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Preface

The current book is an introduction to the theory of differential equa-
tions with “maxima.” Differential equations with “maxima” are a spe-
cial type of differential equations that contain the maximum of the un-
known function over a previous interval(s). Such equations adequately
model real world processes whose present state significantly depends on
the maximum value of the state on a past time interval. For example, in
the theory of automatic control in various technical systems, often the
law of regulation depends on the maximum values of some regulated
state parameters over certain time intervals and their behavior is mod-
eled by differential equations with “maxima.” Recently, the interest
in differential equations with “maxima” has increased exponentially.
The theoretical results and investigations of differential equations with
“maxima” opens the door to enormous possibilities for their applica-
tions to real world processes and phenomena.

This book presents the qualitative theory and develops some ap-
proximate methods for differential equations with “maxima.”

Chapter 2 gives an introduction to the mathematical apparatus of
integral inequalities, involving maxima of unknown functions. Different
types of linear and nonlinear integral inequalities with “maxima” are
solved. Both cases of single integral inequalities and double integral
inequalities are studied. Several direct applications of the solved in-
equalities are illustrated on various types of differential equations with
“maxima.”

In Chapter 3 are studied some general properties of the solutions
of differential equations with “maxima.” Several existence results for
initial value problems and boundary value problems are presented.

In Chapter 4 several stability results for differential equations with
“maxima” are given. The investigations are based on appropriate modi-
fications of the Razumikhin technique by applying Lyapunov functions.

ix



x Preface

Appropriate definitions about different types of stability are given and
sufficient conditions are obtained.

Chapter 5 deals with the theory of oscillation for differential equa-
tions with “maxima.” The asymptotic and oscillatory behavior of so-
lutions of n-th order differential equations with “maxima” is studied.
Several sufficient conditions for oscillation as well as almost oscilla-
tion are obtained. Several differential equations with “maxima” and
their corresponding delay differential equations are examined and the
oscillatory properties of their solutions are studied. The influence of
the presence of maxima function on the behavior of the solutions is
demonstrated.

In Chapter 6 two approximate methods for solving differential equa-
tions with “maxima” are applied to initial value problems as well as
boundary value problems for differential equations with “maxima.” The
considered methods combine the method of lower and upper solutions
with appropriate monotone methods. Algorithms for constructing se-
quences of successive approximation to the solutions are introduced.
Each term of the constructed sequences is a solution of an appropri-
ately chosen linear equation.

In Chapter 7 a systematic development of the average method for
differential equations with “maxima” is given. This method is applied
to first-order differential equations with “maxima” and neutral differ-
ential equations with “maxima.” Different schemes for averaging, such
as ordinary averaging, partial averaging, partially additive averaging,
and partially multiplicative averaging are suggested.

This book, being the first one in the field, gives a good overview of
the entire field of differential equations with “maxima” and serves as a
stimulating guide for the theoretical and applied researchers in math-
ematics. It is a helpful tool for further investigations and applications
of these equations for better and more adequate studying of real world
problems.

The current book is intended for a wide audience, including mathe-
maticians, applied researchers and practitioners, whose interest extends
beyond the boundaries of qualitative analysis of well-known differential
equations.

Sofia, Bulgaria Drumi D. Bainov
July, 2010 Snezhana G. Hristova



Chapter 1

Introduction

Differential equations are a basic yet powerful mathematical apparatus
for studying real world objects and phenomena. These equations, when
used as models and combined with information technology tools, allow
us to conduct theoretical investigations and to predict the behavior of
real systems. However, since real life processes are quite intricate, com-
plex mathematical equations are required to study them. One natural
setting is the case of evolutionary equations using past history. These
equations are now referred to as functional differential equations. Pi-
card (1908), at the international congress of mathematicians, stressed
the importance of functional differential equations in physical prob-
lems. Interest in this topic increased after 1940, but there was little
progress on qualitative theory until the mid-1950s. Perhaps the reason
was that even though the evolution of the system at present time was
determined by some of the past history, the primary object of study
was where the system was at the present time. In 1956 Krasovskii made
the important observation that the state of a system at any time de-
scribed by a functional differential equations should be the system at
that time together with the past history that is required to determine
the future evolution of the system. With his contribution, he made a
huge impact on the qualitative investigations of functional differential
equations. By the early 1970s, a framework for the qualitative theory of
functional differential equations had been outlined. In the last decades,
different qualitative properties of the solutions of functional differential
equations have been obtained (see, for example, monographs [El’sgol’ts
and Norkin 1973], [Hale 1977], [Hale and Lune 1993], [Kolmanovski and
Nosov 1986] and references cited therein).

1



2 Chapter 1. Introduction

One special type of functional differential equations is the case when
the evolutionary equations use the maximum of the studied function
on a past time interval. Since the maximum function has very specific
properties, it makes the equations strongly nonlinear. As a result these
equations gain an important place in the theory of differential equations
and are called differential equations with “maxima.” Differential equa-
tions with “maxima” first appeared as an object of investigation about
thirty years ago in connection with modeling of some applied problems.

For example, in the theory of automatic control of various tech-
nical systems, it often occurs that the law of regulation depends on
the maximum values of some regulated state parameters over certain
time intervals. E. P. Popov (see [Popov 1966]) in 1966 considered the
system for regulating the voltage of a generator of constant current.
The object of the experiment was a generator of constant current with
parallel simulation and the regulated quantity was the voltage at the
source electric current. The equation describing the work of the reg-
ulator involves the maximum of the unknown function and it has the
form (see [Popov 1966])

T0u
′(t) + u(t) + q max

s∈[t−h,t]
u(s) = f(t),

where T0 and q are constants characterizing the object, u(t) is the
regulated voltage and f(t) is the perturbed effect.

Note that some modifications of the above differential equation are
used to model the vision process in the compound eye ( [Hadeler 1979]),
the Hausrath equation (see [Hale 1977]). Also differential equations are
used in optimal control theory in [Kichmarenko 2006] and [Plotnikov
and Kichmarenko 2006].

On the other hand, it is relevant to mention here the opinion of
A. D. Myshkis, who in his survey ( [Myshkis 1977]) also distinguished
the equations with “maxima” as differential equations with deviating
argument of complex structure.

At the same time differential equations with “maxima” have very
different properties than the well-known in the literature differential
equations with delay. For example, let us consider the following two
scalar equations:

(A) differential equation with delay

x′ =
(

x
(
t− τ(t)

))2
,

where the function τ ∈ C(R+,R+), τ(t) 6≡ 0;
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(B) differential equation with “maxima”

x′ =
(

max
s∈[t−h,t]

x(s)
)2
,

where h is a positive constant.

Note that equation (A) seems to be very similar to (B), especially in
the case of τ(t) ≡ h. In both equations the right part is nonnegative and
the solution x(t) is nondecreasing. However, the equation (B) reduces
to the ordinary differential equation x′ = x2 and the initial condition
is required only at one single point. On the other hand, the equation
(A) could not be reduced to an ordinary differential equation for any
nontrivial function τ(t).

Generally, differential equations with “maxima” are characterized
by two main parts:

1. differential equations;

2. maximum of the unknown function over a past time interval.

The first part, differential equations, could be ordinary differential
equations of any order, linear or nonlinear, partial differential equa-
tions, etc.

The second part makes the set of differential equations with “max-
ima” too wide since the maximum of the unknown function x(t) could
be given

– on an interval with fixed length, i.e., maxs∈[t−r,t] x(s), r = const >
0;

– on a retarded interval with variable length, i.e., maxs∈[σ(t),τ(t)] x(s),
where σ(t) ≤ τ(t) ≤ t;

– on several different intervals with fixed lengths or variable lengths;
etc.

Remark 1.0.1. If σ(t) = τ(t) for some value(s) of t from the domain
of the functions, then we will assume that maxs∈[σ(t),τ(t)] x(s) = x(τ(t)).

We will give a brief description of the main types of differential
equations with “maxima.”



4 Chapter 1. Introduction

Let first order ordinary differential equations be used to describe
the differential equations with “maxima:”

x′ = f
(

t, x(t), max
s∈S(t)

x(s)
)

, t ∈ [a, b), (1.1)

where x ∈ R
n, S(t) = [σ(t), τ(t)], σ, τ : R → R, a =const., b ≤ ∞.

Note that in the multidimensional case x ∈ R
n, x = (x1, x2, . . . , xn),

the following notation

max
s∈S(t)

x(s) =
(

max
s∈S(t)

x1(s), max
s∈S(t)

x2(s), . . . , max
s∈S(t)

xn(s)
)

is used.
The right side of the equation (1.1) could be very complex and the

initial conditions for the differential equations with “maxima” depend
significantly on the type of the interval S(t).

We emphasize that if S(t) ⊂ [a, b) for all t ∈ [a, b), then the ini-
tial condition to the differential equation with “maxima” (1.1) will be
x(a) = x0. In the opposite case, however, one can expect different types
of additional initial conditions depending on applications. For example,
it can be required that x(t) = ϕ(t) outside the interval [a, b), where
ϕ ∈ R

n is a given function, or x(t) = x(a) for t ≤ a and x(t) = x(b)
for t ≥ b (if b < ∞). Furthermore, the right side of the differential
equation in (1.1) can also be more complex, e.g., there can occur the
dependence on maximum values of different components of the state
vector x on different time intervals. It is also worth noting that in some
real systems the law of regulation depends only on the past and present
state, and thus S(t) ⊂ (−∞, t].

In this book we will consider only the case of retarded intervals, i.e.,
S(t) ⊂ (−∞, t], i.e., σ(t) ≤ τ(t) ≤ t for all values of t from the domain
of the functions σ(t), τ(t).

Now we will give some particular cases of differential equations with
“maxima” (1.1).

Let h > 0 be a constant, σ(t) ≡ t−h, τ(t) ≡ t. Then S(t) = [t−h, t]
and the differential equation with “maxima” is written in the form

x′ = f
(

t, x(t), max
s∈[t−h, t]

x(s)
)

, t ≥ t0. (1.2)

The initial condition for the equation (1.2) is in the form

x(t) = ϕ(t), t ∈ [t0 − h, t0], (1.3)

where ϕ : [t0 − h, t0] → R.
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Let t0 ≥ 0 be a given point, functions σ(t), τ(t) ∈ C(R+,R+) be
such that σ(t) ≤ τ(t) ≤ t for t ≥ 0. Then the differential equation with
“maxima” (1.1) is written in the form

x′ = f
(

t, x(t), max
s∈[σ(t), τ(t)]

x(s)
)

, t ≥ t0. (1.4)

The initial condition for the equation (1.4) is in the form

x(t) = ϕ(t), t ∈ It0 , (1.5)

where ϕ : It0 → R, It0 is an initial interval, which depends significantly
on the functions σ(t) and τ(t).

We will consider some particular examples of functions σ(t) and τ(t)
to illustrate the complexity of the initial interval It0 in condition (1.5).

Let σ(t) = sin(t), τ(t) = | sin(t)|, t0 = π
2 .

On the interval [π2 , π] the equation (1.4) reduces to the following
functional differential equation

x′ = f(t, x(t), x(sin(t))).

On the interval [π, 2π] the equation (1.4) has the form

x′ = f
(

t, x(t), max
s∈[sin(t),− sin(t)]

x(s)
)

.

Since the interval [sin(t),− sin(t)] ⊆ [−1, 1] for t ∈ [π, 2π] and
sin(t) ∈ [0, 1] for t ∈ [π2 , π], in this case the initial interval for the
equation (1.4) is It0 ≡ [−1, 1] ∪ {π2 }, i.e., the initial condition (1.5) is
x(t) = ϕ(t) for t ∈ [−1, 1], x(π2 ) = x0.

Note that if the function x(t) is an increasing /decreasing function,
then its maximum is at the right/left end of the interval and the differ-
ential equation with “maxima” (1.1) reduces to the well-known in the
literature differential equation.

Note that if first order differential equations are used and the max-
imum of the first derivative of the unknown function is included in the
right-hand side of the equations, then the differential equations with
“maxima” could be written in the form:

x′ = f
(

t, x(t), max
s∈S(t)

x(s), max
s∈S(t)

x′(s)
)

, t ≥ t0, (1.6)

where x ∈ R
n, x = (x1, x2, . . . , xn) and the notation

max
s∈S(t)

x′(s) =
(

max
s∈S(t)

x′1(s), max
s∈S(t)

x′2(s), . . . , max
s∈S(t)

x′n(s)
)

is used.
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The initial condition for the equation (1.6) could be

x(t) = ϕ(t), x′(t) = ϕ′(t), t ∈ It0 , (1.7)

where It0 is the initial interval.

We will illustrate the influence of the maximum of the function on
the behavior of the solution.

Example 1. Consider the scalar differential equation with “max-
ima”

x′(t) = max
s∈[t−π

2
, t]
x(s) for t ≥ 0, (1.8)

with the initial condition

x(t) = −a sin(t) for t ∈
[

−π
2
, 0
]

, (1.9)

where a > 0 is a constant.

The solution of the initial value problem (1.8), (1.9) is given by

x(t) =







−a sin(t) for t ∈
[
− π

2 , 0
]
,

a sin(t) for t ∈
[
0, π4

]
,

a
√

2
2 et−

π
4 for t ≥ π

4 .

(1.10)

The solution of the initial value problem (1.8), (1.9) is unbounded.
Now let us consider the differential equation with “maxima” (1.8)

with initial condition

x(t) = a sin(t) for t ∈
[

− π

2
, 0
]

, (1.11)

where a > 0 is a constant.

The solution of the initial value problems (1.8) and (1.11) is given
by

x(t) =

{

−a sin(t) for t ∈
[
− π

2 , 0
]
,

0 for t ≥ 0.
(1.12)

Now let us consider the differential equation with delay

x′(t) = x
(

t− π

2

)

for t ≥ 0, (1.13)

with initial condition (1.9). The solution of the initial value problems
(1.9) and (1.13) is x(t) = a sin(t) for t ≥ −π

2 and it is bounded.
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The above example illustrates the differences between the behav-
ior of the solutions of the differential equations with “maxima” and
differential equations with delay. It proves the necessity of separately
deeply studying the properties of solutions of differential equations with
“maxima.”

We emphasize that several types of differential equations, known in
the literature, could be obtained as partial cases of differential equations
with “maxima:”

1. if σ(t) ≡ τ(t) ≡ t, then the differential equations with “maxima”
(1.6) reduce to ordinary differential equations x′ = f(t, x(t), x(t));

2. if σ(t) ≡ τ(t) ≡ t − h, h = const > 0, then the differential
equations with “maxima” (1.6) reduce to differential equations
with a constant delay x′ = f(t, x(t), x(t− h));

3. if σ(t) ≡ τ(t) ≤ t for all t ≥ t0, then the differential equations
with “maxima” (1.6) reduce to differential equations with variable
delay x′ = f(t, x(t), x(τ(t))).

In the last few decades the mathematical importance of various
types of differential equations with “maxima” has grown exponentially.
It is mostly due to their applications in investigations of multiple prob-
lems in optimal control theory. The study of equations which includes
a maximum of the unknown function is spread to various types of dif-
ferential and difference equations. We will mention only some of them:

- differential equations with “maxima:” Some properties of the so-
lutions are studied by A. R. Magomedov et al. ([Magomedov
1993], [Magomedov and Ryabov 1975], [Magomedov and Na-
biev 1986], [Rjabov and Magomedov 1978]). Differential equa-
tions with “maxima” are also studied by D. D. Bainov and his
scholars, and several properties are investigated such as:

– oscillatory properties (see [Bainov et al. 1997], [Bainov et al.
1995e], [Bainov and Zahariev 1984], [Dontchev et al. 2010a],
[Kolev et al. 2010a], [Kolev et al. 2010b], [Kolev and Markova
2010], [Markova and Nenov 2010], [Markova and Simeonov
2010]);

– stability (see [Bainov and Hristova 2010], [Henderson and
Hristova 2010], [Hristova 2009b], [Hristova 2010d], [Hristova
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and Gluhcheva 2010], [Voulov 1995], [Voulov and Bainov
1991]);

– periodicity (see [Arolska and Bainov 1980], [Teryokhin and
Kiryushkin 2010]);

– approximate solutions (see [Bainov and Hristova 1995],
[Bainov and Kazakova 1992], [Bainov and Sarafova 1981],
[Golev et al. 2010], [Sarafova and Bainov 1981], [Simeonov
and Bainov 1985]); averaging (see [Bainov and Milusheva
1983], [Milusheva and Bainov 1986a], [Milusheva and Bainov
1986b], [Plotnokov and Kichmarenko 2009], [Plotnikov and
Kichmarenko 2006], [Plotnikov and Kichmarenko 2002]).

Qualitative properties of the solutions of differential equations
with “maxima” are also studied by many other authors (see
[Bantsur and Trofimchuk 1998], [Gonzalez and Pinto 2007], [Gon-
zalez and Pinto 2002], [Hristova 1982], [Hristova and Roberts
2000a], [Jankowski 2002], [Jankowski 1997], [Kichmarenko 2009],
[Muntyan and Shpakovich 1987], [Nabiev 1985], [Nabiev 1984b],
[Otrocol and Ioan 2008a], [Otrocol and Ioan 2008b], [Petrov 1998],
[Plotnikov and Kichmarenko 2002], [Ronto 1999], [Samoilenko et
al. 1998], [Sarafova 1984], [Shabadikov and Yuldashev 1989], [Sh-
pakovich and Muntyan 1987], [Shpakovich and Muntyan 1986],
[Sobeih and Aly 1991], [Stepanov 1997], [Voulov 1995], [Voulov
1991], [Xu and Liz 1996], [Yuldashev 1995], [Zhang and Petrov
2000], [Zhang and Zhang 2000], [Zhang and Zhang 1999]);

- integro-differential equations with “maxima:” Some results are
published in [Bainov et al. 1993], [Muntyan 1987];

- partial differential equations with “maxima:” Qualitative investi-
gations of solutions are obtained in [Bainov and Minchev 1999],
[Bainov and Minchev 1998], [Bainov and Mishev 1991], [Donchev
et al. 2010b], [Mishev 1989], [Mishev 1990], [Mishev 1986], [Mi-
shev and Musa 2007];

- impulsive differential equations with supremum: At the beginning
of the 1990s, D.D. Bainov and his collaborators S. Hristova and
S. Milusheva combined the ideas of impulsive differential equa-
tions with differential equations with “maxima” and initiated the
investigations of these types of equations. These equations are
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adequate models of real processes whose present state has instan-
taneous changes at certain moments and it depends significantly
on the maximal value of the state on a past time interval. Several
results for impulsive differential equations with supremum are
obtained in [Bainov et al. 1996], [Bainov et al. 1994a], [Bainov
et al. 1994b], [Bainov et al. 1993], [He et al. 2003], [Hristova
2010b], [Hristova 2010c], [Hristova 2010d], [Hristova 2009c], [Hris-
tova 2009d], [Hristova 2000], [Hristova and Bainov 1993], [Hris-
tova and Bainov 1991], [Hristova and Markova 2010], [Hristova
and Roberts 2001], [Milusheva and Bainov 1991], [Oyelami and
Ale 2010], [Qi 2004], [Qi and Chen 2008], [Shi and Wang 2010];

- integral equations with supremum: Some properties of the solu-
tions are studied in [Caballero et al. 2005], [Darwish 2008];

- difference equations with “maxima:” Some investigations of prop-
erties of the solutions are done in [Atici et al. 2006], [Atici et al.
2002], [Berenhaut et al. 2006], [Cinar et al. 2005], [Fan 2004], [Fan
et al. 2005], [Gelisken and Cinar 2009], [Gelisken et al. 2010], [Ge-
lisken et al. 2008] , [Iricanin and Elsayed 2010], [Li et al. 2008], [Li
and Zhou 2007], [Liu et al. 2006], [Liz et al. 2003], [Luo 2000], [Luo
and Bainov 2001], [Migda and Zhang 2006], [Mishev et al. 2002],
[Stevic 2010], [Stevic 2009], [Sun 2008], [Voulov 2008], [Voulov
2003], [Yalcinkaya et al. 2007], [Yang et al. 2006], [Wu 2003],
[Zhang and Liu 2007];

- integral equations with “maxima” and fractional derivatives: For
some results see [El-Borai at al. 2006];

- stochatic differential equations with “maxima.” Some theoretical
results and applications to the financial market are done in [Ap-
pleby and Wu 2008].

The purpose of this monograph is to present a general method of
analysis for nonlinear differential equations with “maxima.” This mono-
graph is the first in which basic qualitative results for differential equa-
tions with “maxima” are given as well as some approximate methods
for their solution are presented.

In Chapter 2, we develop the method of integral inequalities as
a mathematical tool in the investigations of qualitative properties of
the solutions of differential equations with “maxima.” In connections
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with the main goal of the book, different types of integral inequalities
involving the maximum of the unknown functions are solved. These re-
sults generalize the classical integral inequalities of Gronwall–Bellman
[Gronwall 1919], [Bellman 1943] and Bihari types [Bihari 1956], which
are well studied for ordinary differential equations and delay differential
equations (see, for example, [Bainov and Simeonov 1989], [Lakshmikan-
tham and Leela 1969], [Walter 1970] and references cited therein). At
the same time, the investigation of differential equations with “max-
ima” requires a new type of inequalities, since the known ones are not
applicable. Several results for integral inequalities containing a maxi-
mum value of the unknown function are solved in (see [Hristova and
Stefanova 2010a], [Hristova and Stefanova 2010b]).

Section 2.1 deals with linear integral inequalities that involve the
maximum of the unknown function. In Section 2.2 several nonlinear in-
tegral inequalities for scalar functions are studied. Linear and nonlinear
integral inequalities involving a maximum of the unknown scalar func-
tion of two variables are solved in Section 2.3. Note that the integral
inequalities are successfully employed for studying existence, unique-
ness, continuous dependence, comparison, perturbation, boundedness,
and stability of the solutions of differential and integral equations. Sec-
tion 2.4 demonstrates the direct applications of the integral inequalities
solved in previous sections for investigation of some properties of the
solutions of differential equations with “maxima.” Nonlinear differen-
tial equations with “maxima” and partial differential equations with
“maxima” are studied.

Chapter 3 introduces some fundamental concepts and theorems in
the qualitative analysis of the solutions of several types of differential
equations with “maxima.” Some qualitative properties of the solutions
of different types of differential equations with “maxima,” such as exis-
tence and continuous dependence, are studied in [Angelov and Bainov
1983], [Bantsur and Trofimchuk 1998], [Georgiev and Angelov 2002],
[Gonzalez and Pinto 2007], [Gonzalez and Pinto 2002], [Muntyan and
Shpakovich 1987], [Sobeih and Aly 1991], [Voulov and Bainov 1995],
[Zhang and Zhang 1999].

In Section 3.1 some existence results for initial value problems for
differential equations with “maxima” are given. Both scalar case and
multidimensional case are studied.

In Section 3.2 the existence of solutions of a boundary value prob-
lem for first order nonlinear differential equations with “maxima” is
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proven. The method of a priori estimate, based on the Leray-Schader
topological degree theory, is developed and applied to the main proofs.

In Section 3.3 the existence, uniqueness, and data dependence re-
sults for the initial value problem for a nonlinear scalar differential
equation with “maxima” are studied. The main proofs are based on
the weakly Picard operator theory.

In Chapter 4, we establish notations, definitions, and develop sta-
bility theory for nonlinear differential equations with “maxima.” Our
focus is on Lyapunov functions used as means to investigate stability
properties of solutions of differential equations with “maxima.” A. M.
Lyapunov introduced and began systematically to apply this special
type of functions in his famous studies [Lyapunov 1956]. Later, B.
S. Razumikhin proposed in 1956 (see [Razumikhin 1956]) a method
to investigate the stability of solutions of systems with delays. This
method is based on the application of Lyapunov functions in combina-
tion with the general concept of “impossibility of the first breakdown.”
The method allowed to “rehabilitate” an application of Lyapunov func-
tions to functional differential equations to a considerable extent. Such
application was found in some cases to be simpler and more visual than
an application of general functional. As a result the method was later
developed both by Razumikhin himself (in the most explained form
in monograph [Razumikhin 1988]) and by other authors (see mono-
graphs [El’sgol’ts and Norkin 1973], [Hale 1977], [Hale and Lune 1993],
papers [Myshkis 1977], [Myshkis 1995]). In Chapter 4, the extension
of the Razumikhin method to differential equations with “maxima” is
studied. In order to generalize considerations, two different measures
for the initial data and for the solutions are used and fundamental
results for different types of stability are obtained.

Section 4.1 deals with the stability and uniform stability of differ-
ential equations with “maxima.” Several sufficient conditions, based on
Lyapunov’s functions and comparison results, are obtained. Both cases
of regular norm and two different measures are studied.

In Section 4.2 the definition of integral stability in terms of two
measures is modified to differential equations with “maxima” and sev-
eral sufficient conditions are given. Integral stability for ordinary dif-
ferential equations was introduced by I. Vrkoc (see [Vrkoc 1959]) and
later studied for various types of differential equations by many authors
(see, for example, [Hristova 2010a], [Hristova 2009a], [Soliman and Ab-
dalla 2008]). The concept of integral stability occurs in connection with
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the stability under persistent perturbations when the perturbations are
small enough everywhere except on a small interval. The presence of
maximum in the equation requires initially a well-defined and proven
comparison result. In this section scalar comparison differential equa-
tions and perturbed Lyapunov functions are used.

In Section 4.3 the case of cone valued Lyapunov functions is studied.
A new type of stability is defined. The introduced stability is based on
the application of two different measures and a dot product on a cone.
The fixed vector included in the definitions serves as a proxy for the
weight of the components of the solution. Several sufficient conditions
are obtained. Some examples illustrate the advantages of the introduced
type of stability.

In Section 4.4 the practical stability and the eventual practical sta-
bility for differential equations with “maxima” is defined. The defini-
tions are based on the application of two different measures as well as
on the application of a scalar product on a cone. This allows us to use
cone valued Lyapunov functions for investigation of stability proper-
ties of the solutions. Some sufficient conditions for d-practical stability
and for d-eventual practical stability in terms of two measures of non-
linear differential equations with “maxima” are obtained. An example
illustrates the application of some of the proven results.

The main purpose of Chapter 5 is to give a brief overview of the
oscillation theory of differential equations with “maxima.” In recent
years the literature on oscillation theory of differential equations has
started growing very fast. This applies even more so for neutral de-
lay differential equations which is a relatively new field with intriguing
applications in real world problems. In fact, the neutral delay differen-
tial equations appear in modeling of the networks containing lossless
transmission lines (as in high-speed computers where the lossless trans-
mission lines are used to interconnect switching circuits), in the study
of vibrating masses attached to an elastic bar, as the Euler equation
in some variation problems, theory of automatic control and in neuro-
mechanical systems in which inertia plays an important role (see [Hale
1977], [Popov 1966] and reference cited therein). The systematic in-
vestigation of the oscillatory properties and asymptotic behavior of
the solutions of functional-differential equations has been published in
some literature already (see [Bainov and Mishev 1991], [Gopalsamy
1992], [Ladde et al. 1987]). Also several works about oscillatory prop-
erties of the solutions of neutral differential equations with “maxima”
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have been conducted by Bainov et al. (see [Bainov et al. 1997], [Bainov
et al. 1995e]).

In Section 5.1 both linear delay differential equations with “max-
ima” and corresponding linear delay-differential equation are studied.
The behavior of their solutions is investigated. The influence of the
presence of maximum of the solution in the right side of the equation
on the oscillatory behavior of the solutions is demonstrated.

The main goal of Section 5.2 is to comprehensively discuss the os-
cillation and nonoscillation of differential equations with “maxima.”

Sections 5.3 and 5.4 are concerned with n-th order differential equa-
tions with “maxima.” The asymptotic and oscillatory behavior of their
solutions is studied. Several sufficient conditions for oscillation as well
as almost oscillation are obtained.

In Section 5.5 sufficient conditions for oscillation of all bounded
solutions of differential inequalities with “maxima” are obtained.

Chapter 6 deals with some approximate methods for solving various
types of problems for differential equations with “maxima.” Note that
the finite difference method for differential equations with “maxima”
is considered in [Kazakova 1990a], [Kazakova 1990b]. In the book two
different methods, based on an application of the method of lower and
upper solutions, are analyzed.

In Sections 6.1 through 6.3 a monotone iterative technique is ap-
plied to initial value problems and periodic boundary value problems
for first and second order differential equations with “maxima.” The
method of upper and lower solutions together with a monotone iterative
technique offers monotone sequences which converge to the solution of
the considered problem. This technique is precisely developed to ordi-
nary differential equations by G. S. Ladde, V. Lakshmikantham and A.
Vatsala (see [Ladde et al. 1985]).

In Sections 6.4 and 6.5 the method of quasilinearization is applied to
first order scalar nonlinear differential equations with “maxima.” The
origin of this method lies in the theory of dynamic programming and
was initially applied by R. Belman and R. Kalaba (see [Bellman and
Kalaba 1965]). A systematic development of this method to ordinary
differential equations is done by V. Lakshmikantham and A. S. Vatsala
(see [Lakshmikantham and Vatsala 1998]). The main advantage of this
method is the ability to find easily the successive approximations of
the unknown solution as well as the quadratic convergence. In Section
6.4 an initial value problem for differential equations with “maxima” is
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considered. An algorithm for an appropriate construction of the initial
conditions and the linear differential equations with “maxima,” whose
unique solutions are successive approximations, is given. The quadratic
convergence of the successive approximations is proven. An example
illustrates the application of the suggested algorithm. In Section 6.5 a
boundary value problem is studied and a procedure for obtaining two
monotone quadratically convergent sequences is suggested. Each term
of both sequences is equal to the unique solution of an appropriately
constructed boundary value problem for a linear differential equation
with “maxima.”

In Chapter 7, the averaging method is generalized to differential
equations with “maxima.” The study of qualitative and approximate
properties of the solutions of differential equations with “maxima” is
subject to specific difficulties. At the same time, the preliminary appli-
cations of the methods for theoretical approximation of the solutions
may considerably simplify the problem. One very powerful method for
theoretical approximation is the averaging method. In this chapter sev-
eral different schemes for averaging are suggested and applied to var-
ious types of problems for differential equations with “maxima.” The
main characteristic of the studied differential equations is the presence
of the maximum of the unknown functions as well as the maximum
of its derivative in the right side of the equations. At the same time
the averaged equations do not contain the maximum of the unknown
function.

Sections 7.1 is devoted to the justification of the averaging method
for an initial value problem for a nonlinear system of differential equa-
tions with “maxima.” Section 7.2 deals with the averaging method of
a multipoint boundary value problem associated to differential equa-
tion with “maxima.” In both suggested schemes the averaged equations
are ordinary differential equations, whose solutions could be obtained
comparatively easier than the given equations with “maxima.”

In Sections 7.3 and 7.4 several schemes for various types of partial
averaging are suggested. Regular partial averaging, partially additive
averaging, and partially multiplicative averaging method are applied to
differential equations with “maxima.”
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Throughout the book we use the notation

R = (−∞,∞), R+ = [0,∞), R− = (−∞, 0],

R
n
+ = R+ × · · · × R+,

Dom(f) is the domain of the functionf,

1, n is the set of all naturals from 1 to n inclusive.
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Chapter 2

Integral Inequalities with

Maxima

Integral inequalities which provide explicit bounds for unknown func-
tions play a fundamental role in the development of the theory of dif-
ferential and integral equations. In the past few years, a number of
integral inequalities have been established by many scholars who are
motivated by certain applications such as existence, uniqueness, contin-
uous dependence, comparison, perturbation, boundedness, and stability
of solutions of differential and integral equations. Among these integral
inequalities, we cite the famous Gronwall inequality and its different
generalizations (see for example [Bainov and Simeonov 1989] and the
references cited therein).

In connection with the development of the theory of differential
equations with “maxima,” a new type of integral inequalities is re-
quired. The main purpose of this chapter is to establish some new in-
tegral inequalities in the case when a maximum of the unknown scalar
function is involved into the integral.

In this chapter we will assume that t0 ≥ 0 and T ≥ t0 are fixed
points. Note that T could be equal to ∞.

2.1 Linear Integral Inequalities with Maxima

for Scalar Functions of One Variable

We will solve several linear integral inequalities of Gronwall’s type
whose main characteristic is the presence of the maximum of the un-

17
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known function in the integral.

Theorem 2.1.1. Let the following conditions be fulfilled:

1. The function α ∈ C1([t0, T ),R+) is nondecreasing and α(t) ≤ t.

2. The functions p, q ∈ C([t0, T ),R+) and a, b ∈ C([α(t0), T ),R+).

3. The function φ ∈ C([α(t0) − h, t0],R+).

4. The function u ∈ C([α(t0) − h, T ),R+) satisfies the inequalities

u(t) ≤ k +

∫ t

t0

[p(s)u(s) + q(s) max
ξ∈[s−h,s]

u(ξ)]ds

+

∫ α(t)

α(t0)
[a(s)u(s) + b(s) max

ξ∈[s−h,s]
u(ξ)]ds for t ∈ [t0, T ),

(2.1)

u(t) ≤ φ(t) for t ∈ [α(t0) − h, t0], (2.2)

where h = const ≥ 0, k = const ≥ 0.

Then for t ∈ [t0, T ) the inequality

u(t) ≤M exp

(
∫ t

t0

[

p(s) + q(s)

]

ds+

∫ α(t)

α(t0)

[

a(s) + b(s)

]

ds

)

(2.3)

holds, where M = max
(
k,maxs∈[α(t0)−h,t0] φ(s)

)
.

Proof. Let us define a function v : [α(t0) − h, T ) → R+ by

v(t) =







M +

∫ t

t0

[p(s)u(s) + q(s) max
ξ∈[s−h,s]

u(ξ)]ds

+

∫ α(t)

α(t0)
[a(s)u(s) + b(s) max

ξ∈[s−h,s]
u(ξ)]ds, t ∈ [t0, T ),

M, t ∈ [α(t0) − h, t0].

Note the function v(t) is nondecreasing, u(t) ≤ v(t) for t ∈
[α(t0)− h, T ) and maxs∈[t−h,t] v(s) = v(t) for t ∈ [α(t0), T ). Then from
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inequality (2.1) we get for t ∈ [t0, T )

v(t) ≤M +

∫ t

t0

[p(s)v(s) + q(s) max
ξ∈[s−h,s]

v(ξ)]ds

+

∫ α(t)

α(t0)
[a(s)v(s) + b(s) max

ξ∈[s−h,s]
v(ξ)]ds (2.4)

=M +

∫ t

t0

[p(s) + q(s)]v(s)ds +

∫ α(t)

α(t0)
[a(s) + b(s)]v(s)ds.

Change the variable s = α(η) in the second integral of inequality
(2.4), use condition 1 of Theorem 2.1.1 for the function α(t) and we
obtain

v(t) ≤M +

∫ t

t0

[

p(s) + q(s)

]

v(s)ds

+

∫ t

t0

[

a(α(η)) + b(α(η))

]

v(α(η))α′(η)dη (2.5)

≤M +

∫ t

t0

[

p(s) + q(s) + a(α(s))α′(s) + b(α(s))α′(s)

]

v(s)ds.

We apply Gronwall inequality to (2.5) and obtain

v(t) ≤M exp

(∫ t

t0

[

p(s) + q(s) + a(α(s))α′(s) + b(α(s))α′(s)

]

ds

)

(2.6)

=M exp

(
∫ t

t0

[

p(s) + q(s)

]

ds+

∫ α(t)

α(t0)

[

a(s) + b(s)

]

ds

)

.

Inequality (2.6) with u(t) ≤ v(t) imply the validity of (2.3).

As a partial case, we obtain the following result for integral inequal-
ity with “maxima:”

Corollary 2.1.1. Let the following conditions be fulfilled:

1. The condition 1 of Theorem 2.1.1 is satisfied.

2. The functions p, q ∈ C([t0, T ),R+).

3. The function φ ∈ C([α(t0) − h, t0],R+).
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4. The function u ∈ C([α(t0) − h, T ),R+) satisfies the inequalities

u(t) ≤ k +

∫ t

t0

[p(s)u(s) + q(s) max
ξ∈[s−h,s]

u(ξ)]ds for t ∈ [t0, T ),

u(t) ≤ φ(t) for t ∈ [α(t0) − h, t0],

where h = const ≥ 0, k = const ≥ 0 such that k ≥
maxs∈[α(t0)−h,t0] φ(s).

Then for t ∈ [t0, T ) the inequality

u(t) ≤M exp

(∫ t

t0

[

p(s) + q(s)

]

ds

)

holds, where M = max
(
k,maxs∈[α(t0)−h,t0] φ(s)

)
.

Remark 2.1.1. As a partial case of Theorem 2.1.1 we obtain a re-
sult for integral inequalities without maximum (see [Pachpatte 2002],
Theorem 1).

In the case when an increasing function is involved in the right-hand
side of inequality (2.1) instead of a constant, we obtain the following
upper bound for u(t):

Theorem 2.1.2. Let the following conditions be fulfilled:

1. The function α ∈ C1([t0, T ),R+) is nondecreasing and α(t) ≤ t.

2. The functions p, q ∈ C([t0, T ),R+) and a, b ∈ C([α(t0), T ),R+).

3. The function φ ∈ C([α(t0) − h, t0],R+).

4. The function k ∈ C([t0, T ), (0,∞)) is nondecreasing.

5. The function u ∈ C([α(t0) − h, T ),R+) satisfies the inequalities

u(t) ≤ k(t) +

∫ t

t0

[p(s)u(s) + q(s) max
ξ∈[s−h,s]

u(ξ)]ds

+

∫ α(t)

α(t0)
[a(s)u(s) + b(s) max

ξ∈[s−h,s]
u(ξ)]ds for t ∈ [t0, T ),

(2.7)

u(t) ≤ φ(t) for t ∈ [α(t0) − h, t0], (2.8)

where h = const ≥ 0.
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Then for t ∈ [t0, T ) the inequality

u(t) ≤Mk(t) exp

(
∫ t

t0

[

p(s) + q(s)

]

ds+

∫ α(t)

α(t0)

[

a(s) + b(s)

]

ds

)

(2.9)

holds, where M = max
(
1,

maxξ∈[α(t0)−h,t0] φ(ξ)

k(t0)

)
.

Proof. From inequality (2.7) we obtain for t ∈ [t0, T ) the inequality

u(t)

k(t)
≤1 +

∫ t

t0

[p(s)
u(s)

k(t)
+ q(s)

maxξ∈[s−h,s] u(ξ)

k(t)
]ds

+

∫ α(t)

α(t0)
[a(s)

u(s)

k(t)
+ b(s)

maxξ∈[s−h,s] u(ξ)

k(t)
]ds. (2.10)

Let us define functions w : [α(t0) − h, T ) → R+ and k̃ : [α(t0) −
h, T ) → R+ by

k̃(t) =

{
k(t), for t ∈ [t0, T ),
k(t0), for t ∈ [α(t0) − h, t0],

w(t) =
u(t)

k̃(t)
for t ∈ [α(t0) − h, T ).

The function k̃ is continuous nondecreasing on [α(t0) − h, T ).
From monotonicity of k(t) we obtain for t ∈ [t0, T ) and s ∈ [α(t0), t]

the inequality

maxξ∈[s−h,s] u(ξ)

k(t)
≤maxξ∈[s−h,s] u(ξ)

k̃(s)
= max

ξ∈[s−h,s]

u(ξ)

k̃(s)
≤ max

ξ∈[s−h,s]

u(ξ)

k̃(ξ)
.

(2.11)

From inequalities (2.10) and (2.11) and the definition of the function
w(t) it follows that

w(t) ≤1 +

∫ t

t0

[

p(s)ϕ(s) + q(s) max
ξ∈[s−h,s]

w(ξ)

]

ds

+

∫ α(t)

α(t0)

[

a(s)ϕ(s) + b(s)w(ξ)

]

ds, for t ∈ [t0, T ), (2.12)

w(t) =
u(t)

k(t0)
≤ φ(t)

k(t0)
, for t ∈ [α(t0) − h, t0]. (2.13)
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From the definition of the function k̃(t), and inequalities (2.12) and
(2.13) according to Theorem 2.1.1 it follows that for t ∈ [t0, T ) the
inequality

w(t) ≤M exp

(
∫ t

t0

[

p(s) + q(s)

]

ds+

∫ α(t)

α(t0)

[

a(s) + b(s)

]

ds

)

(2.14)

holds.
From inequality (2.14), the definition of functions k̃(t) and w(t) we

obtain inequality (2.9).

Corollary 2.1.2. Let the conditions of Theorem 2.1.2 be satisfied, and
equality k(t0) = maxs∈[α(t0)−h,t0]φ(s) holds.

Then for t ∈ [t0, T ) the inequality

u(t) ≤ k(t) exp

(
∫ t

t0

[

p(s) + q(s)

]

ds +

∫ α(t)

α(t0)

[

a(s) + b(s)

]

ds

)

(2.15)

holds.

In the case when the function involved in the right-hand side of
inequality (2.1) is not monotonic, we obtain the following result:

Theorem 2.1.3. Let the following conditions be fulfilled:

1. The function α ∈ C1([t0, T ),R+) is nondecreasing and α(t) ≤ t.

2. The functions p, q ∈ C([t0, T ),R+) and a, b ∈ C([α(t0), T ),R+).

3. The function φ ∈ C([α(t0)−h, T ),R+), maxs∈[α(t0)−h,t0]φ(s) > 0.

4. The function u ∈ C([α(t0) − h, T ),R+) satisfies the inequalities

u(t) ≤φ(t) +

∫ t

t0

[p(s)u(s) + q(s) max
ξ∈[s−h,s]

u(ξ)]ds

+

∫ α(t)

α(t0)
[a(s)u(s) + b(s) max

ξ∈[s−h,s]
u(ξ)]ds for t ∈ [t0, T ),

(2.16)

u(t) ≤φ(t) for t ∈ [α(t0) − h, t0], (2.17)

where h = const ≥ 0.
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Then for t ∈ [t0, T ) the inequality

u(t) ≤φ(t)

+ e(t) exp

(
∫ t

t0

[

p(s) + q(s)

]

ds+

∫ α(t)

α(t0)

[

a(s) + b(s)

]

ds

)

(2.18)

holds, where e : [t0, T ) → R+ is defined by

e(t) = max
s∈[α(t0)−h,t0]

φ(s) +

∫ t

t0

[p(s)φ(s) + q(s) max
ξ∈[s−h,s]

φ(ξ)]ds

+

∫ max(α(t),t0)

t0

(

a(s)φ(s) + b(s) max
ξ∈[s−h,s]

φ(ξ)

)

ds. (2.19)

Proof. Let us define a function z : [α(t0) − h, T ) → R+ by

z(t) =







∫ t

t0

[

p(s)u(s) + q(s) max
ξ∈[s−h,s]

u(ξ)

]

ds

+

∫ α(t)

α(t0)

[

a(s)u(s) + b(s) max
ξ∈[s−h,s]

u(ξ)

]

ds, t ∈ [t0, T )

0, t ∈ [α(t0) − h, t0).

(2.20)

From inequality (2.16) and the definition of function z(t) we have
for t ∈ [α(t0) − h, T )

u(t) ≤ φ(t) + z(t). (2.21)

Let t ∈ [t0, T ) be such that α(t) ≥ t0. Then from inequality (2.21)
it follows the validity of the inequality

∫ α(t)

α(t0)

[

a(s)u(s) + b(s) max
ξ∈[s−h,s]

u(ξ)

]

ds

≤
∫ t0

α(t0)

[

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

]

ds

+

∫ α(t)

t0

[

a(s)

(

φ(s) + z(s)

)

+ b(s)

(

max
ξ∈[s−h,s]

φ(ξ) + max
ξ∈[s−h,s]

z(ξ)

)]

ds

=

∫ max(α(t),t0)

t0

(

a(s)φ(s) + b(s) max
ξ∈[s−h,s]

φ(ξ)

)

ds

+

∫ α(t)

α(t0)

(

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

)

ds. (2.22)
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Let t ∈ [t0, T ) be such that α(t) < t0. Then from the definition of
function z(t) we get

∫ α(t)

α(t0)

[

a(s)u(s) + b(s) max
ξ∈[s−h,s]

u(ξ)

]

ds

=

∫ α(t)

α(t0)

(

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

)

ds

≤
∫ max(α(t),t0)

t0

(

a(s)φ(s) + b(s) max
ξ∈[s−h,s]

φ(ξ)

)

ds

+

∫ α(t)

α(t0)

(

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

)

ds. (2.23)

From the definition of the function z(t) and inequalities (2.22) and
(2.23), it follows that

z(t) ≤e(t) +

∫ t

t0

[

p(s)z(s) + q(s) max
ξ∈[s−h,s]

z(ξ)

]

ds

+

∫ α(t)

α(t0)

[

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

]

ds, t ∈ [t0, T ), (2.24)

z(t) ≤φ(t), t ∈ [α(t0) − h, t0], (2.25)

where function e(t) is defined by equality (2.19). Note that function
e(t) : [t0, T ) → (0,∞) is nondecreasing for t ∈ [t0, T ) and e(t0) =
maxs∈[t0−h,t0] φ(s).

From inequalities (2.24) and (2.25) according to Theorem 2.1.2 we
get

z(t) ≤ e(t) exp

(
∫ t

t0

[

p(s) + q(s)

]

ds+

∫ α(t)

α(t0)

[

a(s) + b(s)

]

ds

)

.

(2.26)
From inequalities (2.21) and (2.26) we obtain inequality (2.18).

Remark 2.1.2. Note that in the case when the function φ(t) is non-
decreasing the inequality (2.15) gives us better than (2.18) upper bound
for function u(t), since inequality ex ≤ 1 + xex, x ≥ 0 holds.

Now we will consider an inequality in which the unknown function
in the left-hand side is in a power.
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Theorem 2.1.4. Let the following conditions be fulfilled:

1. The conditions 1, 2, 3 of Theorem 2.1.2 are satisfied.

2. The function k ∈ C([t0, T ), (0,∞)) is nondecreasing and the in-
equality M = maxs∈[α(t0)−h,t0] φ(s) ≤ n

√

k(t0) holds.

3. The function u ∈ C([α(t0) − h, T ),R+) satisfies the inequalities

un(t) ≤k(t) +

∫ t

t0

[p(s)u(s) + q(s) max
ξ∈[s−h,s]

u(ξ)]ds

+

∫ α(t)

α(t0)
[a(s)u(s) + b(s) max

ξ∈[s−h,s]
u(ξ)]ds for t ∈ [t0, T ),

(2.27)

u(t) ≤φ(t) for t ∈ [α(t0) − h, t0], (2.28)

where h ≥ 0, n > 1.

Then for t ∈ [t0, T ) the inequality

u(t) ≤ n
√

k(t) +

(

M +
e(t)

n
(

k(t0)
)1− 1

n

)

eA(t)+B(t) (2.29)

holds, where

e(t) =

∫ t

t0

(

p(s)ω(s) + q(s) max
ξ∈[s−h,s]

ω(ξ)

)

ds

+

∫ max(α(t),t0)

t0

(

a(s)ω(s) + b(s) max
ξ∈[s−h,s]

ω(ξ)

)

ds, (2.30)

A(t) =
1

n

∫ t

t0

(

k(s)

) 1−n
n [

p(s) + q(s)
]

ds, (2.31)

B(t) =
1

n

∫ α(t)

α(t0)

(

K(s)

)1−n
n [

a(s) + b(s)
]

ds, (2.32)

K(t) =

{
k(t), t ∈ [t0, T ),
k(t0), t ∈ [α(t0), t0),

ω(t) =

{
n
√

k(t), t ∈ (t0, T ),
M, t ∈ [t0 − h, t0].
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Proof. Let us define a function z : [α(t0) − h, T ) → R+ by

z(t) =







n
√

k(t)

nk(t)

(∫ t

t0

(

p(s)u(s) + q(s) max
ξ∈[s−h,s]

u(ξ)
)

ds

+

∫ α(t)

α(t0)

(

a(s)u(s) + b(s) max
ξ∈[s−h,s]

u(ξ)
)

ds

)

,

t ∈ [t0, T )
0, t ∈ [α(t0) − h, t0).

(2.33)

From inequality (2.27) we have for t ∈ [t0, T )

un(t) ≤ k(t)
(

1 + n
z(t)

n
√

k(t)

)

,

or

u(t) ≤ n
√

k(t)

(

1 + n
z(t)

n
√

k(t)

) 1
n

.

Apply Bernoulli’s inequality (1 + x)a ≤ 1 + ax, where 0 < a < 1 and
−1 < x, and observe that

u(t) ≤ n
√

k(t)
(

1 +
z(t)

n
√

k(t)

)

= n
√

k(t) + z(t) = ω(t) + z(t), t ∈ [t0, T ),

(2.34)
and

u(t) ≤ φ(t) ≤ φ(t) + z(t) ≤ ω(t) + z(t), t ∈ [α(t0) − h, t0], (2.35)

where

ω(t) =

{
n
√

k(t), t ∈ [t0, T )
n
√

k(t0), t ∈ [α(t0) − h, t0).

Therefore

max
ξ∈[s−h,s]

u(ξ) ≤ max
ξ∈[s−h,s]

ω(ξ) + max
ξ∈[s−h,s]

z(ξ), s ∈ [t0, T ). (2.36)

Let t ∈ [t0, T ) be such that α(t) ≥ t0. Then from inequalities (2.34)
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and (2.35) we get

∫ α(t)

α(t0)

[

a(s)u(s) + b(s) max
ξ∈[s−h,s]

u(ξ)

]

ds

≤
∫ t0

α(t0)

[

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

]

ds

+

∫ α(t)

t0

[

a(s)

(

ω(s) + z(s)

)

+ b(s)

(

max
ξ∈[s−h,s]

ω(ξ) + max
ξ∈[s−h,s]

z(ξ)

)]

ds

=

∫ max(α(t),t0)

t0

(

a(s)ω(s) + b(s) max
ξ∈[s−h,s]

ω(ξ)

)

ds

+

∫ α(t)

α(t0)

(

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

)

ds. (2.37)

Let t ∈ [t0, T ) be such that α(t) < t0. Then from the definition of
function z(t) and inequalities (2.34) and (2.35) we get

∫ α(t)

α(t0)

[

a(s)u(s) + b(s) max
ξ∈[s−h,s]

u(ξ)

]

ds

=

∫ α(t)

α(t0)

(

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

)

ds

≤
∫ max(α(t),t0)

t0

(

a(s)ω(s) + b(s) max
ξ∈[s−h,s]

ω(ξ)

)

ds

+

∫ α(t)

α(t0)

(

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

)

ds. (2.38)

Let C = Mn k(t0)
1− 1

n > 0. Note the function v : [t0, T ) → (0,∞),

v(t) = 1

n k(t0)1−
1
n

(

C + e(t)
)

is nondecreasing and the equality v(t0) =

1

n k(t0)1−
1
n

(

C+ e(t0)
)

= M holds, where the function e(t) is defined by

(2.30). From the definition of the function z(t) and inequalities (2.37)
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and (2.38) it follows that

z(t) ≤ 1

n k(t)1−
1
n

(

e(t) +

∫ t

t0

[

p(s)z(s) + q(s) max
ξ∈[s−h,s]

z(ξ)

]

ds

+

∫ α(t)

α(t0)

[

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

]

ds

)

≤ 1

n k(t0)
1− 1

n

(

C + e(t)

)

+
1

n k(t)1−
1
n

∫ t

t0

[

p(s)z(s) + q(s) max
ξ∈[s−h,s]

z(ξ)

]

ds

+
1

n k(t)1−
1
n

∫ α(t)

α(t0)

[

a(s)z(s) + b(s) max
ξ∈[s−h,s]

z(ξ)

]

ds

≤v(t) +

∫ t

t0

1

n

[
p(s)

(

k(s)
)1− 1

n

z(s) +
q(s)

(

k(s)
)1− 1

n

max
ξ∈[s−h,s]

z(ξ)

]

ds

(2.39)

+

∫ α(t)

α(t0)

1

n

[
a(s)

(

K(s)
)1− 1

n

z(s) +
b(s)

(

K(s)
)1− 1

n

max
ξ∈[s−h,s]

z(ξ)

]

ds,

t ∈ [t0, T ),

z(t) =0, t ∈ [α(t0) − h, t0]. (2.40)

From inequalities (2.39) and (2.40) according to Theorem 2.1.2 we
get

z(t) ≤ v(t)eA(t)+B(t) =

(

M +
e(t)

n (k(t0))
1− 1

n

)

eA(t)+B(t), (2.41)

where A(t) and B(t) are defined by (2.31) and (2.32), respectively.

Substitute bound (2.41) for z(t) in the right-hand side of (2.34) and
obtain inequality (2.29).

Remark 2.1.3. As partial cases of Theorem 2.1.3 and Theorem 2.1.4
we obtain results for integral inequality without maximum (see [Kim
2005], Theorem 2.1 and Theorem 2.2).
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2.2 Nonlinear Integral Inequalities with Max-

ima for Scalar Functions of One Variable

In this section some new nonlinear integral inequalities of Bihari type
will be solved. The main characteristic of the considered integral in-
equalities is the presence of the maximum of the unknown scalar func-
tion in the integral.

Theorem 2.2.1. Let the following conditions be fulfilled:

1. The function α ∈ C1([t0, T ),R+) is nondecreasing and α(t) ≤ t.

2. The functions p, q ∈ C([t0, T ),R+) and a, b ∈ C([α(t0), T ),R+).

3. The function φ ∈ C([α(t0) − h, t0],R+) .

4. The function g ∈ C(R+, (0,∞)) is increasing,
∫∞

g(s)ds = ∞.

5. The function u ∈ C([α(t0) − h, T ),R+) and satisfies the inequal-
ities

u(t) ≤k +

∫ t

t0

[

p(s)g
(

u(s)
)

+ q(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds (2.42)

+

∫ α(t)

α(t0)

[

a(s)g
(

u(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds

for t ∈ [t0, T ),

u(t) ≤φ(t) for t ∈ [α(t0) − h, t0], (2.43)

where h, k = const ≥ 0.

Then, for t ∈ [t0, t1) the inequality

u(t) ≤ G−1

(

G(M) +

∫ t

t0

[

p(s) + q(s)
]

ds+

∫ α(t)

α(t0)

[

a(s) + b(s)
]

ds

)

,

(2.44)
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holds, where M = max
(
k,maxt∈[α(t0)−h,t0] φ(t)

)
, the function G is de-

fined by

G(r) =

∫ r

r0

ds

g(s)
, r0 ≥ 0, (2.45)

t1 = sup

{

τ ∈ (t0, T ) : G(M) +

∫ t

t0

[

p(s) + q(s)
]

ds

+

∫ α(t)

α(t0)

[

a(s) + b(s)
]

ds ∈ Dom
(
G−1

)
for t ∈ [t0, τ ]

}

,

and the function G−1 is the inverse function of G.

Proof. Let us define a function z : [α(t0) − h, T ) → R+ by

z(t) =







M +

∫ t

t0

[

p(s)g
(

u(s)
)

+ q(s)g
(

max
ξ∈[s−h,s]

u(ξ)
)]

ds

+

∫ α(t)

α(t0)

[

a(s)g
(

u(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds,

t ∈ [t0, T )
M, t ∈ [α(t0) − h, t0).

(2.46)

The function z(t) is nondecreasing and the inequality u(t) ≤ z(t)
holds for t ∈ [α(t0) − h, T ). Note maxs∈[t−h,t] z(s) = z(t) for t ∈
[α(t0), T ). Then from inequality (2.42) we get for t ∈ [t0, T )

z(t) ≤M +

∫ t

t0

[

p(s)g
(

z(s)
)

+ q(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds

+

∫ α(t)

α(t0)

[

a(s)g
(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds

≤M +

∫ t

t0

[

p(s) + q(s)
]

g
(

z(s)
)

ds

+

∫ α(t)

α(t0)

[

a(s) + b(s)
]

g
(

z(s)
)

ds. (2.47)

Define a function w : [α(t0) − h, T ) → [M,∞) by

w(t) = M +

∫ t

t0

[

p(s)+ q(s)
]

g
(

z(s)
)

ds+

∫ α(t)

α(t0)

[

a(s)+ b(s)
]

g
(

z(s)
)

ds.



2.2. Nonlinear Integral Inequalities 31

Differentiate the function w(t), use the monotonicity of w(t) and obtain

(
w(t)

)′
=
[

p(t) + q(t)
]

g
(

z(t)
)

+
[

a
(
α(t)

)
+ b
(
α(t)

)]

g
(

z
(
α(t)

))(
α(t)

)′

≤g
(

w(t)
)[

p(t) + q(t) + a
(
α(t)

)(
α(t)

)′
+ b
(
α(t)

)(
α(t)

)′
]

.

(2.48)

From definition (2.45) and inequality (2.48) it follows that

d

dt
G
(

w(t)
)

=

(
w(t)

)′

g
(

w(t)
)

≤ p(t) + q(t) + a
(
α(t)

)(
α(t)

)′
+ b
(
α(t)

)(
α(t)

)′
. (2.49)

We integrate inequality (2.49) from t0 to t for t ∈ [t0, T ), change
the variable η = α(s) and we obtain

G
(

w(t)
)

≤ G(M)+

∫ t

t0

[

p(η)+q(η)
]

dη+

∫ α(t)

α(t0)

[

a(η)+b(η)
]

dη. (2.50)

SinceG−1 is an increasing function, we obtain from inequality (2.50)
and u(t) ≤ z(t)] ≤ w(t) the required inequality (2.44) for t ∈ [t0, t1).

Remark 2.2.1. In the case when h = 0 the result of the Theorem 2.2.1
reduces to the classical Bihari inequality.

In connection with the nonlinearity of the considered integral in-
equality, we introduce the following class of functions.

Definition 2.2.1. We will say that a function g ∈ C(R+,R+) is from
the class Ω if the following conditions are satisfied:

(i) g is a nondecreasing function;

(ii) g(x) > 0 for x > 0;

(iii) g(tx) ≥ tg(x) for 0 ≤ t ≤ 1, x ≥ 0;

(iv) g(x) + g(y) ≥ g(x + y) for x, y ≥ 0;
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(v)

∫ ∞

1

dx

g(x)
= ∞.

Remark 2.2.2. Note that the function g(x) = p
√
x ∈ Ω, where p is a

natural number.

Theorem 2.2.2. Let the following conditions be fulfilled:

1. The function α ∈ C1([t0, T ),R+) is nondecreasing and α(t) ≤ t.

2. The functions p, q ∈ C([t0, T ),R+) and a, b ∈ C([α(t0), T ),R+).

3. The function k ∈ C([α(t0) − h, T ),R+).

4. The function g ∈ C(R+,R+) and g ∈ Ω.

5. The function u ∈ C([α(t0) − h, T ),R+) and satisfies the inequal-
ities

u(t) ≤k(t) +

∫ t

t0

[

p(s)g
(

u(s)
)

+ q(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds

(2.51)

+

∫ α(t)

α(t0)

[

a(s)g
(

u(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds

for t ∈ [t0, T ),

u(t) ≤k(t) for t ∈ [α(t0) − h, t0] (2.52)

where h = const ≥ 0.

Then for t ∈ [t0, t2) the inequality

u(t) ≤k(t) + e(t)G−1
(

G(1)

+

∫ t

t0

[

p(s) + q(s)
]

ds+

∫ α(t)

α(t0)

[

a(s) + b(s)
]

ds
)

(2.53)

holds, where e(t) : [t0, T ) → R+ is defined by

e(t) =1 +

∫ t

t0

[

p(s)g
(

k(s)
)

+ q(s)g

(

max
ξ∈[s−h,s]

k(ξ)

)]

ds

+

∫ max
(
α(t),t0

)

t0

[

a(s)g
(

k(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

k(ξ)

)]

ds,

(2.54)
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the function G is defined by equality (2.45), the function G−1 is the
inverse of G,

t2 = sup

{

τ ∈ (t0, T ) : G(1) +

∫ t

t0

[

p(s) + q(s)
]

ds

+

∫ α(t)

α(t0)

[

a(s) + b(s)
]

ds ∈ Dom
(
G−1

)
for t ∈ [t0, τ ]

}

.

Proof. Let us define a function z : [α(t0) − h, T ) → R+ by

z(t) =







∫ t

t0

[

p(s)g
(

u(s)
)

+ q(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds

+

∫ α(t)

α(t0)

[

a(s)g
(

u(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds,

t ∈ (t0, T ),
0, t ∈ [α(t0) − h, t0].

From inequality (2.51) and the definition of z(t) we have for t ∈
[α(t0) − h, T )

u(t) ≤ k(t) + z(t). (2.55)

Let t ∈ [t0, T ) such that α(t) ≥ t0. Then from inequality (2.55),
the definition of the function z(t), and condition 4 of Theorem 2.2.2 we
have the inequality

∫ α(t)

α(t0)

[

a(s)g
(

u(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds

≤
∫ t0

α(t0)
a(s)g

(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds

+

∫ α(t)

t0

[

a(s)g
(

k(s) + z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

k(ξ) + max
ξ∈[s−h,s]

z(ξ)

)]

ds

≤
∫ max (α(t),t0)

t0

[

a(s)g
(

k(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

k(ξ)

)]

ds

+

∫ α(t)

α(t0)

[

a(s)g
(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds. (2.56)
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Let t ∈ [t0, T ) such that α(t) < t0. Then from the definition of
function z(t), we get

∫ α(t)

α(t0)

[

a(s)g
(

u(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds

=

∫ α(t)

α(t0)

[

a(s)g
(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds

≤
∫ max(α(t),t0)

t0

[

a(s)g
(

k(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

k(ξ)

)]

ds

+

∫ α(t)

α(t0)

[

a(s)g
(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds. (2.57)

From the definition of function z(t) and inequalities (2.52), (2.56),
and (2.57) it follows that

z(t) ≤e(t) +

∫ t

t0

[

p(s)g
(

z(s)
)

+ q(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds (2.58)

+

∫ α(t)

α(t0)

[

a(s)g
(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds for t ∈ [t0, T ),

z(t) ≤k(t) for t ∈ [α(t0) − h, t0), (2.59)

where the function e(t) is defined by (2.54). Note the function e(t) is
nondecreasing for t ∈ [t0, T ) and e(t0) = 1.

From inequalities (2.58) and (2.59), condition 4 of Theorem 2.2.2
and 1

e(t) ≤ 1 we obtain for t ∈ [t0, T ) the inequality

z(t)

e(t)
≤1 +

∫ t

t0

[

p(s)g

(
z(s)

e(s)

)

+ q(s)g

(
maxξ∈[s−h,s] z(ξ)

e(t)

)]

ds

+

∫ α(t)

α(t0)

[

a(s)g

(
z(s)

e(s)

)

+ b(s)g

(
maxξ∈[s−h,s] z(ξ)

e(t)

)]

ds. (2.60)

From monotonicity of e(t) we obtain for t ∈ [t0, T ) and s ∈ [α(t0), t]
the inequality

maxξ∈[s−h,s] z(ξ)

e(t)
≤

maxξ∈[s−h,s] z(ξ)

ê(s)
= max

ξ∈[s−h,s]

z(ξ)

ê(s)
≤ max

ξ∈[s−h,s]

z(ξ)

ê(ξ)
,

(2.61)
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where the continuous nondecreasing function ê : [α(t0) − h, T ) → R+

is defined by

ê(t) =

{
e(t), for t ∈ [t0, T ),
e(t0), for t ∈ [α(t0) − h, t0].

From (2.60) and (2.61) follows that for t ∈ [t0, T ) the inequality

z(t)

ê(t)
≤1 +

∫ t

t0

[

p(s)g

(
z(s)

ê(s)

)

+ q(s)g

(

max
ξ∈[s−h,s]

z(ξ)

ê(ξ)

)]

ds

+

∫ α(t)

α(t0)

[

a(s)g

(
z(s)

ê(s)

)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

ê(ξ)

)]

ds (2.62)

holds.
Let us define a function u1 : [α(t0)−h, T ) → R+ by u1(t) = z(t)

ê(t) . Set

the right-hand side of inequality (2.62) by function z1 : [t0, T ) → R+.
Note that function z1(t) is increasing, z1(t0) = 1 and for t ∈ [t0, T ) the
inequality u1(t) ≤ z1(t) holds.

Therefore

z1(t) ≤1 +

∫ t

t0

[

p(s) + q(s)
]

g(z1(s))ds +

∫ α(t)

α(t0)

[

a(s) + b(s)
]

g(z1(s))ds.

(2.63)

Define a function w : [α(t0) − h, T ) → [1,∞) by

w(t) = 1 +

∫ t

t0

[

p(s) + q(s)
]

g(z1(s))ds +

∫ α(t)

α(t0)

[

a(s) + b(s)
]

g(z1(s))ds.

Differentiate the function w(t) and we obtain

(
w(t)

)′
≤
[

p(t) + q(t)
]

g
(

z1(t)
)

+
[

a(α(t)) + b(α(t))
]

g
(

z1(α(t))
)(
α(t)

)′
. (2.64)

From inequality (2.64) and condition 1 of Theorem 2.2.2 we get

(
w(t)

)′
≤g
(

w(t)
)[

p(t) + q(t) + a(α(t))
(
α(t)

)′

+ b(α(t))
(
α(t)

)′
]

. (2.65)
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From the definition of G and inequality (2.65) we obtain

d

dt
G
(

w(t)
)

=

(
w(t)

)′

g
(

w(t)
) ≤ p(t) + q(t) + a(α(t))

(
α(t)

)′

+ b(α(t))
(
α(t)

)′
. (2.66)

Integrating inequality (2.66) from t0 to t we get for t ∈ [t0, T ) the
following inequality

G
(

w(t)
)

≤G(1) +

∫ t

t0

[

p(s) + q(s)
]

ds+

∫ t

t0

[

a(α(s)) + b(α(s))
](
α(s)

)′
ds

≤G(1) +

∫ t

t0

[

p(η) + q(η)
]

dη +

∫ α(t)

α(t0)

[

a(η) + b(η)
]

dη.

