which are returned in p, a vector of length N .

INTEGER(I4B) :: i,n
REAL(SP) :: summ
n=assert_eq(size(a,1),size(a,2),size(p),’choldc’)
do i=1,n

Chapter B2. Solution of Linear Algebraic Equations 1039

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

summ=a(i,i)-dot_product(a(i,1:i-1),a(i,1:i-1))
if (summ <= 0.0) call nrerror(’choldc failed’) a, with rounding errors, is

not positive definite.p(i)=sqrt(summ)
a(i+1:n,i)=(a(i,i+1:n)-matmul(a(i+1:n,1:i-1),a(i,1:i-1)))/p(i)

end do
END SUBROUTINE choldc

SUBROUTINE cholsl(a,p,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: p,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x

Solves the set of N linear equations A · x = b, where a is a positive-definite symmetric
matrix. a (N × N) and p (of length N) are input as the output of the routine choldc.
Only the lower triangle of a is accessed. b is the input right-hand-side vector, of length N .
The solution vector, also of length N , is returned in x. a and p are not modified and can be
left in place for successive calls with different right-hand sides b. b is not modified unless
you identify b and x in the calling sequence, which is allowed.

INTEGER(I4B) :: i,n
n=assert_eq((/size(a,1),size(a,2),size(p),size(b),size(x)/),’cholsl’)
do i=1,n Solve L · y = b, storing y in x.

x(i)=(b(i)-dot_product(a(i,1:i-1),x(1:i-1)))/p(i)
end do
do i=n,1,-1 Solve LT · x = y.

x(i)=(x(i)-dot_product(a(i+1:n,i),x(i+1:n)))/p(i)
end do
END SUBROUTINE cholsl

⋆ ⋆ ⋆

SUBROUTINE qrdcmp(a,c,d,sing)
USE nrtype; USE nrutil, ONLY : assert_eq,outerprod,vabs
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: c,d
LOGICAL(LGT), INTENT(OUT) :: sing

Constructs the QR decomposition of the n× n matrix a. The upper triangular matrix R is
returned in the upper triangle of a, except for the diagonal elements of R, which are returned
in the n-dimensional vector d. The orthogonal matrix Q is represented as a product of n−1
Householder matrices Q1 . . .Qn−1, where Qj = 1− uj ⊗ uj/cj . The ith component of uj

is zero for i = 1, . . . , j − 1 while the nonzero components are returned in a(i,j) for
i = j, . . . , n. sing returns as true if singularity is encountered during the decomposition,
but the decomposition is still completed in this case.

INTEGER(I4B) :: k,n
REAL(SP) :: scale,sigma
n=assert_eq(size(a,1),size(a,2),size(c),size(d),’qrdcmp’)
sing=.false.
do k=1,n-1

scale=maxval(abs(a(k:n,k)))
if (scale == 0.0) then Singular case.

sing=.true.
c(k)=0.0
d(k)=0.0

else Form Qk and Qk · A.
a(k:n,k)=a(k:n,k)/scale
sigma=sign(vabs(a(k:n,k)),a(k,k))
a(k,k)=a(k,k)+sigma
c(k)=sigma*a(k,k)

1040 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

d(k)=-scale*sigma
a(k:n,k+1:n)=a(k:n,k+1:n)-outerprod(a(k:n,k),&

matmul(a(k:n,k),a(k:n,k+1:n)))/c(k)
end if

end do
d(n)=a(n,n)
if (d(n) == 0.0) sing=.true.
END SUBROUTINE qrdcmp

f90
a(k:n,k+1:n)=a(k:n,k+1:n)-outerprod...matmul... See discussion of equa-
tion (22.1.6).

SUBROUTINE qrsolv(a,c,d,b)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : rsolv
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: c,d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b

Solves the set of n linear equations A · x = b. The n × n matrix a and the n-dimensional
vectors c and d are input as the output of the routine qrdcmp and are not modified. b is
input as the right-hand-side vector of length n, and is overwritten with the solution vector
on output.

INTEGER(I4B) :: j,n
REAL(SP) :: tau
n=assert_eq((/size(a,1),size(a,2),size(b),size(c),size(d)/),’qrsolv’)

do j=1,n-1 Form QT · b.
tau=dot_product(a(j:n,j),b(j:n))/c(j)
b(j:n)=b(j:n)-tau*a(j:n,j)

end do
call rsolv(a,d,b) Solve R · x = QT · b.
END SUBROUTINE qrsolv

SUBROUTINE rsolv(a,d,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(:), INTENT(INOUT) :: b

Solves the set of n linear equations R · x = b, where R is an upper triangular matrix stored
in a and d. The n×n matrix a and the vector d of length n are input as the output of the
routine qrdcmp and are not modified. b is input as the right-hand-side vector of length n,
and is overwritten with the solution vector on output.

INTEGER(I4B) :: i,n
n=assert_eq(size(a,1),size(a,2),size(b),size(d),’rsolv’)
b(n)=b(n)/d(n)
do i=n-1,1,-1

b(i)=(b(i)-dot_product(a(i,i+1:n),b(i+1:n)))/d(i)
end do
END SUBROUTINE rsolv

⋆ ⋆ ⋆

Chapter B2. Solution of Linear Algebraic Equations 1041

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE qrupdt(r,qt,u,v)
USE nrtype; USE nrutil, ONLY : assert_eq,ifirstloc
USE nr, ONLY : rotate,pythag
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: r,qt
REAL(SP), DIMENSION(:), INTENT(INOUT) :: u
REAL(SP), DIMENSION(:), INTENT(IN) :: v

Given the QR decomposition of some n × n matrix, calculates the QR decomposition of
the matrix Q · (R + u ⊗ v). Here r and qt are n × n matrices, u and v are n-dimensional

vectors. Note that QT is input and returned in qt.
INTEGER(I4B) :: i,k,n
n=assert_eq((/size(r,1),size(r,2),size(qt,1),size(qt,2),size(u),&

size(v)/),’qrupdt’)
k=n+1-ifirstloc(u(n:1:-1) /= 0.0) Find largest k such that u(k) �= 0.
if (k < 1) k=1
do i=k-1,1,-1 Transform R + u ⊗ v to upper Hessenberg.

call rotate(r,qt,i,u(i),-u(i+1))
u(i)=pythag(u(i),u(i+1))

end do
r(1,:)=r(1,:)+u(1)*v
do i=1,k-1 Transform upper Hessenberg matrix to upper

triangular.call rotate(r,qt,i,r(i,i),-r(i+1,i))
end do
END SUBROUTINE qrupdt

f90
k=n+1-ifirstloc(u(n:1:-1) /= 0.0) The function ifirstloc in
nrutil returns the first occurrence of.true. in a logical vector.
See the discussion of the analogous routineimaxloc on p. 1017.

SUBROUTINE rotate(r,qt,i,a,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), TARGET, INTENT(INOUT) :: r,qt
INTEGER(I4B), INTENT(IN) :: i
REAL(SP), INTENT(IN) :: a,b

Given n×n matrices r and qt, carry out a Jacobi rotation on rows i and i+1 of each matrix.

a and b are the parameters of the rotation: cos θ = a/
√
a2 + b2, sin θ = b/

√
a2 + b2.

REAL(SP), DIMENSION(size(r,1)) :: temp
INTEGER(I4B) :: n
REAL(SP) :: c,fact,s
n=assert_eq(size(r,1),size(r,2),size(qt,1),size(qt,2),’rotate’)
if (a == 0.0) then Avoid unnecessary overflow or underflow.

c=0.0
s=sign(1.0_sp,b)

else if (abs(a) > abs(b)) then
fact=b/a
c=sign(1.0_sp/sqrt(1.0_sp+fact**2),a)
s=fact*c

else
fact=a/b
s=sign(1.0_sp/sqrt(1.0_sp+fact**2),b)
c=fact*s

end if
temp(i:n)=r(i,i:n) Premultiply r by Jacobi rotation.
r(i,i:n)=c*temp(i:n)-s*r(i+1,i:n)
r(i+1,i:n)=s*temp(i:n)+c*r(i+1,i:n)
temp=qt(i,:) Premultiply qt by Jacobi rotation.
qt(i,:)=c*temp-s*qt(i+1,:)
qt(i+1,:)=s*temp+c*qt(i+1,:)
END SUBROUTINE rotate

1042 Chapter B2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press). [1]

Gu, M., Demmel, J., and Dhillon, I. 1994, LAPACK Working Note #88 (Computer Science De-
partment, University of Tennessee at Knoxville, Preprint UT-CS-94-257; available from
Netlib, or as http://www.cs.utk.edu/∼library/TechReports/1994/ut-cs-94-257.ps.Z). [2] See
also discussion after tqli in Chapter B11.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

References

The references collected here are those of general usefulness, cited in this
volume. For references to the material in Volume 1, see the References section
of that volume.

A first group of references relates to the Fortran 90 language itself:

Metcalf, M., and Reid, J. 1996,Fortran 90/95 Explained(Oxford: Oxford
University Press).

Kerrigan, J.F. 1993,Migrating to Fortran 90(Sebastopol, CA: O’Reilly).

Brainerd, W.S., Goldberg, C.H., and Adams, J.C. 1996,Programmer’s
Guide to Fortran 90, 3rd ed. (New York: Springer-Verlag).

A second group of references relates to, or includes material on, parallel
programming and algorithms:

Akl, S.G. 1989,The Design and Analysis of Parallel Algorithms(Engle-
wood Cliffs, NJ: Prentice Hall).

Bertsekas, D.P., and Tsitsiklis, J.N. 1989,Parallel and Distributed Com-
putation: Numerical Methods(Englewood Cliffs, NJ: Prentice Hall).

Carey, G.F. 1989,Parallel Supercomputing: Methods, Algorithms, and
Applications(New York: Wiley).

Fountain, T.J. 1994,Parallel Computing: Principles and Practice(New
York: Cambridge University Press).

Fox, G.C., et al. 1988,Solving Problems on Concurrent Processors, Volume
I (Englewood Cliffs, NJ: Prentice Hall).

Golub, G., and Ortega, J.M. 1993,Scientific Computing: An Introduction
with Parallel Computing(San Diego, CA: Academic Press).

Golub, G.H., and Van Loan, C.F. 1989,Matrix Computations, 2nd ed.
(Baltimore: Johns Hopkins University Press).

Hockney, R.W., and Jesshope, C.R. 1988,Parallel Computers 2(Bristol
and Philadelphia: Adam Hilger).

Kumar, V., et al. 1994,Introduction to Parallel Computing: Design and
Analysis of Parallel Algorithms(Redwood City, CA: Benjamin/Cum-
mings).

Lewis, T.G., and El-Rewini, H. 1992,Introduction to Parallel Computing
(Englewood Cliffs, NJ: Prentice Hall).

1359

1360 References

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Modi, J.J. 1988,Parallel Algorithms and Matrix Computation(New York:
Oxford University Press).

Smith, J.R. 1993,The Design and Analysis of Parallel Algorithms(New
York: Oxford University Press).

Van de Velde, E. 1994,Concurrent Scientific Computing(New York:
Springer-Verlag).

Van Loan, C.F. 1992,Computational Frameworks for the Fast Fourier
Transform(Philadelphia: S.I.A.M.).

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B3. Interpolation and
Extrapolation

SUBROUTINE polint(xa,ya,x,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq,iminloc,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy

Given arrays xa and ya of length N , and given a value x, this routine returns a value y,
and an error estimate dy. If P (x) is the polynomial of degree N − 1 such that P (xai) =
yai, i = 1, . . . ,N , then the returned value y = P (x).

INTEGER(I4B) :: m,n,ns
REAL(SP), DIMENSION(size(xa)) :: c,d,den,ho
n=assert_eq(size(xa),size(ya),’polint’)
c=ya Initialize the tableau of c’s and d’s.
d=ya
ho=xa-x
ns=iminloc(abs(x-xa)) Find index ns of closest table entry.
y=ya(ns) This is the initial approximation to y.
ns=ns-1
do m=1,n-1 For each column of the tableau,

den(1:n-m)=ho(1:n-m)-ho(1+m:n) we loop over the current c’s and d’s and up-
date them.if (any(den(1:n-m) == 0.0)) &

call nrerror(’polint: calculation failure’)
This error can occur only if two input xa’s are (to within roundoff) identical.

den(1:n-m)=(c(2:n-m+1)-d(1:n-m))/den(1:n-m)
d(1:n-m)=ho(1+m:n)*den(1:n-m) Here the c’s and d’s are updated.
c(1:n-m)=ho(1:n-m)*den(1:n-m)
if (2*ns < n-m) then After each column in the tableau is completed, we decide

which correction, c or d, we want to add to our accu-
mulating value of y, i.e., which path to take through
the tableau—forking up or down. We do this in such a
way as to take the most “straight line” route through the
tableau to its apex, updating ns accordingly to keep track
of where we are. This route keeps the partial approxima-
tions centered (insofar as possible) on the target x. The
last dy added is thus the error indication.

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

end if
y=y+dy

end do
END SUBROUTINE polint

SUBROUTINE ratint(xa,ya,x,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq,iminloc,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy

Given arrays xa and ya of length N , and given a value of x, this routine returns a value of y
and an accuracy estimate dy. The value returned is that of the diagonal rational function,
evaluated at x, that passes through the N points (xai,yai), i = 1 . . .N .

INTEGER(I4B) :: m,n,ns
REAL(SP), DIMENSION(size(xa)) :: c,d,dd,h,t

1043

1044 Chapter B3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), PARAMETER :: TINY=1.0e-25_sp A small number.
n=assert_eq(size(xa),size(ya),’ratint’)
h=xa-x
ns=iminloc(abs(h))
y=ya(ns)
if (x == xa(ns)) then

dy=0.0
RETURN

end if
c=ya
d=ya+TINY The TINY part is needed to prevent

a rare zero-over-zero condition.ns=ns-1
do m=1,n-1

t(1:n-m)=(xa(1:n-m)-x)*d(1:n-m)/h(1+m:n) h will never be zero, since this was
tested in the initializing loop.dd(1:n-m)=t(1:n-m)-c(2:n-m+1)

if (any(dd(1:n-m) == 0.0)) &
call nrerror(’failure in ratint’) This error condition indicates that

the interpolating function has a
pole at the requested value of
x.

dd(1:n-m)=(c(2:n-m+1)-d(1:n-m))/dd(1:n-m)
d(1:n-m)=c(2:n-m+1)*dd(1:n-m)
c(1:n-m)=t(1:n-m)*dd(1:n-m)
if (2*ns < n-m) then

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

end if
y=y+dy

end do
END SUBROUTINE ratint

⋆ ⋆ ⋆

SUBROUTINE spline(x,y,yp1,ypn,y2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : tridag
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(IN) :: yp1,ypn
REAL(SP), DIMENSION(:), INTENT(OUT) :: y2

Given arrays x and y of length N containing a tabulated function, i.e., yi = f(xi), with x1 <
x2 < . . . < xN , and given values yp1 and ypn for the first derivative of the interpolating
function at points 1 and N , respectively, this routine returns an array y2 of length N
that contains the second derivatives of the interpolating function at the tabulated points
xi. If yp1 and/or ypn are equal to 1 × 1030 or larger, the routine is signaled to set the
corresponding boundary condition for a natural spline, with zero second derivative on that
boundary.

INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(x)) :: a,b,c,r
n=assert_eq(size(x),size(y),size(y2),’spline’)
c(1:n-1)=x(2:n)-x(1:n-1) Set up the tridiagonal equations.
r(1:n-1)=6.0_sp*((y(2:n)-y(1:n-1))/c(1:n-1))
r(2:n-1)=r(2:n-1)-r(1:n-2)
a(2:n-1)=c(1:n-2)
b(2:n-1)=2.0_sp*(c(2:n-1)+a(2:n-1))
b(1)=1.0
b(n)=1.0
if (yp1 > 0.99e30_sp) then The lower boundary condition is set either to be “nat-

ural”r(1)=0.0
c(1)=0.0

else or else to have a specified first derivative.
r(1)=(3.0_sp/(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)

Chapter B3. Interpolation and Extrapolation 1045

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

c(1)=0.5
end if The upper boundary condition is set either to be

“natural”if (ypn > 0.99e30_sp) then
r(n)=0.0
a(n)=0.0

else or else to have a specified first derivative.
r(n)=(-3.0_sp/(x(n)-x(n-1)))*((y(n)-y(n-1))/(x(n)-x(n-1))-ypn)
a(n)=0.5

end if
call tridag(a(2:n),b(1:n),c(1:n-1),r(1:n),y2(1:n))
END SUBROUTINE spline

FUNCTION splint(xa,ya,y2a,x)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY: locate
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya,y2a
REAL(SP), INTENT(IN) :: x
REAL(SP) :: splint

Given the arrays xa and ya, which tabulate a function (with the xai’s in increasing or
decreasing order), and given the array y2a, which is the output from spline above, and
given a value of x, this routine returns a cubic-spline interpolated value. The arrays xa, ya
and y2a are all of the same size.

INTEGER(I4B) :: khi,klo,n
REAL(SP) :: a,b,h
n=assert_eq(size(xa),size(ya),size(y2a),’splint’)
klo=max(min(locate(xa,x),n-1),1)

We will find the right place in the table by means of locate’s bisection algorithm. This is
optimal if sequential calls to this routine are at random values of x. If sequential calls are in
order, and closely spaced, one would do better to store previous values of klo and khi and
test if they remain appropriate on the next call.

khi=klo+1 klo and khi now bracket the input value of x.
h=xa(khi)-xa(klo)
if (h == 0.0) call nrerror(’bad xa input in splint’) The xa’s must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
splint=a*ya(klo)+b*ya(khi)+((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.0_sp
END FUNCTION splint

f90
klo=max(min(locate(xa,x),n-1),1) In the Fortran 77 version ofsplint,
there is in-line code to find the location in the table by bisection. Here
we prefer an explicit call tolocate, which performs the bisection. On

some massively multiprocessor (MMP) machines, one might substitute a different,
more parallel algorithm (see next note).

⋆ ⋆ ⋆

FUNCTION locate(xx,x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), INTENT(IN) :: x
INTEGER(I4B) :: locate

Given an array xx(1:N), and given a value x, returns a value j such that x is between
xx(j) and xx(j + 1). xx must be monotonic, either increasing or decreasing. j = 0 or
j = N is returned to indicate that x is out of range.

INTEGER(I4B) :: n,jl,jm,ju
LOGICAL :: ascnd

1046 Chapter B3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

n=size(xx)
ascnd = (xx(n) >= xx(1)) True if ascending order of table, false otherwise.
jl=0 Initialize lower
ju=n+1 and upper limits.
do

if (ju-jl <= 1) exit Repeat until this condition is satisfied.
jm=(ju+jl)/2 Compute a midpoint,
if (ascnd .eqv. (x >= xx(jm))) then

jl=jm and replace either the lower limit
else

ju=jm or the upper limit, as appropriate.
end if

end do
if (x == xx(1)) then Then set the output, being careful with the endpoints.

locate=1
else if (x == xx(n)) then

locate=n-1
else

locate=jl
end if
END FUNCTION locate

The use of bisection is perhaps a sin on a genuinely parallel machine, but
(since the process takes only logarithmicallymany sequential steps) it is at
most asmallsin. One can imagine a “fully parallel” implementation like,

k=iminloc(abs(x-xx))
if ((x < xx(k)) .eqv. (xx(1) < xx(n))) then

locate=k-1
else

locate=k
end if

Problem is, unless the number ofphysical(not logical) processors participating in
the iminloc is larger thanN , the length of the array, this “parallel” code turns a
logN algorithm into one scaling asN , quite an unacceptable inefficiency. So we
prefer to be small sinners and bisect.

SUBROUTINE hunt(xx,x,jlo)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: jlo
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: xx

Given an array xx(1:N), and given a value x, returns a value jlo such that x is between
xx(jlo) and xx(jlo+1). xxmust be monotonic, either increasing or decreasing. jlo = 0

or jlo = N is returned to indicate that x is out of range. jlo on input is taken as the
initial guess for jlo on output.

INTEGER(I4B) :: n,inc,jhi,jm
LOGICAL :: ascnd
n=size(xx)
ascnd = (xx(n) >= xx(1)) True if ascending order of table, false otherwise.
if (jlo <= 0 .or. jlo > n) then Input guess not useful. Go immediately to bisec-

tion.jlo=0
jhi=n+1

else
inc=1 Set the hunting increment.
if (x >= xx(jlo) .eqv. ascnd) then Hunt up:

do
jhi=jlo+inc
if (jhi > n) then Done hunting, since off end of table.

Chapter B3. Interpolation and Extrapolation 1047

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

jhi=n+1
exit

else
if (x < xx(jhi) .eqv. ascnd) exit
jlo=jhi Not done hunting,
inc=inc+inc so double the increment

end if
end do and try again.

else Hunt down:
jhi=jlo
do

jlo=jhi-inc
if (jlo < 1) then Done hunting, since off end of table.

jlo=0
exit

else
if (x >= xx(jlo) .eqv. ascnd) exit
jhi=jlo Not done hunting,
inc=inc+inc so double the increment

end if
end do and try again.

end if
end if Done hunting, value bracketed.
do Hunt is done, so begin the final bisection phase:

if (jhi-jlo <= 1) then
if (x == xx(n)) jlo=n-1
if (x == xx(1)) jlo=1
exit

else
jm=(jhi+jlo)/2
if (x >= xx(jm) .eqv. ascnd) then

jlo=jm
else

jhi=jm
end if

end if
end do
END SUBROUTINE hunt

⋆ ⋆ ⋆

FUNCTION polcoe(x,y)
USE nrtype; USE nrutil, ONLY : assert_eq,outerdiff
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: polcoe

Given same-size arrays x and y containing a tabulated function yi = f(xi), this routine

returns a same-size array of coefficients cj , such that yi =
∑

j cjx
j−1

i .

INTEGER(I4B) :: i,k,n
REAL(SP), DIMENSION(size(x)) :: s
REAL(SP), DIMENSION(size(x),size(x)) :: a
n=assert_eq(size(x),size(y),’polcoe’)
s=0.0 Coefficients si of the master polynomial P (x) are found by

recurrence.s(n)=-x(1)
do i=2,n

s(n+1-i:n-1)=s(n+1-i:n-1)-x(i)*s(n+2-i:n)
s(n)=s(n)-x(i)

end do
a=outerdiff(x,x) Make vector wj =

∏
j �=n(xj −xn), using polcoe for tempo-
rary storage.polcoe=product(a,dim=2,mask=a /= 0.0)

1048 Chapter B3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Now do synthetic division by x − xj . The division for all xj can be done in parallel (on a
parallel machine), since the : in the loop below is over j.

a(:,1)=-s(1)/x(:)
do k=2,n

a(:,k)=-(s(k)-a(:,k-1))/x(:)
end do
s=y/polcoe
polcoe=matmul(s,a) Solve linear system.
END FUNCTION polcoe

For a description of the coding here, see§22.3, especially equation
(22.3.9). You might also want to compare the coding here with the
Fortran 77 version, and also look at the description of the method on

p. 84 in Volume 1. The Fortran 90 implementation here is in fact much closer to that
description than is the Fortran 77 method, which goes through some acrobatics to
roll the synthetic division and matrix multiplication into a single set of two nested
loops. The price we pay, here, is storage for the matrixa. Since the degree of any
useful polynomial is not a very large number, this is essentially no penalty.

Also worth noting is the way that parallelism is brought to the required synthetic
division. For asinglesuch synthetic division (e.g., as accomplished by thenrutil

routinepoly term), parallelism can be obtained only by recursion. Here things are
much simpler, because we need a whole bunch of simultaneous and independent
synthetic divisions; so we can just do them in the obvious, data-parallel, way.

FUNCTION polcof(xa,ya)
USE nrtype; USE nrutil, ONLY : assert_eq,iminloc
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), DIMENSION(size(xa)) :: polcof

Given same-size arrays xa and ya containing a tabulated function yai = f(xai), this routine

returns a same-size array of coefficients cj such that yai =
∑

j cj xa
j−1

i .

INTEGER(I4B) :: j,k,m,n
REAL(SP) :: dy
REAL(SP), DIMENSION(size(xa)) :: x,y
n=assert_eq(size(xa),size(ya),’polcof’)
x=xa
y=ya
do j=1,n

m=n+1-j
call polint(x(1:m),y(1:m),0.0_sp,polcof(j),dy)

Use the polynomial interpolation routine of §3.1 to extrapolate to x = 0.
k=iminloc(abs(x(1:m))) Find the remaining xk of smallest absolute value,
where (x(1:m) /= 0.0) y(1:m)=(y(1:m)-polcof(j))/x(1:m) reduce all the terms,
y(k:m-1)=y(k+1:m) and eliminate xk.
x(k:m-1)=x(k+1:m)

end do
END FUNCTION polcof

⋆ ⋆ ⋆

Chapter B3. Interpolation and Extrapolation 1049

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE polin2(x1a,x2a,ya,x1,x2,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: y,dy

Given arrays x1a of length M and x2a of length N of independent variables, and an M×N
array of function values ya, tabulated at the grid points defined by x1a and x2a, and given
values x1 and x2 of the independent variables, this routine returns an interpolated function
value y, and an accuracy indication dy (based only on the interpolation in the x1 direction,
however).

INTEGER(I4B) :: j,m,ndum
REAL(SP), DIMENSION(size(x1a)) :: ymtmp
REAL(SP), DIMENSION(size(x2a)) :: yntmp
m=assert_eq(size(x1a),size(ya,1),’polin2: m’)
ndum=assert_eq(size(x2a),size(ya,2),’polin2: ndum’)
do j=1,m Loop over rows.

yntmp=ya(j,:) Copy row into temporary storage.
call polint(x2a,yntmp,x2,ymtmp(j),dy) Interpolate answer into temporary stor-

age.end do
call polint(x1a,ymtmp,x1,y,dy) Do the final interpolation.
END SUBROUTINE polin2

⋆ ⋆ ⋆

SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: d1,d2
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), DIMENSION(4,4), INTENT(OUT) :: c

Given arrays y, y1, y2, and y12, each of length 4, containing the function, gradients, and
cross derivative at the four grid points of a rectangular grid cell (numbered counterclockwise
from the lower left), and given d1 and d2, the length of the grid cell in the 1- and 2-
directions, this routine returns the 4× 4 table c that is used by routine bcuint for bicubic
interpolation.

REAL(SP), DIMENSION(16) :: x
REAL(SP), DIMENSION(16,16) :: wt
DATA wt /1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,&

8*0,3,0,-9,6,-2,0,6,-4,10*0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,&
2*0,6,-4,4*0,1,0,-3,2,-2,0,6,-4,1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,&
2,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0,-6,4,2*0,3,-2,0,1,-2,1,5*0,&
-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2,10*0,-3,3,2*0,2,-2,2*0,&
-1,1,6*0,3,-3,2*0,-2,2,5*0,1,-2,1,0,-2,4,-2,0,1,-2,1,9*0,-1,2,&
-1,0,1,-2,1,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0,2,-2,2*0,-1,1/

x(1:4)=y Pack a temporary vector x.
x(5:8)=y1*d1
x(9:12)=y2*d2
x(13:16)=y12*d1*d2
x=matmul(wt,x) Matrix multiply by the stored table.
c=reshape(x,(/4,4/),order=(/2,1/)) Unpack the result into the output table.
END SUBROUTINE bcucof

1050 Chapter B3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
x=matmul(wt,x) ... c=reshape(x,(/4,4/),order=(/2,1/)) It is a power-
ful technique to combine thematmul intrinsic with reshape’s of the
input or output. The idea is to usematmul whenever the calculation

can be cast into the form of a linear mapping between input and output objects.
Here theorder=(/2,1/) parameter specifies that we want the packing to be by
rows, not by Fortran’s default of columns. (In this two-dimensional case, it’s the
equivalent of applyingtranspose.)

SUBROUTINE bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2,ansy,ansy1,ansy2)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : bcucof
IMPLICIT NONE
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), INTENT(IN) :: x1l,x1u,x2l,x2u,x1,x2
REAL(SP), INTENT(OUT) :: ansy,ansy1,ansy2

Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described
in bcucof); x1l and x1u, the lower and upper coordinates of the grid square in the 1-
direction; x2l and x2u likewise for the 2-direction; and x1,x2, the coordinates of the
desired point for the interpolation. The interpolated function value is returned as ansy,
and the interpolated gradient values as ansy1 and ansy2. This routine calls bcucof.

INTEGER(I4B) :: i
REAL(SP) :: t,u
REAL(SP), DIMENSION(4,4) :: c
call bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) Get the c’s.
if (x1u == x1l .or. x2u == x2l) call &

nrerror(’bcuint: problem with input values - boundary pair equal?’)
t=(x1-x1l)/(x1u-x1l) Equation (3.6.4).
u=(x2-x2l)/(x2u-x2l)
ansy=0.0
ansy2=0.0
ansy1=0.0
do i=4,1,-1 Equation (3.6.6).

ansy=t*ansy+((c(i,4)*u+c(i,3))*u+c(i,2))*u+c(i,1)
ansy2=t*ansy2+(3.0_sp*c(i,4)*u+2.0_sp*c(i,3))*u+c(i,2)
ansy1=u*ansy1+(3.0_sp*c(4,i)*t+2.0_sp*c(3,i))*t+c(2,i)

end do
ansy1=ansy1/(x1u-x1l)
ansy2=ansy2/(x2u-x2l)
END SUBROUTINE bcuint

⋆ ⋆ ⋆

SUBROUTINE splie2(x1a,x2a,ya,y2a)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : spline
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: y2a

Given an M × N tabulated function ya, and N tabulated independent variables x2a, this
routine constructs one-dimensional natural cubic splines of the rows of ya and returns the
second derivatives in the M × N array y2a. (The array x1a is included in the argument
list merely for consistency with routine splin2.)

INTEGER(I4B) :: j,m,ndum
m=assert_eq(size(x1a),size(ya,1),size(y2a,1),’splie2: m’)
ndum=assert_eq(size(x2a),size(ya,2),size(y2a,2),’splie2: ndum’)
do j=1,m

call spline(x2a,ya(j,:),1.0e30_sp,1.0e30_sp,y2a(j,:))

Chapter B3. Interpolation and Extrapolation 1051

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Values 1 × 1030 signal a natural spline.
end do
END SUBROUTINE splie2

FUNCTION splin2(x1a,x2a,ya,y2a,x1,x2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : spline,splint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya,y2a
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP) :: splin2

Given x1a, x2a, ya as described in splie2 and y2a as produced by that routine; and given
a desired interpolating point x1,x2; this routine returns an interpolated function value by
bicubic spline interpolation.

INTEGER(I4B) :: j,m,ndum
REAL(SP), DIMENSION(size(x1a)) :: yytmp,y2tmp2
m=assert_eq(size(x1a),size(ya,1),size(y2a,1),’splin2: m’)
ndum=assert_eq(size(x2a),size(ya,2),size(y2a,2),’splin2: ndum’)
do j=1,m

yytmp(j)=splint(x2a,ya(j,:),y2a(j,:),x2)
Perform m evaluations of the row splines constructed by splie2, using the one-dimensional
spline evaluator splint.

end do
call spline(x1a,yytmp,1.0e30_sp,1.0e30_sp,y2tmp2)

Construct the one-dimensional column spline and evaluate it.
splin2=splint(x1a,yytmp,y2tmp2,x1)
END FUNCTION splin2

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B4. Integration of Functions

SUBROUTINE trapzd(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
This routine computes the nth stage of refinement of an extended trapezoidal rule. func is
input as the name of the function to be integrated between limits a and b, also input. When

called with n=1, the routine returns as s the crudest estimate of
∫ b
a f(x)dx. Subsequent

calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding 2n-2

additional interior points. s should not be modified between sequential calls.
REAL(SP) :: del,fsum
INTEGER(I4B) :: it
if (n == 1) then

s=0.5_sp*(b-a)*sum(func((/ a,b /)))
else

it=2**(n-2)
del=(b-a)/it This is the spacing of the points to be added.
fsum=sum(func(arth(a+0.5_sp*del,del,it)))
s=0.5_sp*(s+del*fsum) This replaces s by its refined value.

end if
END SUBROUTINE trapzd

f90
While most of the quadrature routines in this chapter are coded as
functions,trapzd is a subroutine because the arguments that returns the
function value must also be supplied as an input parameter. We could

change the subroutine into a function by declarings to be a local variable with the
SAVE attribute. However, this would prevent us from being able to use the routine
recursively to do multidimensional quadrature (seequad3d on p. 1065). Whens
is left as an argument, a fresh copy is created on each recursive call. As aSAVE’d
variable, by contrast, its value would get overwritten on each call, and the code
would not be properly “re-entrant.”

s=0.5_sp*(b-a)*sum(func((/ a,b /))) Note how we use the(/.../) con-
struct to supply a set of scalar arguments to a vector function.

⋆ ⋆ ⋆

1052

Chapter B4. Integration of Functions 1053

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION qtrap(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : trapzd
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qtrap
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20
REAL(SP), PARAMETER :: EPS=1.0e-6_sp, UNLIKELY=-1.0e30_sp

Returns the integral of the function func from a to b. The parameter EPS should be set to
the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by the trapezoidal rule.

REAL(SP) :: olds
INTEGER(I4B) :: j
olds=UNLIKELY Any number that is unlikely to be the average of the

function at its endpoints will do here.do j=1,JMAX
call trapzd(func,a,b,qtrap,j)
if (j > 5) then Avoid spurious early convergence.

if (abs(qtrap-olds) < EPS*abs(olds) .or. &
(qtrap == 0.0 .and. olds == 0.0)) RETURN

end if
olds=qtrap

end do
call nrerror(’qtrap: too many steps’)
END FUNCTION qtrap

⋆ ⋆ ⋆

FUNCTION qsimp(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : trapzd
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qsimp
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20
REAL(SP), PARAMETER :: EPS=1.0e-6_sp, UNLIKELY=-1.0e30_sp

Returns the integral of the function func from a to b. The parameter EPS should be set to
the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by Simpson’s rule.

INTEGER(I4B) :: j
REAL(SP) :: os,ost,st
ost=UNLIKELY
os= UNLIKELY
do j=1,JMAX

call trapzd(func,a,b,st,j)
qsimp=(4.0_sp*st-ost)/3.0_sp Compare equation (4.2.4).
if (j > 5) then Avoid spurious early convergence.

if (abs(qsimp-os) < EPS*abs(os) .or. &
(qsimp == 0.0 .and. os == 0.0)) RETURN

end if
os=qsimp

1054 Chapter B4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ost=st
end do
call nrerror(’qsimp: too many steps’)
END FUNCTION qsimp

⋆ ⋆ ⋆

FUNCTION qromb(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint,trapzd
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromb
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20,JMAXP=JMAX+1,K=5,KM=K-1
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Returns the integral of the function func from a to b. Integration is performed by Romberg’s
method of order 2K, where, e.g., K=2 is Simpson’s rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation er-
ror estimate; JMAX limits the total number of steps; K is the number of points used in the
extrapolation.

REAL(SP), DIMENSION(JMAXP) :: h,s These store the successive trapezoidal ap-
proximations and their relative stepsizes.REAL(SP) :: dqromb

INTEGER(I4B) :: j
h(1)=1.0
do j=1,JMAX

call trapzd(func,a,b,s(j),j)
if (j >= K) then

call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromb,dqromb)
if (abs(dqromb) <= EPS*abs(qromb)) RETURN

end if
s(j+1)=s(j)
h(j+1)=0.25_sp*h(j) This is a key step: The factor is 0.25 even

though the stepsize is decreased by only
0.5. This makes the extrapolation a poly-
nomial in h2 as allowed by equation (4.2.1),
not just a polynomial in h.

end do
call nrerror(’qromb: too many steps’)
END FUNCTION qromb

⋆ ⋆ ⋆

SUBROUTINE midpnt(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
This routine computes the nth stage of refinement of an extended midpoint rule. func is
input as the name of the function to be integrated between limits a and b, also input. When

Chapter B4. Integration of Functions 1055

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

called with n=1, the routine returns as s the crudest estimate of
∫ b
a f(x)dx. Subsequent

calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding

(2/3)× 3n-1 additional interior points. s should not be modified between sequential calls.
REAL(SP) :: del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
if (n == 1) then

s=(b-a)*sum(func((/0.5_sp*(a+b)/)))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it) The added points alternate in spacing between

del and 2*del.x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x)) The new sum is combined with the old integral

to give a refined integral.end if
END SUBROUTINE midpnt

f90
midpnt is a subroutine and not a function for the same reasons astrapzd.
This is also true for the othermid... routines below.

s=(b-a)*sum(func((/0.5_sp*(a+b)/))) Here we use(/.../) to pass a single
scalar argument to a vector function.

⋆ ⋆ ⋆

FUNCTION qromo(func,a,b,choose)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromo
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

SUBROUTINE choose(funk,aa,bb,s,n)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE choose

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=14,JMAXP=JMAX+1,K=5,KM=K-1
REAL(SP), PARAMETER :: EPS=1.0e-6

Romberg integration on an open interval. Returns the integral of the function func from a
to b, using any specified integrating subroutine choose and Romberg’s method. Normally
choose will be an open formula, not evaluating the function at the endpoints. It is assumed
that choose triples the number of steps on each call, and that its error series contains only

1056 Chapter B4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

even powers of the number of steps. The routines midpnt, midinf, midsql, midsqu,
and midexp are possible choices for choose. The parameters have the same meaning as
in qromb.

REAL(SP), DIMENSION(JMAXP) :: h,s
REAL(SP) :: dqromo
INTEGER(I4B) :: j
h(1)=1.0
do j=1,JMAX

call choose(func,a,b,s(j),j)
if (j >= K) then

call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromo,dqromo)
if (abs(dqromo) <= EPS*abs(qromo)) RETURN

end if
s(j+1)=s(j)
h(j+1)=h(j)/9.0_sp This is where the assumption of step tripling and an even

error series is used.end do
call nrerror(’qromo: too many steps’)
END FUNCTION qromo

⋆ ⋆ ⋆

SUBROUTINE midinf(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that the function is evaluated at evenly spaced
points in 1/x rather than in x. This allows the upper limit bb to be as large and positive
as the computer allows, or the lower limit aa to be as large and negative, but not both.
aa and bb must have the same sign.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
call assert(aa*bb > 0.0, ’midinf args’)
b=1.0_sp/aa These two statements change the limits of integration ac-

cordingly.a=1.0_sp/bb
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func((/0.5_sp*(a+b)/)))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=funk(1.0_sp/x)/x**2
END FUNCTION func

END SUBROUTINE midinf

Chapter B4. Integration of Functions 1057

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
FUNCTION func(x) The change of variable could have been effected by a
statement function inmidinf itself. However, the statement function is
a Fortran 77 feature that is deprecated in Fortran 90 because it does not

allow the benefits of having an explicit interface, i.e., a complete set of specification
statements. Statement functions can always be coded as internal subprograms instead.

SUBROUTINE midsql(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that it allows for an inverse square-root
singularity in the integrand at the lower limit aa.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=sqrt(bb-aa) These two statements change the limits of integration ac-

cordingly.a=0.0
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func((/0.5_sp*(a+b)/)))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=2.0_sp*x*funk(aa+x**2)
END FUNCTION func

END SUBROUTINE midsql

SUBROUTINE midsqu(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that it allows for an inverse square-root
singularity in the integrand at the upper limit bb.

REAL(SP) :: a,b,del

1058 Chapter B4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=sqrt(bb-aa) These two statements change the limits of integration ac-

cordingly.a=0.0
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func((/0.5_sp*(a+b)/)))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=2.0_sp*x*funk(bb-x**2)
END FUNCTION func

END SUBROUTINE midsqu

SUBROUTINE midexp(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that bb is assumed to be infinite (value passed
not actually used). It is assumed that the function funk decreases exponentially rapidly at
infinity.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=exp(-aa) These two statements change the limits of integration ac-

cordingly.a=0.0
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func((/0.5_sp*(a+b)/)))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=funk(-log(x))/x
END FUNCTION func

END SUBROUTINE midexp

⋆ ⋆ ⋆

Chapter B4. Integration of Functions 1059

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp

Given the lower and upper limits of integration x1 and x2, this routine returns arrays x and w
of length N containing the abscissas and weights of the Gauss-LegendreN -point quadrature
formula. The parameter EPS is the relative precision. Note that internal computations are
done in double precision.

INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(DP) :: xl,xm
REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauleg’)
m=(n+1)/2 The roots are symmetric in the interval,

so we only have to find half of them.xm=0.5_dp*(x2+x1)
xl=0.5_dp*(x2-x1)
z=cos(PI_D*(arth(1,1,m)-0.25_dp)/(n+0.5_dp)) Initial approximations to the roots.
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultane-

ously on the roots.where (unfinished)
p1=1.0
p2=0.0

end where
do j=1,n Loop up the recurrence relation to get

the Legendre polynomials evaluated
at z.

where (unfinished)
p3=p2
p2=p1
p1=((2.0_dp*j-1.0_dp)*z*p2-(j-1.0_dp)*p3)/j

end where
end do
p1 now contains the desired Legendre polynomials. We next compute pp, the derivatives,
by a standard relation involving also p2, the polynomials of one lower order.

where (unfinished)
pp=n*(z*p1-p2)/(z*z-1.0_dp)
z1=z
z=z1-p1/pp Newton’s method.
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauleg’)
x(1:m)=xm-xl*z Scale the root to the desired interval,
x(n:n-m+1:-1)=xm+xl*z and put in its symmetric counterpart.
w(1:m)=2.0_dp*xl/((1.0_dp-z**2)*pp**2) Compute the weight
w(n:n-m+1:-1)=w(1:m) and its symmetric counterpart.
END SUBROUTINE gauleg

f90
Often we have an iterative procedure that has to be applied until all
components of a vector have satisfied a convergence criterion. Some
components of the vector might converge sooner than others, and it is

inefficient on a small-scale parallel (SSP) machine to continue iterating on those
components. The general structure we use for such an iteration is exemplified by
the following lines fromgauleg:

LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
...

unfinished=.true.
do its=1,MAXIT

1060 Chapter B4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

where (unfinished)
...

unfinished=(abs(z-z1) > EPS)
end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauleg’)

We use the logical maskunfinished to control which vector components are
processed inside thewhere. The mask gets updated on each iteration by testing
whether any further vector components have converged. When all have converged,
we exit the iteration loop. Finally, we check the value ofits to see whether
the maximum allowed number of iterations was exceeded before all components
converged.

The logical expression controlling thewhere block (in this caseunfinished)
gets evaluated completely on entry into thewhere, and it is then perfectly fine
to modify it inside the block. The modification affects only thenext execution
of the where.

On a strictlyserialmachine, there is of course some penalty associated with the
above scheme: after a vector component converges, its corresponding component
in unfinished is redundantly tested on each further iteration, until the slowest-
converging component is done. If the number of iterations required does not
vary too greatly from component to component, this is a minor, often negligible,
penalty. However, one should be on the alert against algorithms whose worst-case
convergence could differ from typical convergence by orders of magnitude. For
these, one would need to implement a more complicated packing-unpacking scheme.
(See discussion in Chapter B6, especially introduction, p. 1083, and notes for
factrl, p. 1087.)

SUBROUTINE gaulag(x,w,alf)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: alf
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-13_dp

Given alf, the parameter α of the Laguerre polynomials, this routine returns arrays x and w
of length N containing the abscissas and weights of the N -point Gauss-Laguerre quadrature
formula. The abscissas are returned in ascending order. The parameter EPS is the relative
precision. Note that internal computations are done in double precision.

INTEGER(I4B) :: its,j,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(SP) :: anu
REAL(SP), PARAMETER :: C1=9.084064e-01_sp,C2=5.214976e-02_sp,&

C3=2.579930e-03_sp,C4=3.986126e-03_sp
REAL(SP), DIMENSION(size(x)) :: rhs,r2,r3,theta
REAL(DP), DIMENSION(size(x)) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION(size(x)) :: unfinished
n=assert_eq(size(x),size(w),’gaulag’)
anu=4.0_sp*n+2.0_sp*alf+2.0_sp Initial approximations to the roots go into z.
rhs=arth(4*n-1,-4,n)*PI/anu
r3=rhs**(1.0_sp/3.0_sp)
r2=r3**2
theta=r3*(C1+r2*(C2+r2*(C3+r2*C4)))
z=anu*cos(theta)**2
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultaneously on

the roots.where (unfinished)

Chapter B4. Integration of Functions 1061

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

p1=1.0
p2=0.0

end where
do j=1,n Loop up the recurrence relation to get the La-

guerre polynomials evaluated at z.where (unfinished)
p3=p2
p2=p1
p1=((2.0_dp*j-1.0_dp+alf-z)*p2-(j-1.0_dp+alf)*p3)/j

end where
end do
p1 now contains the desired Laguerre polynomials. We next compute pp, the derivatives,
by a standard relation involving also p2, the polynomials of one lower order.

where (unfinished)
pp=(n*p1-(n+alf)*p2)/z
z1=z
z=z1-p1/pp Newton’s formula.
unfinished=(abs(z-z1) > EPS*z)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gaulag’)
x=z Store the root and the weight.
w=-exp(gammln(alf+n)-gammln(real(n,sp)))/(pp*n*p2)
END SUBROUTINE gaulag

The key difficulty in parallelizing this routine starting from the Fortran 77
version is that the initial guesses for the roots of the Laguerre polynomials
were given in terms of previously determined roots. This prevents one

from finding all the roots simultaneously. The solution is to come up with a new
approximation to the roots that is a simple explicit formula, like the formula we
used for the Legendre roots ingauleg.

We start with the approximation toLα
n(x) given in equation (10.15.8) of[1]. We

keep only the first term and ask when it is zero. This gives the following prescription
for the kth rootxk of Lα

n(x): Solve forθ the equation

2θ− sin 2θ =
4n− 4k + 3

4n+ 2α + 2
π (B4.1)

Since1 ≤ k ≤ n andα > −1, we can always find a value such that0 < θ < π/2.
Then the approximation to the root is

xk = (4n + 2α+ 2) cos2 θ (B4.2)

This typically gives 3-digit accuracy, more than enough for the Newton iteration to
be able to refine the root. Unfortunately equation (B4.1) is not an explicit formula
for θ. (You may recognize it as being of the same form as Kepler’s equation in
mechanics.) If we call the right-hand side of (B4.1)y, then we can get an explicit
formula by working out the power series fory1/3 nearθ = 0 (using a computer
algebra program). Next invert the series to giveθ as a function ofy1/3. Finally,
economize the series (see§5.11). The result is the concise approximation

θ = 0.9084064y1/3 + 5.214976× 10−2y + 2.579930× 10−3y5/3

+ 3.986126× 10−3y7/3 (B4.3)

1062 Chapter B4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE gauher(x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-13_dp,PIM4=0.7511255444649425_dp

This routine returns arrays x and w of length N containing the abscissas and weights of
the N -point Gauss-Hermite quadrature formula. The abscissas are returned in descending
order. Note that internal computations are done in double precision.
Parameters: EPS is the relative precision, PIM4 = 1/π1/4.

INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(SP) :: anu
REAL(SP), PARAMETER :: C1=9.084064e-01_sp,C2=5.214976e-02_sp,&

C3=2.579930e-03_sp,C4=3.986126e-03_sp
REAL(SP), DIMENSION((size(x)+1)/2) :: rhs,r2,r3,theta
REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauher’)
m=(n+1)/2 The roots are symmetric about the origin, so we have to

find only half of them.anu=2.0_sp*n+1.0_sp
rhs=arth(3,4,m)*PI/anu
r3=rhs**(1.0_sp/3.0_sp)
r2=r3**2
theta=r3*(C1+r2*(C2+r2*(C3+r2*C4)))
z=sqrt(anu)*cos(theta) Initial approximations to the roots.
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultaneously on the roots.

where (unfinished)
p1=PIM4
p2=0.0

end where
do j=1,n Loop up the recurrence relation to get the Hermite poly-

nomials evaluated at z.where (unfinished)
p3=p2
p2=p1
p1=z*sqrt(2.0_dp/j)*p2-sqrt(real(j-1,dp)/real(j,dp))*p3

end where
end do
p1 now contains the desired Hermite polynomials. We next compute pp, the derivatives,
by the relation (4.5.21) using p2, the polynomials of one lower order.

where (unfinished)
pp=sqrt(2.0_dp*n)*p2
z1=z
z=z1-p1/pp Newton’s formula.
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauher’)
x(1:m)=z Store the root
x(n:n-m+1:-1)=-z and its symmetric counterpart.
w(1:m)=2.0_dp/pp**2 Compute the weight
w(n:n-m+1:-1)=w(1:m) and its symmetric counterpart.
END SUBROUTINE gauher

Once again we need an explicit approximation for the polynomial roots,
this time forHn(x). We can use the same approximation scheme as
for Lα

n(x), since

H2m(x) ∝ L−1/2
m (x2), H2m+1(x) ∝ xL1/2

m (x2) (B4.4)

Chapter B4. Integration of Functions 1063

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Equations (B4.1) and (B4.2) become

2θ − sin 2θ =
4k − 1

2n + 1
π

xk =
√

2n + 1 cos θ
(B4.5)

Herek = 1, 2, . . . , m wherem = [(n + 1)/2], andk = 1 is the largest root. The
negative roots follow from symmetry. The root atx = 0 for odd n is included
in this approximation.

SUBROUTINE gaujac(x,w,alf,bet)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: alf,bet
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp

Given alf and bet, the parameters α and β of the Jacobi polynomials, this routine returns
arrays x and w of length N containing the abscissas and weights of the N -point Gauss-
Jacobi quadrature formula. The abscissas are returned in descending order. The parameter
EPS is the relative precision. Note that internal computations are done in double precision.

INTEGER(I4B) :: its,j,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(DP) :: alfbet,a,c,temp
REAL(DP), DIMENSION(size(x)) :: b,p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION(size(x)) :: unfinished
n=assert_eq(size(x),size(w),’gaujac’)
alfbet=alf+bet Initial approximations to the roots go into z.
z=cos(PI*(arth(1,1,n)-0.25_dp+0.5_dp*alf)/(n+0.5_dp*(alfbet+1.0_dp)))
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultaneously on the roots.

temp=2.0_dp+alfbet
where (unfinished) Start the recurrence with P0 and P1 to avoid a division

by zero when α + β = 0 or −1.p1=(alf-bet+temp*z)/2.0_dp
p2=1.0

end where
do j=2,n Loop up the recurrence relation to get the Jacobi poly-

nomials evaluated at z.a=2*j*(j+alfbet)*temp
temp=temp+2.0_dp
c=2.0_dp*(j-1.0_dp+alf)*(j-1.0_dp+bet)*temp
where (unfinished)

p3=p2
p2=p1
b=(temp-1.0_dp)*(alf*alf-bet*bet+temp*&

(temp-2.0_dp)*z)
p1=(b*p2-c*p3)/a

end where
end do
p1 now contains the desired Jacobi polynomials. We next compute pp, the derivatives,
by a standard relation involving also p2, the polynomials of one lower order.

where (unfinished)
pp=(n*(alf-bet-temp*z)*p1+2.0_dp*(n+alf)*&

(n+bet)*p2)/(temp*(1.0_dp-z*z))
z1=z
z=z1-p1/pp Newton’s formula.
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gaujac’)
x=z Store the root and the weight.

1064 Chapter B4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

w=exp(gammln(alf+n)+gammln(bet+n)-gammln(n+1.0_sp)-&
gammln(n+alf+bet+1.0_sp))*temp*2.0_sp**alfbet/(pp*p2)

END SUBROUTINE gaujac

Now we need an explicit approximation for the roots of the Jacobi poly-
nomialsP (α,β)

n (x). We start with the asymptotic expansion (10.14.10)
of [1]. Setting this to zero gives the formula

x = cos

[

k − 1/4 + α/2

n + (α + β + 1)/2
π

]

(B4.6)

This is better than the formula (22.16.1) in[2], especially at small and moderaten.

⋆ ⋆ ⋆

SUBROUTINE gaucof(a,b,amu0,x,w)
USE nrtype; USE nrutil, ONLY : assert_eq,unit_matrix
USE nr, ONLY : eigsrt,tqli
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), INTENT(IN) :: amu0
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w

Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi
matrix. On input, a and b of length N are the coefficients of the recurrence relation for the

set of monic orthogonal polynomials. The quantity µ0 ≡
∫ b
a W (x) dx is input as amu0. The

abscissas are returned in descending order in array x of length N , with the corresponding
weights in w, also of length N . The arrays a and b are modified. Execution can be speeded
up by modifying tqli and eigsrt to compute only the first component of each eigenvector.

REAL(SP), DIMENSION(size(a),size(a)) :: z
INTEGER(I4B) :: n
n=assert_eq(size(a),size(b),size(x),size(w),’gaucof’)
b(2:n)=sqrt(b(2:n)) Set up superdiagonal of Jacobi matrix.
call unit_matrix(z) Set up identity matrix for tqli to compute eigenvectors.
call tqli(a,b,z)
call eigsrt(a,z) Sort eigenvalues into descending order.
x=a
w=amu0*z(1,:)**2 Equation (4.5.12).
END SUBROUTINE gaucof

⋆ ⋆ ⋆

SUBROUTINE orthog(anu,alpha,beta,a,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: anu,alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT) :: a,b

Computes the coefficients aj and bj , j = 0, . . .N−1, of the recurrence relation for monic or-
thogonal polynomials with weight function W (x) by Wheeler’s algorithm. On input, alpha
and beta contain the 2N − 1 coefficients αj and βj , j = 0, . . . 2N − 2, of the recurrence

Chapter B4. Integration of Functions 1065

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

relation for the chosen basis of orthogonal polynomials. The 2N modified moments νj are
input in anu for j = 0, . . .2N − 1. The first N coefficients are returned in a and b.

INTEGER(I4B) :: k,n,ndum
REAL(SP), DIMENSION(2*size(a)+1,2*size(a)+1) :: sig
n=assert_eq(size(a),size(b),’orthog: n’)
ndum=assert_eq(2*n,size(alpha)+1,size(anu),size(beta)+1,’orthog: ndum’)
sig(1,3:2*n)=0.0 Initialization, Equation (4.5.33).
sig(2,2:2*n+1)=anu(1:2*n)
a(1)=alpha(1)+anu(2)/anu(1)
b(1)=0.0
do k=3,n+1 Equation (4.5.34).

sig(k,k:2*n-k+3)=sig(k-1,k+1:2*n-k+4)+(alpha(k-1:2*n-k+2) &
-a(k-2))*sig(k-1,k:2*n-k+3)-b(k-2)*sig(k-2,k:2*n-k+3) &
+beta(k-1:2*n-k+2)*sig(k-1,k-1:2*n-k+2)

a(k-1)=alpha(k-1)+sig(k,k+1)/sig(k,k)-sig(k-1,k)/sig(k-1,k-1)
b(k-1)=sig(k,k)/sig(k-1,k-1)

end do
END SUBROUTINE orthog

⋆ ⋆ ⋆

f90
As discussed in Volume 1, multidimensionalquadrature can be performed
by calling a one-dimensional quadrature routine along each dimension.
If the same routine is used for all such calls, then the calls are re-

cursive. The filequad3d.f90 contains two modules,quad3d qgaus mod and
quad3d qromb mod. In the first, the basic one-dimensional quadrature routine is a
10-pointGaussian quadrature routine calledqgausand three-dimensional quadrature
is performed by callingquad3d qgaus. In the second, the basic one-dimensional
routine isqromb of §4.3 and the three-dimensional routine isquad3d qromb. The
Gaussian quadrature is simpler but its accuracy is not controllable. The Romberg
integration lets you specify an accuracy, but is apt to be very slow if you try for too
much accuracy. The only difference between the stand-alone version oftrapzd and
the version included here is that we have to add the keywordRECURSIVE. The only
changes from the stand-alone version ofqromb are: We have to addRECURSIVE; we
removetrapzd from the list of routines inUSE nr; we increaseEPS to 3 × 10−6.
Even this value could be too ambitious for difficult functions. You may want to
set JMAX to a smaller value than 20 to avoid burning up a lot of computer time.
Some people advocate using a smallerEPS on the inner quadrature (overz in our
routine) than on the outer quadratures (overx or y). That strategy would require
separate copies ofqromb.

MODULE quad3d_qgaus_mod
USE nrtype
PRIVATE Hide all names from the outside,
PUBLIC quad3d_qgaus except quad3d itself.
REAL(SP) :: xsav,ysav
INTERFACE User-supplied functions.

FUNCTION func(x,y,z) The three-dimensional function to be integrated.
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: func
END FUNCTION func

FUNCTION y1(x)
USE nrtype

1066 Chapter B4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), INTENT(IN) :: x
REAL(SP) :: y1
END FUNCTION y1

FUNCTION y2(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y2
END FUNCTION y2

FUNCTION z1(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z1
END FUNCTION z1

FUNCTION z2(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z2
END FUNCTION z2

END INTERFACE
The routine quad3d qgaus returns as ss the integral of a user-supplied function func
over a three-dimensional region specified by the limits x1, x2, and by the user-supplied
functions y1, y2, z1, and z2, as defined in (4.6.2). Integration is performed by calling
qgaus recursively.

CONTAINS

FUNCTION h(x) This is H of eq. (4.6.5).
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: h
INTEGER(I4B) :: i
do i=1,size(x)

xsav=x(i)
h(i)=qgaus(g,y1(xsav),y2(xsav))

end do
END FUNCTION h

FUNCTION g(y) This is G of eq. (4.6.4).
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(size(y)) :: g
INTEGER(I4B) :: j
do j=1,size(y)

ysav=y(j)
g(j)=qgaus(f,z1(xsav,ysav),z2(xsav,ysav))

end do
END FUNCTION g

FUNCTION f(z) The integrand f(x, y, z) evaluated at fixed x and y.
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: f
f=func(xsav,ysav,z)
END FUNCTION f

RECURSIVE FUNCTION qgaus(func,a,b)
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qgaus
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
REAL(SP) :: xm,xr
REAL(SP), DIMENSION(5) :: dx, w = (/ 0.2955242247_sp,0.2692667193_sp,&

0.2190863625_sp,0.1494513491_sp,0.0666713443_sp /),&
x = (/ 0.1488743389_sp,0.4333953941_sp,0.6794095682_sp,&

Chapter B4. Integration of Functions 1067

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

0.8650633666_sp,0.9739065285_sp /)
xm=0.5_sp*(b+a)
xr=0.5_sp*(b-a)
dx(:)=xr*x(:)
qgaus=xr*sum(w(:)*(func(xm+dx)+func(xm-dx)))
END FUNCTION qgaus

SUBROUTINE quad3d_qgaus(x1,x2,ss)
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: ss
ss=qgaus(h,x1,x2)
END SUBROUTINE quad3d_qgaus
END MODULE quad3d_qgaus_mod

f90
PRIVATE...PUBLIC quad3d qgaus By default, all module entities are ac-
cessible by a routine that uses the module (unless we restrict theUSE

statement withONLY). In this module, the user needs access only to the
routinequad3d qgaus; the variablesxsav, ysav and the proceduresf, g, h, and
qgaus are purely internal. It is good programming practice to prevent duplicate name
conflicts or data overwriting by limiting access to only the desired entities. Here the
PRIVATE statement with no variable names resets the default fromPUBLIC. Then we
include in thePUBLIC statement only the function name we want to be accessible.

REAL(SP) :: xsav,ysav In Fortran 90, we generally avoid declaring global
variables inCOMMON blocks. Instead, we give them complete specifications in a
module. A deficiency of Fortran 90 is that it does not allow pointers to functions. So
here we have to use the fixed-name functionfunc for the function to be integrated
over. If we could have a pointer to a function as a global variable, then we would
just set the pointer to point to the user function (of any name) in the calling program.
Similarly the functionsy1, y2, z1, andz2 could also have any name.

CONTAINS Here follow the internal subprogramsf, g, h, qgaus, and
quad3d qgaus. Note that such internal subprograms are all “visible” to each other,
i.e., their interfaces are mutually explicit, and do not requireINTERFACE statements.

RECURSIVE SUBROUTINE qgaus(func,a,b,ss) The RECURSIVE keyword is re-
quired for the compiler to process correctly any procedure that is invoked again
in its body before the return from the first call has been completed. While some
compilers may let you get away without explicitly informing them that a routine
is recursive, don’t count on it!

MODULE quad3d_qromb_mod
Alternative to quad3d qgaus mod that uses qromb to perform each one-dimensional in-
tegration.

USE nrtype
PRIVATE
PUBLIC quad3d_qromb
REAL(SP) :: xsav,ysav
INTERFACE

FUNCTION func(x,y,z)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: func
END FUNCTION func

FUNCTION y1(x)

1068 Chapter B4. Integration of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y1
END FUNCTION y1

FUNCTION y2(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y2
END FUNCTION y2

FUNCTION z1(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z1
END FUNCTION z1

FUNCTION z2(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z2
END FUNCTION z2

END INTERFACE
CONTAINS

FUNCTION h(x)
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: h
INTEGER(I4B) :: i
do i=1,size(x)

xsav=x(i)
h(i)=qromb(g,y1(xsav),y2(xsav))

end do
END FUNCTION h

FUNCTION g(y)
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(size(y)) :: g
INTEGER(I4B) :: j
do j=1,size(y)

ysav=y(j)
g(j)=qromb(f,z1(xsav,ysav),z2(xsav,ysav))

end do
END FUNCTION g

FUNCTION f(z)
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: f
f=func(xsav,ysav,z)
END FUNCTION f

RECURSIVE FUNCTION qromb(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromb
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20,JMAXP=JMAX+1,K=5,KM=K-1
REAL(SP), PARAMETER :: EPS=3.0e-6_sp
REAL(SP), DIMENSION(JMAXP) :: h,s
REAL(SP) :: dqromb

Chapter B4. Integration of Functions 1069

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B) :: j
h(1)=1.0
do j=1,JMAX

call trapzd(func,a,b,s(j),j)
if (j >= K) then

call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromb,dqromb)
if (abs(dqromb) <= EPS*abs(qromb)) RETURN

end if
s(j+1)=s(j)
h(j+1)=0.25_sp*h(j)

end do
call nrerror(’qromb: too many steps’)
END FUNCTION qromb

RECURSIVE SUBROUTINE trapzd(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
REAL(SP) :: del,fsum
INTEGER(I4B) :: it
if (n == 1) then

s=0.5_sp*(b-a)*sum(func((/ a,b /)))
else

it=2**(n-2)
del=(b-a)/it
fsum=sum(func(arth(a+0.5_sp*del,del,it)))
s=0.5_sp*(s+del*fsum)

end if
END SUBROUTINE trapzd

SUBROUTINE quad3d_qromb(x1,x2,ss)
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: ss
ss=qromb(h,x1,x2)
END SUBROUTINE quad3d_qromb
END MODULE quad3d_qromb_mod

MODULE quad3d qromb_mod The only difference between this module and the
previous one is that all calls toqgaus are replaced by calls toqromb and that the
routineqgaus is replaced byqromb andtrapzd.

CITED REFERENCES AND FURTHER READING:

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. 1953, Higher Transcendental
Functions, Volume II (New York: McGraw-Hill). [1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [2]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B5. Evaluation of Functions

SUBROUTINE eulsum(sum,term,jterm)
USE nrtype; USE nrutil, ONLY : poly_term,reallocate
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: sum
REAL(SP), INTENT(IN) :: term
INTEGER(I4B), INTENT(IN) :: jterm

Incorporates into sum the jterm’th term, with value term, of an alternating series. sum
is input as the previous partial sum, and is output as the new partial sum. The first call
to this routine, with the first term in the series, should be with jterm=1. On the second
call, term should be set to the second term of the series, with sign opposite to that of the
first call, and jterm should be 2. And so on.

REAL(SP), DIMENSION(:), POINTER, SAVE :: wksp
INTEGER(I4B), SAVE :: nterm Number of saved differences in wksp.
LOGICAL(LGT), SAVE :: init=.true.
if (init) then Initialize.

init=.false.
nullify(wksp)

end if
if (jterm == 1) then

nterm=1
wksp=>reallocate(wksp,100)
wksp(1)=term
sum=0.5_sp*term Return first estimate.

else
if (nterm+1 > size(wksp)) wksp=>reallocate(wksp,2*size(wksp))
wksp(2:nterm+1)=0.5_sp*wksp(1:nterm) Update saved quantities by van Wijn-

gaarden’s algorithm.wksp(1)=term
wksp(1:nterm+1)=poly_term(wksp(1:nterm+1),0.5_sp)
if (abs(wksp(nterm+1)) <= abs(wksp(nterm))) then Favorable to increase p,

sum=sum+0.5_sp*wksp(nterm+1)
nterm=nterm+1 and the table becomes longer.

else Favorable to increase n,
sum=sum+wksp(nterm+1) the table doesn’t become longer.

end if
end if
END SUBROUTINE eulsum

f90
This routine uses the functionreallocate in nrutil to define a
temporary workspace and then, if necessary, enlarge the workspace
without destroying the earlier contents. The pointerwksp is declared

with the SAVE attribute. Since Fortran 90 pointers are born “in limbo,” we
cannot immediately test whether they are associated or not. Hence the code
if (init)...nullify(wksp). Then the linewksp=>reallocate(wksp,100) allocates an
array of length 100 and pointswksp to it. On subsequent calls toeulsum, if nterm
ever gets bigger than the size ofwksp, the call toreallocate doubles the size of
wksp and copies the old contents into the new storage.

You could achieve the same effect as the codeif (init)...nullify(wksp)...

wksp=>reallocate(wksp,100) with a simpleallocate(wksp,100). You would then use

1070

Chapter B5. Evaluation of Functions 1071

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

reallocate only for increasing the storage if necessary. Don’t! The advantage
of the above scheme becomes clear if you consider what happens ifeulsum is
invokedtwiceby the calling program to evaluate two different sums. On the second
invocation, whenjterm = 1 again, you would be allocating an already allocated
pointer. This does not generate an error — it simply leaves the original target
inaccessible. Usingreallocate instead not only allocates a new array of length
100, but also detects thatwksp had already been associated. It dutifully (and
wastefully) copies the first 100 elements of the oldwksp into the new storage, and,
more importantly, deallocates the oldwksp, reclaiming its storage. While only two
invocations ofeulsum without intervening deallocation of memory would not cause
a problem, many such invocations might well. We believe that, as a general rule,
the potential for catastrophe from reckless use ofallocate is great enough that you
shouldalwaysdeallocate whenever storage is no longer required.

The unnecessary copying of 100 elements wheneulsum is invoked a second
time could be avoided by makinginit an argument. It hardly seems worth it to us.

For Fortran 90 neophytes, note that unlike inC you have to do nothing special to
get the contents of the storage a pointer is addressing. The compiler figures out from
the context whether you mean the contents, such aswksp(1:nterm), or the address,
such as both occurrences ofwksp in wksp=>reallocate(wksp,100).

wksp(1:nterm+1)=poly_term(wksp(1:nterm+1),0.5_sp) The poly term func-
tion in nrutil tabulates the partial sums of a polynomial, or, equivalently, performs
the synthetic division of a polynomial by a monomial.

Small-scale parallelism ineulsum is achieved straightforwardly by the
use of vector constructions andpoly term (which parallelizes recur-
sively). The routine is not written to take advantage of data parallelism

in the (infrequent) case of wanting to sum many different series simultaneously; nor,
sincewksp is aSAVEd variable, can it be used in many simultaneous instances on a
MIMD machine. (You can easily recode these generalizations if you need them.)

⋆ ⋆ ⋆

SUBROUTINE ddpoly(c,x,pd)
USE nrtype; USE nrutil, ONLY : arth,cumprod,poly_term
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(:), INTENT(OUT) :: pd

Given the coefficients of a polynomial of degree Nc − 1 as an array c(1:Nc) with c(1)
being the constant term, and given a value x, this routine returns the polynomial evaluated
at x as pd(1) and Nd − 1 derivatives as pd(2:Nd).

INTEGER(I4B) :: i,nc,nd
REAL(SP), DIMENSION(size(pd)) :: fac
REAL(SP), DIMENSION(size(c)) :: d
nc=size(c)
nd=size(pd)
d(nc:1:-1)=poly_term(c(nc:1:-1),x)
do i=2,min(nd,nc)

d(nc:i:-1)=poly_term(d(nc:i:-1),x)
end do
pd=d(1:nd)
fac=cumprod(arth(1.0_sp,1.0_sp,nd)) After the first derivative, factorial constants

come in.pd(3:nd)=fac(2:nd-1)*pd(3:nd)
END SUBROUTINE ddpoly

1072 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
d(nc:1:-1)=poly_term(c(nc:1:-1),x) The poly term function in
nrutil tabulates the partial sums of a polynomial, or, equivalently,
performs synthetic division. See§22.3 for a discussion of whyddpoly

is coded this way.

fac=cumprod(arth(1.0_sp,1.0_sp,nd)) Here the functionarth from nrutil

generates the sequence1, 2, 3. . . . The functioncumprod then tabulates the cumu-
lative products, thus making a table of factorials.

Notice thatddpoly doesn’t need an argument to passNd, the number of output
terms desired by the user: It gets that information from the length of the array
pd that the user provides for it to fill. It is a minor curiosity thatpd, declared as
INTENT(OUT), can thus be used, on the sly, to pass someINTENT(IN) information.
(A Fortran 90 brain teaser could be: A subroutinewith onlyINTENT(OUT)arguments
can be called to print any specified integer. How is this done?)

SUBROUTINE poldiv(u,v,q,r)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(OUT) :: q,r

Given the N coefficients of a polynomial in u, and the Nv coefficients of another polynomial
in v, divide the polynomial u by the polynomial v (“u”/“v”) giving a quotient polynomial
whose coefficients are returned in q, and a remainder polynomial whose coefficients are
returned in r. The arrays q and r are of length N , but only the first N −Nv + 1 elements
of q and the first Nv − 1 elements of r are used. The remaining elements are returned
as zero.

INTEGER(I4B) :: i,n,nv
n=assert_eq(size(u),size(q),size(r),’poldiv’)
nv=size(v)
r(:)=u(:)
q(:)=0.0
do i=n-nv,0,-1

q(i+1)=r(nv+i)/v(nv)
r(i+1:nv+i-1)=r(i+1:nv+i-1)-q(i+1)*v(1:nv-1)

end do
r(nv:n)=0.0
END SUBROUTINE poldiv

⋆ ⋆ ⋆

FUNCTION ratval_s(x,cof,mm,kk)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x Note precision! Change to REAL(SP) if desired.
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP) :: ratval_s

Given mm, kk, and cof(1:mm+kk+1), evaluate and return the rational function (cof(1)+

cof(2)x+ · · · + cof(mm+1)xmm)/(1 + cof(mm+2)x+ · · · + cof(mm+kk+1)xkk).
ratval_s=poly(x,cof(1:mm+1))/(1.0_dp+x*poly(x,cof(mm+2:mm+kk+1)))
END FUNCTION ratval_s

f90
This simple routine uses the functionpoly from nrutil to evaluate the
numerator and denominator polynomials. Single- and double-precision
versions,ratval sandratval v, are overloaded onto the nameratval

when the modulenr is used.

Chapter B5. Evaluation of Functions 1073

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION ratval_v(x,cof,mm,kk)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP), DIMENSION(size(x)) :: ratval_v
ratval_v=poly(x,cof(1:mm+1))/(1.0_dp+x*poly(x,cof(mm+2:mm+kk+1)))
END FUNCTION ratval_v

⋆ ⋆ ⋆

The routinesrecur1 and recur2 are new in this volume, and do not have
Fortran 77 counterparts. First- and second-order linear recurrences are implemented
as trivial do-loops on strictly serial machines. On parallel machines, however,
they pose different, and quite interesting, programming challenges. Since many
calculations can be decomposed into recurrences, it is useful to have general,
parallelizable routines available. The algorithms behindrecur1 andrecur2 are
discussed in§22.2.

RECURSIVE FUNCTION recur1(a,b) RESULT(u)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a)) :: u
INTEGER(I4B), PARAMETER :: NPAR_RECUR1=8

Given vectors a of size n and b of size n − 1, returns a vector u that satisfies the first
order linear recurrence u1 = a1, uj = aj + bj−1uj−1, for j = 2, . . . , n. Parallelization is
via a recursive evaluation.

INTEGER(I4B) :: n,j
n=assert_eq(size(a),size(b)+1,’recur1’)
u(1)=a(1)
if (n < NPAR_RECUR1) then Do short vectors as a loop.

do j=2,n
u(j)=a(j)+b(j-1)*u(j-1)

end do
else

Otherwise, combine coefficients and recurse on the even components, then evaluate all
the odd components in parallel.

u(2:n:2)=recur1(a(2:n:2)+a(1:n-1:2)*b(1:n-1:2), &
b(3:n-1:2)*b(2:n-2:2))

u(3:n:2)=a(3:n:2)+b(2:n-1:2)*u(2:n-1:2)
end if
END FUNCTION recur1

f90
RECURSIVE FUNCTION recur1(a,b) RESULT(u) When a recursive function
invokes itself only indirectly through a sequence of function calls, then
the function name can be used for the result just as in a nonrecursive

function. When the function invokes itself directly, however, as inrecur1, then
another name must be used for the result. If you are hazy on the syntax forRESULT,
see the discussion of recursion in§21.5.

⋆ ⋆ ⋆

1074 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION recur2(a,b,c)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c
REAL(SP), DIMENSION(size(a)) :: recur2

Given vectors a of size n and b and c of size n−2, returns a vector u that satisfies the second
order linear recurrence u1 = a1, u2 = a2, uj = aj+bj−2uj−1+cj−2uj−2, for j = 3, . . . , n.
Parallelization is via conversion to a first order recurrence for a two-dimensional vector.

INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(a)-1) :: a1,a2,u1,u2
REAL(SP), DIMENSION(size(a)-2) :: b11,b12,b21,b22
n=assert_eq(size(a),size(b)+2,size(c)+2,’recur2’)
a1(1)=a(1) Set up vector a.
a2(1)=a(2)
a1(2:n-1)=0.0
a2(2:n-1)=a(3:n)
b11(1:n-2)=0.0 Set up matrix b.
b12(1:n-2)=1.0
b21(1:n-2)=c(1:n-2)
b22(1:n-2)=b(1:n-2)
call recur1_v(a1,a2,b11,b12,b21,b22,u1,u2)
recur2(1:n-1)=u1(1:n-1)
recur2(n)=u2(n-1)
CONTAINS

RECURSIVE SUBROUTINE recur1_v(a1,a2,b11,b12,b21,b22,u1,u2)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a1,a2,b11,b12,b21,b22
REAL(SP), DIMENSION(:), INTENT(OUT) :: u1,u2
INTEGER(I4B), PARAMETER :: NPAR_RECUR2=8

Used by recur2 to evaluate first order vector recurrence. Routine is a two-dimensional
vector version of recur1, with matrix multiplication replacing scalar multiplication.

INTEGER(I4B) :: n,j,nn,nn1
REAL(SP), DIMENSION(size(a1)/2) :: aa1,aa2
REAL(SP), DIMENSION(size(a1)/2-1) :: bb11,bb12,bb21,bb22
n=assert_eq((/size(a1),size(a2),size(b11)+1,size(b12)+1,size(b21)+1,&

size(b22)+1,size(u1),size(u2)/),’recur1_v’)
u1(1)=a1(1)
u2(1)=a2(1)
if (n < NPAR_RECUR2) then Do short vectors as a loop.

do j=2,n
u1(j)=a1(j)+b11(j-1)*u1(j-1)+b12(j-1)*u2(j-1)
u2(j)=a2(j)+b21(j-1)*u1(j-1)+b22(j-1)*u2(j-1)

end do
else

Otherwise, combine coefficients and recurse on the even components, then evaluate all
the odd components in parallel.

nn=n/2
nn1=nn-1
aa1(1:nn)=a1(2:n:2)+b11(1:n-1:2)*a1(1:n-1:2)+&

b12(1:n-1:2)*a2(1:n-1:2)
aa2(1:nn)=a2(2:n:2)+b21(1:n-1:2)*a1(1:n-1:2)+&

b22(1:n-1:2)*a2(1:n-1:2)
bb11(1:nn1)=b11(3:n-1:2)*b11(2:n-2:2)+&

b12(3:n-1:2)*b21(2:n-2:2)
bb12(1:nn1)=b11(3:n-1:2)*b12(2:n-2:2)+&

b12(3:n-1:2)*b22(2:n-2:2)
bb21(1:nn1)=b21(3:n-1:2)*b11(2:n-2:2)+&

b22(3:n-1:2)*b21(2:n-2:2)
bb22(1:nn1)=b21(3:n-1:2)*b12(2:n-2:2)+&

b22(3:n-1:2)*b22(2:n-2:2)
call recur1_v(aa1,aa2,bb11,bb12,bb21,bb22,u1(2:n:2),u2(2:n:2))
u1(3:n:2)=a1(3:n:2)+b11(2:n-1:2)*u1(2:n-1:2)+&

Chapter B5. Evaluation of Functions 1075

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

b12(2:n-1:2)*u2(2:n-1:2)
u2(3:n:2)=a2(3:n:2)+b21(2:n-1:2)*u1(2:n-1:2)+&

b22(2:n-1:2)*u2(2:n-1:2)
end if
END SUBROUTINE recur1_v
END FUNCTION recur2

⋆ ⋆ ⋆

FUNCTION dfridr(func,x,h,err)
USE nrtype; USE nrutil, ONLY : assert,geop,iminloc
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,h
REAL(SP), INTENT(OUT) :: err
REAL(SP) :: dfridr
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B),PARAMETER :: NTAB=10
REAL(SP), PARAMETER :: CON=1.4_sp,CON2=CON*CON,BIG=huge(x),SAFE=2.0

Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small,
but rather should be an increment in x over which func changes substantially. An estimate
of the error in the derivative is returned as err.
Parameters: Stepsize is decreased by CON at each iteration. Max size of tableau is set by
NTAB. Return when error is SAFE worse than the best so far.

INTEGER(I4B) :: ierrmin,i,j
REAL(SP) :: hh
REAL(SP), DIMENSION(NTAB-1) :: errt,fac
REAL(SP), DIMENSION(NTAB,NTAB) :: a
call assert(h /= 0.0, ’dfridr arg’)
hh=h
a(1,1)=(func(x+hh)-func(x-hh))/(2.0_sp*hh)
err=BIG
fac(1:NTAB-1)=geop(CON2,CON2,NTAB-1)
do i=2,NTAB Successive columns in the Neville tableau will go to smaller

stepsizes and higher orders of extrapolation.hh=hh/CON
a(1,i)=(func(x+hh)-func(x-hh))/(2.0_sp*hh) Try new, smaller stepsize.
do j=2,i

Compute extrapolations of various orders, requiring no new function evaluations.
a(j,i)=(a(j-1,i)*fac(j-1)-a(j-1,i-1))/(fac(j-1)-1.0_sp)

end do
errt(1:i-1)=max(abs(a(2:i,i)-a(1:i-1,i)),abs(a(2:i,i)-a(1:i-1,i-1)))

The error strategy is to compare each new extrapolation to one order lower, both at the
present stepsize and the previous one.

ierrmin=iminloc(errt(1:i-1))
if (errt(ierrmin) <= err) then If error is decreased, save the improved an-

swer.err=errt(ierrmin)
dfridr=a(1+ierrmin,i)

end if
if (abs(a(i,i)-a(i-1,i-1)) >= SAFE*err) RETURN

If higher order is worse by a significant factor SAFE, then quit early.
end do
END FUNCTION dfridr

1076 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
ierrmin=iminloc(errt(1:i-1)) The functioniminloc in nrutil is use-
ful when you need to know the index of the smallest element in an
array.

⋆ ⋆ ⋆

FUNCTION chebft(a,b,n,func)
USE nrtype; USE nrutil, ONLY : arth,outerprod
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: chebft
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
Chebyshev fit: Given a function func, lower and upper limits of the interval [a,b], and
a maximum degree n, this routine computes the n coefficients ck such that func(x) ≈

[
∑n

k=1 ckTk−1(y)] − c1/2, where y and x are related by (5.8.10). This routine is to be
used with moderately large n (e.g., 30 or 50), the array of c’s subsequently to be truncated
at the smaller value m such that cm+1 and subsequent elements are negligible.

REAL(DP) :: bma,bpa
REAL(DP), DIMENSION(n) :: theta
bma=0.5_dp*(b-a)
bpa=0.5_dp*(b+a)
theta(:)=PI_D*arth(0.5_dp,1.0_dp,n)/n
chebft(:)=matmul(cos(outerprod(arth(0.0_dp,1.0_dp,n),theta)), &

func(real(cos(theta)*bma+bpa,sp)))*2.0_dp/n
We evaluate the function at the n points required by (5.8.7). We accumulate the sum
in double precision for safety.

END FUNCTION chebft

f90
chebft(:)=matmul(...) Here again Fortran 90 produces a very concise
parallelizable formulation that requires some effort to decode. Equation
(5.8.7) is a product of the matrix of cosines, where the rows are indexed

by j and the columns byk, with the vector of function values indexed byk. We
use theouterprod function in nrutil to form the matrix of arguments for the
cosine, and rely on the element-by-element application ofcos to produce the matrix
of cosines.matmul then takes care of the matrix product. A subtlety is that, while
the calculation is being done in double precision to minimize roundoff, the function
is assumed to be supplied in single precision. Thusreal(...,sp) is used to convert
the double precision argument to single precision.

FUNCTION chebev_s(a,b,c,x)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP) :: chebev_s

Chebyshev evaluation: All arguments are input. c is an array of length M of Chebyshev
coefficients, the first M elements of c output from chebft (which must have been called

Chapter B5. Evaluation of Functions 1077

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

with the same a and b). The Chebyshev polynomial
∑M

k=1
ckTk−1(y) − c1/2 is evaluated

at a point y = [x− (b+ a)/2]/[(b−a)/2], and the result is returned as the function value.
INTEGER(I4B) :: j,m
REAL(SP) :: d,dd,sv,y,y2
if ((x-a)*(x-b) > 0.0) call nrerror(’x not in range in chebev_s’)
m=size(c)
d=0.0
dd=0.0
y=(2.0_sp*x-a-b)/(b-a) Change of variable.
y2=2.0_sp*y
do j=m,2,-1 Clenshaw’s recurrence.

sv=d
d=y2*d-dd+c(j)
dd=sv

end do
chebev_s=y*d-dd+0.5_sp*c(1) Last step is different.
END FUNCTION chebev_s

FUNCTION chebev_v(a,b,c,x)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c,x
REAL(SP), DIMENSION(size(x)) :: chebev_v
INTEGER(I4B) :: j,m
REAL(SP), DIMENSION(size(x)) :: d,dd,sv,y,y2
if (any((x-a)*(x-b) > 0.0)) call nrerror(’x not in range in chebev_v’)
m=size(c)
d=0.0
dd=0.0
y=(2.0_sp*x-a-b)/(b-a)
y2=2.0_sp*y
do j=m,2,-1

sv=d
d=y2*d-dd+c(j)
dd=sv

end do
chebev_v=y*d-dd+0.5_sp*c(1)
END FUNCTION chebev_v

f90
The namechebev is overloaded with scalar and vector versions.
chebev v is essentially identical tochebev s except for the decla-
rations of the variables. Fortran 90 does the appropriate scalar or vector

arithmetic in the body of the routine, depending on the type of the variables.

⋆ ⋆ ⋆

FUNCTION chder(a,b,c)
USE nrtype; USE nrutil, ONLY : arth,cumsum
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chder

This routine returns an array of length N containing the Chebyshev coefficients of the
derivative of the function whose coefficients are in the array c. Input are a,b,c, as output

1078 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

from routine chebft §5.8. The desired degree of approximation N is equal to the length
of c supplied.

INTEGER(I4B) :: n
REAL(SP) :: con
REAL(SP), DIMENSION(size(c)) :: temp
n=size(c)
temp(1)=0.0
temp(2:n)=2.0_sp*arth(n-1,-1,n-1)*c(n:2:-1)
chder(n:1:-2)=cumsum(temp(1:n:2)) Equation (5.9.2).
chder(n-1:1:-2)=cumsum(temp(2:n:2))
con=2.0_sp/(b-a)
chder=chder*con Normalize to the interval b-a.
END FUNCTION chder

FUNCTION chint(a,b,c)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chint

This routine returns an array of length N containing the Chebyshev coefficients of the
integral of the function whose coefficients are in the array c. Input are a,b,c, as output
from routine chebft §5.8. The desired degree of approximation N is equal to the length
of c supplied. The constant of integration is set so that the integral vanishes at a.

INTEGER(I4B) :: n
REAL(SP) :: con
n=size(c)
con=0.25_sp*(b-a) Factor that normalizes to the interval b-a.
chint(2:n-1)=con*(c(1:n-2)-c(3:n))/arth(1,1,n-2) Equation (5.9.1).
chint(n)=con*c(n-1)/(n-1) Special case of (5.9.1) for n.
chint(1)=2.0_sp*(sum(chint(2:n:2))-sum(chint(3:n:2))) Set the constant of inte-

gration.END FUNCTION chint

f90
If you look at equation (5.9.1) for the Chebyshev coefficients of the
integral of a function, you will seec i−1 andci+1 and be tempted to use
eoshift. We think it is almost always better to use array sections instead,

as in the code above, especially if your code will ever run on a serial machine.

⋆ ⋆ ⋆

FUNCTION chebpc(c)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chebpc

Chebyshev polynomial coefficients. Given a coefficient array c of length N , this routine

returns a coefficient array d of length N such that
∑N

k=1 dky
k−1 =

∑N
k=1 ckTk−1(y) −

c1/2. The method is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather
than arithmetically.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(c)) :: dd,sv
n=size(c)
chebpc=0.0
dd=0.0
chebpc(1)=c(n)
do j=n-1,2,-1

sv(2:n-j+1)=chebpc(2:n-j+1)
chebpc(2:n-j+1)=2.0_sp*chebpc(1:n-j)-dd(2:n-j+1)
dd(2:n-j+1)=sv(2:n-j+1)

Chapter B5. Evaluation of Functions 1079

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sv(1)=chebpc(1)
chebpc(1)=-dd(1)+c(j)
dd(1)=sv(1)

end do
chebpc(2:n)=chebpc(1:n-1)-dd(2:n)
chebpc(1)=-dd(1)+0.5_sp*c(1)
END FUNCTION chebpc

⋆ ⋆ ⋆

SUBROUTINE pcshft(a,b,d)
USE nrtype; USE nrutil, ONLY : geop
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d

Polynomial coefficient shift. Given a coefficient array d of length N , this routine generates

a coefficient array g of the same length such that
∑N

k=1 dky
k−1 =

∑N
k=1 gkx

k−1, where
x and y are related by (5.8.10), i.e., the interval −1 < y < 1 is mapped to the interval
a < x < b. The array g is returned in d.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(d)) :: dd
REAL(SP) :: x
n=size(d)
dd=d*geop(1.0_sp,2.0_sp/(b-a),n)
x=-0.5_sp*(a+b)
d(1)=dd(n)
d(2:n)=0.0
do j=n-1,1,-1 We accomplish the shift by synthetic division, that miracle of

high-school algebra.d(2:n+1-j)=d(2:n+1-j)*x+d(1:n-j)
d(1)=d(1)*x+dd(j)

end do
END SUBROUTINE pcshft

There is a subtle, but major, distinction between the synthetic division
algorithm used in the Fortran 77 version ofpcshft and that used above.
In the Fortran 77 version, the synthetic division (translated to Fortran

90 notation) is

d(1:n)=dd(1:n)
do j=1,n-1

do k=n-1,j,-1
d(k)=x*d(k+1)+d(k)

end do
end do

while, in Fortran 90, it is

d(1)=dd(n)
d(2:n)=0.0
do j=n-1,1,-1

d(2:n+1-j)=d(2:n+1-j)*x+d(1:n-j)
d(1)=d(1)*x+dd(j)

end do

As explained in§22.3, these are algebraically — but not algorithmically — equivalent.
The inner loop in the Fortran 77 version does not parallelize, because eachk value
uses the result of the previous one. In fact, thek loop is a synthetic division, which
can be parallelizedrecursively(as in thenrutil routinepoly term), but not simply

1080 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

vectorized. In the Fortran 90 version, since not one butn-1 successive synthetic
divisions are to be performed (by the outer loop), it is possible to reorganize the
calculation to allow vectorization.

⋆ ⋆ ⋆

FUNCTION pccheb(d)
USE nrtype; USE nrutil, ONLY : arth,cumprod,geop
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(size(d)) :: pccheb

Inverse of routine chebpc: given an array of polynomial coefficients d, returns an equivalent
array of Chebyshev coefficients of the same length.

INTEGER(I4B) :: k,n
REAL(SP), DIMENSION(size(d)) :: denom,numer,pow
n=size(d)
pccheb(1)=2.0_sp*d(1)
pow=geop(1.0_sp,2.0_sp,n) Powers of 2.
numer(1)=1.0 Combinatorial coefficients computed as numer/denom.
denom(1)=1.0
denom(2:(n+3)/2)=cumprod(arth(1.0_sp,1.0_sp,(n+1)/2))
pccheb(2:n)=0.0
do k=2,n Loop over orders of x in the polynomial.

numer(2:(k+3)/2)=cumprod(arth(k-1.0_sp,-1.0_sp,(k+1)/2))
pccheb(k:1:-2)=pccheb(k:1:-2)+&

d(k)/pow(k-1)*numer(1:(k+1)/2)/denom(1:(k+1)/2)
end do
END FUNCTION pccheb

⋆ ⋆ ⋆

SUBROUTINE pade(cof,resid)
USE nrtype
USE nr, ONLY : lubksb,ludcmp,mprove
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(INOUT) :: cof DP for consistency with ratval.
REAL(SP), INTENT(OUT) :: resid

Given cof(1:2N + 1), the leading terms in the power series expansion of a function, solve
the linear Padé equations to return the coefficients of a diagonal rational function approxi-
mation to the same function, namely (cof(1)+ cof(2)x + · · · + cof(N + 1)xN)/(1 +
cof(N + 2)x + · · · + cof(2N + 1)xN). The value resid is the norm of the residual
vector; a small value indicates a well-converged solution.

INTEGER(I4B) :: k,n
INTEGER(I4B), DIMENSION((size(cof)-1)/2) :: indx
REAL(SP), PARAMETER :: BIG=1.0e30_sp A big number.
REAL(SP) :: d,rr,rrold
REAL(SP), DIMENSION((size(cof)-1)/2) :: x,y,z
REAL(SP), DIMENSION((size(cof)-1)/2,(size(cof)-1)/2) :: q,qlu
n=(size(cof)-1)/2
x=cof(n+2:2*n+1) Set up matrix for solving.
y=x
do k=1,n

q(:,k)=cof(n+2-k:2*n+1-k)
end do
qlu=q
call ludcmp(qlu,indx,d) Solve by LU decomposition and backsubsti-

tution.call lubksb(qlu,indx,x)
rr=BIG
do Important to use iterative improvement, since

the Padé equations tend to be ill-conditioned.rrold=rr

Chapter B5. Evaluation of Functions 1081

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

z=x
call mprove(q,qlu,indx,y,x)
rr=sum((z-x)**2) Calculate residual.
if (rr >= rrold) exit If it is no longer improving, call it quits.

end do
resid=sqrt(rrold)
do k=1,n Calculate the remaining coefficients.

y(k)=cof(k+1)-dot_product(z(1:k),cof(k:1:-1))
end do
cof(2:n+1)=y Copy answers to output.
cof(n+2:2*n+1)=-z
END SUBROUTINE pade

⋆ ⋆ ⋆

SUBROUTINE ratlsq(func,a,b,mm,kk,cof,dev)
USE nrtype; USE nrutil, ONLY : arth,geop
USE nr, ONLY : ratval,svbksb,svdcmp
IMPLICIT NONE
REAL(DP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(:), INTENT(OUT) :: cof
REAL(DP), INTENT(OUT) :: dev
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: NPFAC=8,MAXIT=5
REAL(DP), PARAMETER :: BIG=1.0e30_dp

Returns in cof(1:mm+kk+1) the coefficients of a rational function approximation to the
function func in the interval (a,b). Input quantities mm and kk specify the order of the
numerator and denominator, respectively. The maximum absolute deviation of the approx-
imation (insofar as is known) is returned as dev. Note that double-precision versions of
svdcmp and svbksb are called.

INTEGER(I4B) :: it,ncof,npt,npth
REAL(DP) :: devmax,e,theta
REAL(DP), DIMENSION((mm+kk+1)*NPFAC) :: bb,ee,fs,wt,xs
REAL(DP), DIMENSION(mm+kk+1) :: coff,w
REAL(DP), DIMENSION(mm+kk+1,mm+kk+1) :: v
REAL(DP), DIMENSION((mm+kk+1)*NPFAC,mm+kk+1) :: u,temp
ncof=mm+kk+1
npt=NPFAC*ncof Number of points where function is evaluated,

i.e., fineness of the mesh.npth=npt/2
dev=BIG
theta=PIO2_D/(npt-1)
xs(1:npth-1)=a+(b-a)*sin(theta*arth(0,1,npth-1))**2

Now fill arrays with mesh abscissas and function values. At each end, use formula that mini-
mizes roundoff sensitivity in xs.

xs(npth:npt)=b-(b-a)*sin(theta*arth(npt-npth,-1,npt-npth+1))**2
fs=func(xs)
wt=1.0 In later iterations we will adjust these weights to

combat the largest deviations.ee=1.0
e=0.0
do it=1,MAXIT Loop over iterations.

bb=wt*(fs+sign(e,ee))
Key idea here: Fit to fn(x) + e where the deviation is positive, to fn(x) − e where it is
negative. Then e is supposed to become an approximation to the equal-ripple deviation.

temp=geop(spread(1.0_dp,1,npt),xs,ncof)

1082 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Note that vector form of geop (returning matrix) is being used.
u(:,1:mm+1)=temp(:,1:mm+1)*spread(wt,2,mm+1)

Set up the “design matrix” for the least squares fit.
u(:,mm+2:ncof)=-temp(:,2:ncof-mm)*spread(bb,2,ncof-mm-1)
call svdcmp(u,w,v)

Singular Value Decomposition. In especially singular or difficult cases, one might here
edit the singular values w(1:ncof), replacing small values by zero.

call svbksb(u,w,v,bb,coff)
ee=ratval(xs,coff,mm,kk)-fs Tabulate the deviations and revise the weights.
wt=abs(ee) Use weighting to emphasize most deviant points.
devmax=maxval(wt)
e=sum(wt)/npt Update e to be the mean absolute deviation.
if (devmax <= dev) then Save only the best coefficient set found.

cof=coff
dev=devmax

end if
write(*,10) it,devmax

end do
10 format (’ ratlsq iteration=’,i2,’ max error=’,1p,e10.3)

END SUBROUTINE ratlsq

f90
temp=geop(spread(1.0_dp,1,npt),xs,ncof) The design matrixuij is de-
fined for i = 1, . . . , npts by

uij =

{

wix
j−1
i , j = 1, . . . , m+ 1

−bix
j−m−2
i , j = m+ 2, . . . , n

(B5.12)

The first case in equation (B5.12) is computed in parallel by constructing the matrix
temp equal to

1 x1 x2
1 · · ·

1 x2 x2
2 · · ·

1 x3 x2
3 · · ·

...
...

...
. . .

and then multiplying by the matrixspread(wt,2,mm+1), which is just

w1 w1 w1 · · ·

w2 w2 w2 · · ·

w3 w3 w3 · · ·
...

...
...

. . .

(Remember that multiplication using* means element-by-element multiplication,
not matrix multiplication.) A similar construction is used for the second part of
the design matrix.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B6. Special Functions

f90
A Fortran 90 intrinsic function such assin(x) is both generic and
elemental. Generic means that the argumentx can be any of multiple
intrinsic data types and kind values (in the case ofsin, any real or

complex kind). Elemental means thatx need not be a scalar, but can be an array of
any rank and shape, in which case the calculation ofsin is performed independently
for each element.

Ideally, when we implement more complicated special functions in Fortran 90,
as we do in this chapter, we would make them, too, both generic and elemental.
Unfortunately, the language standard does not completely allow this. User-defined
elemental functions are prohibited in Fortran 90, though they will be allowed in
Fortran 95. And, there is no fully automatic way of providing for a single routine
to allow arguments of multiple data types or kinds — nothing like C++’s “class
templates,” for example.

However, don’t give up hope! Fortran 90 does provide a powerful mechanism
for overloading, which can be used (perhaps not always with a maximum of
convenience) tosimulateboth generic and elemental function features. In most
cases, when we implement a special function with a scalar argument,gammln(x)

say, we will also implement a corresponding vector-valued function of vector
argument that evaluates the special function for each component of the vector
argument. We will then overload the scalar and vector version of the function onto
the same function name. For example, within thenr module are the lines

INTERFACE gammln
FUNCTION gammln_s(xx)
USE nrtype
REAL(SP), INTENT(IN) :: xx
REAL(SP) :: gammln_s
END FUNCTION gammln_s

FUNCTION gammln_v(xx)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: gammln_v
END FUNCTION gammln_v

END INTERFACE

which can be included by a statement like “USE nr, ONLY: gammln,” and then allow
you to writegammln(x)without caring (or even thinking about) whetherx is a scalar
or a vector. If you want arguments of even higher rank (matrices, and so forth), you
can provide these yourself, based on our models, and overload them, too.

That takes care of “elemental”; what about “generic”? Here, too, overloading
provides an acceptable, if not perfect, solution. Where double-precision versions of
special functions are needed, you can in many cases easily construct them from our
provided routines by changing the variable kinds (and any necessary convergence

1083

1084 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

parameters), and then additionally overload them onto the same generic function
names. (In general, in the interest of brevity, we will not ourselves do this for the
functions in this chapter.)

At first meeting, Fortran 90’s overloading capability may seem trivial, or
merely cosmetic, to the Fortran 77 programmer; but one soon comes to rely on
it as an important conceptual simplification. Programming at a “higher level of
abstraction” is usually more productive than spending time “bogged down in the
mud.” Furthermore, the use of overloading is generally fail-safe: If you invoke a
generic name with arguments of shapes or types for which a specific routine has not
been defined, the compiler tells you about it.

We won’t reprint the modulenr’s interface blocks for all the routines in this
chapter. When you see routines namedsomething s andsomething v, below,
you can safely assume that the generic namesomething is defined in the module
nr and overloaded with the two specific routine names. A full alphabetical listing of
all the interface blocks innr is given in Appendix C2.

Given our heavy investment, in this chapter, in overloadable vector-
valued special function routines, it is worth discussing whether this effort
is simply a stopgap measure for Fortran 90, soon to be made obsolete

by Fortran 95’s provision of user-definableELEMENTAL procedures. The answer is
“not necessarily,” and takes us into some speculation about the future of SIMD,
versus MIMD, computing.

Elemental procedures, while applying the same executable code to each element,
do not insist that it be feasible to perform all the parallel calculations in lockstep. That
is, elemental procedures can have tests and branches (if-then-else constructions)
that result in different elements being calculated by totally different pieces of code,
in a fashion that can only be determined at run time. For true 100% MIMD (multiple
instruction, multiple data) machines, this is not a problem: individual processors do
the individual element calculations asynchronously.

However, virtually none of today’s (and likely tomorrow’s) largest-scale parallel
supercomputers are 100% MIMD in this way. While modern parallel supercomputers
increasingly have MIMD features, they continue to reward the use of SIMD (single
instruction, multiple data) code with greater computational speed, often because of
hardware pipelining or vector processing features within the individual processors.
The use of Fortran 90 (or, for that matter Fortran 95) in a data-parallel or SIMD mode
is thus by no means superfluous, or obviated by Fortran 95’sELEMENTALconstruction.

The problem we face is that parallel calculation of special function values often
doesn’t fit well into the SIMD mold: Since the calculation of the value of a special
function typically requires the convergence of an iterative process, as well as possible
branches for different values of arguments, it cannotin generalbe done efficiently
with “lockstep” SIMD programming.

Luckily, in particular cases, including most (but not all) of the functions in this
chapter, one can in fact make reasonably good parallel implementations with the
SIMD tools provided by the language. We will in fact see a number of different
tricks for accomplishing this in the code that follows.

We are interested in demonstrating SIMD techniques, but we are not completely
impractical. None of the data-parallel implementations given below are too inefficient
on a scalar machine, and some may in fact be faster than Fortran 95’sELEMENTAL

Chapter B6. Special Functions 1085

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

alternative, or than do-loops over calls to the scalar version of the function. On a
scalar machine, how can this be? We have already, above, hinted at the answer: (i)
most modern scalar processors can overlap instructions to some degree, and data-
parallel coding often provides compilers with the ability to accomplish this more
efficiently; and (ii) data-parallel code can sometimes give better cache utilization.

⋆ ⋆ ⋆

FUNCTION gammln_s(xx)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xx
REAL(SP) :: gammln_s

Returns the value ln[Γ(xx)] for xx > 0.
REAL(DP) :: tmp,x

Internal arithmetic will be done in double precision, a nicety that you can omit if five-figure
accuracy is good enough.

REAL(DP) :: stp = 2.5066282746310005_dp
REAL(DP), DIMENSION(6) :: coef = (/76.18009172947146_dp,&

-86.50532032941677_dp,24.01409824083091_dp,&
-1.231739572450155_dp,0.1208650973866179e-2_dp,&
-0.5395239384953e-5_dp/)

call assert(xx > 0.0, ’gammln_s arg’)
x=xx
tmp=x+5.5_dp
tmp=(x+0.5_dp)*log(tmp)-tmp
gammln_s=tmp+log(stp*(1.000000000190015_dp+&

sum(coef(:)/arth(x+1.0_dp,1.0_dp,size(coef))))/x)
END FUNCTION gammln_s

FUNCTION gammln_v(xx)
USE nrtype; USE nrutil, ONLY: assert
IMPLICIT NONE
INTEGER(I4B) :: i
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: gammln_v
REAL(DP), DIMENSION(size(xx)) :: ser,tmp,x,y
REAL(DP) :: stp = 2.5066282746310005_dp
REAL(DP), DIMENSION(6) :: coef = (/76.18009172947146_dp,&

-86.50532032941677_dp,24.01409824083091_dp,&
-1.231739572450155_dp,0.1208650973866179e-2_dp,&
-0.5395239384953e-5_dp/)

if (size(xx) == 0) RETURN
call assert(all(xx > 0.0), ’gammln_v arg’)
x=xx
tmp=x+5.5_dp
tmp=(x+0.5_dp)*log(tmp)-tmp
ser=1.000000000190015_dp
y=x
do i=1,size(coef)

y=y+1.0_dp
ser=ser+coef(i)/y

end do
gammln_v=tmp+log(stp*ser/x)
END FUNCTION gammln_v

1086 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
call assert(xx > 0.0, ’gammln_s arg’) We use thenrutil routine
assert for functions that have restrictions on the allowed range of
arguments. One could instead have used anif statement with a call

to nrerror; but we think that the uniformity of usingassert, and the fact
that its logical arguments read the “desired” way, not the “erroneous” way, make
for a clearer programming style. In the vector version, theassert line is:
call assert(all(xx > 0.0), ’gammln_v arg’)

Notice that the scalar and vector versions achieve parallelism in quite
different ways, something that we will see many times in this chapter.
In the scalar case, parallelism (at least small-scale) is achieved through

constructions like

sum(coef(:)/arth(x+1.0_dp,1.0_dp,size(coef)))

Here vector utilities construct the seriesx + 1, x + 2, . . . and then sum a series
with these terms in the denominators and a vector of coefficients in the numerators.
(This code may seem terse to Fortran 90 novices, but once you get used to it, it
is quite clear to read.)

In the vector version, by contrast, parallelism is achieved across the components
of the vector argument, and the above series is evaluated sequentially as a do-loop.
Obviously the assumption is that the length of the vector argument is much longer
than the very modest number (here, 6) of terms in the sum.

⋆ ⋆ ⋆

FUNCTION factrl_s(n)
USE nrtype; USE nrutil, ONLY : arth,assert,cumprod
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: factrl_s

Returns the value n! as a floating-point number.
INTEGER(I4B), SAVE :: ntop=0
INTEGER(I4B), PARAMETER :: NMAX=32
REAL(SP), DIMENSION(NMAX), SAVE :: a Table of stored values.
call assert(n >= 0, ’factrl_s arg’)
if (n < ntop) then Already in table.

factrl_s=a(n+1)
else if (n < NMAX) then Fill in table up to NMAX.

ntop=NMAX
a(1)=1.0
a(2:NMAX)=cumprod(arth(1.0_sp,1.0_sp,NMAX-1))
factrl_s=a(n+1)

else Larger value than size of table is required.
Actually, this big a value is going to over-
flow on many computers, but no harm in
trying.

factrl_s=exp(gammln(n+1.0_sp))
end if
END FUNCTION factrl_s

f90
cumprod(arth(1.0_sp,1.0_sp,NMAX-1)) By now you shouldrecognize this
as an idiom for generating a vector of consecutive factorials. The
routinescumprod andarth, both innrutil, are both capable of being

parallelized, e.g., by recursion, so this idiom is potentially faster than an in-line
do-loop.

Chapter B6. Special Functions 1087

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION factrl_v(n)
USE nrtype; USE nrutil, ONLY : arth,assert,cumprod
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factrl_v
LOGICAL(LGT), DIMENSION(size(n)) :: mask
INTEGER(I4B), SAVE :: ntop=0
INTEGER(I4B), PARAMETER :: NMAX=32
REAL(SP), DIMENSION(NMAX), SAVE :: a
call assert(all(n >= 0), ’factrl_v arg’)
if (ntop == 0) then

ntop=NMAX
a(1)=1.0
a(2:NMAX)=cumprod(arth(1.0_sp,1.0_sp,NMAX-1))

end if
mask = (n >= NMAX)
factrl_v=unpack(exp(gammln(pack(n,mask)+1.0_sp)),mask,0.0_sp)
where (.not. mask) factrl_v=a(n+1)
END FUNCTION factrl_v

unpack(exp(gammln(pack(n,mask)+1.0_sp)),mask,0.0_sp) Here we meet
the first of several solutions to a common problem: How shall we get
answers, from an external vector-valued function, for just asubsetof

vector arguments, those defined by a mask? Here we use what we call the “pack-
unpack” solution: Pack up all the arguments using the mask, send them to the
function, and unpack the answers that come back. This packing and unpacking is
not without cost (highly dependent on machine architecture, to be sure), but we hope
to “earn it back” in the parallelism of the external function.

where (.not. mask) factrl_v=a(n+1) In some cases we might take care of the
.not.mask case directly within theunpack construction, using its third (“FIELD=”)
argument to provide the not-unpacked values. However, there is no guarantee that
the compiler won’t evaluate all components of the “FIELD=” array, if it finds it
efficient to do so. Here, since the index ofa(n+1) would be out of range, we can’t
do it this way. Thus the separatewhere statement.

⋆ ⋆ ⋆

FUNCTION bico_s(n,k)
USE nrtype
USE nr, ONLY : factln
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n,k
REAL(SP) :: bico_s

Returns the binomial coefficient
(

n
k

)

as a floating-point number.
bico_s=nint(exp(factln(n)-factln(k)-factln(n-k)))
The nearest-integer function cleans up roundoff error for smaller values of n and k.

END FUNCTION bico_s

1088 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION bico_v(n,k)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : factln
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n,k
REAL(SP), DIMENSION(size(n)) :: bico_v
INTEGER(I4B) :: ndum
ndum=assert_eq(size(n),size(k),’bico_v’)
bico_v=nint(exp(factln(n)-factln(k)-factln(n-k)))
END FUNCTION bico_v

⋆ ⋆ ⋆

FUNCTION factln_s(n)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: factln_s

Returns ln(n!).
INTEGER(I4B), PARAMETER :: TMAX=100
REAL(SP), DIMENSION(TMAX), SAVE :: a
LOGICAL(LGT), SAVE :: init=.true.
if (init) then Initialize the table.

a(1:TMAX)=gammln(arth(1.0_sp,1.0_sp,TMAX))
init=.false.

end if
call assert(n >= 0, ’factln_s arg’)
if (n < TMAX) then In range of the table.

factln_s=a(n+1)
else Out of range of the table.

factln_s=gammln(n+1.0_sp)
end if
END FUNCTION factln_s

FUNCTION factln_v(n)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : gammln
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n
REAL(SP), DIMENSION(size(n)) :: factln_v
LOGICAL(LGT), DIMENSION(size(n)) :: mask
INTEGER(I4B), PARAMETER :: TMAX=100
REAL(SP), DIMENSION(TMAX), SAVE :: a
LOGICAL(LGT), SAVE :: init=.true.
if (init) then

a(1:TMAX)=gammln(arth(1.0_sp,1.0_sp,TMAX))
init=.false.

end if
call assert(all(n >= 0), ’factln_v arg’)
mask = (n >= TMAX)
factln_v=unpack(gammln(pack(n,mask)+1.0_sp),mask,0.0_sp)
where (.not. mask) factln_v=a(n+1)
END FUNCTION factln_v

Chapter B6. Special Functions 1089

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
gammln(arth(1.0_sp,1.0_sp,TMAX)) Another example of the program-
ming convenience of combining a function returning a vector (here,
arth) with a special function whose generic name (here,gammln) has

an overloaded vector version.

⋆ ⋆ ⋆

FUNCTION beta_s(z,w)
USE nrtype
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: z,w
REAL(SP) :: beta_s

Returns the value of the beta function B(z,w).
beta_s=exp(gammln(z)+gammln(w)-gammln(z+w))
END FUNCTION beta_s

FUNCTION beta_v(z,w)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: z,w
REAL(SP), DIMENSION(size(z)) :: beta_v
INTEGER(I4B) :: ndum
ndum=assert_eq(size(z),size(w),’beta_v’)
beta_v=exp(gammln(z)+gammln(w)-gammln(z+w))
END FUNCTION beta_v

⋆ ⋆ ⋆

FUNCTION gammp_s(a,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammp_s

Returns the incomplete gamma function P (a, x).
call assert(x >= 0.0, a > 0.0, ’gammp_s args’)
if (x<a+1.0_sp) then Use the series representation.

gammp_s=gser(a,x)
else Use the continued fraction representation

gammp_s=1.0_sp-gcf(a,x) and take its complement.
end if
END FUNCTION gammp_s

FUNCTION gammp_v(a,x)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(x)) :: gammp_v
LOGICAL(LGT), DIMENSION(size(x)) :: mask
INTEGER(I4B) :: ndum
ndum=assert_eq(size(a),size(x),’gammp_v’)
call assert(all(x >= 0.0), all(a > 0.0), ’gammp_v args’)
mask = (x<a+1.0_sp)
gammp_v=merge(gser(a,merge(x,0.0_sp,mask)), &

1.0_sp-gcf(a,merge(x,0.0_sp,.not. mask)),mask)
END FUNCTION gammp_v

1090 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
call assert(x >= 0.0, a > 0.0, ’gammp_s args’) The generic routine
assert in nrutil is overloaded with variants for more than one logical
assertion, so you can make more than one assertion about argument ranges.

gammp_v=merge(gser(a,merge(x,0.0_sp,mask)), &

1.0_sp-gcf(a,merge(x,0.0_sp,.not. mask)),mask) Here we meet
the secondsolution to the problem of getting masked values from an
external vector function. (For the first solution, see note tofactrl,

above.) We call this one “merge with dummy values”: Inappropriate values of the
argumentx (as determined bymask) are set to zero beforegser, and latergcf, are
called, and the supernumerary answers returned are discarded by a finalmerge. The
assumption here is that the dummy value sent to the function (here, zero) is a special
value that computes extremely fast, so that the overhead of computing and returning
the supernumerary function values is outweighed by the parallelism achieved on the
nontrivial components ofx. Look atgser v andgcf v below to judge whether
this assumption is realistic in this case.

FUNCTION gammq_s(a,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP) :: gammq_s

Returns the incomplete gamma function Q(a, x) ≡ 1 − P (a, x).
call assert(x >= 0.0, a > 0.0, ’gammq_s args’)
if (x<a+1.0_sp) then Use the series representation

gammq_s=1.0_sp-gser(a,x) and take its complement.
else Use the continued fraction representation.

gammq_s=gcf(a,x)
end if
END FUNCTION gammq_s

FUNCTION gammq_v(a,x)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : gcf,gser
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(size(a)) :: gammq_v
LOGICAL(LGT), DIMENSION(size(x)) :: mask
INTEGER(I4B) :: ndum
ndum=assert_eq(size(a),size(x),’gammq_v’)
call assert(all(x >= 0.0), all(a > 0.0), ’gammq_v args’)
mask = (x<a+1.0_sp)
gammq_v=merge(1.0_sp-gser(a,merge(x,0.0_sp,mask)), &

gcf(a,merge(x,0.0_sp,.not. mask)),mask)
END FUNCTION gammq_v

FUNCTION gser_s(a,x,gln)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gser_s
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x)

Chapter B6. Special Functions 1091

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Returns the incomplete gamma function P (a, x) evaluated by its series representation as
gamser. Also optionally returns lnΓ(a) as gln.

INTEGER(I4B) :: n
REAL(SP) :: ap,del,summ
if (x == 0.0) then

gser_s=0.0
RETURN

end if
ap=a
summ=1.0_sp/a
del=summ
do n=1,ITMAX

ap=ap+1.0_sp
del=del*x/ap
summ=summ+del
if (abs(del) < abs(summ)*EPS) exit

end do
if (n > ITMAX) call nrerror(’a too large, ITMAX too small in gser_s’)
if (present(gln)) then

gln=gammln(a)
gser_s=summ*exp(-x+a*log(x)-gln)

else
gser_s=summ*exp(-x+a*log(x)-gammln(a))

end if
END FUNCTION gser_s

FUNCTION gser_v(a,x,gln)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gser_v
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x)
INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(a)) :: ap,del,summ
LOGICAL(LGT), DIMENSION(size(a)) :: converged,zero
n=assert_eq(size(a),size(x),’gser_v’)
zero=(x == 0.0)
where (zero) gser_v=0.0
ap=a
summ=1.0_sp/a
del=summ
converged=zero
do n=1,ITMAX

where (.not. converged)
ap=ap+1.0_sp
del=del*x/ap
summ=summ+del
converged = (abs(del) < abs(summ)*EPS)

end where
if (all(converged)) exit

end do
if (n > ITMAX) call nrerror(’a too large, ITMAX too small in gser_v’)
if (present(gln)) then

if (size(gln) < size(a)) call &
nrerror(’gser: Not enough space for gln’)

gln=gammln(a)
where (.not. zero) gser_v=summ*exp(-x+a*log(x)-gln)

else
where (.not. zero) gser_v=summ*exp(-x+a*log(x)-gammln(a))

1092 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
END FUNCTION gser_v

f90
REAL(SP), OPTIONAL, INTENT(OUT) :: gln Normally, anOPTIONAL argu-
ment will be INTENT(IN) and be used to provide a less-often-used
extra input argument to a function. Here, theOPTIONAL argument is

INTENT(OUT), used to provide a useful value that is a byproduct of the main
calculation.

Also note that althoughx ≥ 0 is required, we omit our usualcall assert

check for this, becausegser is supposed to be called only bygammp or gammq —
and these routines supply the argument checking themselves.

do n=1,ITMAX...end do...if (n > ITMAX)... This is typical code in Fortran
90 for a loop with a maximum number of iterations, relying on Fortran 90’s guarantee
that the index of the do-loop will be available after normal completion of the loop
with a predictable value, greater by one than the upper limit of the loop. If the
exit statement within the loop is ever taken, theif statement is guaranteed to fail;
if the loop goes all the way throughITMAX cycles, theif statement is guaranteed
to succeed.

zero=(x == 0.0)...where (zero) gser_v=0.0...converged=zero This
is the code that provides for very low overhead calculation of zero
arguments, as is assumed by the merge-with-dummy-values strategy in

gammp andgammq. Zero arguments are “pre-converged” and are never the holdouts
in the convergence test.

FUNCTION gcf_s(a,x,gln)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,x
REAL(SP), OPTIONAL, INTENT(OUT) :: gln
REAL(SP) :: gcf_s
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=tiny(x)/EPS

Returns the incomplete gamma function Q(a, x) evaluated by its continued fraction repre-
sentation as gammcf. Also optionally returns lnΓ(a) as gln.
Parameters: ITMAX is the maximum allowed number of iterations; EPS is the relative accu-
racy; FPMIN is a number near the smallest representable floating-point number.

INTEGER(I4B) :: i
REAL(SP) :: an,b,c,d,del,h
if (x == 0.0) then

gcf_s=1.0
RETURN

end if
b=x+1.0_sp-a Set up for evaluating continued fraction by mod-

ified Lentz’s method (§5.2) with b0 = 0.c=1.0_sp/FPMIN
d=1.0_sp/b
h=d
do i=1,ITMAX Iterate to convergence.

an=-i*(i-a)
b=b+2.0_sp
d=an*d+b
if (abs(d) < FPMIN) d=FPMIN
c=b+an/c
if (abs(c) < FPMIN) c=FPMIN

Chapter B6. Special Functions 1093

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

d=1.0_sp/d
del=d*c
h=h*del
if (abs(del-1.0_sp) <= EPS) exit

end do
if (i > ITMAX) call nrerror(’a too large, ITMAX too small in gcf_s’)
if (present(gln)) then

gln=gammln(a)
gcf_s=exp(-x+a*log(x)-gln)*h Put factors in front.

else
gcf_s=exp(-x+a*log(x)-gammln(a))*h

end if
END FUNCTION gcf_s

FUNCTION gcf_v(a,x,gln)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,x
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(OUT) :: gln
REAL(SP), DIMENSION(size(a)) :: gcf_v
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=tiny(x)/EPS
INTEGER(I4B) :: i
REAL(SP), DIMENSION(size(a)) :: an,b,c,d,del,h
LOGICAL(LGT), DIMENSION(size(a)) :: converged,zero
i=assert_eq(size(a),size(x),’gcf_v’)
zero=(x == 0.0)
where (zero)

gcf_v=1.0
elsewhere

b=x+1.0_sp-a
c=1.0_sp/FPMIN
d=1.0_sp/b
h=d

end where
converged=zero
do i=1,ITMAX

where (.not. converged)
an=-i*(i-a)
b=b+2.0_sp
d=an*d+b
d=merge(FPMIN,d, abs(d)<FPMIN)
c=b+an/c
c=merge(FPMIN,c, abs(c)<FPMIN)
d=1.0_sp/d
del=d*c
h=h*del
converged = (abs(del-1.0_sp)<=EPS)

end where
if (all(converged)) exit

end do
if (i > ITMAX) call nrerror(’a too large, ITMAX too small in gcf_v’)
if (present(gln)) then

if (size(gln) < size(a)) call &
nrerror(’gser: Not enough space for gln’)

gln=gammln(a)
where (.not. zero) gcf_v=exp(-x+a*log(x)-gln)*h

else
where (.not. zero) gcf_v=exp(-x+a*log(x)-gammln(a))*h

end if
END FUNCTION gcf_v

1094 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

zero=(x == 0.0)...where (zero) gcf_v=1.0...converged=zero See note on
gser. Here, too, we pre-converge the special value of zero.

⋆ ⋆ ⋆

FUNCTION erf_s(x)
USE nrtype
USE nr, ONLY : gammp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erf_s

Returns the error function erf(x).
erf_s=gammp(0.5_sp,x**2)
if (x < 0.0) erf_s=-erf_s
END FUNCTION erf_s

FUNCTION erf_v(x)
USE nrtype
USE nr, ONLY : gammp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erf_v
erf_v=gammp(spread(0.5_sp,1,size(x)),x**2)
where (x < 0.0) erf_v=-erf_v
END FUNCTION erf_v

f90
erf_v=gammp(spread(0.5_sp,1,size(x)),x**2) Yes, we do have an over-
loaded vector version ofgammp, but it is vectorized onbothits arguments.
Thus, in a case where we want to vectorize on onlyoneargument, we

need aspread construction. In many contexts, Fortran 90 automatically makes
scalars conformable with arrays (i.e., it automatically spreads them to the shape of
the array); but the language doesnotdo so when trying to match a generic function
or subroutine call to a specific overloaded name. Perhaps this is wise; it is safer to
prevent “accidental” invocations of vector-specific functions. Or, perhaps it is an
area where the language could be improved.

FUNCTION erfc_s(x)
USE nrtype
USE nr, ONLY : gammp,gammq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfc_s

Returns the complementary error function erfc(x).
erfc_s=merge(1.0_sp+gammp(0.5_sp,x**2),gammq(0.5_sp,x**2), x < 0.0)
END FUNCTION erfc_s

f90
erfc_s=merge(1.0_sp+gammp(0.5_sp,x**2),gammq(0.5_sp,x**2), x < 0.0)

An example of our use ofmerge as an idiom for a conditional expression.
Once you get used to these, you’ll find them just as clear as the multiline

if...then...else alternative.

Chapter B6. Special Functions 1095

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION erfc_v(x)
USE nrtype
USE nr, ONLY : gammp,gammq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfc_v
LOGICAL(LGT), DIMENSION(size(x)) :: mask
mask = (x < 0.0)
erfc_v=merge(1.0_sp+gammp(spread(0.5_sp,1,size(x)), &

merge(x,0.0_sp,mask)**2),gammq(spread(0.5_sp,1,size(x)), &
merge(x,0.0_sp,.not. mask)**2),mask)

END FUNCTION erfc_v

f90
erfc_v=merge(1.0_sp+...) Another example of the “merge with dummy
values” idiom described on p. 1090. Here positive values ofx in the call
to gammp, and negative values in the call togammq, are first set to the

dummy value zero. The value zero is a special argument that computes very fast.
The unwanted dummy function values are then discarded by the final outermerge.

⋆ ⋆ ⋆

FUNCTION erfcc_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: erfcc_s

Returns the complementary error function erfc(x) with fractional error everywhere less than
1.2 × 10−7.

REAL(SP) :: t,z
REAL(SP), DIMENSION(10) :: coef = (/-1.26551223_sp,1.00002368_sp,&

0.37409196_sp,0.09678418_sp,-0.18628806_sp,0.27886807_sp,&
-1.13520398_sp,1.48851587_sp,-0.82215223_sp,0.17087277_sp/)

z=abs(x)
t=1.0_sp/(1.0_sp+0.5_sp*z)
erfcc_s=t*exp(-z*z+poly(t,coef))
if (x < 0.0) erfcc_s=2.0_sp-erfcc_s
END FUNCTION erfcc_s

FUNCTION erfcc_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: erfcc_v,t,z
REAL(SP), DIMENSION(10) :: coef = (/-1.26551223_sp,1.00002368_sp,&

0.37409196_sp,0.09678418_sp,-0.18628806_sp,0.27886807_sp,&
-1.13520398_sp,1.48851587_sp,-0.82215223_sp,0.17087277_sp/)

z=abs(x)
t=1.0_sp/(1.0_sp+0.5_sp*z)
erfcc_v=t*exp(-z*z+poly(t,coef))
where (x < 0.0) erfcc_v=2.0_sp-erfcc_v
END FUNCTION erfcc_v

1096 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
erfcc_v=t*exp(-z*z+poly(t,coef)) The vector code is identical to the
scalar, because thenrutil routinepoly has overloaded cases for the
evaluation of a polynomial at a single value of the independent variable,

and at multiple values. Onecould also overload a version with a matrix of
coefficients whose columns could be used for the simultaneous evaluation of
different polynomials at different values of independent variable. The point is that
as long as there are differences in the shapes of at least one argument, the intended
version ofpoly can be discerned by the compiler.

⋆ ⋆ ⋆

FUNCTION expint(n,x)
USE nrtype; USE nrutil, ONLY : arth,assert,nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: expint
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x),BIG=huge(x)*EPS

Evaluates the exponential integral En(x).
Parameters: MAXIT is the maximum allowed number of iterations; EPS is the desired relative
error, not smaller than the machine precision; BIG is a number near the largest representable
floating-point number; EULER (in nrtype) is Euler’s constant γ.

INTEGER(I4B) :: i,nm1
REAL(SP) :: a,b,c,d,del,fact,h
call assert(n >= 0, x >= 0.0, (x > 0.0 .or. n > 1), &

’expint args’)
if (n == 0) then Special case.

expint=exp(-x)/x
RETURN

end if
nm1=n-1
if (x == 0.0) then Another special case.

expint=1.0_sp/nm1
else if (x > 1.0) then Lentz’s algorithm (§5.2).

b=x+n
c=BIG
d=1.0_sp/b
h=d
do i=1,MAXIT

a=-i*(nm1+i)
b=b+2.0_sp
d=1.0_sp/(a*d+b) Denominators cannot be zero.
c=b+a/c
del=c*d
h=h*del
if (abs(del-1.0_sp) <= EPS) exit

end do
if (i > MAXIT) call nrerror(’expint: continued fraction failed’)
expint=h*exp(-x)

else Evaluate series.
if (nm1 /= 0) then Set first term.

expint=1.0_sp/nm1
else

expint=-log(x)-EULER
end if
fact=1.0
do i=1,MAXIT

fact=-fact*x/i
if (i /= nm1) then

del=-fact/(i-nm1)

Chapter B6. Special Functions 1097

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

else ψ(n) appears here.
del=fact*(-log(x)-EULER+sum(1.0_sp/arth(1,1,nm1)))

end if
expint=expint+del
if (abs(del) < abs(expint)*EPS) exit

end do
if (i > MAXIT) call nrerror(’expint: series failed’)

end if
END FUNCTION expint

expint does not readily parallelize, and we thus don’t provide a vector
version. For syntactic convenience you could make a vector version with
a do-loop over calls to this scalar version; or, in Fortran 95, you can of

course make the functionELEMENTAL.

⋆ ⋆ ⋆

FUNCTION ei(x)
USE nrtype; USE nrutil, ONLY : assert,nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: ei
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=tiny(x)/EPS

Computes the exponential integral Ei(x) for x > 0.
Parameters: MAXIT is the maximum number of iterations allowed; EPS is the relative error,
or absolute error near the zero of Ei at x = 0.3725; FPMIN is a number near the smallest
representable floating-point number; EULER (in nrtype) is Euler’s constant γ.

INTEGER(I4B) :: k
REAL(SP) :: fact,prev,sm,term
call assert(x > 0.0, ’ei arg’)
if (x < FPMIN) then Special case: avoid failure of convergence test

because of underflow.ei=log(x)+EULER
else if (x <= -log(EPS)) then Use power series.

sm=0.0
fact=1.0
do k=1,MAXIT

fact=fact*x/k
term=fact/k
sm=sm+term
if (term < EPS*sm) exit

end do
if (k > MAXIT) call nrerror(’series failed in ei’)
ei=sm+log(x)+EULER

else Use asymptotic series.
sm=0.0 Start with second term.
term=1.0
do k=1,MAXIT

prev=term
term=term*k/x
if (term < EPS) exit Since final sum is greater than one, term itself

approximates the relative error.if (term < prev) then
sm=sm+term Still converging: add new term.

else Diverging: subtract previous term and exit.
sm=sm-prev
exit

end if
end do
if (k > MAXIT) call nrerror(’asymptotic failed in ei’)
ei=exp(x)*(1.0_sp+sm)/x

end if
END FUNCTION ei

1098 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ei does not readily parallelize, and we thus don’t provide a vector
version. For syntactic convenience you could make a vector version with
a do-loop over calls to this scalar version; or, in Fortran 95, you can of

course make the functionELEMENTAL.

⋆ ⋆ ⋆

FUNCTION betai_s(a,b,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : betacf,gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP) :: betai_s

Returns the incomplete beta function Ix(a,b).
REAL(SP) :: bt
call assert(x >= 0.0, x <= 1.0, ’betai_s arg’)
if (x == 0.0 .or. x == 1.0) then

bt=0.0
else Factors in front of the continued frac-

tion.bt=exp(gammln(a+b)-gammln(a)-gammln(b)&
+a*log(x)+b*log(1.0_sp-x))

end if
if (x < (a+1.0_sp)/(a+b+2.0_sp)) then Use continued fraction directly.

betai_s=bt*betacf(a,b,x)/a
else Use continued fraction after making the

symmetry transformation.betai_s=1.0_sp-bt*betacf(b,a,1.0_sp-x)/b
end if
END FUNCTION betai_s

FUNCTION betai_v(a,b,x)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : betacf,gammln
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(a)) :: betai_v
REAL(SP), DIMENSION(size(a)) :: bt
LOGICAL(LGT), DIMENSION(size(a)) :: mask
INTEGER(I4B) :: ndum
ndum=assert_eq(size(a),size(b),size(x),’betai_v’)
call assert(all(x >= 0.0), all(x <= 1.0), ’betai_v arg’)
where (x == 0.0 .or. x == 1.0)

bt=0.0
elsewhere

bt=exp(gammln(a+b)-gammln(a)-gammln(b)&
+a*log(x)+b*log(1.0_sp-x))

end where
mask=(x < (a+1.0_sp)/(a+b+2.0_sp))
betai_v=bt*betacf(merge(a,b,mask),merge(b,a,mask),&

merge(x,1.0_sp-x,mask))/merge(a,b,mask)
where (.not. mask) betai_v=1.0_sp-betai_v
END FUNCTION betai_v

Chapter B6. Special Functions 1099

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
Compare the scalar

if (x < (a+1.0_sp)/(a+b+2.0_sp)) then
betai_s=bt*betacf(a,b,x)/a

else
betai_s=1.0_sp-bt*betacf(b,a,1.0_sp-x)/b

end if

with the vector
mask=(x < (a+1.0_sp)/(a+b+2.0_sp))
betai_v=bt*betacf(merge(a,b,mask),merge(b,a,mask),&

merge(x,1.0_sp-x,mask))/merge(a,b,mask)
where (.not. mask) betai_v=1.0_sp-betai_v

Here merge is used (several times) to evaluate all the required components in a
single call to the vectorizedbetacf, notwithstanding that some components require
one pattern of arguments, some a different pattern.

FUNCTION betacf_s(a,b,x)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP) :: betacf_s
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x), FPMIN=tiny(x)/EPS

Used by betai: Evaluates continued fraction for incomplete beta function by modified
Lentz’s method (§5.2).

REAL(SP) :: aa,c,d,del,h,qab,qam,qap
INTEGER(I4B) :: m,m2
qab=a+b These q’s will be used in factors that occur

in the coefficients (6.4.6).qap=a+1.0_sp
qam=a-1.0_sp
c=1.0 First step of Lentz’s method.
d=1.0_sp-qab*x/qap
if (abs(d) < FPMIN) d=FPMIN
d=1.0_sp/d
h=d
do m=1,MAXIT

m2=2*m
aa=m*(b-m)*x/((qam+m2)*(a+m2))
d=1.0_sp+aa*d One step (the even one) of the recurrence.
if (abs(d) < FPMIN) d=FPMIN
c=1.0_sp+aa/c
if (abs(c) < FPMIN) c=FPMIN
d=1.0_sp/d
h=h*d*c
aa=-(a+m)*(qab+m)*x/((a+m2)*(qap+m2))
d=1.0_sp+aa*d Next step of the recurrence (the odd one).
if (abs(d) < FPMIN) d=FPMIN
c=1.0_sp+aa/c
if (abs(c) < FPMIN) c=FPMIN
d=1.0_sp/d
del=d*c
h=h*del
if (abs(del-1.0_sp) <= EPS) exit Are we done?

end do
if (m > MAXIT)&

call nrerror(’a or b too big, or MAXIT too small in betacf_s’)
betacf_s=h
END FUNCTION betacf_s

1100 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION betacf_v(a,b,x)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(size(x)) :: betacf_v
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x), FPMIN=tiny(x)/EPS
REAL(SP), DIMENSION(size(x)) :: aa,c,d,del,h,qab,qam,qap
LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: m
INTEGER(I4B), DIMENSION(size(x)) :: m2
m=assert_eq(size(a),size(b),size(x),’betacf_v’)
qab=a+b
qap=a+1.0_sp
qam=a-1.0_sp
c=1.0
d=1.0_sp-qab*x/qap
where (abs(d) < FPMIN) d=FPMIN
d=1.0_sp/d
h=d
converged=.false.
do m=1,MAXIT

where (.not. converged)
m2=2*m
aa=m*(b-m)*x/((qam+m2)*(a+m2))
d=1.0_sp+aa*d
d=merge(FPMIN,d, abs(d)<FPMIN)
c=1.0_sp+aa/c
c=merge(FPMIN,c, abs(c)<FPMIN)
d=1.0_sp/d
h=h*d*c
aa=-(a+m)*(qab+m)*x/((a+m2)*(qap+m2))
d=1.0_sp+aa*d
d=merge(FPMIN,d, abs(d)<FPMIN)
c=1.0_sp+aa/c
c=merge(FPMIN,c, abs(c)<FPMIN)
d=1.0_sp/d
del=d*c
h=h*del
converged = (abs(del-1.0_sp) <= EPS)

end where
if (all(converged)) exit

end do
if (m > MAXIT)&

call nrerror(’a or b too big, or MAXIT too small in betacf_v’)
betacf_v=h
END FUNCTION betacf_v

f90
d=merge(FPMIN,d, abs(d)<FPMIN) The scalar version does this with an
if. Why does it become amerge here in the vector version, rather than a
where? Because we are already inside a “where (.not.converged)” block,

and Fortran 90 doesn’t allow nestedwhere’s! (Fortran 95will allow nestedwhere’s.)

⋆ ⋆ ⋆

Chapter B6. Special Functions 1101

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION bessj0_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj0_s

Returns the Bessel function J0(x) for any real x.
REAL(SP) :: ax,xx,z
REAL(DP) :: y We’ll accumulate polynomials in double precision.
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&

0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/-0.1562499995e-1_dp,&

0.1430488765e-3_dp,-0.6911147651e-5_dp,0.7621095161e-6_dp,&
-0.934945152e-7_dp/)

REAL(DP), DIMENSION(6) :: r = (/57568490574.0_dp,-13362590354.0_dp,&
651619640.7_dp,-11214424.18_dp,77392.33017_dp,&
-184.9052456_dp/)

REAL(DP), DIMENSION(6) :: s = (/57568490411.0_dp,1029532985.0_dp,&
9494680.718_dp,59272.64853_dp,267.8532712_dp,1.0_dp/)

if (abs(x) < 8.0) then Direct rational function fit.
y=x**2
bessj0_s=poly(y,r)/poly(y,s)

else Fitting function (6.5.9).
ax=abs(x)
z=8.0_sp/ax
y=z**2
xx=ax-0.785398164_sp
bessj0_s=sqrt(0.636619772_sp/ax)*(cos(xx)*&

poly(y,p)-z*sin(xx)*poly(y,q))
end if
END FUNCTION bessj0_s

FUNCTION bessj0_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj0_v
REAL(SP), DIMENSION(size(x)) :: ax,xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&

0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/-0.1562499995e-1_dp,&

0.1430488765e-3_dp,-0.6911147651e-5_dp,0.7621095161e-6_dp,&
-0.934945152e-7_dp/)

REAL(DP), DIMENSION(6) :: r = (/57568490574.0_dp,-13362590354.0_dp,&
651619640.7_dp,-11214424.18_dp,77392.33017_dp,&
-184.9052456_dp/)

REAL(DP), DIMENSION(6) :: s = (/57568490411.0_dp,1029532985.0_dp,&
9494680.718_dp,59272.64853_dp,267.8532712_dp,1.0_dp/)

mask = (abs(x) < 8.0)
where (mask)

y=x**2
bessj0_v=poly(y,r,mask)/poly(y,s,mask)

elsewhere
ax=abs(x)
z=8.0_sp/ax
y=z**2
xx=ax-0.785398164_sp
bessj0_v=sqrt(0.636619772_sp/ax)*(cos(xx)*&

poly(y,p,.not. mask)-z*sin(xx)*poly(y,q,.not. mask))
end where
END FUNCTION bessj0_v

1102 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

where (mask)...bessj0_v=poly(y,r,mask)/poly(y,s,mask) Here we meet
the third solution to the problem of getting masked values from an
external vector function. (For the other two solutions, see notes to

factrl, p. 1087, andgammp, p. 1090.) Here we simply evade all responsibility and
pass the mask into every routine that is supposed to be masked. Let it be somebody
else’s problem! That works here because your hardworking authors have overloaded
thenrutil routinepoly with a masked vector version. More typically, of course,
it becomesyourproblem, and you have to remember to write masked versions of all
the vector routines that you call in this way. (We’ll meet examples of this later.)