(2.67)

Since G−1(t) is an increasing function, from inequalities (2.67) and
u1(t) ≤ z1(t) ≤ w(t) it follows that for t ∈ [t0, T ) the inequality

z(t)

ê(t)
≤ G−1

(

G(1)+

∫ t

t0

[

p(s)+q(s)
]

ds+

∫ α(t)

α(t0)

[

a(s)+b(s)
]

ds

)

(2.68)

holds.
Inequalities (2.55) and (2.68) and the definition of ê(t) imply the

validity of inequality (2.53).

In the nonlinear case when the unknown function is in a power, the
following result is valid:

Theorem 2.2.3. Let the following conditions be fulfilled:

1. The function α ∈ C1([t0, T ),R+) is nondecreasing and α(t) ≤ t.

2. The functions p, q ∈ C([t0, T ),R+) and a, b ∈ C([α(t0), T ),R+).

3. The function φ ∈ C([α(t0) − h, t0),R+).

4. The function k ∈ C([t0, T ), (0,∞)) is nondecreasing and the in-
equality M = maxs∈[α(t0)−h,t0] φ(s) ≥ n

√

k(t0) holds.

5. The function g ∈ Ω.
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6. The function u ∈ C([α(t0) − h, T ),R+) and satisfies the inequal-
ities
(

u(t)
)n

≤k(t)

+

∫ t

t0

[

p(s)g
(

u(s)
)

+ q(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds

for t ∈ [t0, T ), (2.69)

u(t) ≤φ(t) for t ∈ [α(t0) − h, t0] (2.70)

where h = const ≥ 0, n = const > 1.

Then for t ∈ [t0, t3) the inequality

u(t) ≤ n
√

k(t) + e1(t)

{
1

n

(

k(t)
) 1−n

n
+G−1

(

G(1) +A1(t) +B1(t)
)}

(2.71)
holds, where

e1(t) =1 +

∫ t

t0

[

p(s)g
(

ψ(s)
)

+ q(s)g

(

max
ξ∈[s−h,s]

ψ(ξ)

)]

ds

+

∫ max(α(t),t0)

t0

[

a(s)g
(

ψ(s)
)

ds+ b(s)g

(

max
ξ∈[s−h,s]

ψ(s)

)]

ds,

(2.72)

A1(t) =
1

n

∫ t

t0

[

p(s)
(

k(s)
) 1−n

n
+ q(s) max

ξ∈[s−h,s]

(

k(ξ)
) 1−n

n

]

ds, (2.73)

B1(t) =
1

n

∫ α(t)

α(t0)

[

a(s)
(

K(s)
) 1−n

n
+ b(s) max

ξ∈[s−h,s]

(

K(ξ)
) 1−n

n

]

ds,

(2.74)

K(t) =

{
k(t), t ∈ [t0, T )
k(t0), t ∈ [α(t0), t0),

ψ(t) =

{
n
√

k(t), t ∈ (t0, T )
M, t ∈ [t0 − h, t0].

the function G is defined by (2.45), the function G−1 is the inverse of
G,

t3 = sup

{

τ ∈ [t0, T ) : G(1) +A1(t) +B1(t) ∈ Dom
(
G−1

)

for t ∈ [t0, τ ]

}

.
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Proof. Let us define a function z(t) : [α(t0) − h, T ) → R+ by

z(t) =







n
√

k(t)

n k(t)

(∫ t

t0

[

p(s)g
(

u(s)
)

+ q(s)g
(

max
ξ∈[s−h,s]

u(ξ)
)]

ds

+

∫ α(t)

α(t0)

[

a(s)g
(

u(s)
)

+ b(s)g
(

max
ξ∈[s−h,s]

u(ξ)
)]

ds

)

,

t ∈ [t0, T ),
0, t ∈ [α(t0) − h, t0).

By inequality (2.69) and the definition of z(t) we have for t ∈ [t0, T )

(

u(t)
)n

≤ k(t)

(

1 + n
z(t)

n
√

k(t)

)

or

u(t) ≤ n
√

k(t)

(

1 + n
z(t)

n
√

k(t)

) 1
n

.

Apply Bernoulli’s inequality (1+x)a ≤ 1+ax where 0 < a < 1 and
−1 < x, and observe that

u(t) ≤ n
√

k(t)

(

1 +
z(t)

n
√

k(t)

)

= n
√

k(t) + z(t)

=ψ(t) + z(t), t ∈ [t0, T ), (2.75)

u(t) ≤φ(t) ≤ φ(t) + z(t) ≤ ψ(t) + z(t), t ∈ [α(t0) − h, t0], (2.76)

where

ψ(t) =

{
n
√

k(t), t ∈ [t0, T )
n
√

k(t0), t ∈ [α(t0) − h, t0).

Therefore,

max
ξ∈[s−h,s]

u(ξ) ≤ max
ξ∈[s−h,s]

ψ(ξ) + max
ξ∈[s−h,s]

z(ξ), s ∈ [t0, T ). (2.77)

Let t ∈ [t0, T ) such that α(t) ≥ t0. Then from inequalities (2.75)
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and (2.76) we get

∫ α(t)

α(t0)

[

a(s)g
(

u(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds

≤
∫ t0

α(t0)

[

a(s)g
(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds

+

∫ α(t)

t0

[

a(s)g
(

ψ(s) + z(s)
)

+b(s)g

(

max
ξ∈[s−h,s]

ψ(ξ) + max
ξ∈[s−h,s]

z(ξ)

)]

ds

=

∫ max(α(t),t0)

t0

[

a(s)g
(

ψ(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

ψ(ξ)

)]

ds

+

∫ α(t)

α(t0)

[

a(s)g
(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds. (2.78)

Now, let t ∈ [t0, T ) such that α(t) < t0. This time, from the defini-
tion of function z(t) and inequalities (2.75) and (2.76), we get

∫ α(t)

α(t0)

[

a(s)g
(

u(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

u(ξ)

)]

ds

=

∫ α(t)

α(t0)

[

a(s)g
(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds

≤
∫ max(α(t),t0)

t0

[

a(s)g
(

n
√

ψ(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

n
√

ψ(ξ)

)]

ds

+

∫ α(t)

α(t0)

[

a(s)g
(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds. (2.79)

It follows from the definition of the function z(t) and inequalities
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(2.78) and (2.79) that

z(t) ≤ 1

n
(

k(t)
)n−1

n

(

e1(t) +

∫ t

t0

[

p(s)g
(

z(s)
)

+ q(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds

+

∫ α(t)

α(t0)

[

a(s)g
(

z(s)
)

+ b(s)g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds

)

≤
n
√

k(t)

n k(t)
e1(t) +

1

n

∫ t

t0

[

p(s)
(

k(s)
) 1−n

n
g
(

z(s)
)

+ q(s)
(

k(s)
) 1−n

n
g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds

+
1

n

∫ α(t)

α(t0)

[

a(s)
(

K(s)
) 1−n

n
g
(

z(s)
)

+ b(s)
(

K(s)
) 1−n

n
g

(

max
ξ∈[s−h,s]

z(ξ)

)]

ds, t ∈ [t0, T ), (2.80)

z(t) ≤φ(t), t ∈ [t0 − h, t0]. (2.81)

According to Theorem 2.2.2 from inequalities (2.80) and (2.81) we
get

z(t) ≤ e1(t)

{
n
√

k(t)

n k(t)
+G−1

(

G(1) +A1(t) +B1(t)
)
}

, (2.82)

where A1 and B1 are defined by equalities (2.73) and (2.74), respec-
tively.

Substitute bound (2.82) for z(t) into the right-hand side of (2.75)
and obtain required inequality (2.71).

2.3 Integral Inequalities with Maxima for

Scalar Functions of Two Variables

In the present section we solve some new Gronwall’s type integral in-
equalities for continuous scalar functions of two variables. The main
characteristic of the studied inequalities is the presence of the maxi-
mum of the unknown function in the integral. The obtained inequalities
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are used to investigate qualitative properties of the solutions of partial
differential equations with “maxima.”

Let points a, b, x0, y0 ∈ R+ be fixed such that a > x0, b > y0.

Let function α : R+ → R+ be such that α(x) ≤ x.

Consider following sets

G(x0, y0) = {(x, y) ∈ R
2 : x ≥ x0, y ≥ y0},

G = {(x, y) ∈ R
2 : x ∈ [x0, a], y ∈ [y0, b]},

Ω = {(x, y) ∈ R
2 : x ∈ [α(x0) − h, x0], y ≥ y0},

(2.83)

where h ≥ 0 is a constant.

We will study inequalities of the type

u(x, y) ≤ϕ(x, y) +

∫ x

x0

∫ y

y0

f(s, t)up(s, t)dtds

+

∫ α(x)

α(x0)

∫ y

y0

g(s, t) max
ξ∈[s−h,s]

up(ξ, t)dtds for (x, y) ∈ G(x0, y0),

(2.84)

u(x, y) ≤ψ(x, y) for (x, y) ∈ Ω, (2.85)

where u : G(α(x0) − h, y0) → R+, functions ϕ, f, g : G(x0, y0) → R+,
and ψ : Ω → R+, p ∈ (0, 1] is a real number.

We will prove some linear integral inequalities of Gronwall-Belman
type for scalar continuous functions of two variables in the case when
maxima of the unknown function is involved into the integral.

Initially we will study inequalities (2.84) and (2.85) in the case when
p = 1.

Theorem 2.3.1. Let the following conditions be fulfilled:

1. The functions f, g ∈ C(G(x0, y0),R+).

2. The function α ∈ C([x0,∞),R+) is nondecreasing and α(x) ≤ x
for x ≥ x0.
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3. The function u ∈ C(G(α(x0)−h, y0),R+) satisfies the inequalities

u(x, y) ≤c+

∫ x

x0

∫ y

y0

f(s, t)u(s, t)dtds

+

∫ α(x)

α(x0)

∫ y

y0

g(s, t) max
ξ∈[s−h,s]

u(ξ, t)dtds

for (x, y) ∈ G(x0, y0), (2.86)

u(x, y) ≤c for (x, y) ∈ Ω, (2.87)

where h = const ≥ 0, c = const > 0.

Then for (x, y) ∈ G(x0, y0) the inequality

u(x, y) ≤ ce
R x

x0

R y

y0
{f(s,t)+g(α(s),t)α′(s)}dtds

(2.88)

holds.

Proof. Let us define a function v : G(α(x0) − h, y0) → (0,∞) by

v(x, y) =







c+

∫ x

x0

∫ y

y0

f(s, t)u(s, t)dtds

+

∫ α(x)

α(x0)

∫ y

y0

g(s, t) max
ξ∈[s−h,s]

u(ξ, t)dtds, for (x, y) ∈ G(x0, y0),

c, for (x, y) ∈ Ω.

The function v ∈ C2,2[G(x0−h, y0), (0,∞)] is nondecreasing in both
its arguments and

v(x0, y) = c for y ∈ [y0, b], v(x, y0) = c for x ∈ [x0, a], (2.89)

vx(x, y0) = 0 for x ∈ [x0, a], vy(x0, y) = 0 for y ∈ [y0, b], (2.90)

vx(x, y) ≥ 0, vy(x, y) ≥ 0 on G(x0, y0). (2.91)

From the definition of the function v it follows that for (x, y) ∈
G(x0, y0) the inequalities u(x, y) ≤ v(x, y) and

max
ξ∈[x−h,x]

u(ξ, y) ≤ max
ξ∈[x−h,x]

v(ξ, y) = v(x, y)

hold.
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Then from (2.86), (2.91) and the definition of function v(x, y) we
obtain for (x, y) ∈ G(x0, y0)

vxy(x, y) ≤
(

f(x, y) + g(α(x), y)α′(x)
)

v(x, y)

≤
(

f(x, y) + g(α(x), y)α′(x)
)

v(x, y) +
vx(x, y)vy(x, y)

v(x, y)
(2.92)

or
∂

∂y

(vx(x, y)

v(x, y)

)

≤ f(x, y) + g(α(x), y)α′(x). (2.93)

Integrate inequality (2.93) from y0 to y, use (2.90) and obtain

vx(x, y)

v(x, y)
≤
∫ y

y0

(

f(x, t) + g(α(s), t)α′(s)
)

dt. (2.94)

Integrate inequality (2.94) from x0 to x, use (2.89) and obtain

ln v(x, y)− ln v(x0, y) ≤
∫ x

x0

∫ y

y0

(

f(s, t) + g(α(s), t)α′(s)
)

dtds. (2.95)

From inequality (2.95) it follows that

v(x, y) ≤ ce
R x

x0

R y

y0
{f(s,t)+g(α(s),t)α′(s)}dtds

. (2.96)

Inequality (2.96) proves the validity of (2.88).

In the case when the constant c in the inequalities (2.86) and (2.87)
is zero, the following result is true:

Corollary 2.3.1. Let the following conditions be fulfilled:

1. The conditions 1, 2 of Theorem 2.3.1 are satisfied.

2. The function u ∈ C[G(α(x0) − h, y0),R+] satisfies

u(x, y) ≤
∫ x

x0

∫ y

y0

f(s, t)u(s, t)dtds

+

∫ α(x)

α(x0)

∫ y

y0

g(s, t) max
ξ∈[s−h,s]

u(ξ, t)dtds for (x, y) ∈ G(x0, y0),

(2.97)

u(x, y) =0 for (x, y) ∈ Ω, (2.98)

where h = const ≥ 0.
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Then
u(x, y) ≡ 0 for (x, y) ∈ G(x0, y0). (2.99)

Proof. Let ǫ > 0 be an arbitrary number. Then function u(x, y) satisfies
inequalities (2.86) and (2.87) for the constant c = ǫ.

According to Theorem 2.3.1, the inequality (2.88) is true. Since
ǫ > 0 is an arbitrary number, we could take ǫ → 0 that proves the
validity of (2.99).

Corollary 2.3.2. Let the following conditions be fulfilled:

1. The conditions 1, 2 of Theorem 2.3.1 are satisfied.

2. The function ϕ ∈ C(G(x0, y0), (0,∞)) is nondecreasing in both
its arguments.

3. The function ψ ∈ C(Ω,R+) and ψ(x, y) ≤ ψ(x0, y) ≤ ϕ(x0, y) for
(x, y) ∈ Ω.

4. The function u ∈ C(G(α(x0)−h, y0),R+) satisfies the inequalities

u(x, y) ≤ ϕ(x, y) +

∫ x

x0

∫ y

y0

f(s, t)u(s, t)dtds

+

∫ α(x)

α(x0)

∫ y

y0

g(s, t) max
ξ∈[s−h,s]

u(ξ, t)dtds for (x, y) ∈ G(x0, y0),

(2.100)

u(x, y) ≤ψ(x, y), for (x, y) ∈ Ω, (2.101)

where h = const ≥ 0.

Then for (x, y) ∈ G(x0, y0) the inequality

u(x, y) ≤ ϕ(x, y)e
R x

x0

R y

y0
{f(s,t)+g(α(s),t)α′(s)}dtds

(2.102)

holds.

Proof. We define a function m : G(α(x0) − h, y0) → R+ by

m(x, y) =







u(x, y)

ϕ(x, y)
for (x, y) ∈ G(x0, y0),

u(x, y)

ϕ(x0, y)
for (x, y) ∈ Ω.
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Let (x, y) ∈ G(x0, y0) and s ∈ [x0, x], t ∈ [y0, y].

If s > x0 +h then from the monotonicity of the function ϕ(x, y) we
obtain

maxξ∈[s−h,s] u(ξ, t)

ϕ(x, y)
= max

ξ∈[s−h,s]

u(ξ, t)

ϕ(x, y)
≤ max

ξ∈[s−h,s]
m(ξ, t). (2.103)

If s ∈ [x0, x0 + h] then we obtain

maxξ∈[s−h,s] u(ξ, t)

ϕ(x, y)
= max

(maxξ∈[s−h,x0] u(ξ, t)

ϕ(x, y)
,
maxξ∈[x0,s] u(ξ, t)

ϕ(x, y)

)

≤max
(

max
ξ∈[s−h,x0]

u(ξ, t)

ϕ(x, y)
, max
ξ∈[x0,s]

u(ξ, t)

ϕ(x, y)

)

≤ max
ξ∈[s−h,s]

m(ξ, t). (2.104)

From inequalities (2.100), (2.103) and (2.104) we obtain for (x, y) ∈
G(x0, y0) the validity of the inequality

m(x, y) ≤1 +

∫ x

x0

∫ y

y0

f(s, t)m(s, t)dtds

+

∫ α(x)

α(x0)

∫ y

y0

g(s, t) max
ξ∈[s−h,s]

m(ξ, t)dtds. (2.105)

Let (x, y) ∈ Ω. Then from condition 3 and inequality (2.101) follows

m(x, y) =
u(x, y)

ϕ(x0, y)
≤ ψ(x, y)

ϕ(x0, y)
≤ 1. (2.106)

From Theorem 2.3.1 and inequalities (2.105) and (2.106) we obtain
the validity of inequality (2.102).

Now we will solve the nonlinear integral inequalities (2.84) and
(2.85) in the case when 0 < p < 1, i.e., in the case when the unknown
function and its maximum are involved nonlinearly into the integrals.

Theorem 2.3.2. Let the following conditions be fulfilled:

1. The conditions 1, 2 of Theorem 2.3.1 are satisfied.
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2. The function u ∈ C(G(α(x0)−h, y0),R+) satisfies the inequalities

u(x, y) ≤ c+

∫ x

x0

∫ y

y0

f(s, t)up(s, t)dsdt

+

∫ α(x)

α(x0)

∫ y

y0

g(s, t) max
ξ∈[s−h,s]

up(ξ, t)dsdt for (x, y) ∈ G(x0, y0),

(2.107)

u(s, y) ≤c for (s, y) ∈ Ω, (2.108)

where 0 < p < 1, h = const ≤ 0, c = const > 0.

Then for (x, y) ∈ G(x0, y0) the inequality

u(x, y) ≤
(

c1−p +
(
1 − p

)
∫ x

x0

∫ y

y0

{f(s, t) + g(α(s), t)α′(s)}dtds
) 1

1−p

(2.109)
holds.

Proof. We define a function v : G(α(x0) − h, y0) → (0,∞) by

v(x, y) =






c+

∫ x

x0

∫ y

y0

f(s, t)up(s, t)dsdt +

∫ α(x)

α(x0)

∫ y

y0

g(s, t) max
ξ∈[s−h,s]

up(ξ, t)dsdt

for (x, y) ∈ G(x0, y0),
c for (s, y) ∈ Ω.

The function v ∈ C2,2(G(x0, y0), (0,∞)) is nondecreasing in both
its arguments and

v(x0, y) = c for y ∈ [y0, b], v(x, y0) = c for x ∈ [x0, a], (2.110)

vx(x, y0) = 0 for x ∈ [x0, a], vy(x0, y) = 0 for y ∈ [y0, b], (2.111)

vx(x, y) ≥ 0, vy(x, y) ≥ 0 on G(x0, y0). (2.112)

From the definition of the function v it follows that the func-
tion vp(x, y) is nondecreasing and for (x, y) ∈ G(x0, y0) the inequal-
ities u(x, y) ≤ v(x, y), up(x, y) ≤ vp(x, y) and maxξ∈[x−h,x] u

p(ξ, y) ≤
maxξ∈[x−h,x] v

p(ξ, y) = vp(x, y) hold.
Then from the inequality (2.107) we obtain

vxy(x, y) ≤
(

f(x, y) + g(α(x), y)α′(x)
)

vp(x, y), (x, y) ∈ G(x0, y0).

(2.113)



2.3. Integral Inequalities for Functions of Two Variables 47

From inequalities (2.112) and (2.113) it follows that

vxy(x, y)

vp(x, y)
− pvy(x, y)vx(x, y)

vp+1(x, y)
≤ f(x, y) + g(α(x), y)α′(x)

or

∂

∂y

(vx(x, y)

vp(x, y)

)

≤ f(x, y) + g(α(x), y)α′(x), (x, y) ∈ G(x0, y0).

(2.114)

Integrate inequality (2.114) from y0 to y, use (2.111) and obtain

vx(x, y)

vp(x, y)
− vx(x0, y)

vp(x0, y)
≤
∫ y

y0

(

f(x, t) + g(α(x), t)α′(x)
)

dt

or
vx(x, y)

vp(x, y)
≤
∫ y

y0

(

f(x, t) + g(α(x), t)α′(x)
)

dt. (2.115)

Integrate inequality (2.115) from x0 to x, use (2.110) and obtain

1

1 − p

(

v1−p(x, y) − v1−p(x0, y)
)

≤
∫ x

x0

∫ y

y0

(

f(s, t) + g(α(s), t)α′(s)
)

dtds,

or

1

q

(

vq(x, y) − cq
)

≤
∫ x

x0

∫ y

y0

(

f(s, t) + g(α(s), t)α′(s)
)

dtds, (2.116)

where p+ q = 1

From inequality (2.116) follows that

v(x, y) ≤
(

cq +
(
1 − p

)
∫ x

x0

∫ y

y0

{f(s, t) + g(α(s), t)α′(s)}dtds
) 1

1−p
.

(2.117)

Inequality (2.117) proves the validity of (2.109).

In the case when constant c in inequalities (2.107) and (2.108) is
zero, we obtain the following result:

Corollary 2.3.3. Let the following conditions be fulfilled:

1. The conditions 1,2 of Theorem 2.3.1 are satisfied.
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2. The function u ∈ C(G(α(x0)−h, y0),R+) satisfies the inequalities

u(x, y) ≤
∫ x

x0

∫ y

y0

f(s, t)up(s, t)dtds

+

∫ α(x)

α(x0)

∫ y

y0

g(s, t) max
ξ∈[s−h,s]

up(ξ, t)dtds

for (x, y) ∈ G(x0, y0),
(2.118)

u(s, y) ≡0 for (s, y) ∈ Ω, (2.119)

where h = const ≥ 0, p ∈ (0, 1).

Then for (x, y) ∈ G(x0, y0) the inequality

u(x, y) ≤
{(

1 − p
)
∫ x

x0

∫ y

y0

{f(s, t) + g(α(s), t)α′(s)}dtds
} 1

1−p
(2.120)

holds.

Proof. Choose an arbitrary number ǫ > 0. Then the function u(x, y)
satisfies inequalities (2.107) and (2.108) for c = ǫ.

According to Theorem 2.3.2 we obtain the validity of the inequality

v(x, y) ≤
(

ǫ1−p + (1 − p)

∫ x

x0

∫ y

y0

{f(s, t) + g(α(s), t)α′(s)}dtds
) 1

1−p
.

(2.121)
Since ǫ is an arbitrary number, it follows from (2.121) the validity

of inequality (2.120) for (x, y) ∈ G(x0, y0).

Corollary 2.3.4. Let the following conditions be fulfilled:

1. The conditions 1, 2, 3 of Corollary 2.3.2 are satisfied.

2. The function u ∈ C(G(α(x0)−h, y0),R+) satisfies the inequalities

u(x, y) ≤ϕ(x, y) +

∫ x

x0

∫ y

y0

f(s, t)up(s, t)dtds

+

∫ α(x)

α(x0)

∫ y

y0

g(s, t) max
ξ∈[s−h,s]

up(ξ, t)dtds

for (x, y) ∈ G(x0, y0),
(2.122)

u(s, y) ≤ψ(s, y) for (s, y) ∈ Ω, (2.123)

where h = const ≥ 0, p ∈ (0, 1).



2.3. Integral Inequalities for Functions of Two Variables 49

Then for (x, y) ∈ G(x0, y0) the inequality

u(x, y) ≤ ϕ(x, y)

×
{

1 +
(
1 − p

)
∫ x

x0

∫ y

y0

( f(s, t)

ϕ1−p(s, t)
+

g(α(s), t)

ϕ1−p(α(s), t)
α′(s)

)

dtds
} 1

1−p

(2.124)

holds.

Proof. We define functions m(x, y) : G(α(x0)−h, y0) → R+ and F,P :
G(x0, y0) → R+ by

F (x, y) =
f(x, y)

ϕ1−p(x, y)
, P (x, y) =

g(x, y)

ϕ1−p(x, y)
,

and

m(x, y) =







u(x, y)

ϕ(x, y)
for (x, y) ∈ G(x0, y0),

u(x, y)

ϕ(x0, y)
for (x, y) ∈ Ω.

From inequalities (2.122) and (2.123), using the monotonicity of the
function ϕ(x, y) we obtain the inequalities

m(x, y) ≤ 1 +

∫ x

x0

∫ y

y0

F (s, t)mp(s, t)dtds

+

∫ α(x)

α(x0)

∫ y

y0

P (s, t) max
ξ∈[s−h,s]

mp(ξ, t)dtds for (x, y) ∈ G(x0, y0),

(2.125)

m(s, y) ≤ 1 for (s, y) ∈ Ω. (2.126)

Applying Theorem 2.3.2 to inequalities (2.125) and (2.126), we ob-
tain the inequality

m(x, y) ≤
(

1 +
(
1 − p

)
∫ x

x0

∫ y

y0

{F (s, t) + P (α(s), t)α′(s)}dtds
) 1

1−p

(2.127)
Inequality (2.127) proves the validity of (2.124).
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2.4 Applications of the Integral Inequalities

with Maxima

We will apply some of the proved above inequalities to study various
properties of solutions of differential equations with “maxima.”

Consider the following system of differential equations with “max-
ima”

x
′
= f

(
t, x(t), max

s∈[β(t),α(t)]
x(s)

)
for t ≥ t0 (2.128)

with initial condition

x(t) = φ(t) for t ∈ [α(t0) − h, t0], (2.129)

where x ∈ R
n, φ : [α(t0) − h, t0] → Rn, f : [0,∞) × Rn × Rn → Rn,

h > 0 is a constant, t0 ≥ 0.

Theorem 2.4.1. [Uniqueness] Let the following conditions be fulfilled:

1. The functions α, β ∈ C([t0,∞),R+), α(t) is an increasing func-
tion, β(t) ≤ α(t) ≤ t, and α(t) − β(t) ≤ h for t ≥ t0.

2. The function f ∈ C([t0,∞)×R
n×R

n,Rn) and satisfies for t ≥ t0
and xi, yi ∈ R

n, i = 1, 2 the condition

‖f(t, x1, y1) − f(t, x2, y2)‖ ≤ g(t) ‖x1 − x2‖ + r(t) ‖y1 − y2‖ ,

where g(t), r(t) ∈ C([t0,∞), R+).

3. For any function φ ∈ C([α(t0)− h, t0], R
n) the initial value prob-

lem (2.128), (2.129) has at least one solution x(t; t0, φ) defined
for t ≥ α(t0) − h.

Then the initial problem (2.128), (2.129) has an unique solution.

Proof. Let φ ∈ C([α(t0)−h, t0],Rn) be a fixed initial function. Assume
there exist two different solutions u(t) = u(t; t0, φ) and v(t) = v(t; t0, φ)
of the initial value problems (2.128) and (2.129), which are defined for
t ≥ α(t0)−h. Both functions u(t) and v(t) satisfy the integral equations

u(t) =φ(t0) +

∫ t

t0

f(s, u(s), max
ξ∈[β(s),α(s)]

u(ξ))ds for t ≥ t0,

v(t) =φ(t0) +

∫ t

t0

f(s, v(s), max
ξ∈[β(s),α(s)]

v(ξ))ds for t ≥ t0
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and u(t) = v(t) = φ(t) for t ∈ [α(t0) − h, t0].
Then the norm of the difference of both solutions u(t) and v(t)

satisfies the inequalities

‖u(t) − v(t)‖

≤
∫ t

t0

‖f(s, u(s), max
ξ∈[β(s),α(s)]

u(ξ)) − f(s, v(s), max
ξ∈[β(s),α(s)]

v(ξ))‖ds

≤
∫ t

t0

(

g(s)‖u(s) − v(s)‖ds + r(s)‖ max
ξ∈[β(s),α(s)]

u(ξ) − max
ξ∈[β(s),α(s)]

v(xi)‖
)

ds

≤
∫ t

t0

g(s) ‖u(s) − v(s)‖ ds+

∫ t

t0

r(s) max
ξ∈[β(s),α(s)]

‖u(ξ) − v(ξ)‖ds,

t ≥ t0, (2.130)

‖u(t) − v(t)‖ = 0, t ∈ [α(t0) − h, t0].

Set p(t) = ‖u(t) − v(t)‖ for t ∈ [t0 − h,∞), change the variable
η = α(s) in the second integral of (2.130), use the inequality

max
ξ∈[β(t), α(t))]

p(ξ) ≤ max
ξ∈[α(t)−h, α(t)]

p(ξ)

that follows from condition 1 of Theorem 2.4.1 and obtain the inequality

p(t) ≤
∫ t

t0

g(η)p(η)dη +

∫ α(t)

α(t0)
r(α−1(η))(α−1(η))

′
max

ξ∈[η−h,η]
p(ξ)dη,

t ≥ t0. (2.131)

According to Theorem 2.1.1 from inequality (2.131) and p(t) ≡
0, t ∈ [α(t0) − h, t0] we obtain p(t) ≤ 0 for t ≥ t0 that proves the
validity of equality ‖u(t) − v(t)‖ = 0 for t ≥ t0 or u(t) ≡ v(t).

Now we will obtain bounds for the solution of the initial problem
(2.128), (2.129) in the case when the right-hand side is nonlinear.

Theorem 2.4.2. [Bounds] Let the following conditions be fulfilled:

1. The functions α, β ∈ C1([t0,∞),R+), α(t) is a nondecreasing
function, β(t) ≤ α(t) ≤ t and α(t) − β(t) ≤ h for t ≥ t0.

2. The function f ∈ C([t0,∞)×R
n×R

n,Rn) and satisfies for t ≥ t0
and x, y ∈ R

n the condition
∣
∣
∣

∣
∣
∣f(t, x, y)

∣
∣
∣

∣
∣
∣ ≤ P (t)

√

‖x‖ +B(t)
√

‖y‖
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where P (t), B(t) ∈ C([t0,∞),R+).

3. The function φ ∈ C([α(t0) − h, t0],R+).

4. The function u(t; t0, φ) is the solution of initial value problem
(2.128), (2.129) defined for t ≥ α(t0) − h.

Then the solution of initial value problem (2.128), (2.129) satisfies for
t ≥ t0 the inequality

∣
∣
∣
∣u(t)

∣
∣
∣
∣ ≤ 1

4

(

2
√
∣
∣
∣
∣φ(t0)

∣
∣
∣
∣+

∫ t

t0

[

P (s) +B(s)
]

ds

)2

. (2.132)

Proof. The solution u(t) = u(t; t0, φ) of initial value problem (2.128),
(2.129) satisfies the integral equations

u(t) = φ(t0) +

∫ t

t0

f
(

s, u(s), max
ξ∈[β(s),α(s)]

u(ξ)
)

ds for t ≥ t0,

and

u(t) = φ(t) for t ∈ [α(t0) − h, t0].

Then for the norm of the solution u(t) we obtain

∣
∣
∣
∣u(t)

∣
∣
∣
∣ ≤
∣
∣
∣
∣φ(t0)

∣
∣
∣
∣+

∫ t

t0

∣
∣
∣
∣

∣
∣
∣
∣
f
(

s, u(s), max
ξ∈[β(s),α(s)]

u(ξ)
)
∣
∣
∣
∣

∣
∣
∣
∣
ds

≤
∣
∣
∣
∣φ(t0)

∣
∣
∣
∣+

∫ t

t0

(

P (s)
√
∣
∣
∣
∣u(s)

∣
∣
∣
∣+B(s)

√∣
∣
∣

∣
∣
∣ max
ξ∈[β(s),α(s)]

u(ξ)
∣
∣
∣

∣
∣
∣

)

ds

≤
∣
∣
∣
∣φ(t0)

∣
∣
∣
∣+

∫ t

t0

P (s)
√
∣
∣
∣
∣u(s)

∣
∣
∣
∣ds

+

∫ t

t0

B(s)
√

max
ξ∈[β(s),α(s)]

∣
∣
∣
∣u(ξ)

∣
∣
∣
∣ds for t ≥ t0, (2.133)

and
∣
∣
∣
∣u(t)

∣
∣
∣
∣ =

∣
∣
∣
∣φ(t)

∣
∣
∣
∣ for t ∈ [α(t0) − h, t0]. (2.134)

Set ψ(t) =
∣
∣
∣
∣u(t)

∣
∣
∣
∣ for t ∈ [α(t0) − h,∞). Then we get for t ≥ t0.

ψ(t) ≤
∣
∣
∣
∣φ(t0)

∣
∣
∣
∣+

∫ t

t0

P (s)
√

ψ(s)ds+

∫ t

t0

B(s)
√

max
ξ∈[β(s),α(s)]

ψ(ξ)ds.

(2.135)
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Change the variable η = α(s) into the second integral of (2.135),
use the inequality maxξ∈[β(t), α(t))] ψ(ξ) ≤ maxξ∈[α(t)−h, α(t)] ψ(ξ) that
follows from condition 1 of Theorem 2.4.2 and obtain

ψ(t) ≤
∣
∣
∣
∣φ(t0)

∣
∣
∣
∣+

∫ t

t0

P (η)
√

ψ(η)dη

+

∫ α(t)

α(t0)
B(α−1(η))

(

α−1(η)
)′√

max
ξ∈[η−h,η]

ψ(ξ)dη. (2.136)

Note conditions of Theorem 2.2.1 are satisfied for k =
∣
∣
∣
∣ϕ(t0)

∣
∣
∣
∣

and p(t) ≡ P (t), q(t) ≡ 0 for t ∈ [t0,∞), a(t) ≡ 0, b(s) ≡
B(α−1(s))

(
α−1(s)

)′
for t ∈ [α(t0),∞), g(u) =

√
u, G(u) = 2

√
u,

G−1(u) = 1
4u

2, Dom
(
G−1

)
= R+ and t1 = ∞.

According to Theorem 2.2.1 from inequality (2.136) we obtain for
t ≥ t0

ψ(t) ≤ 1

4

(

2
√
∣
∣
∣
∣φ(t0)

∣
∣
∣
∣+

∫ t

t0

[

P (s) +B(s)
]

ds

)2

. (2.137)

Substitute the bound (2.137) for ψ(t) into the right-hand side of equal-
ity
∣
∣
∣
∣u(t)

∣
∣
∣
∣ = ψ(t) and obtain the required inequality (2.132).

Consider the following scalar differential equations with “maxi-
mum”

x x
′
= f

(
t, x(t), max

s∈[β(t),α(t)]
x(s)

)
for t ≥ t0 (2.138)

with initial condition

x(t) = ϕ(t) for t ∈ [α(t0) − h, t0], (2.139)

where x ∈ R, ϕ : [t0 − h, t0] → R, f : [0,∞) × R × R → R, h > 0 is a
constant.

Theorem 2.4.3. [Bounds] Let the following conditions be fulfilled:

1. The functions α, β ∈ C([t0,∞),R+), α(t) is an increasing func-
tion, β(t) ≤ α(t) ≤ t and α(t) − β(t) ≤ h for t ≥ t0.
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2. The function f ∈ C([t0,∞)×R×R,R), f(t, 0, 0) ≡ 0 and satisfies
for t ≥ t0, xi, yi ∈ R, (i = 1, 2) the condition

|f(t, x1, y1) − f(t, x2, y2)| ≤ g(t)|x1 − x2| + r(t)|y1 − y2|,

where g(t), r(t) ∈ C([t0,∞),R+).

3. The function ϕ ∈ C([α(t0) − h, t0],R), |ϕ(t0)| > 0.

4. The solution x(t; t0, ϕ) of initial value problem (2.138), (2.139)
is defined for t ≥ α(t0) − h.

Then for t ≥ t0 the inequality

|x(t; t0, ϕ)| ≤ |ϕ(t0)|

+M

(

1 +
1

|ϕ(t0)|

∫ t

t0

(g(s) + r(s))ds

)

e
1

|ϕ(t0)|

R t

t0

(

g(s)+r(s)

)

ds
(2.140)

holds, where M = maxs∈[α(t0)−h,t0]|ϕ(s)|.

Proof. The solution x(t) = x(t; t0, ϕ) satisfies the following integral
equation

(

x(t)
)2

=
(

ϕ(t0)
)2

+

∫ t

t0

2f(s, x(s), max
ξ∈[β(s),α(s)]

x(ξ))ds for t ≥ t0,

x(t) =ϕ(t), t ∈ [α(t0) − h, t0].

According to condition 2 of Theorem 2.4.3 we get

|x(t)|2

≤ |ϕ(t0)|2 + 2

∫ t

t0

|f(s, x(s), max
ξ∈[β(s),α(s)]

x(ξ))|ds

≤ |ϕ(t0)|2 + 2

∫ t

t0

g(s)|x(s)|ds + 2

∫ t

t0

r(s) max
ξ∈[β(s),α(s)]

|x(ξ)|ds,

t ≥ t0. (2.141)

Set u(t) = |x(t)| for t ∈ [t0 − h,∞), change the variable s = α−1(η)
in the second integral of (2.141), use the inequality

max
ξ∈[β(t), α(t))]

u(ξ) ≤ max
ξ∈[α(t)−h, α(t)]

u(ξ)
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that follows from condition 1 of Theorem 2.4.3 and obtain for t ≥ t0
the following inequality

(

u(t)
)2

≤ |ϕ(t0)|2 +

∫ t

t0

2g(s)u(s)ds

+

∫ α(t)

α(t0)
2r(α−1(η))(α−1(η))

′
max

ξ∈[η−h,η]
u(ξ)dη. (2.142)

From inequality (2.142) according to Theorem 2.1.4 for n = 2,
φ(t) = |ϕ(t)| on [t0 − h, t0], k(t) = |ϕ(t0)|2 > 0, p(t) = 2g(t), q(t) ≡ 0
on [t0,∞), and a(t) ≡ 0, b(t) = 2r(α−1(t))(α−1(t))

′
on [α(t0),∞) we

obtain the inequality

u(t) ≤ |φ(t0)| +
(

M +
e(t)

2|φ(t0)|

)

e
1

|φ(t0)|

R t

t0

(

g(s)+r(s)

)

ds
, (2.143)

hold, where

e(t) ≤ 2M

∫ t

t0

(

g(s) + r(s)
)

ds.

Inequality (2.143) proves the validity of inequality (2.140).

We apply some of the solved integral inequalities in Section 2.3 to
investigate qualitative properties of partial differential equations with
“maxima”.

Consider the nonlinear partial differential equation with “maxima”

uxy(x, y) = F (x, y, u(x, y), max
ξ∈[α(x),β(x)]

u(ξ, y)) for (x, y) ∈ G
(2.144)

with initial conditions

u(x0, y) = ϕ1(y), ux(x0, y) = ϕ2(y) for y ∈ [y0, b],

u(x, y) = ϕ3(x, y) for x ∈ [β(x0) − h, x0], y ∈ [y0, b], (2.145)

and boundary conditions

u(x, y0) = ψ1(x), u(x, b) = ψ2(x) for x ∈ [x0, a], (2.146)
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where u : R
2 → R, h = sup{β(s) − α(s) : s ∈ [x0, a]}, and the sets

G(x0, y0),G,Ω are defined by (2.83).
We will assume that the solution of (2.144)–(2.146) exists on the

rectangular G.
We will say that conditions (H2.4) are satisfied if

H2.4.1. Functions α, β ∈ C([x0, a],R) are such that α(x) ≤ β(x) ≤ x for
x ∈ [x0, a], β(x) is a nondecreasing function;

H2.4.2. Functions ϕ1, ϕ2 ∈ C1([y0, b],R);

H2.4.3. Functions ψ1, ψ2 ∈ C1([x0, a],R) and ϕ1(y0) = ψ1(x0);

H2.4.4. Function ϕ3(x, y) ∈ C([x0 − h, x0] × [y0, b],R) and the equality
ϕ3(x0, y) = ϕ1(y) holds for y ∈ [y0, b].

H2.4.5. The mixed problem (2.144)-(2.146) has a solution, defined in G.

If conditions (H2.4) are satisfied, then the solution u(x, y) of
(2.144)-(2.146) satisfies for (x, y) ∈ G the integral equation

u(x, y) = ϕ1(y) + ψ1(x) − ψ1(x0)

+

∫ x

x0

∫ y

y0

F (s, t, u(s, t), max
ξ∈[α(s),β(s)]

u(ξ, t))dtds (2.147)

u(x, y) = ϕ3(x, y) for x ∈ [β(x0) − h, x0]. (2.148)

We will apply directly the above-solved integral inequalities involv-
ing a maximum of the unknown function to obtain some qualitative
properties of the solutions of the partial differential equations (2.144)-
(2.146).

Initially we will prove the uniqueness of the solution of (2.144)-
(2.146).

Theorem 2.4.4. [Uniqueness] Let the following conditions be fulfilled:

1. The function F (x, y, u, v) ∈ C(G × R
2,R) and there exists f, g ∈

C(G,R+) such that |F (x, y, u1, v1)−F (x, y, u2, v2)| ≤ f(x, y)|u1−
u2| + g(x, y)|v1 − v2| for (x, y) ∈ G and u1, u2, v1, v2 ∈ R.

2. The conditions H2.4 are satisfied.

Then the mixed problem for the partial differential equations with “max-
ima” (2.144)-(2.146) has an unique solution.
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Proof. Assume that there are two solutions u(x, y), v(x, y) of (2.144)-
(2.146) defined in G. Both functions satisfy the integral equations
(2.147) and (2.148). Then we obtain the inequalities

|u(x, y) − v(x, y)|

≤
∫ x

x0

∫ y

y0

|F (s, t, u(s, t), max
ξ∈[α(s),β(s)]

u(ξ, t))

− F (s, t, v(s, t), max
ξ∈[α(s),β(s)]

v(ξ, t))|dtds

≤
∫ x

x0

∫ y

y0

(

f(x, y)|u(s, t) − v(s, t)|

+ g(x, y)| max
ξ∈[α(s),β(s)]

u(ξ, t) − max
ξ∈[α(s),β(s)]

v(ξ, t)|
)

dtds.

From the continuity of the function u(x, y) it follows that for any
fixed points s ∈ [x0, a] and t ∈ [y0, y] there exists a point η ∈ [α(s), β(s)]
such that the inequality maxξ∈[α(s),β(s)] u(ξ, t) = u(η, t) holds and there-
fore

| max
ξ∈[α(s),β(s)]

u(ξ, t) − max
ξ∈[α(s),β(s)]

v(ξ, t)| = |u(η, t) − max
ξ∈[α(s),β(s)]

v(ξ, t)|

≤ |u(η, t) − v(η, t)| ≤ max
ξ∈[α(s),β(s)]

|u(ξ, t) − v(ξ, t)|. (2.149)

Then we obtain

|u(x, y) − v(x, y)| ≤
∫ x

x0

∫ y

y0

f(x, y)|u(s, t) − v(s, t)|

+

∫ x

x0

∫ y

y0

g(x, y) max
ξ∈[α(s),β(s)]

|u(ξ, t) − v(ξ, t)|dtds (2.150)

We change the variable η = β(s) in the second integral of (2.150),
use the inequality

max
ξ∈[α(s),β(s)]

|u(ξ, t) − v(ξ, t)| ≤ max
ξ∈[η−h,η]

|u(ξ, t) − v(ξ, t)|,

and obtain

|u(x, y) − v(x, y)| ≤
∫ x

x0

∫ y

y0

f(x, y)|u(s, t) − v(s, t)|

+

∫ β(x)

β(x0)

∫ y

y0

g(β−1(η), y)(β−1(η))′ max
ξ∈[η−h,η]

|u(ξ, t) − v(ξ, t)|dtdη.

(2.151)
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From inequality (2.151) and Corollary 2.3.1 we obtain |u(x, y) −
v(x, y)| ≡ 0.

We will obtain some bounds of the solution u(x, y) of (2.144)-
(2.146).

Theorem 2.4.5. Let the following conditions be fulfilled:

1. The function F (x, y, u, v) ∈ C(G × R
2,R) and there exists f, g ∈

C(G,R+) such that

|F (x, y, u, v)| ≤ f(x, y)|u|+g(x, y)|v| for (x, y) ∈ G, u, v ∈ R.

2. The conditions H2.4 are satisfied.

Then for (x, y) ∈ G the solution u(x, y) of the partial differential equa-
tion with “maxima” (2.144)-(2.146) satisfies the inequality

|u(x, y)| ≤ |ϕ1(y) + ψ1(x) − ψ1(x0)|e
R x

x0

R y

y0
{f(s,t)+g(s,t)γ′(β(s))β′(s)}dtds

,
(2.152)

where γ(s) is the inverse of β(s).

Proof. The solution u(x, y) of (2.144)-(2.146) satisfies on G the inequal-
ity

|u(x, y)| ≤ |ϕ1(y) + ψ1(x) − ψ1(x0)| +
∫ x

x0

∫ y

y0

f(s, t)|u(s, t)|dtds

+

∫ x

x0

∫ y

y0

g(s, t)| max
ξ∈[α(s),β(s)]

|u(ξ, t)|dtds. (2.153)

From the continuity of the function u(x, y) follows that for any fixed
points s ∈ [x0, a] and t ∈ [y0, y] there exists a point η ∈ [α(s), β(s)] such
that

| max
ξ∈[α(s),β(s)]

u(ξ, t)| =|u(η, t)| ≤ max
ξ∈[α(s),β(s)]

|u(ξ, t)|

≤ max
ξ∈[β(s)−h,β(s)]

|u(ξ, t)|. (2.154)

From inequalities (2.153) and (2.154) we obtain

|u(x, y)| ≤ |ϕ1(y) + ψ1(x) − ψ1(x0)| +
∫ x

x0

∫ y

y0

f(s, t)|u(s, t)|dtds

+

∫ β(x)

β(x0)

∫ y

y0

g(γ(s), t)γ′(s)| max
ξ∈[s−h,s]

|u(ξ, t)|dtds. (2.155)



2.4. Applications 59

From inequality (2.155) and Corollary 2.3.4 follows the validity of
(2.152).

Theorem 2.4.6. Let the following conditions be fulfilled:

1. The function F (x, y, u, v) ∈ C(G × R
2,R) and there exists f, g ∈

C(G,R+) such that

|F (x, y, u, v)| ≤ f(x, y)|u|p + g(x, y)|v|p for (x, y) ∈ G, u, v ∈ R,

where 0 < p < 1.

2. The conditions H2.4 are satisfied.

Then for (x, y) ∈ G the solution u(x, y) of the partial differential equa-
tion with “maxima” (2.144)-(2.146) satisfies the inequality

|u(x, y)| ≤ q(x, y)
{

1

+ (1 − p)

∫ x

x0

∫ y

y0

f(s, t)

q(s, t)1−p
+

g(s, t)

q(β(s), t)1−p
γ′(β(s))β′(s)dtds

} 1
1−p

,

(2.156)

where q(x, y) = |ϕ1(y) + ψ1(x) − ψ1(x0)|, γ(s) is the inverse of β(s).

The proof of inequality (2.156) follows from the Corollary 2.3.4 and
equalities (2.147) and (2.148).





Chapter 3

General Theory

Some fundamental concepts and theorems in the qualitative analysis
of various types of differential equations with “maxima” will be intro-
duced in this chapter.

3.1 Existence Theory for Initial Value

Problems

We will prove some existence results for differential equations with
“maxima.” The main characteristic of the considered equations is the
presence of maximum of the derivative of the unknown function in the
right side of the equation. Both scalar and multidimensional cases are
studied.

Consider the scalar differential equation with “maxima”

y′(t) = F
(
t, max
s∈[p(t), q(t)]

y(s), max
s∈[β(t), α(t)]

y′(s)
)

for t ≥ 0 (3.1)

with initial condition

y(t) = ψ(t), y′(t) = ψ′(t) for t ≤ 0, (3.2)

where y ∈ R, β(t) ≤ α(t) ≤ t and p(t) ≤ q(t) ≤ t for t ≥ 0.
Let Bi be Banach spaces with norms ‖.‖i, i = 1, 2.
In our further investigations we will use the following existence re-

sults:

Proposition 3.1.1. (see [Angelov and Bainov 1981]) Let the following
conditions be fulfilled:

61
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1. On Bi the nonlinear continuous operators Ni : Bi → Bi satisfy
∣
∣
∣

∣
∣
∣

((
1 + λγ − λα

)
I + λNi

)

x−
((

1 + λγ − λα
)
I + λNi

)

y
∣
∣
∣

∣
∣
∣
i

≥
∣
∣
∣

∣
∣
∣x− y

∣
∣
∣

∣
∣
∣
i

for some γ, α > 0 and x, y ∈ Bi.

2. The linear mapping j : B1 → B2 has the property j
(
N1x

)
=

N2(j), x ∈ B1.

Then for every x ∈ B1 and y ∈ B2 for which jx =
(
N2 +γI

)
y, there

exists a unique element z ∈ B1 satisfying the inequalities
(
N1 + γI

)
z =

x, jz = y.

Proposition 3.1.2. (see [Angelov and Bainov 1981]) Under the as-
sumptions of Proposition 3.1.1, if

jx =
(
N2 + γI

)
y, jx̄ =

(
N2 + γI

)
ȳ

and
(
N1 + γI

)
z = x, jz = y,

(
N1 + γI

)
z̄ = x̄, jz̄ = ȳ,

then ∣
∣
∣

∣
∣
∣z − z̄

∣
∣
∣

∣
∣
∣
1
≤ 1

α

∣
∣
∣

∣
∣
∣x− x̄

∣
∣
∣

∣
∣
∣
1
.

After the change of variables x(t) = y′(t) for t > 0 and ϕ(t) = ψ′(t)
for t ≤ 0 in (3.1), (3.2), we obtain the following initial value problem

x(t) = F

(

t, max
s∈[p(t),q(t)]

∫ s

0
x(θ)dθ, max

s∈[uβ(t),α(t)]
x(s)

)

, t > 0, (3.3)

x(t) = ϕ(t), t ≤ 0. (3.4)

Remark 3.1.1. Note the function M(t) = maxs∈[p(t), q(t)] f(s) is con-
tinuous if f, p, q ∈ C(R,R). In order to emphasize this fact we shall
introduce the following metric in the set of all intervals

J = {[p, q] : p, q ∈ R; p ≤ q} ,
ρ
(
[p, q], [p̄, q̄]

)
= max

{∣
∣p− p̄

∣
∣,
∣
∣q − q̄

∣
∣
}
.

It is now obvious that the map P : R+ → J such that P (t) = [p(t), q(t)]
is continuous when p(t) and q(t) are continuous. In an analogous
way we can establish the continuity of the map Q : J → R such that
Q
(
[p, q]

)
= maxs∈[p, q] f(s). Then M(t) is the superposition of P and

Q, i.e., M(t) = Q
(
P (t)

)
.
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Theorem 3.1.1. Let the following conditions be fulfilled:

1. The functions p, q, α, β : R+ → R are continuous, p(t) ≤ q(t) ≤ t
and β(t) ≤ α(t) ≤ t.

2. The function F
(
t, x, y

)
: R+ × R

2 → R is continuous and there
exist constants γ > m > 0 such that

∣
∣
∣F
(
t, x, y

)∣∣
∣ ≤1

γ
µ
(
t,
∣
∣x
∣
∣,
∣
∣y
∣
∣
)
,

∣
∣
∣F
(
t, x, y

)
− F

(
t, x̄, ȳ

)
∣
∣
∣ ≤m

γ
λ
(
t,
∣
∣x− x̄

∣
∣,
∣
∣y − ȳ

∣
∣
)
,

where µ(t, u, v), λ(t, u, v) : R
3
+ → R+ are nondecreasing in

u, v, the function µ̄(t) = µ
(
t, q(t)u, u

)
is bounded in t and

λ
(
t, q(t)u, u

)
≤ u for every u ∈ R+.

3. The initial function ϕ(t) : R− → R is bounded, continuous and
satisfies the condition

ϕ(0) = F

(

0, max
s∈[p(0),q(0)]

∫ s

0
ϕ(θ)dθ, max

s∈[β(0),α(0)]
ϕ(s)

)

.

Then there exists a unique continuous and bounded solution of the
initial value problem (3.3), (3.4).

Proof. Let B1 be Banach space of all bounded and continuous functions
f(t) : R → R with supremum norm and B2 be Banach space of all
bounded and continuous functions g(t) : R− → R with supremum
norm.

Define the operators Ni : Bi → Bi, (i = 1, 2), by equalities

(
N1f

)
(t) =







−γF
(

t, max
s∈[p(t),q(t)]

∫ s

0
f(τ)dτ, max

s∈[β(t),α(t)]
f(s)

)

, t > 0

−γF
(

0, max
s∈[p(0),q(0)]

∫ s

0
f(τ)dτ, max

s∈[β(0),α(0)]
f(s)

)

, t ≤ 0,

for f ∈ Bi and

(
N2g

)
(t) = −γF

(

0, max
s∈[p(0),q(0)]

∫ s

0
g(τ)dτ, max

s∈[β(0),α(0)]
g(s)

)

, t ≤ 0.

The linear map j : B1 → B2 is defined as a restriction of the function
f ∈ B1 on the semi-axis R−.
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Then the operators Ni : Bi → Bi. Indeed, if follows from the
estimates

∣
∣
∣

(
N1f

)
(t)
∣
∣
∣ ≤µ

(

t, q(t)
∣
∣
∣
∣f
∣
∣
∣
∣
1
,
∣
∣
∣
∣f
∣
∣
∣
∣
1

)

, t > 0
∣
∣
∣

(
N1f

)
(t)
∣
∣
∣ ≤µ

(

0, q(0)
∣
∣
∣
∣f
∣
∣
∣
∣
1
,
∣
∣
∣
∣f
∣
∣
∣
∣
1

)

, t ≤ 0

that
(
N1f

)
(t) is bounded. The continuity of the functions

Mf (t) = max
s∈[p(t), q(t)]

∫ s

0
f(τ)dτ,

Pf (t) = max
s∈[β(t),α(t)]

f(s)

implies the continuity of the function
(
N1f

)
(t) that is

(
N1f

)
(t) ∈ B1.

Let f, g ∈ B1. Then for t > 0 we obtain

∣
∣
∣

(
N1f

)
(t) −

(
N1g

)
(t)
∣
∣
∣

≤mλ
(

t, max
s∈[p(t),q(t)]

∫ s

0

∣
∣f(τ) − g(τ)

∣
∣dτ, max

s∈[β(t),α(t)]

∣
∣f(s) − g(s)

∣
∣

)

≤mλ
(

t, q(t)
∣
∣
∣
∣f − g

∣
∣
∣
∣
1
,
∣
∣
∣
∣f − g

∣
∣
∣
∣
1

)

≤ m
∣
∣
∣
∣f − g

∣
∣
∣
∣
1

and for t ≤ 0

∣
∣
∣

(
N1f

)
(t) −

(
N1g

)
(t)
∣
∣
∣ ≤mλ

(

0, q(0)
∣
∣
∣
∣f − g

∣
∣
∣
∣
1
,
∣
∣
∣
∣f − g

∣
∣
∣
∣
1

)

≤m
∣
∣
∣
∣f − g

∣
∣
∣
∣
1

that is ∣
∣
∣

∣
∣
∣N1f −N1g

∣
∣
∣

∣
∣
∣
1
≤ m

∣
∣
∣
∣f − g

∣
∣
∣
∣
1
.

It is easy to verify that the operator Ni +
(
γ − α

)
I is an accretive

one where α = γ −m.

Finally, define the function

h(t) =

{
0, t > 0,
(
N2 + γI

)
ϕ(t), t ≤ 0.

Then Proposition 3.1.1 implies an existence of a unique function x(t) ∈
B1 such that

(
N1 + γI

)
x(t) = h(t)
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and jx(t) = ϕ(t), i.e., the initial value problem (3.3), (3.4) has a unique
solution.

Thus Theorem 3.1.1 is proved.

As a consequence of Proposition 3.1.2, we obtain:

Theorem 3.1.2. Let x(t;ϕ1) and x(t;ϕ2) be two solutions of the initial
value problem (3.1),(3.2).

Then

∣
∣x(t;ϕ1) − x(t;ϕ2)

∣
∣ ≤ γ

γ −m

[∣
∣ϕ1(0) − ϕ2(0)

∣
∣ + sup

t∈R−

∣
∣ϕ1(t) − ϕ2(t)

∣
∣

]

.

Now we will consider a scalar differential equation with “maxima”
which is more general than (3.1) and (3.2):

y′(t) =F

(

t, max
s∈[p1(t),q1(t)]

y(s), . . . , max
s∈[pm(t),qm(t)]

y(s),

max
s∈[α1(t),β1(t)]

y′(s), . . . , max
s∈[αn(t),βn(t)]

y′(s)

)

, t > 0,

(3.5)

y(t) = ψ(t), y′(t) = ψ′(t), t ≤ 0, (3.6)

where y ∈ R, pk, qk, αj , βj : R+ → R,
(
k = 1, 2, . . . , m; j =

1, 2, . . . , n
)
, pk(t) ≤ qk(t) ≤ t, αj(t) ≤ βj(t) ≤ t.

Changing the variables x(t) = y′(t) and ϕ(t) = ψ′(t), we obtain the
following initial value problem

x(t) =F

(

t, max
s∈[p1(t), q1(t)]

∫ s

0
x(τ)dτ, . . . , max

s∈[pm(t), qm(t)]

∫ s

0
x(τ)dτ,

max
s∈[β1(t),α1(t)]

x(s), . . . , max
s∈[βn(t),αn(t)]

x(s)

)

, t > 0,

(3.7)

x(t) = ϕ(t), t ≤ 0. (3.8)

The analogous result is valid.

Theorem 3.1.3. Let the following conditions be fulfilled:

1. The functions pi(t), qi(t), αi(t), βi(t) : R+ → R are continuous,
pi(t) ≤ qi(t) ≤ t, βi(t) ≤ αi(t) ≤ t.
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2. The functions F
(
t, x1, . . . , xm, y1, . . . , yn

)
: R+ × R

m+n → R

are continuous and

∣
∣
∣F
(
t, x1, . . . , xm, y1, . . . , yn

)∣∣
∣

≤ 1

γ
µ
(

t,
∣
∣x1

∣
∣, . . . ,

∣
∣xm

∣
∣,
∣
∣y1

∣
∣, . . . ,

∣
∣yn
∣
∣

)

,

∣
∣
∣F
(
t, x1, . . . , xm, y1, . . . , yn

)
−F

(
t, x̄1, . . . , x̄m, ȳ1, . . . , ȳn

)∣∣
∣

≤ m

γ
λ
(

t,
∣
∣x1 − x̄1

∣
∣, . . . ,

∣
∣xm − x̄m

∣
∣,
∣
∣y1 − ȳ1

∣
∣, . . . ,

∣
∣yn − ȳn

∣
∣

)

for some γ > m > 0 where the function µ̄(t) =
µ
(
t, q1(t)u, . . . , qm(t)u, u, . . . , u

)
is bounded in t and

λ
(
t, q1(t)u, . . . , qm(t)u, u, . . . , u

)
≤ u for every u ∈ R+.

3. The initial function ϕ(t) : R− → R satisfies condition 3 of
Theorem 3.1.1 (with obvious modification on the conformity
condition).

Then there exists a unique continuous and bounded solution of the
initial value problem (3.7), (3.8).

The proof is analogous to the one of Theorem 3.1.1.

Theorem 3.1.4. Let x(t;ϕ1) and x(t;ϕ2) be two solutions of the initial
value problem (3.7), (3.8).

Then

∣
∣x(t;ϕ1) − x(t;ϕ2)

∣
∣ ≤ γ

γ −m

[∣
∣ϕ1(0) − ϕ2(0)

∣
∣ + sup

t∈R−

∣
∣ϕ1(t) − ϕ2(t)

∣
∣

]

.

Now we will consider the following system of differential equations
with “maxima:”

y′k(t) = Fk

(

t, max
s∈[p1(t),q1(t)]

y1(s), . . . , max
s∈[pn(t),qn(t)]

yn(s),

max
s∈[β1(t),α1(t)]

y′1(s), . . . , max
s∈[βn(t),αn(t)]

y′n(s)

)

, t > 0, (3.9)

yk(t) = ψk(t), y′k(t) = ψ′
k(t), t ≤ 0, (3.10)
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where yk ∈ R, pi, qi, αj, βj : R+ → R,
(
k, i, j = 1, 2, . . . , n

)
, pk(t) ≤

qk(t) ≤ t, βj(t) ≤ αj(t) ≤ t.
Change the variables in the initial value problem (3.9), (3.10) and

obtain the system

xk(t) = Fk

(

t, max
s∈[p1(t),q1(t)]

∫ s

0
x1(τ)dτ, . . . , max

s∈[pn(t),qn(t)]

∫ s

0
xn(τ)dτ,

max
s∈[β1(t),α1(t)]

x1(s), . . . , max
s∈[βn(t),αn(t)]

xn(s)

)

, t > 0, (3.11)

with initial condition

xk(t) = ϕk(t), t ≤ 0. (3.12)

Theorem 3.1.5. Let the following conditions be fulfilled:

1. The functions pk(t), qk(t), αk(t), βk(t) : R+ → R are continu-
ous, and pk(t) ≤ qk(t) ≤ t, βk(t) ≤ αk(t) ≤ t, (k = 1, 2, . . . , n).

2. The functions Fk
(
t, x1, . . . , xn, y1, . . . , yn

)
: R+ × R

2n → R are
continuous and
∣
∣
∣Fk
(
t, x1, . . . , xn, y1, . . . , yn

)∣∣
∣ ≤ 1

γ
µk

(

t,
∣
∣x1

∣
∣, . . . ,

∣
∣xn
∣
∣,
∣
∣y1

∣
∣, . . . ,

∣
∣yn
∣
∣

)

,

∣
∣
∣Fk
(
t, x1, . . . , xn, y1, . . . , yn

)
− Fk

(
t, x̄1, . . . , x̄n, ȳ1, . . . , ȳn

)
∣
∣
∣

≤ m

γ
λk

(

t,
∣
∣x1 − x̄1

∣
∣, . . . ,

∣
∣xn − x̄n

∣
∣,
∣
∣y1 − ȳ1

∣
∣, . . . ,

∣
∣yn − ȳn

∣
∣

)

for some γ > m > 0;

µ̄k(t) = µk
(
t, q1(t)y, . . . , qn(t)y, y, . . . , y

)

is bounded in t and

n∑

k=1

λk
(
t, q1(t)yk, . . . , qn(t)yk, yk, . . . , yk

)
≤

n∑

k=1

yk.

3. The initial functions ϕk(t) : R− → R are continuous, bounded
and satisfy the condition

ϕk(0) = Fk

(

0, max
s∈[p1(0),q1(0)]

∫ s

0
ϕ1(τ)dτ, . . . , max

s∈[βn(0),αn(0)]
ϕn(s)

)

.
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Then there exists a unique continuous and bounded solution of the
initial value problem (3.11), (3.12).

Proof. Let B1 be Banach space CB
(
R
)
× · · · × CB

(
R
)

with norm

∣
∣
∣
∣ {f1, . . . , fn}

∣
∣
∣
∣
1

=
∣
∣
∣
∣f1

∣
∣
∣
∣
CB

+ . . . +
∣
∣
∣
∣fn
∣
∣
∣
∣
CB

where CB
(
R
)

is Banach space of all continuous and bounded functions
f(t) : R → R with supremum norm

∣
∣
∣
∣ ·
∣
∣
∣
∣
CB

. Let B2 be Banach space

CB
(
R
)
× CB

(
R
)
× . . . × CB

(
R−
)

with the corresponding norm.

Define the operators Ni : Bi → Bi
(
i = 1, 2

)
by the formulas

N1 {f1, . . . , fn} = {h1, . . . , hn} , {f1, . . . , fn} ∈ B1,

hk(t) =







−γFk
(

t, max
s∈[p1(t),q1(t)]

∫ s

0
f1(τ)dτ, . . . , max

s∈[pn(t),qn(t)]

∫ s

0
fn(τ)dτ,

max
s∈[β1(t),α1(t)]

f1(s), . . . , max
s∈[βn(t),αn(t)]

fn(s)
)

, t > 0,

−γFk
(

0, max
s∈[p1(0),q1(0)]

∫ s

0
f1(τ)dτ, . . . , max

s∈[pn(0),qn(0)]

∫ s

0
fn(τ)dτ,

maxs∈[β1(0),α1(0)] f1(s), . . . ,maxs∈[βn(0),αn(0)] fn(s)
)

, t ≤ 0
(
k = 1, 2, . . . , n

)
;

N2 {g1, . . . , gn} =
{
h̄1, . . . , h̄n

}
,

where

h̄k(t) = −γFk
(

t, max
s∈[p1(0), q1(0)]

∫ s

0
g1(τ)dτ, . . . , max

s∈[pn(0), qn(0)]

∫ s

0
gn(τ)dτ,

max
s∈[β1(0),α1(0)]

g1(s), . . . , max
s∈[βn(0),αn(0)]

gn(s)
)

, t ≤ 0,

{g1, . . . , gn} ∈ B2.

The linear map j : B1 → B2 is defined as a restriction of the function
f ∈ B1 on the semi-axis R−.

As in the proof of Theorem 3.1.1, it can be established that Ni :
Bi → Bi. We shall show only the Lipschitz continuity of N1.
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Indeed, for t > 0 and {f1, . . . , fn},
{
f̄1, . . . , f̄n

}
∈ B1 we have

∣
∣
∣N1 {f1, . . . , fn} −N1

{
f̄1, . . . , f̄n

}
∣
∣
∣

≤
n∑

k=1

∣
∣hk(t) − h̄k(t)

∣
∣

≤m
n∑

k=1

λk

(

t, q1(t)
∣
∣
∣
∣fk − f̄k

∣
∣
∣
∣, . . . , qn(t)

∣
∣
∣
∣fk − f̄k

∣
∣
∣
∣,

∣
∣
∣
∣fk − f̄k

∣
∣
∣
∣, . . . ,

∣
∣
∣
∣fk − f̄k

∣
∣
∣
∣

)

≤m
n∑

k=1

∣
∣
∣
∣fk − f̄k

∣
∣
∣
∣

=m
∣
∣
∣
∣ {f1, . . . , fn} −

{
f̄1, . . . , f̄n

} ∣
∣
∣
∣
1
.