⋆ ⋆ ⋆

FUNCTION bessy0_s(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessj0
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy0_s

Returns the Bessel function Y0(x) for positive x.
REAL(SP) :: xx,z
REAL(DP) :: y We’ll accumulate polynomials in double precision.
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&

0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/-0.1562499995e-1_dp,&

0.1430488765e-3_dp,-0.6911147651e-5_dp,0.7621095161e-6_dp,&
-0.934945152e-7_dp/)

REAL(DP), DIMENSION(6) :: r = (/-2957821389.0_dp,7062834065.0_dp,&
-512359803.6_dp,10879881.29_dp,-86327.92757_dp,&
228.4622733_dp/)

REAL(DP), DIMENSION(6) :: s = (/40076544269.0_dp,745249964.8_dp,&
7189466.438_dp,47447.26470_dp,226.1030244_dp,1.0_dp/)

call assert(x > 0.0, ’bessy0_s arg’)
if (abs(x) < 8.0) then Rational function approximation of (6.5.8).

y=x**2
bessy0_s=(poly(y,r)/poly(y,s))+&

0.636619772_sp*bessj0(x)*log(x)
else Fitting function (6.5.10).

z=8.0_sp/x
y=z**2
xx=x-0.785398164_sp
bessy0_s=sqrt(0.636619772_sp/x)*(sin(xx)*&

poly(y,p)+z*cos(xx)*poly(y,q))
end if
END FUNCTION bessy0_s

FUNCTION bessy0_v(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessj0
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy0_v
REAL(SP), DIMENSION(size(x)) :: xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,-0.1098628627e-2_dp,&

0.2734510407e-4_dp,-0.2073370639e-5_dp,0.2093887211e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/-0.1562499995e-1_dp,&

0.1430488765e-3_dp,-0.6911147651e-5_dp,0.7621095161e-6_dp,&

Chapter B6. Special Functions 1103

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

-0.934945152e-7_dp/)
REAL(DP), DIMENSION(6) :: r = (/-2957821389.0_dp,7062834065.0_dp,&

-512359803.6_dp,10879881.29_dp,-86327.92757_dp,&
228.4622733_dp/)

REAL(DP), DIMENSION(6) :: s = (/40076544269.0_dp,745249964.8_dp,&
7189466.438_dp,47447.26470_dp,226.1030244_dp,1.0_dp/)

call assert(all(x > 0.0), ’bessy0_v arg’)
mask = (abs(x) < 8.0)
where (mask)

y=x**2
bessy0_v=(poly(y,r,mask)/poly(y,s,mask))+&

0.636619772_sp*bessj0(x)*log(x)
elsewhere

z=8.0_sp/x
y=z**2
xx=x-0.785398164_sp
bessy0_v=sqrt(0.636619772_sp/x)*(sin(xx)*&

poly(y,p,.not. mask)+z*cos(xx)*poly(y,q,.not. mask))
end where
END FUNCTION bessy0_v

⋆ ⋆ ⋆

FUNCTION bessj1_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj1_s

Returns the Bessel function J1(x) for any real x.
REAL(SP) :: ax,xx,z
REAL(DP) :: y We’ll accumulate polynomials in double precision.
REAL(DP), DIMENSION(6) :: r = (/72362614232.0_dp,&

-7895059235.0_dp,242396853.1_dp,-2972611.439_dp,&
15704.48260_dp,-30.16036606_dp/)

REAL(DP), DIMENSION(6) :: s = (/144725228442.0_dp,2300535178.0_dp,&
18583304.74_dp,99447.43394_dp,376.9991397_dp,1.0_dp/)

REAL(DP), DIMENSION(5) :: p = (/1.0_dp,0.183105e-2_dp,&
-0.3516396496e-4_dp,0.2457520174e-5_dp,-0.240337019e-6_dp/)

REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,&
-0.2002690873e-3_dp,0.8449199096e-5_dp,-0.88228987e-6_dp,&
0.105787412e-6_dp/)

if (abs(x) < 8.0) then Direct rational approximation.
y=x**2
bessj1_s=x*(poly(y,r)/poly(y,s))

else Fitting function (6.5.9).
ax=abs(x)
z=8.0_sp/ax
y=z**2
xx=ax-2.356194491_sp
bessj1_s=sqrt(0.636619772_sp/ax)*(cos(xx)*&

poly(y,p)-z*sin(xx)*poly(y,q))*sign(1.0_sp,x)
end if
END FUNCTION bessj1_s

1104 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION bessj1_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessj1_v
REAL(SP), DIMENSION(size(x)) :: ax,xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(6) :: r = (/72362614232.0_dp,&

-7895059235.0_dp,242396853.1_dp,-2972611.439_dp,&
15704.48260_dp,-30.16036606_dp/)

REAL(DP), DIMENSION(6) :: s = (/144725228442.0_dp,2300535178.0_dp,&
18583304.74_dp,99447.43394_dp,376.9991397_dp,1.0_dp/)

REAL(DP), DIMENSION(5) :: p = (/1.0_dp,0.183105e-2_dp,&
-0.3516396496e-4_dp,0.2457520174e-5_dp,-0.240337019e-6_dp/)

REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,&
-0.2002690873e-3_dp,0.8449199096e-5_dp,-0.88228987e-6_dp,&
0.105787412e-6_dp/)

mask = (abs(x) < 8.0)
where (mask)

y=x**2
bessj1_v=x*(poly(y,r,mask)/poly(y,s,mask))

elsewhere
ax=abs(x)
z=8.0_sp/ax
y=z**2
xx=ax-2.356194491_sp
bessj1_v=sqrt(0.636619772_sp/ax)*(cos(xx)*&

poly(y,p,.not. mask)-z*sin(xx)*poly(y,q,.not. mask))*&
sign(1.0_sp,x)

end where
END FUNCTION bessj1_v

⋆ ⋆ ⋆

FUNCTION bessy1_s(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessj1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy1_s

Returns the Bessel function Y1(x) for positive x.
REAL(SP) :: xx,z
REAL(DP) :: y We’ll accumulate polynomials in double precision.
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,0.183105e-2_dp,&

-0.3516396496e-4_dp,0.2457520174e-5_dp,-0.240337019e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,&

-0.2002690873e-3_dp,0.8449199096e-5_dp,-0.88228987e-6_dp,&
0.105787412e-6_dp/)

REAL(DP), DIMENSION(6) :: r = (/-0.4900604943e13_dp,&
0.1275274390e13_dp,-0.5153438139e11_dp,0.7349264551e9_dp,&
-0.4237922726e7_dp,0.8511937935e4_dp/)

REAL(DP), DIMENSION(7) :: s = (/0.2499580570e14_dp,&
0.4244419664e12_dp,0.3733650367e10_dp,0.2245904002e8_dp,&
0.1020426050e6_dp,0.3549632885e3_dp,1.0_dp/)

call assert(x > 0.0, ’bessy1_s arg’)
if (abs(x) < 8.0) then Rational function approximation of (6.5.8).

y=x**2
bessy1_s=x*(poly(y,r)/poly(y,s))+&

0.636619772_sp*(bessj1(x)*log(x)-1.0_sp/x)
else Fitting function (6.5.10).

Chapter B6. Special Functions 1105

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

z=8.0_sp/x
y=z**2
xx=x-2.356194491_sp
bessy1_s=sqrt(0.636619772_sp/x)*(sin(xx)*&

poly(y,p)+z*cos(xx)*poly(y,q))
end if
END FUNCTION bessy1_s

FUNCTION bessy1_v(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessj1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy1_v
REAL(SP), DIMENSION(size(x)) :: xx,z
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(5) :: p = (/1.0_dp,0.183105e-2_dp,&

-0.3516396496e-4_dp,0.2457520174e-5_dp,-0.240337019e-6_dp/)
REAL(DP), DIMENSION(5) :: q = (/0.04687499995_dp,&

-0.2002690873e-3_dp,0.8449199096e-5_dp,-0.88228987e-6_dp,&
0.105787412e-6_dp/)

REAL(DP), DIMENSION(6) :: r = (/-0.4900604943e13_dp,&
0.1275274390e13_dp,-0.5153438139e11_dp,0.7349264551e9_dp,&
-0.4237922726e7_dp,0.8511937935e4_dp/)

REAL(DP), DIMENSION(7) :: s = (/0.2499580570e14_dp,&
0.4244419664e12_dp,0.3733650367e10_dp,0.2245904002e8_dp,&
0.1020426050e6_dp,0.3549632885e3_dp,1.0_dp/)

call assert(all(x > 0.0), ’bessy1_v arg’)
mask = (abs(x) < 8.0)
where (mask)

y=x**2
bessy1_v=x*(poly(y,r,mask)/poly(y,s,mask))+&

0.636619772_sp*(bessj1(x)*log(x)-1.0_sp/x)
elsewhere

z=8.0_sp/x
y=z**2
xx=x-2.356194491_sp
bessy1_v=sqrt(0.636619772_sp/x)*(sin(xx)*&

poly(y,p,.not. mask)+z*cos(xx)*poly(y,q,.not. mask))
end where
END FUNCTION bessy1_v

⋆ ⋆ ⋆

FUNCTION bessy_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessy0,bessy1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessy_s

Returns the Bessel function Yn(x) for positive x and n ≥ 2.
INTEGER(I4B) :: j
REAL(SP) :: by,bym,byp,tox
call assert(n >= 2, x > 0.0, ’bessy_s args’)
tox=2.0_sp/x
by=bessy1(x) Starting values for the recurrence.
bym=bessy0(x)
do j=1,n-1 Recurrence (6.5.7).

1106 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

byp=j*tox*by-bym
bym=by
by=byp

end do
bessy_s=by
END FUNCTION bessy_s

FUNCTION bessy_v(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessy0,bessy1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessy_v
INTEGER(I4B) :: j
REAL(SP), DIMENSION(size(x)) :: by,bym,byp,tox
call assert(n >= 2, all(x > 0.0), ’bessy_v args’)
tox=2.0_sp/x
by=bessy1(x)
bym=bessy0(x)
do j=1,n-1

byp=j*tox*by-bym
bym=by
by=byp

end do
bessy_v=by
END FUNCTION bessy_v

f90
Notice that the vector routine isexactlythe same as the scalar routine,
but operates only on vectors, and that nothing in the routine is specific to
any level of precision or kind type of real variable. Cases like this make

us wish that Fortran 90 provided for “template” types that could automatically take
the type and shape of the actual arguments. (Such facilities are available in other,
more object-oriented languages such as C++.)

⋆ ⋆ ⋆

FUNCTION bessj_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessj0,bessj1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessj_s
INTEGER(I4B), PARAMETER :: IACC=40,IEXP=maxexponent(x)/2

Returns the Bessel function Jn(x) for any real x and n ≥ 2. Make the parameter IACC
larger to increase accuracy.

INTEGER(I4B) :: j,jsum,m
REAL(SP) :: ax,bj,bjm,bjp,summ,tox
call assert(n >= 2, ’bessj_s args’)
ax=abs(x)
if (ax*ax <= 8.0_sp*tiny(x)) then Underflow limit.

bessj_s=0.0
else if (ax > real(n,sp)) then Upwards recurrence from J0 and J1.

tox=2.0_sp/ax
bjm=bessj0(ax)
bj=bessj1(ax)
do j=1,n-1

Chapter B6. Special Functions 1107

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

bjp=j*tox*bj-bjm
bjm=bj
bj=bjp

end do
bessj_s=bj

else Downwards recurrence from an even m
here computed.tox=2.0_sp/ax

m=2*((n+int(sqrt(real(IACC*n,sp))))/2)
bessj_s=0.0
jsum=0 jsumwill alternate between 0 and 1; when

it is 1, we accumulate in sum the
even terms in (5.5.16).

summ=0.0
bjp=0.0
bj=1.0
do j=m,1,-1 The downward recurrence.

bjm=j*tox*bj-bjp
bjp=bj
bj=bjm
if (exponent(bj) > IEXP) then Renormalize to prevent overflows.

bj=scale(bj,-IEXP)
bjp=scale(bjp,-IEXP)
bessj_s=scale(bessj_s,-IEXP)
summ=scale(summ,-IEXP)

end if
if (jsum /= 0) summ=summ+bj Accumulate the sum.
jsum=1-jsum Change 0 to 1 or vice versa.
if (j == n) bessj_s=bjp Save the unnormalized answer.

end do
summ=2.0_sp*summ-bj Compute (5.5.16)
bessj_s=bessj_s/summ and use it to normalize the answer.

end if
if (x < 0.0 .and. mod(n,2) == 1) bessj_s=-bessj_s
END FUNCTION bessj_s

The bessj routine does not conveniently parallelize with Fortran 90’s
language constructions, but Bessel functions are of sufficient importance
that we feel the need for a parallel version nevertheless. The basic

method adopted below is to encapsulate as contained vector functions two separate
algorithms, one for the casex ≤ n, the other forx > n. Both of these have masks
as input arguments; within each routine, however, they immediately revert to the
pack-unpack method. The choice to pack in the subsidiary routines, rather than in the
main routine, is arbitrary; the main routine is supposed to be a little clearer this way.

f90
if (exponent(bj) > IEXP) then... In the Fortran 77 version of this
routine, we scaled the variables by10−10 wheneverbj was bigger than
1010. On a machine with a large exponent range, we could improve

efficiency by scaling less often. In order to remain portable, however, we used
the conservative value of1010. An elegant way of handling renormalization is
provided by the Fortran 90 intrinsic functions that manipulate real numbers. We test
with if (exponent(bj) > IEXP) and then if necessary renormalize withbj=scale(bj,-

IEXP) and similarly for the other variables. Our conservative choice is to set
IEXP=maxexponent(x)/2. Note that an added benefit of scaling this way is that only
the exponent of each variable is modified; no roundoff error is introduced as it can
be if we do a floating-point division instead.

1108 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION bessj_v(n,xx)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessj0,bessj1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), DIMENSION(size(xx)) :: bessj_v
INTEGER(I4B), PARAMETER :: IACC=40,IEXP=maxexponent(xx)/2
REAL(SP), DIMENSION(size(xx)) :: ax
LOGICAL(LGT), DIMENSION(size(xx)) :: mask,mask0
REAL(SP), DIMENSION(:), ALLOCATABLE :: x,bj,bjm,bjp,summ,tox,bessjle
LOGICAL(LGT), DIMENSION(:), ALLOCATABLE :: renorm
INTEGER(I4B) :: j,jsum,m,npak
call assert(n >= 2, ’bessj_v args’)
ax=abs(xx)
mask = (ax <= real(n,sp))
mask0 = (ax*ax <= 8.0_sp*tiny(xx))
bessj_v=bessjle_v(n,ax,logical(mask .and. .not.mask0, kind=lgt))
bessj_v=merge(bessjgt_v(n,ax,.not. mask),bessj_v,.not. mask)
where (mask0) bessj_v=0.0
where (xx < 0.0 .and. mod(n,2) == 1) bessj_v=-bessj_v
CONTAINS

FUNCTION bessjgt_v(n,xx,mask)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
LOGICAL(LGT), DIMENSION(size(xx)), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(xx)) :: bessjgt_v
npak=count(mask)
if (npak == 0) RETURN
allocate(x(npak),bj(npak),bjm(npak),bjp(npak),tox(npak))
x=pack(xx,mask)
tox=2.0_sp/x
bjm=bessj0(x)
bj=bessj1(x)
do j=1,n-1

bjp=j*tox*bj-bjm
bjm=bj
bj=bjp

end do
bessjgt_v=unpack(bj,mask,0.0_sp)
deallocate(x,bj,bjm,bjp,tox)
END FUNCTION bessjgt_v

FUNCTION bessjle_v(n,xx,mask)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
LOGICAL(LGT), DIMENSION(size(xx)), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(xx)) :: bessjle_v
npak=count(mask)
if (npak == 0) RETURN
allocate(x(npak),bj(npak),bjm(npak),bjp(npak),summ(npak), &

bessjle(npak),tox(npak),renorm(npak))
x=pack(xx,mask)
tox=2.0_sp/x
m=2*((n+int(sqrt(real(IACC*n,sp))))/2)
bessjle=0.0
jsum=0
summ=0.0
bjp=0.0
bj=1.0
do j=m,1,-1

bjm=j*tox*bj-bjp

Chapter B6. Special Functions 1109

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

bjp=bj
bj=bjm
renorm = (exponent(bj)>IEXP)
bj=merge(scale(bj,-IEXP),bj,renorm)
bjp=merge(scale(bjp,-IEXP),bjp,renorm)
bessjle=merge(scale(bessjle,-IEXP),bessjle,renorm)
summ=merge(scale(summ,-IEXP),summ,renorm)
if (jsum /= 0) summ=summ+bj
jsum=1-jsum
if (j == n) bessjle=bjp

end do
summ=2.0_sp*summ-bj
bessjle=bessjle/summ
bessjle_v=unpack(bessjle,mask,0.0_sp)
deallocate(x,bj,bjm,bjp,summ,bessjle,tox,renorm)
END FUNCTION bessjle_v
END FUNCTION bessj_v

f90
bessj_v=... bessj_v=merge(bessjgt_v(...),bessj_v,...) The vector
bessj v is set once (with a mask) and then merged withitself, along
with the vector result of thebessjgt v call. Thus are the two evaluation

methods combined. (A third case, where an argument is zero, is then handled by
an immediately followingwhere.)

⋆ ⋆ ⋆

FUNCTION bessi0_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi0_s

Returns the modified Bessel function I0(x) for any real x.
REAL(SP) :: ax
REAL(DP), DIMENSION(7) :: p = (/1.0_dp,3.5156229_dp,&

3.0899424_dp,1.2067492_dp,0.2659732_dp,0.360768e-1_dp,&
0.45813e-2_dp/) Accumulate polynomials in double precision.

REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp,0.1328592e-1_dp,&
0.225319e-2_dp,-0.157565e-2_dp,0.916281e-2_dp,&
-0.2057706e-1_dp,0.2635537e-1_dp,-0.1647633e-1_dp,&
0.392377e-2_dp/)

ax=abs(x)
if (ax < 3.75) then Polynomial fit.

bessi0_s=poly(real((x/3.75_sp)**2,dp),p)
else

bessi0_s=(exp(ax)/sqrt(ax))*poly(real(3.75_sp/ax,dp),q)
end if
END FUNCTION bessi0_s

FUNCTION bessi0_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi0_v
REAL(SP), DIMENSION(size(x)) :: ax
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/1.0_dp,3.5156229_dp,&

3.0899424_dp,1.2067492_dp,0.2659732_dp,0.360768e-1_dp,&

1110 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

0.45813e-2_dp/)
REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp,0.1328592e-1_dp,&

0.225319e-2_dp,-0.157565e-2_dp,0.916281e-2_dp,&
-0.2057706e-1_dp,0.2635537e-1_dp,-0.1647633e-1_dp,&
0.392377e-2_dp/)

ax=abs(x)
mask = (ax < 3.75)
where (mask)

bessi0_v=poly(real((x/3.75_sp)**2,dp),p,mask)
elsewhere

y=3.75_sp/ax
bessi0_v=(exp(ax)/sqrt(ax))*poly(real(y,dp),q,.not. mask)

end where
END FUNCTION bessi0_v

⋆ ⋆ ⋆

FUNCTION bessk0_s(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessi0
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk0_s

Returns the modified Bessel function K0(x) for positive real x.
REAL(DP) :: y Accumulate polynomials in double precision.
REAL(DP), DIMENSION(7) :: p = (/-0.57721566_dp,0.42278420_dp,&

0.23069756_dp,0.3488590e-1_dp,0.262698e-2_dp,0.10750e-3_dp,&
0.74e-5_dp/)

REAL(DP), DIMENSION(7) :: q = (/1.25331414_dp,-0.7832358e-1_dp,&
0.2189568e-1_dp,-0.1062446e-1_dp,0.587872e-2_dp,&
-0.251540e-2_dp,0.53208e-3_dp/)

call assert(x > 0.0, ’bessk0_s arg’)
if (x <= 2.0) then Polynomial fit.

y=x*x/4.0_sp
bessk0_s=(-log(x/2.0_sp)*bessi0(x))+poly(y,p)

else
y=(2.0_sp/x)
bessk0_s=(exp(-x)/sqrt(x))*poly(y,q)

end if
END FUNCTION bessk0_s

FUNCTION bessk0_v(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessi0
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk0_v
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/-0.57721566_dp,0.42278420_dp,&

0.23069756_dp,0.3488590e-1_dp,0.262698e-2_dp,0.10750e-3_dp,&
0.74e-5_dp/)

REAL(DP), DIMENSION(7) :: q = (/1.25331414_dp,-0.7832358e-1_dp,&
0.2189568e-1_dp,-0.1062446e-1_dp,0.587872e-2_dp,&
-0.251540e-2_dp,0.53208e-3_dp/)

call assert(all(x > 0.0), ’bessk0_v arg’)
mask = (x <= 2.0)
where (mask)

y=x*x/4.0_sp
bessk0_v=(-log(x/2.0_sp)*bessi0(x))+poly(y,p,mask)

Chapter B6. Special Functions 1111

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

elsewhere
y=(2.0_sp/x)
bessk0_v=(exp(-x)/sqrt(x))*poly(y,q,.not. mask)

end where
END FUNCTION bessk0_v

⋆ ⋆ ⋆

FUNCTION bessi1_s(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi1_s

Returns the modified Bessel function I1(x) for any real x.
REAL(SP) :: ax
REAL(DP), DIMENSION(7) :: p = (/0.5_dp,0.87890594_dp,&

0.51498869_dp,0.15084934_dp,0.2658733e-1_dp,&
0.301532e-2_dp,0.32411e-3_dp/)
Accumulate polynomials in double precision.

REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp,-0.3988024e-1_dp,&
-0.362018e-2_dp,0.163801e-2_dp,-0.1031555e-1_dp,&
0.2282967e-1_dp,-0.2895312e-1_dp,0.1787654e-1_dp,&
-0.420059e-2_dp/)

ax=abs(x)
if (ax < 3.75) then Polynomial fit.

bessi1_s=ax*poly(real((x/3.75_sp)**2,dp),p)
else

bessi1_s=(exp(ax)/sqrt(ax))*poly(real(3.75_sp/ax,dp),q)
end if
if (x < 0.0) bessi1_s=-bessi1_s
END FUNCTION bessi1_s

FUNCTION bessi1_v(x)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi1_v
REAL(SP), DIMENSION(size(x)) :: ax
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/0.5_dp,0.87890594_dp,&

0.51498869_dp,0.15084934_dp,0.2658733e-1_dp,&
0.301532e-2_dp,0.32411e-3_dp/)

REAL(DP), DIMENSION(9) :: q = (/0.39894228_dp,-0.3988024e-1_dp,&
-0.362018e-2_dp,0.163801e-2_dp,-0.1031555e-1_dp,&
0.2282967e-1_dp,-0.2895312e-1_dp,0.1787654e-1_dp,&
-0.420059e-2_dp/)

ax=abs(x)
mask = (ax < 3.75)
where (mask)

bessi1_v=ax*poly(real((x/3.75_sp)**2,dp),p,mask)
elsewhere

y=3.75_sp/ax
bessi1_v=(exp(ax)/sqrt(ax))*poly(real(y,dp),q,.not. mask)

end where
where (x < 0.0) bessi1_v=-bessi1_v
END FUNCTION bessi1_v

1112 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

⋆ ⋆ ⋆

FUNCTION bessk1_s(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessi1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk1_s

Returns the modified Bessel function K1(x) for positive real x.
REAL(DP) :: y Accumulate polynomials in double precision.
REAL(DP), DIMENSION(7) :: p = (/1.0_dp,0.15443144_dp,&

-0.67278579_dp,-0.18156897_dp,-0.1919402e-1_dp,&
-0.110404e-2_dp,-0.4686e-4_dp/)

REAL(DP), DIMENSION(7) :: q = (/1.25331414_dp,0.23498619_dp,&
-0.3655620e-1_dp,0.1504268e-1_dp,-0.780353e-2_dp,&
0.325614e-2_dp,-0.68245e-3_dp/)

call assert(x > 0.0, ’bessk1_s arg’)
if (x <= 2.0) then Polynomial fit.

y=x*x/4.0_sp
bessk1_s=(log(x/2.0_sp)*bessi1(x))+(1.0_sp/x)*poly(y,p)

else
y=2.0_sp/x
bessk1_s=(exp(-x)/sqrt(x))*poly(y,q)

end if
END FUNCTION bessk1_s

FUNCTION bessk1_v(x)
USE nrtype; USE nrutil, ONLY : assert,poly
USE nr, ONLY : bessi1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk1_v
REAL(DP), DIMENSION(size(x)) :: y
LOGICAL(LGT), DIMENSION(size(x)) :: mask
REAL(DP), DIMENSION(7) :: p = (/1.0_dp,0.15443144_dp,&

-0.67278579_dp,-0.18156897_dp,-0.1919402e-1_dp,&
-0.110404e-2_dp,-0.4686e-4_dp/)

REAL(DP), DIMENSION(7) :: q = (/1.25331414_dp,0.23498619_dp,&
-0.3655620e-1_dp,0.1504268e-1_dp,-0.780353e-2_dp,&
0.325614e-2_dp,-0.68245e-3_dp/)

call assert(all(x > 0.0), ’bessk1_v arg’)
mask = (x <= 2.0)
where (mask)

y=x*x/4.0_sp
bessk1_v=(log(x/2.0_sp)*bessi1(x))+(1.0_sp/x)*poly(y,p,mask)

elsewhere
y=2.0_sp/x
bessk1_v=(exp(-x)/sqrt(x))*poly(y,q,.not. mask)

end where
END FUNCTION bessk1_v

⋆ ⋆ ⋆

Chapter B6. Special Functions 1113

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION bessk_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessk0,bessk1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessk_s

Returns the modified Bessel function Kn(x) for positive x and n ≥ 2.
INTEGER(I4B) :: j
REAL(SP) :: bk,bkm,bkp,tox
call assert(n >= 2, x > 0.0, ’bessk_s args’)
tox=2.0_sp/x
bkm=bessk0(x) Upward recurrence for all x...
bk=bessk1(x)
do j=1,n-1 ...and here it is.

bkp=bkm+j*tox*bk
bkm=bk
bk=bkp

end do
bessk_s=bk
END FUNCTION bessk_s

FUNCTION bessk_v(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessk0,bessk1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessk_v
INTEGER(I4B) :: j
REAL(SP), DIMENSION(size(x)) :: bk,bkm,bkp,tox
call assert(n >= 2, all(x > 0.0), ’bessk_v args’)
tox=2.0_sp/x
bkm=bessk0(x)
bk=bessk1(x)
do j=1,n-1

bkp=bkm+j*tox*bk
bkm=bk
bk=bkp

end do
bessk_v=bk
END FUNCTION bessk_v

f90
The scalar and vector versions ofbessk are identical, and have no
precision-specific constants, another example of where we would like to
define a generic “template” function if the language had this facility.

⋆ ⋆ ⋆

1114 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION bessi_s(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessi0
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP) :: bessi_s
INTEGER(I4B), PARAMETER :: IACC=40,IEXP=maxexponent(x)/2

Returns the modified Bessel function In(x) for any real x and n ≥ 2. Make the parameter
IACC larger to increase accuracy.

INTEGER(I4B) :: j,m
REAL(SP) :: bi,bim,bip,tox
call assert(n >= 2, ’bessi_s args’)
bessi_s=0.0
if (x*x <= 8.0_sp*tiny(x)) RETURN Underflow limit.
tox=2.0_sp/abs(x)
bip=0.0
bi=1.0
m=2*((n+int(sqrt(real(IACC*n,sp))))) Downward recurrence from even m.
do j=m,1,-1

bim=bip+j*tox*bi The downward recurrence.
bip=bi
bi=bim
if (exponent(bi) > IEXP) then Renormalize to prevent overflows.

bessi_s=scale(bessi_s,-IEXP)
bi=scale(bi,-IEXP)
bip=scale(bip,-IEXP)

end if
if (j == n) bessi_s=bip

end do
bessi_s=bessi_s*bessi0(x)/bi Normalize with bessi0.
if (x < 0.0 .and. mod(n,2) == 1) bessi_s=-bessi_s
END FUNCTION bessi_s

f90
if (exponent(bi) > IEXP) then See discussion of scaling forbessj on
p. 1107.

FUNCTION bessi_v(n,x)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessi0
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: bessi_v
INTEGER(I4B), PARAMETER :: IACC=40,IEXP=maxexponent(x)/2
INTEGER(I4B) :: j,m
REAL(SP), DIMENSION(size(x)) :: bi,bim,bip,tox
LOGICAL(LGT), DIMENSION(size(x)) :: mask
call assert(n >= 2, ’bessi_v args’)
bessi_v=0.0
mask = (x <= 8.0_sp*tiny(x))
tox=2.0_sp/merge(2.0_sp,abs(x),mask)
bip=0.0
bi=1.0_sp
m=2*((n+int(sqrt(real(IACC*n,sp)))))
do j=m,1,-1

bim=bip+j*tox*bi
bip=bi
bi=bim
where (exponent(bi) > IEXP)

bessi_v=scale(bessi_v,-IEXP)

Chapter B6. Special Functions 1115

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

bi=scale(bi,-IEXP)
bip=scale(bip,-IEXP)

end where
if (j == n) bessi_v=bip

end do
bessi_v=bessi_v*bessi0(x)/bi
where (mask) bessi_v=0.0_sp
where (x < 0.0 .and. mod(n,2) == 1) bessi_v=-bessi_v
END FUNCTION bessi_v

mask = (x == 0.0)
tox=2.0_sp/merge(2.0_sp,abs(x),mask)

For the special casex = 0, the value of the returned function should be zero;
however, the evaluation oftox will give a divide check. We substitute an innocuous
value for the zero cases, then fix up their answers at the end.

⋆ ⋆ ⋆

SUBROUTINE bessjy_s(x,xnu,rj,ry,rjp,ryp)
USE nrtype; USE nrutil, ONLY : assert,nrerror
USE nr, ONLY : beschb
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,xnu
REAL(SP), INTENT(OUT) :: rj,ry,rjp,ryp
INTEGER(I4B), PARAMETER :: MAXIT=10000
REAL(DP), PARAMETER :: XMIN=2.0_dp,EPS=1.0e-10_dp,FPMIN=1.0e-30_dp

Returns the Bessel functions rj = Jν , ry = Yν and their derivatives rjp = J ′

ν , ryp = Y ′

ν ,
for positive x and for xnu = ν ≥ 0. The relative accuracy is within one or two significant
digits of EPS, except near a zero of one of the functions, where EPS controls its absolute
accuracy. FPMIN is a number close to the machine’s smallest floating-point number. All
internal arithmetic is in double precision. To convert the entire routine to double precision,
change the SP declaration above and decrease EPS to 10−16. Also convert the subroutine
beschb.

INTEGER(I4B) :: i,isign,l,nl
REAL(DP) :: a,b,c,d,del,del1,e,f,fact,fact2,fact3,ff,gam,gam1,gam2,&

gammi,gampl,h,p,pimu,pimu2,q,r,rjl,rjl1,rjmu,rjp1,rjpl,rjtemp,&
ry1,rymu,rymup,rytemp,sum,sum1,w,x2,xi,xi2,xmu,xmu2

COMPLEX(DPC) :: aa,bb,cc,dd,dl,pq
call assert(x > 0.0, xnu >= 0.0, ’bessjy args’)
nl=merge(int(xnu+0.5_dp), max(0,int(xnu-x+1.5_dp)), x < XMIN)
nl is the number of downward recurrences of the J’s and upward recurrences of Y ’s. xmu
lies between −1/2 and 1/2 for x < XMIN, while it is chosen so that x is greater than the
turning point for x ≥ XMIN.

xmu=xnu-nl
xmu2=xmu*xmu
xi=1.0_dp/x
xi2=2.0_dp*xi
w=xi2/PI_D The Wronskian.
isign=1 Evaluate CF1 by modified Lentz’s method

(§5.2). isign keeps track of sign changes
in the denominator.

h=xnu*xi
if (h < FPMIN) h=FPMIN
b=xi2*xnu
d=0.0
c=h
do i=1,MAXIT

b=b+xi2
d=b-d
if (abs(d) < FPMIN) d=FPMIN
c=b-1.0_dp/c

1116 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (abs(c) < FPMIN) c=FPMIN
d=1.0_dp/d
del=c*d
h=del*h
if (d < 0.0) isign=-isign
if (abs(del-1.0_dp) < EPS) exit

end do
if (i > MAXIT) call nrerror(’x too large in bessjy; try asymptotic expansion’)
rjl=isign*FPMIN Initialize Jν and J ′

ν for downward recurrence.
rjpl=h*rjl
rjl1=rjl Store values for later rescaling.
rjp1=rjpl
fact=xnu*xi
do l=nl,1,-1

rjtemp=fact*rjl+rjpl
fact=fact-xi
rjpl=fact*rjtemp-rjl
rjl=rjtemp

end do
if (rjl == 0.0) rjl=EPS
f=rjpl/rjl Now have unnormalized Jµ and J ′

µ.
if (x < XMIN) then Use series.

x2=0.5_dp*x
pimu=PI_D*xmu
if (abs(pimu) < EPS) then

fact=1.0
else

fact=pimu/sin(pimu)
end if
d=-log(x2)
e=xmu*d
if (abs(e) < EPS) then

fact2=1.0
else

fact2=sinh(e)/e
end if
call beschb(xmu,gam1,gam2,gampl,gammi) Chebyshev evaluation of Γ1 and Γ2.
ff=2.0_dp/PI_D*fact*(gam1*cosh(e)+gam2*fact2*d) f0.
e=exp(e)
p=e/(gampl*PI_D) p0.
q=1.0_dp/(e*PI_D*gammi) q0.
pimu2=0.5_dp*pimu
if (abs(pimu2) < EPS) then

fact3=1.0
else

fact3=sin(pimu2)/pimu2
end if
r=PI_D*pimu2*fact3*fact3
c=1.0
d=-x2*x2
sum=ff+r*q
sum1=p
do i=1,MAXIT

ff=(i*ff+p+q)/(i*i-xmu2)
c=c*d/i
p=p/(i-xmu)
q=q/(i+xmu)
del=c*(ff+r*q)
sum=sum+del
del1=c*p-i*del
sum1=sum1+del1
if (abs(del) < (1.0_dp+abs(sum))*EPS) exit

end do
if (i > MAXIT) call nrerror(’bessy series failed to converge’)

Chapter B6. Special Functions 1117

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

rymu=-sum
ry1=-sum1*xi2
rymup=xmu*xi*rymu-ry1
rjmu=w/(rymup-f*rymu) Equation (6.7.13).

else Evaluate CF2 by modified Lentz’s method
(§5.2).a=0.25_dp-xmu2

pq=cmplx(-0.5_dp*xi,1.0_dp,kind=dpc)
aa=cmplx(0.0_dp,xi*a,kind=dpc)
bb=cmplx(2.0_dp*x,2.0_dp,kind=dpc)
cc=bb+aa/pq
dd=1.0_dp/bb
pq=cc*dd*pq
do i=2,MAXIT

a=a+2*(i-1)
bb=bb+cmplx(0.0_dp,2.0_dp,kind=dpc)
dd=a*dd+bb
if (absc(dd) < FPMIN) dd=FPMIN
cc=bb+a/cc
if (absc(cc) < FPMIN) cc=FPMIN
dd=1.0_dp/dd
dl=cc*dd
pq=pq*dl
if (absc(dl-1.0_dp) < EPS) exit

end do
if (i > MAXIT) call nrerror(’cf2 failed in bessjy’)
p=real(pq)
q=aimag(pq)
gam=(p-f)/q Equations (6.7.6) – (6.7.10).
rjmu=sqrt(w/((p-f)*gam+q))
rjmu=sign(rjmu,rjl)
rymu=rjmu*gam
rymup=rymu*(p+q/gam)
ry1=xmu*xi*rymu-rymup

end if
fact=rjmu/rjl
rj=rjl1*fact Scale original Jν and J ′

ν .
rjp=rjp1*fact
do i=1,nl Upward recurrence of Yν .

rytemp=(xmu+i)*xi2*ry1-rymu
rymu=ry1
ry1=rytemp

end do
ry=rymu
ryp=xnu*xi*rymu-ry1
CONTAINS

FUNCTION absc(z)
IMPLICIT NONE
COMPLEX(DPC), INTENT(IN) :: z
REAL(DP) :: absc
absc=abs(real(z))+abs(aimag(z))
END FUNCTION absc
END SUBROUTINE bessjy_s

Yes there is a vector versionbessjy v. Its general scheme is to have a
bunch of contained functions for various cases, and then combine their
outputs (somewhat likebessj v, above, but much more complicated).

A listing runs to about four printed pages, and we judge it to be of not much interest,
so we will not include it here. (It is included on the machine-readable media.)

⋆ ⋆ ⋆

1118 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE beschb_s(x,gam1,gam2,gampl,gammi)
USE nrtype
USE nr, ONLY : chebev
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x
REAL(DP), INTENT(OUT) :: gam1,gam2,gampl,gammi
INTEGER(I4B), PARAMETER :: NUSE1=5,NUSE2=5

Evaluates Γ1 and Γ2 by Chebyshev expansion for |x| ≤ 1/2. Also returns 1/Γ(1 + x) and
1/Γ(1 − x). If converting to double precision, set NUSE1 = 7, NUSE2 = 8.

REAL(SP) :: xx
REAL(SP), DIMENSION(7) :: c1=(/-1.142022680371168_sp,&

6.5165112670737e-3_sp,3.087090173086e-4_sp,-3.4706269649e-6_sp,&
6.9437664e-9_sp,3.67795e-11_sp,-1.356e-13_sp/)

REAL(SP), DIMENSION(8) :: c2=(/1.843740587300905_sp,&
-7.68528408447867e-2_sp,1.2719271366546e-3_sp,&
-4.9717367042e-6_sp, -3.31261198e-8_sp,2.423096e-10_sp,&
-1.702e-13_sp,-1.49e-15_sp/)

xx=8.0_dp*x*x-1.0_dp Multiply x by 2 to make range be −1 to 1, and then apply
transformation for evaluating even Cheby-
shev series.

gam1=chebev(-1.0_sp,1.0_sp,c1(1:NUSE1),xx)
gam2=chebev(-1.0_sp,1.0_sp,c2(1:NUSE2),xx)
gampl=gam2-x*gam1
gammi=gam2+x*gam1
END SUBROUTINE beschb_s

SUBROUTINE beschb_v(x,gam1,gam2,gampl,gammi)
USE nrtype
USE nr, ONLY : chebev
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(:), INTENT(OUT) :: gam1,gam2,gampl,gammi
INTEGER(I4B), PARAMETER :: NUSE1=5,NUSE2=5
REAL(SP), DIMENSION(size(x)) :: xx
REAL(SP), DIMENSION(7) :: c1=(/-1.142022680371168_sp,&

6.5165112670737e-3_sp,3.087090173086e-4_sp,-3.4706269649e-6_sp,&
6.9437664e-9_sp,3.67795e-11_sp,-1.356e-13_sp/)

REAL(SP), DIMENSION(8) :: c2=(/1.843740587300905_sp,&
-7.68528408447867e-2_sp,1.2719271366546e-3_sp,&
-4.9717367042e-6_sp, -3.31261198e-8_sp,2.423096e-10_sp,&
-1.702e-13_sp,-1.49e-15_sp/)

xx=8.0_dp*x*x-1.0_dp
gam1=chebev(-1.0_sp,1.0_sp,c1(1:NUSE1),xx)
gam2=chebev(-1.0_sp,1.0_sp,c2(1:NUSE2),xx)
gampl=gam2-x*gam1
gammi=gam2+x*gam1
END SUBROUTINE beschb_v

⋆ ⋆ ⋆

SUBROUTINE bessik(x,xnu,ri,rk,rip,rkp)
USE nrtype; USE nrutil, ONLY : assert,nrerror
USE nr, ONLY : beschb
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,xnu
REAL(SP), INTENT(OUT) :: ri,rk,rip,rkp
INTEGER(I4B), PARAMETER :: MAXIT=10000
REAL(SP), PARAMETER :: XMIN=2.0
REAL(DP), PARAMETER :: EPS=1.0e-10_dp,FPMIN=1.0e-30_dp

Returns the modified Bessel functions ri = Iν , rk = Kν and their derivatives rip = I ′ν ,
rkp = K′

ν , for positive x and for xnu = ν ≥ 0. The relative accuracy is within one or

Chapter B6. Special Functions 1119

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

two significant digits of EPS. FPMIN is a number close to the machine’s smallest floating-
point number. All internal arithmetic is in double precision. To convert the entire routine
to double precision, change the REAL declaration above and decrease EPS to 10−16. Also
convert the subroutine beschb.

INTEGER(I4B) :: i,l,nl
REAL(DP) :: a,a1,b,c,d,del,del1,delh,dels,e,f,fact,fact2,ff,&

gam1,gam2,gammi,gampl,h,p,pimu,q,q1,q2,qnew,&
ril,ril1,rimu,rip1,ripl,ritemp,rk1,rkmu,rkmup,rktemp,&
s,sum,sum1,x2,xi,xi2,xmu,xmu2

call assert(x > 0.0, xnu >= 0.0, ’bessik args’)
nl=int(xnu+0.5_dp) nl is the number of downward recurrences

of the I’s and upward recurrences
of K’s. xmu lies between −1/2 and
1/2.

xmu=xnu-nl
xmu2=xmu*xmu
xi=1.0_dp/x
xi2=2.0_dp*xi
h=xnu*xi Evaluate CF1 by modified Lentz’s method

(§5.2).if (h < FPMIN) h=FPMIN
b=xi2*xnu
d=0.0
c=h
do i=1,MAXIT

b=b+xi2
d=1.0_dp/(b+d) Denominators cannot be zero here, so no

need for special precautions.c=b+1.0_dp/c
del=c*d
h=del*h
if (abs(del-1.0_dp) < EPS) exit

end do
if (i > MAXIT) call nrerror(’x too large in bessik; try asymptotic expansion’)
ril=FPMIN Initialize Iν and I′ν for downward recur-

rence.ripl=h*ril
ril1=ril Store values for later rescaling.
rip1=ripl
fact=xnu*xi
do l=nl,1,-1

ritemp=fact*ril+ripl
fact=fact-xi
ripl=fact*ritemp+ril
ril=ritemp

end do
f=ripl/ril Now have unnormalized Iµ and I′µ.
if (x < XMIN) then Use series.

x2=0.5_dp*x
pimu=PI_D*xmu
if (abs(pimu) < EPS) then

fact=1.0
else

fact=pimu/sin(pimu)
end if
d=-log(x2)
e=xmu*d
if (abs(e) < EPS) then

fact2=1.0
else

fact2=sinh(e)/e
end if
call beschb(xmu,gam1,gam2,gampl,gammi) Chebyshev evaluation of Γ1 and Γ2.
ff=fact*(gam1*cosh(e)+gam2*fact2*d) f0.
sum=ff
e=exp(e)
p=0.5_dp*e/gampl p0.
q=0.5_dp/(e*gammi) q0.
c=1.0
d=x2*x2

1120 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sum1=p
do i=1,MAXIT

ff=(i*ff+p+q)/(i*i-xmu2)
c=c*d/i
p=p/(i-xmu)
q=q/(i+xmu)
del=c*ff
sum=sum+del
del1=c*(p-i*ff)
sum1=sum1+del1
if (abs(del) < abs(sum)*EPS) exit

end do
if (i > MAXIT) call nrerror(’bessk series failed to converge’)
rkmu=sum
rk1=sum1*xi2

else Evaluate CF2 by Steed’s algorithm (§5.2),
which is OK because there can be no
zero denominators.

b=2.0_dp*(1.0_dp+x)
d=1.0_dp/b
delh=d
h=delh
q1=0.0 Initializations for recurrence (6.7.35).
q2=1.0
a1=0.25_dp-xmu2
c=a1
q=c First term in equation (6.7.34).
a=-a1
s=1.0_dp+q*delh
do i=2,MAXIT

a=a-2*(i-1)
c=-a*c/i
qnew=(q1-b*q2)/a
q1=q2
q2=qnew
q=q+c*qnew
b=b+2.0_dp
d=1.0_dp/(b+a*d)
delh=(b*d-1.0_dp)*delh
h=h+delh
dels=q*delh
s=s+dels
if (abs(dels/s) < EPS) exit Need only test convergence of sum, since

CF2 itself converges more quickly.end do
if (i > MAXIT) call nrerror(’bessik: failure to converge in cf2’)
h=a1*h
rkmu=sqrt(PI_D/(2.0_dp*x))*exp(-x)/s Omit the factor exp(−x) to scale all the

returned functions by exp(x) for x ≥
XMIN.

rk1=rkmu*(xmu+x+0.5_dp-h)*xi
end if
rkmup=xmu*xi*rkmu-rk1
rimu=xi/(f*rkmu-rkmup) Get Iµ from Wronskian.
ri=(rimu*ril1)/ril Scale original Iν and I′ν .
rip=(rimu*rip1)/ril
do i=1,nl Upward recurrence of Kν .

rktemp=(xmu+i)*xi2*rk1+rkmu
rkmu=rk1
rk1=rktemp

end do
rk=rkmu
rkp=xnu*xi*rkmu-rk1
END SUBROUTINE bessik

Chapter B6. Special Functions 1121

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

bessik does not readily parallelize, and we thus don’t provide a vector
version. Sinceairy, immediately following, requiresbessik, we don’t
have a vector version of it, either.

⋆ ⋆ ⋆

SUBROUTINE airy(x,ai,bi,aip,bip)
USE nrtype
USE nr, ONLY : bessik,bessjy
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ai,bi,aip,bip

Returns Airy functions Ai(x), Bi(x), and their derivatives Ai′(x), Bi′(x).
REAL(SP) :: absx,ri,rip,rj,rjp,rk,rkp,rootx,ry,ryp,z
REAL(SP), PARAMETER :: THIRD=1.0_sp/3.0_sp,TWOTHR=2.0_sp/3.0_sp, &

ONOVRT=0.5773502691896258_sp
absx=abs(x)
rootx=sqrt(absx)
z=TWOTHR*absx*rootx
if (x > 0.0) then

call bessik(z,THIRD,ri,rk,rip,rkp)
ai=rootx*ONOVRT*rk/PI
bi=rootx*(rk/PI+2.0_sp*ONOVRT*ri)
call bessik(z,TWOTHR,ri,rk,rip,rkp)
aip=-x*ONOVRT*rk/PI
bip=x*(rk/PI+2.0_sp*ONOVRT*ri)

else if (x < 0.0) then
call bessjy(z,THIRD,rj,ry,rjp,ryp)
ai=0.5_sp*rootx*(rj-ONOVRT*ry)
bi=-0.5_sp*rootx*(ry+ONOVRT*rj)
call bessjy(z,TWOTHR,rj,ry,rjp,ryp)
aip=0.5_sp*absx*(ONOVRT*ry+rj)
bip=0.5_sp*absx*(ONOVRT*rj-ry)

else Case x = 0.
ai=0.3550280538878172_sp
bi=ai/ONOVRT
aip=-0.2588194037928068_sp
bip=-aip/ONOVRT

end if
END SUBROUTINE airy

⋆ ⋆ ⋆

SUBROUTINE sphbes_s(n,x,sj,sy,sjp,syp)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessjy
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: sj,sy,sjp,syp

Returns spherical Bessel functions jn(x), yn(x), and their derivatives j′n(x), y′n(x) for
integer n ≥ 0 and x > 0.

REAL(SP), PARAMETER :: RTPIO2=1.253314137315500_sp
REAL(SP) :: factor,order,rj,rjp,ry,ryp
call assert(n >= 0, x > 0.0, ’sphbes_s args’)
order=n+0.5_sp
call bessjy(x,order,rj,ry,rjp,ryp)
factor=RTPIO2/sqrt(x)
sj=factor*rj
sy=factor*ry

1122 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sjp=factor*rjp-sj/(2.0_sp*x)
syp=factor*ryp-sy/(2.0_sp*x)
END SUBROUTINE sphbes_s

SUBROUTINE sphbes_v(n,x,sj,sy,sjp,syp)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : bessjy
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: sj,sy,sjp,syp
REAL(SP), PARAMETER :: RTPIO2=1.253314137315500_sp
REAL(SP) :: order
REAL(SP), DIMENSION(size(x)) :: factor,rj,rjp,ry,ryp
call assert(n >= 0, all(x > 0.0), ’sphbes_v args’)
order=n+0.5_sp
call bessjy(x,order,rj,ry,rjp,ryp)
factor=RTPIO2/sqrt(x)
sj=factor*rj
sy=factor*ry
sjp=factor*rjp-sj/(2.0_sp*x)
syp=factor*ryp-sy/(2.0_sp*x)
END SUBROUTINE sphbes_v

Note thatsphbes vuses (throughoverloading)bessjy v. The listingof
that routine was omitted above, but it is on the machine-readable media.

⋆ ⋆ ⋆

FUNCTION plgndr_s(l,m,x)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: l,m
REAL(SP), INTENT(IN) :: x
REAL(SP) :: plgndr_s

Computes the associated Legendre polynomial Pm
l (x). Here m and l are integers satisfying

0 ≤ m ≤ l, while x lies in the range −1 ≤ x ≤ 1.
INTEGER(I4B) :: ll
REAL(SP) :: pll,pmm,pmmp1,somx2
call assert(m >= 0, m <= l, abs(x) <= 1.0, ’plgndr_s args’)
pmm=1.0 Compute Pm

m .
if (m > 0) then

somx2=sqrt((1.0_sp-x)*(1.0_sp+x))
pmm=product(arth(1.0_sp,2.0_sp,m))*somx2**m
if (mod(m,2) == 1) pmm=-pmm

end if
if (l == m) then

plgndr_s=pmm
else

pmmp1=x*(2*m+1)*pmm Compute Pm
m+1.

if (l == m+1) then
plgndr_s=pmmp1

else Compute Pm
l , l > m + 1.

do ll=m+2,l
pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll

end do
plgndr_s=pll

Chapter B6. Special Functions 1123

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
end if
END FUNCTION plgndr_s

f90
product(arth(1.0_sp,2.0_sp,m))

That is, (2m − 1)!!

FUNCTION plgndr_v(l,m,x)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: l,m
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: plgndr_v
INTEGER(I4B) :: ll
REAL(SP), DIMENSION(size(x)) :: pll,pmm,pmmp1,somx2
call assert(m >= 0, m <= l, all(abs(x) <= 1.0), ’plgndr_v args’)
pmm=1.0
if (m > 0) then

somx2=sqrt((1.0_sp-x)*(1.0_sp+x))
pmm=product(arth(1.0_sp,2.0_sp,m))*somx2**m
if (mod(m,2) == 1) pmm=-pmm

end if
if (l == m) then

plgndr_v=pmm
else

pmmp1=x*(2*m+1)*pmm
if (l == m+1) then

plgndr_v=pmmp1
else

do ll=m+2,l
pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll

end do
plgndr_v=pll

end if
end if
END FUNCTION plgndr_v

All thoseif’s (not where’s) may strike you as odd in a vector routine,
but it is vectorized only onx, the dependent variable, not on the scalar
indicesl andm. Much harder to write a routine that is parallel for a

vector of arbitrary triplets(l, m, x). Try it!

⋆ ⋆ ⋆

SUBROUTINE frenel(x,s,c)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: s,c
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=tiny(x),BIG=huge(x)*EPS,&

XMIN=1.5
Computes the Fresnel integrals S(x) and C(x) for all real x.
Parameters: MAXIT is the maximum number of iterations allowed; EPS is the relative error;
FPMIN is a number near the smallest representable floating-point number; BIG is a number

1124 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

near the machine overflow limit; XMIN is the dividing line between using the series and
continued fraction.

INTEGER(I4B) :: k,n
REAL(SP) :: a,ax,fact,pix2,sign,sum,sumc,sums,term,test
COMPLEX(SPC) :: b,cc,d,h,del,cs
LOGICAL(LGT) :: odd
ax=abs(x)
if (ax < sqrt(FPMIN)) then Special case: avoid failure of convergence test be-

cause of underflow.s=0.0
c=ax

else if (ax <= XMIN) then Evaluate both series simultaneously.
sum=0.0
sums=0.0
sumc=ax
sign=1.0
fact=PIO2*ax*ax
odd=.true.
term=ax
n=3
do k=1,MAXIT

term=term*fact/k
sum=sum+sign*term/n
test=abs(sum)*EPS
if (odd) then

sign=-sign
sums=sum
sum=sumc

else
sumc=sum
sum=sums

end if
if (term < test) exit
odd=.not. odd
n=n+2

end do
if (k > MAXIT) call nrerror(’frenel: series failed’)
s=sums
c=sumc

else Evaluate continued fraction by modified Lentz’s method
(§5.2).pix2=PI*ax*ax

b=cmplx(1.0_sp,-pix2,kind=spc)
cc=BIG
d=1.0_sp/b
h=d
n=-1
do k=2,MAXIT

n=n+2
a=-n*(n+1)
b=b+4.0_sp
d=1.0_sp/(a*d+b) Denominators cannot be zero.
cc=b+a/cc
del=cc*d
h=h*del
if (absc(del-1.0_sp) <= EPS) exit

end do
if (k > MAXIT) call nrerror(’cf failed in frenel’)
h=h*cmplx(ax,-ax,kind=spc)
cs=cmplx(0.5_sp,0.5_sp,kind=spc)*(1.0_sp-&

cmplx(cos(0.5_sp*pix2),sin(0.5_sp*pix2),kind=spc)*h)
c=real(cs)
s=aimag(cs)

end if
if (x < 0.0) then Use antisymmetry.

c=-c

Chapter B6. Special Functions 1125

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

s=-s
end if
CONTAINS

FUNCTION absc(z)
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: z
REAL(SP) :: absc
absc=abs(real(z))+abs(aimag(z))
END FUNCTION absc
END SUBROUTINE frenel

f90
b=cmplx(1.0_sp,-pix2,kind=spc) It’s a good ideaalwaysto include the
kind= parameter when you use thecmplx intrinsic. The reason is that,
perhaps counterintuitively, the result ofcmplx is not determined by the

kind of its arguments, but is rather the “default complex kind.” Since that default
may not be what you think it is (or whatspc is defined to be), the desired kind
should be specified explicitly.

c=real(cs) And why not specify akind= parameter here, where it is also
optionally allowed? Our answer is that thereal intrinsic actually merges two
different usages. When its argument is complex, it is the counterpart ofaimag

and returns a value whose kind is determined by the kind of its argument. In
fact aimag doesn’t even allow an optional kind parameter, so we never put one in
the corresponding use ofreal. The other usage ofreal is for “casting,” that is,
converting one real type to another (e.g., double precision to single precision, or vice
versa). Here wealwaysinclude a kind parameter, since otherwise the result is the
default real kind, with the same dangers mentioned in the previous paragraph.

⋆ ⋆ ⋆

SUBROUTINE cisi(x,ci,si)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: ci,si
INTEGER(I4B), PARAMETER :: MAXIT=100
REAL(SP), PARAMETER :: EPS=epsilon(x),FPMIN=4.0_sp*tiny(x),&

BIG=huge(x)*EPS,TMIN=2.0
Computes the cosine and sine integrals Ci(x) and Si(x). Ci(0) is returned as a large negative
number and no error message is generated. For x < 0 the routine returns Ci(−x) and you
must supply the −iπ yourself.
Parameters: MAXIT is the maximum number of iterations allowed; EPS is the relative error,
or absolute error near a zero of Ci(x); FPMIN is a number near the smallest representable
floating-point number; BIG is a number near the machine overflow limit; TMIN is the dividing
line between using the series and continued fraction; EULER = γ (in nrtype).

INTEGER(I4B) :: i,k
REAL(SP) :: a,err,fact,sign,sum,sumc,sums,t,term
COMPLEX(SPC) :: h,b,c,d,del
LOGICAL(LGT) :: odd
t=abs(x)
if (t == 0.0) then Special case.

si=0.0
ci=-BIG
RETURN

end if Evaluate continued fraction by modified Lentz’s
method (§5.2).if (t > TMIN) then

b=cmplx(1.0_sp,t,kind=spc)

1126 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

c=BIG
d=1.0_sp/b
h=d
do i=2,MAXIT

a=-(i-1)**2
b=b+2.0_sp
d=1.0_sp/(a*d+b) Denominators cannot be zero.
c=b+a/c
del=c*d
h=h*del
if (absc(del-1.0_sp) <= EPS) exit

end do
if (i > MAXIT) call nrerror(’continued fraction failed in cisi’)
h=cmplx(cos(t),-sin(t),kind=spc)*h
ci=-real(h)
si=PIO2+aimag(h)

else Evaluate both series simultaneously.
if (t < sqrt(FPMIN)) then Special case: avoid failure of convergence test

because of underflow.sumc=0.0
sums=t

else
sum=0.0
sums=0.0
sumc=0.0
sign=1.0
fact=1.0
odd=.true.
do k=1,MAXIT

fact=fact*t/k
term=fact/k
sum=sum+sign*term
err=term/abs(sum)
if (odd) then

sign=-sign
sums=sum
sum=sumc

else
sumc=sum
sum=sums

end if
if (err < EPS) exit
odd=.not. odd

end do
if (k > MAXIT) call nrerror(’MAXIT exceeded in cisi’)

end if
si=sums
ci=sumc+log(t)+EULER

end if
if (x < 0.0) si=-si
CONTAINS

FUNCTION absc(z)
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: z
REAL(SP) :: absc
absc=abs(real(z))+abs(aimag(z))
END FUNCTION absc
END SUBROUTINE cisi

⋆ ⋆ ⋆

Chapter B6. Special Functions 1127

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION dawson_s(x)
USE nrtype; USE nrutil, ONLY : arth,geop
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dawson_s

Returns Dawson’s integral F (x) = exp(−x2)
∫ x

0
exp(t2)dt for any real x.

INTEGER(I4B), PARAMETER :: NMAX=6
REAL(SP), PARAMETER :: H=0.4_sp,A1=2.0_sp/3.0_sp,A2=0.4_sp,&

A3=2.0_sp/7.0_sp
INTEGER(I4B) :: i,n0
REAL(SP) :: ec,x2,xp,xx
REAL(SP), DIMENSION(NMAX) :: d1,d2,e1
REAL(SP), DIMENSION(NMAX), SAVE :: c=(/ (0.0_sp,i=1,NMAX) /)
if (c(1) == 0.0) c(1:NMAX)=exp(-(arth(1,2,NMAX)*H)**2)
Initialize c on first call.

if (abs(x) < 0.2_sp) then Use series expansion.
x2=x**2
dawson_s=x*(1.0_sp-A1*x2*(1.0_sp-A2*x2*(1.0_sp-A3*x2)))

else Use sampling theorem representation.
xx=abs(x)
n0=2*nint(0.5_sp*xx/H)
xp=xx-real(n0,sp)*H
ec=exp(2.0_sp*xp*H)
d1=arth(n0+1,2,NMAX)
d2=arth(n0-1,-2,NMAX)
e1=geop(ec,ec**2,NMAX)
dawson_s=0.5641895835477563_sp*sign(exp(-xp**2),x)*& Constant is 1/

√
π.

sum(c*(e1/d1+1.0_sp/(d2*e1)))
end if
END FUNCTION dawson_s

f90
REAL(SP), DIMENSION(NMAX), SAVE :: c=(/ (0.0_sp,i=1,NMAX) /) This
is one way to give initial values to an array. Actually, we’re somewhat
nervous about using the “implied do-loop” form of the array constructor,

as above, because our parallel compilers might not always be smart enough to
execute the constructor in parallel. In this case, withNMAX=6, the damage potential
is quite minimal. An alternative way to initialize the array would be with a data
statement, “DATA c /NMAX*0.0_sp/”; however, this is not considered good Fortran 90
style, and there is no reason to think that it would be faster.

c(1:NMAX)=exp(-(arth(1,2,NMAX)*H)**2) Another example where thearth
function ofnrutil comes in handy. Otherwise, this would be

do i=1,NMAX
c(i)=exp(-((2.0_sp*i-1.0_sp)*H)**2)

end do

arth(n0+1,2,NMAX)...arth(n0-1,-2,NMAX)...geop(ec,ec**2,NMAX) These are not
just notationallyconvenient for generating the sequences(n 0+1, n0+3, n0+5, . . .),
(n0 − 1, n0 − 3, n0 − 5, . . .), and(ec, ec3, ec5, . . .). They also may allow parallel-
ization with parallel versions ofarth andgeop, such as those innrutil.

FUNCTION dawson_v(x)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dawson_v
INTEGER(I4B), PARAMETER :: NMAX=6

1128 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), PARAMETER :: H=0.4_sp,A1=2.0_sp/3.0_sp,A2=0.4_sp,&
A3=2.0_sp/7.0_sp

INTEGER(I4B) :: i,n
REAL(SP), DIMENSION(size(x)) :: x2
REAL(SP), DIMENSION(NMAX), SAVE :: c=(/ (0.0_sp,i=1,NMAX) /)
LOGICAL(LGT), DIMENSION(size(x)) :: mask
if (c(1) == 0.0) c(1:NMAX)=exp(-(arth(1,2,NMAX)*H)**2)
mask = (abs(x) >= 0.2_sp)
dawson_v=dawsonseries_v(x,mask)
where (.not. mask)

x2=x**2
dawson_v=x*(1.0_sp-A1*x2*(1.0_sp-A2*x2*(1.0_sp-A3*x2)))

end where
CONTAINS

FUNCTION dawsonseries_v(xin,mask)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xin
LOGICAL(LGT), DIMENSION(size(xin)), INTENT(IN) :: mask
REAL(SP), DIMENSION(size(xin)) :: dawsonseries_v
INTEGER(I4B), DIMENSION(:), ALLOCATABLE :: n0
REAL(SP), DIMENSION(:), ALLOCATABLE :: d1,d2,e1,e2,sm,xp,xx,x
n=count(mask)
if (n == 0) RETURN
allocate(n0(n),d1(n),d2(n),e1(n),e2(n),sm(n),xp(n),xx(n),x(n))
x=pack(xin,mask)
xx=abs(x)
n0=2*nint(0.5_sp*xx/H)
xp=xx-real(n0,sp)*H
e1=exp(2.0_sp*xp*H)
e2=e1**2
d1=n0+1.0_sp
d2=d1-2.0_sp
sm=0.0
do i=1,NMAX

sm=sm+c(i)*(e1/d1+1.0_sp/(d2*e1))
d1=d1+2.0_sp
d2=d2-2.0_sp
e1=e2*e1

end do
sm=0.5641895835477563_sp*sign(exp(-xp**2),x)*sm
dawsonseries_v=unpack(sm,mask,0.0_sp)
deallocate(n0,d1,d2,e1,e2,sm,xp,xx)
END FUNCTION dawsonseries_v
END FUNCTION dawson_v

dawson_v=dawsonseries_v(x,mask) Pass-the-buck method for getting
masked values, see note tobessj0 v above, p. 1102. Within the
containeddawsonseries, we use the pack-unpack method. Note that,

unlike in dawson s, the sums are done by do-loops, because the parallelization is
already over the components of the vector argument.

⋆ ⋆ ⋆

FUNCTION rf_s(x,y,z)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y,z
REAL(SP) :: rf_s
REAL(SP), PARAMETER :: ERRTOL=0.08_sp,TINY=1.5e-38_sp,BIG=3.0e37_sp,&

THIRD=1.0_sp/3.0_sp,&

Chapter B6. Special Functions 1129

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

C1=1.0_sp/24.0_sp,C2=0.1_sp,C3=3.0_sp/44.0_sp,C4=1.0_sp/14.0_sp
Computes Carlson’s elliptic integral of the first kind, RF (x, y, z). x, y, and z must be
nonnegative, and at most one can be zero. TINY must be at least 5 times the machine
underflow limit, BIG at most one-fifth the machine overflow limit.

REAL(SP) :: alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt
call assert(min(x,y,z) >= 0.0, min(x+y,x+z,y+z) >= TINY, &

max(x,y,z) <= BIG, ’rf_s args’)
xt=x
yt=y
zt=z
do

sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
if (max(abs(delx),abs(dely),abs(delz)) <= ERRTOL) exit

end do
e2=delx*dely-delz**2
e3=delx*dely*delz
rf_s=(1.0_sp+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
END FUNCTION rf_s

FUNCTION rf_v(x,y,z)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z
REAL(SP), DIMENSION(size(x)) :: rf_v
REAL(SP), PARAMETER :: ERRTOL=0.08_sp,TINY=1.5e-38_sp,BIG=3.0e37_sp,&

THIRD=1.0_sp/3.0_sp,&
C1=1.0_sp/24.0_sp,C2=0.1_sp,C3=3.0_sp/44.0_sp,C4=1.0_sp/14.0_sp

REAL(SP), DIMENSION(size(x)) :: alamb,ave,delx,dely,delz,e2,e3,&
sqrtx,sqrty,sqrtz,xt,yt,zt

LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: ndum
ndum=assert_eq(size(x),size(y),size(z),’rf_v’)
call assert(all(min(x,y,z) >= 0.0), all(min(x+y,x+z,y+z) >= TINY), &

all(max(x,y,z) <= BIG), ’rf_v args’)
xt=x
yt=y
zt=z
converged=.false.
do

where (.not. converged)
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
converged = (max(abs(delx),abs(dely),abs(delz)) <= ERRTOL)

1130 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end where
if (all(converged)) exit

end do
e2=delx*dely-delz**2
e3=delx*dely*delz
rf_v=(1.0_sp+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
END FUNCTION rf_v

FUNCTION rd_s(x,y,z)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y,z
REAL(SP) :: rd_s
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=1.0e-25_sp,BIG=4.5e21_sp,&

C1=3.0_sp/14.0_sp,C2=1.0_sp/6.0_sp,C3=9.0_sp/22.0_sp,&
C4=3.0_sp/26.0_sp,C5=0.25_sp*C3,C6=1.5_sp*C4
Computes Carlson’s elliptic integral of the second kind, RD(x, y, z). x and y must be
nonnegative, and at most one can be zero. z must be positive. TINYmust be at least twice
the negative 2/3 power of the machine overflow limit. BIG must be at most 0.1× ERRTOL
times the negative 2/3 power of the machine underflow limit.

REAL(SP) :: alamb,ave,delx,dely,delz,ea,eb,ec,ed,&
ee,fac,sqrtx,sqrty,sqrtz,sum,xt,yt,zt

call assert(min(x,y) >= 0.0, min(x+y,z) >= TINY, max(x,y,z) <= BIG, &
’rd_s args’)

xt=x
yt=y
zt=z
sum=0.0
fac=1.0
do

sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb))
fac=0.25_sp*fac
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=0.2_sp*(xt+yt+3.0_sp*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
if (max(abs(delx),abs(dely),abs(delz)) <= ERRTOL) exit

end do
ea=delx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.0_sp*eb
ee=ed+ec+ec
rd_s=3.0_sp*sum+fac*(1.0_sp+ed*(-C1+C5*ed-C6*delz*ee)&

+delz*(C2*ee+delz*(-C3*ec+delz*C4*ea)))/(ave*sqrt(ave))
END FUNCTION rd_s

Chapter B6. Special Functions 1131

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION rd_v(x,y,z)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z
REAL(SP), DIMENSION(size(x)) :: rd_v
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=1.0e-25_sp,BIG=4.5e21_sp,&

C1=3.0_sp/14.0_sp,C2=1.0_sp/6.0_sp,C3=9.0_sp/22.0_sp,&
C4=3.0_sp/26.0_sp,C5=0.25_sp*C3,C6=1.5_sp*C4

REAL(SP), DIMENSION(size(x)) :: alamb,ave,delx,dely,delz,ea,eb,ec,ed,&
ee,fac,sqrtx,sqrty,sqrtz,sum,xt,yt,zt

LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: ndum
ndum=assert_eq(size(x),size(y),size(z),’rd_v’)
call assert(all(min(x,y) >= 0.0), all(min(x+y,z) >= TINY), &

all(max(x,y,z) <= BIG), ’rd_v args’)
xt=x
yt=y
zt=z
sum=0.0
fac=1.0
converged=.false.
do

where (.not. converged)
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb))
fac=0.25_sp*fac
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
ave=0.2_sp*(xt+yt+3.0_sp*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
converged = (all(max(abs(delx),abs(dely),abs(delz)) <= ERRTOL))

end where
if (all(converged)) exit

end do
ea=delx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.0_sp*eb
ee=ed+ec+ec
rd_v=3.0_sp*sum+fac*(1.0_sp+ed*(-C1+C5*ed-C6*delz*ee)&

+delz*(C2*ee+delz*(-C3*ec+delz*C4*ea)))/(ave*sqrt(ave))
END FUNCTION rd_v

FUNCTION rj_s(x,y,z,p)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : rc,rf
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y,z,p
REAL(SP) :: rj_s
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=2.5e-13_sp,BIG=9.0e11_sp,&

C1=3.0_sp/14.0_sp,C2=1.0_sp/3.0_sp,C3=3.0_sp/22.0_sp,&
C4=3.0_sp/26.0_sp,C5=0.75_sp*C3,C6=1.5_sp*C4,C7=0.5_sp*C2,&
C8=C3+C3
Computes Carlson’s elliptic integral of the third kind, RJ(x, y, z, p). x, y, and z must be
nonnegative, and at most one can be zero. p must be nonzero. If p < 0, the Cauchy

1132 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

principal value is returned. TINY must be at least twice the cube root of the machine
underflow limit, BIG at most one-fifth the cube root of the machine overflow limit.

REAL(SP) :: a,alamb,alpha,ave,b,bet,delp,delx,&
dely,delz,ea,eb,ec,ed,ee,fac,pt,rho,sqrtx,sqrty,sqrtz,&
sm,tau,xt,yt,zt

call assert(min(x,y,z) >= 0.0, min(x+y,x+z,y+z,abs(p)) >= TINY, &
max(x,y,z,abs(p)) <= BIG, ’rj_s args’)

sm=0.0
fac=1.0
if (p > 0.0) then

xt=x
yt=y
zt=z
pt=p

else
xt=min(x,y,z)
zt=max(x,y,z)
yt=x+y+z-xt-zt
a=1.0_sp/(yt-p)
b=a*(zt-yt)*(yt-xt)
pt=yt+b
rho=xt*zt/yt
tau=p*pt/yt

end if
do

sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
alpha=(pt*(sqrtx+sqrty+sqrtz)+sqrtx*sqrty*sqrtz)**2
bet=pt*(pt+alamb)**2
sm=sm+fac*rc(alpha,bet)
fac=0.25_sp*fac
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
pt=0.25_sp*(pt+alamb)
ave=0.2_sp*(xt+yt+zt+pt+pt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
delp=(ave-pt)/ave
if (max(abs(delx),abs(dely),abs(delz),abs(delp)) <= ERRTOL) exit

end do
ea=delx*(dely+delz)+dely*delz
eb=delx*dely*delz
ec=delp**2
ed=ea-3.0_sp*ec
ee=eb+2.0_sp*delp*(ea-ec)
rj_s=3.0_sp*sm+fac*(1.0_sp+ed*(-C1+C5*ed-C6*ee)+eb*(C7+delp*(-C8&

+delp*C4))+delp*ea*(C2-delp*C3)-C2*delp*ec)/(ave*sqrt(ave))
if (p <= 0.0) rj_s=a*(b*rj_s+3.0_sp*(rc(rho,tau)-rf(xt,yt,zt)))
END FUNCTION rj_s

FUNCTION rj_v(x,y,z,p)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : rc,rf
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,z,p
REAL(SP), DIMENSION(size(x)) :: rj_v
REAL(SP), PARAMETER :: ERRTOL=0.05_sp,TINY=2.5e-13_sp,BIG=9.0e11_sp,&

C1=3.0_sp/14.0_sp,C2=1.0_sp/3.0_sp,C3=3.0_sp/22.0_sp,&

Chapter B6. Special Functions 1133

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

C4=3.0_sp/26.0_sp,C5=0.75_sp*C3,C6=1.5_sp*C4,C7=0.5_sp*C2,&
C8=C3+C3

REAL(SP), DIMENSION(size(x)) :: a,alamb,alpha,ave,b,bet,delp,delx,&
dely,delz,ea,eb,ec,ed,ee,fac,pt,rho,sqrtx,sqrty,sqrtz,&
sm,tau,xt,yt,zt

LOGICAL(LGT), DIMENSION(size(x)) :: mask
INTEGER(I4B) :: ndum
ndum=assert_eq(size(x),size(y),size(z),size(p),’rj_v’)
call assert(all(min(x,y,z) >= 0.0), all(min(x+y,x+z,y+z,abs(p)) >= TINY), &

all(max(x,y,z,abs(p)) <= BIG), ’rj_v args’)
sm=0.0
fac=1.0
where (p > 0.0)

xt=x
yt=y
zt=z
pt=p

elsewhere
xt=min(x,y,z)
zt=max(x,y,z)
yt=x+y+z-xt-zt
a=1.0_sp/(yt-p)
b=a*(zt-yt)*(yt-xt)
pt=yt+b
rho=xt*zt/yt
tau=p*pt/yt

end where
mask=.false.
do

where (.not. mask)
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
alpha=(pt*(sqrtx+sqrty+sqrtz)+sqrtx*sqrty*sqrtz)**2
bet=pt*(pt+alamb)**2
sm=sm+fac*rc(alpha,bet)
fac=0.25_sp*fac
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
zt=0.25_sp*(zt+alamb)
pt=0.25_sp*(pt+alamb)
ave=0.2_sp*(xt+yt+zt+pt+pt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
delp=(ave-pt)/ave
mask = (max(abs(delx),abs(dely),abs(delz),abs(delp)) <= ERRTOL)

end where
if (all(mask)) exit

end do
ea=delx*(dely+delz)+dely*delz
eb=delx*dely*delz
ec=delp**2
ed=ea-3.0_sp*ec
ee=eb+2.0_sp*delp*(ea-ec)
rj_v=3.0_sp*sm+fac*(1.0_sp+ed*(-C1+C5*ed-C6*ee)+eb*(C7+delp*(-C8&

+delp*C4))+delp*ea*(C2-delp*C3)-C2*delp*ec)/(ave*sqrt(ave))
mask = (p <= 0.0)
where (mask) rj_v=a*(b*rj_v+&

unpack(3.0_sp*(rc(pack(rho,mask),pack(tau,mask))-&
rf(pack(xt,mask),pack(yt,mask),pack(zt,mask))),mask,0.0_sp))

END FUNCTION rj_v

1134 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
unpack(3.0_sp*(rc(pack(rho,mask),pack(tau,mask))...),mask,0.0_sp)

If you’re willing to put up with fairly unreadable code, you can use the
pack-unpack trick (for getting a masked subset of components out of a

vector function) right in-line, as here. Of course the “outer level” that is seen by the
enclosingwhere construction has to contain only objects that have the same shape
as themask that goes with thewhere. Because it is so hard to read, we don’t like to
do this very often. An alternative would be to useCONTAINS to incorporate short,
masked “wrapper functions” for the functions used in this way.

FUNCTION rc_s(x,y)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: rc_s
REAL(SP), PARAMETER :: ERRTOL=0.04_sp,TINY=1.69e-38_sp,&

SQRTNY=1.3e-19_sp,BIG=3.0e37_sp,TNBG=TINY*BIG,&
COMP1=2.236_sp/SQRTNY,COMP2=TNBG*TNBG/25.0_sp,&
THIRD=1.0_sp/3.0_sp,&
C1=0.3_sp,C2=1.0_sp/7.0_sp,C3=0.375_sp,C4=9.0_sp/22.0_sp
Computes Carlson’s degenerate elliptic integral, RC(x, y). x must be nonnegative and y
must be nonzero. If y < 0, the Cauchy principal value is returned. TINY must be at least
5 times the machine underflow limit, BIG at most one-fifth the machine maximum overflow
limit.

REAL(SP) :: alamb,ave,s,w,xt,yt
call assert((/x >= 0.0,y /= 0.0,x+abs(y) >= TINY,x+abs(y) <= BIG, &

y >= -COMP1 .or. x <= 0.0 .or. x >= COMP2/),’rc_s’)
if (y > 0.0) then

xt=x
yt=y
w=1.0

else
xt=x-y
yt=-y
w=sqrt(x)/sqrt(xt)

end if
do

alamb=2.0_sp*sqrt(xt)*sqrt(yt)+yt
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
ave=THIRD*(xt+yt+yt)
s=(yt-ave)/ave
if (abs(s) <= ERRTOL) exit

end do
rc_s=w*(1.0_sp+s*s*(C1+s*(C2+s*(C3+s*C4))))/sqrt(ave)
END FUNCTION rc_s

FUNCTION rc_v(x,y)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: rc_v
REAL(SP), PARAMETER :: ERRTOL=0.04_sp,TINY=1.69e-38_sp,&

SQRTNY=1.3e-19_sp,BIG=3.0e37_sp,TNBG=TINY*BIG,&
COMP1=2.236_sp/SQRTNY,COMP2=TNBG*TNBG/25.0_sp,&
THIRD=1.0_sp/3.0_sp,&
C1=0.3_sp,C2=1.0_sp/7.0_sp,C3=0.375_sp,C4=9.0_sp/22.0_sp

REAL(SP), DIMENSION(size(x)) :: alamb,ave,s,w,xt,yt
LOGICAL(LGT), DIMENSION(size(x)) :: converged
INTEGER(I4B) :: ndum

Chapter B6. Special Functions 1135

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ndum=assert_eq(size(x),size(y),’rc_v’)
call assert((/all(x >= 0.0),all(y /= 0.0),all(x+abs(y) >= TINY), &

all(x+abs(y) <= BIG),all(y >= -COMP1 .or. x <= 0.0 &
.or. x >= COMP2) /),’rc_v’)

where (y > 0.0)
xt=x
yt=y
w=1.0

elsewhere
xt=x-y
yt=-y
w=sqrt(x)/sqrt(xt)

end where
converged=.false.
do

where (.not. converged)
alamb=2.0_sp*sqrt(xt)*sqrt(yt)+yt
xt=0.25_sp*(xt+alamb)
yt=0.25_sp*(yt+alamb)
ave=THIRD*(xt+yt+yt)
s=(yt-ave)/ave
converged = (abs(s) <= ERRTOL)

end where
if (all(converged)) exit

end do
rc_v=w*(1.0_sp+s*s*(C1+s*(C2+s*(C3+s*C4))))/sqrt(ave)
END FUNCTION rc_v

⋆ ⋆ ⋆

FUNCTION ellf_s(phi,ak)
USE nrtype
USE nr, ONLY : rf
IMPLICIT NONE
REAL(SP), INTENT(IN) :: phi,ak
REAL(SP) :: ellf_s

Legendre elliptic integral of the 1st kind F (φ, k), evaluated using Carlson’s function RF .
The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL(SP) :: s
s=sin(phi)
ellf_s=s*rf(cos(phi)**2,(1.0_sp-s*ak)*(1.0_sp+s*ak),1.0_sp)
END FUNCTION ellf_s

FUNCTION ellf_v(phi,ak)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : rf
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: ellf_v
REAL(SP), DIMENSION(size(phi)) :: s
INTEGER(I4B) :: ndum
ndum=assert_eq(size(phi),size(ak),’ellf_v’)
s=sin(phi)
ellf_v=s*rf(cos(phi)**2,(1.0_sp-s*ak)*(1.0_sp+s*ak),&

spread(1.0_sp,1,size(phi)))
END FUNCTION ellf_v

1136 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION elle_s(phi,ak)
USE nrtype
USE nr, ONLY : rd,rf
IMPLICIT NONE
REAL(SP), INTENT(IN) :: phi,ak
REAL(SP) :: elle_s

Legendre elliptic integral of the 2nd kind E(φ, k), evaluated using Carlson’s functions RD
and RF . The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL(SP) :: cc,q,s
s=sin(phi)
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
elle_s=s*(rf(cc,q,1.0_sp)-((s*ak)**2)*rd(cc,q,1.0_sp)/3.0_sp)
END FUNCTION elle_s

FUNCTION elle_v(phi,ak)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : rd,rf
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,ak
REAL(SP), DIMENSION(size(phi)) :: elle_v
REAL(SP), DIMENSION(size(phi)) :: cc,q,s
INTEGER(I4B) :: ndum
ndum=assert_eq(size(phi),size(ak),’elle_v’)
s=sin(phi)
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
elle_v=s*(rf(cc,q,spread(1.0_sp,1,size(phi)))-((s*ak)**2)*&

rd(cc,q,spread(1.0_sp,1,size(phi)))/3.0_sp)
END FUNCTION elle_v

f90 rd(cc,q,spread(1.0_sp,1,size(phi))) See note toerf v, p. 1094 above.

FUNCTION ellpi_s(phi,en,ak)
USE nrtype
USE nr, ONLY : rf,rj
IMPLICIT NONE
REAL(SP), INTENT(IN) :: phi,en,ak
REAL(SP) :: ellpi_s

Legendre elliptic integral of the 3rd kind Π(φ, n, k), evaluated using Carlson’s functions RJ

and RF . (Note that the sign convention on n is opposite that of Abramowitz and Stegun.)
The ranges of φ and k are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL(SP) :: cc,enss,q,s
s=sin(phi)
enss=en*s*s
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
ellpi_s=s*(rf(cc,q,1.0_sp)-enss*rj(cc,q,1.0_sp,1.0_sp+enss)/3.0_sp)
END FUNCTION ellpi_s

Chapter B6. Special Functions 1137

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION ellpi_v(phi,en,ak)
USE nrtype
USE nr, ONLY : rf,rj
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: phi,en,ak
REAL(SP), DIMENSION(size(phi)) :: ellpi_v
REAL(SP), DIMENSION(size(phi)) :: cc,enss,q,s
s=sin(phi)
enss=en*s*s
cc=cos(phi)**2
q=(1.0_sp-s*ak)*(1.0_sp+s*ak)
ellpi_v=s*(rf(cc,q,spread(1.0_sp,1,size(phi)))-enss*&

rj(cc,q,spread(1.0_sp,1,size(phi)),1.0_sp+enss)/3.0_sp)
END FUNCTION ellpi_v

⋆ ⋆ ⋆

SUBROUTINE sncndn(uu,emmc,sn,cn,dn)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: uu,emmc
REAL(SP), INTENT(OUT) :: sn,cn,dn

Returns the Jacobian elliptic functions sn(u, kc), cn(u, kc), and dn(u, kc). Here uu = u,
while emmc = k2

c .
REAL(SP), PARAMETER :: CA=0.0003_sp The accuracy is the square of CA.
INTEGER(I4B), PARAMETER :: MAXIT=13
INTEGER(I4B) :: i,ii,l
REAL(SP) :: a,b,c,d,emc,u
REAL(SP), DIMENSION(MAXIT) :: em,en
LOGICAL(LGT) :: bo
emc=emmc
u=uu
if (emc /= 0.0) then

bo=(emc < 0.0)
if (bo) then

d=1.0_sp-emc
emc=-emc/d
d=sqrt(d)
u=d*u

end if
a=1.0
dn=1.0
do i=1,MAXIT

l=i
em(i)=a
emc=sqrt(emc)
en(i)=emc
c=0.5_sp*(a+emc)
if (abs(a-emc) <= CA*a) exit
emc=a*emc
a=c

end do
if (i > MAXIT) call nrerror(’sncndn: convergence failed’)
u=c*u
sn=sin(u)
cn=cos(u)
if (sn /= 0.0) then

a=cn/sn
c=a*c
do ii=l,1,-1

b=em(ii)

1138 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

a=c*a
c=dn*c
dn=(en(ii)+a)/(b+a)
a=c/b

end do
a=1.0_sp/sqrt(c**2+1.0_sp)
sn=sign(a,sn)
cn=c*sn

end if
if (bo) then

a=dn
dn=cn
cn=a
sn=sn/d

end if
else

cn=1.0_sp/cosh(u)
dn=cn
sn=tanh(u)

end if
END SUBROUTINE sncndn

⋆ ⋆ ⋆

MODULE hypgeo_info
USE nrtype
COMPLEX(SPC) :: hypgeo_aa,hypgeo_bb,hypgeo_cc,hypgeo_dz,hypgeo_z0
END MODULE hypgeo_info

FUNCTION hypgeo(a,b,c,z)
USE nrtype
USE hypgeo_info
USE nr, ONLY : bsstep,hypdrv,hypser,odeint
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: a,b,c,z
COMPLEX(SPC) :: hypgeo
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Complex hypergeometric function 2F1 for complex a, b, c, and z, by direct integration of
the hypergeometric equation in the complex plane. The branch cut is taken to lie along the
real axis, Re z > 1.
Parameter: EPS is an accuracy parameter.

COMPLEX(SPC), DIMENSION(2) :: y
REAL(SP), DIMENSION(4) :: ry
if (real(z)**2+aimag(z)**2 <= 0.25) then Use series...

call hypser(a,b,c,z,hypgeo,y(2))
RETURN

else if (real(z) < 0.0) then ...or pick a starting point for the path
integration.hypgeo_z0=cmplx(-0.5_sp,0.0_sp,kind=spc)

else if (real(z) <= 1.0) then
hypgeo_z0=cmplx(0.5_sp,0.0_sp,kind=spc)

else
hypgeo_z0=cmplx(0.0_sp,sign(0.5_sp,aimag(z)),kind=spc)

end if
hypgeo_aa=a Load the module variables, used to pass

parameters “over the head” of odeint
to hypdrv.

hypgeo_bb=b
hypgeo_cc=c
hypgeo_dz=z-hypgeo_z0
call hypser(hypgeo_aa,hypgeo_bb,hypgeo_cc,hypgeo_z0,y(1),y(2))
Get starting function and derivative.

ry(1:4:2)=real(y)

Chapter B6. Special Functions 1139

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ry(2:4:2)=aimag(y)
call odeint(ry,0.0_sp,1.0_sp,EPS,0.1_sp,0.0001_sp,hypdrv,bsstep)

The arguments to odeint are the vector of independent variables, the starting and ending
values of the dependent variable, the accuracy parameter, an initial guess for stepsize, a
minimum stepsize, and the names of the derivative routine and the (here Bulirsch-Stoer)
stepping routine.

y=cmplx(ry(1:4:2),ry(2:4:2),kind=spc)
hypgeo=y(1)
END FUNCTION hypgeo

SUBROUTINE hypser(a,b,c,z,series,deriv)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
COMPLEX(SPC), INTENT(IN) :: a,b,c,z
COMPLEX(SPC), INTENT(OUT) :: series,deriv

Returns the hypergeometric series 2F1 and its derivative, iterating to machine accuracy.
For cabs(z) ≤ 1/2 convergence is quite rapid.

INTEGER(I4B) :: n
INTEGER(I4B), PARAMETER :: MAXIT=1000
COMPLEX(SPC) :: aa,bb,cc,fac,temp
deriv=cmplx(0.0_sp,0.0_sp,kind=spc)
fac=cmplx(1.0_sp,0.0_sp,kind=spc)
temp=fac
aa=a
bb=b
cc=c
do n=1,MAXIT

fac=((aa*bb)/cc)*fac
deriv=deriv+fac
fac=fac*z/n
series=temp+fac
if (series == temp) RETURN
temp=series
aa=aa+1.0
bb=bb+1.0
cc=cc+1.0

end do
call nrerror(’hypser: convergence failure’)
END SUBROUTINE hypser

SUBROUTINE hypdrv(s,ry,rdyds)
USE nrtype
USE hypgeo_info
IMPLICIT NONE
REAL(SP), INTENT(IN) :: s
REAL(SP), DIMENSION(:), INTENT(IN) :: ry
REAL(SP), DIMENSION(:), INTENT(OUT) :: rdyds

Derivative subroutine for the hypergeometric equation; see text equation (5.14.4).
COMPLEX(SPC), DIMENSION(2) :: y,dyds
COMPLEX(SPC) :: z
y=cmplx(ry(1:4:2),ry(2:4:2),kind=spc)
z=hypgeo_z0+s*hypgeo_dz
dyds(1)=y(2)*hypgeo_dz
dyds(2)=((hypgeo_aa*hypgeo_bb)*y(1)-(hypgeo_cc-&

((hypgeo_aa+hypgeo_bb)+1.0_sp)*z)*y(2))*hypgeo_dz/(z*(1.0_sp-z))
rdyds(1:4:2)=real(dyds)
rdyds(2:4:2)=aimag(dyds)
END SUBROUTINE hypdrv

1140 Chapter B6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
Notice that the real array (of length 4)ry is immediately mapped into a
complex array of length 2, and that the process is reversed at the end of
the routine withrdyds. In Fortran 77 no such mapping is necessary: the

calling program sends real arguments, and the Fortran 77hypdrv simply interprets
what is sent as complex. Fortran 90’s stronger typing does not encourage (and,
practically, does not allow) this convenience; but it is a small price to pay for the
vastly increased error-checking capabilities of a strongly typed language.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B7. Random Numbers
One might think that good random number generators, including those in

Volume 1, should last forever. The world of computing changes very rapidly,
however:

• When Volume 1 was published, it was unusual, except on the fastest
supercomputers, to “exhaust” a 32-bit random number generator, that is,
to call for all232 sequential random values in its periodic sequence. Now,
this is feasible, and not uncommon, on fast desktop workstations. A
useful generator today must have a minimum of 64 bits of state space,
and generally somewhat more.

• Before Fortran 90, the Fortran language had no standardized calling
sequence for random numbers. Now, although there is still no standard
algorithmdefined by the language (rightly, we think), there is at least a
standard calling sequence, exemplified in the intrinsicsrandom number

and random seed.
• The rise of parallel computing places new algorithmic demands on ran-

dom generators. The classic algorithms, which compute each random
value from the previous one, evidently need generalization to a parallel
environment.

• New algorithms and techniques have been discovered, in some cases
significantly faster than their predecessors.

These are the reasons that we have decided to implement, in Fortran 90,
different uniform random number generators from those in Volume 1’s Fortran
77 implementations. We hasten to add that there is nothing wrong with any of
the generators in Volume 1. That volume’sran0 and ran1 routines are, to our
knowledge, completely adequate as 32-bit generators;ran2 has a 64-bit state space,
and our previous offer of$1000 forany demonstrated failure in the algorithm has
never yet been claimed (see[1]).

Before we launch into the discussion of parallelizable generators with Fortran
90 calling conventions, we want to attend to the continuing needs of longtime
“x=ran(idum)” users with purely serial machines. If you are a satisfied user of
Volume 1’sran0, ran1, or ran2 Fortran 77 versions, you are in this group. The
followingroutine,ran, preserves those routines’ calling conventions, is considerably
faster thanran2, and does not suffer from the oldran0 or ran1’s 32-bit period
exhaustion limitation. It is completely portable to all Fortran 90 environments. We
recommendran as the plug-compatible replacement for the oldran0, ran1, and
ran2, and we happily offer exactly the same$1000 reward terms as were (and are
still) offered on the oldran2.

1141

1142 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION ran(idum)
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
INTEGER(K4B), INTENT(INOUT) :: idum
REAL :: ran

“Minimal” random number generator of Park and Miller combined with a Marsaglia shift
sequence. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint
values). This fully portable, scalar generator has the “traditional” (not Fortran 90) calling
sequence with a random deviate as the returned function value: call with idum a negative
integer to initialize; thereafter, do not alter idum except to reinitialize. The period of this
generator is about 3.1 × 1018.

INTEGER(K4B), PARAMETER :: IA=16807,IM=2147483647,IQ=127773,IR=2836
REAL, SAVE :: am
INTEGER(K4B), SAVE :: ix=-1,iy=-1,k
if (idum <= 0 .or. iy < 0) then Initialize.

am=nearest(1.0,-1.0)/IM
iy=ior(ieor(888889999,abs(idum)),1)
ix=ieor(777755555,abs(idum))
idum=abs(idum)+1 Set idum positive.

end if
ix=ieor(ix,ishft(ix,13)) Marsaglia shift sequence with period 232 − 1.
ix=ieor(ix,ishft(ix,-17))
ix=ieor(ix,ishft(ix,5))
k=iy/IQ Park-Miller sequence by Schrage’s method,

period 231 − 2.iy=IA*(iy-k*IQ)-IR*k
if (iy < 0) iy=iy+IM
ran=am*ior(iand(IM,ieor(ix,iy)),1) Combine the two generators with masking to

ensure nonzero value.END FUNCTION ran

This is a good place to discuss a new bit of algorithmics that has crept intoran,
above, and even more strongly affects all of our new random number generators,
below. Consider:

ix=ieor(ix,ishft(ix,13))
ix=ieor(ix,ishft(ix,-17))
ix=ieor(ix,ishft(ix,5))

These lines update a 32-bit integerix, which cycles pseudo-randomly through a full
period of232 − 1 values (excluding zero) before repeating. Generators of this type
have been extensively explored by Marsaglia (see[2]), who has kindlycommunicated
some additional results to us in advance of publication. For convenience, we will
refer to generators of this sort as “Marsaglia shift registers.”

Useful properties of Marsaglia shift registers are (i) they are very fast on most
machines, since they use only fast logical operations, and (ii) the bit-mixing that they
induce is quite different in character from that induced by arithmetic operations such
as are used in linear congruential generators (see Volume 1) or lagged Fibonacci
generators (see below). Thus, the combination of a Marsaglia shift register with
another, algorithmically quite different generator is a powerful way to suppress any
residual correlations or other weaknesses in the other generator. Indeed, Marsaglia
finds (and we concur) that the above generator (with constants13,−17, 5, as shown)
is by itselfabout as good as any 32-bit random generator.

Here is a very brief outline of the theory behind these generators: Consider the
32 bits of the integer as components in a vector of length 32, in a linear space where
addition and multiplication are done modulo 2. Noting that exclusive-or (ieor) is
the same as addition, each of the three lines in the updating can be written as the
action of a32 × 32 matrix on a vector, where the matrix is all zeros except for

Chapter B7. Random Numbers 1143

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ones on the diagonal, and on exactly one super- or subdiagonal (corresponding to
positive or negative second arguments inishft). Denote this matrix asSk, where
k is the shift argument. Then, one full step of updating (three lines of code, above)
corresponds to multiplication by the matrixT ≡ Sk3

Sk2
Sk1

.
One next needs to find triples of integers(k1, k2, k3), for example(13,−17, 5),

that give the fullM ≡ 232 − 1 period. Necessary and sufficient conditions are
that TM = 1 (the identity matrix), and thatTN �= 1 for these five values ofN :
N = 3 × 5 × 17 × 257, N = 3 × 5 × 17 × 65537, N = 3 × 5 × 257 × 65537,
N = 3× 17× 257× 65537,N = 5× 17× 257× 65537. (Note that each of the five
prime factors ofM is omitted one at a time to get the five values ofN .) The required
large powers ofT are readily computed by successive squarings, requiring only on
the order of323 logM operations. With this machinery, one can find full-period
triples (k1, k2, k3) by exhaustive search, at reasonable cost.

Not all such triples are equally good as generators of random integers, however.
Marsaglia subjects candidate values to a battery of tests for randomness, and we
have ourselves applied various tests. This stage of winnowing is as much art as
science, because all 32-bit generators can be made to exhibit signs of failure due to
period exhaustion (if for no other reason). “Good” triples, in order of our preference,
are(13,−17, 5), (5,−13, 6), (5,−9, 7), (13,−17, 15), (16,−7, 11). When a full-
period triple is good, its reverse is also full-period, and also generally good. A
goodquadrupledue to Marsaglia (generalizing the above in the obvious way) is
(−4, 8,−1, 5). We would not recommend relying on any single Marsaglia shift
generator (nor on any other simple generator)by itself. Two or more generators, of
quite different types, should be combined[1].

⋆ ⋆ ⋆

Let us now discuss explicitly the needs ofparallel random number gener-
ators. The general scheme, from the user’s perspective, is that of Fortran
90’s intrinsicrandom number: A statement likecall ran1(harvest)

(whereran1 will be one of our portable replacements for the compiler-dependent
random number) should fill the real arrayharvestwith pseudo-random real values
in the range(0, 1). Of course, we want the underlying machinery to be completely
parallel, that is, no do-loops of orderN ≡ size(harvest).

A first design decision is whether to replicate the state-space across the parallel
dimensionN , i.e., whether to reserve storage for essentiallyN scalar generators.
Although there are various schemes that avoid doing this (e.g., mapping a single,
smaller, state space intoN different output values on each call), we think that it is a
memory cost well worth paying in return for achieving a less exotic (and thus better
tested) algorithm. However, this choice dictates that we must keep the state space
per componentquite small. We have settled on five or fewer 32-bit words of state
space per component as a reasonable limit. Some otherwise interesting and well
tested methods (such as Knuth’s subtractive generator, implemented in Volume 1 as
ran3) are ruled out by this constraint.

A second design decision is how to initialize the parallel state space, so that
different parallel components produce different sequences, and so that there is an
acceptable degree of randomnessacrossthe parallel dimension, as well asbetween
successive callsof the generator. Each component starts its life with one and
only one unique identifier, its component indexn in the range1 . . .N . One is

1144 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

tempted simply to hash the valuesn into the corresponding components of initial
state space. “Random” hashing is a bad idea, however, because differentn’s will
produce identical 32-bit hash results by chance whenN is no larger than∼ 216. We
therefore prefer to use a kind of reversible pseudo-encryption (similar to the routine
psdes in Volume 1 and below) which guarantees causally that differentn’s produce
different state space initializations.

f90
The machinery for allocating, deallocating, and initializing the state
space, including provision of a user interface for getting or putting the
contents of the state space (as in the intrinsicrandom seed) is fairly

complicated. Rather than duplicate it in each different random generator that we
provide, we have consolidated it in a single module,ran state, whose contents
we will now discuss. Such a discussion is necessarily technical, if not arcane; on
first reading, you may wish to skip ahead to the actual new routinesran0, ran1,
andran2. If you do so, you will need to know only thatran state provides each
vector random routine with five 32-bit vectors of state information, denotediran,
jran, kran, mran, nran. (The overloaded scalar generators have five corresponding
32-bit scalars, denotediran0, etc.)

MODULE ran_state
This module supports the random number routines ran0, ran1, ran2, and ran3. It pro-
vides each generator with five integers (for vector versions, five vectors of integers), for
use as internal state space. The first three integers (iran, jran, kran) are maintained
as nonnegative values, while the last two (mran, nran) have 32-bit nonzero values. Also
provided by this module is support for initializing or reinitializing the state space to a desired
standard sequence number, hashing the initial values to random values, and allocating and
deallocating the internal workspace.

USE nrtype
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
Independent of the usual integer kind I4B, we need a kind value for (ideally) 32-bit integers.

INTEGER(K4B), PARAMETER :: hg=huge(1_K4B), hgm=-hg, hgng=hgm-1
INTEGER(K4B), SAVE :: lenran=0, seq=0
INTEGER(K4B), SAVE :: iran0,jran0,kran0,nran0,mran0,rans
INTEGER(K4B), DIMENSION(:,:), POINTER, SAVE :: ranseeds
INTEGER(K4B), DIMENSION(:), POINTER, SAVE :: iran,jran,kran, &

nran,mran,ranv
REAL(SP), SAVE :: amm
INTERFACE ran_hash Scalar and vector versions of the hashing procedure.

MODULE PROCEDURE ran_hash_s, ran_hash_v
END INTERFACE
CONTAINS

(We here intersperse discussion with the listing of the module.) The module
definesK4B as an integerKIND that is intended to be 32 bits. If your machine doesn’t
have 32-bit integers (hard to believe!) this will be caught later, and an error message
generated. The definition of the parametershg, hgm, andhgng makes an assumption
about 32-bit integers that goes beyond the strict Fortran 90 integer model, that the
magnitude of the most negative representable integer is greater by one than that of
the most positive representable integer. This is a property of thetwo’s complement
arithmeticthat is used on virtually all modern machines (see, e.g.,[3]).

The global variablesrans (for scalar) andranv (for vector) are used by all
of our routines to store theintegervalue associated with the most recently returned
call. You can access these (with a “USE ran state” statement) if you want integer,
rather than real, random deviates.

Chapter B7. Random Numbers 1145

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

The first routine,ran init, is called by routines later in the chapter to initialize
their state space. It isnot intended to be called from a user’s program.

SUBROUTINE ran_init(length)
USE nrtype; USE nrutil, ONLY : arth,nrerror,reallocate
IMPLICIT NONE
INTEGER(K4B), INTENT(IN) :: length

Initialize or reinitialize the random generator state space to vectors of size length. The
saved variable seq is hashed (via calls to the module routine ran hash) to create unique
starting seeds, different for each vector component.

INTEGER(K4B) :: new,j,hgt
if (length < lenran) RETURN Simply return if enough space is already al-

located.hgt=hg
The following lines check that kind value K4B is in fact a 32-bit integer with the usual properties
that we expect it to have (under negation and wrap-around addition). If all of these tests are
satisfied, then the routines that use this module are portable, even though they go beyond
Fortran 90’s integer model.

if (hg /= 2147483647) call nrerror(’ran_init: arith assump 1 fails’)
if (hgng >= 0) call nrerror(’ran_init: arith assump 2 fails’)
if (hgt+1 /= hgng) call nrerror(’ran_init: arith assump 3 fails’)
if (not(hg) >= 0) call nrerror(’ran_init: arith assump 4 fails’)
if (not(hgng) < 0) call nrerror(’ran_init: arith assump 5 fails’)
if (hg+hgng >= 0) call nrerror(’ran_init: arith assump 6 fails’)
if (not(-1_k4b) < 0) call nrerror(’ran_init: arith assump 7 fails’)
if (not(0_k4b) >= 0) call nrerror(’ran_init: arith assump 8 fails’)
if (not(1_k4b) >= 0) call nrerror(’ran_init: arith assump 9 fails’)
if (lenran > 0) then Reallocate space, or ...

ranseeds=>reallocate(ranseeds,length,5)
ranv=>reallocate(ranv,length-1)
new=lenran+1

else allocate space.
allocate(ranseeds(length,5))
allocate(ranv(length-1))
new=1 Index of first location not yet initialized.
amm=nearest(1.0_sp,-1.0_sp)/hgng
Use of nearest is to ensure that returned random deviates are strictly less than 1.0.

if (amm*hgng >= 1.0 .or. amm*hgng <= 0.0) &
call nrerror(’ran_init: arth assump 10 fails’)

end if
Set starting values, unique by seq and vector component.

ranseeds(new:,1)=seq
ranseeds(new:,2:5)=spread(arth(new,1,size(ranseeds(new:,1))),2,4)
do j=1,4 Hash them.

call ran_hash(ranseeds(new:,j),ranseeds(new:,j+1))
end do
where (ranseeds(new:,1:3) < 0) & Enforce nonnegativity.

ranseeds(new:,1:3)=not(ranseeds(new:,1:3))
where (ranseeds(new:,4:5) == 0) ranseeds(new:,4:5)=1 Enforce nonzero.
if (new == 1) then Set scalar seeds.

iran0=ranseeds(1,1)
jran0=ranseeds(1,2)
kran0=ranseeds(1,3)
mran0=ranseeds(1,4)
nran0=ranseeds(1,5)
rans=nran0

end if
if (length > 1) then Point to vector seeds.

iran => ranseeds(2:,1)
jran => ranseeds(2:,2)
kran => ranseeds(2:,3)
mran => ranseeds(2:,4)
nran => ranseeds(2:,5)
ranv = nran

1146 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
lenran=length
END SUBROUTINE ran_init

f90
hgt=hg ... if (hgt+1 /= hgng) Bit of dirty laundry here! We are testing
whether the most positive integerhg wraps around to the most negative
integerhgng when 1 is added to it. We can’t just writehg+1, since some

compilers will evaluate this at compile time and return an overflow error message.
If your compiler sees through the charade of the temporary variablehgt, you’ll
have to find another way to trick it.

amm=nearest(1.0_sp,-1.0_sp)/hgng... Logically, amm should be a parameter;
but the nearest intrinsic is trouble-prone in the initialization expression for a
parameter (named constant), so we compute this at run time. We then check thatamm,
when multiplied by the largest possible negative integer, does not equal or exceed
unity. (Our random deviates are guaranteed never to equal zero or unity exactly.)

You might wonder whyamm is negative, and why we multiply it by negative
integers to get positive random deviates. The answer, which will become manifest
in the random generators given below, is that we want to use the fastnot operation
on integers to convert them to nonzero values of all one sign. This is possible if the
conversion is to negative values, sincenot(i) is negative for all nonnegativei. If
the conversion were to positive values, we would have problems both with zero (its
sign bit is already positive) andhgng (sincenot(hgng) is generally zero).

iran0=ranseeds(1,1) ...
iran => ranseeds(2:,1)...

The initial state information is stored inranseeds, a two-dimensional array whose
column (second) index ranges from 1 to 5 over the state variables.ranseeds(1,:) is
reserved for scalar random generators, whileranseeds(2:,:) is for vector-parallel
generators. Theranseeds array is made available to vector generators through
the pointersiran, jran, kran, mran, andnran. The corresponding scalar values,
iran0,. . ., nran0 are simply global variables, not pointers, because the overhead of
addressing a scalar through a pointer is often too great. (We will have to copy these
scalar values back intoranseedswhen it, rarely, needs to be addressed as an array.)

call ran_hash(...) Unique, and random, initial state information is obtained
by putting a user-settable “sequence number” intoiran, a component number into
jran, and hashing this pair. Thenjran and kran are hashed,kran and mran

are hashed, and so forth.

SUBROUTINE ran_deallocate
User interface to release the workspace used by the random number routines.

if (lenran > 0) then
deallocate(ranseeds,ranv)
nullify(ranseeds,ranv,iran,jran,kran,mran,nran)
lenran = 0

end if
END SUBROUTINE ran_deallocate

The above routine is supplied as a user interface for deallocating all the state
space storage.

Chapter B7. Random Numbers 1147

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE ran_seed(sequence,size,put,get)
IMPLICIT NONE
INTEGER, OPTIONAL, INTENT(IN) :: sequence
INTEGER, OPTIONAL, INTENT(OUT) :: size
INTEGER, DIMENSION(:), OPTIONAL, INTENT(IN) :: put
INTEGER, DIMENSION(:), OPTIONAL, INTENT(OUT) :: get

User interface for seeding the random number routines. Syntax is exactly like Fortran 90’s
random seed routine, with one additional argument keyword: sequence, set to any inte-
ger value, causes an immediate new initialization, seeded by that integer.

if (present(size)) then
size=5*lenran

else if (present(put)) then
if (lenran == 0) RETURN
ranseeds=reshape(put,shape(ranseeds))
where (ranseeds(:,1:3) < 0) ranseeds(:,1:3)=not(ranseeds(:,1:3))
Enforce nonnegativity and nonzero conditions on any user-supplied seeds.

where (ranseeds(:,4:5) == 0) ranseeds(:,4:5)=1
iran0=ranseeds(1,1)
jran0=ranseeds(1,2)
kran0=ranseeds(1,3)
mran0=ranseeds(1,4)
nran0=ranseeds(1,5)

else if (present(get)) then
if (lenran == 0) RETURN
ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)
get=reshape(ranseeds,shape(get))

else if (present(sequence)) then
call ran_deallocate
seq=sequence

end if
END SUBROUTINE ran_seed

f90 ranseeds=reshape(put,shape(ranseeds)) ...
get=reshape(ranseeds,shape(get))

Fortran 90’s convention is that random state space is a one-dimensional array, so we
map to this on both theget andput keywords.

iran0=...jran0=...kran0=...
ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)

It’s much more convenient to set a vector from a bunch of scalars then the other
way around.

SUBROUTINE ran_hash_s(il,ir)
IMPLICIT NONE
INTEGER(K4B), INTENT(INOUT) :: il,ir

DES-like hashing of two 32-bit integers, using shifts, xor’s, and adds to make the internal
nonlinear function.

INTEGER(K4B) :: is,j
do j=1,4

is=ir
ir=ieor(ir,ishft(ir,5))+1422217823 The various constants are chosen to give

good bit mixing and should not be
changed.

ir=ieor(ir,ishft(ir,-16))+1842055030
ir=ieor(ir,ishft(ir,9))+80567781
ir=ieor(il,ir)
il=is

end do
END SUBROUTINE ran_hash_s

1148 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE ran_hash_v(il,ir)
IMPLICIT NONE
INTEGER(K4B), DIMENSION(:), INTENT(INOUT) :: il,ir

Vector version of ran hash s.
INTEGER(K4B), DIMENSION(size(il)) :: is
INTEGER(K4B) :: j
do j=1,4

is=ir
ir=ieor(ir,ishft(ir,5))+1422217823
ir=ieor(ir,ishft(ir,-16))+1842055030
ir=ieor(ir,ishft(ir,9))+80567781
ir=ieor(il,ir)
il=is

end do
END SUBROUTINE ran_hash_v

END MODULE ran_state

The lines

ir=ieor(ir,ishft(ir,5))+1422217823
ir=ieor(ir,ishft(ir,-16))+1842055030
ir=ieor(ir,ishft(ir,9))+80567781

are not a Marsaglia shift sequence, though they resemble one. Instead, they
implement a fast, nonlinear function onir that we use as the “S-box” in a DES-like
hashing algorithm. (See Volume 1,§7.5.) The triplet(5,−16, 9) is not chosen to
give a full period Marsaglia sequence — it doesn’t. Instead it is chosen as being
particularly good at separating in Hamming distance (i.e., number of nonidentical
bits) two initially close values ofir (e.g., differing by only one bit). The large
integer constants are chosen by a similar criterion. Note that the wrap-around
of addition without generating an overflow error condition, which was tested in
ran init, is relied upon here.

⋆ ⋆ ⋆

SUBROUTINE ran0_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran0,jran0,kran0,nran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Lagged Fibonacci generator combined with a Marsaglia shift sequence. Returns as harvest
a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This gen-
erator has the same calling and initialization conventions as Fortran 90’s random number
routine. Use ran seed to initialize or reinitialize to a particular sequence. The period of
this generator is about 2.0 × 1028, and it fully vectorizes. Validity of the integer model
assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1) Initialization routine in ran state.
rans=iran0-kran0 Update Fibonacci generator, which

has period p2 +p+1, p = 231 −
69.

if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
nran0=ieor(nran0,ishft(nran0,13)) Update Marsaglia shift sequence with

period 232 − 1.nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
rans=ieor(nran0,rans) Combine the generators.
harvest=amm*merge(rans,not(rans), rans<0) Make the result positive definite (note

that amm is negative).END SUBROUTINE ran0_s

Chapter B7. Random Numbers 1149

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE ran0_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran,jran,kran,nran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=ieor(nran(1:n),ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
END SUBROUTINE ran0_v

This is the simplest, and fastest, of the generators provided. It combines a
subtractive Fibonacci generator (Number 6 in ref.[1], and one of the generators
in Marsaglia and Zaman’smzran) with a Marsaglia shift sequence. On typical
machines it is only 20% or so faster thanran1, however; so we recommend the
latter preferentially. While we know of no weakness inran0, we are not offering
a prize for finding a weakness.ran0 does have the feature, useful if you have
a machine with nonstandard arithmetic, that it does not go beyond Fortran 90’s
assumed integer model.

Note thatran0 s andran0 v are overloaded by the modulenr onto the single
nameran0 (and similarly for the routines below).

⋆ ⋆ ⋆

SUBROUTINE ran1_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran0,jran0,kran0,nran0,mran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Lagged Fibonacci generator combined with two Marsaglia shift sequences. On output, re-
turns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint
values). This generator has the same calling and initialization conventions as Fortran 90’s
random number routine. Use ran seed to initialize or reinitialize to a particular sequence.
The period of this generator is about 8.5×1037, and it fully vectorizes. Validity of the integer
model assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1) Initialization routine in ran state.
rans=iran0-kran0 Update Fibonacci generator, which

has period p2 +p+1, p = 231 −
69.

if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
nran0=ieor(nran0,ishft(nran0,13)) Update Marsaglia shift sequence.
nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
Once only per cycle, advance sequence by 1, shortening its period to 232 − 2.

if (nran0 == 1) nran0=270369_k4b
mran0=ieor(mran0,ishft(mran0,5)) Update Marsaglia shift sequence with

period 232 − 1.mran0=ieor(mran0,ishft(mran0,-13))
mran0=ieor(mran0,ishft(mran0,6))

1150 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

rans=ieor(nran0,rans)+mran0
Combine the generators. The above statement has wrap-around addition.

harvest=amm*merge(rans,not(rans), rans<0) Make the result positive definite (note
that amm is negative).END SUBROUTINE ran1_s

SUBROUTINE ran1_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran,jran,kran,nran,mran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
where (nran(1:n) == 1) nran(1:n)=270369_k4b
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),5))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),-13))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),6))
ranv(1:n)=ieor(nran(1:n),ranv(1:n))+mran(1:n)
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
END SUBROUTINE ran1_v

The routineran1 combinesthree fast generators: the two used inran0, plus
an additional (different) Marsaglia shift sequence. The last generator is combined
via an addition that can wrap-around.

We think that, within the limits of its floating-point precision,ran1 provides
perfect random numbers. We will pay$1000 to the first reader who convinces us
otherwise (by exhibitinga statistical test thatran1 fails in a nontrivial way, excluding
the ordinary limitations of a floating-point representation).

⋆ ⋆ ⋆

SUBROUTINE ran2_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran0,jran0,kran0,nran0,mran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Lagged Fibonacci generator combined with a Marsaglia shift sequence and a linear con-
gruential generator. Returns as harvest a uniform random deviate between 0.0 and 1.0
(exclusive of the endpoint values). This generator has the same calling and initialization
conventions as Fortran 90’s random number routine. Use ran seed to initialize or reini-
tialize to a particular sequence. The period of this generator is about 8.5×1037, and it fully
vectorizes. Validity of the integer model assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1) Initialization routine in ran state.
rans=iran0-kran0 Update Fibonacci generator, which

has period p2 +p+1, p = 231 −
69.

if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans

Chapter B7. Random Numbers 1151

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

nran0=ieor(nran0,ishft(nran0,13)) Update Marsaglia shift sequence with
period 232 − 1.nran0=ieor(nran0,ishft(nran0,-17))

nran0=ieor(nran0,ishft(nran0,5))
rans=iand(mran0,65535)
Update the sequence m ← 69069m+ 820265819 mod 232 using shifts instead of multiplies.
Wrap-around addition (tested at initialization) is used.

mran0=ishft(3533*ishft(mran0,-16)+rans,16)+ &
3533*rans+820265819_k4b

rans=ieor(nran0,kran0)+mran0 Combine the generators.
harvest=amm*merge(rans,not(rans), rans<0) Make the result positive definite (note

that amm is negative).END SUBROUTINE ran2_s

SUBROUTINE ran2_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran,jran,kran,nran,mran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=iand(mran(1:n),65535)
mran(1:n)=ishft(3533*ishft(mran(1:n),-16)+ranv(1:n),16)+ &

3533*ranv(1:n)+820265819_k4b
ranv(1:n)=ieor(nran(1:n),kran(1:n))+mran(1:n)
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
END SUBROUTINE ran2_v

ran2, for use by readers whose caution is extreme, also combines three
generators. The difference fromran1 is that each generator is based on a completely
different method from the other two. The third generator, in this case, is a linear
congruential generator, modulo232. This generator relies extensively on wrap-
around addition (which is automatically tested at initialization). On machines with
fast arithmetic,ran2 is on the order of only 20% slower thanran1. We offer a
$1000 bounty onran2, with the same terms as forran1, above.

⋆ ⋆ ⋆

SUBROUTINE expdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Returns in harvest an exponentially distributed, positive, random deviate of unit mean,
using ran1 as the source of uniform deviates.

REAL(SP) :: dum
call ran1(dum)
harvest=-log(dum) We use the fact that ran1 never returns exactly 0 or 1.
END SUBROUTINE expdev_s

1152 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE expdev_v(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: dum
call ran1(dum)
harvest=-log(dum)
END SUBROUTINE expdev_v

f90
call ran1(dum) The only noteworthy thing about this line is its simplic-
ity: Once all the machinery is in place, the random number generators
are self-initializing (to the sequence defined byseq = 0), and (via

overloading) usable with both scalar and vector arguments.

⋆ ⋆ ⋆

SUBROUTINE gasdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Returns in harvest a normally distributed deviate with zero mean and unit variance, using
ran1 as the source of uniform deviates.

REAL(SP) :: rsq,v1,v2
REAL(SP), SAVE :: g
LOGICAL, SAVE :: gaus_stored=.false.
if (gaus_stored) then We have an extra deviate handy,

harvest=g so return it,
gaus_stored=.false. and unset the flag.

else We don’t have an extra deviate handy, so
do

call ran1(v1) pick two uniform numbers in the square ex-
tending from -1 to +1 in each direction,call ran1(v2)

v1=2.0_sp*v1-1.0_sp
v2=2.0_sp*v2-1.0_sp
rsq=v1**2+v2**2 see if they are in the unit circle,
if (rsq > 0.0 .and. rsq < 1.0) exit

end do otherwise try again.
rsq=sqrt(-2.0_sp*log(rsq)/rsq) Now make the Box-Muller transformation to

get two normal deviates. Return one and
save the other for next time.

harvest=v1*rsq
g=v2*rsq
gaus_stored=.true. Set flag.

end if
END SUBROUTINE gasdev_s

SUBROUTINE gasdev_v(harvest)
USE nrtype; USE nrutil, ONLY : array_copy
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: rsq,v1,v2
REAL(SP), ALLOCATABLE, DIMENSION(:), SAVE :: g
INTEGER(I4B) :: n,ng,nn,m
INTEGER(I4B), SAVE :: last_allocated=0
LOGICAL, SAVE :: gaus_stored=.false.
LOGICAL, DIMENSION(size(harvest)) :: mask
n=size(harvest)
if (n /= last_allocated) then

Chapter B7. Random Numbers 1153

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (last_allocated /= 0) deallocate(g)
allocate(g(n))
last_allocated=n
gaus_stored=.false.

end if
if (gaus_stored) then

harvest=g
gaus_stored=.false.

else
ng=1
do

if (ng > n) exit
call ran1(v1(ng:n))
call ran1(v2(ng:n))
v1(ng:n)=2.0_sp*v1(ng:n)-1.0_sp
v2(ng:n)=2.0_sp*v2(ng:n)-1.0_sp
rsq(ng:n)=v1(ng:n)**2+v2(ng:n)**2
mask(ng:n)=(rsq(ng:n)>0.0 .and. rsq(ng:n)<1.0)
call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m)
v2(ng:ng+nn-1)=pack(v2(ng:n),mask(ng:n))
rsq(ng:ng+nn-1)=pack(rsq(ng:n),mask(ng:n))
ng=ng+nn

end do
rsq=sqrt(-2.0_sp*log(rsq)/rsq)
harvest=v1*rsq
g=v2*rsq
gaus_stored=.true.

end if
END SUBROUTINE gasdev_v

if (n /= last_allocated) ... We make the assumption that, in most
cases, the size ofharvest will not change between successive calls.
Therefore, if itdoeschange, we don’t try to save the previously generated

deviates that, half the time, will be around. If your use has rapidly varying sizes
(or, even worse, calls alternating between two different sizes), you should remedy
this inefficiency in the obvious way.

call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m) This is a variant
of the pack-unpack method (see note tofactrl, p. 1087). Different here is that we
don’t care which random deviates end up in which component. Thus, we can simply
keep packing successful returns intov1 andv2 until they are full.

f90
Note also the use ofarray copy, since we don’t know in advance the
length of the array returned bypack.

⋆ ⋆ ⋆

FUNCTION gamdev(ia)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ia
REAL(SP) :: gamdev

Returns a deviate distributed as a gamma distribution of integer order ia, i.e., a waiting
time to the iath event in a Poisson process of unit mean, using ran1 as the source of
uniform deviates.

REAL(SP) :: am,e,h,s,x,y,v(2),arr(5)
call assert(ia >= 1, ’gamdev arg’)
if (ia < 6) then Use direct method, adding waiting times.

1154 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

call ran1(arr(1:ia))
x=-log(product(arr(1:ia)))

else Use rejection method.
do

call ran1(v)
v(2)=2.0_sp*v(2)-1.0_sp These three lines generate the tangent of a

random angle, i.e., are equivalent to
y = tan(πran(idum)).

if (dot_product(v,v) > 1.0) cycle
y=v(2)/v(1)
am=ia-1
s=sqrt(2.0_sp*am+1.0_sp)
x=s*y+am We decide whether to reject x:
if (x <= 0.0) cycle Reject in region of zero probability.
e=(1.0_sp+y**2)*exp(am*log(x/am)-s*y) Ratio of probability function to

comparison function.call ran1(h)
if (h <= e) exit Reject on basis of a second uniform deviate.

end do
end if
gamdev=x
END FUNCTION gamdev

f90
x=-log(product(arr(1:ia))) Why take thelog of the product instead of
the sum of thelogs? Becauselog is assumed to be slower than multiply.

We don’t have vector versions of the less commonly used deviate
generators,gamdev, poidev, andbnldev.

⋆ ⋆ ⋆

FUNCTION poidev(xm)
USE nrtype
USE nr, ONLY : gammln,ran1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xm
REAL(SP) :: poidev

Returns as a floating-point number an integer value that is a random deviate drawn from a
Poisson distribution of mean xm, using ran1 as a source of uniform random deviates.

REAL(SP) :: em,harvest,t,y
REAL(SP), SAVE :: alxm,g,oldm=-1.0_sp,sq
oldm is a flag for whether xm has changed since last call.

if (xm < 12.0) then Use direct method.
if (xm /= oldm) then

oldm=xm
g=exp(-xm) If xm is new, compute the exponential.

end if
em=-1
t=1.0
do

em=em+1.0_sp Instead of adding exponential deviates it is
equivalent to multiply uniform deviates.
We never actually have to take the log;
merely compare to the pre-computed ex-
ponential.

call ran1(harvest)
t=t*harvest
if (t <= g) exit

end do
else Use rejection method.

if (xm /= oldm) then If xm has changed since the last call, then pre-
compute some functions that occur be-
low.

oldm=xm
sq=sqrt(2.0_sp*xm)
alxm=log(xm)
g=xm*alxm-gammln(xm+1.0_sp) The function gammln is the natural log of the

gamma function, as given in §6.1.end if
do

Chapter B7. Random Numbers 1155

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

do
call ran1(harvest) y is a deviate from a Lorentzian comparison

function.y=tan(PI*harvest)
em=sq*y+xm em is y, shifted and scaled.
if (em >= 0.0) exit Reject if in regime of zero probability.

end do
em=int(em) The trick for integer-valued distributions.
t=0.9_sp*(1.0_sp+y**2)*exp(em*alxm-gammln(em+1.0_sp)-g)
The ratio of the desired distribution to the comparison function; we accept or reject
by comparing it to another uniform deviate. The factor 0.9 is chosen so that t never
exceeds 1.

call ran1(harvest)
if (harvest <= t) exit

end do
end if
poidev=em
END FUNCTION poidev

⋆ ⋆ ⋆

FUNCTION bnldev(pp,n)
USE nrtype
USE nr, ONLY : gammln,ran1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: pp
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: bnldev

Returns as a floating-point number an integer value that is a random deviate drawn from a
binomial distribution of n trials each of probability pp, using ran1 as a source of uniform
random deviates.

INTEGER(I4B) :: j
INTEGER(I4B), SAVE :: nold=-1
REAL(SP) :: am,em,g,h,p,sq,t,y,arr(24)
REAL(SP), SAVE :: pc,plog,pclog,en,oldg,pold=-1.0 Arguments from previous calls.
p=merge(pp,1.0_sp-pp, pp <= 0.5_sp)
The binomial distribution is invariant under changing pp to 1.-pp, if we also change the
answer to n minus itself; we’ll remember to do this below.

am=n*p This is the mean of the deviate to be produced.
if (n < 25) then Use the direct method while n is not too large.

This can require up to 25 calls to ran1.call ran1(arr(1:n))
bnldev=count(arr(1:n)<p)

else if (am < 1.0) then If fewer than one event is expected out of 25
or more trials, then the distribution is quite
accurately Poisson. Use direct Poisson method.

g=exp(-am)
t=1.0
do j=0,n

call ran1(h)
t=t*h
if (t < g) exit

end do
bnldev=merge(j,n, j <= n)

else Use the rejection method.
if (n /= nold) then If n has changed, then compute useful quanti-

ties.en=n
oldg=gammln(en+1.0_sp)
nold=n

end if
if (p /= pold) then If p has changed, then compute useful quanti-

ties.pc=1.0_sp-p
plog=log(p)
pclog=log(pc)
pold=p

1156 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
sq=sqrt(2.0_sp*am*pc) The following code should by now seem familiar:

rejection method with a Lorentzian compar-
ison function.

do
call ran1(h)
y=tan(PI*h)
em=sq*y+am
if (em < 0.0 .or. em >= en+1.0_sp) cycle Reject.
em=int(em) Trick for integer-valued distribution.
t=1.2_sp*sq*(1.0_sp+y**2)*exp(oldg-gammln(em+1.0_sp)-&

gammln(en-em+1.0_sp)+em*plog+(en-em)*pclog)
call ran1(h)
if (h <= t) exit Reject. This happens about 1.5 times per devi-

ate, on average.end do
bnldev=em

end if
if (p /= pp) bnldev=n-bnldev Remember to undo the symmetry transforma-

tion.END FUNCTION bnldev

⋆ ⋆ ⋆

f90
The routinespsdes and psdes safe both performexactly the same
hashing as was done by the Fortran 77 routinepsdes. The difference
is thatpsdes makes assumptions about arithmetic that go beyond the

strict Fortran 90 model, whilepsdes safe makes no such assumptions. The
disadvantage ofpsdes safe is that it is significantly slower, performing most of its
arithmetic in double-precision reals that are then converted to integers with Fortran
90’s modulo intrinsic.

In fact the nonsafe version,psdes, works fine on almost all machines and
compilers that we have tried. There is a reason for this: Our assumed integer model
is the same as theC languageunsigned int, and virtually all modern computers
and compilers have a lot ofC hidden inside. Ifpsdes andpsdes safe produce
identical output on your system for any hundred or so different input values, you can
be quite confident about using the faster version exclusively.

At the other end of things, note that in the very unlikely case that your system
fails on theran hash routine in theran statemodule (you will have learned this
from error messages generated byran init), you can substitutepsdes safe for
ran hash: They are plug-compatible.

SUBROUTINE psdes_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4

“Pseudo-DES” hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
returned hashed on all bits. Note that this version of the routine assumes properties of
integer arithmetic that go beyond the Fortran 90 model, though they are compatible with
unsigned integers in C.

INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B) :: i,ia,ib,iswap,itmph,itmpl
do i=1,NITER Perform niter iterations of DES logic, using a simpler

(noncryptographic) nonlinear function instead of DES’s.iswap=rword
ia=ieor(rword,C1(i)) The bit-rich constants C1 and (below) C2 guarantee lots

of nonlinear mixing.itmpl=iand(ia,65535)
itmph=iand(ishft(ia,-16),65535)

Chapter B7. Random Numbers 1157

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ib=itmpl**2+not(itmph**2)
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
lword=iswap

end do
END SUBROUTINE psdes_s

SUBROUTINE psdes_v(lword,rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap,itmph,itmpl
INTEGER(I4B) :: i
i=assert_eq(size(lword),size(rword),’psdes_v’)
do i=1,NITER

iswap=rword
ia=ieor(rword,C1(i))
itmpl=iand(ia,65535)
itmph=iand(ishft(ia,-16),65535)
ib=itmpl**2+not(itmph**2)
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
lword=iswap

end do
END SUBROUTINE psdes_v

SUBROUTINE psdes_safe_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4

“Pseudo-DES” hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
returned hashed on all bits. This is a slower version of the routine that makes no assumptions
outside of the Fortran 90 integer model.

INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B) :: i,ia,ib,iswap
REAL(DP) :: alo,ahi
do i=1,NITER

iswap=rword
ia=ieor(rword,C1(i))
alo=real(iand(ia,65535),dp)
ahi=real(iand(ishft(ia,-16),65535),dp)
ib=modint(alo*alo+real(not(modint(ahi*ahi)),dp))
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,modint(real(ieor(C2(i),ia),dp)+alo*ahi))
lword=iswap

end do
CONTAINS

FUNCTION modint(x)
REAL(DP), INTENT(IN) :: x
INTEGER(I4B) :: modint
REAL(DP) :: a
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x,base)

1158 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (a > big) a=a-base
modint=nint(a,kind=i4b)
END FUNCTION modint
END SUBROUTINE psdes_safe_s

SUBROUTINE psdes_safe_v(lword,rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), SAVE :: C1(4),C2(4)
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap
REAL(DP), DIMENSION(size(lword)) :: alo,ahi
INTEGER(I4B) :: i
i=assert_eq(size(lword),size(rword),’psdes_safe_v’)
do i=1,NITER

iswap=rword
ia=ieor(rword,C1(i))
alo=real(iand(ia,65535),dp)
ahi=real(iand(ishft(ia,-16),65535),dp)
ib=modint(alo*alo+real(not(modint(ahi*ahi)),dp))
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,modint(real(ieor(C2(i),ia),dp)+alo*ahi))
lword=iswap

end do
CONTAINS

FUNCTION modint(x)
REAL(DP), DIMENSION(:), INTENT(IN) :: x
INTEGER(I4B), DIMENSION(size(x)) :: modint
REAL(DP), DIMENSION(size(x)) :: a
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x,base)
where (a > big) a=a-base
modint=nint(a,kind=i4b)
END FUNCTION modint
END SUBROUTINE psdes_safe_v

f90
FUNCTION modint(x) This embedded routine takes a double-precisionreal
argument, and returns it as an integer mod232 (correctly wrapping it to
negative to take into account that Fortran 90 has no unsigned integers).

⋆ ⋆ ⋆

SUBROUTINE ran3_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,ran_hash,mran0,nran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Random number generation by DES-like hashing of two 32-bit words, using the algorithm
ran hash. Returns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive
of the endpoint values).

INTEGER(K4B) :: temp
if (lenran < 1) call ran_init(1) Initialize.
nran0=ieor(nran0,ishft(nran0,13)) Two Marsaglia shift sequences are

maintained as input to the hash-
ing. The period of the combined
generator is about 1.8 × 1019.

nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
if (nran0 == 1) nran0=270369_k4b

Chapter B7. Random Numbers 1159

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

rans=nran0
mran0=ieor(mran0,ishft(mran0,5))
mran0=ieor(mran0,ishft(mran0,-13))
mran0=ieor(mran0,ishft(mran0,6))
temp=mran0
call ran_hash(temp,rans) Hash.
harvest=amm*merge(rans,not(rans), rans<0) Make the result positive definite (note

that amm is negative).END SUBROUTINE ran3_s

SUBROUTINE ran3_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,ran_hash,mran,nran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B), DIMENSION(size(harvest)) :: temp
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
where (nran(1:n) == 1) nran(1:n)=270369_k4b
ranv(1:n)=nran(1:n)
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),5))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),-13))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),6))
temp=mran(1:n)
call ran_hash(temp,ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
END SUBROUTINE ran3_v

As given,ran3 uses theran hash function in the moduleran state as its
DES surrogate. That function is sufficiently fast to makeran3 only about a factor
of 2 slower than our baseline recommended generatorran1. The slower routine
psdes and (even slower)psdes safe are plug-compatible withran hash, and
could be substituted for it in this routine.

⋆ ⋆ ⋆

FUNCTION irbit1(iseed)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit1

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if (btest(iseed,17) .neqv. btest(iseed,4) .neqv. btest(iseed,1) &
.neqv. btest(iseed,0)) then
iseed=ibset(ishft(iseed,1),0) Leftshift the seed and put a 1 in its bit 1.
irbit1=1

else But if the XOR calculation gave a 0,
iseed=ishft(iseed,1) then put that in bit 1 instead.
irbit1=0

end if
END FUNCTION irbit1

1160 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION irbit2(iseed)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit2

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

INTEGER(I4B), PARAMETER :: IB1=1,IB2=2,IB5=16,MASK=IB1+IB2+IB5
if (btest(iseed,17)) then Change all masked bits, shift, and put 1 into bit 1.

iseed=ibset(ishft(ieor(iseed,MASK),1),0)
irbit2=1

else Shift and put 0 into bit 1.
iseed=ibclr(ishft(iseed,1),0)
irbit2=0

end if
END FUNCTION irbit2

⋆ ⋆ ⋆

SUBROUTINE sobseq(x,init)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), OPTIONAL, INTENT(IN) :: init
INTEGER(I4B), PARAMETER :: MAXBIT=30,MAXDIM=6

When the optional integer init is present, internally initializes a set of MAXBIT direction
numbers for each of MAXDIM different Sobol’ sequences. Otherwise returns as the vector x
of length N the next values from N of these sequences. (N must not be changed between
initializations.)

REAL(SP), SAVE :: fac
INTEGER(I4B) :: i,im,ipp,j,k,l
INTEGER(I4B), DIMENSION(:,:), ALLOCATABLE:: iu
INTEGER(I4B), SAVE :: in
INTEGER(I4B), DIMENSION(MAXDIM), SAVE :: ip,ix,mdeg
INTEGER(I4B), DIMENSION(MAXDIM*MAXBIT), SAVE :: iv
DATA ip /0,1,1,2,1,4/, mdeg /1,2,3,3,4,4/, ix /6*0/
DATA iv /6*1,3,1,3,3,1,1,5,7,7,3,3,5,15,11,5,15,13,9,156*0/
if (present(init)) then Initialize, don’t return a vector.

ix=0
in=0
if (iv(1) /= 1) RETURN
fac=1.0_sp/2.0_sp**MAXBIT
allocate(iu(MAXDIM,MAXBIT))
iu=reshape(iv,shape(iu)) To allow both 1D and 2D addressing.
do k=1,MAXDIM

do j=1,mdeg(k) Stored values require only normalization.
iu(k,j)=iu(k,j)*2**(MAXBIT-j)

end do
do j=mdeg(k)+1,MAXBIT Use the recurrence to get other values.

ipp=ip(k)
i=iu(k,j-mdeg(k))
i=ieor(i,i/2**mdeg(k))
do l=mdeg(k)-1,1,-1

if (btest(ipp,0)) i=ieor(i,iu(k,j-l))
ipp=ipp/2

end do
iu(k,j)=i

end do
end do
iv=reshape(iu,shape(iv))
deallocate(iu)

Chapter B7. Random Numbers 1161

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

else Calculate the next vector in the sequence.
im=in
do j=1,MAXBIT Find the rightmost zero bit.

if (.not. btest(im,0)) exit
im=im/2

end do
if (j > MAXBIT) call nrerror(’MAXBIT too small in sobseq’)
im=(j-1)*MAXDIM
j=min(size(x),MAXDIM)
ix(1:j)=ieor(ix(1:j),iv(1+im:j+im))
XOR the appropriate direction number into each component of the vector and convert
to a floating number.

x(1:j)=ix(1:j)*fac
in=in+1 Increment the counter.

end if
END SUBROUTINE sobseq

f90
if (present(init)) then ... allocate(iu(...)) ... iu=reshape(...)

Wanting to avoid the deprecatedEQUIVALENCE statement, we must
reshapeiv into a two-dimensional array, then un-reshape it after we

are done. This is done only once, at initialization time, so there is no serious
inefficiency introduced.

⋆ ⋆ ⋆

SUBROUTINE vegas(region,func,init,ncall,itmx,nprn,tgral,sd,chi2a)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: region
INTEGER(I4B), INTENT(IN) :: init,ncall,itmx,nprn
REAL(SP), INTENT(OUT) :: tgral,sd,chi2a
INTERFACE

FUNCTION func(pt,wgt)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: pt
REAL(SP), INTENT(IN) :: wgt
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: ALPH=1.5_sp,TINY=1.0e-30_sp
INTEGER(I4B), PARAMETER :: MXDIM=10,NDMX=50

Performs Monte Carlo integration of a user-supplied d-dimensional function func over a
rectangular volume specified by region, a vector of length 2d consisting of d “lower left”
coordinates of the region followed by d “upper right” coordinates. The integration consists of
itmx iterations, each with approximately ncall calls to the function. After each iteration
the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag init
signals whether this call is a new start, or a subsequent call for additional iterations (see
comments below). The input flag nprn (normally 0) controls the amount of diagnostic
output. Returned answers are tgral (the best estimate of the integral), sd (its standard
deviation), and chi2a (χ2 per degree of freedom, an indicator of whether consistent results
are being obtained). See text for further details.

INTEGER(I4B), SAVE :: i,it,j,k,mds,nd,ndim,ndo,ng,npg Bestmake everything static,
allowing restarts.INTEGER(I4B), DIMENSION(MXDIM), SAVE :: ia,kg

REAL(SP), SAVE :: calls,dv2g,dxg,f,f2,f2b,fb,rc,ti,tsi,wgt,xjac,xn,xnd,xo,harvest
REAL(SP), DIMENSION(NDMX,MXDIM), SAVE :: d,di,xi
REAL(SP), DIMENSION(MXDIM), SAVE :: dt,dx,x
REAL(SP), DIMENSION(NDMX), SAVE :: r,xin
REAL(DP), SAVE :: schi,si,swgt

1162 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ndim=size(region)/2
if (init <= 0) then Normal entry. Enter here on a cold start.

mds=1 Change to mds=0 to disable stratified sam-
pling, i.e., use importance sampling only.ndo=1

xi(1,:)=1.0
end if
if (init <= 1) then Enter here to inherit the grid from a previous

call, but not its answers.si=0.0
swgt=0.0
schi=0.0

end if
if (init <= 2) then Enter here to inherit the previous grid and its

answers.nd=NDMX
ng=1
if (mds /= 0) then Set up for stratification.

ng=(ncall/2.0_sp+0.25_sp)**(1.0_sp/ndim)
mds=1
if ((2*ng-NDMX) >= 0) then

mds=-1
npg=ng/NDMX+1
nd=ng/npg
ng=npg*nd

end if
end if
k=ng**ndim
npg=max(ncall/k,2)
calls=real(npg,sp)*real(k,sp)
dxg=1.0_sp/ng
dv2g=(calls*dxg**ndim)**2/npg/npg/(npg-1.0_sp)
xnd=nd
dxg=dxg*xnd
dx(1:ndim)=region(1+ndim:2*ndim)-region(1:ndim)
xjac=1.0_sp/calls*product(dx(1:ndim))
if (nd /= ndo) then Do binning if necessary.

r(1:max(nd,ndo))=1.0
do j=1,ndim

call rebin(ndo/xnd,nd,r,xin,xi(:,j))
end do
ndo=nd

end if
if (nprn >= 0) write(*,200) ndim,calls,it,itmx,nprn,&

ALPH,mds,nd,(j,region(j),j,region(j+ndim),j=1,ndim)
end if
do it=1,itmx Main iteration loop. Can enter here (init ≥

3) to do an additional itmx iterations
with all other parameters unchanged.

ti=0.0
tsi=0.0
kg(:)=1
d(1:nd,:)=0.0
di(1:nd,:)=0.0
iterate: do

fb=0.0
f2b=0.0
do k=1,npg

wgt=xjac
do j=1,ndim

call ran1(harvest)
xn=(kg(j)-harvest)*dxg+1.0_sp
ia(j)=max(min(int(xn),NDMX),1)
if (ia(j) > 1) then

xo=xi(ia(j),j)-xi(ia(j)-1,j)
rc=xi(ia(j)-1,j)+(xn-ia(j))*xo

else
xo=xi(ia(j),j)
rc=(xn-ia(j))*xo

Chapter B7. Random Numbers 1163

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
x(j)=region(j)+rc*dx(j)
wgt=wgt*xo*xnd

end do
f=wgt*func(x(1:ndim),wgt)
f2=f*f
fb=fb+f
f2b=f2b+f2
do j=1,ndim

di(ia(j),j)=di(ia(j),j)+f
if (mds >= 0) d(ia(j),j)=d(ia(j),j)+f2

end do
end do
f2b=sqrt(f2b*npg)
f2b=(f2b-fb)*(f2b+fb)
if (f2b <= 0.0) f2b=TINY
ti=ti+fb
tsi=tsi+f2b
if (mds < 0) then Use stratified sampling.

do j=1,ndim
d(ia(j),j)=d(ia(j),j)+f2b

end do
end if
do k=ndim,1,-1

kg(k)=mod(kg(k),ng)+1
if (kg(k) /= 1) cycle iterate

end do
exit iterate

end do iterate
tsi=tsi*dv2g Compute final results for this iteration.
wgt=1.0_sp/tsi
si=si+real(wgt,dp)*real(ti,dp)
schi=schi+real(wgt,dp)*real(ti,dp)**2
swgt=swgt+real(wgt,dp)
tgral=si/swgt
chi2a=max((schi-si*tgral)/(it-0.99_dp),0.0_dp)
sd=sqrt(1.0_sp/swgt)
tsi=sqrt(tsi)
if (nprn >= 0) then

write(*,201) it,ti,tsi,tgral,sd,chi2a
if (nprn /= 0) then

do j=1,ndim
write(*,202) j,(xi(i,j),di(i,j),&

i=1+nprn/2,nd,nprn)
end do

end if
end if
do j=1,ndim Refine the grid. Consult references to under-

stand the subtlety of this procedure. The
refinement is damped, to avoid rapid,
destabilizing changes, and also compressed
in range by the exponent ALPH.

xo=d(1,j)
xn=d(2,j)
d(1,j)=(xo+xn)/2.0_sp
dt(j)=d(1,j)
do i=2,nd-1

rc=xo+xn
xo=xn
xn=d(i+1,j)
d(i,j)=(rc+xn)/3.0_sp
dt(j)=dt(j)+d(i,j)

end do
d(nd,j)=(xo+xn)/2.0_sp
dt(j)=dt(j)+d(nd,j)

end do
where (d(1:nd,:) < TINY) d(1:nd,:)=TINY
do j=1,ndim

1164 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

r(1:nd)=((1.0_sp-d(1:nd,j)/dt(j))/(log(dt(j))-log(d(1:nd,j))))**ALPH
rc=sum(r(1:nd))
call rebin(rc/xnd,nd,r,xin,xi(:,j))

end do
end do

200 format(/’ input parameters for vegas: ndim=’,i3,’ ncall=’,f8.0&
/28x,’ it=’,i5,’ itmx=’,i5&
/28x,’ nprn=’,i3,’ alph=’,f5.2/28x,’ mds=’,i3,’ nd=’,i4&
/(30x,’xl(’,i2,’)= ’,g11.4,’ xu(’,i2,’)= ’,g11.4))

201 format(/’ iteration no.’,I3,’: ’,’integral =’,g14.7,’ +/- ’,g9.2,&
/’ all iterations: integral =’,g14.7,’ +/- ’,g9.2,&
’ chi**2/it’’n =’,g9.2)

202 format(/’ data for axis ’,I2/’ X delta i ’,&
’ x delta i ’,’ x delta i ’,&
/(1x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4))

CONTAINS

SUBROUTINE rebin(rc,nd,r,xin,xi)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: rc
INTEGER(I4B), INTENT(IN) :: nd
REAL(SP), DIMENSION(:), INTENT(IN) :: r
REAL(SP), DIMENSION(:), INTENT(OUT) :: xin
REAL(SP), DIMENSION(:), INTENT(INOUT) :: xi

Utility routine used by vegas, to rebin a vector of densities xi into new bins defined by
a vector r.

INTEGER(I4B) :: i,k
REAL(SP) :: dr,xn,xo
k=0
xo=0.0
dr=0.0
do i=1,nd-1

do
if (rc <= dr) exit
k=k+1
dr=dr+r(k)

end do
if (k > 1) xo=xi(k-1)
xn=xi(k)
dr=dr-rc
xin(i)=xn-(xn-xo)*dr/r(k)

end do
xi(1:nd-1)=xin(1:nd-1)
xi(nd)=1.0
END SUBROUTINE rebin
END SUBROUTINE vegas

⋆ ⋆ ⋆

RECURSIVE SUBROUTINE miser(func,regn,ndim,npts,dith,ave,var)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func

END INTERFACE
REAL(SP), DIMENSION(:), INTENT(IN) :: regn
INTEGER(I4B), INTENT(IN) :: ndim,npts

Chapter B7. Random Numbers 1165

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), INTENT(IN) :: dith
REAL(SP), INTENT(OUT) :: ave,var
REAL(SP), PARAMETER :: PFAC=0.1_sp,TINY=1.0e-30_sp,BIG=1.0e30_sp
INTEGER(I4B), PARAMETER :: MNPT=15,MNBS=60

Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular
volume specified by region, a 2×ndim vector consisting of ndim “lower-left” coordinates
of the region followed by ndim “upper-right” coordinates. The function is sampled a total
of npts times, at locations determined by the method of recursive stratified sampling. The
mean value of the function in the region is returned as ave; an estimate of the statistical
uncertainty of ave (square of standard deviation) is returned as var. The input parameter
dith should normally be set to zero, but can be set to (e.g.) 0.1 if func’s active region
falls on the boundary of a power-of-2 subdivision of region.
Parameters: PFAC is the fraction of remaining function evaluations used at each stageto
explore the variance of func. At least MNPT function evaluations are performed in any
terminal subregion; a subregion is further bisected only if at least MNBS function evaluations
are available.

REAL(SP), DIMENSION(:), ALLOCATABLE :: regn_temp
INTEGER(I4B) :: j,jb,n,ndum,npre,nptl,nptr
INTEGER(I4B), SAVE :: iran=0
REAL(SP) :: avel,varl,fracl,fval,rgl,rgm,rgr,&

s,sigl,siglb,sigr,sigrb,sm,sm2,sumb,sumr
REAL(SP), DIMENSION(:), ALLOCATABLE :: fmaxl,fmaxr,fminl,fminr,pt,rmid
ndum=assert_eq(size(regn),2*ndim,’miser’)
allocate(pt(ndim))
if (npts < MNBS) then Too few points to bisect; do straight Monte

Carlo.sm=0.0
sm2=0.0
do n=1,npts

call ranpt(pt,regn)
fval=func(pt)
sm=sm+fval
sm2=sm2+fval**2

end do
ave=sm/npts
var=max(TINY,(sm2-sm**2/npts)/npts**2)

else Do the preliminary (uniform) sampling.
npre=max(int(npts*PFAC),MNPT)
allocate(rmid(ndim),fmaxl(ndim),fmaxr(ndim),fminl(ndim),fminr(ndim))
fminl(:)=BIG Initialize the left and right bounds for each

dimension.fminr(:)=BIG
fmaxl(:)=-BIG
fmaxr(:)=-BIG
do j=1,ndim

iran=mod(iran*2661+36979,175000)
s=sign(dith,real(iran-87500,sp))
rmid(j)=(0.5_sp+s)*regn(j)+(0.5_sp-s)*regn(ndim+j)

end do
do n=1,npre Loop over the points in the sample.

call ranpt(pt,regn)
fval=func(pt)
where (pt <= rmid) Find the left and right bounds for each di-

mension.fminl=min(fminl,fval)
fmaxl=max(fmaxl,fval)

elsewhere
fminr=min(fminr,fval)
fmaxr=max(fmaxr,fval)

end where
end do
sumb=BIG Choose which dimension jb to bisect.
jb=0
siglb=1.0
sigrb=1.0
do j=1,ndim

if (fmaxl(j) > fminl(j) .and. fmaxr(j) > fminr(j)) then

1166 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sigl=max(TINY,(fmaxl(j)-fminl(j))**(2.0_sp/3.0_sp))
sigr=max(TINY,(fmaxr(j)-fminr(j))**(2.0_sp/3.0_sp))
sumr=sigl+sigr Equation (7.8.24); see text.
if (sumr <= sumb) then

sumb=sumr
jb=j
siglb=sigl
sigrb=sigr

end if
end if

end do
deallocate(fminr,fminl,fmaxr,fmaxl)
if (jb == 0) jb=1+(ndim*iran)/175000 MNPT may be too small.
rgl=regn(jb) Apportion the remaining points between left

and right.rgm=rmid(jb)
rgr=regn(ndim+jb)
fracl=abs((rgm-rgl)/(rgr-rgl))
nptl=(MNPT+(npts-npre-2*MNPT)*fracl*siglb/ & Equation (7.8.23).

(fracl*siglb+(1.0_sp-fracl)*sigrb))
nptr=npts-npre-nptl
allocate(regn_temp(2*ndim))
regn_temp(:)=regn(:)
regn_temp(ndim+jb)=rmid(jb) Set region to left.
call miser(func,regn_temp,ndim,nptl,dith,avel,varl)
Dispatch recursive call; will return back here eventually.

regn_temp(jb)=rmid(jb)
regn_temp(ndim+jb)=regn(ndim+jb) Set region to right.
call miser(func,regn_temp,ndim,nptr,dith,ave,var)
Dispatch recursive call; will return back here eventually.

deallocate(regn_temp)
ave=fracl*avel+(1-fracl)*ave Combine left and right regions by equation

(7.8.11) (1st line).var=fracl*fracl*varl+(1-fracl)*(1-fracl)*var
deallocate(rmid)

end if
deallocate(pt)
CONTAINS

SUBROUTINE ranpt(pt,region)
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: pt
REAL(SP), DIMENSION(:), INTENT(IN) :: region

Returns a uniformly random point pt in a rectangular region of dimension d. Used by
miser; calls ran1 for uniform deviates.

INTEGER(I4B) :: n
call ran1(pt)
n=size(pt)
pt(1:n)=region(1:n)+(region(n+1:2*n)-region(1:n))*pt(1:n)
END SUBROUTINE ranpt
END SUBROUTINE miser

f90
The Fortran 90 version of this routine is much more straightforward than
the Fortran 77 version, because Fortran 90 allows recursion. (In fact,
this routine is modeled on theC version ofmiser, which was recursive

from the start.)

CITED REFERENCES AND FURTHER READING:

Marsaglia, G., and Zaman, A. 1994, Computers in Physics, vol. 8, pp. 117–121. [1]

Marsaglia, G. 1985, Linear Algebra and Its Applications, vol. 67, pp. 147-156. [2]

Harbison, S.P., and Steele, G.L. 1991, C: A Reference Manual, Third Edition, §5.1.1. [3]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B8. Sorting

Caution! If you are expecting to sort efficiently on a parallel machine,
whether its parallelism is small-scale or massive, you almost certainly
want to use library routines that are specific to your hardware.

We include in this chapter translations into Fortran 90 of the general purpose
serial sorting routines that are in Volume 1, augmented by several new routines
that give pedagogical demonstrations of how parallel sorts can be achieved with
Fortran 90 parallel constructions and intrinsics. However, we intend the above
word “pedagogical” to be taken seriously: these new, supposedly parallel, routines
arenot likely to be competitive with machine-specific library routines. Neither do
they compete successfully on serial machines with the all-serial routines provided
(namelysort, sort2, sort3, indexx, andselect).

⋆ ⋆ ⋆

SUBROUTINE sort_pick(arr)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sorts an array arr into ascending numerical order, by straight insertion. arr is replaced
on output by its sorted rearrangement.

INTEGER(I4B) :: i,j,n
REAL(SP) :: a
n=size(arr)
do j=2,n Pick out each element in turn.

a=arr(j)
do i=j-1,1,-1 Look for the place to insert it.

if (arr(i) <= a) exit
arr(i+1)=arr(i)

end do
arr(i+1)=a Insert it.

end do
END SUBROUTINE sort_pick

Not only issort pick (renamed from Volume 1’spiksrt) not parallelizable,
but also, even worse, it is anN 2 routine. It is meant to be invoked only for the
most trivial sorting jobs, say,N < 20.

⋆ ⋆ ⋆

1167

1168 Chapter B8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE sort_shell(arr)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sorts an array arr into ascending numerical order by Shell’s method (diminishing increment
sort). arr is replaced on output by its sorted rearrangement.

INTEGER(I4B) :: i,j,inc,n
REAL(SP) :: v
n=size(arr)
inc=1
do Determine the starting increment.

inc=3*inc+1
if (inc > n) exit

end do
do Loop over the partial sorts.

inc=inc/3
do i=inc+1,n Outer loop of straight insertion.

v=arr(i)
j=i
do Inner loop of straight insertion.

if (arr(j-inc) <= v) exit
arr(j)=arr(j-inc)
j=j-inc
if (j <= inc) exit

end do
arr(j)=v

end do
if (inc <= 1) exit

end do
END SUBROUTINE sort_shell

The routinesort shell is renamed from Volume 1’sshell. Shell’s Method,
a diminishing increment sort, is not directly parallelizable. However, one can write a
fully parallel routine (though not an especially fast one — see remarks at beginning
of this chapter) in much the same spirit:

SUBROUTINE sort_byreshape(arr)
USE nrtype; USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sort an array arr by bubble sorting a succession of reshapings into array slices. The method
is similar to Shell sort, but allows parallelization within the vectorized masked swap calls.

REAL(SP), DIMENSION(:,:), ALLOCATABLE :: tab
REAL(SP), PARAMETER :: big=huge(arr)
INTEGER(I4B) :: inc,n,m
n=size(arr)
inc=1
do Find the largest increment that fits.

inc=2*inc+1
if (inc > n) exit

end do
do Loop over the different shapes for the reshaped

array.inc=inc/2
m=(n+inc-1)/inc
allocate(tab(inc,m)) Allocate space and reshape the array. big en-

sures that fill elements stay at the
end.

tab=reshape(arr, (/inc,m/) , (/big/))
do

Bubble sort all the rows in parallel.
call swap(tab(:,1:m-1:2),tab(:,2:m:2), &

tab(:,1:m-1:2)>tab(:,2:m:2))
call swap(tab(:,2:m-1:2),tab(:,3:m:2), &

tab(:,2:m-1:2)>tab(:,3:m:2))

Chapter B8. Sorting 1169

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (all(tab(:,1:m-1) <= tab(:,2:m))) exit
end do
arr=reshape(tab,shape(arr)) Put the array back together for the next shape.
deallocate(tab)
if (inc <= 1) exit

end do
END SUBROUTINE sort_byreshape

The basic idea is to reshape the given one-dimensional array into a
succession of two-dimensional arrays, starting with “tall and narrow”
(many rows, few columns), and ending up with “short and wide” (many

columns, few rows). At each stage we sort all the rows in parallel by a bubble sort,
giving something close to Shell’s diminishing increments.

⋆ ⋆ ⋆

We now arrive at those routines, based on the Quicksort algorithm, that we
actually intend for use with generalN on serial machines:

SUBROUTINE sort(arr)
USE nrtype; USE nrutil, ONLY : swap,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
INTEGER(I4B), PARAMETER :: NN=15, NSTACK=50

Sorts an array arr into ascending numerical order using the Quicksort algorithm. arr is
replaced on output by its sorted rearrangement.
Parameters: NN is the size of subarrays sorted by straight insertion and NSTACK is the
required auxiliary storage.

REAL(SP) :: a
INTEGER(I4B) :: n,k,i,j,jstack,l,r
INTEGER(I4B), DIMENSION(NSTACK) :: istack
n=size(arr)
jstack=0
l=1
r=n
do

if (r-l < NN) then Insertion sort when subarray small enough.
do j=l+1,r

a=arr(j)
do i=j-1,l,-1

if (arr(i) <= a) exit
arr(i+1)=arr(i)

end do
arr(i+1)=a

end do
if (jstack == 0) RETURN
r=istack(jstack) Pop stack and begin a new round of partition-

ing.l=istack(jstack-1)
jstack=jstack-2

else Choose median of left, center, and right elements
as partitioning element a. Also rearrange so
that a(l) ≤ a(l+1) ≤ a(r).

k=(l+r)/2
call swap(arr(k),arr(l+1))
call swap(arr(l),arr(r),arr(l)>arr(r))
call swap(arr(l+1),arr(r),arr(l+1)>arr(r))
call swap(arr(l),arr(l+1),arr(l)>arr(l+1))
i=l+1 Initialize pointers for partitioning.
j=r
a=arr(l+1) Partitioning element.
do Here is the meat.

do Scan up to find element >= a.
i=i+1

1170 Chapter B8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (arr(i) >= a) exit
end do
do Scan down to find element <= a.

j=j-1
if (arr(j) <= a) exit

end do
if (j < i) exit Pointers crossed. Exit with partitioning complete.
call swap(arr(i),arr(j)) Exchange elements.

end do
arr(l+1)=arr(j) Insert partitioning element.
arr(j)=a
jstack=jstack+2
Push pointers to larger subarray on stack; process smaller subarray immediately.

if (jstack > NSTACK) call nrerror(’sort: NSTACK too small’)
if (r-i+1 >= j-l) then

istack(jstack)=r
istack(jstack-1)=i
r=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

end if
end if

end do
END SUBROUTINE sort

f90
call swap(...) ... call swap(...) One might think twice about putting
all these external function calls (tonrutil routines) in the inner loop
of something as streamlined as a sort routine, but here they are executed

only once for each partitioning.

call swap(arr(i),arr(j)) This call is in a loop, but not the innermost loop.
Most modern machines are very fast at the “context changes” implied by subroutine
calls and returns; but in a time-critical context you might code this swap in-line and
see if there is any timing difference.
SUBROUTINE sort2(arr,slave)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : indexx
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr,slave

Sorts an array arr into ascending order using Quicksort, while making the corresponding
rearrangement of the same-size array slave. The sorting and rearrangement are performed
by means of an index array.

INTEGER(I4B) :: ndum
INTEGER(I4B), DIMENSION(size(arr)) :: index
ndum=assert_eq(size(arr),size(slave),’sort2’)
call indexx(arr,index) Make the index array.
arr=arr(index) Sort arr.
slave=slave(index) Rearrange slave.
END SUBROUTINE sort2

⋆ ⋆ ⋆

A close surrogate for the Quicksort partition-exchange algorithm can
be coded, parallelizable, by using Fortran 90’spack intrinsic. On
real compilers, unfortunately, the resulting code is not very efficient as

compared with (on serial machines) the tightness ofsort’s inner loop, above, or
(on parallel machines) supplied library sort routines. We illustrate the principle
nevertheless in the following routine.

Chapter B8. Sorting 1171

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

RECURSIVE SUBROUTINE sort_bypack(arr)
USE nrtype; USE nrutil, ONLY : array_copy,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sort an array arr by recursively applying the Fortran 90 pack intrinsic. The method is
similar to Quicksort, but this variant allows parallelization by the Fortran 90 compiler.

REAL(SP) :: a
INTEGER(I4B) :: n,k,nl,nerr
INTEGER(I4B), SAVE :: level=0
LOGICAL, DIMENSION(:), ALLOCATABLE, SAVE :: mask
REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: temp
n=size(arr)
if (n <= 1) RETURN
k=(1+n)/2
call swap(arr(1),arr(k),arr(1)>arr(k)) Pivot element is median of first, middle,

and last.call swap(arr(k),arr(n),arr(k)>arr(n))
call swap(arr(1),arr(k),arr(1)>arr(k))
if (n <= 3) RETURN
level=level+1 Keep track of recursion level to avoid al-

location overhead.if (level == 1) allocate(mask(n),temp(n))
a=arr(k)
mask(1:n) = (arr <= a) Which elements move to left?
mask(k) = .false.
call array_copy(pack(arr,mask(1:n)),temp,nl,nerr) Move them.
mask(k) = .true.
temp(nl+2:n)=pack(arr,.not. mask(1:n)) Move others to right.
temp(nl+1)=a
arr=temp(1:n)
call sort_bypack(arr(1:nl)) And recurse.
call sort_bypack(arr(nl+2:n))
if (level == 1) deallocate(mask,temp)
level=level-1
END SUBROUTINE sort_bypack

⋆ ⋆ ⋆

The following routine,sort heap, is renamed from Volume 1’shpsort.

SUBROUTINE sort_heap(arr)
USE nrtype
USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sorts an array arr into ascending numerical order using the Heapsort algorithm. arr is
replaced on output by its sorted rearrangement.

INTEGER(I4B) :: i,n
n=size(arr)
do i=n/2,1,-1

The index i, which here determines the “left” range of the sift-down, i.e., the element to
be sifted down, is decremented from n/2 down to 1 during the “hiring” (heap creation)
phase.

call sift_down(i,n)
end do
do i=n,2,-1

Here the “right” range of the sift-down is decremented from n-1 down to 1 during the
“retirement-and-promotion” (heap selection) phase.

call swap(arr(1),arr(i)) Clear a space at the end of the array, and
retire the top of the heap into it.call sift_down(1,i-1)

end do
CONTAINS

SUBROUTINE sift_down(l,r)
INTEGER(I4B), INTENT(IN) :: l,r

1172 Chapter B8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Carry out the sift-down on element arr(l) to maintain the heap structure.
INTEGER(I4B) :: j,jold
REAL(SP) :: a
a=arr(l)
jold=l
j=l+l
do “Do while j <= r:”

if (j > r) exit
if (j < r) then

if (arr(j) < arr(j+1)) j=j+1 Compare to the better underling.
end if
if (a >= arr(j)) exit Found a’s level. Terminate the sift-down. Oth-

erwise, demote a and continue.arr(jold)=arr(j)
jold=j
j=j+j

end do
arr(jold)=a Put a into its slot.
END SUBROUTINE sift_down
END SUBROUTINE sort_heap

⋆ ⋆ ⋆

Another opportunity provided by Fortran 90 for a fully parallelizable sort, at
least pedagogically, is to use the language’s allowed access to the actual floating-
point representation and to code a radix sort[1] on its bits. This isnot efficient,
but it illustrates some Fortran 90 language features perhaps worthy of study for
other applications.

SUBROUTINE sort_radix(arr)
USE nrtype; USE nrutil, ONLY : array_copy,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr

Sort an array arr by radix sort on its bits.
INTEGER(I4B), DIMENSION(size(arr)) :: narr,temp
LOGICAL, DIMENSION(size(arr)) :: msk
INTEGER(I4B) :: k,negm,ib,ia,n,nl,nerr
Because we are going to transfer reals to integers, we must check that the number of bits
is the same in each:

ib=bit_size(narr)
ia=ceiling(log(real(maxexponent(arr)-minexponent(arr),sp))/log(2.0_sp)) &

+ digits(arr)
if (ib /= ia) call nrerror(’sort_radix: bit sizes not compatible’)
negm=not(ishftc(1,-1)) Mask for all bits except sign bit.
n=size(arr)
narr=transfer(arr,narr,n)
where (btest(narr,ib-1)) narr=ieor(narr,negm) Flip all bits on neg. numbers.
do k=0,ib-2

Work from low- to high-order bits, and partition the array according to the value of the
bit.

msk=btest(narr,k)
call array_copy(pack(narr,.not. msk),temp,nl,nerr)
temp(nl+1:n)=pack(narr,msk)
narr=temp

end do
msk=btest(narr,ib-1) The sign bit gets separate treat-

ment, since here 1 comes be-
fore 0.

call array_copy(pack(narr,msk),temp,nl,nerr)
temp(nl+1:n)=pack(narr,.not. msk)
narr=temp
where (btest(narr,ib-1)) narr=ieor(narr,negm) Unflip all bits on neg. numbers.
arr=transfer(narr,arr,n)
END SUBROUTINE sort_radix

⋆ ⋆ ⋆

Chapter B8. Sorting 1173

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
We overload the generic nameindexxwith two specific implementations,
one forSP floating values, the other forI4B integers. (You can of course
add more overloadings if you need them.)

SUBROUTINE indexx_sp(arr,index)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: index
INTEGER(I4B), PARAMETER :: NN=15, NSTACK=50

Indexes an array arr, i.e., outputs the array index of length N such that arr(index(j))
is in ascending order for j = 1,2, . . . ,N . The input quantity arr is not changed.

REAL(SP) :: a
INTEGER(I4B) :: n,k,i,j,indext,jstack,l,r
INTEGER(I4B), DIMENSION(NSTACK) :: istack
n=assert_eq(size(index),size(arr),’indexx_sp’)
index=arth(1,1,n)
jstack=0
l=1
r=n
do

if (r-l < NN) then
do j=l+1,r

indext=index(j)
a=arr(indext)
do i=j-1,l,-1

if (arr(index(i)) <= a) exit
index(i+1)=index(i)

end do
index(i+1)=indext

end do
if (jstack == 0) RETURN
r=istack(jstack)
l=istack(jstack-1)
jstack=jstack-2

else
k=(l+r)/2
call swap(index(k),index(l+1))
call icomp_xchg(index(l),index(r))
call icomp_xchg(index(l+1),index(r))
call icomp_xchg(index(l),index(l+1))
i=l+1
j=r
indext=index(l+1)
a=arr(indext)
do

do
i=i+1
if (arr(index(i)) >= a) exit

end do
do

j=j-1
if (arr(index(j)) <= a) exit

end do
if (j < i) exit
call swap(index(i),index(j))

end do
index(l+1)=index(j)
index(j)=indext
jstack=jstack+2
if (jstack > NSTACK) call nrerror(’indexx: NSTACK too small’)
if (r-i+1 >= j-l) then

istack(jstack)=r

1174 Chapter B8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

istack(jstack-1)=i
r=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

end if
end if

end do
CONTAINS

SUBROUTINE icomp_xchg(i,j)
INTEGER(I4B), INTENT(INOUT) :: i,j
INTEGER(I4B) :: swp
if (arr(j) < arr(i)) then

swp=i
i=j
j=swp

end if
END SUBROUTINE icomp_xchg
END SUBROUTINE indexx_sp

SUBROUTINE indexx_i4b(iarr,index)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror,swap
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iarr
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: index
INTEGER(I4B), PARAMETER :: NN=15, NSTACK=50
INTEGER(I4B) :: a
INTEGER(I4B) :: n,k,i,j,indext,jstack,l,r
INTEGER(I4B), DIMENSION(NSTACK) :: istack
n=assert_eq(size(index),size(iarr),’indexx_sp’)
index=arth(1,1,n)
jstack=0
l=1
r=n
do

if (r-l < NN) then
do j=l+1,r

indext=index(j)
a=iarr(indext)
do i=j-1,1,-1

if (iarr(index(i)) <= a) exit
index(i+1)=index(i)

end do
index(i+1)=indext

end do
if (jstack == 0) RETURN
r=istack(jstack)
l=istack(jstack-1)
jstack=jstack-2

else
k=(l+r)/2
call swap(index(k),index(l+1))
call icomp_xchg(index(l),index(r))
call icomp_xchg(index(l+1),index(r))
call icomp_xchg(index(l),index(l+1))
i=l+1
j=r
indext=index(l+1)
a=iarr(indext)
do

do

Chapter B8. Sorting 1175

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

i=i+1
if (iarr(index(i)) >= a) exit

end do
do

j=j-1
if (iarr(index(j)) <= a) exit

end do
if (j < i) exit
call swap(index(i),index(j))

end do
index(l+1)=index(j)
index(j)=indext
jstack=jstack+2
if (jstack > NSTACK) call nrerror(’indexx: NSTACK too small’)
if (r-i+1 >= j-l) then

istack(jstack)=r
istack(jstack-1)=i
r=j-1

else
istack(jstack)=j-1
istack(jstack-1)=l
l=i

end if
end if

end do
CONTAINS

SUBROUTINE icomp_xchg(i,j)
INTEGER(I4B), INTENT(INOUT) :: i,j
INTEGER(I4B) :: swp
if (iarr(j) < iarr(i)) then

swp=i
i=j
j=swp

end if
END SUBROUTINE icomp_xchg
END SUBROUTINE indexx_i4b

⋆ ⋆ ⋆

SUBROUTINE sort3(arr,slave1,slave2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : indexx
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr,slave1,slave2

Sorts an array arr into ascending order using Quicksort, while making the corresponding
rearrangement of the same-size arrays slave1 and slave2. The sorting and rearrangement
are performed by means of an index array.

INTEGER(I4B) :: ndum
INTEGER(I4B), DIMENSION(size(arr)) :: index
ndum=assert_eq(size(arr),size(slave1),size(slave2),’sort3’)
call indexx(arr,index) Make the index array.
arr=arr(index) Sort arr.
slave1=slave1(index) Rearrange slave1,
slave2=slave2(index) and slave2.
END SUBROUTINE sort3

⋆ ⋆ ⋆

1176 Chapter B8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION rank(index)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: index
INTEGER(I4B), DIMENSION(size(index)) :: rank

Given index as output from the routine indexx, this routine returns a same-size array
rank, the corresponding table of ranks.

rank(index(:))=arth(1,1,size(index))
END FUNCTION rank

⋆ ⋆ ⋆

Just as in the case ofsort, where an approximation of the underlying
Quicksort partition-exchange algorithm can be captured with the Fortran
90 pack intrinsic, the same can be done withindexx. As before,

although it is in principle parallelizable by the compiler, it is likely not competitive
with library routines.

RECURSIVE SUBROUTINE index_bypack(arr,index,partial)
USE nrtype; USE nrutil, ONLY : array_copy,arth,assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: index
INTEGER, OPTIONAL, INTENT(IN) :: partial

Indexes an array arr, i.e., outputs the array index of length N such that arr(index(j))
is in ascending order for j = 1,2, . . . ,N . The method is to apply recursively the Fortran
90 pack intrinsic. This is similar to Quicksort, but allows parallelization by the Fortran 90
compiler. partial is an optional argument that is used only internally on the recursive calls.

REAL(SP) :: a
INTEGER(I4B) :: n,k,nl,indext,nerr
INTEGER(I4B), SAVE :: level=0
LOGICAL, DIMENSION(:), ALLOCATABLE, SAVE :: mask
INTEGER(I4B), DIMENSION(:), ALLOCATABLE, SAVE :: temp
if (present(partial)) then

n=size(index)
else

n=assert_eq(size(index),size(arr),’indexx_bypack’)
index=arth(1,1,n)

end if
if (n <= 1) RETURN
k=(1+n)/2
call icomp_xchg(index(1),index(k)) Pivot element is median of first, mid-

dle, and last.call icomp_xchg(index(k),index(n))
call icomp_xchg(index(1),index(k))
if (n <= 3) RETURN
level=level+1 Keep track of recursion level to avoid

allocation overhead.if (level == 1) allocate(mask(n),temp(n))
indext=index(k)
a=arr(indext)
mask(1:n) = (arr(index) <= a) Which elements move to left?
mask(k) = .false.
call array_copy(pack(index,mask(1:n)),temp,nl,nerr) Move them.
mask(k) = .true.
temp(nl+2:n)=pack(index,.not. mask(1:n)) Move others to right.
temp(nl+1)=indext
index=temp(1:n)
call index_bypack(arr,index(1:nl),partial=1) And recurse.
call index_bypack(arr,index(nl+2:n),partial=1)
if (level == 1) deallocate(mask,temp)
level=level-1

Chapter B8. Sorting 1177

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

CONTAINS

SUBROUTINE icomp_xchg(i,j)
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: i,j
Swap or don’t swap integer arguments, depending on the ordering of their corresponding
elements in an array arr.

INTEGER(I4B) :: swp
if (arr(j) < arr(i)) then

swp=i
i=j
j=swp

end if
END SUBROUTINE icomp_xchg
END SUBROUTINE index_bypack

⋆ ⋆ ⋆

FUNCTION select(k,arr)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
REAL(SP) :: select

Returns the kth smallest value in the array arr. The input array will be rearranged to have
this value in location arr(k), with all smaller elements moved to arr(1:k-1) (in arbitrary
order) and all larger elements in arr(k+1:) (also in arbitrary order).

INTEGER(I4B) :: i,r,j,l,n
REAL(SP) :: a
n=size(arr)
call assert(k >= 1, k <= n, ’select args’)
l=1
r=n
do

if (r-l <= 1) then Active partition contains 1 or 2 elements.
if (r-l == 1) call swap(arr(l),arr(r),arr(l)>arr(r)) Active partition con-

tains 2 elements.select=arr(k)
RETURN

else Choose median of left, center, and right elements
as partitioning element a. Also rearrange so
that arr(l) ≤ arr(l+1) ≤ arr(r).

i=(l+r)/2
call swap(arr(i),arr(l+1))
call swap(arr(l),arr(r),arr(l)>arr(r))
call swap(arr(l+1),arr(r),arr(l+1)>arr(r))
call swap(arr(l),arr(l+1),arr(l)>arr(l+1))
i=l+1 Initialize pointers for partitioning.
j=r
a=arr(l+1) Partitioning element.
do Here is the meat.

do Scan up to find element > a.
i=i+1
if (arr(i) >= a) exit

end do
do Scan down to find element < a.

j=j-1
if (arr(j) <= a) exit

end do
if (j < i) exit Pointers crossed. Exit with partitioning complete.
call swap(arr(i),arr(j)) Exchange elements.

end do
arr(l+1)=arr(j) Insert partitioning element.
arr(j)=a
if (j >= k) r=j-1 Keep active the partition that contains the kth

element.

1178 Chapter B8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (j <= k) l=i
end if

end do
END FUNCTION select

⋆ ⋆ ⋆

The following routine,select inplace, is renamed from Volume 1’sselip.

FUNCTION select_inplace(k,arr)
USE nrtype
USE nr, ONLY : select
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP) :: select_inplace

Returns the kth smallest value in the array arr, without altering the input array. In Fortran
90’s assumed memory-rich environment, we just call select in scratch space.

REAL(SP), DIMENSION(size(arr)) :: tarr
tarr=arr
select_inplace=select(k,tarr)
END FUNCTION select_inplace

f90
Volume 1’sselip routine uses an entirely different algorithm, for the
purpose of avoiding any additional memory allocation beyond that of
the input array. Fortran 90 presumes a richer memory environment, so

select inplace simply does the obvious (destructive) selection in scratch space.
You can of course use the oldselip if your in-core or in-cache memory is at
a premium.

FUNCTION select_bypack(k,arr)
USE nrtype; USE nrutil, ONLY : array_copy,assert,swap
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: k
REAL(SP), DIMENSION(:), INTENT(INOUT) :: arr
REAL(SP) :: select_bypack

Returns the kth smallest value in the array arr. The input array will be rearranged to have
this value in location arr(k), with all smaller elements moved to arr(1:k-1) (in arbitrary
order) and all larger elements in arr(k+1:) (also in arbitrary order). This implementation
allows parallelization in the Fortran 90 pack intrinsic.

LOGICAL, DIMENSION(size(arr)) :: mask
REAL(SP), DIMENSION(size(arr)) :: temp
INTEGER(I4B) :: i,r,j,l,n,nl,nerr
REAL(SP) :: a
n=size(arr)
call assert(k >= 1, k <= n, ’select_bypack args’)
l=1 Initial left and right bounds.
r=n
do Keep partitioning until desired el-

ement is found.if (r-l <= 1) exit
i=(l+r)/2
call swap(arr(l),arr(i),arr(l)>arr(i)) Pivot element is median of first,

middle, and last.call swap(arr(i),arr(r),arr(i)>arr(r))
call swap(arr(l),arr(i),arr(l)>arr(i))
a=arr(i)
mask(l:r) = (arr(l:r) <= a) Which elements move to left?
mask(i) = .false.
call array_copy(pack(arr(l:r),mask(l:r)),temp(l:),nl,nerr) Move them.
j=l+nl

Chapter B8. Sorting 1179

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

mask(i) = .true.
temp(j+1:r)=pack(arr(l:r),.not. mask(l:r)) Move others to right.
temp(j)=a
arr(l:r)=temp(l:r)
if (k > j) then Reset bounds to whichever side

has the desired element.l=j+1
else if (k < j) then

r=j-1
else

l=j
r=j

end if
end do
if (r-l == 1) call swap(arr(l),arr(r),arr(l)>arr(r)) Case of only two left.
select_bypack=arr(k)
END FUNCTION select_bypack

The above routineselect bypack is parallelizable, but as discussed
above (sort bypack, index bypack) it is generally not very efficient.

⋆ ⋆ ⋆

The following routine,select heap, is renamed from Volume 1’shpsel.

SUBROUTINE select_heap(arr,heap)
USE nrtype; USE nrutil, ONLY : nrerror,swap
USE nr, ONLY : sort
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: arr
REAL(SP), DIMENSION(:), INTENT(OUT) :: heap

Returns in heap, an array of length M , the largest M elements of the array arr of length
N , with heap(1) guaranteed to be the the M th largest element. The array arr is not
altered. For efficiency, this routine should be used only when M ≪ N .

INTEGER(I4B) :: i,j,k,m,n
m=size(heap)
n=size(arr)
if (m > n/2 .or. m < 1) call nrerror(’probable misuse of select_heap’)
heap=arr(1:m)
call sort(heap) Create initial heap by overkill! We assume m ≪ n.
do i=m+1,n For each remaining element...

if (arr(i) > heap(1)) then Put it on the heap?
heap(1)=arr(i)
j=1
do Sift down.

k=2*j
if (k > m) exit
if (k /= m) then

if (heap(k) > heap(k+1)) k=k+1
end if
if (heap(j) <= heap(k)) exit
call swap(heap(k),heap(j))
j=k

end do
end if

end do
END SUBROUTINE select_heap

⋆ ⋆ ⋆

1180 Chapter B8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION eclass(lista,listb,n)
USE nrtype; USE nrutil, ONLY : arth,assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: lista,listb
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), DIMENSION(n) :: eclass

Given M equivalences between pairs of n individual elements in the form of the input arrays
lista and listb of length M , this routine returns in an array of length n the number
of the equivalence class of each of the n elements, integers between 1 and n (not all such
integers used).

INTEGER :: j,k,l,m
m=assert_eq(size(lista),size(listb),’eclass’)
eclass(1:n)=arth(1,1,n) Initialize each element its own class.
do l=1,m For each piece of input information...

j=lista(l)
do Track first element up to its ancestor.

if (eclass(j) == j) exit
j=eclass(j)

end do
k=listb(l)
do Track second element up to its ancestor.

if (eclass(k) == k) exit
k=eclass(k)

end do
if (j /= k) eclass(j)=k If they are not already related, make them so.

end do
do j=1,n Final sweep up to highest ancestors.

do
if (eclass(j) == eclass(eclass(j))) exit
eclass(j)=eclass(eclass(j))

end do
end do
END FUNCTION eclass

FUNCTION eclazz(equiv,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
INTERFACE

FUNCTION equiv(i,j)
USE nrtype
IMPLICIT NONE
LOGICAL(LGT) :: equiv
INTEGER(I4B), INTENT(IN) :: i,j
END FUNCTION equiv

END INTERFACE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), DIMENSION(n) :: eclazz

Given a user-supplied logical function equiv that tells whether a pair of elements, each
in the range 1...n, are related, return in an array of length n equivalence class numbers
for each element.

INTEGER :: i,j
eclazz(1:n)=arth(1,1,n)
do i=2,n Loop over first element of all pairs.

do j=1,i-1 Loop over second element of all pairs.
eclazz(j)=eclazz(eclazz(j)) Sweep it up this much.
if (equiv(i,j)) eclazz(eclazz(eclazz(j)))=i
Good exercise for the reader to figure out why this much ancestry is necessary!

end do
end do
do i=1,n Only this much sweeping is needed finally.

eclazz(i)=eclazz(eclazz(i))
end do
END FUNCTION eclazz

Chapter B8. Sorting 1181

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.5. [1]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B9. Root Finding and
Nonlinear Sets of Equations

SUBROUTINE scrsho(func)
USE nrtype
IMPLICIT NONE
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ISCR=60,JSCR=21

For interactive “dumb terminal” use. Produce a crude graph of the function func over the
prompted-for interval x1,x2. Query for another plot until the user signals satisfaction.
Parameters: Number of horizontal and vertical positions in display.

INTEGER(I4B) :: i,j,jz
REAL(SP) :: dx,dyj,x,x1,x2,ybig,ysml
REAL(SP), DIMENSION(ISCR) :: y
CHARACTER(1), DIMENSION(ISCR,JSCR) :: scr
CHARACTER(1) :: blank=’ ’,zero=’-’,yy=’l’,xx=’-’,ff=’x’
do

write (*,*) ’ Enter x1,x2 (= to stop)’ Query for another plot; quit if x1=x2.
read (*,*) x1,x2
if (x1 == x2) RETURN
scr(1,1:JSCR)=yy Fill vertical sides with character ’l’.
scr(ISCR,1:JSCR)=yy
scr(2:ISCR-1,1)=xx Fill top, bottom with character ’-’.
scr(2:ISCR-1,JSCR)=xx
scr(2:ISCR-1,2:JSCR-1)=blank Fill interior with blanks.
dx=(x2-x1)/(ISCR-1)
x=x1
do i=1,ISCR Evaluate the function at equal intervals.

y(i)=func(x)
x=x+dx

end do
ysml=min(minval(y(:)),0.0_sp) Limits will include 0.
ybig=max(maxval(y(:)),0.0_sp)
if (ybig == ysml) ybig=ysml+1.0 Be sure to separate top and bottom.
dyj=(JSCR-1)/(ybig-ysml)
jz=1-ysml*dyj Note which row corresponds to 0.
scr(1:ISCR,jz)=zero
do i=1,ISCR Place an indicator at function height and 0.

j=1+(y(i)-ysml)*dyj
scr(i,j)=ff

end do
write (*,’(1x,1p,e10.3,1x,80a1)’) ybig,(scr(i,JSCR),i=1,ISCR)
do j=JSCR-1,2,-1 Display.

write (*,’(12x,80a1)’) (scr(i,j),i=1,ISCR)
end do
write (*,’(1x,1p,e10.3,1x,80a1)’) ysml,(scr(i,1),i=1,ISCR)

1182

Chapter B9. Root Finding and Nonlinear Sets of Equations 1183

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

write (*,’(12x,1p,e10.3,40x,e10.3)’) x1,x2
end do
END SUBROUTINE scrsho

f90
CHARACTER(1), DIMENSION(ISCR,JSCR) :: scr In Fortran 90, the length
of variables of type character should be declared asCHARACTER(1) or
CHARACTER(len=1) (for a variable of length 1), rather than the older

form CHARACTER*1. While the older form is still legal syntax, the newer one is more
consistent with the syntax of other type declarations. (For variables of length 1, you
can actually omit the length specifier entirely, and just sayCHARACTER.)

⋆ ⋆ ⋆

SUBROUTINE zbrac(func,x1,x2,succes)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: x1,x2
LOGICAL(LGT), INTENT(OUT) :: succes
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: NTRY=50
REAL(SP), PARAMETER :: FACTOR=1.6_sp

Given a function func and an initial guessed range x1 to x2, the routine expands the range
geometrically until a root is bracketed by the returned values x1 and x2 (in which case
succes returns as .true.) or until the range becomes unacceptably large (in which case
succes returns as .false.).

INTEGER(I4B) :: j
REAL(SP) :: f1,f2
if (x1 == x2) call nrerror(’zbrac: you have to guess an initial range’)
f1=func(x1)
f2=func(x2)
succes=.true.
do j=1,NTRY

if ((f1 > 0.0 .and. f2 < 0.0) .or. &
(f1 < 0.0 .and. f2 > 0.0)) RETURN

if (abs(f1) < abs(f2)) then
x1=x1+FACTOR*(x1-x2)
f1=func(x1)

else
x2=x2+FACTOR*(x2-x1)
f2=func(x2)

end if
end do
succes=.false.
END SUBROUTINE zbrac

⋆ ⋆ ⋆

1184 Chapter B9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE zbrak(func,x1,x2,n,xb1,xb2,nb)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(OUT) :: nb
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), POINTER :: xb1,xb2
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
Given a function func defined on the interval from x1-x2 subdivide the interval into n
equally spaced segments, and search for zero crossings of the function. nb is returned as
the number of bracketing pairs xb1(1:nb), xb2(1:nb) that are found. xb1 and xb2 are
pointers to arrays of length nb that are dynamically allocated by the routine.

INTEGER(I4B) :: i
REAL(SP) :: dx
REAL(SP), DIMENSION(0:n) :: f,x
LOGICAL(LGT), DIMENSION(1:n) :: mask
LOGICAL(LGT), SAVE :: init=.true.
if (init) then

init=.false.
nullify(xb1,xb2)

end if
if (associated(xb1)) deallocate(xb1)
if (associated(xb2)) deallocate(xb2)
dx=(x2-x1)/n Determine the spacing appropriate to the mesh.
x=x1+dx*arth(0,1,n+1)
do i=0,n Evaluate the function at the mesh points.

f(i)=func(x(i))
end do
mask=f(1:n)*f(0:n-1) <= 0.0 Record where the sign changes occur.
nb=count(mask) Number of sign changes.
allocate(xb1(nb),xb2(nb))
xb1(1:nb)=pack(x(0:n-1),mask) Store the bounds of each bracket.
xb2(1:nb)=pack(x(1:n),mask)
END SUBROUTINE zbrak

f90
This routine shows how to return arraysxb1 andxb2 whose size is not
known in advance. The coding is explained in the subsection on pointers
in §21.5.

⋆ ⋆ ⋆

FUNCTION rtbis(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtbis
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE

Chapter B9. Root Finding and Nonlinear Sets of Equations 1185

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), PARAMETER :: MAXIT=40
Using bisection, find the root of a function func known to lie between x1 and x2. The
root, returned as rtbis, will be refined until its accuracy is ±xacc.
Parameter: MAXIT is the maximum allowed number of bisections.

INTEGER(I4B) :: j
REAL(SP) :: dx,f,fmid,xmid
fmid=func(x2)
f=func(x1)
if (f*fmid >= 0.0) call nrerror(’rtbis: root must be bracketed’)
if (f < 0.0) then Orient the search so that f>0 lies at x+dx.

rtbis=x1
dx=x2-x1

else
rtbis=x2
dx=x1-x2

end if
do j=1,MAXIT Bisection loop.

dx=dx*0.5_sp
xmid=rtbis+dx
fmid=func(xmid)
if (fmid <= 0.0) rtbis=xmid
if (abs(dx) < xacc .or. fmid == 0.0) RETURN

end do
call nrerror(’rtbis: too many bisections’)
END FUNCTION rtbis

⋆ ⋆ ⋆

FUNCTION rtflsp(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror,swap
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtflsp
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=30

Using the false position method, find the root of a function func known to lie between x1
and x2. The root, returned as rtflsp, is refined until its accuracy is ±xacc.
Parameter: MAXIT is the maximum allowed number of iterations.

INTEGER(I4B) :: j
REAL(SP) :: del,dx,f,fh,fl,xh,xl
fl=func(x1)
fh=func(x2) Be sure the interval brackets a root.
if ((fl > 0.0 .and. fh > 0.0) .or. &

(fl < 0.0 .and. fh < 0.0)) call &
nrerror(’rtflsp: root must be bracketed between arguments’)

if (fl < 0.0) then Identify the limits so that xl corresponds to
the low side.xl=x1

xh=x2
else

xl=x2
xh=x1
call swap(fl,fh)

end if
dx=xh-xl

1186 Chapter B9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

do j=1,MAXIT False position loop.
rtflsp=xl+dx*fl/(fl-fh) Increment with respect to latest value.
f=func(rtflsp)
if (f < 0.0) then Replace appropriate limit.

del=xl-rtflsp
xl=rtflsp
fl=f

else
del=xh-rtflsp
xh=rtflsp
fh=f

end if
dx=xh-xl
if (abs(del) < xacc .or. f == 0.0) RETURN Convergence.

end do
call nrerror(’rtflsp exceed maximum iterations’)
END FUNCTION rtflsp

⋆ ⋆ ⋆

FUNCTION rtsec(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror,swap
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsec
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=30

Using the secant method, find the root of a function func thought to lie between x1 and
x2. The root, returned as rtsec, is refined until its accuracy is ±xacc.
Parameter: MAXIT is the maximum allowed number of iterations.

INTEGER(I4B) :: j
REAL(SP) :: dx,f,fl,xl
fl=func(x1)
f=func(x2)
if (abs(fl) < abs(f)) then Pick the bound with the smaller function value

as the most recent guess.rtsec=x1
xl=x2
call swap(fl,f)

else
xl=x1
rtsec=x2

end if
do j=1,MAXIT Secant loop.

dx=(xl-rtsec)*f/(f-fl) Increment with respect to latest value.
xl=rtsec
fl=f
rtsec=rtsec+dx
f=func(rtsec)
if (abs(dx) < xacc .or. f == 0.0) RETURN Convergence.

end do
call nrerror(’rtsec: exceed maximum iterations’)
END FUNCTION rtsec

⋆ ⋆ ⋆

Chapter B9. Root Finding and Nonlinear Sets of Equations 1187

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION zriddr(func,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: zriddr
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=60

Using Ridders’ method, return the root of a function func known to lie between x1 and
x2. The root, returned as zriddr, will be refined to an approximate accuracy xacc.

REAL(SP), PARAMETER :: UNUSED=-1.11e30_sp
INTEGER(I4B) :: j
REAL(SP) :: fh,fl,fm,fnew,s,xh,xl,xm,xnew
fl=func(x1)
fh=func(x2)
if ((fl > 0.0 .and. fh < 0.0) .or. (fl < 0.0 .and. fh > 0.0)) then

xl=x1
xh=x2
zriddr=UNUSED Any highly unlikely value, to simplify logic

below.do j=1,MAXIT
xm=0.5_sp*(xl+xh)
fm=func(xm) First of two function evaluations per it-

eration.s=sqrt(fm**2-fl*fh)
if (s == 0.0) RETURN
xnew=xm+(xm-xl)*(sign(1.0_sp,fl-fh)*fm/s) Updating formula.
if (abs(xnew-zriddr) <= xacc) RETURN
zriddr=xnew
fnew=func(zriddr) Second of two function evaluations per

iteration.if (fnew == 0.0) RETURN
if (sign(fm,fnew) /= fm) then Bookkeeping to keep the root bracketed

on next iteration.xl=xm
fl=fm
xh=zriddr
fh=fnew

else if (sign(fl,fnew) /= fl) then
xh=zriddr
fh=fnew

else if (sign(fh,fnew) /= fh) then
xl=zriddr
fl=fnew

else
call nrerror(’zriddr: never get here’)

end if
if (abs(xh-xl) <= xacc) RETURN

end do
call nrerror(’zriddr: exceeded maximum iterations’)

else if (fl == 0.0) then
zriddr=x1

else if (fh == 0.0) then
zriddr=x2

else
call nrerror(’zriddr: root must be bracketed’)

end if
END FUNCTION zriddr

⋆ ⋆ ⋆

1188 Chapter B9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION zbrent(func,x1,x2,tol)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,tol
REAL(SP) :: zbrent
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: EPS=epsilon(x1)

Using Brent’s method, find the root of a function func known to lie between x1 and x2.
The root, returned as zbrent, will be refined until its accuracy is tol.
Parameters: Maximum allowed number of iterations, and machine floating-point precision.

INTEGER(I4B) :: iter
REAL(SP) :: a,b,c,d,e,fa,fb,fc,p,q,r,s,tol1,xm
a=x1
b=x2
fa=func(a)
fb=func(b)
if ((fa > 0.0 .and. fb > 0.0) .or. (fa < 0.0 .and. fb < 0.0)) &

call nrerror(’root must be bracketed for zbrent’)
c=b
fc=fb
do iter=1,ITMAX

if ((fb > 0.0 .and. fc > 0.0) .or. (fb < 0.0 .and. fc < 0.0)) then
c=a Rename a, b, c and adjust bounding in-

terval d.fc=fa
d=b-a
e=d

end if
if (abs(fc) < abs(fb)) then

a=b
b=c
c=a
fa=fb
fb=fc
fc=fa

end if
tol1=2.0_sp*EPS*abs(b)+0.5_sp*tol Convergence check.
xm=0.5_sp*(c-b)
if (abs(xm) <= tol1 .or. fb == 0.0) then

zbrent=b
RETURN

end if
if (abs(e) >= tol1 .and. abs(fa) > abs(fb)) then

s=fb/fa Attempt inverse quadratic interpolation.
if (a == c) then

p=2.0_sp*xm*s
q=1.0_sp-s

else
q=fa/fc
r=fb/fc
p=s*(2.0_sp*xm*q*(q-r)-(b-a)*(r-1.0_sp))
q=(q-1.0_sp)*(r-1.0_sp)*(s-1.0_sp)

end if
if (p > 0.0) q=-q Check whether in bounds.
p=abs(p)
if (2.0_sp*p < min(3.0_sp*xm*q-abs(tol1*q),abs(e*q))) then

e=d Accept interpolation.

Chapter B9. Root Finding and Nonlinear Sets of Equations 1189

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

d=p/q
else

d=xm Interpolation failed; use bisection.
e=d

end if
else Bounds decreasing too slowly; use bisec-

tion.d=xm
e=d

end if
a=b Move last best guess to a.
fa=fb
b=b+merge(d,sign(tol1,xm), abs(d) > tol1) Evaluate new trial root.
fb=func(b)

end do
call nrerror(’zbrent: exceeded maximum iterations’)
zbrent=b
END FUNCTION zbrent

f90
REAL(SP), PARAMETER :: EPS=epsilon(x1) The routinezbrentworks best
whenEPS isexactlythe machine precision. The Fortran 90 intrinsic func-
tion epsilon allows us to code this in a portable fashion.

FUNCTION rtnewt(funcd,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtnewt
INTERFACE

SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=20

Using the Newton-Raphson method, find the root of a function known to lie in the interval
[x1, x2]. The root rtnewtwill be refined until its accuracy is known within ±xacc. funcd
is a user-supplied subroutine that returns both the function value and the first derivative of
the function.
Parameter: MAXIT is the maximum number of iterations.

INTEGER(I4B) :: j
REAL(SP) :: df,dx,f
rtnewt=0.5_sp*(x1+x2) Initial guess.
do j=1,MAXIT

call funcd(rtnewt,f,df)
dx=f/df
rtnewt=rtnewt-dx
if ((x1-rtnewt)*(rtnewt-x2) < 0.0)&

call nrerror(’rtnewt: values jumped out of brackets’)
if (abs(dx) < xacc) RETURN Convergence.

end do
call nrerror(’rtnewt exceeded maximum iterations’)
END FUNCTION rtnewt

⋆ ⋆ ⋆

1190 Chapter B9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION rtsafe(funcd,x1,x2,xacc)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,xacc
REAL(SP) :: rtsafe
INTERFACE

SUBROUTINE funcd(x,fval,fderiv)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: fval,fderiv
END SUBROUTINE funcd

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXIT=100

Using a combination of Newton-Raphson and bisection, find the root of a function bracketed
between x1 and x2. The root, returned as the function value rtsafe, will be refined until
its accuracy is known within ±xacc. funcd is a user-supplied subroutine that returns both
the function value and the first derivative of the function.
Parameter: MAXIT is the maximum allowed number of iterations.

INTEGER(I4B) :: j
REAL(SP) :: df,dx,dxold,f,fh,fl,temp,xh,xl
call funcd(x1,fl,df)
call funcd(x2,fh,df)
if ((fl > 0.0 .and. fh > 0.0) .or. &

(fl < 0.0 .and. fh < 0.0)) &
call nrerror(’root must be bracketed in rtsafe’)

if (fl == 0.0) then
rtsafe=x1
RETURN

else if (fh == 0.0) then
rtsafe=x2
RETURN

else if (fl < 0.0) then Orient the search so that f(xl) < 0.
xl=x1
xh=x2

else
xh=x1
xl=x2

end if
rtsafe=0.5_sp*(x1+x2) Initialize the guess for root,
dxold=abs(x2-x1) the “stepsize before last,”
dx=dxold and the last step.
call funcd(rtsafe,f,df)
do j=1,MAXIT Loop over allowed iterations.

if (((rtsafe-xh)*df-f)*((rtsafe-xl)*df-f) > 0.0 .or. &
abs(2.0_sp*f) > abs(dxold*df)) then
Bisect if Newton out of range, or not decreasing fast enough.

dxold=dx
dx=0.5_sp*(xh-xl)
rtsafe=xl+dx
if (xl == rtsafe) RETURN Change in root is negligible.

else Newton step acceptable. Take it.
dxold=dx
dx=f/df
temp=rtsafe
rtsafe=rtsafe-dx
if (temp == rtsafe) RETURN

end if
if (abs(dx) < xacc) RETURN Convergence criterion.
call funcd(rtsafe,f,df) One new function evaluation per iteration.
if (f < 0.0) then Maintain the bracket on the root.

xl=rtsafe
else

xh=rtsafe

Chapter B9. Root Finding and Nonlinear Sets of Equations 1191

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
end do
call nrerror(’rtsafe: exceeded maximum iterations’)
END FUNCTION rtsafe

⋆ ⋆ ⋆

SUBROUTINE laguer(a,x,its)
USE nrtype; USE nrutil, ONLY : nrerror,poly,poly_term
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: its
COMPLEX(SPC), INTENT(INOUT) :: x
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
REAL(SP), PARAMETER :: EPS=epsilon(1.0_sp)
INTEGER(I4B), PARAMETER :: MR=8,MT=10,MAXIT=MT*MR

Given an array of M + 1 complex coefficients a of the polynomial
∑

M+1
i=1 a(i)xi−1, and

given a complex value x, this routine improves x by Laguerre’s method until it converges,
within the achievable roundoff limit, to a root of the given polynomial. The number of
iterations taken is returned as its.
Parameters: EPS is the estimated fractional roundoff error. We try to break (rare) limit
cycles with MR different fractional values, once every MT steps, for MAXIT total allowed
iterations.

INTEGER(I4B) :: iter,m
REAL(SP) :: abx,abp,abm,err
COMPLEX(SPC) :: dx,x1,f,g,h,sq,gp,gm,g2
COMPLEX(SPC), DIMENSION(size(a)) :: b,d
REAL(SP), DIMENSION(MR) :: frac = &

(/ 0.5_sp,0.25_sp,0.75_sp,0.13_sp,0.38_sp,0.62_sp,0.88_sp,1.0_sp /)
Fractions used to break a limit cycle.

m=size(a)-1
do iter=1,MAXIT Loop over iterations up to allowed maximum.

its=iter
abx=abs(x)
b(m+1:1:-1)=poly_term(a(m+1:1:-1),x) Efficient computation of the polynomial

and its first two derivatives.d(m:1:-1)=poly_term(b(m+1:2:-1),x)
f=poly(x,d(2:m))
err=EPS*poly(abx,abs(b(1:m+1))) Esimate of roundoff in evaluating polynomial.
if (abs(b(1)) <= err) RETURN We are on the root.
g=d(1)/b(1) The generic case: Use Laguerre’s formula.
g2=g*g
h=g2-2.0_sp*f/b(1)
sq=sqrt((m-1)*(m*h-g2))
gp=g+sq
gm=g-sq
abp=abs(gp)
abm=abs(gm)
if (abp < abm) gp=gm
if (max(abp,abm) > 0.0) then

dx=m/gp
else

dx=exp(cmplx(log(1.0_sp+abx),iter,kind=spc))
end if
x1=x-dx
if (x == x1) RETURN Converged.
if (mod(iter,MT) /= 0) then

x=x1
else Every so often we take a fractional step, to

break any limit cycle (itself a rare occur-
rence).

x=x-dx*frac(iter/MT)
end if

end do
call nrerror(’laguer: too many iterations’)
Very unusual — can occur only for complex roots. Try a different starting guess for the root.

END SUBROUTINE laguer

1192 Chapter B9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
b(m+1:1:-1)=poly_term...f=poly(x,d(2:m)) Thepoly term function in
nrutil tabulates the partial sums of a polynomial, whilepoly evaluates
the polynomialatx. In this example, we usepoly termon the coefficient

array in reverse order, so that the value of the polynomial ends up inb(1) and the
value of its first derivative ind(1).

dx=exp(cmplx(log(1.0_sp+abx),iter,kind=spc)) The intrinsic functioncmplx
returns a quantity of type default complex unless thekind argument is present.
To facilitate converting our routines from single to double precision, we always
include thekind argument explicitly so that when you redefinespc in nrtype to be
double-precision complex the conversions are carried out correctly.

⋆ ⋆ ⋆

SUBROUTINE zroots(a,roots,polish)
USE nrtype; USE nrutil, ONLY : assert_eq,poly_term
USE nr, ONLY : laguer,indexx
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:), INTENT(IN) :: a
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: roots
LOGICAL(LGT), INTENT(IN) :: polish
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Given the array of M + 1 complex coefficients a of the polynomial
∑

M+1
i=1 a(i)xi−1, this

routine successively calls laguer and finds all M complex roots. The logical variable
polish should be input as .true. if polishing (also by Laguerre’s method) is desired,
.false. if the roots will be subsequently polished by other means.
Parameter: EPS is a small number.

INTEGER(I4B) :: j,its,m
INTEGER(I4B), DIMENSION(size(roots)) :: indx
COMPLEX(SPC) :: x
COMPLEX(SPC), DIMENSION(size(a)) :: ad
m=assert_eq(size(roots),size(a)-1,’zroots’)
ad(:)=a(:) Copy of coefficients for successive deflation.
do j=m,1,-1 Loop over each root to be found.

x=cmplx(0.0_sp,kind=spc)
Start at zero to favor convergence to smallest remaining root.

call laguer(ad(1:j+1),x,its) Find the root.
if (abs(aimag(x)) <= 2.0_sp*EPS**2*abs(real(x))) &

x=cmplx(real(x),kind=spc)
roots(j)=x
ad(j:1:-1)=poly_term(ad(j+1:2:-1),x) Forward deflation.

end do
if (polish) then

do j=1,m Polish the roots using the undeflated coeffi-
cients.call laguer(a(:),roots(j),its)

end do
end if
call indexx(real(roots),indx) Sort roots by their real parts.
roots=roots(indx)
END SUBROUTINE zroots

f90
x=cmplx(0.0_sp,kind=spc)...x=cmplx(real(x),kind=spc) See the discus-
sion of why we includekind=spc just above. Note that whilereal(x)
returns type default real ifx is integer or real, it returns single or double

precision correctly ifx is complex.

⋆ ⋆ ⋆

Chapter B9. Root Finding and Nonlinear Sets of Equations 1193

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE zrhqr(a,rtr,rti)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : balanc,hqr,indexx
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: rtr,rti

Find all the roots of a polynomial with real coefficients,
∑

M+1
i=1 a(i)xi−1, given the array

of M + 1 coefficients a. The method is to construct an upper Hessenberg matrix whose
eigenvalues are the desired roots, and then use the routines balanc and hqr. The real and
imaginary parts of the M roots are returned in rtr and rti, respectively.

INTEGER(I4B) :: k,m
INTEGER(I4B), DIMENSION(size(rtr)) :: indx
REAL(SP), DIMENSION(size(a)-1,size(a)-1) :: hess
m=assert_eq(size(rtr),size(rti),size(a)-1,’zrhqr’)
if (a(m+1) == 0.0) call &

nrerror(’zrhqr: Last value of array a must not be 0’)
hess(1,:)=-a(m:1:-1)/a(m+1) Construct the matrix.
hess(2:m,:)=0.0
do k=1,m-1

hess(k+1,k)=1.0
end do
call balanc(hess) Find its eigenvalues.
call hqr(hess,rtr,rti)
call indexx(rtr,indx) Sort roots by their real parts.
rtr=rtr(indx)
rti=rti(indx)
END SUBROUTINE zrhqr

⋆ ⋆ ⋆

SUBROUTINE qroot(p,b,c,eps)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : poldiv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: eps
INTEGER(I4B), PARAMETER :: ITMAX=20
REAL(SP), PARAMETER :: TINY=1.0e-6_sp

Given an array of N coefficients p of a polynomial of degree N − 1, and trial values for the
coefficients of a quadratic factor x2 + bx + c, improve the solution until the coefficients
b,c change by less than eps. The routine poldiv of §5.3 is used.
Parameters: ITMAX is the maximum number of iterations, TINY is a small number.

INTEGER(I4B) :: iter,n
REAL(SP) :: delb,delc,div,r,rb,rc,s,sb,sc
REAL(SP), DIMENSION(3) :: d
REAL(SP), DIMENSION(size(p)) :: q,qq,rem
n=size(p)
d(3)=1.0
do iter=1,ITMAX

d(2)=b
d(1)=c
call poldiv(p,d,q,rem)
s=rem(1) First division gives r,s.
r=rem(2)
call poldiv(q(1:n-1),d(:),qq(1:n-1),rem(1:n-1))
sc=-rem(1) Second division gives partial r,s with respect

to c.rc=-rem(2)
sb=-c*rc
rb=sc-b*rc
div=1.0_sp/(sb*rc-sc*rb) Solve 2x2 equation.

1194 Chapter B9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

delb=(r*sc-s*rc)*div
delc=(-r*sb+s*rb)*div
b=b+delb
c=c+delc
if ((abs(delb) <= eps*abs(b) .or. abs(b) < TINY) .and. &

(abs(delc) <= eps*abs(c) .or. abs(c) < TINY)) RETURN Coefficients converged.
end do
call nrerror(’qroot: too many iterations’)
END SUBROUTINE qroot

⋆ ⋆ ⋆

SUBROUTINE mnewt(ntrial,x,tolx,tolf,usrfun)
USE nrtype
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ntrial
REAL(SP), INTENT(IN) :: tolx,tolf
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
INTERFACE

SUBROUTINE usrfun(x,fvec,fjac)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: fvec
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: fjac
END SUBROUTINE usrfun

END INTERFACE
Given an initial guess x for a root in N dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

INTEGER(I4B) :: i
INTEGER(I4B), DIMENSION(size(x)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(x)) :: fvec,p
REAL(SP), DIMENSION(size(x),size(x)) :: fjac
do i=1,ntrial

call usrfun(x,fvec,fjac)
User subroutine supplies function values at x in fvec and Jacobian matrix in fjac.

if (sum(abs(fvec)) <= tolf) RETURN Check function convergence.
p=-fvec Right-hand side of linear equations.
call ludcmp(fjac,indx,d) Solve linear equations using LU decom-

position.call lubksb(fjac,indx,p)
x=x+p Update solution.
if (sum(abs(p)) <= tolx) RETURN Check root convergence.

end do
END SUBROUTINE mnewt

⋆ ⋆ ⋆

Chapter B9. Root Finding and Nonlinear Sets of Equations 1195

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE lnsrch(xold,fold,g,p,x,f,stpmax,check,func)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror,vabs
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xold,g
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), INTENT(IN) :: fold,stpmax
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
REAL(SP), INTENT(OUT) :: f
LOGICAL(LGT), INTENT(OUT) :: check
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: ALF=1.0e-4_sp,TOLX=epsilon(x)

Given an N -dimensional point xold, the value of the function and gradient there, fold
and g, and a direction p, finds a new point x along the direction p from xold where the
function func has decreased “sufficiently.” xold, g, p, and x are all arrays of length N .
The new function value is returned in f. stpmax is an input quantity that limits the length
of the steps so that you do not try to evaluate the function in regions where it is undefined
or subject to overflow. p is usually the Newton direction. The output quantity check is
false on a normal exit. It is true when x is too close to xold. In a minimization algorithm,
this usually signals convergence and can be ignored. However, in a zero-finding algorithm
the calling program should check whether the convergence is spurious.
Parameters: ALF ensures sufficient decrease in function value; TOLX is the convergence
criterion on ∆x.

INTEGER(I4B) :: ndum
REAL(SP) :: a,alam,alam2,alamin,b,disc,f2,pabs,rhs1,rhs2,slope,tmplam
ndum=assert_eq(size(g),size(p),size(x),size(xold),’lnsrch’)
check=.false.
pabs=vabs(p(:))
if (pabs > stpmax) p(:)=p(:)*stpmax/pabs Scale if attempted step is too big.
slope=dot_product(g,p)
if (slope >= 0.0) call nrerror(’roundoff problem in lnsrch’)
alamin=TOLX/maxval(abs(p(:))/max(abs(xold(:)),1.0_sp)) Compute λmin.
alam=1.0 Always try full Newton step first.
do Start of iteration loop.

x(:)=xold(:)+alam*p(:)
f=func(x)
if (alam < alamin) then Convergence on ∆x. For zero find-

ing, the calling program should
verify the convergence.

x(:)=xold(:)
check=.true.
RETURN

else if (f <= fold+ALF*alam*slope) then Sufficient function decrease.
RETURN

else Backtrack.
if (alam == 1.0) then First time.

tmplam=-slope/(2.0_sp*(f-fold-slope))
else Subsequent backtracks.

rhs1=f-fold-alam*slope
rhs2=f2-fold-alam2*slope
a=(rhs1/alam**2-rhs2/alam2**2)/(alam-alam2)
b=(-alam2*rhs1/alam**2+alam*rhs2/alam2**2)/&

(alam-alam2)
if (a == 0.0) then

tmplam=-slope/(2.0_sp*b)
else

disc=b*b-3.0_sp*a*slope
if (disc < 0.0) then

tmplam=0.5_sp*alam
else if (b <= 0.0) then

1196 Chapter B9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

tmplam=(-b+sqrt(disc))/(3.0_sp*a)
else

tmplam=-slope/(b+sqrt(disc))
end if

end if
if (tmplam > 0.5_sp*alam) tmplam=0.5_sp*alam λ ≤ 0.5λ1.

end if
end if
alam2=alam
f2=f
alam=max(tmplam,0.1_sp*alam) λ ≥ 0.1λ1.

end do Try again.
END SUBROUTINE lnsrch

SUBROUTINE newt(x,check)
USE nrtype; USE nrutil, ONLY : nrerror,vabs
USE nr, ONLY : fdjac,lnsrch,lubksb,ludcmp
USE fminln Communicates with fmin.
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
LOGICAL(LGT), INTENT(OUT) :: check
INTEGER(I4B), PARAMETER :: MAXITS=200
REAL(SP), PARAMETER :: TOLF=1.0e-4_sp,TOLMIN=1.0e-6_sp,TOLX=epsilon(x),&

STPMX=100.0
Given an initial guess x for a root in N dimensions, find the root by a globally convergent
Newton’s method. The length N vector of functions to be zeroed, called fvec in the rou-
tine below, is returned by a user-supplied routine that mustbe called funcv and have the
declaration FUNCTION funcv(x). The output quantity check is false on a normal return
and true if the routine has converged to a local minimum of the function fmin defined
below. In this case try restarting from a different initial guess.
Parameters: MAXITS is the maximum number of iterations; TOLF sets the convergence
criterion on function values; TOLMIN sets the criterion for deciding whether spurious con-
vergence to a minimum of fmin has occurred; TOLX is the convergence criterion on δx;
STPMX is the scaled maximum step length allowed in line searches.

INTEGER(I4B) :: its
INTEGER(I4B), DIMENSION(size(x)) :: indx
REAL(SP) :: d,f,fold,stpmax
REAL(SP), DIMENSION(size(x)) :: g,p,xold
REAL(SP), DIMENSION(size(x)), TARGET :: fvec
REAL(SP), DIMENSION(size(x),size(x)) :: fjac
fmin_fvecp=>fvec
f=fmin(x) fvec is also computed by this call.
if (maxval(abs(fvec(:))) < 0.01_sp*TOLF) then Test for initial guess being a root.

Use more stringent test than
simply TOLF.

check=.false.
RETURN

end if
stpmax=STPMX*max(vabs(x(:)),real(size(x),sp)) Calculate stpmax for line searches.
do its=1,MAXITS Start of iteration loop.

call fdjac(x,fvec,fjac)
If analytic Jacobian is available, you can replace the routine fdjac below with your own
routine.

g(:)=matmul(fvec(:),fjac(:,:)) Compute ∇f for the line search.
xold(:)=x(:) Store x,
fold=f and f .
p(:)=-fvec(:) Right-hand side for linear equations.
call ludcmp(fjac,indx,d) Solve linear equations by LU decomposition.
call lubksb(fjac,indx,p)
call lnsrch(xold,fold,g,p,x,f,stpmax,check,fmin)
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

if (maxval(abs(fvec(:))) < TOLF) then Test for convergence on function val-
ues.check=.false.

RETURN

Chapter B9. Root Finding and Nonlinear Sets of Equations 1197

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
if (check) then Check for gradient of f zero, i.e., spurious

convergence.check=(maxval(abs(g(:))*max(abs(x(:)),1.0_sp) / &
max(f,0.5_sp*size(x))) < TOLMIN)

RETURN Test for convergence on δx.
end if
if (maxval(abs(x(:)-xold(:))/max(abs(x(:)),1.0_sp)) < TOLX) &

RETURN
end do
call nrerror(’MAXITS exceeded in newt’)
END SUBROUTINE newt

f90
USE fminln Here we have an example of how to pass an arrayfvec to
a functionfmin without making it an argument offmin. In the language
of §21.5, we are using Method 2: We define a pointerfmin fvecp in

the modulefminln:

REAL(SP), DIMENSION(:), POINTER :: fmin_fvecp

fvec itself is declared as an automatic array of the appropriate size innewt:

REAL(SP), DIMENSION(size(x)), TARGET :: fvec

On entry intonewt, the pointer is associated:

fmin_fvecp=>fvec

The pointer is then used infmin as a synonym forfvec. If you are sufficiently
paranoid, you can test whetherfmin fvecp has in fact been associated on entry into
fmin. Heeding our admonition always to deallocate memory when it no longer is
needed, you may ask where the deallocation takes place in this example. Answer:
On exit fromnewt, the automatic arrayfvec is automatically freed.

The Method 1 way of setting up this task is to declare an allocatable array
in the module:

REAL(SP), DIMENSION(:), ALLOCATABLE :: fvec

On entry intonewt we allocate it appropriately:

allocate(fvec,size(x))

and it can now be used in bothnewt andfmin. Of course, we must remember to
deallocate explicitlyfvec on exit fromnewt. If we forget, all kinds of bad things
would happen on a second call tonewt. The status offvec on the first return from
newt becomes undefined. The status cannot be tested withif(allocated(...)),
andfvec may not be referenced in any way. If we tried to guard against this by
adding theSAVE attribute to the declaration offvec, then we would generate an
error from trying to allocate an already-allocated array.

SUBROUTINE fdjac(x,fvec,df)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: fvec
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: df
INTERFACE

1198 Chapter B9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION funcv(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funcv
END FUNCTION funcv

END INTERFACE
REAL(SP), PARAMETER :: EPS=1.0e-4_sp

Computes forward-difference approximation to Jacobian. On input, x is the point at which
the Jacobian is to be evaluated, and fvec is the vector of function values at the point,
both arrays of length N . df is the N × N output Jacobian. FUNCTION funcv(x) is a
fixed-name, user-supplied routine that returns the vector of functions at x.
Parameter: EPS is the approximate square root of the machine precision.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(x)) :: xsav,xph,h
n=assert_eq(size(x),size(fvec),size(df,1),size(df,2),’fdjac’)
xsav=x
h=EPS*abs(xsav)
where (h == 0.0) h=EPS
xph=xsav+h Trick to reduce finite precision error.
h=xph-xsav
do j=1,n

x(j)=xph(j)
df(:,j)=(funcv(x)-fvec(:))/h(j) Forward difference formula.
x(j)=xsav(j)

end do
END SUBROUTINE fdjac

MODULE fminln
USE nrtype; USE nrutil, ONLY : nrerror
REAL(SP), DIMENSION(:), POINTER :: fmin_fvecp
CONTAINS

FUNCTION fmin(x)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: fmin

Returns f = 1

2
F ·F at x. FUNCTION funcv(x) is a fixed-name, user-supplied routine that

returns the vector of functions at x. The pointer fmin vecp communicates the function
values back to newt.

INTERFACE
FUNCTION funcv(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funcv
END FUNCTION funcv

END INTERFACE
if (.not. associated(fmin_fvecp)) call &

nrerror(’fmin: problem with pointer for returned values’)
fmin_fvecp=funcv(x)
fmin=0.5_sp*dot_product(fmin_fvecp,fmin_fvecp)
END FUNCTION fmin
END MODULE fminln

⋆ ⋆ ⋆

Chapter B9. Root Finding and Nonlinear Sets of Equations 1199

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE broydn(x,check)
USE nrtype; USE nrutil, ONLY : get_diag,lower_triangle,nrerror,&

outerprod,put_diag,unit_matrix,vabs
USE nr, ONLY : fdjac,lnsrch,qrdcmp,qrupdt,rsolv
USE fminln Communicates with fmin.
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: x
LOGICAL(LGT), INTENT(OUT) :: check
INTEGER(I4B), PARAMETER :: MAXITS=200
REAL(SP), PARAMETER :: EPS=epsilon(x),TOLF=1.0e-4_sp,TOLMIN=1.0e-6_sp,&

TOLX=EPS,STPMX=100.0
Given an initial guess x for a root in N dimensions, find the root by Broyden’s method
embedded in a globally convergent strategy. The length N vector of functions to be ze-
roed, called fvec in the routine below, is returned by a user-supplied routine that mustbe
called funcv and have the declaration FUNCTION funcv(x). The subroutine fdjac and
the function fmin from newt are used. The output quantity check is false on a normal
return and true if the routine has converged to a local minimum of the function fmin or if
Broyden’s method can make no further progress. In this case try restarting from a different
initial guess.
Parameters: MAXITS is the maximum number of iterations; EPS is the machine precision;
TOLF sets the convergence criterion on function values; TOLMIN sets the criterion for de-
ciding whether spurious convergence to a minimum of fmin has occurred; TOLX is the
convergence criterion on δx; STPMX is the scaled maximum step length allowed in line
searches.

INTEGER(I4B) :: i,its,k,n
REAL(SP) :: f,fold,stpmax
REAL(SP), DIMENSION(size(x)), TARGET :: fvec
REAL(SP), DIMENSION(size(x)) :: c,d,fvcold,g,p,s,t,w,xold
REAL(SP), DIMENSION(size(x),size(x)) :: qt,r
LOGICAL :: restrt,sing
fmin_fvecp=>fvec
n=size(x)
f=fmin(x) fvec is also computed by this call.
if (maxval(abs(fvec(:))) < 0.01_sp*TOLF) then Test for initial guess being a root.

Use more stringent test than
simply TOLF.

check=.false.
RETURN

end if
stpmax=STPMX*max(vabs(x(:)),real(n,sp)) Calculate stpmax for line searches.
restrt=.true. Ensure initial Jacobian gets computed.
do its=1,MAXITS Start of iteration loop.

if (restrt) then
call fdjac(x,fvec,r) Initialize or reinitialize Jacobian in r.
call qrdcmp(r,c,d,sing) QR decomposition of Jacobian.
if (sing) call nrerror(’singular Jacobian in broydn’)

call unit_matrix(qt) Form QT explicitly.
do k=1,n-1

if (c(k) /= 0.0) then
qt(k:n,:)=qt(k:n,:)-outerprod(r(k:n,k),&

matmul(r(k:n,k),qt(k:n,:)))/c(k)
end if

end do
where (lower_triangle(n,n)) r(:,:)=0.0
call put_diag(d(:),r(:,:)) Form R explicitly.

else Carry out Broyden update.
s(:)=x(:)-xold(:) s = δx.
do i=1,n t = R · s.

t(i)=dot_product(r(i,i:n),s(i:n))
end do
w(:)=fvec(:)-fvcold(:)-matmul(t(:),qt(:,:)) w = δF − B · s.
where (abs(w(:)) < EPS*(abs(fvec(:))+abs(fvcold(:)))) &

w(:)=0.0 Don’t update with noisy components of
w.if (any(w(:) /= 0.0)) then

t(:)=matmul(qt(:,:),w(:)) t = QT · w.
s(:)=s(:)/dot_product(s,s) Store s/(s · s) in s.

1200 Chapter B9. Root Finding and Nonlinear Sets of Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

call qrupdt(r,qt,t,s) Update R and QT .
d(:)=get_diag(r(:,:)) Diagonal of R stored in d.
if (any(d(:) == 0.0)) &

call nrerror(’r singular in broydn’)
end if

end if
p(:)=-matmul(qt(:,:),fvec(:)) r.h.s. for linear equations is −QT · F.
do i=1,n Compute ∇f ≈ (Q · R)T · F for the line

search.g(i)=-dot_product(r(1:i,i),p(1:i))
end do
xold(:)=x(:) Store x, F, and f .
fvcold(:)=fvec(:)
fold=f
call rsolv(r,d,p) Solve linear equations.
call lnsrch(xold,fold,g,p,x,f,stpmax,check,fmin)
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

if (maxval(abs(fvec(:))) < TOLF) then Test for convergence on function val-
ues.check=.false.

RETURN
end if
if (check) then True if line search failed to find a new

x.if (restrt .or. maxval(abs(g(:))*max(abs(x(:)), &
1.0_sp)/max(f,0.5_sp*n)) < TOLMIN) RETURN
If restrt is true we have failure: We have already tried reinitializing the Jaco-
bian. The other test is for gradient of f zero, i.e., spurious convergence.

restrt=.true. Try reinitializing the Jacobian.
else Successful step; will use Broyden update

for next step.restrt=.false.
if (maxval((abs(x(:)-xold(:)))/max(abs(x(:)), &

1.0_sp)) < TOLX) RETURN Test for convergence on δx.
end if

end do
call nrerror(’MAXITS exceeded in broydn’)
END SUBROUTINE broydn

f90 USE fminln See discussion fornewt on p. 1197.

qt(k:n,:)=...outerprod...matmul Another example of the coding of equation
(22.1.6).

where (lower_triangle(n,n))... The lower triangle function innrutil
returns a lower triangular logical mask. As used here, the mask is true everywhere
in the lower triangle of ann× n matrix, excluding the diagonal. An optional integer
argumentextra allows additional diagonals to be set to true. Withextra=1 the
lower triangle including the diagonal would be true.

call put_diag(d(:),r(:,:)) This subroutine innrutil sets the diagonal
values of the matrixr to the values of the vectord. It is overloaded so thatd could
be a scalar, in which case the scalar value would be broadcast onto the diagonal ofr.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B10. Minimization or
Maximization of Functions

SUBROUTINE mnbrak(ax,bx,cx,fa,fb,fc,func)
USE nrtype; USE nrutil, ONLY : swap
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: ax,bx
REAL(SP), INTENT(OUT) :: cx,fa,fb,fc
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: GOLD=1.618034_sp,GLIMIT=100.0_sp,TINY=1.0e-20_sp

Given a function func, and given distinct initial points ax and bx, this routine searches
in the downhill direction (defined by the function as evaluated at the initial points) and
returns new points ax, bx, cx that bracket a minimum of the function. Also returned are
the function values at the three points, fa, fb, and fc.
Parameters: GOLD is the default ratio by which successive intervals are magnified; GLIMIT
is the maximum magnification allowed for a parabolic-fit step.

REAL(SP) :: fu,q,r,u,ulim
fa=func(ax)
fb=func(bx)
if (fb > fa) then Switch roles of a and b so that we

can go downhill in the direction
from a to b.

call swap(ax,bx)
call swap(fa,fb)

end if
cx=bx+GOLD*(bx-ax) First guess for c.
fc=func(cx)
do Do-while-loop: Keep returning here

until we bracket.if (fb < fc) RETURN
Compute u by parabolic extrapolation from a, b, c. TINY is used to prevent any possible
division by zero.

r=(bx-ax)*(fb-fc)
q=(bx-cx)*(fb-fa)
u=bx-((bx-cx)*q-(bx-ax)*r)/(2.0_sp*sign(max(abs(q-r),TINY),q-r))
ulim=bx+GLIMIT*(cx-bx)

We won’t go farther than this. Test various possibilities:
if ((bx-u)*(u-cx) > 0.0) then Parabolic u is between b and c: try

it.fu=func(u)
if (fu < fc) then Got a minimum between b and c.

ax=bx
fa=fb
bx=u
fb=fu
RETURN

else if (fu > fb) then Got a minimum between a and u.
cx=u
fc=fu
RETURN

1201

1202 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
u=cx+GOLD*(cx-bx) Parabolic fit was no use. Use default

magnification.fu=func(u)
else if ((cx-u)*(u-ulim) > 0.0) then Parabolic fit is between c and its al-

lowed limit.fu=func(u)
if (fu < fc) then

bx=cx
cx=u
u=cx+GOLD*(cx-bx)
call shft(fb,fc,fu,func(u))

end if
else if ((u-ulim)*(ulim-cx) >= 0.0) then Limit parabolic u to maximum al-

lowed value.u=ulim
fu=func(u)

else Reject parabolic u, use default mag-
nification.u=cx+GOLD*(cx-bx)

fu=func(u)
end if
call shft(ax,bx,cx,u)
call shft(fa,fb,fc,fu) Eliminate oldest point and continue.

end do
CONTAINS

SUBROUTINE shft(a,b,c,d)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: d
a=b
b=c
c=d
END SUBROUTINE shft
END SUBROUTINE mnbrak

f90
call shft... There are three places inmnbrak where we need to shift
four variables around. Rather than repeat code, we makeshft an internal
subroutine, coming after aCONTAINS statement. It is invisible to all

procedures exceptmnbrak.

⋆ ⋆ ⋆

FUNCTION golden(ax,bx,cx,func,tol,xmin)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: golden
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: R=0.61803399_sp,C=1.0_sp-R

Given a function func, and given a bracketing triplet of abscissas ax, bx, cx (such that
bx is between ax and cx, and func(bx) is less than both func(ax) and func(cx)),
this routine performs a golden section search for the minimum, isolating it to a fractional
precision of about tol. The abscissa of the minimum is returned as xmin, and the minimum

Chapter B10. Minimization or Maximization of Functions 1203

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

function value is returned as golden, the returned function value.
Parameters: The golden ratios.

REAL(SP) :: f1,f2,x0,x1,x2,x3
x0=ax At any given time we will keep track of

four points, x0,x1,x2,x3.x3=cx
if (abs(cx-bx) > abs(bx-ax)) then Make x0 to x1 the smaller segment,

x1=bx
x2=bx+C*(cx-bx) and fill in the new point to be tried.

else
x2=bx
x1=bx-C*(bx-ax)

end if
f1=func(x1)
f2=func(x2)

The initial function evaluations. Note that we never need to evaluate the function at the
original endpoints.

do Do-while-loop: We keep returning here.
if (abs(x3-x0) <= tol*(abs(x1)+abs(x2))) exit
if (f2 < f1) then One possible outcome,

call shft3(x0,x1,x2,R*x2+C*x3) its housekeeping,
call shft2(f1,f2,func(x2)) and a new function evaluation.

else The other outcome,
call shft3(x3,x2,x1,R*x1+C*x0)
call shft2(f2,f1,func(x1)) and its new function evaluation.

end if
end do Back to see if we are done.
if (f1 < f2) then We are done. Output the best of the two

current values.golden=f1
xmin=x1

else
golden=f2
xmin=x2

end if
CONTAINS

SUBROUTINE shft2(a,b,c)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b
REAL(SP), INTENT(IN) :: c
a=b
b=c
END SUBROUTINE shft2

SUBROUTINE shft3(a,b,c,d)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: d
a=b
b=c
c=d
END SUBROUTINE shft3
END FUNCTION golden

f90
call shft3...call shft2... See discussion ofshft for mnbrak on
p. 1202.

⋆ ⋆ ⋆

1204 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION brent(ax,bx,cx,func,tol,xmin)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: brent
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: CGOLD=0.3819660_sp,ZEPS=1.0e-3_sp*epsilon(ax)

Given a function func, and given a bracketing triplet of abscissas ax, bx, cx (such that bx
is between ax and cx, and func(bx) is less than both func(ax) and func(cx)), this
routine isolates the minimum to a fractional precision of about tol using Brent’s method.
The abscissa of the minimum is returned as xmin, and the minimum function value is
returned as brent, the returned function value.
Parameters: Maximum allowed number of iterations; golden ratio; and a small number that
protects against trying to achieve fractional accuracy for a minimum that happens to be
exactly zero.

INTEGER(I4B) :: iter
REAL(SP) :: a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm
a=min(ax,cx) a and b must be in ascending order, though

the input abscissas need not be.b=max(ax,cx)
v=bx Initializations...
w=v
x=v
e=0.0 This will be the distance moved on the step

before last.fx=func(x)
fv=fx
fw=fx
do iter=1,ITMAX Main program loop.

xm=0.5_sp*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.0_sp*tol1
if (abs(x-xm) <= (tol2-0.5_sp*(b-a))) then Test for done here.

xmin=x Arrive here ready to exit with best values.
brent=fx
RETURN

end if
if (abs(e) > tol1) then Construct a trial parabolic fit.

r=(x-w)*(fx-fv)
q=(x-v)*(fx-fw)
p=(x-v)*q-(x-w)*r
q=2.0_sp*(q-r)
if (q > 0.0) p=-p
q=abs(q)
etemp=e
e=d
if (abs(p) >= abs(0.5_sp*q*etemp) .or. &

p <= q*(a-x) .or. p >= q*(b-x)) then
The above conditions determine the acceptability of the parabolic fit. Here it is
not o.k., so we take the golden section step into the larger of the two segments.

e=merge(a-x,b-x, x >= xm)
d=CGOLD*e

else Take the parabolic step.
d=p/q
u=x+d
if (u-a < tol2 .or. b-u < tol2) d=sign(tol1,xm-x)

end if

Chapter B10. Minimization or Maximization of Functions 1205

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

else Take the golden section step into the larger
of the two segments.e=merge(a-x,b-x, x >= xm)

d=CGOLD*e
end if
u=merge(x+d,x+sign(tol1,d), abs(d) >= tol1)

Arrive here with d computed either from parabolic fit, or else from golden section.
fu=func(u)

This is the one function evaluation per iteration.
if (fu <= fx) then Now we have to decide what to do with our

function evaluation. Housekeeping follows:if (u >= x) then
a=x

else
b=x

end if
call shft(v,w,x,u)
call shft(fv,fw,fx,fu)

else
if (u < x) then

a=u
else

b=u
end if
if (fu <= fw .or. w == x) then

v=w
fv=fw
w=u
fw=fu

else if (fu <= fv .or. v == x .or. v == w) then
v=u
fv=fu

end if
end if

end do Done with housekeeping. Back for another
iteration.call nrerror(’brent: exceed maximum iterations’)

CONTAINS

SUBROUTINE shft(a,b,c,d)
REAL(SP), INTENT(OUT) :: a
REAL(SP), INTENT(INOUT) :: b,c
REAL(SP), INTENT(IN) :: d
a=b
b=c
c=d
END SUBROUTINE shft
END FUNCTION brent

⋆ ⋆ ⋆

FUNCTION dbrent(ax,bx,cx,func,dfunc,tol,xmin)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: ax,bx,cx,tol
REAL(SP), INTENT(OUT) :: xmin
REAL(SP) :: dbrent
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(x)

1206 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: dfunc
END FUNCTION dfunc

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=100
REAL(SP), PARAMETER :: ZEPS=1.0e-3_sp*epsilon(ax)

Given a function func and its derivative function dfunc, and given a bracketing triplet of
abscissas ax, bx, cx [such that bx is between ax and cx, and func(bx) is less than both
func(ax) and func(cx)], this routine isolates the minimum to a fractional precision of
about tol using a modification of Brent’s method that uses derivatives. The abscissa of
the minimum is returned as xmin, and the minimum function value is returned as dbrent,
the returned function value.
Parameters: Maximum allowed number of iterations, and a small number that protects
against trying to achieve fractional accuracy for a minimum that happens to be exactly
zero.

INTEGER(I4B) :: iter
REAL(SP) :: a,b,d,d1,d2,du,dv,dw,dx,e,fu,fv,fw,fx,olde,tol1,tol2,&

u,u1,u2,v,w,x,xm
Comments following will point out only differences from the routine brent. Read that
routine first.

LOGICAL :: ok1,ok2 Will be used as flags for whether pro-
posed steps are acceptable or not.a=min(ax,cx)

b=max(ax,cx)
v=bx
w=v
x=v
e=0.0
fx=func(x)
fv=fx
fw=fx
dx=dfunc(x) All our housekeeping chores are dou-

bled by the necessity of moving
derivative values around as well
as function values.

dv=dx
dw=dx
do iter=1,ITMAX

xm=0.5_sp*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.0_sp*tol1
if (abs(x-xm) <= (tol2-0.5_sp*(b-a))) exit
if (abs(e) > tol1) then

d1=2.0_sp*(b-a) Initialize these d’s to an out-of-bracket
value.d2=d1

if (dw /= dx) d1=(w-x)*dx/(dx-dw) Secant method with each point.
if (dv /= dx) d2=(v-x)*dx/(dx-dv)

Which of these two estimates of d shall we take? We will insist that they be within
the bracket, and on the side pointed to by the derivative at x:

u1=x+d1
u2=x+d2
ok1=((a-u1)*(u1-b) > 0.0) .and. (dx*d1 <= 0.0)
ok2=((a-u2)*(u2-b) > 0.0) .and. (dx*d2 <= 0.0)
olde=e Movement on the step before last.
e=d
if (ok1 .or. ok2) then Take only an acceptable d, and if

both are acceptable, then take
the smallest one.

if (ok1 .and. ok2) then
d=merge(d1,d2, abs(d1) < abs(d2))

else
d=merge(d1,d2,ok1)

end if
if (abs(d) <= abs(0.5_sp*olde)) then

u=x+d
if (u-a < tol2 .or. b-u < tol2) &

d=sign(tol1,xm-x)
else

Chapter B10. Minimization or Maximization of Functions 1207

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

e=merge(a,b, dx >= 0.0)-x
Decide which segment by the sign of the derivative.

d=0.5_sp*e Bisect, not golden section.
end if

else
e=merge(a,b, dx >= 0.0)-x
d=0.5_sp*e Bisect, not golden section.

end if
else

e=merge(a,b, dx >= 0.0)-x
d=0.5_sp*e Bisect, not golden section.

end if
if (abs(d) >= tol1) then

u=x+d
fu=func(u)

else
u=x+sign(tol1,d)
fu=func(u) If the minimum step in the downhill

direction takes us uphill, then we
are done.

if (fu > fx) exit
end if
du=dfunc(u) Now all the housekeeping, sigh.
if (fu <= fx) then

if (u >= x) then
a=x

else
b=x

end if
call mov3(v,fv,dv,w,fw,dw)
call mov3(w,fw,dw,x,fx,dx)
call mov3(x,fx,dx,u,fu,du)

else
if (u < x) then

a=u
else

b=u
end if
if (fu <= fw .or. w == x) then

call mov3(v,fv,dv,w,fw,dw)
call mov3(w,fw,dw,u,fu,du)

else if (fu <= fv .or. v == x .or. v == w) then
call mov3(v,fv,dv,u,fu,du)

end if
end if

end do
if (iter > ITMAX) call nrerror(’dbrent: exceeded maximum iterations’)
xmin=x
dbrent=fx
CONTAINS

SUBROUTINE mov3(a,b,c,d,e,f)
REAL(SP), INTENT(IN) :: d,e,f
REAL(SP), INTENT(OUT) :: a,b,c
a=d
b=e
c=f
END SUBROUTINE mov3
END FUNCTION dbrent

⋆ ⋆ ⋆

1208 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE amoeba(p,y,ftol,func,iter)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,iminloc,nrerror,swap
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=5000
REAL(SP), PARAMETER :: TINY=1.0e-10

Minimization of the function func in N dimensions by the downhill simplex method of
Nelder and Mead. The (N + 1) ×N matrix p is input. Its N + 1 rows are N -dimensional
vectors that are the vertices of the starting simplex. Also input is the vector y of length
N + 1, whose components must be preinitialized to the values of func evaluated at the
N + 1 vertices (rows) of p; and ftol the fractional convergence tolerance to be achieved
in the function value (n.b.!). On output, p and y will have been reset to N + 1 new points
all within ftol of a minimum function value, and iter gives the number of function
evaluations taken.
Parameters: The maximum allowed number of function evaluations, and a small number.

INTEGER(I4B) :: ihi,ndim Global variables.
REAL(SP), DIMENSION(size(p,2)) :: psum
call amoeba_private
CONTAINS

SUBROUTINE amoeba_private
IMPLICIT NONE
INTEGER(I4B) :: i,ilo,inhi
REAL(SP) :: rtol,ysave,ytry,ytmp
ndim=assert_eq(size(p,2),size(p,1)-1,size(y)-1,’amoeba’)
iter=0
psum(:)=sum(p(:,:),dim=1)
do Iteration loop.

ilo=iminloc(y(:)) Determine which point is the highest (worst),
next-highest, and lowest (best).ihi=imaxloc(y(:))

ytmp=y(ihi)
y(ihi)=y(ilo)
inhi=imaxloc(y(:))
y(ihi)=ytmp
rtol=2.0_sp*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo))+TINY)

Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol) then If returning, put best point and value in slot

1.call swap(y(1),y(ilo))
call swap(p(1,:),p(ilo,:))
RETURN

end if
if (iter >= ITMAX) call nrerror(’ITMAX exceeded in amoeba’)

Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.

ytry=amotry(-1.0_sp)
iter=iter+1
if (ytry <= y(ilo)) then Gives a result better than the best point, so

try an additional extrapolation by a fac-
tor of 2.

ytry=amotry(2.0_sp)
iter=iter+1

else if (ytry >= y(inhi)) then The reflected point is worse than the sec-
ond highest, so look for an intermediate
lower point, i.e., do a one-dimensional
contraction.

ysave=y(ihi)
ytry=amotry(0.5_sp)
iter=iter+1

Chapter B10. Minimization or Maximization of Functions 1209

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (ytry >= ysave) then
Can’t seem to get rid of that high point. Better contract around the lowest
(best) point.

p(:,:)=0.5_sp*(p(:,:)+spread(p(ilo,:),1,size(p,1)))
do i=1,ndim+1

if (i /= ilo) y(i)=func(p(i,:))
end do
iter=iter+ndim Keep track of function evaluations.
psum(:)=sum(p(:,:),dim=1)

end if
end if

end do Go back for the test of doneness and the next
iteration.END SUBROUTINE amoeba_private

FUNCTION amotry(fac)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: fac
REAL(SP) :: amotry

Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

REAL(SP) :: fac1,fac2,ytry
REAL(SP), DIMENSION(size(p,2)) :: ptry
fac1=(1.0_sp-fac)/ndim
fac2=fac1-fac
ptry(:)=psum(:)*fac1-p(ihi,:)*fac2
ytry=func(ptry) Evaluate the function at the trial point.
if (ytry < y(ihi)) then If it’s better than the highest, then replace

the highest.y(ihi)=ytry
psum(:)=psum(:)-p(ihi,:)+ptry(:)
p(ihi,:)=ptry(:)

end if
amotry=ytry
END FUNCTION amotry
END SUBROUTINE amoeba

f90
The only action taken by the subroutineamoeba is to call the internal
subroutineamoeba private. Why this structure? The reason has to do
with meeting the twin goals of data hiding (especially for “safe” scope

of variables) and program readability. The situation is this: Logically,amoeba does
most of the calculating, but calls an internal subroutineamotry at several different
points, with several values of the parameterfac. However,fac is not the only
piece of data that must be shared withamotry; the latter also needs access to several
shared variables (ihi, ndim, psum) and arguments ofamoeba (p, y, func).

The obvious (but not best) way of coding this would be to put the computational
guts inamoeba, with amotry as the sole internal subprogram. Assuming thatfac

is passed as an argument toamotry (it being the parameter that is being rapidly
altered), one must decide whether to pass all the other quantities toamotry (i) as
additional arguments (as is done in the Fortran 77 version), or (ii) “automatically,”
i.e., doing nothing except using the fact that an internal subprogram has automatic
access to all of its host’s entities. Each of these choices has strong disadvantages.
Choice (i) is inefficient (all those arguments) and also obscures the fact thatfac is
the primary changing argument. Choice (ii) makes the program extremely difficult to
read, because it wouldn’t be obvious withoutcareful cross-comparison of the routines
whichvariables inamoeba are actually global variables that are used byamotry.

Choice (ii) is also “unsafe scoping” because it gives a nontrivially complicated
internal subprogram,amotry, access to all the variables in its host. A common
and difficult-to-find bug is the accidental alteration of a variable that one “thought”

1210 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

was local, but is actually shared. (Simple variables likei, j, andn are the most
common culprits.)

We are therefore led to reject both choice (i) and choice (ii) in favor of a structure
previously described in the subsection on Scope, Visibility, and Data Hiding in§21.5.
The guts ofamoeba are put inamoeba private, asister routineto amotry. These
two siblings have mutually private name spaces. However, any variables that they
need to share (including the top-level arguments ofamoeba) are declared as variables
in the enclosingamoeba routine. The presence of these “global variables” serves as
a warning flag to the reader that data are shared between routines.

An alternative attractive way of coding the above situation would be to use
a module containingamoeba andamotry. Everything would be declared private
except the nameamoeba. The global variables would be at the top level, and
the arguments ofamoeba that need to be passed toamotry would be handled by
pointers among the global variables. Unfortunately, Fortran 90 does not support
pointers to functions. Sigh!

ilo=iminloc...ihi=imaxloc... See discussion of these functions on p. 1017.

call swap(y(1)...call swap(p(1,:)... Here theswap routine innrutil is
called once with a scalar argument and once with a vector argument. Insidenrutil

scalar and vector versions have been overloaded onto the single nameswap, hiding
all the implementation details from the calling routine.

⋆ ⋆ ⋆

SUBROUTINE powell(p,xi,ftol,iter,fret)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : linmin
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: xi
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
INTERFACE

FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: TINY=1.0e-25_sp

Minimization of a function func of N variables. (func is not an argument, it is a fixed
function name.) Input consists of an initial starting point p, a vector of length N ; an
initial N × N matrix xi whose columns contain the initial set of directions (usually the N
unit vectors); and ftol, the fractional tolerance in the function value such that failure to
decrease by more than this amount on one iteration signals doneness. On output, p is set
to the best point found, xi is the then-current direction set, fret is the returned function
value at p, and iter is the number of iterations taken. The routine linmin is used.
Parameters: Maximum allowed iterations, and a small number.

INTEGER(I4B) :: i,ibig,n
REAL(SP) :: del,fp,fptt,t
REAL(SP), DIMENSION(size(p)) :: pt,ptt,xit
n=assert_eq(size(p),size(xi,1),size(xi,2),’powell’)
fret=func(p)

Chapter B10. Minimization or Maximization of Functions 1211

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

pt(:)=p(:) Save the initial point.
iter=0
do

iter=iter+1
fp=fret
ibig=0
del=0.0 Will be the biggest function decrease.
do i=1,n Loop over all directions in the set.

xit(:)=xi(:,i) Copy the direction,
fptt=fret
call linmin(p,xit,fret) minimize along it,
if (fptt-fret > del) then and record it if it is the largest decrease so

far.del=fptt-fret
ibig=i

end if
end do
if (2.0_sp*(fp-fret) <= ftol*(abs(fp)+abs(fret))+TINY) RETURN

Termination criterion.
if (iter == ITMAX) call &

nrerror(’powell exceeding maximum iterations’)
ptt(:)=2.0_sp*p(:)-pt(:) Construct the extrapolated point and the av-

erage direction moved. Save the old start-
ing point.

xit(:)=p(:)-pt(:)
pt(:)=p(:)
fptt=func(ptt) Function value at extrapolated point.
if (fptt >= fp) cycle One reason not to use new direction.
t=2.0_sp*(fp-2.0_sp*fret+fptt)*(fp-fret-del)**2-del*(fp-fptt)**2
if (t >= 0.0) cycle Other reason not to use new direction.
call linmin(p,xit,fret) Move to minimum of the new direction,
xi(:,ibig)=xi(:,n) and save the new direction.
xi(:,n)=xit(:)

end do Back for another iteration.
END SUBROUTINE powell

⋆ ⋆ ⋆

MODULE f1dim_mod Used for communication from linmin to f1dim.
USE nrtype
INTEGER(I4B) :: ncom
REAL(SP), DIMENSION(:), POINTER :: pcom,xicom
CONTAINS

FUNCTION f1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: f1dim

Used by linmin as the one-dimensional function passed to mnbrak and brent.
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt
allocate(xt(ncom))
xt(:)=pcom(:)+x*xicom(:)
f1dim=func(xt)
deallocate(xt)
END FUNCTION f1dim
END MODULE f1dim_mod

1212 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE linmin(p,xi,fret)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : mnbrak,brent
USE f1dim_mod
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET, INTENT(INOUT) :: p,xi
REAL(SP), PARAMETER :: TOL=1.0e-4_sp

Given an N -dimensional point p and an N -dimensional direction xi, both vectors of length
N , moves and resets p to where the fixed-name function func takes on a minimum along
the direction xi from p, and replaces xi by the actual vector displacement that p was
moved. Also returns as fret the value of func at the returned location p. This is actually
all accomplished by calling the routines mnbrak and brent.
Parameter: Tolerance passed to brent.

REAL(SP) :: ax,bx,fa,fb,fx,xmin,xx
ncom=assert_eq(size(p),size(xi),’linmin’)
pcom=>p Communicate the global variables to f1dim.
xicom=>xi
ax=0.0 Initial guess for brackets.
xx=1.0
call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)
fret=brent(ax,xx,bx,f1dim,TOL,xmin)
xi=xmin*xi Construct the vector results to return.
p=p+xi
END SUBROUTINE linmin

f90
USE f1dim_mod At first sight this situation is like the one involving
USE fminln in newt on p. 1197: We want to pass arraysp and xi

from linmin to f1dim without having them be arguments off1dim. If
you recall the discussion in§21.5 and on p. 1197, there are two ways of effecting
this: via pointers or via allocatable arrays. There is an important difference here,
however. The arraysp andxi are themselves arguments oflinmin, and so cannot
be allocatable arrays in the module. If we did want to use allocatable arrays in the
module, we would have to copyp andxi into them. The pointer implementation
is much more elegant, since no unnecessary copying is required. The construction
here is identical to the one infminln andnewt, except thatp andxi are arguments
instead of automatic arrays.

⋆ ⋆ ⋆

MODULE df1dim_mod Used for communication from dlinmin to f1dim and df1dim.
USE nrtype
INTEGER(I4B) :: ncom
REAL(SP), DIMENSION(:), POINTER :: pcom,xicom
CONTAINS

FUNCTION f1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: f1dim

Used by dlinmin as the one-dimensional function passed to mnbrak.
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt

Chapter B10. Minimization or Maximization of Functions 1213

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

allocate(xt(ncom))
xt(:)=pcom(:)+x*xicom(:)
f1dim=func(xt)
deallocate(xt)
END FUNCTION f1dim

FUNCTION df1dim(x)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: df1dim

Used by dlinmin as the one-dimensional function passed to dbrent.
INTERFACE

FUNCTION dfunc(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: dfunc
END FUNCTION dfunc

END INTERFACE
REAL(SP), DIMENSION(:), ALLOCATABLE :: xt,df
allocate(xt(ncom),df(ncom))
xt(:)=pcom(:)+x*xicom(:)
df(:)=dfunc(xt)
df1dim=dot_product(df,xicom)
deallocate(xt,df)
END FUNCTION df1dim
END MODULE df1dim_mod

SUBROUTINE dlinmin(p,xi,fret)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : mnbrak,dbrent
USE df1dim_mod
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), TARGET :: p,xi
REAL(SP), PARAMETER :: TOL=1.0e-4_sp

Given an N -dimensional point p and an N -dimensional direction xi, both vectors of length
N , moves and resets p to where the fixed-name function func takes on a minimum along
the direction xi from p, and replaces xi by the actual vector displacement that p was
moved. Also returns as fret the value of func at the returned location p. This is actually
all accomplished by calling the routines mnbrak and dbrent. dfunc is a fixed-name user-
supplied function that computes the gradient of func.
Parameter: Tolerance passed to dbrent.

REAL(SP) :: ax,bx,fa,fb,fx,xmin,xx
ncom=assert_eq(size(p),size(xi),’dlinmin’)
pcom=>p Communicate the global variables to f1dim.
xicom=>xi
ax=0.0 Initial guess for brackets.
xx=1.0
call mnbrak(ax,xx,bx,fa,fx,fb,f1dim)
fret=dbrent(ax,xx,bx,f1dim,df1dim,TOL,xmin)
xi=xmin*xi Construct the vector results to return.
p=p+xi
END SUBROUTINE dlinmin

f90 USE df1dim_mod See discussion ofUSE f1dim mod on p. 1212.

⋆ ⋆ ⋆

1214 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE frprmn(p,ftol,iter,fret)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : linmin
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: ftol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: EPS=1.0e-10_sp

Given a starting point p that is a vector of length N , Fletcher-Reeves-Polak-Ribiere min-
imization is performed on a function func, using its gradient as calculated by a routine
dfunc. The convergence tolerance on the function value is input as ftol. Returned quan-
tities are p (the location of the minimum), iter (the number of iterations that were
performed), and fret (the minimum value of the function). The routine linmin is called
to perform line minimizations.
Parameters: ITMAX is the maximum allowed number of iterations; EPS is a small number
to rectify the special case of converging to exactly zero function value.

INTEGER(I4B) :: its
REAL(SP) :: dgg,fp,gam,gg
REAL(SP), DIMENSION(size(p)) :: g,h,xi
fp=func(p) Initializations.
xi=dfunc(p)
g=-xi
h=g
xi=h
do its=1,ITMAX Loop over iterations.

iter=its
call linmin(p,xi,fret) Next statement is the normal return:
if (2.0_sp*abs(fret-fp) <= ftol*(abs(fret)+abs(fp)+EPS)) RETURN
fp=fret
xi=dfunc(p)
gg=dot_product(g,g)

! dgg=dot_product(xi,xi) This statement for Fletcher-Reeves.
dgg=dot_product(xi+g,xi) This statement for Polak-Ribiere.
if (gg == 0.0) RETURN Unlikely. If gradient is exactly zero then we are al-

ready done.gam=dgg/gg
g=-xi
h=g+gam*h
xi=h

end do
call nrerror(’frprmn: maximum iterations exceeded’)
END SUBROUTINE frprmn

⋆ ⋆ ⋆

Chapter B10. Minimization or Maximization of Functions 1215

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE dfpmin(p,gtol,iter,fret,func,dfunc)
USE nrtype; USE nrutil, ONLY : nrerror,outerprod,unit_matrix,vabs
USE nr, ONLY : lnsrch
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: iter
REAL(SP), INTENT(IN) :: gtol
REAL(SP), INTENT(OUT) :: fret
REAL(SP), DIMENSION(:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP) :: func
END FUNCTION func

FUNCTION dfunc(p)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: p
REAL(SP), DIMENSION(size(p)) :: dfunc
END FUNCTION dfunc

END INTERFACE
INTEGER(I4B), PARAMETER :: ITMAX=200
REAL(SP), PARAMETER :: STPMX=100.0_sp,EPS=epsilon(p),TOLX=4.0_sp*EPS

Given a starting point p that is a vector of length N , the Broyden-Fletcher-Goldfarb-Shanno
variant of Davidon-Fletcher-Powell minimization is performed on a function func, using its
gradient as calculated by a routine dfunc. The convergence requirement on zeroing the
gradient is input as gtol. Returned quantities are p (the location of the minimum), iter
(the number of iterations that were performed), and fret (the minimum value of the
function). The routine lnsrch is called to perform approximate line minimizations.
Parameters: ITMAX is the maximum allowed number of iterations; STPMX is the scaled
maximum step length allowed in line searches; EPS is the machine precision; TOLX is the
convergence criterion on x values.

INTEGER(I4B) :: its
LOGICAL :: check
REAL(SP) :: den,fac,fad,fae,fp,stpmax,sumdg,sumxi
REAL(SP), DIMENSION(size(p)) :: dg,g,hdg,pnew,xi
REAL(SP), DIMENSION(size(p),size(p)) :: hessin
fp=func(p) Calculate starting function value and gradi-

ent.g=dfunc(p)
call unit_matrix(hessin) Initialize inverse Hessian to the unit matrix.
xi=-g Initial line direction.
stpmax=STPMX*max(vabs(p),real(size(p),sp))
do its=1,ITMAX Main loop over the iterations.

iter=its
call lnsrch(p,fp,g,xi,pnew,fret,stpmax,check,func)

The new function evaluation occurs in lnsrch; save the function value in fp for the next
line search. It is usually safe to ignore the value of check.

fp=fret
xi=pnew-p Update the line direction,
p=pnew and the current point.
if (maxval(abs(xi)/max(abs(p),1.0_sp)) < TOLX) RETURN

Test for convergence on ∆x.
dg=g Save the old gradient,
g=dfunc(p) and get the new gradient.
den=max(fret,1.0_sp)
if (maxval(abs(g)*max(abs(p),1.0_sp)/den) < gtol) RETURN

Test for convergence on zero gradient.
dg=g-dg Compute difference of gradients,
hdg=matmul(hessin,dg) and difference times current matrix.
fac=dot_product(dg,xi) Calculate dot products for the denominators.
fae=dot_product(dg,hdg)
sumdg=dot_product(dg,dg)

1216 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sumxi=dot_product(xi,xi)
if (fac > sqrt(EPS*sumdg*sumxi)) then Skip update if fac not sufficiently

positive.fac=1.0_sp/fac
fad=1.0_sp/fae
dg=fac*xi-fad*hdg Vector that makes BFGS different from DFP.
hessin=hessin+fac*outerprod(xi,xi)-& The BFGS updating formula.

fad*outerprod(hdg,hdg)+fae*outerprod(dg,dg)
end if
xi=-matmul(hessin,g) Now calculate the next direction to go,

end do and go back for another iteration.
call nrerror(’dfpmin: too many iterations’)
END SUBROUTINE dfpmin

f90
call unit_matrix(hessin) The unit matrix routine in nrutil does
exactly what its name suggests. The routinedfpmin makes use of
outerprod from nrutil, as well as the matrix intrinsicsmatmul and

dot product, to simplify and parallelize the coding.

⋆ ⋆ ⋆

SUBROUTINE simplx(a,m1,m2,m3,icase,izrov,iposv)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,ifirstloc,imaxloc,&

nrerror,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: m1,m2,m3
INTEGER(I4B), INTENT(OUT) :: icase
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: izrov,iposv
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Simplex method for linear programming. Input parameters a, m1, m2, and m3, and output
parameters a, icase, izrov, and iposv are described above the routine in Vol. 1. Dimen-
sions are (M + 2) × (N + 1) for a, M for iposv, N for izrov, with m1+ m2+ m3 = M .
Parameter: EPS is the absolute precision, which should be adjusted to the scale of your
variables.

INTEGER(I4B) :: ip,k,kh,kp,nl1,m,n
INTEGER(I4B), DIMENSION(size(a,2)) :: l1
INTEGER(I4B), DIMENSION(m2) :: l3
REAL(SP) :: bmax
LOGICAL(LGT) :: init
m=assert_eq(size(a,1)-2,size(iposv),’simplx: m’)
n=assert_eq(size(a,2)-1,size(izrov),’simplx: n’)
if (m /= m1+m2+m3) call nrerror(’simplx: bad input constraint counts’)
if (any(a(2:m+1,1) < 0.0)) call nrerror(’bad input tableau in simplx’)

Constants bi must be nonnegative.
nl1=n
l1(1:n)=arth(1,1,n)

Initialize index list of columns admissible for exchange.
izrov(:)=l1(1:n) Initially make all variables right-hand.
iposv(:)=n+arth(1,1,m)

Initial left-hand variables. m1 type constraints are represented by having their slack variable
initially left-hand, with no artificial variable. m2 type constraints have their slack variable
initially left-hand, with a minus sign, and their artificial variable handled implicitly during
their first exchange. m3 type constraints have their artificial variable initially left-hand.

init=.true.
phase1: do

if (init) then Initial pass only.
if (m2+m3 == 0) exit phase1 Origin is a feasible solution. Go to phase two.
init=.false.
l3(1:m2)=1

Initialize list of m2 constraints whose slack variables have never been exchanged out
of the initial basis.

a(m+2,1:n+1)=-sum(a(m1+2:m+1,1:n+1),dim=1) Compute the auxiliary objec-
tive function.end if

Chapter B10. Minimization or Maximization of Functions 1217

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (nl1 > 0) then
kp=l1(imaxloc(a(m+2,l1(1:nl1)+1))) Find the maximum coefficient of the

auxiliary objective function.bmax=a(m+2,kp+1)
else

bmax=0.0
end if
phase1a: do

if (bmax <= EPS .and. a(m+2,1) < -EPS) then
Auxiliary objective function is still negative and can’t be improved, hence no
feasible solution exists.

icase=-1
RETURN

else if (bmax <= EPS .and. a(m+2,1) <= EPS) then
Auxiliary objective function is zero and can’t be improved. This signals that we
have a feasible starting vector. Clean out the artificial variables corresponding
to any remaining equality constraints and then eventually exit phase one.

do ip=m1+m2+1,m
if (iposv(ip) == ip+n) then Found an artificial variable for an equal-

ity constraint.if (nl1 > 0) then
kp=l1(imaxloc(abs(a(ip+1,l1(1:nl1)+1))))
bmax=a(ip+1,kp+1)

else
bmax=0.0

end if
if (bmax > EPS) exit phase1a Exchange with column correspond-

ing to maximum pivot ele-
ment in row.

end if
end do
where (spread(l3(1:m2),2,n+1) == 1) &

a(m1+2:m1+m2+1,1:n+1)=-a(m1+2:m1+m2+1,1:n+1)
Change sign of row for any m2 constraints still present from the initial basis.

exit phase1 Go to phase two.
end if
call simp1 Locate a pivot element (phase one).
if (ip == 0) then Maximum of auxiliary objective function is

unbounded, so no feasible solution ex-
ists.

icase=-1
RETURN

end if
exit phase1a

end do phase1a
call simp2(m+1,n) Exchange a left- and a right-hand variable.
if (iposv(ip) >= n+m1+m2+1) then Exchanged out an artificial variable for an

equality constraint. Make sure it stays
out by removing it from the l1 list.

k=ifirstloc(l1(1:nl1) == kp)
nl1=nl1-1
l1(k:nl1)=l1(k+1:nl1+1)

else
kh=iposv(ip)-m1-n
if (kh >= 1) then Exchanged out an m2 type constraint.

if (l3(kh) /= 0) then If it’s the first time, correct the pivot col-
umn for the minus sign and the implicit

artificial variable.
l3(kh)=0
a(m+2,kp+1)=a(m+2,kp+1)+1.0_sp
a(1:m+2,kp+1)=-a(1:m+2,kp+1)

end if
end if

end if
call swap(izrov(kp),iposv(ip)) Update lists of left- and right-hand variables.

end do phase1 If still in phase one, go back again.
phase2: do

We have an initial feasible solution. Now optimize it.
if (nl1 > 0) then

kp=l1(imaxloc(a(1,l1(1:nl1)+1))) Test the z-row for doneness.
bmax=a(1,kp+1)

else
bmax=0.0

end if

1218 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (bmax <= EPS) then Done. Solution found. Return with the good
news.icase=0

RETURN
end if
call simp1 Locate a pivot element (phase two).
if (ip == 0) then Objective function is unbounded. Report and

return.icase=1
RETURN

end if
call simp2(m,n) Exchange a left- and a right-hand variable,
call swap(izrov(kp),iposv(ip)) update lists of left- and right-hand variables,

end do phase2 and return for another iteration.
CONTAINS

SUBROUTINE simp1
Locate a pivot element, taking degeneracy into account.

IMPLICIT NONE
INTEGER(I4B) :: i,k
REAL(SP) :: q,q0,q1,qp
ip=0
i=ifirstloc(a(2:m+1,kp+1) < -EPS)
if (i > m) RETURN No possible pivots. Return with message.
q1=-a(i+1,1)/a(i+1,kp+1)
ip=i
do i=ip+1,m

if (a(i+1,kp+1) < -EPS) then
q=-a(i+1,1)/a(i+1,kp+1)
if (q < q1) then

ip=i
q1=q

else if (q == q1) then We have a degeneracy.
do k=1,n

qp=-a(ip+1,k+1)/a(ip+1,kp+1)
q0=-a(i+1,k+1)/a(i+1,kp+1)
if (q0 /= qp) exit

end do
if (q0 < qp) ip=i

end if
end if

end do
END SUBROUTINE simp1

SUBROUTINE simp2(i1,k1)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: i1,k1

Matrix operations to exchange a left-hand and right-hand variable (see text).
INTEGER(I4B) :: ip1,kp1
REAL(SP) :: piv
INTEGER(I4B), DIMENSION(k1) :: icol
INTEGER(I4B), DIMENSION(i1) :: irow
INTEGER(I4B), DIMENSION(max(i1,k1)+1) :: itmp
ip1=ip+1
kp1=kp+1
piv=1.0_sp/a(ip1,kp1)
itmp(1:k1+1)=arth(1,1,k1+1)
icol=pack(itmp(1:k1+1),itmp(1:k1+1) /= kp1)
itmp(1:i1+1)=arth(1,1,i1+1)
irow=pack(itmp(1:i1+1),itmp(1:i1+1) /= ip1)
a(irow,kp1)=a(irow,kp1)*piv
a(irow,icol)=a(irow,icol)-outerprod(a(irow,kp1),a(ip1,icol))
a(ip1,icol)=-a(ip1,icol)*piv
a(ip1,kp1)=piv
END SUBROUTINE simp2
END SUBROUTINE simplx

Chapter B10. Minimization or Maximization of Functions 1219

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
main_procedure: do The routinesimplx makes extensive use of named
do-loops to control the program flow. The variousexit statements have
the names of the do-loops attached to them so we can easily tell where

control is being transferred to. We believe that it is almost never necessary to use
goto statements: Code will always be clearer with well-constructed block structures.

phase1a: do...end do phase1a This is not a real do-loop: It is executed only
once, as you can see from the unconditionalexit before theend do. We use this
construction to define a block of code that is traversed once but that has several
possible exit points.

where (spread(l3(1:m12-m1),2,n+1) == 1) &

a(m1+2:m12+1,1:n+1)=-a(m1+2:m12+1,1:n+1)

These lines are equivalent to

do i=m1+1,m12
if (l3(i-m1) == 1) a(i+1,1:n+1)=-a(i+1,1:n+1)

end do

⋆ ⋆ ⋆

SUBROUTINE anneal(x,y,iorder)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,swap
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y

This algorithm finds the shortest round-trip path to N cities whose coordinates are in the
length N arrays x, y. The length N array iorder specifies the order in which the cities are
visited. On input, the elements of iorder may be set to any permutation of the numbers
1 . . . N . This routine will return the best alternative path it can find.

INTEGER(I4B), DIMENSION(6) :: n
INTEGER(I4B) :: i1,i2,j,k,nlimit,ncity,nn,nover,nsucc
REAL(SP) :: de,harvest,path,t,tfactr
LOGICAL(LGT) :: ans
ncity=assert_eq(size(x),size(y),size(iorder),’anneal’)
nover=100*ncity Maximum number of paths tried at any temperature,
nlimit=10*ncity and of successful path changes before continuing.
tfactr=0.9_sp Annealing schedule: t is reduced by this factor on

each step.t=0.5_sp
path=sum(alen_v(x(iorder(1:ncity-1)),x(iorder(2:ncity)),&

y(iorder(1:ncity-1)),y(iorder(2:ncity)))) Calculate initial path length.
i1=iorder(ncity) Close the loop by tying path ends to-

gether.i2=iorder(1)
path=path+alen(x(i1),x(i2),y(i1),y(i2))
do j=1,100 Try up to 100 temperature steps.

nsucc=0
do k=1,nover

do
call ran1(harvest)
n(1)=1+int(ncity*harvest) Choose beginning of segment . . .
call ran1(harvest)
n(2)=1+int((ncity-1)*harvest) . . . and end of segment.
if (n(2) >= n(1)) n(2)=n(2)+1
nn=1+mod((n(1)-n(2)+ncity-1),ncity) nn is the number of cities not on

the segment.if (nn >= 3) exit
end do

1220 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

call ran1(harvest)
Decide whether to do a reversal or a transport.

if (harvest < 0.5_sp) then Do a transport.
call ran1(harvest)
n(3)=n(2)+int(abs(nn-2)*harvest)+1
n(3)=1+mod(n(3)-1,ncity) Transport to a location not on the path.
call trncst(x,y,iorder,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call trnspt(iorder,n) Carry out the transport.

end if
else Do a path reversal.

call revcst(x,y,iorder,n,de) Calculate cost.
call metrop(de,t,ans) Consult the oracle.
if (ans) then

nsucc=nsucc+1
path=path+de
call revers(iorder,n) Carry out the reversal.

end if
end if
if (nsucc >= nlimit) exit Finish early if we have enough successful

changes.end do
write(*,*)
write(*,*) ’T =’,t,’ Path Length =’,path
write(*,*) ’Successful Moves: ’,nsucc
t=t*tfactr Annealing schedule.
if (nsucc == 0) RETURN If no success, we are done.

end do
CONTAINS

FUNCTION alen(x1,x2,y1,y2)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2,y1,y2
REAL(SP) :: alen

Computes distance between two cities.
alen=sqrt((x2-x1)**2+(y2-y1)**2)
END FUNCTION alen

FUNCTION alen_v(x1,x2,y1,y2)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,x2,y1,y2
REAL(SP), DIMENSION(size(x1)) :: alen_v

Computes distances between pairs of cities.
alen_v=sqrt((x2-x1)**2+(y2-y1)**2)
END FUNCTION alen_v

SUBROUTINE metrop(de,t,ans)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: de,t
LOGICAL(LGT), INTENT(OUT) :: ans

Metropolis algorithm. ans is a logical variable that issues a verdict on whether to accept a
reconfiguration that leads to a change de in the objective function. If de<0, ans=.true.,
while if de>0, ans is only .true. with probability exp(-de/t), where t is a temperature
determined by the annealing schedule.

call ran1(harvest)
ans=(de < 0.0) .or. (harvest < exp(-de/t))
END SUBROUTINE metrop

SUBROUTINE revcst(x,y,iorder,n,de)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: n
REAL(SP), INTENT(OUT) :: de

Chapter B10. Minimization or Maximization of Functions 1221

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

This subroutine returns the value of the cost function for a proposed path reversal. The
arrays x and y give the coordinates of these cities. iorder holds the present itinerary. The
first two values n(1) and n(2) of array n give the starting and ending cities along the path
segment which is to be reversed. On output, de is the cost of making the reversal. The
actual reversal is not performed by this routine.

INTEGER(I4B) :: ncity
REAL(SP), DIMENSION(4) :: xx,yy
ncity=size(x)
n(3)=1+mod((n(1)+ncity-2),ncity) Find the city before n(1) . . .

n(4)=1+mod(n(2),ncity) . . . and the city after n(2).
xx(1:4)=x(iorder(n(1:4))) Find coordinates for the four cities involved.
yy(1:4)=y(iorder(n(1:4)))
de=-alen(xx(1),xx(3),yy(1),yy(3))& Calculate cost of disconnecting the segment

at both ends and reconnecting in the op-
posite order.

-alen(xx(2),xx(4),yy(2),yy(4))&
+alen(xx(1),xx(4),yy(1),yy(4))&
+alen(xx(2),xx(3),yy(2),yy(3))

END SUBROUTINE revcst

SUBROUTINE revers(iorder,n)
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n

This routine performs a path segment reversal. iorder is an input array giving the present
itinerary. The vector n has as its first four elements the first and last cities n(1), n(2)
of the path segment to be reversed, and the two cities n(3) and n(4) that immediately
precede and follow this segment. n(3) and n(4) are found by subroutine revcst. On
output, iorder contains the segment from n(1) to n(2) in reversed order.

INTEGER(I4B) :: j,k,l,nn,ncity
ncity=size(iorder)
nn=(1+mod(n(2)-n(1)+ncity,ncity))/2 This many cities must be swapped to effect

the reversal.do j=1,nn
k=1+mod((n(1)+j-2),ncity) Start at the ends of the segment and swap

pairs of cities, moving toward the cen-
ter.

l=1+mod((n(2)-j+ncity),ncity)
call swap(iorder(k),iorder(l))

end do
END SUBROUTINE revers

SUBROUTINE trncst(x,y,iorder,n,de)
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: n
REAL(SP), INTENT(OUT) :: de

This subroutine returns the value of the cost function for a proposed path segment transport.
Arrays x and y give the city coordinates. iorder is an array giving the present itinerary.
The first three elements of array n give the starting and ending cities of the path to be
transported, and the point among the remaining cities after which it is to be inserted. On
output, de is the cost of the change. The actual transport is not performed by this routine.

INTEGER(I4B) :: ncity
REAL(SP), DIMENSION(6) :: xx,yy
ncity=size(x)
n(4)=1+mod(n(3),ncity) Find the city following n(3) . . .

n(5)=1+mod((n(1)+ncity-2),ncity) . . . and the one preceding n(1) . . .
n(6)=1+mod(n(2),ncity) . . . and the one following n(2).
xx(1:6)=x(iorder(n(1:6))) Determine coordinates for the six cities in-

volved.yy(1:6)=y(iorder(n(1:6)))
de=-alen(xx(2),xx(6),yy(2),yy(6))& Calculate the cost of disconnecting the path

segment from n(1) to n(2), opening a
space between n(3) and n(4), connect-
ing the segment in the space, and con-
necting n(5) to n(6).

-alen(xx(1),xx(5),yy(1),yy(5))&
-alen(xx(3),xx(4),yy(3),yy(4))&
+alen(xx(1),xx(3),yy(1),yy(3))&
+alen(xx(2),xx(4),yy(2),yy(4))&
+alen(xx(5),xx(6),yy(5),yy(6))

END SUBROUTINE trncst

SUBROUTINE trnspt(iorder,n)
IMPLICIT NONE

1222 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: iorder
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: n

This routine does the actual path transport, once metrop has approved. iorder is an
input array giving the present itinerary. The array n has as its six elements the beginning
n(1) and end n(2) of the path to be transported, the adjacent cities n(3) and n(4)
between which the path is to be placed, and the cities n(5) and n(6) that precede and
follow the path. n(4), n(5), and n(6) are calculated by subroutine trncst. On output,
iorder is modified to reflect the movement of the path segment.

INTEGER(I4B) :: m1,m2,m3,nn,ncity
INTEGER(I4B), DIMENSION(size(iorder)) :: jorder
ncity=size(iorder)
m1=1+mod((n(2)-n(1)+ncity),ncity) Find number of cities from n(1) to n(2) . . .

m2=1+mod((n(5)-n(4)+ncity),ncity) . . . and the number from n(4) to n(5)
m3=1+mod((n(3)-n(6)+ncity),ncity) . . . and the number from n(6) to n(3).
jorder(1:m1)=iorder(1+mod((arth(1,1,m1)+n(1)-2),ncity)) Copy the chosen segment.
nn=m1
jorder(nn+1:nn+m2)=iorder(1+mod((arth(1,1,m2)+n(4)-2),ncity))

Then copy the segment from n(4) to n(5).
nn=nn+m2
jorder(nn+1:nn+m3)=iorder(1+mod((arth(1,1,m3)+n(6)-2),ncity))

Finally, the segment from n(6) to n(3).
iorder(1:ncity)=jorder(1:ncity) Copy jorder back into iorder.
END SUBROUTINE trnspt
END SUBROUTINE anneal

⋆ ⋆ ⋆

SUBROUTINE amebsa(p,y,pb,yb,ftol,func,iter,temptr)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,iminloc,swap
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iter
REAL(SP), INTENT(INOUT) :: yb
REAL(SP), INTENT(IN) :: ftol,temptr
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y,pb
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: p
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: NMAX=200

Minimization of the N -dimensional function func by simulated annealing combined with the
downhill simplex method of Nelder and Mead. The (N+1)×N matrix p is input. Its N+1
rows are N -dimensional vectors that are the vertices of the starting simplex. Also input is
the vector y of length N+1, whose components must be preinitialized to the values of func
evaluated at the N+1 vertices (rows) of p; ftol, the fractional convergence tolerance to be
achieved in the function value for an early return; iter, and temptr. The routine makes
iter function evaluations at an annealing temperature temptr, then returns. You should
then decrease temptr according to your annealing schedule, reset iter, and call the routine
again (leaving other arguments unaltered between calls). If iter is returned with a positive
value, then early convergence and return occurred. If you initialize yb to a very large value
on the first call, then yb and pb (an array of length N) will subsequently return the best
function value and point ever encountered (even if it is no longer a point in the simplex).

INTEGER(I4B) :: ihi,ndim Global variables.
REAL(SP) :: yhi
REAL(SP), DIMENSION(size(p,2)) :: psum
call amebsa_private

Chapter B10. Minimization or Maximization of Functions 1223

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

CONTAINS

SUBROUTINE amebsa_private
INTEGER(I4B) :: i,ilo,inhi
REAL(SP) :: rtol,ylo,ynhi,ysave,ytry
REAL(SP), DIMENSION(size(y)) :: yt,harvest
ndim=assert_eq(size(p,2),size(p,1)-1,size(y)-1,size(pb),’amebsa’)
psum(:)=sum(p(:,:),dim=1)
do Iteration loop.

call ran1(harvest)
yt(:)=y(:)-temptr*log(harvest)

Whenever we “look at” a vertex, it gets a random thermal fluctuation.
ilo=iminloc(yt(:)) Determine which point is the highest (worst),

next-highest, and lowest (best).ylo=yt(ilo)
ihi=imaxloc(yt(:))
yhi=yt(ihi)
yt(ihi)=ylo
inhi=imaxloc(yt(:))
ynhi=yt(inhi)
rtol=2.0_sp*abs(yhi-ylo)/(abs(yhi)+abs(ylo))

Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol .or. iter < 0) then If returning, put best point and value in

slot 1.call swap(y(1),y(ilo))
call swap(p(1,:),p(ilo,:))
RETURN

end if
Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.

ytry=amotsa(-1.0_sp)
iter=iter-1
if (ytry <= ylo) then Gives a result better than the best point, so

try an additional extrapolation by a fac-
tor of 2.

ytry=amotsa(2.0_sp)
iter=iter-1

else if (ytry >= ynhi) then The reflected point is worse than the second-
highest, so look for an intermediate lower
point, i.e., do a one-dimensional contrac-
tion.

ysave=yhi
ytry=amotsa(0.5_sp)
iter=iter-1
if (ytry >= ysave) then

Can’t seem to get rid of that high point. Better contract around the lowest
(best) point.

p(:,:)=0.5_sp*(p(:,:)+spread(p(ilo,:),1,size(p,1)))
do i=1,ndim+1

if (i /= ilo) y(i)=func(p(i,:))
end do
iter=iter-ndim Keep track of function evaluations.
psum(:)=sum(p(:,:),dim=1)

end if
end if

end do
END SUBROUTINE amebsa_private

FUNCTION amotsa(fac)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: fac
REAL(SP) :: amotsa

Extrapolates by a factor fac through the face of the simplex across from the high point,
tries it, and replaces the high point if the new point is better.