An analogous estimate for t ≤ 0 together with the last inequalities
implies

∣
∣
∣

∣
∣
∣N1 {f1, . . . , fn} −N1

{
f̄1, . . . , f̄n

}
∣
∣
∣

∣
∣
∣
1
≤

m
∣
∣
∣
∣ {f1, . . . , fn} −

{
f̄1, . . . , f̄n

} ∣
∣
∣
∣
1

which completes the proof of Theorem 3.1.5.

As a consequence of Proposition 3.1.2 we obtain:

Theorem 3.1.6. Let the conditions of Theorem 3.1.5 be satisfied and
the functions {x1(ϕ), . . . , xn(ϕ)} and {x1(ϕ̄), . . . , xn(ϕ̄)} be two solu-
tions of the initial value problem (3.11), (3.12).

Then we have

n∑

k=1

∣
∣xk(ϕ)(t) − xk(ϕ̄)(t)

∣
∣

≤ γ

γ −m

[
n∑

k=1

∣
∣ϕk(0) − ϕ̄k(0)

∣
∣+

n∑

k=1

sup
t∈R−

∣
∣ϕk(t) − ϕ̄k(t)

∣
∣

]

,

where ϕ = {ϕ1, . . . , ϕn} , ϕ̄ = {ϕ̄1, . . . , ϕ̄n}.
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3.2 Existence Theory for Boundary Value

Problems

In this section the method of a priori estimates based on the Leray-
Schauder topological degree theory is developed to establish the exis-
tence of solutions of general boundary value problems for differential
equations with “maxima.”

Consider the following differential equation with “maxima:”

x′ = f
(
t, x(t), max

τ∈S(t)
x(τ)

)
, t ∈ [a, b],

x(t) = 0, t /∈ [a, b],

ϕ(x) = 0,

(3.13)

where x :∈ R
n, S(t) ⊂ (−∞, t], f : [a, b]×R

n×R
n → R

n, ϕ is a vector
functional over a space of vector functions on [a, b] to be specified in
the sequel, which represents the boundary conditions.

We emphasize that the additional assumption x(t) = 0 for t /∈ [a, b]
is unnecessary if S(t) ⊂ [a, b] for all t ∈ [a, b]. In the opposite case,
however, one can expect different types of such additional assumption
depending on the concrete applications. For example, instead of x = 0
it can be required that x(t) = ϕ(t) outside the interval [a, b], where
ϕ(.) ∈ R

n is some given vector function, or x(t) = x(a) for t ≤ a and
x(t) = x(b) for t ≥ b. Furthermore, the right side of the differential
equation in (3.13) can also be more complex, e.g., there can occur the
dependence on maximum values of different components of the state
vector x on different time intervals.

Initially we will develop the Leray-Schauder topological degree the-
ory, which will be the mathematical tool in the existence results for
different types of boundary value problems for differential equations
with “maxima.”

Let Lp(a, b) stand for the standard Lebesgue space of functions
integrable on the interval (a, b) with exponent 1 ≤ p <∞ (or essentially
bounded when p = ∞). In the sequel we make an extensive use of
the space Lp

(
(a, b); R

n
)

(denoted by Lpn for brevity) of functions with
values in R

n with components in Lp(a, b), equipped with its usual norm

∣
∣
∣
∣x
∣
∣
∣
∣
p

:=







(∫ b

a

∣
∣x(τ)

∣
∣pdτ

)1/p
, 1 ≤ p <∞,

ess sup
(a,b)

∣
∣x(t)

∣
∣, p = ∞,
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where
∣
∣ ·
∣
∣ stands for the norm in R

n. We denote by ACpn the space
of vector functions with absolutely continuous components and with
derivatives in Lpn, equipped with the norm

∣
∣
∣
∣x
∣
∣
∣
∣
ACp

n
:=
∣
∣x(a)

∣
∣+
∣
∣
∣
∣x′
∣
∣
∣
∣
p
.

Also we denote by Cn[a, b] (Cn, for short) the space of all R
n-valued

functions with continuous components, equipped with the usual maxi-
mum norm.

Suppose we have to solve a nonlinear boundary value problem
{
Lx = F (x),
φ(x) = 0,

(3.14)

where x ∈ X is an unknown, L : X → Y is some linear operator,
F : X → Y is a nonlinear operator, φ : X → R

n is a vector functional,
and X and Y are given Banach spaces.

Let X be isomorphic to the direct product of some Banach space E
and the finite-dimensional space R

n by an isomorphism J : E × R
n →

X, by J(u, λ) = Λu + Dλ, where Λ : E → X and D : R
n → X.

Assuming that Q = LΛ : E → E is invertible, we can then reduce the
problem (3.14) to the form

{
u = F(u, λ),
D(u, λ) = 0,

(3.15)

where u ∈ E and λ ∈ R
n are unknowns, F : E×R

n → E is a nonlinear
operator and D : E×R

n → R
n a nonlinear vector functional. To study

the solvability of the latter we apply the topological degree theory.
For the purpose of the investigations in this section, the Leray-

Schauder topological degree theory will be applied to mappings of the
form

Ψ(u, λ) =

{
u−F(u, λ)
D(u, λ)

}

. (3.16)

Introduce regions (open bounded subsets) Ω1 ⊂ E and Ω2 ⊂ R
n and

denote their boundaries by ∂Ω1 and ∂Ω2, respectively. Also, let Ω =
Ω1 × Ω2.

To develop the Leray-Schauder topological degree theory, one needs
the compactness of Ψ, which is provided by the following assumption:

H3.2.1. F is a compact and continuous operator, and D is a continuous
vector functional which maps bounded sets into bounded sets.
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In fact, the condition (H3.2.1 ) clearly implies that the mapping Ψ is a
compact perturbation of the identity in E × R

n. Then the additional
requirement of nondegeneracy of the mapping Ψ on ∂Ω is enough to
define correctly the topological degree deg

(
Ψ, Ω, 0

)
, having all the

ordinary properties (see [Nirenberg 1974]). We say that the mapping Ψ
(the system (3.15)) is topologically nontrivial on the regions Ω1 ⊂ E
and Ω2 ⊂ R

n (is V
(
Ω1,Ω2), for short) whenever deg

(
Ψ, Ω, 0

)
6= 0.

Thus, if the system (3.15) is V
(
Ω1,Ω2), then it admits at least one

solution (u, λ) ∈ Ω.

To calculate the topological degree of Ψ, we will use the following
result that extends the analogous statements by S.A. Vavilov ( [Vavilov
1993]).

Consider an auxiliary finite-dimensional continuous vector field
D0(λ) : R

n → R
n. In the sequel we will always take D0(λ) := D(0, λ).

Theorem 3.2.1. Suppose Ω1 ⊂ E is convex, F is a compact and
continuous operator, D is a continuous vector functional which maps
bounded sets into bounded sets, and:

(i) F(∂Ω1, clΩ2) ⊂ Ω1;

(ii) for all u ∈ clΩ1 and for all λ ∈ ∂Ω2 the inequality 0 ≤
∣
∣D(u, λ)−

D0(λ)
∣
∣ <

∣
∣D0(λ)

∣
∣ holds.

Then deg(Ψ, Ω, 0) = deg(D0, Ω2, 0). In particular, when the latter
is not zero, then the system (3.15) has at least one solution (u′, λ′) ∈ Ω.
The set of such solutions can be approximated by the Galerkin numerical
scheme applied to (3.15).

Proof. Choose some u0 ∈ Ω1 and consider the homotopy

Ψt(u, λ) =

{
u− (1 − t)u0 − tF(u, λ)

D0(λ) + t
(
D(u, λ) − D0(λ)

)

}

, t ∈ [0, 1].

Since ∂Ω = ∂Ω1 × clΩ2∪ clΩ1×∂Ω2, we observe that Ψt 6= 0 on ∂Ω
for all t ∈ [0, 1]. Furthermore, clearly deg(Ψ0, Ω, 0) = deg(D0, Ω2, 0)
by the properties of the degree [Krasnoselskii and Zabreiiko 1975].
Thus, noting the compactness of the above homotopy and applying
the homotopy invariance of the degree, we conclude the proof.
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Remark 3.2.1. Suppose 0 ∈ Ω1. The statement of Theorem 3.2.1
remains valid if (i) is replaced by

λ ∈ clΩ2, t ∈ [0, 1], u = tF(u, λ) ⇒ u /∈ ∂Ω1.

If, in particular, Ω1 is an open ball with center zero, then the latter
condition follows from the existence of a uniform a priori estimate for
u ∈ E from the first equation of (3.15).

To calculate the topological degree of Ψ we will also use the iterated
mapping

Ψ(1)(u, λ) =

{
u−F(u, λ)
D
(
F(u, λ), λ

)

}

. (3.17)

Theorem 3.2.2. If both Ψ and Ψ(1) have the compactness property
(C), and one of them is nondegenerate on ∂Ω, then so is the other.
Moreover, in this case

deg
(
Ψ, Ω, 0

)
= deg

(
Ψ(1), Ω, 0

)
.

Proof. The first part of the statement is obvious, for the sets of ze-
ros of Ψ and Ψ(1) coincide. To prove the second part, note that the
vector fields Ψ and Ψ(1) can have opposite directions on ∂Ω only if
u = F(u, λ). But in this case their finite-dimensional components are
equal and nonzero due to nondegeneracy. Therefore Ψ and Ψ(1) never
have opposite directions, which implies the statement.

Now we will apply the obtained above theoretical result to investi-
gate the solvability of the system (3.13) with a boundary condition

φ

(

λ+

∫ t

α
x(s)ds

)

= 0, (3.18)

where the boundary condition (3.18) is represented by a nonlinear vec-
tor functional φ : ACqn → R

n, 1 < q < ∞. Applying the isomorphism
between ACqn and Lqn × R

n given by the formula

J : Lqn × R
n ∋ (u, λ) 7→ x =

∫ t

a
u(τ)dτ + λ ∈ ACqn,
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we reduce the original problem (3.13), (3.18) to the following system
of type (3.15):

u(t) = f

(

t, λ+

∫ t

a
u(τ)dτ, max

(

0S , λ+ max
τ∈S̃(t)

∫ τ

a
u(s)ds

))

,

φ
(

λ+

∫ t

a
u(τ)dτ

)

= 0.

(3.19)

Here and in the sequel we write for brevity S̃(t) := S(t)∩ [a, b] and

0S(t) =

{
0, S(t) 6= S̃(t),

−∞, S(t) = S̃(t).

Assume, further, that the set of functions S(.) takes closed values and
is measurable in the sense that for any open V ⊂ R the set

S−1(V ) :=
{
t
∣
∣ S(t) ∩ V 6= ∅

}

is measurable. Note that there are various measurability criteria for
set functions (see, for instance, Chapter III of [Castaing and Valadier
1977]). In particular, our assumptions hold when S(t) := [r(t), s(t)],
where r(.) and s(.) are measurable (not necessarily almost everywhere
finite) functions. Finally, define

γ :=

(

sup
⋃

t∈[a,b] S̃(t) − a

b− a

)(q−1)/q

.

To get a solvability result for the original problem, we can now use the
topological degree theory by applying Theorems 3.2.1 and 3.2.2.

We now pass to important particular examples of the boundary
value problem (3.13).

Consider a general nonlinear two-point boundary value problem for
a differential equation with “maxima:”

x′ = f
(
t, x(t), max

τ∈S(t)
x(τ)

)
, t ∈ [a, b],

x(t) = 0, t /∈ [a, b],

h
(
x(a), x(b)

)
= 0,

(3.20)

where h : R
2n → R

n.
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After the above reduction, the system (3.20) could be written in
the form

u(t) = f
(

t, λ+

∫ t

a
u(τ)dτ, max

(
0S , λ+ max

τ∈S̃(t)

∫ τ

a
u(s)ds

))

,

h
(

λ, λ+

∫ b

a
u(τ)dτ

)

= 0.

(3.21)

Theorem 3.2.3. Let the following conditions be fulfilled:

(i) f(t, x, y) is a Carathéodory vector function (i.e., continuous in
(x, y) ∈ R

2n for a.e. t ∈ [a, b] and measurable in t for each (x, y)),
while for a.e. t ∈ [a, b] the inequalities

∣
∣x
∣
∣ ≤ U,

∣
∣y
∣
∣ ≤ V imply

∣
∣f(t, x, y)

∣
∣ ≤ α

(
t, U, V

)
,
∣
∣
∣
∣α
(
·, U, V

)∣
∣
∣
∣
q
≤ Φ(U, V ),

∣
∣x1

∣
∣ ≤ U,

∣
∣x2

∣
∣ ≤ U

∣
∣y1

∣
∣ ≤ V,

∣
∣y2

∣
∣ ≤ V







⇒
∣
∣
∣
∣

∫ b

a

(

f(t, x1, y1) − f(t, x2, y2)
)

dt

∣
∣
∣
∣
≤ Φ1(U, V ).

(ii) The vector function h(x, y) is continuous, and

∣
∣x
∣
∣ ≤ U,

∣
∣y1

∣
∣ ≤ V,

∣
∣y2

∣
∣

≤ V ⇒
∣
∣h(x, y1) − h(x, y2)

∣
∣ ≤ δ(U, V )

∣
∣y1 − y2

∣
∣.

(iii)
∣
∣D0(λ)

∣
∣ ≥ β(ρ2) > 0 if

∣
∣λ
∣
∣ = ρ2, while deg

(
D0,

∣
∣λ
∣
∣ < ρ2, 0

)
6= 0,

where

D0(λ) = h

(

λ, λ+

∫ b

a
f
(

τ, λ, max
(
0S(τ), λ

))

dτ

)

.

(iv) We have

Φ(ρ2 + ρ1, ρ2 + γρ1) < ρ1/(b− a)(q−1)/q,

δ
(
ρ2, ρ2 + Φ(ρ2 + ρ1, ρ2 + γρ1)

)
Φ1(ρ2 + ρ1, ρ2 + γρ1) < β(ρ2).

(3.22)
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Then the two-point boundary value problem (3.20) has at least one
solution x ∈ ACqn, 1 < q <∞, satisfying

∣
∣
∣
∣x′
∣
∣
∣
∣
q
< ρ1/(b−a)(q−1)/q and

∣
∣x(a)

∣
∣ < ρ2.

Proof. Substituting the first equation of (3.21) into the second, we ob-
tain the system

u(t) = f
(

t, λ+

∫ t

a
u(τ)dτ, max

(
0S , λ+ max

τ∈S̃(t)

∫ τ

a
u(s)ds

))

,

h
(

λ, λ+

∫ b

a
f
(

t, λ+

∫ t

a
u(τ)dτ,max

(
0S , λ+ max

τ∈S̃(t)

∫ τ

a
u(s)ds

))

dt
)

= 0.

(3.23)

Therefore, to any solution (u, λ) ∈ Lqn × R
n of the latter there

corresponds a solution x ∈ ACqn of the original problem (3.20). Consider
the open balls B1 ⊂ Lqn and B2 ⊂ R

n,

B1 :=
{

u
∣
∣
∣

∣
∣
∣
∣u
∣
∣
∣
∣
q
< ρ1/(b− a)(q−1)/q

}

, B2 :=
{

λ
∣
∣
∣

∣
∣λ
∣
∣ < ρ2

}

.

The statement will be proven if we show that the system (3.23) is
V (B1, B2). For this purpose we apply Theorem 3.2.1.

To verify the compactness assumption (C ), note that according to
(i) the Nemytskĭı operator

N : L∞
n × L∞

n ∋ (v1, v2) 7→ f
(
·, v1(.), v2(.)

)
∈ Lqn

is continuous and maps bounded sets into bounded sets. Now define
formally an operator M on the space Cn by

(
Mv

)
(t) := max

τ∈S̃(t)
v(t).

For any v ∈ Cn clearly
(
Mv

)
(t) is measurable due to the Krasnosel’skĭı-

Ladyzhenskĭı lemma (see Theorem 6.2 of [Appell and Zabrejko 1990])
and bounded. Thus M : Cn → L∞

n and obviously it maps bounded sets
into bounded sets. The continuity of M follows from the fact that if
a sequence of continuous functions converges uniformly on [a, b], then
their maxima on any compact subset of [a, b] converge to the maximum
of the limit function on the same subset, the rate of the latter conver-
gence being independent of the choice of the subset. Hence one easily
shows that the compactness of the nonlinear operator on the right side
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of the first equation of (3.23) is ensured by the compactness of the
imbedding ACqn ⊂ Cn, while the continuity of the vector functional
corresponding to the second equation is provided by (ii). To conclude
the proof it remains to observe that conditions (i) and (ii) of Theorem
3.2.1 are ensured by (3.22).

Remark 3.2.2. In (i) one may choose Φ1(U, V ) := 2(b −
a)(q−1)/qΦ(U, V ). However, in applications one can often get sharper
estimates.

Remark 3.2.3. The theorem also opens the way to numerical treat-
ment of the original value problem (3.20). Namely, the set of pairs
(u, λ) in appropriate regions (see the proof), which corresponds to the
solutions of (3.20) found in the theorem, can be approximated by the
Galerkin numerical scheme applied to (3.21). The same refers to all
the statements below.

As an important particular case consider the boundary value prob-
lem

x′ = f
(
t, x(t), max

τ∈S(t)
x(τ)

)
, t ∈ [a, b],

x(t) = 0, t /∈ [a, b],

x(a) = x(b) + ξh1(x(a), x(b)),

(3.24)

where h1 : R
2n → R

n and ξ ∈ R is a perturbation parameter. For ξ = 0
this is a periodic-type boundary value problem (however, one should
not speak of periodic solutions unless S(t) ⊂ (−∞, t]). One is therefore
interested both in existence of solutions for ξ = 0 and in whether they
do not disappear for small values of ξ.

Theorem 3.2.4. Let the following conditions be fulfilled:

(i) f(t, x, y) is a Carathéodory vector function, and for a.e. t ∈ [a, b]
the inequalities

∣
∣x
∣
∣ ≤ U,

∣
∣y
∣
∣ ≤ V imply

∣
∣f(t, x, y)

∣
∣ ≤ α

(
t, U, V

)
,
∣
∣
∣
∣α
(
·, U, V

)∣
∣
∣
∣
q
≤ Φ(U, V ),

and the inequalities
∣
∣x1

∣
∣ ≤ U,

∣
∣x2

∣
∣ ≤ U

∣
∣y1

∣
∣ ≤ V,

∣
∣y2

∣
∣ ≤ V
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imply

∣
∣
∣
∣

∫ b

a

(

f(t, x1, y1) − f(t, x2, y2)
)

dt

∣
∣
∣
∣
≤ Φ1(U, V ).

(ii) The vector function h1(x, y) is continuous.

(iii)
∣
∣D0(λ)

∣
∣ ≥ β(ρ2) > 0 if

∣
∣λ
∣
∣ = ρ2, while deg

(
D0,

∣
∣λ
∣
∣ < ρ2, 0

)
6= 0,

where

D0(λ) =

∫ b

a
f
(

τ, λ, max
(
0S(τ), λ

))

dτ.

(iv) We have






Φ(ρ2 + ρ1, ρ2 + γρ1) < ρ1/(b− a)(q−1)/q ,

Φ1(ρ2 + ρ1, ρ2 + γρ1) < β(ρ2).
(3.25)

Then there is ξ∗ > 0 such that for each ξ with
∣
∣ξ
∣
∣ ≤ ξ∗ the boundary

value problem (3.24) has at least one solution xξ ∈ ACqn, 1 < q < ∞,
satisfying

∣
∣
∣
∣x

′

ξ

∣
∣
∣
∣
q
< ρ1/(b− a)(q−1)/q and

∣
∣xξ(a)

∣
∣ < ρ2.

Proof. Write out the system of type (3.15) corresponding to the original
problem:

u(t) = f
(

t, λ+

∫ t

a
u(τ)dτ, max

(
0S , λ+ max

τ∈S̃(t)

∫ τ

a
u(s)ds

))

,

∫ b

a
u(τ)dτ + ξh1

(

λ, λ+

∫ b

a
u(τ)dτ

)

= 0,

(3.26)

and consider the iteration, as it was introduced by (3.17), of the system
obtained by setting ξ = 0:

u(t) = f
(

t, λ+

∫ t

a
u(τ)dτ, max

(
0S , λ+ max

τ∈S̃(t)

∫ τ

a
u(s)ds

))

,

∫ b

a
f
(

t, λ+

∫ t

a
u(τ)dτ, max

(
0S , λ+ max

τ∈S̃(t)

∫ τ

a
u(s)ds

))

dt = 0.

(3.27)

Let B1 and B2 be the balls introduced in the proof of Theorem
3.2.3. The assumptions imply that (3.27) is V (B1, B2) according to
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Theorem 3.2.1. Applying the iteration Theorem 3.2.2, one observes that
the system (3.26) for ξ = 0 is also V (B1, B2). The desired conclusion
follows now from the stability of topological degree with respect to
small perturbations of the mapping.

Remark 3.2.4. As will be clear from the proof, one can in fact also
assert that as ξ → 0, the sets of solutions to (3.24) found in the the-
orem are uniformly attracted to the set of solutions to the unperturbed
problem with ξ = 0.

Another classical application is the Cauchy problem

x′ = f
(
t, x(t), max

τ∈S(t)
x(τ)

)
, t ∈ [a, b],

x(t) = 0, t /∈ [a, b],

x(a) = λ0,

(3.28)

where λ0 ∈ R
n. It is worth noting that the system (3.21) in this case is

reduced to a single equation:

u(t) = f

(

t, λ0 +

∫ t

a
u(τ)dτ, max

(

0S , λ0 + max
τ∈S̃(t)

∫ τ

a
u(s)ds

))

.

(3.29)
The following statement can be obtained either as a simple corollary of
Theorem 3.2.3 or independently by applying the Schauder fixed point
principle to (3.29).

Theorem 3.2.5. Let the following conditions be fulfilled:

(i) f(t, x, y) is a Carathéodory vector function, and for a.e. t ∈ [a, b]
the inequalities

∣
∣x
∣
∣ ≤ U,

∣
∣y
∣
∣ ≤ V implies

∣
∣f(t, x, y)

∣
∣ ≤ α

(
t, U, V

)
,
∣
∣
∣
∣α
(
·, U, V

)∣
∣
∣
∣
q
≤ Φ(U, V ).

(ii) We have

Φ
(∣
∣λ0

∣
∣+ ρ1,

∣
∣λ0

∣
∣+ γρ1

)

< ρ1/(b− a)(q−1)/q. (3.30)

Then the Cauchy problem (3.28) admits at least one solution x ∈
ACqn, 1 < q <∞, satisfying

∣
∣
∣
∣x′
∣
∣
∣
∣
q
< ρ1/(b− a)(q−1)/q .
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Note that the operator M introduced in the proof of Theorem 3.2.3
is a Volterra operator. To show this, we consider the following simple
example which rather frequently appears in applications:

x′ = F(t) + B(t) max
τ∈S(t)

x(τ), t ∈ [a, b],

x(t) = x(a) = x(b), t ≤ a,
(3.31)

where B(.) is an n × n matrix function, and F(.) is a vector function.

For brevity set B :=
∫ b
a B(t)dt, F :=

∫ b
a F(t)dt, β1 :=

∫ b
a

∣
∣
∣
∣
∣
∣B(t)

∣
∣
∣
∣
∣
∣dt,

f(t) :=
∣
∣F(t)

∣
∣, b(t) :=

∣
∣
∣
∣
∣
∣B(t)

∣
∣
∣
∣
∣
∣, where

∣
∣
∣
∣
∣
∣ ·
∣
∣
∣
∣
∣
∣ stands for the matrix

norm compatible with the norm in R
n. Also, let

µ(t) := b(t) exp

(∫ t

a
b(τ)dτ

)

.

Theorem 3.2.6. Let f ∈ Lq1, b ∈ Lq1 and θ := inf |λ|=1

∣
∣Bλ

∣
∣ > 0. Then

the problem (3.31) admits at least one solution x ∈ ACqn, 1 < q < ∞,
provided that

(b− a)(q−1)/q
∣
∣
∣
∣µ
∣
∣
∣
∣
q
β1 < θ.

Proof. Write out the system of equations of type (3.15) corresponding
to the problem (3.31):

u(t) = F(t) + B(t)
(

λ+ max
(
0S , max

τ∈S̃(t)

∫ τ

a
u(s)ds

))

,

F +Bλ+

∫ b

a
B(t)max

(
0S , max

τ∈S̃(t)

∫ τ

a
u(s)ds

)
dt = 0.

(3.32)

We will prove that for some B1 ⊂ Lqn and B2 ⊂ R
n this system is

V (B1, B2) according to Theorem 2.2.1, and thus show the statement.
In fact, let B1 be as in the proof of Theorem 2.2.3 and B2 ⊂ R

n be the
ball

∣
∣λ− λ∗

∣
∣ < ρ2, λ

∗ := −B−1F . Consider the auxiliary vector field

D0(λ) := F +Bλ.

It is clear that deg(D0, B2, 0) 6= 0 and
∣
∣D0(λ)

∣
∣ ≥ θρ2 when

∣
∣λ−λ∗

∣
∣ =

ρ2. Condition (ii) of Theorem 2.2.1 holds provided that

β1ρ1 < θρ2. (3.33)
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Now turn to the first equation of (3.32). To abbreviate the notation,
let y(t) :=

∣
∣u(t)

∣
∣ and y0 :=

∣
∣λ
∣
∣. Obviously this equation implies

y(t) ≤ f(t) + b(t)

(

y0 +

∫ t

a
y(τ)dτ

)

,

and constructing the Cauchy majorant problem and using a Chaplygin
type result on differential inequalities one easily concludes that

y(t) ≤ f(t) + µ(t)

(

y0 +

∫ t

a

(

f(τ)/µ(τ)
)

dτ

)

.

Hence if λ ∈ clB2, then
∣
∣
∣
∣u
∣
∣
∣
∣
q
≤ c1 +

∣
∣
∣
∣µ
∣
∣
∣
∣
q

(
ρ2 + c2

)
, where c1, c2

are some positive constants. Condition (i) of Theorem 3.2.1 will hold
provided that

c1 +
∣
∣
∣
∣µ
∣
∣
∣
∣
q

(
ρ2 + c2

)
< ρ1/(b− a)(q−1)/q. (3.34)

It remains to note that, under the conditions of the theorem being
proved, the relations (3.33) and (3.34) are valid simultaneously for suf-
ficiently large ρ2 > 0.

Analogous results can be easily provided for more general problems

x′ = F(t) + A(t)x(t) + B(t) max
τ∈S(t)

x(τ), t ∈ [a, b],

x(t) = x(a) = x(b), t ≤ a,
(3.35)

where A(.) is an n × n matrix function. In this case seeking solutions
in the form

x(t) = X(t)λ+X(t)

∫ t

a
X−1(τ)u(τ)dτ,

where X(t) is the fundamental matrix of the system x′ − A(t)x = 0,
we obtain an auxiliary system of type (3.32) to be analyzed,

u(t) = F(t) + B(t)max
(

λ,X(t)λ+ max
τ∈S̃(t)

X(τ)

∫ τ

a
X−1(s)u(s)ds

)

,

F̃ +
(
X(b) − In

)
λ+X(b)

∫ b

a
B(t)max

(

λ, X(t)λ

+ max
τ∈S̃(t)

X(τ)

∫ τ

a
X−1(s)u(s)ds

)

dt = 0,

where F̃ = X(b)
∫ b
a X

−1(t)F(t)dt and In is the n× n identity matrix.
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3.3 Differential Equations with “Maxima” via

Weakly Picard Operator Theory

Consider the following initial value problem for a scalar differential
equation with “maxima”

x′(t) =f
(

t, x(t), max
ξ∈[a,t]

x(ξ)
)

, t ∈ [a, b], (3.36)

x(a) =α, (3.37)

where x ∈ R, a, b ∈ R, a < b, α ∈ R.
We will say that conditions H3.3 are satisfied if:

H3.3.1 The function f ∈ C([a, b] × R
2,R);

H3.3.2 There exists L > 0 such that

∣
∣f(t, u1, u2) − f(t, v1, v2)| ≤ Lmax

(∣
∣u1 − v1

∣
∣,
∣
∣u2 − v2

∣
∣

)

for all t ∈ [a, b] and ui, vi ∈ R, i = 1, 2;

H3.3.3 The inequality L(b− a) < 1 holds.

Note the initial value problem (3.36), (3.37) is equivalent to the integral
equation

x(t) = α+

∫ t

a
f
(

s, x(s), max
ξ∈[a,s]

x(ξ)
)

ds, t ∈ [a, b]. (3.38)

Let us consider the operators Bf , Ef : C[a, b] → C[a, b] defined by

Bf (x(t)) = α+

∫ t

a
f
(

s, x(s), max
ξ∈[a,s]

x(ξ)
)

ds

and

Ef (x(t)) = x(a) +

∫ t

a
f
(

s, x(s), max
ξ∈[a,s]

x(ξ)
)

ds.

For any α ∈ R, we consider the set Xα =
{
x ∈ C[a, b] : x(a) = α

}
.

We note that C[a, b] = ∪α∈RXα is a partition of C[a, b].

Lemma 3.3.1. Let conditions H3.3 be fulfilled.
Then
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(a) Bf (C[a, b]) ⊂ Xα and Ef (Xα) ⊂ Xα, ∀α ∈ R;

(b) Bf
∣
∣
Xα

= Ef
∣
∣
Xα

, ∀α ∈ R.

In this section we shall prove that if conditions H3.3.1 and H3.3.2
are satisfied and if L is small enough, then the operator Ef is weakly
Picard operator in (C[a, b], ‖.‖) where ‖x‖ := maxt∈[a,b] x(t), and we
study the equation (3.36) in the terms of the weakly Picard operator
theory.

Let (X, d) be a metric space and A : X → X be an operator. We
shall use the following notations:

FA =
{
x ∈ X

∣
∣ A(x) = x

}
– the fixed point set of A;

I(A) =
{
Y ⊂ X

∣
∣ A(Y ) ⊂ Y, Y 6= ∅

}
– the family of the nonempty

invariant subsets of A.

Consider the Pompeiu-Housdorff functional H : P (X) × P (X) →
R+ ∪ {+∞} defined by

H(Y,Z) = max

{

sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(y, z)

}

.

Definition 3.3.1. ( [Rus 2001]) Let (X, d) be a metric space. An oper-
ator A : X → X is called a Picard operator (PO) if there exists x∗ ∈ X
such that:

(i) FA = {x∗};

(ii) the sequence
(
An(x0)

)

n∈N
approaches x∗ for all x0 ∈ X.

Definition 3.3.2. ( [Rus 2001]). Let (X, d) be a metric space. An
operator A : X → X is a weakly Picard operator (WPO) if the sequence
(
An(x)

)

n∈N
converges for all x ∈ X, and its limit (which may depend

on x) is a fixed point of A.

Let A be a weakly Picard operator. Consider the operator A∞ :
X → X defined by A∞(x) := limn→∞An(x) ( [Rus 2001]).

It is clear that A∞(X) = FA.

Definition 3.3.3. ( [Rus 2001]) Let A be a weakly Picard operator
and c > 0. The operator A is called a c-weakly Picard operator if
d
(
x,A∞(x)

)
≤ cd

(
x,A(x)

)
, ∀x ∈ X.

Now we will prove the following existence result:
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Theorem 3.3.1. Let conditions H3.3 be fulfilled.
Then the problem (3.36), (3.37) has a unique solution in C[a, b] and

this solution is the uniform limit of the successive approximations.

Proof. The problem (3.36), (3.37) is equivalent to the following opera-
tor equation

Bf (x) = x, x ∈ C[a, b]

and the solution of (3.36), (3.37) is a fixed point of the above equation.
On the other hand we have

∣
∣
∣Bf (x)(t) −Bf (y)(t)

∣
∣
∣

≤ Lf

∫ t

a
max

(
∣
∣x(s) − y(s)

∣
∣,

∣
∣
∣
∣

max
ξ∈[a,s]

x(ξ) − max
ξ∈[a,s]

y(ξ)

∣
∣
∣
∣

)

ds.

But

max
s∈[a,b]

∣
∣
∣
∣

max
ξ∈[a,s]

x(ξ) − max
ξ∈[a,s]

y(ξ)

∣
∣
∣
∣
≤ max

s∈[a,b]

∣
∣x(s) − y(s)

∣
∣.

So,
∣
∣
∣

∣
∣
∣Bf (x) −Bf (y)

∣
∣
∣

∣
∣
∣ ≤ Lf (b− a)

∣
∣
∣
∣x− y

∣
∣
∣
∣, ∀x, y ∈ C[a, b],

i.e., Bf is a contraction w.r.t. Chebyshev norm on C[a, b]. The proof
follows from the contraction principle.

Remark 3.3.1. The operator Bf in Theorem 3.3.1 is PO. But

Bf
∣
∣
Xα

= Ef
∣
∣
Xα
, ∀α ∈ R.

Hence, the operator Ef is WPO and FEf
∩Xα =

{
x∗α
}
, ∀α ∈ R, where

x∗α is the unique solution of the problem (3.36), (3.37).

We will prove the following comparison result:

Theorem 3.3.2. Let the following conditions be fulfilled:

1. The conditions H3.3 are satisfied.

2. The function f : [a, b] × R
2 → R is increasing in its second and

third argument.
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3. The function x(t) is a solution of the equation (3.36) and y(t) is
a solution of the inequality

y′(t) ≤ f
(

t, y(t), max
ξ∈[a,t]

y(ξ)
)

, t ∈ [a, b]. (3.39)

Then y(a) ≤ x(a) implies that y(t) ≤ x(t) for t ∈ [a, b].

Proof. In the terms of the operator Ef , the equation (3.36) and in-
equality (3.39) could be written in the form

x = Ef (x) and y ≤ Ef (y).

and

x(a) ≤ y(a).

From the conditions H3.3 we have that the operator Ef is WPO.
From the condition 2, E∞

f is increasing (see [Rus 2001]). If α ∈ R, then
we denote by α̃ the following function

α̃ : [a, b] → R, α̃(t) = α, ∀t ∈ [a, b].

We have

y ≤ Ef (y) ≤ . . . ≤ E∞
f (y) = E∞

f

(
ỹ(a)

)
≤ E∞

f

(
x̃(a)

)
= x.

In our further investigations, we need the following result:

Lemma 3.3.2. (Comparison principle, see [Rus 2001]) Let (X, d, ≤)
be an ordered metric space and A, B, C : X → X be such that:

1. A ≤ B ≤ C;

2. The operators A, B, C are WPOs;

3. The operator B is increasing.

Then x ≤ y ≤ z imply that A∞(x) ≤ B∞(y) ≤ C∞(z).

From the above result we obtain:

Theorem 3.3.3. Let the following conditions be fulfilled:
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1. The conditions H3.3 are satisfied for the functions fi : [a, b] ×
R

2 → R, i = 1, 2, 3 and

(i) f1(t, x, y) ≤ f2(t, x, y) ≤ f3(t, x, y) for any (t, x, y) ∈ [a, b] ×
R

2;

(ii) the function f2(t, x, y) is increasing in its second and third
arguments;

2. The functions xi ∈ C1([a, b],R), (i = 1, 2, 3), are solutions of the
equations

x′i(t) = fi

(

t, xi(t), max
ξ∈[a,t]

xi(ξ)
)

, for t ∈ [a, b], i = 1, 2, 3.

Then the inequalities x1(a) ≤ x2(a) ≤ x3(a) imply x1(t) ≤ x2(t) ≤
x3(t) for t ∈ [a, b].

Proof. From Theorem 3.3.1 we have that the operators Efi
, i = 1, 2, 3,

are WPOs. From the condition (ii) the operator Ef2 is monotone in-
creasing. From the condition (i) it follows that Ef1 ≤ Ef2 ≤ Ef3 .

Let x̃i(a) ∈ C[a, b] be defined by x̃i(a)(t) = xi(a), ∀t ∈ [a, b]. It is
clear that

x̃1(a)(t) ≤ x̃2(a)(t) ≤ x̃3(a)(t), ∀t ∈ [a, b].

From Lemma 3.3.2 we obtain that

E∞
f1

(
x̃1(a)

)
≤ E∞

f2

(
x̃2(a)

)
≤ E∞

f3

(
x̃3(a)

)
. (3.40)

Since xi = E∞
fi

(
x̃i(a)

)
we obtain from the inequalities (3.40) x1(t) ≤

x2(t) ≤ x3(t) for t ∈ [a, b].

Denote by x∗( · ; α, f) the solution of the Cauchy problem (3.36),
(3.37).

We need the following well-known result:

Theorem 3.3.4. ( [Rus 2001]). Let (X, d) be a complete metric space
and A, B : X → X two operators. We suppose that

(i) the operator A is an α-contraction;

(ii) FB 6= ∅;
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(iii) there exists η > 0 such that

d
(
A(x), B(x)

)
≤ η, ∀x ∈ X.

Then, if FA =
{
x∗A
}

and x∗B ∈ FB, we have

d
(
x∗A, x

∗
B

)
≤ η

1 − α
.

We will prove the following result:

Theorem 3.3.5. Let the following conditions be fulfilled:

1. Conditions H3.3 are satisfied for the functions fi, i = 1, 2.

2. There exists η > 0 such that

∣
∣f1(t, u1, u2)−f2(t, u1, u2)

∣
∣ ≤ η2 for t ∈ [a, b], ui ∈ R, i = 1, 2.

Then

∣
∣
∣
∣x∗1(t; α1, f1) − x∗2(t; α2, f2)

∣
∣
∣
∣ ≤ η1 + (b− a)η2

1 − Lf (b− a)

where x∗i (t; αi, fi), i = 1, 2 are the solution of the problem (3.36),
(3.37) with respect to αi, fi and L = max

(
L1, L2

)
.

Proof. Consider the operators Bαi, fi
, i = 1, 2. According to Theorem

3.3.1 both operators are contractions.
Additionally

‖Bα1, f1(x) −Bα2, f2(x)‖ ≤ η1 + (b− a)η2, ∀x ∈ C[a, b].

Now the proof follows from Theorem 3.3.4, with A = Bα1, f1, B =
Bα2, f2 , η = η1 + (b− a)η2 and α = L(b− t0), where L = max

(
L1, L2

)
.

Theorem 3.3.6. (see [Rus 2001]) Let (X, d) be a metric space and
Ai : X → X, i = 1, 2. Suppose that

(i) the operator Ai is a ci-weakly Picard operator, i = 1, 2;

(ii) there exists η > 0 such that

d
(
A1(x), A2(x)

)
≤ η, ∀x ∈ X.



88 Chapter 3. General Theory

Then H
(
FA1 , FA2

)
≤ ηmax

(
c1, c2

)
.

We obtain the following result:

Theorem 3.3.7. Let the following conditions be fulfilled:

1. The functions fi ∈ C([a, b] × R
2,R), i = 1, 2, satisfy the condi-

tions H3.3.

2. SEf1
, SEf2

be the solution set of system (3.36) corresponding to
f1 and f2.

3. There exists η > 0, such that

∣
∣f1(t, u1, u2) − f2(t, u1, u2)

∣
∣ ≤ η (3.41)

for all t ∈ [a, b], ui ∈ R, i = 1, 2.

Then

H‖·‖C

(

SEf1
, SEf2

)

≤ (b− a)η

1 − Lf (b− a)

where Lf = max
(
Lf1, Lf2

)
and H‖·‖C

denotes the Pompeiu-Housdorff
functional with respect to ‖ · ‖C on C[a, b].

Proof. According to condition 1 the operators Ef1 and Ef2 are ci-
weakly Picard operators, i = 1, 2.

Consider the set of functions Xα :=
{
x ∈ C[a, b] : x(a) = α

}
.

It is clear that Ef1
∣
∣
Xα

= Bf1 , Ef2
∣
∣
Xα

= Bf2 . Therefore

∣
∣
∣E2

f1(x) − Ef1(x)
∣
∣
∣ ≤ Lf1(b− a)

∣
∣
∣Ef1(x) − x

∣
∣
∣,

∣
∣
∣E2

f2(x) − Ef2(x)
∣
∣
∣ ≤ Lf2(b− a)

∣
∣
∣Ef2(x) − x

∣
∣
∣,

for all x ∈ C[a, b].
Now, choosing

α1 = Lf1(b− a) and α2 = Lf2(b− a),

we get that Ef1 and Ef2 are ci-weakly Picard operators, i = 1, 2 with
c1 = (1 − α1)

−1 and c2 = (1 − α2)
−1. From (3.41) we obtain that

‖Ef1(x) − Ef2(x)‖C ≤ (b− a)η, ∀x ∈ C[a, b].
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Applying Theorem 3.3.6 we have that

H‖·‖C

(

SEf1
, SEf2

)

≤ (b− a)η

1 − Lf (b− a)

where Lf = max
(
Lf1 , Lf2

)
and H‖·‖C

is the Pompeiu-Housdorff func-
tional with respect to ‖ · ‖C on C[a, b].





Chapter 4

Stability Theory and

Lyapunov Functions

In this chapter the basic results in the stability theory for differential
equations with “maxima” are presented. The basic methods of inves-
tigations are the method of Lyapunov functions and its modification
of Razumikhin. Different types of stability are defined and sufficient
conditions are obtained.

Some stability properties of solutions of differential equations with
“maxima” are studied in [Ivanov et al. 2002], [Magomedov 1991],
[Magomedov 1983b], [Magomedov 1981], [Magomedov and Nabiev
1986], [Magomedov and Ryabov 1991], [Nabiev 1985], [Nabiev 1984a],
[Nabiev 1984b], [Pinto and Trofimchuk 2000], [Voulov 1995], [Voulov
1992a], [Voulov 1992b], [Voulov 1991], [Voulov and Bainov 1992],
[Voulov and Bainov 1991], [Yuldashev and Kuldashev 1994], and [Zhang
and Cheng 1999].

The main object of investigations in this chapter is the following
nonlinear differential equations with “maxima”

x′ = F (t, x(t), max
s∈[t−r,t]

x(s)) for t ≥ t0 (4.1)

with initial condition

x(t+ t0) = φ(t), t ∈ [−r, 0], (4.2)

where x ∈ R
n, F : R+ × R

n × R
n → R

n, F = (F1, F2, . . . , Fn), r > 0 is
a given fixed number, t0 ∈ R+, and φ ∈ C([−r, 0],Rn).

We denote by x(t; t0, φ) the solution of the initial value prob-
lem (4.1), (4.2). In our further investigations we will assume that
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solution x(t; t0, φ) is defined on [t0 − r,∞) for any initial function
φ ∈ C([−r, 0],Rn).

Introduce the following set of functions:

K = {a ∈ C(R+,R+) : a(s) is strictly increasing and a(0) = 0}.
(4.3)

4.1 Stability and Uniform Stability

The problems of stability of solutions of differential equations via Lya-
punov functions have been successfully investigated in the past. One
type of stability, very useful in real world problems, deals with two dif-
ferent measures. Stability in terms of two measures of differential equa-
tions has been studied by means of various types of Lyapunov functions
(see [Lakshmikantham and Liu 1993] and references cited therein). In
this section the stability in terms of two measures will be defined and
studied for differential equations with “maxima.”

We will introduce the class Λ of Lyapunov functions:

Definition 4.1.1. We will say that the function V (t, x) : Ω×R
n → R+,

Ω ⊂ R+, belongs to class Λ if

1. V (t, x) is a continuous function in Ω × R
n;

2. Function V (t, x) is Lipschitz with respect to its second argument.

Let the function V ∈ Λ, t ∈ Ω, and φ ∈ C([t− r, t], R
n). We define

derivative of the function V (t, x) along the trajectory of solution of
(4.1) as follows

D(4.1)V (t, φ(t)) = lim sup
ǫ→0

1

ǫ
{V (t+ ǫ, φ(t)

+ ǫF (t, φ(t), max
s∈[−r,0]

φ(t+ s))) − V (t, φ(t))}. (4.4)

Note that V (t, x) is a function, and its derivative defined by (4.4)
is a functional.

We will study the stability in the regular case as well as in the case
when two different measures are used for the initial conditions and for
the solutions. We will obtain some sufficient conditions in both cases.
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4.1.1 Stability in Terms of Two Measures

Consider the set of measures

Γ = {h ∈ C([−r,∞)×R
n,R+) : inf

x∈Rn
h(t, x) = 0 for each t ∈ [−r,∞)}.

(4.5)
Let ρ > be a constant, h ∈ Γ. Define sets:

S(h, ρ) = {(t, x) ∈ R+ × R
n : h(t, x) < ρ};

SC(h, ρ) = {(t, x) ∈ R+ × R
n : h(t, x) ≥ ρ}.

(4.6)

Definition 4.1.2. Let h, h0 ∈ Γ. The system of differential equations
with “maxima” (4.1), (4.2) is said to be

(S4.1.1) equi-stable in terms of measures (h0, h) if for every ǫ > 0 and for
any t0 ≥ 0, there exists δ = δ(t0, ǫ) > 0 such that for any φ ∈
C([−r, 0],Rn) inequality maxs∈[−r,0] h0(t0 + s, φ(s)) < δ implies
h(t, (x(t; t0, φ)) < ǫ for t ≥ t0, where x(t; t0, φ) is a solution of
the initial value problem for differential equations with “maxima”
(4.1), (4.2);

(S4.1.2) uniformly stable in terms of measures (h0, h) if δ in (S4.1.1) is
independent on t0;

In our further investigations we will use a comparison scalar ordi-
nary differential equation

u′ = g1(t, u), (4.7)

where u ∈ R.

Definition 4.1.3. ( [Lakshmikantham and Liu 1993]). Let h ∈ Γ.
Function V (t, x) ∈ Λ is said to be h-decrescent if there exists a con-
stant δ > 0 and a function a ∈ K such that h(t, x) < δ implies that
V (t, x) ≤ a(h(t, x)).

Definition 4.1.4. ( [Lakshmikantham and Liu 1993]). Let h, h0 ∈ Γ.
Function h0(t, x) is uniformly finer than h(t, x), if there exists a con-
stant δ > 0 and a function a ∈ K such that h0(t, x) < δ implies that
h(t, x) ≤ a(h0(t, x)).

In our further investigations, we need the following comparison re-
sult:
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Lemma 4.1.1. Let the following conditions be fulfilled:

1. The function F ∈ C([t0, T ] × R
n × R

n,Rn), where to, T ∈ R+,
t0 < T.

2. The function V : [t0, T ] × R
n → R+, V ∈ Λ and

(i) for any number t ∈ [t0, T ] and any function ψ ∈ C([t −
r, t],Rn) such that V (t, ψ(t)) > V (t + s, ψ(t + s)) for s ∈
[−r, 0) the inequality

D(4.1)V (t, ψ(t)) ≤ g1(t, V (t, ψ(t)))

holds, where g1 ∈ C([t0, T ] × R+,R+), g1(t, 0) ≡ 0.

3. The function x(t; t0, φ) is a solution of (4.1) with initial condition
(4.2), which is defined for t ∈ [t0−r, T ], where φ ∈ C([−r, 0],Rn).

4. The function u∗(t) = u∗(t; t0, u0) is the maximal solution of (4.7)
with initial condition u∗(t0) = u0, which is defined for t ∈ [t0, T ].

Then the inequality maxs∈[−r,0]V (t0 + s, φ(s)) ≤ u0 implies the va-
lidity of the inequality V (t, x(t; t0, φ)) ≤ u∗(t) for t ∈ [t0, T ].

Proof. Let u0 ∈ R+ and φ ∈ C([−r, 0],Rn) be such that
maxs∈[−r,0]V (t0 + s, φ(s)) ≤ u0. Let n be a natural number and vn(t)
be the maximal solution of the initial value problem

u′ = g1(t, u) +
1

n
,

u(t0) = u0 +
1

n
.

Define a function m(t) ∈ C([t0 − r, T ],R+) : m(t) =
V (t, x(t; t0, φ)).

Because of the fact that u∗(t; t0, u0) = limn→∞vn(t), it is enough
to prove that for any natural number n the inequality

m(t) ≤ vn(t) for t ∈ [t0, T ] (4.8)

holds.
Note that for any natural number n inequality m(t0) < vn(t0) holds.
Assume inequality (4.8) is not true. Let n be a natural number such

that there exists a point η ∈ (t0, T ] : m(η) > vn(η). Let t∗ = sup{t ∈
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[t0, T ] : m(s) < vn(s) for s ∈ [t0, t)}. According to the assumption
t∗ < T .

Therefore

m(t∗) = vn(t
∗), m(t) < vn(t) for t ∈ [t0, t

∗),

m(t) ≥ vn(t) for t ∈ (t∗, t∗ + δ),
(4.9)

where δ > 0 is a small enough number.

From inequality (4.9) it follows that

m′(t∗) ≥ v′n(t
∗) = g1(t

∗, vn(t
∗)) +

1

n
= g1(t

∗,m(t∗)) +
1

n
. (4.10)

From g1(t, u) + 1
n > 0 on [t∗ − r, t∗] ∩ [t0, T ] it follows the function

vn(t) is nondecreasing on [t∗ − r, t∗] ∩ [t0, T ].

If t∗−r ≥ t0 then m(t∗) = vn(t
∗) ≥ vn(s) > m(s) for s ∈ [t∗−r, t∗).

If t∗ − r < t0, then as above m(t∗) > m(s) for s ∈ [t0, t
∗) and

m(t∗) = vn(t
∗) ≥ vn(t0) = u0 + 1

n > u0 ≥ sups∈[−r,0]V (t0 + s, φ(s)) ≥
m(s) for s ∈ [t∗ − r, t0).

Therefore m(t∗) > m(s) for s ∈ [t∗ − r, t∗).
According to condition (i) of Lemma 4.1.1 and definition of function

m(t) we get m′(t∗) ≤ g1(t
∗,m(t∗)) < g1(t

∗,m(t∗)) + 1
n that contradicts

(4.10).

Therefore the inequality (4.8) holds and hence the conclusion of
Lemma 4.1.1 follows.

We will illustrate the importance of the condition maxs∈[−r,0] V (t0+
s, φ(s)) ≤ u0 for the claim of Lemma 4.1.1.

Example 4.1.1. Consider the scalar differential equation with “max-
ima”

x′(t) = max
t∈[t−π

2
,t]
x(s) for t ≥ 0, (4.11)

with the initial condition

x(s) = −a sin(t) for t ∈ [−π
2
, 0], (4.12)

where a > 0 is a constant.
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The solution of the inital value problem (4.11), (4.12) is given by

x(t) =







−a sin(t) for t ∈ [−π
2
, 0],

a sin(t) for t ∈ [0,
π

4
],

a
√

2

2
et−

π
4 for t ≥ π

4
.

(4.13)

Let V (t, x) = x2, t ∈ [0, π2 ] and the function ψ ∈ C([t− π
2 , t],R) be

such that (ψ(t))2 > (ψ(t+ s))2 for s ∈ [−π
2 , 0). Then the inequality

D(4.11)V (t, ψ(t)) = 2ψ(t) max
s∈[t−π

2
,t]
ψ(s) ≤ 2(ψ(t))2 = g1(t, V (t, ψ(t)))

holds, where g1(t, u) ≡ 2u.
Consider the scalar differential equation u′ = 2u with the initial

condition u(0) = u0, which solution is u(t) = u0e
2t.

It is easy to check that if V (0, a sin 0) = 0 < u0 and a2 > u0, then
the inequality (−a sin(t))2 ≤ u0 does not hold for t ∈ [−π

2 , 0). At the
same time the inequality V (t, x(t)) = (a sin t)2 ≤ u0e

2t does not hold
for t ∈ [0, π4 ], and the conclusion ot Lemma 4.1.1 is not true, i.e., the
initial inequality is necessary to be satisfied on the whole initial interval,
not only at one single point.

We will give some sufficient conditions for stability of the consid-
ered differential equations with “maxima” based on the applications of
Lyapunov functions and the Razumikhin method.

Theorem 4.1.1. Let the following conditions be fulfilled:

1. The function F ∈ C(R+ × R
n × R

n,Rn), F (t, 0, 0) ≡ 0.

2. The function g1 ∈ C(R+ × R,R+), g1(t, 0) ≡ 0.

3. The functions h0, h ∈ Γ, h0 is uniformy finer than h.

4. There exists a function V (t, x) ∈ Λ such that:

(i) for any number t ∈ R+ and any function ψ ∈ C([t−r, t],Rn)
such that (t, ψ(t)) ∈ S(h, ρ) and V (t, ψ(t)) > V (t+ s, ψ(t+
s)) for s ∈ [−r, 0) the inequality

D(4.1)V (t, ψ(t)) ≤ g1(t, V (t, ψ(t)))

holds.
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(ii) b(h(t, x)) ≤ V (t, x) ≤ a(h0(t, x)) for (t, x) ∈ S(h, ρ), where
functions a, b ∈ K and the constant ρ > 0.

5. The zero solution of the scalar differential equation (4.7) is equi-
stable.

Then differential equations with “maxima” (4.1) is equi-stable in
terms of measures (h0, h).

Proof. Let ǫ > 0 be a number such that ǫ < ρ.

From condition 5 of Theorem 4.1.1 follows that there exists δ1 =
δ1(t0, ǫ) > 0 such that |v0| < δ1 implies

|v(t; t0, v0| < b(ǫ), for t ≥ t0, (4.14)

where v(t; t0, v0) is a solution of the scalar ordinary differential equation
(4.7) with initial condition v(t0) = v0.

From condition 3 of Theorem 4.1.1 follows that there exists δ2 > 0
and a function ψ1 ∈ K such that the inequality

h0(t, x) < δ2 (4.15)

implies

h(t, x) ≤ ψ1(h0(t, x)). (4.16)

Since a ∈ K and ψ1 ∈ K we can find δ3 = δ3(t0, ǫ) > 0, δ3 < δ2
such that the inequalities

a(δ3) < δ1, ψ1(δ3) < ǫ (4.17)

hold.

Let t0 ∈ R+ and ϕ ∈ C([−r, 0],Rn) be such that

max
s∈[−r,0]

h0(t0 + s, ϕ(s)) < δ3. (4.18)

From (4.16) and (4.18) we get

h(t0 + s, ϕ(s)) ≤ ψ1(h0(t0 + s, ϕ(s))) < ψ1(δ3) < ǫ, for s ∈ [−r, 0].
(4.19)

We will prove that inequality

h(t, x(t; t0, ϕ)) < ǫ for t ≥ t0 (4.20)
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holds, where x(t; t0, ϕ) is a solution of the initial value problem (4.1),
(4.2) with the chosen-above initial function ϕ.

Assume that inequality (4.20) is not true. From the assumption and
inequality (4.19) follows that there exists a point t∗ > t0 such that

h(t∗, x(t∗; t0, ϕ)) = ǫ, h(t, x(t; t0, ϕ)) < ǫ, t ∈ [t0 − r, t∗). (4.21)

Therefore (t, x(t)) ∈ S(h, ǫ) for t ∈ [t0, t
∗). Since ǫ < ρ the inclusion

(t, x(t)) ∈ S(h, ρ) is valid for t ∈ [t0 − r, t∗].
Let v∗(t; t0, v0) be the maximal solution of (4.7) with initial condi-

tion v(t0) = v0, where v0 = maxs∈[−r,0] V (t0 + s, ϕ(s)). Therefore, from
Lemma 4.1.1 we obtain

V (t, x(t; t0, ϕ)) ≤ v∗(t; t0, v0), t ∈ [t0, t
∗]. (4.22)

From condition (ii) of Theorem 4.1.1 and inequalities (4.17) and
(4.18) follows

v0 = max
s∈[−r,0]

V (t0 + s, ϕ(s)) ≤ a(h0(t0 + s, ϕ(s)) ≤ a(δ3) < δ1. (4.23)

From inequality (4.23) according to (4.14) we get

|v∗(t; t0, v0)| < b(ǫ) for t ≥ t0. (4.24)

From inequalities (4.22) and (4.24), the choice of the point t∗, and
condition (ii) of Theorem 4.1.1 follows

b(ǫ) = b(h(t∗, x(t∗; t0, ϕ))) ≤ V (t∗, x(t∗; t0, ϕ)) ≤ v∗(t∗; t0, v0) < b(ǫ).

The obtained contradiction proves the validity of the inequality
(4.20), which proves equi-stability in terms of measures (h0, h) of the
considered differential equations with “maxima.”

Sufficient conditions for uniform stability in terms of two measures
for diferential equations with “maxima” are given in the following the-
orem:

Theorem 4.1.2. Let the conditions 1, 2, 3, 4 of Theorem 4.1.1 be
fulfilled and the zero solution of the scalar differential equation (4.7) be
uniform-stable.

Then differential equations with “maxima” (4.1) is uniformly stable
in terms of measures (h0, h).
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The proof of Theorem 4.1.2 is similar to the one for Theorem 4.1.1,
where δ1 depends only on ǫ but not on t0.

The most difficult part in the application of the method of Lyapunov
and its modification of Razimikhin is the construction of Lyapunov
functions, provided the necessary conditions. In connection with this,
sometimes it is more applicable to use sufficient conditions employing
so-called perturbing Lyapunov function. In this case we will use the
comparison scalar ordinary differential equation (4.7) combined with
another comparison differential equation

v′ = g2(t, v), (4.25)

where v ∈ R, g2(t, 0) ≡ 0.

Theorem 4.1.3. Let the following conditions be fulfilled:

1. The function F ∈ C(R+ × R
n × R

n,Rn), F (t, 0, 0) ≡ 0.

2. The functions g1, g2 ∈ C(R+ × R,R+), g1(t, 0) ≡ 0, g2(t, 0) ≡ 0.

3. The functions h0, h ∈ Γ, h0 is uniformy finer than h.

4. There exists a function V1 ∈ Λ which is h0-decrescent and

(i) for t ≥ 0 and ψ ∈ C([t−r, t],Rn) such that V1(t, ψ(t)) > V1(t+
s, ψ(t+ s)) for s ∈ [−r, 0) and (t, ψ(t)) ∈ S(h, ρ) the inequality

D(4.1)V1(t, ψ(t)) ≤ g1(t, V1(t, ψ(t)))

holds, where ρ > 0 is a constant.

5. For any number µ > 0 there exists a function V
(µ)
2 ∈ Λ such that

(ii) b(h(t, x)) ≤ V
(µ)
2 (t, x) ≤ a(h0(t, x)) for (t, x) ∈

S(h, ρ)
⋂
SC(h0, µ),

where a, b ∈ K.

(iii) for any number t ≥ 0 and for any function ψ ∈ C([t −
r, t],Rn) such that (t, ψ(t)) ∈ S(h, ρ)

⋂
SC(h0, µ) and

V1(t, ψ(t))+V
(µ)
2 (t, ψ(t)) > V1(t+s, ψ(t+s))+V

(µ)
2 (t+s, ψ(t+s))
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for s ∈ [−r, 0) the inequality

D(4.1)V1(t, ψ(t)) +D(4.1)V
(µ)
2 (t, ψ(t))

≤ g2

(

t, V1(t, ψ(t)) + V
(µ)
2 (t, ψ(t))

)

holds;

6. The zero solution of scalar differential equation (4.7) is equi-
stable.

7. The zero solution of scalar differential equation (4.25) is uni-
formly stable.

Then differential equations with “maxima” (4.1) is equi-stable in
terms of measures (h0, h).

Proof. Since function V1(t, x) is h0-decrescent, there exists a constant
ρ1 > 0 and a function ψ1 ∈ K such that h0(t, x) < ρ1 implies that

V1(t, x) ≤ ψ1(h0(t, x)). (4.26)

Without loss of generality we assume that ρ1 < ρ.

Since h0(t, x) is uniformly finer than h(t, x), there exists a constant
ρ0 > 0 and a function ψ2 ∈ K such that inequality h0(t, x) < ρ0 implies
h(t, x) ≤ ψ2(h0(t, x)). We will assume that ρ0 < ρ and ψ2(ρ0) < ρ1.

Let ǫ > 0 be a fixed number, ǫ < ρ, and t0 ≥ 0 be a fixed point.

Since the zero solution of scalar impulsive differential equation
(4.25) is uniformly stable there exists δ1 = δ1(ǫ) ∈ K such that the
inequality |v0| < δ1 implies

|v(t; t0, v0)| < b(ǫ), t ≥ t0, (4.27)

where v(t; t0, v0) is a solution of equation (4.25) with initial condition
v(t0) = v0.

Since the functions a ∈ K and ψ2 ∈ K we can find δ2 = δ2(ǫ) > 0,
δ2 < ρ0 such that the inequalities

a(δ2) <
δ1
2
, ψ2(δ2) < ǫ (4.28)

hold.
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Since the zero solution of scalar impulsive differential equation (4.7)
is equi-stable there exists δ3 = δ3(t0, ǫ) > 0 such that inequality |u0| <
δ3 implies

|u(t; t0, u0)| <
δ1
2
, t ≥ t0, (4.29)

where u(t; t0, u0) is a solution of (4.7) with initial condition u(t0) = u0.

Since the function ψ1 ∈ K there exists δ4 = δ4(t0, ǫ) > 0 such that
for |u| < δ4 the inequality

ψ1(u) < δ3 (4.30)

holds.

Now let function φ ∈ C([−r, 0],Rn) be such that

max
s∈[−r,0]

h0(t0 + s, φ(s)) < δ6, (4.31)

where δ6 = min{δ2, δ4, ρ1}, δ6 = δ6(t0, ǫ) > 0.

From inequality (4.31) follows that h0(t0 + s, φ(s)) < δ6 ≤ ρ1 for
s ∈ [−r, 0]. From inequalities (4.26) and (4.30) we obtain

V1(t0 + s, φ(s)) ≤ ψ1(h0(t0 + s, φ(s))) < δ3 for s ∈ [−r, 0]. (4.32)

From condition 2, inequality (4.31), and the choice of δ2 and δ6
follows that

h(t0+s, φ(s)) < ψ2(h0(t0+s, φ(s))) < ψ2(δ6) ≤ ψ2(δ2) < ǫ, s ∈ [−r, 0].
(4.33)

We will prove that if inequality (4.31) is satisfied, then

h(t, x(t; t0, φ)) < ǫ, t ≥ t0, (4.34)

where x(t; t0, φ) is a solution of initial value problem (4.1), (4.2).

Suppose inequality (4.34) is not true. Therefore there exists a point
t∗ > t0 such that

h(t∗, x(t∗; t0, φ)) = ǫ, and h(t, x(t; t0, φ)) < ǫ, t ∈ [t0−r, t∗). (4.35)

Denote x(s) = x(s; t0, φ), s ∈ [t0 − r, t∗].
If we assume that h0(t

∗, x(t∗)) ≤ δ2 < ρ then from the choice of
δ2 follows h(t∗, x(t∗)) ≤ ψ2(h0(t

∗, x(t∗))) ≤ ψ2(δ2) < ǫ that contradicts
(4.35).
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Therefore
h0(t

∗, x(t∗)) > δ2. (4.36)

From inequality (4.36) and h0(t0+s, φ(s)) < δ6 ≤ δ2 for s ∈ [−r, 0] it
follows that there exists a point t∗0 ∈ (t0, t

∗) such that δ2 = h0(t
∗
0, x(t

∗
0))

and (t, x(t)) ∈ S(h, ǫ) for t ∈ [t∗0, t
∗). From the choice of ǫ follows that

(t, x(t)) ∈ S(h, ρ)
⋂

SC(h0, δ2), t ∈ [t∗0, t
∗]. (4.37)

Let r1(t; t0, u0) be the maximal solution of differential equation (4.7)
where u0 = sups∈[−r,0]V1(t0 + s, φ(s)). From inequality (4.32) follows
u0 < δ3 and according to inequality (4.29) we get

|r1(t; t0, u0)| <
δ1
2

for t ∈ [t0, t
∗]. (4.38)

From condition 4 of Theorem 4.1.3 follows that the condition 1 of
Lemma 4.1.1 is satisfied for T = t∗. According to Lemma 4.1.1 the
inequality

V1(s, x(s)) ≤ r1(s; t0, u0), s ∈ [t0, t
∗] (4.39)

holds.
Inequalities (4.38) and (4.39) imply

V1(t
∗
0 + s, x(t∗0 + s)) <

δ1
2

for s ∈ [−r, 0]. (4.40)

Consider the function V
(δ2)
2 (t, x) that is defined in condition 5 of

Theorem 4.1.3 and define the function m : [t0 − r,∞) × R
n → R

n by
equality

m(t, x) = V1(t, x) + V
(δ2)
2 (t, x). (4.41)

From condition 5 of Theorem 4.1.3 follows that condition 1 of
Lemma 4.1.1 is satisfied for the function V (t, x) = m(t, x), T = t∗,
and t0 = t∗0. According to Lemma 4.1.1 the inequality

m(t, x(t; t0, φ)) ≤ r∗(t; t∗0, w
∗
0), t ∈ [t∗0, t

∗] (4.42)

holds, where r∗(t; t∗0, w
∗
0) is the maximal solution of (4.25) through the

point (t∗0, w
∗
0), w

∗
0 = sups∈[−r,0]m(t∗0 + s, x(t∗0 + s; t0, φ)).