REAL(SP) :: fac1,fac2,yflu,ytry,harv
REAL(SP), DIMENSION(size(p,2)) :: ptry
fac1=(1.0_sp-fac)/ndim
fac2=fac1-fac
ptry(:)=psum(:)*fac1-p(ihi,:)*fac2
ytry=func(ptry)
if (ytry <= yb) then Save the best-ever.

pb(:)=ptry(:)

1224 Chapter B10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

yb=ytry
end if
call ran1(harv)
yflu=ytry+temptr*log(harv) We addeda thermal fluctuation to all the cur-

rent vertices, but we subtract it here, so
as to give the simplex a thermal Brow-
nian motion: It likes to accept any sug-
gested change.

if (yflu < yhi) then
y(ihi)=ytry
yhi=yflu
psum(:)=psum(:)-p(ihi,:)+ptry(:)
p(ihi,:)=ptry(:)

end if
amotsa=yflu
END FUNCTION amotsa
END SUBROUTINE amebsa

f90
See the discussion ofamoeba on p. 1209 for why the routine is coded
this way.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B11. Eigensystems

SUBROUTINE jacobi(a,d,v,nrot)
USE nrtype; USE nrutil, ONLY : assert_eq,get_diag,nrerror,unit_matrix,&

upper_triangle
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: nrot
REAL(SP), DIMENSION(:), INTENT(OUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v

Computes all eigenvalues and eigenvectors of a real symmetric N×N matrix a. On output,
elements of a above the diagonal are destroyed. d is a vector of length N that returns the
eigenvalues of a. v is an N ×N matrix whose columns contain, on output, the normalized
eigenvectors of a. nrot returns the number of Jacobi rotations that were required.

INTEGER(I4B) :: i,ip,iq,n
REAL(SP) :: c,g,h,s,sm,t,tau,theta,tresh
REAL(SP), DIMENSION(size(d)) :: b,z
n=assert_eq((/size(a,1),size(a,2),size(d),size(v,1),size(v,2)/),’jacobi’)
call unit_matrix(v(:,:)) Initialize v to the identity matrix.
b(:)=get_diag(a(:,:)) Initialize b and d to the diagonal of

a.d(:)=b(:)
z(:)=0.0 This vector will accumulate terms of

the form tapq as in eq. (11.1.14).nrot=0
do i=1,50

sm=sum(abs(a),mask=upper_triangle(n,n)) Sum off-diagonal elements.
if (sm == 0.0) RETURN

The normal return, which relies on quadratic convergence to machine underflow.
tresh=merge(0.2_sp*sm/n**2,0.0_sp, i < 4)

On the first three sweeps, we will rotate only if tresh exceeded.
do ip=1,n-1

do iq=ip+1,n
g=100.0_sp*abs(a(ip,iq))

After four sweeps, skip the rotation if the off-diagonal element is small.
if ((i > 4) .and. (abs(d(ip))+g == abs(d(ip))) &

.and. (abs(d(iq))+g == abs(d(iq)))) then
a(ip,iq)=0.0

else if (abs(a(ip,iq)) > tresh) then
h=d(iq)-d(ip)
if (abs(h)+g == abs(h)) then

t=a(ip,iq)/h t = 1/(2θ)
else

theta=0.5_sp*h/a(ip,iq) Equation (11.1.10).
t=1.0_sp/(abs(theta)+sqrt(1.0_sp+theta**2))
if (theta < 0.0) t=-t

end if
c=1.0_sp/sqrt(1+t**2)
s=t*c
tau=s/(1.0_sp+c)
h=t*a(ip,iq)
z(ip)=z(ip)-h
z(iq)=z(iq)+h
d(ip)=d(ip)-h
d(iq)=d(iq)+h
a(ip,iq)=0.0

1225

1226 Chapter B11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

call jrotate(a(1:ip-1,ip),a(1:ip-1,iq))
Case of rotations 1 ≤ j < p.

call jrotate(a(ip,ip+1:iq-1),a(ip+1:iq-1,iq))
Case of rotations p < j < q.

call jrotate(a(ip,iq+1:n),a(iq,iq+1:n))
Case of rotations q < j ≤ n.

call jrotate(v(:,ip),v(:,iq))
nrot=nrot+1

end if
end do

end do
b(:)=b(:)+z(:)
d(:)=b(:) Update d with the sum of tapq,
z(:)=0.0 and reinitialize z.

end do
call nrerror(’too many iterations in jacobi’)
CONTAINS

SUBROUTINE jrotate(a1,a2)
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a1,a2
REAL(SP), DIMENSION(size(a1)) :: wk1
wk1(:)=a1(:)
a1(:)=a1(:)-s*(a2(:)+a1(:)*tau)
a2(:)=a2(:)+s*(wk1(:)-a2(:)*tau)
END SUBROUTINE jrotate
END SUBROUTINE jacobi

As discussed in Volume 1,jacobi is generally not competitive withtqli
in terms of efficiency. However,jacobi can be parallelized whereas
tqli uses an intrinsically serial algorithm. The version ofjacobi

implemented here is likely to be adequate for a small-scale parallel (SSP) machine,
but is probably still not competitive withtqli. For a massively multiprocessor
(MMP) machine, the order of the rotations needs to be chosen in a more complicated
pattern than here so that the rotations can be executed in parallel. In this case the
Jacobi algorithm may well turn out to be the method of choice. Parallel replacements
for tqli based on a divide and conquer algorithm have also been proposed. See
the discussion aftertqli on p. 1229.

f90
call unit_matrix...b(:)=get_diag... These routines innrutil both
require access to the diagonal of a matrix, an operation that is not
conveniently provided for in Fortran 90. We have split them off into

nrutil in case your compiler provides parallel library routines so you can replace
our standard versions.

sm=sum(abs(a),mask=upper_triangle(n,n)) Theupper triangle function in
nrutil returns an upper triangular logical mask. As used here, the mask is true
everywhere in the upper triangle of ann × n matrix, excluding the diagonal. An
optional integer argumentextra allows additional diagonals to be set to true. With
extra=1 the upper triangle including the diagonal would be true. By using the mask,
we can conveniently sum over the desired matrix elements in parallel.

SUBROUTINE jrotate(a1,a2) This internal subroutine also uses the values ofs

andtau from the calling subroutinejacobi. Variables in the calling routine are
visible to an internal subprogram, but you should be circumspect in making use of
this fact. It is easy to overwrite a value in the calling program inadvertently, and it is

Chapter B11. Eigensystems 1227

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

often difficult to figure out the logic of an internal routine if not all its variables are
declared explicitly. However,jrotate is so simple that there is no danger here.

⋆ ⋆ ⋆

SUBROUTINE eigsrt(d,v)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: v

Given the eigenvalues d and eigenvectors v as output from jacobi (§11.1) or tqli (§11.3),
this routine sorts the eigenvalues into descending order, and rearranges the columns of v
correspondingly. The method is straight insertion.

INTEGER(I4B) :: i,j,n
n=assert_eq(size(d),size(v,1),size(v,2),’eigsrt’)
do i=1,n-1

j=imaxloc(d(i:n))+i-1
if (j /= i) then

call swap(d(i),d(j))
call swap(v(:,i),v(:,j))

end if
end do
END SUBROUTINE eigsrt

f90 j=imaxloc... See discussion ofimaxloc on p. 1017.

call swap... See discussion of overloaded versions ofswap after amoeba
on p. 1210.

⋆ ⋆ ⋆

SUBROUTINE tred2(a,d,e,novectors)
USE nrtype; USE nrutil, ONLY : assert_eq,outerprod
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: d,e
LOGICAL(LGT), OPTIONAL, INTENT(IN) :: novectors

Householder reduction of a real, symmetric, N × N matrix a. On output, a is replaced
by the orthogonal matrix Q effecting the transformation. d returns the diagonal elements
of the tridiagonal matrix, and e the off-diagonal elements, with e(1)=0. If the optional
argument novectors is present, only eigenvalues are to be found subsequently, in which
case a contains no useful information on output.

INTEGER(I4B) :: i,j,l,n
REAL(SP) :: f,g,h,hh,scale
REAL(SP), DIMENSION(size(a,1)) :: gg
LOGICAL(LGT), SAVE :: yesvec=.true.
n=assert_eq(size(a,1),size(a,2),size(d),size(e),’tred2’)
if (present(novectors)) yesvec=.not. novectors
do i=n,2,-1

l=i-1
h=0.0
if (l > 1) then

scale=sum(abs(a(i,1:l)))
if (scale == 0.0) then Skip transformation.

e(i)=a(i,l)
else

a(i,1:l)=a(i,1:l)/scale Use scaled a’s for transformation.
h=sum(a(i,1:l)**2) Form σ in h.

1228 Chapter B11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f=a(i,l)
g=-sign(sqrt(h),f)
e(i)=scale*g
h=h-f*g Now h is equation (11.2.4).
a(i,l)=f-g Store u in the ith row of a.
if (yesvec) a(1:l,i)=a(i,1:l)/h Store u/H in ith column of a.
do j=1,l Store elements of p in temporarily

unused elements of e.e(j)=(dot_product(a(j,1:j),a(i,1:j)) &
+dot_product(a(j+1:l,j),a(i,j+1:l)))/h

end do
f=dot_product(e(1:l),a(i,1:l))
hh=f/(h+h) Form K, equation (11.2.11).
e(1:l)=e(1:l)-hh*a(i,1:l)

Form q and store in e overwriting p.
do j=1,l Reduce a, equation (11.2.13).

a(j,1:j)=a(j,1:j)-a(i,j)*e(1:j)-e(j)*a(i,1:j)
end do

end if
else

e(i)=a(i,l)
end if
d(i)=h

end do
if (yesvec) d(1)=0.0
e(1)=0.0
do i=1,n Begin accumulation of transforma-

tion matrices.if (yesvec) then
l=i-1
if (d(i) /= 0.0) then

This block skipped when i=1. Use u and u/H stored in a to form P · Q.
gg(1:l)=matmul(a(i,1:l),a(1:l,1:l))
a(1:l,1:l)=a(1:l,1:l)-outerprod(a(1:l,i),gg(1:l))

end if
d(i)=a(i,i)
a(i,i)=1.0 Reset row and column of a to iden-

tity matrix for next iteration.a(i,1:l)=0.0
a(1:l,i)=0.0

else
d(i)=a(i,i)

end if
end do
END SUBROUTINE tred2

f90
This routine gives a nice example of the usefulness of optional arguments.
The routine is written under the assumption that usually you will want
to find both eigenvalues and eigenvectors. In this case you just supply

the argumentsa, d, ande. If, however, you want only eigenvalues, you supply the
additional logical argumentnovectors with the value.true.. The routine then
skips the unnecessary computations. Supplyingnovectorswith the value.false.
has the same effect as omitting it.

⋆ ⋆ ⋆

SUBROUTINE tqli(d,e,z)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : pythag
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d,e
REAL(SP), DIMENSION(:,:), OPTIONAL, INTENT(INOUT) :: z

QL algorithm with implicit shifts, to determine the eigenvalues and eigenvectors of a real,
symmetric, tridiagonal matrix, or of a real, symmetric matrix previously reduced by tred2

Chapter B11. Eigensystems 1229

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

§11.2. d is a vector of length N . On input, its elements are the diagonal elements of the
tridiagonal matrix. On output, it returns the eigenvalues. The vector e inputs the subdi-
agonal elements of the tridiagonal matrix, with e(1) arbitrary. On output e is destroyed.
When finding only the eigenvalues, the optional argument z is omitted. If the eigenvectors
of a tridiagonal matrix are desired, the N × N matrix z is input as the identity matrix. If
the eigenvectors of a matrix that has been reduced by tred2 are required, then z is input
as the matrix output by tred2. In either case, the kth column of z returns the normalized
eigenvector corresponding to d(k).

INTEGER(I4B) :: i,iter,l,m,n,ndum
REAL(SP) :: b,c,dd,f,g,p,r,s
REAL(SP), DIMENSION(size(e)) :: ff
n=assert_eq(size(d),size(e),’tqli: n’)
if (present(z)) ndum=assert_eq(n,size(z,1),size(z,2),’tqli: ndum’)
e(:)=eoshift(e(:),1) Convenient to renumber the elements of

e.do l=1,n
iter=0
iterate: do

do m=l,n-1 Look for a single small subdiagonal ele-
ment to split the matrix.dd=abs(d(m))+abs(d(m+1))

if (abs(e(m))+dd == dd) exit
end do
if (m == l) exit iterate
if (iter == 30) call nrerror(’too many iterations in tqli’)
iter=iter+1
g=(d(l+1)-d(l))/(2.0_sp*e(l)) Form shift.
r=pythag(g,1.0_sp)
g=d(m)-d(l)+e(l)/(g+sign(r,g)) This is dm − ks.
s=1.0
c=1.0
p=0.0
do i=m-1,l,-1 A plane rotation as in the original QL,

followed by Givens rotations to re-
store tridiagonal form.

f=s*e(i)
b=c*e(i)
r=pythag(f,g)
e(i+1)=r
if (r == 0.0) then Recover from underflow.

d(i+1)=d(i+1)-p
e(m)=0.0
cycle iterate

end if
s=f/r
c=g/r
g=d(i+1)-p
r=(d(i)-g)*s+2.0_sp*c*b
p=s*r
d(i+1)=g+p
g=c*r-b
if (present(z)) then Form eigenvectors.

ff(1:n)=z(1:n,i+1)
z(1:n,i+1)=s*z(1:n,i)+c*ff(1:n)
z(1:n,i)=c*z(1:n,i)-s*ff(1:n)

end if
end do
d(l)=d(l)-p
e(l)=g
e(m)=0.0

end do iterate
end do
END SUBROUTINE tqli

The routinetqli is intrinsically serial. A parallel replacement based on
a divide and conquer algorithm has been proposed[1,2]. The idea is to
split the tridiagonal matrix recursively into two tridiagonal matrices of

1230 Chapter B11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

half the size plus a correction. Given the eigensystems of the two smaller tridiagonal
matrices, it is possible to join them together and add in the effect of the correction.
When some small size of tridiagonal matrix is reached during the recursive splitting,
its eigensystem is found directly with a routine liketqli. Each of these small
problems is independent and can be assigned to an independent processor. The
procedures for sewing together can also be done independently. For very large
matrices, this algorithm can be an order of magnitude faster thantqli even on a
serial machine, and no worse than a factor of 2 or 3 slower, depending on the matrix.
Unfortunately the parallelism is not well expressed in Fortran 90. Also, the sewing
together requires quite involved coding. For an implementation see the LAPACK
routine SSTEDC. Another parallel strategy for eigensystems uses inverse iteration,
where each eigenvalue and eigenvector can be found independently[3].

f90
This routine usesz as an optional argument that is required only if
eigenvectors are being found as well as eigenvalues.

iterate: do See discussion of named do loops aftersimplx on p. 1219.

⋆ ⋆ ⋆

SUBROUTINE balanc(a)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a
REAL(SP), PARAMETER :: RADX=radix(a),SQRADX=RADX**2

Given an N × N matrix a, this routine replaces it by a balanced matrix with identical
eigenvalues. A symmetric matrix is already balanced and is unaffected by this procedure.
The parameter RADX is the machine’s floating-point radix.

INTEGER(I4B) :: i,last,ndum
REAL(SP) :: c,f,g,r,s
ndum=assert_eq(size(a,1),size(a,2),’balanc’)
do

last=1
do i=1,size(a,1) Calculate row and column norms.

c=sum(abs(a(:,i)))-a(i,i)
r=sum(abs(a(i,:)))-a(i,i)
if (c /= 0.0 .and. r /= 0.0) then If both are nonzero,

g=r/RADX
f=1.0
s=c+r
do find the integer power of the ma-

chine radix that comes closest to
balancing the matrix.

if (c >= g) exit
f=f*RADX
c=c*SQRADX

end do
g=r*RADX
do

if (c <= g) exit
f=f/RADX
c=c/SQRADX

end do
if ((c+r)/f < 0.95_sp*s) then

last=0
g=1.0_sp/f
a(i,:)=a(i,:)*g Apply similarity transformation.
a(:,i)=a(:,i)*f

end if
end if

Chapter B11. Eigensystems 1231

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
if (last /= 0) exit

end do
END SUBROUTINE balanc

f90
REAL(SP), PARAMETER :: RADX=radix(a)... Fortran 90 provides a nice
collection of numeric inquiry intrinsic functions. Here we find the
machine’s floating-point radix. Note that only the type of the argument

a affects the returned function value.

⋆ ⋆ ⋆

SUBROUTINE elmhes(a)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,outerprod,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a

Reduction to Hessenberg form by the elimination method. The real, nonsymmetric, N ×N
matrix a is replaced by an upper Hessenberg matrix with identical eigenvalues. Recom-
mended, but not required, is that this routine be preceded by balanc. On output, the
Hessenberg matrix is in elements a(i, j) with i ≤ j + 1. Elements with i > j + 1 are to be
thought of as zero, but are returned with random values.

INTEGER(I4B) :: i,m,n
REAL(SP) :: x
REAL(SP), DIMENSION(size(a,1)) :: y
n=assert_eq(size(a,1),size(a,2),’elmhes’)
do m=2,n-1 m is called r + 1 in the text.

i=imaxloc(abs(a(m:n,m-1)))+m-1 Find the pivot.
x=a(i,m-1)
if (i /= m) then Interchange rows and columns.

call swap(a(i,m-1:n),a(m,m-1:n))
call swap(a(:,i),a(:,m))

end if
if (x /= 0.0) then Carry out the elimination.

y(m+1:n)=a(m+1:n,m-1)/x
a(m+1:n,m-1)=y(m+1:n)
a(m+1:n,m:n)=a(m+1:n,m:n)-outerprod(y(m+1:n),a(m,m:n))
a(:,m)=a(:,m)+matmul(a(:,m+1:n),y(m+1:n))

end if
end do
END SUBROUTINE elmhes

f90
y(m+1:n)=... If the four lines of code starting here were all coded for a
serial machine in a single do-loop starting withdo i=m+1,n (see Volume
1), it would pay to test whethery was zero because the next three lines

could then be skipped for that value ofi. There is no convenient way to do this
here, even with awhere, since the shape of the arrays on each of the three lines is
different. For a parallel machine it is probably best just to do a few unnecessary
multiplies and skip the test for zero values ofy.

⋆ ⋆ ⋆

1232 Chapter B11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE hqr(a,wr,wi)
USE nrtype; USE nrutil, ONLY : assert_eq,diagadd,nrerror,upper_triangle
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: wr,wi
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: a

Finds all eigenvalues of an N × N upper Hessenberg matrix a. On input a can be exactly
as output from elmhes §11.5; on output it is destroyed. The real and imaginary parts of
the N eigenvalues are returned in wr and wi, respectively.

INTEGER(I4B) :: i,its,k,l,m,n,nn,mnnk
REAL(SP) :: anorm,p,q,r,s,t,u,v,w,x,y,z
REAL(SP), DIMENSION(size(a,1)) :: pp
n=assert_eq(size(a,1),size(a,2),size(wr),size(wi),’hqr’)
anorm=sum(abs(a),mask=upper_triangle(n,n,extra=2))

Compute matrix norm for possible use in locating single small subdiagonal element.
nn=n
t=0.0 Gets changed only by an exceptional shift.
do Begin search for next eigenvalue: “Do while

nn >= 1”.if (nn < 1) exit
its=0
iterate: do Begin iteration.

do l=nn,2,-1 Look for single small subdiagonal element.
s=abs(a(l-1,l-1))+abs(a(l,l))
if (s == 0.0) s=anorm
if (abs(a(l,l-1))+s == s) exit

end do
x=a(nn,nn)
if (l == nn) then One root found.

wr(nn)=x+t
wi(nn)=0.0
nn=nn-1
exit iterate Go back for next eigenvalue.

end if
y=a(nn-1,nn-1)
w=a(nn,nn-1)*a(nn-1,nn)
if (l == nn-1) then Two roots found . . .

p=0.5_sp*(y-x)
q=p**2+w
z=sqrt(abs(q))
x=x+t
if (q >= 0.0) then . . . a real pair . . .

z=p+sign(z,p)
wr(nn)=x+z
wr(nn-1)=wr(nn)
if (z /= 0.0) wr(nn)=x-w/z
wi(nn)=0.0
wi(nn-1)=0.0

else . . . a complex pair.
wr(nn)=x+p
wr(nn-1)=wr(nn)
wi(nn)=z
wi(nn-1)=-z

end if
nn=nn-2
exit iterate Go back for next eigenvalue.

end if
No roots found. Continue iteration.

if (its == 30) call nrerror(’too many iterations in hqr’)
if (its == 10 .or. its == 20) then Form exceptional shift.

t=t+x
call diagadd(a(1:nn,1:nn),-x)
s=abs(a(nn,nn-1))+abs(a(nn-1,nn-2))
x=0.75_sp*s
y=x
w=-0.4375_sp*s**2

Chapter B11. Eigensystems 1233

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end if
its=its+1
do m=nn-2,l,-1 Form shift and then look for 2 consecu-

tive small subdiagonal elements.z=a(m,m)
r=x-z
s=y-z
p=(r*s-w)/a(m+1,m)+a(m,m+1) Equation (11.6.23).
q=a(m+1,m+1)-z-r-s
r=a(m+2,m+1)
s=abs(p)+abs(q)+abs(r) Scale to prevent overflow or underflow.
p=p/s
q=q/s
r=r/s
if (m == l) exit
u=abs(a(m,m-1))*(abs(q)+abs(r))
v=abs(p)*(abs(a(m-1,m-1))+abs(z)+abs(a(m+1,m+1)))
if (u+v == v) exit Equation (11.6.26).

end do
do i=m+2,nn

a(i,i-2)=0.0
if (i /= m+2) a(i,i-3)=0.0

end do
do k=m,nn-1 Double QR step on rows l to nn and

columns m to nn.if (k /= m) then
p=a(k,k-1) Begin setup of Householder vector.
q=a(k+1,k-1)
r=0.0
if (k /= nn-1) r=a(k+2,k-1)
x=abs(p)+abs(q)+abs(r)
if (x /= 0.0) then

p=p/x Scale to prevent overflow or underflow.
q=q/x
r=r/x

end if
end if
s=sign(sqrt(p**2+q**2+r**2),p)
if (s /= 0.0) then

if (k == m) then
if (l /= m) a(k,k-1)=-a(k,k-1)

else
a(k,k-1)=-s*x

end if
p=p+s Equations (11.6.24).
x=p/s
y=q/s
z=r/s
q=q/p
r=r/p Ready for row modification.
pp(k:nn)=a(k,k:nn)+q*a(k+1,k:nn)
if (k /= nn-1) then

pp(k:nn)=pp(k:nn)+r*a(k+2,k:nn)
a(k+2,k:nn)=a(k+2,k:nn)-pp(k:nn)*z

end if
a(k+1,k:nn)=a(k+1,k:nn)-pp(k:nn)*y
a(k,k:nn)=a(k,k:nn)-pp(k:nn)*x
mnnk=min(nn,k+3) Column modification.
pp(l:mnnk)=x*a(l:mnnk,k)+y*a(l:mnnk,k+1)
if (k /= nn-1) then

pp(l:mnnk)=pp(l:mnnk)+z*a(l:mnnk,k+2)
a(l:mnnk,k+2)=a(l:mnnk,k+2)-pp(l:mnnk)*r

end if
a(l:mnnk,k+1)=a(l:mnnk,k+1)-pp(l:mnnk)*q
a(l:mnnk,k)=a(l:mnnk,k)-pp(l:mnnk)

end if

1234 Chapter B11. Eigensystems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
end do iterate Go back for next iteration on current eigen-

value.end do
END SUBROUTINE hqr

f90
anorm=sum(abs(a),mask=upper_triangle(n,n,extra=2) See the discussion
of upper triangleafterjacobi on p. 1226. Settingextra=2 here picks
out the upper Hessenberg part of the matrix.

iterate: do We use a named loop to improve the readability and structuring
of the routine. The if-blocks that test for one or two roots end withexit iterate,
transferring control back to the outermost loop and thus starting a search for the
next root.

call diagadd... The routines that operate on the diagonal of a matrix are
collected innrutil partly so you can write clear code and partly in the hope that
compiler writers will provide parallel library routines. Fortran 90 does not provide
convenient parallel access to the diagonal of a matrix.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.6 and references therein. [1]

Sorensen, D.C., and Tang, P.T.P. 1991, SIAM Journal on Numerical Analysis, vol. 28, pp. 1752–
1775. [2]

Lo, S.-S., Philippe, B., and Sameh, A. 1987, SIAM Journal on Scientific and Statistical Computing,
vol. 8, pp. s155–s165. [3]

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B12. Fast Fourier Transform
The algorithms underlying the parallel routines in this chapter are described in

§22.4. As described there, the basic building block is a routine for simultaneously
taking the FFT of each row of a two-dimensional matrix:

SUBROUTINE fourrow_sp(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces each row (constant first index) of data(1:M,1:N) by its discrete Fourier trans-
form (transform on second index), if isign is input as 1; or replaces each row of data
by N times its inverse discrete Fourier transform, if isign is input as −1. N must be an
integer power of 2. Parallelism is M -fold on the first index of data.

INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,1)) :: temp
COMPLEX(DPC) :: w,wp Double precision for the trigonometric recurrences.
COMPLEX(SPC) :: ws
n=size(data,2)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in fourrow_sp’)
n2=n/2
j=n2
This is the bit-reversal section of the routine.

do i=1,n-2
if (j > i) call swap(data(:,j+1),data(:,i+1))
m=n2
do

if (m < 2 .or. j < m) exit
j=j-m
m=m/2

end do
j=j+m

end do
mmax=1
Here begins the Danielson-Lanczos section of the routine.

do Outer loop executed log2 N times.
if (n <= mmax) exit
istep=2*mmax
theta=PI_D/(isign*mmax) Initialize for the trigonometric recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do m=1,mmax Here are the two nested inner loops.

ws=w
do i=m,n,istep

j=i+mmax
temp=ws*data(:,j) This is the Danielson-Lanczos formula.
data(:,j)=data(:,i)-temp
data(:,i)=data(:,i)+temp

end do
w=w*wp+w Trigonometric recurrence.

end do
mmax=istep

1235

1236 Chapter B12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
END SUBROUTINE fourrow_sp

f90
call assert(iand(n,n-1)==0 ... All the Fourier routines in this chapter
require the dimensionN of the data to be a power of 2. This is easily tested
for by AND’ing N andN − 1: N should have the binary representation

10000 . . . , in which caseN − 1 = 01111

SUBROUTINE fourrow_dp(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(DPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(DPC), DIMENSION(size(data,1)) :: temp
COMPLEX(DPC) :: w,wp
COMPLEX(DPC) :: ws
n=size(data,2)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in fourrow_dp’)
n2=n/2
j=n2
do i=1,n-2

if (j > i) call swap(data(:,j+1),data(:,i+1))
m=n2
do

if (m < 2 .or. j < m) exit
j=j-m
m=m/2

end do
j=j+m

end do
mmax=1
do

if (n <= mmax) exit
istep=2*mmax
theta=PI_D/(isign*mmax)
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do m=1,mmax

ws=w
do i=m,n,istep

j=i+mmax
temp=ws*data(:,j)
data(:,j)=data(:,i)-temp
data(:,i)=data(:,i)+temp

end do
w=w*wp+w

end do
mmax=istep

end do
END SUBROUTINE fourrow_dp

SUBROUTINE fourrow_3d(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

If isign is input as 1, replaces each third-index section (constant first and second indices)
of data(1:L,1:M,1:N) by its discrete Fourier transform (transform on third index); or

Chapter B12. Fast Fourier Transform 1237

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

replaces each third-index section of data by N times its inverse discrete Fourier transform,
if isign is input as −1. N must be an integer power of 2. Parallelism is L× M -fold on
the first and second indices of data.

INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,1),size(data,2)) :: temp
COMPLEX(DPC) :: w,wp Double precision for the trigonometric recurrences.
COMPLEX(SPC) :: ws
n=size(data,3)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in fourrow_3d’)
n2=n/2
j=n2
This is the bit-reversal section of the routine.

do i=1,n-2
if (j > i) call swap(data(:,:,j+1),data(:,:,i+1))
m=n2
do

if (m < 2 .or. j < m) exit
j=j-m
m=m/2

end do
j=j+m

end do
mmax=1
Here begins the Danielson-Lanczos section of the routine.

do Outer loop executed log2 N times.
if (n <= mmax) exit
istep=2*mmax
theta=PI_D/(isign*mmax) Initialize for the trigonometric recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do m=1,mmax Here are the two nested inner loops.

ws=w
do i=m,n,istep

j=i+mmax
temp=ws*data(:,:,j) This is the Danielson-Lanczos formula.
data(:,:,j)=data(:,:,i)-temp
data(:,:,i)=data(:,:,i)+temp

end do
w=w*wp+w Trigonometric recurrence.

end do
mmax=istep

end do
END SUBROUTINE fourrow_3d

⋆ ⋆ ⋆

Exactly as in the preceding routines, we can take the FFT of each
columnof a two-dimensional matrix, and for eachfirst-indexsection of
a three-dimensional array.

SUBROUTINE fourcol(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces each column (constant second index) of data(1:N,1:M) by its discrete Fourier
transform (transform on first index), if isign is input as 1; or replaces each row of data

1238 Chapter B12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

by N times its inverse discrete Fourier transform, if isign is input as −1. N must be an
integer power of 2. Parallelism is M -fold on the second index of data.

INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,2)) :: temp
COMPLEX(DPC) :: w,wp Double precision for the trigonometric recurrences.
COMPLEX(SPC) :: ws
n=size(data,1)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in fourcol’)
n2=n/2
j=n2
This is the bit-reversal section of the routine.

do i=1,n-2
if (j > i) call swap(data(j+1,:),data(i+1,:))
m=n2
do

if (m < 2 .or. j < m) exit
j=j-m
m=m/2

end do
j=j+m

end do
mmax=1
Here begins the Danielson-Lanczos section of the routine.

do Outer loop executed log2 N times.
if (n <= mmax) exit
istep=2*mmax
theta=PI_D/(isign*mmax) Initialize for the trigonometric recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do m=1,mmax Here are the two nested inner loops.

ws=w
do i=m,n,istep

j=i+mmax
temp=ws*data(j,:) This is the Danielson-Lanczos formula.
data(j,:)=data(i,:)-temp
data(i,:)=data(i,:)+temp

end do
w=w*wp+w Trigonometric recurrence.

end do
mmax=istep

end do
END SUBROUTINE fourcol

SUBROUTINE fourcol_3d(data,isign)
USE nrtype; USE nrutil, ONLY : assert,swap
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

If isign is input as 1, replaces each first-index section (constant second and third indices)
of data(1:N,1:M,1:L) by its discrete Fourier transform (transform on first index); or
replaces each first-index section of data by N times its inverse discrete Fourier transform,
if isign is input as −1. N must be an integer power of 2. Parallelism is M × L-fold on
the second and third indices of data.

INTEGER(I4B) :: n,i,istep,j,m,mmax,n2
REAL(DP) :: theta
COMPLEX(SPC), DIMENSION(size(data,2),size(data,3)) :: temp
COMPLEX(DPC) :: w,wp Double precision for the trigonometric recurrences.
COMPLEX(SPC) :: ws
n=size(data,1)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in fourcol_3d’)
n2=n/2

Chapter B12. Fast Fourier Transform 1239

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

j=n2
This is the bit-reversal section of the routine.

do i=1,n-2
if (j > i) call swap(data(j+1,:,:),data(i+1,:,:))
m=n2
do

if (m < 2 .or. j < m) exit
j=j-m
m=m/2

end do
j=j+m

end do
mmax=1
Here begins the Danielson-Lanczos section of the routine.

do Outer loop executed log2 N times.
if (n <= mmax) exit
istep=2*mmax
theta=PI_D/(isign*mmax) Initialize for the trigonometric recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do m=1,mmax Here are the two nested inner loops.

ws=w
do i=m,n,istep

j=i+mmax
temp=ws*data(j,:,:) This is the Danielson-Lanczos formula.
data(j,:,:)=data(i,:,:)-temp
data(i,:,:)=data(i,:,:)+temp

end do
w=w*wp+w Trigonometric recurrence.

end do
mmax=istep

end do
END SUBROUTINE fourcol_3d

⋆ ⋆ ⋆

Here now are implementations of the method of§22.4 for the FFT of one-
dimensional single- and double-precision complex arrays:

SUBROUTINE four1_sp(data,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : fourrow
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a complex array data by its discrete Fourier transform, if isign is input as 1;
or replaces data by its inverse discrete Fourier transform times the size of data, if isign
is input as −1. The size of data must be an integer power of 2. Parallelism is achieved
by internally reshaping the input array to two dimensions. (Use this version if fourrow is
faster than fourcol on your machine.)

COMPLEX(SPC), DIMENSION(:,:), ALLOCATABLE :: dat,temp
COMPLEX(DPC), DIMENSION(:), ALLOCATABLE :: w,wp
REAL(DP), DIMENSION(:), ALLOCATABLE :: theta
INTEGER(I4B) :: n,m1,m2,j
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in four1_sp’)
Find dimensions as close to square as possible, allocate space, and reshape the input array.

m1=2**ceiling(0.5_sp*log(real(n,sp))/0.693147_sp)
m2=n/m1
allocate(dat(m1,m2),theta(m1),w(m1),wp(m1),temp(m2,m1))
dat=reshape(data,shape(dat))
call fourrow(dat,isign) Transform on second index.

1240 Chapter B12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

theta=arth(0,isign,m1)*TWOPI_D/n Set up recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do j=2,m2 Multiply by the extra phase factor.

w=w*wp+w
dat(:,j)=dat(:,j)*w

end do
temp=transpose(dat) Transpose, and transform on (original) first in-

dex.call fourrow(temp,isign)
data=reshape(temp,shape(data)) Reshape the result back to one dimension.
deallocate(dat,w,wp,theta,temp)
END SUBROUTINE four1_sp

SUBROUTINE four1_dp(data,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : fourrow
IMPLICIT NONE
COMPLEX(DPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(DPC), DIMENSION(:,:), ALLOCATABLE :: dat,temp
COMPLEX(DPC), DIMENSION(:), ALLOCATABLE :: w,wp
REAL(DP), DIMENSION(:), ALLOCATABLE :: theta
INTEGER(I4B) :: n,m1,m2,j
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in four1_dp’)
m1=2**ceiling(0.5_sp*log(real(n,sp))/0.693147_sp)
m2=n/m1
allocate(dat(m1,m2),theta(m1),w(m1),wp(m1),temp(m2,m1))
dat=reshape(data,shape(dat))
call fourrow(dat,isign)
theta=arth(0,isign,m1)*TWOPI_D/n
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do j=2,m2

w=w*wp+w
dat(:,j)=dat(:,j)*w

end do
temp=transpose(dat)
call fourrow(temp,isign)
data=reshape(temp,shape(data))
deallocate(dat,w,wp,theta,temp)
END SUBROUTINE four1_dp

The above routines usefourrow exclusively, on the assumption that it is
faster than its siblingfourcol. When that is the case (as we typically find), it is
likely that four1 sp is also faster than Volume 1’s scalarfour1. The reason, on
scalar machines, is thatfourrow’s parallelism is taking better advantage of cache
memory locality.

If fourrow isnotfaster thanfourcol on your machine, then you should instead
try the following alternative FFT version that usesfourcol only.

SUBROUTINE four1_alt(data,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
USE nr, ONLY : fourcol
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a complex array data by its discrete Fourier transform, if isign is input as 1; or
replaces data by its inverse discrete Fourier transform times the size of data, if isign is

Chapter B12. Fast Fourier Transform 1241

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

input as −1. The size of data must be an integer power of 2. Parallelism is achieved by
internally reshaping the input array to two dimensions. (Use this version only if fourcol
is faster than fourrow on your machine.)

COMPLEX(SPC), DIMENSION(:,:), ALLOCATABLE :: dat,temp
COMPLEX(DPC), DIMENSION(:), ALLOCATABLE :: w,wp
REAL(DP), DIMENSION(:), ALLOCATABLE :: theta
INTEGER(I4B) :: n,m1,m2,j
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in four1_alt’)
Find dimensions as close to square as possible, allocate space, and reshape the input array.

m1=2**ceiling(0.5_sp*log(real(n,sp))/0.693147_sp)
m2=n/m1
allocate(dat(m1,m2),theta(m1),w(m1),wp(m1),temp(m2,m1))
dat=reshape(data,shape(dat))
temp=transpose(dat) Transpose and transform on (original) second in-

dex.call fourcol(temp,isign)
theta=arth(0,isign,m1)*TWOPI_D/n Set up recurrence.
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
w=cmplx(1.0_dp,0.0_dp,kind=dpc)
do j=2,m2 Multiply by the extra phase factor.

w=w*wp+w
temp(j,:)=temp(j,:)*w

end do
dat=transpose(temp) Transpose, and transform on (original) first in-

dex.call fourcol(dat,isign)
temp=transpose(dat) Transpose and then reshape the result back to

one dimension.data=reshape(temp,shape(data))
deallocate(dat,w,wp,theta,temp)
END SUBROUTINE four1_alt

⋆ ⋆ ⋆

With all the machinery offourrow andfourcol, two-dimensional FFTs are
extremely straightforward. Again there is an alternative version provided in case
your hardware favorsfourcol (which would be, we think, unusual).

SUBROUTINE four2(data,isign)
USE nrtype
USE nr, ONLY : fourrow
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a 2-d complex array data by its discrete 2-d Fourier transform, if isign is input
as 1; or replaces data by its inverse 2-d discrete Fourier transform times the product of its
two sizes, if isign is input as −1. Both of data’s sizes must be integer powers of 2 (this
is checked for in fourrow). Parallelism is by use of fourrow.

COMPLEX(SPC), DIMENSION(size(data,2),size(data,1)) :: temp
call fourrow(data,isign) Transform in second dimension.
temp=transpose(data) Tranpose.
call fourrow(temp,isign) Transform in (original) first dimension.
data=transpose(temp) Transpose into data.
END SUBROUTINE four2

1242 Chapter B12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE four2_alt(data,isign)
USE nrtype
USE nr, ONLY : fourcol
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a 2-d complex array data by its discrete 2-d Fourier transform, if isign is input
as 1; or replaces data by its inverse 2-d discrete Fourier transform times the product of
its two sizes, if isign is input as −1. Both of data’s sizes must be integer powers of 2
(this is checked for in fourcol). Parallelism is by use of fourcol. (Use this version only
if fourcol is faster than fourrow on your machine.)

COMPLEX(SPC), DIMENSION(size(data,2),size(data,1)) :: temp
temp=transpose(data) Tranpose.
call fourcol(temp,isign) Transform in (original) second dimension.
data=transpose(temp) Transpose.
call fourcol(data,isign) Transform in (original) first dimension.
END SUBROUTINE four2_alt

⋆ ⋆ ⋆

Most of the remaining routines in this chapter simply call one or another of the
above FFT routines, with a small amount of auxiliary computation, so they are fairly
straightforward conversions from their Volume 1 counterparts.

SUBROUTINE twofft(data1,data2,fft1,fft2)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : four1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
COMPLEX(SPC), DIMENSION(:), INTENT(OUT) :: fft1,fft2

Given two real input arrays data1 and data2 of length N , this routine calls four1 and
returns two complex output arrays, fft1 and fft2, each of complex length N , that contain
the discrete Fourier transforms of the respective data arrays. N must be an integer power
of 2.

INTEGER(I4B) :: n,n2
COMPLEX(SPC), PARAMETER :: C1=(0.5_sp,0.0_sp), C2=(0.0_sp,-0.5_sp)
COMPLEX, DIMENSION(size(data1)/2+1) :: h1,h2
n=assert_eq(size(data1),size(data2),size(fft1),size(fft2),’twofft’)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in twofft’)
fft1=cmplx(data1,data2,kind=spc) Pack the two real arrays into one complex array.
call four1(fft1,1) Transform the complex array.
fft2(1)=cmplx(aimag(fft1(1)),0.0_sp,kind=spc)
fft1(1)=cmplx(real(fft1(1)),0.0_sp,kind=spc)
n2=n/2+1
h1(2:n2)=C1*(fft1(2:n2)+conjg(fft1(n:n2:-1))) Use symmetries to separate the

two transforms.h2(2:n2)=C2*(fft1(2:n2)-conjg(fft1(n:n2:-1)))
fft1(2:n2)=h1(2:n2) Ship them out in two complex arrays.
fft1(n:n2:-1)=conjg(h1(2:n2))
fft2(2:n2)=h2(2:n2)
fft2(n:n2:-1)=conjg(h2(2:n2))
END SUBROUTINE twofft

⋆ ⋆ ⋆

Chapter B12. Fast Fourier Transform 1243

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE realft_sp(data,isign,zdata)
USE nrtype; USE nrutil, ONLY : assert,assert_eq,zroots_unity
USE nr, ONLY : four1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(SPC), DIMENSION(:), OPTIONAL, TARGET :: zdata

When isign = 1, calculates the Fourier transform of a set of N real-valued data points,
input in the array data. If the optional argument zdata is not present, the data are replaced
by the positive frequency half of its complex Fourier transform. The real-valued first and
last components of the complex transform are returned as elements data(1) and data(2),
respectively. If the complex array zdata of length N/2 is present, data is unchanged and
the transform is returned in zdata. N must be a power of 2. If isign = −1, this routine
calculates the inverse transform of a complex data array if it is the transform of real data.
(Result in this case must be multiplied by 2/N .) The data can be supplied either in data,
with zdata absent, or in zdata.

INTEGER(I4B) :: n,ndum,nh,nq
COMPLEX(SPC), DIMENSION(size(data)/4) :: w
COMPLEX(SPC), DIMENSION(size(data)/4-1) :: h1,h2
COMPLEX(SPC), DIMENSION(:), POINTER :: cdata Used for internal complex computa-

tions.COMPLEX(SPC) :: z
REAL(SP) :: c1=0.5_sp,c2
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in realft_sp’)
nh=n/2
nq=n/4
if (present(zdata)) then

ndum=assert_eq(n/2,size(zdata),’realft_sp’)
cdata=>zdata Use zdata as cdata.
if (isign == 1) cdata=cmplx(data(1:n-1:2),data(2:n:2),kind=spc)

else
allocate(cdata(n/2)) Have to allocate storage ourselves.
cdata=cmplx(data(1:n-1:2),data(2:n:2),kind=spc)

end if
if (isign == 1) then

c2=-0.5_sp
call four1(cdata,+1) The forward transform is here.

else Otherwise set up for an inverse trans-
form.c2=0.5_sp

end if
w=zroots_unity(sign(n,isign),n/4)
w=cmplx(-aimag(w),real(w),kind=spc)
h1=c1*(cdata(2:nq)+conjg(cdata(nh:nq+2:-1))) The two separate transforms are sep-

arated out of cdata.h2=c2*(cdata(2:nq)-conjg(cdata(nh:nq+2:-1)))
Next they are recombined to form the true transform of the original real data:

cdata(2:nq)=h1+w(2:nq)*h2
cdata(nh:nq+2:-1)=conjg(h1-w(2:nq)*h2)
z=cdata(1) Squeeze the first and last data to-

gether to get them all within the
original array.

if (isign == 1) then
cdata(1)=cmplx(real(z)+aimag(z),real(z)-aimag(z),kind=spc)

else
cdata(1)=cmplx(c1*(real(z)+aimag(z)),c1*(real(z)-aimag(z)),kind=spc)
call four1(cdata,-1) This is the inverse transform for the

case isign=-1.end if
if (present(zdata)) then Ship out answer in data if required.

if (isign /= 1) then
data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)

end if
else

data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)
deallocate(cdata)

end if

1244 Chapter B12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END SUBROUTINE realft_sp

SUBROUTINE realft_dp(data,isign,zdata)
USE nrtype; USE nrutil, ONLY : assert,assert_eq,zroots_unity
USE nr, ONLY : four1
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign
COMPLEX(DPC), DIMENSION(:), OPTIONAL, TARGET :: zdata
INTEGER(I4B) :: n,ndum,nh,nq
COMPLEX(DPC), DIMENSION(size(data)/4) :: w
COMPLEX(DPC), DIMENSION(size(data)/4-1) :: h1,h2
COMPLEX(DPC), DIMENSION(:), POINTER :: cdata
COMPLEX(DPC) :: z
REAL(DP) :: c1=0.5_dp,c2
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in realft_dp’)
nh=n/2
nq=n/4
if (present(zdata)) then

ndum=assert_eq(n/2,size(zdata),’realft_dp’)
cdata=>zdata
if (isign == 1) cdata=cmplx(data(1:n-1:2),data(2:n:2),kind=spc)

else
allocate(cdata(n/2))
cdata=cmplx(data(1:n-1:2),data(2:n:2),kind=spc)

end if
if (isign == 1) then

c2=-0.5_dp
call four1(cdata,+1)

else
c2=0.5_dp

end if
w=zroots_unity(sign(n,isign),n/4)
w=cmplx(-aimag(w),real(w),kind=dpc)
h1=c1*(cdata(2:nq)+conjg(cdata(nh:nq+2:-1)))
h2=c2*(cdata(2:nq)-conjg(cdata(nh:nq+2:-1)))
cdata(2:nq)=h1+w(2:nq)*h2
cdata(nh:nq+2:-1)=conjg(h1-w(2:nq)*h2)
z=cdata(1)
if (isign == 1) then

cdata(1)=cmplx(real(z)+aimag(z),real(z)-aimag(z),kind=dpc)
else

cdata(1)=cmplx(c1*(real(z)+aimag(z)),c1*(real(z)-aimag(z)),kind=dpc)
call four1(cdata,-1)

end if
if (present(zdata)) then

if (isign /= 1) then
data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)

end if
else

data(1:n-1:2)=real(cdata)
data(2:n:2)=aimag(cdata)
deallocate(cdata)

end if
END SUBROUTINE realft_dp

⋆ ⋆ ⋆

Chapter B12. Fast Fourier Transform 1245

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE sinft(y)
USE nrtype; USE nrutil, ONLY : assert,cumsum,zroots_unity
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y

Calculates the sine transform of a set of N real-valued data points stored in array y. The
number N must be a power of 2. On exit y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/N .

REAL(SP), DIMENSION(size(y)/2+1) :: wi
REAL(SP), DIMENSION(size(y)/2) :: y1,y2
INTEGER(I4B) :: n,nh
n=size(y)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in sinft’)
nh=n/2
wi=aimag(zroots_unity(n+n,nh+1)) Calculate the sine for the auxiliary array.
y(1)=0.0
y1=wi(2:nh+1)*(y(2:nh+1)+y(n:nh+1:-1))
Construct the two pieces of the auxiliary array.

y2=0.5_sp*(y(2:nh+1)-y(n:nh+1:-1)) Put them together to make the auxiliary ar-
ray.y(2:nh+1)=y1+y2

y(n:nh+1:-1)=y1-y2
call realft(y,+1) Transform the auxiliary array.
y(1)=0.5_sp*y(1) Initialize the sum used for odd terms.
y(2)=0.0
y1=cumsum(y(1:n-1:2)) Odd terms are determined by this running sum.
y(1:n-1:2)=y(2:n:2) Even terms in the transform are determined di-

rectly.y(2:n:2)=y1
END SUBROUTINE sinft

SUBROUTINE cosft1(y)
USE nrtype; USE nrutil, ONLY : assert,cumsum,zroots_unity
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y

Calculates the cosine transform of a set ofN+1 real-valued data points y. The transformed
data replace the original data in array y. N must be a power of 2. This program, without
changes, also calculates the inverse cosine transform, but in this case the output array
should be multiplied by 2/N .

COMPLEX(SPC), DIMENSION((size(y)-1)/2) :: w
REAL(SP), DIMENSION((size(y)-1)/2-1) :: y1,y2
REAL(SP) :: summ
INTEGER(I4B) :: n,nh
n=size(y)-1
call assert(iand(n,n-1)==0, ’n must be a power of 2 in cosft1’)
nh=n/2
w=zroots_unity(n+n,nh)
summ=0.5_sp*(y(1)-y(n+1))
y(1)=0.5_sp*(y(1)+y(n+1))
y1=0.5_sp*(y(2:nh)+y(n:nh+2:-1)) Construct the two pieces of the auxiliary array.
y2=y(2:nh)-y(n:nh+2:-1)
summ=summ+sum(real(w(2:nh))*y2) Carry along this sum for later use in unfolding

the transform.y2=y2*aimag(w(2:nh))
y(2:nh)=y1-y2 Calculate the auxiliary function.
y(n:nh+2:-1)=y1+y2
call realft(y(1:n),1) Calculate the transform of the auxiliary function.
y(n+1)=y(2)
y(2)=summ summ is the value of F1 in equation (12.3.21).
y(2:n:2)=cumsum(y(2:n:2)) Equation (12.3.20).
END SUBROUTINE cosft1

1246 Chapter B12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE cosft2(y,isign)
USE nrtype; USE nrutil, ONLY : assert,cumsum,zroots_unity
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
INTEGER(I4B), INTENT(IN) :: isign

Calculates the “staggered” cosine transform of a set of N real-valued data points y. The
transformed data replace the original data in array y. N must be a power of 2. Set isign
to +1 for a transform, and to −1 for an inverse transform. For an inverse transform, the
output array should be multiplied by 2/N .

COMPLEX(SPC), DIMENSION(size(y)) :: w
REAL(SP), DIMENSION(size(y)/2) :: y1,y2
REAL(SP) :: ytemp
INTEGER(I4B) :: n,nh
n=size(y)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in cosft2’)
nh=n/2
w=zroots_unity(4*n,n)
if (isign == 1) then Forward transform.

y1=0.5_sp*(y(1:nh)+y(n:nh+1:-1)) Calculate the auxiliary function.
y2=aimag(w(2:n:2))*(y(1:nh)-y(n:nh+1:-1))
y(1:nh)=y1+y2
y(n:nh+1:-1)=y1-y2
call realft(y,1) Calculate transform of the auxiliary function.
y1(1:nh-1)=y(3:n-1:2)*real(w(3:n-1:2)) & Even terms.

-y(4:n:2)*aimag(w(3:n-1:2))
y2(1:nh-1)=y(4:n:2)*real(w(3:n-1:2)) &

+y(3:n-1:2)*aimag(w(3:n-1:2))
y(3:n-1:2)=y1(1:nh-1)
y(4:n:2)=y2(1:nh-1)
ytemp=0.5_sp*y(2) Initialize recurrence for odd terms with 1

2
RN/2.

y(n-2:2:-2)=cumsum(y(n:4:-2),ytemp) Recurrence for odd terms.
y(n)=ytemp

else if (isign == -1) then Inverse transform.
ytemp=y(n)
y(4:n:2)=y(2:n-2:2)-y(4:n:2) Form difference of odd terms.
y(2)=2.0_sp*ytemp
y1(1:nh-1)=y(3:n-1:2)*real(w(3:n-1:2)) & Calculate Rk and Ik .

+y(4:n:2)*aimag(w(3:n-1:2))
y2(1:nh-1)=y(4:n:2)*real(w(3:n-1:2)) &

-y(3:n-1:2)*aimag(w(3:n-1:2))
y(3:n-1:2)=y1(1:nh-1)
y(4:n:2)=y2(1:nh-1)
call realft(y,-1)
y1=y(1:nh)+y(n:nh+1:-1) Invert auxiliary array.
y2=(0.5_sp/aimag(w(2:n:2)))*(y(1:nh)-y(n:nh+1:-1))
y(1:nh)=0.5_sp*(y1+y2)
y(n:nh+1:-1)=0.5_sp*(y1-y2)

end if
END SUBROUTINE cosft2

⋆ ⋆ ⋆

SUBROUTINE four3(data,isign)
USE nrtype
USE nr, ONLY : fourrow_3d
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a 3-d complex array data by its discrete 3-d Fourier transform, if isign is input
as 1; or replaces data by its inverse 3-d discrete Fourier transform times the product of its

Chapter B12. Fast Fourier Transform 1247

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

three sizes, if isign is input as −1. All three of data’s sizes must be integer powers of 2
(this is checked for in fourrow 3d). Parallelism is by use of fourrow 3d.

COMPLEX(SPC), DIMENSION(:,:,:), ALLOCATABLE :: dat2,dat3
call fourrow_3d(data,isign) Transform in third dimension.
allocate(dat2(size(data,2),size(data,3),size(data,1)))
dat2=reshape(data,shape=shape(dat2),order=(/3,1,2/)) Transpose.
call fourrow_3d(dat2,isign) Transform in (original) first dimension.
allocate(dat3(size(data,3),size(data,1),size(data,2)))
dat3=reshape(dat2,shape=shape(dat3),order=(/3,1,2/)) Transpose.
deallocate(dat2)
call fourrow_3d(dat3,isign) Transform in (original) second dimension.
data=reshape(dat3,shape=shape(data),order=(/3,1,2/)) Transpose back to output or-

der.deallocate(dat3)
END SUBROUTINE four3

f90
The reshape intrinsic, used with anorder= parameter, is the multidi-
mensional generalization of the two-dimensionaltranspose operation.
The line

dat2=reshape(data,shape=shape(dat2),order=(/3,1,2/))

is equivalent to the do-loop

do j=1,size(data,1)
dat2(:,:,j)=data(j,:,:)

end do

Incidentally, we have found some Fortran 90 compilers that (for scalar machines) are
significantlyslowerexecuting thereshape than executing the equivalent do-loop.
This, of course, shouldn’t happen, since thereshape basicallyisan implicit do-loop.
If you find such inefficient behavior on your compiler, you should report it as a
bug to your compiler vendor! (Only thus will Fortran 90 compilers be brought to
mature states of efficiency.)

SUBROUTINE four3_alt(data,isign)
USE nrtype
USE nr, ONLY : fourcol_3d
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a 3-d complex array data by its discrete 2-d Fourier transform, if isign is input
as 1; or replaces data by its inverse 3-d discrete Fourier transform times the product of
its three sizes, if isign is input as −1. All three of data’s sizes must be integer powers
of 2 (this is checked for in fourcol 3d). Parallelism is by use of fourcol 3d. (Use this
version only if fourcol 3d is faster than fourrow 3d on your machine.)

COMPLEX(SPC), DIMENSION(:,:,:), ALLOCATABLE :: dat2,dat3
call fourcol_3d(data,isign) Transform in first dimension.
allocate(dat2(size(data,2),size(data,3),size(data,1)))
dat2=reshape(data,shape=shape(dat2),order=(/3,1,2/)) Transpose.
call fourcol_3d(dat2,isign) Transform in (original) second dimension.
allocate(dat3(size(data,3),size(data,1),size(data,2)))
dat3=reshape(dat2,shape=shape(dat3),order=(/3,1,2/)) Transpose.
deallocate(dat2)
call fourcol_3d(dat3,isign) Transform in (original) third dimension.
data=reshape(dat3,shape=shape(data),order=(/3,1,2/)) Transpose back to output or-

der.deallocate(dat3)
END SUBROUTINE four3_alt

1248 Chapter B12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Note thatfour3 usesfourrow 3d, the three-dimensional counterpart
of fourrow, whilefour3 alt usesfourcol 3d, the three-dimensional
counterpart offourcol. You may want to time these programs to see

which is faster on your machine.

⋆ ⋆ ⋆

f90
In Volume 1, a single routine namedrlft3 was able to serve both as a
three-dimensional real FFT, and as a two-dimensional real FFT. The trick
is that the Fortran 77 version doesn’t care whether the input arraydata

is dimensioned as two- or three-dimensional. Fortran 90 is not so indifferent, and
better programming practice is to have two separate versions of the algorithm:

SUBROUTINE rlft2(data,spec,speq,isign)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : four2
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: spec
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: speq
INTEGER(I4B), INTENT(IN) :: isign

Given a two-dimensional real array data(1:M,1:N), this routine returns (for isign=1)
the complex fast Fourier transform as two complex arrays: On output, spec(1:M/2,1:N)
contains the zero and positive frequency values of the first frequency component, while
speq(1:N) contains the Nyquist critical frequency values of the first frequency component.
The second frequency components are stored for zero, positive, and negative frequencies,
in standard wrap-around order. For isign=-1, the inverse transform (times M × N/2 as
a constant multiplicative factor) is performed, with output data deriving from input spec
and speq. For inverse transforms on data not generated first by a forward transform, make
sure the complex input data array satisfies property (12.5.2). The size of all arrays must
always be integer powers of 2.

INTEGER :: i1,j1,nn1,nn2
REAL(DP) :: theta
COMPLEX(SPC) :: c1=(0.5_sp,0.0_sp),c2,h1,h2,w
COMPLEX(SPC), DIMENSION(size(data,2)-1) :: h1a,h2a
COMPLEX(DPC) :: ww,wp
nn1=assert_eq(size(data,1),2*size(spec,1),’rlft2: nn1’)
nn2=assert_eq(size(data,2),size(spec,2),size(speq),’rlft2: nn2’)
call assert(iand((/nn1,nn2/),(/nn1,nn2/)-1)==0, &

’dimensions must be powers of 2 in rlft2’)
c2=cmplx(0.0_sp,-0.5_sp*isign,kind=spc)
theta=TWOPI_D/(isign*nn1)
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=spc)
if (isign == 1) then Case of forward transform.

spec(:,:)=cmplx(data(1:nn1:2,:),data(2:nn1:2,:),kind=spc)
call four2(spec,isign) Here is where most all of the compute time

is spent.speq=spec(1,:)
end if
h1=c1*(spec(1,1)+conjg(speq(1)))
h1a=c1*(spec(1,2:nn2)+conjg(speq(nn2:2:-1)))
h2=c2*(spec(1,1)-conjg(speq(1)))
h2a=c2*(spec(1,2:nn2)-conjg(speq(nn2:2:-1)))
spec(1,1)=h1+h2
spec(1,2:nn2)=h1a+h2a
speq(1)=conjg(h1-h2)
speq(nn2:2:-1)=conjg(h1a-h2a)
ww=cmplx(1.0_dp,0.0_dp,kind=dpc) Initialize trigonometric recurrence.
do i1=2,nn1/4+1

j1=nn1/2-i1+2 Corresponding negative frequency.
ww=ww*wp+ww Do the trig recurrence.
w=ww
h1=c1*(spec(i1,1)+conjg(spec(j1,1))) Equation (12.3.5).
h1a=c1*(spec(i1,2:nn2)+conjg(spec(j1,nn2:2:-1)))

Chapter B12. Fast Fourier Transform 1249

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

h2=c2*(spec(i1,1)-conjg(spec(j1,1)))
h2a=c2*(spec(i1,2:nn2)-conjg(spec(j1,nn2:2:-1)))
spec(i1,1)=h1+w*h2
spec(i1,2:nn2)=h1a+w*h2a
spec(j1,1)=conjg(h1-w*h2)
spec(j1,nn2:2:-1)=conjg(h1a-w*h2a)

end do
if (isign == -1) then Case of reverse transform.

call four2(spec,isign)
data(1:nn1:2,:)=real(spec)
data(2:nn1:2,:)=aimag(spec)

end if
END SUBROUTINE rlft2

f90
call assert(iand((/nn1,nn2/),(/nn1,nn2/)-1)==0 ... Here an over-
loaded version ofassert that takes vector arguments is used to check
that each dimension is a power of 2. Note thatiand acts element-by-

element on an array.

SUBROUTINE rlft3(data,spec,speq,isign)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : four3
REAL(SP), DIMENSION(:,:,:), INTENT(INOUT) :: data
COMPLEX(SPC), DIMENSION(:,:,:), INTENT(INOUT) :: spec
COMPLEX(SPC), DIMENSION(:,:), INTENT(INOUT) :: speq
INTEGER(I4B), INTENT(IN) :: isign

Given a three-dimensional real array data(1:L,1:M,1:N), this routine returns (for
isign=1) the complex Fourier transform as two complex arrays: On output, the zero and
positive frequency values of the first frequency component are in spec(1:L/2,1:M,1:N),
while speq(1:M,1:N) contains the Nyquist critical frequency values of the first frequency
component. The second and third frequency components are stored for zero, positive, and
negative frequencies, in standard wrap-around order. For isign=-1, the inverse transform
(times L × M × N/2 as a constant multiplicative factor) is performed, with output data
deriving from input spec and speq. For inverse transforms on data not generated first by a
forward transform, make sure the complex input data array satisfies property (12.5.2). The
size of all arrays must always be integer powers of 2.

INTEGER :: i1,i3,j1,j3,nn1,nn2,nn3
REAL(DP) :: theta
COMPLEX(SPC) :: c1=(0.5_sp,0.0_sp),c2,h1,h2,w
COMPLEX(SPC), DIMENSION(size(data,2)-1) :: h1a,h2a
COMPLEX(DPC) :: ww,wp
c2=cmplx(0.0_sp,-0.5_sp*isign,kind=spc)
nn1=assert_eq(size(data,1),2*size(spec,1),’rlft2: nn1’)
nn2=assert_eq(size(data,2),size(spec,2),size(speq,1),’rlft2: nn2’)
nn3=assert_eq(size(data,3),size(spec,3),size(speq,2),’rlft2: nn3’)
call assert(iand((/nn1,nn2,nn3/),(/nn1,nn2,nn3/)-1)==0, &

’dimensions must be powers of 2 in rlft3’)
theta=TWOPI_D/(isign*nn1)
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
if (isign == 1) then Case of forward transform.

spec(:,:,:)=cmplx(data(1:nn1:2,:,:),data(2:nn1:2,:,:),kind=spc)
call four3(spec,isign) Here is where most all of the compute time

is spent.speq=spec(1,:,:)
end if
do i3=1,nn3

j3=1
if (i3 /= 1) j3=nn3-i3+2
h1=c1*(spec(1,1,i3)+conjg(speq(1,j3)))
h1a=c1*(spec(1,2:nn2,i3)+conjg(speq(nn2:2:-1,j3)))
h2=c2*(spec(1,1,i3)-conjg(speq(1,j3)))
h2a=c2*(spec(1,2:nn2,i3)-conjg(speq(nn2:2:-1,j3)))
spec(1,1,i3)=h1+h2
spec(1,2:nn2,i3)=h1a+h2a

1250 Chapter B12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

speq(1,j3)=conjg(h1-h2)
speq(nn2:2:-1,j3)=conjg(h1a-h2a)
ww=cmplx(1.0_dp,0.0_dp,kind=dpc) Initialize trigonometric recurrence.
do i1=2,nn1/4+1

j1=nn1/2-i1+2 Corresponding negative frequency.
ww=ww*wp+ww Do the trig recurrence.
w=ww
h1=c1*(spec(i1,1,i3)+conjg(spec(j1,1,j3))) Equation (12.3.5).
h1a=c1*(spec(i1,2:nn2,i3)+conjg(spec(j1,nn2:2:-1,j3)))
h2=c2*(spec(i1,1,i3)-conjg(spec(j1,1,j3)))
h2a=c2*(spec(i1,2:nn2,i3)-conjg(spec(j1,nn2:2:-1,j3)))
spec(i1,1,i3)=h1+w*h2
spec(i1,2:nn2,i3)=h1a+w*h2a
spec(j1,1,j3)=conjg(h1-w*h2)
spec(j1,nn2:2:-1,j3)=conjg(h1a-w*h2a)

end do
end do
if (isign == -1) then Case of reverse transform.

call four3(spec,isign)
data(1:nn1:2,:,:)=real(spec)
data(2:nn1:2,:,:)=aimag(spec)

end if
END SUBROUTINE rlft3

⋆ ⋆ ⋆

Referring back to the discussion of parallelism,§22.4, that led tofour1’s
implementation with

√
N parallelism, you might wonder whether Fortran 90 provides

sufficiently powerful high-level constructs to enable an FFT routine withN -fold
parallelism. The answer is, “It does, but you wouldn’t want to use them!” Access to
arbitrary interprocessor communication in Fortran 90 is through the mechanism of
the “vector subscript” (one-dimensional array of indices in arbitrary order). When a
vector subscript is on the right-hand side of an assignment statement, the operation
performed is effectively a “gather”; when it is on the left-hand side, the operation
is effectively a “scatter.”

It is quite possible to write the classic FFT algorithm in terms of gather and scatter
operations. In fact, we do so now. The problem is efficiency: The computations
involved in constructing the vector subscripts for the scatter/gather operations,and the
actual scatter/gather operations themselves, tend to swamp the underlying very lean
FFT algorithm. The result is very slow, though theoretically perfectly parallelizable,
code. Since small-scale parallel (SSP) machines can saturate their processors with√
N parallelism, while massively multiprocessor (MMP) machines inevitably come

with architecture-optimized FFT library calls, there is really no niche for these
routines, except as pedagogical demonstrations. We give here a one-dimensional
routine, and also an arbitrary-dimensional routine modeled on Volume 1’sfourn.
Note the complete absence of do-loops of sizeN ; the loops that remain are over
logN stages, or over the number of dimensions.

SUBROUTINE four1_gather(data,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), INTENT(IN) :: isign

Replaces a complex array data by its discrete Fourier transform, if isign is input as 1;
or replaces data by size(data) times its inverse discrete Fourier transform, if isign is
input as −1. The size of data must be an integer power of 2. This routine demonstrates
coding the FFT algorithm in high-level Fortran 90 constructs. Generally the result is very

Chapter B12. Fast Fourier Transform 1251

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

much slowerthan library routines coded for specific architectures, and also significantly slower
than the parallelization-by-rows method used in the routine four1.

INTEGER(I4B) :: n,n2,m,mm
REAL(DP) :: theta
COMPLEX(SPC) :: wp
INTEGER(I4B), DIMENSION(size(data)) :: jarr
INTEGER(I4B), DIMENSION(:), ALLOCATABLE :: jrev
COMPLEX(SPC), DIMENSION(:), ALLOCATABLE :: wtab,dtemp
n=size(data)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in four1_gather’)
if (n <= 1) RETURN
allocate(jrev(n)) Begin bit-reversal section of the routine.
jarr=arth(0,1,n)
jrev=0
n2=n/2
m=n2
do Construct an array of pointers from an index

to its bit-reverse.where (iand(jarr,1) /= 0) jrev=jrev+m
jarr=jarr/2
m=m/2
if (m == 0) exit

end do
data=data(jrev+1) Move all data to bit-reversed location by a

single gather/scatter.deallocate(jrev)
allocate(dtemp(n),wtab(n2)) Begin Danielson-Lanczos section of the rou-

tine.jarr=arth(0,1,n)
m=1
mm=n2
wtab(1)=(1.0_sp,0.0_sp) Seed the roots-of-unity table.
do Outer loop executed log2 N times.

where (iand(jarr,m) /= 0)
The basic idea is to address the correct root-of-unity for each Danielson-Lanczos
multiplication by tricky bit manipulations.

dtemp=data*wtab(mm*iand(jarr,m-1)+1)
data=eoshift(data,-m)-dtemp This is half of Danielson-Lanczos.

elsewhere
data=data+eoshift(dtemp,m) This is the other half. The referenced ele-

ments of dtemp will have been set in the
where clause.

end where
m=m*2
if (m >= n) exit
mm=mm/2
theta=PI_D/(isign*m) Ready for trigonometry?
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2, sin(theta),kind=spc)
Add entries to the table for the next iteration.

wtab(mm+1:n2:2*mm)=wtab(1:n2-mm:2*mm)*wp+wtab(1:n2-mm:2*mm)
end do
deallocate(dtemp,wtab)
END SUBROUTINE four1_gather

SUBROUTINE fourn_gather(data,nn,isign)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
COMPLEX(SPC), DIMENSION(:), INTENT(INOUT) :: data
INTEGER(I4B), DIMENSION(:) :: nn
INTEGER(I4B), INTENT(IN) :: isign

For data a one-dimensional complex array containing the values (in Fortran normal order-
ing) of an M -dimensional complex arrray, this routine replaces data by its M -dimensional
discrete Fourier transform, if isign is input as 1. nn(1:M) is an integer array containing
the lengths of each dimension (number of complex values), each of which must be a power
of 2. If isign is input as −1, data is replaced by its inverse transform times the product of
the lengths of all dimensions. This routine demonstrates coding the multidimensional FFT
algorithm in high-level Fortran 90 constructs. Generally the result is very much slowerthan

1252 Chapter B12. Fast Fourier Transform

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

library routines coded for specific architectures, and significantly slowerthan routines four2
and four3 for the two- and three-dimensional cases.

INTEGER(I4B), DIMENSION(:), ALLOCATABLE :: jarr
INTEGER(I4B) :: ndim,idim,ntot,nprev,n,n2,msk0,msk1,msk2,m,mm,mn
REAL(DP) :: theta
COMPLEX(SPC) :: wp
COMPLEX(SPC), DIMENSION(:), ALLOCATABLE :: wtab,dtemp
call assert(iand(nn,nn-1)==0, &

’each dimension must be a power of 2 in fourn_gather’)
ndim=size(nn)
ntot=product(nn)
nprev=1
allocate(jarr(ntot))
do idim=1,ndim Loop over the dimensions.

jarr=arth(0,1,ntot) We begin the bit-reversal section of the
routine.n=nn(idim)

n2=n/2
msk0=nprev
msk1=nprev*n2
msk2=msk0+msk1
do Construct an array of pointers from an

index to its bit-reverse.if (msk1 <= msk0) exit
where (iand(jarr,msk0) == 0 .neqv. iand(jarr,msk1) == 0) &

jarr=ieor(jarr,msk2)
msk0=msk0*2
msk1=msk1/2
msk2=msk0+msk1

end do
data=data(jarr+1) Move all data to bit-reversed location by

a single gather/scatter.allocate(dtemp(ntot),wtab(n2))
We begin the Danielson-Lanczos section of the routine.

jarr=iand(n-1,arth(0,1,ntot)/nprev)
m=1
mm=n2
mn=m*nprev
wtab(1)=(1.0_sp,0.0_sp) Seed the roots-of-unity table.
do This loop executed log2 N times.

if (mm == 0) exit
where (iand(jarr,m) /= 0)

The basic idea is to address the correct root-of-unity for each Danielson-Lanczos
multiplication by tricky bit manipulations.

dtemp=data*wtab(mm*iand(jarr,m-1)+1)
data=eoshift(data,-mn)-dtemp This is half of Danielson-Lanczos.

elsewhere
data=data+eoshift(dtemp,mn) This is the other half. The referenced el-

ements of dtemp will have been set
in the where clause.

end where
m=m*2
if (m >= n) exit
mn=m*nprev
mm=mm/2
theta=PI_D/(isign*m) Ready for trigonometry?
wp=cmplx(-2.0_dp*sin(0.5_dp*theta)**2,sin(theta),kind=dpc)
Add entries to the table for the next iteration.

wtab(mm+1:n2:2*mm)=wtab(1:n2-mm:2*mm)*wp &
+wtab(1:n2-mm:2*mm)

end do
deallocate(dtemp,wtab)
nprev=n*nprev

end do
deallocate(jarr)
END SUBROUTINE fourn_gather

f90
call assert(iand(nn,nn-1)==0 ... Once again the vector version of
assert is used to test all the dimensions stored innn simultaneously.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B13. Fourier and Spectral
Applications

FUNCTION convlv(data,respns,isign)
USE nrtype; USE nrutil, ONLY : assert,nrerror
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
REAL(SP), DIMENSION(:), INTENT(IN) :: respns
INTEGER(I4B), INTENT(IN) :: isign
REAL(SP), DIMENSION(size(data)) :: convlv

Convolves or deconvolves a real data set data (of length N , including any user-supplied
zero padding) with a response function respns, stored in wrap-around order in a real array
of length M ≤ N . (M should be an odd integer, N a power of 2.) Wrap-around order
means that the first half of the array respns contains the impulse response function at
positive times, while the second half of the array contains the impulse response function at
negative times, counting down from the highest element respns(M). On input isign is
+1 for convolution, −1 for deconvolution. The answer is returned as the function convlv,
an array of length N . data has INTENT(INOUT) for consistency with realft, but is
actually unchanged.

INTEGER(I4B) :: no2,n,m
COMPLEX(SPC), DIMENSION(size(data)/2) :: tmpd,tmpr
n=size(data)
m=size(respns)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in convlv’)
call assert(mod(m,2)==1, ’m must be odd in convlv’)
convlv(1:m)=respns(:) Put respns in array of length n.
convlv(n-(m-3)/2:n)=convlv((m+3)/2:m)
convlv((m+3)/2:n-(m-1)/2)=0.0 Pad with zeros.
no2=n/2
call realft(data,1,tmpd) FFT both arrays.
call realft(convlv,1,tmpr)
if (isign == 1) then Multiply FFTs to convolve.

tmpr(1)=cmplx(real(tmpd(1))*real(tmpr(1))/no2, &
aimag(tmpd(1))*aimag(tmpr(1))/no2, kind=spc)

tmpr(2:)=tmpd(2:)*tmpr(2:)/no2
else if (isign == -1) then Divide FFTs to deconvolve.

if (any(abs(tmpr(2:)) == 0.0) .or. real(tmpr(1)) == 0.0 &
.or. aimag(tmpr(1)) == 0.0) call nrerror &
(’deconvolving at response zero in convlv’)

tmpr(1)=cmplx(real(tmpd(1))/real(tmpr(1))/no2, &
aimag(tmpd(1))/aimag(tmpr(1))/no2, kind=spc)

tmpr(2:)=tmpd(2:)/tmpr(2:)/no2
else

call nrerror(’no meaning for isign in convlv’)
end if
call realft(convlv,-1,tmpr) Inverse transform back to time domain.
END FUNCTION convlv

1253

1254 Chapter B13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
tmpr(1)=cmplx(...kind=spc) The intrinsic functioncmplx returns a
quantity of type default complex unless thekind argument is present. It
is therefore a good idea always to include this argument. The intrinsic

functionsreal andaimag, on the other hand, when called with a complex argument,
return the same kind as their argument. So it is a good ideanot to put in a
kind argment for these. (In fact,aimag doesn’t allow one.) Don’t confuse these
situations, regarding complex variables, with the completely unrelated use ofreal

to convert a real or integer variable to a real value of specified kind. In this latter
case,kind should be specified.

⋆ ⋆ ⋆

FUNCTION correl(data1,data2)
USE nrtype; USE nrutil, ONLY : assert,assert_eq
USE nr, ONLY : realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data1,data2
REAL(SP), DIMENSION(size(data1)) :: correl

Computes the correlation of two real data sets data1 and data2 of length N (includ-
ing any user-supplied zero padding). N must be an integer power of 2. The answer is
returned as the function correl, an array of length N . The answer is stored in wrap-
around order, i.e., correlations at increasingly negative lags are in correl(N) on down to
correl(N/2+ 1), while correlations at increasingly positive lags are in correl(1) (zero
lag) on up to correl(N/2). Sign convention of this routine: if data1 lags data2, i.e.,
is shifted to the right of it, then correl will show a peak at positive lags.

COMPLEX(SPC), DIMENSION(size(data1)/2) :: cdat1,cdat2
INTEGER(I4B) :: no2,n Normalization for inverse FFT.
n=assert_eq(size(data1),size(data2),’correl’)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in correl’)
no2=n/2
call realft(data1,1,cdat1) Transform both data vectors.
call realft(data2,1,cdat2)
cdat1(1)=cmplx(real(cdat1(1))*real(cdat2(1))/no2, & Multiply to find FFT of their

correlation.aimag(cdat1(1))*aimag(cdat2(1))/no2, kind=spc)
cdat1(2:)=cdat1(2:)*conjg(cdat2(2:))/no2
call realft(correl,-1,cdat1) Inverse transform gives correlation.
END FUNCTION correl

f90
cdat1(1)=cmplx(...kind=spc) See just above for why we use the explicit
kind type parameterspc for cmplx, but omitsp for real.

⋆ ⋆ ⋆

SUBROUTINE spctrm(p,k,ovrlap,unit,n_window)
USE nrtype; USE nrutil, ONLY : arth,nrerror
USE nr, ONLY : four1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: p
INTEGER(I4B), INTENT(IN) :: k
LOGICAL(LGT), INTENT(IN) :: ovrlap True for overlapping segments, false other-

wise.INTEGER(I4B), OPTIONAL, INTENT(IN) :: n_window,unit
Reads data from input unit 9, or if the optional argument unit is present, from that input
unit. The output is an array p of length M that contains the data’s power (mean square
amplitude) at frequency (j − 1)/2M cycles per grid point, for j = 1, 2, . . . ,M , based on
(2*k+1)*M data points (if ovrlap is set .true.) or 4*k*M data points (if ovrlap
is set .false.). The number of segments of the data is 2*k in both cases: The routine
calls four1 k times, each call with 2 partitions each of 2M real data points. If the optional
argument n window is present, the routine uses the Bartlett window, the square window,

Chapter B13. Fourier and Spectral Applications 1255

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

or the Welch window for n window= 1,2, 3 respectively. If n window is not present, the
Bartlett window is used.

INTEGER(I4B) :: j,joff,joffn,kk,m,m4,m43,m44,mm,iunit,nn_window
REAL(SP) :: den,facm,facp,sumw
REAL(SP), DIMENSION(2*size(p)) :: w
REAL(SP), DIMENSION(4*size(p)) :: w1
REAL(SP), DIMENSION(size(p)) :: w2
COMPLEX(SPC), DIMENSION(2*size(p)) :: cw1
m=size(p)
if (present(n_window)) then

nn_window=n_window
else

nn_window=1
end if
if (present(unit)) then

iunit=unit
else

iunit=9
end if
mm=m+m Useful factors.
m4=mm+mm
m44=m4+4
m43=m4+3
den=0.0
facm=m Factors used by the window function.
facp=1.0_sp/m
w1(1:mm)=window(arth(1,1,mm),facm,facp,nn_window)
sumw=dot_product(w1(1:mm),w1(1:mm)) Accumulate the squared sum of the weights.
p(:)=0.0 Initialize the spectrum to zero.
if (ovrlap) read (iunit,*) (w2(j),j=1,m) Initialize the “save” half-buffer.
do kk=1,k Loop over data segments in groups of two.

do joff=-1,0,1 Get two complete segments into workspace.
if (ovrlap) then

w1(joff+2:joff+mm:2)=w2(1:m)
read (iunit,*) (w2(j),j=1,m)
joffn=joff+mm
w1(joffn+2:joffn+mm:2)=w2(1:m)

else
read (iunit,*) (w1(j),j=joff+2,m4,2)

end if
end do
w=window(arth(1,1,mm),facm,facp,nn_window) Apply the window to the data.
w1(2:m4:2)=w1(2:m4:2)*w
w1(1:m4:2)=w1(1:m4:2)*w
cw1(1:mm)=cmplx(w1(1:m4:2),w1(2:m4:2),kind=spc)
call four1(cw1(1:mm),1) Fourier transform the windowed data.
w1(1:m4:2)=real(cw1(1:mm))
w1(2:m4:2)=aimag(cw1(1:mm))
p(1)=p(1)+w1(1)**2+w1(2)**2 Sum results into previous segments.
p(2:m)=p(2:m)+w1(4:2*m:2)**2+w1(3:2*m-1:2)**2+&

w1(m44-4:m44-2*m:-2)**2+w1(m43-4:m43-2*m:-2)**2
den=den+sumw

end do
p(:)=p(:)/(m4*den) Normalize the output.
CONTAINS

FUNCTION window(j,facm,facp,nn_window)
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: j
INTEGER(I4B), INTENT(IN) :: nn_window
REAL(SP), INTENT(IN) :: facm,facp
REAL(SP), DIMENSION(size(j)) :: window
select case(nn_window)

case(1)

1256 Chapter B13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

window(j)=(1.0_sp-abs(((j-1)-facm)*facp)) Bartlett window.
case(2)

window(j)=1.0 Square window.
case(3)

window(j)=(1.0_sp-(((j-1)-facm)*facp)**2) Welch window.
case default

call nrerror(’unimplemented window function in spctrm’)
end select
END FUNCTION window
END SUBROUTINE spctrm

f90
The Fortran 90 optional argument feature allows us to make unit 9
the default output unit in this routine, but leave the user the option of
specifying a different output unit by supplying an actual argument for

unit. We also use an optional argument to allow the user the option of overriding
the default selection of the Bartlett window function.

FUNCTION window(j,facm,facp,nn_window) In Fortran 77 we coded this as a
statement function. Here the internal function is equivalent, but allows full
specification of the interface and so is preferred.

⋆ ⋆ ⋆

SUBROUTINE memcof(data,xms,d)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: xms
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), DIMENSION(:), INTENT(OUT) :: d

Given a real vector data of length N , this routine returns M linear prediction coefficients
in a vector d of length M , and returns the mean square discrepancy as xms.

INTEGER(I4B) :: k,m,n
REAL(SP) :: denom,pneum
REAL(SP), DIMENSION(size(data)) :: wk1,wk2,wktmp
REAL(SP), DIMENSION(size(d)) :: wkm
m=size(d)
n=size(data)
xms=dot_product(data,data)/n
wk1(1:n-1)=data(1:n-1)
wk2(1:n-1)=data(2:n)
do k=1,m

pneum=dot_product(wk1(1:n-k),wk2(1:n-k))
denom=dot_product(wk1(1:n-k),wk1(1:n-k))+ &

dot_product(wk2(1:n-k),wk2(1:n-k))
d(k)=2.0_sp*pneum/denom
xms=xms*(1.0_sp-d(k)**2)
d(1:k-1)=wkm(1:k-1)-d(k)*wkm(k-1:1:-1)
The algorithm is recursive, although it is implemented as an iteration. It builds up the
answer for larger and larger values of m until the desired value is reached. At this point
in the algorithm, one could return the vector d and scalar xms for a set of LP coefficients
with k (rather than m) terms.

if (k == m) RETURN
wkm(1:k)=d(1:k)
wktmp(2:n-k)=wk1(2:n-k)
wk1(1:n-k-1)=wk1(1:n-k-1)-wkm(k)*wk2(1:n-k-1)
wk2(1:n-k-1)=wk2(2:n-k)-wkm(k)*wktmp(2:n-k)

end do
call nrerror(’never get here in memcof’)
END SUBROUTINE memcof

⋆ ⋆ ⋆

Chapter B13. Fourier and Spectral Applications 1257

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE fixrts(d)
USE nrtype
USE nr, ONLY : zroots
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d

Given the LP coefficients d, this routine finds all roots of the characteristic polynomial
(13.6.14), reflects any roots that are outside the unit circle back inside, and then returns
a modified set of coefficients in d.

INTEGER(I4B) :: i,m
LOGICAL(LGT) :: polish
COMPLEX(SPC), DIMENSION(size(d)+1) :: a
COMPLEX(SPC), DIMENSION(size(d)) :: roots
m=size(d)
a(m+1)=cmplx(1.0_sp,kind=spc) Set up complex coefficients for polynomial

root finder.a(m:1:-1)=cmplx(-d(1:m),kind=spc)
polish=.true.
call zroots(a(1:m+1),roots,polish) Find all the roots.
where (abs(roots) > 1.0) roots=1.0_sp/conjg(roots)
Reflect all roots outside the unit circle back inside.

a(1)=-roots(1) Now reconstruct the polynomial coefficients,
a(2:m+1)=cmplx(1.0_sp,kind=spc)
do i=2,m by looping over the roots

a(2:i)=a(1:i-1)-roots(i)*a(2:i) and synthetically multiplying.
a(1)=-roots(i)*a(1)

end do
d(m:1:-1)=-real(a(1:m)) The polynomial coefficients are guaranteed

to be real, so we need only return the
real part as new LP coefficients.

END SUBROUTINE fixrts

f90
a(m+1)=cmplx(1.0_sp,kind=spc) See afterconvlv on p. 1254 to review
why we use the explicit kind type parameterspc for cmplx.

⋆ ⋆ ⋆

FUNCTION predic(data,d,nfut)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data,d
INTEGER(I4B), INTENT(IN) :: nfut
REAL(SP), DIMENSION(nfut) :: predic

Given an array data, and given the data’s LP coefficients d in an array of length M , this
routine applies equation (13.6.11) to predict the next nfut data points, which it returns in
an array as the function value predic. Note that the routine references only the last M
values of data, as initial values for the prediction.

INTEGER(I4B) :: j,ndata,m
REAL(SP) :: discrp,sm
REAL(SP), DIMENSION(size(d)) :: reg
m=size(d)
ndata=size(data)
reg(1:m)=data(ndata:ndata+1-m:-1)
do j=1,nfut

discrp=0.0
This is where you would put in a known discrepancy if you were reconstructing a function
by linear predictive coding rather than extrapolating a function by linear prediction. See
text.

sm=discrp+dot_product(d,reg)
reg=eoshift(reg,-1,sm) [If you want to implement circular arrays, you can

avoid this shifting of coefficients!]predic(j)=sm
end do
END FUNCTION predic

⋆ ⋆ ⋆

1258 Chapter B13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION evlmem(fdt,d,xms)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(SP), INTENT(IN) :: fdt,xms
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP) :: evlmem

Given d and xms as returned by memcof, this function returns the power spectrum estimate
P (f) as a function of fdt = f∆.

COMPLEX(SPC) :: z,zz
REAL(DP) :: theta Trigonometric recurrences in double precision.
theta=TWOPI_D*fdt
z=cmplx(cos(theta),sin(theta),kind=spc)
zz=1.0_sp-z*poly(z,d)
evlmem=xms/abs(zz)**2 Equation (13.7.4).
END FUNCTION evlmem

f90
zz=...poly(z,d) Thepoly function innrutil returns the value of the
polynomial with coefficientsd(:) at z. Here a version that takes real
coefficients and a complex argument is actually invoked, but all the

different versions have been overloaded onto the same namepoly.

⋆ ⋆ ⋆

SUBROUTINE period(x,y,ofac,hifac,px,py,jmax,prob)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc
USE nr, ONLY : avevar
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: jmax
REAL(SP), INTENT(IN) :: ofac,hifac
REAL(SP), INTENT(OUT) :: prob
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), POINTER :: px,py

Input is a set of N data points with abscissas x (which need not be equally spaced) and
ordinates y, and a desired oversampling factor ofac (a typical value being 4 or larger).
The routine returns pointers to internally allocated arrays px and py. px is filled with
an increasing sequence of frequencies (not angular frequencies) up to hifac times the
“average” Nyquist frequency, and py is filled with the values of the Lomb normalized
periodogram at those frequencies. The length of these arrays is 0.5*ofac*hifac*N .
The arrays x and y are not altered. The routine also returns jmax such that py(jmax) is
the maximum element in py, and prob, an estimate of the significance of that maximum
against the hypothesis of random noise. A small value of prob indicates that a significant
periodic signal is present.

INTEGER(I4B) :: i,n,nout
REAL(SP) :: ave,cwtau,effm,expy,pnow,sumc,sumcy,&

sums,sumsh,sumsy,swtau,var,wtau,xave,xdif,xmax,xmin
REAL(DP), DIMENSION(size(x)) :: tmp1,tmp2,wi,wpi,wpr,wr
LOGICAL(LGT), SAVE :: init=.true.
n=assert_eq(size(x),size(y),’period’)
if (init) then

init=.false.
nullify(px,py)

else
if (associated(px)) deallocate(px)
if (associated(py)) deallocate(py)

end if
nout=0.5_sp*ofac*hifac*n
allocate(px(nout),py(nout))
call avevar(y(:),ave,var) Get mean and variance of the input data.
xmax=maxval(x(:)) Go through data to get the range of abscis-

sas.xmin=minval(x(:))
xdif=xmax-xmin

Chapter B13. Fourier and Spectral Applications 1259

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

xave=0.5_sp*(xmax+xmin)
pnow=1.0_sp/(xdif*ofac) Starting frequency.
tmp1(:)=TWOPI_D*((x(:)-xave)*pnow) Initialize values for the trigonometric recur-

rences at each data point. The recur-
rences are done in double precision.

wpr(:)=-2.0_dp*sin(0.5_dp*tmp1)**2
wpi(:)=sin(tmp1(:))
wr(:)=cos(tmp1(:))
wi(:)=wpi(:)
do i=1,nout Main loop over the frequencies to be evalu-

ated.px(i)=pnow
sumsh=dot_product(wi,wr) First, loop over the data to get τ and related

quantities.sumc=dot_product(wr(:)-wi(:),wr(:)+wi(:))
wtau=0.5_sp*atan2(2.0_sp*sumsh,sumc)
swtau=sin(wtau)
cwtau=cos(wtau)
tmp1(:)=wi(:)*cwtau-wr(:)*swtau Then, loop over the data again to get the

periodogram value.tmp2(:)=wr(:)*cwtau+wi(:)*swtau
sums=dot_product(tmp1,tmp1)
sumc=dot_product(tmp2,tmp2)
sumsy=dot_product(y(:)-ave,tmp1)
sumcy=dot_product(y(:)-ave,tmp2)
tmp1(:)=wr(:) Update the trigonometric recurrences.
wr(:)=(wr(:)*wpr(:)-wi(:)*wpi(:))+wr(:)
wi(:)=(wi(:)*wpr(:)+tmp1(:)*wpi(:))+wi(:)
py(i)=0.5_sp*(sumcy**2/sumc+sumsy**2/sums)/var
pnow=pnow+1.0_sp/(ofac*xdif) The next frequency.

end do
jmax=imaxloc(py(1:nout))
expy=exp(-py(jmax)) Evaluate statistical significance of the maxi-

mum.effm=2.0_sp*nout/ofac
prob=effm*expy
if (prob > 0.01_sp) prob=1.0_sp-(1.0_sp-expy)**effm
END SUBROUTINE period

f90
This routine shows another example of how to return arrays whose size is
not known in advance (cf.zbrac in Chapter B9). The coding is explained
in the subsection on pointers in§21.5. The size of the output arrays,

nout in the code, is available assize(px).

jmax=imaxloc... See discussion ofimaxloc on p. 1017.

SUBROUTINE fasper(x,y,ofac,hifac,px,py,jmax,prob)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,imaxloc,nrerror
USE nr, ONLY : avevar,realft
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(IN) :: ofac,hifac
INTEGER(I4B), INTENT(OUT) :: jmax
REAL(SP), INTENT(OUT) :: prob
REAL(SP), DIMENSION(:), POINTER :: px,py
INTEGER(I4B), PARAMETER :: MACC=4

Input is a set of N data points with abscissas x (which need not be equally spaced) and
ordinates y, and a desired oversampling factor ofac (a typical value being 4 or larger).
The routine returns pointers to internally allocated arrays px and py. px is filled with
an increasing sequence of frequencies (not angular frequencies) up to hifac times the
“average” Nyquist frequency, and py is filled with the values of the Lomb normalized
periodogram at those frequencies. The length of these arrays is 0.5*ofac*hifac*N .
The arrays x and y are not altered. The routine also returns jmax such that py(jmax) is
the maximum element in py, and prob, an estimate of the significance of that maximum
against the hypothesis of random noise. A small value of prob indicates that a significant

1260 Chapter B13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

periodic signal is present.
Parameter: MACC is the number of interpolation points per 1/4 cycle of highest frequency.

INTEGER(I4B) :: j,k,n,ndim,nfreq,nfreqt,nout
REAL(SP) :: ave,ck,ckk,cterm,cwt,den,df,effm,expy,fac,fndim,hc2wt,&

hs2wt,hypo,sterm,swt,var,xdif,xmax,xmin
REAL(SP), DIMENSION(:), ALLOCATABLE :: wk1,wk2
LOGICAL(LGT), SAVE :: init=.true.
n=assert_eq(size(x),size(y),’fasper’)
if (init) then

init=.false.
nullify(px,py)

else
if (associated(px)) deallocate(px)
if (associated(py)) deallocate(py)

end if
nfreqt=ofac*hifac*n*MACC
nfreq=64
do Size the FFT as next power of 2 above nfreqt.

if (nfreq >= nfreqt) exit
nfreq=nfreq*2

end do
ndim=2*nfreq
allocate(wk1(ndim),wk2(ndim))
call avevar(y(1:n),ave,var) Compute the mean, variance, and range of the data.
xmax=maxval(x(:))
xmin=minval(x(:))
xdif=xmax-xmin
wk1(1:ndim)=0.0 Zero the workspaces.
wk2(1:ndim)=0.0
fac=ndim/(xdif*ofac)
fndim=ndim
do j=1,n Extirpolate the data into the workspaces.

ck=1.0_sp+mod((x(j)-xmin)*fac,fndim)
ckk=1.0_sp+mod(2.0_sp*(ck-1.0_sp),fndim)
call spreadval(y(j)-ave,wk1,ck,MACC)
call spreadval(1.0_sp,wk2,ckk,MACC)

end do
call realft(wk1(1:ndim),1) Take the fast Fourier transforms.
call realft(wk2(1:ndim),1)
df=1.0_sp/(xdif*ofac)
nout=0.5_sp*ofac*hifac*n
allocate(px(nout),py(nout))
k=3
do j=1,nout Compute the Lomb value for each frequency.

hypo=sqrt(wk2(k)**2+wk2(k+1)**2)
hc2wt=0.5_sp*wk2(k)/hypo
hs2wt=0.5_sp*wk2(k+1)/hypo
cwt=sqrt(0.5_sp+hc2wt)
swt=sign(sqrt(0.5_sp-hc2wt),hs2wt)
den=0.5_sp*n+hc2wt*wk2(k)+hs2wt*wk2(k+1)
cterm=(cwt*wk1(k)+swt*wk1(k+1))**2/den
sterm=(cwt*wk1(k+1)-swt*wk1(k))**2/(n-den)
px(j)=j*df
py(j)=(cterm+sterm)/(2.0_sp*var)
k=k+2

end do
deallocate(wk1,wk2)
jmax=imaxloc(py(1:nout))
expy=exp(-py(jmax)) Estimate significance of largest peak value.
effm=2.0_sp*nout/ofac
prob=effm*expy
if (prob > 0.01_sp) prob=1.0_sp-(1.0_sp-expy)**effm
CONTAINS

Chapter B13. Fourier and Spectral Applications 1261

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE spreadval(y,yy,x,m)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: y,x
REAL(SP), DIMENSION(:), INTENT(INOUT) :: yy
INTEGER(I4B), INTENT(IN) :: m

Given an array yy of length N , extirpolate (spread) a value y into m actual array elements
that best approximate the “fictional” (i.e., possibly noninteger) array element number x.
The weights used are coefficients of the Lagrange interpolating polynomial.

INTEGER(I4B) :: ihi,ilo,ix,j,nden,n
REAL(SP) :: fac
INTEGER(I4B), DIMENSION(10) :: nfac = (/ &

1,1,2,6,24,120,720,5040,40320,362880 /)
if (m > 10) call nrerror(’factorial table too small in spreadval’)
n=size(yy)
ix=x
if (x == real(ix,sp)) then

yy(ix)=yy(ix)+y
else

ilo=min(max(int(x-0.5_sp*m+1.0_sp),1),n-m+1)
ihi=ilo+m-1
nden=nfac(m)
fac=product(x-arth(ilo,1,m))
yy(ihi)=yy(ihi)+y*fac/(nden*(x-ihi))
do j=ihi-1,ilo,-1

nden=(nden/(j+1-ilo))*(j-ihi)
yy(j)=yy(j)+y*fac/(nden*(x-j))

end do
end if
END SUBROUTINE spreadval
END SUBROUTINE fasper

f90
This routine shows another example of how to return arrays whose size is
not known in advance (cf.zbrac in Chapter B9). The coding is explained
in the subsection on pointers in§21.5. The size of the output arrays,

nout in the code, is available assize(px).

jmax=imaxloc... See discussion ofimaxloc on p. 1017.

if (x == real(ix,sp)) then Without the explicit kind type parametersp,
real returns a value of type default real for an integer argument. This prevents
automatic conversion of the routine from single to double precision. Here all you
have to do is redefinesp in nrtype to get double precision.

⋆ ⋆ ⋆

SUBROUTINE dftcor(w,delta,a,b,endpts,corre,corim,corfac)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: w,delta,a,b
REAL(SP), INTENT(OUT) :: corre,corim,corfac
REAL(SP), DIMENSION(:), INTENT(IN) :: endpts

For an integral approximated by a discrete Fourier transform, this routine computes the
correction factor that multiplies the DFT and the endpoint correction to be added. Input
is the angular frequency w, stepsize delta, lower and upper limits of the integral a and
b, while the array endpts of length 8 contains the first 4 and last 4 function values. The

1262 Chapter B13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

correction factor W (θ) is returned as corfac, while the real and imaginary parts of the
endpoint correction are returned as corre and corim.

REAL(SP) :: a0i,a0r,a1i,a1r,a2i,a2r,a3i,a3r,arg,c,cl,cr,s,sl,sr,t,&
t2,t4,t6

REAL(DP) :: cth,ctth,spth2,sth,sth4i,stth,th,th2,th4,&
tmth2,tth4i

th=w*delta
call assert(a < b, th >= 0.0, th <= PI_D, ’dftcor args’)
if (abs(th) < 5.0e-2_dp) then Use series.

t=th
t2=t*t
t4=t2*t2
t6=t4*t2
corfac=1.0_sp-(11.0_sp/720.0_sp)*t4+(23.0_sp/15120.0_sp)*t6
a0r=(-2.0_sp/3.0_sp)+t2/45.0_sp+(103.0_sp/15120.0_sp)*t4-&

(169.0_sp/226800.0_sp)*t6
a1r=(7.0_sp/24.0_sp)-(7.0_sp/180.0_sp)*t2+(5.0_sp/3456.0_sp)*t4&

-(7.0_sp/259200.0_sp)*t6
a2r=(-1.0_sp/6.0_sp)+t2/45.0_sp-(5.0_sp/6048.0_sp)*t4+t6/64800.0_sp
a3r=(1.0_sp/24.0_sp)-t2/180.0_sp+(5.0_sp/24192.0_sp)*t4-t6/259200.0_sp
a0i=t*(2.0_sp/45.0_sp+(2.0_sp/105.0_sp)*t2-&

(8.0_sp/2835.0_sp)*t4+(86.0_sp/467775.0_sp)*t6)
a1i=t*(7.0_sp/72.0_sp-t2/168.0_sp+(11.0_sp/72576.0_sp)*t4-&

(13.0_sp/5987520.0_sp)*t6)
a2i=t*(-7.0_sp/90.0_sp+t2/210.0_sp-(11.0_sp/90720.0_sp)*t4+&

(13.0_sp/7484400.0_sp)*t6)
a3i=t*(7.0_sp/360.0_sp-t2/840.0_sp+(11.0_sp/362880.0_sp)*t4-&

(13.0_sp/29937600.0_sp)*t6)
else Use trigonometric formulas in double precision.

cth=cos(th)
sth=sin(th)
ctth=cth**2-sth**2
stth=2.0_dp*sth*cth
th2=th*th
th4=th2*th2
tmth2=3.0_dp-th2
spth2=6.0_dp+th2
sth4i=1.0_sp/(6.0_dp*th4)
tth4i=2.0_dp*sth4i
corfac=tth4i*spth2*(3.0_sp-4.0_dp*cth+ctth)
a0r=sth4i*(-42.0_dp+5.0_dp*th2+spth2*(8.0_dp*cth-ctth))
a0i=sth4i*(th*(-12.0_dp+6.0_dp*th2)+spth2*stth)
a1r=sth4i*(14.0_dp*tmth2-7.0_dp*spth2*cth)
a1i=sth4i*(30.0_dp*th-5.0_dp*spth2*sth)
a2r=tth4i*(-4.0_dp*tmth2+2.0_dp*spth2*cth)
a2i=tth4i*(-12.0_dp*th+2.0_dp*spth2*sth)
a3r=sth4i*(2.0_dp*tmth2-spth2*cth)
a3i=sth4i*(6.0_dp*th-spth2*sth)

end if
cl=a0r*endpts(1)+a1r*endpts(2)+a2r*endpts(3)+a3r*endpts(4)
sl=a0i*endpts(1)+a1i*endpts(2)+a2i*endpts(3)+a3i*endpts(4)
cr=a0r*endpts(8)+a1r*endpts(7)+a2r*endpts(6)+a3r*endpts(5)
sr=-a0i*endpts(8)-a1i*endpts(7)-a2i*endpts(6)-a3i*endpts(5)
arg=w*(b-a)
c=cos(arg)
s=sin(arg)
corre=cl+c*cr-s*sr
corim=sl+s*cr+c*sr
END SUBROUTINE dftcor

Chapter B13. Fourier and Spectral Applications 1263

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE dftint(func,a,b,w,cosint,sinint)
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : dftcor,polint,realft
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,w
REAL(SP), INTENT(OUT) :: cosint,sinint
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: M=64,NDFT=1024,MPOL=6

Example subroutine illustrating how to use the routine dftcor. The user supplies an exter-

nal function func that returns the quantity h(t). The routine then returns
∫ b
a cos(ωt)h(t)dt

as cosint and
∫ b
a

sin(ωt)h(t)dt as sinint.
Parameters: The values of M, NDFT, and MPOL are merely illustrative and should be opti-
mized for your particular application. M is the number of subintervals, NDFT is the length of
the FFT (a power of 2), and MPOL is the degree of polynomial interpolation used to obtain
the desired frequency from the FFT.

INTEGER(I4B) :: nn
INTEGER(I4B), SAVE :: init=0
INTEGER(I4B), DIMENSION(MPOL) :: nnmpol
REAL(SP) :: c,cdft,cerr,corfac,corim,corre,en,s,sdft,serr
REAL(SP), SAVE :: delta
REAL(SP), DIMENSION(MPOL) :: cpol,spol,xpol
REAL(SP), DIMENSION(NDFT), SAVE :: data
REAL(SP), DIMENSION(8), SAVE :: endpts
REAL(SP), SAVE :: aold=-1.0e30_sp,bold=-1.0e30_sp
if (init /= 1 .or. a /= aold .or. b /= bold) then Do we need to initialize, or

is only ω changed?init=1
aold=a
bold=b
delta=(b-a)/M
data(1:M+1)=func(a+arth(0,1,M+1)*delta)
Load the function values into the data array.

data(M+2:NDFT)=0.0 Zero pad the rest of the data array.
endpts(1:4)=data(1:4) Load the endpoints.
endpts(5:8)=data(M-2:M+1)
call realft(data(1:NDFT),1)
realft returns the unused value corresponding to ωN/2 in data(2). We actually want
this element to contain the imaginary part corresponding to ω0, which is zero.

data(2)=0.0
end if
Now interpolate on the DFT result for the desired frequency. If the frequency is an ωn, i.e.,
the quantity en is an integer, then cdft=data(2*en-1), sdft=data(2*en), and you could
omit the interpolation.

en=w*delta*NDFT/TWOPI+1.0_sp
nn=min(max(int(en-0.5_sp*MPOL+1.0_sp),1),NDFT/2-MPOL+1) Leftmost point for the in-

terpolation.nnmpol=arth(nn,1,MPOL)
cpol(1:MPOL)=data(2*nnmpol(:)-1)
spol(1:MPOL)=data(2*nnmpol(:))
xpol(1:MPOL)=nnmpol(:)
call polint(xpol,cpol,en,cdft,cerr)
call polint(xpol,spol,en,sdft,serr)
call dftcor(w,delta,a,b,endpts,corre,corim,corfac) Now get the endpoint cor-

rection and the multiplica-
tive factor W (θ).

cdft=cdft*corfac+corre
sdft=sdft*corfac+corim
c=delta*cos(w*a) Finally multiply by ∆ and exp(iωa).
s=delta*sin(w*a)
cosint=c*cdft-s*sdft

1264 Chapter B13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sinint=s*cdft+c*sdft
END SUBROUTINE dftint

⋆ ⋆ ⋆

SUBROUTINE wt1(a,isign,wtstep)
USE nrtype; USE nrutil, ONLY : assert
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE

SUBROUTINE wtstep(a,isign)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE wtstep

END INTERFACE
One-dimensional discrete wavelet transform. This routine implements the pyramid algo-
rithm, replacing a by its wavelet transform (for isign=1), or performing the inverse oper-
ation (for isign=-1). The length of a is N , which must be an integer power of 2. The
subroutine wtstep, whose actual name must be supplied in calling this routine, is the
underlying wavelet filter. Examples of wtstep are daub4 and (preceded by pwtset) pwt.

INTEGER(I4B) :: n,nn
n=size(a)
call assert(iand(n,n-1)==0, ’n must be a power of 2 in wt1’)
if (n < 4) RETURN
if (isign >= 0) then Wavelet transform.

nn=n Start at largest hierarchy,
do

if (nn < 4) exit
call wtstep(a(1:nn),isign)
nn=nn/2 and work towards smallest.

end do
else Inverse wavelet transform.

nn=4 Start at smallest hierarchy,
do

if (nn > n) exit
call wtstep(a(1:nn),isign)
nn=nn*2 and work towards largest.

end do
end if
END SUBROUTINE wt1

SUBROUTINE daub4(a,isign)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign

Applies the Daubechies 4-coefficient wavelet filter to data vector a (for isign=1) or applies
its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn.

REAL(SP), DIMENSION(size(a)) :: wksp
REAL(SP), PARAMETER :: C0=0.4829629131445341_sp,&

C1=0.8365163037378079_sp,C2=0.2241438680420134_sp,&
C3=-0.1294095225512604_sp

INTEGER(I4B) :: n,nh,nhp,nhm
n=size(a)
if (n < 4) RETURN
nh=n/2
nhp=nh+1
nhm=nh-1

Chapter B13. Fourier and Spectral Applications 1265

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (isign >= 0) then Apply filter.
wksp(1:nhm) = C0*a(1:n-3:2)+C1*a(2:n-2:2) &

+C2*a(3:n-1:2)+C3*a(4:n:2)
wksp(nh)=C0*a(n-1)+C1*a(n)+C2*a(1)+C3*a(2)
wksp(nhp:n-1) = C3*a(1:n-3:2)-C2*a(2:n-2:2) &

+C1*a(3:n-1:2)-C0*a(4:n:2)
wksp(n)=C3*a(n-1)-C2*a(n)+C1*a(1)-C0*a(2)

else Apply transpose filter.
wksp(1)=C2*a(nh)+C1*a(n)+C0*a(1)+C3*a(nhp)
wksp(2)=C3*a(nh)-C0*a(n)+C1*a(1)-C2*a(nhp)
wksp(3:n-1:2) = C2*a(1:nhm)+C1*a(nhp:n-1) &

+C0*a(2:nh)+C3*a(nh+2:n)
wksp(4:n:2) = C3*a(1:nhm)-C0*a(nhp:n-1) &

+C1*a(2:nh)-C2*a(nh+2:n)
end if
a(1:n)=wksp(1:n)
END SUBROUTINE daub4

MODULE pwtcom
USE nrtype
INTEGER(I4B), SAVE :: ncof=0,ioff,joff These module variables communicate the

filter to pwt.REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: cc,cr
END MODULE pwtcom

SUBROUTINE pwtset(n)
USE nrtype; USE nrutil, ONLY : nrerror
USE pwtcom
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n

Initializing routine for pwt, here implementing the Daubechies wavelet filters with 4, 12,
and 20 coefficients, as selected by the input value n. Further wavelet filters can be included
in the obvious manner. This routine must be called (once) before the first use of pwt. (For
the case n=4, the specific routine daub4 is considerably faster than pwt.)

REAL(SP) :: sig
REAL(SP), PARAMETER :: &

c4(4)=(/&
0.4829629131445341_sp, 0.8365163037378079_sp, &
0.2241438680420134_sp,-0.1294095225512604_sp /), &
c12(12)=(/&
0.111540743350_sp, 0.494623890398_sp, 0.751133908021_sp, &
0.315250351709_sp,-0.226264693965_sp,-0.129766867567_sp, &
0.097501605587_sp, 0.027522865530_sp,-0.031582039318_sp, &
0.000553842201_sp, 0.004777257511_sp,-0.001077301085_sp /), &
c20(20)=(/&
0.026670057901_sp, 0.188176800078_sp, 0.527201188932_sp, &
0.688459039454_sp, 0.281172343661_sp,-0.249846424327_sp, &
-0.195946274377_sp, 0.127369340336_sp, 0.093057364604_sp, &
-0.071394147166_sp,-0.029457536822_sp, 0.033212674059_sp, &
0.003606553567_sp,-0.010733175483_sp, 0.001395351747_sp, &
0.001992405295_sp,-0.000685856695_sp,-0.000116466855_sp, &
0.000093588670_sp,-0.000013264203_sp /)

if (allocated(cc)) deallocate(cc)
if (allocated(cr)) deallocate(cr)
allocate(cc(n),cr(n))
ncof=n
ioff=-n/2 These values center the “support” of the wavelets at each

level. Alternatively, the “peaks” of the wavelets can
be approximately centered by the choices ioff=-2
and joff=-n+2. Note that daub4 and pwtset with
n=4 use different default centerings.

joff=-n/2
sig=-1.0
select case(n)

case(4)

1266 Chapter B13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

cc=c4
case(12)

cc=c12
case(20)

cc=c20
case default

call nrerror(’unimplemented value n in pwtset’)
end select
cr(n:1:-1) = cc
cr(n:1:-2) = -cr(n:1:-2)
END SUBROUTINE pwtset

f90
Here we need to have as global variables arrays whose dimensions are
known only at run time. At first sight the situation is the same as with the
modulefminln in newt on p. 1197. If you review the discussion there

and in§21.5, you will recall that there are two good ways to implement this: with
allocatable arrays (“Method 1”) or with pointers (“Method 2”). There is a difference
here that makes allocatable arrays simpler. We do not wish to deallocate the arrays
on exitingpwtset. On the contrary, the values incc andcr need to be preserved
for use inpwt. Since allocatable arrays are born in the well-defined state of “not
currently allocated,” we can declare the arrays here as

REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: cc,cr

and test whether they were used on a previous call with

if (allocated(cc)) deallocate(cc)
if (allocated(cr)) deallocate(cr)

We are then ready to allocate the new storage:

allocate(cc(n),cr(n))

With pointers, we would need the additional machinery of nullifying the pointers on
the initial call, since pointers are born in an undefined state (see§21.5).

There is an additional important point in this example. The module variables
need to be used by a “sibling” routine,pwt. We need to be sure that they do
not become undefined when we exitpwtset. We could ensure this by putting a
USE pwtcom in the main program that calls bothpwtset andpwt, but it’s easy to
forget to do this. It is preferable to put explicitSAVEs on all the module variables.

SUBROUTINE pwt(a,isign)
USE nrtype; USE nrutil, ONLY : arth,nrerror
USE pwtcom
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign

Partial wavelet transform: applies an arbitrary wavelet filter to data vector a (for isign=1)
or applies its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn. The
actual filter is determined by a preceding (and required) call to pwtset, which initializes
the module pwtcom.

REAL(SP), DIMENSION(size(a)) :: wksp
INTEGER(I4B), DIMENSION(size(a)/2) :: jf,jr
INTEGER(I4B) :: k,n,nh,nmod
n=size(a)
if (n < 4) RETURN
if (ncof == 0) call nrerror(’pwt: must call pwtset before pwt’)
nmod=ncof*n A positive constant equal to zero mod n.

Chapter B13. Fourier and Spectral Applications 1267

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

nh=n/2
wksp(:)=0.0
jf=iand(n-1,arth(2+nmod+ioff,2,nh)) Use bitwise AND to wrap-around the point-

ers. n-1 is a mask of all bits, since n is
a power of 2.

jr=iand(n-1,arth(2+nmod+joff,2,nh))
do k=1,ncof

if (isign >= 0) then Apply filter.
wksp(1:nh)=wksp(1:nh)+cc(k)*a(jf+1)
wksp(nh+1:n)=wksp(nh+1:n)+cr(k)*a(jr+1)

else Apply transpose filter.
wksp(jf+1)=wksp(jf+1)+cc(k)*a(1:nh)
wksp(jr+1)=wksp(jr+1)+cr(k)*a(nh+1:n)

end if
if (k == ncof) exit
jf=iand(n-1,jf+1)
jr=iand(n-1,jr+1)

end do
a(:)=wksp(:) Copy the results back from workspace.
END SUBROUTINE pwt

⋆ ⋆ ⋆

SUBROUTINE wtn(a,nn,isign,wtstep)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nn
INTEGER(I4B), INTENT(IN) :: isign
INTERFACE

SUBROUTINE wtstep(a,isign)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
INTEGER(I4B), INTENT(IN) :: isign
END SUBROUTINE wtstep

END INTERFACE
Replaces a by its N -dimensional discrete wavelet transform, if isign is input as 1. nn is an
integer array of length N , containing the lengths of each dimension (number of real values),
which must all be powers of 2. a is a real array of length equal to the product of these
lengths, in which the data are stored as in a multidimensional real FORTRAN array. If isign
is input as −1, a is replaced by its inverse wavelet transform. The subroutine wtstep,
whose actual name must be supplied in calling this routine, is the underlying wavelet filter.
Examples of wtstep are daub4 and (preceded by pwtset) pwt.

INTEGER(I4B) :: i1,i2,i3,idim,n,ndim,nnew,nprev,nt,ntot
REAL(SP), DIMENSION(:), ALLOCATABLE :: wksp
call assert(iand(nn,nn-1)==0, ’each dimension must be a power of 2 in wtn’)
allocate(wksp(maxval(nn)))
ndim=size(nn)
ntot=product(nn(:))
nprev=1
do idim=1,ndim Main loop over the dimensions.

n=nn(idim)
nnew=n*nprev
if (n > 4) then

do i2=0,ntot-1,nnew
do i1=1,nprev

i3=i1+i2
wksp(1:n)=a(arth(i3,nprev,n)) Copy the relevant row or column

or etc. into workspace.i3=i3+n*nprev
if (isign >= 0) then Do one-dimensional wavelet trans-

form.nt=n
do

1268 Chapter B13. Fourier and Spectral Applications

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (nt < 4) exit
call wtstep(wksp(1:nt),isign)
nt=nt/2

end do
else Or inverse transform.

nt=4
do

if (nt > n) exit
call wtstep(wksp(1:nt),isign)
nt=nt*2

end do
end if
i3=i1+i2
a(arth(i3,nprev,n))=wksp(1:n) Copy back from workspace.
i3=i3+n*nprev

end do
end do

end if
nprev=nnew

end do
deallocate(wksp)
END SUBROUTINE wtn

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B14. Statistical
Description of Data

SUBROUTINE moment(data,ave,adev,sdev,var,skew,curt)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: ave,adev,sdev,var,skew,curt
REAL(SP), DIMENSION(:), INTENT(IN) :: data

Given an array of data, this routine returns its mean ave, average deviation adev, standard
deviation sdev, variance var, skewness skew, and kurtosis curt.

INTEGER(I4B) :: n
REAL(SP) :: ep
REAL(SP), DIMENSION(size(data)) :: p,s
n=size(data)
if (n <= 1) call nrerror(’moment: n must be at least 2’)
ave=sum(data(:))/n First pass to get the mean.
s(:)=data(:)-ave Second pass to get the first (absolute), second, third, and

fourth moments of the deviation from the mean.ep=sum(s(:))
adev=sum(abs(s(:)))/n
p(:)=s(:)*s(:)
var=sum(p(:))
p(:)=p(:)*s(:)
skew=sum(p(:))
p(:)=p(:)*s(:)
curt=sum(p(:))
var=(var-ep**2/n)/(n-1) Corrected two-pass formula.
sdev=sqrt(var)
if (var /= 0.0) then

skew=skew/(n*sdev**3)
curt=curt/(n*var**2)-3.0_sp

else
call nrerror(’moment: no skew or kurtosis when zero variance’)

end if
END SUBROUTINE moment

⋆ ⋆ ⋆

SUBROUTINE ttest(data1,data2,t,prob)
USE nrtype
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob

Given the arrays data1 and data2, which need not have the same length, this routine
returns Student’s t as t, and its significance as prob, small values of prob indicating that

1269

1270 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

the arrays have significantly different means. The data arrays are assumed to be drawn
from populations with the same true variance.

INTEGER(I4B) :: n1,n2
REAL(SP) :: ave1,ave2,df,var,var1,var2
n1=size(data1)
n2=size(data2)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
df=n1+n2-2 Degrees of freedom.
var=((n1-1)*var1+(n2-1)*var2)/df Pooled variance.
t=(ave1-ave2)/sqrt(var*(1.0_sp/n1+1.0_sp/n2))
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2)) See equation (6.4.9).
END SUBROUTINE ttest

⋆ ⋆ ⋆

SUBROUTINE avevar(data,ave,var)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data
REAL(SP), INTENT(OUT) :: ave,var

Given array data, returns its mean as ave and its variance as var.
INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(data)) :: s
n=size(data)
ave=sum(data(:))/n
s(:)=data(:)-ave
var=dot_product(s,s)
var=(var-sum(s)**2/n)/(n-1) Corrected two-pass formula (14.1.8).
END SUBROUTINE avevar

⋆ ⋆ ⋆

SUBROUTINE tutest(data1,data2,t,prob)
USE nrtype
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob

Given the arrays data1 and data2, which need not have the same length, this routine
returns Student’s t as t, and its significance as prob, small values of prob indicating that
the arrays have significantly different means. The data arrays are allowed to be drawn from
populations with unequal variances.

INTEGER(I4B) :: n1,n2
REAL(SP) :: ave1,ave2,df,var1,var2
n1=size(data1)
n2=size(data2)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
t=(ave1-ave2)/sqrt(var1/n1+var2/n2)
df=(var1/n1+var2/n2)**2/((var1/n1)**2/(n1-1)+(var2/n2)**2/(n2-1))
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2))
END SUBROUTINE tutest

⋆ ⋆ ⋆

Chapter B14. Statistical Description of Data 1271

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE tptest(data1,data2,t,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: t,prob

Given the paired arrays data1 and data2 of the same length, this routine returns Student’s
t for paired data as t, and its significance as prob, small values of prob indicating a
significant difference of means.

INTEGER(I4B) :: n
REAL(SP) :: ave1,ave2,cov,df,sd,var1,var2
n=assert_eq(size(data1),size(data2),’tptest’)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
cov=dot_product(data1(:)-ave1,data2(:)-ave2)
df=n-1
cov=cov/df
sd=sqrt((var1+var2-2.0_sp*cov)/n)
t=(ave1-ave2)/sd
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2))
END SUBROUTINE tptest

⋆ ⋆ ⋆

SUBROUTINE ftest(data1,data2,f,prob)
USE nrtype
USE nr, ONLY : avevar,betai
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: f,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2

Given the arrays data1 and data2, which need not have the same length, this routine
returns the value of f, and its significance as prob. Small values of prob indicate that the
two arrays have significantly different variances.

INTEGER(I4B) :: n1,n2
REAL(SP) :: ave1,ave2,df1,df2,var1,var2
n1=size(data1)
n2=size(data2)
call avevar(data1,ave1,var1)
call avevar(data2,ave2,var2)
if (var1 > var2) then Make F the ratio of the larger variance to the smaller one.

f=var1/var2
df1=n1-1
df2=n2-1

else
f=var2/var1
df1=n2-1
df2=n1-1

end if
prob=2.0_sp*betai(0.5_sp*df2,0.5_sp*df1,df2/(df2+df1*f))
if (prob > 1.0) prob=2.0_sp-prob
END SUBROUTINE ftest

⋆ ⋆ ⋆

1272 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE chsone(bins,ebins,knstrn,df,chsq,prob)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df,chsq,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins,ebins

Given the same-size arrays bins containing the observed numbers of events, and ebins
containing the expected numbers of events, and given the number of constraints knstrn
(normally one), this routine returns (trivially) the number of degrees of freedom df, and
(nontrivially) the chi-square chsq and the significance prob. A small value of prob indi-
cates a significant difference between the distributions bins and ebins. Note that bins
and ebins are both real arrays, although bins will normally contain integer values.

INTEGER(I4B) :: ndum
ndum=assert_eq(size(bins),size(ebins),’chsone’)
if (any(ebins(:) <= 0.0)) call nrerror(’bad expected number in chsone’)
df=size(bins)-knstrn
chsq=sum((bins(:)-ebins(:))**2/ebins(:))
prob=gammq(0.5_sp*df,0.5_sp*chsq) Chi-square probability function. See §6.2.
END SUBROUTINE chsone

SUBROUTINE chstwo(bins1,bins2,knstrn,df,chsq,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: knstrn
REAL(SP), INTENT(OUT) :: df,chsq,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: bins1,bins2

Given the same-size arrays bins1 and bins2, containing two sets of binned data, and given
the number of constraints knstrn (normally 1 or 0), this routine returns the number of
degrees of freedom df, the chi-square chsq, and the significance prob. A small value of
prob indicates a significant difference between the distributions bins1 and bins2. Note
that bins1 and bins2 are both real arrays, although they will normally contain integer
values.

INTEGER(I4B) :: ndum
LOGICAL(LGT), DIMENSION(size(bins1)) :: nzeromask
ndum=assert_eq(size(bins1),size(bins2),’chstwo’)
nzeromask = bins1(:) /= 0.0 .or. bins2(:) /= 0.0
chsq=sum((bins1(:)-bins2(:))**2/(bins1(:)+bins2(:)),mask=nzeromask)
df=count(nzeromask)-knstrn No data means one less degree of freedom.
prob=gammq(0.5_sp*df,0.5_sp*chsq) Chi-square probability function. See §6.2.
END SUBROUTINE chstwo

f90
nzeromask=...chisq=sum(...mask=nzeromask) We use the optional argu-
ment mask in sum to select out the elements to be summed over. In
this case, at least one of the elements ofbins1 or bins2 is not zero

for each term in the sum.

⋆ ⋆ ⋆

Chapter B14. Statistical Description of Data 1273

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE ksone(data,func,d,prob)
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : probks,sort
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:), INTENT(INOUT) :: data
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
Given an array data, and given a user-supplied function of a single variable func which
is a cumulative distribution function ranging from 0 (for smallest values of its argument)
to 1 (for largest values of its argument), this routine returns the K–S statistic d, and the
significance level prob. Small values of prob show that the cumulative distribution function
of data is significantly different from func. The array data is modified by being sorted
into ascending order.

INTEGER(I4B) :: n
REAL(SP) :: en
REAL(SP), DIMENSION(size(data)) :: fvals
REAL(SP), DIMENSION(size(data)+1) :: temp
call sort(data) If the data are already sorted into as-

cending order, then this call can be
omitted.

n=size(data)
en=n
fvals(:)=func(data(:))
temp=arth(0,1,n+1)/en
d=maxval(max(abs(temp(1:n)-fvals(:)), & Compute the maximum distance between

the data’s c.d.f. and the user-supplied
function.

abs(temp(2:n+1)-fvals(:))))
en=sqrt(en)
prob=probks((en+0.12_sp+0.11_sp/en)*d) Compute significance.
END SUBROUTINE ksone

f90
d=maxval(max... Note the difference betweenmax and maxval: max

takes two or more arguments and returns the maximum. If the arguments
are two arrays, it returns an array each of whose elements is the maximum

of the corresponding elements in the two arrays.maxval takes a single array
argument and returns its maximum value.

SUBROUTINE kstwo(data1,data2,d,prob)
USE nrtype; USE nrutil, ONLY : cumsum
USE nr, ONLY : probks,sort2
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: d,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2

Given arrays data1 and data2, which can be of different length, this routine returns the
K–S statistic d, and the significance level prob for the null hypothesis that the data sets
are drawn from the same distribution. Small values of prob show that the cumulative
distribution function of data1 is significantly different from that of data2. The arrays
data1 and data2 are not modified.

INTEGER(I4B) :: n1,n2
REAL(SP) :: en1,en2,en
REAL(SP), DIMENSION(size(data1)+size(data2)) :: dat,org
n1=size(data1)
n2=size(data2)
en1=n1
en2=n2
dat(1:n1)=data1 Copy the two data sets into a single ar-

ray.dat(n1+1:)=data2

1274 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

org(1:n1)=0.0 Define an array that contains 0 when the
corresponding element comes from
data1, 1 from data2.

org(n1+1:)=1.0
call sort2(dat,org)

Sort the array of 1’s and 0’s into the order of the merged data sets.
d=maxval(abs(cumsum(org)/en2-cumsum(1.0_sp-org)/en1))

Now use cumsum to get the c.d.f. corresponding to each set of data.
en=sqrt(en1*en2/(en1+en2))
prob=probks((en+0.12_sp+0.11_sp/en)*d) Compute significance.
END SUBROUTINE kstwo

The problem here is how to compute the cumulative distribution function
(c.d.f.) corresponding to each set of data, and then find the corresponding
KS statistic, without a serial loop over the data. The trick is to define

an array that contains 0 when the corresponding element comes from the first data
set and 1 when it’s from the second data set. Sort the array of 1’s and 0’s into the
same order as the merged data sets. Now tabulate the partial sums of the array.
Every time you encounter a 1, the partial sum increases by 1. So if you normalize
the partial sums by dividing by the number of elements in the second data set, you
have the c.d.f. of the second data set.

If you subtract the array of 1’s and 0’s from an array of all 1’s, you get an
array where 1 corresponds to an element in the first data set, 0 the second data set.
So tabulating its partial sums and normalizing gives the c.d.f. of the first data set.
As we’ve seen before, tabulating partial sums can be done with a parallel algorithm
(cumsum in nrutil). The KS statistic is just the maximum absolute difference of
the c.d.f.’s, computed in parallel with Fortran 90’smaxval function.

FUNCTION probks(alam)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: alam
REAL(SP) :: probks
REAL(SP), PARAMETER :: EPS1=0.001_sp,EPS2=1.0e-8_sp
INTEGER(I4B), PARAMETER :: NITER=100

Kolmogorov-Smirnov probability function.
INTEGER(I4B) :: j
REAL(SP) :: a2,fac,term,termbf
a2=-2.0_sp*alam**2
fac=2.0
probks=0.0
termbf=0.0 Previous term in sum.
do j=1,NITER

term=fac*exp(a2*j**2)
probks=probks+term
if (abs(term) <= EPS1*termbf .or. abs(term) <= EPS2*probks) RETURN
fac=-fac Alternating signs in sum.
termbf=abs(term)

end do
probks=1.0 Get here only by failing to converge, which implies the func-

tion is very close to 1.END FUNCTION probks

⋆ ⋆ ⋆

Chapter B14. Statistical Description of Data 1275

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE cntab1(nn,chisq,df,prob,cramrv,ccc)
USE nrtype; USE nrutil, ONLY : outerprod
USE nr, ONLY : gammq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: chisq,df,prob,cramrv,ccc
REAL(SP), PARAMETER :: TINY=1.0e-30_sp

Given a two-dimensional contingency table in the form of a rectangular integer array nn,
this routine returns the chi-square chisq, the number of degrees of freedom df, the signif-
icance level prob (small values indicating a significant association), and two measures of
association, Cramer’s V (cramrv), and the contingency coefficient C (ccc).

INTEGER(I4B) :: nni,nnj
REAL(SP) :: sumn
REAL(SP), DIMENSION(size(nn,1)) :: sumi
REAL(SP), DIMENSION(size(nn,2)) :: sumj
REAL(SP), DIMENSION(size(nn,1),size(nn,2)) :: expctd
sumi(:)=sum(nn(:,:),dim=2) Get the row totals.
sumj(:)=sum(nn(:,:),dim=1) Get the column totals.
sumn=sum(sumi(:)) Get the grand total.
nni=size(sumi)-count(sumi(:) == 0.0)

Eliminate any zero rows by reducing the number of rows.
nnj=size(sumj)-count(sumj(:) == 0.0) Eliminate any zero columns.
df=nni*nnj-nni-nnj+1 Corrected number of degrees of freedom.
expctd(:,:)=outerprod(sumi(:),sumj(:))/sumn
chisq=sum((nn(:,:)-expctd(:,:))**2/(expctd(:,:)+TINY))

Do the chi-square sum. Here TINY guarantees that any eliminated row or column will not
contribute to the sum.

prob=gammq(0.5_sp*df,0.5_sp*chisq) Chi-square probability function.
cramrv=sqrt(chisq/(sumn*min(nni-1,nnj-1)))
ccc=sqrt(chisq/(chisq+sumn))
END SUBROUTINE cntab1

f90
sumi(:)=sum(...dim=2)...sumj(:)=sum(...dim=1) We use the optional ar-
gumentdim of sum to sum first over the columns (dim=2) to get the row
totals, and then to sum over the rows (dim=1) to get the column totals.

expctd(:,:)=... This is a direct implementation of equation (14.4.2) using
outerprod from nrutil.

chisq=... And here is a direct implementation of equation (14.4.3).

SUBROUTINE cntab2(nn,h,hx,hy,hygx,hxgy,uygx,uxgy,uxy)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:,:), INTENT(IN) :: nn
REAL(SP), INTENT(OUT) :: h,hx,hy,hygx,hxgy,uygx,uxgy,uxy
REAL(SP), PARAMETER :: TINY=1.0e-30_sp

Given a two-dimensional contingency table in the form of a rectangular integer array nn,
where the first index labels the x-variable and the second index labels the y variable, this
routine returns the entropy h of the whole table, the entropy hx of the x-distribution, the
entropy hy of the y-distribution, the entropy hygx of y given x, the entropy hxgy of x

given y, the dependency uygx of y on x (eq. 14.4.15), the dependency uxgy of x on y
(eq. 14.4.16), and the symmetrical dependency uxy (eq. 14.4.17).

REAL(SP) :: sumn
REAL(SP), DIMENSION(size(nn,1)) :: sumi
REAL(SP), DIMENSION(size(nn,2)) :: sumj
sumi(:)=sum(nn(:,:),dim=2) Get the row totals.
sumj(:)=sum(nn(:,:),dim=1) Get the column totals.
sumn=sum(sumi(:))
hx=-sum(sumi(:)*log(sumi(:)/sumn), mask=(sumi(:) /= 0.0))/sumn

Entropy of the x distribution,
hy=-sum(sumj(:)*log(sumj(:)/sumn), mask=(sumj(:) /= 0.0))/sumn

1276 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

and of the y distribution.
h=-sum(nn(:,:)*log(nn(:,:)/sumn), mask=(nn(:,:) /= 0))/sumn

Total entropy: loop over both x and y.
hygx=h-hx Uses equation (14.4.18),
hxgy=h-hy as does this.
uygx=(hy-hygx)/(hy+TINY) Equation (14.4.15).
uxgy=(hx-hxgy)/(hx+TINY) Equation (14.4.16).
uxy=2.0_sp*(hx+hy-h)/(hx+hy+TINY) Equation (14.4.17).
END SUBROUTINE cntab2

f90
This code exploits both thedim feature ofsum (see discussion after
cntab1) and themask feature to restrict the elements to be summed over.

⋆ ⋆ ⋆

SUBROUTINE pearsn(x,y,r,prob,z)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : betai
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: r,prob,z
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), PARAMETER :: TINY=1.0e-20_sp

Given two arrays x and y of the same size, this routine computes their correlation coefficient
r (returned as r), the significance level at which the null hypothesis of zero correlation
is disproved (prob whose small value indicates a significant correlation), and Fisher’s z
(returned as z), whose value can be used in further statistical tests as described above the
routine in Volume 1.
Parameter: TINY will regularize the unusual case of complete correlation.

REAL(SP), DIMENSION(size(x)) :: xt,yt
REAL(SP) :: ax,ay,df,sxx,sxy,syy,t
INTEGER(I4B) :: n
n=assert_eq(size(x),size(y),’pearsn’)
ax=sum(x)/n Find the means.
ay=sum(y)/n
xt(:)=x(:)-ax Compute the correlation co-

efficient.yt(:)=y(:)-ay
sxx=dot_product(xt,xt)
syy=dot_product(yt,yt)
sxy=dot_product(xt,yt)
r=sxy/(sqrt(sxx*syy)+TINY)
z=0.5_sp*log(((1.0_sp+r)+TINY)/((1.0_sp-r)+TINY)) Fisher’s z transformation.
df=n-2
t=r*sqrt(df/(((1.0_sp-r)+TINY)*((1.0_sp+r)+TINY))) Equation (14.5.5).
prob=betai(0.5_sp*df,0.5_sp,df/(df+t**2)) Student’s t probability.

! prob=erfcc(abs(z*sqrt(n-1.0_sp))/SQRT2)
For large n, this easier computation of prob, using the short routine erfcc, would give
approximately the same value.

END SUBROUTINE pearsn

⋆ ⋆ ⋆

Chapter B14. Statistical Description of Data 1277

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE spear(data1,data2,d,zd,probd,rs,probrs)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : betai,erfcc,sort2
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2
REAL(SP), INTENT(OUT) :: d,zd,probd,rs,probrs

Given two data arrays of the same size, data1 and data2, this routine returns their sum-
squared difference of ranks as D, the number of standard deviations by which D deviates
from its null-hypothesis expected value as zd, the two-sided significance level of this devia-
tion as probd, Spearman’s rank correlation rs as rs, and the two-sided significance level of
its deviation from zero as probrs. data1 and data2 are not modified. A small value of
either probd or probrs indicates a significant correlation (rs positive) or anticorrelation
(rs negative).

INTEGER(I4B) :: n
REAL(SP) :: aved,df,en,en3n,fac,sf,sg,t,vard
REAL(SP), DIMENSION(size(data1)) :: wksp1,wksp2
n=assert_eq(size(data1),size(data2),’spear’)
wksp1(:)=data1(:)
wksp2(:)=data2(:)
call sort2(wksp1,wksp2) Sort each of the data arrays, and convert the

entries to ranks. The values sf and sg
return the sums

∑
(f3

k−fk) and
∑

(g3
m
−

gm), respectively.

call crank(wksp1,sf)
call sort2(wksp2,wksp1)
call crank(wksp2,sg)
wksp1(:)=wksp1(:)-wksp2(:)
d=dot_product(wksp1,wksp1) Sum the squared difference of ranks.
en=n
en3n=en**3-en
aved=en3n/6.0_sp-(sf+sg)/12.0_sp Expectation value of D,
fac=(1.0_sp-sf/en3n)*(1.0_sp-sg/en3n)
vard=((en-1.0_sp)*en**2*(en+1.0_sp)**2/36.0_sp)*fac and variance of D give
zd=(d-aved)/sqrt(vard) number of standard deviations,
probd=erfcc(abs(zd)/SQRT2) and significance.
rs=(1.0_sp-(6.0_sp/en3n)*(d+(sf+sg)/12.0_sp))/sqrt(fac) Rank correlation coeffi-

cient,fac=(1.0_sp+rs)*(1.0_sp-rs)
if (fac > 0.0) then

t=rs*sqrt((en-2.0_sp)/fac) and its t value,
df=en-2.0_sp
probrs=betai(0.5_sp*df,0.5_sp,df/(df+t**2)) give its significance.

else
probrs=0.0

end if
CONTAINS

SUBROUTINE crank(w,s)
USE nrtype; USE nrutil, ONLY : arth,array_copy
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: s
REAL(SP), DIMENSION(:), INTENT(INOUT) :: w

Given a sorted array w, replaces the elements by their rank, including midranking of ties,
and returns as s the sum of f3 − f , where f is the number of elements in each tie.

INTEGER(I4B) :: i,n,ndum,nties
INTEGER(I4B), DIMENSION(size(w)) :: tstart,tend,tie,idx
n=size(w)
idx(:)=arth(1,1,n) Index vector.
tie(:)=merge(1,0,w == eoshift(w,-1))

Look for ties: Compare each element to the one before. If it’s equal, it’s part of a tie, and
we put 1 into tie. Otherwise we put 0.

tie(1)=0 Boundary; the first element must be zero.
w(:)=idx(:) Assign ranks ignoring possible ties.
if (all(tie == 0)) then No ties—we’re done.

s=0.0
RETURN

end if
call array_copy(pack(idx(:),tie(:)<eoshift(tie(:),1)),tstart,nties,ndum)

1278 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Look for 0 → 1 transitions in tie, which mean that the 0 element is the start of a tie run.
Store index of each transition in tstart. nties is the number of ties found.

tend(1:nties)=pack(idx(:),tie(:)>eoshift(tie(:),1))
Look for 1 → 0 transitions in tie, which mean that the 1 element is the end of a tie run.

do i=1,nties Midrank assignments.
w(tstart(i):tend(i))=(tstart(i)+tend(i))/2.0_sp

end do
tend(1:nties)=tend(1:nties)-tstart(1:nties)+1 Now calculate s.
s=sum(tend(1:nties)**3-tend(1:nties))
END SUBROUTINE crank
END SUBROUTINE spear

To understand how the parallel version ofcrank works, let’s consider
an example of 9 elements in the arrayw, which is input in sorted order
to crank. The elements in our example are given in the second line

of the following table:

index 1 2 3 4 5 6 7 8 9

data inw 0 0 1 1 1 2 3 4 4

shift right 0 0 0 1 1 1 2 3 4

compare 1 1 0 1 1 0 0 0 1

tie array 0 1 0 1 1 0 0 0 1

shift left 1 0 1 1 0 0 0 1 0

0 → 1 1 3 8 start index
1 → 0 2 5 9 stop index

We look for ties by comparing this array with itself, right shifted by one element
(“shift right” in table). We record a 1 for each element that is the same, a 0 for each
element that is different (“compare”). A 1 indicates the element is part of a tie with
the precedingelement, so we always set the first element to 0, even if it was a 1
as in our example. This gives the “tie array.” Now wherever the tie array makes a
transition0 → 1 indicates the start of a tie run, while a1 → 0 transition indicates
the end of a tie run. We find these transitions by comparing the tie array to itself
left shifted by one (“shift left”). If the tie array element is smaller than the shifted
array element, we have a0 → 1 transition and we record the corresponding index
as the start of a tie. Similarly if the tie array element is larger we record the index
as the end of a tie. Note that the shifts must be end-off shifts with zeros inserted in
the gaps for the boundary conditions to work.

f90
call array_copy(pack(idx(:),tie(:)<eoshift(tie(:),1)),

tstart,nties,ndum)

The start indices (1, 3, and 8 in our example above) are here packed into
the first few elements oftstart. array copy is a useful routine innrutil for
copying elements from one array to another, when the number of elements to be
copied is not known in advance. This line of code is equivalent to

tstart(:)=0
tstart(:)=pack(idx(:), tie(:) < eoshift(tie(:),1),tstart(:))
nties=count(tstart(:) > 0)

The point is that we don’t know how many elementspack is going to select. We
have to make sure the dimensions of both sides of thepack statement are the same,

Chapter B14. Statistical Description of Data 1279

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

so we set the optional third argument ofpack to tstart. We then make a separate
pass throughtstart to count how many elements we copied. Alternatively, we
could have used an additional logical arraymask and coded this as

mask(:)=tie(:) < eoshift(tie(:),1)
nties=count(mask)
tstart(1:nties)=pack(idx(:),mask)

But we still need two passes through themask array. The beauty of thearray copy

routine is thatnties is determined from thesizeof the first argument, without the
necessity for a second pass through the array.

⋆ ⋆ ⋆

SUBROUTINE kendl1(data1,data2,tau,z,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : erfcc
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: tau,z,prob
REAL(SP), DIMENSION(:), INTENT(IN) :: data1,data2

Given same-size data arrays data1 and data2, this program returns Kendall’s τ as tau, its
number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation
(tau negative).

INTEGER(I4B) :: is,j,n,n1,n2
REAL(SP) :: var
REAL(SP), DIMENSION(size(data1)) :: a1,a2
n=assert_eq(size(data1),size(data2),’kendl1’)
n1=0 This will be the argument of one square root in (14.6.8),
n2=0 and this the other.
is=0 This will be the numerator in (14.6.8).
do j=1,n-1 For each first member of pair,

a1(j+1:n)=data1(j)-data1(j+1:n) loop over second member.
a2(j+1:n)=data2(j)-data2(j+1:n)
n1=n1+count(a1(j+1:n) /= 0.0)
n2=n2+count(a2(j+1:n) /= 0.0)

Now accumulate the numerator in (14.6.8):
is=is+count((a1(j+1:n) > 0.0 .and. a2(j+1:n) > 0.0) &

.or. (a1(j+1:n) < 0.0 .and. a2(j+1:n) < 0.0)) - &
count((a1(j+1:n) > 0.0 .and. a2(j+1:n) < 0.0) &
.or. (a1(j+1:n) < 0.0 .and. a2(j+1:n) > 0.0))

end do
tau=real(is,sp)/sqrt(real(n1,sp)*real(n2,sp)) Equation (14.6.8).
var=(4.0_sp*n+10.0_sp)/(9.0_sp*n*(n-1.0_sp)) Equation (14.6.9).
z=tau/sqrt(var)
prob=erfcc(abs(z)/SQRT2) Significance.
END SUBROUTINE kendl1

SUBROUTINE kendl2(tab,tau,z,prob)
USE nrtype; USE nrutil, ONLY : cumsum
USE nr, ONLY : erfcc
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: tab
REAL(SP), INTENT(OUT) :: tau,z,prob

Given a two-dimensional table tab such that tab(k, l) contains the number of events falling
in bin k of one variable and bin l of another, this program returns Kendall’s τ as tau, its
number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation (tau

1280 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

negative) between the two variables. Although tab is a real array, it will normally contain
integral values.

REAL(SP), DIMENSION(size(tab,1),size(tab,2)) :: cum,cumt
INTEGER(I4B) :: i,j,ii,jj
REAL(SP) :: sc,sd,en1,en2,points,var
ii=size(tab,1)
jj=size(tab,2)
do i=1,ii Get cumulative sums leftward along

rows.cumt(i,jj:1:-1)=cumsum(tab(i,jj:1:-1))
end do
en2=sum(tab(1:ii,1:jj-1)*cumt(1:ii,2:jj)) Tally the extra-y pairs.
do j=1,jj Get counts of points to lower-right

of each cell in cum.cum(ii:1:-1,j)=cumsum(cumt(ii:1:-1,j))
end do
points=cum(1,1) Total number of entries in table.
sc=sum(tab(1:ii-1,1:jj-1)*cum(2:ii,2:jj)) Tally the concordant pairs.
do j=1,jj Now get counts of points to upper-

right of each cell in cum,cum(1:ii,j)=cumsum(cumt(1:ii,j))
end do
sd=sum(tab(2:ii,1:jj-1)*cum(1:ii-1,2:jj)) giving tally of discordant points.
do j=1,jj Finally, get cumulative sums upward

along columns,cumt(ii:1:-1,j)=cumsum(tab(ii:1:-1,j))
end do
en1=sum(tab(1:ii-1,1:jj)*cumt(2:ii,1:jj)) giving the count of extra-x pairs,
tau=(sc-sd)/sqrt((en1+sc+sd)*(en2+sc+sd)) and compute desired results.
var=(4.0_sp*points+10.0_sp)/(9.0_sp*points*(points-1.0_sp))
z=tau/sqrt(var)
prob=erfcc(abs(z)/SQRT2)
END SUBROUTINE kendl2

The underlying algorithm inkendl2 might seem to require looping over
all pairs of cells in the two-dimensional tabletab. Actually, however,
clever use of thecumsum utility function reduces this to a simple loop

over all the cells; moreover this “loop” parallelizes into a simple parallel product and
call to thesum intrinsic. The basic idea is shown in the following table:

d d

t y y

x c c

x c c

x c c

Relative to the cell markedt (which we use to denote the numerical value it contains),
the cells markedd contribute to the “discordant” tally in Volume 1’s equation (14.6.8),

Chapter B14. Statistical Description of Data 1281

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

while the cells markedc contribute to the “concordant” tally. Likewise, the cells
markedx andy contribute, respectively, to the “extra-x” and “extra-y” tallies. What
about the cells left blank? Since we want to count pairs of cells onlyonce, without
duplication, these cells will be counted, relative to the location shown ast, when
t itself moves into the blank-cell area.

Symbolically we have

concordant =
∑

n

tn

∑

lower right

cm

discordant =
∑

n

tn

∑

upper right

dm

extra-x =
∑

n

tn

(

∑

below

xm

)

extra-y =
∑

n

tn

∑

to the right

ym

(B14.1)

Heren varies over all the positions in the table, while the limits of the inner sums
are relative to the position ofn. (The letterstn, cm, dm, xm, ym all represent the
value in a cell; we use different letters only to make the relation with the above table
clear.) Now the final trick is to recognize that the inner sums, over cells to the lower-
or upper-right, below, and to the right can be done in parallel by cumulative sums
(cumsum) sweeping to the right and up. The routine does these in a nonintuitive
order merely to be able to reuse maximally the scratch spacescum andcumt.

⋆ ⋆ ⋆

SUBROUTINE ks2d1s(x1,y1,quadvl,d1,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : pearsn,probks,quadct
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1
REAL(SP), INTENT(OUT) :: d1,prob
INTERFACE

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd
END SUBROUTINE quadvl

END INTERFACE
Two-dimensional Kolmogorov-Smirnov test of one sample against a model. Given the x-
and y-coordinates of a set of data points in arrays x1 and y1 of the same length, and given
a user-supplied function quadvl that exemplifies the model, this routine returns the two-
dimensional K-S statistic as d1, and its significance level as prob. Small values of prob
show that the sample is significantly different from the model. Note that the test is slightly
distribution-dependent, so prob is only an estimate.

INTEGER(I4B) :: j,n1
REAL(SP) :: dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,rr,sqen
n1=assert_eq(size(x1),size(y1),’ks2d1s’)
d1=0.0

1282 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

do j=1,n1 Loop over the data points.
call quadct(x1(j),y1(j),x1,y1,fa,fb,fc,fd)
call quadvl(x1(j),y1(j),ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

For both the sample and the model, the distribution is integrated in each of four quad-
rants, and the maximum difference is saved.

end do
call pearsn(x1,y1,r1,dum,dumm) Get the linear correlation coefficient r1.
sqen=sqrt(real(n1,sp))
rr=sqrt(1.0_sp-r1**2)

Estimate the probability using the K-S probability function probks.
prob=probks(d1*sqen/(1.0_sp+rr*(0.25_sp-0.75_sp/sqen)))
END SUBROUTINE ks2d1s

SUBROUTINE quadct(x,y,xx,yy,fa,fb,fc,fd)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: xx,yy
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd

Given an origin (x,y), and an array of points with coordinates xx and yy, count how many of
them are in each quadrant around the origin, and return the normalized fractions. Quadrants
are labeled alphabetically, counterclockwise from the upper right. Used by ks2d1s and
ks2d2s.

INTEGER(I4B) :: na,nb,nc,nd,nn
REAL(SP) :: ff
nn=assert_eq(size(xx),size(yy),’quadct’)
na=count(yy(:) > y .and. xx(:) > x)
nb=count(yy(:) > y .and. xx(:) <= x)
nc=count(yy(:) <= y .and. xx(:) <= x)
nd=nn-na-nb-nc
ff=1.0_sp/nn
fa=ff*na
fb=ff*nb
fc=ff*nc
fd=ff*nd
END SUBROUTINE quadct

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: fa,fb,fc,fd

This is a sample of a user-supplied routine to be used with ks2d1s. In this case, the model
distribution is uniform inside the square −1 < x < 1, −1 < y < 1. In general this routine
should return, for any point (x, y), the fraction of the total distribution in each of the
four quadrants around that point. The fractions, fa, fb, fc, and fd, must add up to 1.
Quadrants are alphabetical, counterclockwise from the upper right.

REAL(SP) :: qa,qb,qc,qd
qa=min(2.0_sp,max(0.0_sp,1.0_sp-x))
qb=min(2.0_sp,max(0.0_sp,1.0_sp-y))
qc=min(2.0_sp,max(0.0_sp,x+1.0_sp))
qd=min(2.0_sp,max(0.0_sp,y+1.0_sp))
fa=0.25_sp*qa*qb
fb=0.25_sp*qb*qc
fc=0.25_sp*qc*qd
fd=0.25_sp*qd*qa
END SUBROUTINE quadvl

Chapter B14. Statistical Description of Data 1283

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE ks2d2s(x1,y1,x2,y2,d,prob)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : pearsn,probks,quadct
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1,y1,x2,y2
REAL(SP), INTENT(OUT) :: d,prob

Compute two-dimensional Kolmogorov-Smirnov test on two samples. Input are the x- and
y-coordinates of the first sample in arrays x1 and y1 of the same length, and of the second
sample in arrays x2 and y2 of the same length (possibly different from the length of the first
sample). The routine returns the two-dimensional, two-sample K-S statistic as d, and its
significance level as prob. Small values of prob show that the two samples are significantly
different. Note that the test is slightly distribution-dependent, so prob is only an estimate.

INTEGER(I4B) :: j,n1,n2
REAL(SP) :: d1,d2,dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,r2,rr,sqen
n1=assert_eq(size(x1),size(y1),’ks2d2s: n1’)
n2=assert_eq(size(x2),size(y2),’ks2d2s: n2’)
d1=0.0
do j=1,n1 First, use points in the first sample as origins.

call quadct(x1(j),y1(j),x1,y1,fa,fb,fc,fd)
call quadct(x1(j),y1(j),x2,y2,ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

end do
d2=0.0
do j=1,n2 Then, use points in the second sample as ori-

gins.call quadct(x2(j),y2(j),x1,y1,fa,fb,fc,fd)
call quadct(x2(j),y2(j),x2,y2,ga,gb,gc,gd)
d2=max(d2,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

end do
d=0.5_sp*(d1+d2) Average the K-S statistics.
sqen=sqrt(real(n1,sp)*real(n2,sp)/real(n1+n2,sp))
call pearsn(x1,y1,r1,dum,dumm) Get the linear correlation coefficient for each sam-

ple.call pearsn(x2,y2,r2,dum,dumm)
rr=sqrt(1.0_sp-0.5_sp*(r1**2+r2**2))

Estimate the probability using the K-S probability function probks.
prob=probks(d*sqen/(1.0_sp+rr*(0.25_sp-0.75_sp/sqen)))
END SUBROUTINE ks2d2s

⋆ ⋆ ⋆

FUNCTION savgol(nl,nrr,ld,m)
USE nrtype; USE nrutil, ONLY : arth,assert,poly
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: nl,nrr,ld,m

Returns in array c, in wrap-around order (N.B.!) consistent with the argument respns in
routine convlv, a set of Savitzky-Golay filter coefficients. nl is the number of leftward
(past) data points used, while nrr is the number of rightward (future) data points, making
the total number of data points used nl+nrr+1. ld is the order of the derivative desired
(e.g., ld = 0 for smoothed function). m is the order of the smoothing polynomial, also
equal to the highest conserved moment; usual value is m = 2 or m = 4.

REAL(SP), DIMENSION(nl+nrr+1) :: savgol
INTEGER(I4B) :: imj,ipj,mm,np
INTEGER(I4B), DIMENSION(m+1) :: indx
REAL(SP) :: d,sm
REAL(SP), DIMENSION(m+1) :: b
REAL(SP), DIMENSION(m+1,m+1) :: a
INTEGER(I4B) :: irng(nl+nrr+1)
call assert(nl >= 0, nrr >= 0, ld <= m, nl+nrr >= m, ’savgol args’)
do ipj=0,2*m Set up the normal equations of the desired least

squares fit.sm=sum(arth(1.0_sp,1.0_sp,nrr)**ipj)+&
sum(arth(-1.0_sp,-1.0_sp,nl)**ipj)

1284 Chapter B14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (ipj == 0) sm=sm+1.0_sp
mm=min(ipj,2*m-ipj)
do imj=-mm,mm,2

a(1+(ipj+imj)/2,1+(ipj-imj)/2)=sm
end do

end do
call ludcmp(a(:,:),indx(:),d) Solve them: LU decomposition.
b(:)=0.0
b(ld+1)=1.0 Right-hand-side vector is unit vector, depending

on which derivative we want.call lubksb(a(:,:),indx(:),b(:))
Backsubstitute, giving one row of the inverse matrix.

savgol(:)=0.0 Zero the output array (it may be bigger than
number of coefficients).irng(:)=arth(-nl,1,nrr+nl+1)

np=nl+nrr+1
savgol(mod(np-irng(:),np)+1)=poly(real(irng(:),sp),b(:))

Each Savitzky-Golay coefficient is the value of the polynomial in (14.8.6) at the corresponding
integer. The polynomial coefficients are a row of the inverse matrix. The mod function takes
care of the wrap-around order.

END FUNCTION savgol

f90
do imj=-mm,mm,2 Here is an example of a loop that cannot be parallelized
in the framework of Fortran 90: We need to access “skew” sections of
the matrixa.

savgol...=poly(real(irng(:),sp),b(:))) The poly function in nrutil re-
turns the value of a polynomial, here the one in equation (14.8.6). We need the
explicit kind type parametersp in the real function, otherwise it would return
type default real for the integer argument and would not automatically convert to
double precision if desired.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B15. Modeling of Data

SUBROUTINE fit(x,y,a,b,siga,sigb,chi2,q,sig)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : gammq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
REAL(SP), DIMENSION(:), OPTIONAL, INTENT(IN) :: sig

Given a set of data points in same-size arrays x and y, fit them to a straight line y = a+ bx
by minimizing χ2. sig is an optional array of the same length containing the individual
standard deviations. If it is present, then a,b are returned with their respective probable
uncertainties siga and sigb, the chi-square chi2, and the goodness-of-fit probability q
(that the fit would have χ2 this large or larger). If sig is not present, then q is returned
as 1.0 and the normalization of chi2 is to unit standard deviation on all points.

INTEGER(I4B) :: ndata
REAL(SP) :: sigdat,ss,sx,sxoss,sy,st2
REAL(SP), DIMENSION(size(x)), TARGET :: t
REAL(SP), DIMENSION(:), POINTER :: wt
if (present(sig)) then

ndata=assert_eq(size(x),size(y),size(sig),’fit’)
wt=>t Use temporary variable t to store weights.
wt(:)=1.0_sp/(sig(:)**2)
ss=sum(wt(:)) Accumulate sums with weights.
sx=dot_product(wt,x)
sy=dot_product(wt,y)

else
ndata=assert_eq(size(x),size(y),’fit’)
ss=real(size(x),sp) Accumulate sums without weights.
sx=sum(x)
sy=sum(y)

end if
sxoss=sx/ss
t(:)=x(:)-sxoss
if (present(sig)) then

t(:)=t(:)/sig(:)
b=dot_product(t/sig,y)

else
b=dot_product(t,y)

end if
st2=dot_product(t,t)
b=b/st2 Solve for a, b, σa, and σb.
a=(sy-sx*b)/ss
siga=sqrt((1.0_sp+sx*sx/(ss*st2))/ss)
sigb=sqrt(1.0_sp/st2)
t(:)=y(:)-a-b*x(:)
q=1.0
if (present(sig)) then

t(:)=t(:)/sig(:)
chi2=dot_product(t,t) Calculate χ2.
if (ndata > 2) q=gammq(0.5_sp*(size(x)-2),0.5_sp*chi2) Equation (15.2.12).

else
chi2=dot_product(t,t)

1285

1286 Chapter B15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sigdat=sqrt(chi2/(size(x)-2)) For unweighted data evaluate typical
sig using chi2, and adjust the
standard deviations.

siga=siga*sigdat
sigb=sigb*sigdat

end if
END SUBROUTINE fit

f90
REAL(SP), DIMENSION(:), POINTER :: wt...wt=>t When standard devia-
tions are supplied insig, we need to compute the weights for the least
squares fit in a temporary arraywt. Later in the routine, we need another

temporary array, which we callt to correspond to the variable in equation (15.2.15).
It would be confusing to use the same name for both arrays. In Fortran 77 the arrays
could share storage with anEQUIVALENCEdeclaration, but that is a deprecated feature
in Fortran 90. We accomplish the same thing by makingwt a pointer alias tot.

⋆ ⋆ ⋆

SUBROUTINE fitexy(x,y,sigx,sigy,a,b,siga,sigb,chi2,q)
USE nrtype; USE nrutil, ONLY : assert_eq,swap
USE nr, ONLY : avevar,brent,fit,gammq,mnbrak,zbrent
USE chixyfit
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sigx,sigy
REAL(SP), INTENT(OUT) :: a,b,siga,sigb,chi2,q
REAL(SP), PARAMETER :: POTN=1.571000_sp,BIG=1.0e30_sp,ACC=1.0e-3_sp

Straight-line fit to input data x and y with errors in both x and y, the respective standard
deviations being the input quantities sigx and sigy. x, y, sigx, and sigy are all arrays of
the same length. Output quantities are a and b such that y = a+ bx minimizes χ2, whose
value is returned as chi2. The χ2 probability is returned as q, a small value indicating
a poor fit (sometimes indicating underestimated errors). Standard errors on a and b are
returned as siga and sigb. These are not meaningful if either (i) the fit is poor, or (ii) b
is so large that the data are consistent with a vertical (infinite b) line. If siga and sigb
are returned as BIG, then the data are consistent with all values of b.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(x)), TARGET :: xx,yy,sx,sy,ww
REAL(SP), DIMENSION(6) :: ang,ch
REAL(SP) :: amx,amn,varx,vary,scale,bmn,bmx,d1,d2,r2,&

dum1,dum2,dum3,dum4,dum5
n=assert_eq(size(x),size(y),size(sigx),size(sigy),’fitexy’)
xxp=>xx Set up communication with function chixy

through global variables in the module
chixyfit.

yyp=>yy
sxp=>sx
syp=>sy
wwp=>ww
call avevar(x,dum1,varx) Find the x and y variances, and scale the

data.call avevar(y,dum1,vary)
scale=sqrt(varx/vary)
xx(:)=x(:)
yy(:)=y(:)*scale
sx(:)=sigx(:)
sy(:)=sigy(:)*scale
ww(:)=sqrt(sx(:)**2+sy(:)**2) Use both x and y weights in first trial fit.
call fit(xx,yy,dum1,b,dum2,dum3,dum4,dum5,ww) Trial fit for b.
offs=0.0
ang(1)=0.0 Construct several angles for reference points.
ang(2)=atan(b) Make b an angle.
ang(4)=0.0
ang(5)=ang(2)
ang(6)=POTN
do j=4,6

ch(j)=chixy(ang(j))

Chapter B15. Modeling of Data 1287

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
call mnbrak(ang(1),ang(2),ang(3),ch(1),ch(2),ch(3),chixy)
Bracket the χ2 minimum and then locate it with brent.

chi2=brent(ang(1),ang(2),ang(3),chixy,ACC,b)
chi2=chixy(b)
a=aa
q=gammq(0.5_sp*(n-2),0.5_sp*chi2) Compute χ2 probability.
r2=1.0_sp/sum(ww(:)) Save inverse sum of weights at the minimum.
bmx=BIG Now, find standard errors for b as points where

∆χ2 = 1.bmn=BIG
offs=chi2+1.0_sp
do j=1,6 Go through saved values to bracket the de-

sired roots. Note periodicity in slope an-
gles.

if (ch(j) > offs) then
d1=mod(abs(ang(j)-b),PI)
d2=PI-d1
if (ang(j) < b) call swap(d1,d2)
if (d1 < bmx) bmx=d1
if (d2 < bmn) bmn=d2

end if
end do
if (bmx < BIG) then Call zbrent to find the roots.

bmx=zbrent(chixy,b,b+bmx,ACC)-b
amx=aa-a
bmn=zbrent(chixy,b,b-bmn,ACC)-b
amn=aa-a
sigb=sqrt(0.5_sp*(bmx**2+bmn**2))/(scale*cos(b)**2)
siga=sqrt(0.5_sp*(amx**2+amn**2)+r2)/scale Error in a has additional piece

r2.else
sigb=BIG
siga=BIG

end if
a=a/scale Unscale the answers.
b=tan(b)/scale
END SUBROUTINE fitexy

f90
USE chixyfit We need to pass arrays and other variables tochixy, but
not as arguments. See§21.5 and the discussion offminln on p. 1197
for two good ways to do this. The pointer construction here is analogous

to the one used infminln.

MODULE chixyfit
USE nrtype; USE nrutil, ONLY : nrerror
REAL(SP), DIMENSION(:), POINTER :: xxp,yyp,sxp,syp,wwp
REAL(SP) :: aa,offs
CONTAINS

FUNCTION chixy(bang)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: bang
REAL(SP) :: chixy
REAL(SP), PARAMETER :: BIG=1.0e30_sp

Captive function of fitexy, returns the value of (χ2 −offs) for the slope b=tan(bang).
Scaled data and offs are communicated via the module chixyfit.

REAL(SP) :: avex,avey,sumw,b
if (.not. associated(wwp)) call nrerror("chixy: bad pointers")
b=tan(bang)
wwp(:)=(b*sxp(:))**2+syp(:)**2
where (wwp(:) < 1.0/BIG)

wwp(:)=BIG
elsewhere

wwp(:)=1.0_sp/wwp(:)
end where

1288 Chapter B15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sumw=sum(wwp)
avex=dot_product(wwp,xxp)/sumw
avey=dot_product(wwp,yyp)/sumw
aa=avey-b*avex
chixy=sum(wwp(:)*(yyp(:)-aa-b*xxp(:))**2)-offs
END FUNCTION chixy
END MODULE chixyfit

⋆ ⋆ ⋆

SUBROUTINE lfit(x,y,sig,a,maska,covar,chisq,funcs)
USE nrtype; USE nrutil, ONLY : assert_eq,diagmult,nrerror
USE nr, ONLY :covsrt,gaussj
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: covar
REAL(SP), INTENT(OUT) :: chisq
INTERFACE

SUBROUTINE funcs(x,arr)
USE nrtype
IMPLICIT NONE
REAL(SP),INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(OUT) :: arr
END SUBROUTINE funcs

END INTERFACE
Given a set of N data points x, y with individual standard deviations sig, all arrays of
length N , use χ2 minimization to fit for some or all of the M coefficients a of a function
that depends linearly on a, y =

∑
M

i=1 ai × afunci(x). The input logical array maska of
length M indicates by true entries those components of a that should be fitted for, and by
false entries those components that should be held fixed at their input values. The program
returns values for a, χ2 = chisq, and the M ×M covariance matrix covar. (Parameters
held fixed will return zero covariances.) The user supplies a subroutine funcs(x,afunc)
that returns the M basis functions evaluated at x = x in the array afunc.

INTEGER(I4B) :: i,j,k,l,ma,mfit,n
REAL(SP) :: sig2i,wt,ym
REAL(SP), DIMENSION(size(maska)) :: afunc
REAL(SP), DIMENSION(size(maska),1) :: beta
n=assert_eq(size(x),size(y),size(sig),’lfit: n’)
ma=assert_eq(size(maska),size(a),size(covar,1),size(covar,2),’lfit: ma’)
mfit=count(maska) Number of parameters to fit for.
if (mfit == 0) call nrerror(’lfit: no parameters to be fitted’)
covar(1:mfit,1:mfit)=0.0 Initialize the (symmetric) matrix.
beta(1:mfit,1)=0.0
do i=1,n Loop over data to accumulate coefficients of

the normal equations.call funcs(x(i),afunc)
ym=y(i)
if (mfit < ma) ym=ym-sum(a(1:ma)*afunc(1:ma), mask=.not. maska)
Subtract off dependences on known pieces of the fitting function.

sig2i=1.0_sp/sig(i)**2
j=0
do l=1,ma

if (maska(l)) then
j=j+1
wt=afunc(l)*sig2i
k=count(maska(1:l))
covar(j,1:k)=covar(j,1:k)+wt*pack(afunc(1:l),maska(1:l))
beta(j,1)=beta(j,1)+ym*wt

end if
end do

Chapter B15. Modeling of Data 1289

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
call diagmult(covar(1:mfit,1:mfit),0.5_sp)
covar(1:mfit,1:mfit)= & Fill in above the diagonal from symmetry.

covar(1:mfit,1:mfit)+transpose(covar(1:mfit,1:mfit))
call gaussj(covar(1:mfit,1:mfit),beta(1:mfit,1:1)) Matrix solution.
a(1:ma)=unpack(beta(1:ma,1),maska,a(1:ma))
Partition solution to appropriate coefficients a.

chisq=0.0 Evaluate χ2 of the fit.
do i=1,n

call funcs(x(i),afunc)
chisq=chisq+((y(i)-dot_product(a(1:ma),afunc(1:ma)))/sig(i))**2

end do
call covsrt(covar,maska) Sort covariance matrix to true order of fitting

coefficients.END SUBROUTINE lfit

f90
if (mfit < ma) ym=ym-sum(a(1:ma)*afunc(1:ma), mask=.not. maska)

This is the first of several uses ofmaska in this routine to control
which elements of an array are to be used. Here we include in the sum

only elements for whichmaska is false, i.e., elements corresponding to parameters
that are not being fitted for.

covar(j,1:k)=covar(j,1:k)+wt*pack(afunc(1:l),maska(1:l)) Here maska

controls which elements ofafunc get packed into the covariance matrix.

call diagmult(covar(1:mfit,1:mfit),0.5_sp) See discussion ofdiagadd
after hqr on p. 1234.

a(1:ma)=unpack(beta(1:ma,1),maska,a(1:ma)) And heremaskacontrols which
elements ofbeta get unpacked into the appropriate slots ina. Wheremaska is
false, corresponding elements are selected from the third argument ofunpack, here
a itself. The net effect is that those elements remain unchanged.

⋆ ⋆ ⋆

SUBROUTINE covsrt(covar,maska)
USE nrtype; USE nrutil, ONLY : assert_eq,swap
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: covar
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska

Expand in storage the covariance matrix covar, so as to take into account parameters that
are being held fixed. (For the latter, return zero covariances.)

INTEGER(I4B) :: ma,mfit,j,k
ma=assert_eq(size(covar,1),size(covar,2),size(maska),’covsrt’)
mfit=count(maska)
covar(mfit+1:ma,1:ma)=0.0
covar(1:ma,mfit+1:ma)=0.0
k=mfit
do j=ma,1,-1

if (maska(j)) then
call swap(covar(1:ma,k),covar(1:ma,j))
call swap(covar(k,1:ma),covar(j,1:ma))
k=k-1

end if
end do
END SUBROUTINE covsrt

⋆ ⋆ ⋆

1290 Chapter B15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE svdfit(x,y,sig,a,v,w,chisq,funcs)
USE nrtype; USE nrutil, ONLY : assert_eq,vabs
USE nr, ONLY : svbksb,svdcmp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(OUT) :: a,w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: v
REAL(SP), INTENT(OUT) :: chisq
INTERFACE

FUNCTION funcs(x,n)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: funcs
END FUNCTION funcs

END INTERFACE
REAL(SP), PARAMETER :: TOL=1.0e-5_sp

Given a set ofN data points x, y with individual standard deviations sig, all arrays of length
N , use χ2 minimization to determine theM coefficients a of a function that depends linearly
on a, y =

∑
M

i=1 ai × afunci(x). Here we solve the fitting equations using singular value
decomposition of the N × M matrix, as in §2.6. On output, the M × M array v and the
vector w of length M define part of the singular value decomposition, and can be used to
obtain the covariance matrix. The program returns values for the M fit parameters a, and
χ2, chisq. The user supplies a subroutine funcs(x,afunc) that returns the M basis
functions evaluated at x = X in the array afunc.

INTEGER(I4B) :: i,ma,n
REAL(SP), DIMENSION(size(x)) :: b,sigi
REAL(SP), DIMENSION(size(x),size(a)) :: u,usav
n=assert_eq(size(x),size(y),size(sig),’svdfit: n’)
ma=assert_eq(size(a),size(v,1),size(v,2),size(w),’svdfit: ma’)
sigi=1.0_sp/sig Accumulate coefficients of the fitting matrix in

u.b=y*sigi
do i=1,n

usav(i,:)=funcs(x(i),ma)
end do
u=usav*spread(sigi,dim=2,ncopies=ma)
usav=u
call svdcmp(u,w,v) Singular value decomposition.
where (w < TOL*maxval(w)) w=0.0 Edit the singular values, given TOL from the pa-

rameter statement.call svbksb(u,w,v,b,a)
chisq=vabs(matmul(usav,a)-b)**2 Evaluate chi-square.
END SUBROUTINE svdfit

f90
u=usav*spread(sigi,dim=2,ncopies=ma) Remember howspread works:
the vectorsigi is copiedalongthe dimension 2, making a matrix whose
columns are each a copy ofsigi. The multiplication here is element by

element, so each row ofusav is multiplied by the corresponding element ofsigi.

chisq=vabs(matmul(usav,a)-b)**2 Fortran 90’smatmul intrinsic allows us to
evaluateχ2 from the mathematical definition in terms of matrices.vabs in nrutil

returns the length of a vector (L2 norm).

SUBROUTINE svdvar(v,w,cvm)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(IN) :: v
REAL(SP), DIMENSION(:), INTENT(IN) :: w
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: cvm

Chapter B15. Modeling of Data 1291

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

To evaluate the covariance matrix cvm of the fit for M parameters obtained by svdfit,
call this routine with matrices v,w as returned from svdfit. The dimensions are M for
w and M × M for v and cvm.

INTEGER(I4B) :: ma
REAL(SP), DIMENSION(size(w)) :: wti
ma=assert_eq((/size(v,1),size(v,2),size(w),size(cvm,1),size(cvm,2)/),&

’svdvar’)
where (w /= 0.0)

wti=1.0_sp/(w*w)
elsewhere

wti=0.0
end where
cvm=v*spread(wti,dim=1,ncopies=ma)
cvm=matmul(cvm,transpose(v)) Covariance matrix is given by (15.4.20).
END SUBROUTINE svdvar

f90
where (w /= 0.0)...elsewhere...end where This is the standard Fortran
90 construction for doing different things to a matrix depending on some
condition. Here we want to avoid inverting elements ofw that are zero.

cvm=v*spread(wti,dim=1,ncopies=ma) Each column ofv gets multiplied by
the corresponding element ofwti. Contrast the constructionspread(...dim=2...)
in svdfit.

⋆ ⋆ ⋆

FUNCTION fpoly(x,n)
USE nrtype; USE nrutil, ONLY : geop
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: fpoly

Fitting routine for a polynomial of degree n − 1, returning n coefficients in fpoly.
fpoly=geop(1.0_sp,x,n)
END FUNCTION fpoly

⋆ ⋆ ⋆

FUNCTION fleg(x,nl)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: nl
REAL(SP), DIMENSION(nl) :: fleg

Fitting routine for an expansion with nl Legendre polynomials evaluated at x and returned
in the array fleg of length nl. The evaluation uses the recurrence relation as in §5.5.

INTEGER(I4B) :: j
REAL(SP) :: d,f1,f2,twox
fleg(1)=1.0
fleg(2)=x
if (nl > 2) then

twox=2.0_sp*x
f2=x
d=1.0
do j=3,nl

f1=d
f2=f2+twox
d=d+1.0_sp

1292 Chapter B15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

fleg(j)=(f2*fleg(j-1)-f1*fleg(j-2))/d
end do

end if
END FUNCTION fleg

⋆ ⋆ ⋆

SUBROUTINE mrqmin(x,y,sig,a,maska,covar,alpha,chisq,funcs,alamda)
USE nrtype; USE nrutil, ONLY : assert_eq,diagmult
USE nr, ONLY : covsrt,gaussj
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y,sig
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: covar,alpha
REAL(SP), INTENT(OUT) :: chisq
REAL(SP), INTENT(INOUT) :: alamda
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: maska
INTERFACE

SUBROUTINE funcs(x,a,yfit,dyda)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: yfit
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda
END SUBROUTINE funcs

END INTERFACE
Levenberg-Marquardt method, attempting to reduce the value χ2 of a fit between a set ofN
data points x, y with individual standard deviations sig, and a nonlinear function dependent
on M coefficients a. The input logical array maska of length M indicates by true entries
those components of a that should be fitted for, and by false entries those components that
should be held fixed at their input values. The program returns current best-fit values for the
parameters a, and χ2 = chisq. The M×M arrays covar and alpha are used as working
space during most iterations. Supply a subroutine funcs(x,a,yfit,dyda) that evaluates
the fitting function yfit, and its derivatives dyda with respect to the fitting parameters a
at x. On the first call provide an initial guess for the parameters a, and set alamda<0 for
initialization (which then sets alamda=.001). If a step succeeds chisq becomes smaller
and alamda decreases by a factor of 10. If a step fails alamda grows by a factor of 10.
You must call this routine repeatedly until convergence is achieved. Then, make one final
call with alamda=0, so that covar returns the covariance matrix, and alpha the curvature
matrix. (Parameters held fixed will return zero covariances.)

INTEGER(I4B) :: ma,ndata
INTEGER(I4B), SAVE :: mfit
call mrqmin_private
CONTAINS

SUBROUTINE mrqmin_private
REAL(SP), SAVE :: ochisq
REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: atry,beta
REAL(SP), DIMENSION(:,:), ALLOCATABLE, SAVE :: da
ndata=assert_eq(size(x),size(y),size(sig),’mrqmin: ndata’)
ma=assert_eq((/size(a),size(maska),size(covar,1),size(covar,2),&

size(alpha,1),size(alpha,2)/),’mrqmin: ma’)
mfit=count(maska)
if (alamda < 0.0) then Initialization.

allocate(atry(ma),beta(ma),da(ma,1))
alamda=0.001_sp
call mrqcof(a,alpha,beta)
ochisq=chisq
atry=a

end if
covar(1:mfit,1:mfit)=alpha(1:mfit,1:mfit)
call diagmult(covar(1:mfit,1:mfit),1.0_sp+alamda)

Chapter B15. Modeling of Data 1293

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Alter linearized fitting matrix, by augmenting diagonal elements.
da(1:mfit,1)=beta(1:mfit)
call gaussj(covar(1:mfit,1:mfit),da(1:mfit,1:1)) Matrix solution.
if (alamda == 0.0) then Once converged, evaluate covariance ma-

trix.call covsrt(covar,maska)
call covsrt(alpha,maska) Spread out alpha to its full size too.
deallocate(atry,beta,da)
RETURN

end if
atry=a+unpack(da(1:mfit,1),maska,0.0_sp) Did the trial succeed?
call mrqcof(atry,covar,da(1:mfit,1))
if (chisq < ochisq) then Success, accept the new solution.

alamda=0.1_sp*alamda
ochisq=chisq
alpha(1:mfit,1:mfit)=covar(1:mfit,1:mfit)
beta(1:mfit)=da(1:mfit,1)
a=atry

else Failure, increase alamda and return.
alamda=10.0_sp*alamda
chisq=ochisq

end if
END SUBROUTINE mrqmin_private

SUBROUTINE mrqcof(a,alpha,beta)
REAL(SP), DIMENSION(:), INTENT(IN) :: a
REAL(SP), DIMENSION(:), INTENT(OUT) :: beta
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: alpha

Used by mrqmin to evaluate the linearized fitting matrix alpha, and vector beta as in
(15.5.8), and calculate χ2.

INTEGER(I4B) :: j,k,l,m
REAL(SP), DIMENSION(size(x),size(a)) :: dyda
REAL(SP), DIMENSION(size(x)) :: dy,sig2i,wt,ymod
call funcs(x,a,ymod,dyda) Loop over all the data.
sig2i=1.0_sp/(sig**2)
dy=y-ymod
j=0
do l=1,ma

if (maska(l)) then
j=j+1
wt=dyda(:,l)*sig2i
k=0
do m=1,l

if (maska(m)) then
k=k+1
alpha(j,k)=dot_product(wt,dyda(:,m))
alpha(k,j)=alpha(j,k) Fill in the symmetric side.

end if
end do
beta(j)=dot_product(dy,wt)

end if
end do
chisq=dot_product(dy**2,sig2i) Find χ2.
END SUBROUTINE mrqcof
END SUBROUTINE mrqmin

f90
The organization of this routine is similar to that ofamoeba, discussed
on p. 1209. We want to keep the argument list ofmrqcof to a minimum,
but we want to make clear what global variables it accesses, and protect

mrqmin private’s name space.

REAL(SP), DIMENSION(:), ALLOCATABLE, SAVE :: atry,beta These arrays, as
well as da, are allocated with the correct dimensions on the first call tomrqmin.

1294 Chapter B15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

They need to retain their values between calls, so they are declared with theSAVE

attribute. They get deallocated only on the final call whenalamda=0.

call diagmult(...) See discussion ofdiagadd afterhqr on p. 1234.

atry=a+unpack(da(1:mfit,1),maska,0.0_sp) maska controls which elements
of a get incremented byda and which by 0.

⋆ ⋆ ⋆

SUBROUTINE fgauss(x,a,y,dyda)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,a
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dyda

y(x; a) is the sum of N/3 Gaussians (15.5.16). Here N is the length of the vectors x, y
and a, while dyda is an N ×N matrix. The amplitude, center, and width of the Gaussians
are stored in consecutive locations of a: a(i) = Bk, a(i+1) = Ek, a(i+2) = Gk ,
k = 1, . . . , N/3.

INTEGER(I4B) :: i,na,nx
REAL(SP), DIMENSION(size(x)) :: arg,ex,fac
nx=assert_eq(size(x),size(y),size(dyda,1),’fgauss: nx’)
na=assert_eq(size(a),size(dyda,2),’fgauss: na’)
y(:)=0.0
do i=1,na-1,3

arg(:)=(x(:)-a(i+1))/a(i+2)
ex(:)=exp(-arg(:)**2)
fac(:)=a(i)*ex(:)*2.0_sp*arg(:)
y(:)=y(:)+a(i)*ex(:)
dyda(:,i)=ex(:)
dyda(:,i+1)=fac(:)/a(i+2)
dyda(:,i+2)=fac(:)*arg(:)/a(i+2)

end do
END SUBROUTINE fgauss

⋆ ⋆ ⋆

SUBROUTINE medfit(x,y,a,b,abdev)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : select
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(OUT) :: a,b,abdev

Fits y = a+bx by the criterion of least absolute deviations. The same-size arrays x and y are
the input experimental points. The fitted parameters a and b are output, along with abdev,
which is the mean absolute deviation (in y) of the experimental points from the fitted line.

INTEGER(I4B) :: ndata
REAL(SP) :: aa
call medfit_private
CONTAINS

SUBROUTINE medfit_private
IMPLICIT NONE
REAL(SP) :: b1,b2,bb,chisq,del,f,f1,f2,sigb,sx,sxx,sxy,sy
REAL(SP), DIMENSION(size(x)) :: tmp
ndata=assert_eq(size(x),size(y),’medfit’)
sx=sum(x) As a first guess for a and b, we will find the least

squares fitting line.sy=sum(y)
sxy=dot_product(x,y)

Chapter B15. Modeling of Data 1295

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sxx=dot_product(x,x)
del=ndata*sxx-sx**2
aa=(sxx*sy-sx*sxy)/del Least squares solutions.
bb=(ndata*sxy-sx*sy)/del
tmp(:)=y(:)-(aa+bb*x(:))
chisq=dot_product(tmp,tmp)
sigb=sqrt(chisq/del) The standard deviation will give some idea of how

big an iteration step to take.b1=bb
f1=rofunc(b1)
b2=bb+sign(3.0_sp*sigb,f1) Guess bracket as 3-σ away, in the downhill direction

known from f1.f2=rofunc(b2)
if (b2 == b1) then

a=aa
b=bb
RETURN

endif
do Bracketing.

if (f1*f2 <= 0.0) exit
bb=b2+1.6_sp*(b2-b1)
b1=b2
f1=f2
b2=bb
f2=rofunc(b2)

end do
sigb=0.01_sp*sigb Refine until error a negligible number of standard de-

viations.do
if (abs(b2-b1) <= sigb) exit
bb=b1+0.5_sp*(b2-b1) Bisection.
if (bb == b1 .or. bb == b2) exit
f=rofunc(bb)
if (f*f1 >= 0.0) then

f1=f
b1=bb

else
f2=f
b2=bb

end if
end do
a=aa
b=bb
abdev=abdev/ndata
END SUBROUTINE medfit_private

FUNCTION rofunc(b)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: b
REAL(SP) :: rofunc
REAL(SP), PARAMETER :: EPS=epsilon(b)

Evaluates the right-hand side of equation (15.7.16) for a given value of b.
INTEGER(I4B) :: j
REAL(SP), DIMENSION(size(x)) :: arr,d
arr(:)=y(:)-b*x(:)
if (mod(ndata,2) == 0) then

j=ndata/2
aa=0.5_sp*(select(j,arr)+select(j+1,arr))

else
aa=select((ndata+1)/2,arr)

end if
d(:)=y(:)-(b*x(:)+aa)
abdev=sum(abs(d))
where (y(:) /= 0.0) d(:)=d(:)/abs(y(:))
rofunc=sum(x(:)*sign(1.0_sp,d(:)), mask=(abs(d(:)) > EPS))
END FUNCTION rofunc
END SUBROUTINE medfit

1296 Chapter B15. Modeling of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
The organization of this routine is similar to that ofamoeba discussed on
p. 1209. We want to keep the argument list ofrofunc to a minimum,
but we want to make clear what global variables it accesses and protect

medfit private’s name space. In the Fortran 77 version, we kept the only
argument asb by passing the global variables in a common block. This required us to
make copies of the arraysx andy. An alternative Fortran 90 implementation would
be to use a module with pointers to the arguments ofmedfit like x andy that need
to be passed torofunc. We think themedfit private construction is simpler.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B16. Integration of Ordinary
Differential Equations

SUBROUTINE rk4(y,dydx,x,h,yout,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), INTENT(IN) :: x,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Given values for the N variables y and their derivatives dydx known at x, use the fourth-
order Runge-Kutta method to advance the solution over an interval h and return the incre-
mented variables as yout, which need not be a distinct array from y. y, dydx and yout
are all of length N . The user supplies the subroutine derivs(x,y,dydx), which returns
derivatives dydx at x.

INTEGER(I4B) :: ndum
REAL(SP) :: h6,hh,xh
REAL(SP), DIMENSION(size(y)) :: dym,dyt,yt
ndum=assert_eq(size(y),size(dydx),size(yout),’rk4’)
hh=h*0.5_sp
h6=h/6.0_sp
xh=x+hh
yt=y+hh*dydx First step.
call derivs(xh,yt,dyt) Second step.
yt=y+hh*dyt
call derivs(xh,yt,dym) Third step.
yt=y+h*dym
dym=dyt+dym
call derivs(x+h,yt,dyt) Fourth step.
yout=y+h6*(dydx+dyt+2.0_sp*dym) Accumulate increments with proper weights.
END SUBROUTINE rk4

⋆ ⋆ ⋆

MODULE rkdumb_path Storage of results.
USE nrtype
REAL(SP), DIMENSION(:), ALLOCATABLE:: xx
REAL(SP), DIMENSION(:,:), ALLOCATABLE :: y
END MODULE rkdumb_path

1297

1298 Chapter B16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE rkdumb(vstart,x1,x2,nstep,derivs)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : rk4
USE rkdumb_path
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: vstart
REAL(SP), INTENT(IN) :: x1,x2
INTEGER(I4B), INTENT(IN) :: nstep
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Starting from N initial values vstart known at x1, use fourth-order Runge-Kutta to ad-
vance nstep equal increments to x2. The user-supplied subroutine derivs(x,y,dydx)
evaluates derivatives. Results are stored in the module variables xx and y.

INTEGER(I4B) :: k
REAL(SP) :: h,x
REAL(SP), DIMENSION(size(vstart)) :: dv,v
v(:)=vstart(:) Load starting values.
if (allocated(xx)) deallocate(xx) Clear out old stored variables if necessary.
if (allocated(y)) deallocate(y)
allocate(xx(nstep+1)) Allocate storage for saved values.
allocate(y(size(vstart),nstep+1))
y(:,1)=v(:)
xx(1)=x1
x=x1
h=(x2-x1)/nstep
do k=1,nstep Take nstep steps.

call derivs(x,v,dv)
call rk4(v,dv,x,h,v,derivs)
if (x+h == x) call nrerror(’stepsize not significant in rkdumb’)
x=x+h
xx(k+1)=x Store intermediate steps.
y(:,k+1)=v(:)

end do
END SUBROUTINE rkdumb

f90
MODULE rkdumb_path This routine needs straightforward communication
of arrays with the calling program. The dimension of the arrays is not
known in advance, and if the routine is called a second time we need

to throw away the old array information. The Fortran 90 construction for this is
to declare allocatable arrays in a module, and then test them at the beginning of
the routine withif (allocated...).

⋆ ⋆ ⋆

SUBROUTINE rkqs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : rkck
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext

Chapter B16. Integration of Ordinary Differential Equations 1299

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTERFACE
SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Fifth order Runge-Kutta step with monitoring of local truncation error to ensure accuracy
and adjust stepsize. Input are the dependent variable vector y and its derivative dydx at
the starting value of the independent variable x. Also input are the stepsize to be attempted
htry, the required accuracy eps, and the vector yscal against which the error is scaled. y,
dydx, and yscal are all of the same length. On output, y and x are replaced by their new
values, hdid is the stepsize that was actually accomplished, and hnext is the estimated
next stepsize. derivs is the user-supplied subroutine that computes the right-hand-side
derivatives.

INTEGER(I4B) :: ndum
REAL(SP) :: errmax,h,htemp,xnew
REAL(SP), DIMENSION(size(y)) :: yerr,ytemp
REAL(SP), PARAMETER :: SAFETY=0.9_sp,PGROW=-0.2_sp,PSHRNK=-0.25_sp,&

ERRCON=1.89e-4
The value ERRCON equals (5/SAFETY)**(1/PGROW), see use below.

ndum=assert_eq(size(y),size(dydx),size(yscal),’rkqs’)
h=htry Set stepsize to the initial trial value.
do

call rkck(y,dydx,x,h,ytemp,yerr,derivs) Take a step.
errmax=maxval(abs(yerr(:)/yscal(:)))/eps Evaluate accuracy.
if (errmax <= 1.0) exit Step succeeded.
htemp=SAFETY*h*(errmax**PSHRNK) Truncation error too large, reduce stepsize.
h=sign(max(abs(htemp),0.1_sp*abs(h)),h) No more than a factor of 10.
xnew=x+h
if (xnew == x) call nrerror(’stepsize underflow in rkqs’)

end do Go back for another try.
if (errmax > ERRCON) then Compute size of next step.

hnext=SAFETY*h*(errmax**PGROW)
else No more than a factor of 5 increase.

hnext=5.0_sp*h
end if
hdid=h
x=x+h
y(:)=ytemp(:)
END SUBROUTINE rkqs

⋆ ⋆ ⋆

SUBROUTINE rkck(y,dydx,x,h,yout,yerr,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), INTENT(IN) :: x,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout,yerr
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Given values for N variables y and their derivatives dydx known at x, use the fifth or-
der Cash-Karp Runge-Kutta method to advance the solution over an interval h and return

1300 Chapter B16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

the incremented variables as yout. Also return an estimate of the local truncation er-
ror in yout using the embedded fourth order method. The user supplies the subroutine
derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER(I4B) :: ndum
REAL(SP), DIMENSION(size(y)) :: ak2,ak3,ak4,ak5,ak6,ytemp
REAL(SP), PARAMETER :: A2=0.2_sp,A3=0.3_sp,A4=0.6_sp,A5=1.0_sp,&

A6=0.875_sp,B21=0.2_sp,B31=3.0_sp/40.0_sp,B32=9.0_sp/40.0_sp,&
B41=0.3_sp,B42=-0.9_sp,B43=1.2_sp,B51=-11.0_sp/54.0_sp,&
B52=2.5_sp,B53=-70.0_sp/27.0_sp,B54=35.0_sp/27.0_sp,&
B61=1631.0_sp/55296.0_sp,B62=175.0_sp/512.0_sp,&
B63=575.0_sp/13824.0_sp,B64=44275.0_sp/110592.0_sp,&
B65=253.0_sp/4096.0_sp,C1=37.0_sp/378.0_sp,&
C3=250.0_sp/621.0_sp,C4=125.0_sp/594.0_sp,&
C6=512.0_sp/1771.0_sp,DC1=C1-2825.0_sp/27648.0_sp,&
DC3=C3-18575.0_sp/48384.0_sp,DC4=C4-13525.0_sp/55296.0_sp,&
DC5=-277.0_sp/14336.0_sp,DC6=C6-0.25_sp

ndum=assert_eq(size(y),size(dydx),size(yout),size(yerr),’rkck’)
ytemp=y+B21*h*dydx First step.
call derivs(x+A2*h,ytemp,ak2) Second step.
ytemp=y+h*(B31*dydx+B32*ak2)
call derivs(x+A3*h,ytemp,ak3) Third step.
ytemp=y+h*(B41*dydx+B42*ak2+B43*ak3)
call derivs(x+A4*h,ytemp,ak4) Fourth step.
ytemp=y+h*(B51*dydx+B52*ak2+B53*ak3+B54*ak4)
call derivs(x+A5*h,ytemp,ak5) Fifth step.
ytemp=y+h*(B61*dydx+B62*ak2+B63*ak3+B64*ak4+B65*ak5)
call derivs(x+A6*h,ytemp,ak6) Sixth step.
yout=y+h*(C1*dydx+C3*ak3+C4*ak4+C6*ak6) Accumulate increments with proper weights.
yerr=h*(DC1*dydx+DC3*ak3+DC4*ak4+DC5*ak5+DC6*ak6)
Estimate error as difference between fourth and fifth order methods.

END SUBROUTINE rkck

⋆ ⋆ ⋆

MODULE ode_path On output nok and nbad are the num-
ber of good and bad (but retried and
fixed) steps taken. If save steps is
set to true in the calling program,
then intermediate values are stored
in xp and yp at intervals greater than
dxsav. kount is the total number of
saved steps.

USE nrtype
INTEGER(I4B) :: nok,nbad,kount
LOGICAL(LGT), SAVE :: save_steps=.false.
REAL(SP) :: dxsav
REAL(SP), DIMENSION(:), POINTER :: xp
REAL(SP), DIMENSION(:,:), POINTER :: yp
END MODULE ode_path

SUBROUTINE odeint(ystart,x1,x2,eps,h1,hmin,derivs,rkqs)
USE nrtype; USE nrutil, ONLY : nrerror,reallocate
USE ode_path
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: ystart
REAL(SP), INTENT(IN) :: x1,x2,eps,h1,hmin
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE rkqs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype

Chapter B16. Integration of Ordinary Differential Equations 1301

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
END SUBROUTINE rkqs

END INTERFACE
REAL(SP), PARAMETER :: TINY=1.0e-30_sp
INTEGER(I4B), PARAMETER :: MAXSTP=10000

Runge-Kutta driver with adaptive stepsize control. Integrate the array of starting values
ystart from x1 to x2 with accuracy eps, storing intermediate results in the module
variables in ode path. h1 should be set as a guessed first stepsize, hmin as the minimum
allowed stepsize (can be zero). On output ystart is replaced by values at the end of the
integration interval. derivs is the user-supplied subroutine for calculating the right-hand-
side derivative, while rkqs is the name of the stepper routine to be used.

INTEGER(I4B) :: nstp
REAL(SP) :: h,hdid,hnext,x,xsav
REAL(SP), DIMENSION(size(ystart)) :: dydx,y,yscal
x=x1
h=sign(h1,x2-x1)
nok=0
nbad=0
kount=0
y(:)=ystart(:)
if (save_steps) then

xsav=x-2.0_sp*dxsav Assures storage of first step.
nullify(xp,yp) Pointers nullified here, but memory not

deallocated. If odeint is called mul-
tiple times, calling program should
deallocate xp and yp between calls.

allocate(xp(256))
allocate(yp(size(ystart),size(xp)))

end if
do nstp=1,MAXSTP Take at most MAXSTP steps.

call derivs(x,y,dydx)
yscal(:)=abs(y(:))+abs(h*dydx(:))+TINY
Scaling used to monitor accuracy. This general purpose choice can be modified if need
be.

if (save_steps .and. (abs(x-xsav) > abs(dxsav))) & Store intermediate results.
call save_a_step

if ((x+h-x2)*(x+h-x1) > 0.0) h=x2-x If stepsize can overshoot, decrease.
call rkqs(y,dydx,x,h,eps,yscal,hdid,hnext,derivs)
if (hdid == h) then

nok=nok+1
else

nbad=nbad+1
end if
if ((x-x2)*(x2-x1) >= 0.0) then Are we done?

ystart(:)=y(:)
if (save_steps) call save_a_step Save final step.
RETURN Normal exit.

end if
if (abs(hnext) < hmin)&

call nrerror(’stepsize smaller than minimum in odeint’)
h=hnext

end do
call nrerror(’too many steps in odeint’)

1302 Chapter B16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

CONTAINS

SUBROUTINE save_a_step
kount=kount+1
if (kount > size(xp)) then

xp=>reallocate(xp,2*size(xp))
yp=>reallocate(yp,size(yp,1),size(xp))

end if
xp(kount)=x
yp(:,kount)=y(:)
xsav=x
END SUBROUTINE save_a_step
END SUBROUTINE odeint

f90
MODULE ode_path The situation here is similar torkdumb path, except
we don’t know at run time how much storage to allocate. We may need
to usereallocate from nrutil to increase the storage. The solution

is pointers to arrays, with anullify to be sure the pointer status is well-defined
at the beginning of the routine.

SUBROUTINE save_a_step An internal subprogram with no arguments is like
a macro in C: you could imagine just copying its code wherever it is called in
the parent routine.

⋆ ⋆ ⋆

SUBROUTINE mmid(y,dydx,xs,htot,nstep,yout,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq,swap
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Modified midpoint step. Dependent variable vector y and its derivative vector dydx are
input at xs. Also input is htot, the total step to be taken, and nstep, the number of
substeps to be used. The output is returned as yout, which need not be a distinct array
from y; if it is distinct, however, then y and dydx are returned undamaged. y, dydx, and
yout must all have the same length.

INTEGER(I4B) :: n,ndum
REAL(SP) :: h,h2,x
REAL(SP), DIMENSION(size(y)) :: ym,yn
ndum=assert_eq(size(y),size(dydx),size(yout),’mmid’)
h=htot/nstep Stepsize this trip.
ym=y
yn=y+h*dydx First step.
x=xs+h
call derivs(x,yn,yout) Will use yout for temporary storage of derivatives.
h2=2.0_sp*h
do n=2,nstep General step.

call swap(ym,yn)
yn=yn+h2*yout

Chapter B16. Integration of Ordinary Differential Equations 1303

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

x=x+h
call derivs(x,yn,yout)

end do
yout=0.5_sp*(ym+yn+h*yout) Last step.
END SUBROUTINE mmid

⋆ ⋆ ⋆

SUBROUTINE bsstep(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,cumsum,iminloc,nrerror,&

outerdiff,outerprod,upper_triangle
USE nr, ONLY : mmid,pzextr
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
INTEGER(I4B), PARAMETER :: IMAX=9, KMAXX=IMAX-1
REAL(SP), PARAMETER :: SAFE1=0.25_sp,SAFE2=0.7_sp,REDMAX=1.0e-5_sp,&

REDMIN=0.7_sp,TINY=1.0e-30_sp,SCALMX=0.1_sp
Bulirsch-Stoer step with monitoring of local truncation error to ensure accuracy and adjust
stepsize. Input are the dependent variable vector y and its derivative dydx at the starting
value of the independent variable x. Also input are the stepsize to be attempted htry, the
required accuracy eps, and the vector yscal against which the error is scaled. On output, y
and x are replaced by their new values, hdid is the stepsize that was actually accomplished,
and hnext is the estimated next stepsize. derivs is the user-supplied subroutine that
computes the right-hand-side derivatives. y, dydx, and yscal must all have the same
length. Be sure to set htry on successive steps to the value of hnext returned from the
previous step, as is the case if the routine is called by odeint.
Parameters: KMAXX is the maximum row number used in the extrapolation; IMAX is the
next row number; SAFE1 and SAFE2 are safety factors; REDMAX is the maximum factor
used when a stepsize is reduced, REDMIN the minimum; TINY prevents division by zero;
1/SCALMX is the maximum factor by which a stepsize can be increased.

INTEGER(I4B) :: k,km,ndum
INTEGER(I4B), DIMENSION(IMAX) :: nseq = (/ 2,4,6,8,10,12,14,16,18 /)
INTEGER(I4B), SAVE :: kopt,kmax
REAL(SP), DIMENSION(KMAXX,KMAXX), SAVE :: alf
REAL(SP), DIMENSION(KMAXX) :: err
REAL(SP), DIMENSION(IMAX), SAVE :: a
REAL(SP), SAVE :: epsold = -1.0_sp,xnew
REAL(SP) :: eps1,errmax,fact,h,red,scale,wrkmin,xest
REAL(SP), DIMENSION(size(y)) :: yerr,ysav,yseq
LOGICAL(LGT) :: reduct
LOGICAL(LGT), SAVE :: first=.true.
ndum=assert_eq(size(y),size(dydx),size(yscal),’bsstep’)
if (eps /= epsold) then A new tolerance, so reinitialize.

hnext=-1.0e29_sp “Impossible” values.
xnew=-1.0e29_sp
eps1=SAFE1*eps
a(:)=cumsum(nseq,1)
Compute α(k, q):

where (upper_triangle(KMAXX,KMAXX)) alf=eps1** &
(outerdiff(a(2:),a(2:))/outerprod(arth(&

1304 Chapter B16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

3.0_sp,2.0_sp,KMAXX),(a(2:)-a(1)+1.0_sp)))
epsold=eps
do kopt=2,KMAXX-1 Determine optimal row number for con-

vergence.if (a(kopt+1) > a(kopt)*alf(kopt-1,kopt)) exit
end do
kmax=kopt

end if
h=htry
ysav(:)=y(:) Save the starting values.
if (h /= hnext .or. x /= xnew) then A new stepsize or a new integration: Re-

establish the order window.first=.true.
kopt=kmax

end if
reduct=.false.
main_loop: do

do k=1,kmax Evaluate the sequence of modified mid-
point integrations.xnew=x+h

if (xnew == x) call nrerror(’step size underflow in bsstep’)
call mmid(ysav,dydx,x,h,nseq(k),yseq,derivs)
xest=(h/nseq(k))**2 Squared, since error series is even.
call pzextr(k,xest,yseq,y,yerr) Perform extrapolation.
if (k /= 1) then Compute normalized error estimate ǫ(k).

errmax=maxval(abs(yerr(:)/yscal(:)))
errmax=max(TINY,errmax)/eps Scale error relative to tolerance.
km=k-1
err(km)=(errmax/SAFE1)**(1.0_sp/(2*km+1))

end if
if (k /= 1 .and. (k >= kopt-1 .or. first)) then In order window.

if (errmax < 1.0) exit main_loop Converged.
if (k == kmax .or. k == kopt+1) then Check for possible step-

size reduction.red=SAFE2/err(km)
exit

else if (k == kopt) then
if (alf(kopt-1,kopt) < err(km)) then

red=1.0_sp/err(km)
exit

end if
else if (kopt == kmax) then

if (alf(km,kmax-1) < err(km)) then
red=alf(km,kmax-1)*SAFE2/err(km)
exit

end if
else if (alf(km,kopt) < err(km)) then

red=alf(km,kopt-1)/err(km)
exit

end if
end if

end do
red=max(min(red,REDMIN),REDMAX) Reduce stepsize by at least REDMIN and

at most REDMAX.h=h*red
reduct=.true.

end do main_loop Try again.
x=xnew Successful step taken.
hdid=h
first=.false.
kopt=1+iminloc(a(2:km+1)*max(err(1:km),SCALMX))
Compute optimal row for convergence and corresponding stepsize.

scale=max(err(kopt-1),SCALMX)
wrkmin=scale*a(kopt)
hnext=h/scale
if (kopt >= k .and. kopt /= kmax .and. .not. reduct) then Check for possible or-

der increase, but
not if stepsize was
just reduced.

fact=max(scale/alf(kopt-1,kopt),SCALMX)
if (a(kopt+1)*fact <= wrkmin) then

hnext=h/fact

Chapter B16. Integration of Ordinary Differential Equations 1305

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

kopt=kopt+1
end if

end if
END SUBROUTINE bsstep

f90
a(:)=cumsum(nseq,1) The functioncumsum in nrutil with the optional
argumentseed=1 gives a direct implementation of equation (16.4.6).

where (upper_triangle(KMAXX,KMAXX))... The upper triangle function in
nrutil returns an upper triangular logical mask. As used here, the mask is true
everywhere in the upper triangle of aKMAXX×KMAXX matrix, excluding the diagonal.
An optional integer argumentextra allows additional diagonals to be set to true.
With extra=1 the upper triangle including the diagonal would be true.

main_loop: do Using a named do-loop provides clear structured code that
requiredgoto’s in the Fortran 77 version.

kopt=1+iminloc(...) See the discussion ofimaxloc on p. 1017.

⋆ ⋆ ⋆

SUBROUTINE pzextr(iest,xest,yest,yz,dy)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: iest
REAL(SP), INTENT(IN) :: xest
REAL(SP), DIMENSION(:), INTENT(IN) :: yest
REAL(SP), DIMENSION(:), INTENT(OUT) :: yz,dy

Use polynomial extrapolation to evaluate N functions at x = 0 by fitting a polynomial to
a sequence of estimates with progressively smaller values x = xest, and corresponding
function vectors yest. This call is number iest in the sequence of calls. Extrapolated
function values are output as yz, and their estimated error is output as dy. yest, yz, and
dy are arrays of length N .

INTEGER(I4B), PARAMETER :: IEST_MAX=16
INTEGER(I4B) :: j,nv
INTEGER(I4B), SAVE :: nvold=-1
REAL(SP) :: delta,f1,f2
REAL(SP), DIMENSION(size(yz)) :: d,tmp,q
REAL(SP), DIMENSION(IEST_MAX), SAVE :: x
REAL(SP), DIMENSION(:,:), ALLOCATABLE, SAVE :: qcol
nv=assert_eq(size(yz),size(yest),size(dy),’pzextr’)
if (iest > IEST_MAX) call &

nrerror(’pzextr: probable misuse, too much extrapolation’)
if (nv /= nvold) then Set up internal storage.

if (allocated(qcol)) deallocate(qcol)
allocate(qcol(nv,IEST_MAX))
nvold=nv

end if
x(iest)=xest Save current independent variable.
dy(:)=yest(:)
yz(:)=yest(:)
if (iest == 1) then Store first estimate in first column.

qcol(:,1)=yest(:)
else

d(:)=yest(:)
do j=1,iest-1

delta=1.0_sp/(x(iest-j)-xest)
f1=xest*delta
f2=x(iest-j)*delta
q(:)=qcol(:,j) Propagate tableau 1 diagonal more.

1306 Chapter B16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

qcol(:,j)=dy(:)
tmp(:)=d(:)-q(:)
dy(:)=f1*tmp(:)
d(:)=f2*tmp(:)
yz(:)=yz(:)+dy(:)

end do
qcol(:,iest)=dy(:)

end if
END SUBROUTINE pzextr

f90
REAL(SP), DIMENSION(:,:), ALLOCATABLE, SAVE :: qcol The second di-
mension ofqcol is known at compile time to beIEST MAX, but the first
dimension is known only at run time, fromsize(yz). The language

requires us to have all dimensions allocatable if any one of them is.

if (nv /= nvold) then... This routine generally gets called many times with
iest cycling repeatedly through the values1, 2, . . . , up to some value less than
IEST MAX. The number of variables,nv, is fixed during the solution of the problem.
The routine might be called again in solving a different problem with a new value
of nv. This if block ensures thatqcol is dimensioned correctly both for the first
and subsequent problems, if any.

SUBROUTINE rzextr(iest,xest,yest,yz,dy)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: iest
REAL(SP), INTENT(IN) :: xest
REAL(SP), DIMENSION(:), INTENT(IN) :: yest
REAL(SP), DIMENSION(:), INTENT(OUT) :: yz,dy

Exact substitute for pzextr, but uses diagonal rational function extrapolation instead of
polynomial extrapolation.

INTEGER(I4B), PARAMETER :: IEST_MAX=16
INTEGER(I4B) :: k,nv
INTEGER(I4B), SAVE :: nvold=-1
REAL(SP), DIMENSION(size(yz)) :: yy,v,c,b,b1,ddy
REAL(SP), DIMENSION(:,:), ALLOCATABLE, SAVE :: d
REAL(SP), DIMENSION(IEST_MAX), SAVE :: fx,x
nv=assert_eq(size(yz),size(dy),size(yest),’rzextr’)
if (iest > IEST_MAX) call &

nrerror(’rzextr: probable misuse, too much extrapolation’)
if (nv /= nvold) then

if (allocated(d)) deallocate(d)
allocate(d(nv,IEST_MAX))
nvold=nv

end if
x(iest)=xest Save current independent variable.
if (iest == 1) then

yz=yest
d(:,1)=yest
dy=yest

else
fx(2:iest)=x(iest-1:1:-1)/xest
yy=yest Evaluate next diagonal in tableau.
v=d(1:nv,1)
c=yy
d(1:nv,1)=yy
do k=2,iest

b1=fx(k)*v
b=b1-c
where (b /= 0.0)

Chapter B16. Integration of Ordinary Differential Equations 1307

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

b=(c-v)/b
ddy=c*b
c=b1*b

elsewhere Care needed to avoid division by 0.
ddy=v

end where
if (k /= iest) v=d(1:nv,k)
d(1:nv,k)=ddy
yy=yy+ddy

end do
dy=ddy
yz=yy

end if
END SUBROUTINE rzextr

⋆ ⋆ ⋆

SUBROUTINE stoerm(y,d2y,xs,htot,nstep,yout,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: y,d2y
REAL(SP), INTENT(IN) :: xs,htot
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Stoermer’s rule for integrating y′′ = f(x, y) for a system of n equations. On input y
contains y in its first n elements and y′ in its second n elements, all evaluated at xs. d2y
contains the right-hand-side function f (also evaluated at xs) in its first n elements. Its
second n elements are not referenced. Also input is htot, the total step to be taken, and
nstep, the number of substeps to be used. The output is returned as yout, with the same
storage arrangement as y. derivs is the user-supplied subroutine that calculates f .

INTEGER(I4B) :: neqn,neqn1,nn,nv
REAL(SP) :: h,h2,halfh,x
REAL(SP), DIMENSION(size(y)) :: ytemp
nv=assert_eq(size(y),size(d2y),size(yout),’stoerm’)
neqn=nv/2 Number of equations.
neqn1=neqn+1
h=htot/nstep Stepsize this trip.
halfh=0.5_sp*h First step.
ytemp(neqn1:nv)=h*(y(neqn1:nv)+halfh*d2y(1:neqn))
ytemp(1:neqn)=y(1:neqn)+ytemp(neqn1:nv)
x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of deriva-

tives.h2=h*h
do nn=2,nstep General step.

ytemp(neqn1:nv)=ytemp(neqn1:nv)+h2*yout(1:neqn)
ytemp(1:neqn)=ytemp(1:neqn)+ytemp(neqn1:nv)
x=x+h
call derivs(x,ytemp,yout)

end do
yout(neqn1:nv)=ytemp(neqn1:nv)/h+halfh*yout(1:neqn) Last step.
yout(1:neqn)=ytemp(1:neqn)
END SUBROUTINE stoerm

⋆ ⋆ ⋆

1308 Chapter B16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE stiff(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq,diagadd,nrerror
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE jacobn(x,y,dfdx,dfdy)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy
END SUBROUTINE jacobn

END INTERFACE
INTEGER(I4B), PARAMETER :: MAXTRY=40
REAL(SP), PARAMETER :: SAFETY=0.9_sp,GROW=1.5_sp,PGROW=-0.25_sp,&

SHRNK=0.5_sp,PSHRNK=-1.0_sp/3.0_sp,ERRCON=0.1296_sp,&
GAM=1.0_sp/2.0_sp,&
A21=2.0_sp,A31=48.0_sp/25.0_sp,A32=6.0_sp/25.0_sp,C21=-8.0_sp,&
C31=372.0_sp/25.0_sp,C32=12.0_sp/5.0_sp,&
C41=-112.0_sp/125.0_sp,C42=-54.0_sp/125.0_sp,&
C43=-2.0_sp/5.0_sp,B1=19.0_sp/9.0_sp,B2=1.0_sp/2.0_sp,&
B3=25.0_sp/108.0_sp,B4=125.0_sp/108.0_sp,E1=17.0_sp/54.0_sp,&
E2=7.0_sp/36.0_sp,E3=0.0_sp,E4=125.0_sp/108.0_sp,&
C1X=1.0_sp/2.0_sp,C2X=-3.0_sp/2.0_sp,C3X=121.0_sp/50.0_sp,&
C4X=29.0_sp/250.0_sp,A2X=1.0_sp,A3X=3.0_sp/5.0_sp
Fourth order Rosenbrock step for integrating stiff ODEs, with monitoring of local trunca-
tion error to adjust stepsize. Input are the dependent variable vector y and its derivative
dydx at the starting value of the independent variable x. Also input are the stepsize to
be attempted htry, the required accuracy eps, and the vector yscal against which the
error is scaled. On output, y and x are replaced by their new values, hdid is the stepsize
that was actually accomplished, and hnext is the estimated next stepsize. derivs is a
user-supplied subroutine that computes the derivatives of the right-hand side with respect
to x, while jacobn (a fixed name) is a user-supplied subroutine that computes the Jacobi
matrix of derivatives of the right-hand side with respect to the components of y. y, dydx,
and yscal must have the same length.
Parameters: GROW and SHRNK are the largest and smallest factors by which stepsize can
change in one step; ERRCON=(GROW/SAFETY)**(1/PGROW) and handles the case when
errmax ≃ 0.

INTEGER(I4B) :: jtry,ndum
INTEGER(I4B), DIMENSION(size(y)) :: indx
REAL(SP), DIMENSION(size(y)) :: dfdx,dytmp,err,g1,g2,g3,g4,ysav
REAL(SP), DIMENSION(size(y),size(y)) :: a,dfdy
REAL(SP) :: d,errmax,h,xsav
ndum=assert_eq(size(y),size(dydx),size(yscal),’stiff’)
xsav=x Save initial values.
ysav(:)=y(:)
call jacobn(xsav,ysav,dfdx,dfdy)
The user must supply this subroutine to return the n× n matrix dfdy and the vector dfdx.

h=htry Set stepsize to the initial trial value.
do jtry=1,MAXTRY

Chapter B16. Integration of Ordinary Differential Equations 1309

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

a(:,:)=-dfdy(:,:) Set up the matrix 1− γhf ′.
call diagadd(a,1.0_sp/(GAM*h))
call ludcmp(a,indx,d) LU decomposition of the matrix.
g1=dydx+h*C1X*dfdx Set up right-hand side for g

1
.

call lubksb(a,indx,g1) Solve for g
1
.

y=ysav+A21*g1 Compute intermediate values of y and x.
x=xsav+A2X*h
call derivs(x,y,dytmp) Compute dydx at the intermediate values.
g2=dytmp+h*C2X*dfdx+C21*g1/h Set up right-hand side for g

2
.

call lubksb(a,indx,g2) Solve for g
2
.

y=ysav+A31*g1+A32*g2 Compute intermediate values of y and x.
x=xsav+A3X*h
call derivs(x,y,dytmp) Compute dydx at the intermediate values.
g3=dytmp+h*C3X*dfdx+(C31*g1+C32*g2)/h Set up right-hand side for g

3
.

call lubksb(a,indx,g3) Solve for g
3
.

g4=dytmp+h*C4X*dfdx+(C41*g1+C42*g2+C43*g3)/h Set up right-hand side for g4.
call lubksb(a,indx,g4) Solve for g4.
y=ysav+B1*g1+B2*g2+B3*g3+B4*g4 Get fourth order estimate of y and error es-

timate.err=E1*g1+E2*g2+E3*g3+E4*g4
x=xsav+h
if (x == xsav) call &

nrerror(’stepsize not significant in stiff’)
errmax=maxval(abs(err/yscal))/eps Evaluate accuracy.
if (errmax <= 1.0) then Step succeeded. Compute size of next step

and return.hdid=h
hnext=merge(SAFETY*h*errmax**PGROW, GROW*h, &

errmax > ERRCON)
RETURN

else Truncation error too large, reduce stepsize.
hnext=SAFETY*h*errmax**PSHRNK
h=sign(max(abs(hnext),SHRNK*abs(h)),h)

end if
end do Go back and retry step.
call nrerror(’exceeded MAXTRY in stiff’)
END SUBROUTINE stiff

f90 call diagadd(...) See discussion ofdiagadd afterhqr on p. 1234.

SUBROUTINE jacobn(x,y,dfdx,dfdy)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy

Routine for Jacobi matrix corresponding to example in equations (16.6.27).
dfdx(:)=0.0
dfdy(1,1)=-0.013_sp-1000.0_sp*y(3)
dfdy(1,2)=0.0
dfdy(1,3)=-1000.0_sp*y(1)
dfdy(2,1)=0.0
dfdy(2,2)=-2500.0_sp*y(3)
dfdy(2,3)=-2500.0_sp*y(2)
dfdy(3,1)=-0.013_sp-1000.0_sp*y(3)
dfdy(3,2)=-2500.0_sp*y(3)
dfdy(3,3)=-1000.0_sp*y(1)-2500.0_sp*y(2)
END SUBROUTINE jacobn

1310 Chapter B16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx

Routine for right-hand side of example in equations (16.6.27).
dydx(1)=-0.013_sp*y(1)-1000.0_sp*y(1)*y(3)
dydx(2)=-2500.0_sp*y(2)*y(3)
dydx(3)=-0.013_sp*y(1)-1000.0_sp*y(1)*y(3)-2500.0_sp*y(2)*y(3)
END SUBROUTINE derivs

⋆ ⋆ ⋆

SUBROUTINE simpr(y,dydx,dfdx,dfdy,xs,htot,nstep,yout,derivs)
USE nrtype; USE nrutil, ONLY : assert_eq,diagadd
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xs,htot
REAL(SP), DIMENSION(:), INTENT(IN) :: y,dydx,dfdx
REAL(SP), DIMENSION(:,:), INTENT(IN) :: dfdy
INTEGER(I4B), INTENT(IN) :: nstep
REAL(SP), DIMENSION(:), INTENT(OUT) :: yout
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

END INTERFACE
Performs one step of semi-implicit midpoint rule. Input are the dependent variable y, its
derivative dydx, the derivative of the right-hand side with respect to x, dfdx, which are all
vectors of length N , and the N ×N Jacobian dfdy at xs. Also input are htot, the total
step to be taken, and nstep, the number of substeps to be used. The output is returned as
yout, a vector of length N . derivs is the user-supplied subroutine that calculates dydx.

INTEGER(I4B) :: ndum,nn
INTEGER(I4B), DIMENSION(size(y)) :: indx
REAL(SP) :: d,h,x
REAL(SP), DIMENSION(size(y)) :: del,ytemp
REAL(SP), DIMENSION(size(y),size(y)) :: a
ndum=assert_eq((/size(y),size(dydx),size(dfdx),size(dfdy,1),&

size(dfdy,2),size(yout)/),’simpr’)
h=htot/nstep Stepsize this trip.
a(:,:)=-h*dfdy(:,:) Set up the matrix 1− hf ′.
call diagadd(a,1.0_sp)
call ludcmp(a,indx,d) LU decomposition of the matrix.
yout=h*(dydx+h*dfdx) Set up right-hand side for first step. Use yout for

temporary storage.call lubksb(a,indx,yout)
del=yout First step.
ytemp=y+del
x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
do nn=2,nstep General step.

yout=h*yout-del Set up right-hand side for general step.
call lubksb(a,indx,yout)
del=del+2.0_sp*yout
ytemp=ytemp+del
x=x+h
call derivs(x,ytemp,yout)

Chapter B16. Integration of Ordinary Differential Equations 1311

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
yout=h*yout-del Set up right-hand side for last step.
call lubksb(a,indx,yout)
yout=ytemp+yout Take last step.
END SUBROUTINE simpr

f90 call diagadd(...) See discussion ofdiagadd afterhqr on p. 1234.

⋆ ⋆ ⋆

SUBROUTINE stifbs(y,dydx,x,htry,eps,yscal,hdid,hnext,derivs)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,cumsum,iminloc,nrerror,&

outerdiff,outerprod,upper_triangle
USE nr, ONLY : simpr,pzextr
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: y
REAL(SP), DIMENSION(:), INTENT(IN) :: dydx,yscal
REAL(SP), INTENT(IN) :: htry,eps
REAL(SP), INTENT(INOUT) :: x
REAL(SP), INTENT(OUT) :: hdid,hnext
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE jacobn(x,y,dfdx,dfdy)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dfdx
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: dfdy
END SUBROUTINE jacobn

END INTERFACE
INTEGER(I4B), PARAMETER :: IMAX=8, KMAXX=IMAX-1
REAL(SP), PARAMETER :: SAFE1=0.25_sp,SAFE2=0.7_sp,REDMAX=1.0e-5_sp,&

REDMIN=0.7_sp,TINY=1.0e-30_sp,SCALMX=0.1_sp
Semi-implicit extrapolation step for integrating stiff ODEs, with monitoring of local trun-
cation error to adjust stepsize. Input are the dependent variable vector y and its derivative
dydx at the starting value of the independent variable x. Also input are the stepsize to be
attempted htry, the required accuracy eps, and the vector yscal against which the error
is scaled. On output, y and x are replaced by their new values, hdid is the stepsize that
was actually accomplished, and hnext is the estimated next stepsize. derivs is a user-
supplied subroutine that computes the derivatives of the right-hand side with respect to x,
while jacobn (a fixed name) is a user-supplied subroutine that computes the Jacobi matrix
of derivatives of the right-hand side with respect to the components of y. y, dydx, and
yscal must all have the same length. Be sure to set htry on successive steps to the value
of hnext returned from the previous step, as is the case if the routine is called by odeint.

INTEGER(I4B) :: k,km,ndum
INTEGER(I4B), DIMENSION(IMAX) :: nseq = (/ 2,6,10,14,22,34,50,70 /)
Sequence is different from bsstep.

INTEGER(I4B), SAVE :: kopt,kmax,nvold=-1
REAL(SP), DIMENSION(KMAXX,KMAXX), SAVE :: alf
REAL(SP), DIMENSION(KMAXX) :: err
REAL(SP), DIMENSION(IMAX), SAVE :: a
REAL(SP), SAVE :: epsold = -1.0
REAL(SP) :: eps1,errmax,fact,h,red,scale,wrkmin,xest

1312 Chapter B16. Integration of Ordinary Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), SAVE :: xnew
REAL(SP), DIMENSION(size(y)) :: dfdx,yerr,ysav,yseq
REAL(SP), DIMENSION(size(y),size(y)) :: dfdy
LOGICAL(LGT) :: reduct
LOGICAL(LGT), SAVE :: first=.true.
ndum=assert_eq(size(y),size(dydx),size(yscal),’stifbs’)
if (eps /= epsold .or. nvold /= size(y)) then Reinitialize also if number of vari-

ables has changed.hnext=-1.0e29_sp
xnew=-1.0e29_sp
eps1=SAFE1*eps
a(:)=cumsum(nseq,1)
where (upper_triangle(KMAXX,KMAXX)) alf=eps1** &

(outerdiff(a(2:),a(2:))/outerprod(arth(&
3.0_sp,2.0_sp,KMAXX),(a(2:)-a(1)+1.0_sp)))

epsold=eps
nvold=size(y) Save number of variables.
a(:)=cumsum(nseq,1+nvold) Add cost of Jacobian evaluations to work co-

efficients.do kopt=2,KMAXX-1
if (a(kopt+1) > a(kopt)*alf(kopt-1,kopt)) exit

end do
kmax=kopt

end if
h=htry
ysav(:)=y(:)
call jacobn(x,y,dfdx,dfdy) Evaluate Jacobian.
if (h /= hnext .or. x /= xnew) then

first=.true.
kopt=kmax

end if
reduct=.false.
main_loop: do

do k=1,kmax
xnew=x+h
if (xnew == x) call nrerror(’step size underflow in stifbs’)
call simpr(ysav,dydx,dfdx,dfdy,x,h,nseq(k),yseq,derivs)
Here is the call to the semi-implicit midpoint rule.

xest=(h/nseq(k))**2 The rest of the routine is identical to bsstep.
call pzextr(k,xest,yseq,y,yerr)
if (k /= 1) then

errmax=maxval(abs(yerr(:)/yscal(:)))
errmax=max(TINY,errmax)/eps
km=k-1
err(km)=(errmax/SAFE1)**(1.0_sp/(2*km+1))

end if
if (k /= 1 .and. (k >= kopt-1 .or. first)) then

if (errmax < 1.0) exit main_loop
if (k == kmax .or. k == kopt+1) then

red=SAFE2/err(km)
exit

else if (k == kopt) then
if (alf(kopt-1,kopt) < err(km)) then

red=1.0_sp/err(km)
exit

end if
else if (kopt == kmax) then

if (alf(km,kmax-1) < err(km)) then
red=alf(km,kmax-1)*SAFE2/err(km)
exit

end if
else if (alf(km,kopt) < err(km)) then

red=alf(km,kopt-1)/err(km)
exit

end if
end if

Chapter B16. Integration of Ordinary Differential Equations 1313

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
red=max(min(red,REDMIN),REDMAX)
h=h*red
reduct=.true.

end do main_loop
x=xnew
hdid=h
first=.false.
kopt=1+iminloc(a(2:km+1)*max(err(1:km),SCALMX))
scale=max(err(kopt-1),SCALMX)
wrkmin=scale*a(kopt)
hnext=h/scale
if (kopt >= k .and. kopt /= kmax .and. .not. reduct) then

fact=max(scale/alf(kopt-1,kopt),SCALMX)
if (a(kopt+1)*fact <= wrkmin) then

hnext=h/fact
kopt=kopt+1

end if
end if
END SUBROUTINE stifbs

f90
This routine is very similar tobsstep, and the same remarks about
Fortran 90 constructions on p. 1305 apply here.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B17. Two Point Boundary
Value Problems

! FUNCTION shoot(v) is named "funcv" for use with "newt"
FUNCTION funcv(v)
USE nrtype
USE nr, ONLY : odeint,rkqs
USE sphoot_caller, ONLY : nvar,x1,x2; USE ode_path, ONLY : xp,yp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(size(v)) :: funcv
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Routine for use with newt to solve a two point boundary value problem for N coupled
ODEs by shooting from x1 to x2. Initial values for the ODEs at x1 are generated from
the n2 input coefficients v, using the user-supplied routine load. The routine integrates
the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize h1,
and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to evaluate
the n2 functions funcv that ought to be zero to satisfy the boundary conditions at x2.
The functions funcv are returned on output. newt uses a globally convergent Newton’s
method to adjust the values of v until the functions funcv are zero. The user-supplied
subroutine derivs(x,y,dydx) supplies derivative information to the ODE integrator (see
Chapter 16). The module sphoot caller receives its values from the main program so
that funcv can have the syntax required by newt. Set nvar = N in the main program.

REAL(SP) :: h1,hmin
REAL(SP), DIMENSION(nvar) :: y
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE load(x1,v,y)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
END SUBROUTINE load

SUBROUTINE score(x2,y,f)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: f
END SUBROUTINE score

END INTERFACE
h1=(x2-x1)/100.0_sp

1314

Chapter B17. Two Point Boundary Value Problems 1315

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

hmin=0.0
call load(x1,v,y)
if (associated(xp)) deallocate(xp,yp) Prevent memory leak if save steps set

to .true.call odeint(y,x1,x2,EPS,h1,hmin,derivs,rkqs)
call score(x2,y,funcv)
END FUNCTION funcv

⋆ ⋆ ⋆

! FUNCTION shootf(v) is named "funcv" for use with "newt"
FUNCTION funcv(v)
USE nrtype
USE nr, ONLY : odeint,rkqs
USE sphfpt_caller, ONLY : x1,x2,xf,nn2; USE ode_path, ONLY : xp,yp
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(size(v)) :: funcv
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Routine for use with newt to solve a two point boundary value problem for N coupled
ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the ODEs at
x1 (x2) are generated from the n2 (n1) coefficients V1 (V2), using the user-supplied
routine load1 (load2). The coefficients V1 and V2 should be stored in a single ar-
ray v of length N in the main program, and referenced by pointers as v1=>v(1:n2),
v2=>v(n2 + 1:N). Here N = n1 + n2. The routine integrates the ODEs to xf using
the Runge-Kutta method with tolerance EPS, initial stepsize h1, and minimum stepsize
hmin. At xf it calls the user-supplied subroutine score to evaluate the N functions f1
and f2 that ought to match at xf. The differences funcv are returned on output. newt
uses a globally convergent Newton’s method to adjust the values of v until the functions
funcv are zero. The user-supplied subroutine derivs(x,y,dydx) supplies derivative in-
formation to the ODE integrator (see Chapter 16). The module sphfpt caller receives
its values from the main program so that funcv can have the syntax required by newt.
Set nn2 = n2 in the main program.

REAL(SP) :: h1,hmin
REAL(SP), DIMENSION(size(v)) :: f1,f2,y
INTERFACE

SUBROUTINE derivs(x,y,dydx)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx
END SUBROUTINE derivs

SUBROUTINE load1(x1,v1,y)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v1
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
END SUBROUTINE load1

SUBROUTINE load2(x2,v2,y)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: v2
REAL(SP), DIMENSION(:), INTENT(OUT) :: y
END SUBROUTINE load2

SUBROUTINE score(x2,y,f)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: y

1316 Chapter B17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(SP), DIMENSION(:), INTENT(OUT) :: f
END SUBROUTINE score

END INTERFACE
h1=(x2-x1)/100.0_sp
hmin=0.0
call load1(x1,v,y) Path from x1 to xf with best trial values V1.
if (associated(xp)) deallocate(xp,yp) Prevent memory leak if save steps set

to .true.call odeint(y,x1,xf,EPS,h1,hmin,derivs,rkqs)
call score(xf,y,f1)
call load2(x2,v(nn2+1:),y) Path from x2 to xf with best trial values V2.
call odeint(y,x2,xf,EPS,h1,hmin,derivs,rkqs)
call score(xf,y,f2)
funcv(:)=f1(:)-f2(:)
END FUNCTION funcv

⋆ ⋆ ⋆

SUBROUTINE solvde(itmax,conv,slowc,scalv,indexv,nb,y)
USE nrtype; USE nrutil, ONLY : assert_eq,imaxloc,nrerror
USE nr, ONLY : difeq
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: itmax,nb
REAL(SP), INTENT(IN) :: conv,slowc
REAL(SP), DIMENSION(:), INTENT(IN) :: scalv
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indexv
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: y

Driver routine for solution of two point boundary value problems with N equations by
relaxation. itmax is the maximum number of iterations. conv is the convergence criterion
(see text). slowc controls the fraction of corrections actually used after each iteration.
scalv, a vector of length N , contains typical sizes for each dependent variable, used to
weight errors. indexv, also of length N , lists the column ordering of variables used to
construct the matrix s of derivatives. (The nb boundary conditions at the first mesh point
must contain some dependence on the first nb variables listed in indexv.) There are a total
ofM mesh points. y is the N×M array that contains the initial guess for all the dependent
variables at each mesh point. On each iteration, it is updated by the calculated correction.

INTEGER(I4B) :: ic1,ic2,ic3,ic4,it,j,j1,j2,j3,j4,j5,j6,j7,j8,&
j9,jc1,jcf,jv,k,k1,k2,km,kp,m,ne,nvars

INTEGER(I4B), DIMENSION(size(scalv)) :: kmax
REAL(SP) :: err,fac
REAL(SP), DIMENSION(size(scalv)) :: ermax
REAL(SP), DIMENSION(size(scalv),2*size(scalv)+1) :: s
REAL(SP), DIMENSION(size(scalv),size(scalv)-nb+1,size(y,2)+1) :: c
ne=assert_eq(size(scalv),size(indexv),size(y,1),’solvde: ne’)
m=size(y,2)
k1=1 Set up row and column markers.
k2=m
nvars=ne*m
j1=1
j2=nb
j3=nb+1
j4=ne
j5=j4+j1
j6=j4+j2
j7=j4+j3
j8=j4+j4
j9=j8+j1
ic1=1
ic2=ne-nb
ic3=ic2+1
ic4=ne
jc1=1
jcf=ic3
do it=1,itmax Primary iteration loop.

k=k1 Boundary conditions at first point.

Chapter B17. Two Point Boundary Value Problems 1317

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

call difeq(k,k1,k2,j9,ic3,ic4,indexv,s,y)
call pinvs(ic3,ic4,j5,j9,jc1,k1,c,s)
do k=k1+1,k2 Finite difference equations at all point

pairs.kp=k-1
call difeq(k,k1,k2,j9,ic1,ic4,indexv,s,y)
call red(ic1,ic4,j1,j2,j3,j4,j9,ic3,jc1,jcf,kp,c,s)
call pinvs(ic1,ic4,j3,j9,jc1,k,c,s)

end do
k=k2+1 Final boundary conditions.
call difeq(k,k1,k2,j9,ic1,ic2,indexv,s,y)
call red(ic1,ic2,j5,j6,j7,j8,j9,ic3,jc1,jcf,k2,c,s)
call pinvs(ic1,ic2,j7,j9,jcf,k2+1,c,s)
call bksub(ne,nb,jcf,k1,k2,c) Backsubstitution.
do j=1,ne Convergence check, accumulate average

error.jv=indexv(j)
km=imaxloc(abs(c(jv,1,k1:k2)))+k1-1
Find point with largest error, for each dependent variable.

ermax(j)=c(jv,1,km)
kmax(j)=km

end do
ermax(:)=ermax(:)/scalv(:) Weighting for each dependent variable.
err=sum(sum(abs(c(indexv(:),1,k1:k2)),dim=2)/scalv(:))/nvars
fac=slowc/max(slowc,err)
Reduce correction applied when error is large.

y(:,k1:k2)=y(:,k1:k2)-fac*c(indexv(:),1,k1:k2) Apply corrections.
write(*,’(1x,i4,2f12.6)’) it,err,fac
Summary of corrections for this step. Point with largest error for each variable can be
monitored by writing out kmax and ermax.

if (err < conv) RETURN
end do
call nrerror(’itmax exceeded in solvde’) Convergence failed.
CONTAINS

SUBROUTINE bksub(ne,nb,jf,k1,k2,c)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ne,nb,jf,k1,k2
REAL(SP), DIMENSION(:,:,:), INTENT(INOUT) :: c

Backsubstitution, used internally by solvde.
INTEGER(I4B) :: im,k,nbf
nbf=ne-nb
im=1
do k=k2,k1,-1

Use recurrence relations to eliminate remaining dependences.
if (k == k1) im=nbf+1 Special handling of first point.
c(im:ne,jf,k)=c(im:ne,jf,k)-matmul(c(im:ne,1:nbf,k),c(1:nbf,jf,k+1))

end do
c(1:nb,1,k1:k2)=c(1+nbf:nb+nbf,jf,k1:k2) Reorder corrections to be in column 1.
c(1+nb:nbf+nb,1,k1:k2)=c(1:nbf,jf,k1+1:k2+1)
END SUBROUTINE bksub

SUBROUTINE pinvs(ie1,ie2,je1,jsf,jc1,k,c,s)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ie1,ie2,je1,jsf,jc1,k
REAL(SP), DIMENSION(:,:,:), INTENT(OUT) :: c
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: s

Diagonalize the square subsection of the s matrix, and store the recursion coefficients in
c; used internally by solvde.

INTEGER(I4B) :: i,icoff,id,ipiv,jcoff,je2,jp,jpiv,js1
INTEGER(I4B), DIMENSION(ie2) :: indxr
REAL(SP) :: big,piv,pivinv
REAL(SP), DIMENSION(ie2) :: pscl
je2=je1+ie2-ie1
js1=je2+1
pscl(ie1:ie2)=maxval(abs(s(ie1:ie2,je1:je2)),dim=2)
Implicit pivoting, as in §2.1.

1318 Chapter B17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (any(pscl(ie1:ie2) == 0.0)) &
call nrerror(’singular matrix, row all 0 in pinvs’)

pscl(ie1:ie2)=1.0_sp/pscl(ie1:ie2)
indxr(ie1:ie2)=0
do id=ie1,ie2

piv=0.0
do i=ie1,ie2 Find pivot element.

if (indxr(i) == 0) then
jp=imaxloc(abs(s(i,je1:je2)))+je1-1
big=abs(s(i,jp))
if (big*pscl(i) > piv) then

ipiv=i
jpiv=jp
piv=big*pscl(i)

end if
end if

end do
if (s(ipiv,jpiv) == 0.0) call nrerror(’singular matrix in pinvs’)
indxr(ipiv)=jpiv In place reduction. Save column order-

ing.pivinv=1.0_sp/s(ipiv,jpiv)
s(ipiv,je1:jsf)=s(ipiv,je1:jsf)*pivinv Normalize pivot row.
s(ipiv,jpiv)=1.0
do i=ie1,ie2 Reduce nonpivot elements in column.

if (indxr(i) /= jpiv .and. s(i,jpiv) /= 0.0) then
s(i,je1:jsf)=s(i,je1:jsf)-s(i,jpiv)*s(ipiv,je1:jsf)
s(i,jpiv)=0.0

end if
end do

end do
jcoff=jc1-js1 Sort and store unreduced coefficients.
icoff=ie1-je1
c(indxr(ie1:ie2)+icoff,js1+jcoff:jsf+jcoff,k)=s(ie1:ie2,js1:jsf)
END SUBROUTINE pinvs

SUBROUTINE red(iz1,iz2,jz1,jz2,jm1,jm2,jmf,ic1,jc1,jcf,kc,c,s)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: iz1,iz2,jz1,jz2,jm1,jm2,jmf,ic1,jc1,jcf,kc
REAL(SP), DIMENSION(:,:), INTENT(INOUT) :: s
REAL(SP), DIMENSION(:,:,:), INTENT(IN) :: c

Reduce columns jz1-jz2 of the s matrix, using previous results as stored in the c matrix.
Only columns jm1-jm2,jmf are affected by the prior results. red is used internally by
solvde.

INTEGER(I4B) :: ic,l,loff
loff=jc1-jm1
ic=ic1
do j=jz1,jz2 Loop over columns to be zeroed.

do l=jm1,jm2 Loop over columns altered.
s(iz1:iz2,l)=s(iz1:iz2,l)-s(iz1:iz2,j)*c(ic,l+loff,kc)
Loop over rows.

end do
s(iz1:iz2,jmf)=s(iz1:iz2,jmf)-s(iz1:iz2,j)*c(ic,jcf,kc) Plus final element.
ic=ic+1

end do
END SUBROUTINE red
END SUBROUTINE solvde

f90 km=imaxloc... See discussion ofimaxloc on p. 1017.

⋆ ⋆ ⋆

Chapter B17. Two Point Boundary Value Problems 1319

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

MODULE sfroid_data Communicates with difeq.
USE nrtype
INTEGER(I4B), PARAMETER :: M=41
INTEGER(I4B) :: mm,n
REAL(SP) :: anorm,c2,h
REAL(SP), DIMENSION(M) :: x
END MODULE sfroid_data

PROGRAM sfroid
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : plgndr,solvde
USE sfroid_data
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NE=3,NB=1

Sample program using solvde. Computes eigenvalues of spheroidal harmonics Smn(x; c)
for m ≥ 0 and n ≥ m. In the program, m is mm, c2 is c2, and γ of equation (17.4.20)
is anorm.

INTEGER(I4B) :: itmax
INTEGER(I4B), DIMENSION(NE) :: indexv
REAL(SP) :: conv,slowc
REAL(SP), DIMENSION(M) :: deriv,fac1,fac2
REAL(SP), DIMENSION(NE) :: scalv
REAL(SP), DIMENSION(NE,M) :: y
itmax=100
conv=5.0e-6_sp
slowc=1.0
h=1.0_sp/(M-1)
c2=0.0
write(*,*) ’ENTER M,N’
read(*,*) mm,n
indexv(1:3)=merge((/ 1, 2, 3 /), (/ 2, 1, 3 /), (mod(n+mm,2) == 1))
No interchanges necessary if n+mm is odd; otherwise interchange y1 and y2.

anorm=1.0 Compute γ.
if (mm /= 0) then

anorm=(-0.5_sp)**mm*product(&
arth(n+1,1,mm)*arth(real(n,sp),-1.0_sp,mm)/arth(1,1,mm))

end if
x(1:M-1)=arth(0,1,M-1)*h
fac1(1:M-1)=1.0_sp-x(1:M-1)**2 Compute initial guess.
fac2(1:M-1)=fac1(1:M-1)**(-mm/2.0_sp)
y(1,1:M-1)=plgndr(n,mm,x(1:M-1))*fac2(1:M-1) Pm

n
from §6.8.

deriv(1:M-1)=-((n-mm+1)*plgndr(n+1,mm,x(1:M-1))-(n+1)*&
x(1:M-1)*plgndr(n,mm,x(1:M-1)))/fac1(1:M-1)
Derivative of Pm

n
from a recurrence relation.

y(2,1:M-1)=mm*x(1:M-1)*y(1,1:M-1)/fac1(1:M-1)+deriv(1:M-1)*fac2(1:M-1)
y(3,1:M-1)=n*(n+1)-mm*(mm+1)
x(M)=1.0 Initial guess at x = 1 done separately.
y(1,M)=anorm
y(3,M)=n*(n+1)-mm*(mm+1)
y(2,M)=(y(3,M)-c2)*y(1,M)/(2.0_sp*(mm+1.0_sp))
scalv(1:3)=(/ abs(anorm), max(abs(anorm),y(2,M)), max(1.0_sp,y(3,M)) /)
do

write (*,*) ’ENTER C**2 OR 999 TO END’
read (*,*) c2
if (c2 == 999.0) exit
call solvde(itmax,conv,slowc,scalv,indexv,NB,y)
write (*,*) ’ M = ’,mm,’ N = ’,n,&

’ C**2 = ’,c2,’ LAMBDA = ’,y(3,1)+mm*(mm+1)
end do Go back for another value of c2.
END PROGRAM sfroid

1320 Chapter B17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
MODULE sfroid_data This module functions just like a common block to
communicate variables withdifeq. The advantage of a module is that
it allows complete specification of the variables.

anorm=(-0.5_sp)**mm*product(... This statement computes equation (17.4.20)
by direct multiplication.

⋆ ⋆ ⋆

SUBROUTINE difeq(k,k1,k2,jsf,is1,isf,indexv,s,y)
USE nrtype
USE sfroid_data
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: is1,isf,jsf,k,k1,k2
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: indexv
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: s
REAL(SP), DIMENSION(:,:), INTENT(IN) :: y

Returns matrix s(i,j) for solvde.
REAL(SP) :: temp,temp2
INTEGER(I4B), DIMENSION(3) :: indexv3
indexv3(1:3)=3+indexv(1:3)
if (k == k1) then Boundary condition at first point.

if (mod(n+mm,2) == 1) then
s(3,indexv3(1:3))= (/ 1.0_sp, 0.0_sp, 0.0_sp /) Equation (17.4.32).
s(3,jsf)=y(1,1) Equation (17.4.31).

else
s(3,indexv3(1:3))= (/ 0.0_sp, 1.0_sp, 0.0_sp /) Equation (17.4.32).
s(3,jsf)=y(2,1) Equation (17.4.31).

end if
else if (k > k2) then Boundary conditions at last point.

s(1,indexv3(1:3))= (/ -(y(3,M)-c2)/(2.0_sp*(mm+1.0_sp)),&
1.0_sp, -y(1,M)/(2.0_sp*(mm+1.0_sp)) /) Equation (17.4.35).

s(1,jsf)=y(2,M)-(y(3,M)-c2)*y(1,M)/(2.0_sp*(mm+1.0_sp)) Equation (17.4.33).
s(2,indexv3(1:3))=(/ 1.0_sp, 0.0_sp, 0.0_sp /) Equation (17.4.36).
s(2,jsf)=y(1,M)-anorm Equation (17.4.34).

else Interior point.
s(1,indexv(1:3))=(/ -1.0_sp, -0.5_sp*h, 0.0_sp /) Equation (17.4.28).
s(1,indexv3(1:3))=(/ 1.0_sp, -0.5_sp*h, 0.0_sp /)
temp=h/(1.0_sp-(x(k)+x(k-1))**2*0.25_sp)
temp2=0.5_sp*(y(3,k)+y(3,k-1))-c2*0.25_sp*(x(k)+x(k-1))**2
s(2,indexv(1:3))=(/ temp*temp2*0.5_sp,& Equation (17.4.29).

-1.0_sp-0.5_sp*temp*(mm+1.0_sp)*(x(k)+x(k-1)),&
0.25_sp*temp*(y(1,k)+y(1,k-1)) /)

s(2,indexv3(1:3))=s(2,indexv(1:3))
s(2,indexv3(2))=s(2,indexv3(2))+2.0_sp
s(3,indexv(1:3))=(/ 0.0_sp, 0.0_sp, -1.0_sp /) Equation (17.4.30).
s(3,indexv3(1:3))=(/ 0.0_sp, 0.0_sp, 1.0_sp /)
s(1,jsf)=y(1,k)-y(1,k-1)-0.5_sp*h*(y(2,k)+y(2,k-1)) Equation (17.4.23).
s(2,jsf)=y(2,k)-y(2,k-1)-temp*((x(k)+x(k-1))*& Equation (17.4.24).

0.5_sp*(mm+1.0_sp)*(y(2,k)+y(2,k-1))-temp2*&
0.5_sp*(y(1,k)+y(1,k-1)))

s(3,jsf)=y(3,k)-y(3,k-1) Equation (17.4.27).
end if
END SUBROUTINE difeq

⋆ ⋆ ⋆

Chapter B17. Two Point Boundary Value Problems 1321

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

MODULE sphoot_data Communicates with load, score, and derivs.
USE nrtype
INTEGER(I4B) :: m,n
REAL(SP) :: c2,dx,gamma
END MODULE sphoot_data

MODULE sphoot_caller Communicates with shoot.
USE nrtype
INTEGER(I4B) :: nvar
REAL(SP) :: x1,x2
END MODULE sphoot_caller

PROGRAM sphoot
Sample program using shoot. Computes eigenvalues of spheroidal harmonics Smn(x; c) for
m ≥ 0 and n ≥ m. Be sure that routine funcv for newt is provided by shoot (§17.1).

USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : newt
USE sphoot_data
USE sphoot_caller
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NV=3,N2=1
REAL(SP), DIMENSION(N2) :: v
LOGICAL(LGT) :: check
nvar=NV Number of equations.
dx=1.0e-4_sp Avoid evaluating derivatives exactly at x =

−1.do
write(*,*) ’input m,n,c-squared (999 to end)’
read(*,*) m,n,c2
if (c2 == 999.0) exit
if ((n < m) .or. (m < 0)) cycle
gamma=(-0.5_sp)**m*product(& Compute γ of equation (17.4.20).

arth(n+1,1,m)*(arth(real(n,sp),-1.0_sp,m)/arth(1,1,m)))
v(1)=n*(n+1)-m*(m+1)+c2/2.0_sp Initial guess for eigenvalue.
x1=-1.0_sp+dx Set range of integration.
x2=0.0
call newt(v,check) Find v that zeros function f in score.
if (check) then

write(*,*)’shoot failed; bad initial guess’
exit

else
write(*,’(1x,t6,a)’) ’mu(m,n)’
write(*,’(1x,f12.6)’) v(1)

end if
end do
END PROGRAM sphoot

SUBROUTINE load(x1,v,y)
USE nrtype
USE sphoot_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v
REAL(SP), DIMENSION(:), INTENT(OUT) :: y

Supplies starting values for integration at x = −1 + dx.
REAL(SP) :: y1
y(3)=v(1)
y1=merge(gamma,-gamma, mod(n-m,2) == 0)
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
END SUBROUTINE load

1322 Chapter B17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE score(x2,y,f)
USE nrtype
USE sphoot_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: f

Tests whether boundary condition at x = 0 is satisfied.
f(1)=merge(y(2),y(1), mod(n-m,2) == 0)
END SUBROUTINE score

f90
MODULE sphoot_data...MODULE sphoot_caller These modules function
just like common blocks to communicate variables fromsphoot to the
various subsidiary routines. The advantage of a module is that it allows

complete specification of the variables.

SUBROUTINE derivs(x,y,dydx)
USE nrtype
USE sphoot_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: dydx

Evaluates derivatives for odeint.
dydx(1)=y(2)
dydx(2)=(2.0_sp*x*(m+1.0_sp)*y(2)-(y(3)-c2*x*x)*y(1))/(1.0_sp-x*x)
dydx(3)=0.0
END SUBROUTINE derivs

⋆ ⋆ ⋆

MODULE sphfpt_data Communicates with load1, load2, score,
and derivs.USE nrtype

INTEGER(I4B) :: m,n
REAL(SP) :: c2,dx,gamma
END MODULE sphfpt_data

MODULE sphfpt_caller Communicates with shootf.
USE nrtype
INTEGER(I4B) :: nn2
REAL(SP) :: x1,x2,xf
END MODULE sphfpt_caller

Chapter B17. Two Point Boundary Value Problems 1323

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

PROGRAM sphfpt
Sample program using shootf. Computes eigenvalues of spheroidal harmonics Smn(x; c)
form ≥ 0 and n ≥ m. Be sure that routine funcv for newt is provided by shootf (§17.2).
The routine derivs is the same as for sphoot.

USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : newt
USE sphfpt_data
USE sphfpt_caller
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: N1=2,N2=1,NTOT=N1+N2
REAL(SP), PARAMETER :: DXX=1.0e-4_sp
REAL(SP), DIMENSION(:), POINTER :: v1,v2
REAL(SP), DIMENSION(NTOT), TARGET :: v
LOGICAL(LGT) :: check
v1=>v(1:N2)
v2=>v(N2+1:NTOT)
nn2=N2
dx=DXX Avoid evaluating derivatives exactly at x =

±1.do
write(*,*) ’input m,n,c-squared (999 to end)’
read(*,*) m,n,c2
if (c2 == 999.0) exit
if ((n < m) .or. (m < 0)) cycle
gamma=(-0.5_sp)**m*product(& Compute γ of equation (17.4.20).

arth(n+1,1,m)*(arth(real(n,sp),-1.0_sp,m)/arth(1,1,m)))
v1(1)=n*(n+1)-m*(m+1)+c2/2.0_sp Initial guess for eigenvalue and function value.
v2(2)=v1(1)
v2(1)=gamma*(1.0_sp-(v2(2)-c2)*dx/(2*(m+1)))
x1=-1.0_sp+dx Set range of integration.
x2=1.0_sp-dx
xf=0.0 Fitting point.
call newt(v,check) Find v that zeros function f in score.
if (check) then

write(*,*) ’shootf failed; bad initial guess’
exit

else
write(*,’(1x,t6,a)’) ’mu(m,n)’
write(*,’(1x,f12.6)’) v1(1)

end if
end do
END PROGRAM sphfpt

SUBROUTINE load1(x1,v1,y)
USE nrtype
USE sphfpt_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1
REAL(SP), DIMENSION(:), INTENT(IN) :: v1
REAL(SP), DIMENSION(:), INTENT(OUT) :: y

Supplies starting values for integration at x = −1 + dx.
REAL(SP) :: y1
y(3)=v1(1)
y1=merge(gamma,-gamma,mod(n-m,2) == 0)
y(2)=-(y(3)-c2)*y1/(2*(m+1))
y(1)=y1+y(2)*dx
END SUBROUTINE load1

1324 Chapter B17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE load2(x2,v2,y)
USE nrtype
USE sphfpt_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x2
REAL(SP), DIMENSION(:), INTENT(IN) :: v2
REAL(SP), DIMENSION(:), INTENT(OUT) :: y

Supplies starting values for integration at x = 1 − dx.
y(3)=v2(2)
y(1)=v2(1)
y(2)=(y(3)-c2)*y(1)/(2*(m+1))
END SUBROUTINE load2

SUBROUTINE score(xf,y,f)
USE nrtype
USE sphfpt_data
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xf
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(:), INTENT(OUT) :: f

Tests whether solutions match at fitting point x = 0.
f(1:3)=y(1:3)
END SUBROUTINE score

f90
MODULE sphfpt_data...MODULE sphfpt_caller These modules function
just like common blocks to communicate variables fromsphfpt to the
various subsidiary routines. The advantage of a module is that it allows

complete specification of the variables.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B18. Integral Equations
and Inverse
Theory

SUBROUTINE fred2(a,b,t,f,w,g,ak)
USE nrtype; USE nrutil, ONLY : assert_eq,unit_matrix
USE nr, ONLY : gauleg,lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: t,f,w
INTERFACE

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g
END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak

END INTERFACE
Solves a linear Fredholm equation of the second kind by N -point Gaussian quadrature. On
input, a and b are the limits of integration. g and ak are user-supplied external functions. g
returns g(t) as a vector of lengthN for a vector ofN arguments, while ak returns λK(t, s) as
an N×N matrix. The routine returns arrays t and f of length N containing the abscissas ti
of the Gaussian quadrature and the solution f at these abscissas. Also returned is the array
w of length N of Gaussian weights for use with the Nystrom interpolation routine fredin.

INTEGER(I4B) :: n
INTEGER(I4B), DIMENSION(size(f)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(f),size(f)) :: omk
n=assert_eq(size(f),size(t),size(w),’fred2’)
call gauleg(a,b,t,w) Replace gauleg with another routine if not

using Gauss-Legendre quadrature.call unit_matrix(omk)
omk=omk-ak(t,t)*spread(w,dim=1,ncopies=n) Form 1 − λK̃.
f=g(t)
call ludcmp(omk,indx,d) Solve linear equations.
call lubksb(omk,indx,f)
END SUBROUTINE fred2

f90
call unit_matrix(omk) The unit matrix routine innrutil does ex-
actly what its name suggests.

1325

1326 Chapter B18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

omk=omk-ak(t,t)*spread(w,dim=1,ncopies=n) By now this idiom should be
second nature: the first column ofak gets multiplied by the first element ofw,
and so on.

⋆ ⋆ ⋆

FUNCTION fredin(x,a,b,t,f,w,g,ak)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: x,t,f,w
REAL(SP), DIMENSION(size(x)) :: fredin
INTERFACE

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g
END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak

END INTERFACE
Input are arrays t and w of length N containing the abscissas and weights of the N -point
Gaussian quadrature, and the solution array f of length N from fred2. The function
fredin returns the array of values of f at an array of points x using the Nystrom interpo-
lation formula. On input, a and b are the limits of integration. g and ak are user-supplied
external functions. g returns g(t) as a vector of length N for a vector of N arguments,
while ak returns λK(t, s) as an N × N matrix.

INTEGER(I4B) :: n
n=assert_eq(size(f),size(t),size(w),’fredin’)
fredin=g(x)+matmul(ak(x,t),w*f)
END FUNCTION fredin

f90
fredin=g(x)+matmul... Fortran 90 allows very concise coding here,
which also happens to be much closer to the mathematical formulation
than the loops required in Fortran 77.

⋆ ⋆ ⋆

SUBROUTINE voltra(t0,h,t,f,g,ak)
USE nrtype; USE nrutil, ONLY : array_copy,assert_eq,unit_matrix
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t0,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: t
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: f
INTERFACE

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
END FUNCTION g

FUNCTION ak(t,s)

Chapter B18. Integral Equations and Inverse Theory 1327

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t,s
REAL(SP), DIMENSION(:,:), POINTER :: ak
END FUNCTION ak

END INTERFACE
Solves a set ofM linear Volterra equations of the second kind using the extended trapezoidal
rule. On input, t0 is the starting point of the integration. The routine takes N − 1 steps
of size h and returns the abscissas in t, a vector of length N . The solution at these points
is returned in the M × N matrix f. g is a user-supplied external function that returns a
pointer to the M -dimensional vector of functions gk(t), while ak is another user-supplied
external function that returns a pointer to the M × M matrix K(t, s).

INTEGER(I4B) :: i,j,n,ncop,nerr,m
INTEGER(I4B), DIMENSION(size(f,1)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(f,1)) :: b
REAL(SP), DIMENSION(size(f,1),size(f,1)) :: a
n=assert_eq(size(f,2),size(t),’voltra: n’)
t(1)=t0 Initialize.
call array_copy(g(t(1)),f(:,1),ncop,nerr)
m=assert_eq(size(f,1),ncop,ncop+nerr,’voltra: m’)
do i=2,n Take a step h.

t(i)=t(i-1)+h
b=g(t(i))+0.5_sp*h*matmul(ak(t(i),t(1)),f(:,1)) Accumulate right-hand side

of linear equations in b.do j=2,i-1
b=b+h*matmul(ak(t(i),t(j)),f(:,j))

end do
call unit_matrix(a) Left-hand side goes in ma-

trix a.a=a-0.5_sp*h*ak(t(i),t(i))
call ludcmp(a,indx,d) Solve linear equations.
call lubksb(a,indx,b)
f(:,i)=b(:)

end do
END SUBROUTINE voltra

f90
FUNCTION g(t)...REAL(SP), DIMENSION(:), POINTER :: g The routine
voltra requires an argument that is a function returning a vector, but we
don’t know the dimension of the vector at compile time. The solution

is to make the function return apointer to the vector. This is not the same thing
as a pointer to a function, which is not allowed in Fortran 90. When you use the
pointer in the routine, Fortran 90 figures out from the context that you want the
vector of values, so the code remains highly readable. Similarly, the argumentak

is a function returning a pointer to a matrix.
The coding of the user-supplied functionsg andak deserves some comment:

functions returning pointers to arrays are potential memory leaks if the arrays are
allocated dynamically in the functions. Here the user knows in advance the dimension
of the problem, and so there is no need to use dynamical allocation in the functions.
For example, in a two-dimensional problem, you can codeg as follows:

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
REAL(SP), DIMENSION(2), TARGET, SAVE :: gg
g=>gg
g(1)=...
g(2)=...
END FUNCTION g

1328 Chapter B18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

and similarly for ak.
Suppose, however, we codedg with dynamical allocation:

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
allocate(g(2))
g(1)=...
g(2)=...
END FUNCTION g

Now g never gets deallocated; each time we call the function fresh memory gets
consumed. If you have a problem that really does require dynamical allocation
in a pointer function, you have to be sure to deallocate the pointer in the calling
routine. Involtra, for example, we would declare pointersgtemp andaktemp.
Then instead of writing simply

b=g(t(i))+...

we would write

gtemp=>g(t(i))
b=gtemp+...
deallocate(gtemp)

and similarly for each pointer function invocation.

call array_copy(g(t(1)),f(:,1),ncop,nerr) The routine would work if we re-
placed this statement with simplyf(:,1)=g(t(1)). The purpose of usingarray copy

from nrutil is that we can check thatf and g have consistent dimensions with
a call to assert eq.

⋆ ⋆ ⋆

FUNCTION wwghts(n,h,kermom)
USE nrtype; USE nrutil, ONLY : geop
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: h
REAL(SP), DIMENSION(n) :: wwghts
INTERFACE

FUNCTION kermom(y,m)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom
END FUNCTION kermom

END INTERFACE
Returns in wwghts(1:n) weights for the n-point equal-interval quadrature from 0 to (n−
1)h of a function f(x) times an arbitrary (possibly singular) weight function w(x) whose
indefinite-integral moments Fn(y) are provided by the user-supplied function kermom.

INTEGER(I4B) :: j
REAL(DP) :: hh,hi,c,a,b
REAL(DP), DIMENSION(4) :: wold,wnew,w
hh=h Double precision on internal calculations even though

the interface is in single precision.hi=1.0_dp/hh
wwghts(1:n)=0.0 Zero all the weights so we can sum into them.
wold(1:4)=kermom(0.0_dp,4) Evaluate indefinite integrals at lower end.

Chapter B18. Integral Equations and Inverse Theory 1329

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (n >= 4) then Use highest available order.
b=0.0 For another problem, you might change this lower

limit.do j=1,n-3
c=j-1 This is called k in equation (18.3.5).
a=b Set upper and lower limits for this step.
b=a+hh
if (j == n-3) b=(n-1)*hh Last interval: go all the way to end.
wnew(1:4)=kermom(b,4)
w(1:4)=(wnew(1:4)-wold(1:4))*geop(1.0_dp,hi,4) Equation (18.3.4).
wwghts(j:j+3)=wwghts(j:j+3)+(/& Equation (18.3.5).

((c+1.0_dp)*(c+2.0_dp)*(c+3.0_dp)*w(1)&
-(11.0_dp+c*(12.0_dp+c*3.0_dp))*w(2)&

+3.0_dp*(c+2.0_dp)*w(3)-w(4))/6.0_dp,&
(-c*(c+2.0_dp)*(c+3.0_dp)*w(1)&
+(6.0_dp+c*(10.0_dp+c*3.0_dp))*w(2)&

-(3.0_dp*c+5.0_dp)*w(3)+w(4))*0.50_dp,&
(c*(c+1.0_dp)*(c+3.0_dp)*w(1)&
-(3.0_dp+c*(8.0_dp+c*3.0_dp))*w(2)&

+(3.0_dp*c+4.0_dp)*w(3)-w(4))*0.50_dp,&
(-c*(c+1.0_dp)*(c+2.0_dp)*w(1)&
+(2.0_dp+c*(6.0_dp+c*3.0_dp))*w(2)&
-3.0_dp*(c+1.0_dp)*w(3)+w(4))/6.0_dp /)

wold(1:4)=wnew(1:4) Reset lower limits for moments.
end do

else if (n == 3) then Lower-order cases; not recommended.
wnew(1:3)=kermom(hh+hh,3)
w(1:3)= (/ wnew(1)-wold(1), hi*(wnew(2)-wold(2)),&

hi**2*(wnew(3)-wold(3)) /)
wwghts(1:3)= (/ w(1)-1.50_dp*w(2)+0.50_dp*w(3),&

2.0_dp*w(2)-w(3), 0.50_dp*(w(3)-w(2)) /)
else if (n == 2) then

wnew(1:2)=kermom(hh,2)
wwghts(2)=hi*(wnew(2)-wold(2))
wwghts(1)=wnew(1)-wold(1)-wwghts(2)

end if
END FUNCTION wwghts

⋆ ⋆ ⋆

MODULE kermom_info
USE nrtype
REAL(DP) :: kermom_x
END MODULE kermom_info

FUNCTION kermom(y,m)
USE nrtype
USE kermom_info
IMPLICIT NONE
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom

Returns in kermom(1:m) the first m indefinite-integral moments of one row of the singular
part of the kernel. (For this example, m is hard-wired to be 4.) The input variable y labels
the column, while kermom x (in the module kermom info) is the row.

REAL(DP) :: x,d,df,clog,x2,x3,x4
x=kermom_x We can take x as the lower limit of integration. Thus, we

return the moment integrals either purely to the left or
purely to the right of the diagonal.

if (y >= x) then
d=y-x
df=2.0_dp*sqrt(d)*d
kermom(1:4) = (/ df/3.0_dp, df*(x/3.0_dp+d/5.0_dp),&

1330 Chapter B18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

df*((x/3.0_dp + 0.4_dp*d)*x + d**2/7.0_dp),&
df*(((x/3.0_dp + 0.6_dp*d)*x + 3.0_dp*d**2/7.0_dp)*x&

+ d**3/9.0_dp) /)
else

x2=x**2
x3=x2*x
x4=x2*x2
d=x-y
clog=log(d)
kermom(1:4) = (/ d*(clog-1.0_dp),&

-0.25_dp*(3.0_dp*x+y-2.0_dp*clog*(x+y))*d,&
(-11.0_dp*x3+y*(6.0_dp*x2+y*(3.0_dp*x+2.0_dp*y))&

+6.0_dp*clog*(x3-y**3))/18.0_dp,&
(-25.0_dp*x4+y*(12.0_dp*x3+y*(6.0_dp*x2+y*&

(4.0_dp*x+3.0_dp*y)))+12.0_dp*clog*(x4-y**4))/48.0_dp /)
end if
END FUNCTION kermom

f90
MODULE kermom_info This module functions just like a common block to
share the variablekermom x with the routinequadmx.

⋆ ⋆ ⋆

SUBROUTINE quadmx(a)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,diagadd,outerprod
USE nr, ONLY : wwghts,kermom
USE kermom_info
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: a

Constructs in the N×N array a the quadrature matrix for an example Fredholm equation of
the second kind. The nonsingular part of the kernel is computed within this routine, while
the quadrature weights that integrate the singular part of the kernel are obtained via calls
to wwghts. An external routine kermom, which supplies indefinite-integral moments of the
singular part of the kernel, is passed to wwghts.

INTEGER(I4B) :: j,n
REAL(SP) :: h,x
REAL(SP), DIMENSION(size(a,1)) :: wt
n=assert_eq(size(a,1),size(a,2),’quadmx’)
h=PI/(n-1)
do j=1,n

x=(j-1)*h
kermom_x=x Put x in the module kermom info for use by kermom.
wt(:)=wwghts(n,h,kermom) Part of nonsingular kernel.
a(j,:)=wt(:) Put together all the pieces of the kernel.

end do
wt(:)=cos(arth(0,1,n)*h)
a(:,:)=a(:,:)*outerprod(wt(:),wt(:))
call diagadd(a,1.0_sp) Since equation of the second kind, there is diagonal

piece independent of h.END SUBROUTINE quadmx

f90 call diagadd... See discussion ofdiagadd afterhqr on p. 1234.

⋆ ⋆ ⋆

Chapter B18. Integral Equations and Inverse Theory 1331

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

PROGRAM fredex
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : quadmx,ludcmp,lubksb
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: N=40
INTEGER(I4B) :: j
INTEGER(I4B), DIMENSION(N) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(N) :: g,x
REAL(SP), DIMENSION(N,N) :: a

This sample program shows how to solve a Fredholm equation of the second kind using
the product Nystrom method and a quadrature rule especially constructed for a particular,
singular, kernel.
Parameter: N is the size of the grid.

call quadmx(a) Make the quadrature matrix; all the action is here.
call ludcmp(a,indx,d) Decompose the matrix.
x(:)=arth(0,1,n)*PI/(n-1)
g(:)=sin(x(:)) Construct the right-hand side, here sin x.
call lubksb(a,indx,g) Backsubstitute.
do j=1,n Write out the solution.

write (*,*) j,x(j),g(j)
end do
write (*,*) ’normal completion’
END PROGRAM fredex

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B19. Partial Differential
Equations

SUBROUTINE sor(a,b,c,d,e,f,u,rjac)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: a,b,c,d,e,f
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), INTENT(IN) :: rjac
INTEGER(I4B), PARAMETER :: MAXITS=1000
REAL(DP), PARAMETER :: EPS=1.0e-5_dp

Successive overrelaxation solution of equation (19.5.25) with Chebyshev acceleration. a, b,
c, d, e, and f are input as the coefficients of the equation, each dimensioned to the grid
size J × J. u is input as the initial guess to the solution, usually zero, and returns with the
final value. rjac is input as the spectral radius of the Jacobi iteration, or an estimate of
it. Double precision is a good idea for J bigger than about 25.

REAL(DP), DIMENSION(size(a,1),size(a,1)) :: resid
INTEGER(I4B) :: jmax,jm1,jm2,jm3,n
REAL(DP) :: anorm,anormf,omega
jmax=assert_eq((/size(a,1),size(a,2),size(b,1),size(b,2), &

size(c,1),size(c,2),size(d,1),size(d,2),size(e,1), &
size(e,2),size(f,1),size(f,2),size(u,1),size(u,2)/),’sor’)

jm1=jmax-1
jm2=jmax-2
jm3=jmax-3
anormf=sum(abs(f(2:jm1,2:jm1)))
Compute initial norm of residual and terminate iteration when norm has been reduced by a
factor EPS. This computation assumes initial u is zero.

omega=1.0
do n=1,MAXITS

First do the even-even and odd-odd squares of the grid, i.e., the red squares of the
checkerboard:

resid(2:jm1:2,2:jm1:2)=a(2:jm1:2,2:jm1:2)*u(3:jmax:2,2:jm1:2)+&
b(2:jm1:2,2:jm1:2)*u(1:jm2:2,2:jm1:2)+&
c(2:jm1:2,2:jm1:2)*u(2:jm1:2,3:jmax:2)+&
d(2:jm1:2,2:jm1:2)*u(2:jm1:2,1:jm2:2)+&
e(2:jm1:2,2:jm1:2)*u(2:jm1:2,2:jm1:2)-f(2:jm1:2,2:jm1:2)

u(2:jm1:2,2:jm1:2)=u(2:jm1:2,2:jm1:2)-omega*&
resid(2:jm1:2,2:jm1:2)/e(2:jm1:2,2:jm1:2)

resid(3:jm2:2,3:jm2:2)=a(3:jm2:2,3:jm2:2)*u(4:jm1:2,3:jm2:2)+&
b(3:jm2:2,3:jm2:2)*u(2:jm3:2,3:jm2:2)+&
c(3:jm2:2,3:jm2:2)*u(3:jm2:2,4:jm1:2)+&
d(3:jm2:2,3:jm2:2)*u(3:jm2:2,2:jm3:2)+&
e(3:jm2:2,3:jm2:2)*u(3:jm2:2,3:jm2:2)-f(3:jm2:2,3:jm2:2)

u(3:jm2:2,3:jm2:2)=u(3:jm2:2,3:jm2:2)-omega*&
resid(3:jm2:2,3:jm2:2)/e(3:jm2:2,3:jm2:2)

omega=merge(1.0_dp/(1.0_dp-0.5_dp*rjac**2), &
1.0_dp/(1.0_dp-0.25_dp*rjac**2*omega), n == 1)

Now do even-odd and odd-even squares of the grid, i.e., the black squares of the checker-
board:

resid(3:jm2:2,2:jm1:2)=a(3:jm2:2,2:jm1:2)*u(4:jm1:2,2:jm1:2)+&
b(3:jm2:2,2:jm1:2)*u(2:jm3:2,2:jm1:2)+&

1332

Chapter B19. Partial Differential Equations 1333

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

c(3:jm2:2,2:jm1:2)*u(3:jm2:2,3:jmax:2)+&
d(3:jm2:2,2:jm1:2)*u(3:jm2:2,1:jm2:2)+&
e(3:jm2:2,2:jm1:2)*u(3:jm2:2,2:jm1:2)-f(3:jm2:2,2:jm1:2)

u(3:jm2:2,2:jm1:2)=u(3:jm2:2,2:jm1:2)-omega*&
resid(3:jm2:2,2:jm1:2)/e(3:jm2:2,2:jm1:2)

resid(2:jm1:2,3:jm2:2)=a(2:jm1:2,3:jm2:2)*u(3:jmax:2,3:jm2:2)+&
b(2:jm1:2,3:jm2:2)*u(1:jm2:2,3:jm2:2)+&
c(2:jm1:2,3:jm2:2)*u(2:jm1:2,4:jm1:2)+&
d(2:jm1:2,3:jm2:2)*u(2:jm1:2,2:jm3:2)+&
e(2:jm1:2,3:jm2:2)*u(2:jm1:2,3:jm2:2)-f(2:jm1:2,3:jm2:2)

u(2:jm1:2,3:jm2:2)=u(2:jm1:2,3:jm2:2)-omega*&
resid(2:jm1:2,3:jm2:2)/e(2:jm1:2,3:jm2:2)

omega=1.0_dp/(1.0_dp-0.25_dp*rjac**2*omega)
anorm=sum(abs(resid(2:jm1,2:jm1)))
if (anorm < EPS*anormf) exit

end do
if (n > MAXITS) call nrerror(’MAXITS exceeded in sor’)
END SUBROUTINE sor

Red-black iterative schemes like the one used insor are easily paral-
lelizable. Updating the red grid points requires information only from
the black grid points, so they can all be updated independently. Similarly

the black grid points can all be updated independently. Since nearest neighbors are
involved in the updating, communication costs can be kept to a minimum.

f90
There are several possibilities for coding the red-black iteration in a data
parallel way using only Fortran 90 and no parallel language extensions.
One way is to define anN ×N logical maskred that is true on the red

grid points and false on the black. Then each iteration consists of an update governed
by a where(red)...end where block and awhere(.not. red)...end where block. We
have chosen a more direct coding that avoids the need for storage of the arrayred.
The red update corresponds to the even-even and odd-odd grid points, the black to
the even-odd and odd-even points. We can code each of these four cases directly
with array sections, as in the routine above.

The array section notation used insor is rather dense and hard to read. We
could use pointer aliases to try to simplify things, but since each array section is
different, we end up merely giving names to each term that was there all along.
Pointer aliases do help if we codesor using a logical mask. Since there may be
machines on which this version is faster, and since it is of some pedagogic interest,
we give the alternative code:

SUBROUTINE sor_mask(a,b,c,d,e,f,u,rjac)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), TARGET, INTENT(IN) :: a,b,c,d,e,f
REAL(DP), DIMENSION(:,:), TARGET, INTENT(INOUT) :: u
REAL(DP), INTENT(IN) :: rjac
INTEGER(I4B), PARAMETER :: MAXITS=1000
REAL(DP), PARAMETER :: EPS=1.0e-5_dp
REAL(DP), DIMENSION(:,:), ALLOCATABLE :: resid
REAL(DP), DIMENSION(:,:), POINTER :: u_int,u_down,u_up,u_left,&

u_right,a_int,b_int,c_int,d_int,e_int,f_int
INTEGER(I4B) :: jmax,jm1,jm2,jm3,n
REAL(DP) anorm,anormf,omega
LOGICAL, DIMENSION(:,:), ALLOCATABLE :: red
jmax=assert_eq((/size(a,1),size(a,2),size(b,1),size(b,2), &

1334 Chapter B19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

size(c,1),size(c,2),size(d,1),size(d,2),size(e,1), &
size(e,2),size(f,1),size(f,2),size(u,1),size(u,2)/),’sor’)

jm1=jmax-1
jm2=jmax-2
jm3=jmax-3
allocate(resid(jm2,jm2),red(jm2,jm2)) Interior is (jmax− 2) × (jmax− 2).
red=.false.
red(1:jm2:2,1:jm2:2)=.true.
red(2:jm3:2,2:jm3:2)=.true.
u_int=>u(2:jm1,2:jm1)
u_down=>u(3:jmax,2:jm1)
u_up=>u(1:jm2,2:jm1)
u_left=>u(2:jm1,1:jm2)
u_right=>u(2:jm1,3:jmax)
a_int=>a(2:jm1,2:jm1)
b_int=>b(2:jm1,2:jm1)
c_int=>c(2:jm1,2:jm1)
d_int=>d(2:jm1,2:jm1)
e_int=>e(2:jm1,2:jm1)
f_int=>f(2:jm1,2:jm1)
anormf=sum(abs(f_int))
omega=1.0
do n=1,MAXITS

where(red)
resid=a_int*u_down+b_int*u_up+c_int*u_right+&

d_int*u_left+e_int*u_int-f_int
u_int=u_int-omega*resid/e_int

end where
omega=merge(1.0_dp/(1.0_dp-0.5_dp*rjac**2), &

1.0_dp/(1.0_dp-0.25_dp*rjac**2*omega), n == 1)
where(.not.red)

resid=a_int*u_down+b_int*u_up+c_int*u_right+&
d_int*u_left+e_int*u_int-f_int

u_int=u_int-omega*resid/e_int
end where
omega=1.0_dp/(1.0_dp-0.25_dp*rjac**2*omega)
anorm=sum(abs(resid))
if(anorm < EPS*anormf)exit

end do
deallocate(resid,red)
if (n > MAXITS) call nrerror(’MAXITS exceeded in sor’)
END SUBROUTINE sor_mask

⋆ ⋆ ⋆

SUBROUTINE mglin(u,ncycle)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : interp,rstrct,slvsml
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: ncycle

Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem
(19.0.6). On input u contains the right-hand side ρ in an N × N array, while on output
it returns the solution. The dimension N is related to the number of grid levels used in
the solution, ng below, by N = 2**ng+1. ncycle is the number of V-cycles to be used
at each level.

INTEGER(I4B) :: j,jcycle,n,ng,ngrid,nn
TYPE ptr2d Define a type so we can have an array of pointers

to arrays of grid variables.REAL(DP), POINTER :: a(:,:)
END TYPE ptr2d
TYPE(ptr2d), ALLOCATABLE :: rho(:)

Chapter B19. Partial Differential Equations 1335

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

REAL(DP), DIMENSION(:,:), POINTER :: uj,uj_1
n=assert_eq(size(u,1),size(u,2),’mglin’)
ng=nint(log(n-1.0)/log(2.0))
if (n /= 2**ng+1) call nrerror(’n-1 must be a power of 2 in mglin’)
allocate(rho(ng))
nn=n
ngrid=ng
allocate(rho(ngrid)%a(nn,nn)) Allocate storage for r.h.s. on grid ng,
rho(ngrid)%a=u and fill it with the input r.h.s.
do Similarly allocate storage and fill r.h.s. on all coarse

grids by restricting from finer grids.if (nn <= 3) exit
nn=nn/2+1
ngrid=ngrid-1
allocate(rho(ngrid)%a(nn,nn))
rho(ngrid)%a=rstrct(rho(ngrid+1)%a)

end do
nn=3
allocate(uj(nn,nn))
call slvsml(uj,rho(1)%a) Initial solution on coarsest grid.
do j=2,ng Nested iteration loop.

nn=2*nn-1
uj_1=>uj
allocate(uj(nn,nn))
uj=interp(uj_1) Interpolate from grid j-1 to next finer grid j.
deallocate(uj_1)
do jcycle=1,ncycle V-cycle loop.

call mg(j,uj,rho(j)%a)
end do

end do
u=uj Return solution in u.
deallocate(uj)
do j=1,ng

deallocate(rho(j)%a)
end do
deallocate(rho)
CONTAINS

RECURSIVE SUBROUTINE mg(j,u,rhs)
USE nrtype
USE nr, ONLY : interp,relax,resid,rstrct,slvsml
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: j
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs
INTEGER(I4B), PARAMETER :: NPRE=1,NPOST=1

Recursive multigrid iteration. On input, j is the current level, u is the current value of the
solution, and rhs is the right-hand side. On output u contains the improved solution at the
current level.
Parameters: NPRE and NPOST are the number of relaxation sweeps before and after the
coarse-grid correction is computed.