From inequality (4.28) and condition (iii) of Theorem 4.1.3 it follows
that

V
(δ2)
2 (t∗0 + s, x(t∗0 + s)) < a(h0(t

∗
0 + s, x(t∗0 + s))) ≤ a(δ2) <

δ1
2
,

s ∈ [−r, 0].
(4.43)
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From inequalities (4.40) and (4.43) we obtain

m(t∗0 + s, x(t∗0 + s)) < δ1 for s ∈ [−r, 0]. (4.44)

From inequality (4.44) follows that |w∗
0| < δ1 and therefore accord-

ing to inequality (4.27)

r∗(t; t∗0, w
∗
0) < β(ǫ), t ≥ t∗0. (4.45)

From inequalities (4.42) and (4.45) the choice of the point t∗, and
condition (iii) of Theorem 4.1.3 we obtain

b(ǫ) > r∗(t∗; t∗0, w
∗
0) ≥ m(t∗, x(t∗; t0, φ))

≥ V
(δ2)
2 (t∗, x(t∗; t0, φ)) ≥ b(h(t∗, x(t∗; t0, φ))) = b(ǫ).

The obtained contradiction proves the validity of inequality (4.34)
for t ≥ t0.

Inequality (4.34) proves the equi-stability in terms of measures
(h0, h) of the considered system of differential equations with “max-
ima.”

Theorem 4.1.4. Let the conditions 1, 2, 3, 4, 5 and 7 of Theorem
4.1.3 be satisfied, and the zero solution of scalar differential equation
(4.7) be uniformly stable.

Then the system of differential equations with “maxima” (4.1) is
uniformly stable in terms of measures (h0, h).

The proof of Theorem 4.1.4 is similar to the proof of Theorem 4.1.3
but in this case δ3, and therefore, δ4 and δ6 depend only on ǫ.

Remark 4.1.1. Note that in the case r = 0 results in this section
reduce to sufficient conditions for stability in terms of two measures
for ordinary differential equations (see [Lakshmikantham and Liu 1993]
and references cited therein).

4.1.2 Stability of Zero Solution

Let ρ > be a constant. Define sets:

S(ρ) = {(t, x) ∈ R+ × R
n : ‖x‖ < ρ};

SC(ρ) = {(t, x) ∈ R+ × R
n : ‖x‖ ≥ ρ}.
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Definition 4.1.5. The zero solution of the system of differential equa-
tions with “maxima” (4.1), (4.2) is said to be

(S4.1.3) equi-stable if for every ǫ > 0 and for any t0 ≥ 0, there exists
δ = δ(t0, ǫ) > 0 such that for any φ ∈ C([−r, 0],Rn) inequality

max
s∈[−r,0]

‖φ(s)‖ < δ implies ‖x(t; t0, φ)‖ < ǫ

for t ≥ t0, where x(t; t0, φ) is a solution of the initial value prob-
lem for the system of differential equations with “maxima”(4.1),
(4.2);

(S4.1.4) uniformly stable if δ in (S4.1.3) is independent on t0;

Definition 4.1.6. The function V (t, x) ∈ Λ is said to be weakly de-
crescent if there exists a constant δ > 0 and a function a ∈ CK such
that ‖x‖ < δ implies that V (t, x) ≤ a(t, ‖x‖).

Definition 4.1.7. Function V (t, x) ∈ Λ is said to be decrescent if
there exists a constant δ > 0 and a function a ∈ K such that ‖x‖ < δ
implies that V (t, x) ≤ a(‖x‖).

In the case when both measures, used in Subsection 4.1.1, are equal
to the regular norm in R

n as a particular case of results in the Subsec-
tion 4.1.1 we obtain sufficient conditions for equi-stability and uniform
stability of the zero solution of differential equations with “maxima”.
The proofs of the results are similar to the proofs of the corresponding
Theorems in Subsection 4.1.1 and we omit them.

Theorem 4.1.5. Let the following conditions be fulfilled:

1. The function F ∈ C(R+ × R
n × R

n,Rn), F (t, 0, 0) ≡ 0.

2. The function g1 ∈ C(R+ × R,R+), g1(t, 0) ≡ 0.

3. There exists a function V (t, x) ∈ Λ such that:

(i) for any number t ∈ [t0, T ] and any function ψ ∈ C([t −
r, t],Rn) such that V (t, ψ(t)) > V (t + s, ψ(t + s)) for s ∈
[−r, 0) the inequality

D(4.1)V (t, ψ(t)) ≤ g1(t, V (t, ψ(t)))

holds.
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(ii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for (t, x) ∈ S(ρ), where func-
tions a, b ∈ K and the constant ρ > 0.

4. The zero solution of the scalar differential equation (4.7) is equi-
stable.

Then the zero solution of the differential equations with “maxima”
(4.1) is equi-stable.

Theorem 4.1.6. Let the conditions 1, 2, 3 of Theorem 4.1.5 be sat-
isfied and the zero solution of the scalar differential equation (4.7) be
uniformly stable.

Then the zero solution of the differential equations with “maxima”
(4.1) is uniformly stable.

As a partial case of Theorem 4.1.6 we get the following result:

Corollary 4.1.1. Let the following conditions be fulfilled:

1. The function F ∈ C(R+ × R
n × R

n,Rn), F (t, 0, 0) ≡ 0.

2. There exists a function V (t, x) ∈ Λ such that:

(i) for any number t ∈ [t0, T ] and any function ψ ∈ C([t −
r, t],Rn) such that V (t, ψ(t)) > V (t + s, ψ(t + s)) for s ∈
[−r, 0) the inequality

D(4.1)V (t, ψ(t)) ≤ 0

holds.

(ii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for (t, x) ∈ S(ρ), where func-
tions a, b ∈ K and the constant ρ > 0.

Then the zero solution of the differential equations with “maxima”
(4.1) is uniformly stable.

The proof the Corollary 4.1.1 follows from Theorem 4.1.6 for
g1(t, u) ≡ 0 and the fact that the zero solution of the scalar ordinary
differential equation u′ = 0 is uniformly stable.

In the case, when two different Lyapunov function are employed, the
following two theorems are partial cases of Theorem 4.1.3 and Theorem
4.1.4 correspondingly.

Theorem 4.1.7. Let the following conditions be fulfilled:
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1. The conditions 1, 2, 6, 7 of Theorem 4.1.3 are satisfied.

2. There exists a function V1 ∈ Λ that is weakly decrescent and

(i) for t ≥ 0 and ψ ∈ C([t − r, t],Rn) such that (t, ψ(t))) ∈
S(ρ) and V1(t, ψ(t)) > V1(t+ s, ψ(t+ s)) for s ∈ [−r, 0) the
inequality

D(4.1)V1(t, ψ(t)) ≤ g1(t, V1(t, ψ(t)))

holds, where ρ > 0 is a constant;

3. For any number µ > 0 there exists a function V
(µ)
2 ∈ Λ such that

(ii) b(‖x‖) ≤ V
(µ)
2 (t, x) ≤ a(‖x‖) for (t, x) ∈ S(ρ)

⋂SC(µ),
where a, b ∈ K.

(iii) for any number t ≥ 0 and any function ψ ∈ C([t −
r, t],Rn) such that (t, ψ(t)) ∈ S(ρ)

⋂SC(µ) and V1(t, ψ(0))+

V
(µ)
2 (t, ψ(t)) > V1(t+ s, ψ(t+ s)) + V

(µ)
2 (t+ s, ψ(t+ s)) for

s ∈ [−r, 0) the inequality

D(4.1)V1(t, ψ(t)) +D(4.1)V
(µ)
2 (t, ψ(t))

≤ g2

(

t, V1(t, ψ(t)) + V
(µ)
2 (t, ψ(t))

)

holds.

Then the zero solution of the differential equations with “maxima”
(4.1) is equi-stable.

Theorem 4.1.8. Let the conditions 1, 2 and 3 of Theorem 4.1.3 and
condition (i) of Theorem 4.1.6 be satisfied, where the function V (t, x)
be decrescent.

If the zero solution of scalar differential equation (4.7) is uniformly
stable, then the zero solution of the differential equations with “max-
ima” (4.1) is uniformly stable.

Now we will apply some of the obtained sufficient conditions to
study stability properties of the solutions of differential equations with
“maxima.”

Example 4.1.2. Consider the linear system of differential equations

x′ = −x+ 2y

y′ = −x− y.
(4.46)
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The general solution of (4.46) is

x(t) = e−t
√

2(c1 sin
√

2t− c2 cos
√

2t)

y(t) = e−t(c1 cos
√

2t+ c2 sin
√

2t).

The solution of the system (4.46) with initial condition x(0) =
1, y(0) = 1

x(t) =
√

2e−t(sin
√

2t+

√
2

2
cos

√
2t)

y(t) = e−t(cos
√

2t−
√

2

2
sin

√
2t)

approaches 0 as t increases without bound.
The solution of the system (4.46) with initial condition x(0) =

1
2 , y(0) = 1

2

x(t) =
√

2e−t(
1

2
sin

√
2t+

√
2

4
cos

√
2t)

y(t) = e−t(
1

2
cos

√
2t−

√
2

4
sin

√
2t)

approaches 0 as t increases without bound.
Now let the system (4.46) be perturbed by the maximum function,

i.e., consider the system of differential equations with “maxima”

x′ = −x+ 2y + C1 max
s∈[−r,0]

x(s)

y′ = −x− y + C2 max
s∈[−r,0]

y(s).
(4.47)

We will apply Theorem 4.1.1 to investigate the stability of the so-
lution of the system with maximum (4.47). Note that the solution of
(4.47) could not be obtained in a closed form.

Consider the function V : R
2 → R+, V (x, y) = 1

2x
2 + y2 and

the measures h(t, x, y) =
√

x2 + y2, h0(t, x, y) = |x| + |y|. Using the
inequality

√

x2 + y2 ≤ |x| + |y| it is easy to check the validity of the
condition (ii) of Theorem 4.1.1 for a(u) = u2 and b(u) = 1

2u
2.

Let t ≥ 0 be a number and ψ ∈ C([t − r, t],R2), ψ = (ψ1, ψ2) be
such that

1

2
ψ2

1(t) + ψ2
2(t) >

1

2
ψ2

1(t+ s) + ψ2
2(t+ s), s ∈ [−r, 0). (4.48)
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From (4.48) follows that the derivative the function V among the
trajectory of the system (4.47) is

D(4.47)V (ψ1(t), ψ2(t))

= −ψ2
1(t)−2ψ2

2(t)+c1ψ1(t) max
s∈[−r,0]

ψ1(t+s)+2c2ψ2(t) max
s∈[−r,0]

ψ2(t+s).

Note that

ψ1(t) max
s∈[−r,0]

ψ1(t+ s)

≤ |ψ1(t)| | max
s∈[−r,0]

ψ1(t+ s)| =
√

(ψ1(t))2
√

( max
s∈[−r,0]

ψ1(t+ s))2

≤
√

(ψ1(t))2 + 2(ψ2(t))2
√

( max
s∈[−r,0]

ψ1(t+ s))2

=
√

(ψ1(t))2 + 2(ψ2(t))2
√

(ψ1(ξ))2

≤
√

(ψ1(t))2 + 2(ψ2(t))2
√

(ψ1(ξ))2 + 2(ψ1(ξ))2 ≤ (ψ1(t))
2 + 2(ψ2(t))

2

and

2ψ2(t) max
s∈[−r,0]

ψ2(t+ s) ≤ (ψ1(t))
2 + 2(ψ2(t))

2

where ξ ∈ [t− r, t].
Hence

D(4.47)V (ψ1(t), ψ2(t)) ≤
−ψ2

1(t) − 2ψ2
2(t) + c1(ψ

2
1(t) + 2ψ2

2(t)) + c2(ψ
2
1(t) + 2ψ2

2(t)) =

= (ψ2
1(t) + 2ψ2

2(t))(−1 + c1 + c2).

Since ψ2
1(t) + 2ψ2

2(t) ≥ 0, then for (−1 + c1 + c2) < 0, or c1 + c2 < 1,
we get

D(4.47)V (ψ1(t), ψ2(t)) ≤ 0.

Consider the scalar equation (4.7) for g1(t, u) ≡ 0 which solution
is u(t; t0, u0) = u0. The zero solution of u′ = 0 is uniformly stable.
Therefore according to Theorem 4.1.2 the solution of (4.47) is uniformly
stable in terms of measures (h0, h), i.e., for ǫ > 0 there exists δ = δ(ǫ) >
0 such that the inequality |ψ1(s)| + |ψ2(s)| < δ, s ∈ [−r, 0] implies
√

x2(s) + y2(s) < ǫ for t ≥ t0.
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4.2 Integral Stability in Terms of

Two Measures

In this section, we study the integral stability in terms of two differ-
ent measures for differential equations involving the maximum of the
unknown function. Integral stability for ordinary differential equations
was introduced by I.Vrkoc ( [Vrkoc 1959]) and later studied for various
types of differential equations by many authors (see for example, [Hris-
tova 2009a], [Hristova 2010a], and [Soliman and Abdalla 2008]). The
concept of integral stability occurs in connection with the stability un-
der persistent perturbations when the perturbations are small enough
everywhere except on a small interval. The presence of maximum in the
equation requires initially well-defined and proved comparison result.
An appropriate definition for integral stability of differential equations
with “maxima” is given. Sufficient conditions for uniformly integral sta-
bility in terms of two measures are obtained. These results are derived
using Lyapunov functions, Razumikhin method and comparison results
for scalar differential equations.

In this section we will study stability properties of the system of
nonlinear differential equations with “maxima” (4.1) with initial con-
dition (4.2), the solution of which is x(t; t0, φ).

Consider the perturbed system of differential equations with “max-
ima”

x′ = F (t, x(t), max
s∈[t−r,t]

x(s))+G(t, x(t), max
s∈[t−r,t]

x(s)) for t ≥ t0, (4.49)

where x ∈ R
n, F,G : R+ × R

n × R
n → R

n.

In our further investigations we will use Lyapunov functions from
the class Λ, introduced by Defintion 4.1.1 , and derivative of functions
from Λ, defined by equality (4.4).

Similarly we define a derivative of the function V (t, x) ∈ Λ along
the trajectory of solution of the perturbed system (4.49) for t ∈ R+,
and φ ∈ C([t− r, t],Rn) as follows

D(4.49)V (t, φ(t)) = lim sup
ǫ→0

1

ǫ

{

V

(

t+ ǫ, φ(t) + ǫ
(

F (t, φ(t), max
s∈[−r,0]

φ(t+ s))

+G(t, φ(t), max
s∈[−r,0]

φ(t+ s))
)
)

− V (t, φ(t))

}

.
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Consider the set K, defined by(4.3) and the set of measures Γ,
defined by (4.5).

Let ρ, t, T > 0 be constants, h ∈ Γ. Consider the sets S(h, ρ),
SC(h, ρ), defined by equality (4.6) and the set

Ω(t, h, ρ) = {(x, y) ∈ R
n×R

n : h(t, x) ≤ ρ and h(s, y) ≤ ρ, s ∈ [t−r, t]}.

We will use the following comparison scalar ordinary differential
equations

u′ = f(t, u), (4.50)

and

u′ = g(t, u), (4.51)

and its perturbed scalar ordinary differential equation

w′ = g(t, w) + q(t), (4.52)

where u,w ∈ R, f, g : R+ × R → R, q : R+ → R.

In our further investigations we will assume that solutions of the
scalar differential equations (4.50), (4.51), and (4.52) exist on [t0,∞)
for any initial values.

Definition 4.2.1. ( [Soliman and Abdalla 2008]) The ordinary differ-
ential equation (4.51) is said to be uniform-integrally stable if for every
α > 0 and for any t0 ≥ 0, there exists β = β(α) ∈ K such that for any
initial value |w0| < α, and for any perturbation q ∈ C(R+,R) such that

for every T > 0 :
∫ t0+T
t0

|q(s)|ds < α the inequality |w(t; t0, w0)| < β
holds for t ≥ t0, where w(t; t0, w0) is a solution of (4.52) with initial
condition w(t0) = w0.

Based on the definition of integral stability for ordinary differential
equations we will introduce integral stability in terms of two measures
for differential equations with “maxima.”

Definition 4.2.2. Let h, h0 ∈ Γ. System of differential equations with
“maxima” (4.1) is said to be uniform-integrally stable in terms of
measures (h0, h) if for every α > 0 and for any t0 ≥ 0, there exists
β = β(α) ∈ K such that for any initial function φ ∈ C([−r, 0],Rn)
such that maxs∈[−r,0] h0(t0 + s, φ(s)) < α, and for any perturbation
G ∈ C(R+ × R

n × R
n,Rn) which satisfies for every T > 0 the inequal-

ity
∫ t0+T
t0

sup(x,y)∈Ω(s,h,β) ||G(s, x, y)||ds < α, it follows the validity of
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h(t, y(t; t0, φ)) < β for t ≥ t0, where y(t; t0, φ) is the solution of the
initial value problem for the perturbed system of differential equations
with “maxima” (4.49), (4.2).

We will give an example to illustrate the integral stability.

Example 4.2.1. Consider the scalar differential equation x′ = 0,
where x ∈ R and its perturbed differential equation y′ = 0 + ye−t.
The solution of the perturbed equation is y(t; t0, y0) = y0e

e−t0e−e
−t

for
t ≥ t0. Applying the inequalities e−e

−t
< 1 and ee

−t0 < e we obtain
|y(t; t0, y0)| ≤ |y0|e, i.e., for any α > 0 the inequality |y(t; t0, y0)| ≤ α
holds provided |y0| < β = α

e .

On the other side, for any α > 0, T > 0 and β = α
3 the inequality

∫ t0+T

t0

supw:|w|<β|we−s|ds = βe−t0(1 − e−T ) < β = α

holds. Therefore, the differential equation x′ = 0 is uniform-integrally
stable.

In our further investigations we need some properties of both mea-
sures and the functions from the class Λ, defined by Definition 4.1.1.

We will use the properties h-decrescent and uniformly finer defined
in Definition 4.1.3 and Definition 4.1.4 correspondingly.

We will obtain sufficient conditions for integral stability in terms of
two measures for systems of differential equations with “maxima.” We
will apply two different types of Lyapunov functions from the class Λ
and comparison results for scalar ordinary differential equations.

Theorem 4.2.1. Let the following conditions be fulfilled:

1. The function F ∈ C[R+ × R
n × R

n,Rn], F (t, 0, 0) ≡ 0.

2. The functions h0, h ∈ Γ, h0 is uniformly finer than h.

3. There exists a function V1 : [−r,∞) × R
n → R+, V1 ∈ Λ, it is

h0-decrescent and

(i) for any number t ≥ 0 and any function ψ ∈ C([t− r, t],Rn)
such that V1(t, ψ(t)) > V1(t+ s, ψ(t+ s)) for s ∈ [−r, 0) and
(t, ψ(t)) ∈ S(h, ρ) the inequality

D(4.49)V1(t, ψ(t)) ≤ f(t, V1(t, ψ(t)))
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holds, where f ∈ C(R+ × R,R+], f(t, 0) ≡ 0, ρ > 0 is a
constant.

4. For any number µ > 0 there exists a function V
(µ)
2 : [−r,∞) ×

R
n → R+, V

(µ)
2 ∈ Λ such that

(ii) b(h(t, x)) ≤ V
(µ)
2 (t, x) ≤ a(h0(t, x)) for (t, x) ∈ [−r,∞) ×

R
n,

where a, b ∈ K and limu→∞b(u) = ∞.

(iii) for any number t ≥ 0 and any function ψ ∈ C([−r, 0],Rn)
such that (t, ψ(t)) ∈ S(h, ρ)

⋂
SC(h0, µ) and

V1(t, ψ(t))+V
(µ)
2 (t, ψ(t)) > V1(t+s, ψ(t+s))+V

(µ)
2 (t+s, ψ(t+s))

for s ∈ [−r, 0) the inequality

D(4.1)V1(t, ψ(t)) +D(4.1)V
(µ)
2 (t, ψ(t))

≤ g
(

t, V1(t, ψ(t)) + V
(µ)
2 (t, ψ(t))

)

holds, where g ∈ C(R+ × R,R+], g(t, 0) ≡ 0;

5. The zero solution of the scalar differential equation (4.50) is equi-
stable.

6. The scalar differential equation (4.51) is uniform-integrally sta-
ble.

Then the system of differential equations with “maxima” (4.1) is
uniform-integrally stable in terms of measures (h0, h).

Proof. Since the function V1(t, x) is h0-decrescent, there exist a con-
stant ρ1 ∈ (0, ρ) and a function ψ1 ∈ K such that for any point
(t, x) ∈ [−r,∞) × R

n such that h0(t, x) < ρ1 the inequality

V1(t, x) ≤ ψ1(h0(t, x)) (4.53)

holds.
Since h0(t, x) is uniformly finer than h(t, x), there exist ρ0 ∈ (0, ρ1)

and a function ψ2 ∈ K : ψ2(ρ0) < ρ1 such that h0(t, x) < ρ0 implies

h(t, x) ≤ ψ2(h0(t, x)). (4.54)
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Let t0 ≥ 0 be a fixed point and α > 0 be a number such that α < ρ0.
According to condition 4 of Theorem 4.2.1 there exists a function

V
(α)
2 (t, x) with Lipschitz constant M2. Let M1 be Lipschitz constant of

the function V1(t, x).
Denote (M1 + M2)α = α1. Without loss of generality we assume

α1 < b(ρ).
From condition 5 of Theorem 4.2.1 it follows there exists δ1 =

δ1(t0, α1) > 0 such that the inequality |u0| < δ1 implies that

|u(t)| < α1

2
, t ≥ t0, (4.55)

where u(t) is a solution of (4.50) with the initial condition u(t0) = u0.
Since the function ψ1 ∈ K, there exists δ2 = δ2(δ1) > 0, δ2 < ρ1

such that for |u| < δ2 the inequality

ψ1(u) < δ1 (4.56)

holds.
From condition 6 of Theorem 4.2.1 it follows that there exists β1 =

β1(α1) ∈ K, b(ρ) > β1 ≥ α1 such that, for every solution w(t) of the
perturbed equation (4.52) with the initial condition w(t0) = w0, the
inequality

|w(t))| < β1, t ≥ t0, (4.57)

holds, provided that |w0| < α1 and for every T > 0 :
∫ t0+T
t0

|q(s)|ds <
α1.

Since the function b ∈ K , lims→∞b(s) = ∞, and ψ2(α) < ψ2(ρ0) <
ρ1 < ρ, we choose β = β(β1) > 0, ρ > β > α, β > ψ2(α) such that

b(β) ≥ β1. (4.58)

Since the functions a ∈ K, ψ2 ∈ K, and β > ψ2(α), we can find
δ3 = δ3(α1, β) > 0, α < δ3 < min(δ2, ρ0) such that the inequalities

a(δ3) <
α1

2
, ψ2(δ3) < β (4.59)

hold.
Now let the initial function φ ∈ C([−r, 0],Rn) and perturbation

G(t, x, y) of the right-hand side of the system of differential equations
(4.49) be such that

max
s∈[−r,0]

h0(t0 + s, φ(s)) < α,
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and for every T > 0 :

∫ t0+T

t0

sup
(x,y)∈Ω(s,h,β)

||G(s, x, y)||ds < α.

We will prove that

h(t, y(t)) < β, t ≥ t0. (4.60)

From (4.54) and the choice of β it follows that h0(t0 + s, φ(s)) <
α < ρ0 implies that h(t0 + s, φ(s)) ≤ ψ2(h0(t0 + s, φ(s))) < ψ2(α) < β,
i.e.,

h(t0 + s, φ(s)) < β for s ∈ [−r, 0].
Suppose inequality (4.60) is not true. Therefore, there exists a point

t∗ > t0 such that

h(t∗, y(t∗)) = β, h(t, y(t)) < β, t ∈ [t0 − r, t∗). (4.61)

From inequality (4.61) and β < ρ it follows the validity of the
inclusions

(t, y(t)) ∈ S(h, ρ), t ∈ [t0, t
∗], and (y(t), max

s∈[t−r,t]
y(s)) ∈ Ω(t, h, β),

t ∈ [t0, t
∗]. (4.62)

If we assume that h0(t
∗, y(t∗)) ≤ δ3 then from the choice of δ3 and

inequality (4.54) it follows h(t∗, y(t∗)) ≤ ψ2(h0(t
∗, y(t∗)) ≤ ψ2(δ3) < β,

which contradicts (4.61).
Therefore,

h0(t
∗, y(t∗)) > δ3, h0(t0 + s, φ(s)) < α < δ3 for s ∈ [−r, 0]. (4.63)

Then there exists a point t∗0 ∈ (t0, t
∗) such that δ3 = h0(t

∗
0, y(t

∗
0))

and (t, y(t)) ∈ S(h, β)
⋂
Sc(h0, δ3) for t ∈ [t∗0, t

∗). Since β < ρ and
δ3 > α it follows that

(t, y(t)) ∈ S(h, ρ)
⋂

Sc(h0, α), t ∈ [t∗0, t
∗]. (4.64)

Let r1(t) be the maximal solution of scalar differential equa-
tion (4.50) with the initial condition r1(t0) = u0 where u0 =
maxs∈[−r,0] V1(t0 + s, φ(t0 + s)). From condition (i) of Theorem 4.2.1,
according to Lemma 4.1.1, we obtain

V1(t, y(t)) ≤ r1(t), t ∈ [t0, t
∗]. (4.65)
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From inequality (4.56), we obtain

u0 = V1(ξ, φ(ξ)) ≤ ψ1(h0(ξ, φ(ξ))) < ψ1(α) < ψ1(δ2) < δ1, (4.66)

where ξ ∈ [t0 − r, t0].
From inequalities (4.55), (4.65), and (4.66) it follows that

V1(t, y(t)) ≤ r1(t) <
α1
2 for t ∈ [t0, t

∗], or

max
s∈[−r,0]

V1(t
∗
0 + s, y(t∗0 + s)) <

α1

2
. (4.67)

From inequality (4.59) and condition (ii) of Theorem 4.2.1 it follows
that

V
(α)
2 (t∗0+s, y(t

∗
0+s)) < a(h0(t

∗
0+s, y(t

∗
0+s))) = a(δ3) <

α1

2
, s ∈ [−r, 0].

(4.68)
Consider the function V : R+ × R

n → R+, V ∈ Λ defined by

V (t, x) = V1(t, x) + V
(α)
2 (t, x). (4.69)

From inequalities (4.67) and (4.68) it follows that

max
s∈[−r,0]

V (t∗0 + s, y(t∗0 + s)) < α1. (4.70)

Let the point t ∈ [t∗0, t
∗] and the function ψ ∈ C([−r, 0],Rn) be such

that

(t, ψ(0)) ∈ S(h, β)
⋂

Sc(h0, α), (ψ(0), max
s∈[−r,0]

ψ(s)) ∈ Ω(t, h, β),

and V (t, ψ(0)) > V (t+ s, ψ(s)) for s ∈ [−r, 0).
Using Lipschitz conditions for functions V1(t, x) and V

(α)
2 (t, x), and

condition (iii) of Theorem 4.2.1 we obtain

D(4.49)V (t, ψ(t)) = D(4.49)V1(t, ψ(t)) +D(4.49)V
(α)
2 (t, ψ(t))

≤ lim sup
ǫ→0

1

ǫ

{{
V1(t+ ǫ, ψ(t) + ǫF (t, ψ(t), max

s∈[−r,0]
ψ(t+ s)))

− V1(t, ψ(t))
}

+
{
V

(α)
2 (t+ ǫ, ψ(t) + ǫF (t, ψ(t), max

s∈[−r,0]
ψ(t+ s))) − V

(α)
2 (t, ψ(t))

}}

+ lim sup
ǫ→0

1

ǫ

{{
V1(t+ ǫ, ψ(t)

(4.71)
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+ǫ[F (t, ψ(t),maxs∈[−r,0] ψ(t+ s)) +G(t, ψ(t),maxs∈[−r,0] ψ(t+ s)])

−V1(t+ ǫ, ψ(t) + ǫF (t, ψ(t),maxs∈[−r,0] ψ(t+ s)))
}

+
{
V

(α)
2 (t+ ǫ, ψ(t) + ǫ[F (t, ψ(t),maxs∈[−r,0]ψ(t+ s))

+G(t, ψ(t),maxs∈[−r,0] ψ(t+ s))])

−V (α)
2 (t+ ǫ, ψ(t) + ǫF (t, ψ(t),maxs∈[−r,0] ψ(t+ s)))

}}

≤ D(4.1)V1(t, ψ(t)) +D(4.1)V
(α)
2 (t, ψ(t))

+(M1 +M2)||G(t, ψ(t),maxs∈[−r,0] ψ(t+ s))||
≤ g(t, V (t, ψ(t))) + (M1 +M2) sup(x,y)∈Ω(t,h,β) ||G(t, x, y)||

= g(t, V (t, ψ(t))) + q(t).

Consider the scalar differential equation (4.52) where the per-
turbation on the right-hand side is given by q(t) = (M1 +
M2) sup(x,y)∈Ω(t,h,β) ||G(t, x, y)|| for t ∈ [t∗0, t

∗].
Let r∗(t) be the maximal solution of (4.52) with the initial condition

r∗(t∗0) = w∗
0, where w∗

0 = maxs∈[−r,0] V (t∗0 + s, y(t∗0 + s)). According to
Lemma 4.1.1 the inequality

V (t, y(t)) ≤ r∗(t), t ∈ Ξ
⋂

[t∗0, t
∗] (4.72)

holds, where Ξ ⊆ [t∗0,∞) is the interval of existence of r∗(t).
Choose a point T ∗ > t∗ such that

∫ t∗

t∗0

q(s)ds+
1

2
(T ∗ − t∗)q(t∗) < α1.

Now define the continuous function q∗(t) : [t∗0,∞) → R by

q∗(t) =







q(t) for t ∈ [t∗0, t
∗]

q(t∗)
t∗−T ∗ (t− T ∗) for t ∈ [t∗, T ∗]
0 for t ≥ T ∗.

(4.73)

From the choice of the perturbation G(t, x, y) it follows that for
every T > 0 the inequality

∫ t∗0+T

t∗0

q∗(s)ds ≤ (M1 +M2)

∫ t0+T

t0

sup
(x,y)∈Ω(s,h,β)

||G(s, x, y)||ds < α1

holds.
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Let r∗∗(t) be the maximal solution of scalar differential equation
(4.52) with the initial condition r∗∗(t∗0) = w∗

0, where the perturbation
of the right-hand side is defined above function q∗(t). We note that
r∗∗(t) = r∗(t; t∗0, w

∗
0), t ∈ [t∗0, t

∗).
From inequality (4.70) it follows that |w∗

0| < α1 and therefore in-
equality (4.57) holds, i.e.,

r∗∗(t) < β1, t ≥ t∗0. (4.74)

From inequalities (4.72) and (4.74), the choice of the point t∗, and
condition (iii) of Theorem 4.2.1 we obtain

b(β) ≥ β1 > r∗∗(t∗) = r∗(t∗) ≥ V (t∗, y(t∗)) ≥ V
(α)
2 (t∗, y(t∗))

≥ b(h(t∗, y(t∗))) = b(β).

The obtained contradiction proves the validity of inequality (4.60)
for t ≥ t0.

Inequality (4.60) proves uniform-integral stability in terms of mea-
sures (h0, h) of the considered system of differential equations with
“maxima.”

In the case when the Lyapunov function is bounded both from above
and from below, the following result is true:

Theorem 4.2.2. Let the following conditions be fulfilled:
1. The function F ∈ C[R+ × R

n × R
n,Rn], F (t, 0, 0) ≡ 0.

2. The function g ∈ C[R+ × R,R+], g(t, 0) ≡ 0.
3. The functions h0, h ∈ Γ, h0 are uniformly finer than h.
4. There exists a function V : [−r,∞) × R

n → R+, V ∈ Λ such
that

(i) b(h(t, x)) ≤ V (t, x) ≤ a(h0(t, x)) for (t, x) ∈ [0,∞) × R
n,

where a, b ∈ K and limu→∞b(u) = ∞;
(ii) for any point t ≥ 0 and for any function ψ ∈ C([t − r, t],Rn)

such that (t, ψ(t))) ∈ S(h, ρ) and V (t, ψ(t)) > V (t + s, ψ(t + s)) for
s ∈ [−r, 0) the inequality

D(4.1)V (t, ψ(t)) ≤ g(t, V (t, ψ(t)))

holds, where ρ > 0 is a constant.
5. The scalar differential equation (4.51) is uniform-integrally sta-

ble.
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Then the system of differential equations with “maxima” (4.1) is
uniform-integrally stable in terms of measures (h0, h).

The proof of Theorem 4.2.2 is similar to the one of Theorem 4.2.1
and we omit it.

Remark 4.2.1. In the case r = 0 the obtained results reduce to results
for integral stability in terms of two measures of ordinary differential
equations studied in [Lakshmikantham and Liu 1993].

In the case h(t, x) = h0(t, x) ≡ ‖x‖ the obtained results reduce to
results for integral stability of differential equations with “maxima.”

In the case h(t, x) = h0(t, x) ≡ ‖x‖ and r = 0 the obtained results
reduce to results for integral stability of ordinary differential equations
studied in [Soliman and Abdalla 2008].

4.3 Stability and Cone Valued Lyapunov

Functions

One of the main problems of Lyapunov’s second method is related to
the construction of an appropriate Lyapunov function. Often, it is eas-
ier to construct a vector Lyapunov function rather than a scalar one.
However, vector functions require comparison systems of differential
equations. In order to involve scalar differential equations in the com-
parison method instead of comparison systems, we use a special type
of stability that combines the ideas of two different measures and a dot
product.

In this section we will study the system of nonlinear differential
equations with “maxima” (4.1) with initial condition (4.2), where x ∈
R
n, F : [0,∞)×R

n×R
n → R

n, r > 0 is a constant, φ ∈ C([−r, 0],Rn)
and t0 ∈ R+ is a fixed point.

Let x, y ∈ R
n. Denote by (x • y) the dot product of both vectors x

and y, i.e.,
∑n

i=1 xiyi.
Let K ⊂ R

n be a cone. Consider the set

K∗ = {ϕ ∈ R
n : (ϕ • x) ≥ 0 for any x ∈ K}. (4.75)

We assume that K∗ is a cone.
Consider the set of measures

G(ϕ0) = {h ∈ C([−r,∞) × R
n,K) : inf

x∈Rn
(ϕ0 • h(t, x)) = 0

for each t ≥ −r}, (4.76)
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where ϕ0 ∈ K∗.
Note, for example, K ≡ R

n
+ is a cone, ϕ0 is the unit vector, and the

function

h(t, x) = (e−t|x1|, e−t|x2|, . . . , e−t|xn|), x ∈ R
n, x = (x1, x2, . . . , xn)

is from the set G(ϕ0).
Let ρ be positive constant, ϕ0 ∈ K∗, h ∈ G(ϕ0). Define set:

S(h, ρ, ϕ0) = {(t, x) ∈ [0,∞) × R
n : (ϕ0 • h(t, x)) < ρ}.

We will introduce the definition of a new type of stability for dif-
ferential equations with “maxima,” which combines the ideas of sta-
bility in terms of two measures (see [Lakshmikantham and Liu 1993]
and [Movchan 1960]) and a dot product.

Definition 4.3.1. Let ϕ0 ∈ K∗, h, h0 ∈ G(ϕ0). The system of differ-
ential equations with “maxima” (4.1) is said to be

(S4.3.1) d-stable in terms of two measures h0 and h with a vector ϕ0 if
for every ǫ > 0 and t0 ≥ 0 there exists δ = δ(t0, ǫ) > 0 such that
for any φ ∈ C([−r, 0],Rn) inequality (ϕ0 • h0(t0 + s, φ(s))) < δ
for s ∈ [−r, 0] implies (ϕ0 • h(t, x(t; t0, φ))) < ǫ for t ≥ t0, where
x(t; t0, φ) is a solution of differential equations with “maxima”
(4.1) with initial condition (4.2);

(S4.3.2) uniformly d-stable in terms of two measures h0 and h with a
vector ϕ0 if (S4.3.1) is satisfied, where δ is independent on t0;

Remark 4.3.1. The vector ϕ0, which is introduced in Definition 4.3.1,
is a proxy for the weights of the solution’s components.

Remark 4.3.2. In the partial case of one-dimensional cone K = R+

the measures h and h0 are scalar valued nonnegative functions. The
above defined d-stability in terms of two measures reduces to stability
in terms of two measures for differential equations with “maxima.”

In our further investigations we will use the following comparison
scalar ordinary differential equations

u′ = g(t, u), (4.77)

where u ∈ R, g(t, 0) ≡ 0.
We will use some properties of the functions from class G.
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Definition 4.3.2. Let the vector ϕ0 ∈ K∗ and the functions h, h0 ∈
G(ϕ0). The function h0 is uniformly ϕ0-finer than the function h if there
exist a constant σ > 0 and a function p ∈ K such that for any point
(t, x) ∈ [−r,∞)×R

n : (ϕ0 •h0(t, x)) < σ the inequality (ϕ0•h(t, x)) ≤
p((ϕ0 • h0(t, x)) holds.

We will introduce the following class of functions:

Definition 4.3.3. We will say that function V (t, x) : Ω × R
n →

K, Ω ⊂ R+, V = (V1, V2, . . . , Vn), belongs to the class L if:

1. V (t, x) ∈ C1(Ω × R
n,K);

2. There exist constants Mi > 0, i = 1, 2, . . . , n, such that |Vi(t, x)−
Vi(t, y)| ≤Mi‖x− y‖ for any t ∈ Ω, x, y ∈ R

n.

Let function V ∈ L, V = (V1, V2, . . . , Vn), t ∈ R+, and φ ∈ C([t−
r, t],Rn). We define a derivative D(4.1)V (t, x) of the function V among
the system (4.1) by the equalities

D(4.1)Vi(t, φ(t)) =
∂Vi(t, φ(t))

∂t

+

n∑

j=1

∂Vi(t, φ(t))

∂xj
Fj(t, φ(t), sups∈[−r,0]φ(t+ s)) (4.78)

for i = 1, 2, . . . , n, where

D(4.1)V (t, x) = (D(4.1)V1(t, x),D(4.1)V2(t, x), . . . ,D(4.1)Vn(t, x)).

In the further investigations we will use the following comparison
result:

Lemma 4.3.1. Let the following conditions be fulfilled:

1. The condition 1 of Lemma 4.1.1 is satisfied.

2. Vector ϕ0 ∈ K∗ and function V (t, x) : [t0, T ] × R
n → K, V ∈ L

are such that for any function ψ ∈ C([−r, 0],Rn) and any number
t ∈ [t0, T ] such that (ϕ0 • V (t, ψ(0))) > (ϕ0 • V (t + s, ψ(s))) for
s ∈ [−r, 0) the inequality

(

ϕ0 • D(4.1)V (t, ψ(0))
)

≤ g(t, (ϕ0 • V (t, ψ(0))))

holds, where g ∈ C(R+ × R+,R+), g(t, 0) ≡ 0.
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3. Function x(t) = x(t; t0, ϕ) is a solution of (4.1) with initial
condition x(t0 + s) = ϕ(s), s ∈ [−r, 0], which is defined for
t ∈ [t0 − r, T ] where ϕ ∈ C([−r, 0], R

n).

4. Function u∗(t) = u∗(t; t0, u0) is the maximal solution of (4.77)
with initial condition u∗(t0) = u0, which is defined for t ∈ [t0, T ].

Then the inequality maxs∈[−r,0](ϕ0 • V (t0 + s, ϕ(s))) ≤ u0 implies
the validity of the inequality (ϕ0 • V (t, x(t))) ≤ u∗(t) for t ∈ [t0, T ].

Proof. Let vn(t) be the maximal solution of the initial value problem

u′ =g(t, u) +
1

n
,

u(t0) =u0 +
1

n
,

(4.79)

where maxs∈[−r,0](ϕ0 •V (t0 +s, ϕ(s))) ≤ u0 and n is a natural number.
Assume that vn(t) is defined for t ∈ [t0, T ].

Define a function m(t) ∈ C([t0 − r, T ],R+) by m(t) = (ϕ0 •
V (t, x(t))).

The rest of the proof is similar to the proof of Lemma 4.1.1.

We will consider the cone K ⊂ R
n, n > 1 and we will obtain suffi-

cient conditions for d-stability in terms of two measures of systems of
differential equations with “maxima.” We will employ cone-valued Lya-
punov functions from class L. The proofs are based on the Razumikhin
method and the comparison method with scalar ordinary differential
equations.

Theorem 4.3.1. Let the following conditions be fulfilled:

1. The function F ∈ C(R+ × R
n × R

n,Rn), F (t, 0, 0) ≡ 0.

2. The vector ϕ0 ∈ K∗ and the functions h0, h ∈ G(ϕ0), h0 is uni-
formly ϕ0-finer than h.

3. There exists a function V (t, x) : R+ × R
n → K, V ∈ L such that

(i) b((ϕ0 • h(t, x))) ≤ (ϕ0 • V (t, x)) ≤ a((ϕ0 • h0(t, x)))

for (t, x) ∈ S(h, ρ, ϕ0), where a, b ∈ K, the set K is defined
by (4.3);
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(ii) For any number t ≥ 0 and any function ψ ∈ C([t− r, t],Rn)
such that (ϕ0 • V (t, ψ(t))) > (ϕ0 • V (t + s, ψ(t + s))) for
s ∈ [−r, 0) and (t, ψ(t)) ∈ S(h, ρ, ϕ0) the inequality

(

ϕ0 • D(4.1)V (t, ψ(t))
)

≤ g(t, (ϕ0 • V (t, ψ(t))))

holds, where g ∈ C(R+ × R,R+), g(t, 0) ≡ 0, ρ > 0 is a
constant.

4. For any initial function φ ∈ C([−r, 0],Rn) the solution of the
initial value problem for the system of differential equations with
“maxima” (4.1) and (4.2) exists on [t0 − r,∞), t0 ≥ 0.

5. For any initial point (t0, u0) ∈ R+ × R the solution of scalar
differential equation (4.77) exists on [t0,∞), t0 ≥ 0.

6. Zero solution of scalar differential equation (4.77) is equi-stable.

Then system of differential equations with “maxima” (4.1) is d-
stable in terms of two measures h0 and h with a vector ϕ0.

Proof. Let ǫ > 0 be a fixed number, ǫ < ρ, and t0 ≥ 0 be a fixed point.

From condition 2 of Theorem 4.3.1 it follows that there exist a
constant σ > 0 and a function p ∈ K such that for any point (t, x) ∈
[−r,∞) × R

n : (ϕ0 • h0(t, x)) < σ the inequality

(ϕ0 • h(t, x)) < p((ϕ0 • h0(t, x))) (4.80)

holds.

We can find δ1 = δ1(ǫ) > 0, δ1 < ρ such that the inequality

p(δ1) < ǫ (4.81)

holds.

Since the zero solution of scalar differential equation (4.77) is equi-
stable there exists δ2 = δ2(t0, ǫ) > 0 such that inequality |u0| < δ2
implies

|u(t; t0, u0)| < b(ǫ), t ≥ t0, (4.82)

where u(t; t0, u0) is the maximal solution of (4.77) with initial condition
u(t0) = u0.
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Since the function a ∈ K, which is defined in condition (i), we can
find δ3 = δ3(t0, ǫ) > 0, δ3 < ρ such that the inequality

a(δ3) < δ2 (4.83)

holds.
Now let function φ ∈ C([−r, 0],Rn) be such that

(ϕ0 • h0(t0 + s, φ(s))) < δ4 for s ∈ [−r, 0], (4.84)

where δ4 = min{δ1, δ3, σ}, δ4 = δ4(t0, ǫ) > 0.
From condition 2, inequalities (4.81) and (4.84), and the choice of

δ4, it follows that for s ∈ [−r, 0] the inequality

(ϕ0 • h(t0 + s, x(t0 + s; t0, φ))) < p((ϕ0 • h0(t0 + s, φ(s))))

< p(δ4) ≤ p(δ1) < ǫ (4.85)

holds.
We will prove that if inequality (4.84) is satisfied, then

(ϕ0 • h(t, x(t; t0, φ))) < ǫ for t ≥ t0. (4.86)

Suppose inequality (4.86) is not true. From inequality (4.85) it fol-
lows that there exists a point t∗ > t0 such that

(ϕ0 •h(t∗, x(t∗; t0, φ))) = ǫ, (ϕ0 •h(t, x(t; t0, φ))) < ǫ, t ∈ [t0 − r, t∗).
(4.87)

Inequalities (4.85) and (4.87), ǫ < ρ and the inclusion S(h, ǫ, ϕ0) ⊂
S(h, ρ, ϕ0) prove that

(t, x(t; t0, φ)) ∈ S(h, ρ, ϕ0) for t ∈ [t0 − r, t∗]. (4.88)

From inequality (4.83), condition (i) and the inclusion (4.88) it
follows that

maxs∈[−r,0](ϕ0 • V (t0 + s, ϕ(s))) ≤ a((ϕ0 • h0(t0 + s, x(t0 + s; t0, φ))))

≤ a(δ3) < δ2. (4.89)

Therefore according to inequalities (4.81) and (4.89) we get

u∗(t; t0, u
∗
0) < b(ǫ), t ≥ t0, (4.90)

where u∗(t; t0, u∗0) is the maximal solution of the scalar equation (4.77)
with initial condition u(t0) = u∗0, u

∗
0 = maxs∈[−r,0](ϕ0 •V (t0 +s, ϕ(s))).
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According to a suitable modification of Lemma 4.1.1 the inequality

(ϕ0 • V (t, x(t; t0, φ))) ≤ u∗(t; t0, u
∗
0) for t ∈ [t0, t

∗] (4.91)

holds.
From inequalities (4.90) and (4.91), the choice of the point t∗, and

condition (i) of Theorem 4.3.1 we obtain

b(ǫ) > u∗(t∗; t∗0, u
∗
0) ≥ (ϕ0 • V (t∗, x(t∗; t0, φ)))

≥ b((ϕ0 • h(t∗, x(t∗; t0, φ)))) = b(ǫ).

The obtained contradiction proves the validity of inequality (4.86)
for t ≥ t0.

Inequality (4.86) proves d-stability in terms of two measures of the
considered system of differential equations with “maxima”.

Theorem 4.3.2. Let the following conditions be fulfilled:

1. Conditions 1, 2, 3, 4, 5 of Theorem 4.3.1 are satisfied.

2. Zero solution of scalar differential equation (4.77) is uniformly
stable.

Then the system of differential equations with “maxima” (4.1) is
uniformly d-stable in terms of two measures h0 and h with a vector ϕ0.

The proof of Theorem 4.3.2 is similar to the one of Theorem 4.3.1
and we omit it.

Now we will illustrate the application of the above-defined stability
in terms of two measures and the obtained sufficient conditions on an
example.

Example 4.3.1. Consider the system of differential equations with
“maxima”

x′(t) = −x(t) + 4y(t) +
1

2
max

s∈[t−r,t]
x(s) (4.92)

y′(t) = −x(t) − y(t) +
1

2
max

s∈[t−r,t]
y(s), t ≥ t0, (4.93)

with initial conditions

x(t) = φ1(t− t0), y(t) = φ2(t− t0) for t ∈ [t0 − r, t0], (4.94)

where x, y ∈ R, r > 0 is a small fixed constant, t0 ≥ 0.
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We will study the stability of the solution of (4.92) and (4.93) by
applying different Lyapunov functions and two measures for the initial
function and the solution.

Case 1. (vector Lyapunov function and a dot product).

Consider the cone K = {(x, y) : x ≥ 0, y ≥ 0} ⊂ R
2.

Let functions h0(t, x, y) = (|x|, |y|), h(t, x, y) = (x2, y2) and vector
ϕ0 = (1, 4).

Note that the vector ϕ0 ∈ K∗, the functions h, h0 ∈ G(ϕ0), and
the function h0 is uniformly ϕ0-finer than the function h since there
exist a constant δ = 1

4 > 0 and a function p ∈ K, p(u) ≡ u such that
for any point (t, x, y) ∈ [−r,∞) × R

2 : |x| + 4|y| < δ the inequality
x2 + 4y2 ≤ |x| + 4|y| holds.

Consider the set S(h, 1, ϕ0) = {(x, y) ∈ R
2 : x2 + 4y2 < 1}.

Define the Lyapunov function V : R
2 → K, V = (V1, V2), where

V1(x, y) = 1
2x

2, V2(x, y) = 1
2y

2.

Then the condition (i) of Theorem 4.3.1 is fulfilled for functions
b(s) = 1

2s ∈ K and a(s) = 1
2s

2 ∈ K since 1
2(x2 + 4y2) ≤ 1

2(|x| + 4|y|)2
for (x, y) ∈ S(h, 1, ϕ0).

Let t ∈ R+ and the function ψ ∈ C([t− r, t],R2), ψ = (ψ1, ψ2) be
such that the inequality

(ϕ0 • V (ψ1(t), ψ2(t))) =
1

2
ψ2

1(t) + 2ψ2
2(t)

>
1

2
ψ2

1(t+ s) + 2ψ2
2(t+ s) = (ϕ0 • V (ψ1(t+ s), ψ2(t+ s)))

(4.95)

holds for s ∈ [−r, 0).
Then

ψ1(t) max
s∈[t−r,t]

ψ1(s) ≤ |ψ1(t)| | max
s∈[t−r,t]

ψ1(s)|

=
√

(ψ1(t))2
√

( max
s∈[t−r,t]

ψ1(s))2

≤
√

2(ϕ0 • V (ψ1(t), ψ2(t)))
√

2(ϕ0 • V (ψ1(t), ψ2(t))))

≤ 2(ϕ0 • V (ψ1(t), ψ2(t)))
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and

ψ2(t) max
s∈[t−r,t]

ψ2(s) ≤ |ψ2(t)| | max
s∈[t−r,t]

ψ2(s)|

=
√

(ψ2(t))2
√

( max
s∈[t−r,t]

ψ2(s))2

≤
√

1

2
(ϕ0 • V (ψ1(t), ψ2(t)))

√

1

2
(ϕ0 • V (ψ1(s), ψ2(s)))

≤ 1

2
(ϕ0 • V (ψ1(t), ψ2(t))).

Therefore, if inequality (4.95) is fulfilled, then

(

ϕ0•D(4.92),(4.93)V (ψ1(t), ψ2(t))
)

= − (ψ1(t))
2 − 4(ψ2(t))

2 +
1

2
ψ1(t) max

s∈[t−r,t]
ψ1(s) + 2ψ2(t) max

s∈[t−r,t]
ψ2(s)

≤− (ψ1(t))
2 − 4(ψ2(t))

2 +
1

2
(ϕ0 • V (ψ1(t), ψ2(t)))

+
1

2
(ϕ0 • V (ψ1(t), ψ2(t)))

or
(

ϕ0 • D(4.92),(4.93)V (ψ1(t), ψ2(t))
)

≤ −(ϕ0 • V (ψ1(t), ψ2(t))) ≤ 0.

(4.96)
Consider the scalar comparison equation u′ = 0 which zero solution

is uniformly stable and according to Theorem 4.3.2 the system of differ-
ential equations with “maxima” (4.92) and (4.93) is uniformly d- stable
in terms of two measures, i.e., for every ǫ > 0 there exists δ = δ(ǫ) > 0

such that inequality maxs∈[−r,0]
(

|φ1(s)| + 4|φ2(s)|
)

< δ implies

(x(t))2 + 4(y(t))2 < ǫ for t ≥ t0, (4.97)

where x(t), y(t) is the solution of initial value problems (4.92)-(4.94).
Case 2. (scalar Lyapunov function).
Now we will apply a scalar Lyapunov function to study the stability

of the system of differential equations with “maxima” (4.92) and (4.93)
Consider the scalar Lyapunov function Ṽ (x, y) = 1

2x
2 + 2y2 and

both measures h0(t, x, y) = |x| + |y|, h(t, x, y) = x2 + y2. As above,
if (4.125) is satisfied then the derivative of Lyapunov function, de-
fined by (4.4) satisfies the inequality D(4.92),(4.93)Ṽ (φ1(t), φ2(t)) =
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φ1(t)
(

−φ1(t)+4φ2(t)+
1
2 maxs∈[t−r,t] φ1(s)

)

+4φ2(t)
(

−φ1(t)−φ2(t)+

1
2 maxs∈[t−r,t] φ2(s)

)

≤ 0. According to Theorem 4.1.1 the solution of

the initial value problems (4.92)-(4.94) is stable since the zero solution
of the scalar equation u′ = 0 is stable, i.e.,

h(t, x(t), y(t)) = (x(t))2 + (y(t))2 < ǫ (4.98)

provided that |φ1(s)| + |φ2(s)| < δ.

Note that the estimate (4.97) is better than (4.98) and the appli-
cation of a dot product gives us an opportunity to use various weights
to components of the solution. This is very applicable in the case when
some of the components of the solution play a more important role on
the stability than others.

4.4 Practical Stability on a Cone

It is well known (see [Salle and Lefschetz 1961]) that stability and
even asymptotic stabilities themselves are neither necessary nor suffi-
cient to ensure practical stability. The desired state of a system may be
mathematically unstable; however, the system may oscillate sufficiently
close to the desired state, and its performance is deemed acceptable.
The practical stability is neither weaker nor stronger than the usual
stability; an equilibrium can be stable in the usual sense, but not prac-
tically stable, and vice versa. For example an aircraft may oscillate
around a mathematically unstable path, yet its performance may be
acceptable. Practical stability is, in a sense, a uniform boundedness of
the solution relative to the initial conditions, but the bound must be
sufficiently small.

In this section we apply cone-valued multidimentional Lypunov
functions to study practical stability of differential equations with
“maxima.” Note that in the applications, such kinds of functions are
comparatively easier for construction. To avoid applications of compar-
ison systems of differential equations and to apply scalar differential
equations, we introduce a scalar product on a cone and appropriate
modifications of stability definitions.

Consider the initial value problem for the system of nonlinear
differential equations with “maxima” (4.1), (4.2), where x ∈ R

n,
F : [0,∞) × R

n × R
n → R

n, F = (F1, F2, . . . , Fn), r > 0 is a con-
stant, φ ∈ C([−r, 0],Rn) and t0 ∈ R+ is a fixed point.
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Let K ⊂ R
n be a cone. Consider the sets K∗ and G(ϕ0), defined by

(4.75) and (4.76) correspondingly.
We assume that K∗ is a cone.
Consider the set of functions K, defined by (4.3), the set L of mea-

sures, defined by (4.76) and the vector ϕ0 ∈ K∗.
Let ρ be positive constant, ϕ0 ∈ K∗, h ∈ G(ϕ0). Define set:

S̃(h, ρ, ϕ0) = {(t, x) ∈ [0,∞) × R
n : (ϕ0 • h(t, x)) < ρ}.

In our further investigations we will use the following comparison
scalar ordinary differential equation

u′ = g(t, u), (4.99)

where u ∈ R, g(t, 0) ≡ 0.
We will use the property uniformly ϕ0-finer of functions from class

G which is given in Definition 4.3.2.
We will consider the class of functions L, introduced by Definition

4.3.3 and we will define a derivative D(4.1)V (t, x) of the function V ∈ L
along the system (4.1) by the equality (4.78).

4.4.1 Practical Stability

We will introduce the definition of a practical stability for differential
equations with “maxima,” based on the ideas of stability in terms of
two measures (see [Lakshmikantham and Liu 1993]) and a dot product.

Definition 4.4.1. Let ϕ0 ∈ K∗, h, h0 ∈ G(ϕ0), λ,A = const : 0 < λ <
A be given. The system of differential equations with “maxima” (4.1)
is said to be

(S4.4.1) d-practically stable with respect to (λ,A) in terms of measures
h0 and h with a vector ϕ0 if there exists t0 ≥ 0 such that for any
φ ∈ C([−r, 0],Rn) inequality maxs∈[−r,0,](ϕ0 •h0(t0 + s, ϕ0(s))) <
λ implies (ϕ0 • h(t, x(t; t0, φ))) < A for t ≥ t0, where x(t; t0, φ)
is a solution of differential equations with “maxima” (4.1) with
initial condition (4.2);

(S4.4.2) d-uniformly practically stable with respect to (λ,A) in terms of
measures h0 and h with a vector ϕ0 if for any point t0 ≥ 0 and
function φ ∈ C([−r, 0],Rn) inequality maxs∈[−r,0](ϕ0 • h0(t0 +
s, φ(s)) < λ implies (ϕ0 • h(t, x(t; t0, φ))) < A for t ≥ t0.
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Note that as a partial case of Definition 4.4.1, we obtain the defi-
nition for practical stability of differential equations with “maxima:”

Definition 4.4.2. The system of differential equations with “maxima”
(4.1) is said to be

(S4.4.3) practically stable with respect to (λ,A) if there exists a
point t0 ≥ 0 such that for any φ ∈ C([−r, 0],Rn) inequality
sups∈[−r,0]‖φ(s)‖ < λ implies ‖x(t; t0, φ)‖ < A for t ≥ t0,where
x(t; t0, φ) is a solution of the initial value problem for differential
equations with “maxima” (4.1), (4.2);

(S4.4.4) uniformly practically stable with respect to (λ,A) if for any t0 ≥
0 and φ ∈ C([−r, 0],Rn) inequality maxs∈[−r,0] ‖φ(s)‖ < λ implies
‖x(t; t0, φ))‖ < A for t ≥ t0.

Note that in the case r = 0, the above given Definition 4.4.2 reduces
to a definition for practical stability of ordinary differential equations,
given in the book by [Lakshmikantham et al. 1990].

We will obtain sufficient conditions for d-practical stability in terms
of two measures of systems of differential equations with “maxima.” We
will employ Lyapunov functions from class L. The proof is based on the
Razumikhin method combined with the comparison method, employed
scalar ordinary differential equations.

Theorem 4.4.1. Let the following conditions be fulfilled:

1. The function F ∈ C(R+ × R
n × R

n,Rn), F (t, 0, 0) ≡ 0.

2. The vector ϕ0 ∈ K∗, the functions h0, h ∈ G(ϕ0), the positive
constants λ,A are such that λ < A.

3. There exists a function V (t, x) : R+ × R
n → K, V (t, x) : R+ ×

R
n → K, V ∈ L such that

(i) b((ϕ0 • h(t, x))) ≤ (ϕ0 • V (t, x)) ≤ a((ϕ0 • h0(t, x))), (t, x) ∈
S̃(h,A,ϕ0) where a, b ∈ K and a(λ) < b(A);

(ii) for any number t ≥ 0 and any function ψ ∈ C([t− r, t],Rn)
such that (ϕ0 • V (t, ψ(t))) ≥ (ϕ0 • V (t + s, ψ(t + s))) for
s ∈ [−r, 0) and (t, ψ(t))) ∈ S̃(h,A,ϕ0) the inequality

(

ϕ0 • D(4.1)V (t, ψ(t))
)

≤ g(t, (ϕ0 • V (t, ψ(t))))

holds, where g ∈ C(R+ × R,R+), g(t, 0) ≡ 0, ρ > 0 is a
constant.
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4. For any initial function φ ∈ C([−r, 0],Rn) and any initial point
t0 ≥ 0 the solution of the initial value problem for the system of
differential equations with “maxima” (4.1),(4.2) exists on [t0 −
r,∞), t0 ≥ 0.

5. For any initial point (t0, u0) ∈ R+ × R the solution of scalar
equation (4.77) exists on [t0,∞), t0 ≥ 0.

6. The scalar differential equation (4.77) is practically stable with
respect to (a(λ), b(A)).

Then the system of differential equations with “maxima” (4.1) is
d-practically stable with respect to (λ,A) in terms of measures h0 and
h with a vector ϕ0.

Proof. From condition 5 it follows that there exists a point t0 ≥ 0 such
that |u0| < a(λ) implies

|u(t; t0, u0)| < b(A) for t ≥ t0, (4.100)

where u(t; t0, u0) is a solution of scalar differential equation (4.77) with
initial condition u(t0) = u0.

Choose a function φ ∈ C([−r, 0],Rn) such that

max
s∈[−r,0]

(ϕ0 • h0(t0 + s, φ(s)) < λ (4.101)

and let x(t; t0, φ) be a solution of (4.1) with initial condition (4.2).
Let u0 = maxs∈[−r,0](ϕ0 • V (t0 + s, φ(s))). From a suitable modifi-

cation of Lemma 4.1.1 follows the validity of the inequality

(ϕ0 • V (t, x(t; t0, φ))) ≤ u∗(t; t0, u0) for t ≥ t0, (4.102)

From condition (i) and inequality (4.101) we obtain

(ϕ0 • V (t0 + s, φ(s))) ≤ a((ϕ0 • h0(t0 + s, φ(s)))) < a(λ). (4.103)

From inequalities (4.100) and (4.103) it follows that

(ϕ0 • V (t, x(t; t0, φ))) ≤ u∗(t; t0, u0) < b(A) for t ≥ t0, (4.104)

From inequality (4.104) and condition (i) we get

b((ϕ0 • h(t, x(t; t0, φ)))) ≤ (ϕ0 • V (t, x(t; t0, φ)))

≤ u∗(t; t0, u0) < b(A) for t ≥ t0, (4.105)
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or
(ϕ0 • h(t, x(t; t0, φ))) < A for t ≥ t0. (4.106)

Theorem 4.4.2. Let the following conditions be fulfilled:

1. The conditions 1, 2, 3, 4, and 5 of Theorem 4.4.1 are satisfied.

2. The scalar differential equation (4.77) is uniformly practically
stable with respect to (a(λ), b(A)).

Then the system of differential equations with “maxima” (4.1) is
uniformly d-practically stable with respect to (λ,A) in terms of measures
h0 and h with the vector ϕ0.

Proof. From condition 2 of Theorem 4.4.2 it follows that for every point
t0 ≥ 0 and |u0| < a(λ) the inequality

|u(t; t0, u0)| < b(A) for t ≥ t0, (4.107)

holds, where u(t; t0, u0) is a solution of scalar differential equation (4.77)
with initial condition u(t0) = u0.

From condition (i) we get that for every function φ ∈ C([−r, 0],Rn)
such that maxs∈[−r,0](ϕ0 • h0(t0 + s, φ(s)) < λ the inequalities

b((ϕ0•h(t0+s, φ(t0+s)))) ≤ a((ϕ0•h0(t0+s, φ(t0+s)))) < a(λ) < b(A)

holds, for s ∈ [−r, 0], or

(ϕ0 • h(t0 + s, φ(s))) < A on the interval [−r, 0]. (4.108)

We will prove that for every point t0 ≥ 0 and every function φ ∈
C([−r, 0],Rn) such that

max
s∈[−r,0]

(ϕ0 • h0(t0 + s, φ(s))) < λ (4.109)

the inequality

(ϕ0 • h(t, x(t; t0, φ))) < A for t ≥ t0 (4.110)

holds, where x(t; t0, φ) is a solution of (4.1) with initial condition (4.2).
Assume the claim is not true. Therefore, there exist a point t0 ≥ 0

and a function φ ∈ C([−r, 0],Rn) such that the inequality (4.109) holds
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and inequality (4.110) is not true. According to the assumption and
inequality (4.108) there exists a point t∗ ≥ t0 such that

(ϕ0 • h(t, x(t; t0, φ))) < A for t ∈ [t0 − r, t∗)

(ϕ0 • h(t∗, x(t∗; t0, φ))) = A

(ϕ0 • h(t, x(t; t0, φ))) ≥ A for t ∈ (t∗, t∗ + ∆],

(4.111)

where ∆ > 0 is a small enough number.
Let u∗0 = maxs∈[−r,0](ϕ0 • V (t0 + s, φ(s))). From a suitable modifi-

cation of Lemma 4.1.1 and condition (ii) it follows the validity of the
inequality

(ϕ0 • V (t, x(t; t0, φ))) ≤ u∗(t; t0, u
∗
0) for t ∈ [t0, t

∗], (4.112)

where u∗(t; t0, u∗0) is a solution of scalar differential equation (4.77) with
initial condition u(t0) = u∗0.

From condition (i) we obtain for s ∈ [−r, 0]

(ϕ0 • V (t0 + s, φ(s))) ≤ a((ϕ0 • h0(t0 + s, φ(s)))) < a(λ). (4.113)

Inequality (4.113) proves that |u∗0| < a(λ) and therefore, according
to inequality (4.107) we get

u∗(t; t0, u0) < b(A) for t ∈ [t0, t
∗]. (4.114)

From inequality (4.114), the choice of the point t∗, and condition
(i) we get

b(A) = b((ϕ0 • h(t∗, x(t∗; t0, φ)))) ≤ (ϕ0 • V (t∗, x(t∗; t0, φ)))

≤ u∗(t∗; t0, u0) < b(A). (4.115)

The obtained contradiction proves the validity of inequality (4.110).

In the case when both measures are equal to a regular norm in R
n

and the vector ϕ0 is the unit vector, we obtain the following result:

Theorem 4.4.3. Let the following conditions be fulfilled:

1. The function F ∈ C(R+ × R
n × R

n,Rn), F (t, 0, 0) ≡ 0.

2. There exists a function V (t, x) : R+ × R
n → K, V (t, x) : R+ ×

R
n → K, V ∈ L such that
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(i) b(‖x‖) ≤ ∑n
i=1 Vi(t, x) ≤ a(‖x‖) for t ∈ R+, ‖x‖ < A,

where a, b ∈ K and a(λ) < b(A);

(ii) for any number t ≥ 0 and any function ψ ∈ C([t− r, t],Rn)
such that if

n∑

i=1

Vi(t, ψ(t)) ≥
n∑

i=1

Vi(t+ s, ψ(t+ s)) for s ∈ [−r, 0)

and ‖ψ(t)‖ < A

then the inequality

n∑

i=1

D(4.1)Vi(t, ψ(t)) ≤ g(t,

n∑

i=1

Vi(t, ψ(t)))

holds, where g ∈ C(R+ × R,R+), g(t, 0) ≡ 0, ρ > 0 is a
constant.

3. For any initial function φ ∈ C([−r, 0],Rn) the solution of the
initial value problem for the system of differential equations with
“maxima” (4.1), (4.2) exists on [t0 − r,∞), t0 ≥ 0.

4. For any initial point (t0, u0) ∈ R+ × R the solution of scalar
equation (4.77) exists on [t0,∞), t0 ≥ 0.

Then the (uniform) practical stability with respect to (a(λ), b(A))
of scalar differential equation (4.77) implies (uniform) practical stabil-
ity with respect to (λ,A) of the system of differential equations with
“maxima” (4.1).

The proof of Theorem 4.4.3 is similar to the proofs of Theorem 4.4.1
and Theorem 4.4.2 and we omit it.

4.4.2 Eventual Practical Stability

We will introduce the definition of a new type of eventual practical
stability for differential equations with “maxima”, based on the ideas of
stability in terms of two measures (see [Lakshmikantham and Liu 1993])
and a dot product. The application of a dot product allows us to use
scalar comparison ordinary differential equations for investigation of
stability properties of the solutions. At the same time, the fixed vector,
involved in the definition, plays the role of a weight of components of
the solution.
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Consider the system of differential equations with “maxima” (4.1)
with initial condition (4.2).

We introduce the following set (H4.4) of conditions:

H 4.4.1. The function F ∈ C[R+ × R
n × R

n,Rn], F (t, 0, 0) ≡ 0.

H 4.4.2. For any initial function φ ∈ C([−r, 0],Rn) the solution of the
initial value problem for the system of differential equations
with “maxima” (4.1),(4.2) exists on [t0 − r,∞), t0 ≥ 0.

H 4.4.3. For any initial point (t0, u0) ∈ R+ × R the solution of scalar
differential equation (4.77) exists on [t0,∞), t0 ≥ 0.

H 4.4.4. The vector ϕ0 ∈ K∗ and the functions h0, h ∈ G(ϕ0).

H 4.4.5. The functions h0, h ∈ G(ϕ0) are such that h is eventually
ϕ0-stronger than h0.

H 4.4.6. The functions h0, h ∈ G(ϕ0) are such that, for (t, x) ∈
S̃(h0, ρ0, ϕ0), the inequality (ϕ0 •h(t, x)) ≤ Q((ϕ0 •h0(t, x)))
holds, where Q ∈ K such that Q(s) ≤ s and ρ0 > 0 is a
constant.

Definition 4.4.3. Let ϕ0 ∈ K∗, h, h0 ∈ G(ϕ0). The system of differ-
ential equations with “maxima” (4.1) is said to be

(S4.4.5) d-eventually practically stable in terms of measures h0 and h
with a vector ϕ0 if for any couple (λ,A) such that 0 < λ < A
there exists τ(λ,A) > 0, such that for some t0 ≥ τ(λ,A) and
φ ∈ C([−r, 0],Rn) such that maxs∈[−r,0](ϕ0 •h0(t0+s, φ(s)) <
λ the inequality (ϕ0 • h(t, x(t; t0, φ))) < A holds for t ≥ t0,
where x(t; t0, φ) is a solution of the initial value problem (4.1),
(4.2);

(S4.4.6) uniformly d-eventually practically stable in terms of mea-
sures h0 and h with a vector ϕ0 if for any couple (λ,A)
such that 0 < λ < A there exists τ(λ,A) > 0, such that
for any point t0 ≥ τ(λ,A) and function φ ∈ C([−r, 0],Rn)
such that maxs∈[−r,0](ϕ0 • h0(t0 + s, φ(s)) < λ the inequality
(ϕ0 • h(t, x(t; t0, φ))) < A holds for t ≥ t0 ≥ τ(λ,A).
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The vector ϕ0, introduced in Definition 4.4.3, plays the role of a
weight of components of the solution.

As a partial case of Definition 4.4.3 we obtain a definition for even-
tually practical stability of differential equations with “maxima:”

Definition 4.4.4. The system of differential equations with “maxima”
(4.1) is said to be

(S4.4.7) eventually practically stable if for any (λ,A) : 0 < λ < A
there exists τ(λ,A) > 0, such that for some point t0 ≥ τ(λ,A)
and a function φ ∈ C([−r, 0],Rn) : supt∈[−r,0]‖φ(t)‖ < λ the
inequality ‖x(t; t0, φ)‖ < A holds for t ≥ t0, where x(t; t0, φ)
is a solution of the initial value problem (4.1), (4.2);

(S4.4.8) uniformly eventually practically stable if for any couple
(λ,A) : 0 < λ < A there exists τ(λ,A) > 0, such that
for any t0 ≥ τ(λ,A) and any function φ ∈ C([−r, 0],Rn) :
supt∈[−r,0]‖φ(t)‖ < λ the inequality ‖x(t; t0, φ)‖ < A holds for
t ≥ t0 ≥ τ(λ,A).

We will obtain sufficient conditions for d-eventual practical stabil-
ity in terms of two measures of systems of differential equations with
“maxima.” We will employ Lyapunov functions from class L. The proof
is based on the Razumikhin method combined with the comparison
method and employed scalar ordinary differential equations.

Theorem 4.4.4. Let the following conditions be fulfilled:

1. The conditions H 4.4.1–H 4.4.5 are satisfied.

2. There exists a function V (t, x) : R+ × R
n → K, with V ∈ L such

that

(i) b((ϕ0 • h(t, x))) ≤ (ϕ0 • V (t, x)) ≤ a((ϕ0 • h0(t, x)))

for (t, x) ∈ S̃(h, ρ, ϕ0), where a, b ∈ K;

(ii) for any number t ≥ 0 and any function ψ ∈ C([t− r, t],Rn)
such that (ϕ0 • V (t, ψ(t))) > (ϕ0 • V (t + s, ψ(t + s))) for
s ∈ [−r, 0) and (t, ψ(t))) ∈ S̃(h, ρ, ϕ0) the inequality

(

ϕ0 • D(4.1)V (t, ψ(t))
)

≤ g(t, (ϕ0 • V (t, ψ(t))))

holds, where g ∈ C(R+ × R,R+), g(t, 0) ≡ 0, ρ > 0 is a
constant.
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3. For any initial point (t0, u0) ∈ R+ × R the solution of scalar
equation (4.99) exists on [t0,∞), t0 ≥ 0.

4. The scalar differential equation (4.99) is eventually practically
stable.

Then the system of differential equations with “maxima” (4.1) is
d-eventually practically stable in terms of measures h0 and h with a
vector ϕ0.

Proof. Let the couple (λ,A) such that 0 < λ < A be given.
Case 1. Let A < ρ. From condition 4, it follows that there exist

τ(λ,A) > 0 and a point t0 ≥ τ(λ,A) such that |u0| < a(λ) implies

|u(t; t0, u0)| < b(A) for t ≥ t0, (4.116)

where u(t; t0, u0) is a solution of the scalar differential equation (4.99)
with initial condition u(t0) = u0.

Choose a function φ ∈ C([−r, 0],Rn) such that sups∈[−r,0](ϕ0 •
h0(t0 +s, φ(s))) < λ, where t0 is defined above. Let x(t) = x(t; t0, φ) be
a solution of differential equations with “maxima” (4.1) with the initial
function φ.

From assumption H 4.4.5, it follows that the inequality

(ϕ0 • h(t, φ(t− t0))) < A for t ∈ [t0 − r, t0] (4.117)

holds.
We claim that

(ϕ0 • h(t, x(t))) < A for t ≥ t0 (4.118)

holds.
Assume the claim is not true. From the choice of the initial function

φ and inequality (4.117), it follows there exists a point t∗ > t0 such that

(ϕ0 • h(t, x(t))) < A, for t ∈ [t0 − r, t∗),

(ϕ0 • h(t∗, x(t∗))) = A.
(4.119)

Since A < ρ, the inclusion x(t; t0, φ) ∈ S̃(h, ρ, ϕ0) is valid for t ∈
[t0 − r, t∗].

Let u∗0 = maxs∈[−r,0](ϕ0 • V (t0 + s, φ(s))). From Lemma 4.3.1 and
condition (ii), it follows the validity of the inequality

(ϕ0 • V (t, x(t))) ≤ u∗(t; t0, u
∗
0) for t ∈ [t0, t

∗], (4.120)
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where u∗(t; t0, u∗0) is a solution of scalar differential equation (4.99) with
initial condition u(t0) = u∗0.

From condition (i) and the choice of the initial function φ, we obtain
for s ∈ [−r, 0]

(ϕ0 • V (t0 + s, φ(s))) ≤ a((ϕ0 • h0(t0 + s, φ(s)))) < a(λ). (4.121)

Inequality (4.121) proves that |u∗0| < a(λ), and therefore, according to
inequalities (4.116) and (4.120), we get

(ϕ0 • V (t0 + s, φ(s))) ≤ u∗(t; t0, u0) < b(A) for t ∈ [t0, t
∗]. (4.122)

From inequality (4.122), the choice of t∗, and condition (i), we get

b(A) = b((ϕ0•h(t∗, x(t∗)))) ≤ (ϕ0•V (t∗, x(t∗))) ≤ u∗(t∗; t0, u0) < b(A).

This is a contradiction, which proves the validity of inequality
(4.118).

Case 2. Let A ≥ ρ. We repeat the proof of Case 1, but instead of
the number a, we use the number ρ everywhere.

Note the condition H 4.4.5 could be replaced by the condition H
4.4.6 in the sufficient condition for d-eventual practical stability in
terms of two measures:

Theorem 4.4.5. Let the conditions H 4.4.1-H 4.4.4, H4.4.6 and con-
ditions 2, 3, 4 of Theorem 4.4.4 be fulfilled.

Then the system of differential equations with “maxima” (4.1) is
d-eventually practically stable in terms of measures h0 and h with a
vector ϕ0.

The proof of Theorem 4.4.5 is similar to the one of Theorem 4.4.4. In
this case we consider the constant ρ1 = min{ρ, ρ0}, and from the choice
of the initial function φ, it follows that (t0 + s, φ(s)) ∈ S̃(h0, ρ1, ϕ0) for
s ∈ [−r, 0], and then condition H 4.4.6 immediately shows the validity
of inequality (4.117).

Theorem 4.4.6. Let the following conditions be fulfilled:

1. The conditions 1, 2, 3 and 4 of Theorem 4.4.4 are satisfied.

2. The scalar differential equation (4.99) is uniformly eventually
practically stable.
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Then the system of differential equations with “maxima” (4.1) is
uniformly d-eventually practically stable in terms of measures h0 and
h with the vector ϕ0.

The proof of Theorem 4.4.6 is similar to the proof of Theorem 4.4.4
and we omit it.

Note that condition H 4.4.5 could be replaced by condition H 4.4.6
in Theorem 4.4.6:

Theorem 4.4.7. Let the conditions H 4.4.1-H 4.4.4, H 4.4.6, condi-
tions 2, 3, 4 of Theorem 4.4.4, and condition 2 of Theorem 4.4.5 be
fulfilled.

Then the system of differential equations with “maxima” (4.1) is
uniformly d-eventually practically stable in terms of measures h0 and
h with a vector ϕ0.

Now we will illustrate the application of the above-obtained suffi-
cient conditions on an example.

Example 4.4.1. Consider the following system of differential equa-
tions with “maxima”

x′(t) = − x(t)
(

x2(t) + y2(t)
)

sin2 t+ e−t max
s∈[t−r,t]

x(s),

y′(t) = − y(t)
(

x2(t) + y2(t)
)

sin2 t+ e−t max
s∈[t−r,t]

y(s), t ≥ t0,

(4.123)

with initial conditions

x(t) = φ1(t− t0), y(t) = φ2(t− t0) for t ∈ [t0 − r, t0], (4.124)

where x, y ∈ R, r > 0 is small enough a constant, t0 ≥ 0.

Let h0(t, x, y) = (|x|, |y|), h(t, x, y) = (x2, y2).

Consider V : R
2 → K, V = (V1, V2), V1(x, y) = 1

2(x +
2y)2, V2(x, y) = 1

2(x− y)2, where K = {(x, y) : x ≥ 0, y ≥ 0} ⊂ R
2 is a

cone.

For the vector ϕ0 = (1, 2), then (ϕ0 • h(t, x, y)) = x2 + 2y2, (ϕ0 •
V (x, y)) = 1

2(x+ 2y)2 + (x− y)2 = 3
2

(
x2 + 2y2

)
and (ϕ0 • h0(t, x, y)) =

|x| + 2|y|.
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It is easy to check the validity of condition (i) of Theorem 4.4.4
for functions a(s) = 3

2s ∈ K and b(s) = 3
2s

2 ∈ K. Let t ∈ R+ and
ψ ∈ C([t− r, t],R2), ψ = (ψ1, ψ2) be such that

(ϕ0 • V (ψ1(t), ψ2(t))) =
3

2

(
ψ2

1(t) + 2ψ2
2(t)

)

≥ 3

2

(
ψ2

1(t+ s) + 2ψ2
2(t+ s)

)
= (ϕ0 • V (ψ1(t+ s), ψ2(t+ s))

for s ∈ [−r, 0).

(4.125)

Then for i = 1, 2, we obtain

ψi(t) max
s∈[t−r,t]

ψi(s) ≤ |ψi(t)| | max
s∈[t−r,t]

ψi(s)| =
√

(ψi(t))2
√

( max
s∈[t−r,t]

ψi(s))2

≤
√

2

3
(ϕ0 • V (ψ1(t), ψ2(t)))

√

2

3
(ϕ0 • V (ψ1(t+ s), ψ2(t+ s))))

≤ 2

3
(ϕ0 • V (ψ1(t), ψ2(t))).

Therefore, if inequality (4.125) is fulfilled, we have

(

ϕ0 • D(4.92)V (ψ1(t), ψ2(t))
)

= 3e−t
(

ψ1(t) max
s∈[t−r,t]

ψ1(s) + 2ψ2(t) max
s∈[t−r,t]

ψ2(s)
)

≤ 6e−t(ϕ0 • V (ψ1(t), ψ2(t))).

Now, consider the scalar comparison equation u′ = 6e−tu with ini-

tial condition u(t0) = u0, whose solution is u(t) = u0e
6
(
e−t0−e−t

)

and
|u(t)| ≤ |u0|e6e−t0 for t ≥ t0. For any numbers 0 < λ < A, we choose
a number τ > max{0, ln6 − ln(ln(Aλ ))} > 0. Note τ = τ(λ,A) > 0.
It is easy to check that for t0 > τ and |u0| < λ the inequality
|u(t)| < A holds, i.e., the scalar comparison equation is uniformly even-
tually practically stable, and therefore, according to Theorem 4.4.5 the
system of differential equations with “maxima” (4.92) is uniformly d-
eventually practically stable in terms of two measures, i.e., for any
numbers 0 < λ < A, there exists a number τ = τ(λ,A) > 0 such that,
if t0 > τ then the inequality sups∈[−r,0](|φ1(s)| + 2|φ2(s)|) < λ implies

x2(t; t0, φ) + 2y2(t; t0, φ) < A, for t ≥ t0.

Note that the choice of the vector ϕ0 has a huge influence on the
sufficient conditions. Let us, for example, consider the vector ϕ0 =
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(1, 1). In this case

(ϕ0 • V (x, y)) =
1

2
(x+ 2y)2 +

1

2
(x− y)2 = x2 + xy +

5

2
y2

and condition (i) of Theorem 4.4.4 is not satisfied for the above-defined
function V (x, y).

Now, let us consider the Lyapunov function Ṽ : R
2 → K, Ṽ =

(Ṽ1, Ṽ2), defined by Ṽ1(x, y) = 1
2(x + y)2 and Ṽ2(x, y) = 1

2(x − y)2. In

this case (ϕ0 • Ṽ (x, y)) = x2 + y2 and condition (i) of Theorem 4.4.4 is
satisfied. But in this case condition (ii) is not satisfied.



Chapter 5

Oscillation Theory

The oscillation and nonoscillation of solutions of various types of dif-
ferential equations have been the object of intensive studies in the last
decades. The monographs of [Agarwal et al. 2000], [Bainov and Mishev
1991], and [Ladde et al. 1987] are devoted to the systematic investiga-
tion on this subject. However, the results for oscillation and nonoscil-
lation are relatively scarce in literature, especially for differential equa-
tions with “maxima.”

5.1 Differential Equations with “Maxima” ver-

sus Differential Equations with Delay

In this section, the oscillatory properties of various types of differen-
tial equations will be studied and the behavior of their solutions will
be compared with the behavior of the corresponding delay differential
equations. It will be demonstrated that the presence of the maximum
function into the equation changes totally the behavior of the solution.

Initially we will give the basic definition in this chapter.

Definition 5.1.1. The solution x(t) of a scalar differential equation
with “maxima” in the interval J ⊂ R+ is said to be:

1. A proper solution, if there exists a number Tx ∈ J such that

sup{|x(t)| : t ≥ T1} > 0 for all T1 ≥ Tx.

2. Nonoscillatory solution, if it is a proper solution and it is either
positive or negative for t ≥ Tx.

141
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3. Oscillatory solution, if it is a proper solution and there is an
infinite number of points on J at which the solution changes its
sign.

The differential equation with “maxima” is said to be oscillatory if
all its proper solutions are oscillatory.

We will consider delay differential equations versus differential equa-
tions with “maxima.”

Consider the differential equation with “maxima”

x′(t) + q(t) max
[t−r,t]

x(s) = 0, (5.1)

and its corresponding delay differential equation

x′(t) + q(t)x(t− r) = 0, (5.2)

where x ∈ R, q ∈ C(R+,R), r > 0.

Definition 5.1.2. A solution of a differential equation is called from
Z-type if it either nonpositive or nonnegative.

Theorem 5.1.1. If q(t) is of one sign, then all solutions of equation
(5.1) are nonoscillatory.

Proof. When q(t) ≡ 0 or r = 0, the conclusion of Theorem 5.1.1 is
obvious. Therefore, we assume that q(t) 6= 0 and r > 0.

If q(t) ≥ 0, suppose that x(t) is an oscillatory solution of Equation
(5.1). Then x(t) is not a Z-type solution and otherwise x(t) ≡ 0 even-
tually. Therefore, there exist t1, t2 and t3 such that x(t1) = x(t2) =
x(t3) = 0 and x(t) < 0 for t ∈ (t1, t2) and x(t) > 0 for t ∈ (t2, t3). Thus,
x′(t2) = −q(t2)max[t2−r,t2] x(s) ≤ 0, which is a contradiction.

For q(t) ≤ 0, Theorem 5.1.1 can be proved similarly.

Remark 5.1.1. If q(t) has the same sign, by Theorem 5.1.1, the solu-
tions of (5.1) are more nonoscillatory in nature than those of (5.2).

When q(t) is oscillatory, then differential equation with “maxima”
(5.1) may have oscillatory solutions.

For example, consider the equation

x′(t) + sin t max
[t−2π,t]

x(s) = 0, (5.3)
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where x ∈ R.
The differential equation with “maxima” (5.3) has an oscillatory so-

lution x = cos t, but it also has a nonoscillatory solution x = −2−cos t.
It is obviously different than the corresponding ordinary differential
equation x′(t) + (sin t)x = 0.

This example shows that the solution of (5.1) is different from
the behavior of the solutions of the corresponding ordinary differen-
tial equation.

Theorem 5.1.2. If q(t) is oscillatory, then (5.1) has at least one
nonoscillatory solution.

Proof. Assume that q(tn) = 0 for
{
tn
}∞
n=1

and limn→∞ tn = ∞ and
q(t) ≥ 0 for t ∈ (t1, t2), q(t) ≤ 0 for t ∈ (t2, t3), q(t) ≥ 0 for t ∈ (t3, t4),
. . . . We define a function φ(t) for t ∈ [t1−r, t1], which is nondecreasing

and negative; then (5.1) has a solution y(t) = φ(t1) exp
(

−
∫ t
t1−r q(s)ds

)

for t ∈ [t1 − r, t2]. It is obvious that y(t) < 0 for t ∈ [t1 − r, t2] and
max[t−r,t] y(s) = y(t). By the method of steps, we can obtain y(t) for
t ≥ t1 − r. In view of q(t) ≤ 0 for t ∈ (t2, t3), we know that y(t) < 0
for t ∈ [t1 − r, t3]. We note that q(t) ≥ 0 for t ∈ [t3, t4]. If there exists
ξ ∈ (t3, t4) such that max[ξ−r,ξ] y(s) = y(t2), then we have y′(t) =
−q(t)max[t−r,t] y(s) = −q(t)y(t) for ξ ≤ t ≤ t4. By induction we know
that y(t) < 0 for t ≥ t1 − r.

Now, consider the differential equation with “maxima”

x′(t) + q1(t) max
s∈[t−r,t]

x(s) + q2(t)x(t− h) = 0 (5.4)

and its corresponding delay differential equations

x′(t) + q1(t)x(t− r) + q2(t)x(t− h) = 0 (5.5)

and
x′(t) + q1(t)x(t) + q2(t)x(t− h) = 0, (5.6)

where x ∈ R, q1, q2 ∈ C([t0,∞),R+), r, h > 0.
It is obvious that if x(t) is an eventually positive solution of the

differential equation with “maxima” (5.4), then it is a solution of (5.5).
If x(t) is an eventually negative solution of the equation with “max-

ima” (5.4) then it is a solution of (5.6).
By the comparison result, we obtain the following result.



144 Chapter 5. Oscillation Theory

Theorem 5.1.3. If the delay differential equation (5.6) is oscillatory,
then so is the differential equation with “maxima” (5.5).

By comparing (5.5) and (5.6), we know that the solutions of (5.4)
are more nonoscillatory in nature that those of equation (5.6). For
example, it is well known that the equation

x′(t) + q1(t)x(t− r) + q2(t)x(t) = 0, (5.7)

may have oscillatory solutions (see [Ladde et al. 1987]). But the equa-
tion

x′(t) +
(
q1(t) + q2(t)

)
x(t) = 0, (5.8)

is nonoscillatory. By Theorem 5.1.3, the equation

x′(t) + q1(t) max
s∈[t−r,t]

x(s) + q2(t)x(t) = 0, (5.9)

has nonoscillatory solutions.
Now, consider the forced differential equation with “maxima”

x′(t) + q(t) max
s∈[t−r,t]

x(s) = f(t) (5.10)

and its corresponding delay differential equation

x′(t) + q(t)x(t− r) = f(t), (5.11)

where x ∈ R, f ∈ C([t0,∞),R), q and r are the same as above.

Theorem 5.1.4. Assume that q(t) ≥ 0 and that there exists P (t)
such that P ′(t) = f(t). Let P+(t) =

(∣
∣P (t)

∣
∣ + P (t)

)
/2 and P−(t) =

−
(∣
∣P (t)

∣
∣− P (t)

)/
2 such that

∫ ∞

T
q(t) max

s∈[t−r,t]
P+(s)dt = ∞,

∫ ∞

T
q(t) max

s∈[t−r,t]
P−(s)dt = −∞.

(5.12)

Then all solutions of differential equation with “maxima” (5.10)
oscillate.

Since the proof is standard (see [Erbe et al. 1987]), we omit it.
Consider the differential equation with “maxima”

x′(t) + max
s∈[t−π,t]

x(s) = cos t, (5.13)
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where x ∈ R.

Theorem 5.1.4 does not hold for the differential equation with “max-
ima” (5.13) because maxs∈[t−π,t] P−(s) ≡ 0. In fact, x = sin t − t is a
nonoscillatory solution of (5.13). But, by the known result (see [Erbe
et al. 1987]), all solutions of the equation

x′(t) + x(t− π) = cos t (5.14)

oscillate.

5.2 Oscillations of Differential Equations with

“Maxima” and Delay

Now we will study the oscillatory properties for various types of
first order differential equations with “maxima.”

Consider the differential equations with “maxima”

[
x(t) − p(t)x(t− h)

]′
+ q(t) max

s∈[t−r,t]
x(s) = 0, (5.15)

and the corresponding differential equations with “minima”

[
y(t) − p(t)y(t− h)

]′
+ q(t)min s ∈[t−r,t] y(s) = 0, (5.16)

where x ∈ R, h > 0, r ≥ 0 and p, q ∈ C([t0,∞),R).

In our further investigations we will need the following result:

Lemma 5.2.1. Let the following condition be fulfilled:

(i) p(t) ≥ 0 for t ≥ t0 and there exists a T ≥ t0 such that

p(T + jr) ≤ 1, j = 0, 1, 2, . . . ; (5.17)

(ii) q(t) ≥ 0(6= 0) for t ≥ t0;

(iii) x(t) is an eventually positive solution of (5.15), or (5.16).

Then y(t) is eventually positive, where

y(t) = x(t) − p(t)x(t− h). (5.18)

The proof is standard (see [Chuanxi et al. 1990]) and we omit it.

Theorem 5.2.1. Let the conditions of Lemma 5.2.1 hold and either
p(t) > 0 or h > 0 and q(t) ≥ 0(6= 0) for t ∈ [u− r, u] for all large u.
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Then equation (5.15) has eventually positive solutions if and only
if

[
x(t) − p(t)x(t− h)

]′
+ q(t) max

s∈[t−r,t]
x(s) ≤ 0 (5.19)

has eventually positive solutions and equation (5.16) has eventually pos-
itive solutions if and only if

[
x(t) − p(t)x(t− h)

]′
+ q(t) min

s∈[t−r,t]
x(s) ≤ 0 (5.20)

also has eventually positive solutions.

The proof of Theorem 5.2.1 is similar to Theorem 1 in [Zhang et
al. 1995].

Theorem 5.2.2. Let the conditions (i) and (ii) of Lemma 5.2.1 hold
and there exists an integer N such that

lim
t→∞

inf

∫ t

t−h
q(s) max

u∈[s−r,s]

N−1∑

j=0

j
∏

i=0

p(u− ih)ds >
1

e
. (5.21)

Then each solution of differential equation with “maxima” (5.15)
oscillates.

Proof. If x(t) is an eventually positive solution of equation (5.15), then
y′(t) ≤ 0 and y(t) = x(t) − p(t)x(t− h) > 0 eventually. Then

x = y(t) + p(t)x(t− h)

= y(t) + p(t)y(t− h) + p(t)p(t− h)x(t− 2h)

= . . .

≥ y(t) + p(t)y(t− h) + . . . +

N−1∏

i=0

p(t− ih)y
(
t− (i+ 1)h

)

≥
N−1∑

j=0

j
∏

i=0

p(t− ih)y(t − h).
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Hence,

max
s∈[t−r,t]

x(s) ≥ max
s∈[t−r,t]

N−1∑

j=0

j
∏

i=0

p(s− ih)y(s − h)

= max
s∈[t−r,t]

N−1∑

j=0

j
∏

i=0

p(s− ih)y(t− r − h)

≥ max
s∈[t−r,t]

N−1∑

j=0

j
∏

i=0

p(s− ih)y(t− h).

Substituting the last inequality into (5.15), we have

y′(t) + q(t) max
s∈[t−r,t]

N−1∑

j=0

j
∏

i=0

p(s− ih)y(t− h) ≤ 0, (5.22)

which contradicts the fact that, under condition (5.21), the inequality
(5.22) has no eventually positive solution [Ladde et al. 1987].

If Z(t) is an eventually negative solution of (5.15), then x(t) =
−Z(t) is an eventually positive solution of (5.16). Similarly, we have

y′(t) + q(t) min
[t−r,t]

N−1∑

j=0

j
∏

i=0

p(s− ih)y(t − h) ≤ 0.

That is,

[−y(t)]′ + q(t) max
[t−r,t]

N−1∑

j=0

j
∏

i=0

p(s− ih)
[
− y(t− h)

]
≥ 0.

This is also a contradiction for the same reason as the positive solution.
The proof is complete.

In the partial case p(t) ≡ 1 the differential equations with “maxima”
(5.15) reduces to the following differential equation with “maxima:”

[
x(t) − x(t− h)

]′
+ q(t) max

s∈[t−r,t]
x(s) = 0, (5.23)

where x ∈ R.
For the equation (5.23) we obtain the following result:
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Theorem 5.2.3. Let q(t) ≥ 0.
Then (5.23) has nonoscillatory solutions if and only if

Z ′′(t) +
1

h
q(t)Z(t) = 0 (5.24)

also has nonoscillatory solutions.

Proof. Assume that x(t) is an eventually positive solution of (5.23). Let
y(t) = x(t)−x(t−h). Then y(t) > 0 and y′(t) ≤ 0 eventually. Let T be
a large number so that x(t) > 0, y(t) > 0 and y′(t) ≤ 0 for t ≥ T − h.
Set m = min−h≤t≤T x(t). When N ≤ t ≤ N + h we have

x(t) = y(t) + x(t− h) ≥ 1

h

∫ t+h

t
y(s)ds +m.

By induction, for T + kh ≤ t ≤ T + (k + 1)h,

x(t) ≥ 1

h

∫ t+h

t−kh
y(s)ds+m.

Hence,

x(t) ≥ 1

h

∫ t+h

T ∗

y(s)ds+m, t ≥ T ∗ ≥ T + h,

and

x(t) ≥ 1

h

∫ t

T ∗+h
y(s)ds+m, t ≥ T ∗ + h.

Set

Z(t) =
1

h

∫ t

T ∗+h
y(s)ds+m.

Thus, we have

Z ′′(t) +
1

h
q(t)z(t) ≤ 0, (5.25)

which implies that (5.24) has an eventually positive solution.
If x(t) is an eventually positive solution of the equation

[
x(t) − x(t− h)

]′
+ q(t) min

s∈[t−r,t]
x(s) = 0, (5.26)
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we can also prove that (5.24) has an eventually positive solution by the
above method.

If (5.24) has an eventually positive solution Z(t), then Z ′′(t) ≤ 0
and Z ′(t) > 0 eventually. Therefore, there exist T and M > 0 such that
Z(t) > M and Z ′(t) < M eventually.

Define a function H : R → R+ by

H(t) =







hZ ′(t) t ≥ T,
(t− T + h)Z ′(T ) T − h ≤ t < T,
0 t < T − h.

Define

y(t) =

∞∑

i=0

H(t− ih) > 0

and obtain

y(t) − y(t− h) = H(t) for t ≥ T.

That is,

y(t) − y(t− h) = hZ ′(t).

Setting µ = maxT−h≤t≤T y(t), we have

y(t) = hZ ′(t) + y(t− h) ≤
∫ t

t−h
Z ′(s)ds+ y(t− h)

≤
∫ t

t−2h
Z ′(s)ds+ y(t− 2h) ≤

∫ t

t−nh
Z ′(s)ds + y(t− nh).

Therefore, we get

y(t) ≤
∫ t

T
Z ′(s)ds+ µ ≤ Z(t) for t ≥ T

and

max
s∈[t−µ,t]

y(s) ≤ Z(t) and min
s∈[t−µ,t]

y(s) ≤ Z(t) for t ≥ T.

Then we obtain

[
y(t) − y(t− h)

]′
+ q(t) max

s∈[t−r,t]
y(s) ≤ 0
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and

[
y(t) − y(t− h)

]′
+ q(t) min

s∈[t−r,t]
y(s) ≤ 0.

According to Theorem 5.2.1 the differential equation with “max-
ima” (5.23) has nonoscillatory solutions. The proof is complete.

Theorem 5.2.4. Let p(t) ≡ p, p 6= −1, q(t) ≥ 0, and

∫ ∞

t0

q(s)ds = ∞. (5.27)

Then any nonoscillatory solution x(t) of (5.15) satisfies limt→∞ x(t) =
0.

Theorem 5.2.5. Let p(t) ≡ −1, q(t) ≥ 0, Q(t) = min
{
q(t), q(t − h)

}

and
∫ ∞

t0

Q(t)dt = ∞.

Then any eventually positive solution x(t) of (5.15) satisfies
limt→∞ x(t) = 0.

The proofs of Theorem 5.2.4 and Theorem 5.2.5 are similar to the
proofs of Theorem 2 and Theorem 1 in [Shabadikov and Yuldashev
1989].

Now we will give the existence and growth conditions of nonoscilla-
tory solutions of equation (5.15). We begin with the following theorem.

Theorem 5.2.6. ( [Zhang and Migda 2005]) Let p(t) ≡ p, where p ≥ 0.

Then equation (5.15) has an eventually positive solution.

Proof. Choose a positive continuous function H(t) such that

∫ ∞

t0

q(t)H(t)dt = ∞ (5.28)

and

lim
t→∞







q(t)

exp
( ∫ t

t0
q(s)H(s)ds

)






= 0. (5.29)
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Define a function v by

v(t) = exp

[∫ t

t0

exp

(∫ s

t0

q(u)H(u)du

)

ds

]

. (5.30)

Let BC be the Banach space of all bounded and continuous func-
tions y : [t0,∞) → R with the sup norm. Define a subset Ω of BC as
follows:

Ω =
{

y ∈ BC : 0 ≤ y(t) ≤ 1, t0 ≤ t <∞
}

.

Clearly Ω is a bounded, closed and convex subset of BC. Now we
define a mapping S on Ω as follows:

(Sy)(t) =

{
p
v(t− h)y(t− h)

v(t)
+

1

v(t)

∫ t

T
q(s) max

u∈[s−r,s]
v(u)y(u)ds +

1

2v(t)
, t ≥ T,

t

T
(Sy)(T ) +

(
1 − t

T

)
, t0 ≤ t < T,

(5.31)

where T is sufficiently large so that t−h ≥ t0, t− r ≥ t0, v(t) ≥ 1, and

p
v(t− h)

v(t)
+

1

v(t)

∫ t

T
q(s) max

u∈[s−r,s]
v(u)ds ≤ 1

2
for t ≥ T. (5.32)

In fact, from (5.28), (5.29) and (5.30) it is easy to see that

v(t− h)

v(t)
→ 0 and

∫ t
t0
q(s)maxu∈[s−r,s] v(u)ds

v(t)
→ 0 as t→ ∞

which shows that (5.32) is true for large t. Thus we have SΩ ⊂ Ω. Let
y1 and y2 be two functions in Ω. Then

∣
∣
∣(Sy2)(t) − (Sy1)(t)

∣
∣
∣ ≤ p

v(t− h)

v(t)

∣
∣y2(t− h) − y1(t− h)

∣
∣

+
1

v(t)

∫ t

T
q(s) max

u∈[s−r,s]
v(u)

∣
∣y2(u) − y1(u)

∣
∣ds

≤ 1

2

∣
∣
∣
∣y2 − y1

∣
∣
∣
∣, t ≥ T,
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and
∣
∣
∣

∣
∣
∣Sy2 − Sy1

∣
∣
∣

∣
∣
∣ = sup

t≥t0

∣
∣
∣(Sy2)(t) − (Sy1)(t)

∣
∣
∣

= sup
t≥T

∣
∣
∣(Sy2)(t) − (Sy1)(t)

∣
∣
∣ ≤ 1

2

∣
∣
∣
∣y2 − y1

∣
∣
∣
∣, t ≥ T

which shows that S is a contraction on Ω. Hence there is a function
y ∈ Ω such that Sy = y. That is

y(t) =







pv(t−h)y(t−h)
v(t) + 1

v(t)

∫ t
T q(s)maxu∈[s−r,s] v(u)y(u)ds + 1

2v(t) ,

t ≥ T
t
T y(T ) +

(
1 − t

T

)
, t0 ≤ t < T.

Obviously y(t) > 0 for t ≥ t0. Set x(t) = v(t)y(t). Then

x(t) − px(t− h) =

∫ t

T
q(s) max

u∈[s−r,s]
x(u)ds +

1

2
, t ≥ T. (5.33)

Therefore x(t) is a positive solution of (5.15) for t ≥ T . The proof is
complete.

Lemma 5.2.2. ( [Erbe et al. 1987]). Let x, z ∈ C([t0,∞),R) satisfy

z(t) = x(t) − px(t− h), t ≥ t0 + max
{
0, h
}
,

where p, h ∈ R. Assume that x is bounded on [t0,∞) and limt→∞ z(t) =
l exists.

Then the following statements hold:

(a) If p = 1, then l = 0;

(b) If p 6= ±1, then limt→∞ x(t) exists.

Lemma 5.2.3. ( [Zhang and Migda 2005]). Let p(t) ≡ p, p ≥ 0 and
x(t) be a positive solution of equation (5.15) such that x(t)−px(t−h) ≥
0.

Then the solution x(t) satisfies

(a) lim
t→∞

x(t) = L 6= 0,

or
(b) lim

t→∞
x(t) = ∞.
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Proof. Let x(t) be a positive solution of equation (5.15). Set z(t) =
x(t)−px(t−h). Then z(t) ≥ 0 and z′(t) ≥ 0 and is not identically zero.
Hence 0 < limt→∞ z(t) = l ≤ ∞. If l = ∞, then x(t) ≥ z(t) → ∞ as
t→ ∞, i.e., (b) holds.

If l <∞ and x(t) is bounded, Lemma 5.2.2 implies that limt→∞ x(t)
exists when p 6= 1. But limt→∞ x(t) = 0 is impossible. When p = 1,
Lemma 5.2.2 implies l = 0. This is a contradiction.

If l < ∞ and x(t) is unbounded, then there exists
{
tn
}

such that
x(tn) =
maxt≤tn x(t) → ∞ as n→ ∞. For p ∈ (0, 1), z(tn) ≥ x(tn)(1− p) → ∞
as n → ∞, which contradicts the boundedness of z. For p = 1,
x(t) ≥ x(t − h) + l/2 ≥ . . . ≥ x(t − nh) + nl/2 → ∞ as n → ∞.
For p > 1, we have

x(t) ≥ px(t− h) ≥ . . . ≥ pnx(t− nh)

which implies that (b) holds. The proof is complete.

Remark 5.2.1. In Lemma 5.2.3, the condition x(t) − px(t − h) ≥ 0
is necessary. For example, we consider the differential equation with
“maxima”

(
x(t)− 2x(t− 1)

)′
= (2e− 1)e−t

{

max
s∈[t−1,t]

(
ϕ(s)+ e−s

)
}−1

max
s∈[t−1,t]

x(s),

(5.34)
where x ∈ R and

ϕ(t) =

{
2n(t− n), t ∈ [n, n+ 1

2 ]
2n(n+ 1 − t), t ∈ [n+ 1

2 , n + 1]
, n = 0, 1, . . . .

The differential equation with “maxima” (5.34) has an eventually
positive solution x(t) = ϕ(t)+e−t. In fact, x(t) satisfies lim supt→∞ x(t)
= ∞ and lim inft→∞ x(t) = 0. As if r = 0, the condition x(t) − px(t−
h) ≥ 0 is also necessary.

Consider the delay differential equation
(
x(t) − 2x(t− 1)

)′
= (2e − 1)e−t

(
ϕ(s) + e−t

)−1
x(t), (5.35)

where x ∈ R.
The delay differential equation (5.35) has also a positive solution

x(t) = ϕ(t) + e−t. Thus, we see that Lemma 5.3.1 in [Erbe et al. 1987]
is false.
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By Theorem 5.2.6 and Lemma 5.2.3 we obtain immediately the
following result.

Theorem 5.2.7. ( [Zhang and Migda 2005]). Let p(t) ≡ p, where p is
a constant.

Then the conclusions hold:

(a) If p = 1, then the differential equation with “maxima” (5.15) has
an unbounded solution x(t) satisfying limt→∞ x(t) = ∞;

(b) If p > 1, then the differential equation with “maxima” (5.15)
has an unbounded positive solution x(t) which tends to infinity
exponentially;

(c) If 0 ≤ p < 1 and
∫ ∞

t0

q(s)ds = ∞, (5.36)

then the differential equation with “maxima” (5.15) has an un-
bounded positive solution.

Proof. By (5.33) the inequality

x(t) − px(t− h) > 0 for t ≥ T

holds.

The proofs of (a) and (b) are obvious.

In the case that p > 1 we have

x(t) ≥ px(t− h) ≥ . . . ≥ pnx(t− nh),

or

x(t) ≥ x(t0)exp
(
µ(t− t0)

)
, for t ≥ t0,

where µ = ln p
h > 0, which shows that (ii) is true. The proof is complete.

Remark 5.2.2. For eventually negative solutions of equation (5.15),
we can also obtain similar results. They are omitted.

Now we will study asymptotic properties of nonoscillatory solutions
of differential equation with “maxima”(5.15).
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Theorem 5.2.8. ( [Zhang and Migda 2005]). Let p(t) ≡ p, 0 ≤ p < 1
and (5.36) holds.

If x(t) is a nonoscillatory solution of equation (5.15), then either

lim
t→∞

∣
∣x(t)

∣
∣ = ∞

or
lim
t→∞

x(t) = 0.

Proof. Let x(t) be an eventually positive solution of (5.15) and set

z(t) = x(t) − px(t− h). (5.37)

Then we have either z(t) > 0 or z(t) < 0. If z(t) > 0 holds, then there
exists c > 0 such that x(t) ≥ z(t) > c. Integrating (5.15) we have

z(t) =

∫ t

T
q(s) max

u∈[s−r,s]
x(u)ds + z(T ) ≥ c

∫ t

T
q(s)ds.

It is clear that limt→∞ z(t) = ∞. Thus, we have limt→∞ x(t) = ∞.
If z(t) < 0 holds, then p 6= 0 and limt→∞ z(t) = L ≤ 0 is finite.

Integrating (5.15) we have

L− z(t) =

∫ ∞

t
q(s) max

u∈[s−r,s]
x(u)ds.

Thus, we have lim inft→∞ x(t) = 0. Note that −px(t−h) < z(t), we have
limt→∞ z(t) = 0. On the other hand, x(t) < px(t−h) < x(t−h) implies
that x(t) is bounded above. By Lemma 4.1.2 we get that limt→∞ x(t)
exists. Let limt→∞ x(t) = l. In view of (5.37), we get that

0 = lim
t→∞

x(t) − p lim
t→∞

x(t− h) = l(1 − p)

which implies l = 0. The case where x(t) is eventually negative is proved
in a similar way. The proof is complete.

Corollary 5.2.1. Let p(t) ≡ p, 0 ≤ p < 1 and (5.36) holds.
If x(t) is a bounded nonoscillatory solution of differential equation

with “maxima” (5.15), then limt→∞ x(t) = 0.

Theorem 5.2.9. Let p(t) ≡ p, p > 1 and (5.36) holds.
If x(t) is a bounded nonoscillatory solution of differential equation

with “maxima” (5.15), then limt→∞ x(t) = 0.
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Proof. Let x(t) be a bounded positive solution of (5.15) and z(t) is
defined by (5.37).

Then z(t) > 0 is impossible.
Indeed, then we have limt→∞ x(t) = ∞ which is a contradiction.

Thus, we have z(t) < 0. In view of the proof of Theorem 5.2.8 we have
limt→∞ z(t) = 0. Similarly, we have

0 = lim
t→∞

x(t) − p lim
t→∞

x(t− h) = l(1 − p)

which implies l = 0. The case where x(t) is eventually negative solution
is similarly proved. The proof is complete.

Theorem 5.2.10. Let p(t) ≡ p, p ≥ 1 and 0 < q ≤ q(t).
If x(t) is an eventually positive solution of differential equation with

“maxima” (5.15) then either limt→∞ x(t) = ∞ or limt→∞ x(t) = 0.

Proof. If z(t) > 0, we have similarly limt→∞ x(t) = ∞. If z(t) < 0
holds, then limt→∞ z(t)= L ≤ 0 is finite. Suppose that x(t) does not
tend to zero as t → ∞. Then c = lim supt→∞ x(t) > 0 (if x(t) is
unbounded, set c to be an arbitrarily positive constant). There exists
a sequence

{
tn
}∞

1
such that tn+1 − tn > r and x(tn) > c/2 for each

n ∈ N . Thus the inequality

max
s∈[t−r,t]

x(s) >
c

2
, t ∈ [tn, tn + r], n ≥ N,

holds, and
∫ tn+r

tn

q(s) max
u∈[s−r,s]

x(u)ds ≥ cqr

2
.

From the definition of the sequence
{
tn
}

and integrating (5.15), we
have

L− z(t0) =

∫ ∞

t0

q(s) max
u∈[s−r,s]

x(u)ds

≥
∞∑

n=1

∫ tn+h

tn

q(s) max
u∈[s−r,s]

x(u)ds

≥
∞∑

n=1

cqr

2
= ∞.

This is a contradiction. The proof is complete. l
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Remark 5.2.3. Theorem 5.2.10 is not valid if x(t) is an eventually
negative solution of equation (5.15) as the following example shows.

Example 5.2.1. Consider the differential equation with “maxima”

(
x(t)− 2x(t− 1)

)′
= (2e− 1)e−t

{

max
s∈[t−1,t]

(
ϕ(s)+ e−s

)
}−1

max
s∈[t−1,t]

x(s),

(5.38)
where x ∈ R and

ϕ(t) =

{
2n(t− n), t ∈ [n, n+ 1

2 ]
2n(n+ 1 − t), t ∈ [n+ 1

2 , n + 1]
, n = 0, 1, . . . .

It is easy to check that

(2e− 1)e−t
{

max
s∈[t−1,t]

(
ϕ(s) + e−s

)
}−1

≥ 2e− 1 > 0.

Therefore, the assumptions of Theorem 5.2.10 are satisfied. A
straightforward verification yields that the function x(t) = −ϕ(t)− e−t

is an eventually negative solution of (5.38). Moreover, since x(n) =

−e−n and x(n + 1
2) = −2n−1 − e−n−

1
2 , lim supt→∞ x(t) = 0 and

lim inft→∞ x(t) = −∞.

Corollary 5.2.2. Let p(t) ≡ p, p = 1 and 0 < q ≤ q(t).
Then any bounded eventually positive solution x(t) of equation

(5.15) satisfies limt→∞ x(t) = 0.

Remark 5.2.4. Corollary 5.2.2 is not valid if x(t) is a bounded even-
tually negative solution of equation (5.15).

Example 5.2.2. Consider the differential equation with “maxima”

(
x(t) − x(t− 1)

)′
= (e− 1)e−t

{

min
s∈[t−1,t]

(
ψ(s) + e−s

)
}−1

max
s∈[t−1,t]

x(s),

(5.39)
where x ∈ R and ψ(t) is a 1-periodic function defined by the equality

ψ(t) =

{
t t ∈ [0, 1

2 ]
1 − t, t ∈ [12 , 1]

.

It has an eventually negative solution x(t) = −ψ(t)− e−t such that

lim sup
t→∞

x(t) = 0 and lim inf
t→∞

x(t) = −1

2
.
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Example 5.2.3. Consider the differential equation with “maxima”

(
x(t) − p(t)x(t− τ)

)′
= q max

s∈[t−r,t]
x(s), (5.40)

where x ∈ R and q = peτ−1
er .

If e−τ < p < 1, then all conditions of Theorem 5.2.8 and Corollary
5.2.1 are satisfied for equation (5.40).

If p > 1, then all conditions of Theorem 5.2.9 are satisfied for
equation (5.40).

If p = 1 , then all conditions of Corollary 5.2.2 hold for equation
(5.40).

In fact, equation (5.40) has a positive solution x(t) = e−t.

Now we will discuss first the oscillation of the differential equation
with “maxima” (5.15) for p < 0.

Theorem 5.2.11. Let p(t) ≡ p, p < 0, p 6= −1 and the condition
(5.36) holds.

Then every bounded solution of equation (5.15) is oscillatory.

Proof. Let x(t) > 0 be a bounded positive solution of (5.15). Set z(t) =
x(t)− px(t− h), then z′(t) ≥ 0. Thus limt→∞ z(t) = l exists and l > 0.
For p 6= −1, by Lemma 5.2.3, there exists limt→∞ x(t). From (5.15) we
have

∫ ∞

t0

q(t) max
s∈[t−r,t]

x(s)dt <∞.

In view of (5.36), this implies that limt→∞ x(t) = 0 and so by (5.37)
l = (1 − p)0 = 0. This contradicts l > 0. The proof in the case of
eventually negative solution is similar and will be omitted.

In the case when p ≥ 0, we have the following results.

Theorem 5.2.12. Let p(t) ≡ p, p ≥ 0, p 6= 1 and the condition (5.36)
holds.

Then every bounded solution of equation (5.15) is either oscillatory
or approaches zero as t→ ∞.

In view of Theorem 5.2.8 or Theorem 5.2.9 we know immediately
that Theorem 5.2.12 is valid.
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Theorem 5.2.13. Let p(t) ≡ p, p > 0, p 6= 1, the condition (5.36)
holds, and the inequality

z′(t) +
1

p
q(t)z(t+ h− r) ≥ 0

has no eventually positive solution and the inequality

z′(t) +
1

p
q(t)z(t+ h) ≤ 0

has no eventually negative solution.
Then every bounded solution of equation (5.15) is oscillatory.

Indeed, from the proof of Theorem 5.2.9 we see that if x(t) is a
bounded positive solution of (5.15), then z(t) < 0 eventually. Note
that x(t0) > −z(t+ h)/p. Substituting it in (5.15) we obtain

z′(t) +
1

p
q(t)z(t+ h− r) ≥ 0.

This is a contradiction. For a bounded negative solution, we can obtain
similarly a contradiction.

Theorem 5.2.14. Let p(t) ≡ p, p = 1, the condition (5.36) holds and
the inequality

y′′(t) ≥ 1

h
q(t+ h)y(t+ h− r)

has no any eventually positive solution and the inequality

y′′(t− h) ≤ 1

h
q(t)y(t)

has no any eventually negative solution.
Then every bounded solution of equation (5.15) oscillates.

Proof. Let x(t) be a bounded eventually positive solution of (5.15) and
set z(t) = x(t−h)−x(t). Then z(t) > 0 and z′(t) ≤ 0 eventually. Thus,
we have also

x(t) = x(t+ h) + z(t+ h)

≥ x(t+ h) +
1

h

∫ t+2h

t+h
z(s)ds

≥ 1

h

∫ ∞

t+h
z(s)ds.



160 Chapter 5. Oscillation Theory

Set

y(t) =
1

h

∫ ∞

t+h
z(s)ds. (5.41)

Substituting it into (5.15) we obtain

y′′(t) ≥ 1

h
q(t+ h)y(t+ h− r)

which is a contradiction.
If x(t) is a bounded eventually negative solution of (5.15), we have

z(t) < 0 and z′(t) ≥ 0 eventually. Thus, we have also

x(t) = x(t+ h) + z(t+ h) ≤ 1

h

∫ ∞

t+h
z(s)ds.

y(t) is defined by (5.41), and substituting it into (5.15) we have

y′′(t− h) ≤ 1

h
q(t)y(t).

The proof is complete.

5.3 Oscillations of Forced n-th Order Differen-

tial Equations with “Maxima”

The main purpose of this section is to establish some oscillatory prop-
erties of solutions of n-th order forced differential equation with “max-
ima.”

Consider the following forced differential equation with “maxima”

x(n)(t) + a(t)f

(

max
s∈I(t)

x(s)

)

= Q(t), t ≥ α, (5.42)

where n ≥ 2 is an integer, x ∈ R, f, a : R → R, I(t) = [σ(t), τ(t)],
σ(t) ≤ τ(t) ≤ t, α ≥ 0 is a constant.

Remark 5.3.1. If there exists a point ξ ≥ α such that σ(ξ) = τ(ξ)
then we have max

s∈I(ξ)
x(s) = x(τ(ξ)).
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Let J = [α,+∞) ⊆ R+ = [0,+∞) and R0 = (−∞, 0) ∪ (0,+∞).
We introduce the following set (H5.3) of conditions:

H5.3.1. The functions σ, τ ∈ C(J,R), σ(t) ≤ τ(t) ≤ t, lim
t→+∞

σ(t) = +∞
and

supt≥α
(

t− σ(t)
)

= h < +∞. (5.43)

H5.3.2. a ∈ C(J, (0,+∞)), Q ∈ C(J,R).

H5.3.3. f ∈ C(R,R) and xf(x) > 0 for x 6= 0.

H5.3.4. There exists an oscillatory function ρ(t) such that:

ρ(n)(t) = Q(t), for t ≥ α, (5.44)

lim
t→+∞

ρ(i)(t) = 0, for i = 0, 1, . . . n− 1. (5.45)

Remark 5.3.2. If condition H5.3.1 is satisfied then for any t ≥ α

the inequality h = supt≥α
(

t − σ(t)
)

≥ t − σ(t) ≥ α − σ(t) holds, i.e.,

σ(t) ≥ α− h, i.e., the inclusion I(t) ⊂ [α− h,∞) is valid for t ≥ α.

Let T ∈ J be a given number.

Definition 5.3.1. The function x(t) is called to be a solution of differ-
ential equation with “maxima” (5.42) on the interval [T,+∞), T ≥ α
if x(t) is defined for t ≥ T − h and it satisfies (5.42) for t ≥ T , where
the constant h is defined by (5.43).

In further investigations we will use the following result:

Lemma 5.3.1. [Kiguradze 1964] Let u(t) be a positive n-times differ-
entiable function on the interval [t0,+∞) and let u(n)(t) be a nonposi-
tive function and it is not identically equal to zero on any sub-interval
[t1,+∞) ⊂ [t0,+∞).

Then there exist a number tu ≥ t0 and an integer k, k ∈
{0, 1, . . . , n− 1}, such that:
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1. n+ k is odd.

2. u(i)(t) > 0 for t ≥ tu, i = 0, 1, . . . , k − 1.

3. (−1)i+ku(i)(t) > 0 for t ≥ tu, i = k, . . . , n.

4. (t − tu)|u(k−i)(t)| ≤ (1 + i)|u(k−i−1)(t)|, where t ≥ tu, i =
0, 1, . . . , k − 1.

We will study the oscillatory properties of the solutions of differen-
tial equations with “maxima.”

Theorem 5.3.1. Let the following conditions be fulfilled:

1. Conditions H5.3 are satisfied.

2. The equality f(x) = g(x)h(x) holds for x ∈ R0, where g ∈
C(R0, (0,+∞)) is a nondecreasing function on (−∞, 0) and a
nonincreasing function on (0,+∞).

3. The function h ∈ C(R0,R) and

h(x)

x
≥ γ for x 6= 0. (5.46)

4. There exists a constant β ≥ α such that the inequality

lim sup
t→+∞






1

t

t∫

β

a(u)g
(

c
(
τ(u)

)n−1
)

(τ(u))ndu

+tn
+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
) (τ(u))n

un+1
du



 >
(n − 1)!

γ
(5.47)

holds for c ≥ 1.

Then the following conclusions hold:

1. If n is an even integer, then equation (5.42) is oscillatory.

2. If n is an odd integer, then every solution of equation (5.42) is
either oscillatory or

lim
t→+∞

x(i)(t) = 0, i = 0, 1, . . . , n− 1. (5.48)
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Proof. Consider the following two cases:
Case 1. Let n be an odd integer. Assume x(t) is a nonoscillatory

solution of differential equation with “maxima” (5.42) in the interval
[α,+∞).

Case 1.1. Let x(t) be a proper positive solution, i.e., there exists
Tx ≥ α such that x(t) > 0 for t ≥ Tx. Let t0 = Tx + h, where the
constant h is defined by (5.43). Consider the function y(t) = x(t)−ρ(t)
for t ≥ t0, where ρ(t) is the function defined in condition H5.3.4. From
(5.42) and (5.44), condition H5.3.3 and the inclusion I(t) ⊂ [Tx,∞) for
t ≥ t0, we have

y(n)(t) = −a(t)f
(

max
s∈I(t)

x(s)

)

< 0, t ≥ t0. (5.49)

Then the derivatives y(i)(t), 0 ≤ i ≤ n − 1 are monotone and one-
signed functions for all t ≥ t1, where t1 ≥ t0 is a sufficiently large
number. From the inequality x(t) > 0 for t ≥ t1, equality (5.45) for
i = 0, and the oscillatory properties of the function ρ(t) it follows that
there exists a number t2 ≥ t1 such that y(t) > 0 for t ≥ t2. Therefore,
the conditions of Lemma 5.3.1 are fulfilled and hence there exists an
integer k ∈ {0, 1, . . . , n − 1} and Tk ≥ t2 such that n + k is an odd
number and for t ≥ Tk the inequalities

y(i)(t) > 0 for 0 ≤ i ≤ k − 1,

(−1)i+ky(i)(t) > 0 for k ≤ i ≤ n,

(t− Tk)|y(k−i)(t)| ≤ (1 + i)|y(k−i−1)(t)| for i = 0, 1, . . . , k − 1

(5.50)

hold.
Since the derivative y(n−1)(t) is a positive and nonincreasing func-

tion for t ≥ Tk, there exists c0 > 0 such that

y(n−1)(t) ≤ c0, t ≥ Tk.

Integrate n-times the above inequality on the interval (Tk, t) and
obtain

y(t) ≤ c0
(n− 1)!

(t− Tk)
n−1 + · · · + y(Tk), t ≥ Tk.

Choose numbers t3 and c1 such that t3 ≥ Tk, c1 ≥ c0 and

y(t) ≤ c1t
n−1 for t ≥ t3. (5.51)
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Now we apply Taylor formula, use the equation (5.49) and obtain

y(k)(t) =

n−k−1∑

j=0

(−1)j

j!
y(k+j)(τ)(τ − t)j

+
(−1)n−k

(n− k − 1)!

τ∫

t

(s− t)n−k−1a(s)f

(

max
u∈I(s)

x(u)

)

ds, Tk ≤ t ≤ τ.

(5.52)

Using the second inequality of (5.50), we obtain the inequality

y(k)(t) ≥
τ∫

t

(s− t)n−k−1

(n− k − 1)!
a(s)f

(

max
u∈I(s)

x(u)

)

ds, Tk ≤ t ≤ τ,

or

y(k)(t) ≥
+∞∫

t

(s− t)n−k−1

(n− k − 1)!
a(s)f

(

max
u∈I(s)

x(u)

)

ds, t ≥ Tk. (5.53)

Consider the following two cases:
Case 1.1.1. Let k > 0. Then y(t) is a positive increasing function.
Integrating (5.53) from Tk to t, we get

y(k−1)(t) ≥ y(k−1)(Tk)

+

t∫

Tk





+∞∫

s

(u− s)n−k−1

(n− k − 1)!
a(u)f

(

max
v∈I(u)

x(v)

)

du



 ds

= y(k−1)(Tk) +

t∫

Tk






u∫

Tk

(u− s)n−k−1

(n− k − 1)!
ds




 a(u)f

(

max
v∈I(u)

x(v)

)

du

+

+∞∫

t






t∫

Tk

(u− s)n−k−1

(n− k − 1)!
ds




 a(u)f

(

max
v∈I(u)

x(v)

)

du for t ≥ Tk.

(5.54)

Now, using the inequalities

u∫

Tk

(u− s)n−k−1

(n− k − 1)!
ds =

(u− Tk)
n−k

(n − k)!
, Tk ≤ u ≤ t,
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t∫

Tk

(u− s)n−k−1

(n− k − 1)!
ds =

(u− Tk)
n−k − (u− t)n−k

(n− k)!
≥ (t− Tk)

n−k

(n− k)!
,

Tk ≤ t ≤ u

we obtain

y(k−1)(t) ≥
t∫

Tk

(u− Tk)
n−k

(n− k)!
a(u)f

(

max
v∈I(u)

x(v)

)

du

+ (t− Tk)
n−k

+∞∫

t

1

(n− k)!
a(u)f

(

max
v∈I(u)

x(v)

)

du for t ≥ Tk.

(5.55)

Since y(t) is positive and increasing for t ≥ Tk and max
s∈I(t)

y(s) = y(τ(t)),

it follows from (5.45) for i = 0 that there exists c2 > 1 such that

max
s∈I(t)

x(s) ≤ c2 max
s∈I(t)

y(s) = c2y(τ(t)) for t ≥ t3.

From condition H5.3.1 it follows that for t ≥ t3 + h the inequalities
t − τ(t) ≤ t− σ(t) ≤ h hold, i.e., τ(t) ≥ t3. Therefore, from (5.51) we
get

max
s∈I(t)

x(s) ≤ c
(
τ(t)

)n−1
, t ≥ t3 + h, (5.56)

where c = c1c2 > 1.
From (5.47) it follows that there exists λ ∈ (0, 1) such that

λ lim sup
t→+∞






1

t

t∫

β

a(u)g
(

c
(
τ(u)

)n−1
)

(τ(u))ndu

+tn
+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
) (τ(u))n

un+1
du



 >
(n− 1)!

γ
. (5.57)

Set µ = λ
1

n+1 . Since µ ∈ (0, 1), lim
t→+∞

ρ(t) = 0 and y(t) is positive

and increasing for t ≥ Tk, then there exists Tµ : Tµ ≥ t3 + h ≥ Tk
such that

t− Tk ≥ µt, τ(t) − Tk ≥ µτ(t) for t ≥ Tµ, (5.58)



166 Chapter 5. Oscillation Theory

and

x(t) ≥ µy(t) for t ≥ Tµ. (5.59)

From condition 2 and (5.56) we have

f

(

max
s∈I(u)

x(s)

)

≥ g
(

c
(
τ(u)

)n−1
)

h

(

max
s∈I(u)

x(s)

)

for u ≥ Tµ.

(5.60)

Since y(t) is increasing for t ≥ Tk, then max
s∈I(u)

y(s) = y(τ(u)) and it

follows from (5.46), (5.59) and (5.60) that

f

(

max
s∈I(u)

x(s)

)

≥ γg
(

c
(
τ(u)

)n−1
)

max
s∈I(u)

x(s)

≥ γµg
(

c
(
τ(u)

)n−1
)

max
s∈I(u)

y(s) (5.61)

= γµg
(

c
(
τ(u)

)n−1
)

y(τ(u)), u ≥ Tµ.

From the last inequality of (5.50) for t = τ(u) we obtain

y(τ(u)) ≥ (τ(u) − Tk)
k−1

k!
y(k−1)(τ(u)), (5.62)

where u ≥ Tµ and τ(u) ≥ t3 ≥ Tk.

From the last inequality in (5.50) for i = 0 we obtain (t −
Tk)y

(k)(t) ≤ y(k−1)(t) for t ≥ Tk and therefore, the function y(k−1)(t)
t−Tk

is
nonincreasing since its derivative is nonpositive. From the monotonic-

ity of the function y(k−1)(t)
t−Tk

and the inequality τ(u) ≤ u ≤ t we obtain
for t ≥ u ≥ Tµ ≥ Tk the following inequality

y(k−1)(τ(u)) =
τ(u) − Tk
τ(u) − Tk

y(k−1)(τ(u)) ≥ τ(u) − Tk
t− Tk

y(k−1)(t). (5.63)

Since the function y(k−1)(t)
t−Tk

is nonincreasing, the function y(k−1)(t)
is nondecreasing and τ(u) ≤ u we get for u ≥ t ≥ Tµ the following
inequality

y(k−1)(τ(u)) ≥ τ(u) − Tk
u− Tk

y(k−1)(u) ≥ τ(u) − Tk
u− Tk

y(k−1)(t). (5.64)
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Taking into account (5.55), the inequalities (5.58), (5.61), (5.62),
(5.63), (5.64) and (n− k)!k! ≤ (n− 1)! for 1 ≤ k ≤ n− 1, we obtain

y(k−1)(t) ≥
t∫

Tµ

(u− Tk)
n−k

(n− k)!k!
a(u)γµk+1g

(

c
(
τ(u)

)n−1
) (τ(u))k

t− Tk
y(k−1)(t)du

+ (t− Tk)
n−k

+∞∫

t

1

(n− k)!k!
a(u)γµg

(

c
(
τ(u)

)n−1
) (τ(u))k

u− Tk
y(k−1)(t)du,

for t ≥ Tµ ≥ Tk. (5.65)

or

(n− 1)!

γ
≥ 1

t

t∫

Tµ

a(u)µk+1g
(

c
(
τ(u)

)n−1
)

(u− Tk)
n−k(τ(u))kdu

+ µn+1tn−k
+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
) un−k(τ(u))k

un−k(u− Tk)
du,

for t ≥ Tµ ≥ Tk. (5.66)

Since u ≥ τ(u) and u− Tk ≥ µu ≥ µ(τ(u)) we get

(n− 1)!

γ
≥ µn+1

t

t∫

Tµ

a(u)g
(

c
(
τ(u)

)n−1
)

(τ(u))ndu

+ µn+1tn
+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
) (τ(u))n

tkun−k(u− Tk)
du,

for t ≥ Tµ ≥ Tk. (5.67)

Apply the inequality u ≥ t to the second integral of (5.67) and
obtain for any T ≥ Tµ

(n− 1)!

γ
≥ µn+1




1

t

t∫

T

a(u)g
(

c
(
τ(u)

)n−1
)

(τ(u))ndu

+tn
+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
) (τ(u))n

un+1
du



 , t ≥ T.
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Since µn+1 = λ then

(n− 1)!

γ
≥ λ




1

t

t∫

T

a(u)g
(

c
(
τ(u)

)n−1
)

(τ(u))ndu

+tn
+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
) (τ(u))n

un+1
du



 , t ≥ T. (5.68)

Keeping in mind the relation

lim
t→+∞

1

t

β∫

T

a(u)g
(

c
(
τ(u)

)n−1
)

undu = 0,

we conclude from (5.68) that

(n− 1)!

γ
≥ λ lim sup

t→+∞






1

t

t∫

β

a(u)g
(

c
(
τ(u)

)n−1
)

(τ(u))ndu

+ tn
+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
) (τ(u))n

n+1

u
du



 .

The obtained inequality contradicts (5.57).

Case 1.1.2. Let k = 0. Then n is an odd number and it follows from
condition 4 that

+∞∫

β

un−1a(u)g
(

c
(
τ(u)

)n−1
)

du = +∞. (5.69)

From equality (5.52) for k = 1 and inequality (5.50) we get

y(t) ≥
+∞∫

t

(u− t)n−1

(n− 1)!
a(u)f

(

max
v∈I(u)

x(v)

)

du, t ≥ Tk. (5.70)

We shall prove that

lim
t→+∞

y(t) = 0. (5.71)
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Assume the opposite: there exists d : 0 < d < ∞ such that
lim

t→+∞
y(t) = d. Then there exists a constant d1 > 0 and T∗ ≥ Tµ

such that y(τ(u)) ≥ d1 for t ≥ T∗. From (5.61) and (5.70) it follows the
inequality

y(t) ≥ d1γµ

+∞∫

t

(u− t)n−1

(n− 1)!
a(u)g

(

c
(
τ(u)

)n−1
)

du, t ≥ T∗,

which contradicts (5.69); therefore, (5.71) is proved.
Taking into account that (−1)iyi(t), (i = 0, 1, . . . , n−1) are positive

and decreasing functions for t ≥ Tk, one can prove that

lim
t→+∞

yi(t) = 0, i = 1, . . . , n− 1.