INTEGER(I4B) :: jpost,jpre
REAL(DP), DIMENSION((size(u,1)+1)/2,(size(u,1)+1)/2) :: res,v
if (j == 1) then Bottom of V: Solve on coarsest grid.

call slvsml(u,rhs)
else On downward stoke of the V.

do jpre=1,NPRE Pre-smoothing.
call relax(u,rhs)

end do
res=rstrct(resid(u,rhs)) Restriction of the residual is the next r.h.s.
v=0.0 Zero for initial guess in next relaxation.
call mg(j-1,v,res) Recursive call for the coarse grid correction.
u=u+interp(v) On upward stroke of V.
do jpost=1,NPOST Post-smoothing.

call relax(u,rhs)

1336 Chapter B19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

end do
end if
END SUBROUTINE mg
END SUBROUTINE mglin

f90
The Fortran 90 version ofmglin (and ofmgfas below) is quite different
from the Fortran 77 version, although the algorithm is identical. First,
we use a recursive implementation. This makes the code much more

transparent. It also makes the memory management much better: we simply define
the new arraysres andv as automatic arrays of the appropriate dimension on each
recursive call to a coarser level. And a third benefit is that it is trivial to change
the code to increase the number of multigrid iterations done at levelj − 1 by each
iteration at levelj, i.e., to set the quantityγ in §19.6 to a value greater than one.
(Recall thatγ = 1 as chosen inmglin gives V-cycles,γ = 2 gives W-cycles.)
Simply enclose the recursive call in a do-loop:

do i=1,merge(gamma,1,j /= 2)
call mg(j-1,v,res)

end do

The merge expression ensures that there is no more than one call to the coarsest
level, where the problem is solved exactly.

A second improvement in the Fortran 90 version is to make the procedures
resid, interp, andrstrct functions instead of subroutines. This allows us to
code the algorithm exactly as written mathematically.

TYPE ptr2d... The right-hand-sidequantityρ is supplied initiallyon the finest
grid in the argumentu. It has to be defined on the coarser grids by restriction, and
then supplied as the right-hand side tomg in the nested iteration loop. This loop
starts at the coarsest level and progresses up to the finest level. We thus need a data
structure to storeρ on all the grid levels. A convenient way to implement this in
Fortran 90 is to define a typeptr2d, a pointer to a two-dimensional arraya that
represents a grid. (In three dimensions,a would of course be three-dimensional.)
We then declare the variableρ as an allocatable array of typeptr2d:

TYPE(ptr2d), ALLOCATABLE :: rho(:)

Next we allocate storage forρ on each level. The number of levels or grids,ng,
is known only at run time:

allocate(rho(ng))

Then we allocate storage as needed on particular sized grids. For example,

allocate(rho(ngrid)%a(nn,nn))

allocates annn × nn grid for rho on grid numberngrid.
The various subsidiary routines ofmglin such asrstrct and interp are

written to accept two-dimensional arrays as arguments. With the data structure
we’ve employed, using these routines is simple. For example,

rho(ngrid)%a=rstrct(rho(ngrid+1)%a)

will restrict rho from the gridngrid+1 to the gridngrid. The statement is even
more readable if we mentally ignore the%a that is tagged onto each variable. (If

Chapter B19. Partial Differential Equations 1337

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

we actually did omit%a in the code, the compiler would think we meant the array
of type ptr2d instead of the grid array.)

Note that while Fortran 90 does not allow you to declare an array of pointers
directly, you can achieve the same effect by declaring your own type, as we have
done withptr2d in this example.

FUNCTION rstrct(uf)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: uf
REAL(DP), DIMENSION((size(uf,1)+1)/2,(size(uf,1)+1)/2) :: rstrct

Half-weighting restriction. If Nc is the coarse-grid dimension, the fine-grid solution is input
in the (2Nc − 1)× (2Nc − 1) array uf, the coarse-grid solution is returned in the Nc ×Nc

array rstrct.
INTEGER(I4B) :: nc,nf
nf=assert_eq(size(uf,1),size(uf,2),’rstrct’)
nc=(nf+1)/2
rstrct(2:nc-1,2:nc-1)=0.5_dp*uf(3:nf-2:2,3:nf-2:2)+0.125_dp*(& Interior points.

uf(4:nf-1:2,3:nf-2:2)+uf(2:nf-3:2,3:nf-2:2)+&
uf(3:nf-2:2,4:nf-1:2)+uf(3:nf-2:2,2:nf-3:2))

rstrct(1:nc,1)=uf(1:nf:2,1) Boundary points.
rstrct(1:nc,nc)=uf(1:nf:2,nf)
rstrct(1,1:nc)=uf(1,1:nf:2)
rstrct(nc,1:nc)=uf(nf,1:nf:2)
END FUNCTION rstrct

FUNCTION interp(uc)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: uc
REAL(DP), DIMENSION(2*size(uc,1)-1,2*size(uc,1)-1) :: interp

Coarse-to-fine prolongation by bilinear interpolation. If Nf is the fine-grid dimension and
Nc the coarse-grid dimension, then Nf = 2Nc− 1. The coarse-grid solution is input as uc,
the fine-grid solution is returned in interp.

INTEGER(I4B) :: nc,nf
nc=assert_eq(size(uc,1),size(uc,2),’interp’)
nf=2*nc-1
interp(1:nf:2,1:nf:2)=uc(1:nc,1:nc)
Do elements that are copies.

interp(2:nf-1:2,1:nf:2)=0.5_dp*(interp(3:nf:2,1:nf:2)+ &
interp(1:nf-2:2,1:nf:2))
Do odd-numbered columns, interpolating vertically.

interp(1:nf,2:nf-1:2)=0.5_dp*(interp(1:nf,3:nf:2)+interp(1:nf,1:nf-2:2))
Do even-numbered columns, interpolating horizontally.

END FUNCTION interp

SUBROUTINE slvsml(u,rhs)
USE nrtype
IMPLICIT NONE
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs

Solution of the model problem on the coarsest grid, where h = 1

2
. The right-hand side is

input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).
REAL(DP) :: h
u=0.0
h=0.5_dp
u(2,2)=-h*h*rhs(2,2)/4.0_dp
END SUBROUTINE slvsml

1338 Chapter B19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE relax(u,rhs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs

Red-black Gauss-Seidel relaxation for model problem. The current value of the solution u is
updated, using the right-hand-side function rhs. u and rhs are square arrays of the same
odd dimension.

INTEGER(I4B) :: n
REAL(DP) :: h,h2
n=assert_eq(size(u,1),size(u,2),size(rhs,1),size(rhs,2),’relax’)
h=1.0_dp/(n-1)
h2=h*h
First do the even-even and odd-odd squares of the grid, i.e., the red squares of the checker-
board:

u(2:n-1:2,2:n-1:2)=0.25_dp*(u(3:n:2,2:n-1:2)+u(1:n-2:2,2:n-1:2)+&
u(2:n-1:2,3:n:2)+u(2:n-1:2,1:n-2:2)-h2*rhs(2:n-1:2,2:n-1:2))

u(3:n-2:2,3:n-2:2)=0.25_dp*(u(4:n-1:2,3:n-2:2)+u(2:n-3:2,3:n-2:2)+&
u(3:n-2:2,4:n-1:2)+u(3:n-2:2,2:n-3:2)-h2*rhs(3:n-2:2,3:n-2:2))

Now do even-odd and odd-even squares of the grid, i.e., the black squares of the checker-
board:

u(3:n-2:2,2:n-1:2)=0.25_dp*(u(4:n-1:2,2:n-1:2)+u(2:n-3:2,2:n-1:2)+&
u(3:n-2:2,3:n:2)+u(3:n-2:2,1:n-2:2)-h2*rhs(3:n-2:2,2:n-1:2))

u(2:n-1:2,3:n-2:2)=0.25_dp*(u(3:n:2,3:n-2:2)+u(1:n-2:2,3:n-2:2)+&
u(2:n-1:2,4:n-1:2)+u(2:n-1:2,2:n-3:2)-h2*rhs(2:n-1:2,3:n-2:2))

END SUBROUTINE relax

f90 See the discussion of red-black relaxation aftersor on p. 1333.

FUNCTION resid(u,rhs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u,rhs
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: resid

Returns minusthe residual for the model problem. Input quantities are u and rhs, while
the residual is returned in resid. All three quantities are square arrays with the same odd
dimension.

INTEGER(I4B) :: n
REAL(DP) :: h,h2i
n=assert_eq((/size(u,1),size(u,2),size(rhs,1),size(rhs,2)/),’resid’)
n=size(u,1)
h=1.0_dp/(n-1)
h2i=1.0_dp/(h*h)
resid(2:n-1,2:n-1)=-h2i*(u(3:n,2:n-1)+u(1:n-2,2:n-1)+u(2:n-1,3:n)+&

u(2:n-1,1:n-2)-4.0_dp*u(2:n-1,2:n-1))+rhs(2:n-1,2:n-1) Interior points.
resid(1:n,1)=0.0 Boundary points.
resid(1:n,n)=0.0
resid(1,1:n)=0.0
resid(n,1:n)=0.0
END FUNCTION resid

⋆ ⋆ ⋆

Chapter B19. Partial Differential Equations 1339

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE mgfas(u,maxcyc)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY : interp,lop,rstrct,slvsm2
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: maxcyc

Full Multigrid Algorithm for FAS solution of nonlinear elliptic equation, here equation
(19.6.44). On input u contains the right-hand side ρ in an N × N array, while on out-
put it returns the solution. The dimension N is related to the number of grid levels used
in the solution, ng below, by N = 2**ng+1. maxcyc is the maximum number of V-cycles
to be used at each level.

INTEGER(I4B) :: j,jcycle,n,ng,ngrid,nn
REAL(DP) :: res,trerr
TYPE ptr2d Define a type so we can have an array of

pointers to arrays of grid variables.REAL(DP), POINTER :: a(:,:)
END TYPE ptr2d
TYPE(ptr2d), ALLOCATABLE :: rho(:)
REAL(DP), DIMENSION(:,:), POINTER :: uj,uj_1
n=assert_eq(size(u,1),size(u,2),’mgfas’)
ng=nint(log(n-1.0)/log(2.0))
if (n /= 2**ng+1) call nrerror(’n-1 must be a power of 2 in mgfas’)
allocate(rho(ng))
nn=n
ngrid=ng
allocate(rho(ngrid)%a(nn,nn)) Allocate storage for r.h.s. on grid ng,
rho(ngrid)%a=u and fill it with ρ from the fine grid.
do Similarly allocate storage and fill r.h.s. by re-

striction on all coarse grids.if (nn <= 3) exit
nn=nn/2+1
ngrid=ngrid-1
allocate(rho(ngrid)%a(nn,nn))
rho(ngrid)%a=rstrct(rho(ngrid+1)%a)

end do
nn=3
allocate(uj(nn,nn))
call slvsm2(uj,rho(1)%a) Initial solution on coarsest grid.
do j=2,ng Nested iteration loop.

nn=2*nn-1
uj_1=>uj
allocate(uj(nn,nn))
uj=interp(uj_1) Interpolate from grid j-1 to next finer grid

j.deallocate(uj_1)
do jcycle=1,maxcyc V-cycle loop.

call mg(j,uj,trerr=trerr)
res=sqrt(sum((lop(uj)-rho(j)%a)**2))/nn Form residual ‖dh‖.
if (res < trerr) exit No more V-cycles needed if residual small

enough.end do
end do
u=uj Return solution in u.
deallocate(uj)
do j=1,ng

deallocate(rho(j)%a)
end do
deallocate(rho)
CONTAINS

RECURSIVE SUBROUTINE mg(j,u,rhs,trerr)
USE nrtype
USE nr, ONLY : interp,lop,relax2,rstrct,slvsm2
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: j
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN), OPTIONAL :: rhs
REAL(DP), INTENT(OUT), OPTIONAL :: trerr

1340 Chapter B19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

INTEGER(I4B), PARAMETER :: NPRE=1,NPOST=1
REAL(DP), PARAMETER :: ALPHA=0.33_dp

Recursive multigrid iteration. On input, j is the current level and u is the current value
of the solution. For the first call on a given level, the right-hand side is zero, and the
optional argument rhs is not present. Subsequent recursive calls supply a nonzero rhs as
in equation (19.6.33). On output u contains the improved solution at the current level.
When the first call on a given level is made, the relative truncation error τ is returned in
the optional argument trerr.
Parameters: NPRE and NPOST are the number of relaxation sweeps before and after the
coarse-grid correction is computed; ALPHA relates the estimated truncation error to the
norm of the residual.

INTEGER(I4B) :: jpost,jpre
REAL(DP), DIMENSION((size(u,1)+1)/2,(size(u,1)+1)/2) :: v,ut,tau
if (j == 1) then Bottom of V: Solve on coarsest grid.

call slvsm2(u,rhs+rho(j)%a)
else On downward stoke of the V.

do jpre=1,NPRE Pre-smoothing.
if (present(rhs)) then

call relax2(u,rhs+rho(j)%a)
else

call relax2(u,rho(j)%a)
end if

end do
ut=rstrct(u) Rũh.
v=ut Make a copy in v.
if (present(rhs)) then

tau=lop(ut)-rstrct(lop(u)-rhs) Form τ̃h + fH = LH(Rũh) − RLh(ũh) +
fH .else

tau=lop(ut)-rstrct(lop(u))
trerr=ALPHA*sqrt(sum(tau**2))/size(tau,1) Estimate truncation error τ .

end if
call mg(j-1,v,tau) Recursive call for the coarse-grid correction.
u=u+interp(v-ut) ũnew

h = ũh + P(ũH − Rũh)
do jpost=1,NPOST Post-smoothing.

if (present(rhs)) then
call relax2(u,rhs+rho(j)%a)

else
call relax2(u,rho(j)%a)

end if
end do

end if
END SUBROUTINE mg
END SUBROUTINE mgfas

f90
See the discussion aftermglin on p. 1336 for the changes made in the
Fortran 90 versions of the multigrid routines from the Fortran 77 versions.

TYPE ptr2d... See discussion aftermglin on p. 1336.

RECURSIVE SUBROUTINE mg(j,u,rhs,trerr) Recall thatmgfas solves the prob-
lem Lu = 0, but that nonzero right-hand sides appear during the solution. We
implement this by havingrhs be an optional argument tomg. On the first call
at a given levelj, the right-hand side is zero and so you just omit it from the
calling sequence. On the other hand, the truncation errortrerr is computed only
on the first call at a given level, so it is also an optional argument that does get
supplied on the first call:

call mg(j,uj,trerr=trerr)

The second and subsequent calls at a given level supplyrhs=tau but omittrerr:

Chapter B19. Partial Differential Equations 1341

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

call mg(j-1,v,tau)

Note that we can omit the keywordrhs from this call because the variabletau
appears in the correct order of arguments. However, in the other call above, the
keywordtrerr must be supplied becauserhs has been omitted.

The example equation that is solved inmgfas, equation (19.6.44), is almost
linear, and the code is set up so thatρ is supplied as part of the right-hand side
instead of pulling it over to the left-hand side. The variablerho is visible tomg
by host association. Note also that the functionlop does not includerho, but
that the statement

tau=lop(ut)-rstrct(lop(u))

is nevertheless correct, sincerho would cancel out if it were included inlop. This
feature is also true in the Fortran 77 code.

SUBROUTINE relax2(u,rhs)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(INOUT) :: u
REAL(DP), DIMENSION(:,:), INTENT(IN) :: rhs

Red-black Gauss-Seidel relaxation for equation (19.6.44). The current value of the solution
u is updated, using the right-hand-side function rhs. u and rhs are square arrays of the
same odd dimension.

INTEGER(I4B) :: n
REAL(DP) :: foh2,h,h2i
REAL(DP) :: res(size(u,1),size(u,1))
n=assert_eq(size(u,1),size(u,2),size(rhs,1),size(rhs,2),’relax2’)
h=1.0_dp/(n-1)
h2i=1.0_dp/(h*h)
foh2=-4.0_dp*h2i
First do the even-even and odd-odd squares of the grid, i.e., the red squares of the checker-
board:

res(2:n-1:2,2:n-1:2)=h2i*(u(3:n:2,2:n-1:2)+u(1:n-2:2,2:n-1:2)+&
u(2:n-1:2,3:n:2)+u(2:n-1:2,1:n-2:2)-4.0_dp*u(2:n-1:2,2:n-1:2))&
+u(2:n-1:2,2:n-1:2)**2-rhs(2:n-1:2,2:n-1:2)

u(2:n-1:2,2:n-1:2)=u(2:n-1:2,2:n-1:2)-res(2:n-1:2,2:n-1:2)/&
(foh2+2.0_dp*u(2:n-1:2,2:n-1:2))

res(3:n-2:2,3:n-2:2)=h2i*(u(4:n-1:2,3:n-2:2)+u(2:n-3:2,3:n-2:2)+&
u(3:n-2:2,4:n-1:2)+u(3:n-2:2,2:n-3:2)-4.0_dp*u(3:n-2:2,3:n-2:2))&
+u(3:n-2:2,3:n-2:2)**2-rhs(3:n-2:2,3:n-2:2)

u(3:n-2:2,3:n-2:2)=u(3:n-2:2,3:n-2:2)-res(3:n-2:2,3:n-2:2)/&
(foh2+2.0_dp*u(3:n-2:2,3:n-2:2))

Now do even-odd and odd-even squares of the grid, i.e., the black squares of the checker-
board:

res(3:n-2:2,2:n-1:2)=h2i*(u(4:n-1:2,2:n-1:2)+u(2:n-3:2,2:n-1:2)+&
u(3:n-2:2,3:n:2)+u(3:n-2:2,1:n-2:2)-4.0_dp*u(3:n-2:2,2:n-1:2))&
+u(3:n-2:2,2:n-1:2)**2-rhs(3:n-2:2,2:n-1:2)

u(3:n-2:2,2:n-1:2)=u(3:n-2:2,2:n-1:2)-res(3:n-2:2,2:n-1:2)/&
(foh2+2.0_dp*u(3:n-2:2,2:n-1:2))

res(2:n-1:2,3:n-2:2)=h2i*(u(3:n:2,3:n-2:2)+u(1:n-2:2,3:n-2:2)+&
u(2:n-1:2,4:n-1:2)+u(2:n-1:2,2:n-3:2)-4.0_dp*u(2:n-1:2,3:n-2:2))&
+u(2:n-1:2,3:n-2:2)**2-rhs(2:n-1:2,3:n-2:2)

u(2:n-1:2,3:n-2:2)=u(2:n-1:2,3:n-2:2)-res(2:n-1:2,3:n-2:2)/&
(foh2+2.0_dp*u(2:n-1:2,3:n-2:2))

END SUBROUTINE relax2

f90 See the discussion of red-black relaxation aftersor on p. 1333.

1342 Chapter B19. Partial Differential Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE slvsm2(u,rhs)
USE nrtype
IMPLICIT NONE
REAL(DP), DIMENSION(3,3), INTENT(OUT) :: u
REAL(DP), DIMENSION(3,3), INTENT(IN) :: rhs

Solution of equation (19.6.44) on the coarsest grid, where h = 1

2
. The right-hand side is

input in rhs(1:3,1:3) and the solution is returned in u(1:3,1:3).
REAL(DP) :: disc,fact,h
u=0.0
h=0.5_dp
fact=2.0_dp/h**2
disc=sqrt(fact**2+rhs(2,2))
u(2,2)=-rhs(2,2)/(fact+disc)
END SUBROUTINE slvsm2

FUNCTION lop(u)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(DP), DIMENSION(:,:), INTENT(IN) :: u
REAL(DP), DIMENSION(size(u,1),size(u,1)) :: lop

Given u, returns Lh(ũh) for equation (19.6.44). u and lop are square arrays of the same
odd dimension.

INTEGER(I4B) :: n
REAL(DP) :: h,h2i
n=assert_eq(size(u,1),size(u,2),’lop’)
h=1.0_dp/(n-1)
h2i=1.0_dp/(h*h)
lop(2:n-1,2:n-1)=h2i*(u(3:n,2:n-1)+u(1:n-2,2:n-1)+u(2:n-1,3:n)+&

u(2:n-1,1:n-2)-4.0_dp*u(2:n-1,2:n-1))+u(2:n-1,2:n-1)**2 Interior points.
lop(1:n,1)=0.0 Boundary points.
lop(1:n,n)=0.0
lop(1,1:n)=0.0
lop(n,1:n)=0.0
END FUNCTION lop

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B20. Less-Numerical
Algorithms

f90
Volume 1’s Fortran 77 routinemachar performed various clever con-
tortions (due to Cody, Malcolm, and others) to discover the underlying
properties of a machine’s floating-point representation. Fortran 90, by

contrast, provides a built-in set of “numeric inquiry functions” that accomplish the
same goal. The routinemachar included here makes use of these and is included
largely for compatibility with the previous version.

SUBROUTINE machar(ibeta,it,irnd,ngrd,machep,negep,iexp,minexp,&
maxexp,eps,epsneg,xmin,xmax)

USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: ibeta,iexp,irnd,it,machep,maxexp,minexp,negep,ngrd
REAL(SP), INTENT(OUT) :: eps,epsneg,xmax,xmin
REAL(SP), PARAMETER :: RX=1.0

Determines and returns machine-specific parameters affecting floating-point arithmetic. Re-
turned values include ibeta, the floating-point radix; it, the number of base-ibeta digits
in the floating-point mantissa; eps, the smallest positive number that, added to 1.0, is
not equal to 1.0; epsneg, the smallest positive number that, subtracted from 1.0, is not
equal to 1.0; xmin, the smallest representable positive number; and xmax, the largest rep-
resentable positive number. See text for description of other returned parameters. Change
all REAL(SP) declarations to REAL(DP) to find double-precision parameters.

REAL(SP) :: a,beta,betah,one,temp,tempa,two,zero
ibeta=radix(RX) Most of the parameters are easily determined

from intrinsic functions.it=digits(RX)
machep=exponent(nearest(RX,RX)-RX)-1
negep=exponent(nearest(RX,-RX)-RX)-1
minexp=minexponent(RX)-1
maxexp=maxexponent(RX)
iexp=nint(log(real(maxexp-minexp+2,sp))/log(2.0_sp))
eps=real(ibeta,sp)**machep
epsneg=real(ibeta,sp)**negep
xmax=huge(RX)
xmin=tiny(RX)
one=RX Determine irnd.
two=one+one
zero=one-one
beta=real(ibeta,sp)
a=beta**(-negep)
irnd=0
betah=beta/two
temp=a+betah
if (temp-a /= zero) irnd=1
tempa=a+beta
temp=tempa+betah
if ((irnd == 0) .and. (temp-tempa /= zero)) irnd=2
ngrd=0 Determine ngrd.

1343

1344 Chapter B20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

temp=one+eps
if ((irnd == 0) .and. (temp*one-one /= zero)) ngrd=1
temp=xmin/two
if (temp /= zero) irnd=irnd+3 Adjust irnd to reflect partial underflow.
END SUBROUTINE machar

⋆ ⋆ ⋆

FUNCTION igray(n,is)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n,is
INTEGER(I4B) :: igray

For zero or positive values of is, return the Gray code of n; if is is negative, return the
inverse Gray code of n.

INTEGER(I4B) :: idiv,ish
if (is >= 0) then This is the easy direction!

igray=ieor(n,n/2)
else This is the more complicated direction: In hierarchical stages,

starting with a one-bit right shift, cause each bit to be
XORed with all more significant bits.

ish=-1
igray=n
do

idiv=ishft(igray,ish)
igray=ieor(igray,idiv)
if (idiv <= 1 .or. ish == -16) RETURN
ish=ish+ish Double the amount of shift on the next cycle.

end do
end if
END FUNCTION igray

⋆ ⋆ ⋆

FUNCTION icrc(crc,buf,jinit,jrev)
USE nrtype
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(IN) :: buf
INTEGER(I2B), INTENT(IN) :: crc,jinit
INTEGER(I4B), INTENT(IN) :: jrev
INTEGER(I2B) :: icrc

Computes a 16-bit Cyclic Redundancy Check for an array buf of bytes, using any of several
conventions as determined by the settings of jinit and jrev (see accompanying table).
The result is returned both as an integer icrc and as a 2-byte array crc. If jinit is neg-
ative, then crc is used on input to initialize the remainder register, in effect concatenating
buf to the previous call.

INTEGER(I4B), SAVE :: init=0
INTEGER(I2B) :: j,cword,ich
INTEGER(I2B), DIMENSION(0:255), SAVE :: icrctb,rchr
INTEGER(I2B), DIMENSION(0:15) :: it = & Table of 4-bit bit-reverses.

(/ 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15 /)
if (init == 0) then Do we need to initialize tables?

init=1
do j=0,255 The two tables are: CRCs of all characters,

and bit-reverses of all characters.icrctb(j)=icrc1(ishft(j,8),char(0))
rchr(j)=ishft(it(iand(j,15_I2B)),4)+it(ishft(j,-4))

end do
end if
cword=crc
if (jinit >= 0) then Initialize the remainder register.

cword=ior(jinit,ishft(jinit,8))

Chapter B20. Less-Numerical Algorithms 1345

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

else if (jrev < 0) then If not initializing, do we reverse the register?
cword=ior(rchr(hibyte()),ishft(rchr(lobyte()),8))

end if
do j=1,size(buf) Main loop over the characters in the array.

ich=ichar(buf(j))
if (jrev < 0) ich=rchr(ich)
cword=ieor(icrctb(ieor(ich,hibyte())),ishft(lobyte(),8))

end do
icrc=merge(cword, & Do we need to reverse the output?

ior(rchr(hibyte()),ishft(rchr(lobyte()),8)), jrev >= 0)
CONTAINS

FUNCTION hibyte()
INTEGER(I2B) :: hibyte
Extracts the high byte of the 2-byte integer cword.

hibyte = ishft(cword,-8)
END FUNCTION hibyte

FUNCTION lobyte()
INTEGER(I2B) :: lobyte
Extracts the low byte of the 2-byte integer cword.

lobyte = iand(cword,255_I2B)
END FUNCTION lobyte

FUNCTION icrc1(crc,onech)
INTEGER(I2B), INTENT(IN) :: crc
CHARACTER(1), INTENT(IN) :: onech
INTEGER(I2B) :: icrc1
Given a remainder up to now, return the new CRC after one character is added. This routine is
functionally equivalent to icrc(,,-1,1), but slower. It is used by icrc to initialize its table.

INTEGER(I2B) :: i,ich, bit16, ccitt
DATA bit16,ccitt /Z’8000’, Z’1021’/
ich=ichar(onech) Here is where the character is folded into the

register.icrc1=ieor(crc,ishft(ich,8))
do i=1,8 Here is where 8 one-bit shifts, and some XORs

with the generator polynomial,
are done.

icrc1=merge(ieor(ccitt,ishft(icrc1,1)), &
ishft(icrc1,1), iand(icrc1,bit16) /= 0)

end do
END FUNCTION icrc1
END FUNCTION icrc

f90
The embedded functionshibyte and lobyte always act on the same
variable,cword. Thus they don’t need any explicit argument.

⋆ ⋆ ⋆

FUNCTION decchk(string,ch)
USE nrtype; USE nrutil, ONLY : ifirstloc
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(IN) :: string
CHARACTER(1), INTENT(OUT) :: ch
LOGICAL(LGT) :: decchk

Decimal check digit computation or verification. Returns as ch a check digit for appending
to string. In this mode, ignore the returned logical value. If string already ends with
a check digit, returns the function value .true. if the check digit is valid, otherwise
.false. In this mode, ignore the returned value of ch. Note that string and ch contain
ASCII characters corresponding to the digits 0-9, notbyte values in that range. Other ASCII
characters are allowed in string, and are ignored in calculating the check digit.

INTEGER(I4B) :: i,j,k,m
INTEGER(I4B) :: ip(0:9,0:7) = reshape((/ & Group multiplication and permuta-

tion tables.0,1,2,3,4,5,6,7,8,9,1,5,7,6,2,8,3,0,9,4,&
5,8,0,3,7,9,6,1,4,2,8,9,1,6,0,4,3,5,2,7,9,4,5,3,1,2,6,8,7,0,&
4,2,8,6,5,7,3,9,0,1,2,7,9,3,8,0,6,4,1,5,7,0,4,6,9,1,3,2,5,8 /),&

1346 Chapter B20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

(/ 10,8 /))
INTEGER(I4B) :: ij(0:9,0:9) = reshape((/ &

0,1,2,3,4,5,6,7,8,9,1,2,3,4,0,9,5,6,7,8,2,3,4,0,1,8,9,5,6,&
7,3,4,0,1,2,7,8,9,5,6,4,0,1,2,3,6,7,8,9,5,5,6,7,8,9,0,1,2,3,&
4,6,7,8,9,5,4,0,1,2,3,7,8,9,5,6,3,4,0,1,2,8,9,5,6,7,2,3,4,0,&
1,9,5,6,7,8,1,2,3,4,0 /),(/ 10,10 /))

k=0
m=0
do j=1,size(string) Look at successive characters.

i=ichar(string(j))
if (i >= 48 .and. i <= 57) then Ignore everything except digits.

k=ij(k,ip(mod(i+2,10),mod(m,8)))
m=m+1

end if
end do
decchk=logical(k == 0,kind=lgt)
i=mod(m,8) Find which appended digit will check prop-

erly.i=ifirstloc(ij(k,ip(0:9,i)) == 0)-1
ch=char(i+48) Convert to ASCII.
END FUNCTION decchk

f90
Note the use of the utility functionifirstloc to find the first (in this
case, the only) correct check digit.

⋆ ⋆ ⋆

f90
The Huffman and arithmetic coding routinesexemplify the use of modules
to encapsulate user-defined data types. In these algorithms, “the code”
is a fairly complicated construct containing scalar and array data. We

define typeshuffcode andarithcode, then can pass “the code” from the routine
that constructs it to the routine that uses it as a single variable.

MODULE huf_info
USE nrtype
IMPLICIT NONE
TYPE huffcode

INTEGER(I4B) :: nch,nodemax
INTEGER(I4B), DIMENSION(:), POINTER :: icode,left,iright,ncode

END TYPE huffcode
CONTAINS
SUBROUTINE huff_allocate(hcode,mc)
USE nrtype
IMPLICIT NONE
TYPE(huffcode) :: hcode
INTEGER(I4B) :: mc
INTEGER(I4B) :: mq
mq=2*mc-1
allocate(hcode%icode(mq),hcode%ncode(mq),hcode%left(mq),hcode%iright(mq))
hcode%icode(:)=0
hcode%ncode(:)=0
END SUBROUTINE huff_allocate

SUBROUTINE huff_deallocate(hcode)
USE nrtype
IMPLICIT NONE
TYPE(huffcode) :: hcode
deallocate(hcode%iright,hcode%left,hcode%ncode,hcode%icode)
nullify(hcode%icode)
nullify(hcode%ncode)
nullify(hcode%left)
nullify(hcode%iright)

Chapter B20. Less-Numerical Algorithms 1347

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

END SUBROUTINE huff_deallocate
END MODULE huf_info

SUBROUTINE hufmak(nfreq,ilong,nlong,hcode)
USE nrtype; USE nrutil, ONLY : array_copy,arth,imaxloc,nrerror
USE huf_info
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: ilong,nlong
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nfreq
TYPE(huffcode) :: hcode

Given the frequency of occurrence table nfreq of size(nfreq) characters, return the
Huffman code hcode. Returned values ilong and nlong are the character number that
produced the longest code symbol, and the length of that symbol.

INTEGER(I4B) :: ibit,j,k,n,node,nused,nerr
INTEGER(I4B), DIMENSION(2*size(nfreq)-1) :: indx,iup,nprob
hcode%nch=size(nfreq) Initialization.
call huff_allocate(hcode,size(nfreq))
nused=0
nprob(1:hcode%nch)=nfreq(1:hcode%nch)
call array_copy(pack(arth(1,1,hcode%nch), nfreq(1:hcode%nch) /= 0),&

indx,nused,nerr)
do j=nused,1,-1 Sort nprob into a heap structure in indx.

call hufapp(j)
end do
k=hcode%nch
do Combine heap nodes, remaking the heap at each stage.

if (nused <= 1) exit
node=indx(1)
indx(1)=indx(nused)
nused=nused-1
call hufapp(1)
k=k+1
nprob(k)=nprob(indx(1))+nprob(node)
hcode%left(k)=node Store left and right children of a node.
hcode%iright(k)=indx(1)
iup(indx(1))=-k Indicate whether a node is a left or right child of its par-

ent.iup(node)=k
indx(1)=k
call hufapp(1)

end do
hcode%nodemax=k
iup(hcode%nodemax)=0
do j=1,hcode%nch Make the Huffman code from the tree.

if (nprob(j) /= 0) then
n=0
ibit=0
node=iup(j)
do

if (node == 0) exit
if (node < 0) then

n=ibset(n,ibit)
node=-node

end if
node=iup(node)
ibit=ibit+1

end do
hcode%icode(j)=n
hcode%ncode(j)=ibit

end if
end do
ilong=imaxloc(hcode%ncode(1:hcode%nch))
nlong=hcode%ncode(ilong)

1348 Chapter B20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (nlong > bit_size(1_i4b)) call & Check nlong not larger than word length.
nrerror(’hufmak: Number of possible bits for code exceeded’)

CONTAINS

SUBROUTINE hufapp(l)
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: l
Used by hufmak to maintain a heap structure in the array indx(1:l).

INTEGER(I4B) :: i,j,k,n
n=nused
i=l
k=indx(i)
do

if (i > n/2) exit
j=i+i
if (j < n .and. nprob(indx(j)) > nprob(indx(j+1))) &

j=j+1
if (nprob(k) <= nprob(indx(j))) exit
indx(i)=indx(j)
i=j

end do
indx(i)=k
END SUBROUTINE hufapp
END SUBROUTINE hufmak

SUBROUTINE hufenc(ich,codep,nb,hcode)
USE nrtype; USE nrutil, ONLY : nrerror,reallocate
USE huf_info
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ich
INTEGER(I4B), INTENT(INOUT) :: nb
CHARACTER(1), DIMENSION(:), POINTER :: codep
TYPE(huffcode) :: hcode

Huffman encode the single character ich (in the range 0..nch-1) using the code in hcode,
write the result to the character array pointed to by codep starting at bit nb (whose smallest
valid value is zero), and increment nb appropriately. This routine is called repeatedly to
encode consecutive characters in a message, but must be preceded by a single initializing
call to hufmak.

INTEGER(I4B) :: k,l,n,nc,ntmp
k=ich+1 Convert character range 0..nch-1 to ar-

ray index range 1..nch.if (k > hcode%nch .or. k < 1) call &
nrerror(’hufenc: ich out of range’)

do n=hcode%ncode(k),1,-1 Loop over the bits in the stored Huffman
code for ich.nc=nb/8+1

if (nc > size(codep)) codep=>reallocate(codep,2*size(codep))
l=mod(nb,8)
if (l == 0) codep(nc)=char(0)
if (btest(hcode%icode(k),n-1)) then Set appropriate bits in codep.

ntmp=ibset(ichar(codep(nc)),l)
codep(nc)=char(ntmp)

end if
nb=nb+1

end do
END SUBROUTINE hufenc

Chapter B20. Less-Numerical Algorithms 1349

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE hufdec(ich,code,nb,hcode)
USE nrtype
USE huf_info
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: ich
INTEGER(I4B), INTENT(INOUT) :: nb
CHARACTER(1), DIMENSION(:), INTENT(IN) :: code
TYPE(huffcode) :: hcode

Starting at bit number nb in the character array code, use the Huffman code in hcode
to decode a single character (returned as ich in the range 0..nch-1) and increment nb
appropriately. Repeated calls, starting with nb = 0, will return successive characters in a
compressed message. The returned value ich=nch indicates end-of-message. This routine
must be preceded by a single initializing call to hufmak.

INTEGER(I4B) :: l,nc,node
node=hcode%nodemax Set node to the top of the decoding tree.
do Loop until a valid character is obtained.

nc=nb/8+1
if (nc > size(code)) then Ran out of input; return with ich=nch

indicating end of message.ich=hcode%nch
RETURN

end if
l=mod(nb,8) Now decoding this bit.
nb=nb+1
if (btest(ichar(code(nc)),l)) then Branch left or right in tree, depending on

its value.node=hcode%iright(node)
else

node=hcode%left(node)
end if
if (node <= hcode%nch) then If we reach a terminal node, we have a

complete character and can return.ich=node-1
RETURN

end if
end do
END SUBROUTINE hufdec

⋆ ⋆ ⋆

MODULE arcode_info
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NWK=20
NWK is the number of working digits (see text).

TYPE arithcode
INTEGER(I4B), DIMENSION(:), POINTER :: ilob,iupb,ncumfq
INTEGER(I4B) :: jdif,nc,minint,nch,ncum,nrad

END TYPE arithcode
CONTAINS
SUBROUTINE arcode_allocate(acode,mc)
USE nrtype
IMPLICIT NONE
TYPE(arithcode) :: acode
INTEGER(I4B) :: mc
allocate(acode%ilob(NWK),acode%iupb(NWK),acode%ncumfq(mc+2))
END SUBROUTINE arcode_allocate

SUBROUTINE arcode_deallocate(acode)
USE nrtype
IMPLICIT NONE
TYPE(arithcode) :: acode
deallocate(acode%ncumfq,acode%iupb,acode%ilob)
nullify(acode%ilob)
nullify(acode%iupb)

1350 Chapter B20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

nullify(acode%ncumfq)
END SUBROUTINE arcode_deallocate
END MODULE arcode_info

SUBROUTINE arcmak(nfreq,nradd,acode)
USE nrtype; USE nrutil, ONLY : cumsum,nrerror
USE arcode_info
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: nradd
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: nfreq
TYPE(arithcode) :: acode
INTEGER(I4B), PARAMETER :: MAXINT=huge(nradd)

Given a table nfreq of the frequency of occurrence of size(nfreq) symbols, and given
a desired output radix nradd, initialize the cumulative frequency table and other variables
for arithmetic compression. Store the code in acode.
MAXINT is a large positive integer that does not overflow.

if (nradd > 256) call nrerror(’output radix may not exceed 256 in arcmak’)
acode%minint=MAXINT/nradd
acode%nch=size(nfreq)
acode%nrad=nradd
call arcode_allocate(acode,acode%nch)
acode%ncumfq(1)=0
acode%ncumfq(2:acode%nch+1)=cumsum(max(nfreq(1:acode%nch),1))
acode%ncumfq(acode%nch+2)=acode%ncumfq(acode%nch+1)+1
acode%ncum=acode%ncumfq(acode%nch+2)
END SUBROUTINE arcmak

SUBROUTINE arcode(ich,codep,lcd,isign,acode)
USE nrtype; USE nrutil, ONLY : nrerror,reallocate
USE arcode_info
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: ich,lcd
INTEGER(I4B), INTENT(IN) :: isign
CHARACTER(1), DIMENSION(:), POINTER :: codep
TYPE(arithcode) :: acode

Compress (isign = 1) or decompress (isign = −1) the single character ich into or out of
the character array pointed to by codep, starting with byte codep(lcd) and (if necessary)
incrementing lcd so that, on return, lcd points to the first unused byte in codep. Note
that this routine saves the result of previous calls until a new byte of code is produced, and
only then increments lcd. An initializing call with isign=0 is required for each different
array codep. The routine arcmak must have previously been called to initialize the code
acode. A call with ich=arcode%nch (as set in arcmak) has the reserved meaning “end
of message.”

INTEGER(I4B) :: ihi,j,ja,jh,jl,m
if (isign == 0) then Initialize enough digits of the upper and lower

bounds.acode%jdif=acode%nrad-1
acode%ilob(:)=0
acode%iupb(:)=acode%nrad-1
do j=NWK,1,-1

acode%nc=j
if (acode%jdif > acode%minint) RETURN Initialization complete.
acode%jdif=(acode%jdif+1)*acode%nrad-1

end do
call nrerror(’NWK too small in arcode’)

else
if (isign > 0) then If encoding, check for valid input character.

if (ich > acode%nch .or. ich < 0) call nrerror(’bad ich in arcode’)
else If decoding, locate the character ich by bi-

section.ja=ichar(codep(lcd))-acode%ilob(acode%nc)
do j=acode%nc+1,NWK

Chapter B20. Less-Numerical Algorithms 1351

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ja=ja*acode%nrad+(ichar(codep(j+lcd-acode%nc))-acode%ilob(j))
end do
ich=0
ihi=acode%nch+1
do

if (ihi-ich <= 1) exit
m=(ich+ihi)/2
if (ja >= jtry(acode%jdif,acode%ncumfq(m+1),acode%ncum)) then

ich=m
else

ihi=m
end if

end do
if (ich == acode%nch) RETURN Detected end of message.

end if
Following code is common for encoding and decoding. Convert character ich to a new
subrange [ilob,iupb).

jh=jtry(acode%jdif,acode%ncumfq(ich+2),acode%ncum)
jl=jtry(acode%jdif,acode%ncumfq(ich+1),acode%ncum)
acode%jdif=jh-jl
call arcsum(acode%ilob,acode%iupb,jh,NWK,acode%nrad,acode%nc)
How many leading digits to output (if encoding) or skip over?

call arcsum(acode%ilob,acode%ilob,jl,NWK,acode%nrad,acode%nc)
do j=acode%nc,NWK

if (ich /= acode%nch .and. acode%iupb(j) /= acode%ilob(j)) exit
if (acode%nc > size(codep)) codep=>reallocate(codep,2*size(codep))
if (isign > 0) codep(lcd)=char(acode%ilob(j))
lcd=lcd+1

end do
if (j > NWK) RETURN Ran out of message. Did someone forget to

encode a terminating ncd?acode%nc=j
j=0 How many digits to shift?
do

if (acode%jdif >= acode%minint) exit
j=j+1
acode%jdif=acode%jdif*acode%nrad

end do
if (acode%nc-j < 1) call nrerror(’NWK too small in arcode’)
if (j /= 0) then Shift them.

acode%iupb((acode%nc-j):(NWK-j))=acode%iupb(acode%nc:NWK)
acode%ilob((acode%nc-j):(NWK-j))=acode%ilob(acode%nc:NWK)

end if
acode%nc=acode%nc-j
acode%iupb((NWK-j+1):NWK)=0
acode%ilob((NWK-j+1):NWK)=0

end if Normal return.
CONTAINS

FUNCTION jtry(m,n,k)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: m,n,k
INTEGER(I4B) :: jtry
Calculate (m*n)/k without overflow. Program efficiency can be improved by substituting an
assembly language routine that does integer multiply to a double register.

jtry=int((real(m,dp)*real(n,dp))/real(k,dp))
END FUNCTION jtry

SUBROUTINE arcsum(iin,iout,ja,nwk,nrad,nc)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: iin
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: iout
INTEGER(I4B), INTENT(IN) :: nwk,nrad,nc
INTEGER(I4B), INTENT(INOUT) :: ja

1352 Chapter B20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Add the integer ja to the radix nrad multiple-precision integer iin(nc..nwk). Return the
result in iout(nc..nwk).

INTEGER(I4B) :: j,jtmp,karry
karry=0
do j=nwk,nc+1,-1

jtmp=ja
ja=ja/nrad
iout(j)=iin(j)+(jtmp-ja*nrad)+karry
if (iout(j) >= nrad) then

iout(j)=iout(j)-nrad
karry=1

else
karry=0

end if
end do
iout(nc)=iin(nc)+ja+karry
END SUBROUTINE arcsum
END SUBROUTINE arcode

⋆ ⋆ ⋆

MODULE mpops
USE nrtype
INTEGER(I4B), PARAMETER :: NPAR_ICARRY=64
CONTAINS

SUBROUTINE icarry(karry,isum,nbits)
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: karry

Perform deferred carry operation on an array isum of multiple-precision digits. Nonzero bits
of higher order than nbits (typically 8) are carried to the next-lower (leftward) component
of isum. The final (most leftward) carry value is returned as karry.

INTEGER(I2B), DIMENSION(:), INTENT(INOUT) :: isum
INTEGER(I4B), INTENT(IN) :: nbits
INTEGER(I4B) :: n,j
INTEGER(I2B), DIMENSION(size(isum)) :: ihi
INTEGER(I2B) :: mb,ihh
n=size(isum)
mb=ishft(1,nbits)-1 Make mask for low-order bits.
karry=0
if (n < NPAR_ICARRY) then

do j=n,2,-1 Keep going until all carries have cascaded.
ihh=ishft(isum(j),-nbits)
if (ihh /= 0) then

isum(j)=iand(isum(j),mb)
isum(j-1)=isum(j-1)+ihh

end if
end do
ihh=ishft(isum(1),-nbits)
isum(1)=iand(isum(1),mb)
karry=karry+ihh

else
do

ihi=ishft(isum,-nbits) Get high bits.
if (all(ihi == 0)) exit Check if done.
where (ihi /= 0) isum=iand(isum,mb) Remove bits to be carried and add

them to left.where (ihi(2:n) /= 0) isum(1:n-1)=isum(1:n-1)+ihi(2:n)
karry=karry+ihi(1) Final carry.

end do
end if
END SUBROUTINE icarry

Chapter B20. Less-Numerical Algorithms 1353

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE mpadd(w,u,v,n)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
INTEGER(I4B), INTENT(IN) :: n

Adds the unsigned radix 256 integers u(1:n) and v(1:n) yielding the unsigned integer
w(1:n+1).

INTEGER(I2B), DIMENSION(n) :: isum
INTEGER(I4B) :: karry
isum=ichar(u(1:n))+ichar(v(1:n))
call icarry(karry,isum,8_I4B)
w(2:n+1)=char(isum)
w(1)=char(karry)
END SUBROUTINE mpadd

SUBROUTINE mpsub(is,w,u,v,n)
IMPLICIT NONE
INTEGER(I4B), INTENT(OUT) :: is
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
INTEGER(I4B), INTENT(IN) :: n

Subtracts the unsigned radix 256 integer v(1:n) from u(1:n) yielding the unsigned integer
w(1:n). If the result is negative (wraps around), is is returned as −1; otherwise it is
returned as 0.

INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=255+ichar(u(1:n))-ichar(v(1:n))
isum(n)=isum(n)+1
call icarry(karry,isum,8_I4B)
w(1:n)=char(isum)
is=karry-1
END SUBROUTINE mpsub

SUBROUTINE mpsad(w,u,n,iv)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u
INTEGER(I4B), INTENT(IN) :: n,iv

Short addition: The integer iv (in the range 0 ≤ iv ≤ 255) is added to the unsigned radix
256 integer u(1:n), yielding w(1:n+1).

INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=ichar(u(1:n))
isum(n)=isum(n)+iv
call icarry(karry,isum,8_I4B)
w(2:n+1)=char(isum)
w(1)=char(karry)
END SUBROUTINE mpsad

SUBROUTINE mpsmu(w,u,n,iv)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u
INTEGER(I4B), INTENT(IN) :: n,iv

Short multiplication: The unsigned radix 256 integer u(1:n) is multiplied by the integer
iv (in the range 0 ≤ iv ≤ 255), yielding w(1:n+1).

INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=ichar(u(1:n))*iv
call icarry(karry,isum,8_I4B)
w(2:n+1)=char(isum)
w(1)=char(karry)
END SUBROUTINE mpsmu

SUBROUTINE mpneg(u,n)
IMPLICIT NONE

1354 Chapter B20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: n

Ones-complement negate the unsigned radix 256 integer u(1:n).
INTEGER(I4B) :: karry
INTEGER(I2B), DIMENSION(n) :: isum
isum=255-ichar(u(1:n))
isum(n)=isum(n)+1
call icarry(karry,isum,8_I4B)
u(1:n)=char(isum)
END SUBROUTINE mpneg

SUBROUTINE mplsh(u,n)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: u
INTEGER(I4B), INTENT(IN) :: n

Left shift u(2..n+1) onto u(1:n).
u(1:n)=u(2:n+1)
END SUBROUTINE mplsh

SUBROUTINE mpmov(u,v,n)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n

Move v(1:n) onto u(1:n).
u(1:n)=v(1:n)
END SUBROUTINE mpmov

SUBROUTINE mpsdv(w,u,n,iv,ir)
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u
INTEGER(I4B), INTENT(IN) :: n,iv
INTEGER(I4B), INTENT(OUT) :: ir

Short division: The unsigned radix 256 integer u(1:n) is divided by the integer iv (in the
range 0 ≤ iv ≤ 255), yielding a quotient w(1:n) and a remainder ir (with 0 ≤ ir ≤ 255).
Note: Your Numerical Recipes authors don’t know how to parallelize this routine in Fortran
90!

INTEGER(I4B) :: i,j
ir=0
do j=1,n

i=256*ir+ichar(u(j))
w(j)=char(i/iv)
ir=mod(i,iv)

end do
END SUBROUTINE mpsdv
END MODULE mpops

SUBROUTINE mpmul(w,u,v,n,m)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : realft
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n,m
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w

! The logical dimensions are: CHARACTER(1) :: w(n+m),u(n),v(m)
REAL(DP), PARAMETER :: RX=256.0

Uses fast Fourier transform to multiply the unsigned radix 256 integers u(1:n) and v(1:m),
yielding a product w(1:n+m).

INTEGER(I4B) :: j,mn,nn
REAL(DP) :: cy,t
REAL(DP), DIMENSION(:), ALLOCATABLE :: a,b,tb
mn=max(m,n)
nn=1 Find the smallest useable power of two for the transform.

Chapter B20. Less-Numerical Algorithms 1355

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

do
if (nn >= mn) exit
nn=nn+nn

end do
nn=nn+nn
allocate(a(nn),b(nn),tb((nn-1)/2))
a(1:n)=ichar(u(1:n)) Move U to a double-precision floating array.
a(n+1:nn)=0.0
b(1:m)=ichar(v(1:m)) Move V to a double-precision floating array.
b(m+1:nn)=0.0
call realft(a(1:nn),1) Perform the convolution: First, the two Fourier trans-

forms.call realft(b(1:nn),1)
b(1)=b(1)*a(1) Then multiply the complex results (real and imaginary

parts).b(2)=b(2)*a(2)
tb=b(3:nn:2)
b(3:nn:2)=tb*a(3:nn:2)-b(4:nn:2)*a(4:nn:2)
b(4:nn:2)=tb*a(4:nn:2)+b(4:nn:2)*a(3:nn:2)
call realft(b(1:nn),-1) Then do the inverse Fourier transform.
b(:)=b(:)/(nn/2)
cy=0.0 Make a final pass to do all the carries.
do j=nn,1,-1

t=b(j)+cy+0.5_dp The 0.5 allows for roundoff error.
b(j)=mod(t,RX)
cy=int(t/RX)

end do
if (cy >= RX) call nrerror(’mpmul: sanity check failed in fftmul’)
w(1)=char(int(cy)) Copy answer to output.
w(2:(n+m))=char(int(b(1:(n+m-1))))
deallocate(a,b,tb)
END SUBROUTINE mpmul

SUBROUTINE mpinv(u,v,n,m)
USE nrtype; USE nrutil, ONLY : poly
USE nr, ONLY : mpmul
USE mpops, ONLY : mpmov,mpneg
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n,m
INTEGER(I4B), PARAMETER :: MF=4
REAL(SP), PARAMETER :: BI=1.0_sp/256.0_sp

Character string v(1:m) is interpreted as a radix 256 number with the radix point after
(nonzero) v(1); u(1:n) is set to the most significant digits of its reciprocal, with the radix
point after u(1).

INTEGER(I4B) :: i,j,mm
REAL(SP) :: fu
CHARACTER(1), DIMENSION(:), ALLOCATABLE :: rr,s
allocate(rr(max(n,m)+n+1),s(n))
mm=min(MF,m)
fu=1.0_sp/poly(BI,real(ichar(v(:)),sp)) Use ordinary floating arithmetic to get an

initial approximation.do j=1,n
i=int(fu)
u(j)=char(i)
fu=256.0_sp*(fu-i)

end do
do Iterate Newton’s rule to convergence.

call mpmul(rr,u,v,n,m) Construct 2 − UV in S.
call mpmov(s,rr(2:),n)
call mpneg(s,n)
s(1)=char(ichar(s(1))-254) Multiply SU into U .
call mpmul(rr,s,u,n,n)
call mpmov(u,rr(2:),n)

1356 Chapter B20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

if (all(ichar(s(2:n-1)) == 0)) exit If fractional part of S is not zero, it has
not converged to 1.end do

deallocate(rr,s)
END SUBROUTINE mpinv

SUBROUTINE mpdiv(q,r,u,v,n,m)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : mpinv,mpmul
USE mpops, ONLY : mpsad,mpmov,mpsub
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: q,r
CHARACTER(1), DIMENSION(:), INTENT(IN) :: u,v

! The logical dimensions are: CHARACTER(1) :: q(n-m+1),r(m),u(n),v(m)
INTEGER(I4B), INTENT(IN) :: n,m

Divides unsigned radix 256 integers u(1:n) by v(1:m) (with m ≤ n required), yielding a
quotient q(1:n-m+1) and a remainder r(1:m).

INTEGER(I4B), PARAMETER :: MACC=6
INTEGER(I4B) :: is
CHARACTER(1), DIMENSION(:), ALLOCATABLE, TARGET :: rr,s
CHARACTER(1), DIMENSION(:), POINTER :: rr2,s3
allocate(rr(2*(n+MACC)),s(2*(n+MACC)))
rr2=>rr(2:)
s3=>s(3:)
call mpinv(s,v,n+MACC,m) Set S = 1/V .
call mpmul(rr,s,u,n+MACC,n) Set Q = SU .
call mpsad(s,rr,n+n+MACC/2,1)
call mpmov(q,s3,n-m+1)
call mpmul(rr,q,v,n-m+1,m) Multiply and subtract to get the remainder.
call mpsub(is,rr2,u,rr2,n)
if (is /= 0) call nrerror(’MACC too small in mpdiv’)
call mpmov(r,rr(n-m+2:),m)
deallocate(rr,s)
END SUBROUTINE mpdiv

SUBROUTINE mpsqrt(w,u,v,n,m)
USE nrtype; USE nrutil, ONLY : poly
USE nr, ONLY : mpmul
USE mpops, ONLY : mplsh,mpmov,mpneg,mpsdv
IMPLICIT NONE
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: w,u
CHARACTER(1), DIMENSION(:), INTENT(IN) :: v
INTEGER(I4B), INTENT(IN) :: n,m
INTEGER(I4B), PARAMETER :: MF=3
REAL(SP), PARAMETER :: BI=1.0_sp/256.0_sp

Character string v(1:m) is interpreted as a radix 256 number with the radix point after
v(1); w(1:n) is set to its square root (radix point after w(1)), and u(1:n) is set to the
reciprocal thereof (radix point before u(1)). w and u need not be distinct, in which case
they are set to the square root.

INTEGER(I4B) :: i,ir,j,mm
REAL(SP) :: fu
CHARACTER(1), DIMENSION(:), ALLOCATABLE :: r,s
allocate(r(2*n),s(2*n))
mm=min(m,MF)
fu=1.0_sp/sqrt(poly(BI,real(ichar(v(:)),sp))) Use ordinary floating arithmetic

to get an initial approxima-
tion.

do j=1,n
i=int(fu)
u(j)=char(i)
fu=256.0_sp*(fu-i)

end do
do Iterate Newton’s rule to convergence.

call mpmul(r,u,u,n,n) Construct S = (3 − V U2)/2.

Chapter B20. Less-Numerical Algorithms 1357

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

call mplsh(r,n)
call mpmul(s,r,v,n,min(m,n))
call mplsh(s,n)
call mpneg(s,n)
s(1)=char(ichar(s(1))-253)
call mpsdv(s,s,n,2,ir)
if (any(ichar(s(2:n-1)) /= 0)) then

If fractional part of S is not zero, it has not converged to 1.
call mpmul(r,s,u,n,n) Replace U by SU .
call mpmov(u,r(2:),n)
cycle

end if
call mpmul(r,u,v,n,min(m,n)) Get square root from reciprocal and return.
call mpmov(w,r(2:),n)
deallocate(r,s)
RETURN

end do
END SUBROUTINE mpsqrt

SUBROUTINE mp2dfr(a,s,n,m)
USE nrtype
USE mpops, ONLY : mplsh,mpsmu
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), INTENT(OUT) :: m
CHARACTER(1), DIMENSION(:), INTENT(INOUT) :: a
CHARACTER(1), DIMENSION(:), INTENT(OUT) :: s
INTEGER(I4B), PARAMETER :: IAZ=48

Converts a radix 256 fraction a(1:n) (radix point before a(1)) to a decimal fraction
represented as an ascii string s(1:m), where m is a returned value. The input array a(1:n)
is destroyed. NOTE: For simplicity, this routine implements a slow (∝ N2) algorithm. Fast
(∝ N lnN), more complicated, radix conversion algorithms do exist.

INTEGER(I4B) :: j
m=int(2.408_sp*n)
do j=1,m

call mpsmu(a,a,n,10)
s(j)=char(ichar(a(1))+IAZ)
call mplsh(a,n)

end do
END SUBROUTINE mp2dfr

SUBROUTINE mppi(n)
USE nrtype
USE nr, ONLY : mp2dfr,mpinv,mpmul,mpsqrt
USE mpops, ONLY : mpadd,mplsh,mpmov,mpsdv
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
INTEGER(I4B), PARAMETER :: IAOFF=48

Demonstrate multiple precision routines by calculating and printing the first n bytes of π.
INTEGER(I4B) :: ir,j,m
CHARACTER(1), DIMENSION(n) :: sx,sxi
CHARACTER(1), DIMENSION(2*n) :: t,y
CHARACTER(1), DIMENSION(3*n) :: s
CHARACTER(1), DIMENSION(n+1) :: x,bigpi
t(1)=char(2) Set T = 2.
t(2:n)=char(0)
call mpsqrt(x,x,t,n,n) Set X0 =

√
2.

call mpadd(bigpi,t,x,n) Set π0 = 2 +
√

2.
call mplsh(bigpi,n)

call mpsqrt(sx,sxi,x,n,n) Set Y0 = 21/4.

1358 Chapter B20. Less-Numerical Algorithms

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

call mpmov(y,sx,n)
do

call mpadd(x,sx,sxi,n) Set Xi+1 = (X
1/2
i + X

−1/2
i)/2.

call mpsdv(x,x(2:),n,2,ir)

call mpsqrt(sx,sxi,x,n,n) Form the temporary T = YiX
1/2
i+1

+X
−1/2
i+1

.
call mpmul(t,y,sx,n,n)
call mpadd(t(2:),t(2:),sxi,n)
x(1)=char(ichar(x(1))+1) Increment Xi+1 and Yi by 1.
y(1)=char(ichar(y(1))+1)
call mpinv(s,y,n,n) Set Yi+1 = T/(Yi + 1).
call mpmul(y,t(3:),s,n,n)
call mplsh(y,n)
call mpmul(t,x,s,n,n) Form temporary T = (Xi+1 + 1)/(Yi + 1).
m=mod(255+ichar(t(2)),256) If T = 1 then we have converged.
if (abs(ichar(t(n+1))-m) > 1 .or. any(ichar(t(3:n)) /= m)) then

call mpmul(s,bigpi,t(2:),n,n) Set πi+1 = Tπi.
call mpmov(bigpi,s(2:),n)
cycle

end if
write (*,*) ’pi=’
s(1)=char(ichar(bigpi(1))+IAOFF)
s(2)=’.’
call mp2dfr(bigpi(2:),s(3:),n-1,m)
Convert to decimal for printing. NOTE: The conversion routine, for this demonstration
only, is a slow (∝ N2) algorithm. Fast (∝ N lnN), more complicated, radix conversion
algorithms do exist.

write (*,’(1x,64a1)’) (s(j),j=1,m+1)
RETURN

end do
END SUBROUTINE mppi

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Numerical Recipes
in Fortran 90

Second Edition

Volume 2 of
Fortran Numerical Recipes

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Numerical Recipes
in Fortran 90

The Art of Parallel Scientific Computing

Second Edition

Volume 2 of
Fortran Numerical Recipes

William H. Press
Harvard-Smithsonian Center for Astrophysics

Saul A. Teukolsky
Department of Physics, Cornell University

William T. Vetterling
Polaroid Corporation

Brian P. Flannery
EXXON Research and Engineering Company

Foreword by

Michael Metcalf
CERN, Geneva, Switzerland

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Copyright c© Cambridge University Press 1986, 1996,
except for all computer programs and procedures, which are
Copyright c© Numerical Recipes Software 1986, 1996,
and except for Appendix C1, which is placed into the public domain.
All Rights Reserved.

Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing,
Volume 2 of Fortran Numerical Recipes, Second Edition, first published 1996.
Reprinted with corrections 1997.
The code in this volume is corrected to software version 2.08

Printed in the United States of America
Typeset in TEX

Without an additional license to use the contained software, this book is intended as
a text and reference book, for reading purposes only. A free license for limited use of the
software by the individual owner of a copy of this book who personally types one or more
routines into a single computer is granted under terms described on p. xviii. See the section
“License Information” (pp.xvii–xx) for information on obtaining more general licenses at
low cost.

Machine-readable media containing the software in this book, with included licenses
for use on a single screen, are available from Cambridge University Press. See the
order form at the back of the book, email to “orders@cup.org” (North America) or
“trade@cup.cam.ac.uk” (rest of world), or write to Cambridge University Press, 110
Midland Avenue, Port Chester, NY 10573 (USA), for further information.

The software may also be downloaded, with immediate purchase of a license
also possible, from the Numerical Recipes Software Web site (http://www.nr.com).
Unlicensed transfer of Numerical Recipes programs to any other format, or to any
computer except one that is specifically licensed, is strictly prohibited. Technical questions,
corrections, and requests for information should be addressed to Numerical Recipes
Software, P.O. Box 243, Cambridge, MA 02238 (USA), email “info@nr.com”, or fax
781 863-1739.

Library of Congress Cataloging-in-Publication Data

Numerical recipes in Fortran 90 : the art of parallel scientific computing / William H. Press
. . . [et al.]. – 2nd ed.

p. cm.
Includes bibliographical references and index.

ISBN 0-521-57439-0 (hardcover)

1. FORTRAN 90 (Computer program language) 2. Parallel programming (Computer
science) 3. Numerical analysis–Data processing.

I. Press, William H.
QA76.73.F25N85 1996
519.4′0285′52–dc20 96-5567

CIP

A catalog record for this book is available from the British Library.

ISBN 0 521 57439 0 Volume 2 (this book)
ISBN 0 521 43064 X Volume 1
ISBN 0 521 43721 0 Example book in FORTRAN
ISBN 0 521 57440 4 FORTRAN diskette (IBM 3.5′′)
ISBN 0 521 57608 3 CDROM (IBM PC/Macintosh)
ISBN 0 521 57607 5 CDROM (UNIX)

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Contents

Preface to Volume 2 viii

Foreword by Michael Metcalf x

License Information xvii

21 Introduction to Fortran 90 Language Features 935
21.0 Introduction 935
21.1 Quick Start: Using the Fortran 90 Numerical Recipes Routines 936
21.2 Fortran 90 Language Concepts 937
21.3 More on Arrays and Array Sections 941
21.4 Fortran 90 Intrinsic Procedures 945
21.5 Advanced Fortran 90 Topics 953
21.6 And Coming Soon: Fortran 95 959

22 Introduction to Parallel Programming 962
22.0 Why Think Parallel? 962
22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics 964
22.2 Linear Recurrence and Related Calculations 971
22.3 Parallel Synthetic Division and Related Algorithms 977
22.4 Fast Fourier Transforms 981
22.5 Missing Language Features 983

23 Numerical Recipes Utility Functions for Fortran 90 987
23.0 Introduction and Summary Listing 987
23.1 Routines That Move Data 990
23.2 Routines Returning a Location 992
23.3 Argument Checking and Error Handling 994
23.4 Routines for Polynomials and Recurrences 996
23.5 Routines for Outer Operations on Vectors 1000
23.6 Routines for Scatter with Combine 1002
23.7 Routines for Skew Operations on Matrices 1004
23.8 Other Routines 1007

Fortran 90 Code Chapters 1009

B1 Preliminaries 1010

B2 Solution of Linear Algebraic Equations 1014

B3 Interpolation and Extrapolation 1043

v

vi Contents

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

B4 Integration of Functions 1052

B5 Evaluation of Functions 1070

B6 Special Functions 1083

B7 Random Numbers 1141

B8 Sorting 1167

B9 Root Finding and Nonlinear Sets of Equations 1182

B10 Minimization or Maximization of Functions 1201

B11 Eigensystems 1225

B12 Fast Fourier Transform 1235

B13 Fourier and Spectral Applications 1253

B14 Statistical Description of Data 1269

B15 Modeling of Data 1285

B16 Integration of Ordinary Differential Equations 1297

B17 Two Point Boundary Value Problems 1314

B18 Integral Equations and Inverse Theory 1325

B19 Partial Differential Equations 1332

B20 Less-Numerical Algorithms 1343

References 1359

Appendices

C1 Listing of Utility Modules (nrtype and nrutil) 1361

C2 Alphabetical Listing of Explicit Interfaces 1384

C3 Index of Programs and Dependencies 1434

General Index to Volumes 1 and 2 1447

Contents vii

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Contents of Volume 1: Numerical Recipes in Fortran 77

Plan of the Two-Volume Edition xiii

Preface to the Second Edition xv

Preface to the First Edition xviii

License Information xx

Computer Programs by Chapter and Section xxiv

1 Preliminaries 1

2 Solution of Linear Algebraic Equations 22

3 Interpolation and Extrapolation 99

4 Integration of Functions 123

5 Evaluation of Functions 159

6 Special Functions 205

7 Random Numbers 266

8 Sorting 320

9 Root Finding and Nonlinear Sets of Equations 340

10 Minimization or Maximization of Functions 387

11 Eigensystems 449

12 Fast Fourier Transform 490

13 Fourier and Spectral Applications 530

14 Statistical Description of Data 603

15 Modeling of Data 650

16 Integration of Ordinary Differential Equations 701

17 Two Point Boundary Value Problems 745

18 Integral Equations and Inverse Theory 779

19 Partial Differential Equations 818

20 Less-Numerical Algorithms 881

References 916

Index of Programs and Dependencies 921

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Preface to Volume 2
Fortran 90 is not just the long-awaited updating of the Fortran language to

modern computing practices. It is also the vanguard of a much larger revolution in
computing, that of multiprocessor computers and widespread parallel programming.
Parallel computing has been a feature of the largest supercomputers for quite some
time. Now, however, it is rapidly moving towards the desktop.

As we watched the gestation and birth of Fortran 90 by its governing “X3J3
Committee” (a process interestingly described by a leading committee member,
Michael Metcalf, in the Foreword that follows), it became clear to us that the right
moment for moving Numerical Recipes from Fortran 77 to Fortran 90 was sooner,
rather than later.

Fortran 90 compilers are now widely available. Microsoft’s Fortran PowerSta-
tion for Windows 95 brings that firm’s undeniable marketing force to PC desktop;
we have tested this compiler thoroughly on our code and found it excellent in
compatibility and performance. In the UNIX world, we have similarly tested, and
had generally fine experiences with, DEC’s Fortran 90 for Alpha AXP and IBM’s xlf
for RS/6000 and similar machines. NAG’s Fortran 90 compiler also brings excellent
Fortran 90 compatibility to a variety of UNIX platforms. There are no doubt
other excellent compilers, both available and on the way. Fortran 90 is completely
backwards compatible with Fortran 77, by the way, so you don’t have to throw away
your legacy code, or keep an old compiler around.

There have been previous special versions of Fortran for parallel supercomput-
ers, but always specific to a particular hardware. Fortran 90, by contrast, is designed
to provide a general, architecture-independent framework for parallel computation.
Equally importantly, it is an international standard, agreed upon by a large group of
computer hardware and software manufacturers and international standards bodies.

With the Fortran 90 language as a tool, we want this volume to be your complete
guide for learning how to “think parallel.” The language itself is very general in
this regard, and applicable to many present and future computers, or even to other
parallel computing languages as they come along. Our treatment emphasizes general

principles, but we are also not shy about pointing out parallelization
“tricks” that have frequent applicability. These are not only discussed
in this volume’s principal text chapters (Chapters21–23), but are also

sprinkled throughout the chapters of Fortran 90 code, called out by a special “parallel

f90
hint” logo (left, above). Also scattered throughout the code chapters
are specific “Fortran 90 tips,” with their own distinct graphic call-out
(left). After you read the text chapters, you might want simply to browse

among these hints and tips.
A special note to C programmers: Right now, there is no effort at producing a

parallel version of C that is comparable to Fortran 90 in maturity, acceptance, and
stability. We think, therefore, that C programmers will be well served by using
this volume for an educational excursion into Fortran 90, its parallel programming
constructions, and the numerical algorithms that capitalize on them. C and C++
programming have not been far from our minds as we have written this volume,
and we think that you will find that time spent in absorbing its principal lessons
(in Chapters 21–23) will be amply repaid in the future, as C and C++ eventually
develop standard parallel extensions.

viii

Preface to Volume 2 ix

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

A final word of truth in packaging:Don’t buy this volume unless you also
buy (or already have) Volume 1(now retitledNumerical Recipes in Fortran 77).
Volume 2 does not repeat any of the discussion of what individual programs actually
do, or of the mathematical methods they utilize, or how to use them. While our
Fortran 90 code is thoroughly commented, and includes a header comment for
each routine that describes its input and output quantities, these comments arenot
supposed to be a complete description of the programs; the complete descriptions
are in Volume 1, which we reference frequently. But here’s a money-saving hint
to our previous readers: If you already own a Second Edition version whose title
is Numerical Recipes in FORTRAN(which doesn’t indicate either “Volume 1” or
“Volume 2” on its title page) then take a marking pen and write in the words “Volume
1.” There! (Differences between the previous reprintings and the newest reprinting,
the one labeled “Volume 1,” are minor.)

Acknowledgments

We continue to be in the debt of many colleagues who give us the benefit of
their numerical and computational experience. Many, though not all, of these are
listed by name in the preface to the second edition, in Volume 1. To that list we must
now certainly add George Marsaglia, whose ideas have greatly influenced our new
discussion of random numbers in this volume (Chapter B7).

With this volume, we must acknowledge our additional gratitude and debt to a
number of people who generously provided advice, expertise, and time (a great deal
of time, in some cases) in the areas of parallel programming and Fortran 90. The
original inspiration for this volume came from Mike Metcalf, whose clear lectures on
Fortran 90 (in this case, overlooking the beautiful Adriatic at Trieste) convinced us
that Fortran 90 could serve as the vehicle for a book with the larger scope of parallel
programming generally, and whose continuing advice throughout the project has
been indispensable. Gyan Bhanot also played a vital early role in the development
of this book; his first translations of our Fortran 77 programs taught us a lot about
parallel programming. We are also grateful to Greg Lindhorst, Charles Van Loan,
Amos Yahil, Keith Kimball, Malcolm Cohen, Barry Caplin, Loren Meissner, Mitsu
Sakamoto, and George Schnurer for helpful correspondence and/or discussion of
Fortran 90’s subtler aspects.

We once again express in the strongest terms our gratitude to programming
consultant Seth Finkelstein, whose contribution to both the coding and the thorough
testing of all the routines in this book (against multiple compilers and in sometimes-
buggy, and always challenging, early versions) cannot be overstated.

WHP and SAT acknowledge the continued support of the U.S. National Science
Foundation for their research on computational methods.

February 1996 William H. Press
Saul A. Teukolsky

William T. Vetterling
Brian P. Flannery

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Foreword
by Michael Metcalf

Sipping coffee on a sunbaked terrace can be surprisingly productive. One of
theNumerical Recipesauthors and I were each lecturing at the International Center
for Theoretical Physics in Trieste, Italy, he on numerical analysis and I on Fortran
90. The numerical analysis community had made important contributions to the
development of the new Fortran standard, and so, unsurprisingly, it became quickly
apparent that the algorithms for whichNumerical Recipeshad become renowned
could, to great advantage, be recast in a new mold. These algorithms had, hitherto,
been expressed in serial form, first in Fortran 77 and then in C, Pascal, and Basic.
Now, nested iterations could be replaced by array operations and assignments, and
the other features of a rich array language could be exploited. Thus was the idea of a
“Numerical Recipes in Fortran 90" first conceived and, after three years’ gestation,
it is a delight to assist at the birth.

But whatis Fortran 90? How did it begin, what shaped it, and how, after nearly
foundering, did its driving forces finally steer it to a successful conclusion?

The Birth of a Standard

Back in 1966, the version of Fortran now known as Fortran 66 was the first
language ever to be standardized, by the predecessor of the present American National
Standards Institute (ANSI). It was an all-American affair. Fortran had first been
developed by John Backus of IBM in New York, and it was the dominant scientific
programming language in North America. Many Europeans preferred Algol (in
which Backus had also had a hand). Eventually, however, the mathematicians who
favored Algol for its precisely expressible syntax began to defer to the scientists and
engineers who appreciated Fortran’s pragmatic, even natural, style. In 1978, the
upgraded Fortran 77 was standardized by the ANSI technical committee, X3J3, and
subsequently endorsed by other national bodies and by ISO in Geneva, Switzerland.
Its dominance in all fields of scientific and numerical computing grew as new, highly
optimizing compilers came onto the market. Although newer languages, particularly
Pascal, Basic, PL/1, and later Ada attracted their own adherents, scientific users
throughout the 1980s remained true to Fortran. Only towards the end of that decade
did C draw increasing support from scientific programmers who had discovered the
power of structures and pointers.

During all this time, X3J3 kept functioning, developing the successor version
to Fortran 77. It was to be a decade of strife and contention. The early plans, in the
late 1970s, were mainly to add to Fortran 77 features that had had to be left out of
that standard. Among these were dynamic storage and an array language, enabling
it to map directly onto the architecture of supercomputers, then coming onto the
market. The intention was to have this new version ready within five years, in 1982.
But two new factors became significant at that time. The first was the decision that
the next standard should not just codify existing practice, as had largely been the
case in 1966 and 1978, but also extend the functionality of the language through

x

Foreword xi

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

innovative additions (even though, for the array language, there was significant
borrowing from John Iverson’s APL and from DAP Fortran). The second factor was
that X3J3 no longer operated under only American auspices. In the course of the
1980s, the standardization of programming languages came increasingly under the
authority of the international body, ISO. Initially this was in an advisory role, but
now ISO is the body that, through its technical committee WG5 (in full, ISO/IEC
JTC1/SC22/WG5), is responsible for determining the course of the language. WG5
also steers the work of the development body, then as now, the highly skilled and
competent X3J3. As we shall see, this shift in authority was crucial at the most
difficult moment of Fortran 90’s development.

The internationalization of the standards effort was reflected in the welcome
given by X3J3 to six or seven European members; they, and about one-third of
X3J3’s U.S. members, provided the overlapping core of membership of X3J3 and
WG5 that was vital in the final years in bringing the work to a successful conclusion.
X3J3 membership, which peaked at about 45, is restricted to one voting member
per organization, and significant decisions require a majority of two-thirds of those
voting. Nationality plays no role, except in determining the U.S. position on an
international issue. Members, who are drawn mainly from the vendors, large
research laboratories, and academia, must be present or represented at two-thirds of
all meetings in order to retain voting rights.

In 1980, X3J3 reported on its plans to the forerunner of WG5 in Amsterdam,
Holland. Fortran 8x, as it was dubbed, was to have a basic array language, new
looping constructs, a bit data type, data structures, a free source form, a mechanism
to “group” procedures, and another to manage the global name space. Old features,
includingCOMMON, EQUIVALENCE, and the arithmetic-IF, were to be consigned to a
so-called obsolete module, destined to disappear in a subsequent revision. This was
part of the “core plus modules” architecture, for adding new features and retiring
old ones, an aid to backwards compatibility. Even though Fortran 77 compilers
were barely available, the work seemed well advanced and the mood was optimistic.
Publication was intended to take place in 1985. It was not to be.

One problem was the sheer number of new features that were proposed as
additions to the language, most of them worthwhile in themselves but with the
totality being too large. This became a recurrent theme throughout the development
of the standard. One example was the suggestion of Lawrie Schonfelder (Liverpool
University), at a WG5 meeting in Vienna, Austria, in 1982, that certain features
already proposed as additions could be combined to provide a full-blown derived
data type facility, thus providingFortran with abstract data types. This idea was taken
up by X3J3 and has since come to be recognized, along with the array language, as
one of the two main advances brought about by what became Fortran 90. However,
the ramifications go very deep: all the technical details of how to handle arrays of
objects of derived types that in turn have array components that have the pointer
attribute, and so forth, have to be precisely defined and rigorously specified.

Conflict

The meetings of X3J3 were often full of drama. Most compiler vendors were
represented as a matter of course but, for many, their main objective appeared to
be to maintain the status quo and to ensure that Fortran 90 never saw the light of

xii Foreword

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

day. One vendor’s extended (and much-copied) version of Fortran 77 had virtually
become an industry standard, and it saw as its mission the maintenance of this lead.
A new standard would cost it its perceived precious advantage. Other large vendors
had similar points of view, although those marketing supercomputers were clearly
keen on the array language. Most users, on the other hand, were hardly prepared to
invest large amounts of their employers’ and their own resources in simply settling
for a trivial set of improvements to the existing standard. However, as long as
X3J3 worked under a simple-majority voting rule, at least some apparent progress
could be made, although the underlying differences often surfaced. These were even
sometimes between users — those who wanted Fortran to become a truly modern
language and those wanting to maintain indefinite backwards compatibility for their
billions of lines of existing code.

At a watershed meeting, in Scranton, Pennsylvania, in 1986, held in an
atmosphere that sometimes verged on despair, a fragile compromise was reached
as a basis for further work. One breakthrough was to weaken the procedures for
removing outdated features from the language, particularly by removing no features
whatsoever from the next standard and by striking storage association (i.e.,COMMON

andEQUIVALENCE) from the list of features to be designated as obsolescent (as they
are now known). A series of votes definitively removed from the language all plans
to add: arrays of arrays, exception handling, nesting of internal procedures, the
FORALL statement (now in Fortran 95), and a means to access skew array sections.
There were other features on this list that, although removed, were reinstated at
later meetings: user-defined operators, operator overloading, array and structure
constructors, and vector-valued subscripts. After many more travails, the committee
voted, a year later, by 26 votes to 9, to forward the document for what was to become
the first of three periods of public comment.

While the document was going through the formal standards bureaucracy and
being placed before the public, X3J3 polished it further. X3J3 also prepared
procedures for processing the comments it anticipated receiving from the public,
and to each of which, under the rules, it would have to reply individually. It was
just as well. Roughly 400 replies flooded in, many of them very detailed and,
disappointingly for those of us wanting a new standard quickly, unquestionably
negative towards our work. For many it was too radical, but many others pleaded
for yet more modern features, such as pointers.

Now the committee was deadlocked. Given that a document had already
been published, any further change required not a simple but a two-thirds majority.
The conservatives and the radicals could each block a move to modify the draft
standard, or to accept a revised one for public review — and just that happened,
in Champagne-Urbana, Illinois, in 1988. Any change, be it on the one hand to
modify the list of obsolescent features, to add the pointers or bit data type wanted
by the public, to add multi-byte characters to support Kanji and other non-European
languages or, on the other hand, to emasculate the language by removing modules or
operator overloading, and hence abstract data types, to name but some suggestions,
none of these could be done individually or collectively in a way that would achieve
consensus. I wrote:

“In my opinion, no standard can now emerge without either a huge concession
by the users to the vendors (MODULE / USE) and/or a major change in the composition
of the committee. I do not see how members who have worked for up to a decade

Foreword xiii

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

or more, devoting time and intellectual energy far beyond the call of duty, can be
expected to make yet more personal sacrifices if no end to the work is in sight, or
if that end is nothing but a travesty of what had been designed and intended as a
modern scientific programming language.. . . I think the August meeting will be a
watershed — if no progress is achieved there will be dramatic resignations, and ISO
could even remove the work from ANSI, which is failing conspicuously in its task."

(However, the same notes began with a quotation fromThe Taming of the
Shrew: “And do as adversaries do in law, / Strive mightily, but eat and drink / as
friend." That we always did, copiously.)

Resolution

The “August meeting” was, unexpectedly, imbued with a spirit of compromise
that had been so sadly lacking at the previous one. Nevertheless, after a week of
discussing four separate plans to rescue the standard, no agreement was reached.
Now the question seriously arose: Was X3J3 incapable of producing a new Fortran
standard for the international community, doomed to eternal deadlock, a victim of
ANSI procedures?

Breakthrough was achieved at a traumatic meeting of WG5 in Paris, France, a
month later. The committee spent several extraordinary days drawing up a detailed
list of what it wanted to be in Fortran 8x. Finally, it set X3J3 an ultimatum that was
unprecedented in the standards world: The ANSI committee was to produce a new
draft document, corresponding to WG5’s wishes, within five months! Failing that,
WG5 would assume responsibility and produce the new standard itself.

This decision was backed by the senior U.S. committee, X3, which effectively
directed X3J3 to carry out WG5’s wishes. And it did! The following November, it
implemented most of the technical changes, adding pointers, bit manipulation intrin-
sic procedures, and vector-valued subscripts, and removing user-defined elemental
functions (now in Fortran 95). The actual list of changes was much longer. X3J3 and
WG5, now collaborating closely, often in gruelling six-day meetings, spent the next
18 months and two more periods of (positive) public comment putting the finishing
touches to what was now called Fortran 90, and it was finally adopted, after some
cliff-hanging votes, for forwarding as a U.S. and international standard on April 11,
1991, in Minneapolis, Minnesota.

Among the remaining issues that were decided along the way were whether
pointers should be a data type or be defined in terms of an attribute of a variable,
implying strong typing (the latter was chosen), whether the new standard should
coexist alongside the old one rather than definitively replace it (it coexisted for a
while in the U.S., but was a replacement elsewhere, under ISO rules), and whether,
in the new free source form, blanks should be significant (fortunately, they are).

Fortran 90

The main new features of Fortran 90 are, first and foremost, the array language
and abstract data types. The first is built on whole array operations and assignments,
array sections, intrinsic procedures for arrays, and dynamic storage. It was designed
with optimization in mind. The second is built on modules and module procedures,
derived data types, operator overloading and generic interfaces, together with

xiv Foreword

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

pointers. Also important are the new facilities for numerical computation including
a set of numeric inquiry functions, the parametrization of the intrinsic types, new
control constructs —SELECT CASE and new forms ofDO, internal and recursive
procedures and optional and keyword arguments, improved I/O facilities, and many
new intrinsic procedures. Last but not least are the new free source form, an
improved style of attribute-oriented specifications, theIMPLICIT NONE statement,
and a mechanism for identifying redundant features for subsequent removal from the
language. The requirement on compilers to be able to identify, for example, syntax
extensions, and to report why a program has been rejected, are also significant. The
resulting language is not only a far more powerful tool than its successor, but a safer
and more reliable one too. Storage association, with its attendant dangers, is not
abolished, but rendered unnecessary. Indeed, experience shows that compilers detect
errors far more frequently than before, resulting in a faster development cycle. The
array syntax and recursion also allow quite compact code to be written, a further
aid to safe programming.

No programming language can succeed if it consists simply of a definition
(witness Algol 68). Also required are robust compilers from a wide variety of
vendors, documentation at various levels, and a body of experience. The first Fortran
90 compiler appeared surprisingly quickly, in 1991, especially in view of the widely
touted opinion that it would be very difficult to write one. Even more remarkable
was that it was written by one person, Malcolm Cohen of NAG, in Oxford, U.K.
There was a gap before other compilers appeared, but now they exist as native
implementations for almost all leading computers, from the largest to PCs. For the
most part, they produce very efficient object code; where, for certain new features,
this is not the case, work is in progress to improve them.

The first book,Fortran 90 Explained, was published by John Reid and me
shortly before the standard itself was published. Others followed in quick succession,
including excellent texts aimed at the college market. At the time of writing there
are at least 19 books in English and 22 in various other languages: Chinese, Dutch,
French, Japanese, Russian, and Swedish. Thus, the documentation condition is
fulfilled.

The body of experience, on the other hand, has yet to be built up to a critical size.
Teaching of the language at college level has only just begun. However, I am certain
that this present volume will contribute decisively to a significant breakthrough, as it
provides models not only of the numerical algorithms for which previous editions are
already famed, but also of an excellent Fortran 90 style, something that can develop
only with time. Redundant features are abjured. It shows that, if we abandon these
features and use new ones in their place, the appearance of code can initially seem
unfamiliar, but, in fact, the advantages become rapidly apparent. This new edition
of Numerical Recipesstands as a landmark in this regard.

Fortran Evolution

The formal procedures under which languages are standardized require them
either to evolve or to die. A standard that has not been revised for some years must
either be revised and approved anew, or be withdrawn. This matches the technical
pressure on the language developers to accommodate the increasing complexity both
of the problems to be tackled in scientific computation and of the underlyinghardware

Foreword xv

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

on which programs run. Increasing problem complexity requires more powerful
features and syntax; new hardware needs language features that map onto it well.

Thus it was that X3J3 and WG5, having finished Fortran 90, began a new round
of improvement. They decided very quickly on new procedures that would avoid
the disputes that bedevilled the previous work: WG5 would decide on a plan for
future standards, and X3J3 would act as the so-called development body that would
actually produce them. This would be done to a strict timetable, such that any feature
that could not be completed on time would have to wait for the next round. It was
further decided that the next major revision should appear a decade after Fortran 90
but, given the somewhat discomforting number of requests for interpretation that had
arrived, about 200, that a minor revision should be prepared for mid-term, in 1995.
This should contain only “corrections, clarifications and interpretations” and a very
limited number (some thought none) of minor improvements.

At the same time, scientific programmers were becoming increasingly concerned
at the variety of methods that were necessary to gain efficient performance from the
ever-more widely used parallel architectures. Each vendor provided a different set
of parallel extensions for Fortran, and some academic researchers had developed yet
others. On the initiative of Ken Kennedy of Rice University, a High-Performance
Fortran Forum was established. A coalition of vendors and users, its aim was to
produce an ad hoc set of extensions to Fortran that would become an informal but
widely accepted standard for portable code. It set itself the daunting task of achieving
that in just one year, and succeeded. Melding existing dialects like Fortran D, CM
Fortran, and Vienna Fortran, and adopting the new Fortran 90 as a base, because
of its array syntax, High-Performance Fortran (HPF) was published in 1993 and
has since become widely implemented. However, although HPF was designed for
data parallel codes and mainly implemented in the form of directives that appear
to non-HPF processors as comment lines, an adequate functionality could not be
achieved without extending the Fortran syntax. This was done in the form of the
PURE attribute for functions — an assertion that they contain no side effects — and the
FORALL construct — a form of array assignment expressed with the help of indices.

The dangers of having diverging or competing forms of Fortran 90 were
immediately apparent, and the standards committees wisely decided to incorporate
these two syntactic changes also into Fortran 95. But they didn’t stop there. Two
further extensions, useful not only for their expressive power but also to access
parallel hardware, were added: elemental functions, ones written in terms of scalars
but that accept array arguments of any permitted shape or size, and an extension to
allow nesting ofWHERE constructs, Fortran’s form of masked assignment. To readers
of Numerical Recipes, perhaps the most relevant of the minor improvements that
Fortran 95 brings are the ability to distinguish between a negative and a positive real
zero, automatic deallocation of allocatable arrays, and a means to initialize the values
of components of objects of derived data types and to initialize pointers to null.

The medium-term objective of a relatively minor upgrade has been achieved on
schedule. But what does the future hold? Developments in the underlying principles
of procedural programming languages have not ceased. Early Fortran introduced the
concepts of expression abstraction (X=Y+Z) and later control expression (e.g., theDO

loop). Fortran 77 continued this with theif-then-else, and Fortran 90 with the
DO andSELECT CASE constructs. Fortran 90 has a still higher level of expression
abstraction (array assignments and expressions) as well as data structures and even

xvi Foreword

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

full-blown abstract data types. However, during the 1980s the concept of objects
came to the fore, with methods bound to the objects on which they operate. Here,
one particular language, C++, has come to dominate the field. Fortran 90 lacks
a means to point to functions, but otherwise has most of the necessary features in
place, and the standards committees are now faced with the dilemma of deciding
whether to make the planned Fortran 2000 a fully object-oriented language. This
could possibly jeopardize its powerful, and efficient, numerical capabilities by too
great an increase in language complexity, so should they simply batten down the
hatches and not defer to what might be only a passing storm? At the time of writing,
this is an open issue. One issue that is not open is Fortran’s lack of in-built exception
handling. It is virtually certain that such a facility, much requested by the numerical
community, and guided by John Reid, will be part of the next major revision. The
list of other requirements is long but speculative, but some at the top of the list
are conditional compilation, command line argument handling, I/O for objects of
derived type, and asynchronous I/O (which is also planned for the next release
of HPF). In the meantime, some particularly pressing needs have been identified,
for the handling of floating-point exceptions, interoperability with C, and allowing
allocatable arrays as structure components, dummy arguments, and function results.
These have led WG5 to begin processing these three items using a special form of
fast track, so that they might become optional but standard extensions well before
Fortran 2000 itself is published in the year 2001.

Conclusion

Writing a book is always something of a gamble. Unlike a novel that stands
or falls on its own, a book devoted to a programming language is dependent on
the success of others, and so the risk is greater still. However, this newNumerical
Recipes in Fortran 90volume is no ordinary book, since it comes as the continuation
of a highly successful series, and so great is its significance that it can, in fact,
influence the outcome in its own favor. I am entirely confident that its publication
will be seen as an important event in the story of Fortran 90, and congratulate its
authors on having performed a great service to the field of numerical computing.

Geneva, Switzerland
January 1996

Michael Metcalf

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

License Information

Read this section if you want to use the programs in this book on a computer.
You’ll need to read the following Disclaimer of Warranty, get the programs onto your
computer, and acquire a Numerical Recipes software license. (Without this license,
which can be the free “immediate license” under terms described below, the book is
intended as a text and reference book, for reading purposes only.)

Disclaimer of Warranty

We make no warranties, express or implied, that the programs contained
in this volume are free of error, or are consistent with any particular standard
of merchantability, or that they will meet your requirements for any particular
application. They should not be relied on for solving a problem whose incorrect
solution could result in injury to a person or loss of property. If you do use the
programs in such a manner, it is at your own risk. The authors and publisher
disclaim all liability for direct or consequential damages resulting from your
use of the programs.

How to Get the Code onto Your Computer

Pick one of the following methods:

• You can type the programs from this book directly into your computer. In
this case, theonly kind of license available to you is the free “immediate
license” (see below). You are not authorized to transfer or distribute a
machine-readable copy to any other person, nor to have any other person
type the programs into a computer on your behalf. We do not want to hear
bug reports from you if you choose this option, because experience has
shown thatvirtually all reported bugs in such cases are typing errors!

• You can download the Numerical Recipes programs electronically from
the Numerical Recipes On-Line Software Store, located at our Web site
(http://www.nr.com). They are packaged as a password-protected
file, and you’ll need to purchase a license to unpack them. You can
get a single-screen license and password immediately, on-line, from the
On-Line Store, with fees ranging from$50 (PC, Macintosh, educational
institutions’ UNIX) to $140 (general UNIX). Downloading the packaged
software from the On-Line Store is also the way to start if you want to
acquire a more general (multiscreen, site, or corporate) license.

• You can purchase media containing the programs from Cambridge Uni-
versity Press. Diskette versions are available in IBM-compatible format
for machines running Windows 3.1, 95, or NT. CDROM versions in ISO-
9660 format for PC, Macintosh, and UNIX systems are also available;
these include both Fortran and C versions (as well as versions in Pascal

xvii

xviii License Information

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

and BASIC from the first edition) on a single CDROM. Diskettes pur-
chased from Cambridge University Press include a single-screen license
for PC or Macintosh only. The CDROM is available with a single-
screen license for PC or Macintosh (order ISBN 0 521 576083), or (at a
slightly higher price) with a single-screen license for UNIX workstations
(order ISBN 0 521 576075). Orders for media from Cambridge Univer-
sity Press can be placed at 800 872-7423 (North America only) or by
email to orders@cup.org (North America) or trade@cup.cam.ac.uk (rest
of world). Or, visit the Web siteshttp://www.cup.org (North America)
or http://www.cup.cam.ac.uk (rest of world).

Types of License Offered

Here are the types of licenses that we offer. Note that some types are
automatically acquired with the purchase of media from Cambridge University
Press, or of an unlocking password from the Numerical Recipes On-Line Software
Store, while other types of licenses require that you communicate specifically with
Numerical Recipes Software (email: orders@nr.com or fax: 781 863-1739). Our
Web sitehttp://www.nr.com has additional information.

• [“Immediate License”] If you are the individual owner of a copy of this
book and you type one or more of its routines into your computer, we
authorize you to use them on that computer for your own personal and
noncommercial purposes. You are not authorized to transfer or distribute
machine-readable copies to any other person, or to use the routines on
more than one machine, or to distribute executable programs containing
our routines. This is the only free license.

• [“Single-Screen License”] This is the most common type of low-cost
license, with terms governed by our Single Screen (Shrinkwrap) License
document (complete terms available through our Web site). Basically, this
license lets you use Numerical Recipes routines on any one screen (PC,
workstation, X-terminal, etc.). You may also, under this license, transfer
pre-compiled, executable programs incorporating our routines to other,
unlicensed, screens or computers, providing that (i) your application is
noncommercial (i.e., does not involve the selling of your program for a
fee), (ii) the programs were first developed, compiled, and successfully
run on a licensed screen, and (iii) our routines are bound into the programs
in such a manner that they cannot be accessed as individual routines and
cannot practicably be unbound and used in other programs. That is, under
this license, your program user must not be able to use our programs as
part of a program library or “mix-and-match” workbench. Conditions for
other types of commercial or noncommercial distribution may be found
on our Web site (http://www.nr.com).

• [“Multi-Screen, Server, Site, and Corporate Licenses”] The terms of
the Single Screen License can be extended to designated groups of
machines, defined by number of screens, number of machines, locations,
or ownership. Significant discounts from the corresponding single-screen

License Information xix

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

prices are available when the estimated number of screens exceeds 40.
Contact Numerical Recipes Software (email: orders@nr.com or fax: 781
863-1739) for details.

• [“Course Right-to-Copy License”] Instructors at accredited educational
institutions who have adopted this book for a course, and who have
already purchased a Single Screen License (either acquired with the
purchase of media, or from the Numerical Recipes On-Line Software
Store), may license the programs for use in that course as follows: Mail
your name, title, and address; the course name, number, dates, and
estimated enrollment; and advance payment of$5 per (estimated) student
to Numerical Recipes Software, at this address: P.O. Box 243, Cambridge,
MA 02238 (USA). You will receive by return mail a license authorizing
you to make copies of the programs for use by your students, and/or to
transfer the programs to a machine accessible to your students (but only
for the duration of the course).

About Copyrights on Computer Programs

Like artistic or literary compositions, computer programs are protected by
copyright. Generally it is an infringement for you to copy into your computer a
program from a copyrighted source. (It is also not a friendly thing to do, since it
deprives the program’s author of compensation for his or her creative effort.) Under
copyright law, all “derivative works” (modified versions, or translations into another
computer language) also come under the same copyright as the original work.

Copyright does not protect ideas, but only the expression of those ideas in
a particular form. In the case of a computer program, the ideas consist of the
program’s methodology and algorithm, including the necessary sequence of steps
adopted by the programmer. The expression of those ideas is the program source
code (particularly any arbitrary or stylistic choices embodied in it), its derived object
code, and any other derivative works.

If you analyze the ideas contained in a program, and then express those
ideas in your own completely different implementation, then that new program
implementation belongs to you. That is what we have done for those programs in
this book that are not entirely of our own devising. When programs in this book are
said to be “based” on programs published in copyright sources, we mean that the
ideas are the same. The expression of these ideas as source code is our own. We
believe that no material in this book infringes on an existing copyright.

Trademarks

Several registered trademarks appear within the text of this book: Sun is a
trademark of Sun Microsystems, Inc. SPARC and SPARCstation are trademarks of
SPARC International, Inc. Microsoft, Windows 95, Windows NT, PowerStation,
and MS are trademarks of Microsoft Corporation. DEC, VMS, Alpha AXP, and
ULTRIX are trademarks of Digital Equipment Corporation. IBM is a trademark of
International Business Machines Corporation. Apple and Macintosh are trademarks
of Apple Computer, Inc. UNIX is a trademark licensed exclusively through X/Open

xx License Information

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Co. Ltd. IMSL is a trademark of Visual Numerics, Inc. NAG refers to proprietary
computer software of Numerical Algorithms Group (USA) Inc. PostScript and
Adobe Illustrator are trademarks of Adobe Systems Incorporated. Last, and no doubt
least, Numerical Recipes (when identifying products) is a trademark of Numerical
Recipes Software.

Attributions

The fact that ideas are legally “free as air” in no way supersedes the ethical
requirement that ideas be credited to their known originators. When programs in
this book are based on known sources, whether copyrighted or in the public domain,
published or “handed-down,” we have attempted to give proper attribution. Unfor-
tunately, the lineage of many programs in common circulation is often unclear. We
would be grateful to readers for new or corrected information regarding attributions,
which we will attempt to incorporate in subsequent printings.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter 21. Introduction
to Fortran 90
Language Features

21.0 Introduction

Fortran 90 is in many respects a backwards-compatible modernization of the
long-used (and much abused) Fortran 77 language, but it is also, in other respects,
a new language for parallel programming on present and future multiprocessor
machines. These twin design goals of the language sometimes add confusion to the
process of becoming fluent in Fortran 90 programming.

In a certain trivial sense, Fortran 90 is strictly backwards-compatible with
Fortran 77. That is, any Fortran 90 compiler is supposed to be able to compile any
legacy Fortran 77 code without error. The reason for terming this compatibility
trivial, however, is that you have to tell the compiler (usually via a source file name
ending in “.f” or “ .for”) that it is dealing with a Fortran 77 file. If you instead
try to pass off Fortran 77 code as native Fortran 90 (e.g., by naming the source file
something ending in “.f90”) it will not always work correctly!

It is best, therefore, to approach Fortran 90 as a new computer language, albeit
one with a lot in common with Fortran 77. Indeed, in such terms, Fortran 90 is a
fairly big language, with a large number of new constructions and intrinsic functions.
Here, in one short chapter, we do not pretend to provide a complete description of
the language. Luckily, there are good books that do exactly that. Our favorite one
is by Metcalf and Reid[1], cited throughout this chapter as “M&R.” Other good
starting points include[2] and [3].

Our goal, in the remainder of this chapter, is to give a good, working description
of those Fortran 90 language features that are not immediately self-explanatory
to Fortran 77 programmers, with particular emphasis on those that occur most
frequently in the Fortran 90 versions of the Numerical Recipes routines. This
chapter, by itself, will not teach you to write Fortran 90 code. But it ought to help
you acquire a reading knowledge of the language, and perhaps provide enough of
a head start that you can rapidly pick up the rest of what you need to know from
M&R or another Fortran 90 reference book.

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press). [1]

935

936 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Kerrigan, J.F. 1993, Migrating to Fortran 90 (Sebastopol, CA: O’Reilly). [2]

Brainerd, W.S., Goldberg, C.H., and Adams, J.C. 1996, Programmer’s Guide to Fortran 90, 3rd
ed. (New York: Springer-Verlag). [3]

21.1 Quick Start: Using the Fortran 90
Numerical Recipes Routines

This section is for people who want to jump right in. We’ll compute a Bessel
functionJ0(x), wherex is equal to the fourth root of the Julian Day number of the
200th full moon since January 1900. (Nowthere’sa useful quantity!)

First, locate the important filesnrtype.f90, nrutil.f90, andnr.f90, as
listed in Appendices C1, C1, and C2, respectively. These containmodulesthat
either are (i) used by our routines, or else (ii) describe the calling conventions of our
routines to (your) user programs. Compile each of these files, producing (with most
compilers) a.mod file and a.o (or similarly named) file for each one.

Second, create this main program file:

PROGRAM hello_bessel
USE nrtype
USE nr, ONLY: flmoon, bessj0
IMPLICIT NONE
INTEGER(I4B) :: n=200,nph=2,jd
REAL(SP) :: x,frac,ans
call flmoon(n,nph,jd,frac)
x=jd**0.25_sp
ans=bessj0(x)
write (*,*) ’Hello, Bessel: ’, ans
END PROGRAM

Here is a quick explanation of some elements of the above program:

The firstUSE statement includes a module of ours namednrtype, whose purpose is to
give symbolic names to some kinds of data types, among them single-precision reals (“sp”)
and four-byte integers (“i4b”). The secondUSE statement includes a module of ours that
defines the calling sequences, and variable types, expected by (in this case) the Numerical
Recipes routinesflmoon andbessj0.

TheIMPLICIT NONE statement signals that we want the compiler to require us explicitly
to declare all variable types.We strongly urge that you always take this option.

The next two lines declare integer and real variables of the desired kinds. The variable
n is initialized to the value 200,nph to 2 (a value expected byflmoon).

We callflmoon, and take the fourth root of the answer it returns asjd. Note that the
constant 0.25 is typed to be single-precision by the appendedsp.

We call thebessj0 routine, and print the answer.

Third, compile the main program file, and also the filesflmoon.f90,
bessj0.f90. Then, link the resulting object files with alsonrutil.o (or sim-
ilar system-dependent name, as produced in step 1). Some compilers will also
require you to link withnr.o and nrtype.o.

Fourth, run the resulting executable file. Typical output is:

Hello, Bessel: 7.3096365E-02

21.2 Fortran 90 Language Concepts 937

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

21.2 Fortran 90 Language Concepts

The Fortran 90 language standard defines and uses a number of standard terms
for concepts that occur in the language. Here we summarize briefly some of the
most important concepts. Standard Fortran 90 terms are shown initalics. While by
no means complete, the information in this section should help you get a quick start
with your favorite Fortran 90 reference book or language manual.

A note on capitalization: Outside a character context, Fortran 90 is not case-
sensitive, so you can use upper and lower case any way you want, to improve
readability. A variable likeSP (see below) is the same variable as the variablesp.
We like to capitalize keywords whose use is primarily at compile-time (statements
that delimit program and subprogram boundaries, declaration statements of variables,
fixed parameter values), and use lower case for the bulk of run-time code. You can
adopt any convention that you find helpful to your own programming style; but we
strongly urge you to adopt and followsomeconvention.

Data Types and Kinds

Data types(also called simplytypes) can be eitherintrinsic data types(the
familiar INTEGER, REAL, LOGICAL, and so forth) or elsederived data typesthat are
built up in the manner of what are called “structures” or “records” in other computer
languages. (We’ll use derived data types very sparingly in this book.) Intrinsic data
types are further specified by theirkind parameter(or simplykind), which is simply
an integer. Thus, on many machines,REAL(4) (with kind = 4) is a single-precision
real, whileREAL(8) (with kind = 8) is a double-precision real.Literal constants
(or simply literals) are specified as to kind by appending an underscore, as1.5 4

for single precision, or1.5 8 for double precision. [M&R,§2.5–§2.6]
Unfortunately, the specific integer values that define the different kind types

are not specified by the language, but can vary from machine to machine. For
that reason, one almost never uses literal kind parameters like 4 or 8, but rather
defines in some central file, and imports into all one’s programs, symbolic names
for the kinds. For this book, that central file is themodulenamednrtype, and the
chosen symbolic names includeSP, DP (for reals);I2B, I4B (for two- and four-byte
integers); andLGT for the default logical type. You will therefore see us consistently
writing REAL(SP), or 1.5 sp, and so forth.

Here is an example of declaring some variables, including a one-dimensional
array of length 500, and a two-dimensional array with 100 rows and 200 columns:

USE nrtype
REAL(SP) :: x,y,z
INTEGER(I4B) :: i,j,k
REAL(SP), DIMENSION(500) :: arr
REAL(SP), DIMENSION(100,200) :: barr
REAL(SP) :: carr(500)

The last line shows an alternative form for array syntax. And yes, thereare default
kind parameters for each intrinsic type, but these vary from machine to machine and
can get you into trouble when you try to move code. We therefore specify all kind
parameters explicitly in almost all situations.

938 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Array Shapes and Sizes

The shapeof an array refers to both its dimensionality (called itsrank), and
also the lengths along each dimension (called theextents). The shape of an array is
specified by a rank-one array whose elements are the extents along each dimension,
and can be queried with theshape intrinsic (see p. 949). Thus, in the above example,
shape(barr) returns an array of length 2 containing the values(100, 200).

Thesizeof an array is its total number of elements, so the intrinsicsize(barr)

would return 20000 in the above example. More often one wants to know the
extents along each dimension, separately:size(barr,1) returns the value 100,
while size(barr,2) returns the value 200. [M&R,§2.10]

Section§21.3, below, discusses additional aspects of arrays in Fortran 90.

Memory Management

Fortran 90 is greatly superior to Fortran 77 in its memory-management capa-
bilities, seen by the user as the ability to create, expand, or contract workspace for
programs. Withinsubprograms(that is,subroutinesand functions), one can have
automatic arrays(or otherautomatic data objects) that come into existence each
time the subprogram is entered, and disappear (returning their memory to the pool)
when the subprogram is exited. The size of automatic objects can be specified
by arbitrary expressions involving values passed asactual argumentsin the calling
program, and thus received by the subprogram through its correspondingdummy
arguments. [M&R, §6.4]

Here is an example that creates some automatic workspace namedcarr:

SUBROUTINE dosomething(j,k)
USE nrtype
REAL(SP), DIMENSION(2*j,k**2) :: carr

Finer control on when workspace is created or destroyed can be achieved by
declaringallocatable arrays, which exist as names only, without associated memory,
until they areallocatedwithin the program or subprogram. When no longer needed,
they can bedeallocated. Theallocation statusof an allocatable array can be tested
by the program via theallocated intrinsic function (p. 952). [M&R,§6.5]

Here is an example in outline:

REAL(SP), DIMENSION(:,:), ALLOCATABLE :: darr
...
allocate(darr(10,20))
...
deallocate(darr)
...
allocate(darr(100,200))
...
deallocate(darr)

Notice thatdarr is originally declared with only “slots” (colons) for its dimensions,
and is then allocated/deallocated twice, with different sizes.

Yet finer control is achieved by the use ofpointers. Like an allocatable array,
a pointer can be allocated, at will, its own associated memory. However, it has
the additional flexibility of alternatively beingpointer associatedwith a target that

21.2 Fortran 90 Language Concepts 939

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

already exists under another name. Thus, pointers can be used as redefinable aliases
for other variables, arrays, or (see§21.3)array sections. [M&R, §6.12]

Here is an example that first associates the pointerparr with the arrayearr,
then later cancels that association and allocates it its own storage of size 50:

REAL(SP), DIMENSION(:), POINTER :: parr
REAL(SP), DIMENSION(100), TARGET :: earr
...
parr => earr
...
nullify(parr)
allocate(parr(50))
...
deallocate(parr)

Procedure Interfaces

When a procedure isreferenced(e.g., called) from within a program or
subprogram (examples ofscoping units), the scoping unit must be told, or must
deduce, the procedure’sinterface, that is, its calling sequence, including the types
and kinds of all dummy arguments, returned values, etc. The recommended
procedure is to specify this interface via anexplicit interface, usually aninterface
block(essentially a declaration statement for subprograms) in the calling subprogram
or in somemodulethat the calling program includes via aUSE statement. In this
book all interfaces are explicit, and the module namednr contains interface blocks
for all of the Numerical Recipes routines. [M&R,§5.11]

Here is a typical example of an interface block:

INTERFACE
SUBROUTINE caldat(julian,mm,id,iyyy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: julian
INTEGER(I4B), INTENT(OUT) :: mm,id,iyyy
END SUBROUTINE caldat

END INTERFACE

Once this interface is made known to a program that you are writing (by either
explicit inclusion or aUSE statement), then the compiler is able to flag for you a
variety of otherwise difficult-to-find bugs. Although interface blocks can sometimes
seem overly wordy, they give a big payoff in ultimately minimizing programmer
time and frustration.

For compatibility with Fortran 77, the language also allows forimplicit inter-
faces, where the calling program tries to figure out the interface by the old rules of
Fortran 77. These rules are quite limited, and prone to producing devilishly obscure
program bugs. We strongly recommend that implicit interfaces never be used.

Elemental Procedures and Generic Interfaces

Many intrinsic procedures(those defined by the language standard and thus
usable without any further definition or specification) are alsogeneric. This means
that a single procedure name, such aslog(x), can be used with a variety of types
and kind parameters for the argumentx, and the result returned will have the same
type and kind parameter as the argument. In this example,log(x) allows any real
or complex argument type.

940 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Better yet, most generic functions are alsoelemental. The argument of an
elemental function can be an array of arbitrary shape! Then, the returned result is
an array of the same shape, with each element containing the result of applying the
function to the corresponding element of the argument. (Hence the nameelemental,
meaning “applied element by element.”) [M&R,§8.1] For example:

REAL(SP), DIMENSION(100,100) :: a,b
b=sin(a)

Fortran 90 has no facility for creating new, user-defined elemental functions.
It does have, however, the related facility ofoverloadingby the use ofgeneric
interfaces. This is invoked by the use of an interface block that attaches a single
generic nameto a number of distinct subprograms whose dummy arguments have
different types or kinds. Then, when the generic name is referenced (e.g., called),
the compiler chooses the specific subprogram that matches the types and kinds of the
actual arguments used. [M&R,§5.18] Here is an example of a generic interface block:

INTERFACE myfunc
FUNCTION myfunc_single(x)
USE nrtype
REAL(SP) :: x,myfunc_single
END FUNCTION myfunc_single

FUNCTION myfunc_double(x)
USE nrtype
REAL(DP) :: x,myfunc_double
END FUNCTION myfunc_double

END INTERFACE

A program with knowledge of this interface could then freely use the function
referencemyfunc(x) for x’s of both typeSP and typeDP.

We use overloading quite extensively in this book. A typical use is to provide,
under the same name, both scalar and vector versions of a function such as a
Bessel function, or to provide both single-precision and double-precision versions
of procedures (as in the above example). Then, to the extent that we have provided
all the versions that you need, you can pretend that our routine is elemental. In
such a situation, if you ever call our function with a type or kind that we have
not provided, the compiler will instantly flag the problem, because it is unable to
resolve the generic interface.

Modules

Modules, already referred to several times above, are Fortran 90’s generalization
of Fortran 77’s common blocks,INCLUDEd files of parameter statements, and (to
some extent) statement functions. Modules areprogram units, like main programs or
subprograms (subroutines and functions), that can be separately compiled. A module
is a convenient place to stash global data,named constants(what in Fortran 77
are called “symbolic constants” or “PARAMETERs”), interface blocks to subprograms
and/or actual subprograms themselves (module subprograms). The convenience is
that a module’s information can be incorporated into another program unit via a
simple, one-lineUSE statement. [M&R,§5.5]

Here is an example of a simple module that defines a few parameters, creates
some global storage for an array namedarr (as might be done with a Fortran 77
common block), and defines the interface to a functionyourfunc:

21.3 More on Arrays and Array Sections 941

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

MODULE mymodule
USE nrtype
REAL(SP), PARAMETER :: con1=7.0_sp/3.0_sp,con2=10.0_sp
INTEGER(I4B), PARAMETER :: ndim=10,mdim=9
REAL(SP), DIMENSION(ndim,mdim) :: arr
INTERFACE

FUNCTION yourfunc(x)
USE nrtype
REAL(SP) :: x,yourfunc
END FUNCTION yourfunc

END INTERFACE
END MODULE mymodule

As mentioned earlier, the modulenr containsINTERFACE declarations for all
the Numerical Recipes. When we include a statement of the form

USE nr, ONLY: recipe1

it means that the program uses the additional routinerecipe1. The compiler is
able to use the explicit interface declaration in the module to check thatrecipe1 is
invoked with arguments of the correct type, shape, and number. However, a weakness
of Fortran 90 is that there is no fail-safe way to be sure that the interface module
(herenr) stays synchronized with the underlying routine (hererecipe1). You might
think that you could accomplish this by puttingUSE nr, ONLY: recipe1 into the
recipe1 program itself. Unfortunately, the compiler interprets this as an erroneous
double definition ofrecipe1’s interface, rather than (as would be desirable) as an
opportunity for a consistency check. (To achieve this kind of consistency check, you
can put the procedures themselves, not just their interfaces, into the module.)

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.3 More on Arrays and Array Sections

Arrays are the central conceptual core of Fortran 90 as aparallel programming
language, and thus worthy of some further discussion. We have already seen that
arrays can “come into existence” in Fortran 90 in several ways, either directly
declared, as

REAL(SP), DIMENSION(100,200) :: arr

or else allocated by anallocatablevariable or apointervariable,

REAL(SP), DIMENSION(:,:), ALLOCATABLE :: arr
REAL(SP), DIMENSION(:,:), POINTER :: barr
...
allocate(arr(100,200),barr(100,200))

or else (not previously mentioned) passed into a subprogram through a dummy
argument:

SUBROUTINE myroutine(carr)
USE nrtype
REAL(SP), DIMENSION(:,:) :: carr
...
i=size(carr,1)

942 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

j=size(carr,2)

In the above example we also show how the subprogram can find out the size of
the actual array that is passed, using thesize intrinsic. This routine is an example
of the use of anassumed-shape array, new to Fortran 90. The actual extents along
each dimension are inherited from the calling routine at run time. A subroutine
with assumed-shape array argumentsmusthave an explicit interface in the calling
routine, otherwise the compiler doesn’t know about the extra information that must
be passed. A typical setup for callingmyroutine would be:

PROGRAM use_myroutine
USE nrtype
REAL(SP), DIMENSION(10,10) :: arr
INTERFACE

SUBROUTINE myroutine(carr)
USE nrtype
REAL(SP), DIMENSION(:,:) :: carr
END SUBROUTINE myroutine

END INTERFACE
...
call myroutine(a)

Of course, for the recipes we have provided all the interface blocks in the filenr.f90,
and you need only aUSE nr statement in your calling program.

Conformable Arrays

Two arrays are said to beconformableif their shapes are the same. Fortran 90
allows practically all operations among conformable arrays and elemental functions
that are allowed for scalar variables. Thus, ifarr, barr, andcarr are mutually
conformable, we can write,

arr=barr+cos(carr)+2.0_sp

and have the indicated operations performed, element by corresponding element,
on the entire arrays. The above line also illustrates that a scalar (here the constant
2.0 sp, but a scalar variable would also be fine) is deemed conformable withany
array — it gets “expanded” to the shape of the rest of the expression that it is
in. [M&R, §3.11]

In Fortran 90, as in Fortran 77, the default lower bound for an array subscript is
1; however, it can be made some other value at the time that the array is declared:

REAL(SP), DIMENSION(100,200) :: farr
REAL(SP), DIMENSION(0:99,0:199) :: garr
...
farr = 3.0_sp*garr + 1.0_sp

Notice thatfarr andgarr are conformable, since they have the same shape, in
this case(100, 200). Also note that when they are used in an array expression,
the operations are taken between the corresponding elementsof their shapes, not
necessarily the corresponding elementsof their indices. [M&R, §3.10] In other
words, one of the components evaluated is,

farr(1,1) = 3.0_sp*garr(0,0) + 1.0_sp

This illustrates a fundamental aspect of array (or data) parallelism in Fortran 90.
Array constructions shouldnot be thought of as merely abbreviations for do-loops

21.3 More on Arrays and Array Sections 943

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

over indices, but rather as genuinely parallel operations on same-shaped objects,
abstracted of their indices. This is why the standard makes no statement about the
order in which the individual operations in an array expression are executed; they
might in fact be carried out simultaneously, on parallel hardware.

By default, array expressions and assignments are performed for all elements
of the same-shaped arrays referenced. This can be modified, however, by use of
a where construction like this:

where (harr > 0.0_sp)
farr = 3.0_sp*garr + 1.0_sp

end where

Hereharrmust also be conformable tofarrandgarr. Analogously with the Fortran
if-statement, there is also a one-line form of thewhere-statement. There is also
awhere ... elsewhere ... end where form of the statement, analogous to
if ... else if ... end if. A significant language limitation in Fortran 90
is that nestedwhere-statements are not allowed. [M&R,§6.8]

Array Sections

Much of the versatility of Fortran 90’s array facilities stems from the availability
of array sections. An array section acts like an array, but its memory location, and
thus the values of its elements, is actually a subset of the memory location of an
already-declared array. Array sections are thus “windows into arrays,” and they can
appear on either the left side, or the right side, or both, of a replacement statement.
Some examples will clarify these ideas.

Let us presume the declarations

REAL(SP), DIMENSION(100) :: arr
INTEGER(I4B), DIMENSION(6) :: iarr=(/11,22,33,44,55,66/)

Note thatiarr is not only declared, it is also initializedby aninitializationexpression
(a replacement for Fortran 77’sDATA statement). [M&R,§7.5] Here are some array
sections constructed from these arrays:

Array Section What It Means

arr(:) same asarr

arr(1:100) same asarr

arr(1:10) one-dimensional array containing first
10 elements ofarr

arr(51:100) one-dimensional array containing sec-
ond half ofarr

arr(51:) same asarr(51:100)

arr(10:1:-1) one-dimensional array containing first
10 elements ofarr, but inreverse order

arr((/10,99,1,6/)) one-dimensional array containing ele-
ments 10, 99, 1, and 6 ofarr, in that
order

arr(iarr) one-dimensional array containing ele-
ments 11, 22, 33, 44, 55, 66 ofarr, in
that order

944 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Now let’s try some array sections of the two-dimensional array

REAL(SP), DIMENSION(100,100) :: barr

Array Section What It Means

barr(:,:) same asbarr

barr(1:100,1:100) same asbarr

barr(7,:) one-dimensional array containing the
7th row ofbarr

barr(7,1:100) same asbarr(7,:)

barr(:,7) one-dimensional array containing the
7th column ofbarr

barr(21:30,71:90) two-dimensional array containing the
sub-block ofbarr with the indicated
ranges of indices; the shape of this
array section is(10, 20)

barr(100:1:-1,100:1:-1) two-dimensional array formed by flip-
pingbarr upside down and backwards

barr(2:100:2,2:100:2) two-dimensional array of shape(50, 50)
containing the elements ofbarrwhose
row and column indices are both even

Some terminology: A construction like2:100:2, above, is called asubscript
triplet. Its integer pieces (which may be integer constants, or more general integer
expressions) are calledlower, upper, andstride. Any of the three may be omitted.
An omitted stride defaults to the value 1. Notice that, if(upper− lower) has a
different sign fromstride, then a subscript triplet defines an empty orzero-length
array, e.g.,1:5:-1 or 10:1:1 (or its equivalent form, simply10:1). Zero-length
arrays are not treated as errors in Fortran 90, but rather as “no-ops.” That is, no
operation is performed in an expression or replacement statement among zero-length
arrays. (This is essentially the same convention as in Fortran 77 for do-loop indices,
which array expressions often replace.) [M&R,§6.10]

It is important to understand that array sections, when used in array expressions,
match elements with other parts of the expressionaccording to shape, not according
to indices. (This is exactly the same principle that we applied, above, to arrays
with subscript lower bounds different from the default value of1.) One frequently
exploits this feature in using array sections to carry out operations on arrays that
access neighboring elements. For example,

carr(1:n-1,1:n-1) = barr(1:n-1,1:n-1)+barr(2:n,2:n)

constructs in the(n−1)× (n−1) matrixcarr the sum of each of the corresponding
elements inn × n barr added to its diagonally lower-right neighbor.

Pointers are often used as aliases for array sections, especially if the same array
sections are used repeatedly. [M&R,§6.12] For example, with the setup

REAL(SP), DIMENSION(:,:), POINTER :: leftb,rightb

21.4 Fortran 90 Intrinsic Procedures 945

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

leftb=>barr(1:n-1,1:n-1)
rightb=>barr(2:n,2:n)

the statement above can be coded as

carr(1:n-1,1:n-1)=leftb+rightb

We should also mention that array sections, while powerful and concise, are
sometimes not quite powerful enough. While any row or column of a matrix is easily
accessible as an array section, there is no good way, in Fortran 90, to access (e.g.)
the diagonal of a matrix, even though its elements are related by a linear progression
in the Fortran storage order (by columns). These so-calledskew-sectionswere much
discussed by the Fortran 90 standards committee, but they were not implemented.
We will see examples later in this volume of work-around programming tricks (none
totally satisfactory) for this omission. (Fortran 95 corrects the omission; see§21.6.)

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.4 Fortran 90 Intrinsic Procedures

Much of Fortran 90’s power, both for parallel programming and for its concise
expression of algorithmic ideas, comes from its rich set of intrinsicprocedures. These
have the effect of making the language “large,” hence harder to learn. However,
effort spent on learning to use the intrinsics — particularly some of their more
obscure, and more powerful, optional arguments — is often handsomely repaid.

This section summarizes the intrinsics that we find useful in numerical work.
We omit, here, discussion of intrinsics whose exclusive use is for character and string
manipulation. We intend only a summary, not a complete specification, which can
be found in M&R’s Chapter 8, or other reference books.

If you find the sheer number of new intrinsic procedures daunting, you might
want to start with our list of the “top 10” (with the number of different Numerical
Recipes routines that use each shown in parentheses):size (254), sum (44),
dot product (31), merge (27), all (25), maxval (23), matmul (19), pack (18),
any (17), andspread (15). (Later, in Chapter 23, you can compare these numbers
with our frequency of using the short utility functions that we define in a module
namednrutil — several of which we think ought to have been included as Fortran
90 intrinsic procedures.)

The type, kind, and shape of the value returned by intrinsic functions will
usually be clear from the short description that we give. As an additional hint
(though not necessarily a precise description), we adopt the following codes:

946 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Hint What It Means

[Int] anINTEGER kind type

[Real] a REAL kind type

[Cmplx] a COMPLEX kind type

[Num] a numerical type and kind

[Lgcl] a LOGICAL kind type

[Iarr] a one-dimensionalINTEGER array

[argTS] same type and shape as the first
argument

[argT] same type as the first argument, but
not necessarily the same shape

Numerical Elemental Functions

Little needs to be said about the numerical functions with identical counterparts
in Fortran 77:abs, acos, aimag, asin, atan, atan2, conjg, cos, cosh, dim, exp,
log, log10, max, min, mod, sign, sin, sinh, sqrt, tan, andtanh. In Fortran
90 these are allelementalfunctions, so that any plausible type, kind, and shape of
argument may be used. Except foraimag, which returns a real type from a complex
argument, these all return [argTS] (see table above).

Although Fortran 90 recognizes, for compatibility,Fortran 77’s so-calledspecific
namesfor these functions (e.g.,iabs, dabs, andcabs for the genericabs), these
are entirely superfluous and should be avoided.

Fortran 90 corrects some ambiguity (or at least inconvenience) in Fortran 77’s
mod(a,p) function, by introducing a new functionmodulo(a,p). The functions
are essentially identical for positive arguments, but for negativea and positivep,
modulo gives results more compatible with one’s mathematical expectation that the
answer should always be in the positive range0 to p. E.g.,modulo(11,5)=1, and
modulo(-11,5)=4. [M&R, §8.3.2]

Conversion and Truncation Elemental Functions

Fortran 90’s conversion (or, in the language of C, casting) and truncation
functions are generally modeled on their Fortran 77 antecedents, but with the
addition of an optional second integer argument,kind, that determines the kind of
the result. Note that, if kind is omitted, you get a default kind — not necessarily
related to the kind of your argument. The kind of the argument is of course known
to the compiler by its previous declaration. Functions in this category (see below
for explanation of arguments in slanted type) are:

[Real] aint(a,kind)

Truncate to integer value, return as a real kind.

[Real] anint(a,kind)

Nearest whole number, return as a real kind.

[Cmplx] cmplx(x,y,kind)

21.4 Fortran 90 Intrinsic Procedures 947

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Convert to complex kind. Ify is omitted, it is taken to be0.

[Int] int(a,kind)

Convert to integer kind, truncating towards zero.

[Int] nint(a,kind)

Convert to integer kind, choosing the nearest whole number.

[Real] real(a,kind)

Convert to real kind.

[Lgcl] logical(a,kind)

Convert one logical kind to another.

We must digress here to explain the use ofoptional argumentsandkeywords
as Fortran 90 language features. [M&R,§5.13] When a routine (either intrinsic
or user-defined) has arguments that are declared to be optional, then the dummy
names given to them also become keywords that distinguish — independent of their
position in a calling list — which argument is intended to be passed. (There are some
additional rules about this that we will not try to summarize here.) In this section’s
tabular listings, we indicate optional arguments in intrinsic routines by printing them
in smaller slanted type. For example, the intrinsic function

eoshift(array,shift,boundary,dim)

has two required arguments,array and shift, and two optional arguments,
boundary anddim. Suppose we want to call this routine with the actual arguments
myarray, myshift, andmydim, but omitting the argument in theboundary slot.
We do this by the expression

eoshift(myarray,myshift,dim=mydim)

Conversely, if we wanted aboundary argument, but nodim, we might write
eoshift(myarray,myshift,boundary=myboundary)

It is always a good idea to use this kind of keyword construction when invoking
optional arguments, even though the rules allow keywords to be omitted in some
unambiguous cases. Now back to the lists of intrinsic routines.

A peculiarity of thereal function derives from its use both as a type conversion
and for extracting the real part of complex numbers (related, but not identical,
usages): If the argument ofreal is complex, andkind is omitted, then the result
isn’t a default real kind, but ratheris (as one generally would want) thereal kind
type corresponding to the kind type of the complex argument, that is, single-precision
real for single-precision complex, double-precision for double-precision, and so on.
[M&R, §8.3.1] We recommendneverusingkind when you intend to extract the
real part of a complex, andalwaysusingkind when you intend conversion of a
real or integer value to a particular kind ofREAL. (Use of the deprecated function
dble is not recommended.)

The last two conversion functions are the exception in that theydon’t allow
a kind argument, but rather return default integer kinds. (The X3J3 standards
committee has fixed this in Fortran 95.)

[Int] ceiling(a)

Convert to integer, truncating towards more positive.

948 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

[Int] floor(a)

Convert to integer, truncating towards more negative.

Reduction and Inquiry Functions on Arrays

These are mostly the so-calledtransformational functionsthat accept array
arguments and return either scalar values or else arrays of lesser rank. [M&R,
§8.11] With no optional arguments, such functions act on all the elements of their
single array argument, regardless of its shape, and produce a scalar result. When
the optional argumentdim is specified, they instead act on all one-dimensional
sections that span the dimensiondim, producing an answer one rank lower than
the first argument (that is, omitting thedim dimension from its shape). When the
optional argumentmask is specified, only the elements with a corresponding true
value in mask are scanned.

[Lgcl] all(mask,dim)

Returns true if all elements ofmask are true, false otherwise.

[Lgcl] any(mask,dim)

Returns true if any of the elements ofmask are true, false otherwise.

[Int] count(mask,dim)

Counts the true elements inmask.

[Num] maxval(array,dim,mask)

Maximum value of the array elements.

[Num] minval(array,dim,mask)

Minimum value of the array elements.

[Num] product(array,dim,mask)

Product of the array elements.

[Int] size(array,dim)

Size (total number of elements) ofarray, or its extent along dimension
dim.

[Num] sum(array,dim,mask)

Sum of the array elements.

The use of thedim argument can be confusing, so an example may be helpful.
Suppose we have

myarray =

1 2 3 4
5 6 7 8
9 10 11 12

where, as always, thei index inarray(i,j) numbers the rows while thej index
numbers the columns. Then

sum(myarray,dim=1) = (15, 18, 21, 24)

that is, thei indices are “summed away” leaving only aj index on the result; while

sum(myarray,dim=2) = (10, 26, 42)

21.4 Fortran 90 Intrinsic Procedures 949

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

that is, thej indices are “summed away” leaving only ani index on the result.
Of course we also have

sum(myarray) = 78

Two related functions return the location of particular elements in an array. The
returned value is a one-dimensional integer array containing the respective subscript
of the element along each dimension. Note that when the argument object is a
one-dimensional array, the returned object is an integerarray of length 1, not simply
an integer. (Fortran 90 distinguishes between these.)

[Iarr] maxloc(array,mask)

Location of the maximum value in an array.

[Iarr] minloc(array,mask)

Location of the minimum value in an array.

Similarly returning a one-dimensional integer array are

[Iarr] shape(array)

Returns the shape ofarray as a one-dimensional integer array.

[Iarr] lbound(array,dim)

When dim is absent, returns an array of lower bounds for each
dimension of subscripts ofarray. Whendim is present, returns the
value only for dimensiondim, as a scalar.

[Iarr] ubound(array,dim)

When dim is absent, returns an array of upper bounds for each
dimension of subscripts ofarray. Whendim is present, returns the
value only for dimensiondim, as a scalar.

Array Unary and Binary Functions

The most powerful array operations are simply built into the language as
operators. All the usual arithmetic and logical operators (+, -, *, /, **, .not.,
.and., .or., .eqv., .neqv.) can be applied to arrays of arbitrary shape or (for
the binary operators) between two arrays of the same shape, or between arrays and
scalars. The types of the arrays must, of course, be appropriate to the operator used.
The result in all cases is to perform the operation element by element on the arrays.

We also have the intrinsic functions,

[Num] dot product(veca,vecb)

Scalar dot product of two one-dimensional vectorsveca andvecb.

[Num] matmul(mata,matb)

Result of matrix-multiplying the two two-dimensional matricesmata

andmatb. The shapes have to be such as to allow matrix multiplication.
Vectors (one-dimensional arrays) are additionally allowed as either the
first or second argument, but not both; they are treated as row vectors
in the first argument, and as column vectors in the second.

You might wonder how to form theouterproduct of two vectors, sincematmul
specifically excludes this case. (See§22.1 and§23.5 for answer.)

950 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Array Manipulation Functions

These include many powerful features that a good Fortran 90 programmer
should master.

[argTS] cshift(array,shift,dim)
If dim is omitted, it is taken to be 1. Returns the result of circularly
left-shifting every one-dimensional section ofarray (in dimension
dim) by shift (which may be negative). That is, for positiveshift,
values are moved to smaller subscript positions. Consult a Fortran 90
reference (e.g., [M&R,§8.13.5]) for the case whereshift is an array.

[argTS] merge(tsource,fsource,mask)
Returns same shape object astsource andfsource containing the
former’s components wheremask is true, the latter’s where it is false.

[argTS] eoshift(array,shift,boundary,dim)
If dim is omitted, it is taken to be 1. Returns the result of end-off left-
shifting every one-dimensional section ofarray (in dimensiondim)
by shift (which may be negative). That is, for positiveshift, values
are moved to smaller subscript positions. Ifboundary is present as a
scalar, it supplies elements to fill in the blanks; if it is not present, zero
values are used. Consult a Fortran 90 reference (e.g., [M&R,§8.13.5])
for the case whereboundary and/orshift is an array.

[argT] pack(array,mask,vector)

Returns a one-dimensional array containing the elements ofarray

that pass themask. Components of optionalvector are used to pad
out the result to the size ofvector with specified values.

[argT] reshape(source,shape,pad,order)

Takes the elements ofsource, in normal Fortran order, and returns
them (as many as will fit) as an array whose shape is specified by
the one-dimensional integer arrayshape. If there is space remaining,
thenpad must be specified, and is used (as many sequential copies
as necessary) to fill out the rest. For description oforder, consult a
Fortran 90 reference, e.g., [M&R, 8.13.3].

[argT] spread(source,dim,ncopies)

Returns an array whose rank is one greater thansource, and whose
dim dimension is of lengthncopies. Each of the result’sncopies
array sections having a fixed subscript in dimensiondim is a copy of
source. (That is, it spreadssource into thedimth dimension.)

[argT] transpose(matrix)

Returns the transpose ofmatrix, which must be two-dimensional.

[argT] unpack(vector,mask,field)

Returns an array whose type is that ofvector, but whose shape is
that ofmask. The components ofvector are put, in order, into the
positions wheremask is true. Wheremask is false, components of
field (which may be a scalar or an array with the same shape as
mask) are used instead.

21.4 Fortran 90 Intrinsic Procedures 951

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Bitwise Functions

Most of the bitwise functions should be familiar to Fortran 77 programmers
as longstanding standard extensions of that language. Note that the bitpositions
number from zero to one less than the value returned by thebit size function.
Also note that bit positions numberfrom right to left. Except forbit size, the
following functions are all elemental.

[Int] bit size(i)

Number of bits in the integer type ofi.

[Lgcl] btest(i,pos)

True if bit positionpos is 1, false otherwise.

[Int] iand(i,j)

Bitwise logical and.

[Int] ibclr(i,pos)

Returnsi but with bit positionpos set to zero.

[Int] ibits(i,pos,len)

Extractslen consecutive bits starting at positionpos and puts them
in the low bit positions of the returned value. (The high positions
are zero.)

[Int] ibset(i,pos)

Returnsi but with bit positionpos set to 1.

[Int] ieor(i,j)

Bitwise exclusive or.

[Int] ior(i,j)

Bitwise logical or.

[Int] ishft(i,shift)

Bitwise left shift byshift (which may be negative) with zeros shifted
in from the other end.

[Int] ishftc(i,shift)

Bitwise circularly left shift byshift (which may be negative).

[Int] not(i)

Bitwise logical complement.

Some Functions Relating to Numerical Representations

[Real] epsilon(x)

Smallest nonnegligible quantity relative to1 in the numerical model
of x.

[Num] huge(x)

Largest representable number in the numerical model ofx.

[Int] kind(x)

952 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Returns the kind value for the numerical model ofx.

[Real] nearest(x,s)

Real number nearest tox in the direction specified by the sign ofs.

[Real] tiny(x)

Smallest positive number in the numerical model ofx.

Other Intrinsic Procedures

[Lgcl] present(a)

True, within a subprogram, if an optional argument is actually present,
otherwise false.

[Lgcl] associated(pointer,target)

True if pointer is associated withtarget or (if target is absent)
with any target, otherwise false.

[Lgcl] allocated(array)

True if the allocatablearray is allocated, otherwise false.

There are some pitfalls in usingassociated andallocated, having to do
with arrays and pointers that can find themselves inundefinedstatus [see§21.5,
and also M&R,§3.3 and§6.5.1]. For example, pointers are always “born” in an
undefined status, where theassociated function returns unpredictable values.

For completeness, here is a list of Fortran 90’s intrinsic procedures not already
mentioned:

Other Numerical Representation Functions:digits, exponent, fraction,
rrspacing, scale, set exponent, spacing, maxexponent, minexponent,
precision, radix, range, selected int kind, selected real kind.

Lexical comparison: lge, lgt, lle, llt.
Character functions: ichar, char, achar, iachar, index, adjustl,

adjustr, len trim, repeat, scan, trim, verify.
Other: mvbits, transfer, date and time, system clock, random seed,

random number. (We will discuss random numbers in some detail in Chapter B7.)

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.5 Advanced Fortran 90 Topics 953

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

21.5 Advanced Fortran 90 Topics

Pointers, Arrays, and Memory Management

One of the biggest improvements in Fortran 90 over Fortran 77 is in the
handling of arrays, which are the cornerstone of many numerical algorithms. In this
subsection we will take a closer look at how to use some of these new array features
effectively. We will look at how to code certain commonly occurring elements of
program design, and we will pay particular attention to avoiding “memory leaks,”
where — usually inadvertently — we keep cumulatively allocating new storage for
an array, every time some piece of code is invoked.

Let’s first review some of the rules for using allocatable arrays and pointers to
arrays. Recall that a pointer is born with an undefined status. Its status changes
to “associated” when you make it refer to a target, and to “disassociated” when
you nullify the pointer. [M&R,§3.3] You can also usenullify on a newly
born pointer to change its status from undefined to disassociated; this allows you to
test the status with theassociated inquiry function. [M&R, §6.5.4] (While many
compilers will not produce a run-time error if you test an undefined pointer with
associated, you can’t rely on thislaissez-fairein your programming.)

The initial status of an allocatable array is “not currently allocated.” Its status
changes to “allocated” when you give it storage withallocate, and back to “not
currently allocated” when you usedeallocate. [M&R, §6.5.1] You can test the
status with theallocated inquiry function. Note that while you can also give a
pointer fresh storage withallocate, you can’t test this withallocated — only
associated is allowed with pointers. Note also that nullifying an allocated pointer
leaves its associated storage in limbo. You must insteaddeallocate, which gives
the pointer a testable “disassociated” status.

While allocating an array that is already allocated gives an error, you are allowed
to allocate a pointer that already has a target. This breaks the old association, and
could leave the old target inaccessible if there is no other pointer associated with
it. [M&R, §6.5.2] Deallocating an array or pointer that has not been allocated is
always an error.

Allocated arrays that are local to a subprogram acquire the “undefined” status
on exit from the subprogram unless they have theSAVE attribute. (Again, not all
compilers enforce this, but be warned!) Such undefined arrays cannot be referenced
in any way, so you should explicitly deallocate all allocated arrays that are not
saved before returning from a subprogram. [M&R,§6.5.1] The same rule applies
to arrays declared in modules that are currently accessed only by the subprogram.
While you can reference undefined pointers (e.g., by first nullifying them), it is good
programming practice to deallocate explicitly any allocated pointers declared locally
before leaving a subprogram or module.