Case 1.2. Let x(t) be a negative proper solution, i.e., there exists
Tx ≥ α such that x(t) < 0 for t ≥ Tx. As in Case 1.1., we obtain a
contradiction.

Case 2. Let n be an even integer. Then the proof is similar to the
one of Case 1. In this case, since n+ k is an odd integer it follows that
k > 0 and again we obtain a contradiction.

Therefore, x(t) is oscillatory.

As a consequence of Theorem 5.3.1, we obtain the following result.

Theorem 5.3.2. Let conditions (H5.3) hold,

f(x)

x
≥ γ > 0, for x 6= 0 (5.72)

and there exists a number β ≥ α such that

lim sup
t→+∞






1

t

t∫

β

(τ(s))na(s)ds + tn
+∞∫

t

(τ(s))n−1

s
a(s)ds




 >

(n− 1)!

γ
.

(5.73)
Then the following conclusions hold:

1. If n is an even number, then equation (5.42) is oscillatory.
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2. If n is an odd number, then every solution x(t) of equation (5.42)
is either oscillatory or

lim
t→+∞

x(i)(t) = 0, i = 0, 1, . . . , n− 1.

In the case when the upper bound τ(t) of the retarded interval of
maximum is a monotonic function, we obtain the following result:

Theorem 5.3.3. Let the following conditions be fulfilled:

1. Conditions (H5.3) are satisfied and the function τ(t) is nonde-
creasing on J .

2. The equality f(x) = g(x)h(x) for x ∈ R0 holds, where the function
g ∈ C(R0, (0,+∞)) is nondecreasing on (−∞, 0) and nonincreas-
ing on (0,+∞) and the function h ∈ C(R0,R) is nondecreasing
on R0 and

h(xy) ≥ Kh(x)h(y), h(−xy) ≤ Kh(−x)h(y) for x > 0, y > 0,
(5.74)

where K > 0 is a constant and

lim
x→±∞

x

h(x)
= 0. (5.75)

3. The inequality

lim sup
t→+∞

(τ(t))n−1

+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
)

du > 0 (5.76)

holds for every c ≥ 1.

Then the following conclusions hold:

1. If n is an even number, then equation (5.42) is oscillatory.

2. If n is an odd number and there exists a number β ≥ α such that

(
τ(t)

)n−1

+∞∫

β

a(s)g
(

c
(
τ(s)

)n−1
)

ds = +∞, (5.77)

then every solution x(t) of equation (5.42) is either oscillatory or

lim
t→+∞

x(i)(t) = 0, i = 0, 1, . . . , n− 1.
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Proof. Consider the following two cases:

Case 1. Let n be an odd integer. Assume x(t) is a nonoscillatory
solution of differential equation with “maxima” (5.42) in the interval
[α,+∞).

Case 1.1. Let x(t) be a proper positive solution, i.e., there exists
Tx ≥ α such that x(t) > 0 for t ≥ Tx. Let t0 = Tx + h, where the
constant h is defined by (5.43). Consider the function y(t) = x(t)−ρ(t)
for t ≥ t0 and proceeding as in the proof of Theorem 4.1.1, we conclude
that there exist k ∈ {0, 1, . . . , n− 1} with n+ k odd and Tk ≥ t0 such
that (5.50) holds and the inequality (5.53) is fulfilled.

Case 1.1.1. Let k > 0. Then y(t) and y(k−1)(t) are nondecreasing for
t ≥ Tk and inequalities (5.62) and (5.58)-(5.60) hold for some µ ∈ (0, 1)
and Tµ ≥ Tk. Taking into account (5.58), (5.59) and (5.62) we obtain

max
s∈I(u)

x(s) ≥ µk

k!

(
τ(u)

)k−1
y(k−1)(τ(u)), u ≥ Tµ. (5.78)

From inequalities (5.56) and (5.78), and condition 2 of Theorem
5.3.3, we get

f

(

max
s∈I(u)

x(s)

)

≥ g
(

c
(
τ(t)

)n−1
)

h
(µk

k!

(
τ(u)

)k−1
y(k−1)(τ(u))

)

≥ K2g
(

c
(
τ(t)

)n−1
)

h
(µk

k!

)

h
((
τ(u)

)k−1
)

h
(

y(k−1)(τ(u))
)

, u ≥ Tµ.

(5.79)

As in the proof of Theorem 5.3.1 from (5.55) it follows that

y(k−1)(t) ≥
t∫

Tk

(u− Tk)
n−k

(n− k)!
a(u)f

(

max
v∈I(u)

x(v)

)

du

+ (t− Tk)
n−k

+∞∫

t

1

(n− k)!
a(u)f

(

max
v∈I(u)

x(v)

)

du,

≥ (t− Tk)
n−k

+∞∫

t

1

(n− k)!
a(u)f

(

max
v∈I(u)

x(v)

)

du for t ≥ Tµ.

(5.80)
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From inequalities (5.79) and (5.80), we obtain

y(k−1)(t) ≥ K2

(n− k)!
h

(
µk

k!

)

(t− Tk)
n−k

×
+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
)

h
((
τ(u)

)k−1
)

× h
(

y(k−1)(τ(u))
)

du

≥M
(t− Tk)

n−1

tk−1

+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
)

h
((
τ(u)

)k−1
)

× h
(

y(k−1)(τ(u))
)

du (5.81)

for t ≥ Tµ, where M =
K2

(n− k)!
h

(
µk

k!

)

.

Choose a number T > Tµ such that t ≥ T implies τ(t) ≥ Tµ.
Then from inequality (5.81) we get

y(k−1)(τ(t)) ≥M
(τ(t) − Tk)

n−1

τ(t)k−1

+∞∫

τ(t)

a(u)g
(

c
(
τ(u)

)n−1
)

h
((
τ(u)

)k−1
)

× h
(

y(k−1)(τ(u))
)

du

≥M1
(τ(t))n−1

τ(t)k−1

+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
)

h
((
τ(u)

)k−1
)

× h
(

y(k−1)(τ(u))
)

du for t ≥ T,

(5.82)

where M1 = µn−1M =
µn−1K2

(n− k)!
h

(
µk

k!

)

.

Since τ(u), y(k−1)(u), and h(u) are nondecreasing functions for u ≥
t, we obtain the inequalities

h((τ(u))k−1) ≥ h((τ(t))k−1)

and
h
(

y(k−1)(τ(u))
)

≥ h
(

y(k−1)(τ(t))
)

, u ≥ t ≥ T.
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Therefore inequality (5.82) implies

y(k−1)(τ(t))

M1h
(
y(k−1)(τ(t))

)
(τ(t))k−1

h ((τ(t))k−1)
≥

(τ(t))n−1

+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
)

du for t ≥ T.

(5.83)

According to [Foster and Crimer 1980], Theorem 2, limt→+∞ y(k−1)(t) =
+∞ holds.

Then from inequality (5.75), we get

lim
t→+∞

y(k−1)(τ(t))

h(y(k−1)(τ(t)))
= 0 and lim

t→+∞
(τ(t))k−1

h((τ(t))k−1)
= 0. (5.84)

From equality (5.84) and inequality (5.83) we obtain

0 ≥ lim sup
t→+∞

(τ(t))n−1

+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
)

du. (5.85)

The inequality (5.85) contradicts (5.76).

Case 1.1.2. Let k = 0. Then y(t) is a nonincreasing function. From
(5.80) for k = 1, it follows that

y(t) ≥ (t− Tk)
n−1

+∞∫

t

1

(n − 1)!
a(u)f

(

max
v∈I(u)

x(v)

)

du for t ≥ Tµ.

(5.86)

We shall prove that lim
t→+∞

y(t) = 0. Assume the opposite: there

exists d : 0 < d < ∞ such that lim
t→+∞

y(t) = d. Then there exists a

constant d1 > 0 and T∗ ≥ Tµ such that y(τ(u)) ≥ d1 for t ≥ T∗. Then
from (5.79) it follows the inequality

y(t) ≥ (t− Tk)
n−1

+∞∫

t

1

(n− 1)!
a(u)g

(

c
(
τ(u)

)n−1
)

h
(

µy(τ(u))
)

du

≥ µn−1h(µd)

(n− 1)!

(
τ(t)

)n−1

+∞∫

t

a(u)g
(

c
(
τ(u)

)n−1
)

du,
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which contradicts (5.77). Thus lim
t→+∞

y(t) = 0.

The rest of the proof is the same as the proof of Theorem 5.3.1.

Now we will illustrate the above-obtained sufficient conditions as
an example.

Example 5.3.1. Consider the following scalar second order differential
equation with “maxima”

x′′(t) + a

(

max
s∈[t−1,t]

x(s)

)

= e−t, t ≥ α, (5.87)

where a = const > 0.

In this case the functions σ(t) = t−1, τ(t) = t satisfy the condition
H5.3.1, the function f(x) = x satisfies the condition H5.3.3 and the
function ρ(t) = e−t satisfies the condition H5.3.4. The function g =
1
x2 , g ∈ C(R0, (0,+∞)) is nondecreasing on (−∞, 0) and nonincreasing
on (0,+∞), the function h = x3, h ∈ C(R0,R) is nondecreasing on
the interval R0 and it satisfies the inequality (5.74) with a constant

K = 1 > 0 and lim
x→±∞

x

h(x)
= lim

x→±∞
1

x2
= 0.

In this case condition (5.76) reduces to

lim sup
t→+∞

t

+∞∫

t

a
c

u2
du = act(

1

t
) = ac > 0.

Then according to Theorem 5.3.3, equation (5.87) is oscillatory.

5.4 Oscillations and Almost Oscillations of

n-th Order Differential Equations with

“Maxima”

Consider the scalar n-th order differential equation with “maxima”

Lnx(t) + δF
(
t, max
s∈I(t)

x(s)
)

= 0 for t ≥ α, (5.88)
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where x ∈ R, n ≥ 2 is an integer, δ = ±1, α ≥ 0, I(t) =
[

σ(t), τ(t)
]

,

rk : R → R,(k = 1, . . . , n),

L0x(t) = x(t), Lkx(t) = rk(t)
(
Lk−1x(t)

)′
, (k = 1, . . . , n).

Let J = [α,+∞) ⊆ R+ = [0,+∞).

Introduce the following set (H5.4) of conditions:

H5.4.1. ri ∈ C(J, (0,+∞)), i = 1, . . . , n− 1, rn ≡ 1 and

∫ ∞ ds

ri(s)
= +∞, i = 1, . . . , n− 1.

H5.4.2. F ∈ C(J × R,R) and there exist functions q ∈ C(J,R+) and
f ∈ C(R,R) such that xf(x) > 0 for x 6= 0, f(x) is nondecreasing
on R and

F (t, x) sgn x ≥ q(t)f(x) sgn x, t ∈ J, x ∈ R.

H5.4.3. σ, τ ∈ C(J,R), σ(t) ≤ τ(t) ≤ t, limt→+∞ σ(t) = +∞ and

sup
t≥α

(

t− σ(t)
)

= h < +∞. (5.89)

The domain D(Ln) of Ln is defined to be the set of all functions x :
[t0,+∞) → R such that Lkx(t), k = 1, . . . , n exist and are continuous
on some interval [t0,+∞) ⊆ J .

Let T ∈ J be a given number.

Definition 5.4.1. The function x ∈ D(Ln) is called to be a solution
of differential equation with “maxima” (5.88) on the interval [T,+∞),
T ≥ α if x(t) is defined for t ≥ T − h and it satisfies (5.88) for t ≥ T ,
where the constant h is defined by (5.89).

Definition 5.4.2. The solution x(t) of differential equation with “max-
ima” (5.88) in the interval [T,+∞) is said to be:

1. A proper solution if there exists a number Tx ≥ T such that

sup{|x(t)| : t ≥ T1} > 0 for all T1 ≥ Tx.
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2. Nonoscillatory solution, if it is a proper solution and it is either
positive or negative for t ≥ Tx.

3. Oscillatory solution, if it is a proper solution and there is an in-
finite number of points on [T,+∞) at which the solution changes
its sign.

We denote the set of all proper solutions, all oscillatory solutions
and all nonoscillatory solutions of (5.88) by S, O and N , respectively.
It is clear that S = O ∪ N . According to conditions (H5.4) the set N
has a decomposition such that (see [Trench 1975]):

N = N1 ∪N3 ∪ . . . ∪Nn−1 if δ = 1 and n is even,

N = N0 ∪N2 ∪ . . . ∪Nn−1 if δ = 1 and n is odd,

N = N0 ∪N2 ∪ . . . ∪Nn if δ = −1 and n is even,

N = N1 ∪N3 ∪ . . . ∪Nn if δ = −1 and n is odd,

where Nk ⊂ N : consisting of all x satisfying

Nk = {x ∈ R : xLix > 0, i = 0, 1, . . . , k

and (−1)i−kxLix > 0, i = k, . . . , n on [Tx,+∞)}.
(5.90)

Definition 5.4.3. Differential equation with “maxima” (5.88) is said
to be almost oscillatory, if:

(i) for δ = 1 and n even, equation (5.88) is oscillatory;

(ii) for δ = 1 and n odd, every proper solution x of equation (5.88)
is either oscillatory or strongly decreasing, i.e.,

lim
t→+∞

∣
∣Lix(t)

∣
∣ = 0 monotonically, i = 0, . . . , n− 1; (5.91)

(iii) for δ = −1 and n even, every proper solution x of equation (5.88)
is oscillatory, strongly decreasing or strongly increasing, i.e.,

lim
t→+∞

∣
∣Lix(t)

∣
∣ = +∞ monotonically, i = 0, . . . , n− 1; (5.92)

(iv) for δ = −1 and n odd, every proper solution x of equation (5.88)
is either oscillatory or strongly increasing.
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We use the following notations:

J0 = 1,

Jj
(
t, s; pj, . . . , p1

)
=

∫ t

s

1

pj(u)
Jj−1

(
u, s; pj−1, . . . , p1

)
du,

j = 1, 2, . . . ,

where pj ∈ C(J, (0,+∞)), j = 1, 2, . . . .

It is easy to verify that for j = 1, 2, . . . , n− 1

Jj
(
t, s; pj, . . . , p1

)
= (−1)jJj

(
s, t; p1, . . . , pj

)
,

Jj
(
t, s; pj, . . . , p1

)
=

∫ t

s

1

p1(u)
Jj−1

(
t, u; pj, . . . , p2

)
du. (5.93)

Hk(σ(t), T ) =

∫ σ(t)

T

1

rk(s)
Jk−1(σ(t), s; r1, . . . , rk−1)

Jn−k−1(t, s; rn−1, . . . , rk+1)ds

and

Hk

[
σ(t)

]
= Hk

(
σ(t), α

)

for T ≥ α, k = 1, . . . , n− 1.

It is easy to verify that for any fixed T ≥ α there exist positive
constants c1 and c2 such that

c1Hk

[
σ(t)

]
≤ Hk

(
σ(t), T

)
≤ c2Hk

[
σ(t)

]
(5.94)

for all sufficiently large t.

We need the following lemma:

Lemma 5.4.1. If x ∈ D(Ln) then for t, s ∈ J and 0 ≤ i < ν ≤ n the
following equalities

Lix(t) =

ν−1∑

j=i

Jj−i
(
t, s; ri+1, . . . , rj

)
Ljx(s)

+

∫ t

s
Jν−i−1

(
t, u; ri+1, . . . , rν−1

)Lνx(t)

rν(u)
du,

(5.95)
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Lix(t) =
ν−1∑

j=i

(−1)j−iJj−i
(
s, t; rj , . . . , ri+1

)
Ljx(s)

+ (−1)ν−i
∫ s

t
Jν−i−1

(
u, t; rν−1, . . . , ri+1

)Lνx(u)

rν(u)
du

(5.96)

hold.

This lemma is a generalization of Taylor’s formula with remainder
encountered in calculus.

Consider the differential inequalities with “maxima”

δLnx(t) + F

(

t, max
s∈I(t)

x(s)

)

≤ 0 (5.97)

and

δLnx(t) + F

(

t, max
s∈I(t)

x(s)

)

≥ 0. (5.98)

We introduce the notations:

N+ = {x : x is a positive solution (5.97) on [Tx,+∞) for some Tx} ,
N− = {x : x is a negative solution (5.98) on [Tx,+∞) for some Tx} ,
and

N±
k =

{
x ∈ N± : x satisfies (5.90) for some Tx

}
.

N± has a decomposition such that:

N± = N±
1 ∪N±

3 ∪ . . . ∪N±
n−1 if δ = 1 and n is even,

N± = N±
0 ∪N±

2 ∪ . . . ∪N±
n−1 if δ = 1 and n is odd,

N± = N±
0 ∪N±

2 ∪ . . . ∪N±
n if δ = −1 and n is even,

N± = N±
1 ∪N±

3 ∪ . . . ∪N±
n if δ = −1 and n is odd.

Theorem 5.4.1. Let conditions (H5.4) hold, (−1)n−kδ = −1 for 1 ≤
k ≤ n− 1, and

∫ +∞
Hk

[
σ(t)

]
q(t)dt = +∞. (5.99)

Then the following equalities

N+
k = ∅, if

∫ +∞ dx

f(x)
< +∞, (5.100)

N−
k = ∅, if

∫ −∞ dx

f(x)
< +∞ (5.101)

hold.
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Proof. We will prove the validity of (5.100). Assume that N+
k has an

element x: x(t) > 0, t ≥ t0 ≥ α. Then there exists tk ≥ t0 such that

Lix(t) > 0, i = 0, . . . , k, t ≥ tk, (5.102)

(−1)i−kLix(t) > 0, i = k, . . . , n, t ≥ tk.

From condition H5.4.3, it follows that there exist t1 ≥ tk such that
σ(t) ≥ tk and maxs∈I(t)x(s) > 0 for t ≥ t1.

Choose t2 ≥ t1 so large that

σ(t) > t1, t ≥ t2. (5.103)

We fix t3(t3 ≥ t2) arbitrarily and choose T ≥ t3 so that

T ≥ σ(t), t1 ≤ t ≤ t3. (5.104)

From equality (5.101) and inequality (5.102) we obtain

Lkx(t) =
n−1∑

j=k

(−1)j−kJj−k
(
T, t; rj , . . . , rk+1

)
Ljx(T )

+(−1)n−k
∫ T

t
Jn−k−1

(
u, t; rn−1, . . . , rk+1

)
Lnx(u)du

≥
∫ T

t
Jn−k−1

(
u, t; rn−1, . . . , rk+1

)
(−1)n−kLnx(u)du,

t1 ≤ t ≤ T.

Since

(−1)n−kLnx(u) = −δLnx(u) ≥ q(u)f
(

max
s∈I(u)

x(s)
)
, t1 ≤ u

we have

Lkx(t) ≥
∫ T

t
Jn−k−1

(
u, t; rn−1, . . . , rk+1

)
q(u)f

(
max
s∈I(u)

x(s)
)
du,

t1 ≤ t ≤ T.

For k ≥ 1 and t ≥ tk the function x(t) is increasing and hence the
inequality maxs∈I(u) x(s) ≥ x

(
σ(u)

)
holds for u ≥ t1. Then

Lkx(t) ≥
∫ T

t
In−k−1

(
u, t; rn−1, . . . , rk+1

)
q(u)f

(

x
(
σ(u)

))

du,

t1 ≤ t ≤ T. (5.105)



180 Chapter 5. Oscillation Theory

Let k ≥ 2. Then from equality (5.100) and inequality (5.102), we
have

x
′
(v) =

1

r1(v)
L1x(v)

=
1

r1(v)







k−1∑

j=1

Jj−1

(
v, t1; r2, . . . , rj

)
Ljx(t1)

+

∫ v

t1

Jk−2

(
v, t; r2, . . . , rk−1

)Lkx(t)

rk(t)
dt

}

≥ 1

r1(v)

∫ v

t1

Jk−2

(
v, t; r2, . . . , rk−1

)Lkx(t)

rk(t)
dt, v ≥ t1. (5.106)

From (5.105) and (5.106), after integrating on [t1, T ] we obtain

∫ T

t1

x
′
(v)

f
(
x(v)

)dv ≥
∫ T

t1

∫ v

t1

∫ T

t
ψ(v, t, u)du dt dv

where

ψ(v, t, u) =
q(u)f

(

x(σ(u))
)

r1(v)rk(t)f
(
x(v)

)Jk−2

(
v, t; r2, . . . , rk−1

)

Jn−k−1

(
u, t; rn−1, . . . , rk+1

)
.

Interchanging the order of integration and taking into account
(5.103) and (5.104) we get

∫ x(T )

x(t1)

dx

f(x)

≥
∫ T

t1

∫ v

t1

∫ T

t
ψ(v, t, u)du dt dv =

∫ T

t1

∫ T

t

∫ T

t
ψ(v, t, u)du dv dt

=

∫ T

t1

∫ T

t

∫ T

t
ψ(v, t, u)dv du dt =

∫ T

t1

∫ u

t1

∫ T

t
ψ(v, t, u)dv dt du

≥
∫ t3

t2

∫ σ(u)

t1

∫ σ(u)

t
ψ(v, t, u)dv dt du.

Taking into account the inequality

f
(

x
(
σ(u)

))

f
(
x(v)

) ≥ 1, t1 ≤ v ≤ σ(u),
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which is a consequence of the increasing nature of f and x and using
(5.93) and (5.94) we obtain

∫ x(T )

x(t1)

dx

f(x)
≥

∫ t3

t2

q(u)

∫ σ(u)

t1

Jn−k−1

(
u, t; rn−1, . . . , rk+1

)

rk(t)

×
∫ σ(u)

t

Jk−2

(
v, t; r2, . . . , rk−1

)

r1(v)
dv dt du

=

∫ t3

t2

q(u)

∫ σ∗(u)

t1

1

rk(t)
Jn−k−1

(
u, t; rn−1, . . . , rk+1

)

×Jk−1

(
σ(u), t; r1, . . . , rk−1

)
dt du

≥ c1

∫ t3

t2

q(u)H
[
σ(u)

]
du.

Letting t3 → +∞ in the above inequality and using (5.100) we
conclude that

c1

∫ t3

t2

q(u)H
[
σ(u)

]
du ≤

∫ +∞

x(t1)

dx

f(x)
< +∞.

This contradicts the assumption (5.99).
Let k = 1. Then from (5.105) we have

x
′
(t) =

L1x(t)

r1(t)

≥ 1

r1(t)

∫ T

t
Jn−2

(
u, t; rn−1, . . . , r2

)
q(u)f

(

x
(
σ(u)

))

du, t1 ≤ t ≤ T.

Dividing the above inequality by f
(
x(t)

)
and integrating from t1 to T ,

we get

∫ T

t1

x
′
(t)

f
(
x(t)

)dt ≥
∫ T

t1

∫ T

t
ψ̃(t, u)du dt

where ψ̃(t, u) = q(u)
r1(t)

Jn−2

(
u, t; rn−1, . . . , r2

)f

(

x
(
σ(u)
))

f
(
x(t)
) .

It follows that
∫ x(T )

x(t1)

dx

f(x)
≥
∫ T

t1

∫ T

t
ψ̃(t, u)dudt =

∫ T

t1

∫ u

t1

ψ̃(t, u)dtdu

≥
∫ t3

t2

∫ σ(u)

t1

ψ̃(t, u)dt du.
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Using the inequality

f
(

x
(
σ(u)

))

f
(
x(t)

) ≥ 1, t1 ≤ t ≤ σ(u)

we obtain
∫ x(T )

x(t1)

dx

f(x)
≥

∫ t3

t2

q(u)

∫ σ(u)

t1

1

r1(t)
Jn−2

(
u, t; rn−1, . . . , r2

)
dt du

≥ c1

∫ t3

t2

q(u)H1

[
σ(u)

]
du,

which gives in the limit as t3 → +∞

c1

∫ +∞

t2

q(u)H1

[
σ(u)

]
du ≤

∫ +∞

x(t1)

dx

f(x)
< +∞.

This contradicts (5.97).
If x ∈ N−

k is a negative solution of inequality (5.98), the proof is
similar.

Theorem 5.4.2. Assume that conditions (H5.4) hold, (−1)n−kδ = −1
for 1 ≤ k ≤ n− 1, and

∫ ±∞ dx

f(x)
< +∞, (5.107)

∫ +∞
Hk

[

σ(t)
]

q(t)dt = +∞. (5.108)

Then Nk = ∅ for 1 ≤ k ≤ n− 1 , where Nk are defined by (5.90).

Proof. From Theorem 5.4.1 follows that N+
k = ∅ and N−

k = ∅ for the
inequalities

δLnx(t) + q(t)f
(

max
s∈I(t)

x(s)
)
≤ 0 (5.109)

and
δLnx(t) + q(t)f

(
max
s∈I(t)

x(s)
)
≥ 0. (5.110)

Assume that differential equation with “maxima” (5.88) has a pos-
itive solution x ∈ Nk, i.e., x(t) > 0 and maxs∈I(t) x(s) > 0 for
t ≥ t0 > α. By condition H5.4.2 there exists t1 ≥ t0 such that

F
(
t, max
s∈I(t)

x(s)
)
≥ q(t)f

(
max
s∈I(t)

x(s)
)
, t ≥ t1.
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Therefore

0 = δLnx(t) + F
(
t, max
s∈I(t)

x(s)
)

≥ δLnx(t) + q(t)f
(

max
s∈I(t)

x(s)
)
, t ≥ t1.

This means that inequality (5.109) has a positive solution x ∈ N+
k ,

which leads to a contradiction.
If differential equation with “maxima” (5.88) has a negative solution

x ∈ Nk, then

F
(
t, max
s∈I(t)

x(s)
)
≤ q(t)f

(
max
s∈I(t)

x(s)
)

and analogously we obtain that the inequality (5.110) has a negative
solution x ∈ N−

k , which leads to a contradiction.

Theorem 5.4.3. Assume that conditions (H5.4) hold, (−1)nδ = −1
and ∫ +∞

Jn−1

(
t, α; rn−1, . . . , r1

)
q(t)dt = +∞. (5.111)

Then every nonoscillatory solution x of equation (5.88), which is
from N0, satisfies (5.91).

Proof. Let x ∈ N0 be a positive solution of equation (5.88) such that
x(t) > 0, maxs∈I(t) x(s) > 0 for t ≥ t0 ≥ α, j = 1, . . . , m.

Then there exists t1 ≥ t0 such that

(−1)jLjx(t) > 0, j = 0, 1, . . . , n, t ≥ t0. (5.112)

Since x
′
(t) < 0 the function x(t) is decreasing and there exists the

limit

lim
t→+∞

x(t) = c ≥ 0 and x(t) ≥ c, t ≥ t1.

By equality (5.101) we have for s ≥ t1

x(t1) =
n−1∑

j=0

(−1)jJj
(
s, t1; rj , . . . , r1

)
Ljx(s)

+(−1)n
∫ s

t1

Jn−1

(
u, t1; rn−1, . . . , r1

)
Lnx(u)du.
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Using (5.88) and (5.112) and condition H5.4.2, we get

x(t1) ≥
∫ s

t1

Jn−1

(
u, t1; rn−1, . . . , r1

)
q(u)f

(
max
s∈I(u)

x(s)
)
du

≥
∫ s

t1

Jn−1

(
u, t1; rn−1, . . . , r1

)
q(u)du f (c).

If c > 0, then letting s→ +∞ and using (5.111) we get x(t1) = +∞.
The obtained contradiction proves c = 0. Now using (5.112) we can
show that x satisfies (5.91).

If x ∈ N0 is a negative solution of equation (5.88), the proof is
similar.

We set

A(t, s) = Jn−1

(
t, s; r1, . . . , rn−1

)
, A[t] = A(t, α) for t ≥ s ≥ α.

Theorem 5.4.4. Assume that conditions (H5.4) hold, δ = −1 and

∫ +∞
q(t)

∣
∣
∣
∣
f

(

cA
[

σj(t)
])
∣
∣
∣
∣
dt = +∞ (5.113)

for all c 6= 0.

Then every nonoscillatory solution x of equation (5.88) belonging
to Nn satisfies (5.92).

Proof. Assume that x ∈ Nn is a positive solution of equation (5.88):
x(t) > 0, maxs∈I(t) x(s) > 0 for t ≥ t0 ≥ α. Then there exists t1 ≥ t0
such that

Lix(t) > 0, t ≥ t1, i = 0, 1, . . . , n. (5.114)

On the other hand, by L’Hôpital’s rule

lim
t→+∞

x(t)

J(t, t1)
= lim

t→+∞
Ln−1x(t) > 0.

Since limt→+∞ σ(t) = +∞ there exist a constant c > 0 and a t2 ≥ t1
such that

max
s∈I(t)

x(s) ≥ x
(
σ(t)

)
≥ cA(t, t1), t ≥ t2. (5.115)
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Integrating equation (5.88) (with δ = −1) from t2 to t and using
(5.115) and condition H5.4.2 we have

Ln−1x(t) = Ln−1x(t2) +

∫ t

t2

F
(

max
ξ∈I(s)

x(ξ)
)
ds

≥
∫ t

t2

q(s)f
(

max
ξ∈I(s)

x(ξ)
)
ds

≥
∫ t

t2

q(s)f
(

cA(s, t1)
)

ds.

Using (5.113) we get limt→+∞Ln−1x(t) = +∞. By (5.114) it follows
that Ljx(t) are strongly increasing and limt→+∞ Lix(t) = +∞, i =
0, 1, . . . , n− 1.

If x ∈ Nn is a negative solution of equation (5.88), the proof is
similar.

Theorem 5.4.5. Assume that conditions (H5.4) hold. Sufficient con-
ditions for (5.88) to be almost oscillatory are:

(i) when δ = 1 and n is even and (5.107) and (5.108) for k =
1, 3, . . . , n− 1 hold;

(ii) when δ = 1 and n is odd, (5.107) and (5.108) hold for k =
2, 4, . . . , n− 1 and (5.111) is satisfied;

(iii) when δ = −1 and n is even, (5.107) and (5.108) hold for k =
2, 4, . . . , n− 2 and (5.111) and (5.113) are satisfied;

(iv) when δ = −1 and n is odd, (5.107) and (5.108) hold for k =
1, 3, . . . , n− 2 and (5.111) is satisfied.

Proof. (i) By Theorem 5.4.2 we have N = N1 ∪ N3 ∪ . . . ∪Nn−1 = ∅.
Hence S = O.

(ii) Theorem 5.4.2 implies that S = O ∪ N0. Assume that x ∈ N0

is a positive solution of equation (5.88): x(t) > 0, maxs∈I(t) x(s) > 0
for t ≥ t0 ≥ α, j = 1, . . . , m. Then (5.112) holds for t1 ≥ t0. Thus x is
decreasing and x(t) has nonnegative limit as t→ +∞.

By Theorem 5.4.3 this limit must be 0 under the condition (5.111)
and x satisfies (5.91).

If x ∈ N0 is a negative solution of equation (5.88) the proof is
similar.
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(iii) From Theorem 5.4.2 it follows that S = O ∪N0 ∪Nn.
Assume that x ∈ Nn is a positive solution of equation (5.88), i.e.,

x(t) > 0, maxs∈I(t) x(s) > 0 for t ≥ t0 ≥ α, j = 1, . . . , m. Then (5.114)
holds for t ≥ t1 ≥ t0, so that x is increasing and tends to a finite or
infinite limit as t→ +∞. By Theorem 5.4.4 this limit must be infinite
under the condition (5.113) and x(t) satisfies (5.92). If x ∈ Nn is a
negative solution of equation (5.88) the proof is similar.

If x ∈ N0 then we prove as in (ii) that x satisfies (5.91).
(iv) We have S = O ∪ Nn by Theorem 5.4.2. Exactly as above we

can show that a solution belonging to Nn is strongly increasing.

5.5 Oscillations of Differential Inequalities

with “Maxima”

We consider the n-th order differential inequalities with “maxima”

(−1)nLnx(t) sgnx(t) ≥
m∑

j=1

pj(t)fj
(
M j
t x
)

(5.116)

and

(−1)nLnx(t) sgn x(t) ≥ p0(t)

m∏

j=1

Fj
(
M j
t x
)

(5.117)

where n ≥ 1, M j
t x = maxs∈Jj(t) x(s), Jj(t) = [σj(t), τj(t)], j =

1, . . . , m, σj(t) ≤ τj(t) ≤ t, j = 1, . . . , m, t ∈ J = [α,+∞) ⊆ R+ =

[0,+∞) and L0x(t) = x(t), Lkx(t) = rk(t)
(
Lk−1x(t)

)′
, k = 1, . . . , n.

The domain D(Ln) of Ln is defined to be the set of all functions x :
[tx,+∞) → R such that Lkx(t), k = 1, . . . , n exist and are continuous
on an interval [tx,+∞) ⊆ J .

Definition 5.5.1. The function x ∈ D(Ln) is called a proper solution
of inequality (5.116) or (5.117) if it satisfies (5.116) or (5.117) for all
sufficiently large t and supt≥T

∣
∣x(t)

∣
∣ > 0 for T ≥ tx.

We assume that inequality (5.116) or (5.117) does possess proper
solutions.

Definition 5.5.2. A proper solution of inequality (5.116) or (5.117)
is called oscillatory if it has arbitrarily large zeros.

Otherwise it is called nonoscillatory.
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Let J = [α,+∞) ⊆ R+ = [0,+∞).

Introduce the following set (H5.5) of conditions:

(H5.5.1) ri ∈ C(J, (0,+∞)), i = 1, . . . , n, rn ≡ 1 and
∫∞ ds

ri(s)
= +∞,

i = 1, . . . , n− 1.

(H5.5.2) pj ∈ C(J, (0,+∞)), j = 0, . . . , m.

(H5.5.3) fj, Fj ∈ C(R,R), j = 1, . . . , m, xfj(x) > 0 for x 6= 0,
j = 1, . . . , m, xFj(x) > 0 for x 6= 0, j = 1, . . . , m; fj and Fj
are nondecreasing, j = 1, . . . , m.

(H5.5.4) Functions σj, τj ∈ C(J,R), j = 1, . . . , m and

lim
t→+∞

σj(t) = +∞, j = 1, . . . , m,

σj(t) ≤ τj(t), j = 1, . . . , m, t ∈ J.

(H5.5.5) There exists one-to-one function τ : J → R such that τj(t) ≤
τ(t) ≤ t, j = 1, . . . , m, t ∈ J .

In the paper we use the following notations:

f(x) = max
1≤j≤m

fj(x), F (x) =

m∏

j=1

Fj(x), I0 = 1,

Ij
(
t, s; pj, . . . , p1

)
=

∫ t

s

1

pj(u)
Ij−1

(
u, s; pj−1, . . . , p1

)
du, j = 1, 2, . . .

where pj ∈ C(J, (0,+∞)), j = 1, 2, . . . .

It is easy to verify that

Ij
(
t, s; pj , . . . , p1

)
= (−1)jIj

(
s, t; p1, . . . , pj

)
,

Ij
(
t, s; pj , . . . , p1

)
=

∫ t

s

1

p1(u)
Ij−1

(
t, u; pj , . . . , p2

)
du.

We need the following lemma which generalized the well-known
lemma of T.T. Kiguradze [Kiguradze 1964].

Lemma 5.5.1. Suppose condition H5.5.1 holds and the functions Lnx
and x ∈ D(Ln) are of constant sign and not identically zero for t ≥
t∗ ≥ α.
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Then there exist tk ≥ t∗ and an integer k, 0 ≤ k ≤ n with n+k even
for x(t)Lnx(t) nonnegative or n+k odd for x(t)Lnx(t) nonpositive and
such that for every t ≥ tk

x(t)Lix(t) > 0, i = 0, 1, . . . , k

(−1)i−kx(t)Lix(t) > 0, i = k, k + 1, . . . , n.

Lemma 5.5.2. If x ∈ D(Ln) then for t, s ∈ J and 0 ≤ i < ν ≤ n:

Lix(t) =

ν−1∑

j=i

(−1)j−iIj−i
(
s, t; rj, . . . , ri+1

)
Ljx(s)

+(−1)ν−i
∫ s

t
Iν−i−1

(
u, t; rν−1, . . . , ri+1

)Lνx(u)

rν(u)
du.

This lemma is a generalization of Taylor’s formula with a remainder
encountered in calculus.

Theorem 5.5.1. Assume that conditions (H5.5) hold and

lim
t→+∞

sup

∫ t

τ(t)
In−1

(
u, τ(t); rn−1, . . . , r1

)
m∑

j=1

pj(u)du > lim
x→0

sup

∣
∣x
∣
∣

f(x)
.

(5.118)
Then if n ≥ 2 all proper bounded solutions of (5.116) are oscillatory,

while if n = 1 all proper solutions of (5.116) are oscillatory.

Proof. Suppose there exists a bounded nonoscillatory solution of in-
equality (5.116).

Without loss of generality we may suppose that x(t) is eventually
positive: x(t) > 0, t ≥ t0 ≥ α. It follows from conditions H5.5.2,
H5.5.3 and inequality (5.116) that (−1)nLnx(t) ≥ 0, t ≥ t1 ≥ t0. By
the boundedness of x(t) and Lemma 5.5.1 it follows that there exists
t2 ≥ t1 such that

(−1)iLix(t) > 0, t ≥ t2, i = 1, . . . , n. (5.119)

From Lemma 5.5.2 with ν = n and i = 0 we have

x(t) =

n−1∑

j=0

(−1)jIj
(
s, t; rj , . . . , r1

)
Ljx(s)

+ (−1)n
∫ s

t
In−1

(
u, t; rn−1, . . . , r1

)
Lnx(u)du.

(5.120)
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Using (5.119) and (5.116) from (5.120) we get

x(s) ≥ x(t)+

∫ t

s
In−1

(
u, s; rn−1, . . . , r1

)
m∑

j=1

pj(u)fj
(
M j
ux
)
du, t ≥ s.

(5.121)
By (5.119), x

′
(t) ≤ 0 for t ≥ t2 so that x(t) is decreasing for t ≥ t2.

Then M j
t x ≥ x

(
τj(t)

)
≥ x

(
τ(t)

)
for t ≥ t2, j = 1, . . . , m.

From (5.121) and the monotonicity of x, fj, j = 1, . . . , m it follows
that

x(s) ≥ x(t) +

∫ t

s
In−1

(
u, s; rn−1, . . . , r1

)
m∑

j=1

pj(u)fj

(

x
(
τ(u)

))

du

≥ x(t) + f
(

x
(
τ(t)

))
∫ t

s
In−1

(
u, s; rn−1, . . . , r1

)
m∑

j=1

pj(u)du, t ≥ t2.

Therefore

x
(
τ(t)

)
≥ x(t)+f

(

x
(
τ(t)

))
∫ t

τ(t)
In−1

(
u, τ(t); rn−1, . . . , r1

)
m∑

j=1

pj(u)du

(5.122)
for t ≥ t3, where t3 is so large that τ(t) ≥ t2 for t ≥ t3.

Since x(t) is decreasing and positive for t ≥ t2 there exists
limt→+∞ x(t) = c ≥ 0. It follows from (5.118) and (5.122) that c = 0.

From (5.122) we find

x
(
τ(t)

)

f
(

x
(
τ(t)

)) ≥
∫ t

τ(t)
In−1

(
u, τ(t); rn−1, . . . , r1

)
m∑

j=1

pj(u)du, t ≥ t3.

(5.123)
Taking the limit superior as t → +∞ of both sides of (5.123), we

obtain a contradiction to the hypothesis (5.118).
For n = 1 all solutions of (5.116) are oscillatory because every

nonoscillatory solution of (5.116) is necessarily bounded.

In the same way we can prove the following theorem.

Theorem 5.5.2. Assume that conditions (H5.5) hold and

lim
t→+∞

sup

∫ t

τ(t)
In−1

(
u, τ(t); rn−1, . . . , r1

)
p0(u)du > lim

x→0
sup

∣
∣x
∣
∣

F (x)
.

(5.124)
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Then if n ≥ 2 all bounded solutions of inequality (5.117) are oscil-
latory and if n = 1 all solutions of (5.117) are oscillatory.

Theorem 5.5.3. Assume that conditions (H5.5) hold and

∫ +a

+0

dx

f(x)
< +∞,

∫ −0

−a

dx

f(x)
< +∞ for some a > 0, (5.125)

and

∫ ∞ 1

r1(s)

(∫ τ−1(s)

s
In−2

(
u, s; rn−1, . . . , r2

)
m∑

j=1

pj(u)du

)

ds = +∞.

(5.126)

Then all bounded solutions of inequality (5.116) are oscillatory.

Proof. Let x(t) be a bounded nonoscillatory solution of inequality
(5.116). Without loss of generality we assume that x(t) > 0. It
follows from conditions H5.5.2, H5.5.3 and inequality (5.116) that
(−1)nLnx(t) ≥ 0, t ≥ t1 for some t1. By the boundedness of x(t)
and Lemma 5.5.1, it follows that (5.119) holds for t ≥ t2 and t2 is
sufficiently large. Applying Lemma 5.5.2 with i = 1, ν = n we have

L1x(t) =

n−1∑

j=1

(−1)j−1Ij−1

(
s, t; rj , . . . , r2

)
Ljx(s)

+(−1)n−1

∫ s

t
In−2

(
u, t; rn−1, . . . , r2

)
Lnx(u)du.

Then

−r1(t)x′(t) =
n−1∑

j=1

(−1)jIj−1

(
s, t; rj , . . . , r2

)
Ljx(s)

+(−1)n
∫ s

t
In−2

(
u, t; rn−1, . . . , r2

)
Lnx(u)du

and using (5.119) and (5.116) we get

−x′(s) ≥ 1

r1(s)

∫ t

s
In−2

(
u, s; rn−1, . . . , r2

)
m∑

j=1

pj(u)fj
(
M j
ux
)
du.

(5.127)
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Since x(t) is decreasing for t ≥ t2 and M j
t x ≥ x

(
τj(t)

)
≥ x

(
τ(t)

)
,

j = 1, . . . , m, putting t = τ−1(s) in (5.127) and taking the monotonic-
ity of x, fj, j = 1, . . . , m into account we obtain

−x′(s) ≥ f
(
x(s)

)

r1(s)

∫ τ−1(s)

s
In−2

(
u, s; rn−1, . . . , r2

)
m∑

j=1

pj(u)du.

(5.128)
Dividing both sides of (5.128) by f

(
x(s)

)
and then integrating from

t3 to t where t3 is so that τ(t) > t2 for t ≥ t3 we obtain

∫ x(t3)

x(t)

dx

f(x)
≥
∫ t

t3

1

r1(s)

(∫ τ−1(s)

s
In−2

(
u, s; rn−1, . . . , r2

)
m∑

j=1

pj(u)du

)

ds.

(5.129)
It follows from (5.119) that limt→+∞ x(t) = c ≥ 0. Therefore, by

(5.125) the left-hand side of (5.129) remains bounded, while on account
of (5.126) the right-hand side becomes unbounded as t→ +∞. This is
a contradiction.

Similarly, we obtain the following theorem.

Theorem 5.5.4. Assume that conditions (H5.5) hold and

∫ +a

+0

dx

F (x)
< +∞,

∫ −0

−a

dx

F (x)
< +∞ for some a > 0, (5.130)

and

∫ ∞ 1

r1(s)

(∫ τ−1(s)

s
In−2

(
u, s; rn−1, . . . , r2

)
p0(u)du

)

ds = +∞.

(5.131)
Then all bounded solutions of inequality (5.117) are oscillatory.





Chapter 6

Asymptotic Methods

Since the set of nonlinear problems, whose solutions could be presented
as well-known functions, is too narrow, one needs to exploit various ap-
proximate methods. There are different analytic approximate methods
applied to various types of differential equations.

In this chapter the monotone-iterative technique and method of
quasilinearization are applied to initial value problems and periodic
boundary value problems for differential equations with “maxima.”
Both considered methods combine the method of lower and upper so-
lutions by an appropriate monotone method. The algorithm for con-
structing successive approximations is very simple and the conditions
for the right side of the equations are natural. It makes the applica-
tions of both methods very successful to different types of differential
equations (see the monograph [Ladde et al. 1985], and the references
cited therein).

The monotone-iterative technique is studied for differential equa-
tions with “maxima” in [Bainov and Hristova 1995] and for impul-
sive differential equations with supremum in [Cai 2003], [Hristova and
Roberts 2001], [Hristova and Bainov 1993], [Hristova and Bainov 1991],
and [Qi and Chen 2008].

6.1 Monotone-Iterative Technique for Initial

Value Problems

We will begin considerations with the initial value problem. In this
section, we will study the application of the monotone-iterative tech-
nique to both a scalar case and a multidimensional case of differential
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equations with “maxima.” We will define different types of lower and
upper solutions of the studied system. We will give an algorithm for
constructing two sequences of successive approximations of the solution
of the considered problem.

Consider the following initial value problem for the system of dif-
ferential equations with “maxima”

x′ = f(t, x(t), max
s∈[t−h,t]

x(s)), for t ∈ [0, T ], (6.1)

x(t) = ϕ(t), t ∈ [−h, 0], (6.2)

where x ∈ R
n, f : [0, T ] × R

n × R
n → R

n, T, h = const > 0.

We will use notations that are analogous to those used in [Ladde et
al. 1985] for systems of ordinary differential equations. These notations
play an important role in the definitions of different types of lower and
upper solutions for the systems of differential equations with “maxima.”

Definition 6.1.1. Let x =
(
x1, x2, . . . , xn

)
, y =

(
y1, y2, . . . , yn

)
. We

shall say that x ≤ (≥)y if for each integer j : 1 ≤ j ≤ n the inequalities
xj ≤ (≥)yj hold.

To each natural number j : 1 ≤ j ≤ n we assign two nonnegative
integers pj and qj such that pj+qj = n−1 and for the points x, y, z ∈ R

n

we introduce the notation

(
zj , [x]pj

, [y]qj
)

=







(
x1, x2, . . . , xj−1, zj , xj+1, . . . , xpj+1,
︸ ︷︷ ︸

pj

ypj+2, . . . , yn
)

︸ ︷︷ ︸

qj

,

for pj > j,
(
x1, x2, . . . , xpj

,
︸ ︷︷ ︸

pj

ypj+1, . . . , yj−1, zj , yj+1, . . . , yn
)

︸ ︷︷ ︸

qj+1

,

for pj < j
(
x1, x2, . . . , xpj

,
︸ ︷︷ ︸

pj

zj+1, ypj+1, . . . , yj−1, , yj+1, . . . , yn
)

︸ ︷︷ ︸

qj

,

for pj = j.

For example, let n = 3. Choose p1 = 2, q1 = 0, p2 = 1, q2 = 1 and
p3 = 1, q3 = 1. Then (x1, [z]p1 , [y]q1) = (x1, z2, z3), (x2, [z]p2 , [y]q2) =
(z1, x2, y3), (x3, [z]p3 , [y]q3) = (z1, y2, x3).

According to the above-introduced notation the initial value prob-
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lems (6.1) and (6.2) can be rewritten in the form

x′j = fj

(

t, xj(t), [x(t)]pj
, [x(t)]qj ,

max
s∈[t−h,t]

xj(s), [ max
s∈[t−h,t]

x(s)]pj
, [ max
s∈[t−h,t]

x(s)]qj

)

, t ∈ [0, T ],

(6.3)

xj(t) = ϕj(t), t ∈ [−h, 0], j = 1, 2, . . . , n. (6.4)

Definition 6.1.2. The pair of functions v,w ∈ C([−h, T ],Rn) ∪
C1([0, T ],Rn), v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn) is called a
pair of lower and upper quasisolutions of the initial value problem for
the system of differential equations with “maxima” (6.1), (6.2) if

v′j ≤fj
(

t, vj(t), [v(t)]pj
, [w(t)]qj ,

max
s∈[t−h,t]

vj(s), [ max
s∈[t−h,t]

v(s)]pj
, [ max
s∈[t−h,t]

w(s)]qj

)

, (6.5)

w′
j ≥fj

(

t, wj(t), [w(t)]pj
, [v(t)]qj ,

max
s∈[t−h,t]

wj(s), [ max
s∈[t−h,t]

w(s)]pj
, [ max
s∈[t−h,t]

v(s)]qj

)

, for t ∈ [0, T ],

vj(t) ≤ϕj(t), wj(t) ≥ ϕj(t), t ∈ [−h, 0], j = 1, 2, . . . , n. (6.6)

Remark 6.1.1. We will note that the pair of lower and upper qua-
sisolutions is a generalization of the lower and upper solutions in the
scalar case (n = 1, p1 = q1 = 0).

Definition 6.1.3. The pair of functions v,w ∈ C([−h, T ],Rn) ∪
C1([0, T ],Rn), v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn) is called a
pair of quasisolutions of the initial value problem for the system of
differential equations with “maxima” (6.1), (6.2) if (6.5), (6.6) are
satisfied only for equalities.

Definition 6.1.4. The pair of functions v,w ∈ C([−h, T ],Rn) ∪
C1([0, T ],Rn), v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn) is called a
pair of minimal and maximal quasisolutions of the initial value prob-
lem for the system of differential equations with “maxima” (6.1), (6.2)
if it is a pair of quasisolutions of the same problem, v(t) ≤ w(t) and for
any other pair (µ, ν) of quasisolutions of (6.1), (6.2), the inequalities
v(t) ≤ µ(t) ≤ w(t), v(t) ≤ ν(t) ≤ w(t) hold for t ∈ [−h, T ].
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Remark 6.1.2. We will note that the pair of the minimal and maximal
quasisolutions is generalization of the minimal and maximal solutions
in the scalar case (n = 1, p1 = q1 = 0).

Remark 6.1.3. We will note that if the pair of functions v,w ∈
C([−h, T ],Rn) ∪ C1([0, T ],Rn) is a pair of minimal and maximal qua-
sisolutions, then the inequality v(t) ≤ w(t) holds. Also, for any pair of
quasisolutions this inequality could not be true.

Remark 6.1.4. We will note that for all natural numbers j : 1 ≤
j ≤ n the equalities pj = n − 1 and qj = 0 hold and the pair v,w ∈
C([−h, T ],Rn)∪C1([0, T ],Rn) is a pair of quasisolutions of (6.1), (6.2).
Then the functions v and w are also solutions of the same problem. If
the initial value problem (6.1), (6.2) has a unique solution u(t), then
the pair of minimal and maximal quasisolutions is (u, u).

For all pairs of functions v,w ∈ C([−h, T ],Rn) such that v(t) ≤ w(t)
for t ∈ [−h, T ], we define the sets

S(v,w) = {u ∈ C([−h, T ],Rn) : v(t) ≤ u(t) ≤ w(t), t ∈ [−h, T ]}.
(6.7)

Lemma 6.1.1. [Comparison result] Let the scalar function m ∈
C([−h, T ],R) ∪C1([0, T ],R) satisfies the inequalities

m′(t) ≤ −Mm(t) −N min
s∈[t−h,t]

m(s) for t ∈ [0, T ], (6.8)

m(t) = m(0), t ∈ [−h, 0], (6.9)

m(0) ≤ 0, (6.10)

where M,N are positive constants and

(M +N)T < 1. (6.11)

Then the inequality m(t) ≤ 0 holds for t ∈ [−h, T ].

Proof. Assume the contrary, i.e., there exists a point ξ ∈ (0, T ] such
that m(ξ) > 0. Consider the following two cases:

Case 1. Let m(0) < 0. According to the assumptions there exists a
point η ∈ (0, T ] such that m(t) ≤ 0 for t ∈ [−h, η], m(η) = 0, m(t) > 0
for t ∈ (η, η + ǫ), where ǫ > 0 is a small enough constant. Denote

inf{m(t) : t ∈ [−h, η]} = −λ < 0.
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Let ς ∈ [0, η) be such that m(ς) = −λ. According to the mean
value theorem there exists a point ξ0 ∈ (ς, η) such that m(η) −
m(ς) = m′(ξ0)(η − ς). Therefore from inequality (6.8) and −λ ≤
mins∈[ξ0−h,ξ0]m(s) we get

λ = m(η) −m(ς) = m′(ξ0)(η − ς) ≤ (M +N)λT. (6.12)

Inequality (6.12) contradicts inequality (6.11).

Case 2. Let m(0) = 0. Then from equality (6.9) follows that m(t) ≡
0 for t ∈ [−h, 0].

Consider the following two cases:

Case 2.1. There exist points ξ1, ξ2 ∈ [0, T ], ξ1 < ξ2 such that
m(t) = 0 for t ∈ [−h, ξ1], and m(t) > 0 for t ∈ (ξ1, ξ2). Without
loss of generality we could assume ξ2−ξ1 < h. Therefore, for t ∈ [ξ1, ξ2]
the equality mins∈[t−h,t]m(s) = 0 holds. From inequality (6.8) it follows
that m′(t) ≤ −Mm(t) ≤ 0 for t ∈ (ξ1, ξ2]. Therefore the function m(t)
is continuous nonincreasing function on [ξ1, ξ2], i.e., m(t) ≤ m(ξ1) = 0
for t ∈ [ξ1, ξ2]. The last inequality contradicts the assumption.

Case 2.2 There exists a point η ∈ (0, T ] such that m(t) ≤ 0 for
t ∈ [−h, η], m(η) = 0, m(t) > 0 for t ∈ (η, η+ ǫ), where ǫ > 0 is a small
enough constant. As in the proof of case 1, we obtain a contradiction.

The obtained contradictions prove the claim of Lemma 6.1.1.

6.1.1 Multidimensional Case

We will give an algorithm for constructing a sequence of successive ap-
proximations and we will prove the application of monotone-iterative
technique to the initial value problem for a system of nonlinear differ-
ential equations with “maxima.”

Theorem 6.1.1. Let the following conditions be fulfilled:

1. The function ϕ ∈ C([−h, 0],Rn), ϕ = (ϕ1, ϕ2, . . . , ϕn).

2. The pair of functions α, β ∈ C([−h, T ],Rn)∪C1([0, T ],Rn), where
α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn), is a pair of lower and
upper quasisolutions of the initial value problem (6.1), (6.2), such
that α(t) ≤ β(t) for t ∈ [−h, T ], and α(0) − ϕ(0) ≤ α(t) − ϕ(t),
β(0) − ϕ(0) ≥ β(t) − ϕ(t) for t ∈ [−h, 0].
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3. The function f : [0, T ]×R
n×R

n → R
n, f = (f1, f2, . . . , fn), where

fj(t, x, y) = fj(t, xj , [x]pj
, [x]qj , yj , [y]pj

, [y]qj), is nondecreasing in
[x]pj

and [y]pj
, nonincreasing in [x]qj and [y]qj , and for x, y, u, v ∈

R
n, y ≤ x, v ≤ u the inequality

fj(t, xj , [x]pj
, [x]qj , uj , [u]pj

, [u]qj ) − fj(t, yj , [y]pj
, [y]qj , vj , [v]pj

, [v]qj )

≥ −Mj(xj − yj) −Nj(uj − vj), t ∈ [0, T ], j = 1, 2, . . . , n

holds, where Mj , Nj , j = 1, 2, . . . , n are positive constants.

4. The inequalities (Mj +Nj)T < 1, j = 1, 2, . . . , n hold.

Then there exist two sequences of functions {α(k)(t)}∞0 and
{β(k)(t)}∞0 such that:

(a) The sequences are increasing and decreasing correspondingly;

(b) The pair of functions α(k)(t), β(k)(t) is a pair of lower and up-
per quasisolutions of the initial value problem for the system of
nonlinear differential equations with “maxima”(6.1), (6.2);

(c) Both sequences uniformly converge on [−h, T ];

(d) The limits V (t) = lim
k→∞

α(k)(t), W (t) = lim
k→∞

β(k(t) are a pair of

minimal and maximal solutions of the initial value problem for the
system of nonlinear differential equations with “maxima”(6.1),
(6.2).

(e) If u(t) ∈ S(α, β) is a solution of the initial value problem for the
system of nonlinear differential equations with “maxima” (6.1),
(6.2), then V (t) ≤ u(t) ≤W (t).

Proof. We fix two arbitrary functions η, µ ∈ S(α, β) and for all natural
numbers j : 1 ≤ j ≤ n we consider the initial value problem for the
scalar linear differential equation with “maxima”

u′(t) +Mju(t) +Nj max
s∈[t−h,t]

u(s) =ψj(t, η, µ), for t ∈ [0, T ], (6.13)

u(t) =ϕj(t), t ∈ [−h, 0], (6.14)
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where u ∈ R,

ψj(t, η, µ)

= fj(t, ηj(t), [η(t)]pj
, [µ(t)]qj , max

s∈[t−h,t]
ηj(s),

[ max
s∈[t−h,t]

η(s)]pj
, [ max
s∈[t−h,t]

µ(s)]qj )

+Mjηj(t) +Nj max
s∈[t−h,t]

ηj(s),

According to the results in Section 3.2 the initial value problems
(6.13)-(6.14) have a unique solution for the fixed pair of functions η, µ ∈
S(α, β) (see formula (3.35)).

For any two functions η, µ ∈ S(α, β) such that η(t) ≤ µ(t) for
t ∈ [−h, T ] we define the operator Ω : S(α, β) × S(α, β) → S(α, β) by
Ω(η, µ) = x(t), where x(t) = (x1(t), x2(t), . . . , xn(t)) and xj(t) is the
unique solution of the initial value problem for the scalar differential
equation with “maxima” (6.13) and (6.14) for the pair of functions η, µ.

The operator Ω(η, µ) possesses the following set (P6.1) of proper-
ties:

P6.1.1 α ≤ Ω(α, β) and β ≥ Ω(β, α);

P6.1.2 For any functions η, µ ∈ S(α, β) such that η(t) ≤ µ(t) for
t ∈ [−h, T ] and the pair (η, µ) is a pair of lower and upper qua-
sisolutions of the initial value problem (6.1), (6.2), the inequality
Ω(η, µ) ≤ Ω(µ, η) holds.

Indeed, we will prove property ( P6.1.1). We denote m(t) = α(t) −
α(1)(t), where α(1)(t) = Ω(α, β).

Then from condition 2 and equation (6.13) for any j = 1, 2, . . . , n
applying the inequality

min
s∈[t−h,t]

(

αj(s) − α
(1)
j (s)

)

≤ max
s∈[t−h,t]

αj(s) − max
s∈[t−h,t]

α
(1)
j (s)

we get

m′
j(t) ≤Mj

(

α
(1)
j (t) − αj(t)

)

+Nj

(

max
s∈[t−h,t]

α
(1)
j (s) − max

s∈[t−h,t]
αj(s)

)

≤−Mjmj(t) −Nj

(

max
s∈[t−h,t]

αj(s) − max
s∈[t−h,t]

α
(1)
j (s)

)

≤−Mjmj(t) −Nj min
s∈[t−h,t]

(

αj(s) − α
(1)
j (s)

)

, t ∈ [0, T ]

(6.15)
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Therefore the function m(t) satisfies the inequalities (6.8) and
(6.10). According to Lemma 6.1.1 the function m(t) is nonpositive,
i.e., α ≤ Ω(α, β).

Analogously the validity of the inequality β ≥ Ω(β, α) can be
proved.

We will prove property (P6.1.2). Let η, µ ∈ S(α, β) form a pair
of lower and upper quasisolutions of the initial value problem (6.1),
(6.2) and η(t) ≤ µ(t) for t ∈ [−h, T ]. Consider functions x(1)(t) and
x(2)(t) for t ∈ [−h, T ], where x(1) = Ω(η, µ), x(2) = Ω(µ, η), g(t) =
x(1)(t) − x(2)(t), g = (g1, g2, . . . , gn).

Then from condition 3 and equation (6.13) we get for any j : j =
1, 2, . . . , n and t ∈ [0, T ]

g′j(t) ≤−Mjgj(t) −Nj

(

max
s∈[t−h,t]

x
(1)
j (s) − max

s∈[t−h,t]
x

(2)
j (s)

)

+Mj

(

ηj(t) − µj(t)
)

+Nj

(

max
s∈[t−h,t]

ηj(s) − max
s∈[t−h,t]

µj(s)
)

+ fj(t, ηj(t), [η(t)]pj
, [µ(t)]qj , max

s∈[t−h,t]
ηj(s), [ max

s∈[t−h,t]
η(s)]pj

,

[ max
s∈[t−h,t]

µ(s)]qj)

− fj(t, µj(t), [µ(t)]pj
, [η(t)]qj , max

s∈[t−h,t]
µj(s), [ max

s∈[t−h,t]
µ(s)]pj

,

[ max
s∈[t−h,t]

η(s)]qj )

≤−Mjgj(t) −Nj

(

max
s∈[t−h,t]

x
(1)
j (s) − max

s∈[t−h,t]
x

(2)
j (s)

)

≤−Mjgj(t) −Nj min
s∈[t−h,t]

gj(s). (6.16)

Inequality (6.16) proves the validity of conditions of Lemma 6.1.1.
According to Lemma 6.1.1 the functions gj(t), j = 1, 2, . . . , n are non-
positive, i.e., Ω(η, µ) ≤ Ω(µ, η).

We define the sequences of functions {α(k)(t)}∞0 and {β(k)(t)}∞0 by
the equalities

α(0) ≡ α, β(0) ≡ β,

α(k+1) = Ω(α(k), β(k)), β(k+1) = Ω(β(k), α(k)).

According to property P6.1.1 of the operator Ω(η, µ) it follows that
functions α(k)(t) and β(k)(t) form a pair of lower and uper solutions.
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According to the property P6.1.2 of the operator Ω(η, µ) it follows that
for t ∈ [−h, T ] the following inequalities

α(0)(t) ≤ α(1)(t) ≤ · · · ≤ α(k)(t) ≤ β(k)(t) ≤ · · · ≤ β(1)(t) ≤ β(0)(t)
(6.17)

hold.
Both sequences of functions {α(k)(t)}∞0 and {β(k)(t)}∞0 are conver-

gent on [−h, T ]. Let Vj(t) = limk→∞ v
(k)
j (t), Wj(t) = limk→∞w

(k)
j (t),

j = 1, 2, . . . , n. We will prove that the pair of functions V (t) and
W (t), where V = (V1, V2, . . . , Vn) and W = (W1,W2, . . . ,Wn), are
a pair of minimal and maximal quasisolutions of the initial value
problem (6.1), (6.2). From the definition of functions α(k)(t), α(k) =

(α
(k)
1 , α

(k)
2 , . . . , α

(k)
n ) and β(k)(t), β(k) = (β

(k)
1 , β

(k)
2 , . . . , β

(k)
n ) follows

that these functions satisfy the initial value problem (j = 1, 2, . . . , n)

(α
(k)
j (t))′ +Mjα

(k)
j (t) +Nj max

s∈[t−h,t]
α

(k)
j (s)) = ψj(t, α

(k−1), β(k−1)),

(6.18)

(β
(k)
j (t))′ +Mjβ

(k)
j (t) +Nj max

s∈[t−h,t]
β

(k)
j (s) = ψj(t, β

(k−1), α(k−1)),

(6.19)

for t ∈ [0, T ],

α
(k)
j (t) = α

(k)
j (0), β

(k)
j (t) = β

(k)
j (0), t ∈ [−h, 0], (6.20)

From equations (6.18) and (6.20) it follows that the pair of functions
V (t) and W (t) is a pair of quasisolutions of the initial value problem
(6.1), (6.2). Let u, z ∈ S(α, β) be a pair of quasisolutions of the ini-
tial value problem (6.1), (6.2). From inequalities (6.17) it follows that
there exists a natural number k such that α(k)(t) ≤ u(t) ≤ β(k)(t)
and α(k)(t) ≤ z(t) ≤ β(k)(t) for t ∈ [−h, T ]. We introduce the nota-
tion g(t) = α(k+1)(t) − u(t), g = (g1, g2, . . . , gn). According to Lemma
5.1.1 the inequalities gj(t) ≤ 0, j = 1, 2, . . . hold for t ∈ [−h, T ], i.e.,
α(k+1)(t) ≤ u(t).

Analogously the validity of inequalities β(k+1)(t) ≥ u(t) and
α(k+1)(t) ≤ z(t) ≤ β(k+1)(t) for t ∈ [−h, T ] can be proved.

Let u(t) ∈ S(α, β) be a solution of the initial value problem (6.1),
(6.2). Consider the pair of functions (u, u) that is a pair of quasisolu-
tions of the initial value problem (6.1), (6.2). According to the proof
given above the inequality V (t) ≤ u(t) ≤W (t) holds for t ∈ [−h, T ].
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6.1.2 Scalar Case

In the scalar case n = 1 the problem (6.1) and (6.2) reduces to an
initial value problem for a scalar differential equation with “maxima.”
In this case, we use lower and upper solutions:

Definition 6.1.5. The function v ∈ C([−h, T ],R) ∪ C1([0, T ],R) is
called a lower solution of the initial value problem for the differential
equation with “maxima” (6.1), (6.2) (n = 1) if

v ≤ f(t, v(t), max
s∈[t−h,t]

v(s)) (6.21)

v(t) ≤ ϕ(t), t ∈ [−h, 0]. (6.22)

Analogously the upper solution of the initial value problem for the
differential equation with “maxima” (6.1), (6.2) (n = 1) is defined.

Then the following result is a partial case of the theorem proved
above:

Theorem 6.1.2. Let the following conditions be fulfilled:

1. The function ϕ ∈ C([−h, 0],R).

2. The functions α, β ∈ C([−h, T ],R) ∪ C1([0, T ],R) are lower and
upper solutions of the initial value problems (6.1) and (6.2) for
n = 1, correspondingly, and α(t) ≤ β(t) for t ∈ [−h, T ], and
α(0)−ϕ(0) ≤ α(t)−ϕ(t), β(0)−ϕ(0) ≥ β(t)−ϕ(t) for t ∈ [−h, 0].

3. The function f ∈ C([0, T ] × R × R,R), and for x, y, u, v ∈ R,
y ≤ x, v ≤ u the inequality

f(t, x, u) − f(t, y, v) ≥ −M(x− y) −N(u− v), t ∈ [0, T ],

holds, where M,N are positive constants.

4. The inequality (M +N)T < 1 holds.

Then there exist two sequences of functions {α(k)(t)}∞0 and {β(k)(t)}∞0
such that:

(a) the functions α(k)(t), β(k) ∈ C([−h, T ],R) are solutions of the
initial value problems for the following scalar equations

(

α(k)(t)
)′

+Mα(k)(t) +N max
s∈[t−h,t]

α(k)(s) = ψ(t, α(k−1)),

for t ∈ [0, T ], (6.23)
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and
(

β(k)(t)
)′

+Mβ(k)(t) +N max
s∈[t−h,t]

β(k)(s) = ψ(t, β(k−1)),

for t ∈ [0, T ], (6.24)

with initial conditions

α(k)(t) = ϕ(t), α(k)(t) = ϕ(t), t ∈ [−h, 0], (6.25)

where

ψ(t, η) = f(t, η(t), max
s∈[t−h,t]

η(s)) +Mη(t) +N max
s∈[t−h,t]

η(s),

(b) Both sequences are increasing and decreasing correspondingly;

(c) The functions α(k)(t) are lower solutions and the functions β(k)(t)
are upper solutions of the initial value problem for the nonlinear
differential equation with “maxima”(6.1) and (6.2) (n=1);

(d) Both sequences uniformly converge on [−h, T ];

(e) The limits V (t) = lim
k→∞

α(k)(t), W (t) = lim
k→∞

β(k(t) are minimal

and maximal solutions, correspondingly, of the initial value prob-
lem for the nonlinear differential equation with “maxima”(6.1)
and (6.2) (n=1).

(f) If u(t) ∈ S(α, β) is a solution of the initial value problem for the
nonlinear differential equation with “maxima” (6.1) and (6.2),
then V (t) ≤ u(t) ≤W (t).

Remark 6.1.5. As a particular case of the above results we obtain the
monotone-iterative techniques for the initial value problem for nonlin-
ear differential equations (scalar case as well as case of systems) con-
sidered by many authors (see the monograph [Ladde et al. 1985] and
references cited therein).

Example 6.1.1. Consider the following scalar differential equation
with “maxima”

x′ =
1

8
e−tx(t) − 1

4
max

s∈[t−0.5,t]
x(s), for t ∈ [0, 2], (6.26)

with initial condition

x(t) = 0, t ∈ [−0.5, 0]. (6.27)
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It is easy to check that the problems (6.26) and (6.27) has zero
solution.

From the inequality 1
8e

−t − 1
4 ≤ 1

8 − 1
4 < 0 on [0, 2] it fol-

lows that the funtion α(0)(t) ≡ −2 is a lower solution of the ini-
tial value problems (6.26) and (6.27) and the function β(0)(t) ≡ 2
is an upper solution of (6.26), (6.27), i.e., inequalities (α(0)(t))′ ≤
1
8e

−tα(0)(t) − 1
4 maxs∈[t−0.5,t] α

(0)(s) and (β(0)(t))′ ≥ 1
8e

−tβ(0)(t) −
1
4 maxs∈[t−0.5,t] β

(0)(s) hold.

In this case f(t, u, v) = 1
8e

−tu − 1
4v and f(t, x, u) − f(t, y, v) =

1
8e

−t(x − y) − 1
4(u − v) ≥ −M(x − y) − N(u − v) for x ≥ y, u ≥ v,

where M = 1
8 and N = 1

4 . Then (M +N)T = (1
8 + 1

4)2 = 3
4 < 1.

Then the successive approximations to the zero solution of the ini-
tial value problems (6.26) and (6.27) are solutions of the linear differ-
ential equations with “maxima” (6.23) and (6.24), that are reduced in
this case to the following equations

(

α(k)(t)
)′

= −1

8
α(k)(t) − 1

4
max

s∈[t−0.5,t]
α(k)(s) +

1

8
(e−t + 1)α(k−1)(t),

for t ∈ [0, 2], (6.28)

and

(

β(k)(t)
)′

= −1

8
β(k)(t) − 1

4
max

s∈[t−0.5,t]
β(k)(s) +

1

8
(e−t + 1)β(k−1)(t),

for t ∈ [0, 2], (6.29)

with initial conditions

α(k)(t) = 0, β(k)(t) = 0, t ∈ [−0.5, 0]. (6.30)

The solution of the initial value problems (6.28) and (6.30) is given
by the formula

α(k)(t) =
{∫ t

0

1

8
(e−t + 1)α(k−1)(s)ds

− 0.25

∫ t

0
max

ξ∈[s−0.5,s)
α(k)(ξ)ds

}(

e0.125t − 1
)

for t ∈ [0, 2]

α(k)(t) =0 for t ∈ [−0.5, 0].

(6.31)
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and the solution of the initial value problems (6.29) and (6.30) is given
by the formula

β(k)(t) =
{∫ t

0

1

8
(e−t + 1)β(k−1)(s)ds

− 0.25

∫ t

0
max

ξ∈[s−0.5,s)
β(k)(ξ)ds

}(

e0.125t − 1
)

for t ∈ [0, 2]

β(k)(t) =0 for t ∈ [−0.5, 0].

(6.32)

It is easy to calculate that

α(0)(0.25) = −2, β(0)(0.25) = 2,

α(1)(0.25) = −0.0037, β(1)(0.25) = 0.003739,

α(2)(0.25) = −0.000036, β(2)(0.25) = 0.0000367,

α(3)(0.25) = −0.00000036, β(3)(0.25) = 0.000000363.

The above sequences are monotonic, increasing and decreasing cor-
respondingly, and approach zero, which is the exact solution.

6.2 Monotone-Iterative Technique for Periodic

Boundary Value Problems

Note that the differential equations with “maxima” generate function-
als not having the property of linearity even if the equations are linear.
These equations can be integrated in a closed form only in exceptional
cases. In relation to this, it is necessary to elaborate approximate meth-
ods for their solution.

In the present section, a couple of minimal and maximal quasisolu-
tions of a boundary value problem for a system of differential equations
with “maxima” is constructed by means of the monotone-iterative tech-
niques of Lakshmikantham ( [Ladde et al. 1985]).

Consider the boundary value problem

x′ = f
(

t, x(t), max
s∈[t−h,t]

x(s)
)

for t ∈ [0, T ], (6.33)

x(0) = x(T ), x(t) = x(0) for t ∈ [−h, 0], (6.34)

where x ∈ R
n, f : [0, T ] × R

n × R
n → R

n, h = const > 0.
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For any x, y, z ∈ R
n and any two nonnegative integers pj and qj such

that pj + qj = n−1 we will use notation
(
zj , [x]pj

, [y]qj
)

introduced in
Section 6.1 and we rewrite down the boundary value problem (6.33),
(6.34) in the form

x′j = fj(t, xj , [x]pj
, [x]qj , max

s∈[t−h,t]
xj(s),

[

max
s∈[t−h,t]

x(s)

]

pj

,

[

max
s∈[t−h,t]

xj(s)

]

qj

),

for t ∈ [0, T ],

xj(0) = xj(T ), xj(t) = xj(0) for t ∈ [−h, 0], j = 1, n.

Definition 6.2.1. The functions v, w ∈ C([−h, T ],Rn)∪C1([0, T ],Rn)
are said to be a couple of lower and upper quasisolutions of the boundary
value problem (6.33), (6.34) if:

v′j(t) ≤fj
(

t, vj , [v]pj
, [w]qj , max

s∈[t−h,t]
vj(s),

[

max
s∈[t−h,t]

v(s)

]

pj

,

[

max
s∈[t−h,t]

wj(s)

]

qj

)

, for t ∈ [0, T ], (6.35)

w′
j(t) ≥fj

(

t, wj , [w]pj
, [v]qj , max

s∈[t−h,t]
wj(s),

[

max
s∈[t−h,t]

w(s)

]

pj

,

[

max
s∈[t−h,t]

vj(s)

]

qj

)

, for t ∈ [0, T ],

vj(0) ≤ vj(T ), wj(0) ≥ wj(T ), (6.36)

vj(t) = vj(0), wj(t) = wj(0) for t ∈ [−h, 0],
where v = (v1, v2, . . . , vn), and w = (w1, w2, . . . , wn).

Definition 6.2.2. In the case when (6.33), (6.34) is a boundary value
problem for a scalar differential equation, i.e., n = 1, p1 = q1 = 0, the
couple of lower and upper quasisolutions of the same problem are said
to be lower and upper solutions of (6.33), (6.34).

Definition 6.2.3. The functions v, w ∈ C([−h, T ],Rn)∪C1([0, T ],Rn)
are said to be a couple of quasisolutions of the boundary value problem
(6.33), (6.34) if (6.35) and (6.36) are satisfied only as equalities.
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Definition 6.2.4. The functions v, w ∈ C([−h, T ],Rn)∪C1([0, T ],Rn)
are said to be a couple of minimal and maximal quasisolutions of the
boundary value problem (6.33), (6.34) if (v,w) is a couple of quasiso-
lutions of the same problem and for any couple of quasisolutions (u, z)
of (6.33), (6.34) the inequalities v(t) ≤ u(t) ≤ w(t), v(t) ≤ z(t) ≤ w(t)
hold for t ∈ [0, T ].

Remark 6.2.1. For the couple (v,w) of minimal and maximal qua-
sisolutions of problem (6.33), (6.34) the inequality v(t) ≤ w(t) holds
for t ∈ [0, T ] while for an arbitrary couple of quasisolutions (u, z) an
analogous inequality relating the functions u(t) and z(t) may not be
valid.

We shall note that for ordinary differential equations the notions of
a couple of lower and upper quasisolutions, a couple of quasisolutions,
and a couple of minimal and maximal quasisolutions were introduced
by Lakshmikantham et al. ( [Ladde et al. 1985]).

Consider the set S(v,w) defined by (6.7).
In the further considerations, we shall use the following lemma.

Lemma 6.2.1. Let F be a Banach space and B = C([a, b], F ). Let
S : B → F be an operator for which

∣
∣
∣

∣
∣
∣Sϕ − Sψ

∣
∣
∣

∣
∣
∣
F
≤ α

∣
∣
∣
∣ϕ− ψ

∣
∣
∣
∣
B

0 ≤ α < 1.

Then for any point ξ ∈ [a, b] there exists an element ϕ ∈ B such
that Sϕ = ϕ(ξ).

Lemma 6.2.2. Let the function σ ∈ C([0, T ],R). Then the boundary
value problem

x′ +Mx+N max
s∈[t−h,t]

x(s) = σ(t) for t ∈ [0, T ], (6.37)

x(0) = x(T ), (6.38)

x(t) = x(0) for t ∈ [−h, 0], (6.39)

has a solution, where x ∈ R and the positive constants M and N are
such that

N < M. (6.40)

Proof. Equation (6.37) can be written in the form

x′ +Mx = σ(t) +N max
s∈[t−h,t]

x(s).
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By the variation of parameters formula we obtain

x(0) =
1

eMT − 1

∫ T

0

[

σ(s) +N max
ξ∈[s−h,s]

x(ξ)

]

eMsds.

Define the map S : Ω → R by the equality

Su =
1

eMT − 1

∫ T

0

[

σ(s) +N max
ξ∈[s−h,s]

u(ξ)

]

eMsds,

where Ω =
{
u ∈ C([−h, T ],Rn) ∪ C1([0, T ],Rn) : u(t) = u(0) for

t ∈ [−h, 0]
}

with norm

∣
∣u
∣
∣
0

= max
t∈[−h,T ]

∣
∣u(t)

∣
∣.

Then the following inequality holds:

∣
∣
∣Su − Sv

∣
∣
∣ ≤ N

eMT − 1

∫ T

0

∣
∣u− v

∣
∣
0
eMsds =

N

M

∣
∣u− v

∣
∣
0
. (6.41)

By Lemma 6.2.1 there exists a function u ∈ Ω for which Su = u(0),
i.e., the function u(t) is a solution of the boundary value problem (6.37),
(6.38), (6.39).

This completes the proof of Lemma 6.2.2.

Lemma 6.2.3. [Comparison result] Let m ∈ C([−h, T ],Rn) ∪
C1([0, T ],Rn) satisfy the inequalities

m′ ≤ −Mm(t) −N min
s∈[t−h,t]

m(s) for t ∈ [0, T ], (6.42)

m(t) = m(0) for t ∈ [−h, 0], (6.43)

m(0) ≤ m(T ), (6.44)

where M and N are positive constants such that

(M +N)T < 1. (6.45)

Then the inequality m(t) ≤ 0 holds for t ∈ [−h, T ].

Proof. We will consider the following two cases with respect to the
possible values of m(T ):
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Case 1. Let m(0) ≤ 0. Then according to Lemma 6.1.1 the inequal-
ity m(t) ≤ 0 holds for t ∈ [−h, T ].

Case 2. Let m(0) > 0. Then m(T ) > 0. Consider the following two
cases:

Case 2.1. Let m(t) ≥ 0 for t ∈ [0, T ]. Then from equality (6.43)
it follows that m(t) ≥ 0 for t ∈ [−h, T ]. In view of inequality (6.42)
the inequality m′(t) ≤ 0 holds for t ∈ [0, T ] which shows that the
function m(t) is monotone nonincreasing in the interval [0, T ]. Hence
m(t) ≤ m(0) for t ∈ [0, T ]. Inequality (6.44) proves that m(t) ≡ c for
t ∈ [−h, T ], where c = const. From inequality (6.42) we obtain the
inequality 0 ≤ −(M + N)c. Therefore, c ≤ 0, or m(T ) = c ≤ 0. The
obtained contradiction proves the impossibility of this case.

Case 2.2. Let a point η ∈ (0, T ) exist such that m(η) < 0.
Introduce the notation

min
t∈[0,T ]

m(t) = −λ, λ = const > 0.

From the continuity of the function m(t) it follows that there exists a
point ζ ∈ (0, T ) such that m(ζ) = −λ. According to (6.43) the equality
mint∈[−h,T ]m(t) = −λ holds. Moreover, there exists a point ν ∈ (ζ, T )
such that

m′(ν) =
m(T ) −m(ζ)

T − ζ
≥ λ

T
. (6.46)

From inequality (6.42), m(ν) ≥ −λ, and mins∈[ν−h,ν]m(s) ≥ −λ it
follows that

m′(ν) ≤ −Mm(ν) −N min
s∈[ν−h,ν]

m(s) ≤ −M(−λ) −N(−λ). (6.47)

From (6.46) and (6.47) we can obtain the inequality

(M +N)T ≥ 1. (6.48)

Inequality (6.48) contradicts inequality (6.45).
The obtained contradiction shows us the impossibility of this case.

Theorem 6.2.1. Let the following conditions be fulfilled:

1. The functions v, w ∈ C([−h, T ],Rn)∪C1([0, T ],Rn) are a couple
of lower and upper quasisolutions of the boundary value problem
(6.33), (6.34) and satisfy the conditions v(t) ≤ w(t) for t ∈ [0, T ]
and v(t) ≡ v(0), w(t) ≡ w(0) for t ∈ [−h, 0].
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2. The function f ∈ C([0, T ] × R
n × R

n,Rn), f =
(
f1, f2, . . . , fn

)
,

fj(t, x, y)= fj
(
t, xj, [x]pj

, [x]qj , yj , [y]pj
, [y]qj

)
is monotone

nondecreasing with respect to [x]pj
and [y]pj

, and monotone non-
increasing with respect to [x]qj and [y]qj , and for x, y ∈ S(v,w),
y(t) ≤ x(t) satisfies the inequalities

fj

(

t, xj , [x]pj
, [x]qj , max

s∈[t−h,t]
xj(s),

[

max
s∈[t−h,t]

x(s)

]

pj

,

[

max
s∈[t−h,t]

x(s)

]

qj

)

− fj

(

t, yj , [x]pj
, [x]qj , max

s∈[t−h,t]
yj(s),

[

max
s∈[t−h,t]

x(s)

]

pj

,

[

max
s∈[t−h,t]

x(s)

]

qj

)

≥−Mj

(
xj(t) − yj(t)

)
−Nj

(

max
s∈[t−h,t]

xj(s) − max
s∈[t−h,t]

yj(s)

)

,

j = 1, n,
(6.49)

where Mj and Nj (j = 1, n) are positive constants such that

Nj < Mj ≤ 1/(2T ).

Then there exist two sequences of functions {v(k)(t)}∞0 and
{w(k)(t)}∞0 such that:

(a) The sequences are increasing and decreasing, correspondingly;

(b) The pair of functions v(k)(t), w(k)(t) is a pair of lower and upper
quasisolutions of the boundary value problem for the system of
nonlinear differential equations with “maxima”(6.33), (6.34);

(c) Both sequences uniformly converge on [−h, T ];

(d) The limits V (t) = lim
k→∞

v(k)(t), W (t) = lim
k→∞

w(k)(t) are a

pair of minimal and maximal solutions of the boundary value
problem for the system of nonlinear differential equations with
“maxima”(6.33), (6.34).

(e) If u(t) ∈ S(v,w) is a solution of the boundary value problem
for the system of nonlinear differential equations with “maxima”
(6.33), (6.34), then V (t) ≤ u(t) ≤W (t).
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Proof. Fix two arbitrary functions η, µ ∈ S(v,w) and consider the
scalar boundary value problems

x′j +Mjxj +Nj max
s∈[t−h,t]

xj(s) = σj(t, η, µ) for t ∈ [0, T ], (6.50)

xj(t) = xj(0) for t ∈ [−h, 0], (6.51)

xj(0) = xj(T ), j = 1, n, (6.52)

where

σj(t, η, µ)

= fj

(

t, ηj, [η]pj
, [µ]qj , max

s∈[t−h,t]
ηj(s),

[

max
s∈[t−h,t]

ηj(s)

]

pj

,

[

max
s∈[t−h,t]

µj(s)

]

qj

)

+Mjηj(t) +Nj max
s∈[t−h,t]

ηj(s), j = 1, n.

By Lemma 6.2.2 for any fixed j boundary value problem (6.50)–
(6.52) has a unique solution. Suppose that for a fixed couple of functions
η, µ ∈ S(v,w) there exist two distinct solutions x(t) and y(t) of the
boundary value problem (6.50)–(6.52). Define a function m(t) = x(t)−
y(t) for t ∈ [−h, T ], m(t) =

(
m1(t), m2(t), . . . , mn(t)

)
. The functions

mj(t) (j = 1, n) satisfy the inequalities

m′
j(t) = x′j(t) − y′j(t) = −Mjmj(t) −Nj

(

max
s∈[t−h,t]

xj(s) − max
s∈[t−h,t]

yj(s)

)

≤ −Mjmj(t) −Nj min
s∈[t−h,t]

mj(s) for t ∈ [0, T ],

mj(t) = mj(0) for t ∈ [−h, 0],
mj(0) = mj(T ), j = 1, n.

By Lemma 6.2.3 for t ∈ [−h, T ] the inequalities mj(t) ≤ 0 or xj(t) ≤
yj(t) ( j = 1, n ) are valid. Analogously, if we consider the function
m(t) = y(t)−x(t), we obtain that yj(t) ≤ xj(t), j = 1, n. Consequently,
xj(t) = yj(t), j = 1, n, i.e., for any fixed couple of functions η, µ ∈
S(v,w) problem (6.50)–(6.52) has a unique solution.

Define the map A : S(v,w) × S(v,w) → S(v,w) by the equality
A(η, µ) = x, where x =

(
x1, x2, . . . , xn

)
and xj(t) is the unique

solution of the boundary value problem (6.50)–(6.52) for the couple of
functions η, µ ∈ S(v,w).

We shall show that v ≤ A(v,w). Introduce the notation v(1) =
A(v,w), g = v − v(1), g =

(
g1, g2, . . . , gn

)
.
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Then the following inequalities hold

(gj(t))
′ = (vj(t))

′ − (v
(1)
j (t))′

≤ fj

(

t, vj , [v]pj
, [w]qj ,maxs∈[t−h,t] vj(s),

[

maxs∈[t−h,t] vj(s)

]

pj

,

[

maxs∈[t−h,t]wj(s)

]

qj

)

+Mjv
(1)
j +Nj maxs∈[t−h,t] v

(1)
j (s) − σj(t, v, w)

≤ −Mj

(

vj(t) − v
(1)
j (t)

)

−Nj

(

maxs∈[t−h,t] vj(s) − maxs∈[t−h,t] v
(1)
j (s)

)

≤ −Mjgj(t) −Nj mins∈[t−h,t] gj(s) for t ∈ [0, T ],

gj(t) = gj(0) for t ∈ [−h, 0],
gj(0) ≤ gj(T ), j = 1, n.

By Lemma 6.2.3 the functions gj(t), j = 1, n, are nonpositive, i.e.,
v(t) ≤ v(1)(t) for t ∈ [−h, T ]. In an analogous way, it is proved that the
inequality w ≥ A(w, v) holds.

Let η, µ ∈ S(v,w) be such that η(t) ≤ µ(t) for t ∈ [−h, T ]. From the
definition of the map A and Lemma 6.2.3 it follows that the inequality
A(η, µ) ≤ A(µ, η) is valid.

Define sequences of functions
{
v(k)(t)

}∞
0

and
{
w(k)(t)

}∞
0

by

v(0)(t) = v(t), w(0)(t) = w(t),

v(k+1) = A(v(k), w(k)), w(k+1) = A(w(k), v(k)).

The functions v(k)(t) and w(k)(t) for t ∈ [−h, T ] satisfy the inequal-
ities

v(0)(t) ≤ v(1)(t) ≤ · · · ≤ v(k)(t) ≤ · · · ≤ w(k)(t) ≤ · · · ≤ w(1)(t) ≤ w(0)(t).
(6.53)

The sequences of functions
{
v(k)(t)

}∞
0

and
{
w(k)(t)

}∞
0

are uni-
formly convergent on the interval [−h, T ]. Then there exist func-
tions v̄(t) and w̄(t) such that v̄(t) = limk→∞ v(k)(t) and w̄(t) =
limk→∞w(k)(t) for t ∈ [−h, T ]. From the definition of the functions
v(k)(t) and w(k)(t) it follows that these functions satisfy the boundary
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value problems

(v
(k)
j )′ +Mjv

(k)
j +Nj max

s∈[t−h,t]
v
(k)
j

=σj

(

t, v(k−1), w(k−1)
)

for t ∈ [0, T ],

(w
(k)
j )′ +Mjw

(k)
j +Nj max

s∈[t−h,t]
w

(k)
j

= σj

(

t, w(k−1), v(k−1)
)

for t ∈ [0, T ],

(6.54)

v
(k)
j (t) = v

(k)
j (0) w

(k)
j (t) = w

(k)
j (0) for t ∈ [−h, 0],

(6.55)

v
(k)
j (0) = v

(k)
j (T ), w

(k)
j (0) = w

(k)
j (T ).

(6.56)

We pass to the limit in equalities (6.54)–(6.56) and obtain that the
couple of functions (v̄, w̄) is a couple of quasisolutions of the bound-
ary value problem (6.33), (6.34). Let u, z ∈ S(v,w) be a couple of
quasisolutions of problem (6.33), (6.34). From inequalities (6.53) and
Definition 6.2.4 it follows that there exists an integer k ≥ 0 such that
v(k)(t) ≤ z(t) ≤ w(k)(t) and v(k)(t) ≤ u(t) ≤ w(k)(t) for t ∈ [−h, T ].
Introduce the notation g(t) = v(k+1)(t)−z(t), g =

(
g1, g2, . . . , gn

)
. Ac-

cording to the definition of the functions v(k)(t), w(k)(t) and condition
2 of Theorem 6.2.1, the function g(t) satisfies the inequalities

(gj(t))
′ ≤(v

(k+1)
j (t))′ − (zj(t))

′

≤−Mjv
(k+1)
j (t) −Nj max

s∈[t−h,t]
v
(k+1)
j (s) + σj

(

t, v(k), w(k)
)

− fj

(

t, zj(t), [z]pj
, [u]qj , max

s∈[t−h,t]
zj(s),

[

max
s∈[t−h,t]

zj(s)

]

pj

,

[

max
s∈[t−h,t]

uj(s)

]

qj

)

= −Mj

(

v
(k+1)
j (t) − v

(k)
j (t)

)

−Nj

(

max
s∈[t−h,t]

v
(k+1)
j (s) − max

s∈[t−h,t]
v
(k)
j (s)

)

+Mj

(

z
(t)
j − v

(k)
j (t)

)

+Nj

(

max
s∈[t−h,t]

zj(s) − max
s∈[t−h,t]

v
(k+1)
j (s)

)



214 Chapter 6. Asymptotic Methods

≤−Mj

(

v
(k+1)
j (t) − zj(t)

)

−Nj min
s∈[t−h,t]

(

V
(k+1)
j (s) − zj(s)

)

for t ∈ [0, T ].

By Lemma 6.2.3 the functions gj(t) for j = 1, n are nonpositive,
i.e., the inequalities v(k+1)(t) ≤ z(t) hold for t ∈ [−h, T ].

In an analogous way it is proven that the inequalities z(t) ≤
w(k+1)(t) and v(k+1)(t) ≤ u(t) ≤ w(k+1)(t) hold for t ∈ [−h, T ] which
shows that the couple of functions (v̄, w̄) is a couple of minimal and
maximal quasisolutions of the boundary value problem (6.33), (6.34).

Let u ∈ S(v,w) be a solution of the boundary value problems (6.33)
and (6.34). Consider the couple of functions (u, u) which is a couple of
quasisolutions of (6.33) and (6.34). In view of what was proven about
the functions v̄, w̄ it follows that the inequalities v̄(t) ≤ u(t) ≤ w̄(t)
hold for t ∈ [−h, T ].

This completes the proof of Theorem 6.2.1.

In the case when (6.33), (6.34) is a boundary value problem for a
scalar differential equation with “maxima”, i.e., n = 1 and p1 = q1 = 0,
as a corollary of Theorem 6.2.1 the following result is obtained:

Theorem 6.2.2. Let the following conditions be fulfilled:

1. The functions v, w ∈ C([0, T ],Rn) ∪ C1([0, T ],R) are lower and
upper quasi-solutions of the boundary value problem (6.33), (6.34)
and satisfy the conditions v(t) ≤ w(t) for t ∈ [−h, T ] and v(t) ≡
v(0), w(t) ≡ w(0) for t ∈ [−h, 0].

2. The function f ∈ C([0, T ] × R × R,R) and for x, y ∈ S(v,w),
y(t) ≤ x(t) satisfies the inequality

f

(

t, x(t), max
s∈[t−h,t]

x(s)

)

− f

(

t, y(t), max
s∈[t−h,t]

y(s)

)

> −M
(
x(t) − y(t)

)
−N

(

max
s∈[t−h,t]

x(s) − max
s∈[t−h,t]

y(s)

)

,

where M and N are positive constants such that N < M ≤
1/(2T ).

Then there exist two sequences of functions {v(k)(t)}∞0 and
{w(k)(t)}∞0 such that:
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(a) The sequences are increasing and decreasing, correspondingly;

(b) The pair of functions v(k)(t), w(k)(t) is a pair of lower and upper
quasisolutions of the boundary value problem for the system of
nonlinear differential equations with “maxima”(6.33), (6.34);

(c) Both sequences uniformly converge on [−h, T ];

(d) The limits V (t) = lim
k→∞

v(k)(t), W (t) = lim
k→∞

w(k)(t) are a

pair of minimal and maximal solutions of the boundary value
problem for the system of nonlinear differential equations with
“maxima”(6.33), (6.34).

(e) If u(t) ∈ S(v,w) is a solution of the boundary value problem
for the system of nonlinear differential equations with “maxima”
(6.33), (6.34), then V (t) ≤ u(t) ≤W (t).

6.3 Monotone-Iterative Technique for Second

Order Differential Equations

with “Maxima”

Consider the following periodic boundary value problem for the scalar
second order differential equation with “maxima”

−x′′
(t) = f

(

t, x(t), max
s∈[t−h,t]

x(s)
)

for t ∈ [0, T ], (6.57)

x(0) = x(T ), x′(0) = x′(T ), (6.58)

x(t) = x(0) for t ∈ [−h, 0], (6.59)

where x ∈ R, f : [0, T ] × R × R → R, h and T are positive constants
with T > h.

Introduce the following notation E = C([−h, T ],R) ∪C2([0, T ],R).

Let x ∈ E. Denote
∣
∣
∣
∣x
∣
∣
∣
∣
0

= maxt∈[−h,T ]

∣
∣x(t)

∣
∣,
∣
∣
∣
∣x′
∣
∣
∣
∣
0

=

maxt∈[−h,T ]

∣
∣x′(t)

∣
∣ and

∣
∣
∣
∣x
∣
∣
∣
∣
1

= max
(∣
∣
∣
∣x
∣
∣
∣
∣
0
,
∣
∣
∣
∣x′
∣
∣
∣
∣
0

)

.
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Definition 6.3.1. The function α ∈ E is a lower solution of the bound-
ary value problem (6.57), (6.58), (6.59) if the inequalities

−α′′
(t) ≤ f

(

t, α(t), max
s∈[t−h,t]

α(s)
)

for t ∈ [0, T ], (6.60)

α(0) = α(T ), α′(0) ≥ α′(T ), (6.61)

α(t) = α(0) for t ∈ [−h, 0] (6.62)

hold.

Definition 6.3.2. The function β ∈ E is an upper solution of the
boundary value problem (6.57), (6.58), (6.59) if inequalities (6.60),
(6.61) and (6.62) hold in the opposite direction.

Let the functions α, β ∈ C([−h, T ],R) be such that α(t) ≤ β(t) for
t ∈ [−h, T ]. Define the sets

S(α, β) =
{

x ∈ C([−h, T ],R) : α(t) ≤ x(t) ≤ β(t) for t ∈ [−h, T ]
}

,

Ω(α, β) =
{

(t, x, y) : t ∈ [0, T ],

α(t) ≤ x ≤ β(t), max
s∈[t−h,t]

α(s) ≤ y ≤ max
s∈[t−h,t]

β(s)
}

.

Lemma 6.3.1. [Comparison result] The function u ∈ E satisfies the
inequalities

−u′′
(t) ≤ −Mu(t) −N inf

s∈[t−h,t]
u(s) for t ∈ [0, T ], (6.63)

u(0) = u(T ), u′(0) ≥ u′(T ), (6.64)

u(t) = u(0) for t ∈ [−h, 0], (6.65)

where the constants M and N are positive and

2(M +N)T ≤ 1. (6.66)

Then u(t) ≤ 0 for t ∈ [−h, T ].

Proof. Suppose the claim is not true. Consider the following two cases:
Case 1. Let u(t) ≥ 0 for t ∈ [0, T ] and there exists a t∗ ∈ [0, T ] such

that u(t∗) > 0;
Inequality (6.63) implies that u′′(t) ≥ 0 on [0, T ]. Therefore u′(t) is

nondecreasing on [0, T ] and u′(0) ≥ u′(T ). Therefore u′(t) must be a
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constant: u′(t) ≡ c (t ∈ [0, T ]) and therefore 0 = −u′′(t∗) ≤ −Mu(t∗) <
0, a contradiction.

Case 2. Let there exist t∗, t∗ ∈ [0, T ] such that u(t∗) > 0 and
u(t∗) < 0.

Denote mint∈[0,T ] u(t) = −λ. Then λ > 0 and there exists a t∗ ∈
(0, T ) such that u(t∗) = −λ. By (6.63) we have

−u′′(t) ≤Mλ+Nλ = (M +N)λ. (6.67)

We now show that there exists a t̄ ∈ [0, T ] such that

u′( t̄ ) ≤ 0. (6.68)

In fact, if u′(t) > 0 for all t ∈ [0, T ], then u(t) is strictly increasing on
[0, T ], which contradicts u(0) = u(T ). Hence (6.68) holds.

From the mean value theorem we obtain

u′( t̄ ) − u′(0) = u′′(ξ0)t1, 0 < ξ0 < t̄. (6.69)

By (6.67) we get

u′(0) − u′( t̄ ) ≤ (M +N)λT. (6.70)

From (6.68) and (6.70) it follows that

u′(0) ≤ u′( t̄ ) + λ(M +N)T ≤ λ(M +N)T. (6.71)

We now show that

u′(t) ≤ 2λ(M +N)T for t ∈ [0, T ]. (6.72)

In fact, let t ∈ [0, T ]. Then according to the mean value theorem, we
have

u′(T ) − u′(t) = u′′(ξ1)(T − t), 0 < ξ1 < T

and so, similar to (6.70) and (6.71), we get

u′(t) ≤ u′(T ) + λ(M +N)T. (6.73)

It is clear that (6.72) follows from (6.71) and (6.73) and the fact that
u′(0) ≥ u′(T ).
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Now let t∗ ∈ [0, T ]. First assume that t∗ ≤ t∗. Apply Mean Value
Theorem and obtain

u(t∗) − u(t∗) = u′(η)(t∗ − t∗), t∗ < η < t∗. (6.74)

So, using (6.72)

u(t∗) − u(t∗) ≤ 2λT 2(M +N) (6.75)

together with u(t∗) = −λ, we get

0 < u(t∗) ≤ −λ+ 2λ(M +N)T,

which contradicts (6.66).

If t∗ > t∗, the argument is similar.

Hence, we obtain that u(t) ≤ 0 for t ∈ [0, T ].

According to (6.65), u(t) ≤ 0 holds for t ∈ [−h, T ].

Lemma 6.3.2. Let σ ∈ C([−h, T ],R), ϕ ∈ C[−h, 0] , M > 0, N > 0
be constants and u ∈ E be a solution of the linear integral equation

u(t) =

∫ T

0
G(t, r)σ1(r)dr + z(t) + ϕ(0), t ∈ [0, T ], (6.76)

u(t) =ϕ(t), t ∈ [−h, 0],

where

G(t, r) =
1

2
√
M
(
eT

√
M − 1

)

{

e
√
M(r−t) + e

√
M(T−r+t), t ≤ r,

e
√
M(t−r) + e

√
M(T−t+r), t > r,

(6.77)

σ1(t) =σ(t) −N max
s∈[t−h,t]

u(s). (6.78)

Then u(t) ∈ E is a solution of the following linear boundary value
problem

−u′′(t) = −Mu(t) −N max
s∈[t−h,t]

u(s) + σ(t) for t ∈ [0, T ],

u(0) = u(T ), u′(0) = u′(T ), u(t) = ϕ(t) for t ∈ [−h, 0].
(6.79)
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Proof. Let u ∈ E be a solution of (6.76). From t ∈ [0, T ] direct differ-
entiation of (6.76) gives

u′(t) =

∫ T

0
G

′

t(t, r)σ1(r)dr (6.80)

and

u′′(t) = M

∫ T

0
G(t, r)σ1(r)dr − σ1(t), (6.81)

where

G
′

t(t, r) =
1

2
(
eT

√
M − 1

)

{

−e
√
M(r−t) + e

√
M(T−r+t), t < r,

e
√
M(t−r) − e

√
M(T−t+r), t > r.

(6.82)

From the above equalities, we get

−u′′
(t) = −Mu(t) + σ1(t) = −Mu(t) −N max

s∈[t−h,t]
u(s) + σ(t).

Moreover, from (6.76) and (6.80), it is easy to find

u(T ) =
1

2
√
M
(
eT

√
M − 1

)

∫ T

0

(

e
√
M(T−r) + e

√
Mr
)

σ1(t)dr + ϕ(0) = u(0),

u′(T ) =
1

2
(
eT

√
M − 1

)

∫ T

0

(

e
√
M(T−r) − e

√
Mr
)

σ1(t)dr = u′(0).

Hence u(t) ∈ E is a solution of the boundary value problem (6.79).

Lemma 6.3.3. Let u ∈ E, M > 0, N > 0 be constants and the
following equations hold

β1 =TG0N < 1, (6.83)

β2 =
1

2
TN, (6.84)

where G0 will be defined below.
Then equation (6.76) has a unique solution u(t) ∈ E.

Proof. Define an operator F in E by

(
Fu
)
(t) =

∫ T

0
G(t, r)σ1(r)dr + ϕ(0), t ∈ [0, T ],

(
Fu
)
(t) = ϕ(t), t ∈ [−h, 0],

(6.85)
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where G(t, r) and σ1(t) are defined by (6.77) and (6.78). We have

(
Fu
)′

(t) =

∫ T

0
G

′

t(t, r)σ1(r)dr for t ∈ [0, T ]. (6.86)

From (6.77) and (6.82), we have

max
t,r∈[0,T ]

G(t, r) =
1 + eT

√
M

2
√
M
(
eT

√
M − 1

) = G0, (6.87)

max
t,r∈[0,T ]

G
′

t(t, r) =
1

2
, t 6= r. (6.88)

For any u, v ∈ E, (6.85) and (6.87) imply that
∣
∣
∣

∣
∣
∣

(
Fu
)
(t) −

(
Fv
)
(t)
∣
∣
∣

∣
∣
∣
0

≤ TG0N
∣
∣
∣
∣u− v

∣
∣
∣
∣
0

≤ TG0N
∣
∣
∣
∣u− v

∣
∣
∣
∣
1
≤ β1

∣
∣
∣
∣u− v

∣
∣
∣
∣
1
.

Similarly, from (6.86) and (6.88), we have
∣
∣
∣

∣
∣
∣

(
Fu
)′

(t) −
(
Fv
)′

(t)
∣
∣
∣

∣
∣
∣
0
≤ β2

∣
∣
∣
∣u− v

∣
∣
∣
∣
1
.

Hence
∣
∣
∣

∣
∣
∣

(
Fu
)
(t) −

(
Fv
)
(t)
∣
∣
∣

∣
∣
∣
1
≤ β

∣
∣
∣
∣u− v

∣
∣
∣
∣
1

for any u, v ∈ E,

where β = max
{
β1, β2

}
< 1. The Banach fixed point theorem implies

that F has a unique fixed point in E and the lemma is proved.

We now give a procedure for constructing two sequences of functions
that are respectively monotone-increasing and monotone-decreasing
which converge to the extremal solutions of the boundary value prob-
lem (6.57), (6.58), (6.59).

Theorem 6.3.1. Let the following conditions be fulfilled:

1. The functions α, β ∈ E are lower and upper solutions, respec-
tively, of the boundary value problem (6.57), (6.58), (6.59) such
that α(t) ≤ β(t) for t ∈ [−h, T ];

2. The function f ∈ C([0, T ] × R × R,R) and for (t, x1, y1),
(t, x2, y2) ∈ Ω(α, β), x1 ≥ x2, y1 ≥ y2, the inequality
f(t, x1, y1) − f(t, x2, y2) ≥ −M(x1 − x2) −N(y1 − y2) holds;
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3. Inequalities (6.66), (6.83) and (6.84) hold.

Then there exist two sequences of functions {αk(t)}∞0 and {βk(t)}∞0
such that:

(a) The sequences are increasing and decreasing, correspondingly;

(b) The pair of functions αk(t), βk(t) is a pair of lower and up-
per quasisolutions of the boundary value problem for the system
of nonlinear differential equations with “maxima”(6.57), (6.58),
(6.59);

(c) Both sequences uniformly converge on [−h, T ];

(d) The limits V (t) = lim
k→∞

αk(t), W (t) = lim
k→∞

βk(t) are a pair

of minimal and maximal solutions of the boundary value prob-
lem for the system of nonlinear differential equations with
“maxima”(6.57), (6.58), (6.59).

(e) If u(t) ∈ S(α, β) is a solution of the boundary value problem
for the system of nonlinear differential equations with “maxima”
(6.57), (6.58), (6.59), then V (t) ≤ u(t) ≤W (t).

Proof. Fix a function η ∈ S(α, β) and consider the following bound-
ary value problem for the linear impulsive differential equation with
“maxima”

−u′′
(t) = −Mu(t) −N max

s∈[t−h,t]
u(s) + σ(t, η) for t ∈ [0, T ], (6.89)

u(t) = u(0) for t ∈ [−h, 0], (6.90)

u(0) = u(T ), (6.91)

where σ(t, η) = f
(

t, η(t), maxs∈[t−h,t] η(s)
)

+Mη(t)+N maxs∈[t−h,t] η(s).

By Lemma 6.3.2 and Lemma 6.3.3, the boundary value problem
(6.89), (6.90), (6.91) has a solution x ∈ E which is the unique solution
of equation (6.76) in C([−h, T ],R)∩C1([0, T ],R). We define a map W
by the equality W (η) = x. Let η, µ ∈ S(α, β) such that η(t) ≤ µ(t)
and x = W (η), y = W (µ). Consider the function v(t) = x(t) − y(t).
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The function v(t) satisfies the inequalities

− v
′′
(t) = −Mv(t) −N

{

max
s∈[t−h,t]

x(s) − max
s∈[t−h,t]

y(s)
}

+f
(

t, η(t), max
s∈[t−h,t]

η(s)
)

−f
(

t, µ(t), max
s∈[t−h,t]

µ(s)
)

+M
(
η(t) − µ(t)

)

+N
{

max
s∈[t−h,t]

η(s) − max
s∈[t−h,t]

µ(s)
}

≤ −Mv(t) −N inf
s∈[t−h,t]

v(s) for t ∈ [0, T ],

v(0) = v(T ), v′(0) = v′(T ), v(t) = v(0) for t ∈ [−h, 0].

According to Lemma 6.3.1, the function v(t) is nonpositive, i.e.,
x(t) ≤ y(t) and the map W is nondecreasing.

Now starting with α0 = α, β0 = β, we can recursively define two
sequences

{
αk
}

and
{
βk
}

by the equalities

αm = W (αm−1), βm = W (βm−1), m ≥ 1.

From the relationships above, we see that the inequalities

α0(t) ≤ α1(t) ≤ · · · ≤ αm(t) ≤ βm(t) ≤ · · · ≤ β0(t), t ∈ [−h, T ]

hold.
By the standard arguments, we can see that the sequences

{
αk
}

and
{
βk
}

are uniformly bounded and completely continuous. Therefore the
sequences are uniformly convergent in [−h, T ].

Let α∗(t) = limm→∞ αm(t) and β∗(t) = limm→∞ βm(t), we see that
the functions α∗(t) and β∗(t) are the solutions of the boundary value
problem (6.57), (6.58), (6.59), α∗(t) ≤ β∗(t) and α∗(t), β∗(t) ∈ S(α, β).

Let x ∈ S(α, β) solve the boundary value problem (6.57), (6.58),
(6.59). Now consider the function w(t) = α∗(t) − x(t). The function
w(t) satisfies the conditions of Lemma 6.3.1 and therefore we have
w(t) ≤ 0 for t ∈ [−h, T ]. Using Lemma 6.3.1 again, we conclude that
α∗(t) ≤ x(t). These inequalities imply that the solutions α∗(t) and β∗(t)
are the minimal and maximal solutions of the boundary value problem
(6.57), (6.58), (6.59), respectively, in S(α, β). The proof is complete.
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6.4 Method of Quasilinearization for Initial

Value Problems

The method of quasilinearization is a practically useful method for ob-
taining approximate solutions of nonlinear problems. The origin of this
method lies in the theory of dynamic programming [Bellman and Kal-
aba 1965]. The quasilinearization method is a Taylor series numerical
method in which the truncation is chosen so that the convergence of
the iterates is quadratic. Many authors have applied this method to
finding approximate solutions of various types of first and second order
ordinary differential equations (see the monograph [Lakshmikantham
and Vatsala 1998] and references cited therein).

In this section an application of the method of quasilinearization
to the initial value problem for a first order scalar differential equation
with “maxima” is presented.

Consider the following initial value problem for the nonlinear dif-
ferential equation with “maxima” (IVP)

x′ = f(t, x(t), max
s∈[t−h,t]

x(s)) for t ≥ 0, (6.92)

x(t) = ϕ(t) for t ∈ [−h, 0], (6.93)

where x ∈ R, f : [0, T ] × R × R → R, ϕ(t) : [−h, 0] → R, h > 0, T > 0
are fixed constants.

Definition 6.4.1. The function α ∈ C([−h, T ],R) ∪ C1([0, T ],R) is
called a lower solution of the IVP (6.92), (6.93), if the following in-
equalities are satisfied:

α′(t) ≤ f(t, α(t), max
s∈[t−h,t]

α(s)) for t ≥ 0,

α(t) ≤ ϕ(t) for t ∈ [−h, 0].
(6.94)

Definition 6.4.2. The function α ∈ C([−h, T ],R) ∪ C1([0, T ],R) is
called an upper solution of the IVP (6.92), (6.93), if the following in-
equalities are satisfied:

α′(t) ≥ f(t, α(t), max
s∈[t−h,t]

α(s)) for t ≥ 0,

α(t) ≥ ϕ(t) for t ∈ [−h, 0].
(6.95)
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Let the functions α, β ∈ C([−h, T ],R) be such that α(t) ≤ β(t).

Consider the sets:

S(α, β) = {u ∈ C([−h, T ],R) : α(t) ≤ u(t) ≤ β(t) for t ∈ [−h, T ]},
Ω(α, β) = {(t, x) ∈ [−h, T ] × R : α(t) ≤ x ≤ β(t)}.

We will prove a comparison result for the lower and upper solutions
of IVP (6.92), (6.93).

Theorem 6.4.1. Let the following conditions be fulfilled:

1. The functions α, β ∈ C([−h, T ],R) ∪ C1([0, T ],R) are lower and
upper solutions of the IVP (6.92), (6.93), correspondingly.

2. The function f ∈ C([0, T ] × R
2,R is nondecreasing in its last

argument and for any x ≥ y, u ≥ v and t ∈ [0, T ] the inequality

f(t, x, u) − f(t, y, v) ≤M(x− y) +N(u− v)

holds, where M,N > 0 are constants.

Then α(t) ≤ β(t) for t ∈ [0, T ].

Proof. Consider the following three cases:

Case 1. Let both inequalities (6.94) be strict. Assume the claim
of Theorem 6.4.1 is not true. We will prove α(t) < β(t) on [0, T ]. If
not, there exists a point t0 such that α(t) < β(t) on [−h, t0), α(t0) =
β(t0) and α′(t0 − 0) ≥ β(t0 − 0). Then from condition 2 follows that
f(t, α(t0),maxs∈[t0−h,t0] α(s)) ≤ f(t, α(t0),maxs∈[t0−h,t0] β(s)) and we
obtain the following contradiction:

f(t, α(t0), max
s∈[t0−h,t0]

α(s)) > α′(t0) ≥ β′(t0) ≥ f(t, β(t0), max
s∈[t0−h,t0]

β(s))

= f(t, α(t0), max
s∈[t0−h,t0]

β(s)).

Case 2. Let both inequalities (6.95) be strict. As in Case 1 we obtain
a contradiction.

Case 3. Let there exist a point such that at least one of the inequali-
ties (6.94) and (6.95) is not strict. Choose a small enough number ǫ > 0
and define a function w(t) = β(t) + ǫe2(M+N)t. Then w(t) > ϕ(t) on
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[−h, 0], maxs∈[t−h,t]w(s) ≤ maxs∈[t−h,t] β(s) + ǫe2(M+N)t and

w′(t) ≥ f(t, β, max
s∈[t−h,t]

β(s)) + 2(M +N)ǫe2(M+N)t

= f(t, w(t), max
s∈[t−h,t]

w(s)) + 2(M +N)ǫe2(M+N)t

−
(

f(t, w(t), max
s∈[t−h,t]

w(s)) − f(t, β(t), max
s∈[t−h,t]

β(s))
)

≥ f(t, w(t), max
s∈[t−h,t]

w(s)) + 2(M +N)ǫe2(M+N)t

−
(

M +N
)

ǫe2(M+N)t

> f(t, w(t), max
s∈[t−h,t]

w(s)), t ∈ [0, T ].

According to Case 2, the inequality α(t) < w(t) holds for t ∈ [0, T ].
Taking a limit as ǫ approaches 0 we prove the claim of Theorem 6.4.1.

In our further investigations we will use some results for differential
inequalities with “maxima.” In the case of a nonnegative coefficient
before the maximum function the following result is true:

Lemma 6.4.1. [Comparison result] Let the following conditions be ful-
filled:

1. The functions g1 ∈ C([0, T ],R), g2 ∈ C([0, T ],R+) and g2 6≡ 0
for t ∈ [0, T ].

2. The inequality

(M +N)T < 1, (6.96)

holds, where M = max{|g1(t)| : t ∈ [0, T ]} > 0, N = max{g2(t) :
t ∈ [0, T ]} > 0.

3. The function u ∈ C([−h, T ],R) ∪ C1([0, T ],R) satisfies the in-
equalities

u′ ≤ g1(t)u(t) + g2(t) max
s∈[t−h,t]

u(s) for t ≥ 0 (6.97)

u(t) ≤ 0 for t ∈ [−h, 0]. (6.98)

Then the function u(t) is nonpositive on the interval [0, T ].
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Proof. Assume the claim of Lemma 6.4.1 is not true.

Denote λ = maxt∈[0,T ]) u(t), λ > 0.

Then there exist points ξ, η ∈ (0, T ] such that ξ > η, u(η) = 0,
u(ξ) = λ > 0, 0 < u(t) ≤ u(ξ) for t ∈ (η, ξ].

Therefore there exists a point τ ∈ (η, ξ) such that

λ = u(ξ) − u(η) = u′(τ)(ξ − η) (6.99)

According to (6.99) u′(τ) > 0 and λT ≤ u′(τ)T . From (6.97) and
the inequality maxs∈[τ−h,τ ] u(s) ≤ λ it follows that

λ ≤ u′(τ)T ≤ g1(τ)u(τ)T+g2(τ)T max
s∈[τ−h,τ ]

u(s) ≤Mu(τ)T+g2(τ)λT

≤ (M +N)λT. (6.100)

The inequality (6.100) contradicts the inequality (6.96).

We will apply the method of quasilinearization for approximate
finding of a solution of the initial value problem for a nonlinear differ-
ential equation with “maxima.” We will prove the convergence of the
sequence of successive approximations is quadratic.

Theorem 6.4.2. Let the following conditions be fulfilled:

1. The functions α0(t), β0(t) ∈ C([−h, T ],R) ∪ C1([0, T ],R) are
lower and upper solutions of the IVP (6.92), (6.93), and α0(t) ≤
β0(t) for t ∈ [0, T ].

2. The function ϕ ∈ C([−h, 0],R).

3. There exist functions F, g ∈ C0,2,2(Ω(α0, β0),R) such that

F (t, x, y) = f(t, x, y) + g(t, x, y)

and

Fxx(t, x, y) ≥ 0, Fxy(t, x, y) ≥ 0, Fyy(t, x, y) ≥ 0,

gxx(t, x, y) ≥ 0, gxy(t, x, y) ≥ 0, gyy(t, x, y) ≥ 0,

Fy(t, α0(t), max
s∈[t−h,t]

α0(s)) ≥ gy(t, β0(t), max
s∈[t−h,t]

β0(s)),
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(M +N)T ≤ 1,

where

M = max{|Fx(t, α0(t), max
s∈[t−h,t]

(α0(s))) − gx(t, β0(t),

max
s∈[t−h,t]

(β0(s)))|, t ∈ [0, T ]},

N = max{Fy(t, β0(t), max
s∈[t−h,t]

β0(s)) − gy(t, α0(t),

max
s∈[t−h,t]

α0(s)), t ∈ [0, T ]}.

Then there exist two sequences of functions {αn(t)}∞0 and {βn(t)}∞0
such that:

a. The sequences are increasing and decreasing, correspondingly;

b. Both sequences uniformly converge in the interval [0, T ] and the
limits are equal to the unique solution x(t) of the IVP (6.92), (6.93) in
S(α0, β0);

c. The convergence is quadratic, i.e., ‖x− αn+1‖ ≤ λ1‖x− αn‖2 +
µ1‖x − βn‖2 and ‖x − βn+1‖ ≤ λ2‖x − αn‖2 + µ2‖x − βn‖2, where
‖u‖ = maxs∈[−h,T ] |u(s)| for any function u ∈ C([−h, T ],R).

Proof. From the condition 3 of Theorem 6.4.2 it follows that for
(t, x1, y1), (t, x2, y2) ∈ Ω(α0, β0) and x1 ≥ x2, y1 ≥ y2 the inequali-
ties

f(t, x1, y1) ≥ f(t, x2, y2) + Fx(t, x2, y2)(x1 − x2) + Fy(t, x2, y2)(y1 − y2)

+ g(t, x2, y2) − g(t, x1, y1),

(6.101)

f(t, x2, y2) ≤ f(t, x1, y1) + Fx(t, x2, y2)(x2 − x1) + Fy(t, x2, y2)(y2 − y1)

+ g(t, x1, y1) − g(t, x2, y2).

(6.102)

hold.

Let L0 = mins∈[−h,0]
(
ϕ(s)−α0(s)

)
≥ 0. Choose a number k0 ∈ [0, 1)

such that

k0 ≤ L0. (6.103)
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We consider the linear differential equation with “maxima”

x′(t) = f(t, α0(t), max
s∈[t−h,t]

(α0(s))) +Q0(t)(x(t) − α0(t))

+ q0(t)( max
s∈[t−h,t]

(x(s)) − max
s∈[t−h,t]

(α0(s))) for t ∈ [0, T ],

(6.104)

with initial condition

x(t) = ϕ(t) − k0L0 for t ∈ [−h, 0], (6.105)

where

Q0(t) = Fx(t, α0(t), max
s∈[t−h,t]

(α0(s))) − gx(t, β0(t), max
s∈[t−h,t]

(β0(s))),

q0(t) = Fy(t, α0(t), max
s∈[t−h,t]

(α0(s))) − gy(t, β0(t), max
s∈[t−h,t]

(β0(s))) ≥ 0.

According to the results in Section 3.2 the IVP (6.104),(6.105) has
a unique solution α1(t) on [−h, 0].

We will prove that α1(t) ∈ S(α0, β0).
Consider the function u(t) = α0(t) − α1(t), t ∈ [−h, T ]. From the

initial condition (6.105) and condition 1 of Theorem 6.4.2 the inequality
α1(t) = ϕ(t) − k0L0 ≥ α0(t) holds, i.e., u(t) ≤ 0 on [−h, 0].

Let t ∈ [0, T ]. Then the inequalities

max
s∈[t−h,t]

α0(s) − max
s∈[t−h,t]

α1(s) = α0(ξ) − max
s∈[t−h,t]

α1(s)

≤ α0(ξ) − α1(ξ) ≤ max
s∈[t−h,t]

(
α0(s) − α1(s)

)
= max

s∈[t−h,t]
u(s)

hold and since q0(t) ≥ 0 we get

u′(t) ≤ Q0(t)u(t) + q0(t) max
s∈[t−h,t]

u(s), t ∈ [0, T ].

According to Lemma 6.4.1 the inequality α0(t) ≤ α1(t) holds on [0, T ].
We will prove that α1(t) ≤ β0(t). Consider the function u(t) =

α1(t) − β0(t), t ∈ [−h, T ].
For t ∈ [−h, 0] according to condition 1 of Theorem 6.4.2 we obtain

α1(t) = ϕ(t) − k0L0 ≤ ϕ(t) ≤ β0(t), i.e., u(t) ≤ 0.
According to the definition of the functions α1 and β0, the inequality

(6.102) and the inequality

max
s∈[t−h,t]

α1(s) − max
s∈[t−h,t]

β0(s) ≤ max
s∈[t−h,t]

(
α1(s) − β0(s)

)
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we get

u′(t) ≤ f(t, α0(t), max
s∈[t−h,t]

α0(s)) +Q0(t)(α1(t) − α0(t))

+ q0(t)( max
s∈[t−h,t]

α1(s) − max
s∈[t−h,t]

α0(s)) − f(t, β0(t), max
s∈[t−h,t]

β0(s))

≤ Q0(t)u(t) + q0(t) max
s∈[t−h,t]

u(s).

(6.106)

According to Lemma 6.4.1 we obtain that u(t) ≤ 0, i.e., the in-
equality α1(t) ≤ β0(t) holds on [0, T ].

Let C0 = mins∈[−h,0]
(
β0(s)−ϕ(s)

)
≥ 0. Choose a number p0 ∈ [0, 1)

such that
p0 ≤ C0. (6.107)

We consider the linear differential equation with “maxima”

x′(t) =f(t, β0(t), max
s∈[t−h,t]

β0(s)) +Q0(t)(x(t) − β0(t))

+ q0(t)( max
s∈[t−h,t]

x(s) − max
s∈[t−h,t]

β0(s)) for t ∈ [0, T ] (6.108)

with initial condition

x(t) = ϕ(t) + p0C0 for t ∈ [−h, 0]. (6.109)

There exists a unique solution β1(t) of the IVP (6.108), (6.109).
The inclusion β1(t) ∈ S(α0, β0) is valid.

We will prove that α1(t) ≤ β1(t) for t ∈ [−h, T ].
Define the function u(t) = α1(t) − β1(t) for t ∈ [−h, T ]. From the

initial conditions (6.105) and (6.109) and condition 1 of Theorem 6.4.2
the inequality α1(t) = ϕ(t) − k0L0 ≤ ϕ(t) ≤ β1(t) holds, i.e., u(t) ≤ 0
on [−h, 0].

From the choice of the functions α1(t) and β1(t) and the inequality
(6.102) we obtain that the function u(t) satisfies the inequalities

u′ = f(t, α0(t), max
s∈[t−h,t]

α0(s)) − f(t, β0(t), max
s∈[t−h,t]

β0(s)) +Q0(t)u(t)

+Q0(t)(β0(t) − α0(t)) + q0(t)( max
s∈[t−h,t]

α1(s) − max
s∈[t−h,t]

β1(s))

+ q0(t)( max
s∈[t−h,t]

β0(s) − max
s∈[t−h,t]

α0(s))

≤ Q0(t)u(t) + q0(t) max
s∈[t−h,t]

u(s) for t ∈ [0, T ].

(6.110)
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According to the Lemma 6.4.1 and inequality (6.110) it follows that
the inequality u(t) ≤ 0, t ∈ [0, T ] holds, i.e., α1(t) ≤ β1(t).

Similarly, step by step, we can construct two sequences of func-
tions {αn(t)}∞0 and {βn(t)}∞0 . Assume the functions αn(t) and βn(t)
are constructed and let Ln = mins∈[−h,0]

(
ϕ(s) − αn(s)

)
, Cn =

mins∈[−h,0]
(
βn(s) − ϕ(s)

)
. Choose numbers kn, pn ∈ [0, 1) such that

kn ≤ Ln and pn ≤ Cn. (6.111)

Then the function αn+1(t) is the unique solution of the initial value
problem for the linear differential equation with “maxima”

x′ = f(t, αn(t), max
s∈[t−h,t]

αn(s)) +Qn(t)(x− αn(t))

+ qn(t)( max
s∈[t−h,t]

x(s) − max
s∈[t−h,t]

αn(s)) for t ∈ [0, T ],
(6.112)

x(t) = ϕ(t) − knLn for t ∈ [−h, 0], (6.113)

and the function βn+1(t) is the unique solution of the initial value
problem

x′(t) = f(t, βn(t), max
s∈[t−h,t]

βn(s)) +Qn(t)(x− βn(t))

+ qn(t)( max
s∈[t−h,t]

x(s) − max
s∈[t−h,t]

βn(s)) for t ∈ [0, T ],
(6.114)

x(t) = ϕ(t) + pnCn for t ∈ [−h, 0], (6.115)

where

Qn(t) = Fx(t, αn(t), max
s∈[t−h,t]

αn(s)) − gx(t, βn(t), max
s∈[t−h,t]

βn(s)),

qn(t) = Fy(t, αn(t), max
s∈[t−h,t]

αn(s)) − gy(t, βn(t),

max
s∈[t−h,t]

βn(s)) ≥ q0(t) ≥ 0.

Analogously as in the case n = 0 it can be proved that the functions
αn(t) and βn(t) are lower and upper solutions of the IVP (6.92),(6.93),
inclusion αn, βn ∈ S(αn−1, βn−1) is valid and the inequalities

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ βn(t) ≤ · · · ≤ β0(t), t ∈ [−h, T ] (6.116)

hold.
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Therefore both sequences {αn(t)}∞0 and {βn(t)}∞0 are uniformly
convergent on [−h, T ].

Denote

limn→∞αn(t) = x(t), limn→∞βn(t) = x̃(t).

From the uniform convergence and the definition of the functions
αn(t) and βn(t) it follows the validity of the inequalities

α0(t) ≤ x(t) ≤ x̃(t) ≤ β0(t). (6.117)

From equations (6.112), (6.114) as n approaches infinity we obtain that
the functions u(t) and v(t) are solutions of the IVP (6.92), (6.93).
According to the conditions of Theorem 6.4.2 the IVP (6.92), (6.93)
has a unique solution on S(α, β), i.e., x(t) = x̃(t).

We will prove the convergence is quadratic.

Define the functions an+1(t) = x(t) − αn+1(t) and bn+1(t) =
βn+1(t) − x(t), t ∈ [−h, T ]. Both functions are nonnegative.

From the choice of the constants kn it follows the validity of the
inequalities

x(t) − αn+1(t) = knLn ≤ (Ln)
2 =

(

min
s∈[−h,0]

(ϕ(s) − αn(s))
)2

=
(

min
s∈[−h,0]

(x(s) − αn(s))
)2

≤ ‖x− αn‖2
0

for any t ∈ [−h, 0], i.e.,

‖x− αn+1‖0 ≤ ‖x− αn‖2
0. (6.118)

For t ∈ [0, T ] we obtain the inequalities

a′n+1 ≤Qn(t)an+1(t) + qn(t) max
s∈[t−h,t]

an+1(s)

+ [Fx(t, x(t), max
s∈[t−h,t]

x(s)) − gx(t, αn(t), max
s∈[t−h,t]

αn(s)))

−Qn(t)]an(t)

+ [Fy(t, x(t), max
s∈[t−h,t]

x(s))) − gy(t, αn(t), max
s∈[t−h,t]

αn(s))

− qn(t)]an(tk)
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=Qn(t)an+1(t) + qn(t) max
s∈[t−h,t]

an+1(s) + Fxx(t, ξ1, ξ2)a
2
n(t)

+ Fxy(t, ξ1, ξ2)an(t)( max
s∈[t−h,t]

x(s) − max
s∈[t−h,t]

αn(s))

+ gxx(t, η1, η2)an(t)(βn(t) − αn(t))

+ gxy(t, η1, η2)an(t)( max
s∈[t−h,t]

βn(s) − max
s∈[t−h,t]

αn(s))

+ Fxy(t, ξ3, ξ4)( max
s∈[t−h,t]

x(s)) − max
s∈[t−h,t]

αn(s))an(t)

+ Fyy(t, ξ3, ξ4)( max
s∈[t−h,t]

x(s)) − max
s∈[t−h,t]

αn(s))
2

+ gyy(t, η3, η4)( max
s∈[t−h,t]

x(s)

− max
s∈[t−h,t]

αn(s))( max
s∈[t−h,t]

βn(s)

− max
s∈[t−h,t]

αn(s))

+ gxy(t, η3, η4)( max
s∈[t−h,t]

x(s))

− max
s∈[t−h,t]

αn(s))(βn(t) − αn(t)), (6.119)

where u(t) ≤ ξi ≤ αn(t), maxs∈[t−h,t] x(s) ≤ ξl ≤ maxs∈[t−h,t] αn(s),
αn(t) ≤ ηi ≤ βn(t), maxs∈[t−h,t] αn(s) ≤ ηl ≤ maxs∈[t−h,t] βn(s), i =
1, 3, l = 2, 4.

It is easy to verify that the inequalities

an(t)(βn(t) − αn(t)) = an(bn + an) ≤
1

2
b2n(t) +

3

2
a2
n(t),

an(t)( max
s∈[t−h,t]

βn(s) − max
s∈[t−h,t]

αn(s)) ≤
1

2
‖bn‖2 +

3

2
‖an‖2,

max
s∈[t−h,t]

a(s)(βn(t) − αn(t)) ≤
1

2
‖bn‖2 +

3

2
‖an‖2,

max
s∈[t−h,t]

an(s)( max
s∈[t−h,t]

βn(s) − max
s∈[t−h,t]

αn(s)) ≤
1

2
‖bn‖2 +

3

2
‖an‖2

(6.120)

where ‖a‖ = max{|a(t)| : t ∈ [0, T ]}.
From inequalities (6.119) and (6.120) and qn(t) ≤ 0 it follows that

for t ∈ [0, T ] the inequalities

a′n+1(t) ≤ Qn(t)an+1(t) + qn(t) max
s∈[t−h,t]

an+1(s) + σn(t) (6.121)
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hold, where

σn(t) =[Fxx(t, ξ1, ξ2) +
3

2
gxx(t, η1, η2) +

3

2
gxy(t, η1, η2)

+ Fxy(t, ξ1, ξ2) + Fxy(t, ξ3, ξ4) +
3

2
gxy(t, η3, η4)

+
3

2
gyy(t, η3, η4) + Fyy(t, ξ3, ξ4)]‖an‖2

+
1

2
[gxx(t, η1, η2) + gxy(t, η1, η2) + gxy(t, η3, η4)

+ gyy(t, η3, η4)]‖bn‖2.

(6.122)

From inequalities (6.121) and (6.118) we obtain

an+1(t) ≤an+1(0) +

∫ t

0
Qn(s)an+1(s)ds+

∫ t

0
qn(s) max

ξ∈[s−h,s]
an+1(ξ)ds

+

∫ t

0
σn(s)ds

≤Bn(t) +

∫ t

0
Qn(s)an+1(s)ds

+

∫ t

0
qn(s) max

ξ∈[s−h,s]
an+1(ξ)ds for t ∈ [0, T ],

an+1(t) ≤‖u− αn‖2
0 for t ∈ [−h, 0],

(6.123)

where Bn(t) = ‖u− αn‖2
0 +

∫ t
0 σn(s)ds.