Now let’s turn to using these features in programs. The simplest example is
when we want to implement global storage of an array that needs to be accessed by
two or more different routines, and we want the size of the array to be determined
at run time. As mentioned earlier, we implement global storage with aMODULE

rather than aCOMMON block. (We ignore here the additional possibility of passing

954 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

global variables by having one routineCONTAINed within the other.) There are
two good ways of handling the dynamical allocation in aMODULE. Method 1 uses
an allocatable array:

MODULE a
REAL(SP), DIMENSION(:), ALLOCATABLE :: x
END MODULE a

SUBROUTINE b(y)
USE a
REAL(SP), DIMENSION(:) :: y
...
allocate(x(size(y)))
... [other routines usingx called here] ...
END SUBROUTINE b

Here the global variablex gets assigned storage in subroutineb (in this case,
the same as the length ofy). The length ofy is of course defined in the procedure
that callsb. The arrayx is made available to any other subroutine called byb by
including aUSE a statement. The status ofx can be checked with anallocated
inquiry function on entry into eitherb or the other subroutine if necessary. As
discussed above, you must be sure to deallocatex before returning from subroutine
b. If you wantx to retain its values between calls tob, you add theSAVE attribute
to its declaration ina, anddon’t deallocate it on returning fromb. (Alternatively,
you could put aUSE a in your main program, but we consider that bug-prone, since
forgetting to do so can create all manner of difficult-to-diagnose havoc.) To avoid
allocatingx more than once, you test it on entry intob:

if (.not. allocated(x)) allocate(x(size(y)))

The second way to implement this type of global storage (Method 2) uses
a pointer:

MODULE a
REAL(SP), DIMENSION(:), POINTER :: x
END MODULE a

SUBROUTINE b(y)
USE a
REAL(SP), DIMENSION(:) :: y
REAL(SP), DIMENSION(size(y)), TARGET :: xx
...
x=>xx
... [other routines usingx called here] ...
END SUBROUTINE b

Here theautomatic arrayxx gets its temporary storage automatically on entry
into b, and automatically gets deallocated on exit fromb. [M&R, §6.4] The global
pointerx can access this storage in any routine with aUSE a that is called byb.
You can check that things are in order in such a called routine by testingx with
associated. If you are going to usex for some other purpose as well, you should
nullify it on leavingb so that it doesn’t have undefined status. Note that this
implementation does not allow values to be saved between calls: You can’tSAVE

automatic arrays — that’s not what they’re for. You would have toSAVE x in
the module, andallocate it in the subroutine instead of pointing it to a suitable
automatic array. But this is essentially Method 1 with the added complication of using
a pointer, so Method 1 is simpler when you want to save values. When you don’t

21.5 Advanced Fortran 90 Topics 955

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

need to save values between calls, we lean towards Method 2 over Method 1 because
we like the automatic allocation and deallocation, but either method works fine.

An example of Method 1 (allocatable array) is in routinerkdumb on page 1297.
An example of Method 1 withSAVE is in routinepwtset on p. 1265. Method
2 (pointer) shows up in routinesnewt (p. 1196),broydn (p. 1199), andfitexy
(p. 1286). A variation is shown in routineslinmin (p. 1211) anddlinmin (p. 1212):
When the array that needs to be shared is an argument of one of the routines,
Method 2 is better.

An extension of these ideas occurs if we allocate some storage for an array
initially, but then might need to increase the size of the array later without losing
the already-stored values. The functionreallocate in our utility modulenrutil
will handle this for you, but it expects a pointer argument as in Method 2. Since
no automatic arrays are used, you are free toSAVE the pointer if necessary. Here
is a simple example of how to usereallocate to create a workspace array that
is local to a subroutine:

SUBROUTINE a
USE nrutil, ONLY : reallocate
REAL(SP), DIMENSION(:), POINTER, SAVE :: wksp
LOGICAL(LGT), SAVE :: init=.true.
if (init) then

init=.false.
nullify(wksp)
wksp=>reallocate(wksp,100)

end if
...
if (nterm > size(wksp)) wksp=>reallocate(wksp,2*size(wksp))
...
END SUBROUTINE a

Here the workspace is initially allocated a size of 100. If the number of elements
used (nterm) ever exceeds the size of the workspace, the workspace is doubled. (In
a realistic example, one would of course check that the doubled size is in fact big
enough.) Fortran 90 experts can note that theSAVE oninit is not strictly necessary:
Any local variable that is initialized is automatically saved. [M&R,§7.5]

You can find similar examples ofreallocate (with some further discussion) in
eulsum (p. 1070),hufenc (p. 1348), andarcode (p. 1350). Examples of reallocate
used with global variables in modules are inodeint (p. 1300) andran state

(p. 1144).
Another situation where we have to use pointers and not allocatable arrays

is when the storage is required for components of a derived type, which are not
allowed to have the allocatable attribute. Examples are inhufmak (p. 1346) and
arcmak (p. 1349).

Turning away from issues relating to global variables, we now consider several
other important programming situations that are nicely handled with pointers. The
first case is when we want a subroutine to return an array whose size is not known
in advance. Since dummy arguments are not allocatable, we must use a pointer.
Here is the basic construction:

SUBROUTINE a(x,nx)
REAL(SP), DIMENSION(:), POINTER :: x
INTEGER(I4B), INTENT(OUT) :: nx
LOGICAL(LGT), SAVE :: init=.true.
if (init) then

956 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

init=.false.
nullify(x)

else
if (associated(x)) deallocate(x)

end if
...
nx=...
allocate(x(nx))
x(1:nx)=...
END SUBROUTINE a

Since the length ofx can be found fromsize(x), it is not absolutely necessary
to passnx as an argument. Note the use of the initial logic to avoid memory
leaks. If a higher-level subroutine wants to recover the memory associated withx

from the last call toSUBROUTINE a, it can do so by first deallocating it, and then
nullifying the pointer. Examples of this structure are inzbrak (p. 1184),period
(p. 1258), andfasper (p. 1259). A related situation is where we want a function
to return an array whose size is not predetermined, such as involtra on (p. 1326).
The discussion ofvoltra also explains the potential pitfalls of functions returning
pointers to dynamically allocated arrays.

A final useful pointer construction enables us to set up a data structure that is
essentially an array of arrays, independently allocatable on each part. We are not
allowed to declare an array of pointers in Fortran 90, but we can do this indirectly
by defining a derived type that consists of a pointer to the appropriate kind of array.
[M&R, §6.11] We can then define a variable that is an allocatable array of the new
type. For example,

TYPE ptr_to_arr
REAL(SP), DIMENSION(:), POINTER :: arr

END TYPE
TYPE(ptr_to_arr), DIMENSION(:), ALLOCATABLE :: x
...
allocate(x(n))
...
do i=1,n

allocate(x(i)%arr(m))
end do

sets up a setx of n arrays of lengthm. See also the example inmglin (p. 1334).
There is a potential problem with dynamical memory allocation that we should

mention. The Fortran 90 standard does not require that the compiler perform
“garbage collection,” that is, it is not required to recover deallocated memory into
nice contiguous pieces for reuse. If you enter and exit a subroutine many times,
and each time a large chunk of memory gets allocated and deallocated, you could
run out of memory with a “dumb” compiler. You can often alleviate the problem
by deallocating variables in the reverse order that you allocated them. This tends to
keep a large contiguous piece of memory free at the top of the heap.

Scope, Visibility, and Data Hiding

An important principle of good programming practice ismodularization, the
idea that different parts of a program should be insulated from each other as much
as possible. An important subcase of modularization isdata hiding, the principle
that actions carried out on variables in one part of the code should not be able to

21.5 Advanced Fortran 90 Topics 957

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

affect the values of variables in other parts of the code. When it is necessary for
one “island” of code to communicate with another, the communication should be
through a well-defined interface that makes it obvious exactly what communication
is taking place, and prevents any other interchange from occurring. Otherwise,
different sections of code should not have access to variables that they don’t need.

The concept of data hiding extends not only to variables, but also to the names
of procedures that manipulate the variables: A program for screen graphics might
give the user access to a routine for drawing a circle, but it might “hide” the
names (and methods of operation) of the primitive routines used for calculating
the coordinates of the points on the circumference. Besides producing code that
is easier to understand and to modify, data hiding prevents unintended side effects
from producing hard-to-find errors.

In Fortran, the principal language construction that effects data hiding is the
use of subroutines. If all subprograms were restricted to have no more than ten
executable statements per routine, and to communicate between routines only by
an explicit list of arguments, the number of programming errors might be greatly
reduced! Unfortunately few tasks can be easily coded in this style. For this and
other reasons, we think that too much procedurization is a bad thing; one wants
to find theright amount. Fortunately Fortran 90 provides several additional tools
to help with data hiding.

Global variables and routine names are important, but potentially dangerous,
things. In Fortran 90, global variables are typically encapsulated in modules. Access
is granted only to routines with an appropriateUSE statement, and can be restricted
to specific identifiers by theONLY option. [M&R, §7.10] In addition, variable and
routine names within the module can be designated asPUBLIC or PRIVATE (see,
e.g., quad3d on p. 1065). [M&R,§7.6]

The other way global variables get communicated is by having one routine
CONTAINed within another. [M&R,§5.6] This usage is potentially lethal, however,
becauseall the outer routine’s variables are visible to the inner routine. You can
try to control the problem somewhat by passing some variables back and forth as
arguments of the inner routine, but that still doesn’t prevent inadvertent side effects.
(The most common, and most stupid, is inadvertent reuse of variables namedi or j
in theCONTAINed routine.) Also, a long list of arguments reduces the convenience
of using an internal routine in the first place. We advise that internal subprograms
be used with caution, and only to carry out simple tasks.

There are some good ways to useCONTAINS, however. Several of our recipes
have the following structure: A principal routine is invoked with several arguments.
It calls a subsidiary routine, which needs to know some of the principal routine’s
arguments, some global variables, and some values communicated directly as
arguments to the subsidiary routine. In Fortran 77, we have usually coded this by
passing the global variables in aCOMMON block and all other variables as arguments
to the subsidiary routine. If necessary, we copied the arguments of the primary
routine before passing them to the subsidiary routine. In Fortran 90, there is a more
elegant way of accomplishing this, as follows:

SUBROUTINE recipe(arg)
REAL(SP) :: arg
REAL(SP) :: global_var
call recipe_private
CONTAINS

958 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

SUBROUTINE recipe_private
...
call subsidiary(local_arg)
...
END SUBROUTINE recipe_private

SUBROUTINE subsidiary(local_arg)
...
END SUBROUTINE subsidiary
END SUBROUTINE recipe

Notice that the principal routine (recipe) has practically nothing in it — only dec-
larations of variables intended to be visible to the subsidiary routine (subsidiary).
All the real work of recipe is done inrecipe private. This latter routine
has visibility on all of recipe’s variables, while any additional variables that
recipe private defines arenot visible to subsidiary — which is the whole
purpose of this way of organizing things. Obviouslyarg and global var can
be much more general data types than the example shown here, including function
names. For examples of this construction, seeamoeba (p. 1208),amebsa (p. 1222),
mrqmin (p. 1292), andmedfit (p. 1294).

Recursion

A subprogram is recursive if it calls itself. While forbidden in Fortran
77, recursion is allowed in Fortran 90. [M&R,§5.16–§5.17] You must supply the
keywordRECURSIVE in front of theFUNCTIONorSUBROUTINEkeyword. In addition,
if a FUNCTION calls itself directly, as opposed to calling another subprogram that in
turn calls it, you must supply a variable to hold the result with theRESULT keyword.
Typical syntax for this case is:

RECURSIVE FUNCTION f(x) RESULT(g)
REAL(SP) :: x,g
if ...

g=...
else

g=f(...)
end if
END FUNCTION f

When a function calls itself directly, as in this example, there always has to be a
“base case” that does not call the function; otherwise the recursion never terminates.
We have indicated this schematically with theif...else...end if structure.

On serial machines we tend to avoid recursive implementations because of the
additional overhead they incur at execution time. Occasionally there are algorithms
for which the recursion overhead is relatively small, and the recursive implementation
is simpler than an iterative version. Examples in this book arequad 3d (p. 1065),
miser (p. 1164), andmglin (p. 1334). Recursion is much more important when
parallelization is the goal. We will encounter in Chapter 22 numerous examples of
algorithms that can be parallelized with recursion.

SAVE Usage Style

A quirk of Fortran 90 is that any variable with initial values acquires the
SAVE attribute automatically. [M&R,§7.5 and§7.9] As a help to understanding

21.6 And Coming Soon: Fortran 95 959

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

an algorithm, we have elected to put an explicitSAVE on all variables that really
do need to retain their values between calls to a routine. We do this even if it is
redundant because the variables are initialized. Note that we generally prefer to
assign initial values with initialization expressions rather than withDATA statements.
We reserveDATA statements for cases where it is convenient to use the repeat count
feature to set multiple occurrences of a value, or when binary, octal, or hexadecimal
constants are used. [M&R,§2.6.1]

Named Control Structures

Fortran 90 allows control structures such asdo loops andif blocks to be
named. [M&R,§4.3–§4.5] Typical syntax is

name:do i=1,n
...

end do name

One use of naming control structures is to improve readability of the code,
especially when there are many levels of nested loops andif blocks. A more
important use is to allowexit andcycle statements, which normally refer to the
innermostdo loop in which they are contained, to transfer execution to the end
of some outer loop. This is effected by adding the name of the outer loop to the
statement:exit name or cycle name.

There is great potential for misuse with named control structures, since they
share some features of the much-malignedgoto. We recommend that you use them
sparingly. For a good example of their use, contrast the Fortran 77 version ofsimplx

with the Fortran 90 version on p. 1216.

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.6 And Coming Soon: Fortran 95

One of the more positive effects of Fortran 90’s long gestation period has been
the general recognition, both by the X3J3 committee and by the community at large,
that Fortran needs to evolve over time. Indeed, as we write, the process of bringing
forth a minor, but by no means insignificant, updating of Fortran 90 — named
Fortran 95 — is well under way.

Fortran 95 will differ from Fortran 90 in about a dozen features, only a handful
of which are of any importance to this book. Generally these are extensions that
will make programming, especially parallel programming, easier. In this section we
give a summary of the anticipated language changes. In§22.1 and§22.5 we will
comment further on the implications of Fortran 95 to some parallel programming
tasks; in§23.7 we comment on what differences Fortran 95 will make to ournrutil

utility functions.
No programs in Chapters B1 through B20 of this book edition use any Fortran

95 extensions.

960 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FORALL Statements and Blocks

Fortran 95 introduces a newforall control structure, somewhat akin to the
where construct, but allowing for greater flexibility. It is something like a do-loop,
but with the proviso that the indices looped over are allowed to be done in any order
(ideally, in parallel). Theforall construction comes in both single-statement and
block variants. Instead of using the do-loop’s comma-separated triplets of lower-
value, upper-value, and increment, it borrows its syntax from the colon-separated
form of array sections. Some examples will give you the idea.

Here is a simple example that could alternatively be done with Fortran 90’s
array sections andtranspose intrinsic:

forall (i=1:20, j=1:10:2) x(i,j)=y(j,i)

The block form allows more than one executable statement:

forall (i=1:20, j=1:10:2)
x(i,j)=y(j,i)
z(i,j)=y(i,j)**2

end forall

Here is an example that cannot be done with Fortran 90 array sections:

forall (i=1:20, j=1:20) a(i,j)=3*i+j**2

forall statements can also take optional masks that restrict their action to a
subset of the loop index combinations:

forall (i=1:100, j=1:100, (i>=j .and. x(i,j)/=0.0)) x(i,j)=1.0/x(i,j)

forall constructions can be nested, or nested insidewhere blocks, or have
where constructions inside them. An additional new feature in Fortran 95 is that
where blocks can themselves be nested.

PURE Procedures

Because the inside iteration of aforall block can be done in any order, or in
parallel, there is a logical difficulty in allowing functions or subroutines inside such
blocks: If the function or subroutine hasside effects(that is, if it changes any data
elsewhere in the machine, or in its own saved variables) then the result of aforall

calculation could depend on the order in which the iterations happen to be done.
This can’t be tolerated, of course; hence a newPURE attribute for subprograms.

While the exact stipulations are somewhat technical, the basic idea is that if you
declare a function or subroutine asPURE, with a syntax like,

PURE FUNCTION myfunc(x,y,z)

or
PURE SUBROUTINE mysub(x,y,z)

then you are guaranteeing to the compiler (and it will enforce) that the only values
changed bymysubormyfuncare returned function values, subroutine arguments with
theINTENT(OUT) attribute, and automatic (scratch) variables within the procedure.

You can then use your pure procedures withinforall constructions. Pure
functions are also allowed in some specification statements.

21.6 And Coming Soon: Fortran 95 961

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

ELEMENTAL Procedures

Fortran 95 removes Fortran 90’s nagging restriction that only intrinsic functions
are elemental. The way this works is that you write a pure procedure that operates
on scalar values, but include the attributeELEMENTAL (which automatically implies
PURE). Then, as long as the function has an explicit interface in the referencing
program, you can call it with any shape of argument, and it will act elementally.
Here’s an example:

ELEMENTAL FUNCTION myfunc(x,y,z)
REAL :: x,y,z,myfunc
...
myfunc = ...
END

In a program with an explicit interface formyfunc you could now have

REAL, DIMENSION(10,20) :: x,y,z,w
...
w=myfunc(x,y,z)

Pointer and Allocatable Improvements

Fortran 95, unlike Fortran 90, requires that any allocatable variables (except
those withSAVE attributes) that are allocated within a subprogram be automatically
deallocated by the compiler when the subprogram is exited. This will remove Fortran
90’s “undefined allocation status” bugaboo.

Fortran 95 also provides a method for pointer variables to be born with
disassociated association status, instead of the default (and often inconvenient)
“undefined” status. The syntax is to add an initializing=> NULL() to the declaration,
as:

REAL, DIMENSION(:,:), POINTER :: mypoint => NULL()

This does not, however, eliminate the possibility of undefined association status,
because you have to remember to use the null initializer if want your pointer to
be disassociated.

Some Other Fortran 95 Features

In Fortran 95,maxloc andminloc have the additional optional argumentDIM,
which causes them to act on all one-dimensional sections that span through the
named dimension. This provides a means for getting the locations of the values
returned by the corresponding functionsmaxval andminval in the case that their
DIM argument is present.

The sign intrinsic can now distinguish a negative from a positive real zero
value: sign(2.0,-0.0) is −2.0.

There is a new intrinsic subroutinecpu time(time) that returns as a real value
time a process’s elapsed CPU time.

There are some minor changes in the namelist facility, in defining minimum
field widths for the I, B, O, Z, and F edit descriptors, and in resolving minor conflicts
with some other standards.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter 22. Introduction
to Parallel
Programming

22.0 Why Think Parallel?

In recent years we Numerical Recipes authors have increasingly become
convinced that a certain revolution, cryptically denoted by the words “parallel
programming,” is about to burst forth from its gestation and adolescence in the
community of supercomputer users, and become the mainstream methodology for
all computing.

Let’s review the past: Take a screwdriver and open up the computer (workstation
or PC) that sits on your desk. (Don’t blame us if this voids your warranty; and
be sure to unplug it first!) Count the integrated circuits — just the bigger ones,
with more than a million gates (transistors). As we write, in 1995, even lowly
memory chips have one or four million gates, and this number will increase rapidly
in coming years. You’ll probably count at least dozens, and often hundreds, of
such chips in your computer.

Next ask, how many of these chips are CPUs? That is, how many implement
von Neumann processors capable of executing arbitrary, stored program code?
For most computers, in 1995, the answer is: about one. A significant number
of computers do have secondary processors that offload input-output and/or video
functions. So, two or three is often a more accurate answer, but only one is usually
under the user’s direct control.

Why do our desktop computers have dozens or hundreds of memory chips, but
most often only one (user-accessible) CPU? Do CPU chips intrinsically cost more
to manufacture? No. Are CPU chips more expensive than memory chips? Yes,
primarily because fixed development and design costs must be distributed over a
smaller number of units sold. We have been in a kind of economic equilibrium:
CPU’s are relatively expensive because there is only one per computer; and there is
only one per computer, because they are relatively expensive.

Stabilizing this equilibrium has been the fact that there has been no standard, or
widely taught, methodology for parallel programming. Except for the special case of
scientific computing on supercomputers (where large problems often have a regular
or geometric character), it is not too much of an exaggeration to say that nobody
really knows howto program multiprocessor machines. Symmetric multiprocessor

962

22.0 Why Think Parallel? 963

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

operating systems, for example, have been very slow in developing; and efficient,
parallel methodologies for query-serving on large databases are even now a subject
of continuing research.

However, things are now changing. We consider it an easy prognostication that,
by the first years of the new century, the typical desktop computer will have 4 to 8
user-accessible CPUs; ten years after that, the typical number will be between 16 and
512. It is not coincidence that these numbers are characteristic of supercomputers
(including some quite different architectures) in 1995. The rough rule of ten years’
lag from supercomputer to desktop has held firm for quite some time now.

Scientists and engineers have the advantage that techniques for parallel com-
putation in their disciplineshave already been developed. With multiprocessor
workstations right around the corner, we think that now is the right time for scientists
and engineers who use computers to startthinking parallel. We don’t mean that you
should put an axe through the screen of your fast serial (single-CPU) workstation.
We do mean, however, that you should start programming somewhat differently
on that workstation, indeed, start thinking a bit differently about the way that you
approach numerical problems in general.

In this volume ofNumerical Recipes in Fortran, our pedagogical goal is to
show you that there are conceptual and practical benefits in parallel thinking, even
if you are using a serial machine today. These benefits include conciseness and
clarity of code, reusability of code in wider contexts, and (not insignificantly)
increased portability of code to today’s parallel supercomputers. Of course, on
parallel machines, either supercomputers today or desktop machines tomorrow, the
benefits of thinking parallel are much more tangible: They translate into significant
improvements in efficiency and computational capability.

Thinking Parallel with Fortran 90

Until very recently, a strong inhibition to thinking parallel was the lack of any
standard, architecture-independent, computer language in which to think. That has
changed with the finalization of the Fortran 90 language standard, and with the
availability of good, optimizing Fortran 90 compilers on a variety of platforms.

There is a significant body of opinion (with which we, however, disagree) that
there is no such thing as architecture-independent parallel programming. Proponents
of this view, who are generally committed wizards at programming on one or another
particular architecture, point to the fact that algorithms that are optimized to one
architecture can run hundreds of times more slowly on other architectures. And,
they are correct!

Our opposing point of view is one of pragmatism. We think that it is not
hard to learn, in a general way, what kinds of architectures are in general use, and
what kinds of parallel constructions work well (or poorly) on each kind. With this
knowledge (much of which we hope to develop in this book) the user can, we think,
write good, general-purpose parallel code that works on a variety of architectures
— including, importantly, on purely serial machines. Equally important, the user
will be aware of when certain parts of a code can be significantly improved on
some, but not other, architectures.

Fortran 90 is a good test-bench for this point of view. It is not the perfect
language for parallel programming. But it isa language, and it is the only

964 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

cross-platformstandardlanguage now available. The committee that developed
the language between 1978 and 1991 (known technically as X3J3) had strong
representation from both a traditional “vectorization” viewpoint (e.g., from the Cray
XMP and YMP series of computers), and also from the “data parallel” or “SIMD”
viewpoints of parallel machines like the CM-2 and CM-5 from Thinking Machines,
Inc. Language compromises were made, and a few (in our view) almost essential
features were left out (see§22.5). But, by and large, the necessary tools are there: If
you learn to think parallel in Fortran 90, you will easily be able to transfer the skill
to future parallel standards, whether they are Fortran-based, C-based, or other.

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

22.1 Fortran 90 Data Parallelism: Arrays
and Intrinsics

The underlying model for parallel computation in Fortran 90 isdata parallelism,
implemented by the use of arrays of data, and by the provision of operations and
intrinsic functions that act on those arrays in parallel, in a manner optimized by
the compiler for each particular hardware architecture. We will not try to draw a
fine definitional distinction between “data parallelism” and so-called SIMD (single
instruction multiple data) programming. For our purposes the two terms mean about
the same thing: The programmer writes a single operation, “+” say, and the compiler
causes it to be carried out on multiple pieces of data in as parallel a manner as the
underlying hardware allows.

Any kind of parallel computing that is not SIMD is generally called MIMD
(multiple instruction multiple data). A parallel programming language with MIMD
features might allow, for example, several different subroutines — acting on different
parts of the data — to be called into execution simultaneously. Fortran 90 has few, if
any, MIMD constructions. A Fortran 90 compiler might, on some machines, execute
MIMD code in implementing some Fortran 90 intrinsic functions (pack or unpack,
e.g.), but this will be hidden from the Fortran 90 user. Some extensions of Fortran
90, like HPF, do implement MIMD features explicitly; but we will not consider these
in this book. Fortran 95’sforall andPURE extensions (see§21.6) will allow some
significantly greater access to MIMD features (see§22.5).

Array Parallel Operations

We have already met the most basic, and most important, parallel facility of
Fortran 90, namely, the ability to use whole arrays in expressions and assignments,
with the indicated operations being effected in parallel across the array. Suppose,
for example, we have the two-dimensional matricesa, b, andc,

REAL, DIMENSION(30,30) :: a,b,c

22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics 965

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Then, instead of the serial construction,

do j=1,30
do k=1,30

c(j,k)=a(j,k)+b(j,k)
end do

end do

which is of course perfectly valid Fortran 90 code, we can simply write

c=a+b

The compiler deduces from the declaration statement thata, b, andc are matrices,
and what their bounding dimensions are.

Let us dwell for a moment on the conceptual differences between the serial
code and parallel code for the above matrix addition. Although one is perhaps
used to seeing the nested do-loops as simply an idiom for “do-the-enclosed-on-all-
components,” it in fact, according to the rules of Fortran, specifies a very particular
time-ordering for the desired operations. The matrix elements are added by rows, in
order (j=1,30), and within each row, by columns, in order (k=1,30).

In fact, the serial code aboveoverspecifiesthe desired task, since it is guaranteed
by the laws of mathematics that the order in which the element operations are done
is of no possible relevance. Over the 50 year lifetime of serial von Neuman
computers, we programmers have been brainwashed to break up all problems into
single executable streamsin the time dimension only. Indeed, the major design
problem for supercomputer compilers for the last 20 years has been toundosuch
serial constructions and recover the underlying “parallel thoughts,” for execution in
vector or parallel processors. Now, rather than taking this expensive detour into and
out of serial-land, we are asked simply to say what we mean in the first place,c=a+b.

The essence of parallel programming isnot to force “into the time dimen-
sion” (i.e., to serialize) operations that naturally extend across a span of data,
that is, “in the space dimension.” If it were not for 50-year-old collective habits,
and the languages designed to support them, parallel programming would probably
strike us as more natural than its serial counterpart.

Broadcasts and Dimensional Expansion: SSP vs. MMP

We have previously mentioned the Fortran 90 rule that a scalar variable is
conformable with any shape array. Thus, we can implement a calculation such as

yi = xi + s, i = 1, . . . , n (22.1.1)

with code like

y=x+s

where we of course assume previous declarations like

REAL(SP) :: s
REAL(SP), DIMENSION(n) :: x,y

with n a compile-time constant or dummy argument. (Hereafter, we will omit the
declarations in examples that are this simple.)

This seemingly simple construction actually hides an important underlying
parallel capability, namely, that ofbroadcast. The sums iny=x+s are done in parallel

966 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

on different CPUs, each CPU accessing different components ofx andy. Yet, they
all must access the same scalar values. If the hardware has local memory for each
CPU, the value ofs must be replicated and transferred to each CPU’s local memory.
On the other hand, if the hardware implements a single, global memory space, it is
vital to do something that mitigates the traffic jam potentially caused by all the CPUs
trying to access the same memory location at the same time. (We will use the term
“broadcast” to refer equally to both cases.) Although hidden from the user, Fortran
90’s ability to do broadcasts is an essential feature of it as a parallel language.

Broadcasts can be more complicated than the above simple example. Consider,
for example, the calculation

wi =

n
∑

j=1

|xi + xj|, i = 1, . . . , n (22.1.2)

Here, we are doingn2 operations: For each ofn values ofi there is a sum over
n values of j.

Serial code for this calculation might be

do i=1,n
w(i)=0.
do j=1,n

w(i)=w(i)+abs(x(i)+x(j))
end do

end do

The obvious immediate parallelization in Fortran 90 uses thesum intrinsic
function to eliminate the inner do-loop. This would be a suitable amount of
parallelization for a small-scale parallel machine, with a few processors:

do i=1,n
w(i)=sum(abs(x(i)+x))

end do

Notice that the conformability rule implies that a new value ofx(i), a scalar, is
being broadcast to all the processors involved in theabs andsum, with each iteration
of the loop overi.

What about the outer do-loop? Do we need, or want, to eliminate it, too?
That depends on the architecture of your computer, and on the tradeoff between
time and memory in your problem (a common feature of all computing, no less
so parallel computing). Here is an implementation that is free of all do-loops,
in principle capable of being executed in a small number (independent ofn) of
parallel operations:

REAL(SP), DIMENSION(n,n) :: a
...
a = spread(x,dim=2,ncopies=n)+spread(x,dim=1,ncopies=n)
w = sum(abs(a),dim=1)

This is an example of what we calldimensional expansion, as implemented by
thespread intrinsic. Although the above may strike you initially as quite a cryptic
construction, it is easy to learn to read it. In the first assignment line, a matrix is
constructed with all possible values ofx(i)+x(j). In the second assignment line,
this matrix is collapsed back to a vector by applying the sum operation to the absolute
value of its elements, across one of its dimensions.

22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics 967

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

More explicitly, the first line creates a matrixa by adding two matrices each
constructed viaspread. In spread, thedim argument specifies which argument
is duplicated, so that the first termvariesacross its first (row) dimension, and vice
versa for the second term:

aij = xi + xj

=

x1 x1 x1 . . .
x2 x2 x2 . . .
x3 x3 x3 . . .
...

...
...

. . .

+

x1 x2 x3 . . .
x1 x2 x3 . . .
x1 x2 x3 . . .
...

...
...

. . .

(22.1.3)

Since equation (22.1.2) above is symmetric ini andj, it doesn’t really matter what
value ofdim we put in thesum construction, but the valuedim=1 corresponds to
summing across the rows, that is, down each column of equation (22.1.3).

Be sure that you understand that thespread construction changed anO(n)
memory requirement into anO(n2) one! If your values ofn are large, this is an
impossible burden, and the previous implementation with a single do-loop remains
the only practical one. On the other hand, if you are working on a massively parallel
machine, whose number of processors is comparable ton2 (or at least much larger
thann), then thespread construction, and the underlying broadcast capability that
it invokes, leads to a big win: Alln2 operations can be done in parallel. This
distinction between small-scale parallel machines — which we will hereafter refer to
asSSP machines— and massively multiprocessor machines — which we will refer
to asMMP machines— is an important one. A main goal of parallelism is to saturate
the available number of processors, and algorithms for doing so are often different
in the SSP and MMP opposite limits. Dimensional expansion is one method for
saturating processors in the MMP case.

Masks and “Index Loss”

An instructive extension of the above example is the following case of a product
that omits one term (the diagonal one):

wi =

n
∏

j=1

j �=i

(xj − xi), i = 1, . . . , n (22.1.4)

Formulas like equation (22.1.4) frequently occur in the context of interpolation,
where all thexi’s are known to be distinct, so let us for the moment assume that
this is the case.

Serial code for equation (22.1.4) could be

do i=1,n
w(i)=1.0_sp
do j=1,n

if (j /= i) w(i)=w(i)*(x(j)-x(i))
end do

end do

Parallel code for SSP machines, or for large enoughn on MMP machines,
could be

968 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

do i=1,n
w(i)=product(x-x(i), mask=(x/=x(i)))

end do

Here, themask argument in theproduct intrinsic function causes the diagonal term
to be omitted from the product, as we desire. There are some features of this code,
however, that bear commenting on.

First, notice that, according to the rules of conformability, the expression
x/=x(i) broadcasts the scalarx(i) and generates a logical array of lengthn,
suitable for use as amask in theproduct intrinsic. It is quite common in Fortran
90 to generate masks “on the fly” in this way, particularly if the mask is to be
used only once.

Second, notice that thej index has disappeared completely. It is now implicit
in the two occurrences ofx (equivalent tox(1:n)) on the right-hand side. With
the disappearance of thej index, we also lose the ability to do the test oni andj,
but must use, in essence,x(i) andx(j) instead! That is a very general feature
in Fortran 90: when an operation is done in parallel across an array, there isno
associated indexavailable within the operation. This “index loss,” as we will see in
later discussion, can sometimes be quite an annoyance.

A language construction present in CM [Connection Machine] Fortran, the
so-calledforall, which would have allowed access to an associated index in many
cases, was eliminated from Fortran 90 by the X3J3 committee, in a controversial
decision. Such a construction will come into the language in Fortran 95.

What about code for an MMP machine, where we are willing to use dimensional
expansion to achieve greater parallelism? Here, we can write,

a = spread(x,dim=2,ncopies=n)-spread(x,dim=1,ncopies=n)
w = product(a,dim=1,mask=(a/=0.))

This time it does matter that the value ofdim in theproduct intrinsic is1 rather
than2. If you write out the analog of equation (22.1.3) for the present example,
you’ll see that the above fragment is the right way around. The problem of index
loss is still with us: we have to construct a mask from the arraya, not from its
indices,both of which are now lost to us!

In most cases, there are workarounds (more, or less, awkward as they may be)
for the problem of index loss. In the worst cases, which are quite rare, you have to
create objects to hold, and thus bring back into play, the lost indices. For example,

INTEGER(I4B), DIMENSION(n) :: jj
...
jj = (/ (i,i=1,n) /)
do i=1,n

w(i)=product(x-x(i), mask=(jj/=i))
end do

Now the arrayjj is filled with the “lost” j index, so that it is available for use in
the mask. A similar technique, involving spreads ofjj, can be used in the above
MMP code fragment, which used dimensional expansion. (Fortran 95’sforall

construction will make index loss much less of a problem. See§21.6.)
Incidentally, the above Fortran 90 construction,(/ (i,i=1,n) /), is called

anarray constructor with implied do list. For reasons to be explained in§22.2, we
almost never use this construction, in most cases substituting a Numerical Recipes
utility function for generating arithmetical progressions, which we callarth.

22.1 Fortran 90 Data Parallelism: Arrays and Intrinsics 969

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Interprocessor Communication Costs

It is both a blessing and a curse that Fortran 90 completely hides from the user
the underlying machinery of interprocessor communication, that is, the way that data
values computed by (or stored locally near) one CPU make their way to a different
CPU that might need them next. The blessing is that, by and large, the Fortran 90
programmer need not be concerned with how this machinery works. If you write

a(1:10,1:10) = b(1:10,1:10) + c(10:1:-1,10:1:-1)

the required upside-down-and-backwards values of the arrayc are justthere, no
matter that a great deal of routing and switching may have taken place. An ancillary
blessing is that this book, unlike so many other (more highly technical) books on
parallel programming (see references below) need not be filled with complex and
subtle discussions of CPU connectivity, topology, routing algorithms, and so on.

The curse is, just as you might expect, that the Fortran 90 programmer can’t
control the interprocessor communication, even when it is desirable to do so. A
few regular communication patterns are “known” to the compiler through Fortran
90 intrinsic functions, for exampleb=transpose(a). These, presumably, are
done in an optimal way. However, many other regular patterns of communication,
which might also allow highly optimized implementations, don’t have corresponding
intrinsic functions. (An obvious example is the “butterfly” pattern of communication
that occurs in fast Fourier transforms.) These, if coded in Fortran 90 by using
general vector subscripts (e.g.,barr=arr(iarr)or barr(jarr)=arr, whereiarr
andjarr are integer arrays), lose all possibility of being optimized. The compiler
can’t distinguish a communication step with regular structure from one with general
structure, so it must assume the worst case, potentially resulting in very slow
execution.

About the only thing a Fortran 90 programmer can do is to start with a general
awareness of the kind of apparently parallel constructions thatmightbe quite slow
on his/her parallel machine, and then to refine that awareness by actual experience
and experiment. Here is our list of constructions most likely to cause interprocessor
communication bottlenecks:

• vector subscripts, likebarr=arr(iarr) or barr(jarr)=arr (that is,
general gather/scatter operations)

• the pack andunpack intrinsic functions
• mixing positive strides and negative strides in a single expression (as in

the aboveb(1:10,1:10)+c(10:1:-1,10:1:-1))
• thereshape intrinsic when used with theorder argument
• possibly, thecshift and eoshift extrinsics, especially for nonsmall

values of the shift.
On the other hand, the fact is that these constructionsareparallel, andare there

for you to use. If the alternative to using them is strictly serial code, you should
almost always give them a try.

Linear Algebra

You should be alert for opportunities to use combinations of thematmul,
spread, anddot product intrinsics to perform complicated linear algebra calcu-
lations. One useful intrinsic that is not provided in Fortran 90 is theouter product

970 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

of two vectors,

cij = aibj (22.1.5)

We already know how to implement this (cf. equation 22.1.3):

c = spread(a,dim=2,ncopies=size(b))*spread(b,dim=1,ncopies=size(a))

In fact, this operation occurs frequently enough to justify making it a utility function,
outerprod, which we will do in Chapter 23. There we also define other “outer”
operations between vectors, where the multiplication in the outer product is replaced
by another binary operation, such as addition or division.

Here is an example of using these various functions: Many linear algebra
routines require that a submatrix be updated according to a formula like

ajk = ajk + biaji

m
∑

p=i

apiapk, j = i, . . . , m, k = l, . . . , n (22.1.6)

where i, m, l, andn are fixed values. Using an array slice likea(:,i) to turn
api into a vector indexed byp, we can code the sum with amatmul, yielding a
vector indexed byk:

temp(l:n)=b(i)*matmul(a(i:m,i),a(i:m,l:n))

Here we have also included the multiplication byb i, a scalar for fixedi. The vector
temp, along with the vectoraji = a(:,i), is then turned into a matrix by the
outerprod utility and used to incrementajk:

a(i:m,l:n)=a(i:m,l:n)+outerprod(a(i:m,i),temp(l:n))

Sometimes the update formula is similar to (22.1.6), but with a slight permutation
of the indices. Such cases can be coded as above if you are careful about the order
of the quantities in thematmul and theouterprod.

CITED REFERENCES AND FURTHER READING:

Akl, S.G. 1989, The Design and Analysis of Parallel Algorithms (Englewood Cliffs, NJ: Prentice
Hall).

Bertsekas, D.P., and Tsitsiklis, J.N. 1989, Parallel and Distributed Computation: Numerical Meth-
ods (Englewood Cliffs, NJ: Prentice Hall).

Carey, G.F. 1989, Parallel Supercomputing: Methods, Algorithms, and Applications (New York:
Wiley).

Fountain, T.J. 1994, Parallel Computing: Principles and Practice (New York: Cambridge Univer-
sity Press).

Golub, G., and Ortega, J.M. 1993, Scientific Computing: An Introduction with Parallel Computing
(San Diego, CA: Academic Press).

Fox, G.C., et al. 1988, Solving Problems on Concurrent Processors, Volume I (Englewood Cliffs,
NJ: Prentice Hall).

Hockney, R.W., and Jesshope, C.R. 1988, Parallel Computers 2 (Bristol and Philadelphia: Adam
Hilger).

Kumar, V., et al. 1994, Introduction to Parallel Computing: Design and Analysis of Parallel
Algorithms (Redwood City, CA: Benjamin/Cummings).

Lewis, T.G., and El-Rewini, H. 1992, Introduction to Parallel Computing (Englewood Cliffs, NJ:
Prentice Hall).

22.2 Linear Recurrence and Related Calculations 971

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Modi, J.J. 1988, Parallel Algorithms and Matrix Computation (New York: Oxford University Press).

Smith, J.R. 1993, The Design and Analysis of Parallel Algorithms (New York: Oxford University
Press).

Van de Velde, E. 1994, Concurrent Scientific Computing (New York: Springer-Verlag).

22.2 Linear Recurrence and Related
Calculations

We have already seen that Fortran 90’sarray constructor with implied do list
can be used to generate simple series of integers, like(/ (i,i=1,n) /). Slightly
more generally, one might want to generate an arithmetic progression, by the formula

vj = b+ (j − 1)a, j = 1, . . . , n (22.2.1)

This is readily coded as

v(1:n) = (/ (b+(j-1)*a, j=1,n) /)

Although it is concise, and valid,we don’t like this coding.The reason is that
it violates the fundamental rule of “thinking parallel”: it turns a parallel operation
across a data vector into a serial do-loop over the components of that vector. Yes, we
know that the compiler might be smart enough to generate parallel code for implied
do lists; but it also mightnotbe smart enough, here or in more complicated examples.

Equation (22.2.1) is also the simplest example of alinear recurrence relation.
It can be rewritten as

v1 = b, vj = vj−1 + a, j = 2, . . . , n (22.2.2)

In this form (assuming that, in more complicated cases, one doesn’t know an explicit
solution like equation 22.2.1) one can’t write an explicit array constructor. Code like

v(1) = b
v(2:n) = (/ (v(j-1)+a,j=2,n) /) ! wrong

is legal Fortran 90 syntax, but illegal semantics; it doesnotdo the desired recurrence!
(The rules of Fortran 90 require that all the components ofv on the right-hand side
be evaluated before any of the components on the left-hand side are set.) Yet, as we
shall see, techniques for accomplishing the evaluation in parallel are available.

With this as our starting point, we now survey some particular tricks of the
(parallel) trade.

972 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Subvector Scaling: Arithmetic and Geometric Progressions

For explicit arithmetic progressions like equation (22.2.1), the simplest parallel
technique issubvector scaling[1]. The idea is to work your way through the desired
vector in larger and larger parallel chunks:

v1 = b

v2 = b+ a

v3...4 = v1...2 + 2a

v5...8 = v1...4 + 4a

v9...16 = v1...8 + 8a (22.2.3)

And so on, until you reach the length of your vector. (The last step will not
necessarily go all the way to the next power of 2, therefore.) The powers of 2,
timesa, can of course be obtained by successive doublings, rather than the explicit
multiplications shown above.

You can see that subvector scaling requires aboutlog2 n parallel steps to process
a vector of lengthn. Equally important for serial machines, or SSP machines, the
scalar operation count for subvector scaling is no worse than entirely serial code:
each new componentvi is produced by a single addition.

If addition is replaced by multiplication, the identical algorithm will produce
geometric progressions, instead of arithmetic progressions. In Chapter 23, we will
use subvector scaling to implement our utility functionsarth andgeop for these
two progressions. (You can then call one of these functions instead of recoding
equation 22.2.3 every time you need it.)

Vector Reduction: Evaluation of Polynomials

Logically related to subvector scaling is the case where a calculation can be
parallelized across a vector thatshrinksby a factor of 2 in each iteration, until a
desiredscalar result is reached. A good example of this is the parallel evaluation
of a polynomial[2]

P (x) =
N
∑

j=0

cjx
j (22.2.4)

For clarity we take the special case ofN = 5. Start with the vector of coefficients
(imagining appended zeros, as shown):

c0, c1, c2, c3, c4, c5, 0, . . .

Now, add the elements by pairs, multiplying the second of each pair byx:

c0 + c1x, c2 + c3x, c4 + c5x, 0, . . .

Now, the same operation, but with the multiplierx2:

(c0 + c1x) + (c2 + c3x)x
2, (c4 + c5x) + (0)x2, 0, . . .

22.2 Linear Recurrence and Related Calculations 973

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

And a final time, with multiplierx4:

[(c0 + c1x) + (c2 + c3x)x
2] + [(c4 + c5x) + (0)x2]x4, 0, . . .

We are left with a vector of (active) length 1, whose value is the desired polynomial
evaluation. (You can see that the zeros are just a bookkeeping device for taking
account of the case where the active subvector has odd length.) The key point is that
the combining by pairs is a parallel operation at each stage.

As in subvector scaling, there are aboutlog2 n parallel stages. Also as in
subvector scaling, our total operations count is only negligibly different from purely
scalar code: We do one add and one multiply for each original coefficientcj. The
only extra operations arelog2 n successive squarings ofx; but this comes with
the extra benefit of better roundoff properties than the standard scalar coding. In
Chapter 23 we use vector reduction to implement our utility functionpoly for
polynomial evaluation.

Recursive Doubling: Linear Recurrence Relations

Please don’t confuse our use of the word “recurrence” (as in “recurrence
relation,” “linear recurrence,” or equation 22.2.2) with the words “recursion” and
“recursive,” which both refer to the idea of a subroutine calling itself to obtain an
efficient or concise algorithm. There are ample grounds for confusion, because
recursive algorithms are in fact a good way of obtaining parallel solutions to linear
recurrence relations, as we shall now see!

Consider the general first order linear recurrence relation

uj = aj + bj−1uj−1, j = 2, 3, . . . , n (22.2.5)

with initial valueu1 = a1. On a serial machine, we evaluate such a recurrence with
a simple do-loop. To parallelize the recurrence, we can employ the powerful general
strategy ofrecursive doubling. Write down equation (22.2.5) for2j and for2j − 1:

u2j = a2j + b2j−1u2j−1 (22.2.6)

u2j−1 = a2j−1 + b2j−2u2j−2 (22.2.7)

Substitute equation (22.2.7) in equation (22.2.6) to eliminateu 2j−1 and get

u2j = (a2j + a2j−1b2j−1) + (b2j−2b2j−1)u2j−2 (22.2.8)

This is a new recurrence of the same form as (22.2.5) but over only the evenuj, and
hence involving onlyn/2 terms. Clearly we can continue this process recursively,
halving the number of terms in the recurrence at each stage, until we are left with a
recurrence of length 1 or 2 that we can do explicitly. Each time we finish a subpart of
the recursion, we fill in the odd terms in the recurrence, using equation (22.2.7). In
practice, it’s even easier than it sounds. Turn to Chapter B5 to see a straightforward
implementation of this algorithm as the reciperecur1.

On a machine with more processors thann, all the arithmetic at each stage of
the recursion can be done simultaneously. Since there are of orderlogn stages in the

974 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

recursion, the execution time isO(logn). The total number of operations carried out
is of ordern+ n/2 + n/4 + · · · = O(n), the same as for the obvious serial do-loop.

In the utility routines of Chapter 23, we will use recursive doubling to
implement the routinespoly term, cumsum, andcumprod. Wecoulduse recursive
doubling to implement parallel versions ofarth andgeop (arithmetic and geometric
progressions), andzroots unity (complexnth roots of unity), but these can be
done slightly more efficiently by subvector scaling, as discussed above.

Cyclic Reduction: Linear Recurrence Relations

There is a variant of recursive doubling, calledcyclic reduction, that can be
implemented with a straightforward iteration loop, instead of a recursive procedure
call. [3] Here we start by writing down the recurrence (22.2.5) forall adjacent terms
uj and uj−1 (not just the even ones, as before). Eliminatinguj−1, just as in
equation (22.2.8), gives

uj = (aj + aj−1bj−1) + (bj−2bj−1)uj−2 (22.2.9)

which is a first order recurrence with new coefficientsa′j and b′j. Repeating this
process gives successive formulas foruj in terms ofuj−2, uj−4, uj−8. . . . The
procedure terminates when we reachuj−n (for n a power of 2), which is zero for all
j. Thus the last step givesuj equal to the last set ofa′j ’s.

Here is a code fragment that implements cyclic reduction by direct iteration.
The quantitiesa′j are stored in the variablerecur1.

recur1=a
bb=b
j=1
do

if (j >= n) exit
recur1(j+1:n)=recur1(j+1:n)+bb(j:n-1)*recur1(1:n-j)
bb(2*j:n-1)=bb(2*j:n-1)*bb(j:n-j-1)
j=2*j

enddo

In cyclic reduction the length of the vectoru j that is updated at each stage does
not decrease by a factor of 2 at each stage, but rather only decreases from∼ n to
∼ n/2 during all log2 n stages. Thus the total number of operations carried out is
O(n logn), as opposed toO(n) for recursive doubling. For a serial machine or SSP
machine, therefore, cyclic reduction is rarely superior to recursive doubling when
the latter can be used. For an MMP machine, however, the issue is less clear cut,
because the pattern of communication in cyclic reduction is quite different (and, for
some parallel architectures, possibly more favorable) than that of recursive doubling.

Second Order Recurrence Relations

Consider the second order recurrence relation

yj = aj + bj−2yj−1 + cj−2yj−2, j = 3, 4, . . . , n (22.2.10)

with initial values

y1 = a1, y2 = a2 (22.2.11)

22.2 Linear Recurrence and Related Calculations 975

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Our labeling of subscripts is designed to make it easy to enter the coefficients in a
computer program: You need to supplya1, . . . , an, b1, . . . , bn−2, andc1, . . . , cn−2.
Rewrite the recurrence relation in the form ([3])

(

yj
yj+1

)

=

(

0
aj+1

)

+

(

0 1
cj−1 bj−1

)(

yj−1

yj

)

, j = 2, . . . , n− 1

(22.2.12)
that is,

uj = aj + bj−1 · uj−1, j = 2, . . . , n− 1 (22.2.13)

where

uj =

(

yj
yj+1

)

, aj =

(

0
aj+1

)

, bj−1 =

(

0 1
cj−1 bj−1

)

, j = 2, . . . , n− 1

(22.2.14)
and

u1 = a1 =

(

y1
y2

)

=

(

a1
a2

)

(22.2.15)

This is a first order recurrence relation for the vectorsuj, and can be solved by
the algorithm described above (and implemented in the reciperecur1). The only
difference is that the multiplicationsare matrix multiplicationswith the2×2 matrices
bj . After the first recursive call, the zeros ina andb are lost, so we have to write
the routine for general two-dimensional vectors and matrices.

Note that this algorithm does not avoid the potential instability problems
associated with second order recurrences that are discussed in§5.5 of Volume
1. Also note that the algorithm generalizes in the obvious way to higher-order
recurrences: Annth order recurrence can be written as a first order recurrence
involving n-dimensional vectors and matrices.

Parallel Solution of Tridiagonal Systems

Closely related to recurrence relations, recursive doubling, and cyclic reduction
is the parallel solution of tridiagonal systems. Since Fortran 90 vectors “know
their own size,” it is most logical to number the components of both the sub- and
super-diagonals of the tridiagonal matrix from1 to N − 1. Thus equation (2.4.1),
here written in the special case ofN = 7, becomes (blank elements denoting zero),

b1 c1
a1 b2 c2

a2 b3 c3
a3 b4 c4

a4 b5 c5
a5 b6 c6

a6 b7

·

u1

u2

u3

u4

u5

u6

u7

=

r1
r2
r3
r4
r5
r6
r7

(22.2.16)

The basic idea for solving equation (22.2.16) on a parallel computer is to
partition the problem into even and odd elements, recurse to solve the former, and

976 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

then solve the latter in parallel. Specifically, we first rewrite (22.2.16), by permuting
its rows and columns, as

b1 c1
b3 a2 c3

b5 a4 c5
b7 a6

a1 c2 b2
a3 c4 b4

a5 c6 b6

·

u1

u3

u5

u7

u2

u4

u6

=

r1
r3
r5
r7
r2
r4
r6

(22.2.17)

Now observe that, by row operations that subtract multiples of the first four
rows from each of the last three rows, we can eliminate all nonzero elements in
the lower-left quadrant. The price we pay is bringing some new elements into the
lower-right quadrant, whose nonzero elements we now callx’s, y’s, andz’s. We call
the modified right-hand sidesq. The transformed problem is now

b1 c1
b3 a2 c3

b5 a4 c5
b7 a6

y1 z1
x1 y2 z2

x2 y3

·

u1

u3

u5

u7

u2

u4

u6

=

r1
r3
r5
r7
q1
q2
q3

(22.2.18)

Notice that the last three rows form a new, smaller, tridiagonal problem, which
we can solve simply by recursing! Once its solution is known, the first four rows can
be solved by a simple, parallelizable, substitution. This algorithm is implemented
in tridag in Chapter B2.

The above method is essentially cyclic reduction, but in the case of the
tridiagonal problem, it does not “unwind” into a simple iteration; on the contrary,
a recursive subroutine is required. For discussion of this and related methods for
parallelizing tridiagonal systems, and references to the literature, see Hockney and
Jesshope[3].

Recursive doubling can also be used to solve tridiagonal systems, the method
requiring the parallel solution (as above) of both a first order recurrence and a second
order recurrence[3,4]. For tridiagonal systems, however, cyclic reduction is usually
more efficient than recursive doubling.

CITED REFERENCES AND FURTHER READING:

Van Loan, C.F. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.) §1.4.2. [1]

Estrin, G. 1960, quoted in Knuth, D.E. 1981, Seminumerical Algorithms, volume 2 of The Art of
Computer Programming (Reading, MA: Addison-Wesley), §4.6.4. [2]

Hockney, R.W., and Jesshope, C.R. 1988, Parallel Computers 2: Architecture, Programming,
and Algorithms (Bristol and Philadelphia: Adam Hilger), §5.2.4 (cyclic reduction); §5.4.2
(second order recurrences); §5.4 (tridiagonal systems). [3]

Stone, H.S. 1973, Journal of the ACM, vol. 20, pp. 27–38; 1975, ACM Transactions on Mathe-
matical Software, vol. 1, pp. 289–307. [4]

22.3 Parallel Synthetic Division and Related Algorithms 977

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

22.3 Parallel Synthetic Division and Related
Algorithms

There are several techniques for parallelization that relate to synthetic division
but that can also find application in wider contexts, as we shall see.

Cumulants of a Polynomial

Suppose we have a polynomial

P (x) =

N
∑

j=0

cjx
N−j (22.3.1)

(Note that, here, thecj ’s are indexed from highest degree to lowest, the reverse of
the usual convention.) Then we can define thecumulantsof the polynomial to be
partial sums that occur in the polynomial’s usual, serial evaluation,

P0 = c0

P1 = c0x+ c1

· · ·

PN = c0x
N + · · ·+ cN = P (x) (22.3.2)

Evidently, the cumulants satisfy a simple, linear first order recurrence relation,

P0 = c0, Pj = cj + xPj−1, j = 2, . . . , N (22.3.3)

This is slightly simpler than the general first order recurrence, because the value of
x does not depend onj. We already know, from§22.2’s discussion of recursive
doubling, how to parallelize equation (22.3.3) via a recursive subroutine. In Chapter
23, the utility routinepoly termwill implement just such a procedure. An example
of a routine that callspoly term to evaluate a recurrence equivalent to equation
(22.3.3) iseulsum in Chapter B5.

Notice that while we could use equation (22.3.3), parallelized by recursive
doubling, simply to evaluate the polynomialP (x) = PN , this is likely somewhat
slower than the alternative technique of vector reduction, also discussed in§22.2,
and implemented in the utility functionpoly. Equation (22.3.3) should be saved for
cases where the rest of thePj ’s (not justPN) can be put to good use.

Synthetic Division by a Monomial

We now show that evaluation of the cumulants of a polynomial is equivalent
to synthetic division of the polynomial by a monomial, also calleddeflation(see
§9.5 in Volume 1). To review briefly, and by example, here is a standard tableau
from high school algebra for the (long) division of a polynomial2x 3 − 7x2 + x+ 3
by the monomial factorx − 3.

978 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

x− 3

2x2− x − 2
∣

∣ 2x3− 7x2 + x+ 3
2x3− 6x2

−x2 + x
−x2 +3x

−2x+ 3
−2x+6

− 3 (remainder) (22.3.4)

Now, here is the same calculation written as asynthetic division, really the same
procedure as tableau (22.3.4), but with unnecessary notational baggage omitted
(and also a changed sign for the monomial’s constant, so that subtractions become
additions):

3

6 −3 −6
∣

∣ 2 −7 +1 +3

2 −1 −2 −3 (22.3.5)

If we substitute symbols for the above quantities with the correspondence

x
∣

∣ c0 c1 c2 c3
P0 P1 P2 P3 (22.3.6)

then it is immediately clear that thePj ’s in equation (22.3.6) are simply thePj ’s of
equation (22.3.3); the calculation is thus parallelizable by recursive doubling. In this
context, the utility routinepoly term is used by the routinezroots in Chapter B9.

Repeated Synthetic Division

It is well known from high-school algebra that repeated synthetic division of
a polynomial yields, as the remainders that occur, first the value of the polynomial,
next the value of its first derivative, and then (up to multiplication by the factorial
of an integer) the values of higher derivatives.

If you want to parallelize the calculation of the value of a polynomial and one or
two of its derivatives, it is not unreasonable to evaluate equation (22.3.3), parallelized
by recursive doubling, two or three times. Our routineddpoly in Chapter B5 is
meant for such use, and it does just this, as does the routinelaguer in Chapter B9.

There are other cases, however, for which you want to perform repeated synthetic
division and “go all the way,” until only a constant remains. For example, this is
the preferred way of “shifting a polynomial,” that is, evaluating the coefficients
of a polynomial in a variabley that differs from the original variablex by an
additive constant. (The recipepcshft has this as its assigned task.) By way of
example, consider the polynomial3x3 + x2 + 4x+ 7, and let us perform repeated
synthetic division by a general monomialx − a. The conventional calculation then
proceeds according to the following tableau, reading it in conventional lexical order
(left-to-right and top-to-bottom):

22.3 Parallel Synthetic Division and Related Algorithms 979

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

3 1 4 7

�

�

�

�

3
a

−→ 3a+ 1
a

−→ 3a2 + a+ 4
a

−→ 3a3 + a2 + 4a+ 7

�

�

�

3
a

−→ 6a+ 1
a

−→ 9a2 + 2a+ 4

�

�

3
a

−→ 9a+ 1

�

3 (22.3.7)

Here, each row (after the first) shows a synthetic division or, equivalently, evaluation
of the cumulants of the polynomial whose coefficients are the preceding row. The
results at the right edge of the rows are the values of the polynomial and (up to
integer factorials) its three nonzero derivatives, or (equivalently, without factorials)
coefficients of the shifted polynomial.

We could parallelize the calculation of each row of tableau (22.3.7) by recursive
doubling. That is a lot of recursion, which incurs a nonnegligible overhead. A
much better way of doing the calculation is to deform tableau (22.3.7) into the
following equivalent tableau,

3 −→ 3

a

� ց

1 −→ 3a+ 1 3

a

� ց a

� ց

4 −→ 3a2 + a+ 4 6a+ 1 3

a

� ց a

� ց a

� ց

7 −→ 3a3 + a2 + 4a+ 7 9a2 + 2a+ 4 9a+ 1 3 (22.3.8)

Now each row explicitly depends on only the previous row (and the given first
column), so the rows can be calculated in turn by an explicit parallel expression,
with no recursive calls needed. An example of coding (22.3.8) in Fortran 90 can be
found in the routinepcshft in Chapter B5. (It is also possible to eliminate most of
the multiplications in (22.3.8), at the expense of a much smaller number of divisions.
We have not done this because of the necessity for then treating all possible divisions
by zero as special cases. See[1] for details and references.)

Actually, the deformation of (22.3.7) into (22.3.8) is the same trick as was used
in Volume 1, p. 167, for evaluating a polynomial and its derivative simultaneously,
also generalized in the Fortran 77 implementation of the routineddpoly (Chapter
5). In the Fortran 90 implementation ofddpoly (Chapter B5) wedon’t use this trick,
but instead usepoly term, because, there, we want to parallelize over the length of
the polynomial, not over the number of desired derivatives.

980 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Don’t confuse the cases ofiteratedsynthetic division, discussed here, with the
simpler case of doing many simultaneous synthetic divisions. In the latter case,
you can simply implement equation (22.3.3) serially, exactly as written, but with
each operation being data-parallel across your problem set. (This case occurs in
our routinepolcoe in Chapter B3.)

Polynomial Coefficients from Roots

A parallel calculation algorithmically very similar to (22.3.7) or (22.3.8)
occurs when we want to find the coefficients of a polynomialP (x) from its roots
r1, . . . , rN . For this, the tableau is

r1

r2 :

↓ ց
r1 + r2 r1r2

r3 :

↓ ց ↓ ց
r1 + r2 + r3 r1r2 + r3(r1 + r2) r1r2r3 (22.3.9)

As before, the rows are computed consecutively, from top to bottom. Each row
is computed via a single parallel expression. Note that values moving on vertical
arrows are simply added in, while values moving on diagonal arrows are multiplied
by a new root before adding. Examples of coding (22.3.9) in Fortran 90 can be found
in the routinesvander (Chapter B2) andpolcoe (Chapter B3).

An equivalent deformation of (22.3.9) is

r1

r2 :

↓ ց
r1r2 r1 + r2

r3 :

↓ ց ↓ ց
r1r2r3 r1r2 + r3(r1 + r2) r1 + r2 + r3 (22.3.10)

Here the diagonal arrows are simple additions, while the vertical arrows represent
multiplication by a root value. Note that the coefficient answers in (22.3.10) come
out in the opposite order from (22.3.9). An example of coding (22.3.10) in Fortran
90 can be found in the routinefixrts in Chapter B13.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.6.4, p. 470. [1]

22.4 Fast Fourier Transforms 981

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

22.4 Fast Fourier Transforms

Fast Fourier transforms are beloved by computer scientists, especially those
who are interested in parallel algorithms, because the FFT’s hierarchical structure
generates a complicated, but analyzable, set of requirements for interprocessor
communication on MMPs. Thus, almost all books on parallel algorithms (e.g.,
[1–3]) have a chapter on FFTs.

Unfortunately, the resulting algorithms are highly specific to particular parallel
architectures, and therefore of little use to us in writing general purpose code in an
architecture-independent parallel language like Fortran 90.

Luckily there is a good alternative that covers almost all cases of both serial
and parallel machines. If, for a one-dimensional FFT of sizeN , one is satisfied with
parallelism of order

√
N , then there is a good, general way of achieving a parallel FFT

with quite minimalinterprocessor communication; and the communication required
is simply the matrix transpose operation, which Fortran 90 implements as an intrinsic.
That is the approach that we discuss in this section, and implement in Chapter B12.

For a machine withM processors, this approach will saturate the processors (the
desirable condition where none are idle) when the size of a one-dimensional Fourier
transform,N , is large enough:N > M 2. SmallerN ’s will not achieve maximum
parallelism. But suchN ’s are in fact so small for one-dimensional problems that
they are unlikely to be the rate-determining step in scientific calculations. If they
are, it is usually because you are doing many such transforms independently, and
you should recover “outer parallelism” by doing them all at once.

For two or more dimensions, the adopted approach will saturateM processors
wheneachdimension of the problem is larger thanM .

Column- and Row-Parallel FFTs

The basic building block that we assume (and implement in Chapter B12) is a
routine for simultaneously taking the FFT of eachrow of a two-dimensional matrix.
The method is exactly that of Volume 1’sfour1 routine, but with array sections
like data(:,j) replacing scalars likedata(j). Chapter B12’s implementation of
this is a routine calledfourrow. If all the data for one column (that is, all the
valuesdata(i,:), for somei) are local to a single processor, then the parallelism
involves no interprocessor communication at all: The independent FFTs simply
proceed, data parallel and in lockstep. This is architecture-independent parallelism
with a vengeance.

We will also need to take the FFT of eachcolumnof a two-dimensional matrix.
One way to do this is to take the transpose (a Fortran 90 intrinsic that hides a lot
of interprocessor communication), then take the FFT of the rows usingfourrow,
then take the transpose again. An alternative method is to recode thefour1 routine
with array sections in the other dimension (data(j,:)) replacingfour1’s scalars
(data(j)). This scheme, in Chapter B12, is a routine calledfourcol. In this
case, good parallelism will be achieved only if the valuesdata(:,i), for somei,
are local to a single processor. Of course, Fortran 90 does not give the user direct
control over how data are distributed over the machine; but extensions such as HPF
are designed to give just such control.

982 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

On a serial machine, you might think thatfourrow andfourcol should have
identical timings (acting on a square matrix, say). The two routines do exactly
the same operations, after all. Not so! On modern serial computers,fourrow

and fourcol can have timings that differ by a factor of 2 or more, even when
their detailed arithmetic is made identical (by giving to one a data array that is the
transpose of the data array given to the other). This effect is due to the multilevel
cache architecture of most computer memories, and the fact that serial Fortran always
stores matrices by columns (first index changing most rapidly). On our workstations,
fourrow is significantly faster thanfourcol, and this is likely the generic behavior.
However, we do not exclude the possibility that some machines, and some sizes of
matrices, are the other way around.

One-Dimensional FFTs

Turn now to the problem of how to do a single, one-dimensional, FFT. We are
given a complex arrayf of lengthN , an integer power of 2. The basic idea is to
address the input array as if it were a two-dimensional array of sizem×M , wherem
andM are each integer powers of 2. Then the components off can be addressed as

f(Jm + j), 0 ≤ j < m, 0 ≤ J < M (22.4.1)

where thej index changes more rapidly, theJ index more slowly, and parentheses
denote Fortran-style subscripts.

Now, suppose we had some magical (parallel) method to compute the discrete
Fourier transform

F (kM +K) ≡
∑

j,J

e2πi(kM+K)(Jm+j)/(Mm)f(Jm + j),

0 ≤ k < m, 0 ≤ K < M (22.4.2)

Then, you can see that the indicesk andK would address the desired result (FFT
of the original array), withK varying more rapidly.

Starting with equation (22.4.2) it is easy to verify the following identity,

F (kM +K) =
∑

j

[

e2πijk/m

(

e2πijK/(Mm)

[

∑

J

e2πiJK/M f(Jm+ j)

])]

(22.4.3)
But this, reading it from the innermost operation outward, is just the magical method
that we need:

• Reshape the original array tom ×M in Fortran normal order (storage
by columns).

• FFT on the second (column) index for all values of the first (row) index,
using the routinefourrow.

• Multiply each component by a phase factorexp[2πijK/(Mm)].
• Transpose.

22.5 Missing Language Features 983

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

• Again FFT on the second (column) index for all values of the first (row)
index, using the routinefourrow.

• Reshape the two-dimensional array back into one-dimensional output.
The above scheme usesfourrow exclusively, on the assumption that it is faster

than its siblingfourcol. When that is the case (as we typically find), it is likely
that the above method, implemented asfour1 in Chapter B12, is faster, even on
scalar machines, than Volume 1’s scalar version offour1 (Chapter 12). The reason,
as already mentioned, is thatfourrow’s parallelism is taking better advantage of
cache memory locality.

If fourrow isnotfaster thanfourcol on your machine, then you should instead
try the following alternative scheme, usingfourcol only:

• Reshape the original array tom ×M in Fortran normal order (storage
by columns).

• Transpose.
• FFT on the first (row) index for all values of the second (column) index,

using the routinefourcol.
• Multiply each component by a phase factorexp[2πijK/(Mm)].
• Transpose.
• Again FFT on the first (row) index for all values of the second (column)

index, using the routinefourcol.
• Transpose.
• Reshape the two-dimensional array back into one-dimensional output.
In Chapter B12, this scheme is implemented asfour1 alt. You might

wonder whyfour1 alt has three transpose operations, whilefour1 had only one.
Shouldn’t there be a symmetry here? No. Fortran makes the arbitrary, but consistent,
choice of storing two-dimensional arrays by columns, and this choice favorsfour1

in terms of transposes. Luckily, at least on our serial workstations,fourrow (used
by four1) is faster thanfourcol (used byfour1 alt), so it is a double win.

For further discussion and references on the ideas behindfour1andfour1 alt

see [4], where these algorithms are called the four-step and six-step frameworks,
respectively.

CITED REFERENCES AND FURTHER READING:

Fox, G.C., et al. 1988, Solving Problems on Concurrent Processors, Volume I (Englewood Cliffs,
NJ: Prentice Hall), Chapter 11. [1]

Akl, S.G. 1989, The Design and Analysis of Parallel Algorithms (Englewood Cliffs, NJ: Prentice
Hall), Chapter 9. [2]

Hockney, R.W., and Jesshope, C.R. 1988, Parallel Computers 2 (Bristol and Philadelphia: Adam
Hilger), §5.5. [3]

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.I.A.M.), §3.3. [4]

22.5 Missing Language Features

A few facilities that are fairly important to parallel programming are missing
from the Fortran 90 language standard. On scalar machines this lack is not a

984 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

problem, since one can readily program the missing features by using do-loops.
On parallel machines, both SSP machines and MMP machines, one must hope
that hardware manufacturers provide library routines, callable from Fortran 90, that
provide access to the necessary facilities, or use extensions of Fortran 90, such as
High Performance Fortran (HPF).

Scatter-with-Combine Functions

Fortran 90 allows the use ofvector subscriptsfor so-calledgatherandscatter
operations. For example, with the setup

REAL(SP), DIMENSION(6) :: arr,barr,carr
INTEGER(I4B), DIMENSION(6) :: iarr,jarr
...
iarr = (/ 1,3,5,2,4,6 /)
jarr = (/ 3,2,3,2,1,1 /)

Fortran 90 allows both theone-to-onegather and theone-to-manygather,

barr=arr(iarr)
carr=arr(jarr)

It also allows the one-to-one scatter,

barr(iarr)=carr

where the elements ofcarr are “scattered” intobarr under the direction of the
vector subscriptiarr.

Fortran 90 doesnot allow themany-to-onescatter

barr(jarr)=carr ! illegal for this jarr

because the repeated values injarr try to assign different components ofcarr to
the same location inbarr. The result would not be deterministic.

Sometimes, however, one would in fact like a many-to-one construction, where
the colliding elements get combined by a (commutative and associative) operation,
like + or *, or max(). These so-calledscatter-with-combinefunctions are readily
implemented on serial machines by a do-loop, for example,

barr=0.
do j=1,size(carr)

barr(jarr(j))=barr(jarr(j))+carr(j)
end do

Fortran 90 unfortunately provides no means for effecting scatter-with-combine
functions in parallel. Luckily, almost all parallel machines do provide such a facility
as a library program, as does HPF, where the above facility is calledSUM SCATTER.
In Chapter 23 we will define utility routinesscatter add andscatter max for
scatter-with-combine functionalities, but the implementation given in Fortran 90 will
be strictly serial, with a do-loop.

22.5 Missing Language Features 985

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Skew Sections

Fortran 90 provides no good, parallel way to access the diagonal elements of
a matrix, either to read them or to set them. Do-loops will obviously serve this
need on serial machines. In principle, a construction like the following bizarre
fragment could also be utilized,

REAL(SP), DIMENSION(n,n) :: mat
REAL(SP), DIMENSION(n*n) :: arr
REAL(SP), DIMENSION(n) :: diag
...
arr = reshape(mat,shape(arr))
diag = arr(1:n*n:n+1)

which extracts every(n + 1)st element from a one-dimensional array derived by
reshaping the input matrix. However, it is unlikely that any foreseeable parallel
compiler will implement the above fragment without a prohibitive amount of
unnecessary data movement; and code like the above is also exceedingly slow on
all serial machines that we have tried.

In Chapter 23 we will define utility routinesget diag, put diag, diagadd,
diagmult, andunit matrix to manipulate diagonal elements, but the implemen-
tation given in Fortran 90 will again be strictly serial, with do-loops.

Fortran 95 (see§21.6) will essentially fix Fortran 90’s skew sections deficiency.
For example, using itsforall construction, the diagonal elements of an array can
be accessed by a statement like

forall (j=1:20) diag(j) = arr(j,j)

SIMD vs. MIMD

Recall that we use “SIMD” (single-instruction,multiple data) and “data parallel”
as interchangeable terms, and that “MIMD” (multiple-instruction, multiple data) is
a more general programming model. (See§22.1.)

You should not be too quick to jump to the conclusion that Fortran 90’s data
parallel or SIMD model is “bad,” and that MIMD features, absent in Fortran 90, are
therefore “good.” On the contrary, Fortran 90’s basic data-parallel paradigm has a
lot going for it. As we discussed in§22.1, most scientific problems naturally have
a “data dimension” across which the time ordering of the calculation is irrelevant.
Parallelism across this dimension, which is by nature most often SIMD, frees the
mind to think clearly about the computational steps in an algorithm that actually need
to be sequential. SIMD code has advantages of clarity and predictability that should
not be taken lightly. The general MIMD model of “lots of different things all going
on at the same time and communicating data with each other” is a programming
and debugging nightmare.

Having said this, we must at the same time admit that a few MIMD features
— most notably the ability to go through different logical branches for calculating
different data elements in a data-parallel computation — are badly needed in certain
programming situations. Fortran 90 is quite weak in this area.

Note that thewhere...elsewhere...end where construction isnota MIMD
construction. Fortran 90 requires that thewhereclause be executed completely before
theelsewhere is started. (This allows the results of any calculations in the former

986 Chapter 22. Introduction to Parallel Programming

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

clause to be available for use in the latter.) So, this construction cannot be used to
allow two logical branches to be calculated in parallel.

Special functions, where one would like to calculate function values for an
array of input quantities, are a particularly compelling example of the need for
some MIMD access. Indeed, you will find that Chapter B6 contains a number of
intricate, and in a few cases truly bizarre, workarounds, using allowed combinations
of merge, where, andCONTAINS (the latter, for separating different logical branches
into formally different subprograms).

Fortran 95’sELEMENTAL and PURE constructions, and to some extent also
forall (whose body will be able to includePURE function calls), will go a long way
towards providing exactly the kind of MIMD constructions that are most needed.
Once Fortran 95 becomes available and widespread, you can expect to see a new
version of this volume, with a much-improved Chapter B6.

Conversely, the number of routines outside of Chapter B6 that can be signif-
icantly improved by the use of MIMD features is relatively small; this illustrates
the underlying viability of the basic data-parallel SIMD model, even in a future
language version with useful MIMD features.

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter 23. Numerical Recipes
Utility Functions for
Fortran 90

23.0 Introduction and Summary Listing

This chapter describes and summarizes the Numerical Recipes utility routines
that are used throughout the rest of this volume. A complete implementation of these
routines in Fortran 90 is listed in Appendix C1.

Why do we need utility routines? Aren’t there already enough of them built
into the language as Fortran 90 intrinsics? The answers lie in this volume’s dual
purpose: to implement the Numerical Recipes routines in Fortran 90 code that runs
efficiently on fast serial machines,and to implement them, wherever possible, with
efficient parallel code for multiprocessor machines that will become increasingly
common in the future. We have found three kinds of situations where additional
utility routines seem desirable:

1. Fortran 90 is a big language, with many high-level constructs — single
statements that actually result in a lot of computing. We like this; it gives the
language the potential for expressing algorithms very readably, getting them “out
of the mud” of microscopic coding. In coding the 350+ Recipes for this volume,
we kept a systematic watch for bits of microscopic coding that were repeated in
many routines, and that seemed to be at a lower level of coding than that aspired
to by good Fortran 90 style. Once these bits were identified, we pulled them out
and substituted calls to new utility routines. These are the utilities that arguably
ought to be new language intrinsics, equally useful for serial and parallel machines.
(A prime example isswap.)

2. Fortran 90 contains many highly parallelizable language constructions. But,
as we have seen in§22.5, it is also missing a few important constructions. Most
parallel machines will provide these missing elements as machine-coded library
subroutines. Some of our utility routines are provided simply as a standard interface
to these common, but nonstandard, functionalities. Note that it is the nature of
these routines that our specific implementation, in Appendix C1, will be serial,
and therefore inefficient on parallel machines. If you have a parallel machine,
you will need to recode these; this often involves no more than substituting a
one-line library function call for the body of our implementation. Utilities in this
category will likely become unnecessary over time, either as machine-dependent
libraries converge to standard interfaces, or as the utilities get added to future Fortran

987

988 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

versions. (Indeed, some routines in this category will be unnecessary in Fortran
95, once it is available; see§23.7.)

3. Some tasks should just be done differently in serial, versus parallel,
implementation. Linear recurrence relations are a good example (§22.2). These
are trivially coded with a do-loop on serial machines, but require a fairly elaborate
recursive construction for good parallelization. Rather than provide separate serial
and parallel versions of the Numerical Recipes, we have chosen to pull out of the
Recipes, and into utility routines, some identifiable tasks of this kind. These are
cases where some recoding of our implementation in Appendix C1 might result
in improved performance on your particular hardware. Unfortunately, it is not so
simple as providing a single “serial implementation” and another single “parallel
implementation,” because even the seemingly simple word “serial” hides, at the
hardware level, a variety of different degrees of pipelining, wide instructions, and
so on. Appendix C1 therefore provides only a single implementation, although with
some adjustable parameters that you can customize (by experiment) to maximize
performance on your hardware.

The above three cases are not really completely distinct, and it is therefore not
possible to assign any single utility routine to exactly one situation. Instead, we
organize the rest of this chapter as follows: first, an alphabetical list, with short
summary, of all the new utility routines; next, a series of short sections, grouped by
functionality, that contain the detailed descriptions of the routines.

Alphabetical Listing

The following list gives an abbreviated mnemonic for the type, rank, and/or
shape of the returned values (as in§21.4), the routine’s calling sequence (optional
arguments shown in italics), and a brief, often incomplete, description. The complete
description of the routine is given in the later section shown in square brackets.

For each entry, the number shown in parentheses is the approximate number of
distinct Recipes in this book that make use of that particular utility function, and is
thus a rough guide to that utility’s importance. (There may be multiple invocations
of the utility in each such Recipe.) Where this number is small or zero, it is usually
because the utility routine is a member of a related family of routines whose total
usage was deemed significant enough to include, and we did not want users to have
to “guess” which family members were instantiated.

call array copy(src,dest,n copied,n not copied)

Copy one-dimensional array (whose size is not necessarily known).
[23.1] (9)

[Arr] arth(first,increment,n)

Return an arithmetic progression as an array. [23.4] (55)

call assert(n1,n2,...,string)

Exit with error message if any logical arguments are false. [23.3] (50)

[Int] assert eq(n1,n2,...,string)

Exit with error message if all integer arguments are not equal;otherwise
return common value. [23.3] (133)

[argTS] cumprod(arr,seed)

23.0 Introduction and Summary Listing 989

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Cumulative products of one-dimensional array, with optional seed
value. [23.4] (3)

[argTS] cumsum(arr,seed)
Cumulative sums of one-dimensional array, with optional seed value.
[23.4] (9)

call diagadd(mat,diag)

Adds vector to diagonal of a matrix. [23.7] (4)

call diagmult(mat,diag)

Multiplies vector into diagonal of a matrix. [23.7] (2)

[Arr] geop(first,factor,n)

Return a geometrical progression as an array. [23.4] (7)

[Arr] get diag(mat)

Gets diagonal of a matrix. [23.7] (2)

[Int] ifirstloc(arr)

Location of first true value in a logical array, returned as an integer.
[23.2] (3)

[Int] imaxloc(arr)

Location of array maximum, returned as an integer. [23.2] (11)

[Int] iminloc(arr)

Location of array minimum, returned as an integer. [23.2] (8)

[Mat] lower triangle(j,k,extra)

Returns a lower triangular logical mask. [23.7] (1)

call nrerror(string)

Exit with error message. [23.3] (96)

[Mat] outerand(a,b)

Returns the outer logical and of two vectors. [23.5] (1)

[Mat] outerdiff(a,b)

Returns the outer difference of two vectors. [23.5] (4)

[Mat] outerdiv(a,b)

Returns the outer quotient of two vectors. [23.5] (0)

[Mat] outerprod(a,b)

Returns the outer product of two vectors. [23.5] (14)

[Mat] outersum(a,b)

Returns the outer sum of two vectors. [23.5] (0)

[argTS] poly(x,coeffs,mask)
Evaluate a polynomialP (x) for one or more valuesx, with optional
mask. [23.4] (15)

[argTS] poly term(a,x)

Returns partial cumulants of a polynomial, equivalent to synthetic

990 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

division. [23.4] (4)

call put diag(diag,mat)

Sets diagonal of a matrix. [23.7] (0)

[Ptr] reallocate(p,n,m,...)

Reallocate pointer to new size, preserving its contents. [23.1] (5)

call scatter add(dest,source,dest index)

Scatter-adds source vector to specified components of destination
vector. [23.6] (2)

call scatter max(dest,source,dest index)

Scatter-max source vector to specified components of destination
vector. [23.6] (0)

call swap(a,b,mask)

Swap corresponding elements ofa andb. [23.1] (24)

call unit matrix(mat)

Sets matrix to be a unit matrix. [23.7] (6)

[Mat] upper triangle(j,k,extra)

Returns an upper triangular logical mask. [23.7] (4)

[Real] vabs(v)

Length of a vector inL2 norm. [23.8] (6)

[CArr] zroots unity(n,nn)

Returnsnn consecutive powers of the complexnth root of unity.
[23.4] (4)

Comment on Relative Frequencies of Use

We find it interesting to compare our frequency of using thenrutil utility
routines, with our most used language intrinsics (see§21.4). On this basis, the
following routines are as useful to us as thetop 10 language intrinsics:arth,
assert, assert eq, outerprod, poly, andswap. We strongly recommend that
the X3J3 standards committee, as well as individual compiler library implementors,
consider the inclusion of new language intrinsics (or library routines) that subsume
the capabilities of at least these routines. In the next tier of importance, we
would put some further cumulative operations (geop, cumsum), some other “outer”
operations on vectors (e.g.,outerdiff), basic operations on the diagonals of
matrices (get diag, put diag, diag add), and some means of access to an array
of unknown size (array copy).

23.1 Routines That Move Data

To describe our utility routines, we introduce two items of Fortran 90 pseu-
docode: We use the symbolT to denote some type and rank declaration (including

23.1 Routines That Move Data 991

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

scalar rank, i.e., zero); and when we append a colon to a type specification, as in
INTEGER(I4B)(:), for example, we denote an array of the given type.

The routinesswap, array copy, andreallocate simply move data around
in useful ways.

⋆ ⋆ ⋆

swap (swaps corresponding elements)

User interface (or, “USE nrutil”):
SUBROUTINE swap(a,b,mask)
T, INTENT(INOUT) :: a,b
LOGICAL(LGT), INTENT(IN), OPTIONAL :: mask
END SUBROUTINE swap

Applicable types and ranks:
T ≡ any type, any rank

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(SP)(:), REAL(DP),

COMPLEX(SPC), COMPLEX(SPC)(:), COMPLEX(SPC)(:,:),

COMPLEX(DPC), COMPLEX(DPC)(:), COMPLEX(DPC)(:,:)

Action:
Swaps the corresponding elements ofa andb. If mask is present, performs
the swap only wheremask is true. (Following code is the unmasked case.
For speed at run time, the masked case is implemented by overloading, not
by testing for the optional argument.)

Reference implementation:
T :: dum
dum=a
a=b
b=dum

⋆ ⋆ ⋆

array copy (copy one-dimensional array)

User interface (or, “USE nrutil”):
SUBROUTINE array_copy(src,dest,n_copied,n_not_copied)
T, INTENT(IN) :: src
T, INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
END SUBROUTINE array_copy

Applicable types and ranks:
T ≡ any type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B)(:), REAL(SP)(:), REAL(DP)(:)

Action:
Copies to a destination arraydest the one-dimensional arraysrc, or as
much ofsrc as will fit in dest. Returns the number of components copied
asn copied, and the number of components not copied asn not copied.

The main use of this utility is wheresrc is an expression that returns an
array whose size is not known in advance, for example, the value returned
by the pack intrinsic.

992 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Reference implementation:
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

⋆ ⋆ ⋆

reallocate (reallocate a pointer, preserving contents)

User interface (or, “USE nrutil”):
FUNCTION reallocate(p,n[,m, . . .])
T, POINTER :: p, reallocate
INTEGER(I4B), INTENT(IN) :: n[,m, . . .]
END FUNCTION reallocate

Applicable types and ranks:
T ≡ any type, rank 1 or greater

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B)(:), INTEGER(I4B)(:,:), REAL(SP)(:),

REAL(SP)(:,:), CHARACTER(1)(:)

Action:
Allocates storage for a new array with shape specified by the integer(s)n, m,
. . . (equal in number to the rank of pointerp). Then, copies the contents of
p’s target (or as much as will fit) into the new storage. Then, deallocatesp

and returns a pointer to the new storage.

The typical use isp=reallocate(p,n[, m, . . .]), which has the effect of
changing the allocated size ofp while preserving the contents.

The reference implementation, below, shows only the case of rank 1.

Reference implementation:
INTEGER(I4B) :: nold,ierr
allocate(reallocate(n),stat=ierr)
if (ierr /= 0) call &

nrerror(’reallocate: problem in attempt to allocate memory’)
if (.not. associated(p)) RETURN
nold=size(p)
reallocate(1:min(nold,n))=p(1:min(nold,n))
deallocate(p)

23.2 Routines Returning a Location

Fortran 90’s intrinsicsmaxloc andminloc return rank-one arrays. When, in the
most frequent usage, their argument is a one-dimensional array, the answer comes
back in the inconvenient form of an array containing a single component, which
cannot be itself used in a subscript calculation. While there are workaround tricks
(e.g., use of thesum intrinsic to convert the array to a scalar), it seems clearer to
define routinesimaxloc andiminloc that return integers directly.

The routineifirstloc adds a related facility missing among the intrinsics:
Return the first true location in a logical array.

⋆ ⋆ ⋆

23.2 Routines Returning a Location 993

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

imaxloc (location of array maximum as an integer)

User interface (or, “USE nrutil”):
FUNCTION imaxloc(arr)
T, INTENT(IN) :: arr
INTEGER(I4B) :: imaxloc
END FUNCTION imaxloc

Applicable types and ranks:
T ≡ any integer or real type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B)(:), REAL(SP)(:)

Action:
For one-dimensional arrays, identical to themaxloc intrinsic, except returns
its answer as an integer rather than asmaxloc’s somewhat awkward rank-one
array containing a single component.

Reference implementation:
INTEGER(I4B), DIMENSION(1) :: imax
imax=maxloc(arr(:))
imaxloc=imax(1)

⋆ ⋆ ⋆

iminloc (location of array minimum as an integer)

User interface (or, “USE nrutil”):
FUNCTION iminloc(arr)
T, INTENT(IN) :: arr
INTEGER(I4B) :: iminloc
END FUNCTION iminloc

Applicable types and ranks:
T ≡ any integer or real type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)(:)

Action:
For one-dimensional arrays, identical to theminloc intrinsic, except returns
its answer as an integer rather than asminloc’s somewhat awkward rank-one
array containing a single component.

Reference implementation:
INTEGER(I4B), DIMENSION(1) :: imin
imin=minloc(arr(:))
iminloc=imin(1)

⋆ ⋆ ⋆

ifirstloc (returns location of first “true” in a logical vector)

User interface (or, “USE nrutil”):
FUNCTION ifirstloc(mask)
T, INTENT(IN) :: mask
INTEGER(I4B) :: ifirstloc
END FUNCTION ifirstloc

994 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Applicable types and ranks:
T ≡ any logical type, rank 1

Types and ranks implemented (overloaded) innrutil:
T ≡ LOGICAL(LGT)

Action:
Returns the index (subscript value) of the first location, in a one-dimensional
logical mask, that has the value.TRUE., or returnssize(mask)+1 if all
components ofmask are .FALSE.

Note that while the reference implementation uses a do-loop, the function is
parallelized innrutil by instead using themerge andmaxloc intrinsics.

Reference implementation:
INTEGER(I4B) :: i
do i=1,size(mask)

if (mask(i)) then
ifirstloc=i
return

end if
end do
ifirstloc=i

23.3 Argument Checking and Error Handling

It is good programming practice for a routine to check the assumptions
(“assertions”) that it makes about the sizes of input arrays, allowed range of
numerical arguments, and so forth. The routinesassert andassert eq are meant
for this kind of use. The routinenrerror is our default error reporting routine.

⋆ ⋆ ⋆

assert (exit with error message if any assertion is false)

User interface (or, “USE nrutil”):
SUBROUTINE assert(n1,n2,...,string)
CHARACTER(LEN=*), INTENT(IN) :: string
LOGICAL, INTENT(IN) :: n1,n2,...
END SUBROUTINE assert

Action:
Embedding program dies gracefully with an error message if any of the
logical arguments are false. Typical use is with logical expressions as the
actual arguments.nrutil implements and overloads forms with 1, 2, 3, and
4 logical arguments, plus a form with a vector logical argument,
LOGICAL, DIMENSION(:), INTENT(IN) :: n

that is checked by theall(n) intrinsic.

23.3 Argument Checking and Error Handling 995

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Reference implementation:
if (.not. (n1.and.n2.and...)) then

write (*,*) ’nrerror: an assertion failed with this tag:’, string
STOP ’program terminated by assert’

end if

⋆ ⋆ ⋆

assert eq (exit with error message if integer arguments not all equal)

User interface (or, “USE nrutil”):
FUNCTION assert_eq(n1,n2,n3,...,string)
CHARACTER(LEN=*), INTENT(IN) :: string
INTEGER, INTENT(IN) :: n1,n2,n3,...
INTEGER :: assert_eq
END FUNCTION assert_eq

Action:
Embedding program dies gracefully with an error message if any of the
integer arguments are not equal to the first. Otherwise, return the value of
the first argument. Typical use is for enforcing equality on the sizes of arrays
passed to a subprogram.nrutil implements and overloads forms with 1, 2,
3, and 4 integer arguments, plus a form with a vector integer argument,
INTEGER, DIMENSION(:), INTENT(IN) :: n

that is checked by the conditionalif (all(nn(2:)==nn(1))).

Reference implementation:
if (n1==n2.and.n2==n3.and...) then

assert_eq=n1
else

write (*,*) ’nrerror: an assert_eq failed with this tag:’, string
STOP ’program terminated by assert_eq’

end if

⋆ ⋆ ⋆

nrerror (report error message and stop)

User interface (or, “USE nrutil”):
SUBROUTINE nrerror(string)
CHARACTER(LEN=*), INTENT(IN) :: string
END SUBROUTINE nrerror

Action:
This is the minimal error handler used in this book. In applications of
any complexity, it is intended only as a placeholder for a user’s more
complicated error handling strategy.

Reference implementation:
write (*,*) ’nrerror: ’,string
STOP ’program terminated by nrerror’

996 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

23.4 Routines for Polynomials and Recurrences

Apart from programming convenience, these routines are designed to allow for
nontrivial parallel implementations, as discussed in§22.2 and§22.3.

⋆ ⋆ ⋆

arth (returns arithmetic progression as an array)

User interface (or, “USE nrutil”):
FUNCTION arth(first,increment,n)
T, INTENT(IN) :: first,increment
INTEGER(I4B), INTENT(IN) :: n
T, DIMENSION(n) [or, 1 rank higher thanT]:: arth
END FUNCTION arth

Applicable types and ranks:
T ≡ any numerical type, any rank

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(DP)

Action:
Returns an array of lengthn containing an arithmetic progression whose
first value isfirst and whose increment isincrement. If first and
increment have rank greater than zero, returns an array of one larger rank,
with the last subscript having sizen and indexing the progressions. Note that
the following reference implementation (for the scalar case) is definitional
only, and neither parallelized nor optimized for roundoff error. See§22.2
and Appendix C1 for implementation by subvector scaling.

Reference implementation:
INTEGER(I4B) :: k
if (n > 0) arth(1)=first
do k=2,n

arth(k)=arth(k-1)+increment
end do

⋆ ⋆ ⋆

geop (returns geometric progression as an array)

User interface (or, “USE nrutil”):
FUNCTION geop(first,factor,n)
T, INTENT(IN) :: first,factor
INTEGER(I4B), INTENT(IN) :: n
T, DIMENSION(n) [or, 1 rank higher thanT]:: geop
END FUNCTION geop

Applicable types and ranks:
T ≡ any numerical type, any rank

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(DP), REAL(DP)(:),

COMPLEX(SPC)

23.4 Routines for Polynomials and Recurrences 997

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Action:
Returns an array of lengthn containing a geometric progression whose first
value isfirst and whose multiplier isfactor. If first and factor

have rank greater than zero, returns an array of one larger rank, with the
last subscript having sizen and indexing the progression. Note that the
following reference implementation (for the scalar case) is definitional only,
and neither parallelized nor optimized for roundoff error. See§22.2 and
Appendix C1 for implementation by subvector scaling.

Reference implementation:
INTEGER(I4B) :: k
if (n > 0) geop(1)=first
do k=2,n

geop(k)=geop(k-1)*factor
end do

⋆ ⋆ ⋆

cumsum (cumulative sum on an array, with optional additive seed)

User interface (or, “USE nrutil”):
FUNCTION cumsum(arr,seed)
T, DIMENSION(:), INTENT(IN) :: arr
T, OPTIONAL, INTENT(IN) :: seed
T, DIMENSION(size(arr)), INTENT(OUT) :: cumsum
END FUNCTION cumsum

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP)

Action:
Given the rank 1 arrayarr of typeT, returns an array of identical type and
size containing the cumulative sums ofarr. If the optional argumentseed
is present, it is added to the first component (and therefore, by cumulation,
all components) of the result. See§22.2 for parallelization ideas.

Reference implementation:
INTEGER(I4B) :: n,j
T :: sd
n=size(arr)
if (n == 0) return
sd=0.0
if (present(seed)) sd=seed
cumsum(1)=arr(1)+sd
do j=2,n

cumsum(j)=cumsum(j-1)+arr(j)
end do

⋆ ⋆ ⋆

cumprod (cumulative prod on an array, with optional multiplicative seed)

User interface (or, “USE nrutil”):
FUNCTION cumprod(arr,seed)
T, DIMENSION(:), INTENT(IN) :: arr
T, OPTIONAL, INTENT(IN) :: seed
T, DIMENSION(size(arr)), INTENT(OUT) :: cumprod
END FUNCTION cumprod

998 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Given the rank 1 arrayarr of typeT, returns an array of identical type and
size containing the cumulative products ofarr. If the optional argument
seed is present, it is multiplied into the first component (and therefore, by
cumulation, into all components) of the result. See§22.2 for parallelization
ideas.

Reference implementation:
INTEGER(I4B) :: n,j
T :: sd
n=size(arr)
if (n == 0) return
sd=1.0
if (present(seed)) sd=seed
cumprod(1)=arr(1)*sd
do j=2,n

cumprod(j)=cumprod(j-1)*arr(j)
end do

⋆ ⋆ ⋆

poly (polynomial evaluation)

User interface (or, “USE nrutil”):
FUNCTION poly(x,coeffs,mask)
T,, DIMENSION(:,...), INTENT(IN) :: x
T, DIMENSION(:), INTENT(IN) :: coeffs
LOGICAL(LGT), DIMENSION(:,...), OPTIONAL, INTENT(IN) :: mask
T :: poly
END FUNCTION poly

Applicable types and ranks:
T ≡ any numerical type (xmay be scalar or have any rank;x and

coeffs may have different numerical types)
Types and ranks implemented (overloaded) innrutil:

T ≡ various combinations ofREAL(SP), REAL(SP)(:), REAL(DP),

REAL(DP)(:), COMPLEX(SPC) (see Appendix C1 for de-
tails)

Action:
Returns a scalar value or array with the same type and shape asx, containing
the result of evaluating the polynomial with one-dimensional coefficient
vectorcoeffs on each component ofx. The optional argumentmask, if
present, has the same shape asx, and suppresses evaluation of the polynomial
where its components are.false.. The following reference code shows
the case wheremask is not present. (The other case can be included by
overloading.)

23.4 Routines for Polynomials and Recurrences 999

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Reference implementation:
INTEGER(I4B) :: i,n
n=size(coeffs)
if (n <= 0) then

poly=0.0
else

poly=coeffs(n)
do i=n-1,1,-1

poly=x*poly+coeffs(i)
end do

end if

⋆ ⋆ ⋆

poly term (partial cumulants of a polynomial)

User interface (or, “USE nrutil”):
FUNCTION poly_term(a,x)
T, DIMENSION(:), INTENT(IN) :: a
T, INTENT(IN) :: x
T, DIMENSION(size(a)) :: poly_term
END FUNCTION poly_term

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), COMPLEX(SPC)

Action:
Returns an array of type and size the same as the one-dimensional array
a, containing the partial cumulants of the polynomial with coefficientsa

(arranged from highest-order to lowest-order coefficients, n.b.) evaluated
at x. This is equivalent to synthetic division, and can be parallelized. See
§22.3. Note that the order of arguments is reversed inpoly andpoly term

— each routine returns a value with the size and shape of thefirst argument,
the usual Fortran 90 convention.

Reference implementation:
INTEGER(I4B) :: n,j
n=size(a)
if (n <= 0) return
poly_term(1)=a(1)
do j=2,n

poly_term(j)=a(j)+x*poly_term(j-1)
end do

⋆ ⋆ ⋆

zroots unity (returns powers of complexnth root of unity)

User interface (or, “USE nrutil”):
FUNCTION zroots_unity(n,nn)
INTEGER(I4B), INTENT(IN) :: n,nn
COMPLEX(SPC), DIMENSION(nn) :: zroots_unity
END FUNCTION zroots_unity

1000 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Action:
Returns a complex array containingnn consecutive powers of thenth
complex root of unity. Note that the following reference implementation is
definitional only, and neither parallelized nor optimized for roundoff error.
See Appendix C1 for implementation by subvector scaling.

Reference implementation:
INTEGER(I4B) :: k
REAL(SP) :: theta
if (nn==0) return
zroots_unity(1)=1.0
if (nn==1) return
theta=TWOPI/n
zroots_unity(2)=cmplx(cos(theta),sin(theta))
do k=3,nn

zroots_unity(k)=zroots_unity(k-1)*zroots_unity(2)
end do

23.5 Routines for Outer Operations on Vectors

Outer operations on vectors take two vectors as input, and return a matrix as
output. One dimension of the matrix is the size of the first vector, the other is the
size of the second vector. Our convention is always the standard one,

result(i,j) = first operand(i) (op) second operand(j)

where(op) is any of addition, subtraction, multiplication, division, and logicaland.
The reason for coding these as utility routines is that Fortran 90’s native construction,
with two spreads (cf.§22.1), is difficult to read and thus prone to programmer errors.

⋆ ⋆ ⋆

outerprod (outer product)

User interface (or, “USE nrutil”):
FUNCTION outerprod(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outerprod
END FUNCTION outerprod

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)

Action:
Returns a matrix that is the outer product of two vectors.

Reference implementation:
outerprod = spread(a,dim=2,ncopies=size(b)) * &

spread(b,dim=1,ncopies=size(a))

⋆ ⋆ ⋆

23.5 Routines for Outer Operations on Vectors 1001

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

outerdiv (outer quotient)

User interface (or, “USE nrutil”):
FUNCTION outerdiv(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outerdiv
END FUNCTION outerdiv

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Returns a matrix that is the outer quotient of two vectors.

Reference implementation:
outerdiv = spread(a,dim=2,ncopies=size(b)) / &

spread(b,dim=1,ncopies=size(a))

⋆ ⋆ ⋆

outersum (outer sum)

User interface (or, “USE nrutil”):
FUNCTION outersum(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outersum
END FUNCTION outersum

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Returns a matrix that is the outer sum of two vectors.

Reference implementation:
outersum = spread(a,dim=2,ncopies=size(b)) + &

spread(b,dim=1,ncopies=size(a))

⋆ ⋆ ⋆

outerdiff (outer difference)

User interface (or, “USE nrutil”):
FUNCTION outerdiff(a,b)
T, DIMENSION(:), INTENT(IN) :: a,b
T, DIMENSION(size(a),size(b)) :: outerdiff
END FUNCTION outerdiff

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ INTEGER(I4B), REAL(SP), REAL(DP)

Action:
Returns a matrix that is the outer difference of two vectors.

1002 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Reference implementation:
outerdiff = spread(a,dim=2,ncopies=size(b)) - &

spread(b,dim=1,ncopies=size(a))

⋆ ⋆ ⋆

outerand (outer logical and)

User interface (or, “USE nrutil”):
FUNCTION outerand(a,b)
LOGICAL(LGT), DIMENSION(:), INTENT(IN) :: a,b
LOGICAL(LGT), DIMENSION(size(a),size(b)) :: outerand
END FUNCTION outerand

Applicable types and ranks:
T ≡ any logical type

Types and ranks implemented (overloaded) innrutil:
T ≡ LOGICAL(LGT)

Action:
Returns a matrix that is the outer logical and of two vectors.

Reference implementation:
outerand = spread(a,dim=2,ncopies=size(b)) .and. &

spread(b,dim=1,ncopies=size(a))

23.6 Routines for Scatter with Combine

These are common parallel functions that Fortran 90 simply doesn’t provide
a means for implementing. If you have a parallel machine, you should substitute
library routines specific to your hardware.

⋆ ⋆ ⋆

scatter add (scatter-add source to specified components of destination)

User interface (or, “USE nrutil”):
SUBROUTINE scatter_add(dest,source,dest_index)
T, DIMENSION(:), INTENT(OUT) :: dest
T, DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
END SUBROUTINE scatter_add

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)

23.6 Routines for Scatter with Combine 1003

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Action:
Adds each component of the arraysource into a component ofdest
specified by the index arraydest index. (The user will usually have
zeroed dest before the call to this routine.) Note thatdest index

has the size ofsource, but must contain values in the range from1 to
size(dest), inclusive. Out-of-range values are ignored. There is no
parallel implementation of this routine accessible from Fortran 90; most
parallel machines supply an implementation as a library routine.

Reference implementation:
INTEGER(I4B) :: m,n,j,i
n=assert_eq(size(source),size(dest_index),’scatter_add’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=dest(i)+source(j)

end do

⋆ ⋆ ⋆

scatter max (scatter-max source to specified components of destination)

User interface (or, “USE nrutil”):
SUBROUTINE scatter_max(dest,source,dest_index)
T, DIMENSION(:), INTENT(OUT) :: dest
T, DIMENSION(:), INTENT(IN) :: source
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: dest_index
END SUBROUTINE scatter_max

Applicable types and ranks:
T ≡ any integer or real type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)

Action:
Takes themax operation between each component of the arraysource and
a component ofdest specified by the index arraydest index, replacing
that component ofdest with the value obtained (“maxing into” operation).
(The user will often want to fill the arraydest with the value−huge before
the call to this routine.) Note thatdest index has the size ofsource,
but must contain values in the range from1 to size(dest), inclusive.
Out-of-range values are ignored. There is no parallel implementation of
this routine accessible from Fortran 90; most parallel machines supply an
implementation as a library routine.

Reference implementation:
INTEGER(I4B) :: m,n,j,i
n=assert_eq(size(source),size(dest_index),’scatter_max’)
m=size(dest)
do j=1,n

i=dest_index(j)
if (i > 0 .and. i <= m) dest(i)=max(dest(i),source(j))

end do

1004 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

23.7 Routines for Skew Operations on Matrices

These are also missing parallel capabilities in Fortran 90. In Appendix C1 they
are coded serially, with one or more do-loops.

⋆ ⋆ ⋆

diagadd (adds vector to diagonal of a matrix)

User interface (or, “USE nrutil”):
SUBROUTINE diagadd(mat,diag)
T, DIMENSION(:,:), INTENT(INOUT) :: mat
T, DIMENSION(:), INTENT(IN) :: diag
END SUBROUTINE diagadd

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
The argumentdiag, either a scalar or else a vector whose size must be the
smaller of the two dimensions of matrixmat, is added to the diagonal of
the matrixmat. The following shows an implementation wherediag is a
vector; the scalar case can be overloaded (see Appendix C1).

Reference implementation:
INTEGER(I4B) :: j,n
n = assert_eq(size(diag),min(size(mat,1),size(mat,2)),’diagadd’)
do j=1,n

mat(j,j)=mat(j,j)+diag(j)
end do

⋆ ⋆ ⋆

diagmult (multiplies vector into diagonal of a matrix)

User interface (or, “USE nrutil”):
SUBROUTINE diagmult(mat,diag)
T, DIMENSION(:,:), INTENT(INOUT) :: mat
T, DIMENSION(:), INTENT(IN) :: diag
END SUBROUTINE diagmult

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
The argumentdiag, either a scalar or else a vector whose size must be the
smaller of the two dimensions of matrixmat, is multiplied onto the diagonal
of the matrixmat. The following shows an implementation wherediag is a
vector; the scalar case can be overloaded (see Appendix C1).

23.7 Routines for Skew Operations on Matrices 1005

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Reference implementation:
INTEGER(I4B) :: j,n
n = assert_eq(size(diag),min(size(mat,1),size(mat,2)),’diagmult’)
do j=1,n

mat(j,j)=mat(j,j)*diag(j)
end do

⋆ ⋆ ⋆

get diag (gets diagonal of matrix)

User interface (or, “USE nrutil”):
FUNCTION get_diag(mat)
T, DIMENSION(:,:), INTENT(IN) :: mat
T, DIMENSION(min(size(mat,1),size(mat,2))) :: get_diag
END FUNCTION get_diag

Applicable types and ranks:
T ≡ any type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP), REAL(DP)

Action:
Returns a vector containing the diagonal values of the matrixmat.

Reference implementation:
INTEGER(I4B) :: j
do j=1,min(size(mat,1),size(mat,2))

get_diag(j)=mat(j,j)
end do

⋆ ⋆ ⋆

put diag (sets the diagonal elements of a matrix)

User interface (or, “USE nrutil”):
SUBROUTINE put_diag(diag,mat)
T, DIMENSION(:), INTENT(IN) :: diag
T, DIMENSION(:,:), INTENT(INOUT) :: mat
END SUBROUTINE put_diag

Applicable types and ranks:
T ≡ any type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Sets the diagonal of matrixmat equal to the argumentdiag, either a scalar or
else a vector whose size must be the smaller of the two dimensions of matrix
mat. The following shows an implementation wherediag is a vector; the
scalar case can be overloaded (see Appendix C1).

Reference implementation:
INTEGER(I4B) :: j,n
n=assert_eq(size(diag),min(size(mat,1),size(mat,2)),’put_diag’)
do j=1,n

mat(j,j)=diag(j)
end do

⋆ ⋆ ⋆

1006 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

unit matrix (returns a unit matrix)

User interface (or, “USE nrutil”):
SUBROUTINE unit_matrix(mat)
T, DIMENSION(:,:), INTENT(OUT) :: mat
END SUBROUTINE unit_matrix

Applicable types and ranks:
T ≡ any numerical type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Sets the diagonal components ofmat to unity, all other components to zero.
Whenmat is square, this will be the unit matrix; otherwise, a unit matrix
with appended rows or columns of zeros.

Reference implementation:
INTEGER(I4B) :: i,n
n=min(size(mat,1),size(mat,2))
mat(:,:)=0.0
do i=1,n

mat(i,i)=1.0
end do

⋆ ⋆ ⋆

upper triangle (returns an upper triangular mask)

User interface (or, “USE nrutil”):
FUNCTION upper_triangle(j,k,extra)
INTEGER(I4B), INTENT(IN) :: j,k
INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
LOGICAL(LGT), DIMENSION(j,k) :: upper_triangle
END FUNCTION upper_triangle

Action:
When the optionalargumentextra is zero or absent, returns a logical mask of
shape(j, k) whose values are true above and to the right of the diagonal, false
elsewhere (including on the diagonal). Whenextra is present and positive,
a corresponding number of additional (sub-)diagonals are returned as true.
(extra = 1 makes the main diagonal return true.) Whenextra is present
and negative, it suppresses a corresponding number of superdiagonals.

Reference implementation:
INTEGER(I4B) :: n,jj,kk
n=0
if (present(extra)) n=extra
do jj=1,j

do kk=1,k
upper_triangle(jj,kk)= (jj-kk < n)

end do
end do

⋆ ⋆ ⋆

23.8 Other Routine(s) 1007

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

lower triangle (returns a lower triangular mask)

User interface (or, “USE nrutil”):
FUNCTION lower_triangle(j,k,extra)
INTEGER(I4B), INTENT(IN) :: j,k
INTEGER(I4B), OPTIONAL, INTENT(IN) :: extra
LOGICAL(LGT), DIMENSION(j,k) :: lower_triangle
END FUNCTION lower_triangle

Action:
When the optional argumentextra is zero or absent, returns a logical mask
of shape(j, k) whose values are true below and to the left of the diagonal,
false elsewhere (including on the diagonal). Whenextra is present and
positive, a corresponding number of additional (super-)diagonals are returned
as true. (extra = 1 makes the main diagonal return true.) Whenextra is
present and negative, it suppresses a corresponding number of subdiagonals.

Reference implementation:
INTEGER(I4B) :: n,jj,kk
n=0
if (present(extra)) n=extra
do jj=1,j

do kk=1,k
lower_triangle(jj,kk)= (kk-jj < n)

end do
end do

Fortran 95’sforall construction will make the parallel implementation of
all our skew operations utilities extremely simple. For example, the do-loop in
diagadd will collapse to

forall (j=1:n) mat(j,j)=mat(j,j)+diag(j)

In fact, this implementation is so simple as to raise the question of whether a separate
utility like diagaddwill be needed at all. There are valid arguments on both sides of
this question: The “con” argument, against a routine likediagadd, is that it is just
another reserved name that you have to remember (if you want to use it). The “pro”
argument is that a separate routine avoids the “index pollution” (the opposite disease
from “index loss” discussed in§22.1) of introducinga superfluous variablej, and that
a separate utility allows for additional error checking on the sizes and compatibility
of its arguments. We expect that different programmers will have differing tastes.

The argument for keeping a routine likeupper triangleorlower triangle,
once Fortran 95’smaskedforall constructions become available, is less persuasive.
We recommend that you consider these two routines as placeholders for “remember
to recode this in Fortran 95, someday.”

23.8 Other Routine(s)

You might argue that we don’t really need a routine for the idiom

sqrt(dot product(v,v))

1008 Chapter 23. Numerical Recipes Utility Functions for Fortran 90

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

You might be right. The ability to overload the complex case, with its additional
complex conjugate, is an argument in its favor, however.

⋆ ⋆ ⋆

vabs (L2 norm of a vector)

User interface (or, “USE nrutil”):
FUNCTION vabs(v)
T, DIMENSION(:), INTENT(IN) :: v
T :: vabs
END FUNCTION vabs

Applicable types and ranks:
T ≡ any real or complex type

Types and ranks implemented (overloaded) innrutil:
T ≡ REAL(SP)

Action:
Returns the length of a vectorv inL2 norm, that is, the square root of the sum
of the squares of the components. (For complex types, thedot product

should be between the vector and its complex conjugate.)

Reference implementation:
vabs=sqrt(dot_product(v,v))

General Index to Volumes 1 and 2

In this index, page numbers 1 through 934 refer to Volume 1,Numerical Recipes in Fortran 77, while
page numbers 935 through 1446 refer to Volume 2,Numerical Recipes in Fortran 90. Front matter in
Volume 1 is indicated by page numbers in the range 1/i through 1/xxxi, while front matter in Volume
2 is indicated 2/i through 2/xx.

Abstract data types 2/xiii, 1030
Accelerated convergence of series 160ff.,

1070
Accuracy 19f.

achievable in minimization 392, 397, 404
achievable in root finding 346f.
contrasted with fidelity 832, 840
CPU different from memory 181
vs. stability 704, 729, 830, 844

Accuracy parameters 1362f.
Acknowledgments 1/xvi, 2/ix
Ada 2/x
Adams-Bashford-Moulton method 741
Adams’ stopping criterion 366
Adaptive integration 123, 135, 703, 708ff.,

720, 726, 731f., 737, 742ff., 788, 1298ff.,
1303, 1308f.

Monte Carlo 306ff., 1161ff.
Addition, multiple precision 907, 1353
Addition theorem, elliptic integrals 255
ADI (alternating direction implicit) method

847, 861f., 906
Adjoint operator 867
Adobe Illustrator 1/xvi, 2/xx
Advective equation 826
AGM (arithmetic geometric mean) 906
Airy function 204, 234, 243f.

routine for 244f., 1121
Aitken’s delta squared process 160
Aitken’s interpolation algorithm 102
Algol 2/x, 2/xiv
Algorithms, non-numerical 881ff., 1343ff.
Aliasing 495, 569

see alsoFourier transform
all() intrinsic function 945, 948
All-poles model 566

see alsoMaximum entropy method (MEM)
All-zeros model 566

see alsoPeriodogram
Allocatable array 938, 941, 952ff., 1197,

1212, 1266, 1293, 1306, 1336
allocate statement 938f., 941, 953f., 1197,

1266, 1293, 1306, 1336
allocated() intrinsic function 938, 952ff.,

1197, 1266, 1293
Allocation status 938, 952ff., 961, 1197,

1266, 1293

Alpha AXP 2/xix
Alternating-direction implicit method (ADI)

847, 861f., 906
Alternating series 160f., 1070
Alternative extended Simpson’s rule 128
American National Standards Institute (ANSI)

2/x, 2/xiii
Amoeba 403

see alsoSimplex, method of Nelder and
Mead

Amplification factor 828, 830, 832, 840, 845f.
Amplitude error 831
Analog-to-digital converter 812, 886
Analyticity 195
Analyze/factorize/operate package 64, 824
Anderson-Darling statistic 621
Andrew’s sine 697
Annealing, method of simulated 387f., 436ff.,

1219ff.
assessment 447
for continuous variables 437, 443ff., 1222
schedule 438
thermodynamic analogy 437
traveling salesman problem 438ff., 1219ff.

ANSI (American National Standards Institute)
2/x, 2/xiii

Antonov-Saleev variant of Sobol’ sequence
300, 1160

any() intrinsic function 945, 948
APL (computer language) 2/xi
Apple 1/xxiii

Macintosh 2/xix, 4, 886
Approximate inverse of matrix 49
Approximation of functions 99, 1043

by Chebyshev polynomials 185f., 513,
1076ff.

Padé approximant 194ff., 1080f.
by rational functions 197ff., 1081f.
by wavelets 594f., 782
see alsoFitting

Argument
keyword 2/xiv, 947f., 1341
optional 2/xiv, 947f., 1092, 1228, 1230,

1256, 1272, 1275, 1340
Argument checking 994f., 1086, 1090, 1092,

1370f.

1447

1448 Index to Volumes 1 and 2

Arithmetic
arbitrary precision 881, 906ff., 1352ff.
floating point 881, 1343
IEEE standard 276, 882, 1343
rounding 882, 1343

Arithmetic coding 881, 902ff., 1349ff.
Arithmetic-geometric mean (AGM) method

906
Arithmetic-if statement 2/xi
Arithmetic progression 971f., 996, 1072,

1127, 1365, 1371f.
Array 953ff.

allocatable 938, 941, 952ff., 1197, 1212,
1266, 1293, 1306, 1336

allocated with pointer 941
allocation 953
array manipulation functions 950
array sections 939, 941, 943ff.
of arrays 2/xii, 956, 1336
associated pointer 953f.
assumed-shape 942
automatic 938, 954, 1197, 1212, 1336
centered subarray of 113
conformable to a scalar 942f., 965, 1094
constructor 2/xii, 968, 971, 1022, 1052,

1055, 1127
copying 991, 1034, 1327f., 1365f.
cumulative product 997f., 1072, 1086,

1375
cumulative sum 997, 1280f., 1365, 1375
deallocation 938, 953f., 1197, 1266, 1293
disassociated pointer 953
extents 938, 949
in Fortran 90 941
increasing storage for 955, 1070, 1302
index loss 967f.
index table 1173ff.
indices 942
inquiry functions 948ff.
intrinsic procedures 2/xiii, 948ff.
of length 0 944
of length 1 949
location of first “true” 993, 1041, 1369
location of maximum value 993, 1015,

1017, 1365, 1369
location of minimum value 993, 1369f.
manipulation functions 950, 1247
masked swapping of elements in two arrays

1368
operations on 942, 949, 964ff., 969, 1026,

1040, 1050, 1200, 1326
outer product 949, 1076
parallel features 941ff., 964ff., 985
passing variable number of arguments to

function 1022
of pointers forbidden 956, 1337
rank 938, 949
reallocation 955, 992, 1070f., 1365, 1368f.
reduction functions 948ff.
shape 938, 944, 949
size 938
skew sections 945, 985
stride 944
subscript bounds 942
subscript triplet 944

swapping elements of two arrays 991,
1015, 1365ff.

target 938
three-dimensional, in Fortran 90 1248
transformational functions 948ff.
unary and binary functions 949
undefined status 952ff., 961, 1266, 1293
zero-length 944

Array section 2/xiii, 943ff., 960
matches by shape 944
pointer alias 939, 944f., 1286, 1333
skew 2/xii, 945, 960, 985, 1284
vs. eoshift 1078

array copy() utility function 988, 991, 1034,
1153, 1278, 1328

arth() utility function 972, 974, 988, 996,
1072, 1086, 1127

replaces do-list 968
Artificial viscosity 831, 837
Ascending transformation, elliptic integrals

256
ASCII character set 6, 888, 896, 902
Assembly language 269
assert() utility function 988, 994, 1086, 1090,

1249
asserteq() utility function 988, 995, 1022
associated() intrinsic function 952f.
Associated Legendre polynomials 246ff., 764,

1122f., 1319
recurrence relation for 247
relation to Legendre polynomials 246

Association, measures of 604, 622ff., 1275
Assumed-shape array 942
Asymptotic series 161

exponential integral 218
Attenuation factors 583, 1261
Autocorrelation 492

in linear prediction 558
use of FFT 538f., 1254
Wiener-Khinchin theorem 492, 566f.

AUTODIN-II polynomial 890
Automatic array 938, 954, 1197, 1212, 1336

specifying size of 938, 954
Automatic deallocation 2/xv, 961
Autonomous differential equations 729f.
Autoregressive model (AR)seeMaximum en-

tropy method (MEM)
Average deviation of distribution 605, 1269
Averaging kernel, in Backus-Gilbert method

807

Backsubstitution 33ff., 39, 42, 92, 1017
in band diagonal matrix 46, 1021
in Cholesky decomposition 90, 1039
complex equations 41
direct for computingA−1 · B 40
with QR decomposition 93, 1040
relaxation solution of boundary value prob-

lems 755, 1316
in singular value decomposition 56, 1022f.

Backtracking 419
in quasi-Newton methods 376f., 1195

Backus-Gilbert method 806ff.
Backus, John 2/x
Backward deflation 363

Index to Volumes 1 and 2 1449

Bader-Deuflhard method 730, 735, 1310f.
Bairstow’s method 364, 370, 1193
Balancing 476f., 1230f.
Band diagonal matrix 42ff., 1019

backsubstitution 46, 1021
LU decomposition 45, 1020
multiply by vector 44, 1019
storage 44, 1019

Band-pass filter 551, 554f.
wavelets 584, 592f.

Bandwidth limited function 495
Bank accounts, checksum for 894
Bar codes, checksum for 894
Bartlett window 547, 1254ff.
Base case, of recursive procedure 958
Base of representation 19, 882, 1343
BASIC, Numerical Recipes in 1, 2/x, 2/xviii
Basis functions in general linear least squares

665
Bayes’ Theorem 810
Bayesian

approach to inverse problems 799, 810f.,
816f.

contrasted with frequentist 810
vs. historic maximum entropy method

816f.
views on straight line fitting 664

Bays’ shuffle 270
Bernoulli number 132
Bessel functions 223ff., 234ff., 936, 1101ff.

asymptotic form 223f., 229f.
complex 204
continued fraction 234, 239
double precision 223
fractional order 223, 234ff., 1115ff.
Miller’s algorithm 175, 228, 1106
modified 229ff.
modified, fractional order 239ff.
modified, normalization formula 232, 240
modified, routines for 230ff., 1109ff.
normalization formula 175
parallel computation of 1107ff.
recurrence relation 172, 224, 232, 234
reflection formulas 236
reflection formulas, modified functions

241
routines for 225ff., 236ff., 1101ff.
routines for modified functions 241ff.,

1118
series for 160, 223
series forKν 241
series forYν 235
spherical 234, 245, 1121f.
turning point 234
Wronskian 234, 239

Best-fit parameters 650, 656, 660, 698, 1285ff.
see alsoFitting

Beta function 206ff., 1089
incompleteseeIncomplete beta function

BFGS algorithmseeBroyden-Fletcher-Goldfarb-
Shanno algorithm

Bias, of exponent 19
Bias, removal in linear prediction 563
Biconjugacy 77

Biconjugate gradient method
elliptic partial differential equations 824
preconditioning 78f., 824, 1037
for sparse system 77, 599, 1034ff.

Bicubic interpolation 118f., 1049f.
Bicubic spline 120f., 1050f.
Big-endian 293
Bilinear interpolation 117
Binary constant, initialization 959
Binomial coefficients 206ff., 1087f.

recurrences for 209
Binomial probability function 208

cumulative 222f.
deviates from 281, 285f., 1155

Binormal distribution 631, 690
Biorthogonality 77
Bisection 111, 359, 1045f.

compared to minimum bracketing 390ff.
minimum finding with derivatives 399
root finding 343, 346f., 352f., 390, 469,

1184f.
BISYNCH 890
Bit 18

manipulation functionsseeBitwise logical
functions

reversal in fast Fourier transform (FFT)
499f., 525

bit size() intrinsic function 951
Bitwise logical functions 2/xiii, 17, 287,

890f., 951
Block-by-block method 788
Block of statements 7
Bode’s rule 126
Boltzmann probability distribution 437
Boltzmann’s constant 437
Bootstrap method 686f.
Bordering method for Toeplitz matrix 85f.
Borwein and Borwein method forπ 906,

1357
Boundary 155f., 425f., 745
Boundary conditions

for differential equations 701f.
initial value problems 702
in multigrid method 868f.
partial differential equations 508, 819ff.,

848ff.
for spheroidal harmonics 764
two-point boundary value problems 702,

745ff., 1314ff.
Boundary value problemsseeDifferential

equations; Elliptic partial differential
equations; Two-point boundary value
problems

Box-Muller algorithm for normal deviate 279f.,
1152

Bracketing
of function minimum 343, 390ff., 402,

1201f.
of roots 341, 343ff., 353f., 362, 364, 369,

390, 1183f.
Branch cut, for hypergeometric function 203
Branching 9
Break iteration 14
Brenner, N.M. 500, 517

1450 Index to Volumes 1 and 2

Brent’s method
minimization 389, 395ff., 660f., 1204ff.,

1286
minimization, using derivative 389, 399,

1205
root finding 341, 349, 660f., 1188f., 1286

Broadcast (parallel capability) 965ff.
Broyden-Fletcher-Goldfarb-Shanno algorithm

390, 418ff., 1215
Broyden’s method 373, 382f., 386, 1199f.

singular Jacobian 386
btest() intrinsic function 951
Bubble sort 321, 1168
Bugs 4

in compilers 1/xvii
how to report 1/iv, 2/iv

Bulirsch-Stoer
algorithm for rational function interpolation

105f., 1043
method (differential equations) 202, 263,

702f., 706, 716, 718ff., 726, 740, 1138,
1303ff.

method (differential equations), stepsize
control 719, 726

for second order equations 726, 1307
Burg’s LP algorithm 561, 1256
Byte 18

C (programming language) 13, 2/viii
and case construct 1010
Numerical Recipes in 1, 2/x, 2/xvii

C++ 1/xiv, 2/viii, 2/xvi, 7f.
class templates 1083, 1106

Calendar algorithms 1f., 13ff., 1010ff.
Calibration 653
Capital letters in programs 3, 937
Cards, sorting a hand of 321
Carlson’s elliptic integrals 255f., 1128ff.
case construct 2/xiv, 1010

trapping errors 1036
Cash-Karp parameters 710, 1299f.
Cauchy probability distributionseeLorentzian

probability distribution
Cauchy problem for partial differential equa-

tions 818f.
Cayley’s representation ofexp(−iHt) 844
CCITT (Comité Consultatif International Télé-

graphique et Téléphonique) 889f., 901
CCITT polynomial 889f.
ceiling() intrinsic function 947
Center of mass 295ff.
Central limit theorem 652f.
Central tendency, measures of 604ff., 1269
Change of variable

in integration 137ff., 788, 1056ff.
in Monte Carlo integration 298
in probability distribution 279

Character functions 952
Character variables, in Fortran 90 1183
Characteristic polynomial

digital filter 554
eigensystems 449, 469
linear prediction 559
matrix with a specified 368, 1193
of recurrence relation 175

Characteristics of partial differential equations
818

Chebyshev acceleration in successive over-
relaxation (SOR) 859f., 1332

Chebyshev approximation 84, 124, 183, 184ff.,
1076ff.

Clenshaw-Curtis quadrature 190
Clenshaw’s recurrence formula 187, 1076
coefficients for 185f., 1076
contrasted with Padé approximation 195
derivative of approximated function 183,

189, 1077f.
economization of series 192f., 195, 1080
for error function 214, 1095
even function 188
and fast cosine transform 513
gamma functions 236, 1118
integral of approximated function 189,

1078
odd function 188
polynomial fits derived from 191, 1078
rational function 197ff., 1081f.
Remes exchange algorithm for filter 553

Chebyshev polynomials 184ff., 1076ff.
continuous orthonormality 184
discrete orthonormality 185
explicit formulas for 184
formula forxk in terms of 193, 1080

Check digit 894, 1345f.
Checksum 881, 888

cyclic redundancy (CRC) 888ff., 1344f.
Cherry, sundae without a 809
Chi-by-eye 651
Chi-square fittingseeFitting; Least squares

fitting
Chi-square probability function 209ff., 215,

615, 654, 798, 1272
as boundary of confidence region 688f.
related to incomplete gamma function 215

Chi-square test 614f.
for binned data 614f., 1272
chi-by-eye 651
and confidence limit estimation 688f.
for contingency table 623ff., 1275
degrees of freedom 615f.
for inverse problems 797
least squares fitting 653ff., 1285
nonlinear models 675ff., 1292
rule of thumb 655
for straight line fitting 655ff., 1285
for straight line fitting, errors in both coor-

dinates 660, 1286ff.
for two binned data sets 616, 1272
unequal size samples 617

Chip rate 290
Chirp signal 556
Cholesky decomposition 89f., 423, 455, 1038

backsubstitution 90, 1039
operation count 90
pivoting 90
solution of normal equations 668

Circulant 585
Class, data type 7
Clenshaw-Curtis quadrature 124, 190, 512f.

Index to Volumes 1 and 2 1451

Clenshaw’s recurrence formula 176f., 191,
1078

for Chebyshev polynomials 187, 1076
stability 176f.

Clocking errors 891
CM computers (Thinking Machines Inc.) 964
CM Fortran 2/xv
cn function 261, 1137f.
Coarse-grid correction 864f.
Coarse-to-fine operator 864, 1337
Coding

arithmetic 902ff., 1349ff.
checksums 888, 1344
decoding a Huffman-encoded message

900, 1349
Huffman 896f., 1346ff.
run-length 901
variable length code 896, 1346ff.
Ziv-Lempel 896
see alsoArithmetic coding; Huffman cod-

ing
Coefficients

binomial 208, 1087f.
for Gaussian quadrature 140ff., 1059ff.
for Gaussian quadrature, nonclassical weight

function 151ff., 788f., 1064
for quadrature formulas 125ff., 789, 1328

Cohen, Malcolm 2/xiv
Column degeneracy 22
Column operations on matrix 29, 31f.
Column totals 624
Combinatorial minimizationseeAnnealing
Comité Consultatif International Télégraphique

et Téléphonique (CCITT) 889f., 901
Common block

obsolescent 2/xif.
superseded by internal subprogram 957,

1067
superseded by module 940, 953, 1298,

1320, 1322, 1324, 1330
Communication costs, in parallel processing

969, 981, 1250
Communication theory, use in adaptive integra-

tion 721
Communications protocol 888
Comparison function for rejection method

281
Compilers 964, 1364

CM Fortran 968
DEC (Digital Equipment Corp.) 2/viii
IBM (International Business Machines)

2/viii
Microsoft Fortran PowerStation 2/viii
NAG (Numerical Algorithms Group) 2/viii,

2/xiv
for parallel supercomputers 2/viii

Complementary error function 1094f.
seeError function

Complete elliptic integralseeElliptic integrals
Complex arithmetic 171f.

avoidance of in path integration 203
cubic equations 179f.
for linear equations 41
quadratic equations 178

Complex error function 252

Complex plane
fractal structure for Newton’s rule 360f.
path integration for function evaluation

201ff., 263, 1138
poles in 105, 160, 202f., 206, 554, 566,

718f.
Complex systems of linear equations 41f.
Compression of data 596f.
Concordant pair for Kendall’s tau 637, 1281
Condition number 53, 78
Confidence level 687, 691ff.
Confidence limits

bootstrap method 687f.
and chi-square 688f.
confidence region, confidence interval 687
on estimated model parameters 684ff.
by Monte Carlo simulation 684ff.
from singular value decomposition (SVD)

693f.
Confluent hypergeometric function 204, 239
Conformable arrays 942f., 1094
Conjugate directions 408f., 414ff., 1210
Conjugate gradient method

biconjugate 77, 1034
compared to variable metric method 418
elliptic partial differential equations 824
for minimization 390, 413ff., 804, 815,

1210, 1214
minimum residual method 78
preconditioner 78f., 1037
for sparse system 77ff., 599, 1034
and wavelets 599

Conservative differential equations 726, 1307
Constrained linear inversion method 799ff.
Constrained linear optimizationseeLinear pro-

gramming
Constrained optimization 387
Constraints, deterministic 804ff.
Constraints, linear 423
CONTAINS statement 954, 957, 1067, 1134,

1202
Contingency coefficient C 625, 1275
Contingency table 622ff., 638, 1275f.

statistics based on chi-square 623ff., 1275
statistics based on entropy 626ff., 1275f.

Continued fraction 163ff.
Bessel functions 234
convergence criterion 165
equivalence transformation 166
evaluation 163ff.
evaluation along with normalization condi-

tion 240
even and odd parts 166, 211, 216
even part 249, 251
exponential integral 216
Fresnel integral 248f.
incomplete beta function 219f., 1099f.
incomplete gamma function 211, 1092f.
Lentz’s method 165, 212
modified Lentz’s method 165
Pincherle’s theorem 175
ratio of Bessel functions 239
rational function approximation 164, 211,

219f.
recurrence for evaluating 164f.

1452 Index to Volumes 1 and 2

and recurrence relation 175
sine and cosine integrals 250f.
Steed’s method 164f.
tangent function 164
typography for 163

Continuous variable (statistics) 623
Control structures 7ff., 2/xiv

bad 15
named 959, 1219, 1305

Convergence
accelerated, for series 160ff., 1070
of algorithm for pi 906
criteria for 347, 392, 404, 483, 488, 679,

759
eigenvalues accelerated by shifting 470f.
golden ratio 349, 399
of golden section search 392f.
of Levenberg-Marquardt method 679
linear 346, 393
of QL method 470f.
quadratic 49, 351, 356, 409f., 419, 906
rate 346f., 353, 356
recurrence relation 175
of Ridders’ method 351
series vs. continued fraction 163f.
and spectral radius 856ff., 862

Conversion intrinsic functions 946f.
Convex sets, use in inverse problems 804
Convolution

denoted by asterisk 492
finite impulse response (FIR) 531
of functions 492, 503f.
of large data sets 536f.
for multiple precision arithmetic 909,

1354
multiplication as 909, 1354
necessity for optimal filtering 535
overlap-add method 537
overlap-save method 536f.
and polynomial interpolation 113
relation to wavelet transform 585
theorem 492, 531ff., 546
theorem, discrete 531ff.
treatment of end effects 533
use of FFT 523, 531ff., 1253
wraparound problem 533

Cooley-Tukey FFT algorithm 503, 1250
parallel version 1239f.

Co-processor, floating point 886
Copyright rules 1/xx, 2/xix
Cornwell-Evans algorithm 816
Corporate promotion ladder 328
Corrected two-pass algorithm 607, 1269
Correction, in multigrid method 863
Correlation coefficient (linear) 630ff., 1276
Correlation function 492

autocorrelation 492, 539, 558
and Fourier transforms 492
theorem 492, 538
treatment of end effects 538f.
using FFT 538f., 1254
Wiener-Khinchin theorem 492, 566f.

Correlation, statistical 603f., 622
Kendall’s tau 634, 637ff., 1279

linear correlation coefficient 630ff., 658,
1276

linear related to least square fitting 630,
658

nonparametric or rank statistical 633ff.,
1277

among parameters in a fit 657, 667, 670
in random number generators 268
Spearman rank-order coefficient 634f.,

1277
sum squared difference of ranks 634,

1277
Cosine function, recurrence 172
Cosine integral 248, 250ff., 1125f.

continued fraction 250
routine for 251f., 1125
series 250

Cosine transformseeFast Fourier transform
(FFT); Fourier transform

Coulomb wave function 204, 234
count() intrinsic function 948
Courant condition 829, 832ff., 836

multidimensional 846
Courant-Friedrichs-Lewy stability criterionsee

Courant condition
Covariance

a priori 700
in general linear least squares 667, 671,

1288ff.
matrix, by Cholesky decomposition 91,

667
matrix, of errors 796, 808
matrix, is inverse of Hessian matrix 679
matrix, when it is meaningful 690ff.
in nonlinear models 679, 681, 1292
relation to chi-square 690ff.
from singular value decomposition (SVD)

693f.
in straight line fitting 657

cpu time() intrinsic function (Fortran 95) 961
CR methodseeCyclic reduction (CR)
Cramer’s V 625, 1275
Crank-Nicholson method 840, 844, 846
Cray computers 964
CRC (cyclic redundancy check) 888ff., 1344f.
CRC-12 890
CRC-16 polynomial 890
CRC-CCITT 890
Creativity, essay on 9
Critical (Nyquist) sampling 494, 543
Cross (denotes matrix outer product) 66
Crosstabulation analysis 623

see alsoContingency table
Crout’s algorithm 36ff., 45, 1017
cshift() intrinsic function 950

communication bottleneck 969
Cubic equations 178ff., 360
Cubic spline interpolation 107ff., 1044f.

see alsoSpline
cumprod() utility function 974, 988, 997,

1072, 1086
cumsum() utility function 974, 989, 997,

1280, 1305
Cumulant, of a polynomial 977, 999, 1071f.,

1192

Index to Volumes 1 and 2 1453

Cumulative binomial distribution 222f.
Cumulative Poisson function 214

related to incomplete gamma function 214
Curvature matrixseeHessian matrix
cycle statement 959, 1219
Cycle, in multigrid method 865
Cyclic Jacobi method 459, 1225
Cyclic reduction (CR) 848f., 852ff.

linear recurrences 974
tridiagonal systems 976, 1018

Cyclic redundancy check (CRC) 888ff., 1344f.
Cyclic tridiagonal systems 67, 1030

D .C. (direct current) 492
Danielson-Lanczos lemma 498f., 525, 1235ff.
DAP Fortran 2/xi
Data

assigning keys to 889
continuous vs. binned 614
entropy 626ff., 896, 1275
essay on 603
fitting 650ff., 1285ff.
fraudulent 655
glitches in 653
iid (independent and identically distributed)

686
modeling 650ff., 1285ff.
serial port 892
smoothing 604, 644ff., 1283f.
statistical tests 603ff., 1269ff.
unevenly or irregularly sampled 569, 574,

648f., 1258ff.
use of CRCs in manipulating 889
windowing 545ff., 1254
see alsoStatistical tests

Data compression 596f., 881
arithmetic coding 902ff., 1349ff.
cosine transform 513
Huffman coding 896f., 902, 1346ff.
linear predictive coding (LPC) 563ff.
lossless 896

Data Encryption Standard (DES) 290ff., 1144,
1147f., 1156ff.

Data hiding 956ff., 1209, 1293, 1296
Data parallelism 941, 964ff., 985
DATA statement 959

for binary, octal, hexadecimal constants
959

repeat count feature 959
superseded by initialization expression

943, 959, 1127
Data type 18, 936

accuracy parameters 1362f.
character 1183
derived 2/xiii, 937, 1030, 1336, 1346
derived, for array of arrays 956, 1336
derived, initialization 2/xv
derived, for Numerical Recipes 1361
derived, storage allocation 955
DP (double precision) 1361f.
DPC (double precision complex) 1361
I1B (1 byte integer) 1361
I2B (2 byte integer) 1361
I4B (4 byte integer) 1361

intrinsic 937
LGT (default logical type) 1361
nrtype.f90 1361f.
passing complex as real 1140
SP (single precision) 1361f.
SPC (single precision complex) 1361
user-defined 1346

DAUB4 584ff., 588, 590f., 594, 1264f.
DAUB6 586
DAUB12 598
DAUB20 590f., 1265
Daubechies wavelet coefficients 584ff., 588,

590f., 594, 598, 1264ff.
Davidon-Fletcher-Powell algorithm 390, 418ff.,

1215
Dawson’s integral 252ff., 600, 1127f.

approximation for 252f.
routine for 253f., 1127

dble() intrinsic function (deprecated) 947
deallocate statement 938f., 953f., 1197, 1266,

1293
Deallocation, of allocatable array 938, 953f.,

1197, 1266, 1293
Debugging 8
DEC (Digital Equipment Corp.) 1/xxiii, 2/xix,

886
Alpha AXP 2/viii
Fortran 90 compiler 2/viii
quadruple precision option 1362
VAX 4

DecompositionseeCholesky decomposition;
LU decomposition; QR decomposition;
Singular value decomposition (SVD)

Deconvolution 535, 540, 1253
see alsoConvolution; Fast Fourier trans-

form (FFT); Fourier transform
Defect, in multigrid method 863
Deferred approach to the limitseeRichard-

son’s deferred approach to the limit
Deflation

of matrix 471
of polynomials 362ff., 370f., 977

Degeneracy of linear algebraic equations 22,
53, 57, 670

Degenerate kernel 785
Degenerate minimization principle 795
Degrees of freedom 615f., 654, 691
Dekker, T.J. 353
Demonstration programs 3, 936
Deprecated features

common block 2/xif., 940, 953, 957,
1067, 1298, 1320, 1322, 1324, 1330

dble() intrinsic function 947
EQUIVALENCE statement 2/xif., 1161,

1286
statement function 1057, 1256

Derivatives
computation via Chebyshev approximation

183, 189, 1077f.
computation via Savitzky-Golay filters

183, 645
matrix of first partialseeJacobian determi-

nant
matrix of second partialseeHessian ma-

trix

1454 Index to Volumes 1 and 2

numerical computation 180ff., 379, 645,
732, 750, 771, 1075, 1197, 1309

of polynomial 167, 978, 1071f.
use in optimization 388f., 399, 1205ff.

Derived data typeseeData type, derived
DES seeData Encryption Standard
Descending transformation, elliptic integrals

256
Descent direction 376, 382, 419
Descriptive statistics 603ff., 1269ff.

see alsoStatistical tests
Design matrix 645, 665, 795, 801, 1082
Determinant 25, 41
Deviates, randomseeRandom deviates
DFP algorithmseeDavidon-Fletcher-Powell

algorithm
diagadd() utility function 985, 989, 1004
diagmult() utility function 985, 989, 1004,

1294
Diagonal dominance 43, 679, 780, 856
Difference equations, finiteseeFinite differ-

ence equations (FDEs)
Difference operator 161
Differential equations 701ff., 1297ff.

accuracy vs. stability 704, 729
Adams-Bashforth-Moulton schemes 741
adaptive stepsize control 703, 708ff., 719,

726, 731, 737, 742f., 1298ff., 1303ff.,
1308f., 1311ff.

algebraically difficult sets 763
backward Euler’s method 729
Bader-Deuflhard method for stiff 730,

735, 1310f.
boundary conditions 701f., 745ff., 749,

751f., 771, 1314ff.
Bulirsch-Stoer method 202, 263, 702, 706,

716, 718ff., 740, 1138, 1303
Bulirsch-Stoer method for conservative

equations 726, 1307
comparison of methods 702f., 739f., 743
conservative 726, 1307
danger of too small stepsize 714
eigenvalue problem 748, 764ff., 770ff.,

1319ff.
embedded Runge-Kutta method 709f.,

731, 1298, 1308
equivalence of multistep and multivalue

methods 743
Euler’s method 702, 704, 728f.
forward Euler’s method 728
free boundary problem 748, 776
high-order implicit methods 730ff., 1308ff.
implicit differencing 729, 740, 1308
initial value problems 702
internal boundary conditions 775ff.
internal singular points 775ff.
interpolation on right-hand sides 111
Kaps-Rentrop method for stiff 730, 1308
local extrapolation 709
modified midpoint method 716f., 719,

1302f.
multistep methods 740ff.
multivalue methods 740
order of method 704f., 719

path integration for function evaluation
201ff., 263, 1138

predictor-corrector methods 702, 730,
740ff.

reduction to first-order sets 701, 745
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff.,

1319ff.
r.h.s. independent ofx 729f.
Rosenbrock methods for stiff 730, 1308f.
Runge-Kutta method 702, 704ff., 708ff.,

731, 740, 1297f., 1308
Runge-Kutta method, high-order 705,

1297
Runge-Kutta-Fehlberg method 709ff.,

1298
scaling stepsize to required accuracy 709
second order 726, 1307
semi-implicit differencing 730
semi-implicit Euler method 730, 735f.
semi-implicit extrapolation method 730,

735f., 1311ff.
semi-implicit midpoint rule 735f., 1310f.
shooting method 746, 749ff., 1314ff.
shooting method, example 770ff., 1321ff.
similarity to Volterra integral equations

786
singular points 718f., 751, 775ff., 1315f.,

1323ff.
step doubling 708f.
stepsize control 703, 708ff., 719, 726,

731, 737, 742f., 1298, 1303ff., 1308f.
stiff 703, 727ff., 1308ff.
stiff methods compared 739
Stoermer’s rule 726, 1307
see alsoPartial differential equations; Two-

point boundary value problems
Diffusion equation 818, 838ff., 855

Crank-Nicholson method 840, 844, 846
Forward Time Centered Space (FTCS)

839ff., 855
implicit differencing 840
multidimensional 846

Digamma function 216
Digital filtering seeFilter
Dihedral groupD5 894
dim optional argument 948
Dimensional expansion 965ff.
Dimensions (units) 678
Diminishing increment sort 322, 1168
Dirac delta function 284, 780
Direct methodseePeriodogram
Direct methods for linear algebraic equations

26, 1014
Direct productseeOuter product of matrices
Direction of largest decrease 410f.
Direction numbers, Sobol’s sequence 300
Direction-set methods for minimization 389,

406f., 1210ff.
Dirichlet boundary conditions 820, 840, 850,

856, 858
Disclaimer of warranty 1/xx, 2/xvii
Discordant pair for Kendall’s tau 637, 1281
Discrete convolution theorem 531ff.

Index to Volumes 1 and 2 1455

Discrete Fourier transform (DFT) 495ff.,
1235ff.

as approximate continuous transform 497
see alsoFast Fourier transform (FFT)

Discrete optimization 436ff., 1219ff.
Discriminant 178, 457
Diskettes

are ANSI standard 3
how to order 1/xxi, 2/xvii

Dispersion 831
DISPOseeSavitzky-Golay filters
Dissipation, numerical 830
Divergent series 161
Divide and conquer algorithm 1226, 1229
Division

complex 171
multiple precision 910f., 1356
of polynomials 169, 362, 370, 1072

dn function 261, 1137f.
Do-list, implied 968, 971, 1127
Do-loop 2/xiv
Do-until iteration 14
Do-while iteration 13
Dogleg step methods 386
Domain of integration 155f.
Dominant solution of recurrence relation 174
Dot (denotes matrix multiplication) 23
dot product() intrinsic function 945, 949,

969, 1216
Double exponential error distribution 696
Double precision

converting to 1362
as refuge of scoundrels 882
use in iterative improvement 47, 1022

Double root 341
Downhill simplex methodseeSimplex, method

of Nelder and Mead
DP, defined 937
Driver programs 3
Dual viewpoint, in multigrid method 875
Duplication theorem, elliptic integrals 256
DWT (discrete wavelet transform)seeWavelet

transform
Dynamical allocation of storage 2/xiii, 869,

938, 941f., 953ff., 1327, 1336
garbage collection 956
increasing 955, 1070, 1302

Eardley, D.M. 338
EBCDIC 890
Economization of power series 192f., 195,

1080
Eigensystems 449ff., 1225ff.

balancing matrix 476f., 1230f.
bounds on eigenvalues 50
calculation of few eigenvalues 454, 488
canned routines 454f.
characteristic polynomial 449, 469
completeness 450
defective 450, 476, 489
deflation 471
degenerate eigenvalues 449ff.
elimination method 453, 478, 1231
factorization method 453

fast Givens reduction 463
generalized eigenproblem 455
Givens reduction 462f.
Hermitian matrix 475
Hessenberg matrix 453, 470, 476ff., 488,

1232
Householder transformation 453, 462ff.,

469, 473, 475, 478, 1227f., 1231
ill-conditioned eigenvalues 477
implicit shifts 472ff., 1228f.
and integral equations 779, 785
invariance under similarity transform 452
inverse iteration 455, 469, 476, 487ff.,

1230
Jacobi transformation 453, 456ff., 462,

475, 489, 1225f.
left eigenvalues 451
list of tasks 454f.
multiple eigenvalues 489
nonlinear 455
nonsymmetric matrix 476ff., 1230ff.
operation count of balancing 476
operation count of Givens reduction 463
operation count of Householder reduction

467
operation count of inverse iteration 488
operation count of Jacobi method 460
operation count of QL method 470, 473
operation count of QR method for Hessen-

berg matrices 484
operation count of reduction to Hessenberg

form 479
orthogonality 450
parallel algorithms 1226, 1229
polynomial roots and 368, 1193
QL method 469ff., 475, 488f.
QL method with implicit shifts 472ff.,

1228f.
QR method 52, 453, 456, 469ff., 1228
QR method for Hessenberg matrices 480ff.,

1232ff.
real, symmetric matrix 150, 467, 785,

1225, 1228
reduction to Hessenberg form 478f., 1231
right eigenvalues 451
shifting eigenvalues 449, 470f., 480
special matrices 454
termination criterion 484, 488
tridiagonal matrix 453, 469ff., 488, 1228

Eigenvalue and eigenvector, defined 449
Eigenvalue problem for differential equations

748, 764ff., 770ff., 1319ff.
Eigenvalues and polynomial root finding 368,

1193
EISPACK 454, 475
Electromagnetic potential 519
ELEMENTAL attribute (Fortran 95) 961,

1084
Elemental functions 2/xiii, 2/xv, 940, 942,

946f., 961, 986, 1015, 1083, 1097f.
Elimination seeGaussian elimination
Ellipse in confidence limit estimation 688
Elliptic integrals 254ff., 906

addition theorem 255

1456 Index to Volumes 1 and 2

Carlson’s forms and algorithms 255f.,
1128ff.

Cauchy principal value 256f.
duplication theorem 256
Legendre 254ff., 260f., 1135ff.
routines for 257ff., 1128ff.
symmetric form 255
Weierstrass 255

Elliptic partial differential equations 818,
1332ff.

alternating-direction implicit method (ADI)
861f., 906

analyze/factorize/operate package 824
biconjugate gradient method 824
boundary conditions 820
comparison of rapid methods 854
conjugate gradient method 824
cyclic reduction 848f., 852ff.
Fourier analysis and cyclic reduction (FACR)

848ff., 854
Gauss-Seidel method 855, 864ff., 876,

1338, 1341
incomplete Cholesky conjugate gradient

method (ICCG) 824
Jacobi’s method 855f., 864
matrix methods 824
multigrid method 824, 862ff., 1009, 1334ff.
rapid (Fourier) method 824, 848ff.
relaxation method 823, 854ff., 1332
strongly implicit procedure 824
successive over-relaxation (SOR) 857ff.,

862, 866, 1332
elsewhere construct 943
Emacs, GNU 1/xvi
Embedded Runge-Kutta method 709f., 731,

1298, 1308
Encapsulation, in programs 7
Encryption 290, 1156
enddo statement 12, 17
Entropy 896

of data 626ff., 811, 1275
EOM (end of message) 902
eoshift() intrinsic function 950

communication bottleneck 969
vector shift argument 1019f.
vs. array section 1078

epsilon() intrinsic function 951, 1189
Equality constraints 423
Equations

cubic 178ff., 360
normal (fitting) 645, 666ff., 800, 1288
quadratic 20, 178
see alsoDifferential equations; Partial dif-

ferential equations; Root finding
Equivalence classes 337f., 1180
EQUIVALENCE statement 2/xif., 1161, 1286
Equivalence transformation 166
Error

checksums for preventing 891
clocking 891
double exponential distribution 696
local truncation 875
Lorentzian distribution 696f.
in multigrid method 863
nonnormal 653, 690, 694ff.

relative truncation 875
roundoff 180f., 881, 1362
series, advantage of an even 132f., 717,

1362
systematic vs. statistical 653, 1362
truncation 20f., 180, 399, 709, 881, 1362
varieties found by check digits 895
varieties of, in PDEs 831ff.
see alsoRoundoff error

Error function 213f., 601, 1094f.
approximation via sampling theorem 601
Chebyshev approximation 214, 1095
complex 252
for Fisher’s z-transformation 632, 1276
relation to Dawson’s integral 252, 1127
relation to Fresnel integrals 248
relation to incomplete gamma function

213
routine for 214, 1094
for significance of correlation 631, 1276
for sum squared difference of ranks 635,

1277
Error handling in programs 2/xii, 2/xvi, 3,

994f., 1036, 1370f.
Estimation of parametersseeFitting; Maxi-

mum likelihood estimate
Estimation of power spectrum 542ff., 565ff.,

1254ff., 1258
Euler equation (fluid flow) 831
Euler-Maclaurin summation formula 132, 135
Euler’s constant 216ff., 250
Euler’s method for differential equations 702,

704, 728f.
Euler’s transformation 160f., 1070

generalized form 162f.
Evaluation of functionsseeFunction
Even and odd parts, of continued fraction

166, 211, 216
Even parity 888
Exception handling in programsseeError han-

dling in programs
exit statement 959, 1219
Explicit differencing 827
Exponent in floating point format 19, 882,

1343
exponent intrinsic function 1107
Exponential deviate 278, 1151f.
Exponential integral 215ff., 1096f.

asymptotic expansion 218
continued fraction 216
recurrence relation 172
related to incomplete gamma function 215
relation to cosine integral 250
routine forEi(x) 218, 1097
routine forEn(x) 217, 1096
series 216

Exponential probability distribution 570
Extended midpoint rule 124f., 129f., 135,

1054f.
Extended Simpson’s rule 128, 788, 790
Extended Simpson’s three-eighths rule 789
Extended trapezoidal rule 125, 127, 130ff.,

135, 786, 1052ff., 1326
roundoff error 132

Extirpolation (so-called) 574, 1261

Index to Volumes 1 and 2 1457

Extrapolation 99ff.
in Bulirsch-Stoer method 718ff., 726,

1305ff.
differential equations 702
by linear prediction 557ff., 1256f.
local 709
maximum entropy method as type of 567
polynomial 724, 726, 740, 1305f.
rational function 718ff., 726, 1306f.
relation to interpolation 101
for Romberg integration 134
see alsoInterpolation

ExtremizationseeMinimization

F -distribution probability function 222
F-test for differences of variances 611, 613,

1271
FACR seeFourier analysis and cyclic reduc-

tion (FACR)
Facsimile standard 901
Factorial

double (denoted “!!”) 247
evaluation of 159, 1072, 1086
relation to gamma function 206
routine for 207f., 1086ff.

False position 347ff., 1185f.
Family tree 338
FAS (full approximation storage algorithm)

874, 1339ff.
Fast Fourier transform (FFT) 498ff., 881,

981, 1235f.
alternative algorithms 503f.
as approximation to continuous transform

497
Bartlett window 547, 1254
bit reversal 499f., 525
and Clenshaw-Curtis quadrature 190
column-parallel algorithm 981, 1237ff.
communication bottleneck 969, 981, 1250
convolution 503f., 523, 531ff., 909, 1253,

1354
convolution of large data sets 536f.
Cooley-Tukey algorithm 503, 1250
Cooley-Tukey algorithm, parallel 1239f.
correlation 538f., 1254
cosine transform 190, 511ff., 851, 1245f.
cosine transform, second form 513, 852,

1246
Danielson-Lanczos lemma 498f., 525
data sets not a power of 2 503
data smoothing 645
data windowing 545ff., 1254
decimation-in-frequency algorithm 503
decimation-in-time algorithm 503
discrete autocorrelation 539, 1254
discrete convolution theorem 531ff.
discrete correlation theorem 538
at double frequency 575
effect of caching 982
endpoint corrections 578f., 1261ff.
external storage 525
figures of merit for data windows 548
filtering 551ff.
FIR filter 553
four-step framework 983, 1239

Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Hamming window 547
Hann window 547
history 498
IIR filter 553ff.
image processing 803, 805
integrals using 124
inverse of cosine transform 512ff.
inverse of sine transform 511
large data sets 525
leakage 544
memory-local algorithm 528
multidimensional 515ff., 1236f., 1241,

1246, 1251
for multiple precision arithmetic 906
for multiple precision multiplication 909,

1354
number-theoretic transforms 503f.
operation count 498
optimal (Wiener) filtering 539ff., 558
order of storage in 501
parallel algorithms 981ff., 1235ff.
partial differential equations 824, 848ff.
Parzen window 547
periodicity of 497
periodogram 543ff., 566
power spectrum estimation 542ff., 1254ff.
for quadrature 124
of real data in 2D and 3D 519ff., 1248f.
of real functions 504ff., 519ff., 1242f.,

1248f.
related algorithms 503f.
row-parallel algorithm 981, 1235f.
Sande-Tukey algorithm 503
sine transform 508ff., 850, 1245
Singleton’s algorithm 525
six-step framework 983, 1240
square window 546, 1254
timing 982
treatment of end effects in convolution

533
treatment of end effects in correlation

538f.
Tukey’s trick for frequency doubling 575
use in smoothing data 645
used for Lomb periodogram 574, 1259
variance of power spectrum estimate 544f.,

549
virtual memory machine 528
Welch window 547, 1254
Winograd algorithms 503
see alsoDiscrete Fourier transform (DFT);

Fourier transform; Spectral density
Faure sequence 300
Fax (facsimile) Group 3 standard 901
Feasible vector 424
FFT seeFast Fourier transform (FFT)
Field, in data record 329
Figure-of-merit function 650
Filon’s method 583
Filter 551ff.

acausal 552
bilinear transformation method 554
causal 552, 644

1458 Index to Volumes 1 and 2

characteristic polynomial 554
data smoothing 644f., 1283f.
digital 551ff.
DISPO 644
by fast Fourier transform (FFT) 523,

551ff.
finite impulse response (FIR) 531, 552
homogeneous modes of 554
infinite impulse response (IIR) 552ff., 566
Kalman 700
linear 552ff.
low-pass for smoothing 644ff., 1283f.
nonrecursive 552
optimal (Wiener) 535, 539ff., 558, 644
quadrature mirror 585, 593
realizable 552, 554f.
recursive 552ff., 566
Remes exchange algorithm 553
Savitzky-Golay 183, 644ff., 1283f.
stability of 554f.
in the time domain 551ff.

Fine-to-coarse operator 864, 1337
Finite difference equations (FDEs) 753, 763,

774
alternating-direction implicit method (ADI)

847, 861f.
art not science 829
Cayley’s form for unitary operator 844
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicholson method 840, 844, 846
eigenmodes of 827f.
explicit vs. implicit schemes 827
forward Euler 826f.
Forward Time Centered Space (FTCS)

827ff., 839ff., 843, 855
implicit scheme 840
Lax method 828ff., 836
Lax method (multidimensional) 845f.
mesh drifting instability 834f.
numerical derivatives 181
partial differential equations 821ff.
in relaxation methods 753ff.
staggered leapfrog method 833f.
two-step Lax-Wendroff method 835ff.
upwind differencing 832f., 837
see alsoPartial differential equations

Finite element methods, partial differential
equations 824

Finite impulse response (FIR) 531
Finkelstein, S. 1/xvi, 2/ix
FIR (finite impulse response) filter 552
Fisher’s z-transformation 631f., 1276
Fitting 650ff., 1285ff.

basis functions 665
by Chebyshev approximation 185f., 1076
chi-square 653ff., 1285ff.
confidence levels related to chi-square val-

ues 691ff.
confidence levels from singular value de-

composition (SVD) 693f.
confidence limits on fitted parameters 684ff.
covariance matrix not always meaningful

651, 690
degeneracy of parameters 674

an exponential 674
freezing parameters in 668, 700
Gaussians, a sum of 682, 1294
general linear least squares 665ff., 1288,

1290f.
Kalman filter 700
K–S test, caution regarding 621f.
least squares 651ff., 1285
Legendre polynomials 674, 1291f.
Levenberg-Marquardt method 678ff., 816,

1292f.
linear regression 655ff., 1285ff.
maximum likelihood estimation 652f.,

694ff.
Monte Carlo simulation 622, 654, 684ff.
multidimensional 675
nonlinear models 675ff., 1292f.
nonlinear models, advanced methods 683
nonlinear problems that are linear 674
nonnormal errors 656, 690, 694ff.
polynomial 83, 114, 191, 645, 665, 674,

1078, 1291
by rational Chebyshev approximation 197ff.,

1081f.
robust methods 694ff., 1294
of sharp spectral features 566
standard (probable) errors on fitted pa-

rameters 657f., 661, 667, 671, 684ff.,
1285f., 1288, 1290

straight line 655ff., 667f., 698, 1285ff.,
1294ff.

straight line, errors in both coordinates
660ff., 1286ff.

see alsoError; Least squares fitting; Max-
imum likelihood estimate; Robust esti-
mation

Five-point difference star 867
Fixed point format 18
Fletcher-Powell algorithmseeDavidon-Fletcher-

Powell algorithm
Fletcher-Reeves algorithm 390, 414ff., 1214
Floating point co-processor 886
Floating point format 18ff., 882, 1343

care in numerical derivatives 181
IEEE 276, 882, 1343

floor() intrinsic function 948
Flux-conservative initial value problems 825ff.
FMG (full multigrid method) 863, 868, 1334ff.
FOR iteration 9f., 12
forall statement 2/xii, 2/xv, 960, 964, 986

access to associated index 968
skew array sections 985, 1007

Formats of numbers 18ff., 882, 1343
Fortran 9

arithmetic-if statement 2/xi
COMMON block 2/xif., 953, 957
deprecated features 2/xif., 947, 1057,

1161, 1256, 1286
dynamical allocation of storage 869, 1336
EQUIVALENCE statement 2/xif., 1161,

1286
evolution of 2/xivff.
exception handling 2/xii, 2/xvi
filenames 935
Fortran 2000 (planned) 2/xvi

Index to Volumes 1 and 2 1459

Fortran 95 2/xv, 945, 947, 1084, 1100,
1364

HPF (High-Performance Fortran) 2/xvf.
Numerical Recipes in 2/x, 2/xvii, 1
obsolescent features 2/xif.
side effects 960
see alsoFortran 90

Fortran D 2/xv
Fortran 77 1/xix

bit manipulation functions 17
hexadecimal constants 17

Fortran 8x 2/xi, 2/xiii
Fortran 90 3

abstract data types 2/xiii, 1030
all() intrinsic function 945, 948
allocatable array 938, 941, 953ff., 1197,

1212, 1266, 1293, 1306, 1336
allocate statement 938f., 941, 953f., 1197,

1266, 1293, 1306, 1336
allocated() intrinsic function 938, 952ff.,

1197, 1266, 1293
any() intrinsic function 945, 948
array allocation and deallocation 953
array of arrays 2/xii, 956, 1336
array constructor 2/xii, 968, 971, 1022,

1052, 1055, 1127
array constructor with implied do-list 968,

971
array extents 938, 949
array features 941ff., 953ff.
array intrinsic procedures 2/xiii, 948ff.
array of length 0 944
array of length 1 949
array manipulation functions 950
array parallel operations 964f.
array rank 938, 949
array reallocation 955
array section 2/xiif., 2/xiii, 939, 941ff.,

960, 1078, 1284, 1286, 1333
array shape 938, 949
array size 938, 942
array transpose 981f.
array unary and binary functions 949
associated() intrinsic function 952f.
associated pointer 953f.
assumed-shape array 942
automatic array 938, 954, 1197, 1212,

1336
backwards-compatibility 935, 946
bit manipulation functions 2/xiii, 951
bit size() intrinsic function 951
broadcasts 965f.
btest() intrinsic function 951
case construct 1010, 1036
case insensitive 937
ceiling() intrinsic function 947
character functions 952
character variables 1183
cmplx function 1125
communication bottlenecks 969, 981,

1250
compatibility with Fortran 77 935, 946
compilers 2/viii, 2/xiv, 1364
compiling 936
conformable arrays 942f., 1094

CONTAINS statement 954, 957, 985,
1067, 1134, 1202

control structure 2/xiv, 959, 1219, 1305
conversion elemental functions 946
count() intrinsic function 948
cshift() intrinsic function 950, 969
cycle statement 959, 1219
data hiding 956ff., 1209
data parallelism 964
DATA statement 959
data types 937, 1336, 1346, 1361
deallocate statement 938f., 953f., 1197,

1266, 1293
deallocating array 938, 953f., 1197, 1266,

1293
defined types 956
deprecated features 947, 1057, 1161,

1256, 1286
derived types 937, 955
dimensional expansion 965ff.
do-loop 2/xiv
dot product() intrinsic function 945, 949,

969, 1216
dynamical allocation of storage 2/xiii,

938, 941f., 953ff., 1327, 1336
elemental functions 940, 942, 946f., 951,

1015, 1083, 1364
elsewhere construct 943
eoshift() intrinsic function 950, 969, 1019f.,

1078
epsilon() intrinsic function 951, 1189
evolution 2/xivff., 959, 987f.
example 936
exit statement 959, 1219
exponent() intrinsic function 1107
floor() intrinsic function 948
Fortran tip icon 1009
garbage collection 956
gather-scatter operations 2/xiif., 969, 981,

984, 1002, 1032, 1034, 1250
generic interface 2/xiii, 1083
generic procedures 939, 1015, 1083, 1094,

1096, 1364
global variables 955, 957, 1210
history 2/xff.
huge() intrinsic function 951
iand() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
ibset() intrinsic function 951
ieor() intrinsic function 951
IMPLICIT NONE statement 2/xiv, 936
implied do-list 968, 971, 1127
index loss 967f.
initialization expression 943, 959, 1012,

1127
inquiry functions 948
integer model 1144, 1149, 1156
INTENT attribute 1072, 1092
interface 939, 942, 1067, 1084, 1384
internal subprogram 2/xii, 2/xiv, 957,

1057, 1067, 1202f., 1256, 1302
interprocessor communication 969, 981,

1250
intrinsic data types 937

1460 Index to Volumes 1 and 2

intrinsic procedures 939, 945ff., 987, 1016
ior() intrinsic function 951
ishft() intrinsic function 951
ishftc() intrinsic function 951
ISO (International Standards Organization)

2/xf., 2/xiiif.
keyword argument 2/xiv, 947f., 1341
kind() intrinsic function 951
KIND parameter 937, 946, 1125, 1144,

1192, 1254, 1261, 1284, 1361
language features 935ff.
lbound() intrinsic function 949
lexical comparison 952
linear algebra 969f., 1000ff., 1018f., 1026,

1040, 1200, 1326
linear recurrence 971, 988
linking 936
literal constant 937, 1361
logo for tips 2/viii, 1009
mask 948, 967f., 1006f., 1038, 1102,

1200, 1226, 1305, 1333f., 1368, 1378,
1382

matmul() intrinsic function 945, 949, 969,
1026, 1040, 1050, 1076, 1200, 1216,
1290, 1326

maxexponent() intrinsic function 1107
maxloc() intrinsic function 949, 961,

992f., 1015
maxval() intrinsic function 945, 948, 961,

1016, 1273
memory leaks 953, 956, 1327
memory management 938, 953ff.
merge() intrinsic function 945, 950, 1010,

1094f., 1099f.
Metcalf and Reid (M&R) 935
minloc() intrinsic function 949, 961, 992f.
minval() intrinsic function 948, 961
missing language features 983ff., 987ff.
modularization 956f.
MODULE facility 2/xiii, 936f., 939f.,

953f., 957, 1067, 1298, 1320, 1322,
1324, 1330, 1346

MODULE subprograms 940
modulo() intrinsic function 946, 1156
named constant 940, 1012, 1361
named control structure 959, 1219, 1305
nearest() intrinsic function 952, 1146
nested where construct forbidden 943
not() intrinsic function 951
nullify statement 953f., 1070, 1302
numerical representation functions 951
ONLY option 941, 957, 1067
operator overloading 2/xiif.
operator, user-defined 2/xii
optional argument 2/xiv, 947f., 1092,

1228, 1230, 1256, 1272, 1275, 1340
outer product 969f.
overloading 940, 1083, 1102
pack() intrinsic function 945, 950, 964,

969, 991, 1170, 1176, 1178
pack, for selective evaluation 1087
parallel extensions 2/xv, 959ff., 964, 981,

984, 987, 1002, 1032
parallel programming 963ff.
PARAMETER attribute 1012

pointer 2/xiiif., 938f., 941, 944f., 952ff.,
1067, 1070, 1197, 1210, 1212, 1266,
1302, 1327, 1336

pointer to function (missing) 1067
portability 963
present() intrinsic function 952
PRIVATE attribute 957, 1067
product() intrinsic function 948
programming conventions 937
PUBLIC attribute 957, 1067
quick start 936
radix() intrinsic function 1231
random number() intrinsic function 1141,

1143
random seed() intrinsic function 1141
real() intrinsic function 947, 1125
RECURSIVE keyword 958, 1065, 1067
recursive procedure 2/xiv, 958, 1065,

1067, 1166
reduction functions 948
reshape() intrinsic function 950, 969, 1247
RESULT keyword 958, 1073
SAVE attribute 953f., 958f., 1052, 1070,

1266, 1293
scale() intrinsic function 1107
scatter-with-combine (missing function)

984
scope 956ff.
scoping units 939
select case statement 2/xiv, 1010, 1036
shape() intrinsic function 938, 949
size() intrinsic function 938, 942, 945,

948
skew sections 985
sparse matrix representation 1030
specification statement 2/xiv
spread() intrinsic function 945, 950, 966ff.,

969, 1000, 1094, 1290f.
statement functions deprecated 1057
stride (of an array) 944
structure constructor 2/xii
subscript triplet 944
sum() intrinsic function 945, 948, 966
tiny() intrinsic function 952
transformational functions 948
transpose() intrinsic function 950, 960,

969, 981, 1247
tricks 1009, 1072, 1146, 1274, 1278, 1280
truncation elemental functions 946
type checking 1140
ubound() intrinsic function 949
undefined pointer 953
unpack() intrinsic function 950, 964, 969
USE statement 936, 939f., 954, 957, 1067,

1384
utility functions 987ff.
vector subscripts 2/xiif., 969, 981, 984,

1002, 1032, 1034, 1250
visibility 956ff., 1209, 1293, 1296
WG5 technical committee 2/xi, 2/xiii,

2/xvf.
where construct 943, 985, 1060, 1291
X3J3 Committee 2/viii, 2/xff., 2/xv, 947,

959, 964, 968, 990
zero-length array 944

Index to Volumes 1 and 2 1461

see alsoIntrinsic procedures
see alsoFortran

Fortran 95 947, 959ff.
allocatable variables 961
blocks 960
cpu time() intrinsic function 961
elemental functions 2/xiii, 2/xv, 940, 961,

986, 1015, 1083f., 1097f.
forall statement 2/xii, 2/xv, 960, 964, 968,

986, 1007
initialization of derived data type 2/xv
initialization of pointer 2/xv, 961
minor changes from Fortran 90 961
modified intrinsic functions 961
nested where construct 2/xv, 960, 1100
pointer association status 961
pointers 961
PURE attribute 2/xv, 960f., 964, 986
SAVE attribute 961
side effects 960
and skew array section 945, 985
see alsoFortran

Fortran 2000 2/xvi
Forward deflation 363
Forward difference operator 161
Forward Euler differencing 826f.
Forward Time Centered SpaceseeFTCS
Four-step framework, for FFT 983, 1239
Fourier analysis and cyclic reduction (FACR)

848f., 854
Fourier integrals

attenuation factors 583, 1261
endpoint corrections 578f., 1261
tail integration by parts 583
use of fast Fourier transform (FFT) 577ff.,

1261ff.
Fourier transform 99, 490ff., 1235ff.

aliasing 495, 569
approximation of Dawson’s integral 253
autocorrelation 492
basis functions compared 508f.
contrasted with wavelet transform 584,

594
convolution 492, 503f., 531ff., 909, 1253,

1354
correlation 492, 538f., 1254
cosine transform 190, 511ff., 851, 1245f.
cosine transform, second form 513, 852,

1246
critical sampling 494, 543, 545
definition 490
discrete Fourier transform (DFT) 184,

495ff.
Gaussian function 600
image processing 803, 805
infinite range 583
inverse of discrete Fourier transform 497
method for partial differential equations

848ff.
missing data 569
missing data, fast algorithm 574f., 1259
Nyquist frequency 494ff., 520, 543, 545,

569, 571
optimal (Wiener) filtering 539ff., 558
Parseval’s theorem 492, 498, 544

power spectral density (PSD) 492f.
power spectrum estimation by FFT 542ff.,

1254ff.
power spectrum estimation by maximum

entropy method 565ff., 1258
properties of 491f.
sampling theorem 495, 543, 545, 600
scalings of 491
significance of a peak in 570
sine transform 508ff., 850, 1245
symmetries of 491
uneven sampling, fast algorithm 574f.,

1259
unevenly sampled data 569ff., 574, 1258
and wavelets 592f.
Wiener-Khinchin theorem 492, 558, 566f.
see alsoFast Fourier transform (FFT);

Spectral density
Fractal region 360f.
Fractional step methods 847f.
Fredholm alternative 780
Fredholm equations 779f.

eigenvalue problems 780, 785
error estimate in solution 784
first kind 779
Fredholm alternative 780
homogeneous, second kind 785, 1325
homogeneous vs. inhomogeneous 779f.
ill-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779f.
nonlinear 781
Nystrom method 782ff., 789, 1325
product Nystrom method 789, 1328ff.
second kind 779f., 782ff., 1325, 1331
with singularities 788, 1328ff.
with singularities, worked example 792,

1328ff.
subtraction of singularity 789
symmetric kernel 785
see alsoInverse problems

Frequency domain 490
Frequency spectrumseeFast Fourier transform

(FFT)
Frequentist, contrasted with Bayesian 810
Fresnel integrals 248ff.

asymptotic form 249
continued fraction 248f.
routine for 249f., 1123
series 248

Friday the Thirteenth 14f., 1011f.
FTCS (forward time centered space) 827ff.,

839ff., 843
stability of 827ff., 839ff., 855

Full approximation storage (FAS) algorithm
874, 1339ff.

Full moon 14f., 936, 1011f.
Full multigrid method (FMG) 863, 868, 1334ff.
Full Newton methods, nonlinear least squares

683
Full pivoting 29, 1014
Full weighting 867
Function

Airy 204, 243f., 1121

1462 Index to Volumes 1 and 2

approximation 99ff., 184ff., 1043, 1076ff.
associated Legendre polynomial 246ff.,

764, 1122f., 1319
autocorrelation of 492
bandwidth limited 495
Bessel 172, 204, 223ff., 234, 1101ff.,

1115ff.
beta 209, 1089
binomial coefficients 208f., 1087f.
branch cuts of 202f.
chi-square probability 215, 798
complex 202
confluent hypergeometric 204, 239
convolution of 492
correlation of 492
cosine integral 250f., 1123f.
Coulomb wave 204, 234
cumulative binomial probability 222f.
cumulative Poisson 209ff.
Dawson’s integral 252ff., 600, 1127f.
digamma 216
elliptic integrals 254ff., 906, 1128ff.
error 213f., 248, 252, 601, 631, 635,

1094f., 1127, 1276f.
evaluation 159ff., 1070ff.
evaluation by path integration 201ff., 263,

1138
exponential integral 172, 215ff., 250,

1096f.
F-distribution probability 222
Fresnel integral 248ff., 1123
gamma 206, 1085
hypergeometric 202f., 263ff., 1138ff.
incomplete beta 219ff., 610, 1098ff., 1269
incomplete gamma 209ff., 615, 654, 657f.,

1089ff., 1272, 1285
inverse hyperbolic 178, 255
inverse trigonometric 255
Jacobian elliptic 261, 1137f.
Kolmogorov-Smirnov probability 618f.,

640, 1274, 1281
Legendre polynomial 172, 246, 674, 1122,

1291
logarithm 255
modified Bessel 229ff., 1109ff.
modified Bessel, fractional order 239ff.,

1118ff.
overloading 1083
parallel evaluation 986, 1009, 1084, 1087,

1090, 1102, 1128, 1134
path integration to evaluate 201ff.
pathological 99f., 343
Poisson cumulant 214
representations of 490
routine for plotting a 342, 1182
sine and cosine integrals 248, 250ff.,

1125f.
sn, dn, cn 261, 1137f.
spherical harmonics 246ff., 1122
spheroidal harmonic 764ff., 770ff., 1319ff.,

1323ff.
Student’s probability 221f.
variable number of arguments 1022
Weber 204

Functional iteration, for implicit equations
740f.

FWHM (full width at half maximum) 548f.

Gamma deviate 282f., 1153f.
Gamma function 206ff., 1085

incompleteseeIncomplete gamma func-
tion

Garbage collection 956
Gather-scatter operations 2/xiif., 984, 1002,

1032, 1034
communication bottleneck 969, 981, 1250
many-to-one 984, 1002, 1032, 1034

Gauss-Chebyshev integration 141, 144, 512f.
Gauss-Hermite integration 144, 789

abscissas and weights 147, 1062
normalization 147

Gauss-Jacobi integration 144
abscissas and weights 148, 1063

Gauss-Jordan elimination 27ff., 33, 64, 1014f.
operation count 34, 39
solution of normal equations 667, 1288
storage requirements 30

Gauss-Kronrod quadrature 154
Gauss-Laguerre integration 144, 789, 1060
Gauss-Legendre integration 145f., 1059

see alsoGaussian integration
Gauss-Lobatto quadrature 154, 190, 512
Gauss-Radau quadrature 154
Gauss-Seidel method (relaxation) 855, 857,

864ff., 1338
nonlinear 876, 1341

Gauss transformation 256
Gaussian (normal) distribution 267, 652, 798

central limit theorem 652f.
deviates from 279f., 571, 1152
kurtosis of 606
multivariate 690
semi-invariants of 608
tails compared to Poisson 653
two-dimensional (binormal) 631
variance of skewness of 606

Gaussian elimination 33f., 51, 55, 1014f.
fill-in 45, 64
integral equations 786, 1326
operation count 34
outer product variant 1017
in reduction to Hessenberg form 478,

1231
relaxation solution of boundary value prob-

lems 753ff., 777, 1316
Gaussian function

Hardy’s theorem on Fourier transforms
600

see alsoGaussian (normal) distribution
Gaussian integration 127, 140ff., 789, 1059ff.

calculation of abscissas and weights 142ff.,
1009, 1059ff.

error estimate in solution 784
extensions of 153f.
Golub-Welsch algorithm for weights and

abscissas 150, 1064
for integral equations 781, 783, 1325
from known recurrence relation 150, 1064

Index to Volumes 1 and 2 1463

nonclassical weight function 151ff., 788f.,
1064f., 1328f.

and orthogonal polynomials 142, 1009,
1061

parallel calculation of formulas 1009,
1061

preassigned nodes 153f.
weight functionlogx 153
weight functions 140ff., 788f., 1059ff.,

1328f.
Gear’s method (stiff ODEs) 730
Geiger counter 266
Generalized eigenvalue problems 455
Generalized minimum residual method (GM-

RES) 78
Generic interfaceseeInterface, generic
Generic procedures 939, 1083, 1094, 1096,

1364
elemental 940, 942, 946f., 1015, 1083

Geometric progression 972, 996f., 1365,
1372ff.

geop() utility function 972, 974, 989, 996,
1127

Geophysics, use of Backus-Gilbert method
809

Gerchberg-Saxton algorithm 805
get diag() utility function 985, 989, 1005,

1226
Gilbert and Sullivan 714
Givens reduction 462f., 473

fast 463
operation count 463

Glassman, A.J. 180
Global optimization 387f., 436ff., 650, 1219ff.

continuous variables 443f., 1222
Global variables 940, 953f., 1210

allocatable array method 954, 1197, 1212,
1266, 1287, 1298

communicated via internal subprogram
954, 957f., 1067, 1226

danger of 957, 1209, 1293, 1296
pointer method 954, 1197, 1212, 1266,

1287, 1302
Globally convergent

minimization 418ff., 1215
root finding 373, 376ff., 382, 749f., 752,

1196, 1314f.
GMRES (generalized minimum residual method)

78
GNU Emacs 1/xvi
Godunov’s method 837
Golden mean (golden ratio) 21, 349, 392f.,

399
Golden section search 341, 389ff., 395, 1202ff.
Golub-Welsch algorithm, for Gaussian quadra-

ture 150, 1064
Goodness-of-fit 650, 654, 657f., 662, 690,

1285
GOTO statements, danger of 9, 959
Gram-Schmidt

biorthogonalization 415f.
orthogonalization 94, 450f., 1039
SVD as alternative to 58

Graphics, function plotting 342, 1182f.
Gravitational potential 519

Gray code 300, 881, 886ff., 1344
Greenbaum, A. 79
Gregorian calendar 13, 16, 1011, 1013
Grid square 116f.
Group, dihedral 894, 1345
Guard digits 882, 1343

Half weighting 867, 1337
Halton’s quasi-random sequence 300
Hamming window 547
Hamming’s motto 341
Hann window 547
Harmonic analysisseeFourier transform
Hashing 293, 1144, 1148, 1156

for random number seeds 1147f.
HDLC checksum 890
Heap (data structure) 327f., 336, 897, 1179
Heapsort 320, 327f., 336, 1171f., 1179
Helmholtz equation 852
Hermite polynomials 144, 147

approximation of roots 1062
Hermitian matrix 450ff., 475
Hertz (unit of frequency) 490
Hessenberg matrix 94, 453, 470, 476ff., 488,

1231
see alsoMatrix

Hessian matrix 382, 408, 415f., 419f., 676ff.,
803, 815

is inverse of covariance matrix 667, 679
second derivatives in 676

Hexadecimal constants 17f., 276, 293
initialization 959

Hierarchically band diagonal matrix 598
Hierarchy of program structure 6ff.
High-order not same as high-accuracy 100f.,

124, 389, 399, 705, 709, 741
High-pass filter 551
High-Performance Fortran (HPF) 2/xvf., 964,

981, 984
scatter-with-add 1032

Hilbert matrix 83
Home page, Numerical Recipes 1/xx, 2/xvii
Homogeneous linear equations 53
Hook step methods 386
Hotelling’s method for matrix inverse 49, 598
Householder transformation 52, 453, 462ff.,

469, 473, 475, 478, 481ff., 1227f.
operation count 467
in QR decomposition 92, 1039

HPF seeHigh-Performance Fortran
Huffman coding 564, 881, 896f., 902, 1346ff.
huge() intrinsic function 951
Hyperbolic functions, explicit formulas for

inverse 178
Hyperbolic partial differential equations 818

advective equation 826
flux-conservative initial value problems

825ff.
Hypergeometric function 202f., 263ff.

routine for 264f., 1138
Hypothesis, null 603

I2B, defined 937

1464 Index to Volumes 1 and 2

I4B, defined 937
iand() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
IBM 1/xxiii, 2/xix

bad random number generator 268
Fortran 90 compiler 2/viii
PC 4, 276, 293, 886
PC-RT 4
radix base for floating point arithmetic

476
RS6000 2/viii, 4

IBM checksum 894
ibset() intrinsic function 951
ICCG (incomplete Cholesky conjugate gradient

method) 824
ICF (intrinsic correlation function) model 817
Identity (unit) matrix 25
IEEE floating point format 276, 882f., 1343
ieor() intrinsic function 951
if statement, arithmetic 2/xi
if structure 12f.
ifirstloc() utility function 989, 993, 1041,

1346
IIR (infinite impulse response) filter 552ff.,

566
Ill-conditioned integral equations 780
Image processing 519, 803

cosine transform 513
fast Fourier transform (FFT) 519, 523,

803
as an inverse problem 803
maximum entropy method (MEM) 809ff.
from modulus of Fourier transform 805
wavelet transform 596f., 1267f.

imaxloc() utility function 989, 993, 1017
iminloc() utility function 989, 993, 1046,

1076
Implicit

function theorem 340
pivoting 30, 1014
shifts in QL method 472ff.

Implicit differencing 827
for diffusion equation 840
for stiff equations 729, 740, 1308

IMPLICIT NONE statement 2/xiv, 936
Implied do-list 968, 971, 1127
Importance sampling, in Monte Carlo 306f.
Improper integrals 135ff., 1055
Impulse response function 531, 540, 552
IMSL 1/xxiii, 2/xx, 26, 64, 205, 364, 369,

454
In-place selection 335, 1178f.
Included file, superseded by module 940
Incomplete beta function 219ff., 1098ff.

for F-test 613, 1271
routine for 220f., 1097
for Student’s t 610, 613, 1269

Incomplete Cholesky conjugate gradient method
(ICCG) 824

Incomplete gamma function 209ff., 1089ff.
for chi-square 615, 654, 657f., 1272, 1285
deviates from 282f., 1153
in mode estimation 610
routine for 211f., 1089

Increment of linear congruential generator
268

Indentation of blocks 9
Index 934ff., 1446ff.

this entry 1464
Index loss 967f., 1038
Index table 320, 329f., 1173ff., 1176
Inequality constraints 423
Inheritance 8
Initial value problems 702, 818f.

see alsoDifferential equations;
Partial differential equations

Initialization of derived data type 2/xv
Initialization expression 943, 959, 1012, 1127
Injection operator 864, 1337
Instability seeStability
Integer model, in Fortran 90 1144, 1149,

1156
Integer programming 436
Integral equations 779ff.

adaptive stepsize control 788
block-by-block method 788
correspondence with linear algebraic equa-

tions 779ff.
degenerate kernel 785
eigenvalue problems 780, 785
error estimate in solution 784
Fredholm 779f., 782ff., 1325, 1331
Fredholm alternative 780
homogeneous, second kind 785, 1325
ill-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779
nonlinear 781, 787
Nystrom method 782ff., 789, 1325
product Nystrom method 789, 1328ff.
with singularities 788ff., 1328ff.
with singularities, worked example 792,

1328ff.
subtraction of singularity 789
symmetric kernel 785
unstable quadrature 787f.
Volterra 780f., 786ff., 1326f.
wavelets 782
see alsoInverse problems

Integral operator, wavelet approximation of
597, 782

Integration of functions 123ff., 1052ff.
cosine integrals 250, 1125
Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Fresnel integrals 248, 1123
Gauss-Hermite 147f., 1062
Gauss-Jacobi 148, 1063
Gauss-Laguerre 146, 1060
Gauss-Legendre 145, 1059
integrals that are elliptic integrals 254
path integration 201ff.
sine integrals 250, 1125
see alsoQuadrature

Integro-differential equations 782
INTENT attribute 1072, 1092
Interface (Fortran 90) 939, 942, 1067

Index to Volumes 1 and 2 1465

for communication between program parts
957, 1209, 1293, 1296

explicit 939, 942, 1067, 1384
generic 2/xiii, 940, 1015, 1083, 1094,

1096
implicit 939
for Numerical Recipes 1384ff.

Interface block 939, 1084, 1384
Interface, in programs 2, 8
Intermediate value theorem 343
Internal subprogram (Fortran 90) 2/xiv, 954,

957, 1067, 1202f., 1226
nesting of 2/xii
resembles C macro 1302
supersedes statement function 1057, 1256

International Standards Organization (ISO)
2/xf., 2/xiii

Internet, availability of code over 1/xx, 2/xvii
Interpolation 99ff.

Aitken’s algorithm 102
avoid 2-stage method 100
avoid in Fourier analysis 569
bicubic 118f., 1049f.
bilinear 117
caution on high-order 100
coefficients of polynomial 100, 113ff.,

191, 575, 1047f., 1078
for computing Fourier integrals 578
error estimates for 100
of functions with poles 104ff., 1043f.
inverse quadratic 353, 395ff., 1204
multidimensional 101f., 116ff., 1049ff.
in multigrid method 866, 1337
Neville’s algorithm 102f., 182, 1043
Nystrom 783, 1326
offset arrays 104, 113
operation count for 100
operator 864, 1337
order of 100
and ordinary differential equations 101
oscillations of polynomial 100, 116, 389,

399
parabolic, for minimum finding 395, 1204
polynomial 99, 102ff., 182, 1043
rational Chebyshev approximation 197ff.,

1081
rational function 99, 104ff., 194ff., 225,

718ff., 726, 1043f., 1080, 1306
reverse (extirpolation) 574, 1261
spline 100, 107ff., 120f., 1044f., 1050f.
trigonometric 99
see alsoFitting

Interprocessor communication 969, 981
Interval variable (statistics) 623
Intrinsic correlation function (ICF) model 817
Intrinsic data types 937
Intrinsic procedures

array inquiry 938, 942, 948ff.
array manipulation 950
array reduction 948
array unary and binary functions 949
backwards-compatibility 946
bit manipulation 2/xiii, 951
character 952
cmplx 1254

conversion elemental 946
elemental 940, 942, 946f., 951, 1083,

1364
generic 939, 1083f., 1364
lexical comparison 952
numeric inquiry 2/xiv, 1107, 1231, 1343
numerical 946, 951f.
numerical representation 951
pack used for sorting 1171
random number 1143
real 1254
top 10 945
truncation 946f.
see alsoFortran 90

Inverse hyperbolic function 178, 255
Inverse iterationseeEigensystems
Inverse problems 779, 795ff.

Backus-Gilbert method 806ff.
Bayesian approach 799, 810f., 816f.
central idea 799
constrained linear inversion method 799ff.
data inversion 807
deterministic constraints 804ff.
in geophysics 809
Gerchberg-Saxton algorithm 805
incomplete Fourier coefficients 813
and integral equations 780
linear regularization 799ff.
maximum entropy method (MEM) 810,

815f.
MEM demystified 814
Phillips-Twomey method 799ff.
principal solution 797
regularization 796ff.
regularizing operator 798
stabilizing functional 798
Tikhonov-Miller regularization 799ff.
trade-off curve 795
trade-off curve, Backus-Gilbert method

809
two-dimensional regularization 803
use of conjugate gradient minimization

804, 815
use of convex sets 804
use of Fourier transform 803, 805
Van Cittert’s method 804

Inverse quadratic interpolation 353, 395ff.,
1204

Inverse response kernel, in Backus-Gilbert
method 807

Inverse trigonometric function 255
ior() intrinsic function 951
ISBN (International Standard Book Number)

checksum 894
ishft() intrinsic function 951
ishftc() intrinsic function 951
ISO (International Standards Organization)

2/xf., 2/xiii
Iterated integrals 155
Iteration 9f.

functional 740f.
to improve solution of linear algebraic

equations 47ff., 195, 1022
for linear algebraic equations 26

1466 Index to Volumes 1 and 2

required for two-point boundary value
problems 745

in root finding 340f.
Iteration matrix 856
ITPACK 71
Iverson, John 2/xi

J acobi matrix, for Gaussian quadrature 150,
1064

Jacobi polynomials, approximation of roots
1064

Jacobi transformation (or rotation) 94, 453,
456ff., 462, 475, 489, 1041, 1225

Jacobian determinant 279, 774
Jacobian elliptic functions 261, 1137f.
Jacobian matrix 374, 376, 379, 382, 731,

1197f., 1309
singular in Newton’s rule 386

Jacobi’s method (relaxation) 855ff., 864
Jenkins-Traub method 369
Julian Day 1, 13, 16, 936, 1010ff.
Jump transposition errors 895

K -S testseeKolmogorov-Smirnov test
Kalman filter 700
Kanji 2/xii
Kaps-Rentrop method 730, 1308
Kendall’s tau 634, 637ff., 1279
Kennedy, Ken 2/xv
Kepler’s equation 1061
Kermit checksum 889
Kernel 779

averaging, in Backus-Gilbert method 807
degenerate 785
finite rank 785
inverse response 807
separable 785
singular 788f., 1328
symmetric 785

Keys used in sorting 329, 889
Keyword argument 2/xiv, 947f., 1341
kind() intrinsic function 951
KIND parameter 946, 1261, 1284

and cmplx() intrinsic function 1125, 1192,
1254

default 937
for Numerical Recipes 1361
for random numbers 1144
and real() intrinsic function 1125

Kolmogorov-Smirnov test 614, 617ff., 694,
1273f.

two-dimensional 640, 1281ff.
variants 620ff., 640, 1281

Kuiper’s statistic 621
Kurtosis 606, 608, 1269

L-estimate 694
Labels, statement 9
Lag 492, 538, 553
Lagged Fibonacci generator 1142, 1148ff.
Lagrange multiplier 795
Lagrange’s formula for polynomial interpola-

tion 84, 102f., 575, 578

Laguerre polynomials, approximation of roots
1061

Laguerre’s method 341, 365f., 1191f.
Lanczos lemma 498f.
Lanczos method for gamma function 206,

1085
Landen transformation 256
LAPACK 26, 1230
Laplace’s equation 246, 818

see alsoPoisson equation
Las Vegas 625
Latin square or hypercube 305f.
Laurent series 566
Lax method 828ff., 836, 845f.

multidimensional 845f.
Lax-Wendroff method 835ff.
lbound() intrinsic function 949
Leakage in power spectrum estimation 544,

548
Leakage width 548f.
Leapfrog method 833f.
Least squares filtersseeSavitzky-Golay filters
Least squares fitting 645, 651ff., 655ff., 660ff.,

665ff., 1285f., 1288f.
contrasted to general minimization prob-

lems 684ff.
degeneracies in 671f., 674
Fourier components 570
as M-estimate for normal errors 696
as maximum likelihood estimator 652
as method for smoothing data 645, 1283
Fourier components 1258
freezing parameters in 668, 700
general linear case 665ff., 1288, 1290f.
Levenberg-Marquardt method 678ff., 816,

1292f.
Lomb periodogram 570, 1258
multidimensional 675
nonlinear 386, 675ff., 816, 1292
nonlinear, advanced methods 683
normal equations 645, 666f., 800, 1288
normal equations often singular 670, 674
optimal (Wiener) filtering 540f.
QR method in 94, 668
for rational Chebyshev approximation

199f., 1081f.
relation to linear correlation 630, 658
Savitzky-Golay filter as 645, 1283
singular value decomposition (SVD) 25f.,

51ff., 199f., 670ff., 1081, 1290
skewed by outliers 653
for spectral analysis 570, 1258
standard (probable) errors on fitted parame-

ters 667, 671
weighted 652
see alsoFitting

L’Ecuyer’s long period random generator 271,
273

Least squares fitting
standard (probable) errors on fitted parame-

ters 1288, 1290
weighted 1285

Left eigenvalues or eigenvectors 451
Legal matters 1/xx, 2/xvii
Legendre elliptic integralseeElliptic integrals

Index to Volumes 1 and 2 1467

Legendre polynomials 246, 1122
fitting data to 674, 1291f.
recurrence relation 172
shifted monic 151
see alsoAssociated Legendre polynomials;

Spherical harmonics
Lehmer-Schur algorithm 369
Lemarie’s wavelet 593
Lentz’s method for continued fraction 165,

212
Lepage, P. 309
Leptokurtic distribution 606
Levenberg-Marquardt algorithm 386, 678ff.,

816, 1292
advanced implementation 683

Levinson’s method 86, 1038
Lewis, H.W. 275
Lexical comparison functions 952
LGT, defined 937
License information 1/xx, 2/xviiff.
Limbo 356
Limit cycle, in Laguerre’s method 365
Line minimizationseeMinimization, along a

ray
Line searchseeMinimization, along a ray
Linear algebra, intrinsic functions for paral-

lelization 969f., 1026, 1040, 1200,
1326

Linear algebraic equations 22ff., 1014
band diagonal 43ff., 1019
biconjugate gradient method 77, 1034ff.
Cholesky decomposition 89f., 423, 455,

668, 1038f.
complex 41
computingA−1 · B 40
conjugate gradient method 77ff., 599,

1034
cyclic tridiagonal 67, 1030
direct methods 26, 64, 1014, 1030
Fortran 90 vs. library routines 1016
Gauss-Jordan elimination 27ff., 1014
Gaussian elimination 33f., 1014f.
Hilbert matrix 83
Hotelling’s method 49, 598
and integral equations 779ff., 783, 1325
iterative improvement 47ff., 195, 1022
iterative methods 26, 77ff., 1034
large sets of 23
least squares solution 53ff., 57f., 199f.,

671, 1081, 1290
LU decomposition 34ff., 195, 386, 732,

783, 786, 801, 1016, 1022, 1325f.
nonsingular 23
overdetermined 25f., 199, 670, 797
partitioned 70
QR decomposition 91f., 382, 386, 668,

1039f., 1199
row vs. column elimination 31f.
Schultz’s method 49, 598
Sherman-Morrison formula 65ff., 83
singular 22, 53, 58, 199, 670
singular value decomposition (SVD) 51ff.,

199f., 670ff., 797, 1022, 1081, 1290
sparse 23, 43, 63ff., 732, 804, 1020f.,

1030

summary of tasks 25f.
Toeplitz 82, 85ff., 195, 1038
tridiagonal 26, 42f., 64, 109, 150, 453f.,

462ff., 469ff., 488, 839f., 853, 861f.,
1018f., 1227ff.

Vandermonde 82ff., 114, 1037, 1047
wavelet solution 597ff., 782
Woodbury formula 68ff., 83
see alsoEigensystems

Linear congruential random number generator
267ff., 1142

choice of constants for 274ff.
Linear constraints 423
Linear convergence 346, 393
Linear correlation (statistics) 630ff., 1276
Linear dependency

constructing orthonormal basis 58, 94
of directions inN -dimensional space 409
in linear algebraic equations 22f.

Linear equationsseeDifferential equations;
Integral equations; Linear algebraic
equations

Linear inversion method, constrained 799ff.
Linear prediction 557ff.

characteristic polynomial 559
coefficients 557ff., 1256
compared to maximum entropy method

558
compared with regularization 801
contrasted to polynomial extrapolation

560
related to optimal filtering 558
removal of bias in 563
stability 559f., 1257

Linear predictive coding (LPC) 563ff.
Linear programming 387, 423ff., 1216ff.

artificial variables 429
auxiliary objective function 430
basic variables 426
composite simplex algorithm 435
constraints 423
convergence criteria 432
degenerate feasible vector 429
dual problem 435
equality constraints 423
feasible basis vector 426
feasible vector 424
fundamental theorem 426
inequality constraints 423
left-hand variables 426
nonbasic variables 426
normal form 426
objective function 424
optimal feasible vector 424
pivot element 428f.
primal-dual algorithm 435
primal problem 435
reduction to normal form 429ff.
restricted normal form 426ff.
revised simplex method 435
right-hand variables 426
simplex method 402, 423ff., 431ff., 1216ff.
slack variables 429
tableau 427
vertex of simplex 426

1468 Index to Volumes 1 and 2

Linear recurrenceseeRecurrence relation
Linear regression 655ff., 660ff., 1285ff.

see alsoFitting
Linear regularization 799ff.
LINPACK 26
Literal constant 937, 1361
Little-endian 293
Local extrapolation 709
Local extremum 387f., 437
Localization of rootsseeBracketing
Logarithmic function 255
Lomb periodogram method of spectral analysis

569f., 1258f.
fast algorithm 574f., 1259

Loops 9f.
Lorentzian probability distribution 282, 696f.
Low-pass filter 551, 644f., 1283f.
Lower subscript 944
lower triangle() utility function 989, 1007,

1200
LP coefficientsseeLinear prediction
LPC (linear predictive coding) 563ff.
LU decomposition 34ff., 47f., 51, 55, 64, 97,

374, 667, 732, 1016, 1022
for A−1 · B 40
backsubstitution 39, 1017
band diagonal matrix 43ff., 1020
complex equations 41f.
Crout’s algorithm 36ff., 45, 1017
for integral equations 783, 786, 1325f.
for inverse iteration of eigenvectors 488
for inverse problems 801
for matrix determinant 41
for matrix inverse 40, 1016
for nonlinear sets of equations 374, 386,

1196
operation count 36, 39
outer product Gaussian elimination 1017
for Padé approximant 195, 1080
pivoting 37f., 1017
repeated backsubstitution 40, 46
solution of linear algebraic equations 40,

1017
solution of normal equations 667
for Toeplitz matrix 87

Lucifer 290

M&R (Metcalf and Reid) 935
M-estimates 694ff.

how to compute 697f.
local 695ff.
see alsoMaximum likelihood estimate

Machine accuracy 19f., 881f., 1189, 1343
Macintosh,seeApple Macintosh
Maehly’s procedure 364, 371
Magic

in MEM image restoration 814
in Padé approximation 195

Mantissa in floating point format 19, 882,
909, 1343

Marginals 624
Marquardt method (least squares fitting) 678ff.,

816, 1292f.
Marsaglia shift register 1142, 1148ff.
Marsaglia, G. 1142, 1149

mask 1006f., 1102, 1200, 1226, 1305, 1333f.,
1368, 1378, 1382

optional argument 948
optional argument, facilitates parallelism

967f., 1038
Mass, center of 295ff.
MasterCard checksum 894
Mathematical Center (Amsterdam) 353
Mathematical intrinsic functions 946, 951f.
matmul() intrinsic function 945, 949, 969,

1026, 1040, 1050, 1076, 1200, 1216,
1290, 1326

Matrix 23ff.
add vector to diagonal 1004, 1234, 1366,

1381
approximation of 58f., 598f.
band diagonal 42ff., 64, 1019
band triangular 64
banded 26, 454
bidiagonal 52
block diagonal 64, 754
block triangular 64
block tridiagonal 64
bordered 64
characteristic polynomial 449, 469
Cholesky decomposition 89f., 423, 455,

668, 1038f.
column augmented 28, 1014
complex 41
condition number 53, 78
create unit matrix 1006, 1382
curvature 677
cyclic banded 64
cyclic tridiagonal 67, 1030
defective 450, 476, 489
of derivativesseeHessian matrix; Jacobian

determinant
design (fitting) 645, 665, 801, 1082
determinant of 25, 41
diagonal of sparse matrix 1033ff.
diagonalization 452ff., 1225ff.
elementary row and column operations

28f.
finite differencing of partial differential

equations 821ff.
get diagonal 985, 1005, 1226f., 1366,

1381f.
Hermitian 450, 454, 475
Hermitian conjugate 450
Hessenberg 94, 453, 470, 476ff., 488,

1231ff.
HessianseeHessian matrix
hierarchically band diagonal 598
Hilbert 83
identity 25
ill-conditioned 53, 56, 114
indexed storage of 71f., 1030
and integral equations 779, 783, 1325
inverse 25, 27, 34, 40, 65ff., 70, 95ff.,

1014, 1016f.
inverse, approximate 49
inverse by Hotelling’s method 49, 598
inverse by Schultz’s method 49, 598
inverse multiplied by a matrix 40
iteration for inverse 49, 598

Index to Volumes 1 and 2 1469

Jacobi transformation 453, 456ff., 462,
1225f.

Jacobian 731, 1309
logical dimension 24
lower triangular 34f., 89, 781, 1016
lower triangular mask 1007, 1200, 1382
multiplication denoted by dot 23
multiplication, intrinsic function 949, 969,

1026, 1040, 1050, 1200, 1326
norm 50
normal 450ff.
nullity 53
nullspace 25, 53f., 449, 795
orthogonal 91, 450, 463ff., 587
orthogonal transformation 452, 463ff.,

469, 1227
orthonormal basis 58, 94
outer product denoted by cross 66, 420
partitioning for determinant 70
partitioning for inverse 70
pattern multiply of sparse 74
physical dimension 24
positive definite 26, 89f., 668, 1038
QR decomposition 91f., 382, 386, 668,

1039, 1199
range 53
rank 53
residual 49
row and column indices 23
row vs. column operations 31f.
self-adjoint 450
set diagonal elements 1005, 1200, 1366,

1382
similarity transform 452ff., 456, 476, 478,

482
singular 53f., 58, 449
singular value decomposition 26, 51ff.,

797
sparse 23, 63ff., 71, 598, 732, 754, 804,

1030ff.
special forms 26
splitting in relaxation method 856f.
spread 808
square root of 423, 455
symmetric 26, 89, 450, 454, 462ff., 668,

785, 1038, 1225, 1227
threshold multiply of sparse 74, 1031
Toeplitz 82, 85ff., 195, 1038
transpose() intrinsic function 950
transpose of sparse 73f., 1033
triangular 453
tridiagonal 26, 42f., 64, 109, 150, 453f.,

462ff., 469ff., 488, 839f., 853, 861f.,
1018f., 1227ff.

tridiagonal with fringes 822
unitary 450
updating 94, 382, 386, 1041, 1199
upper triangular 34f., 91, 1016
upper triangular mask 1006, 1226, 1305,

1382
Vandermonde 82ff., 114, 1037, 1047
see alsoEigensystems

Matrix equationsseeLinear algebraic equa-
tions

Matterhorn 606

maxexponent() intrinsic function 1107
MaximizationseeMinimization
Maximum entropy method (MEM) 565ff.,

1258
algorithms for image restoration 815f.
Bayesian 816f.
Cornwell-Evans algorithm 816
demystified 814
historic vs. Bayesian 816f.
image restoration 809ff.
intrinsic correlation function (ICF) model

817
for inverse problems 809ff.
operation count 567
see alsoLinear prediction

Maximum likelihood estimate (M-estimates)
690, 694ff.

and Bayes’ Theorem 811
chi-square test 690
defined 652
how to compute 697f.
mean absolute deviation 696, 698, 1294
relation to least squares 652

maxloc() intrinsic function 949, 992f., 1015
modified in Fortran 95 961

maxval() intrinsic function 945, 948, 961,
1016, 1273

Maxwell’s equations 825f.
Mean(s)

of distribution 604f., 608f., 1269
statistical differences between two 609ff.,

1269f.
Mean absolute deviation of distribution 605,

696, 1294
related to median 698

Measurement errors 650
Median 320

calculating 333
of distribution 605, 608f.
as L-estimate 694
role in robust straight line fitting 698
by selection 698, 1294

Median-of-three, in Quicksort 324
MEM seeMaximum entropy method (MEM)
Memory leak 953, 956, 1071, 1327
Memory management 938, 941f., 953ff.,

1327, 1336
merge construct 945, 950, 1099f.

for conditional scalar expression 1010,
1094f.

contrasted with where 1023
parallelization 1011

Merge-with-dummy-values idiom 1090
Merit function 650

in general linear least squares 665
for inverse problems 797
nonlinear models 675
for straight line fitting 656, 698
for straight line fitting, errors in both coor-

dinates 660, 1286
Mesh-drift instability 834f.
Mesokurtic distribution 606
Metcalf, Michael 2/viii

see alsoM&R
Method of regularization 799ff.

1470 Index to Volumes 1 and 2

Metropolis algorithm 437f., 1219
Microsoft 1/xxii, 2/xix
Microsoft Fortran PowerStation 2/viii
Midpoint methodseeModified midpoint method;

Semi-implicit midpoint rule
Mikado, or Town of Titipu 714
Miller’s algorithm 175, 228, 1106
MIMD machines (Multiple Instruction Multiple

Data) 964, 985, 1071, 1084
Minimal solution of recurrence relation 174
Minimax polynomial 186, 198, 1076
Minimax rational function 198
Minimization 387ff.

along a ray 77, 376f., 389, 406ff., 412f.,
415f., 418, 1195f., 1211, 1213

annealing, method of simulated 387f.,
436ff., 1219ff.

bracketing of minimum 390ff., 402, 1201f.
Brent’s method 389, 395ff., 399, 660f.,

1204ff., 1286
Broyden-Fletcher-Goldfarb-Shanno algo-

rithm 390, 418ff., 1215
chi-square 653ff., 675ff., 1285, 1292
choice of methods 388f.
combinatorial 436f., 1219
conjugate gradient method 390, 413ff.,

804, 815, 1210, 1214
convergence rate 393, 409
Davidon-Fletcher-Powell algorithm 390,

418ff., 1215
degenerate 795
direction-set methods 389, 406ff., 1210ff.
downhill simplex method 389, 402ff.,

444, 697f., 1208, 1222ff.
finding best-fit parameters 650
Fletcher-Reeves algorithm 390, 414ff.,

1214
functional 795
global 387f., 443f., 650, 1219, 1222
globally convergent multidimensional 418,

1215
golden section search 390ff., 395, 1202ff.
multidimensional 388f., 402ff., 1208ff.,

1214
in nonlinear model fitting 675f., 1292
Polak-Ribiere algorithm 389, 414ff., 1214
Powell’s method 389, 402, 406ff., 1210ff.
quasi-Newton methods 376, 390, 418ff.,

1215
and root finding 375
scaling of variables 420
by searching smaller subspaces 815
steepest descent method 414, 804
termination criterion 392, 404
use in finding double roots 341
use for sparse linear systems 77ff.
using derivatives 389f., 399ff., 1205ff.
variable metric methods 390, 418ff., 1215
see alsoLinear programming

Minimum residual method, for sparse system
78

minloc() intrinsic function 949, 992f.
modified in Fortran 95 961

MINPACK 683
minval() intrinsic function 948, 961

MIPS 886
Missing data problem 569
Mississippi River 438f., 447
MMP (massively multiprocessor) machines

965ff., 974, 981, 984, 1016ff., 1021,
1045, 1226ff., 1250

Mode of distribution 605, 609
Modeling of dataseeFitting
Model-trust region 386, 683
Modes, homogeneous, of recursive filters 554
Modified Bessel functionsseeBessel func-

tions
Modified Lentz’s method, for continued frac-

tions 165
Modified midpoint method 716ff., 720, 1302f.
Modified moments 152
Modula-2 7
Modular arithmetic, without overflow 269,

271, 275
Modular programming 2/xiii, 7f., 956ff.,

1209, 1293, 1296, 1346
MODULE facility 2/xiii, 936f., 939f., 957,

1067, 1298, 1320, 1322, 1324, 1330,
1346

initializing random number generator 1144ff.
in nr.f90 936, 941f., 1362, 1384ff.
in nrtype.f90 936f., 1361f.
in nrutil.f90 936, 1070, 1362, 1364ff.
sparse matrix 1031
undefined variables on exit 953, 1266

Module subprogram 940
modulo() intrinsic function 946, 1156
Modulus of linear congruential generator 268
Moments

of distribution 604ff., 1269
filter that preserves 645
modified problem of 151f.
problem of 83
and quadrature formulas 791, 1328
semi-invariants 608

Monic polynomial 142f.
Monotonicity constraint, in upwind differenc-

ing 837
Monte Carlo 155ff., 267

adaptive 306ff., 1161ff.
bootstrap method 686f.
comparison of sampling methods 309
exploration of binary tree 290
importance sampling 306f.
integration 124, 155ff., 295ff., 306ff.,

1161
integration, recursive 314ff., 1164ff.
integration, using Sobol’ sequence 304
integration, VEGAS algorithm 309ff.,

1161
and Kolmogorov-Smirnov statistic 622,

640
partial differential equations 824
quasi-random sequences in 299ff.
quick and dirty 686f.
recursive 306ff., 314ff., 1161, 1164ff.
significance of Lomb periodogram 570
simulation of data 654, 684ff., 690
stratified sampling 308f., 314, 1164

Index to Volumes 1 and 2 1471

Moon, calculate phases of 1f., 14f., 936,
1010f.

Mother functions 584
Mother Nature 684, 686
Moving average (MA) model 566
Moving window averaging 644
Mozart 9
MS 1/xxii, 2/xix
Muller’s method 364, 372
Multidimensional

confidence levels of fitting 688f.
data, use of binning 623
Fourier transform 515ff., 1241, 1246,

1251
Fourier transform, real data 519ff., 1248f.
initial value problems 844ff.
integrals 124, 155ff., 295ff., 306ff., 1065ff.,

1161ff.
interpolation 116ff., 1049ff.
Kolmogorov-Smirnov test 640, 1281
least squares fitting 675
minimization 402ff., 406ff., 413ff., 1208ff.,

1214f., 1222ff.
Monte Carlo integration 295ff., 306ff.,

1161ff.
normal (Gaussian) distribution 690
optimization 388f.
partial differential equations 844ff.
root finding 340ff., 358, 370, 372ff., 746,

749f., 752, 754, 1194ff., 1314ff.
search using quasi-random sequence 300
secant method 373, 382f., 1199f.
wavelet transform 595, 1267f.

Multigrid method 824, 862ff., 1334ff.
avoid SOR 866
boundary conditions 868f.
choice of operators 868
coarse-to-fine operator 864, 1337
coarse-grid correction 864f.
cycle 865
dual viewpoint 875
fine-to-coarse operator 864, 1337
full approximation storage (FAS) algorithm

874, 1339ff.
full multigrid method (FMG) 863, 868,

1334ff.
full weighting 867
Gauss-Seidel relaxation 865f., 1338
half weighting 867, 1337
importance of adjoint operator 867
injection operator 864, 1337
interpolation operator 864, 1337
line relaxation 866
local truncation error 875
Newton’s rule 874, 876, 1339, 1341
nonlinear equations 874ff., 1339ff.
nonlinear Gauss-Seidel relaxation 876,

1341
odd-even ordering 866, 869, 1338
operation count 862
prolongation operator 864, 1337
recursive nature 865, 1009, 1336
relative truncation error 875
relaxation as smoothing operator 865
restriction operator 864, 1337

speeding up FMG algorithm 873
stopping criterion 875f.
straight injection 867
symbol of operator 866f.
use of Richardson extrapolation 869
V-cycle 865, 1336
W-cycle 865, 1336
zebra relaxation 866

Multiple precision arithmetic 906ff., 1352ff.
Multiple roots 341, 362
Multiplication, complex 171
Multiplication, multiple precision 907, 909,

1353f.
Multiplier of linear congruential generator

268
Multistep and multivalue methods (ODEs)

740ff.
see alsoDifferential Equations; Predictor-

corrector methods
Multivariate normal distribution 690
Murphy’s Law 407
Musical scores 5f.

NAG 1/xxiii, 2/xx, 26, 64, 205, 454
Fortran 90 compiler 2/viii, 2/xiv

Named constant 940
initialization 1012
for Numerical Recipes 1361

Named control structure 959, 1219, 1305
National Science Foundation (U.S.) 1/xvii,

1/xix, 2/ix
Natural cubic spline 109, 1044f.
Navier-Stokes equation 830f.
nearest() intrinsic function 952, 1146
Needle, eye of (minimization) 403
Negation, multiple precision 907, 1353f.
Negentropy 811, 896
Nelder-Mead minimization method 389, 402,

1208
Nested iteration 868
Neumann boundary conditions 820, 840, 851,

858
Neutrino 640
Neville’s algorithm 102f., 105, 134, 182,

1043
Newton-Cotes formulas 125ff., 140
Newton-Raphson methodseeNewton’s rule
Newton’s rule 143f., 180, 341, 355ff., 362,

364, 469, 1059, 1189
with backtracking 376, 1196
caution on use of numerical derivatives

356ff.
fractal domain of convergence 360f.
globally convergent multidimensional 373,

376ff., 382, 749f., 752, 1196, 1199,
1314f.

for matrix inverse 49, 598
in multidimensions 370, 372ff., 749f.,

752, 754, 1194ff., 1314ff.
in nonlinear multigrid 874, 876, 1339,

1341
nonlinear Volterra equations 787
for reciprocal of number 911, 1355
safe 359, 1190
scaling of variables 381

1472 Index to Volumes 1 and 2

singular Jacobian 386
solving stiff ODEs 740
for square root of number 912, 1356

Niederreiter sequence 300
NL2SOL 683
Noise

bursty 889
effect on maximum entropy method 567
equivalent bandwidth 548
fitting data which contains 647f., 650
model, for optimal filtering 541

Nominal variable (statistics) 623
Nonexpansive projection operator 805
Non-interfering directionsseeConjugate direc-

tions
Nonlinear eigenvalue problems 455
Nonlinear elliptic equations, multigrid method

874ff., 1339ff.
Nonlinear equations, in MEM inverse prob-

lems 813
Nonlinear equations, roots of 340ff.
Nonlinear instability 831
Nonlinear integral equations 781, 787
Nonlinear programming 436
Nonnegativity constraints 423
Nonparametric statistics 633ff., 1277ff.
Nonpolynomial complete (NP-complete) 438
Norm, of matrix 50
Normal (Gaussian) distribution 267, 652, 682,

798, 1294
central limit theorem 652f.
deviates from 279f., 571, 1152
kurtosis of 607
multivariate 690
semi-invariants of 608
tails compared to Poisson 653
two-dimensional (binormal) 631
variance of skewness of 606

Normal equations (fitting) 26, 645, 666ff.,
795, 800, 1288

often are singular 670
Normalization

of Bessel functions 175
of floating-point representation 19, 882,

1343
of functions 142, 765
of modified Bessel functions 232

not() intrinsic function 951
Notch filter 551, 555f.
NP-complete problem 438
nr.f90 (module file) 936, 1362, 1384ff.
nrerror() utility function 989, 995
nrtype.f90 (module file) 936f.

named constants 1361
nrutil.f90 (module file) 936, 1070, 1362,

1364ff.
table of contents 1364

Null hypothesis 603
nullify statement 953f., 1070, 1302
Nullity 53
Nullspace 25, 53f., 449, 795
Number-theoretic transforms 503f.
Numeric inquiry functions 2/xiv, 1107, 1231,

1343
Numerical derivatives 180ff., 645, 1075

Numerical integrationseeQuadrature
Numerical intrinsic functions 946, 951f.
Numerical Recipes

compatibility with First Edition 4
Example Book 3
Fortran 90 types 936f., 1361
how to get programs 1/xx, 2/xvii
how to report bugs 1/iv, 2/iv
interface blocks (Fortran 90) 937, 941f.,

1084, 1384ff.
no warranty on 1/xx, 2/xvii
plan of two-volume edition 1/xiii
table of dependencies 921ff., 1434ff.
as trademark 1/xxiii, 2/xx
utility functions (Fortran 90) 936f., 945,

968, 970, 972ff., 977, 984, 987ff., 1015,
1071f., 1361ff.

Numerical Recipes Software 1/xv, 1/xxiiff.,
2/xviiff.

address and fax number 1/iv, 1/xxii, 2/iv,
2/xix

Web home page 1/xx, 2/xvii
Nyquist frequency 494ff., 520, 543, 545,

569ff.
Nystrom method 782f., 789, 1325

product version 789, 1331

Object extensibility 8
Objective function 424
Object-oriented programming 2/xvi, 2, 8
Oblateness parameter 764
Obsolete featuresseeFortran, Obsolescent fea-

tures
Octal constant, initialization 959
Odd-even ordering

allows parallelization 1333
in Gauss-Seidel relaxation 866, 869, 1338
in successive over-relaxation (SOR) 859,

1332
Odd parity 888
OEM information 1/xxii
One-sided power spectral density 492
ONLY option, for USE statement 941, 957,

1067
Operation count

balancing 476
Bessel function evaluation 228
bisection method 346
Cholesky decomposition 90
coefficients of interpolating polynomial

114f.
complex multiplication 97
cubic spline interpolation 109
evaluating polynomial 168
fast Fourier transform (FFT) 498
Gauss-Jordan elimination 34, 39
Gaussian elimination 34
Givens reduction 463
Householder reduction 467
interpolation 100
inverse iteration 488
iterative improvement 48
Jacobi transformation 460
Kendall’s tau 637

Index to Volumes 1 and 2 1473

linear congruential generator 268
LU decomposition 36, 39
matrix inversion 97
matrix multiplication 96
maximum entropy method 567
multidimensional minimization 413f.
multigrid method 862
multiplication 909
polynomial evaluation 97f., 168
QL method 470, 473
QR decomposition 92
QR method for Hessenberg matrices 484
reduction to Hessenberg form 479
selection by partitioning 333
sorting 320ff.
Spearman rank-order coefficient 638
Toeplitz matrix 83
Vandermonde matrix 83

Operator overloading 2/xiif., 7
Operator splitting 823, 847f., 861
Operator, user-defined 2/xii
Optimal feasible vector 424
Optimal (Wiener) filtering 535, 539ff., 558,

644
compared with regularization 801

OptimizationseeMinimization
Optimization of code 2/xiii
Optional argument 2/xiv, 947f., 1092, 1228,

1230, 1256, 1272, 1275, 1340
dim 948
mask 948, 968, 1038
testing for 952

Ordering Numerical Recipes 1/xxf., 2/xviif.
Ordinal variable (statistics) 623
Ordinary differential equationsseeDifferential

equations
OrthogonalseeOrthonormal functions; Or-

thonormal polynomials
Orthogonal transformation 452, 463ff., 469,

584, 1227
Orthonormal basis, constructing 58, 94, 1039
Orthonormal functions 142, 246
Orthonormal polynomials

Chebyshev 144, 184ff., 1076ff.
construct for arbitrary weight 151ff., 1064
in Gauss-Hermite integration 147, 1062
and Gaussian quadrature 142, 1009, 1061
Gaussian weights from recurrence 150,

1064
Hermite 144, 1062
Jacobi 144, 1063
Laguerre 144, 1060
Legendre 144, 1059
weight functionlogx 153

Orthonormality 51, 142, 463
Outer product Gaussian elimination 1017
Outer product of matrices (denoted by cross)

66, 420, 949, 969f., 989, 1000ff., 1017,
1026, 1040, 1076, 1200, 1216, 1275

outerand() utility function 989, 1002, 1015
outerdiff() utility function 989, 1001
outerdiv() utility function 989, 1001
outerprod() utility function 970, 989, 1000,

1017, 1026, 1040, 1076, 1200, 1216,
1275

outersum() utility function 989, 1001
Outgoing wave boundary conditions 820
Outlier 605, 653, 656, 694, 697

see alsoRobust estimation
Overcorrection 857
Overflow 882, 1343

how to avoid in modulo multiplication
269

in complex arithmetic 171
Overlap-add and overlap-save methods 536f.
Overloading

operator 2/xiif.
procedures 940, 1015, 1083, 1094, 1096

Overrelaxation parameter 857, 1332
choice of 858

Pack() intrinsic function 945, 950, 964, 991,
1031

communication bottleneck 969
for index table 1176
for partition-exchange 1170
for selection 1178
for selective evaluation 1087

Pack-unpack idiom 1087, 1134, 1153
Padé approximant 194ff., 1080f.
Padé approximation 105
Parabolic interpolation 395, 1204
Parabolic partial differential equations 818,

838ff.
Parallel axis theorem 308
Parallel programming 2/xv, 941, 958ff., 962ff.,

965f., 968f., 987
array operations 964f.
array ranking 1278f.
band diagonal linear equations 1021
Bessel functions 1107ff.
broadcasts 965ff.
C and C++ 2/viii
communication costs 969, 981, 1250
counting do-loops 1015
cyclic reduction 974
deflation 977ff.
design matrix 1082
dimensional expansion 965ff.
eigensystems 1226, 1229f.
fast Fourier transform (FFT) 981, 1235ff.,

1250
in Fortran 90 963ff.
Fortran 90 tricks 1009, 1274, 1278, 1280
function evaluation 986, 1009, 1084f.,

1087, 1090, 1102, 1128, 1134
Gaussian quadrature 1009, 1061
geometric progressions 972
index loss 967f., 1038
index table 1176f.
interprocessor communication 981
Kendall’s tau 1280
linear algebra 969f., 1000ff., 1018f., 1026,

1040, 1200, 1326
linear recurrence 973f., 1073ff.
logo 2/viii, 1009
masks 967f., 1006f., 1038, 1102, 1200,

1226, 1305, 1333f., 1368, 1378, 1382
merge statement 1010

1474 Index to Volumes 1 and 2

MIMD (multiple instruction, multiple data)
964, 985f., 1084

MMP (massively multiprocessor) machines
965ff., 974, 984, 1016ff., 1226ff., 1250

nrutil.f90 (module file) 1364ff.
odd-even ordering 1333
one-dimensional FFT 982f.
parallel note icon 1009
partial differential equations 1333
in-place selection 1178f.
polynomial coefficients from roots 980
polynomial evaluation 972f., 977, 998
random numbers 1009, 1141ff.
recursive doubling 973f., 976f., 979, 988,

999, 1071ff.
scatter-with-combine 984, 1002f., 1032f.
second order recurrence 974f., 1074
SIMD (Single Instruction Multiple Data)

964, 985f., 1009, 1084f.
singular value decomposition (SVD) 1026
sorting 1167ff., 1171, 1176f.
special functions 1009
SSP (small-scale parallel) machines 965ff.,

984, 1010ff., 1016ff., 1059f., 1226ff.,
1250

subvector scaling 972, 974, 996, 1000
successive over-relaxation (SOR) 1333
supercomputers 2/viii, 962
SVD algorithm 1026
synthetic division 977ff., 999, 1048, 1071f.,

1079, 1192
tridiagonal systems 975f., 1018, 1229f.
utilities 1364ff.
vector reduction 972f., 977, 998
vs. serial programming 965, 987

PARAMETER attribute 1012
Parameters in fitting function 651, 684ff.
Parity bit 888
Park and Miller minimal standard random gen-

erator 269, 1142
Parkinson’s Law 328
Parseval’s Theorem 492, 544

discrete form 498
Partial differential equations 818ff., 1332ff.

advective equation 826
alternating-direction implicit method (ADI)

847, 861f.
amplification factor 828, 834
analyze/factorize/operate package 824
artificial viscosity 831, 837
biconjugate gradient method 824
boundary conditions 819ff.
boundary value problems 819, 848
Cauchy problem 818f.
caution on high-order methods 844f.
Cayley’s form 844
characteristics 818
Chebyshev acceleration 859f., 1332
classification of 818f.
comparison of rapid methods 854
conjugate gradient method 824
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicholson method 840, 842, 844,

846

cyclic reduction (CR) method 848f., 852ff.
diffusion equation 818, 838ff., 846, 855
Dirichlet boundary conditions 508, 820,

840, 850, 856, 858
elliptic, defined 818
error, varieties of 831ff.
explicit vs. implicit differencing 827
FACR method 854
finite difference method 821ff.
finite element methods 824
flux-conservative initial value problems

825ff.
forward Euler differencing 826f.
Forward Time Centered Space (FTCS)

827ff., 839ff., 843, 855
Fourier analysis and cyclic reduction (FACR)

848ff., 854
Gauss-Seidel method (relaxation) 855,

864ff., 876, 1338, 1341
Godunov’s method 837
Helmholtz equation 852
hyperbolic 818, 825f.
implicit differencing 840
incomplete Cholesky conjugate gradient

method (ICCG) 824
inhomogeneous boundary conditions 850f.
initial value problems 818f.
initial value problems, recommendations on

838ff.
Jacobi’s method (relaxation) 855ff., 864
Laplace’s equation 818
Lax method 828ff., 836, 845f.
Lax method (multidimensional) 845f.
matrix methods 824
mesh-drift instability 834f.
Monte Carlo methods 824
multidimensional initial value problems

844ff.
multigrid method 824, 862ff., 1009, 1334ff.
Neumann boundary conditions 508, 820,

840, 851, 858
nonlinear diffusion equation 842
nonlinear instability 831
numerical dissipation or viscosity 830
operator splitting 823, 847f., 861
outgoing wave boundary conditions 820
parabolic 818, 838ff.
parallel computing 1333
periodic boundary conditions 850, 858
piecewise parabolic method (PPM) 837
Poisson equation 818, 852
rapid (Fourier) methods 508ff., 824, 848ff.
relaxation methods 823, 854ff., 1332f.
Schrödinger equation 842ff.
second-order accuracy 833ff., 840
shock 831, 837
sparse matrices from 64
spectral methods 825
spectral radius 856ff., 862
stability vs. accuracy 830
stability vs. efficiency 821
staggered grids 513, 852
staggered leapfrog method 833f.
strongly implicit procedure 824

Index to Volumes 1 and 2 1475

successive over-relaxation (SOR) 857ff.,
862, 866, 1332f.

time splitting 847f., 861
two-step Lax-Wendroff method 835ff.
upwind differencing 832f., 837
variational methods 824
varieties of error 831ff.
von Neumann stability analysis 827f.,

830, 833f., 840
wave equation 818, 825f.
see alsoElliptic partial differential equa-

tions; Finite difference equations (FDEs)
Partial pivoting 29
Partition-exchange 323, 333

and pack() intrinsic function 1170
Partitioned matrix, inverse of 70
Party tricks 95ff., 168
Parzen window 547
Pascal, Numerical Recipes in 2/x, 2/xvii, 1
Pass-the-buck idiom 1102, 1128
Path integration, for function evaluation 201ff.,

263, 1138
Pattern multiply of sparse matrices 74
PBCG (preconditioned biconjugate gradient

method) 78f., 824
PC methodsseePredictor-corrector methods
PCGPACK 71
PDEsseePartial differential equations
Pearson’s r 630ff., 1276
PECE method 741
Pentagon, symmetries of 895
Percentile 320
Period of linear congruential generator 268
Periodic boundary conditions 850, 858
Periodogram 543ff., 566, 1258ff.

Lomb’s normalized 569f., 574f., 1258ff.
variance of 544f.

Perl (programming language) 1/xvi
Perron’s theorems, for convergence of recur-

rence relations 174f.
Perturbation methods for matrix inversion

65ff.
Phase error 831
Phase-locked loop 700
Phi statistic 625
Phillips-Twomey method 799ff.
Pi, computation of 906ff., 1352ff., 1357f.
Piecewise parabolic method (PPM) 837
Pincherle’s theorem 175
Pivot element 29, 33, 757

in linear programming 428f.
Pivoting 27, 29ff., 46, 66, 90, 1014

full 29, 1014
implicit 30, 38, 1014, 1017
in LU decomposition 37f., 1017
partial 29, 33, 37f., 1017
and QR decomposition 92
in reduction to Hessenberg form 478
in relaxation method 757
as row and column operations 32
for tridiagonal systems 43

Pixel 519, 596, 803, 811
PL/1 2/x
Planck’s constant 842

Plane rotationseeGivens reduction; Jacobi
transformation (or rotation)

Platykurtic distribution 606
Plotting of functions 342, 1182f.
POCS (projection onto convex sets) 805
Poetry 5f.
Pointer (Fortran 90) 2/xiiif., 938f., 944f.,

953ff., 1197, 1212, 1266
as alias 939, 944f., 1286, 1333
allocating an array 941
allocating storage for derived type 955
for array of arrays 956, 1336
array of, forbidden 956, 1337
associated with target 938f., 944f., 952f.,

1197
in Fortran 95 961
to function, forbidden 1067, 1210
initialization to null 2/xv, 961
returning array of unknown size 955f.,

1184, 1259, 1261, 1327
undefined status 952f., 961, 1070, 1266,

1302
Poisson equation 519, 818, 852
Poisson probability function

cumulative 214
deviates from 281, 283ff., 571, 1154
semi-invariants of 608
tails compared to Gaussian 653

Poisson process 278, 282ff., 1153
Polak-Ribiere algorithm 390, 414ff., 1214
PolesseeComplex plane, poles in
Polishing of roots 356, 363ff., 370f., 1193
poly() utility function 973, 977, 989, 998,

1072, 1096, 1192, 1258, 1284
Polymorphism 8
Polynomial interpolation 99, 102ff., 1043

Aitken’s algorithm 102
in Bulirsch-Stoer method 724, 726, 1305
coefficients for 113ff., 1047f.
Lagrange’s formula 84, 102f.
multidimensional 116ff., 1049ff.
Neville’s algorithm 102f., 105, 134, 182,

1043
pathology in determining coefficients for

116
in predictor-corrector method 740
smoothing filters 645
see alsoInterpolation

Polynomials 167ff.
algebraic manipulations 169, 1072
approximate roots of Hermite polynomials

1062
approximate roots of Jacobi polynomials

1064
approximate roots of Laguerre polynomials

1061
approximating modified Bessel functions

230
approximation from Chebyshev coefficients

191, 1078f.
AUTODIN-II 890
CCITT 889f.
characteristic 368, 1193
characteristic, for digital filters 554, 559,

1257

1476 Index to Volumes 1 and 2

characteristic, for eigenvalues of matrix
449, 469

Chebyshev 184ff., 1076ff.
coefficients from roots 980
CRC-16 890
cumulants of 977, 999, 1071f., 1192,

1365, 1378f.
deflation 362ff., 370f., 977
derivatives of 167, 978, 1071
division 84, 169, 362, 370, 977, 1072
evaluation of 167, 972, 977, 998f., 1071,

1258, 1365, 1376ff.
evaluation of derivatives 167, 978, 1071
extrapolation in Bulirsch-Stoer method

724, 726, 1305f.
extrapolation in Romberg integration 134
fitting 83, 114, 191, 645, 665, 674, 1078f.,

1291
generator for CRC 889
ill-conditioned 362
masked evaluation of 1378
matrix method for roots 368, 1193
minimax 186, 198, 1076
monic 142f.
multiplication 169
operation count for 168
orthonormal 142, 184, 1009, 1061
parallel operations on 977ff., 998f., 1071f.,

1192
primitive modulo 2 287ff., 301f., 889
roots of 178ff., 362ff., 368, 1191ff.
shifting of 192f., 978, 1079
stopping criterion in root finding 366

poly term() utility function 974, 977, 989,
999, 1071f., 1192

Port, serial data 892
Portability 3, 963
Portable random number generatorseeRan-

dom number generator
Positive definite matrix, testing for 90
Positivity constraints 423
Postal Service (U.S.), barcode 894
PostScript 1/xvi, 1/xxiii, 2/xx
Powell’s method 389, 402, 406ff., 1210ff.
Power (in a signal) 492f.
Power series 159ff., 167, 195

economization of 192f., 1061, 1080
Padé approximant of 194ff., 1080f.

Power spectral densityseeFourier transform;
Spectral density

Power spectrum estimationseeFourier trans-
form; Spectral density

PowerStation, Microsoft Fortran 2/xix
PPM (piecewise parabolic method) 837
Precision

converting to double 1362
floating point 882, 937, 1343, 1361ff.
multiple 906ff., 1352ff., 1362

Preconditioned biconjugate gradient method
(PBCG) 78f.

Preconditioning, in conjugate gradient methods
824

Predictor-corrector methods 702, 730, 740ff.
Adams-Bashforth-Moulton schemes 741
adaptive order methods 744

compared to other methods 740
fallacy of multiple correction 741
with fixed number of iterations 741
functional iteration vs. Newton’s rule 742
multivalue compared with multistep 742ff.
starting and stopping 742, 744
stepsize control 742f.

present() intrinsic function 952
Prime numbers 915
Primitive polynomials modulo 2 287ff., 301f.,

889
Principal directions 408f., 1210
Principal solution, of inverse problem 797
PRIVATE attribute 957, 1067
Prize,$1000 offered 272, 1141, 1150f.
ProbabilityseeRandom number generator;

Statistical tests
Probability density, change of variables in

278f.
ProcedureseeProgram(s); Subprogram
Process loss 548
product() intrinsic function 948
Product Nystrom method 789, 1331
Program(s)

as black boxes 1/xviii, 6, 26, 52, 205,
341, 406

dependencies 921ff., 1434ff.
encapsulation 7
interfaces 2, 8
modularization 7f.
organization 5ff.
type declarations 2
typography of 2f., 12, 937
validation 3f.

Programming, serial vs. parallel 965, 987
Projection onto convex sets (POCS) 805
Projection operator, nonexpansive 805
Prolongation operator 864, 1337
Protocol, for communications 888
PSD (power spectral density)seeFourier

transform; Spectral density
Pseudo-random numbers 266ff., 1141ff.
PUBLIC attribute 957, 1067
Puns, particularly bad 167, 744, 747
PURE attribute 2/xv, 960f., 964, 986
put diag() utility function 985, 990, 1005,

1200
Pyramidal algorithm 586, 1264
Pythagoreans 392

QL seeEigensystems
QR seeEigensystems
QR decomposition 91f., 382, 386, 1039f.,

1199
backsubstitution 92, 1040
and least squares 668
operation count 92
pivoting 92
updating 94, 382, 386, 1041, 1199
use for orthonormal basis 58, 94

Quadratic
convergence 49, 256, 351, 356, 409f.,

419, 906
equations 20, 178, 391, 457

Index to Volumes 1 and 2 1477

interpolation 353, 364
programming 436

Quadrature 123ff., 1052ff.
adaptive 123, 190, 788
alternative extended Simpson’s rule 128
arbitrary weight function 151ff., 789,

1064, 1328
automatic 154
Bode’s rule 126
change of variable in 137ff., 788, 1056ff.
by Chebyshev fitting 124, 189, 1078
classical formulas for 124ff.
Clenshaw-Curtis 124, 190, 512f.
closed formulas 125, 127f.
and computer science 881
by cubic splines 124
error estimate in solution 784
extended midpoint rule 129f., 135, 1054f.
extended rules 127ff., 134f., 786, 788ff.,

1326, 1328
extended Simpson’s rule 128
Fourier integrals 577ff., 1261ff.
Fourier integrals, infinite range 583
Gauss-Chebyshev 144, 512f.
Gauss-Hermite 144, 789, 1062
Gauss-Jacobi 144, 1063
Gauss-Kronrod 154
Gauss-Laguerre 144, 789, 1060
Gauss-Legendre 144, 783, 789, 1059,

1325
Gauss-Lobatto 154, 190, 512
Gauss-Radau 154
Gaussian integration 127, 140ff., 781,

783, 788f., 1009, 1059ff., 1325, 1328f.
Gaussian integration, nonclassical weight

function 151ff., 788f., 1064f., 1328f.
for improper integrals 135ff., 789, 1055,

1328
for integral equations 781f., 786, 1325ff.
Monte Carlo 124, 155ff., 295ff., 306ff.,

1161ff.
multidimensional 124, 155ff., 1052, 1065ff.
multidimensional, by recursion 1052,

1065
Newton-Cotes formulas 125ff., 140
open formulas 125ff., 129f., 135
related to differential equations 123
related to predictor-corrector methods 740
Romberg integration 124, 134f., 137, 182,

717, 788, 1054f., 1065, 1067
semi-open formulas 130
Simpson’s rule 126, 133, 136f., 583, 782,

788ff., 1053
Simpson’s three-eighths rule 126, 789f.
singularity removal 137ff., 788, 1057ff.,

1328ff.
singularity removal, worked example 792,

1328ff.
trapezoidal rule 125, 127, 130ff., 134f.,

579, 583, 782, 786, 1052ff., 1326f.
using FFTs 124
weight functionlogx 153
see alsoIntegration of functions

Quadrature mirror filter 585, 593

Quantum mechanics, Uncertainty Principle
600

Quartile value 320
Quasi-Newton methods for minimization 390,

418ff., 1215
Quasi-random sequence 299ff., 318, 881, 888

Halton’s 300
for Monte Carlo integration 304, 309, 318
Sobol’s 300ff., 1160
see alsoRandom number generator

Quicksort 320, 323ff., 330, 333, 1169f.
Quotient-difference algorithm 164

R-estimates 694
Radioactive decay 278
Radix base for floating point arithmetic 476,

882, 907, 913, 1231, 1343, 1357
Radix conversion 902, 906, 913, 1357
radix() intrinsic function 1231
Radix sort 1172
Ramanujan’s identity forπ 915
Random bits, generation of 287ff., 1159f.
Random deviates 266ff., 1141ff.

binomial 285f., 1155
exponential 278, 1151f.
gamma distribution 282f., 1153
Gaussian 267, 279f., 571, 798, 1152f.
normal 267, 279f., 571, 1152f.
Poisson 283ff., 571, 1154f.
quasi-random sequences 299ff., 881, 888,

1160f.
uniform 267ff., 1158f., 1166
uniform integer 270, 274ff.

Random number generator 266ff., 1141ff.
bitwise operations 287
Box-Muller algorithm 279, 1152
Data Encryption Standard 290ff., 1144,

1156ff.
good choices for modulus, multiplier and

increment 274ff.
initializing 1144ff.
for integer-valued probability distribution

283f., 1154
integer vs. real implementation 273
L’Ecuyer’s long period 271f.
lagged Fibonacci generator 1142, 1148ff.
linear congruential generator 267ff., 1142
machine language 269
Marsaglia shift register 1142, 1148ff.
Minimal Standard, Park and Miller’s 269,

1142
nonrandomness of low-order bits 268f.
parallel 1009
perfect 272, 1141, 1150f.
planes, numbers lie on 268
portable 269ff., 1142
primitive polynomials modulo 2 287ff.
pseudo-DES 291, 1144, 1156ff.
quasi-random sequences 299ff., 881, 888,

1160f.
quick and dirty 274
quicker and dirtier 275
in Quicksort 324
random access tonth number 293

1478 Index to Volumes 1 and 2

random bits 287ff., 1159f.
recommendations 276f.
rejection method 281ff.
serial 1141f.
shuffling procedure 270, 272
in simulated annealing method 438
spectral test 274
state space 1143f.
state space exhaustion 1141
subtractive method 273, 1143
system-supplied 267f.
timings 276f., 1151
transformation method 277ff.
trick for trigonometric functions 280

Random numbersseeMonte Carlo; Random
deviates

Random walk 20
random number() intrinsic function 1141,

1143
random seed() intrinsic function 1141
RANDU, infamous routine 268
Range 53f.
Rank (matrix) 53

kernel of finite 785
Rank (sorting) 320, 332, 1176
Rank (statistics) 633ff., 694f., 1277

Kendall’s tau 637ff., 1279
Spearman correlation coefficient 634f.,

1277ff.
sum squared differences of 634, 1277

Ratio variable (statistics) 623
Rational Chebyshev approximation 197ff.,

1081f.
Rational function 99, 167ff., 194ff., 1080f.

approximation for Bessel functions 225
approximation for continued fraction 164,

211, 219f.
Chebyshev approximation 197ff., 1081f.
evaluation of 170, 1072f.
extrapolation in Bulirsch-Stoer method

718ff., 726, 1306f.
interpolation and extrapolation using 99,

104ff., 194ff., 718ff., 726
as power spectrum estimate 566
interpolation and extrapolation using 1043f.,

1080ff., 1306
minimax 198

Re-entrant procedure 1052
real() intrinsic function, ambiguity of 947
Realizable (causal) 552, 554f.
reallocate() utility function 955, 990, 992,

1070, 1302
RearrangingseeSorting
Reciprocal, multiple precision 910f., 1355f.
Record, in data file 329
Recurrence relation 172ff., 971ff.

arithmetic progression 971f., 996
associated Legendre polynomials 247
Bessel function 172, 224, 227f., 234
binomial coefficients 209
Bulirsch-Stoer 105f.
characteristic polynomial of tridiagonal

matrix 469
Clenshaw’s recurrence formula 176f.
and continued fraction 175

continued fraction evaluation 164f.
convergence 175
cosine function 172, 500
cyclic reduction 974
dominant solution 174
exponential integrals 172
gamma function 206
generation of random bits 287f.
geometric progression 972, 996
Golden Mean 21
Legendre polynomials 172
minimal vs. dominant solution 174
modified Bessel function 232
Neville’s 103, 182
orthonormal polynomials 142
Perron’s theorems 174f.
Pincherle’s theorem 175
for polynomial cumulants 977, 999, 1071f.
polynomial interpolation 103, 183
primitive polynomials modulo 2 287f.
random number generator 268
rational function interpolation 105f., 1043
recursive doubling 973, 977, 988, 999,

1071f., 1073
second order 974f., 1074
sequence of trig functions 173
sine function 172, 500
spherical harmonics 247
stability of 21, 173ff., 177, 224f., 227f.,

232, 247, 975
trig functions 572
weight of Gaussian quadrature 144f.

Recursion
in Fortran 90 958
in multigrid method 865, 1009, 1336

Recursive doubling 973f., 979
cumulants of polynomial 977, 999, 1071f.
linear recurrences 973, 988, 1073
tridiagonal systems 976

RECURSIVE keyword 958, 1065, 1067
Recursive Monte Carlo integration 306ff.,

1161
Recursive procedure 2/xiv, 958, 1065, 1067,

1166
as parallelization tool 958
base case 958
for multigrid method 1009, 1336
re-entrant 1052

Recursive stratified sampling 314ff., 1164ff.
Red-blackseeOdd-even ordering
Reduction functions 948ff.
Reduction of variance in Monte Carlo integra-

tion 299, 306ff.
References (explanation) 4f.
References (general bibliography) 916ff.,

1359f.
Reflection formula for gamma function 206
Regula falsi (false position) 347ff., 1185f.
Regularity condition 775
Regularization

compared with optimal filtering 801
constrained linear inversion method 799ff.
of inverse problems 796ff.
linear 799ff.
nonlinear 813

Index to Volumes 1 and 2 1479

objective criterion 802
Phillips-Twomey method 799ff.
Tikhonov-Miller 799ff.
trade-off curve 799
two-dimensional 803
zeroth order 797
see alsoInverse problems

Regularizing operator 798
Reid, John 2/xiv, 2/xvi
Rejection method for random number genera-

tor 281ff.
Relaxation method

for algebraically difficult sets 763
automated allocation of mesh points 774f.,

777
computation of spheroidal harmonics 764ff.,

1319ff.
for differential equations 746f., 753ff.,

1316ff.
elliptic partial differential equations 823,

854ff., 1332f.
example 764ff., 1319ff.
Gauss-Seidel method 855, 864ff., 876,

1338, 1341
internal boundary conditions 775ff.
internal singular points 775ff.
Jacobi’s method 855f., 864
successive over-relaxation (SOR) 857ff.,

862, 866, 1332f.
see alsoMultigrid method

Remes algorithms
exchange algorithm 553
for minimax rational function 199

reshape() intrinsic function 950
communication bottleneck 969
order keyword 1050, 1246

Residual 49, 54, 78
in multigrid method 863, 1338

Resolution function, in Backus-Gilbert method
807

Response function 531
Restriction operator 864, 1337
RESULT keyword 958, 1073
Reward,$1000 offered 272, 1141, 1150f.
Richardson’s deferred approach to the limit

134, 137, 182, 702, 718ff., 726, 788,
869

see alsoBulirsch-Stoer method
Richtmyer artificial viscosity 837
Ridders’ method, for numerical derivatives

182, 1075
Ridders’ method, root finding 341, 349, 351,

1187
Riemann shock problem 837
Right eigenvalues and eigenvectors 451
Rise/fall time 548f.
Robust estimation 653, 694ff., 700, 1294

Andrew’s sine 697
average deviation 605
double exponential errors 696
Kalman filtering 700
Lorentzian errors 696f.
mean absolute deviation 605
nonparametric correlation 633ff., 1277
Tukey’s biweight 697

use of a priori covariances 700
see alsoStatistical tests

Romberg integration 124, 134f., 137, 182,
717, 788, 1054f., 1065

Root finding 143, 340ff., 1009, 1059
advanced implementations of Newton’s rule

386
Bairstow’s method 364, 370, 1193
bisection 343, 346f., 352f., 359, 390, 469,

698, 1184f.
bracketing of roots 341, 343ff., 353f.,

362, 364, 369, 1183f.
Brent’s method 341, 349, 660f., 1188f.,

1286
Broyden’s method 373, 382f., 386, 1199
compared with multidimensional minimiza-

tion 375
complex analytic functions 364
in complex plane 204
convergence criteria 347, 374
deflation of polynomials 362ff., 370f.,

1192
without derivatives 354
double root 341
eigenvalue methods 368, 1193
false position 347ff., 1185f.
Jenkins-Traub method 369
Laguerre’s method 341, 366f., 1191f.
Lehmer-Schur algorithm 369
Maehly’s procedure 364, 371
matrix method 368, 1193
Muller’s method 364, 372
multiple roots 341
Newton’s rule 143f., 180, 341, 355ff.,

362, 364, 370, 372ff., 376, 469, 740,
749f., 754, 787, 874, 876, 911f., 1059,
1189, 1194, 1196, 1314ff., 1339, 1341,
1355f.

pathological cases 343, 356, 362, 372
polynomials 341, 362ff., 449, 1191f.
in relaxation method 754, 1316
Ridders’ method 341, 349, 351, 1187
root-polishing 356, 363ff., 369ff., 1193
safe Newton’s rule 359, 1190
secant method 347ff., 358, 364, 399,

1186f.
in shooting method 746, 749f., 1314f.
singular Jacobian in Newton’s rule 386
stopping criterion for polynomials 366
use of minimum finding 341
using derivatives 355ff., 1189
zero suppression 372
see alsoRoots

Root polishing 356, 363ff., 369ff., 1193
Roots

Chebyshev polynomials 184
complexnth root of unity 999f., 1379
cubic equations 179f.
Hermite polynomials, approximate 1062
Jacobi polynomials, approximate 1064
Laguerre polynomials, approximate 1061
multiple 341, 364ff., 1192
nonlinear equations 340ff.
polynomials 341, 362ff., 449, 1191f.
quadratic equations 178

1480 Index to Volumes 1 and 2

reflection in unit circle 560, 1257
square, multiple precision 912, 1356
see alsoRoot finding

Rosenbrock method 730, 1308
compared with semi-implicit extrapolation

739
stepsize control 731, 1308f.

Roundoff error 20, 881, 1362
bracketing a minimum 399
compile time vs. run time 1012
conjugate gradient method 824
eigensystems 458, 467, 470, 473, 476,

479, 483
extended trapezoidal rule 132
general linear least squares 668, 672
graceful 883, 1343
hardware aspects 882, 1343
Householder reduction 466
IEEE standard 882f., 1343
interpolation 100
least squares fitting 658, 668
Levenberg-Marquardt method 679
linear algebraic equations 23, 27, 29, 47,

56, 84, 1022
linear predictive coding (LPC) 564
magnification of 20, 47, 1022
maximum entropy method (MEM) 567
measuring 881f., 1343
multidimensional minimization 418, 422
multiple roots 362
numerical derivatives 180f.
recurrence relations 173
reduction to Hessenberg form 479
series 164f.
straight line fitting 658
variance 607

Row degeneracy 22
Row-indexed sparse storage 71f., 1030

transpose 73f.
Row operations on matrix 28, 31f.
Row totals 624
RSS algorithm 314ff., 1164
RST properties (reflexive, symmetric, transi-

tive) 338
Runge-Kutta method 702, 704ff., 731, 740,

1297ff., 1308
Cash-Karp parameters 710, 1299f.
embedded 709f., 731, 1298, 1308
high-order 705
quality control 722
stepsize control 708ff.

Run-length encoding 901
Runge-Kutta method

high-order 1297
stepsize control 1298f.

Rybicki, G.B. 84ff., 114, 145, 252, 522, 574,
600

S-box for Data Encryption Standard 1148
Sampling

importance 306f.
Latin square or hypercube 305f.
recursive stratified 314ff., 1164
stratified 308f.
uneven or irregular 569, 648f., 1258

Sampling theorem 495, 543
for numerical approximation 600ff.

Sande-Tukey FFT algorithm 503
SAVE attribute 953f., 958f., 961, 1052, 1070,

1266, 1293
redundant use of 958f.

SAVE statements 3
Savitzky-Golay filters

for data smoothing 644ff., 1283f.
for numerical derivatives 183, 645

scale() intrinsic function 1107
Scallop loss 548
Scatter-with-combine functions 984, 1002f.,

1032, 1366, 1380f.
scatteradd() utility function 984, 990, 1002,

1032
scattermax() utility function 984, 990, 1003
Schonfelder, Lawrie 2/xi
Schrage’s algorithm 269
Schrödinger equation 842ff.
Schultz’s method for matrix inverse 49, 598
Scope 956ff., 1209, 1293, 1296
Scoping unit 939
SDLC checksum 890
Searching

with correlated values 111, 1046f.
an ordered table 110f., 1045f.
selection 333, 1177f.

Secant method 341, 347ff., 358, 364, 399,
1186f.

Broyden’s method 382f., 1199f.
multidimensional (Broyden’s) 373, 382f.,

1199
Second Euler-Maclaurin summation formula

135f.
Second order differential equations 726, 1307
Seed of random number generator 267, 1146f.
select case statement 2/xiv, 1010, 1036
Selection 320, 333, 1177f.

find m largest elements 336, 1179f.
heap algorithm 336, 1179
for median 698, 1294
operation count 333
by packing 1178
parallel algorithms 1178
by partition-exchange 333, 1177f.
without rearrangement 335, 1178f.
timings 336
use to find median 609

Semi-implicit Euler method 730, 735f.
Semi-implicit extrapolation method 730,

735f., 1310f.
compared with Rosenbrock method 739
stepsize control 737, 1311f.

Semi-implicit midpoint rule 735f., 1310f.
Semi-invariants of a distribution 608
Sentinel, in Quicksort 324, 333
Separable kernel 785
Separation of variables 246
Serial computing

convergence of quadrature 1060
random numbers 1141
sorting 1167

Serial data port 892

Index to Volumes 1 and 2 1481

Series 159ff.
accelerating convergence of 159ff.
alternating 160f., 1070
asymptotic 161
Bessel functionKν 241
Bessel functionYν 235
Bessel functions 160, 223
cosine integral 250
divergent 161
economization 192f., 195, 1080
Euler’s transformation 160f., 1070
exponential integral 216, 218
Fresnel integral 248
hypergeometric 202, 263, 1138
incomplete beta function 219
incomplete gamma function 210, 1090f.
Laurent 566
relation to continued fractions 163f.
roundoff error in 164f.
sine and cosine integrals 250
sine function 160
Taylor 355f., 408, 702, 709, 754, 759
transformation of 160ff., 1070
van Wijngaarden’s algorithm 161, 1070

Shaft encoder 886
Shakespeare 9
Shampine’s Rosenbrock parameters 732, 1308
shape() intrinsic function 938, 949
Shell algorithm (Shell’s sort) 321ff., 1168
Sherman-Morrison formula 65ff., 83, 382
Shifting of eigenvalues 449, 470f., 480
Shock wave 831, 837
Shooting method

computation of spheroidal harmonics 772,
1321ff.

for differential equations 746, 749ff.,
770ff., 1314ff., 1321ff.

for difficult cases 753, 1315f.
example 770ff., 1321ff.
interior fitting point 752, 1315f., 1323ff.

Shuffling to improve random number generator
270, 272

Side effects
prevented by data hiding 957, 1209, 1293,

1296
and PURE subprograms 960

Sidelobe fall-off 548
Sidelobe level 548
sign() intrinsic function, modified in Fortran 95

961
Signal, bandwidth limited 495
Significance (numerical) 19
Significance (statistical) 609f.

one- vs. two-sided 632
peak in Lomb periodogram 570
of 2-d K-S test 640, 1281
two-tailed 613

SIMD machines (Single Instruction Multiple
Data) 964, 985f., 1009, 1084f.

Similarity transform 452ff., 456, 476, 478,
482

Simplex
defined 402
method in linear programming 389, 402,

423ff., 431ff., 1216ff.

method of Nelder and Mead 389, 402ff.,
444, 697f., 1208f., 1222ff.

use in simulated annealing 444, 1222ff.
Simpson’s rule 124ff., 128, 133, 136f., 583,

782, 788f., 1053f.
Simpson’s three-eighths rule 126, 789f.
Simulated annealingseeAnnealing, method of

simulated
SimulationseeMonte Carlo
Sine function

evaluated fromtan(θ/2) 173
recurrence 172
series 160

Sine integral 248, 250ff., 1123, 1125f.
continued fraction 250
series 250
see alsoCosine integral

Sine transformseeFast Fourier transform
(FFT); Fourier transform

Singleton’s algorithm for FFT 525
Singular value decomposition (SVD) 23, 25,

51ff., 1022
approximation of matrices 58f.
backsubstitution 56, 1022f.
and bases for nullspace and range 53
confidence levels from 693f.
covariance matrix 693f.
fewer equations than unknowns 57
for inverse problems 797
and least squares 54ff., 199f., 668, 670ff.,

1081, 1290f.
in minimization 410
more equations than unknowns 57f.
parallel algorithms 1026
and rational Chebyshev approximation

199f., 1081f.
of square matrix 53ff., 1023
use for ill-conditioned matrices 56, 58,

449
use for orthonormal basis 58, 94

Singularities
of hypergeometric function 203, 263
in integral equations 788ff., 1328
in integral equations, worked example

792, 1328ff.
in integrands 135ff., 788, 1055, 1328ff.
removal in numerical integration 137ff.,

788, 1057ff., 1328ff.
Singularity, subtraction of the 789
SIPSOL 824
Six-step framework, for FFT 983, 1240
size() intrinsic function 938, 942, 945, 948
Skew array section 2/xii, 945, 960, 985, 1284
Skewness of distribution 606, 608, 1269
Smoothing

of data 114, 644ff., 1283f.
of data in integral equations 781
importance in multigrid method 865

sn function 261, 1137f.
Snyder, N.L. 1/xvi
Sobol’s quasi-random sequence 300ff., 1160f.
Sonata 9
Sonnet 9
Sorting 320ff., 1167ff.

bubble sort 1168

1482 Index to Volumes 1 and 2

bubble sort cautioned against 321
compared to selection 333
covariance matrix 669, 681, 1289
eigenvectors 461f., 1227
Heapsort 320, 327f., 336, 1171f., 1179
index table 320, 329f., 1170, 1173ff.,

1176
operation count 320ff.
by packing 1171
parallel algorithms 1168, 1171f., 1176
Quicksort 320, 323ff., 330, 333, 1169f.
radix sort 1172
rank table 320, 332, 1176
ranking 329, 1176
by reshaping array slices 1168
Shell’s method 321ff., 1168
straight insertion 321f., 461f., 1167, 1227

SP, defined 937
SPARC or SPARCstation 1/xxii, 2/xix, 4
Sparse linear equations 23, 63ff., 732, 1030

band diagonal 43, 1019ff.
biconjugate gradient method 77, 599,

1034
data type for 1030
indexed storage 71f., 1030
in inverse problems 804
minimum residual method 78
named patterns 64, 822
partial differential equations 822ff.
relaxation method for boundary value prob-

lems 754, 1316
row-indexed storage 71f., 1030
wavelet transform 584, 598
see alsoMatrix

Spearman rank-order coefficient 634f., 694f.,
1277

Special functionsseeFunction
Spectral analysisseeFourier transform; Peri-

odogram
Spectral density 541

and data windowing 545ff.
figures of merit for data windows 548f.
normalization conventions 542f.
one-sided PSD 492
periodogram 543ff., 566, 1258ff.
power spectral density (PSD) 492f.
power spectral density per unit time 493
power spectrum estimation by FFT 542ff.,

1254ff.
power spectrum estimation by MEM 565ff.,

1258
two-sided PSD 493
variance reduction in spectral estimation

545
Spectral lines, how to smooth 644
Spectral methods for partial differential equa-

tions 825
Spectral radius 856ff., 862
Spectral test for random number generator

274
SpectrumseeFourier transform
Spherical Bessel functions 234

routine for 245, 1121
Spherical harmonics 246ff.

orthogonality 246

routine for 247f., 1122
stable recurrence for 247
table of 246
see alsoAssociated Legendre polynomials

Spheroidal harmonics 764ff., 770ff., 1319ff.
boundary conditions 765
normalization 765
routine for 768ff., 1319ff., 1323ff.

Spline 100
cubic 107ff., 1044f.
gives tridiagonal system 109
natural 109, 1044f.
operation count 109
two-dimensional (bicubic) 120f., 1050f.

spread() intrinsic function 945, 950, 969,
1000, 1094, 1290f.

and dimensional expansion 966ff.
Spread matrix 808
Spread spectrum 290
Square root, complex 172
Square root, multiple precision 912, 1356f.
Square window 546, 1254ff.
SSP (small-scale parallel) machines 965ff.,

972, 974, 984, 1011, 1016ff., 1021,
1059f., 1226ff., 1250

Stability 20f.
of Clenshaw’s recurrence 177
Courant condition 829, 832ff., 836, 846
diffusion equation 840
of Gauss-Jordan elimination 27, 29
of implicit differencing 729, 840
mesh-drift in PDEs 834f.
nonlinear 831, 837
partial differential equations 820, 827f.
of polynomial deflation 363
in quadrature solution of Volterra equation

787f.
of recurrence relations 173ff., 177, 224f.,

227f., 232, 247
and stiff differential equations 728f.
von Neumann analysis for PDEs 827f.,

830, 833f., 840
see alsoAccuracy

Stabilized Kolmogorov-Smirnov test 621
Stabilizing functional 798
Staggered leapfrog method 833f.
Standard (probable) errors 1288, 1290
Standard deviation

of a distribution 605, 1269
of Fisher’s z 632
of linear correlation coefficient 630
of sum squared difference of ranks 635,

1277
Standard (probable) errors 610, 656, 661,

667, 671, 684
Stars, as text separator 1009
Statement function, superseded by internal sub-

program 1057, 1256
Statement labels 9
Statistical error 653
Statistical tests 603ff., 1269ff.

Anderson-Darling 621
average deviation 605, 1269
bootstrap method 686f.
chi-square 614f., 623ff., 1272, 1275f.

Index to Volumes 1 and 2 1483

contingency coefficient C 625, 1275
contingency tables 622ff., 638, 1275f.
correlation 603f.
Cramer’s V 625, 1275
difference of distributions 614ff., 1272
difference of means 609ff., 1269f.
difference of variances 611, 613, 1271
entropy measures of association 626ff.,

1275f.
F-test 611, 613, 1271
Fisher’s z-transformation 631f., 1276
general paradigm 603
Kendall’s tau 634, 637ff., 1279
Kolmogorov-Smirnov 614, 617ff., 640,

694, 1273f., 1281
Kuiper’s statistic 621
kurtosis 606, 608, 1269
L-estimates 694
linear correlation coefficient 630ff., 1276
M-estimates 694ff.
mean 603ff., 608ff., 1269f.
measures of association 604, 622ff., 1275
measures of central tendency 604ff., 1269
median 605, 694
mode 605
moments 604ff., 608, 1269
nonparametric correlation 633ff., 1277
Pearson’s r 630ff., 1276
for periodic signal 570
phi statistic 625
R-estimates 694
rank correlation 633ff., 1277
robust 605, 634, 694ff.
semi-invariants 608
for shift vs. for spread 620f.
significance 609f., 1269ff.
significance, one- vs. two-sided 613, 632
skewness 606, 608, 1269
Spearman rank-order coefficient 634f.,

694f., 1277
standard deviation 605, 1269
strength vs. significance 609f., 622
Student’s t 610, 631, 1269
Student’s t, for correlation 631
Student’s t, paired samples 612, 1271
Student’s t, Spearman rank-order coeffi-

cient 634, 1277
Student’s t, unequal variances 611, 1270
sum squared difference of ranks 635,

1277
Tukey’s trimean 694
two-dimensional 640, 1281ff.
variance 603ff., 607f., 612f., 1269ff.
Wilcoxon 694
see alsoError; Robust estimation

Steak, without sizzle 809
Steed’s method

Bessel functions 234, 239
continued fractions 164f.

Steepest descent method 414
in inverse problems 804

Step
doubling 130, 708f., 1052
tripling 136, 1055

Stieltjes, procedure of 151

Stiff equations 703, 727ff., 1308ff.
Kaps-Rentrop method 730, 1308
methods compared 739
predictor-corrector method 730
r.h.s. independent ofx 729f.
Rosenbrock method 730, 1308
scaling of variables 730
semi-implicit extrapolation method 730,

1310f.
semi-implicit midpoint rule 735f., 1310f.

Stiff functions 100, 399
Stirling’s approximation 206, 812
Stoermer’s rule 726, 1307
Stopping criterion, in multigrid method 875f.
Stopping criterion, in polynomial root finding

366
Storage

band diagonal matrix 44, 1019
sparse matrices 71f., 1030

Storage association 2/xiv
Straight injection 867
Straight insertion 321f., 461f., 1167, 1227
Straight line fitting 655ff., 667f., 1285ff.

errors in both coordinates 660ff., 1286ff.
robust estimation 698, 1294ff.

Strassen’s fast matrix algorithms 96f.
Stratified sampling, Monte Carlo 308f., 314
Stride (of an array) 944

communication bottleneck 969
Strongly implicit procedure (SIPSOL) 824
Structure constructor 2/xii
Structured programming 5ff.
Student’s probability distribution 221f.
Student’s t-test

for correlation 631
for difference of means 610, 1269
for difference of means (paired samples)

612, 1271
for difference of means (unequal variances)

611, 1270
for difference of ranks 635, 1277
Spearman rank-order coefficient 634,

1277
Sturmian sequence 469
Sub-random sequencesseeQuasi-random se-

quence
Subprogram 938

for data hiding 957, 1209, 1293, 1296
internal 954, 957, 1057, 1067, 1226, 1256
in module 940
undefined variables on exit 952f., 961,

1070, 1266, 1293, 1302
Subscript triplet (for array) 944
Subtraction, multiple precision 907, 1353
Subtractive method for random number genera-

tor 273, 1143
Subvector scaling 972, 974, 996, 1000
Successive over-relaxation (SOR) 857ff., 862,

1332f.
bad in multigrid method 866
Chebyshev acceleration 859f., 1332f.
choice of overrelaxation parameter 858
with logical mask 1333f.
parallelization 1333

sum() intrinsic function 945, 948, 966

1484 Index to Volumes 1 and 2

Sum squared difference of ranks 634, 1277
SumsseeSeries
Sun 1/xxii, 2/xix, 886

SPARCstation 1/xxii, 2/xix, 4
Supernova 1987A 640
SVD seeSingular value decomposition (SVD)
swap() utility function 987, 990f., 1015, 1210
Symbol, of operator 866f.
Synthetic division 84, 167, 362, 370

parallel algorithms 977ff., 999, 1048,
1071f., 1079, 1192

repeated 978f.
Systematic errors 653

T ableau (interpolation) 103, 183
Tangent function, continued fraction 163
Target, for pointer 938f., 945, 952f.
Taylor series 180, 355f., 408, 702, 709, 742,

754, 759
Test programs 3
Thermodynamics, analogy for simulated an-

nealing 437
Thinking Machines, Inc. 964
Threshold multiply of sparse matrices 74,

1031
Tides 560f.
Tikhonov-Miller regularization 799ff.
Time domain 490
Time splitting 847f., 861
tiny() intrinsic function 952
Toeplitz matrix 82, 85ff., 195, 1038

LU decomposition 87
new, fast algorithms 88f.
nonsymmetric 86ff., 1038

Tongue twisters 333
Torus 297f., 304
Trade-off curve 795, 809
Trademarks 1/xxii, 2/xixf.
Transformation

Gauss 256
Landen 256
method for random number generator 277ff.

Transformational functions 948ff.
Transforms, number theoretic 503f.
Transport error 831ff.
transpose() intrinsic function 950, 960, 969,

981, 1050, 1246
Transpose of sparse matrix 73f.
Trapezoidal rule 125, 127, 130ff., 134f., 579,

583, 782, 786, 1052, 1326f.
Traveling salesman problem 438ff., 1219ff.
Tridiagonal matrix 42, 63, 150, 453f., 488,

839f., 1018f.
in alternating-direction implicit method

(ADI) 861f.
from cubic spline 109
cyclic 67, 1030
in cyclic reduction 853
eigenvalues 469ff., 1228
with fringes 822
from operator splitting 861f.
parallel algorithm 975, 1018, 1229f.
recursive splitting 1229f.
reduction of symmetric matrix to 462ff.,

470, 1227f.

serial algorithm 1018f.
see alsoMatrix

Trigonometric
functions, linear sequences 173
functions, recurrence relation 172, 572
functions,tan(θ/2) as minimal 173
interpolation 99
solution of cubic equation 179f.

Truncation error 20f., 399, 709, 881, 1362
in multigrid method 875
in numerical derivatives 180

Tukey’s biweight 697
Tukey’s trimean 694
Turbo Pascal (Borland) 8
Twin errors 895
Two-dimensionalseeMultidimensional
Two-dimensionalK–S test 640, 1281ff.
Two-pass algorithm for variance 607, 1269
Two-point boundary value problems 702,

745ff., 1314ff.
automated allocation of mesh points 774f.,

777
boundary conditions 745ff., 749, 751f.,

771, 1314ff.
difficult cases 753, 1315f.
eigenvalue problem for differential equa-

tions 748, 764ff., 770ff., 1319ff.
free boundary problem 748, 776
grid (mesh) points 746f., 754, 774f., 777
internal boundary conditions 775ff.
internal singular points 775ff.
linear requires no iteration 751
multiple shooting 753
problems reducible to standard form 748
regularity condition 775
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff.,

1319
shooting to a fitting point 751ff., 1315f.,

1323ff.
shooting method 746, 749ff., 770ff., 1314ff.,

1321ff.
shooting method, example of 770ff., 1321ff.
singular endpoints 751, 764, 771, 1315f.,

1319ff.
see alsoElliptic partial differential equa-

tions
Two-sided exponential error distribution 696
Two-sided power spectral density 493
Two-step Lax-Wendroff method 835ff.
Two-volume edition, plan of 1/xiii
Two’s complement arithmetic 1144
Type declarations, explicit vs. implicit 2

Ubound() intrinsic function 949
ULTRIX 1/xxiii, 2/xix
Uncertainty coefficient 628
Uncertainty principle 600
Undefined status, of arrays and pointers 952f.,

961, 1070, 1266, 1293, 1302
Underflow, in IEEE arithmetic 883, 1343
Underrelaxation 857
Uniform deviatesseeRandom deviates, uni-

form

Index to Volumes 1 and 2 1485

Unitary (function) 843f.
Unitary (matrix)seeMatrix
unit matrix() utility function 985, 990, 1006,

1216, 1226, 1325
UNIX 1/xxiii, 2/viii, 2/xix, 4, 17, 276, 293,

886
Upper Hessenberg matrixseeHessenberg ma-

trix
U.S. Postal Service barcode 894
unpack() intrinsic function 950, 964

communication bottleneck 969
Upper subscript 944
upper triangle() utility function 990, 1006,

1226, 1305
Upwind differencing 832f., 837
USE statement 936, 939f., 954, 957, 1067,

1384
USES keyword in program listings 2
Utility functions 987ff., 1364ff.

add vector to matrix diagonal 1004, 1234,
1366, 1381

alphabetical listing 988ff.
argument checking 994f., 1370f.
arithmetic progression 996, 1072, 1127,

1365, 1371f.
array reallocation 992, 1070f., 1365, 1368f.
assertion of numerical equality 995, 1022,

1365, 1370f.
compared to intrinsics 990ff.
complexnth root of unity 999f., 1379
copying arrays 991, 1034, 1327f., 1365f.
create unit matrix 1006, 1382
cumulative product of an array 997f.,

1072, 1086, 1375
cumulative sum of an array 997, 1280f.,

1365, 1375
data types 1361
elemental functions 1364
error handling 994f., 1036, 1370f.
generic functions 1364
geometric progression 996f., 1365, 1372ff.
get diagonal of matrix 1005, 1226f., 1366,

1381f.
length of a vector 1008, 1383
linear recurrence 996
location in an array 992ff., 1015, 1017ff.
location of first logical “true” 993, 1041,

1369
location of maximum array value 993,

1015, 1017, 1365, 1369
location of minimum array value 993,

1369f.
logical assertion 994, 1086, 1090, 1092,

1365, 1370
lower triangular mask 1007, 1200, 1382
masked polynomial evaluation 1378
masked swap of elements in two arrays

1368
moving data 990ff., 1015
multiply vector into matrix diagonal 1004f.,

1366, 1381
nrutil.f90 (module file) 1364ff.
outer difference of vectors 1001, 1366,

1380
outer logical and of vectors 1002

outer operations on vectors 1000ff., 1379f.
outer product of vectors 1000f., 1076,

1365f., 1379
outer quotient of vectors 1001, 1379
outer sum of vectors 1001, 1379f.
overloading 1364
partial cumulants of a polynomial 999,

1071, 1192f., 1365, 1378f.
polynomial evaluation 996, 998f., 1258,

1365, 1376ff.
scatter-with-add 1002f., 1032f., 1366,

1380f.
scatter-with-combine 1002f., 1032f., 1380f.
scatter-with-max 1003f., 1366, 1381
set diagonal elements of matrix 1005,

1200, 1366, 1382
skew operation on matrices 1004ff., 1381ff.
swap elements of two arrays 991, 1015,

1365ff.
upper triangular mask 1006, 1226, 1305,

1382

V -cycle 865, 1336
vabs() utility function 990, 1008, 1290
Validation of Numerical Recipes procedures

3f.
Valley, long or narrow 403, 407, 410
Van Cittert’s method 804
Van Wijngaarden-Dekker-Brent methodsee

Brent’s method
Vandermonde matrix 82ff., 114, 1037, 1047
Variable length code 896, 1346ff.
Variable metric method 390, 418ff., 1215

compared to conjugate gradient method
418

Variable step-size integration 123, 135, 703,
707ff., 720, 726, 731, 737, 742ff., 1298ff.,
1303, 1308f., 1311ff.

Variance(s)
correlation 605
of distribution 603ff., 608, 611, 613, 1269
pooled 610
reduction of (in Monte Carlo) 299, 306ff.
statistical differences between two 609,

1271
two-pass algorithm for computing 607,

1269
see alsoCovariance

Variational methods, partial differential equa-
tions 824

VAX 275, 293
Vector(s)

length 1008, 1383
norms 1036
outer difference 1001, 1366, 1380
outer operations 1000ff., 1379f.
outer product 1000f., 1076, 1365f., 1379

Vector reduction 972, 977, 998
Vector subscripts 2/xiif., 984, 1002, 1032,

1034
communication bottleneck 969, 981, 1250

VEGAS algorithm for Monte Carlo 309ff.,
1161

Verhoeff’s algorithm for checksums 894f.,
1345

1486 Index to Volumes 1 and 2

Vi ète’s formulas for cubic roots 179
Vienna Fortran 2/xv
Virus, computer 889
Viscosity

artificial 831, 837
numerical 830f., 837

Visibility 956ff., 1209, 1293, 1296
VMS 1/xxii, 2/xix
Volterra equations 780f., 1326

adaptive stepsize control 788
analogy with ODEs 786
block-by-block method 788
first kind 781, 786
nonlinear 781, 787
second kind 781, 786ff., 1326f.
unstable quadrature 787f.

von Neuman, John 963, 965
von Neumann-Richtmyer artificial viscosity

837
von Neumann stability analysis for PDEs 827f.,

830, 833f., 840
Vowellish (coding example) 896f., 902

W -cycle 865, 1336
Warranty, disclaimer of 1/xx, 2/xvii
Wave equation 246, 818, 825f.
Wavelet transform 584ff., 1264ff.

appearance of wavelets 590ff.
approximation condition of orderp 585
coefficient values 586, 589, 1265
contrasted with Fourier transform 584,

594
Daubechies wavelet filter coefficients 584ff.,

588, 590f., 594, 598, 1264ff.
detail information 585
discrete wavelet transform (DWT) 586f.,

1264
DWT (discrete wavelet transform) 586f.,

1264ff.
eliminating wrap-around 587
fast solution of linear equations 597ff.
filters 592f.
and Fourier domain 592f.
image processing 596f.
for integral equations 782
inverse 587
Lemarie’s wavelet 593
of linear operator 597ff.
mother-function coefficient 587
mother functions 584
multidimensional 595, 1267f.
nonsmoothness of wavelets 591
pyramidal algorithm 586, 1264
quadrature mirror filter 585
smooth information 585
truncation 594f.
wavelet filter coefficient 584, 587
wavelets 584, 590ff.

WaveletsseeWavelet transform
Weber function 204
Weighted Kolmogorov-Smirnov test 621
Weighted least-squares fittingseeLeast squares

fitting

Weighting, full vs. half in multigrid 867
Weights for Gaussian quadrature 140ff., 788f.,

1059ff., 1328f.
nonclassical weight function 151ff., 788f.,

1064f., 1328f.
Welch window 547, 1254ff.
WG5 (ISO/IEC JTC1/SC22/WG5 Committee)

2/xiff.
where construct 943, 1291

contrasted with merge 1023
for iteration of a vector 1060
nested 2/xv, 943, 960, 1100
not MIMD 985

While iteration 13
Wiener filtering 535, 539ff., 558, 644

compared to regularization 801
Wiener-Khinchin theorem 492, 558, 566f.
Wilcoxon test 694
Window function

Bartlett 547, 1254ff.
flat-topped 549
Hamming 547
Hann 547
Parzen 547
square 544, 546, 1254ff.
Welch 547, 1254ff.

Windowing for spectral estimation 1255f.
Windows 95 2/xix
Windows NT 2/xix
Winograd Fourier transform algorithms 503
Woodbury formula 68ff., 83
Wordlength 18
Workspace, reallocation in Fortran 90 1070f.
World Wide Web, Numerical Recipes site

1/xx, 2/xvii
Wraparound

in integer arithmetic 1146, 1148
order for storing spectrum 501
problem in convolution 533

Wronskian, of Bessel functions 234, 239

X .25 protocol 890
X3J3 Committee 2/viii, 2/xff., 2/xv, 947, 959,

964, 968, 990
XMODEM checksum 889
X-ray diffraction pattern, processing of 805

Y ale Sparse Matrix Package 64, 71

Z -transform 554, 559, 565
Z-transformation, Fisher’s 631f., 1276
Zaman, A. 1149
Zealots 814
Zebra relaxation 866
Zero contours 372
Zero-length array 944
Zeroth-order regularization 796ff.
Zip code, barcode for 894
Ziv-Lempel compression 896
zroots unity() utility function 974, 990, 999

	Structure
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part
	Part

	Part
	Part
	Part
	Part
	Part

	Part
	Part

	Part
	Part
	Part
	Part
	Part