According to Corollary 2.1.2 from inequality (6.123) we get for t ∈
[0, T ) the inequality

an+1(t) ≤ Bn(t) exp

(∫ t

0

[

Qn(s) + qn(s)

]

ds

)

. (6.124)

From the properties of the functions F (t, x, y) and g(t, x, y), the def-
inition
(6.122) of the σ(t) and inequality (6.124) it follows that there exist
constants λ1 > 0 and λ2 > 0 such that

‖an+1‖ ≤ λ1‖an‖2 + λ2‖bn‖2. (6.125)

Analogously it can be proven that there exist constants µ1 > 0 and
µ2 > 0 such that

‖bn+1‖ ≤ µ1‖bn‖2 + µ2‖an‖2. (6.126)
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The inequalities (6.125) and (6.126) prove that the convergence is
quadratic.

Remark 6.4.1. Sometimes it is difficult to find both lower and upper
solutions of the given problem. Then we utilize the solution x(t) as
missing lower or upper solution and obtain only one monotone sequence
approaching the solution x(t).

Now we will illustrate the application of the method of quasilin-
earization to a nonlinear scalar differential equation with “maxima.”

Example 6.4.1. Consider the following scalar nonlinear differential
equation with “maxima”

x′ =
1

1 − x(t)
+

1

1 − maxs∈[t−0.5,t] x(s)
−2, for t ∈ [0, 0.32], (6.127)

with initial condition

x(t) = 0, t ∈ [h, 0], (6.128)

where x ∈ R, h ∈ (0, 0.32) is a fixed constant.

It is easy to check that the initial value problem (6.127), (6.128)
has zero solution.

In this case F (t, x, y) ≡ f(t, x, y) ≡ 1
1−x + 1

1−y −2 and g(t, x, y) ≡ 0.

It is easy to check that f ′x(t, x, y) = 1
(1−x)2 and f ′y(t, x, y) = 1

(1−y)2 , the

function β0(t) ≡ 1
4 is an upper solution of (6.127), (6.128), M = 1, N =

16
9 and the conditions of Theorem 6.4.2 are satisfied for α0(t) ≡ 0. We
will construct a decreasing sequence of functions that is quadratically
convergent to 0.

Choose p0 = 1
4 and consider the initial value problem

x′ =
1

1 − 1
4

+
1

1 − 1
4

− 2 +
( 1

(1 − 1
4)2

)

(x− 1

4
)

+
( 1

(1 − 1
4)2

)(

max
s∈[t−h,t]

x(s) − 1

4

)

= − 2

9
+

16

9
x+

16

9
max

s∈[t−h,t]
x(s), (6.129)

x(t) =
1

16
, t ∈ [−h, 0].
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The function β1(t) ≡ 1
16 is a solution of the initial value problem

(6.129).

Choose p1 = 1
16 and consider the initial value problem

x′ =
1

1 − 1
16

+
1

1 − 1
16

− 2 +
( 1

(1 − 1
16 )2

)

(x− 1

16
)

+
( 1

(1 − 1
16)2

)

( max
s∈[t−h,t]

x(s) − 1

16

)

= − 2

225
+

256

225
x+

256

225
max

s∈[t−h,t]
x(s), (6.130)

x(t) =
1

162
, t ∈ [−h, 0].

The function β2(t) ≡ 1
256 is a solution of the initial value problem

(6.130).

The sequence of successive approximations { 1
22k }∞k=1 is decreasing,

it approaches zero, and the convergence is quadratical. The zero limit
is the exact solution of the initial value problem (6.127), (6.128).

6.5 Method of Quasilinearization for Periodic

Boundary Value Problems

Consider the following boundary value problem (PBVP) for the non-
linear differential equation with “maxima” (6.92) with boundary con-
ditions

x(0) = x(T ), x(t) = x(0) for t ∈ [−h, 0], (6.131)

where x ∈ R, f : [0, T ] × R × R → R, h > 0 is a fixed constant.

Definition 6.5.1. The function α(t) ∈ C([−h, T ],R)∪C1([0, T ],R) is
called a lower solution of the PBVP (6.92), (6.131), if the following
inequalities are satisfied:

α′(t) ≤ f(t, α(t), max
s∈[t−h,t]

α(s)) for t ≥ 0,

α(0) ≤ α(T ) α(t) = α(0) for t ∈ [−h, 0].

Definition 6.5.2. The function α(t) ∈ C([−h, T ],R)∪C1([0, T ],R) is
called a lower solution of the PBVP (6.92), (6.131), if the following
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inequalities are satisfied:

α′(t) ≥ f(t, α(t), max
s∈[t−h,t]

α(s)) for t ≥ 0,

α(0) ≥ α(T ) α(t) = α(0) for t ∈ [−h, 0].

Let the functions α, β ∈ C([−h, T ],R) be such that α(t) ≤ β(t).
Consider the sets:

S(α, β) ={u ∈ C([−h, T ],R) : α(t) ≤ u(t) ≤ β(t) for t ∈ [−h, T ]},
Ω(α, β) ={(t, x) ∈ [−h, T ] × R : α(t) ≤ x ≤ β(t)}.

Lemma 6.5.1. [Comparison result] Let the following conditions be ful-
filled:

1. The functions g1 ∈ C([0, T ], (−∞, 0]), g2 ∈ C([0, T ],R+) and
g1(t) ≤ −g2(t) for t ∈ [0, T ].

2. The inequality
(M +N)T < 1, (6.132)

holds, where M = max{|g1(t)| : t ∈ [0, T ]} > 0, N = max{g2(t) :
t ∈ [0, T ]} > 0.

3. The function u ∈ C([−h, 0],R) ∪ C1([0, T ],R) satisfies the in-
equalities

u′ ≤ g1(t)u(t) + g2(t) max
s∈[t−h,t]

u(s) for t ≥ 0,

u(t) ≤ u(0) for t ∈ [−h, 0], u(0) ≤ u(T ). (6.133)

Then the function u(t) is nonpositive on the interval [0, T ].

Proof. We consider the following two cases:
Case 1. Let u(0) ≤ 0. Then according to Lemma 6.4.1 it follows the

validity of the inequality u(t) ≤ 0 for t ∈ [0, T ].
Case 2. Let u(0) > 0. Then u(T ) > 0. Let u(µ) = maxt∈[0,T ]u(t) =

A > 0, where µ ∈ [0, T ].
Case 2.1. Let µ > 0.
Case 2.1.1. Let there exist a point t1 ∈ (0, µ) such that u(t1) < 0.

Then there exists a point η ∈ (0, µ) such that u(η) = 0.
Therefore, there exists a point ζ ∈ (η, µ) such that

A = u(µ) − u(η) = u′(ζ)(µ− η). (6.134)
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From equality (6.134) it follows that u′(ζ) > 0 and u′(ζ)(µ − η) ≤
u′(ζ)T , i.e.,

A ≤ u′(ζ)T. (6.135)

From inequalities (6.133) and (6.135) we obtain

A ≤ u′(ζ)T ≤ g1(ζ)u(ζ)T + g2(ζ) max
s∈[ζ−h,ζ]

u(s)T ≤ (M +N)AT.

(6.136)
Inequality (6.136) contradicts (6.132).

Case 2.1.2. Let u(t) > 0 for t ∈ [0, µ]. Then there exists a point
ξ ∈ [0, µ) such that u(ξ) = mint∈[0,µ]u(t) = B > 0.

Therefore, there exists a point ζ ∈ (ξ, µ) such that

A−B = u(µ) − u(η) = u′(ζ)(µ− η), (6.137)

where ζ ∈ (η, µ).
From inequality (6.137) it follows that u′(ζ) > 0 and u′(ζ)(µ−η) ≤

u′(ζ)T , i.e.,
A−B ≤ u′(ζ)T. (6.138)

From inequalities (6.133) and (6.138) we obtain

A−B ≤ u′(ζ)T ≤
(

g1(ζ)u(ζ)+g2(ζ) max
s∈[ζ−h,ζ]

u(s)
)

T ≤ g1(ζ)BT+g2(ζ)AT

≤
(

− g2(ζ)B + g2(ζ)A
)

T ≤ N(A−B)T < (N +M)(A−B)T.

(6.139)

Inequality (6.139) contradicts (6.132).
Case 2.2. Let µ = 0, i.e., m(0) = m(T ) = maxt∈[0,T ]u(t) = A > 0

or µ = T . As in the proof of Case 2.1., we obtain a contradiction.

We will apply the method of quasilinearization for approximate
finding of a solution of the periodic boundary value problem for a non-
linear differential equation with “maxima.” We will prove that the con-
vergence of the successive approximations is quadratic.

Theorem 6.5.1. Let the following conditions be fulfilled:

1. The functions α0(t), β0(t) ∈ C([−h, 0],R)∪C1([0, T ],R) are lower
and upper solutions of the PBVP (6.92), (6.131) and α0(t) ≤
β0(t) for t ∈ [0, T ].
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2. There exist functions F, g ∈ C0,2,2(Ω(α0, β0),R) such that

F (t, x, y) = f(t, x, y) + g(t, x, y),

and

Fxx(t, x, y) ≥ 0, Fxy(t, x, y) ≥ 0, Fyy(t, x, y) ≥ 0,

gxx(t, x, y) ≥ 0, gxy(t, x, y) ≥ 0, gyy(t, x, y) ≥ 0,

Fx(t, β0(t), max
s∈[t−h,t]

(β0(s))) ≤ gx(t, α0(t), max
s∈[t−h,t]

(α0(s))),

Fy(t, α0(t), max
s∈[t−h,t]

(α0(s))) ≥ gy(t, β0(t), max
s∈[t−h,t]

(β0(s))),

Fx(t, β0(t), max
s∈[t−h,t]

(β0(s))) + Fy(t, β0(t), max
s∈[t−h,t]

(β0(s)))

≥ gx(t, α0(t), max
s∈[t−h,t]

(α0(s))) + gy(t, α0(t), max
s∈[t−h,t]

(α0(s)))

(6.140)

(M +N)T ≤ 1,

where

M = max{|Fx(t, β0(t), λk(β0(tk))) − gx(t, α0(t), λk(α0(tk)))|,
t ∈ [0, T ]},

N = max{gy(t, α0(t), λk(α0(tk))) − Fy(t, β0(t), λk(β0(tk))),

t ∈ [0, T ]}.

Then there exist two sequences of functions {αn(t)}∞0 and {βn(t)}∞0
such that:

(a) The sequences are increasing and decreasing correspondingly;

(b) Both sequences uniformly converge in the interval [0, T ] and the
limits are equal to the unique solution of the PBVP (6.92),
(6.131) in S(α0, β0);

(c) The convergence is quadratic.

Proof. From condition 2 of Theorem 6.5.1 it follows that for (t, x1, y1),
(t, x2, y2) ∈ Ω(α0, β0) and x1 ≥ x2, y1 ≥ y2 the inequalities (6.101) and
(6.102) hold.

We consider the linear differential equation with “maxima” (6.104)
with a boundary condition (6.131).
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According to the results in Section 3.2 the PBVP (6.104),(6.131)
has an unique solution α1(t). We will prove that α1(t) ∈ S(α0, β0).

Indeed, the function u(t) = α0(t) − α1(t), t ∈ [−h, T ] satisfies the
inequalities

u′(t) ≤Q0(t)u(t) + q0(t)maxs∈[t−h,t]u(s), t ∈ [0, T ], (6.141)

u(0) ≤u(T ), u(t) = u(0) for t ∈ [−h, 0]. (6.142)

According to Lemma 6.5.1 the inequality α0(t) ≤ α1(t) holds.
We will prove that α1(t) ≤ β0(t). We define the function u(t) =

α1(t) − β0(t), t ∈ [−h, T ]. According to the definition of the functions
α1 and β0, the inequalities (6.140),

max
s∈[t−h,t]

α1(s) − max
s∈[t−h,t]

β0(s) ≤ min
s∈[t−h,t]

(
α1(s) − β0(s)

)
,

and the equation (6.104) we obtain the inequality (6.106) and (6.142).
From (6.106) and (6.142) according to Lemma 6.5.1 we obtain that

u(t) ≤ 0, i.e., the inequality α1(t) ≤ β0(t), t ∈ [0, T ] holds.
We consider the linear differential equation (6.108) with a boundary

condition (6.131).
The PBVP (6.108) and (6.131) has an unique solution β1(t) :

β1(t) ∈ S(α0, β0).
We will prove that α1(t) ≤ β1(t) for t ∈ [−h, T ].
Define the function u(t) = α1(t) − β1(t) for t ∈ [−h, T ]. From the

choice of the functions α1(t) and β1(t) and the inequalities (6.140)
we obtain that the function u(t) satisfies the inequalities (6.141) and
(6.142). According to the Lemma 6.5.1 it follows that the inequality
u(t) ≤ 0, t ∈ [0, T ] holds, i.e., α1(t) ≤ β1(t).

Similarly, we can construct two sequences of functions {αn(t)}∞0 and
{βn(t)}∞0 , where αn, βn ∈ S(αn−1, βn−1). The function αn+1(t) is the
unique solution of the periodic boundary value problem for the linear
differential equation with “maxima” (6.112), (6.131), and the function
βn+1(t) is the unique solution of the periodic boundary value problem
(6.114), (6.131).

Analogously as in the case n = 0 it can be proved that the functions
αn(t) and βn(t) are lower and upper solutions of the PBVP (6.92),
(6.131) and the inequalities (6.116) hold.

Therefore, the sequences {αn(t)}∞0 and {βn(t)}∞0 are uniformly
bounded and equicontinuous in the interval [0, T ] and uniformly con-
vergent.
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Denote limn→∞αn(t) = u(t), limn→∞βn(t) = v(t).
From the uniform convergence and the definition of the functions

αn(t) and βn(t) it follows the validity of the inequalities α0(t) ≤ u(t) ≤
v(t) ≤ β0(t). From the equalities (6.112) and (6.114) we obtain that the
functions u(t) and v(t) are solutions of the PBVP (6.92) and (6.131).
According to the conditions of Theorem 6.5.1 the PBVP (6.92) and
(6.131) has a unique solution on S(α, β), i.e., u(t) = v(t).

We will prove the convergence is quadratic.
Similarly to the proof of Theorem 6.4.2 we define functions

an+1(t) = u(t)−αn+1(t) and bn+1(t) = βn+1(t)−u(t), t ∈ [0, T ]. Both
functions are nonnegative, an+1(t) = an+1(0) = an+1(T ), t ∈ [−h, 0]
and for t ∈ [0, T ] the inequalities (6.119) and (6.121) are satisfied.

From the inequality (6.121) and the periodic boundary condition
we obtain the following estimate for the function an+1(t):

an+1(t) ≤
{

an+1(0) +

∫ t

0

(

σn(s) + qn(s) max
ξ∈[s−h,s]

an+1(ξ)
)

× exp
(

−
∫ s

0
Qn(τ)dτ)

)

ds
}

× exp
( ∫ t

0
Qn(s)ds

)

,

(6.143)

where

an+1(0) ≤
[

1 − exp
( ∫ T

0
Qn(s)ds

)]−1

×
∫ T

0

(

σn(s) + qn(s) max
ξ∈[s−h,s]

an+1(ξ)
)

exp
(∫ T

s
Qn(τ)dτ

)

ds.

(6.144)

From (6.143) and the definition of the function an+1(t) we obtain

an+1(t) ≤ f1(t) +

∫ t

0
f2(t, s) max

ξ∈[s−h,s]
an+1(ξ)ds, for t ∈ [0, T ],

an+1(t) = an+1(0) for t ∈ [−h, 0],
(6.145)

where

f1(t) = an+1(0)exp
( ∫ t

0
Qn(s)ds

)

,
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f2(t, s) = σn(t)exp
( ∫ t

s
Qn(s)ds

)

,

and the function σ(t) is defined by (6.122).
According to Theorem 2.1.2 from (6.145) we obtain the following

bound

an+1(t) ≤ an+1(0)exp
( ∫ t

0
Qn(s)ds

)

exp
( ∫ t

0
f2(t, s)ds

)

= an+1(0)exp
( ∫ t

0
Qn(s)ds

)

exp
( ∫ t

0
σn(s)exp

(
∫ s

ξ
Qn(ξ)dξ

)
ds
)

.

(6.146)

From condition 2 of Theorem 6.5.1 and the inequalities (6.144) and
(6.146) it follows that there exist constants λ1 > 0 and λ2 > 0 such that
inequalities (6.125) and (6.126). These inequalities prove the quadratic
convergence.





Chapter 7

Averaging Method

In this chapter, the averaging method for several types of differen-
tial equations with “maxima” will be presented. First order differen-
tial equations with “maxima” and neutral differential equations with
“maxima” are considered. Different schemes of averaging are applied to
initial value problems and boundary value problems. The application
of the averaging method for differential equations with “maxima” gives
the possibilities to considerably simplify them. The presence of max-
imum of the function in the right side of the equation has significant
influence on the application of the considered method.

Note that in this chapter, if x ∈ R
n, x = (x1, x2, . . . , xn) then we

use the following norm ‖x‖ =
√
∑n

i=1 x
2
i .

7.1 Averaging Method for Initial Value Prob-

lems

This section is devoted to the justification of averaging method for an
initial value problem associated to a vector differential equation with
“maxima.” In applications usually the maxima arises when the control
law corresponds to the maximal deviation of the regulated quantity.
If the control law also takes into account the maximal velocity of de-
viation of this quantity, then the process is governed by a differential
equation, containing the maximum of the unknown functions as well as
the maximum of its derivative.

Consider the system of differential equations with “maxima”

x′(t) = ǫX
(
t, x(t), max

s∈[t−h,t]
x(s), max

s∈[t−h,t]
x′(s)

)
, t ≥ 0, (7.1)

243
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with initial condition

x(t) = ϕ(t), x′(t) = ϕ′(t), t ∈ [−h, 0], (7.2)

where x ∈ R
n, x = (x1, x2, . . . , xn), h > 0 is a constant, ϕ(t) is the

initial function, ǫ > 0 is a small parameter and the following notation

max
s∈[t−h,t]

x′(s) =
(

max
s∈[t−h,t]

x′1(s), max
s∈[t−h,t]

x′2(s), . . . , max
s∈[t−h,t]

x′n(s)
)

is used.
Suppose that there exists the limit

lim
T→∞

1

T

∫ T

0
X
(
t, x, x, 0

)
dt = X̄

(
x
)

(7.3)

uniformly with respect to x.
Then the averaged system is the following system of ordinary dif-

ferential equations

ξ′(t) = ǫX̄
(
ξ(t)

)
, with initial condition ξ(0) = ϕ(0), (7.4)

where ξ ∈ R
n.

The following theorem gives conditions for proximity between the
solution x(t) of the initial value problem (7.1), (7.2) and the solution
ξ(t) of (7.4).

Theorem 7.1.1. Let the following conditions be fulfilled:

1. The functions X
(
t, x, y, z

)
∈ C(W,Rn), ϕ(t) ∈ C1([−h, 0],Ω),

and the derivative ϕ′(t) ∈ Υ for t ∈ [−h, 0], where the domains
W = [0,∞)×Ω×Ω×Υ, and Ω ⊆ R

n, Υ ⊆ R
n are open domains.

2. The following inequalities

‖X
(
t, x, y, z

)
‖ ≤M for (t, x, y, z) ∈W,

‖X
(
t, x, y, z

)
‖ − ‖X

(
t, x1, y1, z1

)
‖

≤ λ
(
‖x− x1‖ + ‖y − y1‖ + ‖z − z1‖

)
,

(t, x, y, z), (t, x1, y1, z1) ∈W

hold, where M and λ are positive constants.

3. The limit (7.3) exists uniformly for x ∈ Ω and the function
X̄(x) ∈ C(Ω,Rn).
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4. For each ǫ ∈ (0, E ] the initial value problem (7.1), (7.2) has a
unique solution x(t) ∈ Ω defined on R+, where E = const > 0 .

5. For each ǫ ∈ (0, E ] the initial value problem (7.4) has a unique
solution ξ(t), such that Uξ(t) ⊆ Ω for t ∈ R+, where Uξ(t) is a
ρ-neighborhood of ξ(t), (ρ = const > 0).

Then for each η > 0 and L > 0 there exists a number ǫ0 ∈
(0, E ], (ǫ0 = ǫ0(η, L)) such that for 0 < ǫ ≤ ǫ0 the inequality

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ < η, 0 ≤ t ≤ Lǫ−1

holds true.

Proof. The solution of (7.1), (7.2) satisfies the following integral equa-
tion

x(t) =ϕ(0) + ǫ

∫ t

0
X
(
s, x(s), max

θ∈[s−h,s]
x(θ), max

θ∈[s−h,s]
x′(θ)

)
ds, t ≥ 0,

(7.5)

x(t) =ϕ(t), x′(t) = ϕ′(t), −h ≤ t ≤ 0, (7.6)

and the solution of (7.4) satisfies

ξ(t) = ϕ(0) + ǫ

∫ t

0
X̄
(
ξ(s)

)
ds. (7.7)

Subtract (7.7) from (7.5) and obtain for t ≥ 0

‖x(t) − ξ(t)‖

≤ǫ
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ t

0

[
X
(
s, x(s), max

θ∈[s−h,s]
x(θ), max

θ∈[s−h,s]
x′(θ)

)
− X̄

(
ξ(s)

)]
ds

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤ǫ
∫ t

0

∣
∣
∣

∣
∣
∣X
(
s, x(s), max

θ∈[s−h,s]
x(θ), max

θ∈[s−h,s]
x′(θ)

)
−X

(
s, ξ(s), ξ(s), 0

)
∣
∣
∣

∣
∣
∣ds

+ ǫ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ t

0

[
X
(
s, ξ(s), ξ(s), 0

)
− X̄

(
ξ(s)

)]
ds

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≡ I1 + I2. (7.8)

Now, let L > 0 be a fixed number, and ǫ > 0 be a small parameter,
whose value will be found later.
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Then for 0 ≤ t ≤ Lǫ−1 according to the condition 2 of Theorem
7.1.1 we get

I1 =ǫ

∫ t

0

∣
∣
∣

∣
∣
∣X
(
s, x(s), max

θ∈[s−h,s]
x(θ), max

θ∈[s−h,s]
x′(θ)

)
−X

(
s, ξ(s), ξ(s), 0

)∣∣
∣

∣
∣
∣dθ

≤ǫλ
∫ t

0

[∣
∣
∣
∣x(s) − ξ(s)

∣
∣
∣
∣+
∣
∣
∣
∣ max
θ∈[s−h,s]

x(θ) − ξ(s)
∣
∣
∣
∣+
∣
∣
∣
∣ max
θ∈[s−h,s]

x′(θ)
∣
∣
∣
∣

]

ds

<2ǫλ

∫ t

0

∣
∣
∣
∣x(s) − ξ(s)

∣
∣
∣
∣ds+ ǫλ

∫ t

0

∣
∣
∣
∣ max
θ∈[s−h,s]

x′(θ)
∣
∣
∣
∣ds

+ ǫλ

∫ t

0

∣
∣
∣
∣ max
θ∈[s−h,s]

x(θ) − x(s)
∣
∣
∣
∣ds (7.9)

Without loss of generality we will asumme that t > h.
From conditions 1 and 2 of Theorem 7.1.1 we obtain the inequality
∫ t

0

∣
∣
∣
∣ max
θ∈[s−h,s]

x′(θ)
∣
∣
∣
∣ds

≤
∫ h

0

∣
∣
∣
∣ max
θ∈[s−h,s]

x′(θ)
∣
∣
∣
∣ds+

∫ t

h

∣
∣
∣
∣ max
θ∈[s−h,s]

x′(θ)
∣
∣
∣
∣ds

≤ Bh+

∫ t

h

[ n∑

1

(
x′(γi(s)

)2] 1
2 ds ≤ Bh+ ǫ(t− h)M

√
n

≤ Bh+ LM
√
n,

(7.10)

where γi(s) ∈ [s−h, s], i = 1, 2, . . . , n are such that maxθ∈[s−h,s] x
′
i(θ) =

x′i(γi(s)) and B = maxt∈[−h, 0]

∣
∣
∣
∣ϕ′(t)

∣
∣
∣
∣.

From (7.5) it follows the inequality
∣
∣
∣
∣x(t)

∣
∣
∣
∣ ≤ A + ǫMt. Then for

t ∈ [0, Lǫ−1] we get
∫ t

0

∣
∣
∣
∣ max
θ∈[s−h,s]

x(θ) − x(s)
∣
∣
∣
∣ds

≤
∫ h

0

∣
∣
∣
∣ max
θ∈[s−h,s]

x(θ)
∣
∣
∣
∣ds+

∫ h

0

∣
∣
∣
∣x(s)

∣
∣
∣
∣ds+

∫ t

h

∣
∣
∣
∣ max
θ∈[s−h,s]

x(θ) − x(s)
∣
∣
∣
∣ds

≤ 2Ah + ǫM
h2

2

+

∫ t

h

[ n∑

i=1

( ∫ s

ηi(s)
ǫX(ξ, x(ξ), max

τ∈[ξ−h,ξ]
x(τ), max

τ∈[ξ−h,ξ]
x′(τ))dξ

)2] 1
2
ds

≤ 2Ah + ǫM
h2

2
+ (t− h)ǫM

√
n ≤ 2Ah+ ǫM

h2

2
+ LM

√
n

(7.11)



7.1. Initial Value Problems 247

where ηi(s) ∈ [s−h, s], i = 1, 2, . . . , n are such that maxθ∈[s−h,s] xi(θ) =
xi(ηi(s)) and A = maxt∈[−h, 0]

∣
∣
∣
∣ϕ(t)

∣
∣
∣
∣.

Fom inequalities (7.10) and (7.11) we obtain

I1 ≤ 2ǫλ

∫ t

0

∣
∣
∣
∣x(s)−ξ(s)

∣
∣
∣
∣ds+ǫλ

(
Bh+2LM

√
n+2Ah+ǫM

h2

2

)
. (7.12)

For 0 ≤ t ≤ Lǫ1 we have

I2 = ǫ

∥
∥
∥
∥

∫ t

0

[

X
(
s, ξ(s), ξ(s), 0

)
− X̄

(
ξ(s)

)]

ds

∥
∥
∥
∥

≤ ǫ

∥
∥
∥
∥
∥

∫ L
ǫ

0

[

X
(
s, ξ(s), ξ(s), 0

)
− X̄

(
ξ(s)

)]

ds

∥
∥
∥
∥
∥
≤ LΦ

(L

ǫ
, ξ
)
,

(7.13)

where

Φ
(
t, ξ
)

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

t

∫ t

0

[

X
(
s, ξ, ξ, 0

)
− X̄

(
ξ
)]

ds

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

t

∫ t

0
X
(
s, ξ, ξ, 0

)
ds− X̄

(
ξ
)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(7.14)

According to condition 3 of Theorem 7.1.1 limt→∞ Φ(t, ξ) = 0 for
each ξ ∈ Ω. Thus it follows from (7.8), (7.12) and (7.13) that

∣
∣
∣

∣
∣
∣x(t) − ξ(t)

∣
∣
∣

∣
∣
∣ ≤ δ(ǫ) + 2ǫλ

∫ t

0

∣
∣
∣

∣
∣
∣x(θ) − ξ(θ)

∣
∣
∣

∣
∣
∣dθ, (7.15)

where

δ(ǫ) = ǫλ
(
Bh+2LM

√
n+2Ah+ǫM

h2

2
)+LΦ

(L

ǫ
, ξ
)
, lim

ǫ→0
δ(ǫ) = 0.

(7.16)
Applying Gronwall inequality to (7.15) and we get

∣
∣
∣

∣
∣
∣x(t) − ξ(t)

∣
∣
∣

∣
∣
∣ ≤ δ(ǫ) exp {2λL} for 0 ≤ t ≤ Lǫ−1. (7.17)

Since limǫ→0 δ(ǫ) = 0, for any η > 0 we could choose ǫ > 0 such

that
∣
∣
∣

∣
∣
∣x(t) − ξ(t)

∣
∣
∣

∣
∣
∣ ≤ η for t ∈ [0, Lǫ−1].
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7.2 Averaging Method for Multipoint Bound-

ary Value Problems

In this section we will apply an appropriate averaging scheme to
differential equations with “maxima” with a boundary condition given
at the fixed points 0 ≤ t0 < t1 < · · · < tN <∞.

Consider the differential equations with “maxima” (7.1) with initial
conditions (7.2) and a boundary condition

A0x(t0) +

N∑

i=1

Ai(ǫ)x(ti) = Γ
(
x(t0), . . . , x(tN ), ǫ

)
, (7.18)

where x ∈ R
n, ǫ ∈ (0, E ] is a small parameter, Γ : Ω × Ω × . . .Ω ×

(0, E ] → R
m, A0, Ai(ǫ), (i = 1, 2, . . . , N) arem×n-dimentional matrices

, E = const > 0.
Assume the limit (7.3) exists. Then the averaged problem corre-

sponding to (7.1), (7.2) and (7.18) is the following boundary value
problem for the system of ordinary differential equations

ξ′(t) = ǫX̄
(
ξ(t)

)
, (7.19)

ξ(0) = ϕ(0), A0ξ(t0)+
N∑

i=1

Aiξ(ti) = Γ
(
ξ(t0), . . . , ξ(tN ), ǫ

)
, (7.20)

where the function X̄(t) is defined by (7.3).
For any matrix A =

(
ajk
)

m,n
we will use the following norms

∣
∣
∣
∣A
∣
∣
∣
∣ =

[
n∑

k=1

m∑

j=1

a2
jk

] 1
2

.

The following theorem for proximity between the solution x(t) of
the boundary value problems (7.1), (7.2) and (7.18) and the solution
ξ(t) of (7.19) and (7.20) is valid.
Theorem 7.2.1. Let the following conditions be fulfilled:

1. The function X
(
t, x, y, z

)
∈ C(W,Rn), where W = [0,∞) ×

Ω × Ω × Υ, Ω ⊆ R
n, Υ ⊆ R

n are open domains.

2. The function ϕ(t) ∈ C1([−h, 0],Ω), and ϕ′(t) ∈ Υ for t ∈ [−h, 0].

3. The function Γ : Ω × Ω × . . .Ω × (0, E ] → R
m, E = const > 0.
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4. The following inequalities
∣
∣
∣

∣
∣
∣X(t, x, y, z)

∣
∣
∣

∣
∣
∣ ≤M, , (t, x, y, z) ∈W

∣
∣
∣

∣
∣
∣X(t, x, y, z) −X(t, x1, y1, z1)

∣
∣
∣

∣
∣
∣

≤ λ
(∣
∣
∣
∣x− x1

∣
∣
∣
∣+
∣
∣
∣
∣y − y1

∣
∣
∣
∣+
∣
∣
∣
∣z − z1

∣
∣
∣
∣

)

,

(t, x, y, z), (t, x1, y1, z1) ∈W,
∣
∣
∣

∣
∣
∣Γ
(
w0, w1, . . . , wN , ǫ

)

− Γ
(
w′

0, w
′
1, . . . , w

′
N , ǫ

)
∣
∣
∣

∣
∣
∣ ≤ µ0

∣
∣
∣
∣w0 − w

′

0

∣
∣
∣
∣

+

N∑

i=1

µi(ǫ)
∣
∣
∣
∣wi − w

′

i

∣
∣
∣
∣

hold, where M, λ, µ0 are positive constants, µi(ǫ) > 0, (i =
1, 2, . . . , N)) are such that the function b(ǫ) = max1≤i≤N µi(ǫ)
is continuous in (0, E ] and limǫ→0 b(ǫ) = 0.

5. The matrix A0 is a constant matrix and detA0 6= 0.

6. The matrices Ai(ǫ), (i = 1, 2, . . . , N ) : d(ǫ) =
max1≤i≤N

∣
∣
∣
∣Ai(ǫ)

∣
∣
∣
∣, d(ǫ) is a continuous function in (0, E ] and

limǫ→0 d(ǫ) = 0.

7. The inequality

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

A0 +

N∑

i=1

Ai(ǫ)

)−1∣∣
∣
∣
∣

∣
∣
∣
∣
∣

(
µ0 +

N∑

i=1

µi(ǫ)
)
< 1

is fulfilled in (0, E ].

8. The limit (7.3) exists uniformly for x ∈ Ω and the function
X̄(x) ∈ C(Ω,Rn).

9. For each ǫ ∈ (0, E ] the boundary value problems (7.1), (7.2) and
(7.18) have a unique solution x(t) ∈ Ω defined on R+, where
E = const > 0 .

10. For each ǫ ∈ (0, E ] problem (7.19), (7.20) has a unique solu-
tion ξ(t), such that Uξ(t) ⊆ Ω for t ∈ R+, where Uξ(t)is a ρ-
neighborhood of ξ(t), (ρ = const > 0).
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Then for each η > 0 and L > 0 there exists a number ǫ0 ∈
(0, E ], (ǫ0 = ǫ0(η, L)) such that for 0 < ǫ ≤ ǫ0 the inequality

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ < η, 0 ≤ t ≤ L

ǫ

holds true.

Proof. The solution of the boundary value problem (7.1), (7.2), (7.18)
satisfies the integral equation

x(t) =x0 + ǫ

∫ t

t0

X
(
θ, x(θ), max

s∈[θ−h,θ]
x(s), max

s∈[θ−h,θ]
x′(s)

)
dθ, t > t0,

(7.21)

x(t) =ϕ(t), x′(t) = ϕ′(t), −h ≤ t ≤ 0,

A0

(
x0+ǫβ0

)
+

N∑

i=1

Ai(ǫ)
(
x0+ǫβi

)
= Γ

(
x0+ǫβ0, . . . , x0+ǫβN , ǫ

)
, (7.22)

where x0 = x(t0), βi =
∫ ti
t0
X
(
θ, x(θ),maxs∈[θ−h,θ] x(s),maxs∈[θ−h,θ] x

′(s)
)
dθ,

(i = 0, 1, 2, . . . , N).

The solution of the averaged boundary value problem (7.19), (7.20)
satisfies the integral equation

ξ(t) = ξ0 + ǫ

∫ t

t0

X̄
(
ξ(θ)

)
dθ, t ≥ 0

(7.23)

ξ(0) = ϕ(0),

A0

(
ξ0 + ǫβ̄0

)
+

N∑

i=1

Ai(ǫ)
(
ξ0 + ǫβ̄i

)
= Γ

(
ξ0 + ǫβ̄0, . . . , ξ0 + ǫβ̄N0 , ǫ

)
,

(7.24)

where ξ0 = ξ(t0), β̄i =
∫ ti
t0
X̄
(
ξ(θ)

)
dθ, i = 0, 1, 2, . . . , N.
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Subtract the equality (7.23) from (7.21) and obtain

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ ≤

∣
∣
∣
∣x0 − ξ0

∣
∣
∣
∣

+ ǫ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ t

t0

[

X
(
θ, x(θ), max

s∈[θ−h,θ]
x(s), max

s∈[θ−h,θ]
x′(s)

)
− X̄

(
ξ(θ)

)]

dθ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣x0 − ξ0

∣
∣
∣
∣ + ǫ

∫ t

t0

∣
∣
∣

∣
∣
∣X
(
θ, x(θ), max

s∈[θ−h,θ]
x(s), max

s∈[θ−h,θ]
x′(s)

)

−X
(
θ, ξ(θ), ξ(θ), 0

)
∣
∣
∣

∣
∣
∣dθ

+ ǫ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ t

t0

[

X
(
θ, ξ(θ), ξ(θ), 0

)
− X̄

(
ξ(θ)

)]

dθ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≡
∣
∣
∣
∣x0 − ξ0

∣
∣
∣
∣ + I1 + I2. (7.25)

Now let L > 0 be a fixed number, and ǫ ∈ (0, E ] be a small number
whose value will be set up later.

Similarly to the inequalities (7.12) and (7.13) we obtain for t ∈
[0, Lǫ−1]

I1 =ǫ

∫ t

t0

∣
∣
∣

∣
∣
∣X
(
θ, x(θ), max

s∈[θ−h,θ]
x(s), max

s∈[θ−h,θ]
x′(s)

)

−X
(
θ, ξ(θ), ξ(θ), 0

)
∣
∣
∣

∣
∣
∣dθ

≤ 2ǫλ

∫ t

0

∣
∣
∣
∣x(s) − ξ(s)

∣
∣
∣
∣ds+ ǫλ

(
Bh+ 2LM

√
n+ 2Ah+ ǫM

h2

2

)
.

(7.26)

and

I2 =ǫ

∥
∥
∥
∥

∫ t

t0

[

X
(
θ, ξ(θ), ξ(θ), 0

)
−X

(
ξ(θ)

)]

dθ

∥
∥
∥
∥

≤ LΦ
(L

ǫ
, ξ
)
,

(7.27)

where Φ
(
t, ξ
)

is defined by (7.14).

According to condition 8 of Theorem 7.2.1 limt→∞ Φ(t, ξ) = 0 for
each ξ ∈ Ω.
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From (7.22) and (7.24) we get the validity of the inequality

(
A0 +

N∑

i−1

Ai(ǫ)
)
(x0 + ξ0) + ǫA0

(
β0 − β̄0

)
+ ǫ

N∑

i−1

Ai(ǫ)
(
βi − β̄i

)

≤
(
µ0 +

N∑

i−1

µi(ǫ)
)
(x0 + ξ0) + ǫµ0

(
β0 − β̄0

)
+ ǫ

N∑

i−1

µi(ǫ)
(
βi − β̄i

)

(7.28)

or

(x0 + ξ0)

≤
(
A0 +

N∑

i−1

Ai(ǫ)
)−1(

µ0 +

N∑

i−1

µi(ǫ)
)
(x0 + ξ0)

+ ǫ
(
A0 +

N∑

i−1

Ai(ǫ)
)−1
(

µ0

(
β0 − β̄0

)
+

N∑

i−1

µi(ǫ)
(
βi − β̄i

))

− ǫ
(
A0 +

N∑

i−1

Ai(ǫ)
)−1
(

A0

(
β0 − β̄0

)
+

N∑

i−1

Ai(ǫ)
(
βi − β̄i

)

(7.29)

or
∣
∣
∣
∣x0 − ξ0

∣
∣
∣
∣ ≤ ǫ G(ǫ)

N∑

i=1

∣
∣
∣
∣βi − β̄i

∣
∣
∣
∣ (7.30)

where

G(ǫ) =
(

b(ǫ) + d(ǫ)
)
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

A0 +

N∑

i=1

Ai(ǫ)

)−1
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
× (7.31)

(

1 −
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

A0 +

N∑

i=1

Ai(ǫ)

)−1
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(

µ0 +

N∑

i=1

µi

)
)−1

.

According to the conditions of Theorem 7.2.1, the definitions of
βi, β̄i, similar to the inequality (7.13) we get

ǫ
∣
∣
∣
∣βi − β̄i

∣
∣
∣
∣ = ǫ

∫ ti

t0

∣
∣
∣
∣X
(
θ, x(θ), max

s∈[θ−h,θ]
x(s), max

s∈[θ−h,θ]
x′(s)

)
dθ − X̄

(
ξ(θ)

)∣
∣
∣
∣dθ

≤ LΦ
(L

ǫ
, ξ
)
.

(7.32)
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The relations (7.25), (7.26), (7.27), (7.30), and (7.32) yield

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ ≤ σ(ǫ) + 2ǫλ

∫ t

0

∣
∣
∣
∣x(θ) − ξ(θ)

∣
∣
∣
∣dθ, (7.33)

where σ(ǫ) = ǫλ
(
Bh+2LM

√
n+2Ah+ǫM h2

2

)
+L(1+G(ǫ)N)Φ

(
L
ǫ , ξ
)
.

Apply Gronwall-Bellman inequality to (7.33) and obtain for t ∈
[0, Lǫ−1] the estimate

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ ≤ σ(ǫ) exp {2ǫλt} . (7.34)

Since limǫ→0 σ(ǫ) = 0, for any η > 0 we could choose a number ǫ >
such that

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ ≤ η for t ∈ [0, Lǫ−1].

7.3 Partial Averaging Method

Now we will apply the partially averaging method to the initial value
problem for the system of differential equations with “maxima” (7.1),
(7.2), where x ∈ R

n.

Let the function X̄(t, x) exist such that

lim
T→∞

1

T

∫ T

0

[

X(t, x, x, 0) − X̄(t, x)
]

dt = 0 (7.35)

uniformly with respect to x.

Then the averaged system of the system of differential equations
with “maxima” is the following system of ordinary differential equa-
tions:

ξ̇ = ǫX̄(t, ξ(t)) for t ≥ 0 (7.36)

with initial condition

ξ(0) = ϕ(0), (7.37)

where ξ ∈ R
n.

We shall prove the solutions of initial value problems (7.1) and (7.2)
are close enough to the solutions of the initial value problem (7.36),
(7.37).

Theorem 7.3.1. Let the following conditions be fulfilled:



254 Chapter 7. Averaging Method

1. The function X
(
t, x, y, z

)
∈ C(W,Rn), where W = [0,∞) × Ω ×

Ω × Υ, Ω ⊆ R
n, Υ ⊆ R

n are open domains.

2. The function ϕ(t) ∈ C1([−h, 0],Ω), and ϕ′(t) ∈ Υ for t ∈ [−h, 0].

3. The following inequalities

‖X
(
t, x, y, z

)
‖ + ‖X̄(t, x)‖ ≤M

for (t, x, y, z) ∈W, (t, x) ∈ R+ × Ω

‖X
(
t, x, y, z

)
‖ − ‖X

(
t, x1, y1, z1

)
‖

≤ λ
(
‖x− x1‖ + ‖y − y1‖ + ‖z − z1‖

)
,

(t, x, y, z), (t, x1, y1, z1) ∈W
∣
∣
∣

∣
∣
∣X̄(t, x) − X̄(t, x1)

∣
∣
∣

∣
∣
∣ ≤ µ

∣
∣
∣
∣x− x1

∣
∣
∣
∣, t ∈ R+, x, x1 ∈ Ω

hold, where M,µ and λ are positive constants.

4. The limit (7.35) exists uniformly for x ∈ Ω and the function
X̄(t, x) ∈ C(R+ × Ω,Rn).

5. For each ǫ ∈ (0, E ] the initial value problem (7.1), (7.2) has a
unique solution x(t) ∈ Ω defined on R+, where E = const > 0 .

6. For each ǫ ∈ (0, E ] the initial value problem (7.36),(7.37) has a
unique solution ξ(t), such that Uξ(t) ⊆ D ⊂ Ω for t ∈ R+, where
Uξ(t)is a ρ-neighborhood of ξ(t), D is a compact, (ρ = const > 0).

Then for each η > 0 and L > 0 there exists a number ǫ0 ∈ (0, E ], (ǫ0 =
ǫ0(η, L)) such that for 0 < ǫ ≤ ǫ0 the inequality

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ < η, 0 ≤ t ≤ Lǫ−1

holds.

Proof. From the condition 4 of Theorem 7.3.1 it follows that for the
compact D ⊂ Ω there exists a continuous function α(T ) such that
limT→∞ α(T ) = 0 monotonically and for x ∈ D the inequality

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ T

0

[

X(t, x, x, 0) − X̄(t, x)
]

dτ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ Tα(T ) (7.38)

holds.
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The solution x(t) of (7.1) and (7.2) satisfies the integral equation

x(t) = ϕ(0) + ǫ

∫ t

0
X
(
τ, x(τ), max

s∈[τ−h,τ ]
x(s), max

s∈[τ−h,τ ]
x′(s)

)
dτ, t ≥ 0,

(7.39)
and the solution ξ(t) of (7.36) and (7.37) satisfies

ξ(t) = ϕ(0) + ǫ

∫ t

0
X̄
(
τ, ξ(τ)

)
dτ, t ≥ 0, (7.40)

where x(t) = ϕ(t) and x′(t) = ϕ′(t) for t ∈ [−h, 0].
Subtracting (7.40) from (7.39) for t ≥ 0 we obtain

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣

≤ ǫ

∫ t

0

∣
∣
∣

∣
∣
∣X
(
τ, x(τ), max

s∈[τ−h,τ ]
x(s), max

s∈[τ−h,τ ]
x′(s)

)
−X

(
τ, ξ(τ), ξ(τ), 0

)
∣
∣
∣

∣
∣
∣dτ

+ ǫ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ t

0

[

X
(
τ, ξ(τ), ξ(τ), 0

)
− X̄

(
τ, ξ(τ)

)]

dτ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≡ I1 + I2. (7.41)

Now let L > 0 be a fixed number and ǫ > 0 be a number whose
value will be obtained later.

Similar to inequalities (7.9) and (7.12) we obtain for 0 ≤ t ≤ Lǫ−1

the bound

I1 = ǫ

∫ t

0

∣
∣
∣

∣
∣
∣X
(
τ, x(τ), max

s∈[τ−h,τ ]
x(s), max

s∈[τ−h,τ ]
x′(s)

)
−X

(
τ, ξ(τ), ξ(τ), 0

)
∣
∣
∣

∣
∣
∣dτ

≤ 2ǫλ

∫ t

0

∣
∣
∣
∣x(s) − ξ(s)

∣
∣
∣
∣ds+ ǫλ

(
Bh+ 2LM

√
n+ 2Ah+ ǫM

h2

2

)

(7.42)

From inequality (7.38) we get for t ∈ [0, Lǫ−1]

I2 = ǫ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ t

0

[

X
(
τ, ξ(τ), ξ(τ), 0

)
− X̄

(
τ, ξ(τ)

)]

dτ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ Lα(

L

ǫ
). (7.43)

From inequalities (7.41), (7.42), and (7.43) it follows that for t ∈
[0, Lǫ ] the inequality

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ ≤ σ(ǫ) + 2ǫλ

∫ t

0

∣
∣
∣
∣x(τ) − ξ(τ)

∣
∣
∣
∣dτ (7.44)
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holds, where

σ(ǫ) = ǫλ
(
Bh+ 2LM

√
n+ 2Ah + ǫM

h2

2

)
+ Lα(

L

ǫ
).

Apply Gronwall-Bellman inequality to inequality (7.44) and obtain

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ ≤ σ(ǫ) exp {2λL} . (7.45)

Inequality (7.45) and limǫ→0 σ(ǫ) = 0 proves that for any η > 0 we
could choose a number ǫ > 0 such that

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ ≤ η.

Now we will apply the result of Theorem 7.3.1 to introduce a scheme
for partial averaging for differential equations with “maxima.”

Consider the initial value problem for the system of differential
equations with “maxima” (7.1), (7.2), where x ∈ R

n.

Introduce the following notations:

Let l,m be fixed natural numbers such that l + m = n. Then we
assign to any vector x ∈ R

n, x = (x1, x2, . . . , xn) two vectors z ∈ R
l

and y ∈ R
m such that

(
z, y
)

=
(
x1, x2, . . . , xl,
︸ ︷︷ ︸

z

xl+1, . . . , xn
)

︸ ︷︷ ︸

y

,

or zj = xj, (j = 1, 2, . . . , l) and yk = xk+l, (k = 1, 2, . . . m).

According to the above-introduced notation, we could rewrite the
initial value problem (7.1), (7.2) in the following way:

z′(t) = ǫZ
(
t, x(t), max

s∈[t−h,t]
x(s), max

s∈[t−h,t]
x′(s)

)
, t ≥ 0,

y(t) = ǫY
(
t, x(t), max

s∈[t−h,t]
x(s), max

s∈[t−h,t]
x′(s)

)
, t ≥ 0,

z(t) = ψ(t), z′(t) = ψ′(t), t ∈ [−h, 0],
z(t) = ω̄(t), y′(t) = ω̄′(t), t ∈ [−h, 0],

(7.46)

where

X(t, u, v, w) =

(
Z(t, u, v, w)
Y (t, u, v, w)

)

, ϕ(t) =

(
ψ(t)
̟(t)

)

,

ψ ∈ R
l, ̟ ∈ R

m, u, v, w ∈ R
n.
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Let the following limit exist

lim
T→∞

1

T

∫ T

0
Z(t, x, x, 0)dt = Z̄(x). (7.47)

Then with the initial value problem (7.46) we associate the partially
averaged system of ordinary differential equations

z′(t) = ǫZ̄(x),
y′(t) = ǫY (t, x, x, 0) for t ≥ 0,
z(0) = ψ(0), y(0) = ω̄(0),

(7.48)

where x =
( z
y

)

.

In order to distinguish the used norms in different spaces, we will
use a subscript, i.e., ||.||m will denote a norm in R

m.

Theorem 7.3.2. Let the following conditions be fulfilled:

1. The functions Z
(
t, u, v, w

)
∈ C(W,Rl), Y

(
t, u, v, w

)
∈ C(W,Rm),

where W = [0,∞)×Ω×Ω×Υ, Ω ⊆ R
n, Υ ⊆ R

n are open domains.

2. The functions ψ(t) ∈ C1([−h, 0],Rl), ω̄(t) ∈ C1([−h, 0],Rm),
and the inclusions (ψ(t), ω̄(t)) ∈ Ω, (ψ′(t), ω̄′(t)) ∈ Υ hold for
t ∈ [−h, 0].

3. The following inequalities

‖Z
(
t, u, v, w

)
‖l + ‖Y

(
t, u, v, w

)
‖m ≤M for (t, u, v, w) ∈W,

‖Z
(
t, u, v, w

)
− Z

(
t, u1, v1, w1

)
‖l ≤ λ

(
‖u− u1‖n + ‖v − v1‖n

+‖w − w1‖n
)
,

‖Y
(
t, u, v, w

)
− Y

(
t, u1, v1, w1

)
‖m ≤ λ

(
‖u− u1‖n + ‖v − v1‖n

+‖w − w1‖n
)
,

(t, u, v, w), (t, u1 , v1, w1) ∈W

hold, where M and λ are positive constants.

4. The limit (7.47) exists uniformly for x ∈ Ω and the function

X̄ ∈ C(R+ × Ω,Rn), where X̄(t, x) =
( ¯Z(x)
Y (t, x, x, 0)

)

.

5. For each ǫ ∈ (0, E ] the initial value problem (7.46) has a unique
solution x(t) = (z(t), y(t)), x(t) ∈ Ω, defined on R+, where
E = const > 0.
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6. For each ǫ ∈ (0, E ] the initial value problem (7.48) has a unique
solution ξ(t), such that Uξ(t) ⊆ D ⊂ Ω for t ∈ R+, where Uξ(t)is
a ρ-neighborhood of ξ(t), (ρ = const > 0), D is a compact set.

Then for each η > 0 and L > 0 there exists a number ǫ0 ∈ (0, E ], (ǫ0 =
ǫ0(η, L)) such that for 0 < ǫ ≤ ǫ0 the inequality

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣
n
< η, 0 ≤ t ≤ Lǫ−1

holds.

Proof. From the limit (7.47) and the conditions of Theorem 7.3.2 it fol-
lows that in the domain Ω the function Z̄(x) is bounded, continuous and
satisfies the Lipschitz condition. Hence conditions 1 and 2 of Theorem

7.3.1 are satisfied for the functions X(t, u, v, w) ≡
(
Z(t, u, v, w)
Y (t, u, v, w)

)

and X̄(t, x) ≡
(

Z̄(x)
Y (t, x, x, 0)

)

. Further, the proof of Theorem 7.3.2

is similar to the one of Theorem 7.3.1 and we omit it.

7.4 Partially Additive and Partially Multi-

plicative Averaging Method

We will apply a partially additive averaging scheme to the initial value
problem for a system of differential equations with “maxima.”

Consider the following system of differential equations with “max-
ima”

x′(t) = ǫ
[

X1

(
t, x(t), max

s∈[t−h,t]
x(s), max

s∈[t−h,t]
x′(s)

)

+X2

(
t, x(t), max

s∈[t−h,t]
x(s), max

s∈[t−h,t]
x′(s)

)]

for t ≥ 0,

(7.49)

with initial condition

x(t) = ϕ(t), x′(t) = ϕ′(t) for t ∈ [−h, 0], (7.50)

where x ∈ R
n, ϕ(t) is an initial function, ǫ > 0 is a small parameter.
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Let the following limit exist

lim
T→∞

1

T

∫ T

0
X1

(
t, x, x, 0

)
dt = X10

(
x
)
. (7.51)

Then with the initial value problem for differential equations with
“maxima” (7.49), (7.50) we associate the averaged system of ordinary
differential equations

ξ
′
(t) = ǫ

[

X10

(
ξ(t)

)
+X2

(
t, ξ(t), ξ(t), 0

)]

, (7.52)

with initial condition
ξ(0) = ϕ(0), (7.53)

where ξ ∈ R
n.

We shall prove a theorem of nearness of the solutions of the initial
value problem (7.49),(7.50) and the averaged system (7.52) with initial
condition (7.53).

Theorem 7.4.1. Let the following conditions be fulfilled:

1. The functions X1

(
t, x, y, z

)
, X2

(
t, x, y, z

)
∈ C(W,Rn), where

W = [0,∞) × Ω × Ω × Υ, Ω ⊆ R
n, Υ ⊆ R

n are open domains.

2. The function ϕ(t) ∈ C1([−h, 0],Rn), and ϕ(t) ∈ Ω, ϕ′(t) ∈ Υ for
t ∈ [−h, 0].

3. The following inequalities
∣
∣
∣

∣
∣
∣X1

(
t, x, y, z

)
∣
∣
∣

∣
∣
∣+
∣
∣
∣

∣
∣
∣X2

(
t, x, y, z

)
∣
∣
∣

∣
∣
∣ ≤M for (t, x, y, z) ∈W,

∣
∣
∣

∣
∣
∣X1

(
t, x, y, z

)
−X1

(
t, x1, y1, z1

)
∣
∣
∣

∣
∣
∣

+
∣
∣
∣

∣
∣
∣X2

(
t, x, y, z

)
−X2

(
t, x1, y1, z1

)
∣
∣
∣

∣
∣
∣

≤ λ
(
‖x− x1‖ + ‖y − y1‖ + ‖z − z1‖

)
,

(t, x, y, z), (t, x1, y1, z1) ∈W

hold, where M and λ are positive constants.

4. The limit (7.51) exists uniformly for x ∈ Ω and the function
X10 ∈ C(Ω,Rn).

5. For each ǫ ∈ (0, E ] the initial value problem (7.49),(7.50) has a
unique solution x(t) ∈ Ω, defined on R+, where E = const > 0 .
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6. For each ǫ ∈ (0, E ] the initial value problem (7.52),(7.53) has a
unique solution ξ(t), such that Uξ(t) ⊆ D ⊂ Ω for t ∈ R+, where
Uξ(t)is a ρ-neighborhood of ξ(t), (ρ = const > 0), D is a compact
set.

Then for each η > 0 and L > 0 there exists a number ǫ0 ∈ (0, E ], (ǫ0 =
ǫ0(η, L)) such that for 0 < ǫ ≤ ǫ0 the inequality

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ < η, 0 ≤ t ≤ Lǫ−1

holds

Proof. The solution of the initial value problem (7.49), (7.50) satisfies

x(t) = x(0) + ǫ

∫ t

0

[

X1

(
τ, x(τ), max

s∈[τ−h,τ ]
x(s), max

s∈[τ−h,τ ]
x′(s)

)

+X2

(
τ, x(τ), max

s∈[τ−h,τ ]
x(s), max

s∈[τ−h,τ ]
x′(s)

)]

dτ, t ≥ 0,

(7.54)

x(t) = ϕ(t) and x′(t) = ϕ′(t)v for t ∈ [−h, 0], (7.55)

and the solution of (7.52) and (7.53) satisfies

ξ(t) = ξ(0) + ǫ

∫ t

0

[

X10

(
ξ(τ)

)
+X2

(
τ, ξ(τ), ξ(τ), 0

)]

dτ, t ≥ 0. (7.56)

Subtract (7.56) from (7.54) and get for t ≥ 0

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣

≤ ǫ

∫ t

0

∣
∣
∣

∣
∣
∣X1

(
τ, x(τ), max

s∈[τ−h,τ ]
x(s), max

s∈[τ−h,τ ]
x′(s)

)
−X1

(
τ, ξ(τ), ξ(τ), 0

)
∣
∣
∣

∣
∣
∣dτ

+ ǫ

∫ t

0

∣
∣
∣

∣
∣
∣X2

(
τ, x(τ), max

s∈[τ−h,τ ]
x(s), max

s∈[τ−h,τ ]
x′(s)

)
−X2

(
τ, ξ(τ), ξ(τ), 0

)
∣
∣
∣

∣
∣
∣dτ

+ ǫ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ t

0

[

X1

(
τ, ξ(τ), ξ(τ), 0

)
−X10

(
ξ(τ)

)]

dτ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
.

(7.57)

Choose an arbitrary L > 0 and let ǫ > 0 be a small enough number
whose value will be defined later.
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From condition 3 of Theorem 7.4.1 we obtain similarly to (7.9) and
(7.12) the following inequalities

∫ t

0

∣
∣
∣

∣
∣
∣X1

(
τ, x(τ), max

s∈[τ−h,τ ]
x(s), max

s∈[τ−h,τ ]
x′(s)

)
−X1

(
τ, ξ(τ), ξ(τ), 0

)
∣
∣
∣

∣
∣
∣dτ

≤ 2λ

∫ t

0

∣
∣
∣
∣x(s) − ξ(s)

∣
∣
∣
∣ds+ λ

(
Bh+ 2LM

√
n+ 2Ah + ǫM

h2

2

)
,

for t ∈ [0, Lǫ−1].

(7.58)

and
∫ t

0

∣
∣
∣

∣
∣
∣X2

(
τ, x(τ), max

s∈[τ−h,τ ]
x(s), max

s∈[τ−h,τ ]
x′(s)

)
−X2

(
τ, ξ(τ), ξ(τ), 0

)
∣
∣
∣

∣
∣
∣dτ

≤ 2λ

∫ t

0

∣
∣
∣
∣x(s) − ξ(s)

∣
∣
∣
∣ds+ λ

(
Bh+ 2LM

√
n+ 2Ah + ǫM

h2

2

)
.

(7.59)

As in the proof of inequality (7.13) we get
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ t

0

[

X1

(
τ, ξ(τ), ξ(τ), 0

)
−X10

(
ξ(τ)

)]

dτ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ L

ǫ
Φ
(L

ǫ
, ξ
)
, (7.60)

where Φ
(
t, ξ
)

is defined by (7.14) and limt→∞ Φ
(
t, ξ
)

= 0.
Substitute inequalities (7.58), (7.59), and (7.60) in inequality (7.57)

and obtain

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ ≤ 4ǫλ

∫ t

0

∣
∣
∣
∣x(s) − ξ(s)

∣
∣
∣
∣ds+ σ(ǫ) for t ∈ [0, Lǫ−1],

(7.61)

where σ(ǫ) = 2ǫλ
(

Bh+ 2LM
√
n+ 2Ah+ ǫM h2

2

)

+ LΦ
(
L
ǫ , ξ
)
.

From inequality (7.61) according to Gronwall inequality it follows
that ∣

∣
∣

∣
∣
∣x(t) − ξ(t)

∣
∣
∣

∣
∣
∣ < σ(ǫ)exp(4L).

Since limǫ→0 σ(ǫ) = 0 for any η > 0 we could find ǫ such that for

t ∈ [0, Lǫ−1] the estimate
∣
∣
∣

∣
∣
∣x(t) − ξ(t)

∣
∣
∣

∣
∣
∣ < η is valid.

Now we will suggest a scheme for partially multiplicative averaging
for an initial value problem for differential equations with “maxima.”
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Consider the following system of differential equations with “max-
ima”

x′(t) =ǫA
(
t, x(t), max

s∈[t−h,t]
x(s), max

s∈[t−h,t]
x′(s)

)

×X
(
t, x(t), max

s∈[t−h,t]
x(s), max

s∈[t−h,t]
x′(s)

)

for t ≥ 0,

(7.62)

with initial condition

x(t) = ϕ(t) and x′(t) = ϕ′(t), t ∈ [−h, 0], (7.63)

where x ∈ R
n, X : R × R

n × R
n × R

n → R
m, the matrix A is n ×m-

dimensional with elements aij
(
t, x(t), x̄(t), x̂(t)

)
, i = 1, 2, . . . , n,

j = 1, 2, . . . , m, ϕ(t) : [−h, 0] → R
n is an initial function, ǫ > 0 is a

small parameter.

Let the following limit exist

lim
T→∞

1

T

∫ T

0
A
(
t, x, x, 0

)
dt = A0

(
x
)
. (7.64)

Then we assign to the system of differential equations with “max-
ima” the following averaged system of ordinary differential equations

ξ′(t) = ǫA0

(
ξ(t)

)
X
(
t, ξ(t), ξ(t), 0

)
(7.65)

with initial condition

ξ(0) = ϕ(0), (7.66)

where ξ ∈ R
n.

Theorem 7.4.2. Let the following conditions be fulfilled:

1. The function X
(
t, x, y, z

)
∈ C(W,Rm), where W = [0,∞) × Ω ×

Ω × Υ, Ω ⊆ R
n, Υ ⊆ R

n are open domains.

2. The n×m dimensional matrix A
(
t, x, y, z

)
is continuous in W .

3. The function ϕ(t) ∈ C1([−h, 0],Rn), and ϕ(t) ∈ Ω, ϕ′(t) ∈ Υ for
t ∈ [−h, 0].
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4. The following inequalities

∣
∣
∣

∣
∣
∣A
(
t, x, y, z

)
∣
∣
∣

∣
∣
∣+
∣
∣
∣

∣
∣
∣X
(
t, x, y, z

)
∣
∣
∣

∣
∣
∣ ≤M for (t, x, y, z) ∈W,

∣
∣
∣

∣
∣
∣A
(
t, x, y, z

)
−A

(
t, x1, y1, z1

)
∣
∣
∣

∣
∣
∣ ≤ λ

(
‖x− x1‖ + ‖y − y1‖ + ‖z − z1‖

)
,

∣
∣
∣

∣
∣
∣X
(
t, x, y, z

)
−X

(
t, x1, y1, z1

)
∣
∣
∣

∣
∣
∣ ≤ λ

(
‖x− x1‖ + ‖y − y1‖ + ‖z − z1‖

)
,

(t, x, y, z), (t, x1, y1, z1) ∈W

hold, where M and λ are positive constants.

5. The limit (7.64) exists uniformly for x ∈ Ω and the matrix Ā0(x)
is continuous in Ω.

6. The matrix B(t, x) = A(t, x, x, 0) − Ā0(x)is defined for t ∈ R+

and x ∈ Ω and its elements do not change their signs in R+.

7. For each ǫ ∈ (0, E ] the initial value problem (7.62), (7.63) has a
unique solution x(t) ∈ Ω, defined on R+, where E = const > 0 .

8. For each ǫ ∈ (0, E ] the initial value problem (7.65), (7.66) has a
unique solution ξ(t), such that Uξ(t) ⊆ D ⊂ Ω for t ∈ R+, where
Uξ(t)is a ρ-neighborhood of ξ(t), (ρ = const > 0), D is a compact
set.

Then for each η > 0 and L > 0 there exists a number ǫ0 ∈ (0, E ], (ǫ0 =
ǫ0(η, L)) such that for 0 < ǫ ≤ ǫ0 the inequality

∣
∣
∣
∣x(t) − ξ(t)

∣
∣
∣
∣ < η, 0 ≤ t ≤ Lǫ−1

holds.

The proof the Theorem 7.4.2 is similar to the proof of Theorem
7.3.1 and Theorem 7.4.1 and we omit it.





Chapter 8

Notes and Comments

The results in Chapter 2 are mainly obtained by S. Hristova, as part
of the results in Section 2.1 are published in [Hristova and Stefanova
2010a], and part of the results in Section 2.3 are adopted by [Hristova
and Stefanova 2010b]. A part of the results in Section 2.2 are proved
by S. Hristova and J. Henderson.

The contents of Section 3.1 are by V. Angelov and D. Bainov
([Angelov and Bainov 1983]), the results of Section 3.2 are due to E.
Stepanov ([Stepanov 1997]), and the results of Section 3.3 are adopted
from D. Otrocol and I.A. Rus ([Otrocol and Ioan 2008a]).

Chapter 4 contains results of S. Hristova. Several of the results in
this chapter are similar to the results for impulsive differential equa-
tions with “supremum” ([Hristova 2010b], [Hristova 2010c], [Hristova
2009c], and [Hristova 2009d]). A part of the results in Subsection 4.4.1
are published in [Hristova 2009b], while the results of Subsection 4.4.2
are proved by J. Henderson and S. Hristova ([Henderson and Hristova
2010]).

The results of Section 5.1 and Section 5.2 are adapted by G. Zhang
and M. Migda [Zhang and Migda 2005] and B.G. Zhang and G. Zhang
[Zhang and Zhang 2000]. The results of Section 5.3 are obtained by T.
Donchev, S. Hristova and N. Markova ([Dontchev et al. 2010a]), while
Section 5.4 and Section 5.5 contain the results of N. Markova and P.
Simeonov.

The results of Section 6.1 are obtained by S. Hristova and are similar
to the results for impulsive differential equations with “supremum” by
D.D. Bainov and S.G. Hristova [Hristova and Bainov 1991]. The Section
6.2 contains results of D. D. Bainov and S. G. Hristova [Bainov and
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Hristova 1995]. Section 6.3 is written by S. G. Hristova and it is similar
to results for impulsive differential equations with “supremum” by Jian
Ping Cai [Cai 2003]. The results in Section 6.4 and Section 6.5 are
proved by S. Hristova.

The results in Section 7.1 and and Section 7.2 are adopted by D.
Bainov and S. Milusheva ([Bainov and Milusheva 1983], [Milusheva and
Bainov 1986b]). Section 7.3 and Section 7.4 are written by S. Hristova
and the results are similar to [Bainov et al. 1996], [Bainov et al. 1994a],
and [Milusheva and Bainov 1986a].
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